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One of the most striking properties of biological systems is their ability to learn and adapt to 
ever changing environmental conditions, tasks and stimuli. It emerges from a number of dif-
ferent forms of plasticity, that change the properties of the computing substrate, mainly acting 
on the modification of the strength of synaptic connections that gate the flow of information 
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Depression and Facilitation, Homeostasis, Spike Frequency Adaptation and diverse forms of 
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This special research topic collects the most advanced developments in the design of the diverse 
forms of plasticity, from the single circuit to the system level, as well as their exploitation in the 
implementation of cognitive systems.

Citation: Mayr, C., Sheik, S., Bartolozzi, C., Chicca, E., eds. (2016). Synaptic Plasticity in 
 Neuromorphic Systems. Lausanne: Frontiers Media. doi: 10.3389/978-2-88919-877-1

http://journal.frontiersin.org/journal/neuroscience
http://journal.frontiersin.org/researchtopic/2040/synaptic-plasticity-for-neuromorphic-systems


3 June 2016 | Synaptic Plasticity in Neuromorphic SystemsFrontiers in Neuroscience

Table of Contents

05 Editorial: Synaptic Plasticity for Neuromorphic Systems
Christian G. Mayr, Sadique Sheik, Chiara Bartolozzi and Elisabetta Chicca

Chapter 1: Plasticity Operating on Sensor Input
08 Racing to learn: statistical inference and learning in a single spiking neuron 

with adaptive kernels
Saeed Afshar, Libin George, Jonathan Tapson, André van Schaik and  
Tara J. Hamilton

26 Spatiotemporal features for asynchronous event-based data
Xavier Lagorce, Sio-Hoi Ieng, Xavier Clady, Michael Pfeiffer and Ryad B. Benosman

39 A reconfigurable on-line learning spiking neuromorphic processor comprising 
256 neurons and 128K synapses
Ning Qiao, Hesham Mostafa, Federico Corradi, Marc Osswald, Fabio Stefanini,  
Dora Sumislawska and Giacomo Indiveri

Chapter 2: Large Scale Hardware for Plasticity
56 Switched-capacitor realization of presynaptic short-term-plasticity and stop-

learning synapses in 28 nm CMOS
Marko Noack, Johannes Partzsch, Christian G. Mayr, Stefan Hänzsche,  
Stefan Scholze, Sebastian Höppner, Georg Ellguth and Rene Schüffny

70 A neuromorphic implementation of multiple spike-timing synaptic plasticity 
rules for large-scale neural networks
Runchun M. Wang, Tara J. Hamilton, Jonathan C. Tapson and André van Schaik

Chapter 3: Digital Implementations of Plasticity
87 A framework for plasticity implementation on the SpiNNaker neural 

architecture
Francesco Galluppi, Xavier Lagorce, Evangelos Stromatias, Michael Pfeiffer, Luis A. Plana, 
Steve B. Furber and Ryad B. Benosman

107 Reducing the computational footprint for real-time BCPNN learning
Bernhard Vogginger, René Schüffny, Anders Lansner, Love Cederström,  
Johannes Partzsch and Sebastian Höppner

Chapter 4: Memristive Plasticity
123 Plasticity in memristive devices for spiking neural networks

Sylvain Saïghi, Christian G. Mayr, Teresa Serrano-Gotarredona, Heidemarie Schmidt, 
Gwendal Lecerf, Jean Tomas, Julie Grollier, Sören Boyn, Adrien F. Vincent,  
Damien Querlioz, Selina La Barbera, Fabien Alibart, Dominique Vuillaume,  
Olivier Bichler, Christian Gamrat and Bernabé Linares-Barranco

http://journal.frontiersin.org/journal/neuroscience
http://journal.frontiersin.org/researchtopic/2040/synaptic-plasticity-for-neuromorphic-systems


4 June 2016 | Synaptic Plasticity in Neuromorphic SystemsFrontiers in Neuroscience

139 Tunnel junction based memristors as artificial synapses
Andy Thomas, Stefan Niehörster, Savio Fabretti, Norman Shepheard, Olga Kuschel, 
Karsten Küpper, Joachim Wollschläger, Patryk Krzysteczko and Elisabetta Chicca

148 A 2-transistor/1-resistor artificial synapse capable of communication and 
stochastic learning in neuromorphic systems
Zhongqiang Wang, Stefano Ambrogio, Simone Balatti and Daniele Ielmini

159 A compound memristive synapse model for statistical learning through STDP 
in spiking neural networks
Johannes Bill and Robert Legenstein

http://journal.frontiersin.org/journal/neuroscience
http://journal.frontiersin.org/researchtopic/2040/synaptic-plasticity-for-neuromorphic-systems


EDITORIAL
published: 19 May 2016

doi: 10.3389/fnins.2016.00214

Frontiers in Neuroscience | www.frontiersin.org May 2016 | Volume 10 | Article 214 |

Edited by:

Timothy K. Horiuchi,

The University of Maryland, USA

Reviewed by:

Theodore Yu,

Texas Instruments Inc., USA

*Correspondence:

Christian Mayr

christian.mayr@tu-dresden.de

Specialty section:

This article was submitted to

Neuromorphic Engineering,

a section of the journal

Frontiers in Neuroscience

Received: 27 January 2016

Accepted: 27 April 2016

Published: 19 May 2016

Citation:

Mayr CG, Sheik S, Bartolozzi C and

Chicca E (2016) Editorial: Synaptic

Plasticity for Neuromorphic Systems.

Front. Neurosci. 10:214.

doi: 10.3389/fnins.2016.00214

Editorial: Synaptic Plasticity for
Neuromorphic Systems

Christian G. Mayr 1*, Sadique Sheik 2, Chiara Bartolozzi 3 and Elisabetta Chicca 4

1Chair of Highly-Parallel VLSI-Systems and Neuromorphic Circuits, Technische Universität Dresden, Dresden, Germany,
2 BioCircuits Institute, University of California, San Diego, San Diego, CA, USA, 3 iCub Facility, Istituto Italiano di Tecnologia,

Genova, Italy, 4Cognitive Interaction Technology - Center of Excellence, Faculty of Technology, Bielefeld University, Bielefeld,

Germany

Keywords: synaptic plasticity, neuromorphic engineering, memristive plasticity, plasticity circuits, digital

plasticity, high-density plasticity, plasticity for sensor data, learning feature extraction

The Editorial on the Research Topic

Synaptic Plasticity for Neuromorphic Systems

Brain plasticity serves animals in a wide range of vital functions. It assists them in adapting their
behavior to the surroundings, in learning new strategies for optimizing a certain reward-seeking
policy for their survival or in adjusting motor activity through sensory feedback. Thus, plasticity is
an essential ingredient for building artificial autonomous systems that can cope with the real world.
In order to build these systems, neuromorphic design labs actively investigate and develop various
circuit implementations of plasticity. This research topic collects a comprehensive snapshot of this
work. A number of manuscripts published in this topic study the interplay between stochasticity
and plasticity (Afshar et al.; Bill and Legenstein; Lagorce et al.; Qiao et al.). Plasticity here acts in a
stochastic fashion or extracts features from stochastic sensor data. The current push toward higher
complexity/scale in neuromorphic devices can also be observed in plasticity implementations (Qiao
et al.; Wang et al.; Noack et al.). Due to advantageous technology scaling and reproducibility, digital
implementations of neuromorphic plasticity are gaining popularity (Galluppi et al.; Vogginger
et al.). The collection of articles in this topic is rounded out by articles on plasticity in novel
nano-scale technologies (Saighi et al.; Thomas et al.; Wang et al.; Bill and Legenstein).

1. STOCHASTICITY AND PLASTICITY

One topic of interest in recent publications is the interaction between stochasticity and synaptic
dynamics. Wang et al. introduces a stochastic synapse cell constructed with a memristor and
two transistors. Bill and Legenstein show that stochastic synapses can provide graded responses
from binary-valued synapses, aiding convergence in learning tasks. Stochasticity in conjunction
with plasticity can also aid error tolerance. For instance, the stochastic synapse model of Bill and
Legenstein can learn handwritten digits with high fidelity in the presence of significant device
deviations and noise. The statistical inference in Afshar et al. actually uses deviations between
individual dendrites. The visual feature extraction in Lagorce et al. operates on a high-dimensional
projection of the input space through a recurrent neural network, benefitting from deviations
across elements. A more conventional error-compensation approach is taken in Qiao et al., where
a network counterbalances for deviations through a learned aggregate of individual neuronal
responses.

2. PLASTICITY OPERATING ON SENSOR DATA

The above mentioned Qiao et al. and Lagorce et al. also represent examples of processing and
plasticity operating directly on spiking input. In fact, typical tasks that would be amenable to

5
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a neuromorphic solution have traditionally used non-spiking
input, such as image processing applications exclusively using
image frames (Henker et al., 2007). Due to these incompatible
representations (e.g., continuous time vs. discrete time, spikes
vs. scalar values), there has not been much synergy between
neuromorphic and traditional sensor processing, thus potentially
missing some novel approaches in both fields. However, the
two are growing closer together as sensors with spiking
output are becoming more widely available in such diverse
areas as vision (Delbruck, 2008) or audition (Liu et al.,
2010). In addition to the plastic sensory processing in Qiao
et al. and Lagorce et al., the statistical inference of Afshar
et al. could also be employed for sensory processing, as it is
geared toward the temporal patterns of multiple input spike
trains.

3. DIGITAL IMPLEMENTATIONS OF

PLASTICITY

Neuromorphic engineering was envisioned as analog VLSI
circuits, due to the similarity between the current across
CMOS devices in subthreshold and across neurons ion
channels. However, digital circuits benefit significantly
more from technology scaling and low-power advances
in deep-submicron nodes, making them attractive for
neuromorphic implementations. Specifically, plasticity allows
fixed, reproducible-function digital circuits to add adaptability
and variation to their behavior. Galluppi et al. present a
framework for plasticity implementation on a programmable
digital neuromorphic system, SpiNNaker. Vogginger et al.
discuss a computational optimization of a powerful learning
rule, outlining an efficient implementation in a synthesized
or programmable digital neuromorphic system. Afshar et al.
present an FPGA implementation of a novel neuron model and
an accompanying learning rule optimized for digital circuits.

4. LARGE SCALE HARDWARE FOR

PLASTICITY

Complex real-world applications demand large, computationally
capable neural networks. Consequently, there is a drive toward
large scale neuromorphic hardware with plasticity. The chip
of Qiao et al. is currently one of the largest devices with on-
chip plasticity (256 neurons, 128k synapses, 180 nm CMOS)
that employs the original subthreshold design philosophy. Noack
et al. present a switched capacitor implementation of short-
and long-term plasticity in 28 nm CMOS that at 3.6 ×

3.6 µm2 is an order of magnitude smaller than any other
plastic CMOS synapse. Other approaches to scaling include
Wang et al., which uses a digital time-multiplexed circuit
to compute Spike Timing Dependent Plasticity (STDP) for
time-multiplexed analog neurons. For large-scale networks,
topological considerations also play an increasing role, e.g.,

in terms of which signals a plasticity circuit needs access to
(e.g., pre- or post-synaptic) (Noack et al., 2010). A neuron-

synapse matrix arrangement seems the obvious choice, but
the implementations in this topic explore a variety of other
options.

5. MEMRISTIVE PLASTICITY

In terms of emerging technologies, the usage of nanoscale
memristors for short- or long term plasticity has seen a
large deal of interest since the pioneering work of Jo et al.
(2010). Memristors inherently replicate aspects of synaptic
plasticity and can combine plasticity, weight storage and weight
effect in a single device. Saighi et al. gives an overview
of recent developments in this area from a materials and
neuromorphic perspective. Thomas et al. investigate tunnel
junction based memristors that exhibit STDP-like plasticity.
Wang et al. present a synaptic cell composed of memristor plus
transistors which endows the synapse with stochastic learning
capabilities. Bill and Legenstein introduce a model of an ideal
stochastic memristor synapse and investigate its computational
properties.

6. SUMMARY

Synaptic plasticity is a crucial ingredient in neuromorphic
hardware. It has the potential to contribute to many different
fields, such as in the endeavor of building realistic brain models,
in biohybrids where the hardware adapts to the biological
counterpart or in the construction of truly cognitive systems.
This research topic gives an overview of the state-of the art
in plasticity circuit design and applications and outlines future
research directions.
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This paper describes the Synapto-dendritic Kernel Adapting Neuron (SKAN), a simple
spiking neuron model that performs statistical inference and unsupervised learning of
spatiotemporal spike patterns. SKAN is the first proposed neuron model to investigate
the effects of dynamic synapto-dendritic kernels and demonstrate their computational
power even at the single neuron scale. The rule-set defining the neuron is simple:
there are no complex mathematical operations such as normalization, exponentiation or
even multiplication. The functionalities of SKAN emerge from the real-time interaction
of simple additive and binary processes. Like a biological neuron, SKAN is robust to
signal and parameter noise, and can utilize both in its operations. At the network scale
neurons are locked in a race with each other with the fastest neuron to spike effectively
“hiding” its learnt pattern from its neighbors. The robustness to noise, high speed, and
simple building blocks not only make SKAN an interesting neuron model in computational
neuroscience, but also make it ideal for implementation in digital and analog neuromorphic
systems which is demonstrated through an implementation in a Field Programmable
Gate Array (FPGA). Matlab, Python, and Verilog implementations of SKAN are available
at: http://www.uws.edu.au/bioelectronics_neuroscience/bens/reproducible_research.

Keywords: spiking neural network, neuromorphic engineering, spike time dependent plasticity, stochastic

computation, dendritic computation, unsupervised learning

INTRODUCTION
PRIOR WORK
Real neurons, the electrically excitable cells of the Eumetazoan,
constitute an extremely diverse intractably complex community
whose dynamic structures and functions defy all but the broad-
est generalizations (Herz et al., 2006; Llinas, 2008). In order to
minimize this complexity, the field of Artificial Neural Networks
(ANN) has traditionally modeled neurons as deterministic, cen-
trally clocked elements which operate on real valued signals
(Yegnanarayana, 1999). These signals represent neuronal rate
coding where the spiking rate of a neuron encodes useful infor-
mation and the adjustment of synaptic weights results in learning.
This scheme, while mathematically amenable incurs a significant
energy cost by discarding the rich temporal information available
in the real signals used by neurons to communicate (Levy and
Baxter, 1996; Laughlin, 2001; Van Rullen and Thorpe, 2001). In
contrast, the highly optimized, low power, portable signal pro-
cessing, and control system that is the brain readily uses temporal
information embedded in the input signals and internal dynamics
of its stochastic heterogeneous elements to process information
(Xu et al., 2012).

More recently, the greater efficiency, higher performance, and
biologically realistic dynamics of temporal coding neural net-
works has motivated the development of synaptic weight adapta-
tion schemes that operate on temporally coding Spiking Neural
Networks (SNN) (Jaeger, 2001; Maass et al., 2002; Izhikevich,
2006; Kasabov et al., 2013; Tapson et al., 2013; Gütig, 2014).

After proposition many of these models are followed soon by
their implementation in neuromorphic hardware (Mitra et al.,
2009; Indiveri et al., 2011; Beyeler et al., 2013; O’Connor et al.,
2013; Chicca et al., 2014; Rahimi Azghadi et al., 2014). One of
the problems faced by neuromorphic hardware engineers is the
hardware inefficiency of many neural network algorithms. These
algorithms are almost always initially designed for performance
in a constraint free mathematical context with numerous all-to-
all connected neurons and/or to satisfy some biological realism
criteria, which create difficulties in hardware implementation.

Additionally in order for such spiking systems to combine
temporal coding and weight adaptation, multiple synapses con-
sisting of synaptic transfer functions (or synaptic kernels) as well
as synaptic weights must be realized for every input channel as
shown in Figure 1. With the aim of being biologically plausi-
ble, exponentially decaying functions are typically chosen as the
synaptic kernel, which is then multiplied by the synaptic weight.
Such functions and weights are quite complex and difficult to
implement in simple scalable analog and digital hardware with
even the simplest schemes requiring at least one multiplication
operation at every synapse. The difficulty of realizing multipliers
at the synapse and the large number of synapses used in most
algorithms has motivated moves toward more scalable digital
synapses (Merolla et al., 2011; Seo et al., 2011; Arthur et al., 2012;
Pfeil et al., 2012), novel memristor based solutions (Indiveri et al.,
2013; Serrano-Gotarredona et al., 2013) and second order solu-
tions such as sparse coding (Kim et al., 2014), time multiplexing,
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FIGURE 1 | (A) Typical functional model of a spiking neuron with static
synaptic transfer functions that provide memory of recent spikes. (B)

Biological representation of the neuron showing the learnt input spike pattern,

the resultant Excitatory Post-Synaptic Potentiation (EPSP) and the output spike
indicating pattern recognition. (C) Presentation of a non-target pattern results
in an EPSP that does not cross the threshold producing no output spike.

and Address Event Representation (AER) (Zamarreno-Ramos
et al., 2013) where only one or a few instances of the complex
computational units are realized and these are utilized serially.
Despite the success of these approaches such serial implementa-
tions can sometimes introduce associated bottlenecks, which can
detract from the main strength of the neural network approach:
its distributed nature (Misra and Saha, 2010).

Rather than implement complex synaptic weight adaptation,
other neuromorphic SNN implementations have, in the last 3
years, focused exclusively on adjustment of explicit propagation
delays along the neural signal path and coincidence detection of
input spikes to encode memory (Scholze, 2011; Sheik et al., 2012,
2013; Dowrick et al., 2013; Hussain et al., 2014; Wang et al., 2014).
This discarding of synaptic weights and kernels significantly sim-
plifies implementation and improves scalability. The disadvantage
is that explicit delay learning schemes can produce “sharp” sys-
tems with poor tolerance for the dynamically changing temporal
variance they inevitably encounter in applications where neuronal
systems are expected to excel: noisy, dynamic, and unpredictable
environments.

One of the features shared by all the preceding systems is that
the kernels used for encoding temporal information are static as
shown in Figure 2. However recent advances in neurophysiology
have revealed that synapto-dendritic structures and their asso-
ciated transfer functions are highly complex and adapt during
learning in response to the statistical contexts of their stimu-
lus environment (Losonczy et al., 2008; Yoshihara et al., 2009;
Kasai et al., 2010a; Lee et al., 2012; Rochefort and Konnerth,
2012; Smith et al., 2013; Colgan and Yasuda, 2014). These dis-
coveries are significant in the context of the computational power
of even single biological neurons. Whereas in the traditional
neuron model synapto-dendritic structures function as weights
and cables connecting one soma to the next, the recent find-
ings have demonstrated a wide range of signal integration and
processing occurring along the signal path, which confers consid-
erable computational power to single neurons (Spruston, 2008;
Silver, 2010; Harnett et al., 2012; Papoutsi et al., 2014). These
effects represent novel dynamics with as yet unexplored emergent
computational properties, which may potentially solve currently

intractable problems in computational neuroscience (Bhatt et al.,
2009; Shah et al., 2010). These dendritic adaptation effects have
recently been modeled through large rule sets (Yu and Lee, 2003;
Kasai et al., 2010b; Brunel et al., 2014) and in the neuromor-
phic field the use of dendrites for computation is beginning to
be explored (Hsu et al., 2010; George et al., 2013; Ramakrishnan
et al., 2013; Wang and Liu, 2013). However with biological real-
ism as a major focus, many of the models carry significant extra
complexity which can impede scalability.

NEURONS AS FUNCTIONAL MODELS OF DISTRIBUTED PROCESSING
In this paper the goal of performance in hardware moti-
vates a change in focus from claims of accurate modeling of
computation in biological neurons to exploiting the compu-
tational power of artificial but biologically inspired neurons.
These are herein defined as a set of simple distributed infor-
mational processing units that communicate through binary
valued pulses (spikes), receive inputs from multiple input chan-
nels (synapses and dendrites), and have a single output channel
(axon).

Figure 3 illustrates the basic elements of SNN algorithms as
well as some useful information flow and storage restrictions
(red), which, if adhered to at the neuron design stage, prove help-
ful during the physical implementation stage. These restrictions
include:

1. Self-contained: In a self-contained system, no external control-
ling system is required for the system to function. Examples
of systems that are not self-contained include synapses that
require adjustment via an external controller, or systems that
assume an external supervisor in real world contexts where
such a signal is unlikely to be available.

2. Scalable connectivity: Systems that require all-to-all connec-
tivity between the neurons or where the synapses or dendrites
directly communicate their weights or potentials to each other
are not hardware scalable or biologically possible. All-to-all
connected neurons require a geometrically increasing number
of connections, which is prohibitive both in hardware and in
the brain (Topol et al., 2006; Bullmore and Sporns, 2012).
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FIGURE 2 | Comparison of neuromorphic implementations of

synapto-dendritic kernels. The characteristics of realized EPSP kernels are
computationally important just prior to their being summed at the soma.
These kernels represent the penalty function used to translate the temporal
error in spatiotemporal spike patterns at the synapse to the membrane
potential at the soma. Due to their large numbers, the complexity,

functionality, and hardware cost of these kernels are a critical features of
neuromorphic spiking networks. (A) The biologically plausible alpha function
with adaptive weights. The delay of the kernel is static. (B) A neuromorphic
delay learning system with a temporal tolerance window. (C) The adaptable
kernel of SKAN with adaptive delay when the kernel peak value/synaptic
weight w is kept constant as is the case in this work.

3. Storage of time series data: Systems whose processing units
require large segments of their time series data to be stored
and be accessible for later processing in the fashion of standard
processors require a significant amount of on-site memory not
possible in biological systems and would add significant com-
plexity to neuromorphic hardware. Furthermore, such systems
overlap the domain of distributed processors such as GPUs
and fall outside the neuromorphic scope.

4. Multiplication: Multipliers are typically inefficient to imple-
ment in hardware and are limited in standard digital solu-
tions such as Field Programmable Gate Arrays (FPGAs) and
Digital Signal Processors (DSPs). Their computational inef-
ficiency and their limited number available on a hardware
platform result in neural networks implemented with time-
multiplexing. This, in turn, limits the size and the applications
where this hardware is viable (Zhu and Sutton, 2003; Pfeil
et al., 2012).

MATERIALS AND METHODS
The elements of Synapto-dendritic Kernel Adapting Neuron
(SKAN) and its learning rule are defined in the first part of this
section. In the second part, the dynamical behaviors of SKAN are
described.

SKAN BUILDING BLOCKS
At the single neuron level, SKAN consists of a combined synapto-
dendritic kernel adaptation and a homeostatic soma with an
adapting threshold as shown in Figure 4.

Synapse/dendrite
An incoming input spike initiates a simplified synapto-dendritic
kernel at each input channel i. This kernel is controlled by a phys-
iological process, pi, and for simplicity is modeled as a ramp up
and a ramp down sequence generated via an accumulator ri with
step size �ri. An input spike triggers pi, starting the first phase
where the accumulator ramps up at each time step �t by �ri

until it reaches a maximum value wi which represents the synap-
tic weight, and which is kept constant throughout this paper to
simplify the algorithm. After ri reaches wi, the process switches
from the ramp up phase, pi = 1, to a ramp down phase, pi = −1,
which causes the accumulator to count down at each time step
toward zero with the same step size �ri, until it reaches zero, turn-
ing off the physiological process, pi = 0. It will stay in this state
until a new incoming spike re-initiates the sequence. This simple
conceptual sequence, which is analogous to a dendritically filtered
neuronal EPSP, is illustrated in Figure 5.

The state of the ramp up ramp down flag sequence is described
by Equation 1:

pi(t) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1 if (ui(t) = 1 ∧ pi(t − 1) = 0)
∨(pi(t − 1) = 1 ∧ ri(t − 1) < wi)

−1 if(pi(t − 1) = 1 ∧ ri(t − 1) ≥ wi)
∨(pi(t − 1) = −1 ∧ ri(t − 1) > 0)

0 else

(1)

The w parameter in SKAN has similarities to the weight by which
a synaptic kernel is multiplied in standard synaptic STDP neu-
ron models and neuromorphic circuits, but with the advantage
of not requiring any multipliers, which are otherwise required
at every synapse in hardware implementations. The adjustment
of w in SKAN, via standard synaptic STDP schemes would allow
synaptic prioritization and/or the closing off of inactive or noisy
channels. The combined effects of dendritic structure and synap-
tic weight plasticity has only recently begun to be explored, but
early evidence points to significant computational power of such
a combined system (Sjöström et al., 2008). In this paper, how-
ever, in order to clearly demonstrate the stand-alone capabilities
of SKAN’s synapto-dendritic kernel adaptation mechanism, the
synaptic weight parameter of w is held constant and is identical
for all synapses.
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FIGURE 3 | Information flow schemes in unsupervised spiking

neural network algorithms and their impact on hardware

implementation. Black indicates the fundamental elements and

information paths of a spiking neural network. Red indicates added
features and information paths that can cause difficulties in hardware,
or limit algorithm utility.

FIGURE 4 | Schematic of the elements and information paths in a

SKAN neuron. The input spikes (blue) trigger adaptable synapto-dendritic
kernels (magenta) which are summed to form the neuron’s somatic
membrane potential (cyan). This is then compared to an adaptive somatic
threshold (red) which, if exceeded, results in an output pulse (green). The

output pulse also feeds back to adapt the kernels. Note that in this
paper the synaptic weights (orange) are held constant and equal for all
synapses. Also note that the back propagating signal does not travel
beyond the synapto-dendritic structures of the neuron to previous neural
layers.

Soma
At the soma the synapto-dendritic kernels are summed together.
This summed term is analogous to the membrane potential of
a biological neuron. Along with the membrane potential the
soma uses a dynamic threshold voltage parameter �(t) and as
long as the membrane potential exceeds threshold, the soma
spikes, setting the binary s(t) from 0 to 1 as described in
Equation 2:

s(t) =
{

1 if
∑

i ri(t) > �(t − 1)
0 else

(2)

SKAN differs from most previous spiking neuron models in not
resetting the membrane potential after spiking (see Denève, 2008;
Tapson et al., 2013 for exceptions). This permits wide pulse
widths at the neuron output s(t). While such wide pulses do
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FIGURE 5 | The simplified adaptable synapto-dendritic kernel of SKAN.

An input spike (blue) triggers the kernel’s ramp up ramp down sequence.
The input spike sets a flag pi representing a physical process to one (green).
The flag causes an accumulator (magenta) to count up from zero by �ri at
each time step until it reaches wi (constant orange dotted line), after which
the flag is set to negative one, which causes the accumulator to count back
down to zero, at which point the flag returns to zero completing the
sequence. The value of the accumulator represents the synapto-dendritic
kernel, i.e., the post-synaptic potential, which travels to the soma and is
summed with other kernels to produce the somatic membrane potential.

not resemble the canonical form of the single spike, they are
analogous to concentrated spike bursts and play a significant part
in the functioning of SKAN.

FEEDBACK MECHANISMS/LEARNING RULES
Synapto-dendritic kernel slope adaption
One of the central elements of SKAN is the feedback effect of the
output pulse s(t) on each of the synapto-dendritic kernels. Here
s(t) is analogous to the back propagating spike signal in biological
neurons which travels back up the dendrites toward the synapses
and is responsible for synaptic STDP.

The logic of the kernel adaptation rule is simple; if a particular
dendrite is in the ramp up phase pi = 1 and the back propagation
signal s(t) is active, the soma has spiked and this particular ker-
nel is late to reach its peak, meaning that the other kernels have
cooperatively forced the membrane potential above the thresh-
old while this kernel has yet to reach its maximum value wi. In
response, the ramp’s step size �ri is increased by some small pos-
itive value ddr for as long as the output pulse is high [s(t) = 1]
and the kernel is in the ramp up phase. Similarly if a kernel is in
the ramp down phase pi = −1 when the back propagation signal
is high, then the kernel peaked too early, having reached wi and
ramping down before the neuron’s other kernels. In this case the
ramp step size �ri is decreased by ddr. Equation 3 describes this
simple kernel adaptation rule:

[
ri(t)
�ri(t)

]
=
[

ri(t − 1)
�ri(t − 1)

]
+ pi(t − 1)

[
�ri(t − 1)
ddr × s(t − 1)

]
(3)

The use of indirect evidence about the dynamic state of other den-
drites in the form of the back propagating spike is a central feature

FIGURE 6 | The adaptation of SKAN. The kernels and the threshold of
SKAN adapt in response to repeated spatio-temporal pattern presentations.
For visual clarity the pattern only consists of the Inter-Spike Interval (ISI)
across two input channels ui (t) such that the pattern width (PW ) is
equivalent to the ISI. By the third presentation of the pattern the kernels
have captured the ISI information. With each subsequent presentation the
threshold �(t) increases making the neuron more selective as the kernel
step sizes �ri (t) increase making the kernels narrower. As a result each
pattern presentation increases the neuron’s confidence about the
underlying process producing the ISI’s, narrowing the neuron’s receptive
field around the target ISI and producing a smaller output pulse s(t) until, by
the 11th presentation (t = 2300 �t), the �rise during the output spike and
�fall balance each other such that the �before ≈ �after . The soma output
spike s(t) is now a finely tuned unit delta pulse which indicates high
certainty. When the membrane potential returns to zero, the neuron’s
threshold falls as indicated by the gray circle.

in the operation of SKAN and enables the synchronization of all
the neuron’s dendritic kernel peaks as shown in Figure 6.

Threshold adaptation
The threshold of SKAN is adaptive and changes under two condi-
tions: when the neuron outputs a spike and when the membrane
potential returns to zero.

At every time step during an output pulse s(t) = 1 the thresh-
old increases by �rise. This increase in the threshold is analogous
to the frequency adaptation effect seen in neurons, which cre-
ates a feedback loop reducing the ability of the neuron to spike.
Similarly in SKAN, the higher threshold reduces the likelihood
and duration of an output pulse. This effect is shown in Figure 6
and described in the first line of Equation 4.

�(t) =⎧⎨
⎩

�(t − 1)+�rise if
∑

i ri(t) > �(t − 1)
�(t − 1)−�fall if

∑
i ri(t) = 0 ∧∑i ri(t − 1) > 0

�(t − 1) else

(4)
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The post spike decrease in threshold �fall operates in opposition
to the �rise term. The returning of the membrane potential �ri(t)
to zero causes a decrease in the threshold by �fall as described by
the second line of Equation 4 and shown in Figure 6. The counter
balancing effect produced by the �fall and �rise in SKAN is a
highly simplified version of the complex mechanisms underly-
ing spike-threshold and frequency adaption in biological neurons
(Fontaine et al., 2014; Lee et al., 2014), where excited neurons
eventually reach an equilibrium state through homeostatic pro-
cesses such that the average spike frequency of neurons with a
constant input tends asymptotically toward a non-zero value as
t →∞. This simple rule set describes all the elements of a single
SKAN.

SINGLE SKAN DYNAMICS
In this section the dynamics emerging from SKAN’s rule are
discussed for the single neuron case.

Observing the first spike in a spike train or burst
As described in the first line of Equation 1 the ramp up phase of
the kernel at channel i is only initiated if a spike arrives at the
channel (ui = 1) while and the kernel is inactive (pi = 0). As a
result while the ith kernel is active no further input spikes are
observed. This has the effect that for each input channel the neu-
ron trains on the first spike of a spike train or burst. For the case
where the spike train or burst is of shorter duration than the total
duration of the kernel, the behavior of the neuron is identical one
where the burst is replaced by a single input spike arriving at the
start of the burst. The effect of more general Poisson noise spikes
is described later in this section.

Selecting to learn the commonest spatio-temporal patterns
As a single neuron, SKAN has previously been shown to select and
learn the most common spatio-pattern presented in a random
sequence containing multiple patterns (Sofatzis et al., 2014a).
This effect has been demonstrated in the context of visual pro-
cessing where hand gestures were transformed to spatio-temporal
patterns via a neuronal transform operation (Afshar et al., 2013)
and processed by SKAN (Sofatzis et al., 2014b). Figure 7 shows
the performance of a four input neuron as a function of spatio-
temporal pattern probability. The graph shows that the neuron’s
selection of commonest pattern is significantly above chance such
that for sequences with P(x) > 0.85 only the more common
pattern will selected.

SKAN response time improves with adaptation without information
loss
In addition to the kernel adaptation and increasing threshold
effect, the response time of SKAN, i.e., the time from the last
arriving input spike in a pattern to the neuron’s output spike,
decreases with every pattern presentation. This effect, shown in
Figure 8, is absent in the standard STDP schemes where improved
response times comes at the cost of information loss. In STDP
schemes the earliest spikes in a spatio-temporal pattern tend to
be highly weighted while the later spike lose weight and have little
effect on recognition (Masquelier et al., 2009). This behavior can
be seen as advantageous if an assumption is made that the later

FIGURE 7 | Commonest pattern selection as a function of pattern

presentation probability. The inset illustrates one simulation a 5 pattern
long sequence where each pattern is sampled from two randomly initialized
spatio-temporal patterns x and y, with probability P(x) = 0.6. In this
particular simulation pattern x was selected by the neuron. The plot shows
data resulting from the same experiment but with 1000 simulations of 300
pattern long sequences for each probability P(x) = 0.5 to 1. The graph
shows that the likelihood of a pattern being selected rises with increasing
presentation probability. For each simulation the output of the neuron for
the second half of the sequence (150–300th pattern) was recorded and it
was determined whether pattern x or pattern y had been selected. Also
tested was whether both, or neither pattern was selected by the neuron at
some point during the sequence (i.e., the neuron spiked at least once for
both of the patterns or failed to spike for a pattern it had selected during the
sequence). In the more than seven million pattern presentations
(1000× 150× 51) neither of these occurred.

spikes in carry less information however in this is an assumption
that cannot be made in general. In contrast SKAN’s adaptable
kernels reduce output spike latency with adaptation while still
enabling every spike to affect the output. This effect proves crit-
ical in the context of a multi-SKAN competitive network, where
the best-adapted neuron is also always the fastest neuron to spike.

As shown in Figure 8, the combination of the kernel and
threshold adaptation rules of SKAN increases �r and decreases
the response time between the last arriving input spike and the
rising edge of the output spike with each presentation. If this
increase is left unchecked �r will increase until it equals w at
which point the kernels take the shape of a single pulse such that
T∞ = 1�t. To prevent this �r must saturate at �rmax as shown
in Figure 8 with �rmax limited by Equation 5. This restriction
ensures that the kernel of the first spike in an input pattern cannot
return to zero before the last spike in the pattern arrives enabling
all kernels to converge due to feedback from the same output
signal.

�rmax < w/PW (5)

where PW is the maximal pattern width of the target pattern.
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FIGURE 8 | Narrowing of kernels leads to improved response time

during neuronal adaptation in a two input neuron. For visual clarity
the neuron is presented with an ISI = 0�t pattern and the two kernels
start with identical initial slopes [�r1(0) = �r2(0) = �rbefore]. In the region
under the output pulse, r (t) is the second integral of the constant ddr
and therefore follows time symmetric parabolic paths (a) and (b) as it
rises and falls. However due to the threshold rise which also occurs
during the output pulse, the output pulse is not symmetric around the

r (t) peak, such that the parabolic ramp down phase (b) is shorter than
the parabolic ramp up phase (a). As a result of this asymmetry �rafter is
larger than �rbefore. This effect increases the kernel’s slope �r with each
pattern presentation, narrowing the kernels until �r reaches �rmax . As a
result of this narrowing, the response time of the neuron from last
arriving input spike to the rising edge of the output, which is T1 in the
first presentation, improves until it reaches its minimal possible value
T∞ ≈ w/�rmax .

Evolution of the temporal receptive field in SKAN approximates
statistical inference
Recent work has demonstrated the connection between synaptic
weight adaptation and approximate probabilistic inference in the
context of rate coding and spiking networks (Bastos et al., 2012;
Boerlin et al., 2013; Pouget et al., 2013; Corneil et al., 2014; Kappel
et al., 2014; Kuhlmann et al., 2014; Paulin and van Schaik, 2014;
Tully et al., 2014), where typically the state of binary hidden vari-
ables are inferred from noisy observations using a large number
of neurons. In this section we show that synapto-dendritic kernel
adaptation enables a single neuron to make statistical inferences
not about binary hidden variables but about hidden ISI gener-
ating processes. Figure 9 illustrates the evolution of the temporal
receptive field of a neuron with two inputs as the neuron attempts
to learn the statistics of an underlying process that produces ISIs
with linearly increasingly temporal jitter. The receptive field of the

neuron describes the amount by which the membrane potential
�ri(t) exceeds the threshold �(t) as a function of the input spike
pattern times of ui(t). For the simple two input case illustrated,
the receptive field is a scalar function of the one-dimensional
ISI. In order to calculate the receptive field, following each pat-
tern presentation the neuron’s new parameters (�ri and �) were
saved and the neuron was simulated repeatedly using these saved
parameters for every possible ISI given the maximum pattern
width PW. For each simulation the summation in Equation 6 was
calculated at the end of the simulation resulting in the receptive
fields shown in Figure 9.

RFi= 2(τ ) =
∑

t

(∑
i
ri(τ, t)−�(τ, t)

)
× s(τ, t) (6)

where τ is the ISI being simulated.
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FIGURE 9 | Tracking a hidden ISI producing process and its variance. All
three panels (A–C) show different aspects of the same simulation where a
single SKAN learns statistics of a dynamic ISI across two input channels. (A)

A hidden process (blue) moves from ISI = −20 �t to ISI = 0 �t. The process

begins with no temporal jitter noise, such that the observed ISI’s (black dots)
equal the hidden process (σ = 0�t) and the blue hidden process is covered
by the observed black dots. At t = 0, the sum of the neuron’s randomly

(Continued)
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FIGURE 9 | Continued

initialized kernels peak at ISI = 6 �t. As the kernels adapt and capture
the ISI information, the receptive field maximum (red line) converges on
to the observed ISIs. This causes the threshold to rise shrinking the
receptive field to a minimum size (left inset t = 9.9 k�t). At this stage
receptive field boundaries (pink lines) lie very close on either side of the
hidden process’ mean value. As the simulation continues the noise in
the ISI producing process is deliberately increased linearly with time. The
neuron continues to follow the process but with every spike that doesn’t
land on the receptive field maximum the threshold falls slightly which
increases the receptive field size and increases the neuron’s receptivity to
ever more unlikely observations (right inset t = 138.9 k�t). (B) Variables
and behavior of the neuron throughout the simulation: after a rapid initial
increase the threshold �(t) settles near the peak of the membrane
potential �ri (t). As the noise increases linearly the threshold begins to

fall gradually. Missing output spikes in the s(t) spike train correspond to
input spikes that have landed outside the receptive field boundaries. (C)

The output pulse width (green = observed, red = running average)
increases with increasing signal noise. As with the receptive field size,
the output pulse width is initially large. As more patterns are observed,
the threshold rises and settles just below the peak of the membrane
potential and the pulse width reaches a minimum width of 1–2 �t. At
this low noise level (σ ≈ 0.5�t) there are no missing outputs, such that
all pulse widths are above zero. As the noise increases, more ISIs land
away from the receptive field maximum and some fall completely outside
the receptive field, decreasing the threshold, which results in wider
output pulse width whenever observed ISI’s do land near the receptive
field maximum. The dashed magenta line tracks the mean spike width,
which also increases with noise. This illustrates that the mean output
pulse width of SKAN is a reliable correlate of input noise level.

The ISI at which the receptive field expression above is at its
maximum (RF Max) indicates the ISI for which the neuron is
most receptive and may be interpreted as the ISI expected by
the neuron. Similarly the ISI boundary where the receptive field
expression goes to zero is the limit to the range of ISI’s expected
by the neuron. An ISI falling outside the receptive field bound-
aries results in no spike and no adaptation but simply reduces the
neuron’s confidence and can be viewed as outlier.

Figure 9A shows SKAN’s receptive fields tracking the statistics
of a moving ISI generating process with dynamic noise levels with
a high level of accuracy such that the blue line indicating the hid-
den process is barely visible from under the red line marking the
receptive field maximum. Figure 9C shows the neuron transmit-
ting wider output or bursts with increasing noise. In addition,
increasing ISI noise causes a growing gap between the envelope
of the pulse widths and the running average of the pulse widths.
This increasing gap is critical to the operation of the neuron, as
it is caused by missed pattern presentations, i.e., patterns that
produce no output pulse because of the presented noisy pattern
being too dissimilar to the one the neuron has learnt and expects.
The effect of a missed pattern is a fall in the neuron’s threshold
by �fall. When presented with noiseless patterns this fall would
be balanced almost exactly by the threshold rise due to the �rise

term in Equation 4 during the output pulse. However, without
the output spike there is a net drop in threshold. Yet this lower
threshold also makes the neuron more receptive to noisier pat-
terns creating a feedback system with two opposing tendencies
which:

1. Progressively narrows kernels around the observed input pat-
tern while shrinking the neuron’s receptive field by raising the
threshold.

2. Expands the receptive field in response to missed patterns by
reducing the threshold while allowing the kernels to learn by
incorporating ever less likely patterns.

The balance between these two opposing tendencies is deter-
mined by the ratio �rise:�fall, which controls how responsive
the neuron is to changing statistics. With a stable noise level
SKAN’s dynamics always move toward an equilibrium state where
the neuron’s tendency to contract its receptive field is precisely
balanced by the number of noisy patterns not falling at the

FIGURE 10 | Evolution of SKAN’s receptive field in response to input.

(A) Total resultant change in SKAN’s receptive field after multiple pattern
presentations. (B) SKAN with a small initial receptive field which does not
match the ISI distribution. The input spike lands outside the receptive field
boundaries. (C) As more ISI’s fall outside the small receptive field the
threshold falls and the receptive field expands, but without shifting the
position of its maximum value. (D) An ISI just falls on to the greatly
expanded receptive field producing an output spike. (E) The output spike
causes the SKAN kernels to adapt shifting the receptive field toward the
true position of the underlying process. (F) As more and more ISI’s fall
closer to the receptive field maximum wider output pulses are produced
which adapt the kernels faster shifting the receptive field more rapidly while
the resultant rise in the threshold contracts the receptive field. With
enough observations the receptive field would eventually become centered
on the input ISI distribution with the receptive field boundaries tracking the
ISI’s distribution.

receptive field maximum. This heuristic strategy results in the
receptive field’s maximum and extent tracking the expected value
of the input ISI’s and their variance respectively as shown in
Figure 10.
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LEARNING IN THE PRESENCE OF POISSON SPIKE NOISE AND MISSING
TARGET SPIKES
In addition to robustness to temporal jitter in the put pat-
tern an important feature of neural systems is their perfor-
mance in the presence of Poisson spike noise. Recent work
has highlighted that unlike most engineered systems where
noise is assumed to degrade performance, biological neural net-
works can often utilize such noise as a resource (McDonnell
and Ward, 2011; Hunsberger et al., 2014; Maass, 2014). In

the neuromorphic context the performance of neural net-
work architectures in the presence of noise is well documented
(Hamilton and Tapson, 2011; Hamilton et al., 2014; Marr and
Hasler, 2014). To test SKAN’s potential performance in stochas-
tic real world environments, the combined effects of extra
noise spikes as well as missing target spikes needs to be tested.
Figure 11 illustrates how different signal to noise ratios can
affect SKAN’s ability to learn an embedded spatio-temporal spike
pattern.

FIGURE 11 | Learning spatio-temporal spike patterns in the presence of

both Poisson spike noise and missing target spikes. Panel (A) shows the
presentation of seven patterns in the middle of a simulation sequence with a
noiseless environment. The kernels are highly adapted (�r2 = �rmax ), the
threshold is high and the output spikes are narrow indicating high certainty.
Panel (B) shows the result of a final noiseless test pattern at the end of the
simulation showing in detail that the kernels resulting from the test pattern
peak at the same time. Panel (C) shows the same interval of the same

simulation as panel (A) but with a 1:1 signal to noise ratio where the
probability of a target spike being deleted is half or P(signal) = 0.5 and the
Poisson rate is also half such that P(noise) = 0.5/T. Panel (D) shows the result
of a noiseless test pattern presentation at the end of the simulation. The
increased level of noise has resulted in an incorrect ramp step (�r2) such that
the r2 kernel peaks slightly late (black arrow). Panel (E) shows a simulation
with a 1:2 signal to noise ratio. Panel (F) shows that the high noise level has
resulted in slight misalignment of all four kernels.
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To quantify the performance of SKAN in the presence of
Poisson noise and missing target spikes a series of simulations
each comprising of 2000 pattern presentations were performed.
At the end of each simulation the RMS error between the neu-
ron’s receptive field maxima and the random target pattern was
measured and is shown in Figure 12.

MULTI-SKAN CLASSIFIER
In order to extend a single learning neuron to a classifier network
it is important that different neurons learn different patterns.
Ideally a neuron in a layer should not be in anyway affected by the
presentation of a pattern that another neuron in the same layer
has already learnt or is better placed to learn.

As outlined in Equation 3, SKAN adapts its kernels only during
an output pulse. This rule is particularly conducive to com-
petitive learning such that the simple disabling of the neuron’s
spiking ability disables all learning. Whereas previously proposed
algorithms utilize multi neuron Winner-Take-All layers with real
valued rate based inhibitory signals to prevent correlated spiking
and maximize the network learning capacity (Gupta and Long,
2009; Nessler et al., 2013), in a SKAN network a simple global
inhibitory OR gate serves the same function. The reason a sim-
ple binary signal can be used here is that in a SKAN network the
best-placed neuron for any pattern will be the fastest neuron to
spike. This allows a layer of neurons with shared inputs to learn
to recognize mutually exclusive spatio-temporal patterns. To this

end, Equation 2, describing the neuron’s output, is replaced by
Equation 7 (underlined terms added). The addition of a global
decaying inhibitory signal as described in Equation 8, act on all
neurons to disable any rising edge at the output. This means
that neuron n can only initiate an output spike sn if no other
neuron has recently spiked, i.e., the inhibitory signal is inactive
[inh(t − 1) = 0] and it can only continue spiking if it was already
spiking in the last time step [sn(t − 1) = 0].

sn(t) =
⎧⎨
⎩

1 if
∑

i rn,i(t) > �n(t − 1)
∧ (inh(t − 1) = 0 ∨ sn(t − 1) = 1)

0 else

(7)

inh(t) =
⎧⎨
⎩

inhmax if
⋃

n sn(t) = 1
inh(t − 1)− inhdecay if inh(t − 1) > 0
0 else

(8)

As shown in Figure 13 and described in Equation 8, the inhibitory
signal is realized via an OR operation on the output of all neurons,
and a decaying behavior which keeps the inhibitory signal active
for a period of time after a neuron has spiked to prevent spiking
by other neurons. After the output spike ends, this feedback loop
decays from inhmax by inhdecay at each time step until reaching
zero at which point the global inhibitory signal turns off allowing
any neuron to spike. As shown in Figure 13 the decay only begins
at the end of the pulse making the inhibitory signal operate as

FIGURE 12 | RMS error between receptive field maxima and target

spike patterns as a function of spike signal to noise ratio. The three
bottom panels show the spike probability distributions at three points
along the SNR axis. The signal spikes (blue), missed spikes (gray), and
noise spikes (red) are illustrated for the three cases of 1:0, 1:1, and 1:2
signal to noise ratios. The mean spike rate was maintained at 1 spike

per channel per time period between pattern presentations T. At the
completion of a simulation with one thousand pattern presentations the
RMS error between the resulting receptive field maxima and the target
spatio-temporal pattern was calculated. As the plot illustrates the error
increases with noise and simulations of neurons with more input
channels resulted in higher error.
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FIGURE 13 | A single global decaying inhibitory signal suffices to

push apart the neurons’ receptive fields and decorrelate the spiking

of the SKAN network. Left panel shows the network diagram of four
neurons with an inhibitory signal. The decay feedback loop extends the
duration of the inhibitory signal beyond the initial triggering spike via the
inh(t) signal using a counter and a comparator in the decay block. The
right panel shows the simulation results from a two input two neuron
network learning to classify two ISI’s x and y. The sum of the randomly
initialized kernels of neuron one (dashed) happen to peak earlier than
neuron two (solid) so that neuron one fires first in response to the first
pattern (x with ISI = 0 �t). During this first output pulse neuron one’s
threshold rises sharply reducing its receptivity, while its kernel step sizes

adapt toward each other such that �r1,1 ≈ �r1,2. Meanwhile the
inhibitory signal blocks neuron two from spiking when its kernel sum
exceeds its threshold only a few time steps after neuron one, which
means the neuron is prevented from adapting to pattern x. At the
second pattern presentation pattern y is shown (ISI = 10 �t). For this
pattern the sum of the kernels of the second neuron, still unchanged
from their random initialization, reach that neuron’s threshold slightly
earlier than neuron one and so neuron two spikes and begins adapting
to pattern y. A subsequent presentation of pattern x again triggers
neuron one and the kernels of the two neurons increasingly fine tune to
their respectively chosen pattern with each presentation as their
thresholds rises reducing their receptivity to other patterns.

a global peak detector which stays at inhmax for the duration of
the pulse, ensuring that the inhibitory signal robustly suppresses
spiking activity for a wide range of potential output pulse widths.

As with the single neuron output rule, the single neu-
ron threshold adaptation rule of Equation 4 can be modified
to Equation 9 (underlined terms added) to utilize the global
inhibitory signal for the multi-neuron case. This modification
prevents a neuron’s threshold being affected by the presentation
of patterns that another neuron is better adapted to. The addi-
tion of the underlined terms in the first line of Equation 9 means
that a neuron’s threshold can only rise when its membrane poten-
tial exceeds its threshold and the inhibitory signal is not already
active, or if the neuron itself spiked in the previous time step. The
fall in the threshold is similarly conditioned on the neuron having
spiked before the global inhibitory signal was activated, such that
only the very best adapted neuron, i.e., the one that generated the
inhibitory signal in the first place, adapts its threshold.

�n(t) =⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

�(t − 1)+�rise if
∑

i ri(t) > �(t − 1)
∧ (inh(t − 1) = 0 ∨ sn(t − 1) = 1)

�(t − 1)−�fall if
(∑

i ri(t) = 0 ∧ ∑i ri(t − 1) > 0
∧ inh(t − 1) = 0)

∨ (s(t) = 0 ∧ s(t − 1) = 1)
�(t − 1) else

(9)

Such a global inhibitory signal has been utilized in LIF neurons
(Afshar et al., 2012; Tapson and van Schaik, 2012) and synaptic
weight STDP neurons as a means of decorrelating neuronal firing
patterns (Masquelier et al., 2009; Habenschuss et al., 2013). Here,
however, its use is subtly different from both. Although in LIF
and synaptic STDP architectures and in SKAN a global inhibitory
signal results in the decorrelation of output spikes, in the purely
synaptic weight adapting schemes the neuron’s response time
remains static and does not improve with adaptation and in the
LIF networks (Afshar et al., 2012; Tapson and van Schaik, 2012)
there is no lasting adaptation at all. SKAN’s improved response
time due to kernel adaptation and the global inhibitory signal
realize a positive feedback mechanism absent in previous mod-
els. In a SKAN network a neuron’s small initial advantage for a
pattern results in a slightly earlier output spike. This output spike
globally inhibits all other neurons, which in turn results in exclu-
sive adaptation to the pattern by the first spiking neuron. This
further improves that neuron’s response time for the pattern and
increases the likelihood of the neuron being the first to spike due
to a subsequent presentation of the same pattern, even in the
presence of temporal jitter. Thus, the adaptation of SKAN’s ker-
nels and thresholds, together with the global inhibitory network,
mean that the neuron whose initial state is closest to the presented
pattern will be the first to respond and prevent all other neu-
rons adapting to this pattern. This effectively “hides” the pattern
from the other neurons and allows unsupervised spike pattern
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classification by the network as whole as demonstrated in the
proceeding Results Sections.

There are two important constraints adhered to by the preced-
ing modification of the SKAN rules. The first constraint is that
the required connectivity does not increase combinatorially with
the number of neurons as described in Equation 10 since the only
feedback path is from the single global inhibitory signal.

total connections = (number of input channel + 2)

× number of neurons (10)

The second constraint is that no complex central controller is
required for arbitration between the neurons. In competitive neu-
ral network schemes where a neuron’s fitness is expressed as a
real value from each neuron to a Winner-Take-All network, mul-
tiple bits (connections in hardware) are required to transport this
information. Alternatively rate based systems encode such real
valued signal over time in their spike rate which are then uti-
lized by a corresponding rate based Winner-Take-All system. But
in SKAN these requirements are reduced. Since a neuron’s laten-
cies correlates with its adaptation to a target pattern, the neurons
do not need to report a real value but only a single bit. This mode
of operation can be interpreted as either a connectivity saving
or as a speed saving with respect to alternative multi-bit or rate
based systems respectively. Furthermore, because of the robust-
ness of the system, checking for, or prevention of, simultaneous
output spikes is not necessary. Random initial heterogeneities in
the neurons’ parameters and/or noise in their signals is enough
to eliminate the need for central control by pushing the neu-
rons away from input space saddle points toward their stable
non-overlapping receptive fields.

RESULTS
ONLINE UNSUPERVISED SPATIO-TEMPORAL SPIKE PATTERN
CLASSIFICATION
In the following sections the classification performance of SKAN
is tested in several ways. For these tests equally likely spatio-
temporal spike patterns, each with one spike per channel per
presentation were presented in random sequences to the SKAN
network. Table 1 details the parameters used in all the tests.
These parameters were deliberately chosen for non-optimized

performance so as to try to mimic the use of the system in the
wild by a non-expert user. Examples of available optimizations
include: higher ddr values which result in faster converging sys-
tems, reduced �rise/�fall ratio for improved robustness to noise,
increased �rmax/�ri,n(t = 0) ratio and increased pattern widths
for enhanced pattern selectivity.

Hardware efficiency through 1-to-1 neuron to pattern allocation at
the local level
Through temporal competition a local network of mutu-
ally inhibiting SKANs can efficiently distribute limited neural
resources in a hardware implementation to observed spatio-
temporal patterns as is demonstrated in Figure 14.

FIGURE 14 | Convergence rate of as a function of neuron/pattern

numbers and number of pattern presentations for a 1-to-1 two input

neuron to pattern allocating network. As the number of patterns/
neurons increases the system requires longer pattern sequences to
correctly allocate exactly one unique pattern to each neuron. The inset
shows the five consecutive correct classifications of four patterns by four
neurons.

Table 1 | Parameter values used for all results.

Parameter Value Description

ddr 1 Change in the kernel step size. Higher value results in faster adaptation; lower values are more robust to noise

w(rmax ) 10,000 Maximum kernel height (synaptic weight)

rmin 0 The kernel signal r (t) saturates at zero

�ri,n(t = 0) 100 × (1 + rand) Initial kernel step size (For each input i to each neuron n)
The randomized initialization allows different neurons to learn different patterns

�rmax 400 Maximum kernel step size

ri,n(t = 0) 0 Initial kernel value

�rise 40 × inputs Rise in threshold during output spike, where inputs is the number of input channels per neuron

�fall 100 × inputs Fall in threshold due to input spikes, where inputs is the number of input channels per neuron

inhmax 100 Initial value of the inhibitory countdown

inhdecay 1 Step size of the inhibitory countdown. As a rule of thumb use: inhmax /inhdecay = min[�ri,n (t = 0)]

T 400 �t Time between pattern presentations
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Similar to biological systems, in a SKAN network there is
no supervisor switching the network from a training mode to
a testing mode so there is no distinction between learning and
recognition. This means that attempting to test SKANs in the
traditional neural network sense by switching off a network’s
adaptation mechanisms would disable the system. Thus, to test
the network’s performance 1000 simulations were generated for
each instance of the network, with up to 800 pattern presentations
each. The network was considered to have converged to a stable
solution when 20 consecutive patterns were correctly classified by
the network, i.e., with a single neuron responding per spatiotem-
poral pattern. This is illustrated in the inset of Figure 14. Correct
classification was defined as the case where a neuron spikes if
and only if its target pattern is presented and where the neu-
rons consistently spike for the same learnt target pattern. Also,
a single neuron should spike once for each input pattern and no
extra output spikes occur. The percentage of simulations that had
not converged to correct classification was recorded as a function
of the number of patterns presented, and is shown in Figure 14.
Simulations were terminated once a network had converged. The
number of consecutive patterns was chosen as20 to reduce the
likelihood that the observed “correct” response of the network
was due to chance.

Classification performance as a function of spatio-temporal pattern
dimension
The problem of coordinating multiple synapses for unsuper-
vised neuronal classification in SNN models, whether through
simply learning synaptic weights or through more complex path-
ways, is difficult (Jimenez Rezende and Gerstner, 2014). In SKAN
the hybrid synapto-dendritic kernel adaptation produces conver-
gence profiles shown in Figure 15. These results show how the
convergence profiles of SKAN change with the number of active

input channels. Additionally, the right panel in Figure 15 shows
the effect of increasing the resolution of the spatio-temporal pat-
tern. Doubling the number of time steps in the maximal width of
the target pattern PW, results in improved convergence profiles.

Classification in the presence of temporal noise
In order for SKAN to operate as an effective classifier competing
neurons must balance the requirements of selectivity and gener-
alization. In the spatio-temporal context, generalization takes the
form of temporal jitter noise. In this context neurons must rec-
ognize patterns closest to their learnt target pattern despite the
presence of temporal noise, while not recognizing other simi-
larly noise corrupted patterns that are closer to the target patterns
learnt by other neurons. Furthermore, the neurons should not
expect the learning phase to be any less noisy than the testing
phase or even for there to be any such distinct separation between
learning and recognition. As well the neurons should maintain
their correct learning and recognition behavior across a wide
range of noise levels and they should ideally do so without the
requirement for external adjustment of their parameters. SKAN
satisfies all these requirements. The classification performance of
SKAN is robust to temporal jitter noise as illustrated in Figure 16
where two neurons act as two Kalman filters with shared inputs
attempting to learn the statistics of two noisy but distinct ISI
generating processes.

Because of the constant adaptation of the neurons, moderate
levels of temporal noise with standard deviation up to σ = 0.25
�t, which is 1/80th of the pattern width, either do not affect or
actually improve SKAN performance. With high temporal noise
levels, i.e., with a standard deviation that is 1/20th the width of the
pattern (σ= 1 �t), the convergence profile is still similar to that of
the noiseless case. Such levels of temporal noise can disable a con-
ventional processor and even some neural networks. Even at the

FIGURE 15 | Convergence rates as a function of input channel dimension

and pattern width. Left panel: two random target patterns (light and dark
bars) of maximal pattern width PW = 20 �t and of dimensions 2, 4, 8, and

16, were presented at random to a two neuron network, with the
convergence of simulations plotted over the number of presentations. Right

panel: the same test with maximal pattern width PW = 40 �t.
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FIGURE 16 | Convergence as a function of temporal noise and pattern

presentations in a two neuron network with two input channels.

The insets illustrate selected noise distributions relative to the maximal
pattern width (PW = 20 �t). The left panel shows convergence profiles

due to temporal noise distribution with standard deviation σ = 0–1 �t.
At lower noise levels the convergence profile is approximately the same
or faster (red) than the zero noise case. The right panel shows the same
for σ ≈ 1–3 �t.

extreme, with noise that has a standard deviation more than 1/7th
of the pattern width, some simulations still result in the neurons
correctly classifying the separate ISI sources.

As a temporal coding scheme, the robustness of SKAN’s learn-
ing algorithm to temporal noise is critical for potential real-world
applications, where the ability to operate (and degrade gracefully)
in noisy, dynamic environments is favored over ideal performance
in ideal noise free circumstances.

IMPLEMENTATION IN FPGA
SKAN was implemented in an Altera Cyclone-V GX FPGA, a low-
end FPGA containing 77,000 programmable logic elements (LEs).
The functions of SKAN were programmed based on the equa-
tions described in the earlier sections, written using the Verilog
hardware description language, with no optimization techniques
employed. A key feature of this design is that no multipliers
are required: SKAN is executed entirely using simple summation
and logical operations only, thus significantly reducing compu-
tational complexity and hardware resources. Registers are used
to store required design parameters. Table 2 shows the utiliza-
tion of the FPGA in terms of registers, adaptive logic modules
(ALMs) and the percentage of resources used for SKAN mod-
ules containing different number of synapses. From this we can
see that SKAN is efficient in its usage of hardware resources.
Results from the FPGA are identical to the simulated results
as integers were used for both the simulations and the FPGA
and therefore no approximations were required. Integers were
used to avoid floating point operations, thereby reducing com-
putation. An efficient use of hardware resources, reduced com-
putational effort, and its ease of implementation make SKAN
an attractive neuromorphic solution in terms of both cost and
performance.

Table 2 | Altera Cyclone V FPGA resource usage for a SKAN neuron

with different number of synapses.

FPGA resource usage

No. of Single bit Adaptive logic Usage

synapses registers modules (ALMs)* percentage (%)

1 48 189 0.6

2 72 297 1.0

4 121 501 1.7

8 218 922 3.2

16 411 1580 5.4

*An ALM is equivalent to 2.65 logic elements (LEs).

DISCUSSION
As outlined in the introduction a limiting factor in many neuro-
morphic systems is the large number of complex synapses which
require multipliers and high connectivity networks required for
robust performance. A simple solution to this challenge has been
to physically implement of one or a few instances of these complex
elements and use time multiplexing and AER to generate larger
virtual networks. The kernels of SKAN which do not require
multipliers allow more synapses to be physically realized in hard-
ware while their adaptability means that better performance can
be achieved using fewer synapses. Furthermore, the time based
operation of the neurons reduces the required connectivity. This
potentially allows entire networks to be physically implemented in
hardware. Such small or medium sized networks whose behaviors
have been described in this report can then be cascaded or multi-
plexed to form larger networks. Such solutions could potentially
occupy a middle ground between fully hardware implemented
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networks with limited connectivity but high bandwidth and sin-
gle neuron realizations with high connectivity and limited oper-
ating speeds. While the focus of this introductory report is on
characterization of small non-optimized SKAN networks, prelim-
inary work on the application of the architecture to larger, more
difficult recognition tasks such as unsupervised learning of the
MNIST dataset has not revealed any limits to the capabilities of
larger, more optimized networks. Future work will focus on com-
parison of SKAN networks to other neural network solutions on
established datasets, comparison of the inference capabilities of
the neuron to optimal probabilistic estimators and the investiga-
tion of the combined effects of adaptation of SKAN’s kernels and
the adaptation of its synaptic weight parameter w which allows
encoding of synaptic signal to noise ratios for each input channel.

CONCLUSION
In this paper we have presented the SKAN, a neuromorphic
implementation of a spiking neuron that performs statistical
inference and unsupervised learning and spatio-temporal spike
pattern classification. The use of simple adaptable kernels was
shown to represent an efficient solution to hardware realized
neural networks without the need for multipliers while SKAN
operation was shown to be robust in the presence of noise
allowing potential applications in noisy real-world environments.
Finally it was shown that SKAN is hardware efficient and easily
implemented on an FPGA.
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Bio-inspired asynchronous event-based vision sensors are currently introducing a paradigm
shift in visual information processing. These new sensors rely on a stimulus-driven
principle of light acquisition similar to biological retinas. They are event-driven and fully
asynchronous, thereby reducing redundancy and encoding exact times of input signal
changes, leading to a very precise temporal resolution. Approaches for higher-level
computer vision often rely on the reliable detection of features in visual frames, but similar
definitions of features for the novel dynamic and event-based visual input representation
of silicon retinas have so far been lacking. This article addresses the problem of learning
and recognizing features for event-based vision sensors, which capture properties of
truly spatiotemporal volumes of sparse visual event information. A novel computational
architecture for learning and encoding spatiotemporal features is introduced based on a
set of predictive recurrent reservoir networks, competing via winner-take-all selection.
Features are learned in an unsupervised manner from real-world input recorded with
event-based vision sensors. It is shown that the networks in the architecture learn distinct
and task-specific dynamic visual features, and can predict their trajectories over time.

Keywords: echo-state networks, spatiotemporal, feature extraction, recognition, silicon retinas

1. INTRODUCTION
Humans learn efficient strategies for visual perception tasks by
adapting to their environment through interaction, and recog-
nizing salient features. In contrast, most current computer vision
systems have no such learning capabilities. Despite the accumu-
lated evidence of visual feature learning in humans, little is known
about the mechanisms of visual learning (Wallis and Bülthoff,
1999). A fundamental question in the study of visual process-
ing is the problem of feature selection: which features of a scene
are extracted and represented by the visual cortex? Classical stud-
ies of feature selectivity of cortical neurons have linked neural
responses to properties of local patches within still images (Hubel
and Wiesel, 1962; Olshausen and Field, 1997). Conventional arti-
ficial vision systems rely on sampled acquisition that acquires
static snapshots of the scene at fixed time intervals. This regular
sampling of visual information imposes an artificial timing for
events detected in a natural scene. One of the main drawbacks of
representing a natural visual scene through a collection of snap-
shot images is the complete lack of dynamics and the high amount
of redundancy in the acquired data. Every pixel is sampled con-
tinuously, even if its output value remains unchanged. The output
of a pixel is then unnecessarily digitized, transmitted, stored,
and processed, even if it does not provide any new information
that was not available in preceding frames. This highly ineffi-
cient use of resources introduces severe limitations in computer

vision applications, since the largely redundant acquired infor-
mation lead to a waste of energy for acquisition, compression,
decompression and processing (Lichtsteiner et al., 2008).

Biological observations confirm that still images are largely
unknown to the visual system. Instead, biological sensory sys-
tems are massively parallel and data-driven (Gollisch and Meister,
2008). Biological retinas encode visual data asynchronously
through sparse firing spike trains, rather than as frames of pixel
values (Roska and Werblin, 2003). Current studies show that
the visual system effortlessly combines the various features of
visual stimuli to form coherent perceptual categories relying on
a surprisingly high temporal resolution: the temporal offsets of
on-bistratified retina cells responses show an average standard
deviation of 3.5 ms (Berry et al., 1997; Uzzell and Chichilnisky,
2004). Neurons in the visual cortex also precisely follow the tem-
poral dynamics of the stimuli up to a precision of 10 ms. In order
to bridge the gap between artificial machine vision and biolog-
ical visual perception, computational vision has taken inspira-
tion from fundamental studies of visual mechanisms in animals
(Hubel and Wiesel, 1962; Wallis and Rolls, 1997). One main focus
of these approaches have been various computational models of
simple and complex cells in the primary visual cortex (V1) Hubel
and Wiesel (1962); Fukushima (1980); Riesenhuber and Poggio
(1999), which are characterized by their preferred response to
localized oriented bars. Typically, this orientation-tuned response
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of V1 cells has been modeled with Gabor Filters (Gabor, 1946),
which have been used as the first layer of feature extraction for
visual recognition tasks (Huang et al., 2004; Ilonen et al., 2007).
The most well-known example of biologically inspired, although
still frame-based model of object recognition is the HMAX model
(Riesenhuber and Poggio, 1999; Serre et al., 2006; Mutch et al.,
2010). It implements a feedforward neural network based on a
first layer of Gabor filters followed by different layers realizing
linear and non-linear operations modeled on primate cortex cells.
However, HMAX like other approaches implementing neural net-
works to perform visual tasks (Lin and Huang, 2005) are still
based on processing still images and therefore cannot capture key
visual information mediated by time.

This paper introduces an unsupervised system that allows
to extract visual spatiotemporal features from natural scenes.
It does not rely on still images, but on the precise timing of
spikes acquired by an asynchronous spike-based silicon retina
(Lichtsteiner et al., 2008). The development of asynchronous
event-based retinas has been initiated by the work of Mahowald
and Mead (Mead and Mahowald, 1988). Neuromorphic asyn-
chronous event-based retinas allow new insights into the capabil-
ities of perceptual models to use time as a source of information.
Currently available event-based vision sensors (Delbruck et al.,
2010; Posch et al., 2011) produce compressed digital data in the
form of time-stamped, localized events, thereby reducing latency
and increasing temporal dynamic range compared to conven-
tional imagers. Because pixel operation is now asynchronous and
pixel circuits can be designed to have extremely high tempo-
ral resolution, silicon retinas accomplish both the reduction of
over-sampling of highly redundant static information, as well as
eliminating under-sampling of very fast scene dynamics, which
in conventional cameras is caused by a fixed frame rate. Pixel
acquisition and readout times of milliseconds to microseconds are
achieved, resulting in temporal resolutions equivalent to conven-
tional sensors running at tens to hundreds of thousands of frames
per second, without the data overhead of conventional high-speed
imaging. The implications of this approach for machine vision
can hardly be overstated. Now, for the first time, the strict tem-
poral resolution vs. data rate tradeoff that limits all frame-based
vision acquisition can be overcome. Visual data acquisition simul-
taneously becomes fast and efficient. A recent review of these
sensors can be found in Delbruck et al. (2010) and Posch et al.
(2014).

Despite the efficiency of the sensor representation, it is far
from straightforward to port methods that have proven success-
ful in computer vision to the event-based vision domain. Much
of the recent success of computer vision comes from the defini-
tion of robust and invariant feature or interest point extractors
and descriptors (Lowe, 1999, 2004; Bay et al., 2008). Although
such methods have proven to be very useful for static image
classification, they require processing of the whole image, and
do not take temporal information into account. Dynamical fea-
tures for event data should instead recognize features only from
novel visual input, and recognize them as they appear in the
sparse input stream. This requires a model that can continu-
ously process spiking inputs, and maintain a representation of the
feature dynamics over time, even in the absence of input. Here

we present an architecture for feature learning and extraction
based on reservoir computing with recurrent neural networks
(Schrauwen et al., 2007), which integrate event input from neu-
romorphic sensors, and compete via a Winner-Take-All (WTA)
technique to specialize on distinct features by predicting their
temporal evolution.

A proof of concept for the performance of the architecture is
demonstrated in three experiments using natural recordings with
event-based vision sensors. In the first experiment, we present a
set of oriented bars to the camera in order to the show the capac-
ity of the model to extract simple features in an unsupervised
manner, using a big spatial receptive field to emphasize the graph-
ical visualization of the learnt features. In the second experiment,
the full capacity of the method is demonstrated by mapping the
field of view to several small receptive fields, and showing that the
model is still capable of reliably extracting features from the scene.
The last experiment applies the architecture to complex object
features. All experiments were conducted with real-world record-
ings from DVS cameras (Lichtsteiner et al., 2008), and thus are
subject to the standard noise distribution of such sensors.

2. MATERIALS AND METHODS
2.1. EVENT-BASED ASYNCHRONOUS SENSORS
In our experiments we used asynchronous event-based input sig-
nals from a Dynamic Vision Sensor (DVS) (Lichtsteiner et al.,
2008), which mimics the biological retina in silicon. It encodes
visual information using the Address-Event Representation
(AER), and has a spatial resolution of 128× 128 pixels. The DVS
outputs an asynchronous stream of events that signal local rel-
ative luminance changes in the scene, at the time they occur.
Each pixel works independently for its receptive field, and cre-
ates events whenever the local luminance change since the time of
the last emitted event exceeds a given threshold �I on a logarith-
mic scale. The typical threshold is around 15% of relative contrast
variation. If the change is an increase /decrease then an ON/OFF
event is generated by the pixel (see Figure 1). This asynchronous
way of coding allows to convey the timing of the events with a

FIGURE 1 | Illustration of event-based encoding of visual signals.

Shown are the log-luminance measured by a pixel located at (x, y )T and the
asynchronous temporal contrast events signal generated by the DVS with
respect to the predefined threshold �I.
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high temporal resolution (∼ 1 μs). The “effective frame rate” of
such pixels is several kHz. We define an event occurring at time t
at the pixel (x, y)T as:

e(x, y, t) = |p| = 1, (1)

where p is the polarity of the event. p equals 1 (“ON”) when-
ever the event signals an intensity increase, or −1 (“OFF”) for
a decrease, but for the purposes of this article the polarity is
not used. This data-driven representation reduces redundancy in
the visual input, and maintains the encoding of exact times of
input signal changes, which allows very high temporal dynamics
of acquisition.

2.2. GENERAL ARCHITECTURE
Figure 2 shows the general architecture of the feature selection
process. In the following we briefly describe the overall architec-
ture, with more detailed descriptions of the individual compo-
nents below. To capture the temporal dynamics of spatiotemporal
features, we use Echo-State Networks (ESN) (Jaeger, 2002) that
act as predictors of future outputs. To achieve unsupervised

learning of distinct features we use multiple ESNs that com-
pete for learning and detection via a WTA network. As the first
stage, the signal coming from the DVS retina is preprocessed,
by converting the DVS output into analog signals as required by
the ESNs’ structure. In the second stage, labeled ESN layer in
Figure 2, each ESN receives the converted output of the DVS to
predict its evolution one timesteamp in the future. The readout
of each ESN is trained for this task, and each network should
learn to predict different temporal dynamics. To achieve this, the
next layer of the architecture, labeled WTA with Predictability
minimization in Figure 2, implements a Winner-Take-All (WTA)
neural network, which selects the best predictor from the avail-
able set of predicting ESNs. Through competition, the WTA
inhibits poorly predicting ESNs to ensure that the best pre-
dictor has sufficient time to learn a particular spatiotemporal
sequence. This layer also contains a predictability minimization
process to promote orthogonality of predictions between the
different ESNs. The selected ESN is then trained to recognize
the spatiotemporal pattern, and learns to predict its temporal
evolution. The WTA competition ensures that each ESN special-
izes on an independent feature, thus preventing two ESNs from

FIGURE 2 | Architecture for unsupervised spatiotemporal feature

extraction. Spikes from the DVS are transformed by filtering into
analog input signals that are sent to a set of ESN networks. Each
ESN is trained to predict future input activations based on current and
past activities. The prediction is compared to the actual inputs, and the
output signal Sp

k , which is a representation of the ESN’s prediction
performance is fed into a Winner-Take-All (WTA) network. This WTA

selects the best predicting ESN and enables it to train on the present
input sequence. A predictability minimization process promotes
orthogonality of predictions between the different ESNs during the WTA
selection. The combination of temporal prediction and competition
through the WTA allows each ESN to specialize on the prediction of a
distinct dynamical feature, which thus leads to learning of a set of
different feature detectors.
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predicting the same pattern. Consequently, at any given time,
the winning network in the WTA layer indicates the detected
feature. Through random initialization of ESNs and WTA com-
petition, the architecture extracts distinct spatiotemporal features
from event-based input signals in a completely unsupervised
manner.

For the experiments described in this article, the architecture
has been fully implemented in software, using DVS recordings of
real-world stimuli as inputs. In particular, the visual inputs for all
experiments contain the typical noise for this kind of sensor, and
do not use idealized simulated data.

2.3. SIGNAL PRE-PROCESSING
The DVS retina has approximately 16K pixels in total. Directly
using each pixel as an input to the ESN reservoir would require a
network with 16K input neurons, and, in typical reservoir com-
puting setups, 10–100 times more hidden neurons. Since this is
a prohibitively large size for real-time simulation of neural net-
works on conventional current computers, a pre-processing stage
is introduced to downsample the dimensionality of the input.
Please note that this is not a fundamental requirement, since
especially future large-scale neuromorphic processors and other
dedicated hardware platform could potentially handle real-time
execution of such large networks (see Discussion), but this is
beyond the scope of our proof-of-principle study.

Figure 3 provides a more detailed view of the first layer of
the architecture, named layer (0) in Figure 2. To reduce the
input dimensionality of the DVS signal, the retina pixels are first
spatially resampled into cells C(xc, yc) of δx × δy pixels, each
integrating pixels around the center (xc, yc) according to:

C(xc, yc) =
{

(x, y) | x ∈ [xc − δx, xc + δx]
y ∈ [yc − δy, yc + δy]

}
. (2)

Next, the signals are quantized by introducing spatiotemporal
receptive fields RF(x0, y0, t1, t2), covering �x ×�y subsampling
cells, which collect all events in a spatiotemporal volume in the
time interval [t1, t2] according to:

RF(x0, y0, t1, t2) = (3){
e(x, y, t)|t ∈ [t1, t2], (x, y) ∈ C(xc, yc),

|xc − x0| ≤ �x

|yc − y0| ≤ �y

}
.

Conversion of events into analog signals is achieved by filtering
with a causal exponential filter with time constant τ , defined
as G(t, ti) = e−(t− ti)/τ ·H(t − ti), where H(t) is the Heaviside
function, which is 1 for t ≥ 0 and zero otherwise. This filter
is applied to all spikes coming from pixels (x, y) contained in a
receptive field RF(x0, y0, t0, t), yielding the analog output signal
A, which is fed into the ESNs:

A(x, y, t0, t) =
∑

e(xi, yi, ti) ∈ RF(x0, y0, t0, t)
xi = x, yi = y

G(t, ti) , (4)

where t0 is a chosen time origin.
The complete preprocessed input at time t fed into the ESN

layer is the vector formed by all outputs A(x, y, t0, t) of pixels con-
tained in RF(x0, y0, t0, t). For clarity, we will in the following only
consider a single receptive field denoted as A(t) :

A(t) =
⎛
⎜⎝

A(x1, y1, t0, t)
...

A(xM, yM, t0, t)

⎞
⎟⎠ (5)

2.4. ESN LAYER—INPUT PREDICTION
This layer (Figure 2-(1)) computes the prediction of input sig-
nals for N different ESNs (Jaeger, 2002). The kth ESN is defined
by its internal state sk, and the three weight matrices Wk

out (for
output or readout weights), Wk

in (for input weights), Wk
back (for

feedback weights), and the recurrent weights Wk
r . These weight

matrices are initialized randomly for each ESN and encoded as 64
bit floating-point numbers. The internal state sk of the ESN and
its output (outk) are iteratively updated, and evolve according to :

FIGURE 3 | Illustration of signal pre-processing to convert DVS

events into equivalent analog input for ESNs. In order to reduce
the number of input channels to the system and reduce
computational load, the input from retina pixels is first spatially

subsampled into cells C(xc , yc ). Each set of ESNs then receives input
from a particular receptive field RF (x, y, t1, t2). To compute the
equivalent analog input, an exponential kernel finally is applied to each
event contained in the receptive field.
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sk(tn) = f
(

Wk
r · sk(tn− 1)+Wk

in · A(tn)

+Wk
back · outk(tn− 1)

)
, (6)

outk(tn) = f out
(

Wk
out · sk(tn)

)
. (7)

In our experiments, the logistic function is used as the non-
linearity f for the internal state evolution, and a linear readout
is used as f out. Every ESN is trained to predict its future input
at one timestep ahead (i.e., at tn + dt), thus the output of the
ESN according to Equation 7 creates a prediction Âk(tn + dt) =
outk(tn), which should match A(tn + dt). As is usual for ESNs,
only the readout weights Wk

out are adapted, the recurrent and
other weights are kept at their random initial values which are
drawn from uniform distributions.

As suggested in Jaeger and Haas (2004), training of the read-
out weights Wk

out can be achieved with a standard recursive
least squares algorithm (here a version described in Farhang-
Boroujeny (2013) was used). This algorithm recursively adapts
Wk

out so as to minimize a weighted linear least squares cost
function, computed from the prediction error:

ε
p
k (tn) = |Âk(tn)− A(tn)|. (8)

This method is well-suited for online learning, since the coeffi-
cients of Wk

out can be updated as soon as new data arrives.
The output of the ESN layer into the subsequent WTA layer

is a similarity measure S
p
k(tn) for each ESN, which indicates the

quality of each prediction for the currently observed input:

S
p
k(tn) =

∑
i

∣∣∣A(tn)i . Âk(tn)i

∣∣∣
∑

i

∣∣A(tn)i

∣∣ .∑i

∣∣∣Â(tn)i

∣∣∣ , (9)

where i is summing over all components of A(tn) and Â(tn), which
have been properly normalized to take on values between 0 and 1.

2.5. WINNER-TAKE-ALL SELECTION
Based on the indicators of prediction quality S

p
k(tn) computed

by the ESN layer, the third layer of the model (Figure 2-(2))
selects the best predictor among the N ESNs through a WTA
mechanism. The WTA network consists of a set of N neurons
{n1, . . . , nN} plus an inhibitory neuron, which is recurrently and
bi-directionally connected with the excitatory neurons, as detailed
in Coultrip et al. (1992), Douglas et al. (1994), Liu and Oster
(2006), and Oster et al. (2009). The task of the WTA is to select
from the pool of ESNs the one whose prediction best matches
the actual dynamics of the present input, and which thus has the
highest similarity S

p
k(tn), as computed by layer (1) in Figure 2.

Inputs to the WTA neurons are generated from the S
p
k values

using non-leaky Integrate-and-Fire (IF) neurons, which trans-
form the analog values into spike trains. To make the WTA
network more robust to the variations in the similarity measure, a
sigmoid function is applied to the S

p
k values to compute the input

current fed to the IF neurons:

gIF(S
p
k) = Gmin + Gmax − Gmin

1+ exp(− (S
p
k − x0)/λ)

. (10)

Gmin and Gmax define the interval in which the output firing rates
of the IF neurons are taking values. They are set experimentally
to achieve spike rates spanning from 5 kHz to 15 kHz. λ sets the
selectivity of the sigmoid which is an increasing function of λ (λ
has been experimentally tuned to 5.0e−5 in our experiments). The
value of the offset x0, which is subtracted from the S

p
k is managed

by a proportional controller. Its input reference is set such that
x0 approaches the value of S

p
k output by the selected best predic-

tor. This ensures that whatever the current state of the system is,
the sigmoid gIF is always centered on the current value of interest,
giving the best selectivity possible to detect changes in the best
predictor. The update period of this controller is set to 0.5 ms.
The index of the spiking neuron from the WTA network then
corresponds to the best predictor W(t) satisfying :

W(t) = argmax
k∈ {1,...,N}

gIF(S
p
k(t)) . (11)

The obtained index W(t) is used to drive the learning process
of the ESN layer. Only the ESN selected by the WTA network
(ESN with index W(t)) is trained on the input signal. This adap-
tive WTA achieves good performance in the selection of the best
predictor even if the similarity measurement has a large variance
(this happens for instance if the system is exposed to a set of very
different stimuli).

This setup of the WTA architecture always generates outputs,
even if no input is present. This potential inefficiency can be
avoided by adding another output layer, which computes a gat-
ing function that depends on the global input activity. Using this
mechanism, output neurons driven by the output of the WTA will
only fire if in addition the input activity is bigger than a defined
threshold. The threshold can be either defined on the average
event rate, or the average value of A(tn).

2.6. PREDICTABILITY MINIMIZATION
The third layer implements, in addition to the WTA selec-
tion, a predictability minimization algorithm, which ensures
that each ESN specializes in predicting different features in the
input. It implements a criterion suggested by Barlow (1989) and
Schmidhuber (1991) to evaluate the relevance of the prediction
of each ESN: an ESN’s prediction is considered relevant if it
is not redundant given the other ESNs’ predictions. This pre-
dictability minimization step promotes orthogonality of predic-
tions between the individual ESNs, and encourages a maximally
sparse representation of the learned input classes, thereby achiev-
ing good coverage of the presented input space. For each ESN k,
an estimator Ŵk of the WTA output is used, which receives only
the similarity measures S

p
k′ of the other ESNs as input. For a con-

sistent framework of estimators and predictors, we chose to use
ESNs (named PM1, . . . , PMN in Figure 2) to implement the Ŵk

estimator. This also allows taking into account the highly dynamic
information contained in the input data recorded with the DVS.
Training of the ESNs follows the same principles as described in
Section 2.4.
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If the estimator Ŵk and the WTA output agree, i.e., Ŵk(tn) =
W(tn), then this means that the kth ESN is not currently learning
a new feature, because the same information can also be deduced
from the output of the other ESNs. In this case, the correspond-
ing neuron of the WTA is inhibited to prevent this ESN from
learning the currently presented input patter. The inhibition also
causes the output of the WTA to stop responding to the input,
thus promoting another one.

3. RESULTS
3.1. EXPERIMENTAL SETUP
The experiments presented in this article were performed with the
setup shown in Figure 4A. It consists of a DVS retina observing
a treadmill, on which moving bars with 9 different orientations
move across the field of view of the DVS at constant speed.
For the experiments, the recurrent connectivity matrix Wr for
each ESN was initialized randomly, and rescaled to have spectral
radius 0.7, which fulfills the Echo State Property (Jaeger, 2002).
The other weight matrices were randomly chosen from a uni-
form distribution in [−0.4; 0.4] for Win, [−0.02, 0.02] for Wback

and [−0.01, 0.01] for Wout. The pre-processing uses exponential
kernels with a time constant of 10 ms.

3.2. SINGLE RECEPTIVE FIELD
The first experiment uses 8 ESNs, each composed of 15 ana-
log neurons, randomly connected in the reservoir. Only one
RF, consisting of 17× 17 cells C(xc, yc) spanning 5× 5 pixel is
used as input to each ESN. Figure 4B shows the different pre-
dictions of the ESNs in response to an input signal. The WTA
succeeds in selecting the best predicting network for the current
input. Figure 4C shows for each stimulus the best predictions and
the associated ESN. As expected, the results confirm that every

FIGURE 4 | Experimental recording setup. (A) A DVS records patterns
moving on a treadmill. (B) Current input pattern (top) and predictions of the
different ESNs at a given time. The best predictor is highlighted in red. (C)

Results of ESN training. The left column shows a snapshot from each of
the nine different patterns. The plots to the right show different predictions
for different time steps in the future, obtained from the ESN which is
specialized in the given pattern. The time difference between the five
predicted patterns is 0.01 s.

network has specialized in the prediction of the temporal evolu-
tion of a specific oriented moving pattern. Since natural scenes
contain many independent features, which are likely to occur in
larger numbers than the number of available ESNs, we tested here
the performance of an architecture with only 8 ESNs for 9 dif-
ferent patterns of moving oriented bars. The results indicate that
some of the ESNs tend to learn more than one dynamic feature,
so that the system can represent all input features as accurately
as possible. In order to select the most appropriate number of
predictors, additional control mechanisms could be employed.
An example of this is the response of ESN1, which is the best
predictor both for pattern 8 and 9 (Figure 4C).

Figure 5 shows the output of the same system for three suc-
cessive testing presentations of the stimulus. We can see that each
ESN is responding to a specific orientation of the bars. Moreover,
the process is repeatable over the three presentations with a dif-
ference in the temporal span of the responses. This is due to the
increase of the translation speed of the bars during the record-
ing to show that the networks effectively respond to the bar’s
orientations independently of their speed.

Figure 6 shows the prediction error of each ESN during several
presentations of the stimulus. The output of the WTA network
is shown below each curve, indicating when a particular ESN
is selected as the best predictor. An ESN is correctly selected
whenever its prediction error is the lowest. Periods in which all
prediction errors are close to zero correspond to periods without
input (shown as gray regions in the figure). This is a result of the
approximate linearity of the ESNs and their low spectral radius:
when only weak input is fed into the network, the ESNs read-
out output also approaches zero, which results in a low prediction
error for times when no stimulus is presented (the only input to
the networks then is background noise from the DVS pixels).

3.3. MULTIPLE RECEPTIVE FIELDS
In the second experiment, the field of view of the DVS is split into
3× 3 smaller RFs of identical size (9× 9 cells of 3× 3 pixels), as

FIGURE 5 | Output of the WTA network during repeated presentation

of a series of nine input patterns. Red lines indicate when an ESN was
selected by the WTA network. Dashed vertical lines mark time points when
the input presented to the DVS changed from one pattern to another (the 9
patterns are shown on top of the figure). Shaded areas indicate times when
no stimulation was present. Every ESN learns to respond to only a small
subset of input patterns (typically exactly one pattern). This response is
reproducible over different stimulus presentations.
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FIGURE 6 | Prediction error of the 8 ESNs during several presentations

of the input stimulus. Red lines below each plot shows the output of the
WTA neuron corresponding to each ESN, thus indicating times when each

ESN was selected as the best predictor. We can observe that ESNs are
correctly selected when their prediction error is minimal amongst all the
networks.

shown in Figure 7. This shows the full intended behavior of the
system as a local spatiotemporal feature detector, in which dif-
ferent features can be assigned to small receptive fields covering
the entire field of view of the sensor (instead of being covered by
only one big one RF like in Figure 4). For each RF 8 ESNs are
used as feature detectors. In the learning phase, they are trained
only with the input to the central RF. Subsequently, their weights
are copied and the ESNs are used independently for all 9 RFs.
Thus, all RFs have ESNs with identical weights (and so detects the
same features), but receive different inputs and therefore evolve
independently. Figure 7A shows different snapshots of the DVS
recording for an oriented bar moving across the field of view. The
output of the predictors for each RF is shown in Figure 7B, while
Figure 7C indicates for each RF the index of the ESN selected.

The figure also shows that ESN predictors are only selected when
there is substantial input activity in the RF. As in the previ-
ous experiment, dynamic feature selection is reproducible and
exhibits precise timing, as shown in Figure 8. Here, only the 3
RFs on the middle line of the input space are shown. Because the
input stimulus moves horizontally, the outputs of the WTA cir-
cuits are similar, with a little time delay. Using multiple smaller
RFs instead of one is also a potential solution to represent more
features with a finite set of ESN. The feature descriptor is then a
combination of the outputs of all available ESNs, which need to
be processed by another layer. This is however, beyond the scope
of the present paper.

Choosing the right number of ESNs for the feature detection
architecture is not always straightforward, and depends on the
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FIGURE 7 | Predictions of the ESNs when the camera’s field of view is

divided into multiple receptive fields (RFs). (A) Output of the DVS for a bar
moving across the field of view. (B) Predictions of ESNs processing different

RFs (indicated by red boxes). (C) Index of the best predicting ESN in every RF
at the timepoints of the snapshots. Indices are only shown if the input
activity in the RF exceeds a given threshold.

FIGURE 8 | Spike output for the WTA neurons corresponding to the

eight ESNs for each of the 3 central RFs (see Figure 7) during the

presentation of a series of 9 moving bars with different orientations (see

snapshots on top). Dots indicate the times of output spikes for 5 repeated
stimulus presentations, which are drawn on different coordinates along the
y-axis, but grouped by WTA neuron. Each ESN, depending on its index in the
RF, is associated with a color used to represent the dots corresponding to its

output. The results show a highly reproducible response of the feature
detectors for different trials, and also similar time delays for different stimulus
presentations. Because the input stimulus moves horizontally, the outputs of
the WTA circuits are similar, with a little time delay. Note that only one ESN
can be active at any given time in each RF. Apparent simultaneous spikes
from multiple WTA neurons are due to the scaling of time in the horizontal
axis of the figure.

number of distinct features present in a scene. In Figure 5 it was
shown that when the number of ESNs is smaller than the num-
ber of features, an ESN can learn multiple features instead of
one. Figure 9A shows the number of steps in which each ESN
is trained if 8 ESNs are trained on 9 different input patterns. It
is shown that all networks are trained for a similar number of
epochs. When instead the number of ESNs exceeds the number
of features, we find that only the minimum necessary number of
predictors is selected, and the remaining ESNs are still available to
learn new features, should there be distinct future visual inputs.
Figure 9B a clear specialization of ESNs, if 20 networks are used
to encode the same 9 features that were used in Figure 9A. Only 9

out the 20 ESNs show increased activation during the stimulation
presentations.

3.4. COMPLEX INPUT STIMULUS
In the last experiment, the ability of the architecture to repre-
sent more complex features was tested. Instead of using oriented
bars, we now present digits (from 1 to 9) to the camera, with
a single receptive field covering the whole stimulus. Nine ESNs
were used in the system, which matches the number of distinct
patterns. To make them visible for DVS recordings, the nine
digits were animated, by hand, with a random jittering move-
ment around a central spatial position. This was intended to
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FIGURE 9 | Number of learning samples per reservoir for two

different architectures applied to the same input. Every step where
training of the ESN readout was activated is counted as a learning
sample. (A) Learning samples for 8 ESNs trained on 9 different input
patterns. (B) Learning samples for 20 ESNs trained on the same 9

input patterns. The results show that when the pool of ESNs is bigger
that the number of features present in the input, only a necessary
subset of ESNs from the pool is used to learn these features. The
remaining ESNs are not trained, and can be used to learn new features
from future inputs.

FIGURE 10 | Learning of more complex feature detectors, showing the

output of the system when presented with stimuli composed of

digits from 1 to 9. Each snapshot on the top left shows the analog
input to the ESN, obtained by filtering the DVS events. The top right
shows the prediction of the best ESN, as selected by the WTA circuit.
Below, the current predictions of all nine ESNs used in the experiment
are shown. A white square around the prediction indicates the ESN that

was selected by the WTA. The snapshots show the progression of
learning, starting with an untrained network in (A), which only produces
random predictions. (B–D) show the output of the same networks after
the presentation of patterns “1,” “2,” and “3,” (respectively). A white
mark underneath an ESN prediction indicates that this ESN has learned a
feature. Finally (E) shows its output after the end of the learning process
where all networks have learnt an input stimulus.

simulate what would be seen by the retina when the eye follows
microsaccadic movements. Because the jitter is random, the input
stimulus mainly contains spatial information. This experiment
allows us to test the robustness of the proposed method to sev-
eral spatiotemporal patterns, including the degenerate case where
only one spatial information is relevant for the feature. Some
snapshots of the system’s output are shown in Figure 10.

In the first stage of the experiment, the system is presented with
visual stimuli of the digits 1–9, in this order. The images at the top
of the plot shows the input to the receptive field at the time of the
vertical dotted lines. Each number is presented for 5 s, followed
by a pause of 3 s, in which no input is presented. In Figure 11
the learning phase is marked by a gray shaded background. Next,
two test sequences are presented to the DVS: The Test 1 sequence

is composed of the random sequence “1 3 5 7 9 2 4 6 8,” using
the same presentation and pause times as in the learning phase.
The Test 2 sequence is composed of another random sequence “9
8 7 6 5 4 3 2 1,” this time without pauses between digit presen-
tations (which still last for 5 s). These sequences are represented
as the ground truth for the experiment by blue horizontal lines
in Figure 11. For clarity, we re-ordered the ESNs such that the
ESN index corresponds to the digit it represents. Successful learn-
ing means that the blue lines should align as much as possible
with the red dots, representing the output of the WTA network.
Occasional deviations are due to noise.

Figure 11 shows that each ESN manages to learn complex fea-
tures, and reliably recognizes them when the respective feature is
presented again. This was achieved with raw, noisy DVS inputs,
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FIGURE 11 | Learning complex features from DVS inputs. The DVS
records digits from 1 to 9, each animated with random jitter simulating
the effect of microsaccades in the biological eye. Blue horizontal lines
show the ground truth, indicating when each number was present in
the input, and thus when a specific ESN should fire. The corresponding
pattern presented to the camera at that time is represented on top of
the figure. Red dots show time points where each ESN is selected by
the WTA network. The gray shaded area marks the learning phase, in

which every digit from 1 to 9 was presented once to the system.
Subsequently, two series of tests are shown: First, in the period
marked as Test 1, the 9 digits are presented in random order, but with
short pauses between stimulus presentations. Then, in the period
marked as Test 2, the digits are presented again in a different random
order, but without pauses in between. The results show that also for
complex features like digits, every ESN can learn to specialize and
represent a distinct feature.

and fully random jitter of the digits during presentation. The
experiment shows that complex features can be extracted and
recognized also in the absence of characteristic spatiotemporal
structure in input patterns.

4. DISCUSSION
This article presents a new architecture for extracting spatiotem-
poral visual features from the signal of an asynchronous event-
based silicon retina. The spatiotemporal signal feeds into the
system through a layer of ESN, which compute predictions of
future inputs. An unsupervised learning process leads to special-
ization of ESNs to different features via WTA competition, which
selects only the best predictors of the present input pattern for
training. Whenever an already learned pattern is presented again,
the system can efficiently and reliably detect it. Experimental
results confirm the suitability of the feature extraction method
for a variety of input patterns. The spatiotemporal feature extrac-
tion leads to robust and reproducible detection, which is a key
requirement for its use in higher-level visual recognition and clas-
sification. A central characteristic of the presented technique, in
contrast to conventional computer vision methods, is that it does
not depend on the concept of representing visual inputs as whole
image frames. Instead, the method works efficiently on event-
based sparse and asynchronous input streams, which maintain
the temporal dynamics of the scene due to the highly precise
asynchronous time sampling ability of the silicon retina. Thus,
also the extracted spatiotemporal features contain richer dynamic
information, in addition to recognizing spatial characteristics.

Central to the definition of spatiotemporal features in our
architecture is the presence of multiple models for prediction,
which compete already during learning, such that specializa-
tion can occur. Similar concepts are used by various well-known
machine learning frameworks, most notably the mixture-of-
experts architecture (Jacobs et al., 1991; Jordan and Jacobs, 1994;
Yuksel et al., 2012), in which a gating function creates a soft
division of the input space for multiple local “expert” models.
The output of the whole network is then a combination of the
expert predictions, weighted according to their responsibility for
the present input. These architectures have been extended in
brain-inspired architectures for reinforcement learning and con-
trol (Haruno et al., 2001; Doya et al., 2002; Uchibe and Doya,
2004), where multiple forward models and controllers are learned
simultaneously, and the prediction performance of the forward
model determines the selection of the most appropriate local
controller. Mixture-of-experts architectures are closely related to
learning mixture models with the EM algorithm (Dempster et al.,
1977; Jordan and Jacobs, 1994), where the E-step computes a
soft assignment of data points to models. Nessler et al. (2009)
and Nessler et al. (2013) have proven that this can be imple-
mented in spiking neural networks, using a soft WTA circuit
to compute the E-step, and an STDP learning rule to imple-
ment the M-step. Compared to these related architectures, our
new model advances in three important aspects: Firstly, whereas
EM and mixture-of-experts address static input distributions, we
here extend this to multiple feature predictors for spatiotempo-
ral sequences. Secondly, our architecture allows online learning
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of independent features, which contrasts with batch methods
like PCA or ICA that operate on the full dataset after its col-
lection. Thirdly, our neural network architecture is specifically
designed to work with spiking inputs and for implementation
with spiking neurons, thus maintaining the precise dynamics of
event-based vision sensors. Other spiking neural network archi-
tectures for processing DVS inputs such as spiking ConvNets
(Farabet et al., 2012; Camuñas-Mesa et al., 2014), and spiking
Deep-belief networks (O’Connor et al., 2013) do not explicitly
model the dynamics of the features extracted within the networks,
but instead rely on different conversion mechanisms from ana-
log to spiking neural networks, without taking sensor dynamics
into account. The features they extract are thus characterizing
a current snapshot of the input, and do not take its future tra-
jectory into account like the ESN predictors of the presented
model, but nevertheless are very useful for fast recognition. This
is also true for approaches that directly classify spatiotemporal
spike patterns, see e.g., (Sheik et al., 2013; Tapson et al., 2013).
Spiking network models that represent spatiotemporal dynamics
by emulating Hidden Markov Models have recently been intro-
duced (Corneil et al., 2014; Kappel et al., 2014). Compared to our
approach, these networks do not directly learn dynamic input fea-
tures, but rather identify hidden states to determine the position
within longer sequences.

The combination of visual sensing with bio-inspired artificial
retinas and event-based visual feature extraction, as presented in
this article, opens new perspectives for apprehending the mech-
anisms of visual information encoding in the brain. It is clear
that the traditional views of visually selective neurons as static
image filters for receptive fields, e.g., as Gabor-like orientation
filters, which are central to many classical vision models like
HMAX or Neocognitron (Fukushima, 1980; Serre et al., 2002),
fails to explain how these neurons deal with the highly dynamic
and sparse spike inputs from biological retinas. In the presented
approach, features are naturally learned and adapted to the task.
In Figure 9 it was shown that if the number of available ESNs
exceeds the number of features necessary to describe a scene, only
the minimum necessary number of networks are trained. This has
the desirable effect that whenever a new scene with new features is
encountered, the previously unused ESNs can be trained to pre-
dict novel stimulus features. This behavior has several benefits:
firstly, the number of ESNs does not have to be precisely tuned,
but can be set to the highest acceptable number, and only the
minimum number of networks is actually recruited and trained as
feature detectors by the system. Alternatively, one could employ a
different strategy in which new networks are recruited to the pool,
whenever all current ESNs have specialized on features. Secondly,
training of feature detectors works completely unsupervised, so
no higher-level controller is needed to identify what the elemen-
tary features for a scene should be. Although the precesence of
a supervisor is not necessary, having such information available
would still be beneficial. For instance, another processing layer
could use the outputs of the WTA to control the survival of each
network. If such processing layer determines that a particular
network does not provide enough interesting information, the
supervisor could decide to reset and release the associated ESN,
so that it can detect more relevant features.

The presented method has great potential for use in event-
based vision applications, such as fluid and high-speed recogni-
tion of objects and sequences, e.g., in object and gesture recogni-
tion (O’Connor et al., 2013; Lee et al., 2014), or for high-speed
robotics (Conradt et al., 2009; Mueggler et al., 2014).

The presented architecture is almost entirely based on compu-
tation with spikes. Inputs come in the form of AER events from
DVS silicon retinas, providing an event-based representation of
the visual scene. The WTA circuit for choosing between feature
extractors is also working with spikes, and produces spike out-
puts, which indicate the identity of the detected feature. The only
component of the system which does not entirely use spikes is
the layer of ESNs that predict the visual input, but this restriction
could be lifted by replacing ESNs with their spiking counter-
parts, called Liquid State Machines (LSMs) (Maass et al., 2002),
which are computationally at least equivalent to ESNs (Maass
and Markram, 2004; Büsing et al., 2010). The reasons why we
have chosen to use ESNs for this proof-of-principle study are
the added difficulty of tuning LSMs, due to the larger number
of free parameters for spiking neuron models, delays, or time
constants, in addition to the higher computational complexity
involved in the simulation of spiking neural networks on conven-
tional machines, which makes it hard to simulate multiple LSMs
in real-time. Overall, we expect the improvement due to using
fully spike-based feature detectors and predictors to be rather
minor, since the ESNs can be efficiently simulated at time steps of
1 ms, which is also the time interval at which the silicon retina is
sending events through the USB bus. However, a fully spike-based
architecture does have great advantages in terms of efficiency and
real-time executing if it can be implemented entirely on config-
urable neuromorphic platforms with online learning capabilities
(Indiveri et al., 2006; Galluppi et al., 2014; Rahimi Azghadi et al.,
2014), which is the topic of ongoing research.
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Implementing compact, low-power artificial neural processing systems with real-time

on-line learning abilities is still an open challenge. In this paper we present a

full-custommixed-signal VLSI device with neuromorphic learning circuits that emulate the

biophysics of real spiking neurons and dynamic synapses for exploring the properties of

computational neuroscience models and for building brain-inspired computing systems.

The proposed architecture allows the on-chip configuration of a wide range of network

connectivities, including recurrent and deep networks, with short-term and long-term

plasticity. The device comprises 128K analog synapse and 256 neuron circuits with

biologically plausible dynamics and bi-stable spike-based plasticity mechanisms that

endow it with on-line learning abilities. In addition to the analog circuits, the device

comprises also asynchronous digital logic circuits for setting different synapse and neuron

properties as well as different network configurations. This prototype device, fabricated

using a 180 nm 1P6M CMOS process, occupies an area of 51.4mm2, and consumes

approximately 4mW for typical experiments, for example involving attractor networks.

Here we describe the details of the overall architecture and of the individual circuits and

present experimental results that showcase its potential. By supporting a wide range

of cortical-like computational modules comprising plasticity mechanisms, this device will

enable the realization of intelligent autonomous systems with on-line learning capabilities.

Keywords: spike-based learning, Spike-Timing Dependent Plasticity (STDP), real-time, analog VLSI,

Winner-Take-All (WTA), attractor network, asynchronous, brain-inspired computing

1. Introduction

Recent advances in neural network modeling and theory, combined with advances in
technology and computing power, are producing impressive results in a wide range of
application domains. For example, large-scale deep-belief neural networks and convolutional
networks now represent the state-of-the-art for speech recognition and image segmentation
applications (Mohamed et al., 2012; Farabet et al., 2013). However, the mostly sequential and
synchronous clocked nature of conventional computing platforms is not optimally suited for
the implementation of these types of massively parallel neural network architectures. For this
reason a new generation of custom neuro-computing hardware systems started to emerge. These
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systems are typically composed of custom Very Large
Scale Integration (VLSI) chips that either contain digital
processing cores with dedicated memory structures and
communication schemes optimized for spiking neural networks
architectures (Wang et al., 2013; Furber et al., 2014; Neil and Liu,
2014), or full-custom digital circuit solutions that implement
large arrays of spiking neurons with programmable synaptic
connections (Merolla et al., 2014). While these devices and
systems have high potential for solving machine learning tasks
and applied research problems, they do not emulate directly the
dynamics of real neural systems.

At the other end of the spectrum, neuromorphic engineering
researchers have been developing hardware implementations
of detailed neural models, using mixed signal analog-digital
circuits to reproduce faithfully neural and synaptic dynamics,
in a basic research effort to understand the principles of neural
computation in physical hardware systems (Douglas et al., 1995;
Liu et al., 2002; Chicca et al., 2014). By studying the physics of
computation of neural systems, and reproducing it through the
physics of transistors biased in the subthreshold regime (Liu et al.,
2002), neuromorphic engineering seeks to emulate biological
neural computing systems efficiently, using the least amount of
power and silicon real-estate possible. Examples of biophysically
realistic neural electronic circuits built following this approach
range from models of single neurons (Mahowald and Douglas,
1991; Farquhar and Hasler, 2005; Hynna and Boahen, 2007; van
Schaik et al., 2010), to models of synaptic dynamics (Liu, 2003;
Bartolozzi and Indiveri, 2007a; Xu et al., 2007), to auditory/visual
sensory systems (Sarpeshkar et al., 1996; van Schaik and Meddis,
1999; Zaghloul and Boahen, 2004; Costas-Santos et al., 2007; Liu
and Delbruck, 2010), to reconfigurable spiking neural network
architectures with learning and plasticity (Giulioni et al., 2008;
Hsieh and Tang, 2012; Ramakrishnan et al., 2012; Yu et al., 2012;
Chicca et al., 2014).

In this paper we propose to combine the basic research efforts
with the applied research ones, by presenting a VLSI architecture
that can be used to both carry out research experiments
in computational neuroscience, and to develop application
solutions for practical tasks. The architecture proposed
comprises electronic neuromorphic circuits that directly emulate
the physics of real neurons and synapses to faithfully reproduce
their adaptive and dynamic behavior, together with digital logic
circuits that can set both the properties of the individual synapse
and neuron elements as well as the topology of the neural
network. In particular, this architecture has been developed to
implement spike-based adaptation and plasticity mechanisms,
and to carry out on-chip on-line learning for tasks that require
the system to adapt to the changes in the environment it
interacts with. Given these characteristics, including the ability
to arbitrarily reconfigure the network topology also at run-time,
we named this device the Reconfigurable On-line Learning
Spiking Neuromorphic Processor (ROLLS neuromorphic
processor).

Themain novelty of the work proposed, compared to previous
analogous approaches (Indiveri et al., 2006; Giulioni et al., 2008;
Ramakrishnan et al., 2012; Yu et al., 2012) consists in the
integration of analog bi-stable learning synapse circuits with

asynchronous digital logic cells and in the embedding of these
mixed-signal blocks in a large multi-neuron architecture. The
combination of analog and digital circuits, with both analog and
digital memory elements, within the same block provides the
device with an important set of programmable features, including
the ability to configure arbitrary network connectivity schemes.
At the analog circuit design level, we present improvements in
the neuron and spike-based learning synapses over previously
proposed ones (Indiveri et al., 2011; Chicca et al., 2014),
which extend their range of behaviors and significantly reduce
device mismatch effects. At the system application level we
demonstrate, for the first time, both computational neuroscience
models of attractor networks and image classification neural
networks implemented exclusively on custom mixed-signal
analog-digital neuromorphic hardware, with no extra pre- or
post-processing done in software. In the next section we describe
the ROLLS neuromorphic processor system-level block diagram,
highlighting its dynamic and spike-based learning features.
In Section 2.2 we describe in detail the circuits that are
present in each building block, and in Section 3 we present
system level experimental results showcasing examples of both
computational neuroscience models and machine vision pattern
recognition tasks. Finally, in Sections 4, 5 we discuss the results
obtained and summarize our contribution with concluding
remarks.

2. Materials and Methods

2.1. The Neuromorphic Processor Architecture
The block-diagram of the ROLLS neuromorphic processor
architecture is shown in Figure 1. The device comprises a
configurable array of synapse circuits that produce biologically
realistic response properties and spiking neurons that can exhibit
a wide range of realistic behaviors. Specifically, this device
comprises a row of 256×1 silicon neuron circuits, an array
of 256×256 learning synapse circuits for modeling long-term
plasticity mechanisms, an array of 256×256 programmable
synapses with short-term plasticity circuits, a 256×2 row
of linear integrator filters denoted as “virtual synapses” for
modeling excitatory and inhibitory synapses that have shared
synaptic weights and time constants, and additional peripheral
analog/digital Input/Output (I/O) circuits for both receiving and
transmitting spikes in real-time off-chip.

The ROLLS neuromorphic processor was fabricated using a
standard 180 nm Complementary Metal-Oxide-Semiconductor
(CMOS) 1P6M process. It occupies an areas of 51.4mm2 and
has approximately 12.2 million transistors. The die photo of
the chip is shown in Figure 2. The area distribution of main
circuit blocks is shown in Table 1. The silicon neurons contain
circuits that implement a model of the adaptive exponential
Integrate-and-Fire (I&F) neuron (Brette and Gerstner, 2005),
post-synaptic learning circuits used to implement the spike-based
weight-update/plasticity mechanism in the array of long-term
plasticity synapses, and analog circuits that model homeostatic
synaptic scaling mechanisms operating on very long time
scales (Rovere et al., 2014). The array of long-term plasticity
synapses comprises pre-synaptic spike-based learning circuits
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FIGURE 1 | Architecture of ROLLS neuromorphic processor. (A) Block

diagram of the architecture, showing two distinct synapse arrays (short-term

plasticity and long-term plasticity synapses), an additional row of synapses

(virtual synapses) and a row of neurons (somas). A synapse de-multiplexer

block is used to connect the rows from the synapse arrays to the neurons

(see main text for details). Peripheral circuits include asynchronous digital

AER logic blocks, an Analog-to-Digital converter, and a programmable

on-chip bias-generator. (B) Block-diagram legend.

FIGURE 2 | Micro-photograph of the ROLLS neuromorphic processor.

The chip was fabricated using a 180 nm CMOS process and occupies an area

of 51.4mm2, comprising 12.2 million transistors.

with bi-stable synaptic weights, that can undergo either Long-
Term Potentiation (LTP) or Long-Term Depression (LTD), (see
Section 2.1.2 for details). The array of Short-Term Plasticity
(STP) synapses comprises synapses with programmable weights
and STP circuits that reproduce short-term adaptation dynamics.
Both arrays contain analog integrator circuits that implement
faithful models of synaptic temporal dynamics (see Section 2.1.1).
Digital configuration logic in each of the synapse and neuron
circuits allows the user to program the properties of the
synapses, the topology of the network, and the properties of the
neurons.

The architecture comprises also a “synapse de-multiplexer”
static logic circuit, which allows the user to choose how many
rows of plastic synapses should be connected to the neurons. It is
a programmable switch-matrix that configures the connectivity
between the synapse rows and the neuron columns. By default,
each of the 256 rows of 1×512 synapses is connected to its
corresponding neuron. By changing the circuit control bits it is

TABLE 1 | Circuits area distribution.

Circuit Dimensions Number Total (mm2) (%)

(µm× µm) area:

Neuron 55.69×16.48 256 0.235 0.47

Post-synaptic learning 39.09×16.48 256 0.165 0.32

LTP synapse 15.3×16.48 64 k 16.147 31.41

STP synapse 16.24×16.48 64 k 17.129 33.32

Virtual synapse 35.6×16.48 512 0.300 0.58

Synapse de-mux 49.56×4389.4 1 0.218 0.42

AER in (columns) 8770×154 1 0.135 0.26

AER in (rows) 112×4357 1 0.488 0.95

AER out 166.2×4274.9 1 0.710 1.38

BiasGen 539.5×1973 1 1.064 2.07

The remaining area used in the chip is occupied by the pads and additional test structures.

possible to allocate multiple synapse rows to the neurons, thereby
disconnecting and sacrificing the unused neurons. In the extreme
case all 256×512 synapses are assigned to a single neuron, and the
remaining 255 neurons remain unused.

An on-chip programmable bias generator, optimized for
subthreshold circuits (Delbruck et al., 2010) is used to set all of
the bias currents that control the parameters of the synapses and
neurons (such as time constants, leak currents, etc.).

An Analog to Digital Converter (ADC) circuit converts the
subthreshold currents produced by selected synapse and neuron
circuits into a stream of voltage pulses, using a linear pulse-
frequency-modulation scheme, and transmits them off-chip as
digital signals.

Finally, peripheral asynchronous I/O logic circuits are used
for receiving input spikes and transmitting output ones,
using the Address-Event Representation (AER) communication
protocol (Deiss et al., 1998; Boahen, 2000).
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2.1.1. Synapse Temporal Dynamics
In the ROLLS neuromorphic processor all synapses process
input spikes in real-time, as they arrive. Similarly the neurons
transmit the spikes they produce immediately, as they are
generated. In these types of architectures time represents itself
and input data is processed instantaneously. There is no
virtualization of time and no mechanism for storing partial
results in memory banks. As a consequence, the circuits must
operate with time-constants that are well-matched to those of
the signals they are designed to process. Since this device is
intended to be used in behaving systems that interact with the
environment in natural real-world scenarios, it is important
to design circuits that can implement a wide range of time
constants, including very slow, biologically plausible, ones. To
achieve this, and to model neural dynamics with biologically
plausible time constants, we used the Differential Pair Integrator
(DPI) (Bartolozzi and Indiveri, 2007b). This is a current-mode
log-domain integrator. When biased in the subthreshold regime,
this circuit can obtain long time constants, even with relatively
small and compact capacitors. For example, in the 180 nm
technology used, with a capacitor of 1 pF, we could obtain
time constants of the order of tens of milliseconds without
resorting to any advanced design techniques. However, to realize
even longer time constants (e.g., of the order of hundreds
of milliseconds), we used a shifted-source biasing technique,
as described in Linares-Barranco and Serrano-Gotarredona
(2003).

The synapse circuits in the two synapse arrays of the ROLLS
neuromorphic processor convert input voltage spikes into output
currents which have non-linear dynamics, due to their adaptation
or learning features. In addition, to model the synapse temporal
dynamics, the currents produced by the circuit elements in
the array are further integrated by a linear temporal filter. If
we assume that all the synapses in an array have the same
temporal dynamics (i.e., share the same time constants), then
we can exploit Kirchhoff’s current law and sum the output
currents of all synapses in a row into a single DPI circuit.
This allows us to save a significant amount of silicon real-
estate, as we can use only one DPI per row, in each array. In
particular, we use one excitatory DPI in the long-term plasticity
array configured to produce time constants of the order of
hundreds of milliseconds, to model the dynamics of N-Methyl-
D-Aspartate (NMDA) receptors, and two DPI circuits (one for
excitatory and one for inhibitory synaptic dynamics) in the
STP array, configured with time constants of the order of tens
of milliseconds, to model the dynamics of AMPA and GABA
receptors, respectively.

We use the same principle for the 256×2 “virtual synapse”
integrators in the architecture. These circuits comprise two DPI
integrators per row (one for the excitatory synapse and one for
the inhibitory one) with fixed sets of weights and shared time-
constant parameters, biased to operate in their linear operating
range. By time-multiplexing input spikes to a single virtual
synapse we can model the effect of multiple independent inputs
to the targeted neuron. For example, by stimulating the DPI with
a single 10KHz spike train, we can model the effect of 1000
synapses receiving a 10Hz input spike train.

2.1.2. The Spike-Based Learning Algorithm
Many models of Spike-Timing Dependent Plasticity (STDP)
have been proposed in the computational neuroscience
literature (Abbott and Nelson, 2000; Markram et al., 2012).
However, a growing body of evidence is revealing that learning
algorithms based on spike-timing alone cannot account
for all of the phenomenology observed neurophysiological
experiments (Lisman and Spruston, 2010), have poor memory
retention performance (Billings and van Rossum, 2009),
and require additional mechanisms to learn both spike-time
correlations and mean firing rates in the input patterns (Senn,
2002).

For this reason, we chose to implement the spike-driven
synaptic plasticity rule proposed by Brader et al. (2007),
which has been shown to reproduce many of the behaviors
observed in biology, and has performance characteristics that
make it competitive with the state-of-the-art machine learning
methods (Brader et al., 2007). This algorithm does not rely on
spike-timing alone. It updates the synaptic weights according to
the timing of the pre-synaptic spike, the state of the post-synaptic
neuron’s membrane potential, and its recent spiking activity. It
assumes that the synaptic weights are bounded, and that, on
long time-scales, they converge to either a high state, or a low
one. However, in order to avoid updating all synapses in exactly
the same way, this algorithm requires a stochastic weight update
mechanism (see Brader et al., 2007 for details).

The requirements and features of this algorithm make
it particularly well-suited for neuromorphic hardware
implementation: the bi-stability feature removes the problematic
need of storing precise analog variables on long-time scales, while
the probabilistic weight update requirement can be obtained
by simply exploiting the variability in the input spike trains
(typically produced by a Poisson process) and the variability in
the post-synaptic neuron’s membrane potential (typically driven
by noisy sensory inputs).

The weight-update rule for a given synapse i is governed by
the following equations, which are evaluated upon the arrival of
each pre-synaptic spike:




wi = wi + 1w+ if Vmem(tpre) > θmem and

θ1 < Ca(tpre) < θ3

wi = wi − 1w− if Vmem(tpre) < θmem and

θ1 < Ca(tpre) < θ2

(1)

where wi represents an internal variable that encodes the bi-
stale synaptic weight; the terms 1w+ and 1w− determine the
amplitude of the variable instantaneous increases and decreases;
Vmem(tpre) represents the post-synaptic neuron’s membrane
potential at the time of arrival of the pre-synaptic spike, and θmem

is a threshold term that determines whether the weight should
be increased or decreased; the term Ca(tpre) represents the post-
synaptic neuron’s Calcium concentration, which is proportional
to the neuron’s recent spiking activity, at the time of the pre-
synaptic spike, while the terms θ1, θ2, and θ3 are three thresholds
that determine in which conditions the weights are allowed to
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be increased, decreased, or should not be updated. These “stop-
learning” conditions are useful for normalizing the weights of all
synapses afferent to the same neuron. They have been shown to
be effective in extending thememory lifetime of recurrent spiking
neural networks, and in increasing their capacity (Senn and Fusi,
2005).

In parallel to the instantaneous weight updates, the internal
variable of the synapse wi is constantly being driven toward one
of two stable states, depending whether it is above or below a
given threshold θw:{

d
dt
wi = +Cdrift if wi > θw and wi < wmax

d
dt
wi = −Cdrift if wi < θw and wi > wmin

(2)

where Cdrift represents the rate at which the synapse is driven
to its bounds, and wmax and wmin represent the high and low
bounds, respectively. The actual weight Ji of the synapse i is a
thresholded version of the internal variable wi that is used to
produce the Excitatory Post-Synaptic Current (EPSC) upon the
arrival of the pre-synaptic spike:

Ji = Jmaxf (wi, θJ) (3)

where f (x, θJ) can be a sigmoidal or hard-threshold function with
threshold θJ , and Jmax is the maximum synaptic efficacy.

We will show in Section 2.2.3 experimental results that
demonstrate how the circuits integrated in the ROLLS
neuromorphic processor chip faithfully implement this learning
algorithm.

2.2. The Neuromorphic Processor Building
Blocks
Here we present the main building blocks used in the ROLLS
neuromorphic processor chip, describing the circuit schematics
and explaining their behavior.

2.2.1. The Silicon Neuron Block
The neuron circuit integrated in this chip is derived from the
adaptive exponential I&F circuit proposed in Indiveri et al.
(2011), which can exhibit a wide range of neural behaviors,
such as spike-frequency adaptation properties, refractory period
mechanism and adjustable spiking threshold mechanism. The
circuit schematic is shown in Figure 3. It comprises an NMDA
block (MN1,N2), which implements the NMDA voltage gating
function, a LEAK DPI circuit (ML1−L7) which models the
neuron’s leak conductance, an AHP DPI circuit (MA1−A7) in
negative feedback mode, which implements a spike-frequency
adaptation behavior, an Na+ positive feedback block (MNa1−Na5)
which models the effect of Sodium activation and inactivation
channels for producing the spike, and a K+ block (MK1−K7)
which models the effect of the Potassium conductance, resetting
the neuron and implementing a refractory period mechanism.
The negative feedback mechanism of the AHP block, and the
tunable reset potential of the K+ block introduce two extra
variables in the dynamic equation of the neuron that can endow
it with a wide variety of dynamical behaviors (Izhikevich, 2003).
As the neuron circuit equations are essentially the same of the
adaptive I&F neuron model, we refer to the work of Brette and

FIGURE 3 | Silicon neuron schematics. The NMDA block implements a

voltage gating mechanism; the LEAK block models the neuron’s leak

conductance; the spike-frequency adaptation block AHP models the

after-hyper-polarizing current effect; the positive-feedback block Na+ models

the effect of the Sodium activation and inactivation channels; reset block K+

models the Potassium conductance functionality.
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Gerstner (2005) for an extensive analysis of the repertoire of
behaviors that this neuron model can reproduce, in comparison
to, e.g., the Izhikevich neuron model.

All voltage bias variables in Figure 3 ending with an
exclamation mark represent global tunable parameters which can
be precisely set by the on chip Bias Generator (BG). There are
a total of 13 tunable parameters, which provide the user with
high flexibility for configuring all neurons to produce different
sets of behaviors. In addition, by setting the appropriate bits of
the relative latches in each neuron, it is possible to configure two
different leak time constants ( if_tau1! / if_tau2!) and refractory
period settings ( if_rfr1! / if_rfr2!). This gives the user the
opportunity to model up to four different types/populations
of neurons within the same chip, that have different leak
conductances and/or refractory periods.

An example of the possible behaviors that can be expressed by
the silicon neuron are shown in Figure 4. The top-left quadrant
shows measured data from the chip representing the neuron
membrane potential in response to a constant current injection
for different values of reset voltage. The top-right quadrant
shows the neuron response to a constant current injection
for different settings of its refractory period. The bottom-left
quadrant demonstrates the spike-frequency adaptation behavior,
obtained by appropriately tuning the relevant parameters in
the AHP block of Figure 3 and stimulating the neuron with a
constant injection current. By further increasing the gain of the
AHP negative feedback block the neuron can produce bursting
behavior (see bottom-right quadrant of Figure 4).

Figure 5 shows the F-I curve of all neurons in the ROLLS
neuromorphic processor (i.e., their firing rate as a function of
the input injection current). The plot shows their average firing
rate in solid line, and their standard deviation in the shaded
area. The overall mismatch in the circuit, responsible for these
deviations, is extremely small, if compared to other analog VLSI

implementations of neural systems (Indiveri et al., 2006; Petrovici
et al., 2014; Schmuker et al., 2014). The average value obtained
from the measurement results of Figure 5 is only 9.4%. The
reason for this improvement lies in the increased size of some
critical transistors in the soma circuit—major contributor to
neuron’s mismatch. For example, the ML4 and ML5 Field-Effect
Transistors (FETs) that set the neuron’s leak time constants
are of (W/L) size of (2µm/4µm) , while MNa3 and MNa4,
responsible for the firing threshold are of size (4µm/0.4µm) and
(1µm/4µm), respectively.

In addition to the neuron soma circuit, this block contains
also post-synaptic plasticity circuits that are necessary for
evaluating the weight update and “stop-learning” conditions
described in Section 2.1.2. In particular these circuits integrate

FIGURE 5 | Population response of all neurons in the array to constant

injection currents. The variance in the measurements is due to device

mismatch effects in the analog circuits.

FIGURE 4 | Different biologically plausible neuron’s behaviors:

(top-left) membrane potential with tunable reset potential (different

colors represent different reset potential settings), (top-right)

membrane potential with tunable refractory period duration (different

colors represent different refractory period settings), (bottom-left)

neuron’s spike-frequency adaptation behavior: the top trace

represents the membrane potential and the bottom one represents

the input current, (bottom-right) neuron’s bursting behavior.
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the spikes produced by the neuron into a current that models
the neuron’s Calcium concentration, and compare this current
to three threshold currents that correspond to θ1, θ2, and θ3 of
Equation (1). In parallel, the neuron’s membrane current (which
is equivalent to the membrane potential in the theoretical model)
is compared to an additional threshold equivalent to θmem of
Equation (1). The schematic diagram of this circuit is shown in
Figure 6. The post-synaptic neuron’s Calcium concentration is
computed using the DPIMD1−D5; the comparisons with the fixed
thresholds are made using three current-mode Winner-Take-
All (WTA) circuits MW1−W9, MWU1−WU12, and MWD1−WD12.
The digital outcomes of these comparisons set the signals slnup
and sldn which are then buffered and transmitted in parallel to
all synapses afferent to this neuron belonging to the long-term
plasticity array.

2.2.2. The Long-Term Plasticity Synapse Array
Each of the 256×256 synapse circuits in the long-term plasticity
array comprises event-based programmable logic circuits for
configuring both synapse and network properties, as well as
analog/digital circuits for implementing the learning algorithm
of Section 2.1.2. Figure 7 shows both digital and analog circuit
blocks. The digital logic part, shown in Figure 7A has an pulse
generator circuit that manages the handshaking signals required
by the AER protocol, and three one-bit configurable latches:
one latch sets/resets the MON_EN signal, which enables/disables

the synapse monitor circuit, which buffers the synapse weight
Vw signal for off-chip reading. The remaining two latches are
used to set the BC_EN and REC_EN signals, which control
the activation modes of the synapse. There are three different
activation modes can be configured: direct activation, broadcast
activation and recurrent activation. Figure 7B shows a timing
diagram in which the relative latches for enabling broadcast and
recurrent activation modes are configured in a synapse, using a
4-phase handshaking protocol. In the direct activation mode the
synapse is stimulated by an AER event that has the matching
row and column address. In the broadcast activation mode the
synapse is stimulated by an AER broadcast event (that has a
dedicated address word) which targets the matching column
address. All synapses belonging to the same column that have
the BC_EN bit set high get stimulated in parallel, when the
matching broadcast event is received. In the recurrent activation
mode the synapse of column j is stimulated when the on-chip
post-synaptic neuron of row j spikes. Therefore, it is possible to
connect, internally, neuron i to neuron j by setting the REC_EN
bit high of the synapse in row i and column j. In addition to these
circuits, there is a pulse extender circuit which can increase the
duration of the input pulse from nano-seconds to hundreds of
micro-seconds.

The schematic diagram of the analog/digital weight update
circuits is shown in Figure 7C. These circuits are subdivided
into four sub-blocks: the SET block can be used to set/reset

FIGURE 6 | Post-synaptic learning circuits for evaluating the

algorithm’s weight update and “stop-learning” conditions. The DPI

circuit MD1−5 integrates the post-synaptic neuron spikes and produces a

current proportional to the neuron’s Calcium concentration. Three

current-mode winner-take-all circuits WTA, WTAUP, and WTADN compare

the Calcium concentration current to three set thresholds sl_thmin! , sl_thdn!,
and sl_thup!, while the neuron’s membrane current is compared to the

threshold sl_memthr!.

Frontiers in Neuroscience | www.frontiersin.org April 2015 | Volume 9 | Article 141 | 45

http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Neuroscience/archive


Qiao et al. A learning neuromorphic processor

FIGURE 7 | Long-term plasticity synapse array element. (A) Plastic

synapse configuration logic block diagram. (B) Timing diagram for broadcast

and recurrent activation modes in one synapse using 4-phase handshaking

protocol. Dashed red lines show the sequence between signals. (C)

Schematic diagram of the bi-stable weight update and current generator

blocks.

the bistable state of the synaptic weight by sending an AER
event with the matching address and properly asserting the
configuration signals set_hi and set_low. The JUMP block
increases or decreases the synaptic weight internal variable
(i.e., the voltage Vw) depending on the digital signals up and
dn, that are buffered copies of the ones generated in the
silicon neuron stop-learning block (see Section 2.2.1). The
heights of the up and down jumps can be set by changing the
delta_up! and delta_dn! signals. The BIST block consists of a
wide-range transconductance amplifier configured in positive
feedback mode, to constantly compare the Vw node with the
threshold bi_thr!: if Vw > bi_thr! then the amplifier slowly
drives the Vw node, drifting toward the positive rail, otherwise
it actively drives it toward the ground. The drift rates to the
two states can be tuned by biases drift_up! and drift_dn!,
respectively. The current converter (CC) block converts the Vw

voltage into a thresholded EPSC with maximum amplitude set by
pa_wht!.

Figure 8 shows experimental results that highlight the features
of both synapse and neuron learning circuits in action: weight
updates are triggered when the pre-synaptic spikes arrive, and
when the post-synaptic neuron’s Calcium concentration is in
the appropriate range. Depending on the value of the Calcium

concentration signal, the digital up and dn signal turn on
or off. The weight internal variable is increased or decreased
depending on where the membrane potential is with respect to
the membrane threshold (see highlighted weight updates at t =
273 and t = 405). This variable is actively driven to the low
or high bounds, depending if it is below or above the weight
hreshold.

2.2.3. The Short-Term Plasticity Synaptic Array
The array of STP synapses contains circuits that allow users to
program the synaptic weights, rather than changing them with a
fixed on-chip learning algorithm. Specifically, each synapse has
a two-bit programmable latch that can be used to set one of
four possible weight values. In addition, it has an extra latch
that can set the type of synapse (excitatory or inhibitory). In the
excitatory mode, the synapse has additional circuits for modeling
Short-TermDepression (STD) dynamics (Rasche andHahnloser,
2001; Boegerhausen et al., 2003) whereby the magnitude of the
EPSC decreases with every input spike, and recovers slowly in
absence of inputs. Figure 9 shows both a block diagram of all
synapse components, and the schematic diagram of the synapse
analog circuits. In addition to the latches for setting the weight,
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FIGURE 8 | Spike-based learning circuit measurements. The bottom

trace represents the pre-synaptic input spikes; the second trace from the

bottom represents the bi-stable internal variable (node Vw of Figure 7);

the third trace represents the post-synaptic neuron’s membrane potential;

and the top trace shows both a voltage trace proportional to the neuron’s

integrated spiking activity as well as the digital control signals that

determine whether to increase (red shaded area), decrease (blue shaded

area) or leave Vw unchanged (no shaded area). The horizontal lines

represent the thresholds used in the learning algorithm (see

Section 2.1.2), while the vertical lines at t = 273 s (blue line) and t = 405 s

(red line) are visual guides to show where the membrane potential is, with

respect to its threshold, for down and up jumps in Vw respectively.

there are two extra latches for configuring the synapse activation
mode. As for the long-term-plasticity synapses, there are three
possible activation modes: direct, broadcast, and recurrent (see
Section 2.2.2).

The left panel of Figure 9B shows the excitatory CC and
the STD circuit. The CC at the top generates a current that is
proportional to the 2-bit weight. The proportionality constant
is controlled through analog biases. This current charges up the
CSTD capacitor through the diode connected p-FET MS3 so that
at steady state, the gate voltages of MS1 and MW2 are equal.
A pre-synaptic pulse on the PW port activates the Iexc current
branch, and produces a current that initially is proportional to
the 2-bit weight original current. At the same time, the PW pulse
activates also the STD branch through transistor MS5 and an
amount of positive charge that is controlled by the bias STD is
removed from the capacitor CSTD. The gate voltage of MW2 is
now momentarily lower than that of MS1, and recovers slowly
through the diode connected p-FETMS3. Pulses that arrive before
the capacitor voltage has recovered completely will generate a
current that is smaller than the original one, and will further
depress the effective synaptic weight through the STD branch.
The excitatory block is only active if the E/I voltage is high. If E/I
is low, the inhibitory current DAC in the right panel of Figure 9B
is active and generates a weight-proportional inhibitory current
on PW pulses.

Figure 10 illustrates how the STD behavior in the synapse:
a spike burst was used to activate a programmable synapse.
This resulted in a drop in synaptic efficacy during the later part

of the burst. During a period of no stimulation the synapse
recovered and responded with large Excitatory Post-Synaptic
Potentials (EPSPs) to the initial part of the following burst,
before depressing again. The responses to the two bursts are not
identical in Figure 10 as the state of the neuron, synapse, and DPI
circuits are not exactly the same at the onset of each burst.

2.2.4. The Peripheral Input/Output Blocks
The peripheral digital circuits are used to transmit signals into
and out of the chip. Given the real-time nature of our system,
we use asynchronous digital circuits and quasi-delay-insensitive
circuit design techniques (Manohar, 2006) to avoid discretization
or virtualization of time. The AER communication protocol used
encodes signals as the address of the destination synapse or as a
control word for the input side, and as the address of the sender
neuron in the output circuits.

2.2.4.1. AER input circuits
Input spike events as well as chip configuration events are sent
through a common input interface that uses a 21-bit address
space. Input addresses are decoded into a total of 1,249,553
possible patterns subdivided into three categories: Addressing,
Local configuration, and Global configuration. Addressing inputs
are decoded into a row and column address and are interpreted
as a spike Address-Event (AE), which are sent to the desired
target synapse of a target neuron. Local configurationAEs contain
the row and column address of the target element as well as
extra configuration bits that are written to the local latches
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FIGURE 9 | Short-term plasticity synapse array element. (A) Block diagram of the synapse element. (B) Transistor level schematic diagram of the excitatory and

inhibitory pulse-to-current converters.

of the addressed element. Local configuration patterns include
commands for setting the type of synapse, programming its
weight, or enabling broadcast or recurrent connections. Finally,
the Global configuration inputs are decoded into configuration
signals that represent global variables, stored onto registers
in the periphery (rather than within the synapse or neuron
elements). For example, the signals used to set the state of
the synapse de-multiplexer are Global configuration signals.
See the Supplementary Material for additional details on these
circuits.

2.2.4.2. AER output
Each of the 256 neurons is assigned an 8-bit address for the
output bus. When a neuron spikes, its address is instantaneously
sent to the output AER circuits using the common four-phase
handshaking scheme. Although neurons operate in a fully parallel

fashion, their AEs can only access the shared output bus in a
serial fashion. To manage possible simultaneous spike collisions
the output AER circuits include an arbiter circuit that only grants
access to the external bus to one neuron at a time. Details of these
circuits are provided in the Supplementary Material.

3. Results

Here we demonstrate the capabilities of the ROLLS
neuromorphic processor device with examples of hardware
emulation of computational neuroscience models and pattern
recognition in a machine vision task.

3.1. Attractor Networks
In this experiment we explored the collective dynamics of
multiple populations of spiking silicon neurons that emulate
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FIGURE 10 | The effect of short-term depression on EPSC magnitudes.

Two bursts separated by 100 ms were sent to a programmable synapse. Each

burst has 5 spikes with an inter-spike interval of 5 ms. Within a burst, The

jumps in the neuron Vmem gradually get smaller as the synapse is depressed

and the magnitude of the EPSCs it generates decreases. After the first burst,

the synapse efficacy recovers as can be seen in the response to the second

burst. The figure inset shows the derivative of the membrane potential which is

equivalent to the synaptic EPSCs (minus the neuron leak).

the biophysics of cortical neurons organized in attractor
networks (Amit, 1992). These types of networks are considered
a basic computational primitive of neural processing systems.
Their ability to exhibit self sustained activity is thought to be
one of the basic requirements for exhibiting multiple types of
cognitive processes and functions. Their collective dynamics
represents the neural correlates of processes involved in working
memory, perceptual decision making and attention.

We implemented the hardware attractor networks following
the theories andmethods proposed in Amit (1992);Wang (1999);
Amit and Mongillo (2003); Del Giudice et al. (2003); Giulioni
et al. (2012).We constructed an architecture comprising six pools
of neurons recurrently connected. Specifically, there are three
pools of 64 excitatory neurons and three pools of 10 inhibitory
neurons. Neurons in each pool receive local excitation via
recurrent connections implemented via the on-chip long-term
synaptic plasticity circuits. In Figure 11 each point represents
a synaptic contact (i.e., an active synapse in the corresponding
STP or LTP synaptic matrix). The recurrent connectivity via
the LTP synapses is set to have a probability of 70% for the
excitatory connections and 40% for the inhibitory ones, i.e., they
have connectivity parameters ceee = 0.7, ceii = 0.4, respectively
(see dots in Figure 11A). We further configured the connectivity
matrix of the STP synapses such that every excitatory pools of
neurons is homogeneously connected with all other excitatory
pools with excitatory connectivity parameter ceee = 0.2 and
inhibitory connectivity parameter ciee = 0.2. Inhibitory pools of
neurons are connected to their corresponding excitatory pools
(e.g., inhibitory pool #1 is connected to excitatory pool #1) via
inhibitory synapses, with a connectivity parameter ciei = 0.4.
Excitatory pools of neurons are connected to their respective
inhibitory pools of neurons via the STP excitatory synapses,
with a connectivity parameter ceie = 0.7. The behavior of the
network when stimulated by a external transient stimuli is shown
in Figure 11B. The profile of the external stimuli is depicted by

the square waves below the plot of Figure 11B. The different
colors indicate inputs to the different corresponding populations.
The input stimuli are a series of Poisson spike trains, generated
artificially and sent via the AER protocol to the chip virtual
synapses. The mean rate of the input spike trains is vin = 100Hz
and their duration is t = 0.5 s. When the attractor networks are
being driven by external stimuli their activity reaches a mean
rate of approximately 50Hz and, after the removal of these
stimuli, the pools of neurons relax to a sustained state of activity
of about 15Hz, indicating that the neurons settled into their
attractor states. This persistent activity is the neural correlate
of working memory and can be exploited as an asynchronous
distributed memory state that has peculiar dynamical properties
of error correction, pattern completion, and stability against
distractors (Amit, 1992).

If a population is in an attractor state, a transient stimulus
to a different pool of neurons shuts down its activity via direct
inhibitory connections (on the STP synaptic matrix), and brings
the newly stimulated pool of neurons into a new attractor state.
If we inhibit an active pool of neurons directly, with an external
stimulus the population is reset and becomes inactive. This is
evident in Figure 11B at t = 3 s, when a Poisson stimulus of
mean rate ν = 200Hz is used to inhibit all attractor networks.
This experiment demonstrates how it is possible to implement
robust state dependent computation and reliable memory storage
using sets of 64 slow and imprecise silicon neurons. A similar,
but more elaborate experiment showing how these types of
circuits can be used to synthesize context-dependent behavior in
neuromorphic agents, in the context of cognitive computation
was recently presented inNeftci et al. (2013), using the same types
of circuits and principles. The implementation of plausible neural
collective dynamics in neuromorphic substrates is an important
step also for future nano-technologies that are likely to be affected
by device mismatch and unreliability characteristics.

3.2. Multi-Perceptron Network
Neuromorphic systems are an ideal electronic substrate for real-
time, low-latency machine vision (Serrano-Gotarredona et al.,
2008; Delbruck and Lang, 2013; O’Connor et al., 2013). Here
we present a feasibility study which demonstrates how the
ROLLS neuromorphic processor can be used in conjunction
with a spiking vision sensor for learning to solve an image
classification task. In this experiment (see Figure 12), we used a
DVS, interfaced to our chip via a commercially available digital
board, used to route signals from the vision sensor to the chip.We
implemented a two-layer spiking neural network which processes
the visual stimuli by extracting sparse random features in real-
time. The network is composed of 128 VLSI hidden neurons
and 128 VLSI output neurons on the ROLLS neuromorphic
processor. We trained 64 of the VLSI output neurons of the
network to become selective to one of two image classes, and
the other 64 to become selective to the other class, via supervised
learning protocol.

The experimental protocol consists of showing a sequence of
static images of objects from the Caltech 101 dataset coupled
with a teacher signal to steer the activity of the output neurons.
The DVS is put in front of a screen where the images are
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FIGURE 11 | Attractor networks. Three clustered pools of 64 neurons

are configured as attractor networks. (A) The on-chip synaptic matrices

in which every dot represents a connected synapse. (B) The output

spiking activity of the network. Every pool of neuron is a competing

working memory. The timing of the inputs is shown with square waves

under the plot. Different colors represent different inputs. The down

jump of the red line represents the stimulus to the inhibitory pool of

neuron responsible for switching off the on-chip memory.

displayed. During the presentation, the images are flashed with
a small jitter around the center of the visual field to simulate
microsaccadic eye movements. The movement causes the DVS
retina to continuously stream spike trains corresponding to the
edges of the objects in the image. The spike trains are then routed
to the STP synapse array, stimulating a population of neurons
corresponding to the hidden layer of the neural network. The
spikes from the hidden layer neurons are internally routed to
the LTP plastic synapse array, thus activating the neurons of the
output layer. With every training image, a corresponding teacher
signal is provided to one of the two subgroups of the output
layer neurons, depending on the image class, to associate stimulus
with class. To remove artifacts generated during the transition
from one presentation of an image to the next, we gated the DVS
spikes, simulating a saccadic suppression mechanism analogous
to the one observed in biology (Ross et al., 1996).

The performance of this experiment strongly depends on
the right choice of parameters for the neural and synaptic
dynamics. For this particular demonstration we chose to
disable most of the complex aspects of the neural dynamics
and optimized neuron and synapse parameters to obtain
reasonable activity patterns in the hidden layer neurons. The
activity in this layer is indeed the most important since it
drives the plastic synapses that belong to the output layer
neurons.

After training, our classification system was able to respond
selectively to natural images of cars and motorbikes taken from
the Caltech 101 database. Although an extensive characterization
of the system’s ability to perform object recognition is out of the
scope of this work, we draw the following conclusions from our
experiment:

• The choice of fixed, random projections from the input layer
was surprisingly effective, though certainly not optimal for the
task at hand.

• Abetter solution would be to include an unsupervised learning
stage in the training protocol to optimize the weights of
the convolution layer as in traditional machine learning

approaches (LeCun et al., 1998; Le et al., 2012) and in neural
systems (Olshausen and Field, 1997; Masquelier et al., 2009;
Nessler et al., 2009). However, this stage would require the
presentation of a large number of patterns and sophisticated
synaptic plasticity rules.

Our network of randomly connected neurons projects the
input stimuli into a high-dimensional space where they can
be classified by linear models but with far less parameter
optimization (Barak and Rigotti, 2011). This strategy is related
to some of the state-of-the-art machine learning algorithms
for pattern classifications, such as Support Vector Machines
(SVMs) (Vapnik, 1995). Clearly, the generalization properties of
our system are not comparable to standard machine learning
approaches but they are also expected to scale with the number
of randomly connected neurons in the hidden layer (Rigotti
et al., 2010; Barak et al., 2013). Notice also that we haven’t
exploited any temporal structure of the input data, though
we recently demonstrated that our hardware supports this
functionality (Sheik et al., 2012a,b, 2013). For cases in which
the temporal structure of the input stimuli is relevant, it would
be possible to follow alternative approaches, for example by
interconnecting the neurons in the hidden layer to form a Liquid
State Machine (LSM) (Maass et al., 2002). This solution would be
particularly interesting in situations where information hidden in
the fine temporal structure is expected to impact the performance
of the recognition system. Also for this approach, it would be
sufficient to provide an output layer analogous to the one used
in our experiment, that could be trained in an analogous way. In
our example we used multiple neurons clustered into two distinct
pools in the output layer for our simple two-class discrimination
problem, (e.g., instead of using just two output neuron units).
The rationale behind this choice is that, given the many sources
of noise in the system (the micro-saccadic movements, the DVS
spiking output, the stochastic plasticity mechanism, the hardware
mismatch), each neuron taken singularly is not expected to
performwell on the task (i.e., it will implement a “weak” classifier,
showing low class specificity). However, the performance of the
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FIGURE 12 | (A) Image classification example using inputs from a DVS.

(A) Top: neural network architecture. Two different classes of images

(here motorbikes or cars) are displayed on a screen with a small jitter

applied at 10Hz. A random subset of the spikes emitted by the DVS

are mapped to 128 hidden layer neurons. Specifically, each of the 128

neurons is connected to 64 randomly selected pixels with either positive

or negative weights, also set at random. The output neurons in the last

layer receive spikes from all the 128 hidden layer neurons, via plastic

synapses. The output layer neurons are also driven by an external

“teacher” signal which is correlated with one of the image classes. (A)

Bottom: diagram of the experimental protocol timeline. Notice the

presence of a saccade inhibition mechanism which electronically

suppresses DVS input during a virtual saccade, i.e., when the displayed

image is replaced with the next one. (B) Synaptic matrices of the

ROLLS neuromorphic processor showing the hardware configuration of

the classification neural network. The STP synapses represent the

synapses of the hidden layer; the LTP synapses represent the synapses

of the output layer.

overall system improves as responses aggregated from multiple
neurons are considered. This can be visually appreciated from
the raster plots of Figure 13 where only population-level firing

rates are selective for the input classes, but not the single neuron
activities. This phenomenon is directly related to a notorious
machine learning technique that uses “boosting” to improve the
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FIGURE 13 | Spiking activity of the hardware neurons during the

training (upper panel) and testing phase (middle and lower panels).

Left column: examples of raw images from the Caltech 101 database.

Middle column: heat map of the DVS spiking activity, where each pixel color

represents the pixel’s mean firing rate. Right column: raster plots of the

ROLLS neuromorphic processor neurons. The star on the top panel label

indicates that during the training phase an additional excitatory “teacher”

signal was used to stimulate the “car” output neurons to induce plasticity.

During testing no teacher signal is provided and only the excitatory currents

from the input synapses drive the classifier activities. The average firing rates of

the output layer for “motorbike” and “car” neuron pools are 6.0 Hz and

80.9 Hz during training. During testing with a “car” image they are 7.1 Hz and

11.1 Hz. During testing with a “motorbike” image they are 7.4 Hz and 4.9 Hz.

performance of weak-classifiers (Breiman, 2001; Schapire and
Freund, 2012).

4. Discussion

Unlike conventional von Neumann processors that carry out
bit-precise processing and access and store data in a physically
separate memory block, the ROLLS neuromorphic processor
uses elements in which memory and computation are co-
localized. The computing paradigm implemented by these types
of neuromorphic processors does not allow for the virtualization
of time, with the transfer of partial results back and forth between
the computing units and physically separate memory banks at
high speeds. Instead, their synapse and neuron circuits process
input spikes on demand as they arrive, and produce their output
responses in real-time. Consequently, the time constants of the
synapses and neurons present in these devices need to be well-
matched to the signals the system is designed to process. For the
case of real-time behaving systems that must interact with the
environment, while processing natural signals in real-time, these
time constants turn out to be compatible with the biologically
plausible ones that we designed into the ROLLS neuromorphic
processor. As we implemented non-linear operations in each
synapse (such as short-term depression or long-term plasticity),
it is not possible to time-multiplex linear circuits to reduce the
area occupied by the synaptic matrix array. As a consequence,
our device is essentially a large memory chip with dedicated
circuits for each synapse that act both as memory elements and

computing ones. This approach is complementary to other recent
ones that focus on accelerated neural simulations (Bruederle
et al., 2011), or that target the real-time emulation of large
populations of neurons but with no on-chip learning or adaptive
behaviors at the synapse level (Benjamin et al., 2014).

The device we describe here is ideal for processing sensory
signals produced by neuromorphic sensors (Liu and Delbruck,
2010) and building autonomous behaving agents. The system
level examples demonstrated in Section 3 show how this can be
achieved in practice: the hardware attractor network experiment
focuses on the idea that the functional units of the cortex are
subset of neurons that are repeatedly active together and shows
that such units have the capability of storing state-dependent
information; the pattern classification experiment demonstrates
how it is possible to implement relatively complex sensory
processing tasks using event-based neuromorphic sensors.

Our results demonstrate the high-degree of programmability
of our device as well as its usability in typical application
domains. Its properties make it an ideal tool for exploring
computational principles of spiking systems consisting of both
spiking sensors and cortical-like processing units. This type
of tools are an essential resource for understanding how to
leverage the physical properties of the electronic substrate
as well as the most robust theories of neural computation
in light of the design of a new generation of cortex-like
processors for real-world applications. The multi-chip system is
supported by the use of a newly developed software front-end,
PyNCS, which allows rapid integration of heterogeneous spiking
neuromorphic devices in unique hardware infrastructure and
continuous online monitoring and interaction with the system
during execution (Stefanini et al., 2014). In order to integrate
the DVS and ROLLS in the existing software and hardware
infrastructure, it was necessary to list the address specifications
for the spiking events and for the configuration events in
Neuromorphic Hardware Mark-up Language (NHML) files, the
neuromorphic mark-up language used by PyNCS to control the
neuromorphic system.

The potential of the approach proposed in this work for
building intelligent autonomous systems is extremely high, as
we develop brain-inspired computing devices embedded with
learning capabilities that can interact with the environment in
real time. Substantial progress has already been made in the
theoretical domain (Schöner, 2007; Rutishauser and Douglas,
2009), and preliminary results have already been demonstrated
also with neuromorphic cognitive systems (Neftci et al., 2013)
synthesized by the user. The ROLLS neuromorphic processor
described in this work can therefore contribute to extending
the current state-of-the-art by providing also adaptation and
learning mechanisms that could allow these systems to learn
the appropriate network properties to implement autonomous
cognitive systems.

5. Conclusions

We presented a mixed-signal analog/digital VLSI device
for implementing on-line learning spiking neural network
architectures with biophysically realistic neuromorphic circuits
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such as STP synapses, LTP synapses and low-power, low-
mismatch adaptive I&F silicon neurons. The proposed
architecture exploits digital configuration latches in each
synapse and neuron element to guarantee a highly flexible
infrastructure for programming, with the same device, diverse
spiking neural network architectures.

All the operations of the chip are achieved via asynchronous
AE streams. These operations include sending events to the
chip, configuring the topology of the neuron network, probing
internal variables, as well as programming internal properties
of synapse and neurons. The parameters for different synapse
and neuron behaviors can be fine tuned by programming the
temperature-compensated on-chip BG.

The ROLLS neuromorphic processor can be used to carry
out basic research in computational neuroscience and can be
exploited for developing application solutions for practical tasks.
In particular, this architecture has been developed to study spike-
based adaptation and plasticity mechanism and to use its ability
to carry out on-chip on-line learning for solving tasks that require
the system to adapt to the changes in its input signals and in the
environment it interacts with.
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Synaptic dynamics, such as long- and short-term plasticity, play an important role in
the complexity and biological realism achievable when running neural networks on a
neuromorphic IC. For example, they endow the IC with an ability to adapt and learn
from its environment. In order to achieve the millisecond to second time constants
required for these synaptic dynamics, analog subthreshold circuits are usually employed.
However, due to process variation and leakage problems, it is almost impossible to port
these types of circuits to modern sub-100nm technologies. In contrast, we present a
neuromorphic system in a 28 nm CMOS process that employs switched capacitor (SC)
circuits to implement 128 short term plasticity presynapses as well as 8192 stop-learning
synapses. The neuromorphic system consumes an area of 0.36 mm2 and runs at a power
consumption of 1.9 mW. The circuit makes use of a technique for minimizing leakage
effects allowing for real-time operation with time constants up to several seconds. Since
we rely on SC techniques for all calculations, the system is composed of only generic
mixed-signal building blocks. These generic building blocks make the system easy to port
between technologies and the large digital circuit part inherent in an SC system benefits
fully from technology scaling.

Keywords: switched-capacitor neuromorphic, stop-learning synapse, dynamic synapse, deep-submicron

neuromorphic, low-leakage switched-capacitor circuits

1. INTRODUCTION
Biological synapses employ a range of plasticity mechanisms in
modulating their stimulus transmission. For example short-term
plasticity on the timescale of hundreds of milliseconds has been
identified as a crucial constituent of dynamic neural information
processing, allowing for temporal filtering (Grande and Spain,
2005), selective information transmission (Mayr et al., 2009) and
pattern classification in attractor networks (Mejias and Torres,
2009). Long-term plasticity, with induction on the minute to hour
scale, is used for pattern learning (Brader et al., 2007) and topol-
ogy formation, allowing a network to be structured for solving a
particular problem (Rubinov et al., 2011). Both of these mecha-
nisms employ exponential time windows with time constants on
the order of 10–1000 ms.

Most analog neuromorphic implementations of plasticity rely
on subthreshold circuits (Indiveri et al., 2006) to achieve the small
currents necessary for these long time constants. However, these
are hard to port to advanced CMOS techologies, since leakage
currents rapidly increase with down-scaling, reaching the range
of the desired signal currents (Roy et al., 2003). Some plastic-
ity circuits have also been implemented in OTA-C architectures
(Koickal et al., 2007; Noack et al., 2011), but these suffer from
the same problems with small currents. Digital plasticity circuits
(Cassidy et al., 2011) are not subject to this limitation, but have

limited biological veracity due to their digital state variables.
For subthreshold circuits, an additional problem is the increase
of device mismatch and process variation (Kinget, 2005), mak-
ing transistors almost unusable for the exponential computation
that subthreshold circuits rely upon. This is why even recent
subthreshold neuromorphic systems have been manufactured in
quite large technologies (Bartolozzi and Indiveri, 2007; Indiveri
et al., 2010; Moradi and Indiveri, 2013), with the sole exception a
recent design in 90 nm (Park et al., 2014).

The SC technique offers a viable alternative, as it utilizes
robust charge-based signal transmission. That is, it computes with
charges that are equivalent to accumulating the continuous signal
currents of subthreshold circuits across time, thereby raising sig-
nal levels compared to the subthreshold approach. This approach
has already been successfully applied to neuromorphic neuron
implementations (Vogelstein et al., 2007; Folowosele et al., 2009).

In Mayr et al. (in press), a neuromorphic system using SC
circuits has been presented that achieves biological real time oper-
ation in a 28 nm CMOS process. While (Mayr et al., in press)
presents the static neuromorphic components (weight implemen-
tation, neurons, etc.) and the overall system integration, in this
companion paper we focus on neuronal dynamics. Specifically,
this paper presents the SC circuits that implement presynaptic
adaptation and synaptic plasticity. The short-term (presynaptic)
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plasticity has been adapted for SC (Noack et al., 2012) from the
biology-derived neurotransmitter release model of Markram et al.
(1998). The long-term (synaptic) plasticity circuit implements the
stop learning stochastic synapse model of Brader et al. (2007).
To the best of our knowledge, this represents the first time the
well-known stop-learning paradigm has been translated to SC
circuits.

Vogelstein et al. (2007) and Folowosele et al. (2009) have cho-
sen a straightforward SC approach with conventional CMOS
switches, as leakage currents were not a concern in their chosen
technology nodes. However, this approach is not possible in deep-
submicron technologies such as the employed 28 nm process. The
leakage for open switches would preclude storing a signal on the
required 10–1000 ms timescale. Thus, we describe circuit tech-
niques to reduce leakage currents, in turn allowing us to achieve
high time constants. The entire neuromorphic system consists of
standard analog building blocks and synthesizable digital logic,
making it easy to port between technologies. As detailed later, the
system architecture has been optimized for mismatch reduction.

2. MATERIALS AND METHODS
2.1. OVERALL SYSTEM
Figure 1 gives an overview of the system (Mayr et al., in press).
128 input circuits at the left side realize presynaptic short-term
dynamics for their respective row in the synaptic matrix (Noack
et al., 2012), while the 64 neurons at the bottom are driven by
their respective column, providing the output (i.e., stimulation)
signal as a function of the 8192 synapses in the system, which

couple presynaptic input to neurons. Synaptic weights are stored
in a dedicated RAM block separate from the synapse matrix.

The entire driving circuitry of presynapses, synapses and neu-
rons is situated at the left hand side of the matrix. A state machine
cycles through the columns of the synaptic matrix. At the start
of the cycle, the input pulses that were registered during the
last cycle are forwarded to the driver circuits and the corre-
sponding presynaptic adaptation state is computed. Then, each
synaptic column is activated sequentially, and the synaptic plas-
ticity change of a synapse at a specific row is computed based on
presynaptic pulse activity of that row and the membrane state of
the neuron of the current column. Concurrently, the presynaptic
pulses are integrated on the neuron. Sharing the active driver
circuitry for all neurons respectively for all synapses of a row
inherently reduces mismatch effects, as the only remaining mis-
match between synapses is the mismatch of their state-holding
capacitors. Mismatch between transistors, i.e., between active
circuits, is only felt between rows.

The circuit design utilizes only digital core devices of the 28 nm
SLP (super low power) technology. In contrast to the current bias-
ing usually employed in neuromorphic ICs (Yang et al., 2012), the
neuromorphic SC circuits require voltages provided by a digital-
to-analog converter (DAC) to set amplitude parameters such as
scaling of presynaptic adaptation, etc. This saves pins and offers
an easy and robust configurability.

Time constants are set via counters that govern the switch-
ing cycles of the SC circuits. Thus, scaling of the clock frequency
effectively scales the speed of the system, keeping the resolution

FIGURE 1 | Overview of the neuromorphic system with mixed signal SC blocks (e.g., presynaptic adaptation, synapse matrix and neurons), digital

control, synaptic weight RAM, biasing DAC, PLL clock input and serial packet IO (Mayr et al., in press).
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relative to the chosen time base. As the clock speed scaling retains
the relative speed of all processes, the same configuration for all
parameters (amplitudes and time constants) can be used irre-
spective of the speed-up, nominally giving the same results. The
neuromorphic system was designed for speeds from biologi-
cal real-time (corresponding to a 0.62 ms full cycle time of the
synaptic matrix) up to an acceleration of 100.

Communication with the system is provided by a JTAG inter-
face, implementing a generic packet-based protocol. Similar to
the communication setup in Hartmann et al. (2010); Scholze
et al. (2011), these packets contain configuration and incom-
ing/outgoing pulse communication data. Additionally, two con-
figurable test outputs allow for monitoring analog voltages, such
as membrane potentials. With its minimal interface, using only 6
signal pins and two bias pins (one bias current and one pin for
common mode voltage), the neuromorphic system can be eas-
ily integrated into a multi-core system mediated by an FPGA. A
chip photograph is shown in Figure 2. The neuromorphic system
occupies 0.36 mm2 and is surrounded by various test structures.
The overall IC has a size of 1.5 mm× 3 mm.

2.2. IMPLEMENTATION OF PRESYNAPTIC SHORT-TERM PLASTICITY
2.2.1. Model
The presynaptic adaptation circuit implements the model of
synaptic dynamics proposed in Noack et al. (2012), which
is derived from a model based on biological measurements
(Markram et al., 1998). The major drawback of the original
approach in Markram et al. (1998) with respect to a switched-
capacitor implementation is the need for a wide-range voltage
multiplier for calculating the product of the facilitation and
depression state variables. Existing multipliers are rather com-
plex, very area consuming (Hong and Melchior, 1984) or need
large operational amplifiers driving resistive loads (Khachab and
Ismail, 1991). In contrast, the model proposed in Noack et al.
(2012) is capable of approximately reproducing the original
model without any multiplier circuit and with a minimum effort
on analog circuitry in general.

The iterative description of the proposed model is shown in
Equations (1–3):

un+ 1 = un · (1− U) · e−�tn
τu + U (1)

FIGURE 2 | Chip photograph with overlay of the 600 µm × 600 µm

neuromorphic system layout. Die size is 1.5 mm× 3 mm (Mayr et al., in
press).

Rn+ 1 = ((1− α) · Rn + α · un) · e−
�tn
τR (2)

PSCn = A · (un − Rn). (3)

It provides the amplitude PSCn of the postsynaptic current for
successive presynaptic spikes incorporating their spiking history,
where n is the number of the observed spike and �tn denotes the
time between n-th and (n+ 1)-th spike. The model is capable of
reproducing facilitation and depression as well as various combi-
nations of both mechanisms. Facilitation is modeled by variable
u, which is adopted from Markram et al. (1998). At each incoming
presynaptic spike u is increased by a certain amount, depend-
ing on U . Between spikes it exponentially decays back to U with
time constant τu. Thus, u is bound to the interval [U, 1]. Variable
R describes the depression mechanism and is also increased at
every presynaptic spike. Inspired from Markram et al. (1998)
the amount depends on the current value of u. The strength of
depression is controlled via α, which can be any value between
0 and 1. Between spikes R decays back to 0 with time constant
τR. The resulting PSC amplitude is then calculated by the differ-
ence of un and Rn, scaled by a factor A. The PSC decays with time
constant τPSC .

2.2.2. Circuit implementation
In order to transform the iterative model to continuous-time, the
exponential time dependence can be implemented with exponen-
tially decaying voltage traces. These are generated by the circuit
shown in Figure 3 for the internal state variables u, R, and PSC,
which model facilitation, depression and postsynaptic current
trace, respectively. At incoming presynaptic spikes these decay
traces are triggered and the resulting PSC amplitude is calculated
by the difference of facilitation and depression value as shown in
Equation 3. In Figure 3 the circuit schematic is shown comprising
three similar parts, for calculating VU , VR, and VPSC .

When a presynaptic spike occurs these voltages are updated
by a special switching scheme presented in Figure 4. VU is
increased toward VA, which represents the global scaling factor A
in Equation 3. The number of switching events of the VU update
determines the parameter U . α is set by the number of switching
events of the VR update. Switches S17 and S18 transfer the voltage
difference of VU and VR to VPSC .

Between incoming spikes an exponential decay of VU , VR, and
VPSC is performed by SC leaky integrator circuits. The work-
ing principle will be explained for the facilitation subcircuit and
can be applied analogously for depression and PSC generation.
On every decay event (see “Decay Vu” in Figure 4) CRU (5 fF) is
discharged in a first switching phase �1 (see also bottom right
of Figure 3). In this period CU (75 fF), which stores the value
of the facilitation variable, is fully decoupled from the circuit.
Switching phase �2 performs a charge equalization on CU and
CRU . Thus, on every decay event VU is decreased by a factor

CU
CU+CRU

= 15
16 . These decay events are repeated with period Tu.

With 15
16 = exp(− Tu

τu
) we can easily calculate Tu for a desired

decay time constant τu:

Tu = −τu · ln
(

15

16

)
≈ τu · 0.0645. (4)
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FIGURE 3 | Schematic of the presynaptic adaptation circuit comprising 3 fully-differential SC leaky integrator circuits. Capacitors storing the value of
the corresponding model variables are encapsulated by dedicated low-leakage switches.

Since Tu is derived from a digital counter driven by the sys-
tem clock, τu is proportional to the counter size and system
clock frequency and allows to set time constants ranging from a
few milliseconds to about one second. In order to scale the sys-
tem’s overall speed there is a tunable system clock divider, which
enables to operate the circuit from biological real-time up to
a 100-fold acceleration, keeping all relative timings without the
need for adjusting bias voltages.

With the period of the matrix column cycle, the resulting
exponentially decaying PSC voltage is sampled on the 4-bit
binary-weighted capacitor CW and transferred to the neuron
circuit.

2.2.3. Leakage reduction
The maximum achievable time constant is limited by subthresh-
old leakage and junction leakage in the switches (see I1 and I2,
resp. in Figure 5B) (Roy et al., 2003). A dedicated technique sim-
ilar to Ellguth et al. (2006) and Ishida et al. (2006) has been
applied for switches surrounding capacitors CU and CR where the
switch transistor is split into two transistors (see Figure 5A). If
the switch is in off-state the middle node VM is clamped to a fixed
voltage VLL. Switch signals S and SLL are non-overlapping. With
VLL = 250 mV, which is equal to the common-mode voltage,

drain-source voltage of M1 and M2 is kept low, which mini-
mizes subthreshold leakage. Furthermore, the amount of leakage
current is independent of the voltage at the other switch ter-
minal. Junction leakage is minimized by minimal sized drain
and source terminals. With a reduced voltage swing of about
VDD/2 all switches can be implemented with NMOS transis-
tors only, which keeps leakage currents low and reduces circuit
complexity. Especially the concept of isolating capacitors by low-
leakage switches makes it possible to reach time constants up to
600 ms, which is the maximum controllable setting in our design,
despite using small capacitance values in the 28 nm technology
node (which naturally has high leakage). This is demonstrated
by the measurements in Section 3.2. Thus, we achieve an off-
resistance of about 600 ms/75 fF = 8T�, which corresponds to
a conductance of 125 fS. In contrast to another technique recently
proposed by Rovere et al. (2014), which requires two auxiliary
low offset opamps, our solution is much more area and power
efficient and satisfies our leakage constraints.

2.2.4. Proposed opamp
For buffering Vu, VR, and VPSC a two stage opamp is used (see
Figure 6), since transistor stacking is difficult at supply voltages
of 1 V. A gain boosting technique similar to Dessouky and Kaiser
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FIGURE 4 | Switch signals for update at an incoming presynaptic spike and for exponential decays of VU , VR and VPSC . Dotted lines indicate that decay
events can occur independently as well as simultaneously.

FIGURE 5 | (A) Low-leakage switch configuration. (B) Cross-section of MOS Transistor M2 with denoted subthreshold leakage (I1), junction leakage (I2) and
gate leakage (I3).

(2000) has been applied, where the load of the first stage has been
split into two cross-coupled transistors (M3, M5 and M4, M6). By
connecting the gates of M5 and M6 to the opposite output of the
first stage a positive feedback is generated. The common-mode
voltage of the first stage is well defined by the diode connected
transistors M3 and M4 whereas the common-mode voltage of the
output stage (M7–M14) is controlled by an SC CMFB network. In
order to derive stability a classical miller compensation (C1, R1,
C2, R2) has been applied using poly resistors and custom designed
metal-oxide-metal capacitors. At the output an NMOS source
follower (M11 – M14) is connected, which enhances slew rate per-
formance. Thus, the output voltage range is limited to 0–500 mV,
which corresponds to the allowed voltage range of the low-leakage
switches. The input common mode voltage range is 0–420 mV,
which is sufficient for Vcm = 250 mV. The opamp consumes
an area of 68 µm2 and achieves an open-loop gain of 54 dB. It
is designed to operate in biological real-time, as well as in a

100-fold accelerated environment. In fast mode the opamp draws
30 µW of power and has a slew rate of 60 V/µs. As the capaci-
tor settling time scales with speed-up, the power consumption in
real-time operation can be reduced by a factor of 100, i.e., down
to 300 nW.

2.2.5. Offset compensation
Due to the small area occupied by the opamp, which is important
for large scale integration, mismatch results in a maximum input
offset voltage of about ±16 mV. Nevertheless, this offset can be
compensated by a simple auto-zeroing technique (Enz and Temes,
1996). As can be seen in Figure 3, in the sampling phase (�1)
input voltages and common-mode voltages, respectively, are sam-
pled against virtual ground of the opamp (switches S6, S12 and
S19 are closed). Since the offset voltage is present at the opamp
input at this time, it is also sampled, and thus, canceled out at the
output in the second phase (�2). Despite the existence of more

www.frontiersin.org February 2015 | Volume 9 | Article 10 | 60

http://www.frontiersin.org
http://www.frontiersin.org/Neuromorphic_Engineering/archive


Noack et al. Plasticity in 28 nm CMOS

FIGURE 6 | Proposed opamp circuit used for buffering Vu , VR , and

VPSC .

advanced auto-zeroing techniques in the literature, this technique
has been chosen, because neither additional capacitors nor addi-
tional switching phases are required, reducing area and circuit
complexity.

2.3. SWITCHED-CAPACITOR IMPLEMENTATION OF A BISTABLE
STOCHASTIC SYNAPSE

2.3.1. Model
The stop learning model of long-term plasticity has been intro-
duced in Brader et al. (2007), based on earlier work in Fusi et al.
(2000). The model represents a synapse with two stable states,
potentiated and depressed, whereby the state transition between
both stable states is regulated via a continuous internal state
X(t) of the synapse. X(t) is influenced by a combination of pre-
and postsynaptic activity, namely the presynaptic spike time
tpre and the value of the neuron membrane voltage Vmem(t). A
presynaptic spike arriving at tpre reads the instantaneous values
Vmem(tpre) and C(tpre). The conditions for a change in X depend
on these instantaneous values in the following way:

X→ X+ a if {Vmem(tpre) > θV and (5)

θ l
up <C(tpre) < θh

up}
X→ X− b if {Vmem(tpre) ≤ θV and (6)

θ l
down <C(tpre) < θh

down} ,

where a and b are jump sizes and θV is a voltage threshold. In
other words, X(t) is increased if Vmem(t) is elevated (above θV )
when the presynaptic spike arrives and decreased when Vmem(t)
is low at time tpre. The θ l

up, θh
up, θ l

down, and θh
down are thresholds

on the calcium variable. The calcium variable C(t) is an auxiliary
variable (see Brader et al., 2007 for details) that provides a
low-pass filter of the postsynaptic spikes. This gives the ability
to stop the learning based on thresholded, long-term averages
of postsynaptic activity. In the absence of a presynaptic spike or
if stop learning is active [i.e., C(t) hits the respective threshold],
then X(t) drifts toward one of two stable values:

dX

dt
= α if X > θX (7)

dX

dt
= −β if X ≤ θX (8)

The bistable state of the synapse is determined accord-
ing to whether X(t) lies above or below the threshold θX .
Computationally, this model is interesting because through X(t)
it can learn a graded response to an input pattern even though
the output weight of the synapses is binary. The model also has
some biological veracity, being sensitive to pre-post and post-pre
spike patterns in a manner similar to the well-known spike time
dependent plasticity (Brader et al., 2007).

2.3.2. Circuit implementation
The circuit schematic shown in Figure 7 replicates the model
described in Equations (5–8). In contrast to the circuit presented
in (Indiveri et al., 2006) our implementation makes use of SC
technique. Thus, the model equations are solved in a time-discrete
fashion, which enables the use of low-leakage switches as shown
in Section 2.2.3 to achieve very low drift rates α and β. The
time-discretization also allows for time multiplexing the single
synapse circuits, thus, one driver circuit (see blue box in Figure 7)
can drive multiple (in our case 64) synapses (red boxes). Due
to the removal of active elements, one synapse circuit can be
reduced to only 2 capacitors and 4 low-leakage switches storing
the synapse state X (cp. Equations 5–8) as a differential volt-
age. The synapse occupies an area of 3.6 µm× 3.6 µm which is
shared equally by the two synapse capacitors with 22 fF each.
These are custom-designed metal-oxide-metal capacitors, utiliz-
ing an interdigitated fingered layout in the complete 5-layer metal
stack with cut-outs on the lower two layers for wiring. The low-
leakage switches are located directly below the capacitors. Each
synapse can be connected to the driver circuit via switches Ssyn,i,
where i indicates the column number in the synapse matrix,
and 4 wires VINP,VINN ,VXP, and VXN . The driver circuit is basi-
cally an SC integrator, which integrates different voltages Vα , Vβ ,
Va, and Vb in dependence of synapse state, neuron state and
incoming presynaptic spikes onto the synapse capacitors Csyn,i.
The integrator’s opamp is the same as for the presynaptic driver
presented in Section 2.2.4. As shown in the timing diagram
in the lower right corner of Figure 7, the operation principle
can be divided into 4 phases “Reset,” “Readout,” “Comparison”
and “Integration” for one synapse. All synapses of one row are
cycled through sequentially, whereas all rows are processed in
parallel.

In the reset phase an offset compensation of the opamp (cp.
Section 2.2.5) is performed, which avoids the integration of a
possible offset voltage as well as residual charge on the relatively
long wires to the synapses. Therefore, switches annotated with
�reset are closed, which closes a negative unity-gain feedback loop
around the opamp. The offset voltage appearing at the opamp
input is then stored on capacitors Crefr and Chebb and can be
subtracted in the integration phase.

After reset a readout of the synapse state is performed. Switches
Ssyn,i of the currently active synapse i are closed, which places the
synapse capacitors in the feedback path of the opamp. The voltage
stored on the capacitors, i.e., the synapse state X, is now visible at
the opamp output between the differential lines VXP and VXN .
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FIGURE 7 | LTP circuit.

When the readout is completed the synapse capacitors stay
connected and a comparison of the synapse state with threshold
	X is performed. In the implementation 	X is fixed at 0.5, thus,
the comparator (see Section 2.3.3) only has to compare whether
VXP > VXN . After comparison the result is provided by signals
comp and its inverted counterpart comp_n.

In the integration phase the refresh part (see Equations 7, 8)
and the hebbian part (Equations 5, 6) of the learning model are
performed. In this phase switches annotated with �integrate are
closed. If comp is high then the differential synapse voltage VX

is increased by
Crefr

Csyn
· (Vα − Vcm), otherwise it is decreased by

Crefr

Csyn
· (Vβ − Vcm). This results in refresh rates of

α = Crefr

Csyn
· (Vα − Vcm)

�t
(9)

and

β = Crefr

Csyn
· (Vβ − Vcm)

�t
, (10)

where �t = 0.62 ms, which is the time needed for processing the
64 synapses of a row sequentially (in biological real-time mode).

If a presynaptic input spike arrives, then switch signal pre is
high during the integration phase. In dependence of the post-
synaptic membrane state 	V signals learn_up and learn_down
are set. The neuron circuit providing the membrane state is an
SC leaky integrate-and-fire neuron presented in the companion

paper Mayr et al. (in press). It is equipped with two com-
parator circuits for spiking threshold detection and for judging
the current membrane state, i.e., the Vmem(tpre) ≷ θV condi-
tion of Equation (5) resp. Equation (6). If Vmem(tpre) > θV , then
learn_up is high and learn_down is low (neglecting the “stop
learning” mechanism for now). Thus, the upward jump size is
calculated by

a = Chebb

Csyn
· (Va − Vcm). (11)

If Vmem(tpre) < θV , then learn_up is low and learn_down is high,
which results in the downward jump size of

b = Chebb

Csyn
· (Vb − Vcm). (12)

In order to reduce the number of control voltages, single-ended
input voltages are provided. The resulting common mode off-
set, caused by this asymmetry, is compensated by the SC CMFB
circuit.

The “stop learning” feature described in Section 2.3.1 is han-
dled by setting learn_up resp. learn_down to low using combi-
national logic (not shown). Therefore, the state of the calcium
variable can be calculated externally in an FPGA, where the post-
synaptic spike train is filtered by a low pass filter. The low pass
filter output is then compared against the stop learning thresh-
olds θ l

up, θh
up, θ l

down, and θh
down and the two resulting binary signals

for enabling learning in the up and down direction, respectively,
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are transmitted to the driver circuit. As an additional feature for
testing we implemented a “learn force” mode where learn_up and
learn_down can be set explicitly, similar to keeping the neuron
membrane permanently elevated or depressed.

The comp signal, which is provided in the “Comparison”
phase states whether the synapse is depressed (LTD) or potenti-
ated (LTP). This binary output is used to scale the PSC gener-
ated by the presynaptic adaptation circuit (see “Weight Scaling
and Charge Transmission” in Figure 3). Therefore, each synapse
has two 4-bit weights for LTP and LTD stored in a RAM (see
Figure 1), which is chosen accordingly to the synapse state and
transmitted to the weight scaling circuit. The scaling of the PSC
is done via binary weighted capacitors, transferring charge to the
neuron circuit. Additionally each synapse is selectable excitatory
or inhibitory, which inverts the PSC voltage. Thus, inhibitory
stop-learning synapses are also possible.

2.3.3. Comparator circuit
A circuit schematic of the comparator shown in Figure 7
is depicted in Figure 8A. It consists of a preamplifier (see
Figure 8B), which is inspired by Dessouky and Kaiser (2000)
and a simple dynamic latch circuit (Song et al., 1995) shown
in Figure 8C. This architecture has been chosen, because the
dynamic latch circuit can have a high random offset voltage of up
to 20 mV, caused by mismatch. The preamplifier raises the dif-
ferential signal level to minimize decision errors, caused by this
mismatch. The preamplifier is therefore equipped with an offset
compensation (compare Section 2.2.5). At the output of the com-
parator circuit an SR-latch is connected, which stores the result
until the next comparison.

2.4. MEASUREMENT SETUP AND CHARACTERIZATION METHODS
As detailed in Section 2.1, the entire system is ratiometric with
respect to the clock frequency. That is, the system clock can be
scaled so that the neuromorphic system operates anywhere from
biological real time up to a factor 100 faster. As operation at
biological real time is the most challenging in circuit terms as
well as the most interesting in terms of computation, real-time
operation was used for the measurements in this paper. The corre-
sponding clock frequency is 3.3 MHz, generated by a configurable
clock divider from the 330 MHz central system clock. At this fre-
quency, the synaptic matrix update period is 0.62 ms (compare
Section 2.1).

As the different leakage currents of MOS switches are highly
temperature dependent, we investigated how well our low-leakage
switch technique operates at different temperatures. Thus, the
measurements of the presynaptic adaptation are carried out at
the temperatures indicated by using the temperature controlled
setup shown in Figure 9. The IC package is held at the adjusted
temperature with ca. ±2 ◦C deviation. The output of the presy-
naptic adaptation can be measured either via tracing the PSC
time course from one of the analog test outputs or indirectly
by monitoring the spike output of a connected neuron. Directly
measuring the PSC voltage via an oscilloscope is well-suited for
detailed short-time measurements, which we used to verify cor-
rect operation of the circuitry. For reducing noise in this case, the
aquired waveform data was averaged over time bins of 0.1–0.3 ms.

FIGURE 8 | (A) Comparator circuit with offset-compensated preamplifier,
compensation capacitors Cc and latch circuitry. (B) Preamplifier circuit
schematic. (C) Latch circuit schematic.

Direct oscilloscope measurements are less practical for auto-
matic extraction of a multitude of time constants. For this case, we
used the following purely spike-based protocol: The adaptation
state is probed by sending an input spike and counting the num-
ber of output spikes in reaction. For getting a reasonably strong
response, the synaptic weight and the PSC scaling voltage are set
to their maximum values. Setting the membrane time constant
to a high value as well, the number of output spikes per input
spike is approximately linearly dependent on the PSC amplitude.
For the measurements, we only activated depression, so that the
PSC amplitude of a spike directly resembles the current state of
the depression variable. For each time constant measurement,
the depression variable is charged by initially applying 10 spikes.
Afterwards, the adaptation strength is set to zero, so that the
depression variable relaxes back to its resting state. This relaxation
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FIGURE 9 | Setup for measurements with controlled temperature.

is monitored by continuously probing the state with input spikes.
From the relaxation time course, the time constant is extracted
by calculating the best-fitting (smallest root mean squared error)
exponential function, with amplitude and time constant as free
parameters. Results are averaged over 10 repetitions.

The measurements of the stop learning synapses are carried
out at ambient temperature, i.e., no special measures for chip
cooling are taken.

3. RESULTS
3.1. BASIC OPERATION OF THE PRESYNAPTIC ADAPTATION
For evaluating the presynaptic adaptation performance, we stim-
ulated a presynaptic circuit with a regular spike train for two
different adaptation types, as shown in Figure 10. We chose a
parameter set for combined facilitation and depression to demon-
strate correct operation of the circuit as a whole, and a setting
for a depressing synapse, where the depression variable domi-
nates the behavior. The latter case is used for assessing the correct
reproduction of long time constants in the next section.

Figure 10 also shows ideal time courses for the implemented
model with the same parameters and fitted amplitude and off-
set. The measurements agree well with these nominal curves even
without calibrating any parameters. They differ mainly in the
adaptation strength, i.e., in the ratio between highest and low-
est PSC amplitude, which is smaller in the measured curves. This
may be caused by time constants being too small, or by charge
injection effects, resulting in voltage offsets during updates of the
adaptation variables at incoming spikes.

3.2. CHARACTERIZATION OF THE PRESYNAPTIC ADAPTATION TIME
CONSTANTS

Figure 11 shows traces over different time constant settings for
one presynaptic adaptation circuit. The time course of the depres-
sion relaxation for nominal settings as well as with only leakage
present can be faithfully fitted by an exponential function, allow-
ing for calculation of the depression time constant.

FIGURE 10 | PSC voltage traces of a simultaneously facilitating and

depressing (top), and of a depressing (bottom) synapse when

stimulated with 10 spikes at 50 Hz rate. Configuration parameters: top:
τu = 300 ms, τR = 300 ms, τPSC = 10 ms, U = 0.29, α = 0.5, bottom:
τu = 10 ms, τR = 490 ms, τPSC = 13 ms, U = 0.96, α = 0.5. The nominal
time courses for the PSC voltages with these parameters and fitted
amplitudes are drawn as dashed lines.

Measured time constants of 16 adaptation circuits from 4 chips
are shown in Figure 12. The values are well-controlled in the con-
figurable range up to 300 ms at all temperatures with sigma less
than 15% and the mean within 20% of the nominal setting. The
same is true for the 600 ms setting up to 30◦C. Above that, the
leakage influence causes the measured mean to be at least one
sigma outside the nominal, which constitutes our fail criterion.

Using the infinite setting for the depression time constant,
i.e., there are no decay switching events, this leakage can be
measured, see upper plot in Figure 12. As expected, it is highly
temperature-dependent. For temperatures of 30◦C and below, all
measurements are above 1 s, so that time constants up to this
value are feasible at room temperature if the controlled leak-
age, i.e., the switching frequency of the decay process, is further
decreased compared to the 600 ms setting. As described in Section
2.2.3, a time constant of 600 ms corresponds to a leakage resis-
tance of 8 T�. This value increases to a minimum of 13 T� for
time constants of 1 s or above. These high resistances demonstrate
the effectiveness of the employed leakage reduction techniques.

The measurements show that time constants of several seconds
are possible at temperatures below 30◦C. As the time constants
caused by intrinsic leakage show a larger spread for these tem-
peratures, individual calibration of the switching frequency for
the leakage mechanism may be required to still achieve well-
controlled time constant values. Nevertheless, for the envisaged
time constant range up to 600 ms of the design, the measurements
demonstrate correct resemblence of time constant values at room
temperature, so that all further measurements were performed
without any special measures for temperature control.

3.3. CHARACTERIZATION OF THE BISTABLE STOCHASTIC SYNAPSE
In this section, results for the SC implementation of the stop-
learning synapse are given. As detailed in Section 2.3.2, a force bit
can be set that forces the synapse to transition from potentiated
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FIGURE 11 | Measured time courses of input-output gain for one

presynaptic adaptation circuit at 40◦C with 300 ms, 600 ms and

leakage only settings. Time course until 0.8 s is the charging of the
depression, following, the synapse relaxes back to its steady state with the
depression time constant.

FIGURE 12 | Mean and standard deviation (error bars) of extracted

time constants over 16 presynaptic adaptation circuits of four separate

ICs. Shown is the measured time constant for a setting of infinity (upper
part, i.e., the equivalent time constant if just leakage is active) and two
configured time constants (nominal 600 and 300ms) for the presynaptic
adaptation circuit of Figure 3.

to depressed state or vice versa. That is, Equation 5 resp. Equation
6 are forced to always employ a or b, similar to setting Vmem(t)
either to a constant high or low value. A presynaptic spike train
of 12 spikes is then applied to the synapse, as shown in the upper
diagram of Figure 13.

From the lower diagram of Figure 13, it can be observed that
the synapse reaches a stable potentiated state (at ca. 0.7 V) or a
depressed state (at 0 V). For the transition at 50 ms, the force
bit activates only a, forcing the synapse to become potentiated.
Conversely, at 150 ms, only b is active, the synapse becomes
depressed. Between presynaptic events, the curve shows that α

FIGURE 13 | (Upper diagram) Measured PSC waveform of a 200 Hz

presynaptic spike train with 12 pulses; (lower diagram) synapse state

of stochastic stop learning synapse, with forced transition from

depressed to potentiated state and back.

and β draw the synapse back to one of its stable states, accord-
ing to the synapse state being above or below θX (set at half way
between the two stable states, see also Equation 7 resp. 8).

To test the stop learning functionality expressed in our imple-
mentation by the two stop learning bit flags (see Section 2.3.2),
a second experiment is carried out. The packet of 12 presynap-
tic spikes is split in two parts which are sent immediately after
each other, see the corresponding PSC voltage in the upper dia-
gram of Figure 14. Starting from the depressed state, the force bit
activates a, but after the first part of the presynaptic spike packet,
which contains 6 pulses, the stop learning bit for a is activated.
This causes the last 6 pulses to be discarded in terms of synaptic
state modification, i.e., only β is active which draws the synapse
back down to the depressed state.

At 150 ms, this experiment is repeated, but the stop learning
is activated after 8 pulses. This is sufficient to push the synapse
above θX , i.e., α becomes active which draws the synapse state to
the potentiated state, even though the last 4 presynaptic pulses
are again discarded because of the activated stop learning. Thus,
overall functionality of the stochastic stop learning synapse is con-
firmed. In this experiment, the stop learning was set explicitely.
As stated in Section 2.3.2, the future backplane for a multi-chip
system will compute the Calcium variable externally on an FPGA
based on the output spike rates (Brader et al., 2007), setting the
stop learning bits dynamically based on the Calcium state.

Please note that we are only showing the internal synaptic state
transitions. For the overall network dynamics, the state change
means a switch between the 4 bit potentiated and 4 bit depressed
weights (compare Section 2.3.2). Thus, while learning induction
is in the form of the one bit decision of the original stop learn-
ing synapse (Brader et al., 2007), the expression of the synaptic
learning can be individual for each synapse, adding significantly
to network richness compared to the global settings for poten-
tiated and depressed synapses in other implementations of this
plasticity rule (Indiveri et al., 2006). This capability for individual
weights could also be exploited for implementations of the Neural
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FIGURE 14 | (Upper diagram) Measured PSC waveform of presynaptic

spike train, both packets 12 pulses, 200 Hz; (lower diagram) synapse

state of stochastic stop learning synapse, with forced transition from

depressed to potentiated state. The first transition is aborted due to
activation of stop learning after 6 pulses, i.e., at a point where the synapse
state is not above θX and thus gets drawn back to the depressed state. For
the second transition, stop learning is activated after 8 pulses.

Engineering Framework (Eliasmith and Anderson, 2004) on our
neuromorphic system. A 4 bit weight resolution plus the capa-
bility for setting each synapse excitatory or inhibitory should
be sufficient for sophisticated population-based signal process-
ing (Mayr et al., 2014), compare also the results achieved for 58
neurons with 4 bit synaptic weights in Corradi et al. (2014).

3.4. OVERALL RESULTS
Table 1 details the major characteristics of the neuromorphic sys-
tem (Mayr et al., in press). Its power budget is competitive with
recent power-optimized digital or analog neuromorphic systems
of similar size (Indiveri et al., 2006; Seo et al., 2011). The digital
part includes 0.45 mW static power draw which is mainly due to
the other components on this test chip, so putting the neuromor-
phic system on a chip by itself would improve power consumption
by about 23% at biological real time operation. The current clock-
ing setup features a constant-frequency PLL (Höppner et al.,
2013) and a clock divider, which draw constant power irrespec-
tive of the speed up factor. To save power, this could be replaced
with a variable-frequency PLL with frequency-dependent power
draw (Eisenreich et al., 2009).

Plasticity models with time constants up to seconds have
been shown for this SC implementation in 28 nm. Thus, reli-
able, controlled behavior fully in keeping with biological real time
operation is possible. The efficacy of our chosen method for low-
leakage capacitive state holding has been proven, with detailed
analysis of the effect of temperature on achievable time constants.
The characterization of the presynaptic time constants employs
the entire signal pathway of the system (compare Figure 1),
showing complete overall functionality.

Table 2 gives a comparison with other current implementa-
tions of presynaptic adaptation and/or synaptic plasticity. The
synapse area of our implementation is among the lowest, with

Table 1 | Characteristics of the presented SC neuromorphic system.

Technology Global foundries 28 nm SLP

Layout area for system 460*430 μm2 neuromorphic comp.,
600*600 μm2 overall (including DAC,
RAM, etc.)

Clock frequency 330 MHz (PLL), 3.3 MHz (neuromorphic
components)

VDD analog 1.0 V

VDD digital 0.75 V

Power digital 1.1 mW (speed-up 1) to 3.1 mW (speed-up
100)

Power analog (neuromorphic
components)

0.38 mW (speed-up 1) to 11.0 mW
(speed-up 100)

Power analog (PLL) 0.45 mW

Neuron model LIAF (Rolls and Deco, 2010)

Presynaptic adaptation Facilitation and depression (Noack et al.,
2012)

Synaptic plasticity Stochastic synapse with stop learning
(Brader et al., 2007)

System characteristics 128 presynaptic adaptation circuits, 8192
stochastic synapses, 64 LIAF neurons

All figures are for a speed-up of one, i.e., biological real time operation, if not

stated otherwise.

only the static 1 bit synapse of a digital synaptic array smaller
in size. Especially, compared to fully analog implementations of
stop learning (Indiveri et al., 2006), the SC approach and agres-
sive scaling for the various capacitances allow an implementation
of stop-learning that benefits from the technology shrink. As can
be seen from the faithfulness of model replication in SC, this
scaling can be achieved without compromising functional rich-
ness and accuracy. When accounting for technology node, the
area consumption of the presynaptic adaptation is larger than
e.g., Bartolozzi and Indiveri (2007) or Schemmel et al. (2010).
This is due to the fact that our presynaptic adaptation aims at
a very faithful reproduction of the model of Markram et al.
(1998), necessitating complex, multi-stage computational circuits
(see Figure 3). Specifically, our implementation is the only one
offering concurrently operating facilitation and depression.

The shown architecture always connects an input via synapses
to all neurons, corresponding to an all-to-all connectivity. This is
the same architecture as used for example in memristive cross-
bar arrays Alibart et al. (2012); Mayr et al. (2012). The main
advantage of this architecture in our design is that it allows
to implement all parts of the synapse circuit that depend on
the input only once per synapse row. This significantly reduces
circuit area, reducing the synapse circuit to an analog storage ele-
ment in our design. The efficiency gain comes at the price of
reduced flexibility concerning connection topologies. All-to-all
and comparable connection structures are well-suited, whereas
sparse connectivity results in a high number of unused synapses
in the matrix, making the architecture less efficient in this case,
even when optimizing the mapping of networks to the hard-
ware architecture Mayr et al. (2007); Galluppi et al. (2012). To
improve the efficiency, i.e., the fraction of utilized synapses, also
for low connection densities, more presynaptic input circuits than
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Table 2 | Comparison of the presented short- and long-term plasticity circuits with other implementations from literature.

Ref. Techn. System Synapse Number of Synapse Pre-synapse Number of Presynapse

area area synapses functionality area presynapses functionality

Seo et al., 2011;
Merolla et al., 2011

45 nm 4.2 mm2 1.6 μm2 262 k 1-bit static synapses,
Set externally

– – Not
implemented

Park et al., 2014 90 nm 16 mm2 15 μm2 262 k Log-domain
conductance-based
synapse, no
plasticity

– – Not
implemented

Mitra et al., 2006;
Bartolozzi and
Indiveri, 2007

350 nm 12 mm2 1200 μm2 8192 Stop learning 1360 μm2 NA Short-term
depression

Schemmel et al.,
2010; Schemmel,
personal
communication

180 nm 50 mm2 150 μm2 115 k STDP 84 μm2 14 k Either short-term
depression or
facilitation

This work 28 nm 0.36 mm2 13 μm2 8192 Stop learning 432 μm2 128 Concurrent
short-term
depression and
facilitation

synapse rows can be implemented, while synapses are made to
choose between several inputs (Noack et al., 2010; Schemmel
et al., 2010). This would only slightly increase the complexity
of the individual synapse circuits, while greatly increasing the
flexibility of the architecture (Noack et al., 2010).

4. DISCUSSION
4.1. PLASTICITY MODELS
Results show faithful implementation of the chosen short-term
plasticity model (Markram et al., 1998). The detailed reproduc-
tion of this model endows the neuromorphic system with a cor-
responding rich behavioral repertoire, which could be employed
for e.g., reproduction of population dynamics in cultured neu-
rons (Masquelier and Deco, 2013) or simulation of short-term
memory (Rolls et al., 2013).

The long-term plasticity rule is also reproduced well, opening
up a host of information-theoretic applications, such as stud-
ies of memory retention, information content or classification
performance of a network (Brader et al., 2007). Other flavors
of long-term plasticity rules could also be supported by our
neuromorphic system. For instance, the faithful reproduction of
neuronal waveforms evident in Figure 10 and their excellent con-
figurability in terms of the time window (Figure 12) could also
be employed for a plasticity rule based on neuron and synapse
waveforms such as (Mayr et al., 2010), which aims at the repli-
cation of a wide range of biological plasticity experiments (Mayr
and Partzsch, 2010).

4.2. SWITCHED-CAPACITOR NEUROMORPHICS
Dating back to Carver Mead, subthreshold CMOS has been
the mainstay of neuromorphic circuit design, as it offers the
advantage of low power consumption, ion-channel like behavior

in CMOS devices and currents small enough to reach biological
real time operation. However, such a fully analog implemen-
tation suffers from mismatch and leakage currents which are
increasingly prevalent in deep submicron processes. In addition,
the channel-to-transistor design philosophy means that this type
of neuromorphic circuit consists largely of handcrafted circuits
that depend crucially on the performance of each single transis-
tor. Thus, porting a design between technology nodes essentially
means a completely new design.

Switched-capacitor neuromorphic circuits move from this
device level philosophy to a building block approach, i.e., the
required model behavior is achieved with a combination of stan-
dard building blocks. SC is used as a mathematical framework to
directly translate state-driven models to a mixed-signal realiza-
tion. This keeps the neuronal states analog for biological veracity,
while achieving significantly easier technology porting, as the
circuit consists solely of standard building blocks such as ampli-
fiers, switches and charge addition/subtraction. Representation
of analog states at block level also eases implementation in deep
submicron, as this takes advantage of the available device count
for improved signal fidelity, while relying less on the charac-
teristics of individual transistors. This building block approach
allows agressive scaling of the active analog components, while
the digital part of the SC circuits naturally scales with the tech-
nology node. Overall scaling is ultimately limited compared to
a purely digital system by the largely invariant capacitor sizes,
but is still significantly better than conventional, more device-
and analog-centric neuromorphic approaches. As shown, this
approach has enabled our SC system to deliver the same com-
putational density as a purely digital neuromorphic system in a
deep-submicron technology (Seo et al., 2011), while its power
budget is on par with subthreshold circuits (Indiveri et al.,
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2006). When combined with deep submicron pixel cells (Henker
et al., 2007), a sophisticated visual processing pyramid could
be implemented (König et al., 2002; Serrano-Gotarredona et al.,
2009).

While SC makes neuromorphic circuits possible in principle in
deep submicron, one major challenge is still the leakage currents.
The leakage completely precludes subthreshold circuits, but it also
affects the stored states of capacitors in SC technique, especially
for the timescales necessary for biological real time operation. As
shown, we have solved this general challenge for SC neuromor-
phic circuits with our low leakage switch architecture, reaching
controllable time constants >100 ms at ambient temperature.

4.3. NANOSCALE CMOS AND NOVEL DEVICES
Novel nanoscale devices, such as memristors, offer the possibil-
ity of very high density neuromorphic synaptic matrices (Alibart
et al., 2012; Shuai et al., 2013). However, they need corre-
sponding high-density neuronal driver circuits in CMOS. Moving
neuromorphic circuits to deep-submicron technologies as out-
lined in this paper would provide this capability, i.e., very low
footprint neuron driver and receiver circuits that generate ana-
log waveforms for memristor synaptic matrices (Mayr et al.,
2012).
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We present a neuromorphic implementation of multiple synaptic plasticity learning

rules, which include both Spike Timing Dependent Plasticity (STDP) and Spike Timing

Dependent Delay Plasticity (STDDP). We present a fully digital implementation as well

as a mixed-signal implementation, both of which use a novel dynamic-assignment

time-multiplexing approach and support up to 226 (64M) synaptic plasticity elements.

Rather than implementing dedicated synapses for particular types of synaptic plasticity,

we implemented amore generic synaptic plasticity adaptor array that is separate from the

neurons in the neural network. Each adaptor performs synaptic plasticity according to the

arrival times of the pre- and post-synaptic spikes assigned to it, and sends out a weighted

or delayed pre-synaptic spike to the post-synaptic neuron in the neural network. This

strategy provides great flexibility for building complex large-scale neural networks, as a

neural network can be configured for multiple synaptic plasticity rules without changing its

structure. We validate the proposed neuromorphic implementations with measurement

results and illustrate that the circuits are capable of performing both STDP and STDDP.

We argue that it is practical to scale the work presented here up to 236 (64G) synaptic

adaptors on a current high-end FPGA platform.

Keywords: mixed-signal implementation, synaptic plasticity, STDP, STDDP, analog VLSI, time-multiplexing,

dynamic-assigning, neuromorphic engineering

Introduction

Plastic synapses, i.e., synapses that can adapt their gain according to one or more adaptation rules,
are extremely important in neural systems, as it is generally accepted that learning in the brain arises
from synaptic modifications. The Spike Timing Dependent Plasticity (STDP) algorithm (Gerstner
et al., 1996; Magee, 1997; Markram et al., 1997; Bi and Poo, 1998), which is one of the adaptation
rules observed in biology, modulates the weight of a synapse based on the relative timing between
the pre-synaptic spike and the post-synaptic spike. Besides weight adaptation, some observations
suggest that the propagation delays of neural spikes, as they are transmitted from one neuron to
another, may be adaptive (Stanford, 1987). Axonal delays are an important feature that seems
to play a key role in the formation of neuronal groups and memory (Izhikevich, 2006). In our
previous work (Wang et al., 2011b, 2012), a delay adaptation algorithm, Spike Timing Dependent
Delay Plasticity (STDDP), inspired by STDP was developed to fine-tune delays that had been
programmed into the network.We recently showed that the time delays of neural spike propagation
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in the rat somatosensory cortex can be modified by
suprathreshold synaptic processes such as STDP (Buskila
et al., 2013). This suggests that it is likely that synaptic weights
and the propagation delays are adapted simultaneously.

The main goal of this work is to develop a design framework
that is capable of implementing neural networks with maximum
size, using simplified biological models. To allow for future
implementations that interface with the real world, these neural
networks should be running in real time. While detailed
simulations of small networks of neurons are one way of studying
neural systems, such small networks are not able to capture all
the complexity and dynamics of a large scale neural network with
non-linear properties, such as a model of neocortex, as pointed
out by Johansson and Lansner (2007). In the work reported
here, we have therefore focussed on attaining maximum network
size.

As synaptic plasticity has not yet been fully characterized
and models of synaptic plasticity remain in flux (Brenner
and Sejnowski, 2011; Sejnowski, 2012), dedicated hardware
implementations that have been hardwired to one particular type
of plasticity rule will not be able to adapt to likely future changes
in plasticity models. Thus, the design framework we present here
will be capable of including various substantial neural networks,
each of which may be designed to solve a particular task.

In this paper, we will focus on exploring hardware friendly
implementations rather than comparing our learning rules
with the vast, well established complex algorithms used in
computational neuroscience. As a result of our hardware focus,
mathematical analysis of the long-term behavior of the plasticity
rules in benchmark networks and quantifying the effects of our
learning rules on the synaptic weight, which are commonly used
in computational modeling papers, are out of the scope of this
paper and will therefore not be addressed.

Simulating neural networks on computers has been successful
in informing the computational neuroscience community on
promising learning strategies, network configurations and neural
models for many decades. This approach, however, does not scale
very well, slowing down considerably for large networks with
large numbers of variables. For instance, the Blue Gene rack, a
two-million-dollar, 2048-processor supercomputer, takes 1 h and
20min to simulate 1 s of neural activity in 8 million integrate-
and-fire neurons (Izhikevich, 2003) connected by 4 billion static
synapses (Wittie and Memelli, 2010). For smaller scale networks,
Graphic Processing Units (GPUs) can perform certain types of
simulations tens of times faster than a PC (Shi et al., 2015). GPUs
still perform numeric simulations, however, and, depending on
the complexity of the network, it can take hours to simulate 1 s
of activity in a tiny piece of cortex (Izhikevich and Edelman,
2008). Along with general hardware solutions, there have been
a number of more dedicated hardware solutions (Pfeil et al.,
2012, 2013; Painkras et al., 2013). A good example of a dedicated
solution that implements numeric simulation of neurons is the
SpiNNaker project (Galluppi et al., 2012). In SpiNNaker, ARM
processors run software neuron models. Their most recent work
shows that the SpiNNaker cores are capable of implementing
96,000 synapses (7500 synapses per core) for STDP in real time
(Galluppi et al., 2014).

An alternative approach is to use the analog VLSI (aVLSI)
circuits, which avoid any need to discretise differential equations
of neuronal dynamics. These implementations will also add
stochasticity to the system through electronic noise and device
mismatch, resulting in more realistic simulations of biological
neural networks. The basic STDP learning rule, which is a paired
pulse protocol (Gerstner et al., 1996), has been successfully
implemented using aVLSI circuits (Bofill-i-petit and Murray,
2004; Indiveri et al., 2006; Häfliger, 2007; Koickal et al., 2007).
More variants of the STDP algorithm have been proposed by
Brader et al. (2007a) and Graupner and Brunel (2012). These
algorithms capture more of the synaptic dynamics but still follow
the principle that themodification of the synaptic weight depends
on the relative timing of individual pre- and post-synaptic spikes.
Many aVLSI implementations of these algorithms have been
proposed (Chicca et al., 2003; Mitra et al., 2009; Giulioni et al.,
2012). Similarly, aVLSI circuits have also been used to implement
the STDDP learning rule (Wang et al., 2011a,b, 2012, 2013a).
This aVLSI approach is useful for studying the dynamics of small
and densely interconnected networks, but less so for the study of
large and sparsely connected networks, such as complex models
of various areas of cortex. The aVLSI implementations all used
dedicated synapses for a specific type of synaptic plasticity and
the number of plastic synapses integrated on single chip is usually
fewer than tens of thousands. This significantly limits the size of
the network these approaches can implement.

We chose to implement a synaptic plasticity adaptor array
that is separate from the neurons (see Figure 1). In this scheme,
the address of the pre-synaptic spike from the pre-synaptic
neuron will have already been remapped to the address of the
post-synaptic neuron by the router shown in Figure 1. For
each synapse, which remains part of the neuron, a synaptic
adaptor will be connected to it when it needs to apply a certain
synaptic plasticity rule. The synaptic adaptor will carry out the
weight/delay adaptation by updating weight/delay values that are
stored in digital memory. For each incoming pre-synaptic spike,
the adaptor will send a weighted/delayed pre-synaptic spike to
the post-synaptic neuron in the neuron array.

This strategy provides great flexibility, as a hardware neural
network can be configured to performmultiple synaptic plasticity
rules without needing to change its own structure, simply
by connecting the synapses to the appropriate modules in
the synaptic plasticity adaptor array. This structure was first
proposed by Vogelstein and his colleagues in the IFAT project
(Vogelstein et al., 2007). However, they didn’t implement
synaptic plasticity in that work although they did discuss
the implementation of STDP with this structure. It seems
that this flexibility will generate a communication overhead.
The communication between neurons and adaptors has the
same overhead as the communication between neurons and
other neurons in a network without a separate adaptor array.
Thus, the additional overhead stems from the communication
from the adaptor array to each of the synapses. This will
be discussed in more detail in the next section. The major
disadvantage of our approach is that it is incapable of modeling
the ion channels in the biological synapses. Compared to the
aVLSI approach, our approach is less useful for studying the
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FIGURE 1 | The synaptic plasticity adaptor array that is separate

from the neurons. For each synapse, which remains part of the

neuron, a synaptic adaptor will be connected to it when it needs to

apply a certain synaptic plasticity rule. The synaptic adaptor will carry

out the weight/delay adaptation by updating weight/delay values. For

each incoming pre-synaptic spike, the adaptor will send a

weighted/delayed pre-synaptic spike to the post-synaptic neuron in the

neuron array.

dynamics of the networks that require high degrees of biological
realism. Furthermore, our approach is less power efficient
compared to the aVLSI implementations. This is because our
implementation has to employ configurable but power hungry
devices, such as FPGAs/MCUs, to achieve its flexibility. Analog
VLSI implementations, in contrast, especially those operating
in weak inversion (Liu et al., 2002), are capable of achieving a
significantly low power consumption.

We have previously presented a compact reconfigurable
mixed-signal implementation of a synaptic plasticity adaptor that
is capable of performing both STDP and STDDP (Wang et al.,
2014a). Here, we present its follow-up work that uses a novel
approach to scale up the numbers of synaptic plasticity adaptors
up by 128 (27) times more without increasing the hardware cost
significantly.While the design of the router and the neuron arrays
are out of the scope of this paper and will not be presented.

Materials and Methods

Learning Rules
Spike Timing Dependent Plasticity
The STDP algorithm modulates the weight of a synapse based
on the relative timing of the pre- and post-synaptic spikes. The
weight of a synapse will be increased if a pre-synaptic spike
arrives several milliseconds before the post-synaptic spike fires.

Conversely, the weight will be decreased in the case that the
post-synaptic spike fires earlier than the arrival of a pre-synaptic
spike by several milliseconds. The amount and direction of
modification of the weight are determined by the time between
the arrival of the pre- and post-synaptic spike.

To obtain this time difference, we need to know when the
pre- and post-synaptic spike arrives. This is implemented by
introducing a time window generator, which is composed of a
4-bit counter, it will be reset by either spike and increased by
one bit at each time step, e.g., 1ms until it reaches its maximum
value 0 × F. The time at which the alternative spike arrives is
represented by the value of the counter. We also define that the
time window is “active” before it reaches its maximum value. As
we assume that the adaption will not be carried out if the pre-
and post- synaptic spikes arrive simultaneously, only one time
window generator will be needed.

In the original STDP learning rule (Gerstner et al., 1996), the
amount of synaptic modification is summarized by the following
equations:

1w =

{
A+ exp (1t/τ+), if 1t < 0
−A−exp (1t/τ−), if 1t ≥ 0

(1)

where 1w is the modification of the synaptic weight, 1t
is the time difference between the arrival time of the pre-
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FIGURE 2 | The STDP modification function. 1t is the time difference

between the arrival time of the pre- and post-synaptic spike. The blue

line represents synaptic modification 1w, which is linearly proportional 1t. The

red line represents the synaptic modification 1w, which is a fixed step. The

dashed line represents the range of pre-to-post-synaptic interspike intervals

over which synaptic modification is performed.

and post-synaptic spike. The maximum amounts of synaptic
modification 1w are determined by two positive parameters:
A+ and A−. The ranges of pre-to-post-synaptic interspike
intervals over which synaptic modifications are performed
are determined by the parameters τ+ and τ−. The authors
in Song et al. (2000) concluded that this function provides
a reasonable approximation of the dependence of synaptic
modification on spike timing observed experimentally. However,
it is a computationally intensive function since it requires
exponentiation and division operations, both of which would
occupy a large silicon area.

To reduce the required silicon area, in our system, we have
implemented two simplifiedmodification rules. The first one is to
change the weight proportionally to the calculated time difference
(see the blue line in Figure 2) and is summarized by the following
equations:

1w =

{
A+

+ 1t, if Tactive = 1 and 1t < 0
−A−

+ 1t, if Tactive = 1 and 1t > 0
(2)

where 1w is the modification of the synaptic weight, 1t is the
time difference between the arrival time of the pre- and post-
synaptic spike. Tactive is a Boolean value that indicates the time
window generator is active (see the dashed line in Figure 2). In
this system, the synaptic weight is an unsigned integer, which
ranges from 0 to 15. A+ and A− are both set to 16 here. The
second one is to change the value of the weight by a fixed value
(see the red line in Figure 2) and is summarized by the following
equations:

1w =

{
+ step, if Tactive = 1 and 1t< 0
− step, if Tactive = 1 and 1t > 0

(3)

where step is the fixed value and is set to 1 here. No weight
modification will be performed if the pre- and post-synaptic

FIGURE 3 | Illustration of Delay adaptation. (A) Delay increment; (B) Delay

decrement. The axonal delay presents the delay between the firing time of the

pre-synaptic neuron (the green one) and arrival time of the pre-synaptic spike

(the red one) at the post-synaptic neuron. 1t represents the time difference

between the pre- and post-synaptic spike (the blue spike) to and from the

post-synaptic neuron.

spikes arrive simultaneously. The efficacy of these two simplified
learning rules will be presented in Section Performance of STDP.

Spike Timing Dependent Delay Plasticity
Two examples of the adaptation of axonal delays are shown in
Figure 3, an increment of the delay (Figure 3A) and a decrement
of the delay (Figure 3B). After the pre-synaptic neuron fires
there is an axonal delay before the delayed pre-synaptic spike
is sent to the post-synaptic neuron. If the post-synaptic spike,
which is from the post-synaptic neuron, is not simultaneous
with the delayed pre-synaptic spike, we may adapt the axonal
delay by increasing or decreasing it by a small amount. This
procedure is repeated until the delayed pre-synaptic spike occurs
simultaneously with the post-synaptic spike.

Since this learning rule also needs to obtain the time difference
between the pre- and post-synaptic spikes, we will use the same
time window generator as described above, to generate the axonal
delay. In this case, however, the time window generator will be
started by the pre-synaptic spike (the green spike in Figure 3).
Moreover, the duration of the generated time window will be
modulated according to the axonal delay. The modification of
the axonal delay will only be performed by the post-synaptic
spike: when the post-synaptic spike arrives, if the time window
is active, then there is a decrease the axonal delay and vice versa.
The modification of the axonal delay 1d is summarized by the
following equations:

1d =

{
− step, if Tactive = 1
+ step, if Tactive = 0

(4)

where step is a fixed value and is set to 1 here. Modifying the
axonal delay by a single step is one of the three strategies, which
were proposed and proved to be functional in our previous
work (Wang et al., 2013b). No delay modification will be
performed if the delayed pre-synaptic spike and post-synaptic
arrive simultaneously. In this system, the axonal delay is also an
unsigned integer, which ranges from 0 to 15.

Design Choice
To implement multiple synaptic plasticity rules for large scale
spiking neural networks, the design choice we made were based
on the following principles:
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Time-multiplexing
In digital implementations of spiking neural networks, a single
physical neuron can be time-multiplexed to simulate many
virtual neurons, since digital hardware neurons can operate
much faster than biological neurons. Each virtual neuron only
needs to be updated every millisecond or so, as a millisecond
time resolution is generally acceptable for neural simulations.
Digital implementations of neurons using this time-multiplexing
approach have been described in Cassidy and Andreou (2008);
Cassidy et al. (2011); Wang et al. (2013b, 2014c). In the
implementation presented here, we are time-multiplexing both
the synaptic adaptors and the neurons.

Dynamic-assignment
It is not necessary to implement all neurons physically on silicon
as based on the physiological metabolic cost of neural activity, it
has been concluded that fewer than 1% of neurons are active in
the brain at any moment (Lennie, 2003). A larger address space
can be mapped onto a smaller number of physical components
through dynamically assigning these components. Based on this
principle, we have presented a dynamically-assigned digital and
analog neuron array in Wang et al. (2013b) and Wang et al.
(2014d), respectively. In these two systems, 4096 (4 k) neurons
were achieved with only tens of neurons implemented physically
on silicon. Here we also use this approach for both the neurons
and the synaptic adaptors.

Mixed-signal
This implementation style can combine some of the
advantages of both analog and digital implementations.
Analog implementations can realize biological behaviors
of neurons in a very efficient manner, whereas digital
implementations can provide the re-configurability needed
for rapid prototyping of spiking neural networks. As a result,
mixed-signal implementations offer an attractive solution
for implementing neural networks and many designs have
been proposed for such systems (Goldberg et al., 2001; Gao
and Hammerstrom, 2007; Mirhassani et al., 2007; Vogelstein
et al., 2007; Harkin et al., 2008, 2009; Schemmel et al., 2008;
Saighi et al., 2010; Yu and Cauwenberghs, 2010; Zaveri and
Hammerstrom, 2011; Minkovich et al., 2012).

Standardization
To enable multiplexing building blocks, such as neurons,
synapses, and axons, in a neuromorphic system, these circuits
must be designed as standardized building blocks with a
standard protocol for communication with programmable
devices. Specifically for use in time-multiplexed neural systems,
we have developed a synchronous Address Event Representation
(AER) protocol, which uses a collision-free serial processing
scheme with a single active signal and an address (Wang et al.,
2013b). This synchronous scheme eliminates the overhead of an
arbiter in the standard AER protocol.

For the maximum utilization of a fixed sized aVLSI chip, it
is best to reduce the on-chip routing as much as possible as the
routing can be carried out off-chip by FPGAs or microprocessors
with more flexibility and extensibility. As the on-chip topology of

the aVLSI circuits is generally fixed after fabrication, it is better
to implement the whole system in an FPGA for prototyping and
optimization before fabricating the aVLSI chips.

Pulse width Modulation
For the systems that are sensitive to high communications
overheads, e.g., aVLSI chips with limited number of pads, we
adopted a pulse width modulation scheme, to minimize the
communication bandwidth. In this scheme the durations of the
spikes are modulated according to the synaptic weights, and the
synapses in the neuron array are sensitive to the durations of the
spikes (e.g., Wang et al., 2014b). It should be noted, however,
that we could easily reconfigure the system to send out synaptic
weights directly to the neurons in systems that are not sensitive
to high communications overheads, e.g., FPGA designs.

Versatility
To efficiently implement synaptic plasticity in large-scale spiking
neural networks with different learning rules, the building block
should be capable of being configured for multiple synaptic
plasticity rules, such as STDP and STDDP. When the synaptic
plasticity adaptor is configured as the STDP adaptor, it performs
STDP by receiving pre- and post-synaptic spikes from the pre-
and post-synaptic neuron respectively. Its output, a weighted pre-
synaptic spike generated using pulse width modulation, is sent to
the synapse of the post-synaptic neuron for generating a post-
synaptic current (PSC). When the synaptic plasticity adaptor is
configured as an STDDP adaptor, it receives the same signals, but
its output is a pre-synaptic spike that has been delayed according
to the stored delay value for this neuron-to-neuron connection.

Architecture
Figure 4 shows the topology of the proposed mixed-signal
synaptic plasticity adaptor array. It consists of an adaptor array
on an FPGA and a time window generator array, which could
be either a fully digital implementation on the same FPGA, or
an analog implementation on a custom designed aVLSI chip,
or both, as shown. All blocks use time multiplexing and are
dynamically assigned using an FPGA to control the assignment.

Based on the physiological metabolic cost of neural activity,
it has been concluded that fewer than 1% of neurons are active
in the brain at any moment (Lennie, 2003). The anatomical
studies of neocortex presented in Scannell et al. (1995) showed
that cortical neurons are not randomly wired together. Instead,
cortical neurons are typically organized into local clusters
called minicolumns, which are then grouped into modules
called hypercolumns (Hubel and Wiesel, 1974; Amirikian and
Georgopoulos, 2003). The connections of the minicolumns
are highly localized so that connectivity between two nearby
(less than 25–50µm apart) pyramidal neurons is high and the
connectivity between two neurons drops sharply with distance
(Holmgren et al., 2003). Based on the experimental data in
Tsunoda et al. (2001) and Johansson and Lansner (2007)
concluded that at most a few percent of the hypercolumns and
hence only about 0.01% of the minicolumns and neurons are active
in a functional sense (integrating and firing) at any moment in
the cortex. They also concluded that only 0.01% of the synapses
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FIGURE 4 | Topology of the mixed-signal synaptic plasticity

module array. The controller receives pre- and post-synaptic spikes

from the neuron array and assigns them to the corresponding TM

adaptors according to their addresses. The global counter processes

each TM adaptor sequentially. We use the Master RAM to store all the

weight/delay values, while the TM STDP/STDDP adaptor array has a

Local cache that stores the values of the DA adaptors that are being

processed. The time window generator array generates the time

windows that will be used by the TM adaptors for performing the

learning rules.

in our brains are active (transmitting signals) on average at any
moment. Hence, in principle, one hardware synapse could be
dynamically reassigned to 104 virtual synapses on average. Such
a hardware synapse will be referred to as a physical synapse and
the synapse to be simulated will be referred to as a dynamically-
assigned (DA) synapse. If a DA synapse cannot be simulated in a
single time step, the physical synapse needs to be assigned to that
DA synapse for a longer time and the number of DA synapses a
single physical synapse can simulate will go down proportionally.

On an FPGA running at 200MHz, we can time-multiplex a
single physical synapse to simulate 1ms/5 ns = 200,000 time-
multiplexed (TM) synapses, each one updated every millisecond.
Therefore, theoretically, a TM synapse array with 200,000 TM
synapses can be dynamically assigned for 200,000 × 104 = 2 ×

109 DA synapses, if these synapses can be simulated in a single 5
ns clock cycle and if only 0.01% of the synapses are active at any
time step.

Since we chose to implement a synaptic plasticity adaptor
array that is separate from the neurons, we will apply these
two approaches to the adaptors. To be able to deal with higher
synaptic activity rates, and because powers of two are preferable
to optimize memory use for storing variables, such as weights
and delays, we chose to dynamically assign one TM adaptor for
8192 (8 k) DA adaptors. Themaximum active rate of the synapses
that this system can support is therefore 1/8 k≈ 0.012%. The TM
adaptor array itself is configured to simulate 8 k TM adaptors,
allowing it to support 8 k × 8 k = 64M synapses. Each TM

adaptor can use up to 25 clock cycles to complete its processing to
maintain an update rate of 1 kHz (the corresponding time step is
about 1ms). The time window generator array is also configured
to have 8 k identical time window generators, each time window
being assigned to one TM adaptor.

The dynamically-assigned adaptor array consists of three sub-
blocks: a controller, a TM STDP/STDDP adaptor array and
a Master RAM. A single physically implemented dynamically-
assigned adaptor array is capable of representing up to 64M DA
adaptors, thus the hardware cost of the DA adaptors is negligible.
The physical constraint for this approach is data storage. On-
chip SRAM (on an FPGA) will be highly limited in size (generally
less than tens of MBs), while the use of off-chip memory will be
limited by the communications bandwidth. It is difficult, but not
impossible, to use off-chip memory with the time-multiplexing
approach, as new values need to be available from memory every
time slot to provide real-time simulation.

Since we are aiming for themaximumnetwork size, we need to
ensure that the system is able to utilize off-chip memory. Inspired
by the cache structure used in state-of-the-art CPUs, we use the
Master RAM to store all the weight/delay values, while the TM
adaptor array has a Local cache that stores the values of the
DA adaptors that are being processed. The accessing (read/write)
of the Master RAM will only be performed when needed. This
means that new values are no longer required to be available
from memory every time slot. Hence this cache structure greatly
reduces the bandwidth requirement to use external memory.
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We will present the details of this cache structure following a
presentation on the management the incoming spikes. It should
be noted, however, that using off-chip memory requires flow
control for the memory interface, which results in a more
complex system architecture. Thus, for the work reported here,
we use only on-chip memory, thus simplifying the system
architecture. We will discuss the usage of off-chip memory in
more detail in Section Discussion.

The controller receives pre- and post-synaptic spikes from
the neuron array (see Figure 4) and assigns them to the
corresponding TM adaptors according to their addresses. In our
previous work (Wang et al., 2013b, 2014d) that also implemented
the dynamic-assignment algorithm, the controller needs to check
whether there is already a neuron assigned to the incoming spike
or not. This method has a high usage of slice LUTs, which is
the bottleneck for large-scale FPGA designs. This is because that
method requires an address register array and a timer array,
both of which are running in parallel and hence have to be
implemented with slice LUTs.

To avoid this problem, we chose instead to use a direct
mapping method that assigns one fixed TM adaptor as the target
adaptor for the incoming spike irrespective of whether the TM
adaptor has been assigned or not. The incoming spike’s AER
address is a 26-bit address (along with a single active line). We
only store the most significant 13 bits out of 26 bits into a DA
address RAM (a dual port RAM with a size of 8 k × 13 bits),
while the other 13 bits determine where, i.e., in which position
of the DA address RAM, the 13 bits will be stored.

To decouple writing new events (pre- and post-synaptic
spikes) from reading out from current events, we use a FIFO

and an aligner (a dual port RAM with a size of 8 k × 1 bit that
corresponds to 8 k TM adaptors). For pre- and post-synaptic
spikes, the size of the FIFO is 16 × 26 bit and 16 × 13 bit
respectively. The work presented in Cassidy et al. (2011) used two
banks of dual port RAM to implement a ping-pong buffer. This
requires much more RAM than our solution.

Figure 5 shows the timing diagram for the controller for one
time slot. Assuming the PRE_FIFO is empty at T0, when a new
pre-synaptic spike arrives (its active line is high) at T2, its 26-
bit AER address will be written into PRE_FIFO. The controller
will then read the PRE_FIFO by asserting fifo_rd at T3 (since the
PRE_FIFO is not empty anymore) and read data (fifo_rddata)
will be ready at T4 (one clock cycle latency). To indicate that a
spike has arrived (for that TM adaptor), at T4, the controller will
write 0 × 1 into the PRE_aligner to the position determined by
the least significant 13 bits of the fifo_rddata.

At T4, the controller will also use the least significant 13 bits
of fifo_rddata to retrieve the stored address (from the DA address
RAM), which will be ready at T6 (two clock cycles latency). If
this retrieved address does not match the most significant 13 bits
of the delayed fifo_rddata (the red one), this indicates that the
target DA adaptor is not the one that has been assigned before.
Hence the value (in the Local cache) of the TM adaptor needs to
be updated with the value of the target DA adaptor. Therefore, at
T6, the controller will read the Master RAM by asserting a read
enable signal (M_rden) with a read address M_rdaddr, which is
the fifo_rddata signal delayed. For the same reason, at T6, the
controller will also update the DA address RAM with the address
of this newly arrived pre-synaptic spike: the most significant
13 bits of the delayed fifo_rddata (the least significant 13 bits

FIGURE 5 | The controller’s timing diagram of one time slot. A

pre-synaptic spike arrives at the controller at T2 and it will be written into the

PRE_FIFO. The controller will read the PRE_FIFO at T3 and the read data

(fifo_rddata) will be ready at T4. To indicate that a spike has arrived (for that

TM adaptor), at T4, controller will write 0× 1 into the PRE_aligner to the

position determined by the least significant 13 bits of the fifo_rddata. The

controller will also use the least significant 13 bits of fifo_rddata to retrieve the

stored address (from the DA address RAM), which will be ready at T6. At T6,

the controller will read the Master RAM by asserting a read enable signal

(M_rden) with a read address M_rdaddr, which is the fifo_rddata signal

delayed (the red one). At T12, the output from the Master RAM M_rddata will

be ready and the Local cache will be updated by asserting L_wren.
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determines the position to write). The output from the Master
RAMM_rddata will be ready 6 clock cycles later (we will explain
why this latency is needed Section TM STDP Adaptor Array) and
the Local cache will be updated by asserting L_wren.

To read out the aligned pre-synaptic spike (Pre_aligned), at
each time slot, the controller will read out the TM adaptor of
that time slot, from the PRE_aligner at T1. The Pre_aligned
will be ready at T3 where the corresponding TM adaptor will
acknowledge it, after which it will be cleared. To avoid the
collision that can happen when the PRE_FIFO and the controller
both try to write the PRE_aligner (at the same location, although
this case will not happen frequently) at T3, we set it so that
the PRE_FIFO cannot be read (fifo_rd cannot be asserted) at
T0. This is indeed the reason to introduce the FIFO since in
this way all operations are fully pipelined and can be performed
on every clock. To keep consistent with this pipeline, in each
time slot, the controller will read out the DA_addr (no clear
operation needed) for the TM adaptor of that time slot from
the DA address RAM at T1. When the TM adaptor generates
a weighted/delayed pre-synaptic spike, the controller will send
this spike to the post-synaptic neuron with a 26-bit AER address,
which is a combination of the DA_addr and the value of the
global counter.

The timing for post-synaptic spike is aligned using a very
similar scheme to that described above for the pre-synaptic spike,
however, its address will not be stored in the DA address RAM.
This is due to the fact that only the weighted/delayed pre-synaptic
spike will be sent to the post-synaptic neuron (see Figure 1) and
hence only the address of the pre-synaptic spike needs be stored
and only the pre-synaptic spike will retrieve the weight/delay
value from the Master RAM.

This method significantly reduces the usage of the Slice LUTs
and hence makes it practical to apply the dynamic-assignment
approach to an adaptor array with 8 k neurons. The hardware
cost of the FIFO and the aligner is very small and they are
both efficiently implemented with on-chip distributed SRAM. It
does need a DA address RAM, which needs to be implemented
with on-chip block SRAM, but storing only 13 bits significantly
reduces the size of the addressmemory. Anothermajor advantage
of this method is its flexibility, e.g., with a 26-bit AER address,
input spikes can arrive at any time and be handled. This means
multiple different types of neuron arrays can be connected to one
adaptor array. Moreover, it suffers little from the large latencies
in the spikes, that can be of the order of hundreds microseconds,
due to routing. Excessive latency due to routing is quite common
in large-scale neural networks. Similarly, the communication
overhead between the neuron array and the adaptor array will
barely affect the performance of the system.

A collision will happen when multiple input spikes, that target
different DA adaptors, while at the same time need the same
TM adaptor, arrive within one time step. In this case, only the
last arriving spike will be sent to its target adaptor, and the
ones that arrived previously will be simply discarded. Another
collision will happen when the most significant 13 bits of the
address of an incoming post-synaptic spike do not match the
DA_addr of the target TM adaptor. In this case the 13 bits
of the address of the post-synaptic spike will still be sent to

that TM adaptor for performing adaptation and might cause
wrong weight/delay modifications. These two possible collision
scenarios are drawbacks of our approach, and do affect small and
densely interconnected neural networks with high activity rates.
These scenarios, however, are not serious problems for large-scale
neural networks, the connections of which are highly localized,
while the activity rate is low. For instance if we are modeling
hypercolumns in human cortex, the experimental data shows that
only a few hypercolumns in the human cortex are active for any
given task.

For practical applications, within a short period, the TM
adaptors should only be assigned for one certain task. When
that task ends, they will be released and can then be used by
other tasks. For example, one hypercolumn could use all the
8K TM plastic synapses for learning patterns, which might
last for hundreds of milliseconds. After the patterns have been
learned (stored in the Master RAM), another hypercolumn could
then use these 8K TM adaptors for learning patterns. It is of
course possible that a synapse in another hypercolumn becomes
active more or less spontaneously. These spontaneously activated
synapses, however, would be uniformly distributed all over the
neural network and are thus unlikely to make up a large fraction
of the group of synapses in the hyper column that is currently
learning patterns. Hence, these spontaneously activated synapses
will not have a significant effect on the learning being performed.
We will validate the dynamic-assignment scheme in Section
Validation of the Dynamic-assignment Scheme. The maximum
memory update speed, which is indeed the maximum firing rate
of the neurons, that our system supports is 200Mhz/25= 8MHz
(much higher than biological neurons).

Time Window Generator Array
The time window generator array has been successfully
implemented on a custom designed aVLSI chip, and
independently also on the same FPGA as the dynamically-
assigned adaptor array. The digital implementation used
time-multiplexing to achieve 8 k TM time window generators.
However, this fully digital implementation needs block SRAM,
as the internal state of each generator needs to be stored in
memory in between updates. This memory demand is the
real bottleneck of the time-multiplexing approach (Moore
et al., 2012). Nevertheless, this fully digital solution will be
quite suitable for the applications when aVLSI is not available.
On the other hand, an aVLSI circuit can implement a time
window generator very efficiently, as long as high precision is
not required. Using the aVLSI time window generator circuit
reduces memory usage and the memory saved can be used for
storing more synaptic weight and delay values, allowing for
larger networks. Furthermore, the analog time window generator
will add stochasticity to the weight and delay adaptation through
electronic noise and device mismatch, which will provide more
realistic simulations of biological neural networks.

Analog Time Window Generator Array
We provide a brief review of the analog time window generator,
which has been presented in depth in Wang et al. (2014a).
Figure 6A shows the schematic of the analog time window
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FIGURE 6 | aVLSI time window generator. (A) Schematic; (B) Layout; (C)

Layout of the array. It is placed in a two-dimensional array and when a time

window generator is selected, the voltage at node Vcmp will pull the output

signal of this neuron Vactive either up to Vdd (active, Vcmp is low) or down to

ground (inactive, Vcmp is high) via an inverter (I1) and a serial switch (M4–M5).

generator, comprising a ramp generator circuit (blue) and an
AER hand-shaking circuit for our synchronous AER (red). It is
placed in a two-dimensional array and therefore requires row
and column select signals (Row_sel_n and Col_sel_n), which are
both low when the ramp generator has been selected. When
a time window generator is selected, the voltage at node Vcmp

will pull the output signal of this neuron Vactive either up to
Vdd (active, Vcmp is low) or down to ground (inactive, Vcmp is
high) via an inverter (I1) and a serial switch (M4–M5). When
this time window generator is not selected (M4 and M5 are
OFF), Vactive will be driven by another other time window
generator in the array. Each time window generator is linked to
its corresponding TM adaptor and will be processed sequentially,

with each generator selected for one time slot. To use the
asynchronous aVLSI circuits with the FPGA, synchronization
with its clock domain is needed. Since the output signal Vactive

is a 1-bit signal, we use the general method that uses two serially
connected flip-flops to sample the input (Weste and Harris,
2005).

This circuit was implemented in the IBM 130 nm technology.
For the maximum utilization of silicon area, one time window
generator should share as many resources as possible with
its neighboring ones. Based on this principle, all the pMOS
transistors are located in the right side and all the nMOS
transistors are located at the left side (see the dashed red rectangle
in Figure 6B) so that they can share their bulk connections with
each other. All the input/output signals and the bias currents are
placed vertically so that they can be merged to a bus across the
array without any extra wiring cost. The effective size of a time
window generator in the array is∼50µm2 achieving a density of
20,000 cells/mm2. As a proof of concept, we have placed 180 of
the proposed aVLSI time window generators on the bottom right
corner of a test chip, as shown by the red rectangles in Figure 6C

(Wang et al., 2014b).

Digital Time Window Generator Array
The digital time window generator has the exact same function as
the aVLSI time window generator. The global counter processes
each TM time window generator sequentially. In each time
slot, the controller will read the value of the TM time window
generator from the Timer RAM. A counter will be incremented
by one at each clock cycle when the digital input spike from
the time-multiplexed adaptor is active (high), so that its count
increases proportional to the spike width. When there is no input
spike, the count will decrease by one each time slot, until it
reaches zero, indicating the end of the time window.

Slightly different to the aVLSI time window generator, the
output of the digital time window generator contains not only
an active line, to indicate whether the time window is finished or
not, but also the actual value of the counter. In aVLSI it would be
difficult to read out the actual value of the Vramp (see Figure 6A)
in an efficient manner. In a digital implementation this value is
directly accessible to the DA adaptor array and could be used to
perform more complex plasticity rules.

TM Adaptor Array
TM STDP Adaptor Array
When implementing the TM adaptor array for STDP, a
significant reduction in memory usage was achieved by storing
a bistable weight in the Master RAM. This is based on the work
by Brader et al. (2007b), which shows that from a theoretical
perspective, having only two stable states for synaptic weights
does not degrade the performance of associative networks, if
the transitions between the stable states are stochastic. For
networks with large numbers of neurons, each with large
numbers of synapses, the assumptions that synaptic weights will
be discretized to two stable values on long time-scales is not
too severe, and is supported by biological evidence (Bliss and
Collingridge, 1993; Petersen et al., 1998).
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FIGURE 7 | Structure of the TM STDP adaptor array. The global counter

processes each TM STDP adaptor sequentially. The Local cache stores the

weight values of the TM STDP adaptor that are being processed. The learning

rules will be performed with the aligned pre- and post- synaptic spikes from

the controller and the active line from the time window generator.

Figure 7 shows the structure of the TM STDP adaptor array,
which consists of a physical STDP adaptor, a Local cache, a
polarity RAM and a global counter. The Local cache, which is
a dual port RAM with a size of 8 k × 4 bit, stores the weights (4-
bit resolution) of the TM adaptors. The Master RAM will only
need to store one of the two stable values of the bistable weight,
and thus needs only 1 bit per weight. When a TM adaptor has
been assigned to a DA adaptor, its bistable weight will be read
out from the Master RAM. We then use this bistable weight to
generate one random 4-bit weight (stored in the Local cache) for
that TM adaptor. Only when there is a modification of the 4-bit
weight, which will generate a bistable weight simultaneously, will
we need to update the Master RAM with this bistable weight.

Since there is only one time window generator per TM
adaptor, it will have the wrong weight modifications when
multiple spikes (of the same type, e.g., pre-synaptic spikes) arrive
within the duration of one time window. For instance, one pre-
synaptic spike starts a time window while the pre-synaptic spikes
that follow and arrive within this time window will perform
weight decrement. To solve this problem, the polarity RAM,
which is a dual port RAM with a size of 8 k × 1 bit, was
introduced. The polarity RAM stores the polarity of the time
window for each TM adaptor. For the time window started by
pre- and post-synaptic spikes, the polarity value is 0 × 0 and
0 × 1 respectively. The time window is set such that it will be
restarted for each of the multiple spikes received within the time
window. In other words, each incoming spike will either start a
time window or perform weight modification.

The read out from the Master RAM and the update of
the Local cache was presented with the timing diagram of the
controller in Section Architecture. Since the retrieved bistable
weight from the Master RAM is 1-bit while the weight to be
written into the Local cache is 4-bits, this bistable weight will
be used as the most significant bit (MSB) of that 4-bit weight.
To keep the transitions between the stable states stochastic, the

remaining 3 bits are generated pseudo-randomly by a linear
feedback shift register (LFSR).

Figure 8 shows the timing diagram for performing the STDP
algorithm by one TM STDP adaptor. Figure 8A shows how a
pre-synaptic spike starts a time window. Pre_aligned is ready
at T3 and TW_active will be ready at T8 (comprising 7 clock
cycles for latency and 2 clock cycles for synchronization). As the
time window is inactive, the delayed Pre_aligned (the red one)
will start the time generator at T8 by sending a pulse (TW_start,
starts at T9) that controls the duration of the window. Note
the duration of the time window is fixed during operation but
the parameter is configurable. The polarity of the time window,
which is 0 × 0, will be written to the polarity RAM by asserting
Pol_wr at T9. Since the time window is inactive, no weight
modification is needed and neither the Local cache nor the
Master RAM needs to be updated.

Since the incoming spike is a pre-synaptic spike, we need
to generate the weighted pre-synaptic spike, which will be sent
to the post-synaptic neuron. The local weight (L_rddata) is
read out at T0 and ready at T2 (two clock cycles latency), the
delayed Pre_aligned will send out theWeighted_pre and assert its
active line (Pre_active_line) at T9. Simultaneously, the controller
will send this spike to the post-synaptic neuron with a 26-bit
AER address (Pre_addr), which is a combination of the delayed
DA_addr (the red one) and the value of the global counter.

Figure 8B shows the timing diagram for increasing the
synaptic weight. Assuming the time window has already been
started by a previous pre-synaptic spike. The polarity of the
time window (TW_polarity) and the local weight (L_rddata)
are both read out at T0 and ready at T2 (two clock cycles
latency). Post_aligned is ready at T3 and TW_active will be
ready at T8. Since TW_active is active and TW_polarity is
low, which indicates that this time window was started by a
pre-synaptic spike, the delayed Post_aligned (the red one) will
increase L_rddata by one (when using the aVLSI time window
generator array) or by the value of the time window generator’s
counter (when using the digital time window generator array).

The updated weight (L_wrdata) will be written into the Local
cache by asserting L_wren at T9. In the controller, the latency
from fifo_rd, which cannot be asserted at T0, to L_wren is 10
clock cycles (see Figure 5). Hence a collision when the TM STDP
adaptor and the controller are updating the Local cache at the
same cycle will never happen. This is why the latency from
M_rden to M_rddata is set to 6 clock cycles. The idea behind this
setting is to achieve a fully pipelined design so that all operations
can be performed on every clock cycle and there are no stalls in
the pipeline. Note that if we were using only a digital timewindow
generator array, the time slot could be optimized to less clock
cycles by using tens of pipeline stages (Wang et al., 2013b, 2014c);
it is the serial scanning of the aVLSI time window generator array
that needs 25 cycles, as for any given time window generator,
it has to be selected during the whole time slot. To maintain
an architecture that is compatible with both the aVLSI and the
digital time window generator array, we chose to use the time
slot with 25 cycles for the work reported here.

Also at T9, the bistable weight will be updated to 1 if the
weight is larger than a threshold, a pseudo random 4-bit number
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FIGURE 8 | TM STDP adaptor’s timing diagram of one time slot. (A)

Starting a time window. Pre_aligned is ready at T3 and TW_active will be

ready at T8. As the time window is inactive, the delayed Pre_aligned (the red

one) will start the time generator at T8 by sending a pulse (TW_start, starts at

T9); (B) Increasing weight. The polarity of the time window (TW_polarity) and

the local weight (L_rddata) are both read out at T0 and ready at T2.

Post_aligned is ready at T3 and TW_active will be ready at T8. The delayed

Post_aligned (the red one) will increase L_rddata.

between 4 and 11 that is updated every time slot. Otherwise,
the bistable weight will be updated to 0. The updated bistable
weight will be written into the Master RAM by asserting M_wren
at T9.

TM STDDP Adaptor Array
The TM STDDP adaptor array operates in the same scheme
(with the same pipeline stages) as the TM STDP adaptor array.
From the controller’s point of view, they are identical. This
means that they are interchangeable, which was a deliberate
design decision. Figure 9 shows the structure of the TM STDDP
adaptor array, which consists of a physical STDDP adaptor, a
Local cache, an active RAM and a global counter. The Local
cache, which is a dual port RAM with a size of 8 k × 4 bit,
stores the 4-bit delay values of TM adaptors. The Master RAM
stores the 4-bit delay values too. When a TM adaptor has
been assigned to a DA adaptor, the delay of the latter will

be read out from the Master RAM and then stored in the
Local cache as the delay of that TM adaptor. When there is a
modification of the delay the Master RAM is updated with the
new delay.

Since the TM STDDP adaptor array pipeline is the same as the
one presented for STDP earlier, the timing diagram is exactly the
same as the ones presented in Figure 8 (replacing “weight” with
“delay”) with the following additional changes:

1. Only the pre-synaptic spike can start the time window
generator by sending it a spike with a duration proportional
to the retrieved axonal delay.

2. The delayed pre-synaptic spike should be generated at the
falling edge of the active line (from 0 × 1 to 0 × 0), which
indicates the end of the axonal delay. Since this is a time
multiplexing system, each TM adaptor will only know the
value of the active line in the current time slot. To solve this
problem, we introduced the active RAM, which is a dual port
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FIGURE 9 | Structure of the TM STDDP adaptor array. The global counter

processes each TM STDDP adaptor sequentially. The Local cache stores the

axonal delay values of the TM STDDP adaptor that are being processed. The

learning rules will be performed with the aligned pre- and post- synaptic spikes

from the controller and the active line from the time window generator.

RAM with a size of 8 k × 1 bit, to store the value of the active
line in the current time slot.While the retrieved value from the
active RAM represents the previous value. The delayed pre-
synaptic spike will be generated if the active line is low and
the active line retrieved from the active RAM is high. For this
reason, the actual axonal delay will be from 1 to 16ms while
the value of the delay stored is from 0×0 to 0× F. The signals
of the polarity RAM (see Figure 8) are replaced by those of
the active RAM. The weight of this spike will be a fixed but
configurable value.

3. Only the post-synaptic spike can change the delay. No
adaptation will be performed if the falling edge of the active
line has been detected at T8 since this means the delay has
been perfectly tuned and a delayed pre-synaptic spike will be
generated at T9.

Utilization
The digital parts of the proposed array were developed using
the standard ASIC design flow and therefore can be easily
implemented with state-of-the-art manufacturing technologies.
A bottom-up design flow was adopted in which we designed
and verified each module separately. Once the module level
verification was complete, all the modules were integrated
together for chip-level verification. As a proof of concept, we
implemented the proposed system on a Virtex6 XC6VLX240T
FPGA, which is hosted on the XilinxML605 board.Table 1 shows
the utilization of hardware resources on the FPGA. Note that
this is the utilization for the dynamically-assigned STDP/STDDP
adaptor array (without theMaster RAM), the digital timewindow
generator array, and the interface circuit for the aVLSI time
window generator. As Table 1 shows, the proposed system uses
only a small fraction (<1%) of the hardware resources. Limited
by the size of the on-chip SRAM, for STDP and STDDP, we have
implemented 1800 × 8 k = 14.4M and 450 × 8 k = 3.6M DA
adaptors respectively. This is a proof of concept and in the future
we will implement the Master RAM with off-chip memory, thus
leveraging the design of the cache structure introduced.

TABLE 1 | Device utilization Xilinx Virtex6 XC6VLX240T.

Resource STDP STDDP Total available

Occupied slices 558(1.4%) 545(1.4%) 37,680

Slice FF’s 398(0.1%) 399(0.1%) 301,440

Slice LUTs 1430(0.9%) 1422(0.9%) 152,720

LUTs as logic 578(0.3%) 568(0.3%) 152,720

LUTs as RAM 827(1.4%) 827(1.4%) 58,400

36 k RAM 5(1.2%) 5(1.2%) 416

Results

For testing purposes, a PCB was developed as a daughter board
to contain the aVLSI chip and was connected to the FPGA.
The FPGA is controlled by a PC via a JTAG interface and the
analog bias inputs of the aVLSI chip are controlled by external
programmable bias voltages.

Performance of STDP
We have tested the performance of the dynamically-assigned
STDP adaptor array by performing a balanced excitation
experiment, based on the experiment run by Song et al. (2000).
Song et al. (2000) have shown that competitive Hebbian learning
(Hebb, 1949) can be performed through STDP. The competition
(induced by STDP) between the synapses can establish a bimodal
distribution of the synaptic weights: either toward zero (weak) or
the maximum (strong) values.

Using Digital Time Window Generator Array
In this experiment, a single post-synaptic neuron is driven by
1024 TM synaptic adaptors, the TM addresses of which are
from 0 × 0 to 0 × 3 FF. Their DA addresses are all the
same: 0 × 0. That post-synaptic neuron has a single post-
synaptic current generator that can generate both excitatory and
inhibitory post-synaptic currents (EPSC and IPSC) modulated
by the weights of the spikes arriving from different adaptors
(Wang et al., 2014c). As the post-synaptic currents sum
linearly in our model, only a PSC generator is needed in
each neuron. Each adaptor was driven by an independent
Poisson pre-synaptic spike train with the same average rate.
We have tested the system with two firing rates: 10 and 20Hz,
whereas the firing rate of the post-synaptic neuron was 15 and
40Hz respectively. The adaptors start with a uniform positive
weight distribution. The size of the time window was fixed at
16ms.

After 1.25 s of simulation, the distribution of synaptic weights
converges to a steady-state condition with bimodal distribution
of strong and weak weights (see Figure 10). Additionally,
although our learning rule is considerably simplified when
compared to that presented in Song et al. (2000), our system
is capable of producing the same result: for low input rates,
more synaptic adaptors approach the upper limit, and for
high input rates, more are pushed toward zero (Song et al.,
2000).
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FIGURE 10 | Balanced excitation experiment with digital time window

generator array. (A) Weight distribution after 1.25 s of STDP for an input rate

of 10Hz. The bimodal distribution of strong and weak weights is apparent; (B)

Scatter plot of the final weight distribution; (C,D) Same as (A,B), but for an

input rate of 20Hz. Now more weights are weak than strong.

Using aVLSI Time Window Generator Array
We ran the experiment with 128 aVLSI time window generators
(this is due to the fact that we have only 180 aVLSI time window
generators and powers of two are preferable in digital design)

FIGURE 11 | Balanced excitation experiment with aVLSI time window

generator array. (A) Weight distribution after 1.25 s of STDP for an input rate

of 10Hz. The bimodal distribution of strong and weak weights is apparent; (B)

Same as (A), but for an input rate of 20Hz. Now more weights are weak than

strong.

with all the settings the same as with the digital time window
generator. After 1.25 s of simulation, despite the adaptor using
a fixed adaptation step (set to 1 here), the distribution of synaptic
weights converges to a steady-state condition with a bimodal
distribution of strong and weak weights (see Figure 11). It is also
capable of producing the result: the higher the input rates, the
more the synaptic weight will be pushed toward zero.

Validation of the Dynamic-assignment Scheme
The previous two experiments have shown that the balanced
excitation experiment works for a system with 128 TM STDP
adaptors. To validate the dynamic-assignment scheme, we
conducted an experiment for 16 runs with an input rate of 20Hz
and 128 digital time window generators. For each run, these 128
TM STDP adaptors were assigned a DA address in the range from
0×0000 to 0×1 E00 with a step of 0×200. After each run, we read
out the weights of these 128 adaptors (from the FPGA) and then
started another run with the next DA address. In other words, we
kept using the same 128 TM STDP adaptors for all the 16 runs by
using the dynamic-assignment scheme. Note, this experiment is
only a proof-of-concept and we can dynamically assign the TM
adaptors for all those 8 k DA addresses (0 × 0 to 0 × 1 FFF) as
long as the constraint of the active rate is not violated.

For each run, the distribution of synaptic weights converges
to a steady-state condition with a bimodal distribution of strong
and weak weights. Figure 12 shows the average distribution
of synaptic weights across all 16 runs. We first obtained the
distribution of synaptic weights for each run and then averaged
them. Since the input rate is 20Hz, more synaptic weights
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FIGURE 12 | Balanced excitation experiments using the

dynamic-assignment scheme. One TM STDP adaptor array (with 128 TM

STDP adaptors) was dynamically assigned for 16 DA STDP adaptor arrays.

The averaged weight distribution after 1.25 s of STDP for an input rate of

20Hz. Note these data are averaged across all 16 runs. The bimodal

distribution of strong and weak weights is apparent and more weights are

weak than strong. Error bars are standard deviations of 16 runs.

were pushed toward zero, which matches the results presented
in Figures 10C, 11B. For each run, the dynamic-assignment
scheme has achieved a similar bimodal distribution of synaptic
weights as the standard deviation of the results indicates. The
dynamic-assignment scheme is therefore proved to be capable of
performing what was designed to do: reusing hardware resources.

Performance of STDDP
We have tested the performance of the dynamically-assigned
STDDP adaptor array by performing a polychronization
experiment. The term polychronization is used to indicate that
several neurons can fire asynchronously but after traveling
along axons with specific delays, their spikes will arrive at a
post-synaptic neuron simultaneously, causing it to fire in turn
(Izhikevich, 2006). Neural networks based on this principle are
referred to as “polychronous” neural networks and are capable
of storing and recalling quite complicated spatio-temporal
patterns. In Wang et al. (2014d), we have concluded that the
most important requirement of a hardware implementation of
a polychronous network is to provide a strong time-locked
relationship. This is indeed the motivation for us to develop the
STDDP learning rule, which will fine-tune the axonal delays to
the desired delay values.

Using Digital Time Window Generator Array
In this experiment, we used 128 adaptors and a paired-pulse
protocol: a single pair of pre- and post-synaptic spikes was
sent to each of the adaptors periodically (every 32 time steps).
During each period, each adaptor will receive one and only
one pre-synaptic spike, the arrival time of which is randomized
between time step 1 and 15. Additionally, during each period,
each adaptor will receive one and only one post-synaptic spike,
the arrival time is set to be time step 16. These spike pairs remain
the same in each period. All the axonal delays are initialized
to be zero. In each period, for each adaptor, a delay adaptation

FIGURE 13 | Polychronization experiment with digital time window

generator array. (A) Delay distribution after 15 times of STDDP; (B). Scatter

plot of the final delay distribution.

will be performed if the axonal delay has not been tuned to the
desired delay. Hence, theoretically, after 15 times of STDDP, all
the delayed pre-synaptic spikes from these 128 adaptors will fire
simultaneously (each at its own time slot) at time step 16.

This theoretical behavior was confirmed via measurements
on the FPGA. Since plotting 128 delayed pre-synaptic spike that
fire at the same time is meaningless, we chose instead to show
the delay distribution after 15 times of STDDP and the scatter
plot of the final delay distribution (see Figure 13). It might be
noticed that the final delays are not uniformly distributed, which
indicated that more pre-synaptic spikes arrive at the early part of
that period than the ones arrive at the later part. The system has
performed the polychronization experiment successfully since all
the axonal delays have been fine-tuned to the desired values,
which are the time differences between pre- and post-synaptic
spikes.

Using aVLSI Time Window Generator Array
The digital timewindow generator can generate any given desired
size of the time window (from 1 to 15ms, in a time-step of 1ms).
But due to process variation and device mismatch, it is impossible
to tune all the aVLSI time window generators with such accuracy.
To compare the performance with its digital counterpart, we
tested the system with all the settings the same as with the digital
time window generator conducting 10 test runs for statistical
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FIGURE 14 | Errors between the achieved delays and the desired

values. Error bars are standard deviations of 10 runs.

purposes. Figure 14 shows the errors between the achieved delays
and the desired delays. Note these data are averaged across all
10 runs. As the results showed that 78% of the achieved delays
match the desired delays perfectly (within one time step). This
number will go up to ∼91% when we counted in the achieved
delays with an error of± 1ms, both of which will still contribute
to the process of the polychronization (Wang et al., 2013b). Thus,
only a small fraction of the achieved delays (less than 9%), will
be unable to contribute to the network. The standard deviation
of the results indicates that the aVLSI time window generator
array has achieved a fair variability (the averaged stand deviation
is 0.006).

Compared to our previous work that implemented the
same STDDP learning rule with fully aVLSI circuits (Wang
et al., 2014d), this mixed-signal solution achieved a much
better performance in terms of accuracy and density. More
importantly, this mixed-signal solution stores the axonal delays
in the digital memory, which is non-volatile and much more
compact. The work reported here was developed with the lessons
that we have learnt from our previous work that suffered a
lot from the intrinsic difficulties of the aVLSI circuits, e.g.,
coupling noises, leakage currents, process variations, and device
mismatch.

Discussion

Since our goal aims for the maximum network size, our future
work will focus on scaling up the network that we have presented
here. For a system running at 266 MHz, we can achieve 256 k
TM adaptors with one physical adaptor for a sub-millisecond
time resolution. Given that we can implement 8 k DA STDP
adaptors with a single TM adaptor, we can achieve 256 k × 8 k
= 2G DA adaptors. With our bistable synaptic weight, which
can be stored with a single bit, the total memory needed for
this implementation is 2Gb. It is clear that on-chip SRAM,
which provides usually less than tens of megabits of storage, will
not be able to meet this requirement. Among various external
memory solutions, dynamic random access memory (DRAM)

is the best candidate to provide the required storage because
of its large storage capacity. High-end FPGA boards, such as
Altera’s DE5 board and Xilinx’s VC709, usually contain two
DDR3 SDRAM memories, each of which can currently support
a maximum capacity of 64 Gb, and thus would allow us to
implement 64G DA adaptors using only 64 physical adaptors.
The corresponding TM adaptor arrays will need 64 × 8k ×

4 bit = 2Mb for the weight memory, which can easily be
implemented using the on-chip SRAM. For the same system, the
digital time window generator array would also need 2 Mb of
storage.

In addition to the storage requirements, we also need to
analyze the communications bandwidth requirement, which is
generally the bottleneck for time-multiplexed implementations.
The theoretically required bandwidth for 64 physical adaptors is
64 × 1 bit = 64 bits/clock cycle for both reading and writing.
The DDR3 SDRAM is a single port device and the read/write
operations cannot happen simultaneously. Thus, the required
bandwidth of the SDRAM communication has to be doubled
to 128 bits/clock cycle. Fortunately, the maximum theoretical
bandwidth of one DDR3 SDRAM memory (when running at
1066MHz) on an Altera DE5 board is 512 bits/clock cycle
and even when considering that DDR3 memory typically only
achieves 70% of that theoretical maximum bandwidth, there
should be ample bandwidth to achieve the desired 128 bits/clock
cycle. The reason for the reduced maximum bandwidth of the
SDRAM is due to the need for flow control, which needs
to take into consideration the bus turnaround time, memory
refresh, finite burst length, and random access latency. All these
will make the architecture of the system significantly more
complex.

The cache structure was introduced to solve these difficulties.
Firstly, it greatly reduces the bandwidth requirement to use
external memory since the accessing (read/write) of the Master
RAM will only be performed when needed and new values are
not required to be available from memory every time slot. The
reserved bandwidth can be used for other purposes, e.g., routing
the spikes with look up tables. Secondly, this cache structure plus
the fully-pipelined design style significantly ease the use of the
off-chip memory. The pipeline of accessing the Master RAM can
be simply reconfigured with different latency values to handle
different flow control requirements.

The number of physical adaptors, i.e. the ones that can be
activated simultaneously, will increase linearly with the number
of available Slice LUTs, which are usually the bottleneck for
high performance FPGA designs. But in our system, the design
of the physical adaptor costs only a few LUTs and plenty
of resources are left for additional physical adaptors or other
systems components.

Based on the above calculations, we can conclude that it
is practical to scale the proposed system up to a system with
64G DA adaptors on a commercial off-the-shelf high-end FPGA.
The key to achieving this is to balance the number of physical
adaptors (to achieve the best utilization of available hardware
resources on the FPGA), the time-multiplexing rate (for a sub-
millisecond time resolution), and the bandwidth and storage
capacity of the memory.
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Our aVLSI implementation is nowhere near as scalable as
the digital implementation, since it can only be scaled up
by implementing more physical copies of the aVLSI module.
However, the introduction of the dynamic-assigning approach
allows 8 k DA analog time window generators to be achieved
with only a single physical time window generator. Above all, the
motivation to develop the aVLSI implementation in the proposed
system is for enhancement of the simulations.
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Many of the precise biological mechanisms of synaptic plasticity remain elusive, but
simulations of neural networks have greatly enhanced our understanding of how specific
global functions arise from the massively parallel computation of neurons and local
Hebbian or spike-timing dependent plasticity rules. For simulating large portions of neural
tissue, this has created an increasingly strong need for large scale simulations of plastic
neural networks on special purpose hardware platforms, because synaptic transmissions
and updates are badly matched to computing style supported by current architectures.
Because of the great diversity of biological plasticity phenomena and the corresponding
diversity of models, there is a great need for testing various hypotheses about plasticity
before committing to one hardware implementation. Here we present a novel framework
for investigating different plasticity approaches on the SpiNNaker distributed digital neural
simulation platform. The key innovation of the proposed architecture is to exploit the
reconfigurability of the ARM processors inside SpiNNaker, dedicating a subset of them
exclusively to process synaptic plasticity updates, while the rest perform the usual
neural and synaptic simulations. We demonstrate the flexibility of the proposed approach
by showing the implementation of a variety of spike- and rate-based learning rules,
including standard Spike-Timing dependent plasticity (STDP), voltage-dependent STDP,
and the rate-based BCM rule. We analyze their performance and validate them by running
classical learning experiments in real time on a 4-chip SpiNNaker board. The result is an
efficient, modular, flexible and scalable framework, which provides a valuable tool for the
fast and easy exploration of learning models of very different kinds on the parallel and
reconfigurable SpiNNaker system.

Keywords: SpiNNaker, learning, plasticity, neuromorphic hardware, STDP, BCM

1. INTRODUCTION
Learning is crucial for the survival of biological organisms,
because it allows the development of new skills, memories, and
behaviors, in order to adapt to the information acquired from
their local environment. Such high-level changes of behavior are
the manifestation of an intricate interplay of synaptic plasticity
processes, which lasts from early development throughout the
adult life, and is taking place simultaneously and continuously
in all parts of the nervous system. Although neuroscience has
developed an increasingly better insight into the local plasticity
mechanisms at specific types of synapses, we still have a poor
understanding of the global effects of plasticity that lead to the
emergence of our astonishing cognitive capabilities. Clearly, this
is one of the great unsolved questions, not only for neuroscience,
but with great implications for fields like philosophy, psychology,
medicine, and also for engineering disciplines concerned with the
development of artificial intelligent systems that can learn from
their environment.

Much of our understanding of the functional effects of local
plasticity comes from theoretical and simulation studies of sim-
plified learning rules in neural network models. Most influential
is the hypothesis of Hebb (1949), which says that synaptic con-
nections strengthen when two connected neurons have correlated
firing activity. This has inspired many classical models for associa-
tive memory (Hopfield, 1982), feature extraction (Oja, 1982), or
the development of receptive field properties (Bienenstock et al.,
1982). Later, the discovery of Spike-timing Dependent Plasticity
(STDP) (Markram et al., 1997; Bi and Poo, 1998) has led to a
number of models that have exploited the precise timing proper-
ties of spiking neurons for receptive field development (Song and
Abbott, 2001; Clopath et al., 2010), temporal coding (Gerstner
et al., 1996; Guyonneau et al., 2005), rate normalization (Song
et al., 2000; Kempter et al., 2001), or reward-modulated learning
(Izhikevich, 2007; Legenstein et al., 2008; Friedrich et al., 2011;
Potjans et al., 2011). It has also been realized that there is not
one standard model for STDP, but that there is a huge diversity
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of learning rules in nature, depending on species, receptor, and
neuron types (Abbott and Nelson, 2000; Kullmann et al., 2012),
the presence or absence of neuromodulators (Pawlak et al., 2010;
Cassenaer and Laurent, 2012), but also on other factors like post-
synaptic membrane potential, position on the dendritic arbor, or
synaptic weight (Sjöström et al., 2001).

The discovery that basic effects can be achieved with local
learning rules has had a big influence on the development of
larger scale learning models that have mapped methods from
machine intelligence onto spiking neural networks. Examples
include supervised learning methods for classification of visual
(e.g., Brader et al., 2007; Beyeler et al., 2013), or auditory stim-
uli (Sheik et al., 2012), and unsupervised learning methods like
Expectation Maximization (Nessler et al., 2013; Kappel et al.,
2014), Independent Component Analysis (Savin et al., 2010), or
Contrastive Divergence (Neftci et al., 2014). This has opened up
the possibility of using spiking neural networks efficiently for
machine learning tasks, using learning algorithms that are more
biologically plausible than backpropagation-type algorithms typ-
ically used for training artificial neural networks.

The increased interest in spiking neural networks for basic
research and engineering applications has created a strong interest
for larger, yet computationally efficient simulation platforms for
trying out new models and algorithms. Being able to easily and
efficiently explore the behavior of different learning models is a
very desirable characteristic of a such platform. The major prob-
lem for computation with spikes is that it is a resource-intensive
task, due to the large number of neurons and synapses involved.
Synaptic activity, and specifically synaptic plasticity, which might
be triggered by every spike event, is dominating the computing
costs in neural simulations (Morrison et al., 2005; Brette et al.,
2007), partly because the communication and processing of large
numbers of small messages (i.e., spikes), is a bad match for cur-
rent von Neumann architectures. Different strategies to improve
the scale and run-time efficiency of neural simulations either rely
on supercomputer simulations (Plesser et al., 2007; Wong et al.,
2013), parallel general-purpose devices such as GPUs (Fidjeland
and Shanahan, 2010) and FPGAs (Neil and Liu, 2014), or spe-
cial purpose neuromorphic hardware (Indiveri et al., 2011). Each
solution involves a trade-off between efficiency, reconfigurability,
scalability and power consumption.

In this context we present a framework for studying arbitrary
plasticity models on a parallel, configurable hardware architec-
ture such as SpiNNaker. The SpiNNaker system (Furber et al.,
2006, 2014) has been designed as a massively parallel, highly
reconfigurable digital platform consisting of multiple ARM cores,
which optimally fits the communication requirements for explor-
ing diverse synaptic plasticity models in large-scale neural sim-
ulations. Previous implementations of plasticity on SpiNNaker
have been limited in their ability to model arbitrary spike- and
rate-based learning rules. Here, we present a new approach for
implementing arbitrary plasticity models on SpiNNaker, using a
dedicated plasticity core that is separated from other cores that
process other neural and synaptic events. Specifically we demon-
strate the implementation of three synaptic plasticity rules with
very different requirements on the trigger events, and on the
need to store or access additional variables for computing the

magnitude of updates. We show that the same architecture can
implement the rate-based BCM rule (Bienenstock et al., 1982), an
implementation of standard STDP based on a model by Morrison
et al. (2008), and a voltage-dependent STDP rule suggested by
Brader et al. (2007). We compare the efficiency and correctness of
the STDP rule to previous implementations on SpiNNaker, and
provide the first implementation of BCM and the learning rule of
Brader et al. (2007) on this platform. All the experimental results
presented in this paper come from implementations of learning
rules on a 4-chip SpiNNaker board.

The ability to implement different rules with very different
requirements, that are either based purely on spike-timing, on
the correlation of firing rates, or on additional voltage signals
indicates that the framework can be used as a generic way of
implementing plasticity in neural simulations. This new architec-
ture therefore provides an efficient way for exploring new network
models that make use of synaptic plasticity, including novel rules
and combinations of different plasticity rules, and paves the way
toward large-scale real-time learning systems.

This article is organized as follows: the next Section introduces
different approaches to model learning, from a theoretical and an
implementation point of view. Section 3 describes the SpiNNaker
system, the previous solutions for plasticity on SpiNNaker and
our novel approach presented in this work. The flexibility of
the framework introduced is demonstrated by the implementa-
tion of three different rules, presented in Section 4, 5, and 6:
Spike-Timing Dependent Plasticity (Gerstner et al., 1996), the
rate-based BCM rule (Bienenstock et al., 1982) and the voltage-
dependent variation of the STDP rule (Brader et al., 2007).
We validate the implementation by replicating classical plasticity
experiments, and discuss the performances of each rule in Section
7. The paper is concluded in Section 8, which also provides an
outlook toward future applications.

2. LEARNING IN SPIKING PLATFORMS
The use of parallelization to mitigate the computational costs and
difficulties of modeling large plastic networks has been exploited
using different tools and strategies. Using many processors in a
supercomputer is an important exploratory solution, which can
be used to rapidly implement and test learning rules. However,
setting up a Message Passing Interface (MPI) mediating the spike
communication is a challenging process on a distributed von-
Neumann architecture, because the network infrastructure is
optimized for large-frame transfers (Plesser et al., 2007; Wong
et al., 2013) as opposed to small spike packets.

Dedicated neuromorphic (Mead, 1989) systems are natural
candidates for emulating parallel neural computation. On these
systems, circuits modeling neurons and synapses can be replicated
using Very Large Scale Integration technology (VLSI, Indiveri
et al., 2011). Synapses usually take up the majority of the
resources, in terms of computation and chip area. It is also par-
ticularly challenging to design plastic hardware synapses. In the
FACETS wafer-scale hardware (Schemmel et al., 2007), for exam-
ple, the area of plastic synapses is minimized by separating the
accumulator circuit for the spike-timing dependency and a global
weight-update controller, which drives the update of multiple
synapses (Pfeil et al., 2012). Having a separate plasticity engine
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makes the update slower, but adds flexibility to the plasticity
algorithms that can be implemented. The trade-off in this case
relates to the controller frequency update, which evolves slower
than the neural dynamics, and the precision of the synapses, lim-
ited to 4-bits. Despite these limitations the system is capable of
modeling a variety of plasticity models, characterized by differ-
ent weight dependencies. Also, the synaptic resolution is shown
to be not-critical in the simulation of a series of network bench-
marks. Vogelstein et al. (2002) have introduced a general system
where synapses are stored in digital memory with a processor
implementing the synaptic update mechanism, while a separate
set of ASICs implement the neural integration process. While they
demonstrate STDP, more general functions can be implemented
using the same scheme.

Brader et al. (2007) proposed a learning rule that captures bio-
logical properties such as memory preservation and encoding.
Furthermore, it is optimized for efficient implementation in a
neuromorphic system. The rule is dependent on the post-synaptic
neuron membrane potential and recent spiking activity at the
time of a pre-spike arrival. Every synapse has internal dynam-
ics, which drives the weight toward a bistable state. Its advantage
for VLSI implementations (Indiveri et al., 2006; Giulioni et al.,
2008; Mostafa et al., 2014) lies in its ability to smooth device mis-
match by applying a threshold to the internal state variable, in
order to set the synapses to one of two possible states. The bistable
representation of memory has the additional advantage of being
power efficient. The fact that the rule can be computed when a
pre-synaptic spike is received reduces the chip area required by
a synapse, and consequently increases the number of synapses
that can be modeled. This assumes that the synapses are located
on the post-synaptic neuron, and have access to the neural and
synaptic state variables when a spike is received. This is the case
in the VLSI devices mentioned above and also in SpiNNaker (Jin
et al., 2010a). A review of different neuromorphic approaches and
challenges in designing plastic synapses can be found in Rahimi
Azghadi et al. (2014), which discusses power consumption, area
requirements, storing techniques, process variation and device
mismatch.

Recently, Resistive Random Access Memories, commonly
referred as memristors, have raised interest in the neuromorphic
community. They are small, power-efficient devices that can be
used to store weights and thereby increase the amount of neu-
rons and synapses that can be integrated in a chip. Weight change
can be induced by controlling the voltage at the terminals of a
memristor, inducing a change in its state and thus modeling a
learning rule such as STDP (Zamarreño Ramos et al., 2011) or
triplet-based STDP (Mayr et al., 2012). In Indiveri et al. (2013)
memristors are used directly to model synaptic dynamics, using
them both for computation and memory storage.

There are also difficulties when implementing synaptic plas-
ticity in general purpose hardware. Regarding GPUs Fidjeland
and Shanahan (2010), for example, propose a simplified nearest-
neighbor pairing scheme with a time-limited STDP window.
They continuously accumulate STDP statistics that are then
used to update synapses at fixed intervals. In such implementa-
tion, increasingly shorter intervals impact performance, lowering
the overall spike throughput of the platform. Weight change

accumulation is commonly used in other GPU approaches, e.g.,
in Nageswaran et al. (2007), where the synaptic kernel update
is applied every second, and in software simulations (Izhikevich,
2006).

The diversity of approaches for studying synaptic plasticity in
hardware, indicates a need for general purpose, massively parallel,
and reconfigurable computing platforms. Only this will allow fast
prototyping of plasticity rules, and their exploration in large scale
models, which can in a second stage directly lead to dedicated
hardware implementations.

3. A NOVEL FRAMEWORK FOR PLASTICITY
IMPLEMENTATION ON SPINNAKER

SpiNNaker (Furber and Temple, 2008; Furber et al., 2014) is a
digital multi-core, multi-chip architecture designed for the simu-
lation of large neural networks in real time. Each SpiNNaker chip
is equipped with a 1Gbit SDRAM and 18 programmable ARM968
cores embedded in a congurable packet-switched asynchronous
fabric (Plana et al., 2007).

The SpiNNaker network infrastructure is designed with spik-
ing communication in mind: every chip contains an on-chip
Multicast (MC) router capable of handling very efficiently one-
to-many communication of spikes (MC packets). The router
links every chip to its six neighbours. Each core has a small
local tightly-coupled memory (32 kByte instruction and 64 kByte
data, ITCM and DTCM respectively). The massive synaptic data
required for neural simulations is stored in the shared, off-die
SDRAM 128 MByte chip that can be accessed by the cores through
DMA requests, for an aggregate read/write bandwidth of 900
MBytes/s (Painkras et al., 2013). The system is designed to scale
up to 60,000 chips for a total of over one million ARM cores. The
goal of the system is to simulate 1% of the human brain in real
time.

A high level view of the main chip components is presented
in Figure 1. When simulating neural networks, spikes are deliv-
ered and processed by the ARM cores, which update the states
of the neurons and synapses. A C-based API is used to program
neural kernels (Sharp et al., 2011). The API offers an accessi-
ble interface to the hardware substrate and to real-time event
scheduling facilities, and can be used to write applications that are
executed in parallel on the machine. The API promotes an event-
driven programming model: the neural kernels are loaded into
the ARM cores and are used to configure callbacks that respond
to events. A timer event allows the periodic execution of func-
tions, such as neuron state update. A packet event signals the
arrival of an MC packet (spike) and can be used to initiate a
request to transfer synaptic data from SDRAM. Finally, a memory
event indicates that the requested data is available for processing.
The neural kernels are parameterizable and can support different
classes of neural models and connectivity patterns. Model specifi-
cation, system mapping and run-time control is obtained through
the PArtition and Configuration MANager (PACMAN, Galluppi
et al., 2012), which offers interfaces with two languages exten-
sively used in the neural modeling community: PyNN (Davison
et al., 2008), a simulator-independent specification language, and
Nengo (Stewart et al., 2009), the simulation tool implementing
the principles of the Neural Engineering Framework.
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Figures 2A,B shows the current implementation of a neural
kernel, highlighting the processes involved: every millisecond, a
timer event triggers the evaluation of the neural dynamics. A
spike is then emitted if a configurable threshold of the membrane
potential has been reached. Spikes travel as MC packets through
routers on the interconnection fabric and are delivered to the des-
tination cores, triggering a packet event. Whenever a packet is
received, a memory look-up is initiated to retrieve the relevant
synaptic information (such as weight, delay, destination neurons
on the core, and type of synapse) from SDRAM, where the con-
nectivity matrix, indexed by pre-synaptic neuron, is stored. When
the requested data arrives this creates a memory event, and the
spike is processed by every post-synaptic core. Due to the lim-
ited memory available in the ARM cores, the synaptic weights
are only locally available to the core right after a memory trans-
fer from DMA has occurred as a consequence of the arrival of a
spike. Therefore, the time available for the weight update process

FIGURE 1 | High-level view of the SpiNNaker chip, showing: the ARM

cores with their Instruction and Data Tightly coupled memory (DTCM

and ITCM, 32 and 64 Kbyte respectively) to run applications and locally

store data; the Multicast (MC) router responsible of spike

transmission; the port to the 128 Mbyte SDRAM off-chip memory,

containing the synaptic data.

is very short; moreover, since delays are reintroduced at the post-
synaptic end, the update process relies on information which
might concern the future state of the neuron. This has limited the
flexibility of previous approaches for implementing plasticity on
SpiNNaker.

3.1. THE DEFERRED EVENT DRIVEN MODEL
The STDP algorithm requires computation whenever a pre spike
is received or a post spike is emitted. This causes two relevant
issues for the cores running neural simulation on SpiNNaker:

1. Weights are only available in local memory upon the reception
of a MC packet signaling that a spike has occurred in one of
the pre-synaptic neurons. At the time of a post-synaptic spike
such information is stored in SDRAM, which is indexed by
pre-synaptic neuron and therefore is not easily accessible for
a fast update.

2. A spike packet is delivered to the post-synaptic core as soon
as it is emitted, and biological delays (stored in SDRAM as
well) are re-introduced by the core modeling the post-synaptic
neuron after the relevant information has been retrieved from
memory; the delay itself is stored into memory, and can be
different for different post-synaptic neurons on the same core
(Jin et al., 2010a). The weight value is stored in a circular buffer
which rotates with the timer event interval, and lumps all the
synaptic contributions for one millisecond in a way similar to
that described in Morrison et al. (2005). The consequence of
delaying the input into the future is that when a synapse is
processed, the state of the post-synaptic neuron (e.g., its mem-
brane potential or the presence of a post-synaptic spike) is not
available.

The Deferred Event Driven Model (DED) for computing plasticity
was introduced in Jin et al. (2009) to circumvent these problems.
DED enables computation of STDP at the time when a pre spike
is received by deferring the weight update process into the future,
until enough information is gathered. Post spikes are collected in
a spike window, stored in the local core memory, while pre spikes
are stored in SDRAM, along with the rest of the synaptic infor-
mation. Upon the retrieval of the weights related to a pre spike,

FIGURE 2 | (A,B) current STDP implementation on SpiNNaker, following the Deferred Event Driven model (C,D) the proposed novel implementation
framework for plasticity implementation.
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these two time windows are compared and weight update is per-
formed. Plasticity is therefore always computed on the next pre
spike arrival, and only if enough time has passed, to guarantee
that all the necessary information is available. This poses restric-
tions on the pre-to-post firing rates: if a pre-synaptic neuron
fires with a low rate, the spike information of the post-synaptic
neuron might have already expired. Thus, the algorithm loses a
pre-post spike pair, even if they were close in time, if the next
pre spike arrives after the expiration of the post-spike window.
Furthermore, because the algorithm needs to check every spike
pair, its efficiency depends on the length of the history and on
the number of the pre-post pairs. Such limitations are discussed
in Jin et al. (2010b), where the trade-offs between spike-history,
efficiency and correctness are analyzed.

Davies et al. (2012) try to address the problem from a different
angle, using the Time To Spike (TTS) strategy: STDP is computed
only upon the reception of a pre spike, using the current mem-
brane potential as a predictor of future spiking activity. By doing
so, weight updates can be performed while synaptic information
is in local memory, addressing the first of the two problems men-
tioned above. However, as mentioned earlier, spikes are delivered
to the post-synaptic neurons as soon as they are emitted, and the
biological delays are reintroduced at the post-synaptic end. This
creates errors when using delays, as reported in the original work
presenting the TTS approach: the membrane potential used as a
predictor of the post neuron firing is the one corresponding to
the time of spike emission by the pre neuron, rather than that of
spike reception by the post neuron (after the propagation delay).
Such problem makes the TTS algorithm usable and efficient when
delays are constant and short, but cannot deal correctly with
longer delays. This also creates problems for detecting temporal
patterns where delays play an important role (Izhikevich, 2006),
such as in the experiments in Section 6.2.

3.2. THE DEDICATED PLASTICITY CORE APPROACH
The previous implementations of plasticity are not limited by the
SpiNNaker hardware, but rather by their software implementa-
tion. Therefore, we present an alternative approach: instead of
having a single core evaluating neural dynamics and plasticity,
we divide the job into two parallel processes. One core performs
the neural updates and spike integration, while the second core
deals with plasticity (see Figures 2C,D). Plasticity operates as a
slower process in the background. It processes the whole synaptic
block in SDRAM and the information about spike timing, and
modifies the weights according to the chosen plasticity mech-
anism. The proposed approach takes inspiration from previous
work where plasticity effects are accumulated and evaluated peri-
odically (Izhikevich, 2006; Nageswaran et al., 2007; Fidjeland and
Shanahan, 2010; Pfeil et al., 2012). Plasticity is thus updated less
frequently than neural dynamics, which is radically different from
the previously described DED model on SpiNNaker.

In our novel approach, the PACMAN mapping tool automati-
cally instantiates a twin plasticity core alongside each neural core
whenever it detects a neural population with incoming plastic
connections. Neural and plasticity cores have access to the same
portion of SDRAM through replication, in their local memories,
of the look-up tables used to index it. The neural core performs

the usual operation that a non-plastic core would perform, thus
eliminating all the overheads required by the DED model. The
neural core is also in charge of trivially updating a bitmap pre-
spike window whenever a pre spike is received, as shown by the
dashed arrow in Figure 2C. The plasticity core is concerned solely
with the weight update process, which can be performed by walk-
ing the local SDRAM weight matrix and computing plasticity at
a slower pace. When a neuron in the neural core emits a spike,
the corresponding packet is delivered to the plasticity core, and to
the post-synaptic neurons as under normal conditions. Because
the plasticity and neural core always reside on the same chip,
this process does not add overhead to the routing process. This
allows to keep track of the post-synaptic spiking history. Here we
decided to update the weights every 128 ms and store the spike
times with a resolution of 2 ms, as a compromise between perfor-
mance, platform-specific limitations and precision. Pre-synaptic
spikes are stored at the beginning of each synaptic row as spike-
history bitmaps. The plasticity process needs to know all the
spikes which happened in its considered 128 ms window. This
data has been stored by the neural core in one of the spike win-
dows (0 or 1 in the Figure) during the previous 128 ms before
the update. For the plasticity core to be able to read this buffer
while the neural core is storing the next 128 ms of spikes, we use a
double buffer technique: when the plasticity core is reading spike
window 0, the neural core is storing the spikes in spike window
1 and viceversa. This has been emphasized in the Figure 2C by
using different color codes for the two different processes. The
double buffers contain data for different time slots and there-
fore do not need to be accessed concurrently by the neural and
plasticity core, so there is no need for mutual exclusion or locks.
Memory contention is eliminated by the fact that the neural core
operates in the current 128 ms window, while the plasticity core
works in the previous 128 ms time window. The same technique
used for the spike windows could be used on the whole synap-
tic matrix to ensure coherency of the whole matrix during the
entire simulation. Because this method only switches the pointer
used to lookup the data between consecutive plasticity periods,
this would not change the approach or performances. Whenever
a portion of memory is ready for computation, the request for
the next row of the synaptic matrix is issued and weight updates
of the current synaptic row are performed, thus masking memory
access costs through parallelization. This separation of neural and
plasticity operations gives rise to an environment where weight
update rules can be easily programmed separately. This lever-
ages the reprogrammability of the general processors used by
SpiNNaker and the generality of the event-driven API presented
in Sharp et al. (2011). The general infrastructure for the frame-
work is presented in Appendix A. While it is worth noting that
the difference between neural and the plasticity processes is only
in the software running on the ARM cores, they can be thought of
as hardware threads. The SpiNNaker software infrastructure does
not support threads. If software threads were available, besides the
costs related to thread switching, the neural and synaptic update
threads would need to split between them the limited local mem-
ory (DTCM) and the processor cycles. In SpiNNaker, clock cycles
are also limited in order to meet real-time targets. The proposed
solution, on the other hand, uses hardware threads (cores), one
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for neural update and one for synaptic update, with each thread
owning all of its local resources. This results in a more efficient use
of the available resources. In fact, depending on the relative com-
plexity of the neural and synaptic update processes, the ratio of
hardware threads can be adjusted, using N neural update for every
M synaptic update threads (cores). The plasticity core has access
to the pre- and post-synaptic spike activity history of the previous
128 ms time window; the first is stored in SDRAM and the second
one in DTCM. Such information can be used to compute rates,
traces, timing differences or other required variables for different
learning rules, as shown by the three rules implemented in this
paper.

4. STDP
Derived from biological observations that synaptic plastic-
ity depends on the relative timing of pre- and post-synaptic
spikes (Markram et al., 1997; Bi and Poo, 1998), Spike-Timing
Dependent Plasticity (STDP) (Gerstner et al., 1996; Song et al.,
2000) has become a popular model for learning in spiking neu-
ral networks. In its standard form, STDP weight-updates are
expressed by the double-exponential form

F(�t) = A+e
�t
τ+ �t < 0 (1)

F(�t) = −A−e
−�t
τ− �t ≥ 0 (2)

where �t = tpre − tpost is the time difference between a pair of
pre- and post-synaptic spikes, A+ and A− are scaling factors for
potentiation and depression, and τ+ and τ− are the time con-
stants of the plasticity curves. The weight update rule is illustrated
in Figure 3. There are different strategies for computing the total
amount of weight change after seeing multiple pre- and post-
synaptic spikes (Morrison et al., 2008), e.g., by considering only
nearest neighbor spike pairs, or summing the weight changes
F(�t) for all pairs. Here we adopt a form of STDP proposed by
Morrison et al. (2008) to compute the weight change using local

variables in the form of pre- and post-synaptic traces. Each trace
xi has the form

dxi

t
= −xi

τ
+ A

∑
t
f
i

δ(t − t
f
i ), (3)

where xi is the value of the trace for neuron i, A is the amplitude

by which the trace increases with each new spike at time t
f
i , and τ

is the exponential decay time constant. The concept is illustrated
in Figure 3: potentiation occurs at post-synaptic spikes, using the
value of the pre-synaptic trace as the weight increase; conversely,
depression happens at pre-synaptic spike times, and reduces the
weight by the value of the post-synaptic trace.

4.1. METHODS: IMPLEMENTATION OF STDP ON THE PLASTICITY CORE
The plasticity core is in charge of computing all traces, using the
spike timing information collected during the simulation. Weight
changes are then computed by walking through all the synaptic
block. The pre-trace is computed every time a portion of mem-
ory is received through a DMA process using the information
in the spike window, while the post trace is computed at the
beginning of each plastic phase starting from the spike history
bitmap collected during the packet received callback. Traces can
have longer time scale than the plasticity window, as the expo-
nential filtering is updated at the beginning of each phase, and
the previous value of the exponential filter carries over from one
plasticity window to the next. Delay needs to be reintroduced at
the post-synaptic end, and can be used to compute the amount
of shift required to correctly compute weight de/potentiation, as
shown in Figure 3, where the black part shows the spike tim-
ing and traces using the presynaptic spike time as the reference,
while the red part shows how this reference is shifted once delay
has been reintroduced. Not considering the delay generates sub-
stantial errors in the weight update. A pseudocode version of the
algorithm is presented in Appendix B.

FIGURE 3 | (A) Algorithm for STDP learning implementation on the plastic
core (B) STDP function (C) Implementation of pair-based STDP with local
traces and delays, as suggested by Morrison et al. (2008): potentiation
occurs at post-synaptic spike times and corresponds to the value of the
pre-synaptic trace; conversely, depression happens at pre-synaptic spike

times and corresponds to the value of the post-synaptic trace. d
represents the delay, reintroduced at the post-synaptic end; black and red
lines represent the traces and spike timings when the delay is
reintroduced (red) as opposed to using the presynaptic spike time as
reference (black).
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FIGURE 4 | Shift of post-synaptic firing onset via STDP. (A)

Potentiation: The spike raster plot (bottom) shows that at the beginning
of the stimulation 3 input spikes (blue) are needed to make the target
neuron (red) fire; after 400ms, potentiation has made the synapse strong
enough so that the post-synaptic neuron fires after only 2 spikes. This is
also visible in the membrane potential (top) and post-synaptic currents
(PSC; middle). (B) Depression: (bottom) The green neuron is made to
spike consistently after the target (red) neuron, hence its weight gets

depressed, as can be observed by its decreasing contribution in the
membrane potential (top) and PSC (middle). (C) Reduced spike latency:
at the beginning of the simulation (upper-left panel) 10 spikes from 10
different input neurons (blue) are needed to make the post-synaptic (red)
neuron fire; after repeated stimulation (upper-right-panel), potentiation via
STDP makes the red neuron fire already after 2 spikes, hence firing
closer to the pattern’s start, which is also shown by the latency plot
(bottom panel).

A simple experiment in which STDP, implemented with the
above scheme achieves synaptic potentiation and depression is
shown in Figures 4A,B. The final part of the Figure presents a
classical experiment where a plastic neuron can reduce the latency
of its firing to a repeatedly presented pattern (Mehta et al., 2000;
Song et al., 2000): a (red) neuron receives connections from 10
inputs neurons (blue) which fire at 2 ms from each other; during
the first repetition all the 10 input neurons are required to make
the target neuron fire. After repeated presentations, due to poten-
tiation, only two input neuron spikes are needed to elicit activity
in the post neuron, which responds with a lower latency to the
onset of the pattern.

4.2. RESULTS: PRE-POST PAIRING USING A TEACHER SIGNAL
In Figure 5 we reproduce results of a classical stimulation pro-
tocol for potentiation induced by pre-post synaptic pairing. The
network comprises a stimulus population and a target population,
each separately driven by two different Poisson sources emitting
spike bursts at high frequency (350 Hz) for short periods of time
(20 ms). Both populations also receive independent background
noise. The Poisson and noise source populations are intercon-
nected with a one-to-one connectivity pattern to their respective
inputs and outputs. The stimulus and the target populations are
interconnected with a 50% probability.

At the beginning of the simulation, external stimulation com-
ing from the stimulus population is not strong enough to trigger
activity in the target post-synaptic population (0 ≤ t ≤ 1500 ms).
Afterward (1500 ≤ t ≤ 3000 ms) the stimulus and target popula-
tions are stimulated together by their respective Poisson inputs, so
that the target population spikes 10 ms after the stimulus popu-
lation, hence inducing potentiation. Finally, for 3500 ≤ t ≤ 4000
ms, the Poisson process feeding the post-synaptic population is

removed, and the post-synaptic population is only stimulated
by inputs from the pre-synaptic population. It can be seen that
because of the induced potentiation, the pre-synaptic input is
now strong enough to make the target population fire without
any supervisor input.

4.3. RESULTS: BALANCED EXCITATION
Song et al. (2000) have shown that STDP can establish a state of
balanced excitation in the post-synaptic neuron, which makes it
more likely to fire with a controled output rate in response to fluc-
tuations in its input. This is achieved by competition between the
synapses that project onto the post-synaptic neuron, induced by
STDP. The characteristic effect described by Song et al. (2000)
is that STDP creates a bimodal distribution of input weights,
pushing them either toward the minimum or maximum values,
and creating groups of strong and weak synapses. In Figure 6 we
simulate a group of 1000 input neurons, firing independently
according to a Poisson process at 20 Hz, and projecting onto a
single output neuron. The weights are initialized uniformly, and
then undergo STDP. After 300 s of simulation, the distribution of
synaptic weights in Figure 6 shows clearly the characteristic sepa-
ration into two groups of very different strengths. The experiment
can be observed in Movie 1 (Supplementary Material), which
shows the weight distribution as the simulation is running.

5. BCM
The BCM rule, named after their inventors Bienenstock, Cooper,
and Munro (Bienenstock et al., 1982), is a rate-based synap-
tic plasticity rule, introduced to model binocular interactions
and the development of orientation selectivity in neurons of
the primary visual cortex. The BCM rule is based on Hebbian
principles, but introduces synaptic competition by correlating
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FIGURE 5 | STDP with a teacher signal. (A) Network structure: two
different Poisson spike sources (red) are used as supervisor signals to
individually stimulate the Stimulus (top) and Target (bottom) populations at
different times (blue), which also received noise from two separate sources
(green). (B) Initially (between 0 and 1000 ms), only the pre-synaptic
population is stimulated, but the synaptic weights are weak, thus the
resulting spikes (blue) do not elicit post-synaptic spikes. Between 1500 and
3000 ms, both populations are stimulated with a 10 ms time difference,
such as to induce synaptic potentiation. The effect can be seen between
3500 and 4500 ms, when the teacher signal for the post-synaptic
population is removed: after the potentiation the pre-synaptic spikes are
able to drive the post-synaptic neurons by themselves.

the pre-synaptic rate with a non-linear function of the post-
synaptic rate. In its simplest form the BCM rule computes this
non-linearity as the product of the post-rate with its deviation
from the mean post-synaptic activity (see Figure 7B):

dw

dt
= [rpost(rpost − θ)rpre]δ − ε · w . (4)

Here w denotes the synaptic weight and dw/dt its change, rpost and
rpre are the firing rates of the pre- and post-synaptic neurons, θ is
the modification threshold, which is computed here as the mean
firing rate of the post-synaptic neuron, δ is a learning rate, and
ε a weight-decay parameter. If rpost exceeds the mean firing rate
θ , the weight is potentiated; conversely, for lower activity (rpost <

θ) the weight is depressed. The learning rate parameter δ can be

used to normalize the magnitude of the synaptic weight change
according to the neural model used. Many variations of the BCM
rule have been studied since its introduction, using different kinds
of non-linearities, but here we study only the basic version from
Bienenstock et al. (1982).

5.1. METHODS: IMPLEMENTATION OF BCM ON THE PLASTICITY CORE
Since the BCM rule only requires firing rates, the plasticity core
just has to increment a counter whenever a post-spike is received,
and to use a low-pass filtered version of the rate. Analogously,
when processing a row relative to an afferent neuron, the num-
ber of spikes received during the previous phase is used to update
the pre-synaptic rate information. At the end of each plasticity
phase θ (the threshold parameter representing the mean rate) is
updated using a configurable exponential moving average, and
the pre spike windows are reinitialized. A pseudocode version
of the algorithm is presented in Appendix C and is outlined in
Figure 7A.

In Figure 7C we show a classical potentiation protocol using
the BCM rule. For the first 600 ms the target population is only
receiving spikes from the stimulus population, but the weights
are too weak to cause firing in the target population. Between
600 and 1200 ms, a teacher population is activated which is
strong enough to drive the target population, thereby potenti-
ating also the simultaneously active stimulus-target connections.
Afterwards, when the teacher population is switched off, the
stimulus population alone is able to drive the target population
without teacher input.

5.2. RESULTS: EMERGENCE OF ORIENTATION SELECTIVITY WITH BCM
The BCM rule has been originally proposed in Bienenstock et al.
(1982) to explain how neurons in the primary visual cortex can
acquire their feature selectivity from sensory stimulation. As a
test of our implementation of BCM on SpiNNaker we replicate
a simple neural network with lateral inhibition which undergoes
plasticity while receiving monocular visual input in the form of
oriented bars.

The network consists of 2 layers, an input layer which com-
prises 16× 16 neurons and an output layer with 4 neurons. Each
neuron in the input layer projects, in an all-to-all fashion, to the
output neurons. All synapses are initialized with random weights
and delays. Each neuron in the output layer has an inhibitory
projection to every other neuron, forming a network of lateral
antagonism (Shouval et al., 1997). The aforementioned connec-
tivity pattern matches anatomical data, for example the lateral
plexus of the Limulus’s eye, as originally found by Hartline et al.
(1956). Bienenstock et al. (1982) themselves point out that no
selectivity is achieved without lateral inhibition.

For this experiment four images of oriented bars are used as
input stimuli, each rotated by 45◦C. Bars are 3 pixels thick and
12 pixels in length, and the intensity of each pixel is a random
value between 0.8 and 1.0. Each pixel is converted to Poisson
spike trains, in order to simulate spikes coming from the retina
or LGN. The firing rates are proportional to the value of the
pixels, while all firing rates are scaled such that the input layer
generates approximately 1000 spikes per second. During the sim-
ulation each orientated bar is presented to the network in a
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FIGURE 6 | Competition between synapses undergoing STDP: In the

experiment introduced by Song et al. (2000), 1000 uncorrelated

pre-synaptic neurons, firing at a Poisson-rate of 20 Hz, project onto a

single post-synaptic neuron. (A) Initial uniform weight distribution before

plasticity. (B) After 300 seconds of stimulation STDP has divided the synaptic
weights into weak and strong ones, thereby regulating the activity of the
post-synaptic neuron. The red line shows the mean of the initial weights. (C)

Scatter plot of the final weight distribution.

FIGURE 7 | Implementation of BCM plasticity. (A) Algorithm for
BCM learning on the plasticity core. (B) Illustration of the BCM rule:
normalized weight change as a function of the pre- and post-rates,
with θ = 35 Hz. (C) Potentiation experiment using a teaching signal:

when stimulation is paired with a teacher signal that forces the
post-synaptic neurons in the target population to fire, the weights
get potentiated and become strong enough to drive the post-synaptic
neuron.

random order for 1 s and for 80 repetitions. Learning takes place
in the synapses between the input and output layer, while the
inhibitory synapses in the output layer are static and set to a
weight of−9 nA.

The results are summarized in Figure 8. Figure 8A shows that
the weights and neuronal responses to input stimuli are initially
random. At the end of the simulation, Figure 8B shows that each
output neuron has developed via BCM plasticity a receptive field
that corresponds to one particular orientation. In Figure 8C we
show the orientation tuning curves of each neuron, measured by
rotating the stimulus bar counter-clockwise in 10◦C steps. The
results show that each neuron has successfully learned to respond
best to one preferred orientation, which is in line with previous
modeling studies and experimental and anatomical data (Moore
and Freeman, 2012; Jeyabalaratnam et al., 2013). The learning can
be observed in Movie 2 (Supplementary Material), where the four

receptive fields are emerge from the repeated presentation of the
input stimulation.

6. VOLTAGE-GATED STDP
Brader et al. (2007) have presented an STDP rule that is triggered
by the arrival of pre-synaptic spikes, and in which the change in
synaptic efficacy is a function of post-synaptic depolarization and
of an internal variable at the spike arrival time. The rule is moti-
vated by the necessity to design learning rules which are at the
same time biologically plausible, but also compatible with imple-
mentation constraints on neuromorphic devices. Several studies
have demonstrated the ability of the learning rule to discrimi-
nate complex spatio-temporal patterns (Indiveri and Fusi, 2007;
Giulioni et al., 2009; Mitra et al., 2009), even if the synapses
are allowed to take on only one of two stable states. Every time
the post-synaptic neuron emits a spike an internal variable C(t),
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FIGURE 8 | Emergence of orientation selectivity with the BCM learning

rule. (A,B): The top row represents the input stimuli bars presented in
different orientations, the total firing rate for each stimulus is 1,000 Hz; the
middle row shows the weight matrix for the output neurons, with (A) random
initial weights and (B) results after the training, where it can be observed that

neurons have developed their receptive fields according to the input
stimulation; the bottom row shows the firing rates of the output neurons,
where each color codes for a different neuron which has learned a preferred
orientation. (C) Orientation tuning curves obtained by rotating a horizontal bar
counter-clockwise with a step size of 10◦C.

representing calcium concentration due to back-propagating
action potentials, is incremented by a value JC and then decays
with a time constant τC according to the dynamics described by

dC(t)

dt
= −C(t)

τC
+ JC

∑
i

δ(t − ti), (5)

where ti are the post-synaptic spike times. Potentiation and
depression happen only if C(t) is in an appropriate interval
[θh

down, θ
h
up] for potentiation and [θ l

down, θ
l
up] for depression. Post-

synaptic membrane depolarization V(t) influences this plasticity
rule, triggering potentiation (or depression) only if the mem-
brane potential of the post-synaptic neurons is higher (lower)
than a threshold value θV at the time of arrival of a pre-synaptic
spike (tpre). Modification of the synaptic efficacy w can then be
summarized by the following equations:

w = w + a if V(tpre) > θV and θh
down ≤ C(tpre) < θh

up (6)

w = w − b if V(tpre) ≤ θV and θ l
down ≤ C(tpre) < θ l

up (7)

where a and b represent the constant weight increase and decrease
values respectively.

If none of the conditions in (6) and (7) are met, or if no spike
is received in the period of time considered, then the weight drifts
toward one of two stable values (wmin and wmax). The direction
of the drift is determined by comparing the current weight w to
a threshold θW , and speed of the drift toward the minimum and
maximum stable states is determined by the constants α and β

respectively. This leads to the following dynamics:

dw(t)

dt
= α if w(t) > θW (8)

dw(t)

dt
= −β if w(t) ≤ θW (9)

6.1. METHODS: IMPLEMENTATION OF VOLTAGE-GATED STDP ON THE
PLASTICITY CORE

The voltage-gated STDP rule needs further information from the
post-synaptic neuron, as the membrane potential gates potenti-
ation or depression. The cores communicate this information as
means of shared memory in SDRAM, using a double buffer tech-
nique so that they always work on different phases. This induces a
slight overhead in the neural core, which has to perform the check
against θV and saves the result for each millisecond in a bitmap
stored in memory. The plasticity core retrieves the results of the
comparison at the beginning of each plasticity phase, and uses
them in the weight update process. At the same time the function
C(t) is computed starting from the post neuron spike timings,
similarly to computing the STDP traces. A pseudocode version of
the algorithm is presented in Appendix D.

The basic dynamics of this voltage-gated STDP rule are shown
in Figure 9: The bottom row shows the trace of the calcium vari-
able V(t), which is increased by JC whenever the post-synaptic
neuron fires, and then exponentially decays with time constant
τm. The central part shows the potentiation of a synapse, because
here the pre-spikes arrive when V(tpre) > θV and θh

down ≤
C(tpre) < θh

up, and thus fewer spikes are needed to drive the tar-
get neuron. Conversely, on the right we observe the depression
of a synapse, because pre-spikes arrive when V(tpre) ≤ θV and

θ l
down ≤ C(tpre) < θ l

up. After depression, the synaptic input is too
weak to make the target neuron fire.

6.2. RESULTS: LEARNING TEMPORAL PATTERNS
To verify our implementation of the voltage-gated STDP rule
by Brader et al. (2007), we implemented the model by Coath
et al. (2013) for learning temporal structures in auditory data,
which has originally been implemented on a neuromorphic chip
in Sheik et al. (2012). The study focused on learning dynamical
patterns in the context of a sound perception model by tuning
auditory features through presentation of stimuli and learning
using the STDP rule implemented in VLSI.
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FIGURE 9 | Implementation of voltage-gated STDP. (A) Concept for
implementing voltage-gated STDP on the plasticity core. (B) Example of
synaptic potentiation: three pre-synaptic spikes (blue) arrive while the
membrane potential is greater than θV and θh

down ≤ C(tpre) < θh
up (red-shaded

area in bottom row). Initially, the post-synaptic neuron (red) fires after the

third spike, after potentiation only two spikes are needed to make the target
neuron fire. (C) Depression example: three pre-synaptic spikes (blue) arrive
while the membrane potential is less than θV and θ l

down ≤ C(tpre) < θ l
up

(blue-shaded area in bottom row). After depression takes place, the
post-synaptic neuron (red) no longer fires after receiving the 3 input spikes.

The proposed network learns to respond to particular input
timing patterns. The network comprises 3 layers of tonotopically
organized frequency channels, representing different positions on
the basilar membrane. The first layer A represents a spiking signal
produced by an artificial cochlea (such as the one in van Schaik
and Liu, 2005); each neuron in the A layer projects to a neuron in
2 layers, B1 and B2 through excitatory synapses, while B1 projects
to B2 through inhibitory synapses. Each neuron in B2 also receives
plastic connections from all the neighboring B1 neurons, with
delays proportional to the distance, as shown in Figure 10. Since
delays are programmable in SpiNNaker we incorporated them
directly in the B1 to B2 connection, and not through a separate
neural population as in the original model. This delay property is
essential for learning: correlation between the delayed feedback
arriving from other B1 neurons to the B2 neurons is detected
by the plasticity rules, and it controls synaptic potentiation and
depression by coincidence detection. To implement the model on
SpiNNaker while coping with the 1 ms time resolution used in the
current neural kernels we multiplied all the time quantities by 10.
For learning we use the same three input patterns that were used
in the original model (see Figure 10): Pattern (C) is a forward
frequency sweep, where every frequency (and therefore every A
neuron) is activated in order, with a short delay between one pre-
sentation and the next. For pattern (D) we perform the same
frequency sweep, but we move backwards through the frequency
space. Finally for pattern (E) we perform a forked frequency
sweep, starting from the middle frequency. We present the stimu-
lus multiple times to the network and analyze what it has learned
by examining the B1/B2 weight matrix. The results are presented
in Figure 10, and can be compared with the results in Figures 7,
8 in Sheik et al. (2012). After repeated presentations of the tar-
get patterns, the weight matrix, initialized randomly, converges
to a state where it is only sensitive to the spike-timing pat-
tern presented, by coincidence detection through delay lines. The

emergence of the connectivity matrix for the forked frequency
sweep can be observed in Movie 3 (Supplementary Material).

7. PERFORMANCE ANALYSIS AND DISCUSSION
In Diehl and Cook (2014), the authors describe an STDP varia-
tion of the DED which follows the strategy proposed in Morrison
et al. (2008) by storing traces in SDRAM, rather than perform-
ing spike pairing as proposed in Jin et al. (2010b). The authors
evaluate the performance of their implementation as well as the
one present in the stable release of the SpiNNaker software pack-
age1 in terms of synaptic events processed per second, as done in
Sharp and Furber (2013) and Stromatias et al. (2013). They do
so by feeding a leaky integrate-and-fire population of 50 neurons
with a neural population of variable size that produces spikes at
≈250 Hz, according to a Poisson process, with a 20% connection
probability. They report that their implementation of plasticity
is capable of handling around 500K synaptic events per second
per core (using 150 input neurons), while the original SpiNNaker
implementation is limited to 50K events.

We adopt a similar strategy to evaluate our plasticity algo-
rithms, but in more stringent conditions, and with a larger
connectivity range. Rather than testing a single core we test a full
chip (16 cores). In this way, we can also evaluate the effects of
memory contention between different cores, as memory access
can be a bottleneck for simulations on SpiNNaker. We model a
population of 800 neurons in a single SpiNNaker chip (8 cores
modeling neurons and 8 cores dedicated to plasticity) fed by an
input Poisson neural population of 150 neurons with a variable
rate, and measure the maximum firing rate at which the sim-
ulation can run in real time. We take as a starting point the
connectivity levels reported by Diehl and Cook (2014) (20%

1https://spinnaker.cs.man.ac.uk/tiki-index.php?
page=SpiNNaker+Package+(quarantotto)
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FIGURE 10 | Learning temporal patterns with the model by Coath et al.

(2013) and Sheik et al. (2012). (A) Network structure: each frequency
channel f comprises three neurons A, B1 and B2, and is connected to other
frequency channels (dashed in figure), arranged in a tonotopical way, with

distance-based delays and plastic connections. (B) Delay matrix (top) and
example of initial random weight matrix (bottom). (C–E) Input spikes (top) and
resulting weight matrix (bottom) after learning for a forward, backwards and
forked frequency swipe respectively.

interconnection probability, 150× 50× 0.2 synapses, for a total
of 1,500 per core and 24,000 per chip if considering 16 cores)
and increase the connectivity level up to 100% (7,500 synapses
per core, 120,000 per chip). This results in synaptic rows which
are 5 times longer, as every pre-synpatic neuron is connected to
every post-synaptic neuron in each core, rather than only 20%
as in the original experiment. We then scale the model further
up by adding more pre-synaptic neurons so as to reach a total
of 156,000 synapses. The performance analysis of the algorithms
proposed in this work uses the same leaky integrate-and-fire cur-
rent based neuron. To be able to scale the rate while maintaining
the post-synaptic activity constant, we set all the weights and all
the weight increments in the plasticity rules to 0, similarly to the
approach in Stromatias et al. (2013). This means that plasticity is
normally computed, but the weight is clipped to 0 and stored back
in SDRAM. Such values are set at runtime and cannot therefore
by optimized by the compiler; we have also ensured that setting
these values to 0 would not bypass part of the code by removing
some optimization tests (like not updating weights which do not
change), thus ensuring that the code behaves in our test case as the
worst possible real case. Post-synaptic activity is induced by feed-
ing the leaky integrate-and-fire neurons with a current inducing
an activity of≈ 22 Hz.

We check if at any moment any core is lagging behind real time
as this would make the simulation incorrect and unrepeatable. We
also check if a walk through of the weight matrix is completed
before the end of the plasticity period or, in other words, if the
plasticity process is finished before the next one starts, as overlap-
ping in this sense is not possible when operating in real time. This
allows us to measure the maximum number of synaptic events
that can be handled in real time by a single SpiNNaker chip, using
the three learning rules proposed in this paper (STDP, BCM and
voltage-gated STDP), and to understand if the performance is
limited by the neural or the plasticity core.

Results are shown in Figure 11; for each given connectivity
level (number of synapses) pre-synaptic firing rates are increased
until the limit after which real-time simulation is no more pos-
sible. Each point of the plot hence represents the limits of the

approach for a given connectivity, for each of the plasticity rules
implemented. From the Figure it can be observed that the three
learning rules implemented within this framework have similar
performances untill the limit of 96,000 synapses (corresponding
to scaling up to 80% connectivity the model by Diehl and Cook,
2014). This is due to the fact that, up to that point, all three learn-
ing rules are limited by the neural cores lagging behind real time,
rather than by the plasticity process taking too long. Such limit
peaks just below 1,5 million synaptic events per second per core
for all three rules (23 million events for the full chip). In a non-
plastic performance analysis, Stromatias et al. (2013) measured a
maximum throughput of ≈ 2.38 million synaptic events per sec-
ond per core. After this connectivity level the complexity of the
two STDP models (standard and voltage-gated) becomes the lim-
iting factor, and a complete walk of the synaptic matrix is not
possible anymore within the 128 ms period used in this paper.
The BCM algorithm is not affected by this, as the algorithm is
computationally less intense, and keeps improving above 1,6 M
synaptic events per second per core. The decay in performances
reflects the complexity of the algorithm considered: standard
STDP, being more complex than the voltage-gated version, has
a sharper decrease in performances.

When comparing these scenario results with the previous plas-
ticity models based on the DED by Jin et al. (2010b) and Diehl
and Cook (2014) (around 50k and 500k synaptic events per sec-
ond per core respectively in the 20% case - the leftmost part of
Figure 11), it must be remembered that these algorithms work
with a 1 ms spike-window resolution, while the experiments pro-
posed in this paper have adopted a resolution of 2 ms. Also the
former algorithms might lose spikes, while in the approach pre-
sented here the contributions from all the spikes are accumulated
(or, in other words, no spike is lost).

While our approach was designed for maximal flexibility, there
might be tradeoffs in terms of efficiency for some scenarios,
depending on connectivity and firing rates. One limitation of
our approach is, for example, that every plasticity event triggers
an update of the complete synaptic matrix. For the rules pro-
posed in this paper is not possible to selectively update only some
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FIGURE 11 | Performance evaluation of the three learning rules in terms of synaptic event processed per core per second as a function of different

number of synapses.

rows. For pre/post sensitive rules (such as STDP) destinations are
encoded in the synaptic row, which is stored in SDRAM, so it
is not possible to know if a pre neuron connects to a post neu-
ron which has fired (thus inducing LTP) before retrieving the
row itself. In rate based models such as BCM, where the firing
rate is considered as a moving average, the absence of spikes is
not sufficient to ensure there is no plasticity in act. Finally rules
with relaxation toward one (BCM) or multiple (voltage-gated
STDP) states require a weight update even in the absence of a
spike.

Since in our implementation plasticity updates occur every
128 ms, pre-synaptic firing rates should be at least on the order
of ≈ 7− 8 Hz to avoid having to update silent synapses regu-
larly. In scenarios with lower firing rates, a purely event-driven
update would be more efficient. However, a main motivation for
our approach is to ensure real-time performance, even in situa-
tions with momentarily high load, e.g., if multiple neurons are
firing in bursts. Such scenarios are common when using natu-
ral inputs with coincident input spikes or models with oscillatory
background signals. In such cases the plasticity core approach
offers greater flexibility to process plasticity in real time: instead
of having to process neural and synaptic updates of all simulta-
neous spikes within the 1ms time step of the neural core, which
might be challenging for complex plasticity rules or for complex
neural models, our approach accumulates events over the longer
time window of the plasticity core.

This decoupling enables the neural cores to maintain the real-
time constraints, and opens up new possibilities for trade-offs
to reduce the load on the plasticity cores if necessary. The sim-
plest possibility is, as in the DED model, to lower the number
of neurons simulated by each neural core (and therefore also by
its associated plasticity core). Other options, although not imple-
mented in the first proof-of-concept presented in this paper, are
possible. For the initial results presented in this work we maintain

a 1:1 ratio between neural and plasticity cores, but this will likely
not be optimal for all scenarios. When looking at Figure 11 it can
be see that the two STDP models show a sweet spot for perfor-
mance at around 80% connectivity. Before such maximum the
performance is limited by the neural cores, while after that is
the plasticity core which is not able to keep up with the real-
time requirements. An interesting alternative would be to allocate
more plasticity cores to a single neural core, and adapt the plas-
ticity:neural core ratio according to the network characteristics
and to the computational complexity of the neural and plasticity
algorithms and the associated workload.

A limiting hardware factor for any implementation of plas-
ticity on SpiNNaker is the memory bandwidth, because rows
of the synaptic matrix need to be written back to SDRAM. It
was shown in Figure 9 of Painkras et al. (2013) that writing is
the main bottleneck, since the read bandwidth is twice as high.
Our approach reduces the write load, since rows are only writ-
ten back to SDRAM at most once every plasticity interval, rather
than once every pre-synaptic spike as in the DED model. This
means that, for example, if pre-synaptic neurons are firing at
24 Hz each synaptic row would be transferred back to SDRAM 24
times per second using the DED model, but only 8 times with our
approach.

Finally another possibility is to increase the duration of plas-
ticity intervals, which increases the time available for computing
the updates, but comes at the cost of larger memory requirements
for storing traces in the core-local DTCM. For long plasticity
intervals this might grow beyond what can be stored in DTCM
(64 Kbytes for each ARM core, of which some space needs to
be reserved for other parameters and buffers). The capacity can
be increased by lowering the precision for storing the traces,
or using a coarser time resolution. All these possible trade-offs,
although not fully explored in this initial work, show the versatil-
ity of the approach, which can be adapted to different situations
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and modeling needs, and constitutes one of its key features, as
discussed in the last Section.

8. DISCUSSION
Current research on understanding the relationship between the
local electrochemical processes of synaptic plasticity and their
manifestations as high-level behavioral learning and memory is
increasingly relying on theoretical modeling and computer sim-
ulations (Gerstner et al., 2012). Because of the great diversity
of plasticity phenomena observed in biology and the result-
ing diversity of proposed mathematical models, as well as the
computational complexity of spiking neural network simulations
dominated by the costs of synaptic processing, it is necessary to
create simulations tools that provide both the flexibility to try out
new models easily, and the speedup of specialized hardware. This
meets the demand of increasingly large neural network simula-
tions, both for studying brain function, and for applications in
artificial intelligence (Le et al., 2012). SpiNNaker has proven to
be a well-suited platform for massively parallel large-scale simu-
lations of spiking neural networks, and is flexible enough to let
researchers implement and test their own computational mod-
els in standard programming languages. The previous Deferred
Event Driven Model of handling events in SpiNNaker has made
it difficult to implement plasticity rules with arbitrary trigger-
ing events (pre-, or post-synaptic, or at regular time intervals),
rules which depend on third factors available only at the post-
synaptic neuron, or plasticity in networks with variable axonal
delays. We have presented here a framework which uses the mod-
ular architecture of SpiNNaker and delegates weight updates to
dedicated plasticity cores, while the network simulation operates
on the remaining neural cores. We have shown that a variety of
commonly used plasticity rules can be exactly replicated on this
framework, with a greatly increased capacity of processing plas-
ticity events in real-time, by running experiments on a 4-chip
SpiNNaker board. The separation of neural from plastic concerns
is the feature that enables the great flexibility of the architecture.
The two cores work in parallel on different time scales and phases,
and the plasticity core has all the information to compute plastic-
ity for the recent past, can access the weight matrix shared with
the neural core, and any other information that can be passed
through means of shared memory, e.g., membrane potentials and
spike timings of the pre- and post-synaptic neurons. All this infor-
mation can be pre-processed before plasticity is computed, which
allows e.g., the computation of rates in an otherwise spike-based
simulation. The architecture can be configured easily, using PyNN
scripts. This standard, high-level neural language makes it easy
to integrate and explore new learning rules into the SpiNNaker
architecture.

The approach presented in this paper is tailored to
SpiNNaker and to its specific architecture, design and constraints.
Nonetheless the same principles could be applied to other digital-
analog hybrid architectures, where efficient neural simulation
could be realized on one neuromorphic chip, whereas complex
plasticity rules could be realized off-chip on computers or FPGAs.
Regarding GPUs it appears to be more favorable to let each ker-
nel perform the same operation following the SIMD paradigm.
Fidjeland et al. (2009) sequentially use two different kernels, one

for neural updates and one for applying plasticity updates. Such
kernels do not run in parallel on the same GPU, but serially.
This does not constitute a problem when running accelerated
simulations, which is the common case for GPUs, but can raise
difficulties when running in closed-loop real-time scenarios, as
in neurally inspired robotics (Galluppi et al., 2014). In fact con-
current kernel execution is a feature that has only recently been
introduced in GPUs, with the NVIDIA Fermi architecture. Using
such technique, a plasticity and a neural kernel could be instan-
tiated concurrently on the same GPU, in a similar way to what
is done in our approach. Memory access patterns, and the possi-
bility of accessing contiguous portions of memory is a key factor
when programming a GPU (Brette and Goodman, 2012). It could
be speculated that applying an approach like the one proposed
in this paper would have the benefit of guaranteeing memory
coalescence, as the synaptic matrix is sequentially accessed when
walking through it. Multi-core or cluster architectures could also
in theory benefit of separating neural simulation and plasticity,
running either on different threads or on different cores, and with
different time scales. However, clusters are equipped with more
powerful processing units than SpiNNaker, so computing neural
and synaptic updates in different cores could introduce unnec-
essary overheads and synchronization difficulties, particularly
regarding memory bandwidth and access patterns.

In our experiments we have deliberately chosen to repro-
duce classical results, in order to compare the run-time per-
formance of the novel framework to previous implementations
of plasticity on SpiNNaker. The examples of BCM, STDP, and
voltage-gated STDP learning provide templates for construct-
ing further experiments with rate-based, spike-timing-based, and
voltage-dependent learning rules. Our approach can be easily
extended to include additional third factors to modulate plastic-
ity, e.g., neuromodulators (Izhikevich, 2007; Potjans et al., 2011),
or weight-dependency (Morrison et al., 2008; Nessler et al., 2013),
can model homeostatic effects (Bartolozzi et al., 2008), or handle
different synaptic delays (Tapson et al., 2013; Wang et al., 2013). It
can also combine different models of plasticity in one simulation,
a feature which is used in several recent models, where network
function arises from the interaction of different synaptic plas-
ticity rules that are specific to particular cell types (Lazar et al.,
2009; Savin et al., 2010; Binas et al., 2014; Kleberg et al., 2014).
In fact, we have provided a tool that should be general enough
to model long-term potentiation rules, but is not restricted only
to phenomenological ones. Other biological structures i.e., glial
cells are considered to have a fundamental role in plasticity, and
can enhance learning capabilities (Min et al., 2012). The plasticity
core, by leveraging this functional segregation already present in
biology, is a natural candidate to model such structures.

The results presented in this work and the possibilities opened
by this approach point to the efficiency and to the generality of the
framework introduced: a modular, flexible and scalable tool for
the fast and easy exploration of learning models of very different
kinds on the parallel SpiNNaker system.
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APPENDIX: PSEUDO CODE
This appendix presents pseudo code describing the implementation of the common framework and of the rules proposed in this paper.
We refer to DTCM for the memory locally available to each ARM core, and to SDRAM as the off-die memory shared by all cores in a
chip.

A COMMON CODE
The infrastructure for the framework is common for all the learning rules introduced, leaving users free to implement their plasticity
rules starting from:

• spike windows containing a compressed form of spike timings for the post-synaptic neurons (stored in DTCM).
• the whole synaptic matrix, indexed by pre-synaptic neuron (stored in SDRAM). Each row contains all the synaptic information

needed by the post-synaptic neurons modeled by the neural core for a particular pre-synaptic neuron.
• spike windows containing a compressed form of spike timings for the pre-synaptic neurons (stored at the beginning of each pre-

synaptic row in the synaptic matrix).
• additional data needed can be passed through means of shared portions of SDRAM and initialized during the timer callback.

The DMA controller is managing access to SDRAM, relieving the ARM cores of this task and enabling them to perform computation
while the memory is fetched or written in parallel. When a core needs to access SDRAM it issues a request to the DMA controller and
continues its work. Whenever the requested access is completed a DMA done interrupt is generated, triggering a DMA done callback.

Synaptic data is indexed by pre-synaptic neuron in SDRAM; each row contains the information about all the core-local post-
synaptic neurons each pre-neuron is connected to. Each iteration of the DMA pipeline calls itself on the next portion of the synaptic
matrix if there is still data to compute.

Algorithm 1 | DMA Pipeline.

Data: Local copy of synaptic row data: synaptic_row
Result: Starts the weight update process; requests the next synaptic row
if there is still synaptic data to process then

Increment the synaptic_matrix_index;
Issue a DMA request for synaptic row at address synaptic_matrix_index;
Call the weight update process on synaptic_row;

else
Terminate the DMA pipeline process;

end
Cleanup local variables for the next plasticity phase;

The Packet Received callback is called whenever a MC packet (containing a post spike) is received, and is used to updated the
post-spike window. The mapping software ensures that every spike emitted by the neural core reaches the correspondent plasticity
core.

Algorithm 2 | Packet Received callback.

Data: Incoming spike (routing key) from the twin neural core
Result: Spike window for the current phase
Retrieve the spike window for the post-synaptic neuron (DTCM);
Retrieve the time position for the spike;
Update the spike window;

The Timer callback is called every millisecond, and initiates the plasticity process every 128 ms in our implementation. The maxi-
mum axonal delay is reintroduced here, to ensure that all the necessary information from the previous phase is present. When initiating
the plasticity process rule-specific variables (e.g., traces) can be computed; therefore the timer callback is dependent of each plasticity
rule, and described in the next Sections for the three rules implemented.

The weight update process is initiated whenever the next row from the synaptic matrix has been retrieved from SDRAM and is
locally available to a core. Similarly to the timer callback, this function is specific to each plasticity rule implemented and is therefore
described in the following Sections.
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B STDP

Algorithm 3 | Timer callback.

Data: Time tick
Compute phase index from time tick;
if mod(time tick,plasticity_update_time) == max_delay then

Compute post-synaptic traces from the post-spike window of the previous phase (DTCM);
Start DMA pipeline process;

else
do nothing;

end

Algorithm 4 | STDP weight update process.

Data: local copy of a synaptic row for pre-neuron i
Result: updated synaptic row
Compute the pre-synaptic trace from the pre-spike window bitmap (SDRAM);
/* potentiation */
for j in size_row do

while there are post-spikes for neuron j do

Increment �wij using the pre_trace value at time t
j
post

end
end
/* depotentiation */
while there are pre-spikes for neuron i do

for j in size_row do
Decrement �wij using the post_trace value at time ti

pre

end
end
for j in size_row do

Apply �wij to the synapse;
end
Cleanup spike window;
Initiate a DMA write-back of the synaptic row (DTCM→ SDRAM)

C BCM

Algorithm 5 | Timer callback.

Data: Time tick
Compute phase index from time tick;
if mod(time tick,plasticity_update_time) == max_delay then

Compute post-synaptic rates from the spike window of the previous phase (DTCM);
Start DMA pipeline process;

else
do nothing;

end
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Algorithm 6 | BCM weight update process.

Data: local copy of a synaptic row for pre-neuron i
Result: updated synaptic row
Compute the pre-synaptic rate from the pre-spike window;
for j in size_row do

Compute �wij using Eq. 4;
end
Cleanup spike window;
Initiate a DMA write-back of the synaptic row (DTCM→ SDRAM);

D VOLTAGE-GATED STDP

Algorithm 7 | Timer callback.

Data: Time tick
Compute phase index from time tick;
if mod(time tick,plasticity_update_time) == max_delay then

Compute C(t) traces from the spike window of the previous phase (DTCM);
Retrieve voltage threshold checks from a shared portion of SDRAM;
Start DMA pipeline process;

else
do nothing;

end

Algorithm 8 | Voltage-gated STDP weight update process.

Data: local copy of a synaptic row for pre-neuron i
Result: updated synaptic row
while there are pre-spikes for neuron i do

for j in size_row do
if V(ti

pre) and C(ti
pre) satisfy Eq. 6 then

increment �wij ←+a;

else if V(ti
pre) and C(ti

pre) satisfy Eq. 7 then
decrement �wij ←−b;

else
do nothing;

/* relax to one of the bistable states */
if w satisfies Eq. 8 then

relax toward wmax;
else

relax toward wmin;
end

end
end
Cleanup spike window;
Initiate a DMA write-back of the synaptic row (DTCM→ SDRAM);
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The implementation of synaptic plasticity in neural simulation or neuromorphic hardware
is usually very resource-intensive, often requiring a compromise between efficiency and
flexibility. A versatile, but computationally-expensive plasticity mechanism is provided
by the Bayesian Confidence Propagation Neural Network (BCPNN) paradigm. Building
upon Bayesian statistics, and having clear links to biological plasticity processes, the
BCPNN learning rule has been applied in many fields, ranging from data classification,
associative memory, reward-based learning, probabilistic inference to cortical attractor
memory networks. In the spike-based version of this learning rule the pre-, postsynaptic
and coincident activity is traced in three low-pass-filtering stages, requiring a total of eight
state variables, whose dynamics are typically simulated with the fixed step size Euler
method. We derive analytic solutions allowing an efficient event-driven implementation of
this learning rule. Further speedup is achieved by first rewriting the model which reduces
the number of basic arithmetic operations per update to one half, and second by using
look-up tables for the frequently calculated exponential decay. Ultimately, in a typical use
case, the simulation using our approach is more than one order of magnitude faster than
with the fixed step size Euler method. Aiming for a small memory footprint per BCPNN
synapse, we also evaluate the use of fixed-point numbers for the state variables, and
assess the number of bits required to achieve same or better accuracy than with the
conventional explicit Euler method. All of this will allow a real-time simulation of a reduced
cortex model based on BCPNN in high performance computing. More important, with the
analytic solution at hand and due to the reduced memory bandwidth, the learning rule can
be efficiently implemented in dedicated or existing digital neuromorphic hardware.

Keywords: Bayesian confidence propagation neural network (BCPNN), Hebbian learning, synaptic plasticity,

event-driven simulation, spiking neural networks, look-up tables, fixed-point accuracy, digital neuromorphic

hardware

1. INTRODUCTION
Bayesian Confidence Propagation Neural Networks (BCPNNs)
realize Bayesian statistics with spiking or non-spiking neural
networks. They can be used to build powerful associative mem-
ories (Sandberg et al., 2000; Meli and Lansner, 2013) and data
classifiers, with applications ranging from data mining (Bate
et al., 1998; Lindquist et al., 2000) to olfaction modeling (Kaplan
and Lansner, 2014). The underlying Bayesian learning rule has
clear links to biological synaptic plasticity processes (Tully et al.,
2014), cortical associative memory (Lansner, 2009), reinforce-
ment learning (Johansson et al., 2003), and action selection
(Berthet et al., 2012). Furthermore, BCPNNs have been used
to model phenomena like synaptic working memory (Sandberg
et al., 2003), word-list learning in humans (Lansner et al., 2013)
and memory consolidation (Fiebig and Lansner, 2014), mak-
ing it a promising paradigm for information processing in the
brain, while retaining a level of abstraction suitable for efficient
technical implementation. Models using more detailed spiking

attractor networks with the same structure have provided non-
trivial explanations for memory retrieval and other basic cogni-
tive phenomena like e.g., attentional blink (Lundqvist et al., 2010,
2011; Silverstein and Lansner, 2011; Lundqvist et al., 2013).

The performance of BCPNNs, for example in memory tasks,
scales well with network size, making them extraordinarily pow-
erful for large networks (Johansson et al., 2001). Therefore,
massively parallel simulations of these networks (29 million spik-
ing units, 295 billion plastic connections) have been realized
on supercomputers (Benjaminsson and Lansner, 2011). These
showed that BCPNN implementations are bounded by compu-
tation (Johansson and Lansner, 2007). To alleviate this limit,
conceptual work on implementations in neuromorphic hardware
has been performed (Johansson and Lansner, 2004; Farahini et al.,
2014; Lansner et al., 2014).

In this paper, we pave the way for an efficient implementation
of BCPNN in digital neuromorphic hardware by reducing both its
computational and memory footprint. Existing software models
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apply fixed step size numerical integration methods for solving
the BCPNN dynamics. Although easy to implement, this clock-
driven simulation approach has two major drawbacks: First, there
is a relatively high base cost for calculating the updates of all state
variables at every time step, irrespective of the spiking activity in
the network. Second, the states have to be read from and writ-
ten back to memory at every simulation step, which is especially
expensive for custom hardware implementations where the states
are stored in an external memory. As suggested in recent work
(Lansner et al., 2014), we tackle these issues by moving to an
event-driven simulation scheme, which we systematically opti-
mize for minimal number of calculations to achieve a reduction of
the computational load by an order of magnitude. This efficiency
gain of the event-driven paradigm is mainly due to the sparse
activity in BCPNNs, which is retained irrespective of network
size. Employing pre-calculated look-up tables for the frequent
calculation of the exponential function, we further minimize the
computational cost per event-driven update. By using an analyt-
ical solution of the model equations, the numerical accuracy of
the simulation is increased compared to conventional simulation
techniques with fixed step size (Henker et al., 2012). We show how
this accuracy overhead could be utilized for significantly reduc-
ing the required memory and memory bandwidth in a potential
hardware implementation by using fixed point operands with
fewer bits than in a floating point representation.

While we performed our equation optimizations specifically
for the BCPNN model, they are not restricted to it. As BCPNNs
rely on dynamic equations that are common in neuroscientific
modeling, our approach can be easily adopted to other models.
It shows how to efficiently calculate single neuronal traces and
correlation measures for synaptic plasticity, increasing the energy
efficiency of digital implementations, either on standard comput-
ers or on specialized hardware, on an algorithmic level, comple-
menting analog approaches for increasing the energy efficiency of
neuromorphic computation (Hasler and Marr, 2013).

2. MATERIALS AND METHODS
2.1. BAYESIAN CONFIDENCE PROPAGATION NEURAL NETWORKS
In BCPNNs (Lansner and Ekeberg, 1989; Lansner and Holst,
1996) the synaptic weights between network units are calculated
in a Hebbian fashion by applying Bayes’ rule on the past activ-
ity of the units giving a measure of the co-activation of the units.
In a similar manner each unit’s bias is calculated from its past
activity, representing its a priori probability to be active. Often,
the activity of the units is represented by stochastic spike events,
which are generated according to each unit’s recent input and own
activity. Typically, in a training phase these correlation and activa-
tion statistics are collected, which are then used in the subsequent
test phase to perform inference, i.e., to determine the a posteriori
activity of some units as a response to other units’ recent activ-
ity. While the concept of BCPNN was originally developed for
series of discrete samples, a time-continuous spike-based version
has been developed recently, which we describe in Section 2.1.1
and whose efficient simulation is the main subject of this arti-
cle. In Section 2.1.2, we present an application of this spike-based
BCPNN learning rule in a modular network that constitutes a
reduced full-scale model of the cortex.

2.1.1. Spike-based BCPNN
Spike-based BCPNN (Wahlgren and Lansner, 2001; Tully et al.,
2014) is implemented by a set of local synaptic state variables that
keep track of presynaptic, postsynaptic, and synaptic (i.e., corre-
lated) activity over three different time scales, by passing spiking
activity over three low pass filters, see Figure 1. Here and through-
out this paper the three sites (pre-, postsynaptic and synaptic) are
denoted by indices i, j, and ij, respectively. In the first process-
ing stage, the pre- and postsynaptic spiking activity represented
by spike trains Si (resp. Sj) is low pass filtered into the Zi and Zj

traces (Figure 1B), with time constants τzi and τzj in a range of
5 ms to 100 ms, which corresponds to typical synaptic decay time
constants for various receptor types.

In the second stage, the Z traces are passed on to the E or eli-
gibility traces and low pass filtered with time constant τe. Here,
a separate trace Eij is introduced to filter the coincident activity
of the Z-traces, see Figure 1C. The E traces typically have slower
dynamics than the Z traces (τe ≈ 20− 1000 ms), and can be
motivated to provide a mechanism for delayed reward learning
(cf. Tully et al., 2014).

The E traces in turn are low pass filtered into the P traces
(Figure 1D). These tertiary traces have the slowest dynamics with
time constant τp ranging from 1 s to several 100 s, even higher
values are possible. The P traces correspond to the probabilities
of the units being active or co-active in the original non-spiking
BCPNN formulation (Lansner and Holst, 1996). In a final step the
P traces are used to compute the synaptic weight wij and the post-
synaptic bias βj (Figure 1E). The formulas for wij and βj contain
the parameter ε, which originates from a minimum spiking activ-
ity assumed for the pre- and postsynaptic units (cf. Tully et al.,
2014), and which has the side effect to avoid division by zero in
the weight formula.

The global parameter κ in the dynamics of P traces can
take any non-negative value and controls the learning, i.e., it
determines how strong recent correlations are stored. When the
learning rate κ equals zero, there is no learning, as the P traces do
not change at all, and thus neither do the synaptic weight wij and
the postsynaptic bias βj. We assume that κ only undergoes dis-
crete and seldom changes, mostly when learning is switched on
or off. Hence, while κ is constant and non-zero, the dynamics of
the P traces can be expressed with a modified time constant τ ∗p :

τ ∗p
dP

dt
= E − P, τ ∗p =

τp

κ
(1)

We refer to Tully et al. (2014) for establishing the link between
the spike-based and the probabilistic BCPNN learning rule, as
well as for details on the biological equivalents of the processing
stages. Also, note that in some cases the second low pass filter is
not actually used, so that the Z traces are directly passed to the P
traces.

2.1.2. Reduced modular model of the cortex
As an application of the spike-based BCPNN we consider a
modular abstract network model, motivated by the columnar
structure of the cortex, that was already presented in Lansner
et al. (2014). One assumption is that the smallest functional units
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FIGURE 1 | Equations and sample traces of the spike-based BCPNN

learning rule. (A) Presynaptic (red) Si and postsynaptic (blue) Sj spike trains
serve as input to a BCPNN synapse. (B) The input spike trains are low pass
filtered into the Z traces with time constants τzi ,τzj . (C) E traces compute the
low-pass filter of Z traces with τe. The Eij variable (black) tracks coincident

pre- and postsynaptic activity. (D) E traces are passed on to the P traces and
low-pass filtered with τp . (E) The P traces are used to compute the
postsynaptic bias βj and the synaptic weight wij , which can vary between
positive and negative values. Usually, the dynamics get slower from B to D:

τzi , τzj ≤ τe ≤ τp. Figure redrawn from Tully et al. (2014).

in the mammalian cortex are not single neurons but so-called
minicolumns. A minicolumn is formed by a local population
of some hundred neurons with enhanced recurrent connectivity
and similar receptive fields, so that these neurons are assumed to
have quite correlated output. An example would be a minicol-
umn encoding a certain orientation during processing in primary
visual cortex.

In the order of 100 minicolumns are aggregated in a larger
columnar structure, the cortical hypercolumn, which contains in
the order of 10,000 neurons. Within a hypercolumn the minin-
columns compete in a soft winner-take all (soft-WTA) fashion
through feedback inhibition, so that most of the time only one
minicolumn shows high firing activity while the others are mostly
silent. Minicolumns can be viewed to encode a discrete value of an
attribute specific to each hypercolumn.

In our reduced, abstract model, each minicolumn is repre-
sented by one stochastically spiking minicolumn unit (MCU).
Only connections outside a hypercolumn are implemented: The
internal connections between neurons of a minicolumn are hid-
den within the MCU, while the competitive feedback inhibition
of the 100 MCUs within a hypercolumn unit (HCU) is hardwired
by means of a normalization of activity per HCU (cf. Equation
5 below). In turn, for the implementation of the incoming long-
range synaptic connections, which on the neuron level typically
make up half of the between 103 and 104 incoming connections
in total, we assume that each MCU propagates its spikes to 10,000
other MCUs, and has appropriately as many incoming connec-
tions. These connections are patchy in the sense that each MCU
projects onto 100 hypercolumns and delivers spikes to all 100
MCUs of each target HCU. The connection scheme is motivated
as follows: Long-range connections are provided by large layer

5 pyramidal cells, which make up around 10% of a minicol-
umn. Each of those cells forms synaptic connections to clusters
of far away neurons in horizontal direction. The diameter of these
clusters approximately corresponds to the dimension of a hyper-
column. In real cortex, each of the large pyramidal cells generates
around 10 of these patches (Houzel et al., 1994; Binzegger et al.,
2007), which motivates the 100 target HCUs per MCU, assuming
that one MCU comprises one hundred neurons. All of these con-
nections between MCUs are subject to the spike-based BCPNN
learning equations of Figure 1.

At a higher level, HCUs represent independent network mod-
ules between which spikes are transmitted. Each HCU consists of
100 MCUs and 1 million plastic synapses organized in an array
with 104 inputs and 100 outputs, as illustrated in Figure 2. The
pre- and postsynaptic states of the BCPNN model can therefore
be implemented at the margin of the array, while the synaptic
traces Eij,Pij, and wij form the array, thus representing the largest
amount of state variables. The minicolumn units integrate the
incoming spiking activity, which is then turned into a spiking
probability of each unit. In particular, presynaptic input leads to a
synaptic current ssyn,j (Equation 2), which together with the bias
βj and a specific external input Ij sums up to the support value sj

for each minicolum unit j in Equation (3):

τzi

dssyn,j(t)

dt
=
∑

i

wij(t)Si(t)− ssyn,j(t) (2)

sj(t) = βj(t)+ ssyn,j(t)+ Ij(t) . (3)

The low-pass filtered version of Equation (3) gives the
“membrane potential” mj of each MCU:
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FIGURE 2 | Structure of one hypercolumn unit (HCU) of the reduced

cortex model. Each HCU contains 100 stochastic minicolumn units (MCUs)
that compete in a winner-take-all fashion. Input spikes from 10,000 MCUs
of other HCUs connect via 1 million BCPNN synapses to all 100 MCUs of
the HCU. Each MCU sends its output spikes to 100 other HCUs. In order to
store all Z ,E,P traces and synaptic weights of the HCU, more than 12 MB
memory is required when using floating point numbers with
single-precision.

τm
dmj(t)

dt
= sj(t)−mj(t) , (4)

where τm is the membrane time constant in the order of 10 ms. In
other words, the MCUs are leaky-integrators (Equation 4) with
three different input currents (Equation 3): The bias βj(t) repre-
sents the prior contribution to the unit’s activation irrespective of
the current synaptic input, determined by the past spiking activity
of the unit itself via the postsynaptic traces (Zj, Ej, Pj, cf. Figure 1).
The synaptic input is implemented as an exponentially decaying
synaptic current ssyn,j(t) (Equation 2), which - at a presynaptic
spike of input i - is increased by synaptic weight wij(t) learned
according to the Equations in Figure 1. Last, the external input
Ij(t) allows a specific stimulation of single units.

All M MCUs of a hypercolumn unit are organized as a
probabilistic soft-WTA circuit. The activation oj of each unit is
computed as:

oj =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

eγmmj∑M
k= 1 eγmmk

, if
∑m

k= 1 eγmmk > 1

eγmmj otherwise

, (5)

The gain factor γm controls the strength of the soft-WTA filter-
ing process, the higher γm the higher the activation-ratio between
the winning unit and the remaining units. The normalization in

Equation (5) ensures that on average not more than 1 MCU is
active at the same time.

The activation oj then translates into the instantaneous
Poisson firing rate rj for each unit:

rj(t) = oj(t) · rmax,HCU (6)

where rmax,HCU is the maximum firing rate per HCU. The average
spiking frequency in mammalian cortex is quite sparse, with an
average spike rate on the order of 0.1 Hz (Lennie, 2003). In our
full scale HCU with 100 MCUs the average activity level would
be around 1 Hz (thus rmax,HCU = 100 HZ), and the difference is
explained by the fact that one MCU represents around 10 layer 5
pyramidal cells.

2.2. SIMULATION STRATEGIES
2.2.1. Fixed step size simulation
The typical approach for the simulation of spiking neural net-
works is simulation with fixed step size, where all states are
synchronously updated at every tick of a clock (Brette et al., 2007;
Henker et al., 2012). Usually, in such time-driven simulation, one
uses numerical integration methods like Euler or Runge-Kutta to
advance the state by one time step dt.

For our reference fixed step size simulation we follow Lansner
et al. (2014) and use the explicit Euler method for the numeri-
cal integration with a rather long time step of dt =1 ms. As the
MCUs are stochastic, the instantaneous firing rate rj (Equation 6)
is transformed into a firing probability per time step, which is
then compared to a uniform random number between 0 and 1 to
generate spikes. The 1 ms time step is also used in state-of-the-
art real-time digital neuromorphic systems like the SpiNNaker
(Furber et al., 2014) and the Synapse hardware (Merolla et al.,
2014). For completeness, we also present results with 0.1 ms step
size, which is commonly used for the simulation of spiking neural
networks.

2.2.2. Event-driven simulation
In Sections 2.3.1 and 2.3.3 we provide analytical solutions for the
spike-based BCPNN model. For those simulations we mix the
time-driven and event-driven approach: We restrict spike times
to multiples of the simulation time step dt. The stochastic MCUs
(Equations 2–6) are evaluated as for the time-driven approach,
which requires that also the βj is computed at every time step. In
contrast, the states of the BCPNN synapses (Figure 1) are only
updated at the occurrence of a pre- or postsynaptic event.

2.3. ANALYTICAL SOLUTIONS OF SPIKE-BASED BCPNN
The simulation of spike-based BCPNN with a fixed step size
method is cost-intensive and requires very frequent read and
write of the state variables from and to memory. Therefore, we
first provide the rather straightforward analytical solution of the
BCPNN equations in Section 2.3.1, allowing an exact event-
driven simulation scheme. As intermediate step, we rewrite the
BCPNN dynamics as a spike response model in Section 2.3.2,
which then provides the basis for a second analytical solution
with reduced number of operations (Section 2.3.3). Although not

Frontiers in Neuroscience | Neuromorphic Engineering January 2015 | Volume 9 | Article 2 | 110

http://www.frontiersin.org/Neuromorphic_Engineering
http://www.frontiersin.org/Neuromorphic_Engineering
http://www.frontiersin.org/Neuromorphic_Engineering/archive


Vogginger et al. Reduced computational footprint for BCPNN

employed in the experiments in this article, discrete changes of
the learning rate κ must be considered for the completeness of
the two analytical solutions, which is done in Appendix A3 .

2.3.1. BCPNN solution: analytical I
For the event-driven simulation of BCPNN, the update of the
state variables is only triggered by events (usually pre- or postsy-
naptic spikes). For each state variable one requires the time of its
last update tlast, in contrast to the time-driven simulation, where
all states correspond to the same global time. Event-driven sim-
ulations are especially efficient if the update of the states from
tlast to the current time t can be solved analytically. Without fur-
ther derivation, we give the analytic solution to advance the Z, E
and P traces by �t = t − tlast from time tlast to t, provided that
there is no spike between tlast and t. For the presynaptic traces the
solutions are

Zi(t) = Zi(tlast) · e−
�t
τzi + Si(t) (7)

Ei(t) = Ei(tlast) · e−�t
τe + Zi(tlast)ai

(
e
− �t

τzi − e−
�t
τe

)
(8)

Pi(t) = Pi(tlast) · e−
�t
τ∗p + aibi

(
e
− �t

τzi − e
−�t

τ∗p
)

Zi(tlast)

+
(

Ei(tlast)− aiZi(tlast)
)

c

(
e−

�t
τe − e

−�t
τ∗p
)

, (9)

with the following coefficients used for brevity:

ai = τzi

τzi − τe
, bi = τzi

τzi − τ ∗p
, c = τe

τe − τ ∗p
. (10)

In Equation (7) Si describes the presynaptic spike train taking

value 1 at the spike time t
f

i and value 0 otherwise, formally

Si(t) =∑
t

f
i

δ(t − t
f

i ) , (11)

where δ(·) denotes a Dirac pulse. We note that Equation (8) is
only valid when τzi �= τe, Equation (9) furthermore requires that
τ ∗p is different from both τzi and τe. For the sake of simplicity we
restrict ourselves within this article to time constants fulfilling this
condition, but give the solution for the other cases in Appendix A.

The update formulas for the postsynaptic traces Zj, Ej, and
Pj can be obtained by replacing indices i by j in the presynaptic
update formulas.

Accordingly, the update of the synaptic traces Eij and Pij is
given by:

Eij(t) = Eij(tlast)·e−�t
τe + Zi(tlast)Zj(tlast)aij

(
e
− �t

τzij − e−
�t
τe

)
(12)

Pij(t) = Pij(tlast) · e−
�t
τ∗p + aijbij

(
e
− �t

τzij − e
−�t

τ∗p
)

Zi(tlast)Zj(tlast)

+
(

Eij(tlast)− aijZi(tlast)Zj(tlast)
)

c

(
e−

�t
τe − e

−�t
τ∗p
)

, (13)

with shortcuts

τzij =
(

1

τzi

+ 1

τzj

)−1

, aij =
τzij

τzij − τe
, bij =

τzij

τzij − τ ∗p
.

(14)

Note that, on purpose, Equations (9, 13) were not further sim-
plified to ease the comparison with the spike response model
formulation of the BCPNN model in the next section. Again, we
restrict ourselves to parameter sets where none of the involved
time constants (τzij , τe and τ ∗p ) are equal. Note, however, that τzi

and τzj may be equal.
The analytical solution of the BCPNN equations derived in this

section is henceforth denoted as analytical I method.

2.3.2. Spike response model formulation of the BCPNN model
As starting point for a second event-driven analytical solution
with less operations, we make use of the linearity of the BCPNN
differential equations and formulate the dynamics as a spike
response model, in accordance with the work of Gerstner and
Kistler (2002). The presynaptic traces can be written as a response

to spike times t
f

i :

Zi(t) =
∑

t
f

i

ζi(t − t
f

i ), ζi(t) = e
− t

τzi 
(t) (15)

Ei(t) =
∑

t
f

i

αi(t − t
f

i ), αi(t)=ai

(
e
− t

τzi − e−
t
τe

)

(t)(16)

Pi(t) =
∑

t
f

i

πi(t − t
f

i ), πi(t) = ai

[
bi

(
e
− t

τzi − e
− t

τ∗p
)

+ c

(
e
− t

τ∗p − e−
t
τe

)]

(t). (17)

Here 
(·) denotes the Heaviside step function. ζi, αi, and πi are
the spike response kernels for the Zi, Ei and Pi traces. One can
obtain Equations (15–17) from the analytical solution by setting
Zi(tlast) = 1, Ei(tlast) = 0, Pi(tlast) = 0 in Equations (7–9).
The spike response kernels ζi, αi, and πi are shown in the left
panel of Figure 3 as dashed lines. The postsynaptic traces can
be analogously formulated, by replacing i with j in Equations
(15–17).

For the synaptic trace variables Eij and Pij the spike response
formulation becomes more sophisticated: Therefore, we con-
sider the product ZiZj, which after inserting the spike response
formulation of Zi and Zj is given by:

ZiZj =
∑

t
f

i

ζi(t − t
f

i ) ·
∑

t
f

j

ζj(t − t
f

j ) (18)

=
∑

t
f

i

∑
t

f
j

e
− t− t

f
i

τzi e
− t− t

f
j

τzj 
(t − t
f

i )
(t − t
f

j ) (19)
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FIGURE 3 | BCPNN dynamics in two different representations for an

example spike train. (A) Presynaptic traces according to the original
model formulation (Zi , Ei , Pi ), as expressed in Equations (7–9). (C)

“Exponential” traces Z∗i , E∗i , P∗i used for the analytical II solution with

minimal number of calculations, according to Equations (32–34). Dashed
lines in A and C denote spike response kernels, i.e., responses to a single
spike. (B) Transformation between the two different representations
(Equations 29, 30, 46).

=
∑

t
f

i

Zj(t
f

i )e
−(t− t

f
i )( 1

τzi
+ 1

τzj
)

(t − t

f
i )

+
∑

t
f

j

Zi(t
f

j )e
−(t− t

f
j )( 1

τzi
+ 1

τzj
)

(t − t

f
j ) . (20)

For Equation (20) we employed the fact that for the spike response

of a presynaptic spike at time t
f

i , we can neglect the contribution

of future postsynaptic spikes with t
f

j > t
f

i , and vice versa. Hence,
similar to the Zi and Zj, the product ZiZj can be written by means
of the spike kernels ζij:

ZiZj =
∑

t
f

i

Zj(t
f

i )ζij(t − t
f

i )+
∑

t
f

j

Zi(t
f

j )ζij(t − t
f

j ),

ζij(t) = e
− t

τzij 
(t). (21)

In contrast to Zi and Zj, where all spikes have equal strength, for

ZiZj the spike response of each presynaptic spike t
f

i is scaled by the

current value of the postsynaptic Zj trace, respectively by Zi(t
f

j )

for each postsynaptic spike t
f

j .
As the Eij trace is just a low-pass filtered version of the prod-

uct ZiZj, we can analogously write the Eij and Pij traces as spike
response models:

Eij(t) =∑
t

f
i

Zj(t
f

i )αij(t − t
f

i )+∑
t

f
j

Zi(t
f

j )αij(t − t
f

j ) (22)

Pij(t) =∑
t

f
i

Zj(t
f

i )πij(t − t
f

i )+∑
t

f
j

Zi(t
f

j )πij(t − t
f

j ), (23)

with spike response kernels:

αij(t) = aij

(
e
− t

τzij − e−
t
τe

)

(t) (24)

πij(t) = aij

[
bij

(
e
− t

τzij − e
− t

τ∗p
)
+ c

(
e
− t

τ∗p − e−
t
τe

)]

(t) .(25)

We remark that Equations (20, 22, 23) are ambiguous for the

limit case of simultaneous pre- and postsynaptic spikes (t
f

i = t
f

j ),
as it is unclear whether the sampled Zi and Zj correspond to
the values directly before or after the spikes. This is resolved in
Section 2.3.3.

2.3.3. BCPNN solution with reduced operations: analytical II
For the analytical update of the Z, E and P traces derived in
Section 2.3.1, we observe that especially the update of P traces
is expensive in terms of number of operations. In the presented
BCPNN architecture, each MCU has approximately 10,000 inputs
and correspondingly as many outputs. It would therefore be of
great benefit to reduce the computational cost of the update of
the synaptic traces. We achieve this by transforming the BCPNN
variables to a new set of state variables that all decay exponen-
tially over time and are only increased when a spike occurs. This
is motivated by the spike response model formulation (Section
2.3.2), where the Zi, Ei, Pi traces are superpositions of the spike
response kernels ζi, αi, and πi, which in turn are linear com-

binations of the exponential functions e
− t

τzi , e−
t
τe , and e

− t
τ∗p .

Due to the linearity of the system we can choose these expo-
nentials as new state variables to equally describe the BCPNN
dynamics.

This second analytic solution of the BCPNN model is hence-
forth called analytical II in this paper.

2.3.3.1. Presynaptic traces. For the presynaptic side, we intro-
duce the new state variables Z∗i , E∗i , and P∗i :
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Z∗i (t) =
∑

t
f

i

e
− t− t

f
i

τzi 
(t − t
f

i ) (26)

E∗i (t) =
∑

t
f

i

e−
t− t

f
i

τe 
(t − t
f

i ) (27)

P∗i (t) =
∑

t
f

i

e
− t− t

f
i

τ∗p 
(t − t
f

i ) , (28)

which can be used to express Zi, Ei, and Pi:

Zi(t) = Z∗i (t) (29)

Ei(t) = ai
(
Z∗i (t)− E∗i (t)

)
(30)

Pi(t) = ai
[
bi
(
Z∗i (t)− P∗i (t)

)+ c
(
P∗i (t)− E∗i (t)

)]
. (31)

The time course of the new state variables as a response to an
example spike train is shown in Figure 3C. Note that we have
introduced Z∗i although it is identical to Zi in order to empha-
size the concept of the new representation with exponentially
decaying state variables.

Instead of performing an event-based update of the original
state variables Zi, Ei, and Pi, we can update Z∗i , E∗i , and P∗i : Given

that there is no spike between tlast and t, the state evolves from
tlast to t, with �t = t − tlast, as:

Z∗i (t) = Z∗i (tlast) · e−
�t
τzi + Si(t) (32)

E∗i (t) = E∗i (tlast) · e−�t
τe + Si(t) (33)

P∗i (t) = P∗i (tlast) · e−
�t
τ∗p + Si(t) (34)

Thus, between any two times we only have to calculate the expo-
nential decay with τzi , τe, and τ ∗p . At a new spike, we add 1 to all
of the new state variables, compared to the classical lazy model,
where only Zi is increased (cf. Figure 3). Of course, equivalent
new state variables and the same updating scheme can be used for
the postsynapic side.

2.3.3.2. Synaptic traces. For updating the synaptic variables,
an analogy can be made to the presynaptic traces. Again, we
introduce new state variables E∗ij and P∗ij :

E∗ij(t)=
∑

t
f

i

Zj(t
f

i )e−
t− t

f
i

τe 
(t−t
f

i )+
∑

t
f

j

Zi(t
f

j )e−
t− t

f
j

τe 
(t−t
f

j ) (35)

P∗ij(t)=
∑

t
f

i

Zj(t
f

i )e
− t− t

f
i

τ∗p 
(t−t
f

i )+
∑

t
f

j

Zi(t
f

j )e
− t− t

f
j

τ∗p 
(t−t
f

j ) (36)

These, together with Z∗i and Z∗j , can be used to express Eij and Pij:

Eij(t) = aij

(
Z∗i (t)Z∗j (t)− E∗ij(t)

)
(37)

Pij(t) = aij

[
bij

(
Z∗i (t)Z∗j (t)−P∗ij(t)

)
+ c

(
P∗ij(t)−E∗ij(t)

)]
(38)

We first consider the event-based update of the new synaptic state
variables E∗ij and P∗ij for a presynaptic spike only (which is equiv-
alent to a postsynaptic spike only). The case of simultaneous pre-
and postsynaptic spikes is treated separately afterwards. In order
to advance E∗ij and P∗ij from their last updated time tlast to t, with

�t = t − tlast and no spike within this interval, the update goes
as follow:

E∗ij(t) = E∗ij(tlast) · e−�t
τe + Si(t) · Zj(t) (39)

P∗ij(t) = P∗ij(tlast) · e−
�t
τ∗p + Si(t) · Zj(t), (40)

i.e., E∗ij and P∗ij decay exponentially from their last states and, for

the case of a presynaptic spike t
f

i at time t, increase by the sampled
postsynaptic Zj(t) trace. Here lies the difference to the presynaptic
update, where each spike has the same effect, whereas the synaptic
E∗ij and P∗ij traces are increased depending on the current Zj value
of the postsynaptic side, as the synaptic traces keep track of the
overlap of pre- and postsynaptic activity.

The case of concurrent pre- and postsynaptic spikes is not
well defined in the formulas for E∗ij and P∗ij (Equations 35, 36)
and in the spike response model formulation (Equations 22, 23).
Therefore, we turn back to the product ZiZj, which at simultane-
ous pre- and postsynaptic spikes is increased by

�ij = Z+i Z+j − Z−i Z−j . (41)

Here Z−i (Z−j ) denotes the Z-trace before the evaluation of

a presynaptic (postsynaptic) spike, and Z+i (Z+j ) after the
evaluation:

Z+i = Z−i + Si , Z+j = Z−j + Sj , (42)

where Si (Sj) is only non-zero if there is a presynaptic (postsy-
naptic) spike at the current time. Inserting Equation (42) into
Equation (41) yields

�ij = (Z−i + Si)(Z−j + Sj)− Z−i Z−j (43)

= SiZ
−
j + SjZ

−
i + SiSj (44)

= SiZ
−
j + SjZ

+
i . (45)

The increment �ij not only describes the change of ZiZj, but also
applies to updates for the new synaptic traces E∗ij and P∗ij . Equation
(44) can be used when both spikes are evaluated synchronously,
Equation (45) when both spikes are evaluated consecutively, i.e.,
when first the presynaptic spike is processed (first summand),
and afterwards the postsynaptic spike (second summand). For the
event-based benchmark simulations (Sections 2.2.2 and 3.1.2),
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where all spikes are discretized to multiples of dt, the latter strat-
egy for �ij is used for the update in the synapse array: first all
presynaptic spikes are evaluated, then all postsynaptic spikes.

2.3.3.3. Initialization of exponential state variables. This sec-
tion explains how to set the initial values of the new state variables
(Z∗, E∗, P∗) from a given set of Z, E, P traces. Therefore, we first
shorten the transformation formula of Pi (Equation 31) with new
coefficients as:

Pi = λziZ
∗
i + λeiE

∗
i + λpiP

∗
i (46)

λzi = aibi , λei = −aic , λpi = ai (c − bi) . (47)

For brevity, we have left out the time dependence of the states.
The equivalent simplification can be applied for the postsynap-
tic traces. Similarly, the synaptic traces (Equations 37, 38) can be
written as

Eij = aij

(
Z∗i Z∗j − E∗ij

)
(48)

Pij = λzijZ
∗
i Z∗j + λeijE

∗
ij + λpijP

∗
ij , (49)

with coefficients

λzij = aijbij , λeij = −aijc , λpij = aij
(
c − bij

)
.(50)

To turn the set of Z, E, P variables into the new state variables
(Z∗, E∗, P∗), the following reverse transformation holds:

Z∗i = Zi (51)

E∗i = −
Ei

ai
+ Z∗i (52)

P∗i =
1

λpi

(
Pi − λziZ

∗
i − λeiE

∗
i

)
(53)

Note that the transformation has to be performed in the above
order. The synaptic values are set as follows:

E∗ij = −
Eij

aij
+ Z∗i Z∗j (54)

P∗ij =
1

λpij

(
Pij − λzijZ

∗
i Z∗j − λeijE

∗
ij

)
(55)

2.4. BENCHMARKS
To validate our implementation of the BCPNN we used sev-
eral benchmarks, targeting either simulation run time or accu-
racy. As infrastructure for the simulations we used a cluster
with Intel®Xeon®CPU E5-2690 2.90 GHZ. All benchmarks were
implemented in C++ and compiled with GCC 4.7.1. All simula-
tions were single-threaded. The time constants and other BCPNN
parameters used for the benchmarks are listed in Table 1.

2.4.1. Simulation run time
To compare the computational cost of the different update strate-
gies, we simulated the synaptic dynamics of a full hypercolumn
with 10,000 inputs and 100 MCUs, see Figure 2. For both pre-

Table 1 | Parameters used in the execution time and accuracy

benchmarks.

Synapse model

Parameters τzi =10 ms presynaptic Z trace time constant

τzj =15 ms postsynaptic Z trace time constant

τe = 20 ms E trace time constant

τp = 1000 ms P trace time constant

κ = 1 learning rate

ε = 0.001 minimum activity

Note that the values represent only one possible parameter set. Plausible ranges

for the time constants are given in the text (Section 2.1.1). The execution time is

not affected by the choice of the parameters, but, of course, the accuracy results

may change when using different parameters.

and postsynaptic units we use independent Poisson spike trains,
which are pre-generated and then read from a file to the main pro-
gram, so that equal spike trains are used for the different update
strategies. The simulation runs for 10 s, the Poisson rate is swept
over a range of 0.01–100 Hz. For each rate and update strategy we
assess the execution time per simulated second as the average of 5
runs with different random seeds. Although independent Poisson
spike trains for the pre- and postsynaptic units will not be the case
in realistic BCPNN applications including learning and retrieval
of patterns, they sufficiently model the probabilistic nature of the
MCUs and are thus favorable compared to regular spike trains.
In order to measure only the computational cost of the synaptic
updates, the stochastic MCUs are not simulated in this bench-
mark. However, for a fair comparison of the update strategies,
we calculate the support value sj (Equation 3) for all postsynap-
tic units at each time step, so that all βj are calculated at every
time step, and the weights wij are computed whenever a spike of
presynaptic unit i arrives.

2.4.2. Accuracy comparison
As many published results are based on an explicit Euler method
(see e.g., Johansson and Lansner, 2007; Berthet et al., 2012;
Kaplan and Lansner, 2014), we compare this numerical method
to an exact analytical one in Section 3.2.2. Furthermore, we inves-
tigate the influence of using fixed-point operands with different
number of bits instead of floating point numbers with double
precision. For this purpose, we implemented a single BCPNN
synapse in C++ with templates allowing the comparison of dif-
ferent number formats, making use of an in-house developed
fixed-point library.

As stimuli for the BCPNN synapse we generated pre- and post-
synaptic spike trains according to a homogeneous Poisson process
with rate r. For the accuracy benchmarks not only the update
frequency is important but also that different dynamical ranges
of the BCPNN variables can be triggered, which requires differ-
ent levels of correlation. To achieve that, we follow Kuhn et al.
(2003) and create pre- and postsynaptic Poisson spike trains that
share a fraction of c correlated spike times. Therefore, we cre-
ate one correlated Poisson spike train with rate c · r, and two
independent Poisson spike trains with rate (1− c) · r for the pre-
and postsynaptic side. The correlated spike times are then added
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to both independent spike trains. To avoid a systematic zero-lag
between pre- and postsynaptic spike times, the correlated spike
times of the postsynaptic side are jittered according to a Gaussian
distribution with standard deviation σ = 5 ms.

We run multiple simulations to investigate the effects of the
Euler method and fixed-point operands, respectively. For each
accuracy setting, stimuli are generated using 11 correlation fac-
tors c ranging from 0 to 1 in intervals of 0.1. For each of the
different correlation factors, 10 different seeds are used for the
Poisson processes, resulting in 110 simulations per accuracy set-
ting. The stimuli are generated with an average rate of 1 Hz and
the duration of each simulation is 1000 s. For the Euler method,
spike times are set to multiples of the time step to avoid time dis-
cretization errors (Henker et al., 2012). For fixed-point operands,
spike times are generated with a resolution of 0.01 ms.

To assess the accuracy of the different implementations, we
consider absolute errors eabs:

eabs = |x − x̂| , (56)

where x denotes the exact value (analytical solution with float-
ing point double precision) and x̂ is the approximation (either
the Euler solution or the analytical solution with fixed-point
operands). By point wise comparing each of the state variables
(e.g., wij, Pij . . . ), the accuracy can be assessed. The mean absolute
error eabs is the average of the single absolute errors determined
at each time of a pre- or postsynaptic spike over all simulation
runs. The normalized mean absolute error (NMAE) is the mean
absolute error divided by the range of observed values x:

NMAE = eabs

xmax − xmin
, (57)

which allows to compare the accuracy of several variables with
different scales.

3. RESULTS
The two analytic solutions for spike-based BCPNN derived in
Section 2.3 allow an efficient event-driven simulation of BCPNNs.
In Section 3.1 we investigate how this reduces the computational
footprint of BCPNN learning both formally and empirically.
Aiming also for a small memory footprint, we evaluate the use
of fixed-point numbers for the storage of BCPNN state variables,
and compare the introduced discretization errors with the errors
caused by the fixed step size simulation with the Euler method
(Section 3.2).

3.1. COMPARISON OF SIMULATION STRATEGIES
In this section we compare the computational efficiency of the
two analytical solutions of the BCPNN equations against each
other and to the commonly used fixed step size implementation
with the Euler method. We also investigate the benefit of using
look-up tables for exponential decays in the analytical II method.

3.1.1. Number of operations
We start with a formal comparison between the two analytical
update solutions by counting the steps of calculation required
for an event-based update in each representation. Therefore, we

categorize the operation into three classes: ADD combines both
additions and subtractions, MUL stands for multiplications and
divisions, EXP for calculations of the exponential function, and
LOG for the natural logarithm.

Table 2 lists the number of operations needed by the analyti-
cal I and analytical II methods for different tasks: For the update
of the presynaptic state variables (Zi, Ei, Pi resp. Z∗i , E∗i , P∗i ) at an
incoming spike, most notably, the analytical II method requires
6 MUL and 3 ADD operations less than the analytical I method.
Instead, when the Pi value is retrieved, e.g., to calculate the synap-
tic weight wij, the analytical I method requires zero operations,
while the analytical II method requires 2 ADD and 3 MUL oper-
ations to calculate Pi from Z∗i , E∗i , and P∗i . Here, the difference
between the two strategies manifests: while the analytical II is
more efficient when the states are updated, it requires additional
operations to determine the original states. Nevertheless, when
adding up the counts of both tasks (pre-update and retrieval
of Pi), e.g., when βj is updated after a postsynaptic spike, the
analytical II is still much more efficient than the analytical I
method.

Table 2 | Arithmetic operations per task for different analytical update

methods.

Task Operation Analytical I Analytical II

Pre-update Equations (7–9) Equations (32–34)

ADD 7 3

MUL 12 6

EXP 3 3

Retrieve Pi Equation (46)

ADD – 2

MUL – 3

Syn-update Equations (12, 13) Equations (39, 40)

ADD 6 2

MUL 13 5

EXP 3 2

Retrieve Pij Equation (49)

ADD – 2

MUL – 4

Update of wij

at pre-spike
ADD 22 14

MUL 39 29

EXP 9 8

LOG 1 1

Update of βj

at post-spike
ADD 8 6

MUL 12 9

EXP 3 3

LOG 1 1

ADD, additions and subtractions; MUL, multiplications and divisions; EXP, com-

putations of exponential function; LOG, natural logarithm. The operation counts

of the analytical I method correspond to optimized versions of the referenced

formulas using pre-calculated coefficients and intermediate steps. The different

tasks are further specified in the text.
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Similar results are found for the update of the synaptic state
variables (Eij, Pij resp. E∗ij, P∗ij), where the advantage of the ana-

lytical II over the analytical I is even larger, cf. Table 2. Again, the
analytical II strategy needs additional steps of computation for the
retrieval of Pij. For the typical case of a presynaptic spike, where all
traces and the weight are updated (task “update of wij after pre-
spike”) and which includes the retrieval of all P-traces, the ana-
lytical II requires considerably less operations than the analytical
I method. Note that the speedup of the analytical II is even higher
when processing a post-synaptic spike, as then the weight needs
not be calculated and thus the P traces need not be retrieved.

If we consider an array of BCPNN synapses, as in a hypercol-
umn unit of the reduced cortex model (Figure 2), where the pre-
and postsynaptic traces are handled at margins of the array, it is
the update and retrieval of the synaptic BCPNN state variables
that make up the majority of the calculations. Assuming equal
mean firing rates for the pre- and postsynaptic units, the Pij val-
ues need to be retrieved on average only at every second spike
event. In that case, the analytical II method requires roughly half
the number of basic arithmetic operations (ADD and MUL) of
the analytical I method, but only slightly less calculations of the
natural exponential function.

3.1.2. Simulation run time
As a complement to the formal comparison, we measured the
simulation run time required to simulate the update of synapses
of one HCU with 10,000 inputs and 100 outputs for the different
update strategies. The results for a sweep over the Poisson firing
rates of the inputs and outputs, which is described in detail in
Section 2.4.1, are shown in Figure 4A. As expected, for the fixed
step size simulation with explicit Euler method and dt = 1 ms the
execution time depends only slightly on the spike frequency: It
takes ≈ 2.4 s to simulate 1 s of the network for firing rates up
to 10 Hz, only for higher rates the run time increases signifi-
cantly, which can be attributed to the more frequent calculation
of synaptic weights. In contrast, for the event-based methods the

execution time strongly depends on the firing activity: For very
low spike rates, there is a baseline computational cost that can be
attributed to the calculation of all postsynaptic biases βj and sup-
port values sj (Equation 3) at every time step (cf. Section 2.4.1).
For Poisson rates of 0.1 Hz and higher, the execution time scales
linearly with the firing rate. The update strategy with reduced
operations (analytical II, green curve) clearly outperforms the
conventional analytical update (analytical I, blue curve). For a
typical average firing rate of 1 Hz of MCUs in a HCU (cf. Lansner
et al., 2014) the analytical II strategy is more than 3 times faster
than the real-time dynamics of the model, while the analytical
I update runs approximately at real time. We remark that we
optimized the C++ code of the analytical II update as good as
possible, while the analytical I code is not optimized to the end.
Thus, the results of latter can not be taken as final and should
rather be interpreted as an intermediary result.

We compare the run time of the event-based methods directly
to the fixed step size simulation in Figure 4B. For low spiking
activity, the event-based methods are up to 100 times faster than
the fixed step size method. At 1 Hz the analytical II strategy
(green curve) runs more than 8 times faster than the simula-
tion with Euler. Only for firing rates higher than 20 Hz the fixed
step size approach is competitive with, respectively faster than the
analytical II method.

Additional results for a 0.1 ms time discretization are provided
in Appendix A4, showing a much higher speedup of event-driven
methods against the fixed step size method.

3.1.3. Look-up tables for exponential functions
In another simulation we investigated the benefit of using look-up
tables (LUTs) for the exponential functions instead of computing
the exponential at each event. This is motivated by the number
of exponential decays calculated per update (cf. Table 2), as well
as by a profiling of the implemented C++ program which shows
that a huge amount of simulation time is spent in the compu-
tation of the exponential function. Look-up tables are especially

FIGURE 4 | Speed comparison of different simulation strategies for

spike-based BCPNN: fixed step size simulation with explicit Euler
method with 1 ms time step (Euler, black curve), event-driven simulation
with analytical update (analytical I, cf. Section 2.3.1, blue) and analytical
update with exponential state variables (analytical II, cf. Section 2.3.3),
with and without using look-up tables (LUTs) for the exponential
function (red, resp. green). (A) Execution time for simulating a full

hypercolumn unit with 1 million BCPNN synapses for 1 s with different
Poisson firing rates applied to both pre- and postsynaptic units of the
HCU (cf. Figure 2). (B) Speedup of event-based simulation methods
with respect to the fixed step size simulation with Euler method in A.
Look-up tables were implemented for the exponential decay of type
exp (− �t

τ
) for the time constants τzi , τzj , τe, τ ∗p . Each LUT had 3000

entries in steps of 1 ms.
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beneficial in the used event-driven simulation (Section 2.2.2)
where spike times are restricted to multiples of the time step dt.
Calculations of the form

LUT(N, τ, dt) = e−
N · dt

τ (58)

are performed very often, where N is the number of time steps
that have elapsed since the last update, and τ is one of the four
involved time constants τzi , τzj , τe, τ

∗
p . In a modified version of

the analytical II implementation, we create look-up tables of
Equation (58) for the four time constants, each with L entries for
N = 1 . . . L. Only if the number of elapsed time steps between
two updates is larger than L, the exponential function Equation
(58) is computed on demand.

The results for using look-up tables in the analytical II method
are included in Figure 4: The implementation with look-up tables
(red curve) speeds up the simulation for Poisson rates starting
from 0.1 Hz, and is up to 3 times faster than the version without
LUTs at 10 Hz spiking activity. Here, the size of the LUTs was cho-
sen as L = 3000, covering update intervals up to 3 s, so that for
a Poisson rate of 1 Hz on average 95 % of the inter spike inter-
vals are handled by the look-up table. For the typical case of 1 Hz
the LUT implementation is 1.9 times faster than the one without
LUTs, 6.6 times faster than real time, and 16 times faster than the
fixed step size simulation with explicit Euler method. For a wide
spectrum of tested firing rates the analytical II solution with look-
up tables is much more efficient than the fixed step size simulation
with Euler, only for a firing rate of 100 Hz the latter performs
slightly better (Figure 4B), so that in practical situations the fixed
step size method becomes dispensable for the simulation of the
abstract BCPNN cortex model.

3.2. FIXED-POINT NUMBERS FOR BCPNN TRACES AND THEIR
ACCURACY

To store all traces of the 1 million BCPNN synapses of a full
HCU, one requires more than 12 MB assuming a single precision
floating point number occupying 4 byte for each state vari-
able (Lansner et al., 2014). Targeting an implementation of the
BCPNN model on neuromorphic hardware, the use of fixed-point
numbers can reduce the number of computational and storage
resources, possibly at the price of loosing precision. Therefore,
we investigate the accuracy of using fixed-point operands to store
the state variables in the event-based simulation with analytical
II method, and compare it to the accuracy of the fixed step size
simulation with the Euler method.

3.2.1. Value range estimation
For a fixed-point implementation of the BCPNN model, it is
important to determine an upper bound of each state variable.
This bound can be used to normalize the variables, so that an
identical fixed-point representation can be used for all.

For a single exponential trace, be it the Zi and Zj traces in the
standard analytical solution or the state variables of the analyti-
cal II solution, an upper bound can be calculated using a regular
spike train with maximum rate rmax. The value of this rate may
be derived from the units’ refractoriness period or as a multiple
of the mean unit firing rate, accounting for short-term firing rate

FIGURE 5 | Value range estimation of the BCPNN states variables:

Traces of the Z , E, and P states for a regular spike train with
frequency of 50 HZ. (A) Presynaptic traces according to the standard
analytical solution (analytical I), as expressed in Equations (7–9). (B)

Exponential traces of the improved analytical solution analytical II,
Equations (32–34). Analytically calculated limits according to Equation
(59) are plotted as dashed lines. Time constants used here:
τzi = 20 ms,τe = 80 ms and τ ∗p = 200 ms.

fluctuations. The upper bound can be calculated from the equilib-
rium state, where exponential decay and instantaneous increase at
a spike equalize:

Zi(tn)
!= Zi(tn+1) = Zi(tn) · e−1/(rmax·τzi ) + Si

⇒ Zi,max = Si

1− e−1/(rmax·τzi )
(59)

The upper bounds of the presynaptic traces are illustrated in
Figure 5A. They very closely match the actual maximums of the
traces according to the employed regular spike train. For the traces
of Ei and Pi, the same maximum as for Zi can be used in good
approximation. This is motivated from the differential equations
of the model given in Figure 1: The worst-case assumption for
Zi from the maximum calculation would be a constant value of
Zi,max. Given this input, the trace of Ei would approach the same
value. The same argument in turn holds for Pi.

For the traces of the analytical II solution, Z∗i , E∗i , and P∗i ,
Equation (59) can be used with according time constants. For
rmax · τ � 1, the maximum can be approximated as rmax · τ for
an increment of Si = 1. The highest absolute value is reached for
the longest time constant, which is τp = 1000 ms in our exam-
ple parameter set. Assuming a refractoriness period of 1 ms, the
worst-case upper bound would be P∗i,max ≈ 1000. For a fixed-
point implementation, a width of 10 integer bits would be suf-
ficient to avoid any unwanted saturation or overflows. It can be
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expected that the actual maximum of P∗i is significantly lower as
it is extremely unlikely that a neuron (resp. a MCU) fires every
1 ms for a multitude of spikes. Thus, for a specific benchmark, a
lower bound may be determined from simulation.

3.2.2. Accuracy comparison
We ran multiple simulations to investigate the effects of the Euler
method and fixed-point operands, respectively. For each accu-
racy setting, a single BCPNN synapse was stimulated by pre- and
postsynaptic Poisson spike trains of 1 Hz average rate. We applied
different levels of correlation between pre- and postsynaptic spike
trains in order to generate wide value ranges of the BCPNN vari-
ables, especially for wij. The simulation setup is described in detail
in Section 2.4.2.

The accuracy results for both Euler method and fixed-point
operands are shown in Figure 6. As accuracy measure, we assess
the normalized mean absolute error (NMAE) as described in
Section 2.4.2. To get an impression of the variable ranges in the
simulations, we give their average, minimum and maximum in
Table 3. Note that we only show the errors for wij and βj (and not
for the Z,E,P traces), as these are the only BCPNN variables that
affect the activation of the postsynaptic units. As expected, the
Euler method exhibits a linearly increasing accuracy with decreas-
ing step size (Figure 6A). The accuracy is worse for the synaptic
weight wij than for the bias βj, as the wij error is affected by the
errors of Pi,Pj, and Pij, while βj only depends on the accuracy of
Pj. For 1 ms step size, which we used for the execution time bench-
marks, the normalized mean absolute error of the synaptic weight
lies far below 1 %. A reason for this relatively small error might
be the exponentially decaying dynamics of the BCPNN variables,
which keeps the accumulation of errors low.

For fixed-point operands, we used calculation with floating
point precision, but quantized each intermediate result for a state
variable to a fixed number of fractional bits. For the time con-
stants and coefficients (Equations 47, 50) we used the highest

available fixed-point precision (32 fractional bits) to minimize
computational errors. This emulates the case that state variables
are stored with limited precision to reduce storage space, but
the arithmetic operations are designed such that they do not
introduce additional numerical errors. Quantization errors can
be modeled as a noise source with amplitude 2−b, where b is the
number of fractional bits. All errors scale according to this noise
source (compare dashed line in Figure 6B). Again, the accuracy
is higher for βj than for wij, but now the ratio between wij and βj

errors is larger than in the Euler simulation.
Comparing these results answers the question what fixed-point

operand resolution is required in our optimized analytical solu-
tion to achieve at least the same accuracy as state-of-the-art Euler
methods. This can be derived from curves with equal mean abso-
lute error, as shown in the lower diagram of Figure 6C. In terms
of scaling, Euler method and fixed-point operands compare as

eabs = AEuler · dt = Afixed · 2−b , (60)

where dt is the step size of the Euler method and AEuler, Afixed

are variable-specific constants. The corresponding line dt = 2−b

is drawn as dashed line in the diagram. As expected from the
previous results, the single errors follow this line, shifted by an
offset. For a time step of dt = 0.1 ms 16 fractional bits or less are

Table 3 | Measured ranges of BCPNN state variables in accuracy

simulations.

Variable Mean Min Max

Pi 0.010 0.001 0.066

Pj 0.015 0.001 0.097

Pij 0.0028 0.000 0.898

wij 1.57 −6.75 5.35

βj −4.38 −6.21 −2.32

FIGURE 6 | Accuracy of fixed step size simulation with Euler method and

event-driven analytic simulation using fixed point operands. The
accuracy of wij and βj is assessed by the normalized mean absolute error
taken over a large set of experiments with the exact analytical solution as
reference, see text for details. (A) Simulation with Euler, dependent on step
size. The dashed line shows the linear scaling: y (dt) = dt · s−1. (B) Analytical
solution with event-driven update (analytical II) using fixed-point
representation with different counts of fractional bits. The dashed line shows

the quantization noise amplitude: y (b) = 2−b . The error bars in A and B

denote the normalized maximum absolute error recorded within all
simulations per setup. (C) Comparison between the errors introduced by the
Euler method and the use of fixed-point numbers with limited number of
fractional bits: For wij and βj the location of equal mean absolute errors is
plotted, depending on the step size for the Euler method, respectively the
number of fractional bits of the fixed-point implementation. Dashed line:
estimated relationship according to Equation (60).
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required to achieve at least the same accuracy in all variables. A
number of integer bits is required in addition to represent values
greater than one. As shown in Section 3.2.1, a maximum of 10
integer bits is required in a worst-case scenario for the employed
parameter set.

For the simulation of the reduced modular model of the cor-
tex described in Section 2.1.2, for which a 1 ms time step seems
to provide sufficient results (Lansner et al., 2014), only 12 frac-
tional bits, and thus at maximum 22 bits in total, are needed
to ensure equal or better accuracy compared to using the Euler
method. Hereby, the required memory per state variable decreases
by almost one third compared to using single precision floating
point numbers.

Considering a 0.1 ms time step and a 64 bit floating point rep-
resentation, which is commonly used in state-of-the art neural
network simulations, fixed-point numbers with less than 32 bits
yield competitive accuracy, so that the memory footprint reduces
even by more than a half.

4. DISCUSSION
In this paper we derived two analytic solutions for the spike-based
BCPNN learning rule. They enable an efficient event-driven sim-
ulation of spiking neural networks employing this learning rule,
such as the reduced modular model of cortex (Lansner et al.,
2014). The advantages of using an analytic over a fixed step
size numeric solution are twofold: Firstly, it enables an event-
driven update of the variables, and thereby significantly speeds up
synaptic plasticity when interspike intervals are long compared to
simulation time resolution. Secondly, it increases the precision of
the calculations compared to fixed step size methods. Both aspects
can be utilized for allocating resources in an existing hardware
system efficiently or in conceiving a neuromorphic system based
on the BCPNN computational paradigm.

4.1. CLASSIFICATION AND LIMITATIONS OF OPTIMIZATION
In our simulations including 1 million BCPNN synapses with pre-
and postsynaptic activity at 1 Hz, we were able to reduce the exe-
cution time by a factor of 16 compared to the conventional fixed
step size simulation with explicit Euler. One hypercolumn unit of
the reduced cortex model was simulated more than 6 times faster
than real time on a single CPU. Several factors are responsible for
that speedup:

By employing the analytical I solution of the BCPNN model,
the event-driven simulation becomes feasible and clearly defeats
the time-driven simulation at the chosen working point of 1 Hz
firing rate. In general, the event-driven approach is mostly advan-
tageous over the time-driven approach when the firing rates are
low and connectivity is sparse (Brette et al., 2007). Hence, as
long as the inter-spike intervals are large compared to the simula-
tion step size, the analytic event-driven simulation can effectively
reduce the execution time of spiking neural networks, indepen-
dent whether the BCPNN synapses connect single neurons or
more abstract units like in the cortex model.

The analytical II solution requires on average only half of the
basic arithmetic operations of the conventional analytical I solu-
tion for an event-based update, and slightly less calculations of
the exponential function. Here, the computational cost is reduced

by representing the same BCPNN dynamics with a set of expo-
nentially decaying state variables, which is possible due to the
linearity of the system. A similar approach has been taken by
Brette (2006) for the exact simulation of leaky integrate-and-fire
neurons with synaptic conductances, albeit with the restriction
of equal excitatory and inhibitory synaptic time constants. Quite
the opposite, the only limitation for the BCPNN synapse model
is that the decay time constants of the three low pass filtering
stages must differ. Nevertheless, when a specific network model
requires equal time constants, one can still switch to the analyt-
ical I solution provided in Appendix A2, or try slightly different
parameters.

The usage of look-up tables for the frequent calculation of
exponential decays can further accelerate the simulation by a fac-
tor of 2 or 3. Precalculated look-up tables are a common tool in
event-driven neural network simulations to reduce the cost for the
calculation of complex functions (Brette, 2006; Ros et al., 2006).
For BCPNN, LUTs for the exponential decay are beneficial as long
as the time constants are homogeneous and do not vary from
synapse to synapse. In our hybrid simulation of a hypercolumn
unit, where spikes are discretized to multiples of the simulation
step size, look-up tables not only accelerate the simulation, but
also provide the same accuracy as the solution without LUTs.
For simulations with arbitrary update intervals, linear interpo-
lation can be used to achieve almost exact results (Brette, 2006).
Alternatively, for the case of the exponential function, the com-
putation can be split into two steps, e.g., by first retrieving the
EXP separately for the integer and fractional bits of the exponent,
and then multiplying the two obtained results. There remains the
question for the optimal size and resolution of the look-up tables,
which must be chosen depending on the used hardware plat-
form (available memory, cache size) and the inter spike interval
distributions of actual network models.

The optimizations presented in this paper focus on reducing
the computational footprint for the spike-based BCPNN learn-
ing rule: In our benchmarks we have considered either a single
synapse or an array of synapses, but not the dynamics of neurons
or the MCUs. The efficient simulation of large recurrent networks
with many HCUs entails many new issues, e.g., the distribution of
hypercolumns across compute nodes and memory, the commu-
nication of spikes between HCU or the buffering of spikes, and
gives rise to separate studies that are clearly out of scope of this
paper.

4.2. ACCURACY
Fixed-point operands can reduce the memory footprint with the
drawback of loosing precision compared to a floating point rep-
resentation. To find the compromise between the two solutions,
we assessed the accuracy of using fixed-point operands for the
storage of the BCPNN state variables in an event-based simu-
lation with the analytical II method (Section 3.2). The accuracy
was compared to the errors introduced by the fixed step size sim-
ulation with explicit Euler method using 64 bit floating point
numbers, which is commonly used in neural simulation. We
found that fixed-point numbers with 22 bits assure equal or bet-
ter accuracy for all BCPNN variables than the Euler method with
1 ms time step, resp. 26 bits for 0.1 ms time step.
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The question remains about which accuracy is necessary in
a practical situation. A previous study (Johansson and Lansner,
2004) on using fixed-point arithmetic for BCPNNs showed that
an attractor network with 8 bit weights can offer the same stor-
age capacity as an implementation with 32 bit floating point
numbers. To achieve this, probabilistic fractional bits were used
and the computation of the moving averages (low-pass filters)
was performed in the logarithmic domain. Given these results,
we speculate that also spike-based BCPNN can be implemented
in fixed-point arithmetic with 16 or less bits without loosing
computational capabilities, so that the required memory and
memory bandwidth can be halved compared to 32 bit floating
point numbers used in Lansner et al. (2014).

4.3. NEUROMORPHIC HARDWARE
Our optimizations can be directly incorporated for designing
more efficient neuromorphic hardware systems. There are cur-
rently several diverse attempts for building large-scale hardware
platforms, aiming for a more efficient simulation of large-scale
neural models in terms of speed, power or scalability (Schemmel
et al., 2012; Hasler and Marr, 2013; Benjamin et al., 2014; Furber
et al., 2014; Merolla et al., 2014). As in our analysis, realiz-
ing synaptic plasticity is the most resource-demanding task, so
that a focus of neuromorphic designs is in efficiently emulating
plasticity mechanisms, most often implementing some variant
of spike-timing dependent plasticity (STDP, Bi and Poo, 1998;
Morrison et al., 2008) in analog or mixed-signal circuitry, see
Azghadi et al. (2014) for a review.

An implementation of the BCPNN learning rule requires
a stereotypical set of coupled low-pass filters, see Figure 1.
Implementation of the rule in analog neuromorphic hardware
is technically feasible, as there is large knowledge on building
leaky integrators (Indiveri et al., 2011), and even the issue of long
decay time constants in nanometer CMOS technologies can be
resolved, e.g., with switched capacitor techniques (Noack et al.,
2014). In this context, our optimized analytic solution offers an
interesting alternative to the direct implementation of the origi-
nal model equations: When using the analytical II solution, the
stereotypical low-pass filters are only charged at incoming spikes,
in contrast to the continuous coupling in a direct implementa-
tion. This alleviates the need for a continuous, variable-amplitude
charging mechanism for the E and P traces. On the other hand,
charging only at incoming spikes requires a more elaborate cal-
culation of the output values, as present in the analytical II
solution. However, this calculation needs to be performed only at
spikes as well, allowing e.g., for an efficient implementation with
switched-capacitor circuits.

The design of analog neuromorphic circuits is time-
consuming and the circuits are affected by parameter variations
due to device mismatch. Digital implementations are much less
affected by these problems. They may be less energy and area
efficient on the level of single elements and they do not allow
for direct ion-channel-to-transistor analogies as employed in tra-
ditional neuromorphic designs (Hasler et al., 2007). However,
they allow to fully utilize the energy efficiency and performance
advantages of neural algorithms and modeling approaches, while
offering better controllability and scalability.

Several purely digital neuromorphic systems support synap-
tic plasticity, implemented either on application-specific inte-
grated circuits (Seo et al., 2011), on field-programmable gate
arrays (FPGAs) (Cassidy et al., 2013) or a custom multiprocessor
system using a larger number of general purpose ARM cores
(SpiNNaker system, Furber et al., 2014). Recently Diehl and
Cook (2014) showed how general STDP rules can be effi-
ciently implemented on SpiNNaker, despite the system’s restric-
tion that synaptic weights can be modified only at the arrival
of a presynaptic spike. By adopting their implementation of
trace-based STDP, the event-driven spike-based BCPNN in vari-
ant analytical I or analytical II can be seamlessly integrated on
the SpiNNaker hardware. As we do, Diehl and Cook (2014)
use look-up tables for the exponential function; furthermore,
SpiNNaker uses fixed-point arithmetic, so that our insights
on the accuracy of fixed-point operands may find immediate
application.

The event-driven approach is also amenable to state-of-the-art
methods for reducing the energy of computation in digital sys-
tems. Recent multi-core hardware platforms support fine grained
per-core power management, as for example demonstrated on
the Tomahawk multiprocessor system-on-chip (MPSoC) archi-
tecture (Arnold et al., 2014; Noethen et al., 2014). By changing
both the clock frequency and the core supply voltages of each
processing element in a dynamic voltage and frequency scal-
ing scheme (Höppner et al., 2012), the hardware performance
can be adapted to the performance requirements to solve a par-
ticular part of the BCPNN in real time with reduced energy
consumption, e.g., by regarding the number of incoming spikes
per HCU per simulation step. In addition, within phases of
low activity complete processing elements can be shut off to
reduce leakage power consumption. Another candidate archi-
tecture for energy-efficient neural computation with BCPNNs
is the multi-core Adapteva-Epiphany chip (Gwennup, 2011),
which is optimized for power-efficient floating point calcula-
tions requiring only one fifth of the energy at equal flop rate
as the state-of-the-art (but general-purpose) ARM’s Cortex-A9
CPU.

Alternatively, spike-based BCPNN can be implemented on
novel systems rather than on existing digital systems: For exam-
ple, one may build dedicated digital hardware for the simulation
of the BCPNN cortex model. Such a system containing com-
pact supercomputer functionality can be prototyped in an FPGA
with special units for the learning rule or the stochastic mini-
column units, and has therefore only low risk compared to
mixed-signal implementations. Recently, Farahini et al. (2014)
provided a concept for a scalable simulation machine of the
abstract cortex-sized BCPNN model with an estimated power-
dissipation of 6 kW in the technology of 2018, which is three
orders of magnitudes smaller than for a full-cortex simulation
on a supercomputer in comparable technology with 20 billion
neurons and 10,000 times more synapses (see also Lansner et al.,
2014). They assume the analytical I method for the event-driven
updating of the BCPNN traces, and apply floating point units for
arithmetic operations. Our work can further promote their per-
formance: By using the analytical II method with look-up tables
the computational cost can be further reduced; by moving to
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fixed-point arithmetics the required memory and memory band-
width decreases, so that a low-power real-time simulation of the
cortex becomes possible.

4.4. OUTLOOK
Of course, our optimizations can also be used to boost the
simulation of spike-based BCPNN on conventional computing
systems. For example, already the supercomputer simulations of
the reduced cortex model by Benjaminsson and Lansner (2011)
showed weak scaling and achieved the real-time operation when
simulating one HCU per processor with the fixed step size Euler
method (dt = 1 ms) and spike-based BCPNN synapses without
E traces (the Z traces are directly passed to the P traces). Such
large-scale BCPNN simulations are mostly bounded by computa-
tion rather than by inter-process communication (Johansson and
Lansner, 2007; Lansner et al., 2014), as the firing activity is low
and the connectivity is sparse and patchy. Hence, we conjecture
that with our approach a speedup factor of 10 or more might be
achieved. At the same time, our results can accelerate the sim-
ulations of small or medium-scale neural networks employing
the spike-based BCPNN learning rule, with applications rang-
ing from olfaction modeling (Kaplan and Lansner, 2014), reward
learning (Berthet et al., 2012) to probabilistic inference (Tully
et al., 2014). Regardless of whether the BCPNN is implemented
in neuromorphic hardware, on a single PC or on supercomputers,
the presented optimization through event-driven simulation with
look-up tables can boost the success of the BCPNN paradigm as
a generic plasticity algorithm in neural computation.

Furthermore, the BCPNN abstraction constitutes an alterna-
tive approach to tackle the energy efficiency wall for brain-sized
simulations discussed in Hasler and Marr (2013): Instead of
simulating every single neuron and synapse, one can choose a
higher level of abstraction for the basic computational units in
the brain (e.g., a minicolumn), use a powerful learning rule (e.g.,
spike-based BCPNN), and implement such networks in a lazy
simulation scheme (e.g., on dedicated digital hardware), to finally
achieve a very energy-efficient simulation of the brain.
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Memristive devices present a new device technology allowing for the realization
of compact non-volatile memories. Some of them are already in the process of
industrialization. Additionally, they exhibit complex multilevel and plastic behaviors, which
make them good candidates for the implementation of artificial synapses in neuromorphic
engineering. However, memristive effects rely on diverse physical mechanisms, and
their plastic behaviors differ strongly from one technology to another. Here, we present
measurements performed on different memristive devices and the opportunities that
they provide. We show that they can be used to implement different learning rules
whose properties emerge directly from device physics: real time or accelerated operation,
deterministic or stochastic behavior, long term or short term plasticity. We then discuss
how such devices might be integrated into a complete architecture. These results highlight
that there is no unique way to exploit memristive devices in neuromorphic systems.
Understanding and embracing device physics is the key for their optimal use.

Keywords: memristive device, memristor, neuromorphic engineering, plasticity, hardware neural network

INTRODUCTION
In 1971, Leon Chua indicated the possible existence of a fourth
basic electrical component (Chua, 1971). This component, the
memristor, would complement those already known namely
resistance, capacitor, and inductor, and offer new opportunities
for system design (Chua and Kang, 1976). In particular, Chua
proposed to use memristors or similar memristive devices to
fabricate synapses and neurons following the Hodgkin–Huxley
formalism. From this theoretical work, several publications have
cited the memristive phenomenon without naming it as such and
without linking it to Chua’s theory (Upadhyaya and Chandra,
1995; Lau et al., 2004; Waser and Aono, 2007; Wu et al., 2007;
Pershin and Di Ventra, 2008). HP labs were the first to recognize
a device as a memristor in 2008 (Strukov et al., 2008), and they
highlighted both the technology and its possible applications.

In parallel, the designers of the neuromorphic community
worked hard on achieving CMOS neurons to reach electri-
cal energy consumption of the order of picojoule per spike
(Wijekoon and Dudek, 2008; Livi and Indiveri, 2009; Rangan
et al., 2010; Merolla et al., 2011; Joubert et al., 2012). However, if
the neuron implementation still have to face important challenges
to match the neurons density and functionality required for

neuromorphic circuits, the most abundant element in a neu-
ral network is the synapse. Consequently, most of the efforts
have been concentrated on achieving high density memories with
embedded synaptic functionalities (i.e., synaptic plasticity) in a
single component. To become functional, the realization of a plas-
tic synapse requires three parts: (i) synaptic weight storage, (ii)
circuit for updating this weight depending on the network activ-
ity, and (iii) circuit for information transmission between two
neurons. The neuromorphic community has developed a strong
interest in memristive devices because these nanodevices and the
associated integration strategies offer potential solutions to realize
these three functions.

Resistive Random Access Memory (ReRAM) technologies in
its broad sense have been developed for pure memory applica-
tions but can fall into the memristive system classification (Baek
et al., 2004; Lee et al., 2008; Wong et al., 2012). These different
technologies are mostly used in binary mode and are at the stage
of industrialization and commercialization (e.g., ReRAM from
Panasonic and Samsung) with high endurance, low energy, and
high integration capability performances (Kawahara et al., 2012;
Liu et al., 2013). Such performances can be an interesting plat-
form for the implementation of synaptic weight storage (even
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in binary mode) if integration strategies and specific architec-
tures are developed in order to offer a suitable solution to the
large access required between neuron (i.e., computing node) and
synapses (memory) inherent to parallel computing in neuromor-
phic circuits (and unsolved by Von Neumann architectures and
associated bottleneck). In addition, their use in analog mode
(or multilevel), is the subject of great attention and could be an
effective solution for the implementation of synaptic functions.

Defining a memristor itself (see Figure 1A) can be debatable.
Leon Chua now defines a memristor as any element that has an
I(V) curve pinched at 0 V (Figure 1B) (Chua, 2014). This defi-
nition is widely used in the literature for characterizing devices,
and in this paper we synonymously use the historic word mem-
ristor or the more generic “memristive device.” A general feature
of memristive devices is to offer a non-volatile modification of its
resistance (or conductance) as a function of the current (charge)
or voltage (flux) driving the device. In particular, neuromorphic
circuit designers prefer to think of memristors as resistive com-
ponents that have the following properties: (i) the greater the
electrical charge that has passed through the component, the
more the resistance value decreases, (ii) the resistance value is
stored in the element even after it is turned off. Moreover, this
modification appears if the charge through the memristor goes
over a “threshold” (Figure 2D).

Memristors can be realized using several technologies and
we can categorize these technologies in four large families. The
first includes anionic and cationic Red-Ox devices operating
on Oxidation–Reduction principles. The second is phase-change
memories (PCM), where resistive switching is connected with a
physical phase change. Organic elements represent the third fam-
ily. The fourth family finally comprises elements using purely
electronic effects such as ferroelectric tunnel and spintronic
memristors. These technologies possess different behaviors and
therefore different fields of application. As part of this paper about
synaptic plasticity, we also point out that these technologies will
lead to different plastic behaviors and learning rules. These differ-
ences enrich the palette of possibilities for neuromorphic design.
As Jeong et al. (2013), the purpose of this paper is not to present
an exhaustive list of memristive technology and of their associ-
ated behavior, but rather to present the different forms of learning
that have been observed. In our paper, all data about memristive
devices have been measured by at least one of the co-authors.

FIGURE 1 | (A) Symbol of memristor; (B) characteristic transport features
of memristors: pinched iv loops for different values of the maximum
injected current.

If computing and memorization principles in neural networks
are not completely understood, it is now widely recognized that
learning in such systems is associated to synaptic weight mod-
ification that tends to reinforce or depress the strength of the
connection between two neurons and grouped into the wide class
of synaptic plasticity. The most popular description of learning
was proposed by Hebb with the postulate “who fire together, wire
together” (Hebb, 1949). In other words, two neurons presenting a
correlated activity will tend to reinforce their synaptic connection.
A first requirement is to define what we call neuron activity: two
different approaches are commonly used, (i) rate coding strate-
gies correspond to the definition of neuron activity as the mean
firing rate estimated on a chosen time window while (ii) temporal
coding corresponds to the assignment of neuron activity to a sin-
gle spike event with a given time stamp with respect to the other
spiking neurons considered in the network. Based on this differ-
ent coding strategies, variations of Hebbian learning have been
proposed such has Spike Rate Dependent Plasticity (SRDP) or
the very popular Spike Timing Dependent Plasticity (STDP). In
particular, STDP has attracted a large interest in the memristive
device community because of its practical implementation based
on overlapping pulses coming from the pre and post neurons.
We present in Section STDP Learning Thanks to Overlapping
Events theoretical elements that allow the understanding of the
application of this basic learning algorithm. Starting from this
ideal case, we present practical implementations of STDP in solid
state devices and show how material constraint (i.e., switching
mechanism, operating conditions, . . . ) can be used to realize var-
ious form of STDP. Then we present two cases of “ferroelectric”
memristors based on thin film semiconductor-metal-metaloxide
compounds. These compounds were some of the first materials
to be used as memristive synapses (see Kuzum et al., 2013 for a
review). The first of our ferroelectric memristors is based on sev-
eral 100 nm thick BiFeO3 films experiencing resistive switching in
the Schottky barrier formed with one of the contacts. Specifically,
the memristive effect in these devices is effected by a change of the
depletion layer of the Schottky diode due to a non-volatile charge
transfer similar to the “moving barrier” of TiO2. The second con-
sists of ferroelectric tunnel junctions of very thin (∼1 nm) BiFeO3

films in which tunneling resistance is linked to the polarization
of the barrier. They differ radically by the time scales on which
they operate and thus by the contexts in which they could be
used. A third case based on spin-transfer torque magnetic tun-
nel junction is also presented in Section Spin-Transfer Torque
Magnetic Tunnel Junction as a Stochastic Synapse. It presents
a stochastic behavior in learning which is in some ways rem-
iniscent of biological neural networks. In Section SRDP with
Memristive Devices, we present different form of SRDP observed
in biological synapses and of interest for spike rate coding strate-
gies. We first show how Short Term Plasticity, corresponding
to a temporary modification of the weight that tends to relax
toward a resting state, can be used to implement rate depen-
dent modification of the weight. A second example describes how
Short Term/Long Term plasticity transitions can be reproduced
by taking advantage of device stability characteristics. Before the
conclusion, Section Toward Memristor-CMOS Architectures and
Circuits opens the discussion on the characteristics of circuit
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FIGURE 2 | (A) Experimentally measured STDP function ξi (�T ) on
biological synapses (data from Bi and Poo, 1998, 2001). (B) Ideal STDP
update function used in computational models of STDP synaptic

learning. (C) Anti-STDP learning function for inhibitory STDP synapses.
(D) Shape of memristor weight update function f (vMR ). (E) Spike
shape waveform.

architectures that will drive memristors following their electrical
behavior.

STDP LEARNING THANKS TO OVERLAPPING EVENTS
THEORETICAL PRINCIPLES
STDP is the ability of natural or artificial synapses to change
their strength according to the precise timing of individual pre-
and/or post-synaptic spikes (Gerstner et al., 1993, 1996; Markram
et al., 1997; Bi and Poo, 1998, 2001; Zhang et al., 1998; Feldman,
2000; Mu and Poo, 2006; Cassenaer and Laurent, 2007; Jacob
et al., 2007; Young, 2007; Finelli et al., 2008; Masquelier et al.,
2008, 2009). A comprehensive overview of STDP and of its his-
tory can be found elsewhere (Sjöström and Gerstner, 2010).
STDP learning in biology is inherently asynchronous and on-line,
meaning that synaptic incremental update occurs while neu-
rons and synapses transmit spikes and perform computations in
parallel. Early proposals of this used artificial time-multiplexing
to alternate continuously and synchronously between “perform-
ing” and “weight update” phases (Snider, 2008), thus requiring
global system-wide synchronization. This can become a severe
handicap when scaling up systems. Another option is a fully
asynchronous implementation for memristor-based STDP where
“performing” and “weight update” phases happen simultane-
ously in a natural manner, as in biology (Linares-Barranco and
Serrano-Gotarredona, 2009a,b; Zamarreño-Ramos et al., 2011;
Bichler et al., 2012b; Kuzum et al., 2012), and where there is no
need for any global synchronization.

Figure 2A shows the change of synaptic strength (in percent)
measured experimentally from biological synapses as function
of relative timing �T = tpos − tpre between the arrival time tpre

of a pre-synaptic spike and the time tpos of the generation of a
post-synaptic spike. Although the data shows stochasticity, we
can infer an underlying interpolated function ξ(�T) as shown
in Figure 2B.

ξ (�T) =
{

a+e−
�T
τ+ if �T > 0

−a−e−
�T
τ− if �T < 0

(1)

For a causal pre- to post-spike timing relation (�T > 0) the
strength of the synapse is increased, while for an anti-causal rela-
tion (�T < 0) it is decreased. In the case of synapses with negative
synaptic strength (as in some artificial realizations), the reversed
version shown in Figure 2C can be used. Microchip CMOS cir-
cuit implementations of STDP rules that follow the description
of Equation (1) have been reported (Indiveri et al., 2006), which
result in about 30 transistors per plastic synapse, and thus may
lead to high costs for their hardware realization. There is, over-
all, general thinking that STDP is very expensive to implement in
conventional CMOS microchips (Fieres et al., 2008; Khan et al.,
2008). However, it can be implemented with just one memristor
per synapse if appropriate peripheral signal conditioning neurons
are used in hybrid CMOS/memristor realizations.

For our purpose, we will consider a particular type of memris-
tors, named voltage/flux driven memristor, which can be mathe-
matically defined by.

i MR = G (w, v MR) v MR

ẇ = f (v MR)
(2)
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Memristor current and voltage are in general related through
a non-linear conductance G (in the iMR vs. vMR plane), whose
shape is tuned by parameter w. Most of the times, however, we
may approximate the conductance as being totally linear iMR =
G(w)vMR, where the value of w is dependent on the history of vMR.
Parameter w represents some structural property of the memris-
tor. This parameter changes non-linearly as a function f ( ) of the
evolution of the memristor voltage vMR, so that the derivative of
w is governed by the second equation in (Equation 2). A typical
shape of this function is shown in Figure 2D, where a “dead zone”
between two threshold voltages is present. While the memristor
voltage is kept within this dead zone, parameter w will remain
constant, and G will not change. But if the memristor voltage goes
out of the dead zone, the (linear or non-linear conductance G)
will change.

The STDP learning rule (as modeled by Equation 1) can, in
theory, be implemented by (i) using a particular type of volt-
age/flux driven memristor (Jo et al., 2010), while (ii) providing
appropriately shaped pre- and post-synaptic spikes available at
both synapse (memristor) electrodes (Zamarreño-Ramos et al.,
2011). For example, we can consider a pair of identical pre- and
post-synaptic spikes with a shape resembling that of biological
spikes (see Figure 2E), with an on-set duration |t+ail| and a tail of

duration |t−ail|,

spk (t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

A+mp
e

t
τ+ −e

− t+ail
τ+

1−e
− t+ail

τ+
if − t+ail < t < 0

−A−mp
e
− t

τ− −e
− t−ail

τ−

1−e
− t−ail

τ−
if 0 < t < t−ail

0 if otherwise

(3)

Under these circumstances, memristor voltage is vMR(t, �t) =
αpos spk(t) – αpre spk(t + �t) and synaptic strength change can
be computed as.

�w (�T) =
∫

f (vMR (t,�T)) dt = ξ (�T) (4)

which has been shown to result in the same shape illustrated
in Figure 2B (Zamarreño-Ramos et al., 2011). Furthermore, by
reshaping the spike waveform, one can fine tune or completely
alter the STDP learning function ξ(�T), as illustrated in Figure 3.
This way, by building neurons with a given degree of shape pro-
grammability, it is possible to change the STDP learning function
at will, depending on the application, or make it evolve in time as
learning progresses.

Figure 4A shows a way of interconnecting memristors and
CMOS neurons for STDP learning. Triangles represent the neu-
ron soma, the flat side indicating its input (dendrites) and the
sharp side its output (axon). Dark rectangles are memristors,
each representing one synaptic junction. Every neuron controls
the voltage at its input (Vpost in Figure 4B) and output (Vpre in
Figure 4B) nodes. When the neuron is not spiking it forces a con-
stant voltage at both nodes, while collecting through its input
node the sum of input synaptic spike currents coming from the

memristors, which contribute to changing the neuron internal
state. When the neuron spikes, it sets a one-spike waveform at
both input and output nodes. This way, they send their output
spikes forward as pre-synaptic spikes for the destination synaptic
memristors, but also backward to preceding synaptic memristors
as post-synaptic spikes. Zamarreño et al. showed extensive simu-
lations on these concepts, and how one can change from STDP
to anti-STDP by switching polarities of spikes or memristors
(Zamarreño-Ramos et al., 2011). For example, (Figures 3F1,F2)
illustrate the case where forward and backward spikes have oppo-
site polarities, resulting in a symmetric STDP update function
ξ(�T). Figures 3G1,G2 illustrate an example where forward and
backward spikes are different, with the backward spike such that
its positive part exceeds the positive memristor threshold (vth =
1.0). This produces LTD (long term depression) or negative STDP
update whenever there is a post-synaptic spike sufficiently apart
from a pre-synaptic one; and produces LTP (long term poten-
tiation) if pre- and post-synaptic spikes happen within a given
time window (Bichler et al., 2012a,b). Figures 2H1,H2 illustrate
a similar STDP update behavior, except that the update (whether
positive or negative) is restricted to a limited time window.

If the system is structured into neural layers (for exam-
ple, Figure 4A shows a 3-neuron-layer system) with memristive
synapses in between, then for each layer all pre-synaptic neurons
should have the same forward spike shape and all post-synaptic
neurons should have the same backward shape. This way, all
memristive synapses between these two neural layers will have the
same STDP function ξ(�T).

WAVEFORM-DEFINED PLASTICITY IN FERROELECTRIC RESISTIVE
SWITCHING MEMRISTORS
In this section, we concentrate on an analysis of resistive switch-
ing BiFeO3 (BFO). Our BFO memristors are grown by pulsed
laser deposition on Pt/Ti/SiO2/Si substrate with a circular Au top
contact (Shuai et al., 2013), see Figure 5A. The BFO films have
a thickness of some 100 nm. The top contact forms a Schottky
diode, causing the created devices to show resistive switching with
a rectifying behavior (Shuai et al., 2011). The devices exhibit a
combination of voltage- and charge-driven behavior, and are con-
sistent with the requirements of Section Theoretical Principles.
When stepping DC voltages across the device, the resistance will
follow an exponential curve (Mayr et al., 2012). The voltage level
defines the converged resistance value, while the charge passed
through the device defines the time frame until this converged
value is achieved.

Resistive switching in BFO shows a number of characteris-
tics which make it well-suited for use as a synapse. For instance,
the dependence between voltage level and converged resistance
makes the BFO devices conform closely to the ideal waveform-
driven plasticity postulated in Figure 3, as plastic changes in the
memristor closely follow the overlapping pre- and post-synaptic
waveforms. Up to 8 bit analog resolution can be reliably pro-
grammed in the device (Shuai et al., 2013). Due to the Schottky
diode, there is also high-ohmic region up to 1 V. Similar to the
paradigm of Linn et al. (2010), this can be used in an array of
BFO devices to define a voltage readout-region where only a sin-
gle device in the array is active, eliminating the multiple sneak
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FIGURE 3 | Illustration of influence of action potential shapes on the

resulting STDP memristor weight update function ξ (�T ). Memristor
upper and lower thresholds are normalized to amplitudes ±1.0. From (A1,A2)

to (E1,E2) the same spike waveform travels forward and backward. In (F1,F2)

the forward and backward waveforms are the same but have opposite

polarity. In (G1,G2) to (H1,H2) the forward and backward waveforms are
different. In (G1,G2), the positive pulse of the backward waveform exceeds
amplitude +1.0, thus producing negative STDP update whenever there is a
post-synaptic spike alone (G2); otherwise if pre- and post-synaptic spikes
happen within a given time window, there will be positive STDP update.

current paths that would otherwise severely limit practical array
size (Flocke and Noll, 2007). While this characteristic potentially
enables large crossbar arrays of BFO devices, defect density is on
the order of 30% for an “open circuit” type failure, so a place-
ment algorithm (Mayr et al., 2007) would have to be used in a
memristive array to map around defect memristors.

The devices also experience a modification threshold at ca.
2 V, i.e., starting from the Schottky diode threshold at 1 V up to
2 V, the memristance can be measured by the current flow, but
the charge inherent in this current does not change the mem-
ristance. If appropriate waveforms are chosen, the 2 V threshold
extracts pre- and post-synaptic activity correlation as memris-
tance change, as postulated in Section Theoretical Principles. All
these voltages are broadly compatible with CMOS logic processes,
in contrast to other material choices that need significantly higher
voltages (Kuzum et al., 2013).

The waveforms in the upper two curves of Figure 5B are used
as pre- respectively post-synaptic voltage. Those curves have not
been shown in Figure 3; however their asymmetry is in the spirit
of Figures 3G1,H1. These waveforms implement the plasticity
model of Mayr et al. (2010), which allows for both rate- and
spike-based plastic behavior. In the third curve of Figure 5B,
which shows the resulting differential voltage across the memris-
tor, the modification thresholds at about 2 V are marked. As can
be seen, these are crucial in permitting modification only for true
pre-post coincidences (such as at 30 ms), filtering out single pre-
or post-synaptic events (such as at 20 ms). The resulting synaptic
modification is shown in the last curve of Figure 5B, exhibiting a
close match with the theoretical model (Mayr et al., 2010).

Measured STDP curves using this paradigm are shown in
Figure 5C. With their exact reproduction of the waveform-
defined exponential time window, they showcase the capability
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FIGURE 4 | (A) Example of Memristors and CMOS neuron circuits
arrangement for achieving STDP learning: feed-forward neural system with 3
layers of neurons and two fully connecting synapse crossbars. (B) Details of

parts around one post-synaptic neuron. While a neuron is silent, it sets a
constant DC voltage at its input (Vpost ) and output (Vpre) nodes. When a
neuron is sending a spike, it sets a voltage spike at both nodes.

FIGURE 5 | (A) Layout/processing of BiFeO3 devices used (Shuai et al.,
2013); (B) driving voltage waveforms (from top to bottom): pre-synaptic
waveform, post-synaptic waveform, resulting differential voltage across
memristor and resulting memristance change shown as percentage change
in current through the memristor for a fixed 2 V measurement voltage
(Cederstroem et al., 2013); (C) measured STDP curves for two different STDP

time window settings; time windows are adjusted via the time constants of
the exponentials slopes of pre- and post-synaptic waveform, which changes
the LTP respectively the LTD part of the STDP window; Weight change as
change in current through the memristor; (D) measured spike triplet curves
(Froemke and Dan, 2002), weight change as change in current through the
memristor (Mayr et al., 2012).

of BFO synapses for fine-grained analog weights. In most cur-
rent memristive materials, the STDP curves deviate significantly
more, and their time windows are primarily defined by the physi-
cal device characteristics, not the driving waveform (Alibart et al.,
2012; Kuzum et al., 2013). In contrast, the voltage-memristance
relationship of the BFO synapses lets them conform nicely to
the waveform-defines-plasticity paradigm postulated in theory

(Zamarreño-Ramos et al., 2011). Through this direct translation
of the driving voltage waveforms into the plasticity shape, dif-
ferent time windows can be easily configured via the pre- and
post-synaptic waveforms, as can be seen from the two sample
curves in Figure 5C.

By introducing adaptation into the post-synaptic waveform,
specifically an exponential dependence of the post-synaptic
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action potential duration on the inter-spike interval, the plastic-
ity rule of Mayr and Partzsch (2010) is also able to reproduce
triplet and rate plasticity (Froemke and Dan, 2002). When explor-
ing the triplet paradigm with memristors, a faithful reproduction
of biological triplet data can be seen (Figure 5D), due again to
the excellent correlation between driving waveform and evoked
memristive plasticity. The post-synaptic adaptation introduced
for triplet plasticity can be observed in the different pulse widths
in the second curve in Figure 5B (Noack et al., 2010).

Defining the plasticity entirely through the waveform can also
be used to substantially speed up synapse behavior in BFO up
to a 50 μs time scale (You et al., 2014). A switched capacitor
system such as (Mayr et al., 2014b), if equipped with a scal-
able time base (Eisenreich et al., 2009), also offers the intriguing
possibility of operating a high-density, CMOS-memristor hybrid
neuromorphic system at varying timescales to accommodate dif-
ferent tasks, such as real-time interoperation with a visual sensor
vs. offline, high-speed classification tasks where an accelerated
timescale leads to faster classification.

HIGH-SPEED PLASTICITY IN FERROELECTRIC TUNNEL MEMRISTORS
“Purely electronic” memristors are nanodevices in which the
resistance changes are obtained through electron mediated phe-
nomena at interfaces. These memristors promise an increased
endurance and reliability, since the material structure is pre-
served, as well as a faster switching speed.

The “ferroelectric tunnel memristor” (Bibes et al., 2010)
is based on an emerging digital memory concept, subject of
intense academic and industrial developments, the ferroelec-
tric resistive RAM (International Technology Roadmap For
Semiconductors, 2011). Its base is the ferroelectric tunnel junc-
tion (FTJ): an insulating ultrathin (several nanometers) fer-
roelectric barrier sandwiched between two metallic electrodes
(Figure 6A). Strain from the substrate assures that the ferroelec-
tric polarization points to one of the electrodes. The polarization
can be switched upon application of short voltage pulses and
results in resistance changes of up to several orders of mag-
nitude (Garcia et al., 2009; Chanthbouala et al., 2012a). This
resistance contrast is linked to different polarization screen-
ing in the electrodes: the effective tunneling barrier height
dependents on the direction of the ferroelectric layer’s polar-
ization and therefore strongly influences the tunneling current.
Additionally, the strong non-linearity of the ferroelectric tunnel
junction allows for a non-destructive resistance reading at low DC
voltage.

By designing the devices in such way that the switching occurs
through non-uniform ferroelectric domain configurations, quasi-
analog resistance variations can be obtained (Chanthbouala et al.,
2012b). A direct link between these intermediate resistance states
and the ferroelectric domain configuration allows the description
of its dynamic behavior through models of domain nucleation
and growth in ferroelectric films. Furthermore, the cumulative
behavior upon application of trains of voltage pulses has already
been demonstrated. As the polarization reversal process in the
ferroelectric film depends on pulse amplitude and duration,
these parameters can be adapted to achieve the desired resistance
change in the memristive device—a very promising feature for the

implementation of STDP-based learning with ferroelectric tunnel
memristors (Chanthbouala et al., 2012b).

It has recently been demonstrated that fully-patterned solid-
state ferroelectric tunnel memristors based on BiFeO3 (fully
patterned submicron Co/BiFeO3/Ca0.96Ce0.04MnO3 tunnel junc-
tions) can be produced with high yield and with low device-to-
device variations. They show resistance contrasts of more than
3 orders of magnitude, can be commuted with pulses of 100 ns
and amplitudes of about 2 V, and have a large endurance of over
4× 106 cycles (Boyn et al., 2014).

In Figure 6, we plot as in Yamada et al. (2013) the multi-
level behavior of a ferroelectric tunnel memristor depending on
applied voltages. The curves in Figure 6B show the DC resistance
value of the device after writing pulses of different amplitudes. To
use this memristor as a plastic synapse we consider−VMR to rep-
resent the time difference �T = tpost − tpre. Then �T > 0, i.e.,
VMR < 0 in Figure 6B, implies increasing conductance that cor-
responds to Hebb’s rule. Conversely, �T < 0 results in a decrease
of the synaptic weight.

Choosing the waveform of Figure 3B1 for pre- and post-
synaptic voltage neurons, the width of the positive square pulse
can be as low as 100 ns in the case of the ferroelectric tunnel
memristor. Accordingly, the ramp phase of the waveform will be a
few times larger than this. As a result, the time difference between
spikes for the STDP shown in Figure 3B2 can be less than 1 μs.

SPIN-TRANSFER TORQUE MAGNETIC TUNNEL JUNCTION AS A
STOCHASTIC SYNAPSE
Spin-Transfer Torque Magnetic Tunnel Junctions (STT-MTJs)
constitute another choice to implement plastic non-volatile
synapses. They rely on a different operating mechanism than
the devices presented in the rest of the paper, and for this rea-
son are not always thought as memristive devices. Their specific
stochastic behavior, however, can be particularly interesting for
synaptic applications. And as they constitute the basic cell of the
second generation of Spin Transfer Torque Magnetic RAM (STT-
MRAM)—which is currently reaching the market—, they present
a high level of CMOS compatibility and of maturity.

The basic structure of a STT-MTJ is presented in Figure 7A
and is constituted by an ensemble of layers of different materials.
The magnetic “fixed” layer is a small magnet whose magnetiza-
tion is pinned in one direction. The magnetic “free” layer is a
thinner magnet whose magnetization can be either parallel (P) or
antiparallel (AP) to the one of the fixed layer. Due to the Tunnel
Magnetoresistance effect, the electrical resistance of the P and AP
state is different. And due to the Spin Transfer Torque effect, a
positive current can switch the device from AP to P state, and a
negative current can switch the device from P to AP state. This
leads to the I–V curve seen in Figure 7B, which is reminiscent
of a memristive device. However, MTJs are truly binary device:
AP and P states are the only possible states. Some proposals exist
to increase the number of states (Lou et al., 2008) or to include
another physical effect (domain wall motion) in the MTJ to
reach multilevel behavior (Wang et al., 2009; Chanthbouala et al.,
2011). However, these variations do not exhibit the same degree
of maturity as binary STT-MTJs. In comparison with traditional
memristive devices, STT-MTJs are fast to write (programming
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can be as fast as 1.5 ns) and possess outstanding endurance
(switching the free layer magnet is not associating with an aging
mechanism). Their main drawback is a relatively high fabrication
cost and a low ROFF/RON ratio. STT-MTJs should be associated
with different CMOS circuits than other memristive devices for
this reason (Zhang et al., 2014).

Additionally, a specificity of STT-MTJs, of special interest for
synaptic applications, is that switching is stochastic. When one
applies a programming pulse, a STT-MTJ has only a probability to
switch state, which is independent of the STT-MTJ’s history: every
time the programming pulse is applied, the STT-MTJ has the
same probability to switch state. This is well-seen on the exper-
imental measurements of Figure 7C on devices of Devolder et al.
(2008), Marins de Castro et al. (2012). The switching probability
can be controlled by programming voltage and pulse duration.
The basic physics behind this effect is well-understood (Diao
et al., 2007; Devolder et al., 2008) and we have recently devel-
oped a comprehensive analytical model of it for circuits and
systems designers (Vincent et al., 2015). As seen in Figure 7D,
a striking feature is that the mean switching time of the STT-
MTJ can be adjusted over many orders of magnitude by choosing
the programming current. It has also been proven that STT-MTJ
stochastic switching can be used to generate high quality random
numbers that pass standardized statistical tests qualifying true
random number generators (Fukushima et al., 2014). Stochastic
switching can also be adjusted by layout of the junctions (size and
eccentricity).

STT-MTJs are suitable for implementing a stochastic version
of STDP that has been studied in several recent works (Kavehei,
2013; Suri et al., 2013; Yu et al., 2013; Vincent et al., 2014). They
exploit, at the system level, a functional equivalence (Goldberg
et al., 2001) that exists between multi-level deterministic synapses
and binary probabilistic synapses. When a long term potentiation
or depression occurs, instead of changing the conductance of

the synapse partially, stochastic STDP has a small probability of
changing it totally. And if several STT-MTJs are connected in par-
allel, a multibit synapse can be emulated. Since STT-MTJs have no
internal dynamic besides stochastic switching, stochastic STDP
can be implemented using similar strategies to the one used for
ferroelectric devices. Only the behavior at the system level will be
different.

In our works, we have been working with a stochastic ver-
sion of the simplified version of STDP which is theorized in
Nessler et al. (2013) and also used in Bichler et al. (2012a), Suri
et al. (2013), Querlioz et al. (2013), and similar to the one of
Figures 3G1,G2. A possible implementation with STT-MTJs is
summarized on Figure 7E. It relies on overlapping pulses, but
with clear separation of transmission and programming oper-
ation (Suri et al., 2013; Vincent et al., 2014). Although very
simple, this STDP rule can lead to complex machine learning
tasks like learning to detect cars on a video (Vincent et al.,
2014). Additionally, we have observed that it is surprisingly
robust to STT-MTJ variability (Vincent et al., 2014). However,
this is just an example and other forms of STDP may be
implemented with STT-MTJs if one accepts their stochastic
nature.

SRDP WITH MEMRISTIVE DEVICES
The learning process described in the previous section has been
implemented in a large variety of solid state memory devices with
non-volatile characteristics. However, if we consider the synaptic
plasticity mechanisms observed in biological computing systems,
modification of the synaptic efficiency (evaluated by measuring
the transmission of a single spike and equivalent to the synap-
tic weight) can be either permanent (i.e., lasting for months
to years) or temporary (i.e., relaxing to its initial state with a
characteristic time constant in the milliseconds to hours range).
This observation leads to the definition of Long Term Plasticity

FIGURE 6 | (A) Optical microscope image of the chip after patterning
showing 5×10 ferroelectric tunnel junctions (FTJ); (B) 3D representation of a
zoomed area containing a few FTJs. The three parallel bars are the
ground-signal-ground contact pads; (C) 3D sketch of one FTJ (Boyn et al.,
2014); (D) schema of the voltages applied to the memristor. The reading
pulse Vread is lower than the threshold (Vread = 200 mV). Writing is performed

by the application of 100 ns voltage pulses of different amplitudes. The
writing voltages increase from −2 V to Vmax by a step of 0.1 V. Then, the
amplitude of the writing pulses decreases to −Vmax; (E) dependence of the
resistance of the ferroelectric tunnel memristor measured at Vread on the
applied writing cycles. The different curves correspond to different
consecutive measurements with varying Vmax.

Frontiers in Neuroscience | Neuromorphic Engineering March 2015 | Volume 9 | Article 51 | 130

http://www.frontiersin.org/Neuromorphic_Engineering
http://www.frontiersin.org/Neuromorphic_Engineering
http://www.frontiersin.org/Neuromorphic_Engineering/archive


Saïghi et al. Plasticity in memristive devices

FIGURE 7 | From Vincent et al. (2014, 2015). (A) Cartoon of a Spin Transfer
Torque Magnetic Tunnel Junction (STT-MTJ). (B) Typical I–V curve of the
STT-MTJ. (C) Experimental measurements of stochastic switching. (D) Model

of mean switching time as a function of programming current. (E) Our
simplified STDP rule and PRE and POST overlapping pulses which implement
it naturally with STT-MTJs.

(LTP) and Short Term Plasticity (STP), respectively. We can notice
that the boundary classification into Long Term (LT) and Short
Term (ST) effects is not well-defined and should be considered
with respect to the required task. Both STP and LTP can corre-
spond to an increase or decrease of the synaptic efficiency thus
leading to the definition of Short Term (Long Term) potentia-
tion and depression, respectively. In biology, synaptic plasticity
can be attributed to various mechanisms involved in the trans-
mission of the signal between a pre- and post-neuron, such as
neurotransmitter release modification, neurotransmitter recovery
in the pre-synaptic connection, receptors sensitivity modification
or even structural modification of the synaptic connection (see
Bliss and Collingridge, 1993), for a description of the different
mechanisms involved in STP and LTP). Based on this observa-
tion, two important points need to be stressed. First, STP and
LTP processes are not restricted to a particular learning strategy

(i.e., STDP and SRDP, for example). In this section, we present
examples of STP and LTP processes based on a particular case
of rate coding strategy but these considerations are still valid for
other coding strategies (see Alibart et al., 2012, for STDP with
STP devices). Secondly, if plasticity is intimately linked to the
notion of learning, it is important to notice that there is no one-
to-one equivalence between the concepts of STP, LTP and the
notion of Short Term Memory (STM) and Long Term Memory
(LTM). Indeed, even if a direct parallel has been proposed based
on the particular concept of memory consolidation (Lamprecht
and Ledoux, 2004), which corresponds to accumulation of Short
Term effect leading to Long Term memory, there are still very
important questions to be answered about how learning (and
the associated synaptic plasticity) is related to the memorization
of information that can also present different time scale from
milliseconds to years.
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FIGURE 8 | (A) Schematic of the NOMFET in a diode-like configuration. This leaky memory transistor was proposed to implement the Short Term Plasticity (B)

STP measured in biological synapses (Varela et al., 1997) and (C) STP implement in solid state device.

SHORT TERM PLASTICITY (STP)
Implementation of STP has been proposed in a variety of
nanoscale memory devices. The first proposition of STP was real-
ized in a nanoparticles/organic memory transistor (NOMFET)—
Figure 8 (Alibart et al., 2010). The basic principle of this
device is equivalent to a floating gate transistor. Charges are
stored in the nanoparticles and modify the channel conductiv-
ity via Coulombic repulsion between the carriers (holes) and
the charged nanoparticles. The particularity of this device is to
present a leaky memory behavior: charges stored in the nanopar-
ticles tend to relax with a characteristic time constant in the
1–100 s range. When the NOMFET is connected in a diode like
configuration (Figure 8A), each input spike (with a negative volt-
age value) charges the nanoparticles and decreases the NOMFET
conductivity. Between pulses, charges escape from the nanopar-
ticles and the conductivity relaxes toward its resting value. By
analogy with biology, this device mimics the STP observed in
depressing synapses (Figures 8B,C) and described by Abbott et al.
(1997). As a matter of comparison, this synaptic functionality is
realized with a single memory transistor when its implementa-
tion in Si based technologies (i.e., CMOS) required 7 transistors
(Boegerhausen et al., 2003). STP has been also demonstrated
in two-terminal devices that would ensure higher device den-
sity when integrated into complex systems. Equivalently, STP in
two terminals devices is implemented by taking advantage of the
volatility of the different memory technologies (i.e., low retention
of the state that is often a drawback in pure memory applications).
Cationic redox systems based on Electro-Chemical Memory cells
(ECM) (Ohno et al., 2011) or anionic Valence Change Memory
(Chang et al., 2011; Yang et al., 2013) have demonstrated STP
with a facilitating behavior. In such devices, Short Term Plasticity
is ensured by the low stability of the conducting filaments that

tend to dissolve, thus relaxing the device toward the insulating
state. TiO2 VCM cells have been reported with both facilitat-
ing and depressing behavior (Lim et al., 2013) with relaxation
related to oxidation-reduction counter reaction. Protonic devices
have demonstrated STP with depressing functionality due to
proton recovery latency from atmosphere required to restore
the proton concentration and conductivity (Josberger et al.,
2014).

In the case of rate dependent plasticity, STP can be of depress-
ing type (i.e., decrease of the synaptic efficiency when synaptic
activity increase) or facilitating type (i.e., increase of synaptic
efficiency when synaptic activity increase). In terms of func-
tionality, Abbott et al. (1997) has demonstrated that depressing
synapses with STP act as a gain control device (at high frequency,
i.e., high synaptic activity, the synaptic weight is decreased, thus
leading to a reduction of the signal when activity becomes too
important). More generally, STP (both depressing and facilitat-
ing) provides a very important frequency coding property (as
depicted in Figures 8B,C) that could play a major role in the
processing of spike-rate coded information. Indeed, if a simple
Integrate and Fire neuron (I&F) is associated with static weight
(with no dependence with spike frequency), the computing node
(i.e., neuron and synapses) is only a linear filter (linear com-
bination of the different input) while STP turns the node to
non-linear. This property can be used to implement reservoir
computing approaches as proposed by Maass (Buonomano and
Maass, 2009) with the Liquid State Machine and could be an
important property of biological systems for computation.

CO-EXISTENCE OF STP AND LTP IN THE SAME DEVICE
If the contribution of ST and LT processes to computing is
not completely understood in biological systems, we should
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consider that both STP and LTP effects in synaptic connec-
tions are required in neuro-inspired computing systems. A first
approach is to consider that repetition of short term effects
should lead to Long Term modification in the synaptic connec-
tions. This behavior would explain the important hypothesis of
memory consolidation in the sense of psychology (Lamprecht
and Ledoux, 2004). Ohno et al. (2011) reported the coexis-
tence of Long Term and Short Term Potentiation in atomic
bridge technology (Figure 9). Depending on pre-synaptic activity
(associated to spike rate in this case), the synaptic conductiv-
ity is increased due to the formation of a Ag filament across
the insulating gap. While for low frequency, the bridge tends to
relax between pulses, higher frequencies lead to a strong fila-
ment that maintains the device in the ON state. These results
suggest a critical size of the bridging filament in order to
maintain the conductive state (i.e., providing a LTP of the synap-
tic connection). Similar results have been obtained in a vari-
ety of memory devices where filamentary switching displayed
two regimes of volatility. Chang et al. (2011) have evidenced
a continuous evolution of the volatility as a function of the
conductivity level of the device in WO3 oxide cells attributed
to the competition between oxygen vacancies drift (creation of
conductive path across the device) and lateral diffusion (dis-
ruption of the conducting filaments). Another description of
these two regimes of volatility could be associated to a compe-
tition between surface and volume energies in the conductive
filament.

If this transition between Short Term Plasticity and Long Term
Plasticity is intuitively well-associated to the concept of STM to
LTM learning in psychology, we can note that it induces some
restriction in term of network functionality. Indeed, in biol-
ogy, the facilitating process observed at short time scale and
associated to an increase of neurotransmitter release probabil-
ity during a burst of spike (i.e., corresponding to an increase
of synaptic efficiency at high frequency spiking rate) is addi-
tive with LTP (Bliss and Collingridge, 1993). In this case the
node (neuron and synapses) maintains its rate coding prop-
erty (associated to short term process and described previously
as a non-linear node) and can also display long term modifi-
cation of the synaptic weight. Alternative approaches are still
needed as proposed by Cantley et al. (2011) where Short Term
processes and Long Term Processes are realized by two differ-
ent devices (leaky floating gate transistor and non-volatile two-
terminal devices) in order to match the complexity of biological
synapses. One fundamental issue that needs to be explored is
the balance between the device functionality required for proper
operation of computing systems (i.e., performances) and opti-
mal integration in order to match synaptic density required for
computing.

TOWARD MEMRISTOR-CMOS ARCHITECTURES AND
CIRCUITS
In order to exploit the plasticity of memristor-based arti-
ficial synapses, specific circuit architecture needs to be
developed. Indeed, depending on the polarity and electrical
characteristics of investigated devices, two types of circuits
have been identified which are described in the following
paragraphs.

CIRCUITS FOR BIPOLAR MEMRISTORS
Most of the works on memristive devices that have been pub-
lished over the last couple of years focus on bipolar resistive
switching devices (Waser and Aono, 2007; Snider, 2008; Strukov
et al., 2008; Jo et al., 2010). This is the case for all the devices
presented in Section STDP Learning Thanks to Overlapping
Events. These devices exhibit characteristics close to the original
Memristor predicted by Chua. Their resistance can be increased
or decreased with opposite polarity voltage pulses and the resis-
tance change is cumulative with the previous state of the device,
which makes them particularly suitable to implement synaptic-
like functionality.

A biologically-inspired spiking NN-based computing
paradigm which exploits the specific physics of those devices
is presented in Querlioz et al. (2011, 2013). In this approach,
CMOS input and output neurons are connected by bipolar
memristive devices used as synapses. It is natural to lay out
the nanodevices in the widely studied crossbar as illustrated on
Figure 10. Learning is competitive thanks to lateral inhibition
and fully unsupervised using a simplified form of STDP.

Using this topology, performance comparable to traditional
supervised networks has been measured (Querlioz et al., 2013)
for the textbook case of character recognition, despite extreme
variations of various memristive device parameters. With the
same approach, unsupervised learning of temporally correlated
patterns from a spiking silicon retina has also been demon-
strated. When tested with real-life data, the system is able
to extract complex and overlapping temporally correlated fea-
tures such as car trajectories on a freeway (Bichler et al.,
2012a).

CIRCUITS FOR UNIPOLAR MEMRISTORS
All that we have discussed in this work can be adapted to
another class of memristive devices—the unipolar devices where
all applied voltages to increase or decrease the resistance value
are positive. Among them, in particular, Phase-Change Memory
(PCM) has good maturity, scaling capability, high endurance, and
good reliability (Fantini et al., 2010). PCM resistance can be mod-
ified by applying a temporal temperature gradient modifying the
material organization between an amorphous and a crystalline
phase. The amorphous region inside the phase change layer can
be crystallized by applying set pulses, thus increasing device con-
ductance. It was shown that the magnitude of the relative increase
in conductance can be controlled by the pulse amplitude and by
the equivalent pulse width (Kuzum et al., 2012). Amorphization,
on the other hand, is a more power-hungry process and is not
progressive with identical pulses. The current required for amor-
phization is typically 5–10 times higher than for crystallization,
even for state-of-the art devices.

To overcome these issues, a novel low-power architecture
“2-PCM Synapse” was introduced in Bichler et al. (2012b). The
idea is to emulate synaptic functions in large scale neural net-
works using two PCM devices constituting one synapse as shown
in Figure 11. These two devices have an opposite contribution to
the neuron’s integration. When the synapse needs to be potenti-
ated, the Long Term Potentiation (LTP) PCM device undergoes
a partial crystallization, increasing the equivalent weight of the
synapse. Similarly, when the synapse must be depressed, the Long
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FIGURE 9 | Adapted from Ohno et al. (2011). (A) Schematic of atomic
bridge devices that was proposed for Short Term Plasticity, Long Term
Plasticty (STP/LTP) transition demonstration. Depending on the spiking

activity, (B) the metallic filament do not bridge the two electrodes and tends
to relax toward the OFF state while it remains (C) in the ON state once it
bridges the two electrodes.

FIGURE 10 | Basic crossbar circuit topology. Wires originate from CMOS input layer (horizontal black wires) and from the CMOS output layer (vertical gray
wires). Memristive nanodevices are located at the cross points of the horizontal and vertical wires.
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FIGURE 11 | Left: Experimental LTP characteristics of the unipolar PCM device. Right: Principle of an equivalent bipolar synapse realized with a 2-PCM circuit.
Note that the neuron circuit is not represented on the schematic.

Term Depression (LTD) PCM device is crystallized. As the LTD
device has a negative contribution to the neuron’s integration,
the equivalent weight of the synapse is reduced. Furthermore,
because gradual crystallization is achieved with successive identi-
cal voltage pulses, the pulse generation is greatly simplified. Note
however that such synaptic circuit will require a slightly more
complex post-synaptic neuron circuit in order to deal with pulse
integration and generation. This should have a limited impact
on the overall neuromorphic circuit given the lower number of
neurons vs. synapses.

DISCUSSION
Memristive devices are an appealing solution to implement plas-
tic synapses, if we develop the specific driving signals to emulate
different learning rules. The most popular synaptic plasticity
implementation is based on the realization of Hebbian learning,
and in particular of STDP. We shall however note that other plas-
ticity mechanisms exist that have been studied and modeled as
suggested in a recent work (Kornijcuk et al., 2014). In this paper,
we focused on different implementations of STDP, by taking
advantage of the device physics of different memristive devices.
The functional differences in the behaviors of the devices directly
translate into differences in the learning rules (real time or accel-
erated, deterministic or stochastic). Using other devices, we also
presented other synaptic ideas, such as short term plasticity, or
those which exploit interactions between short term and long
term plasticity. Finally, we proposed some implementation ideas,
offering a large overview of the different possibilities in several
material systems.

As memristors are primarily targeted toward future high-
density nanoscale arrays, CMOS driver circuits need to be scaled
to these dimensions as well. That is to say, the required neuro-
morphic driver circuits need to be moved to deep submicron
technologies. One recently presented method to achieve this is
the use of switched-capacitor neuromorphic circuits, which are
able to implement the required analog waveforms in high den-
sity technologies as small as 28 nm (Mayr et al., 2014b). Coupled

with deep submicron CMOS sensors (Henker et al., 2007), they
offer the possibility of a full image processing pyramid based
on memristive computation in a nanoscale CMOS-memristor
hybrid. However, developing appropriate and highly scaled driver
circuits for memristive synapses which do not bring large over-
heads is a significant goal for today’s research. This is especially
true for proposals that exploit passive crossbar integration. Such
circuit topology is particularly appealing for neuromorphic engi-
neers as it offers a direct equivalent for the neuron/synapse circuit
with high parallelism and high integration density in which a sin-
gle device is associated to a single synapse between two neurons
(input line and output column). However, it brings circuit chal-
lenges (crosstalk, sneak path, impedance mismatch,...) that need
to be overcome.

From a more systems’ perspective, the most interesting appli-
cations for nanoscale memristors will be those that require a
large number of learned or programmed synaptic weights. It is
important to already consider such applications, to understand
the true impact of memristive technology. One of these appli-
cations is the Neural Engineering Framework (Eliasmith and
Anderson, 2004), which can be used to implement straightfor-
ward signal computation, sensor fusion (Mayr et al., 2014a), and
recognition (Bichler et al., 2012a), but also models of cognition
(Eliasmith et al., 2012). The large number of synapses offered by
nanoscale memristive arrays makes the implementation of com-
plex cognitive processing of such large-scale models (Eliasmith
et al., 2012) on a single CMOS-memristor hybrid IC a real
possibility.

Finally, it is important to understand that there are no absolute
optimal memristive devices for the implementation of plasticity
in hardware neural networks. The variety of behaviors observed
in today’s research will be an advantage for neuromorphic chip
designers and computational neuroscientists since it opens new
paths of implementation of neural computations. In this respect,
the plastic behaviors measured on memristive devices and pre-
sented in this paper provide the primitive for future neuromor-
phic breakthroughs.
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We prepared magnesia, tantalum oxide, and barium titanate based tunnel junction

structures and investigated their memristive properties. The low amplitudes of the

resistance change in these types of junctions are the major obstacle for their use. Here,

we increased the amplitude of the resistance change from 10% up to 100%. Utilizing

the memristive properties, we looked into the use of the junction structures as artificial

synapses. We observed analogs of long-term potentiation, long-term depression and

spike-time dependent plasticity in these simple two terminal devices. Finally, we suggest

a possible pathway of these devices toward their integration in neuromorphic systems

for storing analog synaptic weights and supporting the implementation of biologically

plausible learning mechanisms.

Keywords: memristors, artificial synapses, tunnel junction, synaptic plasticity, neuromorphic systems

1. Introduction

Memristors have attracted great interest for a variety of applications in recent years (Prezioso et al.,
2015). An obvious use would be as a memory device (Chen et al., 2008; Linn et al., 2010; Lee
et al., 2011) or, more ambitiously, a reconfigurable logic device (Borghetti et al., 2009; Xia et al.,
2009; Borghetti et al., 2010; Muenchenberger et al., 2011; Yan et al., 2011). However, the arguably
most interesting implementation of memristive devices is neuromorphic computing (Jo et al., 2010;
Indiveri et al., 2013).

Neuromorphic engineering is a relatively young research field, which was originally proposed by
Mead (1989, 1990) in the late 80s. Neuromorphic devices and architectures are designed to emulate
the style of computation of biological systems and exploit biological strategies for optimizing
robustness to noise and fault tolerance, as well as maximizing compactness and minimizing power
consumption. Nevertheless, the most attractive feature of biological systems is their ability to
learn and adapt to new situations. Artificial agents equipped with such abilities would have a
broad range of applications. The possibility of embedding learning capabilities in neuromorphic
systems is therefore extremely appealing. One route toward implementing these synaptic weights is
the memristor. However, well-characterized materials suitable for the construction of memristive
devices with large memristive switching are needed. In this manuscript we investigate possible
solutions to this problem.

A possible realization of a memristive device is a metal-insulator-metal structure. In particular,
this can be a tunnel junction. Then, a 1–3 nm thin insulator separates two metal electrodes, and
the tunneling current is determined while the bias voltage is applied. The scalability of (magnetic)
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tunnel junctions was already shown in magnetic random access
memory devices, and a 16Mb chip is commercially available.
Consequently, we suggest the use of memristive tunnel junctions
as artificial synapses in neuromorphic circuits.

In this manuscript, we will present several oxides used as
the barrier materials in tunnel junctions. A cartoon of the
layer stacks is depicted in Figure 1. Many oxides can exhibit
memristive switching behavior in such a tunneling structure,
which allows us to tailor the electrode and barrier materials
for a given application. First, we introduce magnesia based
tunnel junctions and use them to look into the analogs of
long-term potentiation, long-term depression, and spike-time
dependent plasticity, which are the basic functional properties
of biological synapses (Thomas, 2013). However, the resistance
change in these junctions is rather small [(Rmax − Rmin)/Rmin =

8%]. Consequently, new material combinations are tested, and
we will show resistive switching in BaTiO3 and Ta-O based
systems. BaTiO3 and TaO based junctions exhibit up to 10
times larger resistance changes, which improves the prospects
of these systems in semiconductor-based neuromorphic circuits.
The general suitability of these junctions is discussed in the last
section and compared to the requirements suggested by Indiveri
et al. (2013).

2. Materials and Methods

2.1. Magnesia Based Tunnel Junctions
TheMgO-based magnetic tunnel junctions are sputtered on SiO2

generated by thermal oxidation of Si. The bottom layer stack
consists of Ta/Cu−N/Ta/Pt−Mn/Co−Fe/Ru, the functional
tunnel system is composed of Co−Fe−B/MgO/Co−Fe−B, while
Ta/Cu/Ru form the top layers. The deposition is performed at
room temperature and followed by a post-annealing step at
360 ◦C for 90min. Afterwards, elliptical tunnel junctions with
a major (minor) axis of 350 nm (150 nm) are prepared by
successive steps of electron beam lithography and ion beam
etching. More details on the preparation and characterization
of magnesia based tunnel junctions are given in previous
publications (Krzysteczko et al., 2008, 2009).

All measurements were carried out at room temperature with
a voltage source. The voltage pulses of up to 800mV have
1 s duration and lead to a current density of 1× 106 A/cm2

to 10× 106 A/cm2. These values are close to the dielectric
breakdown voltage of the devices. Transmission electron
microscopy images of MgO junctions before and after the

FIGURE 1 | Typical functional layer stacks of the presented memristive

tunnel junctions. The thickness of the individual layers are given in

parentheses in nm.

dielectric breakdown are presented in our previous work
(Thomas et al., 2008; Schaefers et al., 2009). Consequently, the
investigations utilizing sequences of voltage pulses were limited
to a maximum voltage of 500mV. The resistance of the device is
determined 200ms after the write pulse by measuring the current
at a voltage of 20mV. The base resistance of the layer stack is
approximately 35�µm2 leading to a resistance of approximately
200� for the given lateral junction size. The current flows from
the top to the bottom electrode at positive bias voltages.

2.2. Barium Titanate Junctions
The preparation of barium titanate (BTO) is more challenging
than the other materials, because its tetragonal phase with
perpendicular orientation of the c-axis is required. Therefore,
suitable substrate and electrodematerials are essential. The lattice
constant of MgO is 4.21Å (Rocksalt structure), while that of
iron is 2.86Å (bcc). Because of the cubic lattice structure of
iron and magnesia, the lattice mismatch is 4% with respect to
two unit cells of Fe in the diagonal direction to one unit cell
of MgO [Fe(001);<110>‖MgO(001);<100>]. Additionally, the
lattice mismatch between Fe and BTO (001) is 1.4% in the
diagonal growing case, making this system a good candidate for
coherent tunneling junctions. Therefore, we chose Fe/BTO/Fe
tunneling junctions prepared by rf-magnetron sputtering.

Because of both the small lattice mismatch between Fe and
MgO and reliable tunneling junctions of Fe/BTO/Fe, we chose
MgO (100) substrates. BTO films were prepared by rf-magnetron
sputtering from a single BTO-target (3 inch) with an applied
power of 50W and an argon pressure of 2.1× 10−3mbar. The
substrate temperatures TS during the BTO deposition was varied
from room temperature up to 918 ◦C. The crystal structure was
investigated by X-ray diffraction (XRD) using Cu-Kα radiation,
and the film thickness was measured by X-ray reflectrometry
(XRR). After deposition the composition was measured by XPS
(Ba 21%, Ti 21%, O 58%) for TS = 737 ◦C and is close to
the stoichiometric ratio of 1:1:3. The tunneling junctions were
structured with standard optical lithography techniques. The
junction area of the samples presented in this manuscript is
25 µm×25 µm. The junction resistance was approximately 4 k�
at an applied voltage of 10mV.

Initially, we characterized our BTO films directly sputtered on
MgO by XRD. The film thickness was determined by XRR to
calibrate the sputtering. Then, the thickness was set to 10 nm for
all samples.

Figure 2 shows the XRD patterns of the BTO films deposited
at the given temperature TS. Both the BTO (002) and the BTO
(004) peak intensities increase with increasing temperature up to
918 ◦C. Furthermore, the position of the BTO (002) peak shifts
from 44.425◦ at TS = 689 ◦C to 45.925 ◦C at TS = 918 ◦C,
corresponding to a decrease in the c-axis lattice constant from
4.078Å down to 3.954Å, which is shown in detail in Table 1.

The c-axis lattice parameter of the sample at TS = 689 ◦C
exhibits a lattice constant of c = 4.035Å, which closely agrees
with the c-axis lattice parameter of c = 4.036Å (Kim et al., 1995).
Four phases are possible in BTO: rhombohedric, orthorhombic,
tetragonal, and cubic. We can assume that we have achieved a
tetragonal phase with perpendicular orientation of the c-axis,

Frontiers in Neuroscience | www.frontiersin.org July 2015 | Volume 9 | Article 241 | 140

http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Neuroscience/archive


Thomas et al. Tunnel junction based memristors as artificial synapses

FIGURE 2 | X-ray diffraction pattern of the barium titanate films at

different deposition temperatures on MgO substrates. An increase of the

002 and 004 BTO-peaks is observed with increasing substrate temperature.

TABLE 1 | The c-axis lattice parameters of BTO (10 nm) layers on MgO

substrates calculated via the 002 peak at different deposition

temperatures.

T [◦C] 595 642 689 737 786 830 918

c [Å] 4.078 4.062 4.035 3.997 3.989 3.951 3.954

At RT, 261 and 452◦ no peak is visible in the spectra.

which is in good agreement with results previously reported by
Kim et al., who fabricated epitaxial BTO films onto MgO (001)
substrates (Kim et al., 1995).

2.3. Tantalum Oxide
All films are fabricated by dc magnetron sputter deposition
with a base pressure of 3.5× 10−7mbar and a sputter pressure
of 1.3× 10−3mbar. The junctions are defined by optical
lithography and argon ion beam etching leading to a size of 10×
10 µm.

We used Pd as the bottom and Ta as the top electrode to
generate asymmetric barrier interfaces, both electrodes with a
thickness of 10 nm. Our 4.6 nm Ta-O film was produced by
plasma oxidation of a 2 nm Ta film as previously reported by
Park and Im (1992). The penetration depth is regulated by the
bias voltage of the plasma (Rottländer et al., 2001; Thomas et al.,
2003). The oxygen concentration was regulated by the oxidation
time to generate a tunneling barrier with a high concentration
of oxygen vacancies. The generation and movement of oxygen
vacancies at one interface in an electrical field results in the
resistance change (Krzysteczko et al., 2009; Yang et al., 2010).

3. Results and Discussion

3.1. Magnesia Based Tunnel Junctions
The resistance change of the MgO junctions is determined by
a number of voltage pulses, leading to a relative change in

resistance as depicted in Figure 3A. First, we will look into
one example, where a pulse sequence of 30 voltage pulses is
used, which corresponds to the bars of Figure 3A marked with
digits i and 1–4. The pulse sequence itself is described by the
cartoon in Figure 3B and is inspired by biological data (Rose and
Dunwiddie, 1986). The initial state is indicated by the green bar
marked with an i.

Now, one pulse sequence (30 voltage pulses) of the described
shape is applied to the tunnel junction, and the resistance
increases to the value indicated by the digit 1. An additional pulse
sequence further increases the resistance to the value signified by
the digit 2. Subsequently, the resistance was increased by several
pulse sequences finally leading to the value indicated by the digit
4. We observe a systematic decrease of the resistance change after
every pulse, and eventually the resistance saturates and reaches
its maximum or minimum value. This is true for all memristive
devices (Chua, 2014).

This was also performed for pulse sequences with a different
number of voltage pulses. The number of voltage pulses in each
pulse sequence is given by the abscissa in Figure 3A. We carried
out these measurements for negative voltages as depicted in
Figure 3B, leading to a resistance increase, which corresponds
to the blue bars in Figure 3A. A resistance decrease is caused
by positive voltages, which corresponds to the orange bars in
Figure 3A. The maximum voltage was kept constant at |vmax| =

500mV in all cases.
The increase (decrease) in the conductivity of the junctions

can be associated with long-term potentiation LTP (depression,
LTD) in a biological neural network. Linares-Barranco et al.
suggested to shape the pulses in a particular way (see Linares-
Barranco and Serrano-Gotarredona, 2009): The increasing and
decreasing edges of the pulses follow an exponential increase
and decay, respectively. Two subsequent pulses can generate a
positive as well as negative net flux. If we now take similar data
depending on the spike-timing, we acquire the flux-dependent
plasticity shown in Figure 4.

If we fit the collected data, we obtain

G(ϕ) =
1

148mS+ 3.77mS · exp(−ϕ/46.3Vs)

for positive as well as

G(ϕ) = 6.6× 10−3mS+ 0.177× 10−3mS · exp(ϕ/47Vs)

for negative values, where G denotes the conductance and ϕ

denotes the flux. This leads to the red fitting curves in Figure 4

and can be used to calculate the relative change in conductance
also depicted in Figure 4 in blue. The same kind of functions can
be used to fit biological data, e.g., by Bi et al. (Bi and Poo, 1998).
Therefore, we are able to show behavior similar to spike-timing
dependent plasticity (STDP) in these simple two terminal devices
(Jo et al., 2010; Krzysteczko et al., 2012). In the following sections,
we suggestmore barriermaterials to be used inmemristive tunnel
junctions. We aim to find larger resistance changes than up to 8%
in magnesia based tunnel junctions. Furthermore, we would like
to show that memristive switching is frequently observed in these
kinds of structures.
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FIGURE 3 | (A) Long-term potentiation and long-term depression of an

MgO-based magnetic tunnel junction. The refreshed state is set to zero

(green bars). The relative resistance increase is shown in blue and the relative

resistance decrease in orange. (B) A cartoon of an example pulse sequence

of 30 pulses. It consists of a series of 1 s rectangular pulses, convoluted by a

sinusoidal half-wave with the amplitude vmax. The pulses are separated by

200ms intervals. For similar pulse sequences, the pulse widths and pulse

intervals are always fixed (1 s and 0.2 s, respectively) and the sine function

involved in the convolution has a half-period given by the total duration of

pulse sequence.

FIGURE 4 | Flux-dependent plasticity of memristive magnetic tunnel

junctions. Top: The asymmetric conductivity of a memristive tunnel junction.

Positive flux is associated with causal spike-timing, negative flux with

anti-causal spike-timing. The asymmetry typical for stdp is evaluated by the

fitting curves. Bottom: The derivative of the fitting curves in the top graph is

calculated to provide a measure of the change in synaptic strength.

3.2. Barium Titanate Junctions
Initial success with memristive BTO tunnel barriers was
published by Chanthbouala et al. on LSMO/BTO/Co systems,
in which junction preparation was accomplished by pulsed laser
deposition (Chanthbouala et al., 2012). Therefore, we looked into
sputtered memristive tunnel junctions based on BTO barriers
(Von Hippel, 1950; Kim et al., 1995). In other contexts, this
compound is best known for its ferroelectric properties, which
are caused by the tetragonal crystal structure. In the future, this
might lead to multi-functional tunnel junctions (Fiebig, 2005;
Tsymbal, 2006), i.e., junctions exhibiting memristive behavior
and ferroelectricity at the same time.

Figure 5 shows a tunneling hysteresis loop in the applied dc
bias range of −300 to 300mV for TS = 737 ◦C. The measured
sequence was from 0mV up to 300mV, down to −300mV and

FIGURE 5 | Current-voltage characteristics of a BTO based tunnel

junction. The measurement sequence is a, b, c at an applied voltage range

of −300 to 300mV. The hysteresis loop shows a type II non-crossing

hysteresis.

back to 0mV. The time between each data point was 200ms.
The figure displays the pinched hysteresis loop characteristic
for all memristors (Chua, 2014). According to the theoretical
overview of Pershin et al., memristors can be categorized into two
types (Pershin and Di Ventra, 2011): Self crossing and non-self-
crossing, i.e., the two branches of the hysteresis loop do or do not
cross each other.

For BTO, we are interested in the unusual non-crossing
hysteresis loop, since most memristive systems show a crossing,
i.e., a type-I behavior. A non-self-crossing hysteresis loop can
be observed in thermistors and elastic memcapacitive systems.
In contrast, Chanthbouala et al. observed a crossing (type-I) I-
V-curve for a Lsuppa-Sr-Mn-O/BTO/Co system (Chanthbouala
et al., 2012).

However, the memristive effect is very sensitive to the
preparation of the junctions, as observed and discussed by
Krzysteczko et al. for MgO-based systems (Krzysteczko et al.,
2008, 2012). Our BTO system consists of Fe electrodes and is
prepared by magnetron sputtering. Chanthbouala et al. grew
their junctions using pulsed laser deposition and discussed
the influence of structure on the nucleation and propagation
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of domain walls. The Kolmogorov-Avrami-Ishibashi model
describes clean (epitaxial) systems, in which switching is
predominantly caused by domain wall propagation (Ishibashi
and Takagi, 1971; Hashimoto et al., 1994; Jo et al., 2009). In
disordered systems, nucleation-limited switching models should
be used (Du and Chen, 1998; Tagantsev et al., 2002), which might
explain the different crossing behaviors, even for similar systems
utilizing BTO tunnel barriers. The combination of crossing as
well as non-crossing behavior might be exploited for compact
sequential logics as suggested by You et al. (2014).

BTO-based memristive systems are promising because
of their large amplitude of resistive switching. Figure 5

exhibits an 80% change in the tunneling current at −200mV,
which is approximately 10 times larger than the amplitude
in our previously investigated MgO-based tunnel junctions
(Krzysteczko et al., 2008, 2012). Furthermore, the epitaxial BTO
systems indicate the potential of the BTO tunneling systems that
exhibit resistance changes of a factor of 750 for 3 nm films (Garcia
et al., 2009). However, the epitaxial growth might pose additional
challenges for the integration in existing neuromorphic circuits.

3.3. Tantalum Oxide
Previous reports of Ta-O-based memristive devices show a fast
and stable switching behavior for at least 1× 1010 cycles (Yang
et al., 2010; Torrezan et al., 2011). However, the thickness of the
Ta-O layer always exceeded 7 nm. Consequently, we prepared
tunnel junction type systems with a Ta-O barrier.

The samples with oxidation times of 150 s and 200 s reached
the highest ratio between the lowest and highest resistance states.
Figure 6 shows an I-V-loop of a junction oxidized for 150 s,
we observed values of up to 80% in the depicted junction. We
swept the voltage from zero to−600 to 600mV and back to zero.
Voltages of more than 600mV led to a dielectric breakdown
of the junctions (Thomas et al., 2008; Schaefers et al., 2009).
All measurements are done with the bottom electrode as the
reference potential.

A Brinkman-Fit (Brinkman et al., 1970) of our measurements
shows a Ta-O barrier with an effective thickness of 1.7–1.9 nm,
a height in the range of 0.90–1.12 eV and an asymmetry in
the range of 0.08–0.35 eV. The difference between the effective
barrier thickness and the measured thickness of the Ta-O film

FIGURE 6 | Memristive switching of Pd-TaO-Ta tunnel junction. The

barrier was oxidized for 150 s leading to the largest ratio between the high and

low resistance states.

seems to result from the post-sputtering in-situ oxidation, which
generates a rough interface to the bottom electrode.

Furthermore, we are able to reach more than two states
in a Ta-O based tunnel junctions, as shown in Figure 7. We
generate the resistance steps by applying a voltage of ±600mV
for 15 s. The resulting resistance levels are measured with a
voltage of 10mV for 180 s. The first three positive (green)
voltage pulses increase the resistance while the last (blue) negative
pulse decreases it. We can observe the analog of long-term
depression and long-term potentiation in Ta-O based junctions,
and we have increased the signal by more than a factor of
10 compared to 10% resistance change in MgO based systems.
This could emulate the synaptic weight in a neuromorphic
chip, and a possible future implementation is suggested in the
fifth section.

4. Alternate Mechanisms for
Memristive/Resistive Switching

There are several other mechanisms that can lead to memristive
or resistive switching in mesoscopic systems (Waser et al., 2009):
Nanomechanical effects, molecular switching, electrostatic/
electronic effects, electrochemical metallization, valence change,
thermochemical effects, phase change, magnetoresistance,
ferroelectricity, and the presented change in the effective tunnel
barrier thickness. In the next paragraphs, we will present a few
published results based on different mechanisms. However, this
is not an extensive review of the current state of the art, but
rather a comparison of several differences and similarities to
emphasize the current challenge for memristive tunnel junctions:
The amplitude of the resistance change.

Redox-related chemical effects—which include
electrochemical metallization, valence change, and
thermochemical effects—were intensively studied (Waser
and Aono, 2007), even before the term memristor moved back
into the focus of attention (Strukov et al., 2008). A lot of the
research interest was driven by the search for a non-volatile
memory that could replace Flash at some point in the future
(Waser, 2008).

FIGURE 7 | Analogs of long-term potentiation and long-term

depression of a Ta-O based tunnel junction. Positive voltage pulses are

depicted in green, negative voltage pulses in blue. The pulse voltage

was ±600mV in all cases.
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We start with systems based on electrochemical metallization.
These devices consist of a trilayer of an electrochemically inert
material, an electrochemically active material and a thin film
electrolyte sandwiched in between the two (Kozicki andMitkova,
2008). Sometimes, this mechanism is also called conductive
bridging or programmable metallization cell. An applied voltage
leads to a formation or dissolution of a metal filament between
the two electrodes, decreasing or increasing the resistance of the
device, respectively. The direction of the process depends on the
polarity of the applied voltage, which is consequently denoted as
bi-polar switching. An Roff/Ron ratio [resistance in the on (Ron)
and off (Roff) states] of more than 1× 105 and switching times
of less than 100 ns were reported (Waser et al., 2009). However,
often a forming step of voltages on the order of 5V is required
before the switching voltage of approximately 1V can be used.

The change of the resistance in a device can also be induced
by thermal effects. These mechanisms do not depend on the
direction of the current flow. Therefore, these mechanisms
always have unipolar characteristics. Two prominent examples
are thermochemical switching and phase change materials
(Kuzum et al., 2012). The first case can be observed in, e.g.,
transition metal oxides. Gibbons and Beadle investigated this
already in the 1960s in Ni-O (Gibbons and Beadle, 1964).
The on state is also caused by a filament connecting the two
electrodes (Waser et al., 2009) and an on/off ratio of two orders
of magnitude is reported, e.g., for Pt/Ni-O/Pt devices (Yun et al.,
2007). In the second case, a structural phase change causes the
resistance change. Simpson et al. report, e.g., on GeTe/Sb2Te3
devices (Simpson et al., 2011). The resistance change of two
orders of magnitudes was induced by voltage pulses of several
volts for 50–100 ns. Similar resistance changes were reported by
Eryilmaz et al., although the amplitude of this change decreases
to 100% if a continuously varying resistance is desired (Eryilmaz
et al., 2014).

The research investigating magnetic as well as ferroelectric
systems was looking into their use as magnetic or ferroelectric
random access memory, i.e., into bi-stable systems comparable to
the research of redox-related chemical effects. Magnetic random
access memory is often based on magnetic tunnel junctions
(MTJs). In MTJs, two ferromagnetic electrodes are separated
by a thin insulating layer. Then, tunnel magnetoresistance can
be observed, i.e., the resistance in these devices is small/large
if the magnetization of two ferromagnetic layers are aligned in
parallel/ antiparallel, respectively (Julliere, 1975; Moodera and
Mathon, 1999). The alignment of the softer magnetic layer can
be switched by current pulses because the spin of the tunneling
electrons is flipped and leads to a torque, eventually switching the
magnetization (Huai et al., 2004). Magnesia based MTJs exhibit
on/off ratios of 2, switching voltages of approximately 500mV
and switching times in the order of ns (Kishi et al., 2008; Schaefers
et al., 2009).

In the following, we try to list some of the requirements for
our memristive devices. Bipolar switching is preferred, because it
allows to attain STDP functionality by simple pulse shaping and
overlapping (Linares-Barranco and Serrano-Gotarredona, 2009).
We used the suggested pulse shaping to exemplarily demonstrate
STDP using the MgO-based MTJs. The same scheme is valid

for the other systems based on Ta-O. However, we increased the
on-off ratio to 100% to improve the performance of the devices.

The access to a continuously varying resistance or at least
multiple states would also permit the representation of synaptic
weight by a single device. In either case, a large on/off ratio
is desired. A write voltage of less than 3.3V (for e.g., 350 nm
technology) would be advantageous to be compatible to existing
neuromorphic circuits, ideally without the requirement of a
forming step. The condition that small voltages should not lead
to a resistance change would be a favorable deviation from the
ideal memristive behavior. Otherwise, every read process would
change the resistance value of the memristive system. Finally,
the memristive devices should be scalable down to nanoscopic
dimensions.

If we compare the memristive tunnel junctions to these
requirements, we observe bipolar switching and the access to a
continuously varying resistance. The write voltages are in the
order of 500mV and no forming step is required. The junctions
exhibit a voltage threshold for the resistance change and the
tunnel junctions can be prepared to very small lateral dimensions.
50× 50 nm were demonstrated already 10 years ago, and similar
structures are the basis of commercially available magnetic RAM
(Kubota et al., 2003). This is comparable to other technologies
such as electrochemical metallization where the scalability has
been demonstrated down to devices with diameters of 20 nm
(Valov et al., 2011).

The amplitude of the resistance change is one obvious
disadvantage of the memristive tunnel junctions if compared
to the other mechanisms with on/off ratios of up to 5 orders
of magnitude. Our experiments with magnesia based junctions
exhibited resistance changes of less than 10%.Here, we tested new
material combinations and increased the resistance change from
10% in MgO to 100% in BaTiO3 and Ta-O to tackle the most
obvious challenge for memristive tunnel junctions as synaptic
weights in future neuromorphic circuits.

5. Possible Integration in Neuromorphic
Systems

An ambitious aim is the full implementation of a memristive
layer stack on top of a functional neuromorphic circuit. In a step
toward this goal, we first contrast the different tunnel barrier
materials presented in this manuscript to each other.

Magnesia was the first material where we observedmemristive
behavior in MTJs (Krzysteczko et al., 2008). The memristive
tunnel junctions exhibited key features mimicking synaptic
plasticity such as long-term depression, long-term potentiation
and STDP (Krzysteczko et al., 2012; Thomas, 2013). However,
the maximum amplitude between the lowest and highest
resistance is 8%. This limits the use in actual devices, as
discussed in the next paragraph. The main goal of the
research presented in this manuscript is the preparation of
memristive tunnel junctions showing larger resistance changes
while maintaining the key features. Consequently, tantalum
oxide and barium titanate are discussed in the following
paragraphs.
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Both BaTiO3 and Ta-O exhibit a resistance change of
approximately 80% and allow access to a continuously variable
property (resistance in our case), which can be used as the
synaptic strength in a future device. Initially, BaTiO3 was
chosen as one barrier material, because of the results published
by Chanthbouala et al. (2012). However, the preparation
process was discussed in detail, indicating a high-temperature
(700 ◦C) process. The high temperatures might complicate
a full integration of the BaTiO3 memristors on top of
existing CMOS technology, which was discussed for resistive
RAM/resistive switching earlier (e.g., Pinnow and Mikolajick,
2004; Pan et al., 2014). Therefore, we focus on the Ta-O based
devices.

A possible integration of memristor based devices with
neuromorphic synaptic circuits was suggested by Indiveri et al.
(2013). In the following, we compare the requirements pointed
out in Indiveri et al. (2013) with the properties of the Ta-
O based junctions. The suggested voltage is comparable to
the voltage applied to our junctions. The impedance change
of the memristors was assumed to be between 1 k� and
7 k� (i.e., a factor of 7) and exhibit 4 discrete resistance
states, although 2 states would also be possible (Brader
et al., 2007; Mitra et al., 2009). Our Ta-O devices show
a resistance change of a factor of 2, which is approaching
the necessary amplitudes at least for 2 resistance states. The
absolute resistance of a tunnel junction is determined by the
barrier thickness (with an exponential relationship) as well as
the junction’s area (with a linear relationship). This allows
for simple tuning of the junction’s resistance to the desired
value by changing the junction area and barrier thickness
according to the requirements of the circuit design and area
constraints.

To further demonstrate the possible integration of
Ta-O memristors into existing technologies, we designed a
neuromorphic chip comprised of synaptic and neural circuits as
well as various test structures for the deposition of memristor
devices (pads marked with red frames in Figure 8). The chip
was fabricated using a standard AMS 0.35µ m CMOS process,
covers an area of about 1.6mm2 and includes neuromorphic
circuits as described in Chicca et al. (2014). The test structures
enable the deposition of the presented layer stacks on top of the
chip and subsequent e-beam lithography as well as ion beam
etching to define the junctions. The underlying synaptic circuits
are the ones proposed by Indiveri et al. (2013) and this scheme
supports the direct integration of the memristor by allowing
the implementation of programmable synaptic weights. The
corresponding simulation results are also given by the same
authors (Indiveri et al., 2013).

Consequently, we will fully characterize the response of
the synaptic and neuronal circuit for several memristor states
with the goal of validating in hardware the integration,
which is so far only supported by simulation results.
This research will constitute an important milestone on
the way toward the implementation of on chip learning
algorithms capable of internally programming the synaptic
weights in response to input stimuli and/or neural network
dynamics.

FIGURE 8 | Neuromorphic chip with contact pads for our memristors

(red frames). The chip was fabricated using a standard AMS 0,35µ m CMOS

process and supports the integration of memristor devices with neuromorphic

synaptic and neural circuits.

6. Conclusion

In summary, we presented several materials as the functional
oxide layer in tunnel junction type memristive systems.
Magnesia, barium titanate and tantalum oxide indicate that
these type of memristive systems can be based on many
different materials. A 16Mb magnetic random access memory
is commercially available, demonstrating the good scalability of
MTJs that are very similar devices.

As an example, we looked into the analogs of long-term
potentiation, long-term depression and STDP in MgO based
tunnel junctions. However, the maximum resistance change
of up to 8% limits the applicability as synaptic weights
in neuromorphic circuits. Here, we increased this resistance
change by a factor of 10 in Ta-O based devices, enabling the
implementation on top of a neuromorphic chip in the future.

We keep this in mind, but look into the development of
autonomous neuromorphic systems now. One of the main
obstacles that hindered the development of these systems is the
lack of a reliable, robust, and simple implementation of a learning
mechanism supported by a low-power compact device suitable
for analog storage of the synaptic strength. Key requirements for
learning circuits include the long time scale storage capabilities
necessary to maintain acquired memories as well as mechanisms
for fast modifications of synaptic weights required for the
acquisition of new memories. The high integration required in
large scale systems poses a severe space constraint impossible to
meet with the use of digital memories and associated digital-to-
analog converters.

Capacitive storage of synaptic weights has been proposed
as a possible solution to this problem. A major drawback of
this approach is the overhead required to compensate leakage
currents affecting the charge on the capacitor. Two techniques
have been proposed in this domain: reduced analog depth of the
synaptic weight on long time scales (Fusi et al., 2000; Chicca et al.,
2003; Giulioni et al., 2009) and switched capacitors (Vogelstein
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et al., 2007; Folowosele et al., 2009; Noack et al., 2015). The
first solution requires redundancy and therefore large number of
synapses as well as power expensive active refresh mechanisms.
The second solution requires high frequency digital signals which
could introduce deviations in the analog signals due to cross-talk.

Another solution that has been proposed involves the use
of floating gates for synaptic strength storage (Holler et al.,
1989; Diorio et al., 1998), and for the implementation of
Hebbian learning (Gordon and Hasler, 2002) and STDP rules
(Ramakrishnan et al., 2011; Nease et al., 2013). Floating gates
synapses are suitable for large scale integration but they have
the drawback of high voltages required to set the synaptic
weight.

Memristors represent an emerging alternative approach to
synaptic weight storage thanks to theirmulti-bit precision storage
capability, low energy requirements for writing and nanoscale

size. Therefore, we propose the integration of memristive
devices in neuromorphic circuits. With this work we are
laying the foundations for a possible solution to this ambitious
technological challenge.
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Resistive (or memristive) switching devices based on metal oxides find applications
in memory, logic and neuromorphic computing systems. Their small area, low power
operation, and high functionality meet the challenges of brain-inspired computing aiming
at achieving a huge density of active connections (synapses) with low operation power.
This work presents a new artificial synapse scheme, consisting of a memristive switch
connected to 2 transistors responsible for gating the communication and learning
operations. Spike timing dependent plasticity (STDP) is achieved through appropriate
shaping of the pre-synaptic and the post synaptic spikes. Experiments with integrated
artificial synapses demonstrate STDP with stochastic behavior due to (i) the natural
variability of set/reset processes in the nanoscale switch, and (ii) the different response
of the switch to a given stimulus depending on the initial state. Experimental results are
confirmed by model-based simulations of the memristive switching. Finally, system-level
simulations of a 2-layer neural network and a simplified STDP model show random learning
and recognition of patterns.

Keywords: neuromorphic circuits, spike timing dependent plasticity, neural network, memristor, pattern

recognition, cognitive computing

INTRODUCTION
Brain-inspired computing is among the top challenges of the
today’s information and communication technology. The brain
is capable of formidable tasks, such as learning, recognition of
visual/auditory patterns, and adaptation in response to new infor-
mation. To meet this grand challenge, a neuromorphic system
should include a number of neurons and synapses similar to
a biological human brain, featuring around 1012 neurons and
1015 synapses (Rajendran et al., 2013). Clearly, such a complex
system can be realized only through advanced manufacturing
techniques (e.g., 3D integration), and small circuit blocks for neu-
rons and synapses. The latter, in particular, represents by far the
largest area of the neuromorphic circuit due to the huge number
of inter-neural connections, therefore scaling down the size and
complexity of the artificial synapse is a key task in the design of a
neuromorphic circuit.

To this purpose, nanoscale resistive switches, or memristors,
have been proposed as novel artificial synapses in neuromorphic
systems (Likharev et al., 2003; Snider, 2008; Jo et al., 2010).
Memristors have the capability of an inherent analog tuning,
combined with a 2-terminal structure and a scalable device
area and power, therefore they display strong advantage with
respect to silicon-based synapses, such as floating gate memo-
ries (Diorio et al., 1996) and static RAM (Indiveri et al., 2006).
Different switch technologies have been proposed for artificial
synapses, including phase change memories (Wright et al., 2011;
Bichler et al., 2012; Kuzum et al., 2012), organic-based switches
(Bichler et al., 2010), chalcogenide-based switches (Ohno et al.,

2011; Suri et al., 2013) and oxide-based resistive switching mem-
ories (Seo et al., 2011; Yu et al., 2011, 2013; Park et al., 2012;
Ambrogio et al., 2013). The latter approach provides analog
switching, nonvolatile behavior, CMOS compatible materials,
back-end process and scalable power consumption thanks to fila-
mentary switching (Wong et al., 2012). A memristor naturally sat-
isfies the requisites for electrically-tunable conductance, serving
as a connection for communication between a pre-synaptic neu-
ron (PRE) and a post-synaptic neuron (POST), and responsive to
the individual spikes fed from both neurons. To achieve this mul-
titask operation, a time-division multiplexing (TDM) approach
was previously proposed, where neuron spikes obey a precise syn-
chronous sequence for communication, long-term potentiation
(LTP) and long-term depression (LTD) (Snider, 2008; Jo et al.,
2010). The synchronous approach, however, may be too idealized
with respect to the biological brain, where synapses are poten-
tiated/depressed through asynchronous spike timing dependent
plasticity (STDP) (Bi and Poo, 1998). Also, synchronous clocking
may be practically difficult in the case of large neuromorphic sys-
tems (Zamarreño-Ramos et al., 2011). More recently, a fully asyn-
chronous approach for communication/learning of neuromor-
phic synapses with leaky-integrate-and-fire (LIF) neurons was
proposed (Zamarreño-Ramos et al., 2011; Serrano-Gotarredona
et al., 2013). However, a conceptual demonstration of realistic
memristor synapses for communication and learning has not
been achieved so far.

This work addresses the integration of memristors in neuro-
morphic systems by introducing a 2-transistor/1-resistor (2T1R)
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synapse for large scale neuromorphic systems. The transistors
in the synapse block allow for (i) multiple-input control of the
synapse, which must receive signals from both the PRE and the
POST, and (ii) accurate control of the filament growth for analog
switching and STDP behavior (Yu et al., 2011; Ambrogio et al.,
2013; Subramaniam et al., 2013). STDP in the 2T1R synapse is
experimentally demonstrated on bipolar resistive switching mem-
ories based on HfO2 acting as memristive switches. We show that
the memristive synapse is capable of communication of spik-
ing signals between neurons and stochastic STDP due to both
the natural switching variability in the switch, and to the varia-
tions of memristive response depending on the initial state. We
finally show a conceptual demonstration of a simulated 2-layer
neuromorphic network displaying stochastic pattern learning and
recognition, thus further supporting memristive synapse as a
scalable, high-functionality building blocks for large scale neuro-
morphic systems.

MATERIALS AND METHODS
Figure 1A shows the conceptual scheme of the 2T1R structure
for the memristive synapse. Both MOS transistors in the synapse
control the current flowing through the memristor, thus enabling
communication and plasticity. The PRE controls 2 of the 4 termi-
nals of the 2T1R structure, namely the top electrode (TE) and the
communication gate (CG). The bottom electrode (BE) is instead
connected to the virtual-ground input of the POST, which also
controls the fire-gate (FG) terminal.

COMMUNICATION MODE
The usual operation of the synapse consists of the communi-
cation mode, where the synapse is a simple resistor with fixed
conductance allowing for the weighted transmission of spikes

FIGURE 1 | Illustrative scheme for the 2T1R synapse and its operation.

The synapse consists of a memristor with 2 series transistors, connected to
both the PRE and POST (A). During communication, the PRE delivers pulses
to both the CG and the TE terminals of the synapse (B). The resulting current
is a function of the memristor conductance and is fed into the input node of
the integrate-and-fire POST neuron (C). The maximum and minimum
voltages of TE pulse are VTE,max = 2.4 V and VTE,min = −1.65 V, respectively.

from the PRE to the POST (Zamarreño-Ramos et al., 2011;
Indiveri et al., 2013). Figure 1B shows the waveforms of the
pulses applied to the TE and the CG. The TE pulse includes an
exponentially-increasing negative pulse and a short positive pulse,
while the CG pulse is a short positive pulse enabling the transmis-
sion of a negative current pulse to the POST input through the BE
connection. Although the CG voltage is high, it always overlaps
with the low-voltage region of the VTE pulse, which rules out any
possible switching in the memristor. The negative current spike is
integrated by the input stage of the POST as shown in Figure 1C,
illustrating a single PRE/synapse/POST layer of the neuromor-
phic network. The integrate-and-fire structure of the POST in
Figure 1C is largely simplified, in that it does not include, e.g.,
the leakage path for the stored charge, the refractory period to
deactivate integration during fire, and the reset switch to initial-
ize integration after fire (Zamarreño-Ramos et al., 2011). As the
PRE spikes collected at the neuron input are integrated, the inter-
nal voltage Vint increases, eventually hitting the threshold of the
comparator stage. This event triggers the fire circuit, namely a
monostable circuit delivering spikes in the forward direction, i.e.,
to the TE and CG terminals of the output synapse, and in the
reverse direction, i.e., to the FG terminal of the input synapses.

STDP
The temporal coincidence of the PRE spike at the TE of a synapse
and of the POST spike (or fire) at the FG of a synapse leads to a
change of the memristor conductance according to Figure 2. Two
cases can be distinguished by the relative delay �t defined as the
time between the end of the negative TE pulse and the end of the
FG pulse. For �t > 0 in Figure 2A, there is an overlap between the
positive 1-ms TE pulse and the FG pulse, thus inducing set tran-
sition in the memristor. The increase of conductance, due to the
growth of a conductive filament (CF) across the HfO2 switching
layer (Nardi et al., 2012), is dictated by the compliance current IC

flowing in the transistor, hence by the gate voltage VFG. Since the
FG voltage VFG decreases at increasing �t, LTP decreases as �t
increases, thus realizing a timing-dependent LTP. Figure 2B also
includes triangular read pulses at VTE before and after the PRE
and POST spikes, both having 1 ms width and a small amplitude
of 0.5 V to avoid any disturb to the memristor device. A rectangu-
lar pulse of width 1 ms and amplitude 5 V was applied to VFG to
enable the pulse operation. The response current during the read
pulse before and after the PRE/POST spikes allows to evaluate the
increase of conductance induced by LTP.

Similarly, for �t < 0 (Figure 2B), the negative TE pulse and
the positive FG pulse overlap each other, thus inducing reset
transition due to the disconnection of the CF. The increase of
resistance during reset is controlled by the maximum voltage
across the memristor (Nardi et al., 2012), hence by the value of
VTE. Since VTE decreases in absolute value at increasing �t, LTD
decreases with �t, thus carrying out time-dependent LTD. The
combination of time-dependent LTP and LTD results in STDP
functionality.

CIRCUIT IMPLEMENTATION
To verify the conceptual scheme of STDP in Figure 2, we applied
the waveform in the figure to a 1T1R structure including an HfO2

memristor in series with a MOS transistor. The MOS transistor
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FIGURE 2 | Signal waveforms during LTP and LTD. LTP takes place when
the delay �t between VTE and VFG is positive (A). In this case, there is
overlap between the positive 1-ms TE pulse and the FG pulse (maximum
voltage 2.9 V), thus inducing set controlled by the VFG-value. VFG increases
at decreasing �t, thus the maximum LTP is obtained for �t approaching 0.

LTD takes place when the delay �t between VTE and VFG is negative (B).
In this case, the negative TE pulse and the positive FG pulse overlap each
other, thus inducing reset controlled by the VTE-value. VTE increases in
absolute value at decreasing �t, thus the maximum LTD is obtained for �t
approaching 0.

has threshold voltage VT = 1.4 V, while the channel width and
length were 3 μm and 1.425 μm. In the memristor, a Si-doped
HfO2 layer was sandwiched between two TiN electrodes. A Ti
cap was deposited between the top TiN electrode and the HfO2

layer to allow for oxygen extraction aimed at the formation of a
local sub-stoichiometric HfOx (x < 2) layer close to the top elec-
trode. This oxygen-exchange layer (OEL) is believed to act as a
defect reservoir for the injection during the set transition, when
the positive applied voltage induces migration of defects, such as
oxygen vacancies and metallic impurities (Hf, Ti) responsible for
the formation of a conductive channel, thus resulting in a rela-
tively low resistance. The application of a negative voltage instead
results in the retraction of the conductive channel back toward
the OEL, thus leading to a relatively high resistance. The HfO2

layer had an amorphous structure after deposition. The HfO2

thickness was 10 nm, while the Ti cap thickness was 15 nm. More
details about the experimental samples are reported elsewhere
(Ambrogio et al., 2014a; Calderoni et al., 2014). The CG tran-
sistor was not connected in the experiment, due to our focus on
demonstrating STDP. Figure 1C shows the conceptual scheme of
the 2T1R structure for the memristive synapse. The FG pulse had
extreme voltages of 2.9 and 1.0 V, with time constant τ = 140 ms.
The same time constant was used for the exponential region of the
TE pulse, where the extreme voltages were −1.65 and −0.55 V.
The 1-ms half-triangle positive pulse had an extreme amplitude
of 2.4 V.

RESULTS
EXPERIMENTAL STDP CHARACTERISTICS
Figure 3A shows the cumulative distributions of measured resis-
tance R in the memristor after application of TE and FG pulses
at increasing �t. The same STDP experiment with a given �t
was repeated 100 times to allow for a sufficient statistical accuracy.
The device was always prepared in a full reset state, corresponding

to a resistance of about 100 k�, and the delay �t was changed
between 1 and 100 ms. The distributions show a decreasing value
of R at decreasing delay, in agreement with the expected time-
dependent LTP in Figure 2A. Figure 3B summarizes the conduc-
tance enhancement R0/R, where R0 is the initial resistance and R
is the median value of the distribution. The figure shows time-
dependent increase of conductance (LTP) for �t > 0, while no
change of resistance is obtained for �t < 0. Figure 3C shows the
cumulative distribution of measured R for negative �t in the
range between −1 and −100 ms. To demonstrate LTD, the mem-
ristor was initialized in a low resistance state with R0 around 5 k�,
obtained with a pulse of 1 ms at IC = 170 μA. Figure 3D shows
the conductance change R0/R indicating time-dependent LTD for
�t < 0. LTD can also be seen at positive delays, which is due to
a sequence of reset and set events in the memristor during the
negative and positive regions of the TE pulse, respectively. First,
a reset transition takes place due to the negative VTE, then the 1-
ms VTE pulse induces a set transition with relatively low IC. As
a result, the device is in a set state finally, although with smaller
conductance than the initial state, due to the relatively small IC.
Since IC decreases at increasing positive �t < 0, LTD increases
with �t.

Distributions in Figures 3A,C show a significant variability,
although they were obtained by repeating the same experiments
several times on a single device. The distribution variance can
be attributed to the switching variability in memristive devices,
which was shown to result from the discrete number of defects
in the CF (Ambrogio et al., 2014a). The natural switching vari-
ability ensures stochastic plasticity in the artificial synapse, where
the final state is not deterministically dictated by �t, rather it is
affected by an inherent standard deviation. Note that the relative
spread increases with R in Figure 3, due to the decreasing num-
ber of defects and the correspondingly large statistical spread
(Ambrogio et al., 2014a).
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FIGURE 3 | Cumulative distributions of R for variable �t and

corresponding STDP characteristics. Cumulative distributions for
�t > 0 show an increasing R for increasing �t, starting from a
high-resistance state (R0 = 100 k�) of the memristor (A).
Correspondingly, the conductance change R0/R decreases at increasing

�t in the STDP characteristic (B). Similarly, for LTD starting from a
low-resistance state (R0 = 5 k�) of the memristor, the cumulative
distributions show that R decreases at increasing negative delay (C),
while the conductance change R0/R decreases for large delays in the
STDP characteristic (D).

Figure 4 shows STDP characteristics for variable time con-
stant τ in the range between 40 ms and 180 ms, for the memristor
initially prepared in a high resistance state (a) or a low resis-
tance state (b). LTP (a) and LTD (b) characteristics show the
same behavior as in Figure 3, except for a stretching along the
�t axis for increasing τ as a result of the change of the slope of
the exponential TE and FG pulses. These results demonstrate the
tunability of the STDP characteristics on the timescale through a
proper choice of the time constant.

Dependence on the initial state
While results in Figures 3, 4 were obtained for the memristor
initialized in either the high resistance (for LTP) or the low
resistance state (for LTD), it is important to demonstrate the
functionality of the STDP scheme for any arbitrary initial
state. We first considered variable reset states, obtained by first
setting the device to a reference initial low resistance state with a
compliance current IC = 170 μA, then resetting the device with a
variable maximum negative voltage Vstop, as shown in Figure 5A.
Here, the set and reset transitions in the HfO2 memristor can
be seen at positive and negative voltage, respectively. As the
reset voltage increases, the resistance increases, as a result of
the increasing growth of the depleted gap along the CF (Nardi
et al., 2012). The memristor resistance values were 25, 45, and
100 k� for Vstop equal to −1.2, −1.4, and −1.65 V, respectively.

Also shown are simulation results according to our physics-based
analytical model for resistive switching devices (Ambrogio et al.,
2014b). In this model, the Fourier equation for heat generation
and conduction is analytically solved, then the local temperature
at the injecting point along the CF is used to estimate the
migration rate and the corresponding change of CF diameter
(during set transition) and depleted gap (during reset transition).
The energy barrier controlling ion migration in the analytical
model was EA = 1.2 eV. Simulation results in Figure 5A support
the model as an accurate tool for predicting real memristive
switching in metal oxide systems.

Figure 5B shows the measured and calculated STDP char-
acteristics for variable high resistance states in Figure 5A. As
the initial resistance R0 increases, the LTP conductance change
increases, while the LTD conductance change decreases. However,
the shapes of LTP and LTD characteristics are qualitatively the
same irrespective of the R0.

Similarly, we studied variable set state, namely state obtained
with variable compliance current during set. Figure 6A shows the
measured and calculated I–V curves for IC = 25, 50, 100, and
170 μA. Both set transition at positive voltage and reset transi-
tion at negative voltage are shown in the figure. Simulations by
the analytical model again accounts closely for the experimental
behavior. As IC increases, the set state resistance decreases, as a
result of the larger diameter of the CF (Nardi et al., 2012). Note
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FIGURE 4 | STDP characteristics at increasing time constant τ. The STDP characteristics stretch to longer �t as the time constant describing the VTE pulse
increases, for both LTP on high-resistance states (A) and LTD on low-resistance states (B).

FIGURE 5 | STDP response at variable high-resistance states. Variable
high-resistance states are obtained by resetting the memristor device at
increasing negative voltage Vstop as shown in the I–V curve (A). The STDP

characteristics show increasing LTP and decreasing LTD at increasing initial R
(B). Analytical calculations well account for the experimental data as a
function of Vstop.

that the reset current Ireset is approximately equal to IC (Kinoshita
et al., 2008; Lee et al., 2008), while the reset voltage Vreset is
approximately constant around 1 V, marking the voltage needed
to initiate defect ionization and migration within the CF (Ielmini,
2011). Figure 6B shows the measured and calculated STDP char-
acteristics for variable initial low-resistance state as in Figure 6A.
Calculations again provide a satisfactory agreement with data and
can predict the state-dependent learning in the synapse.

The STDP characteristics in Figures 5, 6 show LTD at both
positive and negative �t, which disagrees with the standard
timing-dependence of biological learning (Bi and Poo, 1998).
However, it was shown that biological synapses might have diver-
sified response based on their function and typologies (Abbott
and Nelson, 2000). For instance, a similar STDP response with
LTD at positive �t was observed in hippocampal CA1 neu-
rons (Nishiyama et al., 2000; Wittenberg and Wang, 2006) and
explained as due to the Ca+ dynamics (Caporale and Dan, 2008).
This demonstrates that the memristive STDP response in 2T1R
synapse is compatible with learning functions in biological neural
networks.

Stochastic learning
Results in Figures 5, 6 suggests that, for any given �t, the poten-
tiation/depression of the synapse also depends on the initial state,
which introduces a certain degree of stochastic response in the
STDP characteristics. To study the stochastic behavior of STDP,
we performed experiments with a sequence of coupled TE and FG
pulses as in Figure 2, applied to the same synapse initially pre-
pared in a high resistance state. A total number of 55 different
sequences were applied, each including 10 spikes with randomly
chosen �t. Each random sequence was repeated 50 times to
achieve sufficient statistical significance. The time constant was
140 ms in all experiments and simulations.

Figure 7 shows (from top to bottom) the VTE waveform, the
VFG waveform and the corresponding resistance R for a random
sequence of 10 spikes. Read pulses similar to the waveform in
Figure 2 (not shown in Figure 7A) were applied after each spike
to measured R. Figure 7B shows the color map of the occurrence
of any value of conductance change R0/R as a function of �t
for all 27,500 random spikes. The ratio R0/R was defined as the
ratio between resistances before and after the STDP event. The
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FIGURE 6 | STDP response at variable low-resistance states. Variable
low-resistance states are obtained by setting the memristor device at
increasing compliance current IC as shown in the I–V curve (A). The STDP

characteristics show increasing LTP at increasing initial R, while LTD
characteristics change only slightly (B). Analytical calculations well account
for the experimental data as a function of IC.

FIGURE 7 | STDP over a random sequence of spikes. A sequence of
partially-overlapping PRE/POST spikes with random �t are applied to the
synapse, resulting in LTP or LTD depending on the relative delay (A). The
conductance change R0/R has been collected over 50 repeated
experiments with 55 different sequences, each containing 10 random
spikes. For any �t and R0/R, the probability has been reported in colour
scale (B). Calculated results show similar stochastic STDP characteristic (C).

maximum probability (red) indicates LTD for negative �t and
for relatively large positive �t, while LTP occurs for relatively
small positive �t. Figure 7C shows the color map of R0/R as a
function of �t for 104 simulated sequences assuming random �t
and using the same analytical switching model for the memristor
as in Figures 5, 6. The calculated color map shows a qualitative
agreement with the experimental STDP, indicating potentiation
at small �t > 0, and depression at negative �t and large pos-
itive �t. The STDP statistics, where different LTP and/or LTD
are obtained for any given �t, is mainly due to the dependence
on the initial state as discussed in Section Experimental STDP
Characteristics Experimental data in Figure 7B indicate a larger

spread of R0/R, which we attribute to the additional source vari-
ability due to the naturally stochastic switching, i.e., the physical
origin of the distribution spread in Figures 3A,C.

The impact of switching variability is also highlighted in
Figure 8, showing the values of R measured after each spike in a
sequence of 10 events with random timing �t. Figure 8A com-
pares 5 typical sequences always starting from the same initial
high resistance state (about 105 �), to study the effect of switch-
ing variability. The measured R displays random walk depending
on �t, which is shown in Figure 8B. Note the significant random
change among all trajectories due to the stochastic switching
during each set/reset operations. The largest variability is seen
for LTD, due to the large variability in the high resistance state
(see, e.g., Figures 3A,C). On the other hand, LTP leads to a certain
decrease of variability, since the set operation is mainly controlled
by IC and negligibly depends on the initial high-resistance state
(Ambrogio et al., 2014a).

PATTERNING LEARNING AND RECOGNITION THROUGH STDP
To verify that STDP in the 2T1R synapse is capable of pattern
learning and recognition, we adopted a 2 layer neuromorphic net-
work schematically shown in Figure 9. Here, N pre-synaptic neu-
rons provide spiking input to M post-synaptic neurons through
an array of NxM synapses (Zamarreño-Ramos et al., 2011).
Connections to PRE and POST in Figure 9 are organized accord-
ing to rows and columns, respectively, each requiring 2 lines for
connecting the 2T1R synapse, namely the TE and CG line from
PRE to the synapse and the BE and the FG between the synapse
and the POST.

To simulate pattern learning, we assumed that the N PRE
neurons belong to an artificial retina providing visual stimuli
corresponding to the 8× 8 square pattern at the extreme left in
Figure 10A (N = 64). The pattern was fed synchronously from
PRE to POST through the synapse array, by applying a spike for
every white pixel while black pixel did not yield any spike. The
pattern was randomly alternated with random noise, consisting
of 95% probability for black and 5% for white signals in each
of the N pixels. The duty cycle of true pattern occurrence was
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FIGURE 8 | Stochastic LTP and LTD. The resistance (A) was plotted as a
function of the number of the spike within a sequence with determined
delay �t (B). The sequence was repeated 5 times to highlight the variability
of resistance change during LTP and LTD. natural switching variability leads
to random walk of R during each set/reset operation, with reset (LTD)
process showing generally larger stochastic variation compared to set (LTP)
process.

50%. All signals received at a POST were integrated according
to the scheme in Figure 1C, then a fire signal was triggered as
the internal potential Vint reached a given threshold. The fire sig-
nals were delivered from the POST to all connected synapses, and
dictated a conductance change according to the simplified STDP
characteristic in Figure 10B. This includes LTP for small �t > 0
and LTD for �t < 0 and for large �t > 0, according to the most
general response of the 2T1R synapse in Figures 5, 6. As a mini-
mum resistance R = 5 k� was reached, further potentiation was
inhibited in the synapse, while depression was inhibited above a
resistance R = 100 k�.

Figure 10C shows the calculated conductance 1/R for 64
synapses in a single column, which connected all PRE to a single
POST. Starting from a uniformly distributed random initial state,
the synapse conductance, or weight, generally follows 2 trends,
either increasing or decreasing with time due to repeated LTP
and LTD. The evolution of the synapse weights is also shown in
Figure 10A for 4 states, namely initial state and after 100, 500,
and 1000 epochs of pattern presentation. The pattern is seen to
rapidly potentiate the corresponding synapses, with potentiation

FIGURE 9 | Schematic illustration of the 2-layer neuromorphic network.

The first layer consists of N PRE, while the second layer consists of M
POST, thus resulting in a network of NxM synapses with 2T1R structure.

and depression occurring in white and black pixel positions,
respectively. On the other hand, a longer time is needed for
depression of unstimulated synapses, since depression relies on
uncorrelated random noise patterns. While potentiation of pat-
tern synapses takes about 30 epochs, the depression of other
synapses is completed in about 500 epochs. These results fully
support the capability for pattern learning and recognition by the
scheme in Figure 2, combined with the STDP response of our
2T1R synapse which was simplified in Figure 10B.

A 2-layer network similar to Figure 9 was previously shown to
lead to random specialization of POST neurons to distinct pat-
terns, such as the cars appearing in specific lanes on the highway
(Bichler et al., 2012). We verified the random specialization in
our system by considering a NxM network as in Figure 9 with
N = 64 (number of pixels in the pattern and number of PRE neu-
rons) and M = 10,000 (number of POST neurons). We presented
the 2 patterns in Figure 11A and b in a random sequence of pat-
terns (70% probability equally distributed between pattern 1 and
2) and random noise (30% probability). The initial values of the
synapses were randomly distributed as in Figure 10. Figure 11C
shows the percentage distributions of patterns recognized after
a total number of 103 epochs: Patterns 1 and 2 were recognized
with equal probability of about 48%, while no recognition was
possible in 4% of the cases. Most of these recognition failure are
due to incorrect recognition of the two patterns, converging to a
mixture of patterns 1 and 2, while some errors are due to very
slow learning, leading to incomplete learning at the final calcu-
lated epoch. Figure 11D shows the probability distributions for
potentiating, hence learning, pattern 1 and 2, identified as the
first epoch with all synapses completely potentiated. Both distri-
butions peak at about 20 epochs, with no preference for any of the
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2 patterns. Note that the patterns 1 and 2 were selected to have the
same number of black/white pixels, to ensure a constant average
firing rate of the POST. This accounts for the equal learning times
in Figure 11C. Figure 11D also shows the distribution of times
corresponding to the depression of all the synapses not belong-
ing to pattern 1 or 2. The distributions show a similar behavior
and peak at 500 epochs. The different timescale is caused by the
fact that depression is due to uncorrelated spikes originated by
random noise, while pattern learning is linked to the density of
patterns 1 or 2 and their related input frequency.

DISCUSSION
The proposed synapse circuit allows for asynchronous trans-
mission and plasticity controlled by the spiking delay between
the pre- and post-synaptic neurons. The synapse circuit adheres
to the conventional organization of the neural network, where
integrate-and-fire neurons serve as both input and output of
the communication and plasticity. In particular, the BE termi-
nal, being connected to the virtual ground input of the neuron,
serves as reference ground for the synapse circuit, while pulses of
arbitrary voltage are applied to the other 3 terminals, namely TE,

FIGURE 10 | Pattern learning and recognition through 2T1R synapses.

The input pattern was fed by the first layer of 8 PRE neurons toward
a second layer of 8 POST neurons, resulting in learning as
demonstrated by the evolution of the synapse weights (A). Each

synapse was changed according to a simplified STDP characteristic with
discrete delay (B). The conductance of pattern synapses increases due
to the learning process, while other synapses experience increasing
depression (C).

FIGURE 11 | Pattern competition during learning. Random submission of
pattern 1 (A) and pattern 2 (B) in a 8× 8 synapse array results in learning of
either pattern with equal probability approaching 50%, including a minority of

error due to transition from one pattern to the other (C). Potentiation of
pattern synapses takes place in about 20 epochs, while depression of
out-of-pattern synapses requires around 500 epochs (D).
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CG and FG. This is different from previous approaches, where
the pre-synaptic pulse (spike) and the post-synaptic pulse (fire)
where applied to the TE and BE, respectively, of the resistive
synapse (Yu et al., 2011; Indiveri et al., 2013). It is also differ-
ent from other approaches employing 1T1R structures, where
STDP relied on a dynamic VT behavior of the transistor, achieved
through nanoparticle-containing gate dielectric (Subramaniam
et al., 2013). In fact, only standard transistor CMOS transistor
are needed in the 2T1R synapse in this work.

The transistors in the 2T1R structure are functional in achiev-
ing 2 necessary behaviors of the synapse array, namely STDP and
communication. On the one hand, the FG transistor allows for
a spike timing comparison between two pulses, namely the TE
pulse from the pre-synaptic neuron and the FG pulse from the
post-synaptic neuron (Ambrogio et al., 2013). Therefore, the FG
transistor is functional to plasticity. On the other hand, the CG
transistor allows for enabling communication from pre-synaptic
neuron to post-synaptic neuron in the neural network. If there
was no CG transistor, the TE pulse might affect the weight of
the synapse even without any fire from the post-synaptic neu-
ron. Note in fact that the CG voltage is high only during the
initial part of the TE pulse, at relatively low voltage. Therefore,
this transistor is functional to communication, while protect-
ing the memristor from the rather large TE voltage used for
plasticity.

In addition, transistors allow to limit the current flowing in
the memristive switch during the set transition, thus prevent-
ing uncontrolled switching and even irreversible breakdown of
the device. These latter events may result in excessive power con-
sumption due to low resistance value in the synapse, and/or in the
impossibility to reset the memristor because of excessive growth
of the conductive channel. Current limitation can be achieved
by biasing the transistor in the saturated regime at relatively low
gate voltage, which ensures that the maximum current after set
transition is limited. Finally, the transistor serves as selector in
the synapse array of Figure 9, which otherwise would be plagued
by significant sneak-path currents (Baek et al., 2005). Note that
other types of selectors would allow better scalability of the array,
e.g., p-n diodes (Baek et al., 2005), or threshold switch devices
(Cha et al., 2013), thanks to the 2-terminal structure. However,

2 terminals would not be sufficient for the local comparison of
spike timing which is needed for synapse plasticity control.

It has been pointed out that the necessity to generate ded-
icated waveforms within the neuron circuit might lead to an
excessive circuit overhead, thus conflicting with the need for very
large scale arrays with high synaptic densities (Kornijcuk et al.,
2014). Note however that the generator of the spike belongs
to the neuron circuit, thus a complex waveform should not
affect the density of synapses. Also, note that the waveforms in
Figures 1, 2 have been designed to achieve a bio-realistic STDP
as shown in Figure 4. Other waveforms and STDP character-
istics can be used with no impact on the pattern recognition
capability, while strongly alleviating the burden on the neuron
circuit. This is demonstrated in Figure 12, showing the square
waveforms for VTE and VFG (a) and the corresponding statis-
tical STDP characteristic (b) obtained from 7.5× 104 random
spikes. Note that the STDP characteristics reflects the simple
shape of the spike and fire pulses, while we demonstrated that
the pattern learning behavior is not affected. This further demon-
strates the strength of the STDP process and the flexibility of
our 2T1R circuit in realizing LTP and LTD with a variety of
spike shapes. Note that pulse widths of the neuron spikes in
the range of 100 ms, which are needed to achieve real-time bio-
compatible neuromorphic behavior (Indiveri et al., 2011), do not
necessarily require large capacitors. In fact, time responses in
the 100 ms range are straightforwardly achieved in neuromor-
phic circuits through relatively small capacitances (e.g., 1 pF)
charged/discharged by extremely low current in MOS transistors
biased in the subthreshold regime (Mitra et al., 2009).

Low-power operation is a fundamental property of neuro-
morphic circuits. The energy consumption of our 2T1R synapse
for communication can be estimated to about 150 nJ from the
voltage waveform in Figure 1B assuming I = 50 μA. Assuming
an average spike frequency of 1 Hz, the power consumption for
communication should be around 150 nW. This value can be
reduced by decreasing the pulse-width of the VCG pulse and the
current during communication. On the other hand, the energy
consumption is slightly larger due to the larger voltage and cur-
rent needed for resistive switching. For instance, the LTP energy
is around 400 nJ for a current of 170 μA and a VTE of 2.4 V in

FIGURE 12 | Square-pulse STDP. The use of square pulses for VTE and VFG (A) allows to achieve STDP with square characteristics suitable to learning and
recognition (B), while requiring a simple circuit for pulse generation.
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correspondence of the positive peak. However, since the LTP fre-
quency is expected to be smaller than the spiking frequency, the
power consumption for LTP might be in the same range as the
communication power. Similar to the communication case, LTP
power can be reduced by properly decreasing the current (e.g., by
up to a factor 10) and the pulse width (up to a factor 103). This
allows for memristive-based synapses with relatively low power
consumption.

Other switching concepts might be used in alternative to oxide
memristors, e.g., spin-transfer-torque (STT) elements (Locatelli
et al., 2014) or phase change memory (PCM) elements (Kuzum
et al., 2012; Eryilmaz et al., 2014). However, oxide memristors
allows for a smaller power consumption since the switching chan-
nel area can be controlled through the transistor current during
the set transition, whereas the switching current is controlled by
the lithography-defined area of the device in both STT and PCM
devices, which thus can hardly be reduced below 50 μA (Ielmini
and Lacaita, 2011; Kim et al., 2011).

The use of a HfO2 memristor allows for CMOS compatible
process in the back-end, however other metal oxides can be used
in principle for the active switching layer, such as TaOx (Lee et al.,
2011). A careful material engineering is needed to identify the
best material properties for synaptic functionality, including, e.g.,
controllability of the synapse weight, stochastic switching and low
power operation.
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Memristors have recently emerged as promising circuit elements to mimic the function
of biological synapses in neuromorphic computing. The fabrication of reliable nanoscale
memristive synapses, that feature continuous conductance changes based on the timing
of pre- and postsynaptic spikes, has however turned out to be challenging. In this article,
we propose an alternative approach, the compound memristive synapse, that circumvents
this problem by the use of memristors with binary memristive states. A compound
memristive synapse employs multiple bistable memristors in parallel to jointly form
one synapse, thereby providing a spectrum of synaptic efficacies. We investigate the
computational implications of synaptic plasticity in the compound synapse by integrating
the recently observed phenomenon of stochastic filament formation into an abstract
model of stochastic switching. Using this abstract model, we first show how standard
pulsing schemes give rise to spike-timing dependent plasticity (STDP) with a stabilizing
weight dependence in compound synapses. In a next step, we study unsupervised
learning with compound synapses in networks of spiking neurons organized in a
winner-take-all architecture. Our theoretical analysis reveals that compound-synapse STDP
implements generalized Expectation-Maximization in the spiking network. Specifically,
the emergent synapse configuration represents the most salient features of the input
distribution in a Mixture-of-Gaussians generative model. Furthermore, the network’s
spike response to spiking input streams approximates a well-defined Bayesian posterior
distribution. We show in computer simulations how such networks learn to represent
high-dimensional distributions over images of handwritten digits with high fidelity even in
presence of substantial device variations and under severe noise conditions. Therefore,
the compound memristive synapse may provide a synaptic design principle for future
neuromorphic architectures.

Keywords: neuromorphic, synapse, synaptic plasticity, STDP, memristor, WTA, Bayesian inference, unsupervised

learning

1. INTRODUCTION
A characteristic property of massively parallel computation in
biological and artificial neural circuits is the need for intensive
communication between neuronal elements. As a consequence,
area- and energy consumption of neuromorphic circuits is often
dominated by those circuits that implement synaptic transmis-
sion between neural elements (Schemmel et al., 2008). Biological
synapses are highly dynamic computational entities, exhibiting
plasticity on various time scales (Malenka and Bear, 2004). In
order to capture the most salient of these aspects, silicon synapses
thus demand extensive circuitry if implemented in CMOS tech-
nology. On this account, novel nanoscale circuit elements have
recently gained interest in the field of neuromorphic engineer-
ing as a promising alternative solution for the implementation
of artificial synaptic connections. In particular, for mixed-signal
neuromorphic CMOS architectures, which combine traditional
digital circuits with analog components, memristors are consid-
ered a promising class of circuit elements due to high integra-
tion densities, synapse-like plasticity dynamics, and low power

consumption (Choi et al., 2009; Jo et al., 2010; Kuzum et al.,
2011; Indiveri et al., 2013). One particularly important feature of
memristors is that their electrical resistance (often termed “mem-
ristance”) can be altered in a persistent manner by applying a
voltage to its terminals, leading to the eponymous perception
of memristors as resistors with memory. As an important appli-
cation of this property, it was shown that the memristance can
be changed based on the spike timings of the pre- and post-
synaptic neurons in a manner that approximates spike-timing
dependent plasticity (STDP), a plasticity rule that is believed to
represent a first approximation for the changes of synaptic effi-
cacies in biological synapses (Markram et al., 1997; Caporale
and Dan, 2008; Markram et al., 2012). On the level of single
synapses, this important property has been confirmed experi-
mentally in real memristors (Mayr et al., 2012) and has been
included into computational models of memristive plasticity
(Serrano-Gotarredona et al., 2013). On the network level, models
of memristive STDP were employed in computer simulations to
demonstrate the potential applicability of neuromorphic designs
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with memristive synapses to pattern recognition tasks (Querlioz
et al., 2011).

In practice however, the production of functional memristive
synapses with nanoscale dimensions has proven difficult, mainly
due to large device variations and their unreliable behavior. It
turned out to be particularly challenging to fabricate reliable
nanoscale memristive synapses that feature a continuous spec-
trum of conductance values. As an alternative solution, it was pro-
posed to employ bistable memristors as neuromorphic synapses
instead since they exhibit a high degree of uniformity (Fang et al.,
2011) and high durability (Jo et al., 2009b). For switching between
their two stable conductance states, bistable memristors can be
operated in a deterministic as well as in a stochastic regime (Jo
et al., 2009b).

Using machine learning theory, we show in this article that
stochastically switching bistable memristors become compu-
tationally particularly powerful in mixed-signal neuromorphic
architectures when multiple memristors are combined to jointly
form one synapse. Such a joint operation of multiple memris-
tors can be interpreted as the collective function of ion channels
in biological synapses (Indiveri et al., 2013). Concretely, we pro-
pose the compound memristive synapse model which employs
M bistable memristors operating in parallel to form a single
synaptic weight between two neurons. To implement synaptic
plasticity, we employ standard STDP pulsing schemes (Querlioz
et al., 2011; Serrano-Gotarredona et al., 2013) and exploit the
stochastic nature of memristive switching (Jo et al., 2009b; Gaba
et al., 2013; Suri et al., 2013; Yu et al., 2013). For the analy-
sis of the resulting plasticity dynamics, we perceive individual
memristors as binary stochastic switches. This abstract descrip-
tion was previously utilized to capture the most salient features of
experimentally observed memristive switching (Suri et al., 2013)
and appears compatible with pivotal aspects of the experimental
literature (Jo et al., 2009b; Gaba et al., 2013).

We show analytically and through computer simulations that
the change of the synaptic efficacy for a given pairing of pre-
and postsynaptic spikes follows an STDP-like plasticity rule such
that the expected weight change depends on the momentary
synaptic weight in a stabilizing manner. The resulting compound-
synapse STDP enables a synapse to attain many memristive states
depending on the history of pre- and postsynaptic activity. A
stabilizing weight dependence of synaptic plasticity exists in bio-
logical synapses (Bi and Poo, 1998) and has been shown to
facilitate learning and adaptation in neural systems (Van Rossum
et al., 2000; Morrison et al., 2007). In particular, it has been shown
in Nessler et al. (2013) that in stochastic winner-take-all (WTA)
architectures, STDP with stabilizing weight dependence imple-
ments an online Expectation-Maximization algorithm. When
exposed to input examples, neurons in the WTA network learn
to represent the hidden causes of the observed input in a well-
defined generative model. This adaptation proceeds in a purely
unsupervised manner. We adopt a similar strategy here and
apply the compound memristive synapse model in a network of
stochastically spiking neurons arranged in a WTA architecture.
We show analytically that compound-synapse STDP optimizes
the synaptic efficacies such that the WTA network neurons in
the hidden layer represent the most salient features of the input

distribution in a Mixture-of-Gaussians generative model. After
training, the network performs Bayesian inference over the hid-
den causes for the given input pattern. We show in computer
simulations that such networks are able to learn to represent
high-dimensional distributions over images of handwritten dig-
its. After unsupervised training, the network transforms noisy
input spike-patterns into a sparse and reliable spike code that
supports classification of images. It turns out that even small com-
pound synapses, consisting of only four bistable constituents per
synapse, are sufficient for reliable image classification in our sim-
ulations. We furthermore show that the proposed model is able
to represent the input distribution with high fidelity even in the
presence of substantial device variations and under severe noise
conditions. These findings render the compound synapse model
a promising design principle for novel high-density, low-power
mixed-signal CMOS architectures.

2. RESULTS
2.1. STOCHASTIC MEMRISTORS AS PLASTIC SYNAPSES
Memristors have gained increasing attention in neuromorphic
engineering as possible substrates for plastic synapses (Jo et al.,
2010) due to the possibility to change their electrical con-
ductance without the requirement of extensive supporting cir-
cuitry. Recently, Zamarreño-Ramos et al. (2011) and Querlioz
et al. (2011) have proposed a pulsing scheme to realize spike-
timing dependent plasticity (STDP) with memristive synapses
in response to pre- and postsynaptic activity as sketched in
Figure 1A: Pre-synaptic spikes trigger a rectangular voltage pulse
of duration τ (shown in green) that is sent to the memristor’s
presynaptic terminal. Similarly, postsynaptic neurons send back a
copy of their spikes to the postsynaptic terminal as a brief volt-
age pulse (shown in blue). The combined effect of these pulses
was shown to trigger STDP-type plasticity in the memristor as
illustrated in Figure 1B, where we adopted the convention to
measure the voltage drop at the memristor as “presynaptic minus
postsynaptic potential.” If only the postsynaptic neuron spikes
(Figure 1B, left), the voltage pulse exceeds the lower thresh-
old of the memristor, leading to long-term depression (LTD).
Conversely, if a postsynaptic spike follows a presynaptic spike
within duration τ (Figure 1B, right), the combined voltage trace
exceeds the memristor’s upper threshold, thus resulting in long-
term potentiation (LTP). Pre-synaptic pulses alone do not trigger
any plasticity. Overall, the memristor’s conductance obeys an
STDP-type plasticity rule.

The direct implementation of the above plasticity rule in
mixed-signal neuromorphic architectures, however, faces practi-
cal challenges due to the continuous spectrum of the conductance
values it relies on. Memristors that support a (quasi-) continu-
ous spectrum of memristive states often suffer from instabilities
to maintain their conductance value (“volatility”) and typically
show unreliable changes under repetitive application of identical
pulses.

Here we explore an alternative approach that employs multiple
bistable memristors, that support only two distinct conductance
states per memristor, to jointly form one synapse. Such devices
were reported to exhibit a high degree of uniformity (Fang et al.,
2011). Concretely, we propose a synapse model which employs
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FIGURE 1 | Compound memristive synapse model with stochastic

memristors. (A) STDP pulsing scheme. Input spikes elicit a rectangular
voltage trace (green, left) that is sent to the presynaptic terminal of the
memristor synapse. Post-synaptic spikes elicit a brief voltage pulse (blue)
which is sent back to the synapse. (B) Solitary postsynaptic spikes trigger
LTD since the voltage exceeds the lower threshold of the memristor.
Simultaneous pre- and postsynaptic spikes trigger LTP since the voltage
exceeds the upper threshold. (C) Compound memristive synapse model. A
synapse is composed of M bistable memristors operating in parallel. Each
memristor can either be active (weight ω) or inactive (weight 0). The total
synaptic weight Wki between input neuron yi and network neuron zk is the
sum of the individual memristor weights. (D) Bistable memristors switch

stochastically between the active and inactive state depending on the applied
voltage difference across its terminals. Switching to the active state (inactive
state) occurs with probability πup (πdown) if a certain threshold voltage (dotted
line) is exceeded. (E) Summary of stochastic transitions for
compound-synapse STDP. (F) In an STDP pairing experiment, the stabilizing
weight dependence of compound synapse plasticity governs convergence to
a dynamic equilibrium. 10,000 plasticity pulses were applied to a synapse
with M = 10 constituents. During the first half, 80% (20%) of the events
were of LTP (LTD) type. During the second half, the probability for LTP (LTD)
events was inverted to 20% (80%). Thin lines: number of active memristors
mki (t) for two example simulation runs. Thick line: Average 〈mki (t) 〉 over 100
runs. The average weight converges to a dynamic equilibrium.

M bistable memristors operating in parallel to form a single
synaptic weight Wki between the i-th input neuron yi and the k-th
network neuron zk. The model which we refer to as compound
memristive synapse is sketched in Figure 1C. Each memristor is
assumed to provide two stable states: a high-conductive (active)
state and a low-conductive (inactive) state. Since the dynamic
range of memristors typically covers several orders of magnitude,
the weight contribution of inactive memristors is almost negligi-
ble. In line with this notion, each inactive memristor contributes
weight 0 in the synapse model and each active memristor con-
tributes weight ω. Since parallel conductances sum up, the total
weight of the compound memristive synapse reads

Wki = ω ·mki (1)

with mki ∈ {0, 1, . . . , M} denoting the number of active memris-
tors. As a consequence, a compound memristive synapse supports
M + 1 discrete weight levels, ranging from 0 to the maximum
weight Wmax = ω ·M.

Plasticity in this synapse model naturally emerges from tran-
sitions between the active and inactive state of the bistable
constituents. However, deterministic transitions, which are, for
instance, desirable in memristor-based memory cells, impair the
performance in a neuromorphic online learning setup with com-
pound memristive synapses: If all constituents of a synapse,
that experience the same pre- and postsynaptic spikes, change
their state simultaneously, the compound weight toggles between
Wki = 0 and Wki = Wmax depending on the latest pulse pair, not
showing any gradual trace of memory formation as required for
STDP.

A possible remedy to this issue can be found in memristors that
exhibit stochastic rather than deterministic switching between
their stable states. Yu et al. (2013), for instance, reported stochas-
tic transitions in HfOx/TiOx memristors (from the class of anion-
based memristors) and explored in computer simulations how
stochastic bistable memristors could be used in a neuromorphic
learning architecture. Similar studies explored the usability of
stochastically switching bistable cation-based memristive materi-
als (Jo et al., 2009b; Gaba et al., 2013; Suri et al., 2013). In these
nanoscale devices, changes in the memristance were shown to be
dominated by the formation of a single conductive filament (Jo
et al., 2009b). Stochastic switching was demonstrated for both
directions (active ↔ inactive) (Suri et al., 2013) with switching
probabilities being adjustable via the duration (Gaba et al., 2013;
Suri et al., 2013) and amplitude (Jo et al., 2009b; Gaba et al., 2013)
of the voltage applied across the terminals. These observations
have led to the conclusion that “switching can be fully stochas-
tic” with switching probabilities being almost unaffected by the
rate at which consecutive plasticity pulses are delivered (Gaba
et al., 2013). Furthermore, bistable memristors can be extremely
durable, not showing any notable degradation over hundreds of
thousands of programming cycles (Jo et al., 2009b). Owing to
these pivotal properties, Suri et al. (2013) proposed an STDP-
type plasticity rule that perceives bistable memristors as simple
stochastic switches.

Here we generalize this idea to compound memristive synapses
and investigate the computational function of the arising plastic-
ity rules in spiking networks from a machine learning perspective.
Figure 1D illustrates a simple model of stochastic switching of
individual memristors that employs the STDP-pulsing scheme
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from Zamarreño-Ramos et al. (2011) and Querlioz et al. (2011)
discussed above: If the voltage between the pre- and postsynap-
tic terminal of a device exceeds a certain threshold (dotted lines)
for the duration of the back-propagating spike signal, stochastic
switching may occur. Inactive memristors jump to the active state
with probability πup provided a sufficiently strong positive volt-
age, resulting in stochastic LTP. Similarly, active memristors turn
inactive with probability πdown given a sufficiently strong negative
voltage, leading to stochastic LTD. No switching occurs if only a
small (or zero) voltage is applied, or if the memristor is already in
the respective target state. Since the applied pre- and postsynaptic
pulse amplitudes are free parameters in the model, the jumping
probabilities πup and πdown can be controlled, to a certain extent,
by the experimenter. This simple model captures the most salient
aspects of stochastic switching in bistable memristive devices as
discussed above, cp. also Suri et al. (2013) and the Discussion sec-
tion. In order to distinguish the abstract memristor model from
physical memristive devices, we will in the following refer to the
model memristors as “stochastic switches,” “constituents,” or sim-
ply as “switches” for the sake of brevity. Furthermore, we refer
to the resulting stochastic plastic behavior of compound memris-
tive synapses in response to pre-post spike pairs, summarized in
Figure 1E, as compound-synapse STDP.

From the transition probabilities of individual stochas-
tic switches we can calculate the expected temporal weight
change 〈 d

dt Wki 〉 of the compound memristive synapse as a func-
tion of pre- and postsynaptic activity. Formally, we denote the
presence of a rectangular input pulse (green in Figure 1A) of
the i-th input by yi(t) = 1 (and the absence by yi(t) = 0). The
brief pulses that are sent back from a postsynaptic neuron zk

to the synapse (blue in Figure 1A) are formally treated as point
events at the spike times of the postsynaptic neuron. We denote

the spike time of the f th spike of neuron zk by t
f
k . The spike

train sk(t) of a neuron zk is formally defined as the sum of Dirac

delta pulses δ( · ) at the spike times: sk(t) =∑f δ(t − t
f
k). When

a synaptic efficacy Wki is subject to a stochastic LTP update, there
are (M −mki) constituents in the compound memristive synapse
that are currently inactive and could undergo an LTP transi-
tion. Each constituent independently switches to its active state
with probability πup, thereby contributing ω to the compound
weight Wki. Hence, the expected weight change for the LTP con-
dition reads (M −mki) ω πup. A similar argumentation applies
to the LTD case. In summary, considering that plasticity always
requires a postsynaptic spike, and that LTP is induced in the pres-
ence of a presynaptic pulse (yi(t) = 1), while LTD is induced in
the absence of a presynaptic pulse (yi(t) = 0), the expected weight
change of the compound memristive synapse reads:

〈 d

dt
Wki 〉 = sk(t) ·

⎡
⎢⎣(M −mki) ω πup yi(t)︸ ︷︷ ︸

LTP

− mki ω πdown (1− yi(t))︸ ︷︷ ︸
LTD

⎤
⎦ (2)

= sk(t) · [Mωπup yi(t)−mkiωπup yi(t)

−mkiωπdown +mkiωπdown yi(t)
]

= sk(t) · [Wmax πup yi(t)−Wkiπdown
]

+ sk(t) Wki yi(t) · (πdown − πup) .

In order to obtain a simple closed form solution of the weight
changes, we set πup = πdown, i.e., the probability of potentiation
of a single switch under LTP equals its probability of depression
under LTD. This choice will facilitate the theoretical analysis of
learning in a spiking network, later on. In a hardware implemen-
tation, the switching probabilities could be adjusted via the pre-
and postsynaptic amplitudes of the STDP pulses. We obtain the
following closed form solution for the expected weight change:

〈 d

dt
Wki 〉 = πup Wmax · sk(t) · [yi(t)−Wki/Wmax

]
. (3)

Notably, the plasticity rule (3) differs from standard additive
STDP rules in that it includes the weight dependent term
Wki/Wmax. This weight dependence has its origin in the varying
number of (in-)active stochastic switches mki that could actu-
ally undergo plastic changes and is in line with a prominent
finding from neurobiology (Bi and Poo, 1998): Relative changes
�Wki/Wki become weaker for strong weights under LTP, while
under LTD the relative change is weight-independent. Studies in
computational neuroscience, see e.g., Van Rossum et al. (2000),
found that this type of weight dependence facilitates the forma-
tion of stable connections in spiking networks.

In Figure 1F, we illustrate the stochastic convergence of a
compound synaptic weight to a stable, dynamic equilibrium
in a simple STDP pairing experiment. The synapse consists
of M = 10 bistable switches with switching probabilities set to
πup = πdown = 0.001. These synapse parameters will also be
used in network level simulations, later on. In a small com-
puter simulation, 5 of the 10 constituents are initially set active
(mki(t = 0) = 5). Then, 5000 postsynaptic spikes are sent to
the postsynaptic terminal of the synapse for triggering stochas-
tic switching in the bistable constituents. 80% of these events
are randomly paired with a presynaptic pulse, i.e., 80% of the
events are of LTP type and 20% are of LTD type. After 5000
plasticity pulses, the statistics are inverted to 20% LTP and 80%
LTD events for another 5000 plasticity pulses. The thin lines
in Figure 1F show the evolution of mki(t) in this STDP pair-
ing experiment for two independent simulation runs. In the first
half, the synaptic weight tends to settle around higher weight val-
ues, while in the second half, it stochastically declines toward
lower weight values. The gradual convergence of the average
weight, as suggested by Equation (3), becomes apparent by taking
the mean over 100 simulation runs (thick line). The stabilizing
weight dependence of the STDP rule leads to convergence to a
dynamic equilibrium such that the mean value shows slow, con-
tinuous changes as expected from the theory. Individual synapses
fluctuate stochastically around this mean.

Equation (3) is reminiscent of a theoretically derived synaptic
plasticity rule for statistical model optimization in spiking neu-
ral networks proposed by Nessler et al. (2013). Building upon
the theoretical approach developed by Nessler et al. (2013), we
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will next turn to the question how to conceive stochastic learning
with compound memristive synapses from a Bayesian perspective
as unsupervised model optimization via a powerful optimiza-
tion method that is known as Expectation-Maximization in the
machine learning literature.

2.2. COMPOUND MEMRISTIVE SYNAPSES IN WINNER-TAKE-ALL
NETWORKS

The winner-take-all (WTA) network structure is a ubiquitous
circuit motif in neocortex (Douglas and Martin, 2004; Lansner,
2009) and is often utilized in neuromorphic engineering (Mead
and Ismail, 1989; Indiveri, 2000). Recently, WTA networks
attracted increasing attention in theoretical studies on statistical
learning (Habenschuss et al., 2012; Keck et al., 2012; Habenschuss
et al., 2013; Nessler et al., 2013; Kappel et al., 2014) because their
comparatively simple network dynamics facilitate a comprehen-
sive mathematical treatment. In this section, we introduce the
WTA architecture that we will use to study the learning capa-
bilities of spiking neural networks with compound memristive
synapses subject to STDP.

The WTA network architecture is sketched in Figure 2A. The
network consists of N spiking input neurons y1, . . . , yN and K
spiking network neurons z1, . . . , zK with all-to-all connectivity
in the forward synapses. Lateral inhibition introduces competi-
tion among the network neurons. Network neurons are stochastic
spike response neurons (Gerstner and Kistler, 2002) with the
membrane potential uk of network neuron zk being given by

uk(t) = bk +
N∑

i= 1

Wki · yi(t) . (4)

The membrane potential uk(t) integrates the inputs yi(t), i.e.,
the rectangular voltage pulses following each input spike, linearly
through the synaptic weights Wki. The parameter bk denotes the
intrinsic excitability of the neuron and controls its general dispo-
sition to fire. In Methods we outline how the linear membrane
potential (4) can be realized with leaky integrators, a common
neuron model in neuromorphic designs. For the spike response

of the network neurons zk, a stochastic firing mechanism is
employed. In the WTA network, neurons zk spike in a Poissonian
manner with instantaneous firing rate ρk(t) that depends on the
membrane potential uk(t) and on lateral inhibition uinh(t):

ρk(t) = rnet · euk(t)− uinh(t) , (5)

with a constant rnet > 0 that scales the overall firing rate of
the network. In other words, the neuron spikes with probability
ρk(t) · δt in a small time window δt → 0. The inhibitory con-
tribution uinh(t) := log

∑K
j= 1 exp (uj(t)) summarizes the effect

of lateral inhibition in the network and introduces WTA-
competition between the network neurons to fire in response
to a given stimulus y1(t), . . . , yN (t). Notably, the exponential
relationship (5) between an idealized membrane potential and
neuronal firing is consistent with biological findings about the
response properties of neocortical pyramidal neurons (Jolivet
et al., 2006).

The feed-forward synapses from inputs yi to network neu-
rons zk are implemented as compound memristive synapses and
their synaptic weights Wki are adapted through stochastic STDP
as described above. The intrinsic excitabilities bk are adapted
according to a homeostatic plasticity rule (Habenschuss et al.,
2012) that ensures that all network neurons take part in the
network response and thus facilitates the emergence of a rich
neural representation that covers the entire input space. Besides
its observed stabilizing effect (Querlioz et al., 2011), homeostatic
intrinsic plasticity plays a distinct computational role when com-
bined with synaptic learning: Network neurons that maintain
many strong synapses Wki gain an “unrightful advantage” during
WTA competition over neurons that are specialized on low-
activity input patterns (and therefore maintain weaker weights).
A detailed analysis of the learning dynamics in the network
shows that, in order to compensate for this advantage, the for-
mer must be burdened with a lower excitability bk than the
latter. A formal definition of the homeostatic plasticity mecha-
nism and a discussion of its computational role from a theory

FIGURE 2 | Spiking network for probabilistic inference and online

learning. (A) Winner-take-all network architecture with lateral inhibition
and synaptic weights Wki . (B) Network neurons zk implicitly maintain a
Gaussian likelihood function for each input yi in their afferent synaptic
weights Wki . The mean μki of the distribution is encoded by the fraction
Wki/Wmax = mki/M of active switches in the compound memristive

synapse, i.e., stronger synaptic weights Wki correspond to higher mean
values μki . Inset: Local implicit graphical model. (C) Illustration of
Bayesian inference for two competing network neurons zk , zj and one
active input yi (t) = 1. Different means μki , μji encoded in the weights
give rise to different values in the likelihood function and shape the
posterior distribution according to Bayes rule.
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perspective are provided in Methods, see also Habenschuss et al.
(2012).

2.3. MEMRISTIVE SYNAPSES SUPPORT INFERENCE AND ONLINE
LEARNING

In this section, we thoroughly analyze the learning effects of
STDP in compound memristive synapses in the stochastic WTA
network model. For the mathematical analysis, we describe the
inputs yi(t) and the stochastic neuron responses sk(t) with the
help of probability theory. To this end, we perceive the spiking
activity of the input neurons yi and network neurons zk as sam-
ples of random variables (RVs) Yi and Zk respectively. Consistent
with the assumption that spikes from input neurons produce
voltage pulses of duration τ in the circuit implementation (see
Figure 1A), we set Yi = yi(t), i.e., Yi = 1 if input neuron yi spiked
within [t − τ, t] and Yi = 0 otherwise. The assignment of out-
put spikes sk(t) to RVs Zk is different: The random variable Zk

labels the winner of the WTA network at spike times of network
neurons. Hence, the value of Zk is only defined at the moments
when one of the K network neurons spikes, i.e., when the spike
train sj(t) �= 0 for some neuron zj. In this case, Zk encodes which
neuron spiked, and we set Zk = 1 if k = j and Zk = 0 if k �= j.

Using this interpretation of neural activity as realiza-
tions of RVs, the network’s stochastic response sk(t) to an
input configuration y(t) = (y1(t), . . . , yN (t)) gives rise to a
conditional probability distribution pnet(Z |Y) over the net-
work RVs Z := (Z1, . . . , ZK ) conditioned on the input RVs
Y := (Y1, . . . , YN ). In line with the definition of the RVs Zk,
the distribution pnet(Z |Y) describes the network response only
when one of the network neurons zk fires. The response distribu-
tion pnet(Z |Y = y(t)) for any fixed input configuration y(t) can
directly be calculated from Equations (4) and (5) (note that the
probability pnet(Zk = 1 |Y = y(t)) for an individual RV Zk to be
active is proportional to the firing rate ρk(t) of neuron zk):

pnet(Zk = 1 |Y = y(t)) = ρk(t)/rnet = euk(t)− uinh(t)

= ebk +
∑N

i= 1 Wki · yi(t)

∑K
j= 1 ebj +

∑N
i= 1 Wji · yi(t)

. (6)

Equation (6) fully characterizes the network response distribu-
tion pnet(Z |Y) for any given input Y = y(t). We next turn to
the question how the response distribution pnet(Z |Y) can be
understood as the result of a meaningful probabilistic compu-
tation. Specifically, we will show that the spike response of the
WTA network approximates the Bayesian posterior distribution
during inference in a well-defined probabilistic model. This prob-
abilistic model is implicitly encoded in the synaptic weights Wki,
and synaptic plasticity can thus be perceived as an ongoing refine-
ment of the involved probability distributions. Indeed, the STDP
rule (3) of the compound memristive synapses turns out to be
optimal in the sense that it instantiates generalized Expectation-
Maximization in the WTA network, a powerful algorithm for
unsupervised learning from machine learning theory. Our find-
ings build upon theoretical work on synaptic learning in spiking
neural networks from Nessler et al. (2009, 2013) and Habenschuss
et al. (2012, 2013).

The key idea for identifying the response distribu-
tion pnet(Z |Y) as the result of a Bayesian computation, is
to hypothetically reverse the network computation and view
the spike response of a network neuron zk as the hidden
cause behind the observed input y(t). In this view, the net-
work is treated as a generative model that implicitly defines
a prior distribution p(Z) over hidden causes Zk and a set of
likelihood distributions p(Y |Zk = 1), one for each hidden
cause Zk. The shape of the distributions is defined by the
parameters of the network, e.g., the synaptic weights Wki. An
important property of these implicitly encoded distributions–
that also motivates the term “generative model”–is that they
give rise to a (hypothetical) distribution over the inputs,
p(Y = y(t)) =∑K

k= 1 p(Y = y(t)|Zk = 1) · p(Zk = 1). This
equation also explains why a RV Zk is called a hidden cause:
If we observe an input vector y(t), that has high probability
only in one of the likelihood distributions p(Y = y(t)|Zk = 1),
then we can consider the RV Zk as a likely (but unobservable)
cause for the observation according to the generative model.
A common objective in machine learning theory, known as
Maximum-Likelihood learning, is to find parameters that bring
the implicit distribution p(Y) of the generative model as close
as possible to the distribution of the actually observed input.
Then the hidden causes of the generative model are expected
to represent important features of the observed input (e.g.,
some typical input clusters). Leaving the hypothetical generative
perspective again, in the network’s real operation an input y(t)
is presented to the network and the hidden causes Zk need to
be inferred (e.g., the cluster the input y(t) belongs to). The
mathematically correct result of this inference is given by Bayes
rule

p(Zk = 1 |Y = y(t)) ∝ p(Zk = 1) · p(Y = y(t) |Zk = 1) (7)

which combines the likelihood p(Y = y(t) |Zk = 1) with the
prior p(Zk = 1).

Nessler et al. (2013) showed that in a WTA network archi-
tecture, that evolves according to Equations (4) and (5), the
synaptic weights Wki can be understood as an implicit neural
encoding of likelihood distributions p(Y |Zk = 1), and that the
network response pnet(Z |Y) approximates the posterior distri-
bution according to Equation (7). Hence, WTA networks can be
regarded as implicit generative models. Furthermore–and even
more importantly from a theoretical perspective–Nessler et al.
(2013) showed that the implicit likelihood model, that is encoded
in the weights Wki, can be optimized in an unsupervised man-
ner by a weight-dependent STDP rule. Indeed, there exists a tight
link between the type of weight dependence in the STDP rule
and the type of implicit likelihood model it optimizes. The expo-
nential weight dependence in Nessler’s rule, however, differs from
the linear weight dependence we identified for the plasticity rule
in Equation (3). This raises the question what type of implicit
likelihood model is encoded and optimized by the compound
memristive synapses.

An intuition about an appropriate probabilistic interpretation
of compound-synapse STDP can be obtained from the equi-
librium points of the plasticity rule (3). We first observe, that
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plasticity is always triggered by a postsynaptic spike, i.e., Zk = 1
for some neuron zk. In the spirit of spike-triggered averaging
(Simoncelli et al., 2004), we can then study the conditional distri-
bution p(Yi = yi(t) |Zk = 1) of an input yi at the moment of the
network response since the coincidence of pre- and postsynap-
tic spiking activity is the driving force behind any weight change
in the STDP rule. By assuming that plasticity has converged to
a dynamic equilibrium, the average contributions of LTP and
LTD cancel each other, i.e., 〈 d

dt Wki 〉p(Yi |Zk = 1) = 0. From this
condition, we obtain the following relation between the synaptic
weight Wki and the conditional input distribution p(Yi |Zk = 1):

0
!= 〈 d

dt
Wki 〉p(Yi |Zk = 1)

= 〈πup Wmax · [Yi −Wki/Wmax] 〉p(Yi |Zk = 1)

⇒ Wki = Wmax · 〈Yi 〉p(Yi |Zk = 1) . (8)

According to this analysis, the synaptic weight Wki represents the
expected value of input neuron yi at the moment of a postsy-
naptic spike in network neuron zk in a linear manner. In the
compound memristive synapse, this expectation is encoded in
the M + 1 possible weight states Wki = 0, ω, . . . , Wmax of the
synapse. The linear encoding (8) is compatible with the conver-
gence points which we observed previously in the small STDP
pairing experiment in Figure 1F.

The above analysis only serves as an intuition and is no sub-
stitute for a thorough mathematical treatment of the learning
process. A rigorous formal derivation that, for instance, also takes
into account the dynamically changing response properties of
the network neurons due to recurrent interactions and plastic
changes in the weights, is provided in Methods. It reveals that
the above intuition holds. More precisely, the likelihood dis-
tributions p(Y |Zk = 1) that are optimized in a WTA circuit
with compound-synapse STDP are given by the product of the
likelihoods of individual inputs

p(Y = y(t) |Zk = 1) =
N∏

i= 1

p(Yi = yi(t) |Zk = 1) , (9)

and the likelihood for each individual input channel yi is given by
a Gaussian distribution

p(Yi = yi(t) |Zk = 1) = 1√
2πσ 2

· e−
(yi(t)−μki)2

2σ2 . (10)

The mean values μki and the standard deviation σ of the likeli-
hood distributions (10) are identified as

μki = Wki/Wmax = mki/M and σ = 1/
√

(Wmax) .(11)

Hence, the mean μki of the distribution for input channel yi

is given by the fraction of active constituents in the compound
memristive synapse. The width σ = 1/

√
(Wmax) of the distribu-

tion is determined by the maximum weight Wmax = M · ω and
could, for instance, be controlled by the weight contribution ω of
an individual stochastic switch. The resulting probabilistic model

of the WTA network is a Mixture-of-Gaussians generative model
(see Methods for a formal definition).

In order to illustrate the computational properties of this gen-
erative model, the likelihood distribution p(Yi |Zk = 1) for a
single input yi and a single active hidden cause Zk = 1 is sketched
in Figure 2B. An active hidden cause Zk = 1 assigns probabil-
ities to all possible instantiations yi(t) of Yi. In principle, the
Gaussian likelihood distribution supports arbitrary real-valued
input instantiations yi(t) ∈ R. We will come back to this obser-
vation in the Discussion section where we address possible exten-
tions of the WTA network to support more complex input types.
In this article, we consider only binary inputs that take on the
value 0 (input pulse absent) or 1 (input pulse present), see the
presynaptic pulses in Figure 1A. The corresponding likelihood
values p(Yi = 0 |Zk = 1) and p(Yi = 1 |Zk = 1) are determined
by the mean μki and the variance σ of the likelihood distribu-
tion, see Equations (10) and (11). The task of the network when
presented with an input y(t) is to infer the posterior distribu-
tion over hidden causes p(Zk = 1 |Y = y(t)) and produce spikes
according to this distribution. The optimal solution is given by
Bayes rule (7) with the likelihood p(Y = y(t) |Zk = 1) given by
Equations (9) and (10), and an (input independent) a priori prob-
ability p(Zk = 1). As we prove in Methods, the response distribu-
tion pnet(Z |Y = y(t)) of the spiking WTA network implements
a close and well-defined variational approximation of this poste-
rior distribution. A minimal example of such Bayesian inference
is sketched in Figure 2C, where we consider a small WTA network
with only one input yi and two network neurons zk and zj. For a
given input instantiation yi(t) the values p(Yi = yi(t) |Zk = 1)
and p(Yi = yi(t) |Zj = 1) measure the likelihoods of the two
competing hypotheses that neuron zk or neuron zj is the hidden
cause of the observed input yi(t). These likelihood values shape
the Bayesian posterior distribution (7) by contributing one factor
to the product in Equation (9).

As a consequence, a network neuron zk is particularly respon-
sive to those input configurations y(t) that are associated with
high likelihood values p(Y = y(t) |Zk = 1). The likelihood dis-
tributions are determined by the means μki, i.e., by the number
mki of active switches in the synapses that change according to the
compound-synapse STDP rule. Through this mechanism, synap-
tic plasticity governs the emergence of prototypic patterns that
the network neurons are most responsive to, and thereby turns
each neuron zk into a probabilistic expert for certain input con-
figurations y(t). The aim of learning in the WTA network is to
distribute the probabilistic experts zk such that the likelihood
of the presented input is (on average) as high as possible. This
objective is an equivalent formulation of Maximum-Likelihood
learning, and the log-likelihood function, which measures the aver-
age (logarithm of the) input likelihood, is a widely-used measure
to determine how well a learning system is adapted to the pre-
sented input. Formally, the learning process can be described
within the framework of generalized Expectation-Maximization
(Dempster et al., 1977; Habenschuss et al., 2012; Nessler et al.,
2013). In Methods we show that the generalized Expectation-
Maximization algorithm is implemented in the WTA network via
the interplay of the compound-synapse STDP rule (3), that adapts
the synaptic weights Wki, and the homeostatic intrinsic plasticity
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rule, that regulates the intrinsic excitability bk of the neurons
such that each neuron maintains a long-term average firing rate.
The interplay of synaptic and intrinsic plasticity achieves the aim
of Maximum-Likelihood learning in the WTA network in the
following sense:

The expected synaptic weight changes 〈 d
dt Wki 〉 of the compound

memristive synapses on average increase a lower bound of the log-
likelihood function in a Mixture-of-Gaussians generative model
during online learning until a (local) optimum is reached.

2.4. DEMONSTRATION OF UNSUPERVISED LEARNING
We tested the learning capabilities of the compound memristive
synapse model in a standard machine learning task for hand-
written digit recognition. In a computer simulation, we set up
a WTA network with N = 24× 24 input neurons and K = 10
network neurons. Each synaptic weight Wki was composed of
M = 10 stochastic bistable switches, each contributing ω = 0.1 in
its active state. The switching probabilities πup = πdown = 0.001
were set to a quite low value. This corresponds to a long inte-
gration time for gradual memory formation in order to assess
the general ability of the synapse model in online learning tasks.
Before training, the stochastic switches were initialized randomly
as shown in Figure 3A. The network was then exposed to hand-
written digits 0–4 from the MNIST training data set (LeCun
et al., 1998). Examples from the data set are shown in Figure 3B.
Each pixel was encoded by one input neuron yi. Digits were pre-
sented as Poisson spike trains with firing rates depending on
pixel intensities. Overall, the network was trained in an unsu-
pervised setup for 5000 s with a new digit being presented every
100 ms. Figure 3C shows the weight matrix in an early stage of
learning at t = 200 s. At this stage, the synapses begin to integrate

salient statistical features of the input, such as the generally low
activity along the frame. Furthermore, a specialization to cer-
tain digit classes becomes apparent for some of the network
neurons.

Over the course of learning, the synapses continuously
improve the network’s implicit generative model of the pre-
sented input. This refinement is reflected in the log-likelihood
function shown in Figure 3D that measures how well the prob-
abilistic model is adapted to the input distribution. The ongo-
ing refinement also becomes apparent by a more intuitive–and
practically more relevant–measure, namely the classification per-
formance of the network on an independent test set of hand-
written digits. The classification error (blue in Figure 3D; see
Methods for details) continuously decreases as training pro-
gresses. The improved performance on an independent test set
furthermore indicates that the network develops a generally
well-suited representation of the input and evades the risk of
over-fitting.

At the end of training, after t = 5000 s, a set of prototypic
digits has emerged in the compound memristive synapses as
shown in Figure 3E. The well-adapted synapse array turns each
network neuron into a probabilistic expert for a certain digit
class. As a consequence, the network has learned to transform
the N-dimensional, noisy spike input into a sparse and reliable
spike code, as shown in Figure 3F. Typically, exactly one network
neuron zk fires in response to the input. But also the seem-
ingly unclear cases, when two neurons respond simultaneously,
carry meaningful information in a Bayesian interpretation:
Since network spikes approximate the posterior distribu-
tion p(Z |Y = y(t)) through sampling, an ambiguous spike
response encodes the level of uncertainty during probabilistic
inference.

FIGURE 3 | Learning of hand-written digits. (A) Synaptic weights at
time t = 0 s after random initialization. Color intensities show the number
mki ∈ [0, 10] of active switches for each connection. The indices k of the
postsynaptic neurons are indicated in the top-left corners. (B) Examples
from the MNIST data set. Pixel intensities of the digits were encoded as
Poisson spike trains and presented to the network. Digits 0–4 were
presented with a new digit being shown every 100 ms. (C) Weight
matrix at time t = 200 s. Memristive synapses start to integrate salient
features of the input stream. (D) Over the course of learning the
log-likelihood function (red) increases, indicating that the network

continuously refines its implicit statistical model of the presented data.
This refinement leads to an improved classification performance (blue) on
an independent test set. (E) At the end of the learning experiment at
t = 5000 s, the synapses have specialized on different prototypes of the
presented digits, rendering each network neuron a probabilistic expert for
a certain digit. (F) Network response for 1 s at the end of learning. The
presented digit is shown at the top. The input is transformed into a
sparse and reliable spike code. Some digits invoke a spike response of
more than one neuron. This ambiguous response encodes uncertainty in
the variational posterior distribution.
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2.5. INFLUENCE OF SYNAPTIC RESOLUTION
In the previous section, we have demonstated that the compound
memristor synapse model is able to learn statistical regulari-
ties in the input stream and enables the spiking WTA network
to perform probabilistic inference in a well-defined generative
model. The demonstration employed compound synapses with
M = 10 stochastic switches per synapse. Notably, the number
of constituents M is a free parameter of the model and deter-
mines the weight resolution of the compound synapse. Increasing
the synaptic resolution by recruiting more bistable switches per
synapse is generally expected to improve the accuracy of the input
representation, but comes at the cost of reduced integration den-
sity in a neuromorphic design. In the following, we therefore
explore the opposite direction, i.e., unsupervised learning with a
low weight resolution.

For estimating the influence of the weight resolution on
the learning capabilities of the WTA network, we repeated the
above computer simulation for different values of M, while
holding the maximum weight Wmax = ω ·M, and thus the vari-
ance σ = 1/

√
(Wmax) of the implicit generative model, fixed.

Figure 4A shows examples of the digits stored in the synapse
array after 5000 s of learning for M = 1, 2, 4, and 100 stochastic

FIGURE 4 | Influence of the synaptic resolution. (A) Examples of learned
weight matrices with different numbers of constituents M per synapse.
Even binary weights with only one stochastic switch learn to maintain a
coarse image of prototypic digits. In the limit of large M, compound
synapses support a quasi-continuous weight spectrum. (B) Classification
error for different weight resolutions after 5000 s of learning, based on 20
independently trained networks for each value of M. Errorbars: SD among
networks.

switches per synapse. Even binary synapses with M = 1 success-
fully identify noisy archetypes of the input digits. This obser-
vation is in line with previous studies on learning with binary
weights (Fusi, 2002). The accuracy of the representation quickly
increases with higher M-values. As an (academic) reference, we
also included a simulation with M = 100 switches per synapse
which support a quasi-continuous state spectrum.

The resulting ability of the WTA network to recognize hand-
written digits is shown in Figure 4B in terms of the classification
error on a test set. Each bar depicts the mean performance of 20
independently trained networks per M-value, errorbars show the
standard deviation among networks. Taking the academic exam-
ple with M = 100 as a reference for the performance achievable
by the small WTA network, the computer simulations suggest that
as few as M = 4 constituents per synapse may be sufficient for
practical applications. While individual weights Wki only store lit-
tle information (ca. 2.3 bits in case of M = 4) about the expected
input in channel yi, the partial evidence received from each of the
N = 576 input channels is integrated by the network in a statisti-
cally correct manner to form a sharply peaked posterior, most of
the time.

2.6. ROBUSTNESS TO DEVICE VARIATIONS
We have demonstrated so far that spiking networks with com-
pound memristive synapses can learn a faithful representation
of their input when synapses consist of idealized bistable con-
stituents. Large-scale physical implementations, however, are
likely to exhibit substantial device variabilities and imperfections.
Plasticity in the compound synapse model depends on two device
properties that are likely to be distorted in physical implementa-
tions: the conductance of each individual constituent ω and the
switching probabilities πup/πdown. In the following, we address
the impact of distortions in these two properties on the WTA
network learning capabilities, separately.

We first turned to the conductance value ω of individual
switches and investigated the robustness of learning to two fun-
damentally different types of noise in ω, namely spatial noise and
temporal noise:

• Spatial noise describes device-to-device variations and
addresses peculiarities of individual memristors that remain
stable over time.
• Temporal noise refers to trial-to-trial variations and covers

device instabilities over the course of learning.

Both types of noise can be suspected to induce serious dis-
turbances during learning: In case of spatial noise, although
device-to-device variations could average out if many memristors
are employed, any remaining deviations give rise to sustained sys-
tematic errors that may build up over the course of learning. In
case of temporal noise, while trial-to-trial variations could aver-
age out over time, any synaptic update rests upon a disturbed
instantiation of the weight matrix, i.e., on a noisy (and false)
assumption. In computer simulations, we accounted for these
types of noise separately by disturbing the active-state weight
value ω of the switches as sketched in Figure 5A. To model spa-
tial noise, the weight ω was randomly drawn prior to training for
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FIGURE 5 | Robustness to spatial and temporal noise. (A) Noise was
added by drawing the weight ω of the active state from a normal
distribution. Three types of noise were tested: For spatial noise, a
value ω ∼N (ω; ω̄, σ 2

ω ) was assigned to each switch and maintained
throughout the experiment. For temporal noise, the value ω was
redrawn after every LTP transition. For spatial + temporal noise, the

device specific spatial weight value determined the mean for
redrawing ω after LTP transitions. (B–D) Number mki of active switches
after learning at t = 5000 s. Shown are example networks for all three
noise types. (E) Classification error after learning, based on 20
independently trained networks per noise type. Errorbars denote
standard deviation among networks.

each stochastic switch from a normal distribution N (ω ; ω̄, σ 2
ω)

with mean ω̄ and standard deviation σω. To capture the effect
of temporal noise, in contrast, the weight ω was redrawn from
N (ω ; ω̄, σ 2

ω) whenever the constituent switched to its active state
in an LTP transition. Furthermore, we examined the combined
effect of both noise types being present simultaneously. In this
combined case, the mean value for temporal noise was deter-
mined by the device-specific spatially perturbed weight value of
each constituent. In any case, the range of perturbed weights was
truncated to ω ≥ 0 to rule out negative conductances.

We repeated the experiment of Figure 3 under each of these
noise conditions. The mean ω̄ = 0.1 was set to the undisturbed
weight value of the previous, idealized experiment. The noise level
was set to σω = 0.05, i.e., to 50% of the mean. Example cases of
weight matrices after learning (shown are the mki’s from individ-
ual simulation runs) are presented in Figures 5B–D for the three
noise conditions “spatial,” “temporal” and “spatial+temporal,”
respectively. Surprisingly, hardly any difference to the idealized
setup is observable. Nevertheless, under 20 repetitions of the
learning simulation the detrimental influence of noise becomes
visible in the classification performance (see Figure 5E) as noise
appears to slightly increase the mean of the classification error. In
summary, these results reveal a remarkable robustness of learn-
ing with compound memristive synapses to substantial device
variability and severe temporal instability.

We next turned to the question how distorted switching
probabilities πup and πdown influence the learning dynamics
in the WTA network. In the theory section, we had assumed
that πup = πdown, i.e., that the switching probabilities underly-
ing LTP and LTD are balanced. This assumption, which could
to some extent be achieved in a calibration step, yielded the
elegant learning rule (3) and thereby facilitated the theoretical
analysis. A physical implementation, however, will likely exhibit

unbalanced switching probabilities in the majority of memris-
tors. We examined the influence of unbalanced switching, in two
ways. First, we applied spatial noise to the switching probabilities
of individual constituents by drawing πup and πdown (separately)
from normal distributions with 50% noise level (truncated to
0 ≤ πup, πdown ≤ 1). Thus, about half of the stochastic switches
were more responsive to LTP pulses, the other half more to
LTD pulses; even more, some of the constituents only showed
switching in one direction, or were completely unresponsive.
Nevertheless, synapses developed a faithful representation of pro-
totypic digits in a repetition of the experiment in Figure 3 (data
not shown). Also the classification performance was only mildly
impaired (classification error: 8.7± 2.7% based on 20 networks)
compared to ideal, noisefree synapses (classification error: 7.5±
1.9%).

In a second step, we pursued a slightly different–more
principled–approach that permits a theoretical interpretation of
how the altered synapse dynamics give rise to a different encoding
of the expected input by the synaptic weights. Instead of draw-
ing random parameters for each constituent, we systematically
chose the LTD switching probability πdown larger (or smaller)
than the LTP probability πup throughout the synapse array. This
systematic imbalance displays a worst-case scenario during learn-
ing since all synapses either favor (or suppress) LTD over LTP.
We denote the relative imbalance between πup and πdown by
� := (πup − πdown)/πup. For instance, � = −0.5 means that
the probability for LTD transitions is 50% higher than for LTP
transitions. Figure 6A shows examples of weight matrices after
5000 s of learning in a repetition of the experiment in Figure 3.
In the top row, � = +0.5, LTP transitions are favored over LTD
transitions, resulting in generally stronger weights in compari-
son with balanced STDP (� = 0.0, middle row). Conversely, in
the bottom row, � = −0.5, the systematic strengthening of LTD
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FIGURE 6 | Robustness to unbalanced switching probabilities. (A)

Examples of learned weight matrices when the switching probabilities πup

and πdown are systematically unbalanced. The parameter
� := (πup − πdown)/πup measures the relative imbalance between LTP and
LTD transitions. The top (bottom) row shows weight matrices resulting
from a 50% decrease (increase) of the LTD switching probability. The
balanced case is shown in the middle row for comparison. (B) Systematic
imbalance (� �= 0) leads to changed equilibrium points in the STDP rule and
can be theoretically understood as a non-linear encoding of the expected
input by the synaptic weights.

leads to weaker weight patterns. Nevertheless, synaptic weight
values converged to a dynamic equilibrium in either case since
the STDP rule preserves its general stabilizing weight depen-
dence. As can be expected from the prototypic digits that emerged
in the weight matrices, the classification performance of the
WTA networks was not considerably impaired by the unbalanced
switching (classification errors estimated from 20 networks:
6.7± 0.8% for � = +0.5; 7.5± 1.9% for � = 0; 11.8± 4.0%
for � = −0.5). Indeed, positive �-values even performed slightly
(but not significantly) better than balanced switching. A con-
ceptual understanding of the altered learning dynamics can be
obtained from the equilibrium points of the unbalanced STDP
rule. The short calculation, that had led to Equation (8) for the
balanced case, can be repeated for unbalanced switching proba-
bilities. Figure 6B shows the resulting encoding of the expected
input value 〈Yi 〉p(Yi |Zk=1) by the synaptic weight Wki for differ-
ent �-values. The example digits shown in panel A correspond
to the red, green and blue graph in panel B, respectively. This
analysis illustrates how unbalanced switching probabilities give
rise to a non-linear encoding of the input in the WTA network.

In particular, it can be seen how the same expected input value
〈Yi 〉p(Yi |Zk = 1) leads to stronger weights for � > 0, and weaker
weights for � < 0.

3. DISCUSSION
We have proposed the compound memristive synapse model for
neuromorphic architectures that employs multiple memristors in
parallel to form a plastic synapse. A fundamental property of the
synapse model is that individual memristors exhibit stochastic
switching between two stable memristive states rather than obey-
ing a deterministic update rule. Yet, the expected weight change of
the compound memristive synapse, as it arises from the stochas-
tic switching of its constituents, yielded an STDP-type plasticity
rule with a stabilizing, linear weight dependence. We exam-
ined the computational capabilities of the compound-synapse
STDP rule in WTA networks, a common circuit motif in cortical
and neuromorphic architectures, by analyzing the network and
synapse dynamics from the perspective of probability theory and
machine learning. The comprehensive mathematical treatment
revealed that compound memristive synapses enable a spiking
network to perform Bayesian inference in and autonomous sta-
tistical optimization of a Mixture-of-Gaussians generative model
via generalized Expectation-Maximization. Accompanying com-
puter simulations demonstrated the practical capability of the
synapse model to perform unsupervised classification tasks and,
furthermore, revealed a remarkable robustness of the compound
synapses to substantial device variations and imperfections.

3.1. COMPREHENSIVE LEARNING THEORY OF MEMRISTIVE
PLASTICITY

Our work contributes a theoretical foundation for memristive
learning in neural networks to the endeavor to employ memris-
tors as plastic synapses in self-calibrating systems. Snider (2008);
Querlioz et al. (2011), and Serrano-Gotarredona et al. (2013) have
investigated how different pre- and postsynaptic waveforms can
shape a memristive STDP learning window. Jo et al. (2010) and
Mayr et al. (2012) have demonstrated STDP-type plasticity in
Ag/Si and BiFeO3 memristors. Yu et al. (2013) reported stochas-
tic switching between stable states in oxide-based memristive
synapses. Gaba et al. (2013) studied the parameter dependence
of switching probabilities in metal filament based memristors,
indicating a renewal process that is independent of the overall net-
work firing rate. A strategy for integrating nanoscale memristive
synapses into a hybrid memristor-CMOS network architecture
was proposed by Indiveri et al. (2013). The beneficial contri-
bution of stochasticity to learning with CMOS synapse circuits
was explored by Chicca et al. (2014). Here we have established a
firm link between the emergent synapse configurations observed
in such architectures (see e.g., Querlioz et al., 2011) and a rig-
orous mathematical description of memristive learning on the
system level using machine learning theory. Our findings on
memristive learning from a Bayesian perspective build upon a
series of theoretical contributions on synaptic learning in spiking
neural networks: Nessler et al. (2009, 2013) identified a gen-
eral link between STDP-type synaptic plasticity and statistical
model optimization for probabilistic inference in WTA networks.
Habenschuss et al. (2012) extended this work to incorporate also

www.frontiersin.org December 2014 | Volume 8 | Article 412 | 169

http://www.frontiersin.org
http://www.frontiersin.org/Neuromorphic_Engineering/archive


Bill and Legenstein Compound-memristor STDP

homeostatic intrinsic plasticity, thereby overcoming several limit-
ing assumptions on the input presentation. Finally, Habenschuss
et al. (2013) investigated how the learning framework can be
generalized to support a broad class of probability distributions.
We expect that utilizing machine learning theory for describing
the effects of specific memristor synapse models can signifi-
cantly promote our understanding of memristive learning and its
computational prospects.

3.2. HEADING FOR A FULL HARDWARE INTEGRATION
Plasticity in the compound memristor synapse model relies on
stochastic transitions between two stable states. Such bistable
devices–or more generally, devices with a clearly discrete state
spectrum–were reported to exhibit a high degree of uniformity
(Lee et al., 2006a; Fang et al., 2011) and temporal stability
(Indiveri et al., 2013). Notably, the theoretical approach we have
persued in this work could likely be extended to cover memristors
with more than two stable states and to support more complex
input and plasticity mechanisms. For instance, the Gaussian like-
lihood distributions p(Y |Z) identified in the present study, in
principle support inference over arbitrary real-valued input states
y(t). Such states could arise if the input is presented in the form of
exponentially decaying or additive postsynaptic potentials. Such
more complex input types could afford more versatile STDP puls-
ing schemes, and the resulting memristor plasticity rules could
likely be incorporated in an adapted model of statistical learn-
ing. The reason we restricted the input to binary values yi(t) is
found in the STDP pulsing scheme that employs binary presy-
naptic waveforms. In this case, the theoretically derived generative
model reveals how active and inactive inputs contribute to the
network’s spike response by means of a Gaussian likelihood dis-
tribution p(Yi = yi(t) |Zk = 1) that is sampled only at yi(t) = 0
and yi(t) = 1.

In this article, we have employed a simple model for stochas-
tic switching in memristive devices where switching occurs with
probabilities πup, πdown which depend on the applied voltage dif-
ference across the memristor terminals. This phenomenological
model captures the most salient aspects of switching in real mem-
ristive materials (Jo et al., 2009b; Gaba et al., 2013) and was used
as an abstraction of memristive switching in a recent experimental
study (Suri et al., 2013). In future research, it will be important to
evaluate the effectiveness of this model either with physical mem-
ristors or in simulations based on detailed memristor models.
The authors of Suri et al. (2013) raised the concern that the pre-
cise switching probabilities of individual devices are potentially
hard to control in large-scale systems. In this regard, our simu-
lation results indicate that learning with compound memristive
synapses tolerates significant noise levels in the switching prob-
abilities. We expect the origin for the observed robustness to be
twofold: Firstly, imbalances in πup, πdown between different con-
stituents are expected to partly average out in compound synapses
according to the central limit theorem; secondly, the stabiliz-
ing weight dependence of compound-synapse STDP ensures that
even unbalanced switching leads to stable weight configurations,
albeit with slightly shifted convergence points.

Another potential issue for learning with compound memris-
tive synapses is the absolute value of the switching probability.

The product πup ·Wmax can be linked to a learning rate in the
theory domain (see Table 1) which controls how many samples
from the input history are integrated into the implicit genera-
tive model during online learning. A slow and gradual memory
formation, which is desirable for developing a representation of
large and complex input data sets, relies on small learning rates,
i.e., on small switching probabilities. It has to be seen if memris-
tive materials that exhibit stochastic switching provide sufficiently
small switching probabilities. A possible remedy in a hardware
integration could be to multiplex the back-propagating signals
from network neurons such that only a random subset of the
memristors is notified of a network spike at a time (Fusi, 2002).

Regarding the physical model neurons of a hybrid memristor-
CMOS architecture, two types of currents occur in the WTA
network. The input integration via forward-synapses is spike
based and could be realized with standard leaky integrators (see
Methods). Lateral inhibition, in contrast, depends on the neu-
ronal membrane potentials, and the involved inhibitory circuits
should ideally transmit potentials instead of spikes. Alternatively,
the effect of lateral inhibition could be approximated in a spike-
based manner by populations of inhibitory neurons. Independent
of the specific implementation of lateral inhibition, the result-
ing potential uk − uinh controls the stochastic response of the
WTA neurons that could either be implemented genuinely with
a stochastic firing mechanism or be emulated with integrate-and-
fire neurons (Petrovici et al., 2013).

3.3. INHERENTLY STOCHASTIC NATURE OF COMPOUND-SYNAPSE
STDP

The spiking WTA network architecture with compound memris-
tive synapses exploits stochasticity in various ways, in that the
stochastic firing of network neurons in response to a transient
input trajectory triggers stochastic STDP updates in the synaptic
weights. From a learning perspective, the high degree of stochas-
ticity contributes to the network’s ongoing exploration for poten-
tial improvements in the parameter space. While the learning the-
ory only guarantees convergence to a local optimum of the weight
configuration, the stochastic nature of the ongoing exploration
enables the network to evade small local optima in the param-
eter landscape, and thereby improves the robustness of learning
(compared to traditional batch Expectation-Maximization).

For the derivation of the learning algorithm, we have focused
on the weight-dependent STDP rule (3) which describes the
expected temporal weight change 〈 d

dt Wki 〉 of the compound
synapse. The stochasticity of memristive switching, however,
gives rise to a probability distribution over the weights, as well.

Table 1 | Correspondence of synapse parameters between the

hardware and theory domain.

Parameter name Hardware Theory

Learning rate πup ·Wmax ηW

Max. weight Wmax ω ·M 1/σ 2

Likelihood mean μki mki/M σ 2 ·Wki

Synaptic resolution ω 1/(M · σ 2)
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Indeed, in equilibrium we expect that the number of active con-
stituents mki follows a binomial-type weight distribution. This
points to a potential knob for adjusting the amount of stochas-
ticity used during online learning: when many memristors are
recruited per synapse, i.e., for large M, we expect a reduced
variance in the weight distribution.

Besides the level of stochasticity, the parameter M also con-
trols the weight resolution of the compound synapse. In Figure 4,
we have investigated the impact of the weight resolution on the
learning capabilities of the WTA network. Notably, we observed
that even with M = 4, i.e., with synapses that feature only 5
weight levels, the network performed reasonably well in the hand-
written digit recognition task. The observation that even a low
synaptic weight resolution can yield a satisfactory performance
has important practical implications for nanoscale circuit designs,
where integration density and power consumption impose crucial
constraints, since the area allocated by the synapse array grows
linearly in the synaptic size M. For instance, SRAM cells can be
fabricated with a cell size of 0.127 μm2 (Wu et al., 2009), cor-
responding to a memory density of � 1 Gb/cm2. Importantly,
this estimate does not include any additional plasticity circuits for
implementing STDP or similar plasticity mechanisms. Functional
Ag/Si memristive crossbars with 2 Gb/cm2 memory density were
demonstrated by Jo et al. (2009a), with densities up to 10 Gb/cm2

being envisioned (Jo et al., 2009a,b). In the long term, memris-
tive crossbars are expected to combine the advantages of SRAM
and Flash memory regarding energy efficiency, non-volatility and
integration density (Yang et al., 2013).

3.4. GENERALIZATION TO OTHER MATERIALS AND FUTURE RESEARCH
In recent years, a plethora of (in a broader sense) memris-
tive materials has been discovered, and the characterization and
refinement of their switching dynamics is evolving rapidly. At
least four types of stochastically switching memristive devices can
be distinguished: Switching in (1) anion-based (e.g., HfOx/TiOx

Yu et al., 2013) and (2) cation-based (e.g., Ag/GeS2 Suri et al.,
2013) devices mainly originates from conductive filament for-
mation (Yang et al., 2013). In contrast, (3) single-electron latch-
ing switches [e.g., CMOS/MOLecular (CMOL) CrossNets Lee
et al., 2006b] rely on electronic tunneling effects and, thus, their
stochastic switching dynamics arise directly from the underly-
ing physical process. Similarly, (4) magnetoresistive devices (e.g.,
spin-transfer torque magnetic memory (STT-MRAM) Vincent
et al., 2014) can inherit stochastic switching dynamics from
fundamental physical properties. Some manufacturing processes
related to these ideas (like conductive-bridging RAM and STT-
MRAM) reached already an early industrial stage, others are still
primarily subject of academic research. While the microscopic
origins of plasticity in these memristor types are fundamentally
different, they all share stochastic, persistent switching between
bistable memory states on a phenomenological level. We therefore
believe that the compound memristive synapse model displays a
promising concept for future work in diverse research fields.

Independent of the underlying switching mechanism, any
nanoscale synaptic crossbar will likely exhibit imperfections and
imbalances due to process variations. Here, we have investi-
gated spatial and temporal noise in the weight values as well as

deviations in the switching probabilities under unbiased, uni-
form conditions. However, physical implementations can be
expected to also suffer from more systematic imperfections, such
as structural imbalances (e.g., one corner of the array being more
reactive) or crosstalk between neighboring devices. While our
computer simulations indicate a remarkable general robustness
against device variations of various types, additional research
is required to estimate the influence of such systematic, and
potentially coupled, deviations.

3.5. CONCLUSIONS
In this article, we have introduced the compound memris-
tive synapse model together with the compound-synapse STDP
rule for weight adaptation. Compound-synapse STDP, a stabi-
lizing weight-dependent plasticity rule, naturally emerges under
a standard STDP pulsing scheme. In addition, by employing
memristors with bistable memristive states, compound memris-
tive synapses may circumvent practical challenges in the design
of reliable nanoscale memristive materials. Both, our theo-
retical analysis and our computer simulations confirmed that
compound-synapse STDP endows networks of spiking neurons
with powerful learning capabilities. Hence, the compound mem-
ristive synapse model may provide a synaptic design principle for
future neuromorphic hardware architectures.

4. METHODS
4.1. PROBABILISTIC MODEL DEFINITION
The probabilistic model that corresponds to the spiking network
is a mixture model with K mixture components and Gaussian
likelihood function. Formally, we define a joint distribution
p(Y = y(t), Z = z(t) | θ) over K hidden binary random variables
Z = (Z1, . . . , ZK )T with values zk(t) ∈ {0, 1}, and N real-valued
visible random variables Y = (Y1, . . . , YN )T with values yi(t) ∈
R. The parameter set θ = {b̂, W} consists of a real-valued bias

vector b̂ = (b̂1, . . . , b̂K )T and a real-valued K × N weight matrix
W . The hidden RVs Zk display an unrolled representation of
a multinomial RV Z̃ ∈ {1, . . . , K} that enumerates the mixture
components, and we identify Z̃ = k⇔ Zk = 1, i.e., exactly one
binary RV Zk is active in the random vector Z. In the following,
we stick to the unrolled vector notation Z, and, for readability,
omit the time-dependent notation and further shorten the nota-
tion by identifying the RVs with their values, e.g., we write p(z | θ)
for p(Z = z(t) | θ).

The likelihood distribution fulfills the naïve Bayes property,
i.e., all statistical dependencies between visible RVs yi, yj are
explained by the hidden state z. More precisely, the generative
model has the following structure:

p(y, z | θ) = p(z | θ) ·
K∏

k= 1

N∏
i= 1

p
(
yi | zk = 1, θ

)zk , (12)

with the prior

p(z | θ) = ezTb̂

∑K
j= 1 eb̂j

(13)
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and the likelihood

p
(
yi | zk = 1, θ

) = 1√
2πσ 2

· e−
(yi −μki)2

2σ2 , (14)

with σ 2 denoting an arbitrary (but fixed) variance which displays
a constant in the model. Equation (14) defines a Gaussian likeli-
hood model for each input RV yi with mean μki which is selected
by the active hidden cause zk = 1 in Equation (12). For theoret-
ical considerations, it is convenient to reorganize Equation (14)
according to its dependency structure:

p
(
yi | zk = 1, θ

) = e−y2
i /(2σ 2)

√
2πσ 2

· e
μki
σ2 · yi · e−μ2

ki/(2σ 2) (15)

=: h(yi) · eWki · yi · e−Aki , (16)

where we set Wki = μki/σ
2 and Aki = μ2

ki/(2σ 2) = σ 2W2
ki/2.

The first factor does neither depend on the hidden causes zk

nor on the weight Wki and will play no role during inference
and learning. The second factor describes the coupling between
the visible RV yi and the active latent RV zk through the mean
Wki = μki/σ

2. Finally, the third factor solely depends on the
weight Wki (and not on yi) and ensures correct normalization of
the distribution.

4.2. INFERENCE
The posterior distribution given an observation y follows directly
from Bayes rule:

p
(
z | y, θ) = p(z | θ) · p (y | z, θ) / Norm. (17)

= e zTb̂
K∏

k= 1

N∏
i= 1

h(yi)
zk ·

e zk ·Wki · yi · e−zk ·Aki / Norm. (18)

= e
zT·
[

b̂−A+W · y
]
·

N∏
i= 1

h(yi) / Norm. (19)

with A := (A1, . . . , Ak, . . . , AK )T and Ak :=∑N
i= 1 Aki. We eval-

uate the posterior for a specific hidden RV zk to be active and
provide the normalization constant explicitly:

p
(
zk = 1 | y, θ) = eb̂k −Ak +

∑N
i= 1 Wki·yi · ∏N

i= 1 h(yi)∑K
j= 1 eb̂j −Aj +

∑N
i= 1 Wji · yi ·∏N

i= 1 h(yi)
(20)

= eûk∑K
j= 1 eûj

(21)

where we defined ûk = b̂k − Ak +∑N
i= 1 Wki · yi. The quanti-

ties ûk are reminiscent of neuronal membrane potentials which
consist of bias terms b̂k − Ak and synaptic input

∑N
i= 1 Wki yi.

However, implicitly the bias terms depend on all afferent synaptic

weights since b̂k − Ak = b̂k − σ 2

2

∑
i W2

ki and, thus, rely on infor-
mation not locally available to the neurons. This issue will be

resolved in the context of learning: We will identify update rules
for both biases and synapses which only use information avail-
able locally and thereby make a neural network implementation
feasible.

4.3. LEARNING VIA GENERALIZED EXPECTATION-MAXIMIZATION
We investigate unsupervised learning of the probabilistic model
based on generalized online Expectation-Maximization (EM)
(Dempster et al., 1977), an optimization algorithm from machine
learning theory. To this end, we impose additional constraints on
the posterior distribution (Graça et al., 2007) which will enable a
neural network implementation via homeostatic intrinsic plastic-
ity (Habenschuss et al., 2012) and STDP-type synaptic plasticity
(Habenschuss et al., 2013; Nessler et al., 2013). Since the deriva-
tion is almost identical to Habenschuss et al. (2012), we only
outline the key steps and main results in the following and refer
to Habenschuss et al. (2012) for a the details.

The algorithmic approach rests upon the generalized EM
decomposition:

F(W, q(z|y)) = L(θ)− 〈DKL
(
q(z|y) || p(z|y, θ) 〉p∗(y)

→ E-step (22)

= 〈 log p(y, z|θ) 〉p∗(y)q(z|y) + 〈H(q(z|y)) 〉p∗(y)

→ M-step (23)

with the log-likelihood L(θ) = 〈 log p(y | θ) 〉p∗(y), the Kullback-
Leibler divergence DKL

(
q(z) || p(z)

) =∑z q(z) · log
(
q(z)/p(z)

)
and the entropy H(q(z)) = −∑z q(z) · log q(z). The distribu-
tion p∗(y) denotes the input distribution actually presented to
the system. The distribution p( · | θ) is the probabilistic model
defined above. The distribution q(z|y) is called variational poste-
rior and will ultimately be implemented by the spiking network.
The short hand notation 〈 · 〉p∗(y)q(z|y) denotes the concatenated
average 〈 〈 · 〉q(z|y) 〉p∗(y) with respect to the input distribution and
the resulting variational posterior. In principle, the above decom-
position holds for any choice of q, and since the Kullback-Leibler
divergence in Equation (22) is strictly non-negative, the objective
function F is a lower bound of the log-likelihood L. During opti-
mization the algorithm will persue two goals: to increase L, i.e.,
to better adapt the probabilistic model to the data, and to keep
〈DKL

(
q || p) 〉 small, i.e., to maintain a reliable approximation

q(z|y) of the exact posterior p
(
z | y, θ).

We first impose a homeostatic constraint on the variational
posterior q(z|y), namely that the long term average activation
of any hidden RV zk matches a predefined target value ck (with∑

k ck = 1). Formally, we define a set of constrained distribu-
tions Q = {q : 〈 zk 〉p∗(y)q(z|y) = ck ∀ 1 ≤ k ≤ K} and demand
q(z|y) ∈ Q. The optimization algorithm then relies on the joint
application of an E(expectation)-step and an M(aximization)-
step: During the E-step, we aim to minimize the Kullback-Leibler
divergence with respect to q ∈ Q in Equation (22); during the M-
step, we perform gradient ascent on 〈 log p(y, z | θ) 〉 with respect
to the weights Wki in Equation (23). The E- and M-step will be
discussed separately.

The E-step is a constrained optimization problem, namely
the minimization of 〈DKL

(
q || p) 〉 such that q ∈ Q, that can be
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solved through Lagrange multipliers. Since we imposed K con-
straints (one per RV zk), we need K Lagrange multipliers βk. It
turns out that the solution to this optimization problem simply

adds the multipliers βk to the biases b̂k − Ak in Equation (20).
This convenient result gives rise to the definition of intrinsic

excitabilities bk := b̂k − Ak + βk which unify biases and multipli-
ers in a single quantity. Furthermore, it turns out that the optimal
values of the βk’s (and thus the bk’s) can be determined via itera-
tive update rules that solely rely on the hidden RVs zk under the
variational response q(z|y) and overwrite the non-local terms Ak.
In summary, we obtain the variational posterior distribution q
that solves the E-step:

q(z|y) = euk∑K
j= 1 euj

with uk = bk +
N∑

i= 1

Wki · yi (24)

�bk ∝ 〈 ck − zk 〉p∗(y)q(z|y) . (25)

The variational posterior in Equation (24) is described in terms of
membrane potentials uk which consist of synaptic input

∑
i Wki yi

and intrinsic excitabilities bk. Equation (25) regulates the intrin-
sic excitabilities bk in a homeostatic fashion: When the average
response exceeds the target ck, the excitability is reduced, and vice
versa.

The M-step can be solved via gradient ascent on F with
respect to the weights Wki. The variational posterior q is a
constant during the M-step in EM, and thus the log-joint distri-
bution log p(y, z | θ) remains as the only Wki-dependent term in
Equation (23). By taking the derivative of the log-joint defined by
Equation (12), (13), and (16) with respect to Wki, we obtain:

dF
dWki

= 〈 ∂Wki log p(y, z | θ) 〉p∗(y)q(z|y) (26)

= 〈 ∂Wki zk · log p
(
yi | zk = 1, θ

) 〉p∗(y)q(z|y) (27)

= 〈 zk · (yi − σ 2 ·Wki) 〉p∗(y)q(z|y) . (28)

The gradient with respect to the weights Wki yields Hebbian-type
update rules that use pre-(yi) and post-(zk) synaptic activity and
the current weight Wki given the input p∗(y) and the variational
response q(z|y). Importantly, only local information is required
during the E- and M-step.

4.4. SPIKING NETWORK IMPLEMENTATION
The spiking neural network model instantiates Equation (24),
(25), and (28), i.e., it represents the variational posterior q(z|y)
for probabilistic inference through its spike response and imple-
ments the derived update rules for generalized online EM learning
through intrinsic and synaptic plasticity.

Each of the RVs zk is represented by one of the K network
neurons, and each spike in the network is a sample from the vari-
ational posterior q(z|y) by identifying zk = 1 for a spike of the
k-th network neuron. By setting the instantaneous firing rate ρk

to be

ρk = lim
δt→ 0

p(spike in[t, t + δt])/δt = rnet · euk−uinh (29)

with uinh := log
∑K

j= 1 exp (uj) the network thus implements
Equation (24) for any choice of rnet, i.e., pnet = q.

The learning rules (25) and (28) rely on expected values
〈 · 〉p∗(y)q(z|y). The expectations can be approximated from input
samples y ∼ p∗(y) and posterior samples z ∼ q(z|y) in response
to this input. The input vector y is defined at any time t in the
network as it measures the instantaneous presence or absence of
rectangular input pulses. Samples of the latent variable z, in con-
trast, are only defined at the spike times of the network. Hence
integrating expected values 〈 zk 〉 from the spike response can be
expressed most conveniently in terms of the spike train func-

tion sk(t) =∑f δ(t − t
f
k) of the network neurons. We obtain the

following plasticity rules:

dbk

dt
= ηb · [rnet · ck − sk(t)] (30)

dWki

dt
= ηW · sk(t) · [yi − σ 2 ·Wki

]
(31)

with small learning rates ηb and ηW . The homeostatic rule (30)
regulates the intrinsic excitabilities bk such that the average tar-
get activations 〈 zk(t) 〉 ≈ ck are maintained over the presentation
of many different input patterns y(t) ∼ p∗(y) in accordance with
Equation (25), and thereby implements the E-step. Building
on the network response shaped by the E-step, the synaptic
rule (31) on average increases the objective function F since
synaptic changes d

dt Wki on average point in the direction of the
W-gradient of F given by Equation (28), thereby implement-
ing the M-step. Since synaptic updates rely on a (sufficiently)
precise E-step which, in turn, needs to integrate any changes
in the network response due to synaptic plasticity, homeostatic
intrinsic plasticity is required to act on faster time scales than
synaptic plasticity. As a consequence, the learning rate ηb will
typically exceed the learning rate ηW in the spiking network
implementation.

The homeostatic intrinsic plasticity rule (30) can readily be
implemented by the spiking neurons: The intrinsic excitability
bk of each neuron increases linearly in time with a slow drift
ηb · rnet · ck and is lowered abruptly by ηb at the spike times of
neuron zk. Similarly, mapping the synaptic plasticity rule (31) to
the compound-synapse STDP rule (3) is straight-forward due to
the structural equivalence of Equations (3) and (31): The learn-
ing rate ηW in the theory domain corresponds to πup ·Wmax in
the hardware domain, e.g., high jumping probabilities πup and
large weight contributions ω = Wmax/M of individual stochastic
switches lead to high learning rates ηW . Furthermore, the max-
imum weight Wmax can directly be identified with the precision
1/σ 2 of the likelihood distribution (14). In the theory domain, we
know that μki = σ 2 ·Wki, and hence, μki = Wki/Wmax = mki/M
for the compound synapses. Finally, due to the structural equiv-
alence of Equations (3) and (31) we find that the compound
memristor plasticity rule (3) inherits the convergence prop-
erties from the theoretically derived plasticity rule (31) dur-
ing online learning. The resulting translation of memristor
synapse parameters to the abstract model is summarized in
Table 1.
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4.5. COMPUTER SIMULATIONS
All computer simulations were performed with customized
Python scripts. For the computer simulations, we employed
a network architecture with K = 10 network neurons and
N = 24 · 24 = 576 inputs. The simulation time step was
δt = 1 ms and the PSP time constant τ = 10 ms. The overall net-
work firing rate was set to rnet = 100 Hz, the homeostatic target
activation uniformly to ck = 1/K. Synapses were composed of
M = 10 constituents with weight ω = 0.1 each. Switching prob-
abilities were set to πup = πdown = 10−3. This corresponds to
a Gaussian likelihood model with variance σ 2 = 1 and learning
rate ηW = 10−3. The learning rate for homeostatic intrinsic plas-
ticity was set to ηb = 20 · ηW . For the simulations in Figures 4–6,
certain parameters deviated from the above, depending on
the simulation setup. For Figure 6, the switching probability
πup = 10−3 was kept fixed, and πdown was adapted for different
�-values. All other changes are described directly in the Results
section.

For learning experiments, digits 0, 1, 2, 3, 4 were extracted
in equal proportion from the MNIST training data set (LeCun
et al., 1998). A frame of two pixels width was removed, leaving
images of size 24× 24. The images (indexed by s) were scaled
linearly to activity patterns xs

i ∈ [0.05, 0.9], with i = 1, . . . , N,
which were presented to the network as follows. For given activity
pattern xs = (xs

1, . . . , xs
N ), each input i spiked with probabil-

ity p
spike
i = 1− (1− xs

i

)δt/τ
per time step δt. During training,

a new activity pattern xs was randomly drawn from the train-
ing set every 100 ms. Each network was trained for 5000 s. To
obtain the unweighted PSP values yi, the resulting spike patterns
were convolved with a box kernel of duration τ and ampli-
tude 1, and then clipped to values [0, 1]. This defined the input
y(t), and thus (implicitly) the data distribution y(t) ∼ p∗(y).

Notably, the spiking probability p
spike
i is chosen such that

〈 yi 〉 = xs
i .

The estimate of the log-likelihood in Figure 3D was based on
5000 input samples y(t), which were randomly drawn from the
training data, and assumed a uniform prior p(zk = 1 | θ) = 1/K
in accordance with the homeostatic target activation. The clas-
sification performance in Figures 3D, 4B, 5E was determined
as follows. For given configuration of the synapses and intrin-
sic excitabilities, 100 versions of each digit from the train-
ing data set were presented to the network for 1 s each. Each
neuron was labeled to be tuned to the digit class it was
most responsive to. Then 500 versions of each digit from the
MNIST test data set were presented to the network for 1 s
each. The network neuron that spiked most during the 1 s
period determined the network’s classification of the input digit.
The classification error is the fraction of wrongly classified
digits.

4.6. IMPLEMENTATION WITH LEAKY INTEGRATOR NEURONS
The idealized stochastic neurons in the WTA network model
feature abstact membrane potentials uk that integrate the input
y(t) through the weights Wki linearly. In a hardware integra-
tion, however, synaptic weights arise from the conductance of
memristors, and neurons are physical implementations based on
capacitors and various other circuit elements. Here, we outline

one possible hardware integration and consider a leaky integrator
with membrane potential Uk that obeys the following dynamics:

τm · dUk

dt
= −(Uk − Bk)+ Ik/GL , (32)

with membrane time constant τm, leak conductance GL, rest-
ing potential Bk and synaptic input current Ik. In the setup
of Figure 1A, input spikes trigger a rectangular voltage pulse
of duration τ and with amplitude Upre. Denoting the conduc-
tance of the memristive synapse by G, this generates a synaptic
current I = Upre · G. The equilibrium membrane potential (i.e.,
d
dt Uk = 0) under this current is Uk = Bk + (Upre/GL) · G. For
small membrane time constant τm → 0, e.g., for a small neuron
capacitance, the fast membrane will closely resemble the rectan-
gular presynaptic pulse shape, and the PSP amplitude (Uk − Bk)
will be proportional to the weight G. This linear integration prop-
erty of Uk also holds in case of multiple memristive synapses
acting in parallel, and we find

Uk = Bk + Upre

GL
·
∑

i

Gki · yi . (33)

Consequently, the membrane potential Uk of the leaky integra-
tor matches the idealized membrane potential uk employed in the
Results section up to a linear function that serves to translate the
voltage-based potential Uk to the unitless potential uk. Using the
membrane potential Uk, the exponential firing behavior (29) of
the neurons could either be realized with an inherently stochastic
firing mechanism. Alternatively, deterministic leaky integrate-
and-fire neurons could be operated in a stochastic regime by
adapting, for instance, the approach taken in Petrovici et al.
(2013).
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