plo ly, A N DL i ®
) D B a ondal, Rodo o O anda
eONardo Abdie eSpPOo c era
» . ® ~ .' - -

,frontiers Research Topics


https://www.frontiersin.org/research-topics/20289/quantitative-approaches-to-plant-breeding-concepts-strategies-and-practical-applications
https://www.frontiersin.org/research-topics/20289/quantitative-approaches-to-plant-breeding-concepts-strategies-and-practical-applications
https://www.frontiersin.org/research-topics/20289/quantitative-approaches-to-plant-breeding-concepts-strategies-and-practical-applications
https://www.frontiersin.org/research-topics/20289/quantitative-approaches-to-plant-breeding-concepts-strategies-and-practical-applications
https://www.frontiersin.org/journals/plant-science

:' frontiers

Frontiers eBook Copyright Statement

The copyright in the text of
individual articles in this eBook is the
property of their respective authors
or their respective institutions or
funders. The copyright in graphics
and images within each article may
be subject to copyright of other
parties. In both cases this is subject
to a license granted to Frontiers.

The compilation of articles
constituting this eBook is the
property of Frontiers.

Each article within this eBook, and
the eBook itself, are published under
the most recent version of the
Creative Commons CC-BY licence.
The version current at the date of
publication of this eBook is

CC-BY 4.0. If the CC-BY licence is
updated, the licence granted by
Frontiers is automatically updated to
the new version.

When exercising any right under the
CC-BY licence, Frontiers must be
attributed as the original publisher
of the article or eBook, as
applicable.

Authors have the responsibility of
ensuring that any graphics or other
materials which are the property of

others may be included in the

CC-BY licence, but this should be

checked before relying on the
CC-BY licence to reproduce those
materials. Any copyright notices
relating to those materials must be
complied with.

Copyright and source
acknowledgement notices may not
be removed and must be displayed

in any copy, derivative work or
partial copy which includes the
elements in question.

All copyright, and all rights therein,
are protected by national and
international copyright laws. The
above represents a summary only.
For further information please read
Frontiers” Conditions for Website
Use and Copyright Statement, and
the applicable CC-BY licence.

ISSN 1664-8714
ISBN 978-2-88976-878-3
DOI 10.3389/978-2-88976-878-3

About Frontiers

Frontiers is more than just an open-access publisher of scholarly articles: it is a
pioneering approach to the world of academia, radically improving the way scholarly
research is managed. The grand vision of Frontiers is a world where all people have
an equal opportunity to seek, share and generate knowledge. Frontiers provides
immediate and permanent online open access to all its publications, but this alone
is not enough to realize our grand goals.

Frontiers Journal Series

The Frontiers Journal Series is a multi-tier and interdisciplinary set of open-access,
online journals, promising a paradigm shift from the current review, selection and
dissemination processes in academic publishing. All Frontiers journals are driven
by researchers for researchers; therefore, they constitute a service to the scholarly
community. At the same time, the Frontiers Journal Series operates on a revolutionary
invention, the tiered publishing system, initially addressing specific communities of
scholars, and gradually climbing up to broader public understanding, thus serving
the interests of the lay society, too.

Dedication to Quality

Each Frontiers article is a landmark of the highest quality, thanks to genuinely
collaborative interactions between authors and review editors, who include some
of the world’s best academicians. Research must be certified by peers before entering
a stream of knowledge that may eventually reach the public - and shape society;
therefore, Frontiers only applies the most rigorous and unbiased reviews.

Frontiers revolutionizes research publishing by freely delivering the most outstanding
research, evaluated with no bias from both the academic and social point of view.
By applying the most advanced information technologies, Frontiers is catapulting
scholarly publishing into a new generation.

What are Frontiers Research Topics?

Frontiers Research Topics are very popular trademarks of the Frontiers Journals
Series: they are collections of at least ten articles, all centered on a particular subject.
With their unique mix of varied contributions from Original Research to Review
Articles, Frontiers Research Topics unify the most influential researchers, the latest
key findings and historical advances in a hot research area! Find out more on how
to host your own Frontiers Research Topic or contribute to one as an author by
contacting the Frontiers Editorial Office: frontiersin.org/about/contact

Frontiers in Plant Science

1 August 2022 | Quantitative Approaches to Plant Breeding


https://www.frontiersin.org/research-topics/20289/quantitative-approaches-to-plant-breeding-concepts-strategies-and-practical-applications
https://www.frontiersin.org/journals/plant-science
http://www.frontiersin.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/about/contact

QUANTITATIVE APPROACHES TO PLANT
BREEDING: CONCEPTS, STRATEGIES AND
PRACTICAL APPLICATIONS

Topic Editors:

Suchismita Mondal, Montana State University, United States

Rodomiro Ortiz, Swedish University of Agricultural Sciences, Sweden
Leonardo Abdiel Crespo Herrera, International Maize and Wheat Improvement
Center (Mexico), Mexico

Citation: Mondal, S., Ortiz, R., Herrera, L. A. C., eds. (2022). Quantitative
Approaches to Plant Breeding: Concepts, Strategies and Practical Applications.
Lausanne: Frontiers Media SA. doi: 10.3389/978-2-88976-878-3

Frontiers in Plant Science

2 August 2022 | Quantitative Approaches to Plant Breeding


https://www.frontiersin.org/research-topics/20289/quantitative-approaches-to-plant-breeding-concepts-strategies-and-practical-applications
https://www.frontiersin.org/journals/plant-science
http://doi.org/10.3389/978-2-88976-878-3

Table of Contents

05

16

34

58

72

92

105

129

145

164

Genetic Dissection of Quantitative Resistance to Common Rust (Puccinia
sorghi) in Tropical Maize (Zea mays L.) by Combined Genome-Wide
Association Study, Linkage Mapping, and Genomic Prediction

Jiaojiao Ren, Zhimin Li, Penghao Wu, Ao Zhang, Yubo Liu, Guanghui Hu,
Shiliang Cao, Jingtao Qu, Thanda Dhliwayo, Hongjian Zheng,

Michael Olsen, Boddupalli M. Prasanna, Felix San Vicente and Xuecai Zhang
Construction of Consensus Genetic Map With Applications in Gene
Mapping of Wheat (Triticum aestivum L.) Using 90K SNP Array

Pingping Qu, Jiankang Wang, Weie Wen, Fengmei Gao, Jindong Liu,
Xianchun Xia, Huiru Peng and Luyan Zhang

Genome-Wide Association Study of Waterlogging Tolerance in Barley
(Hordeum vulgare L.) Under Controlled Field Conditions

Ana Borrego-Benjumea, Adam Carter, Min Zhu, James R. Tucker,

Meixue Zhou and Ana Badea

Training Set Optimization for Sparse Phenotyping in Genomic

Selection: A Conceptual Overview

Julio Isidro y Sanchez and Deniz Akdemir

A Systematic Narration of Some Key Concepts and Procedures in Plant
Breeding

Weikai Yan

Transcriptome Reveals Allele Contribution to Heterosis in Maize
Jianzhong Wu, Dequan Sun, Qian Zhao, Hongjun Yong, Degui Zhang,
Zhuanfang Hao, Zhigiang Zhou, Jienan Han, Xiaocong Zhang, Zhennan Xu,
Xinhai Li, Mingshun Li and Jianfeng Weng

Comparative Genomic Analysis of Quantitative Trait Loci Associated With
Micronutrient Contents, Grain Quality, and Agronomic Traits in Wheat
(Triticum aestivum L.)

Nikwan Shariatipour, Bahram Heidari, Ahmad Tahmasebi and

Christopher Richards

Training Set Construction for Genomic Prediction in Auto-Tetraploids: An
Example in Potato

Stefan Wilson, Marcos Malosetti, Chris Maliepaard, Han A. Mulder,

Richard G. F. Visser and Fred van Eeuwijk

Genetic Dissection of Hybrid Performance and Heterosis for Yield-Related
Traits in Maize

Dongdong Li, Zhigiang Zhou, Xiaohuan Lu, Yong Jiang, Guoliang Li,
Junhui Li, Haoying Wang, Shaojiang Chen, Xinhai Li, Tobias Wurschum,
Jochen C. Reif, Shizhong Xu, Mingshun Li and Wenxin Liu

Dissecting the Genetics of Early Vigour to Design Drought-Adapted
Wheat

Stjepan Vukasovic, Samir Alahmad, Jack Christopher, Rod J. Snowdon,
Andreas Stahl and Lee T. Hickey

Frontiers in Plant Science

3 August 2022 | Quantitative Approaches to Plant Breeding


https://www.frontiersin.org/research-topics/20289/quantitative-approaches-to-plant-breeding-concepts-strategies-and-practical-applications
https://www.frontiersin.org/journals/plant-science

180

197

212

229

Unraveling Heat Tolerance in Upland Cotton (Gossypium hirsutum L.)
Using Univariate and Multivariate Analysis

Muhammad Mubashar Zafar, Xue Jia, Amir Shakeel, Zareen Sarfraz,
Abdul Manan, Ali Imran, Huijuan Mo, Arfan Ali, Yuan Youlu, Abdul Razzaq,
Muhammad Shahid Igbal and Maozhi Ren

Breeding Schemes: What Are They, How to Formalize Them, and How to
Improve Them?

Giovanny Covarrubias-Pazaran, Zelalem Gebeyehu, Dorcus Gemenet,
Christian Werner, Marlee Labroo, Solomon Sirak, Peter Coaldrake,

Ismail Rabbi, Siraj Ismail Kayondo, Elizabeth Parkes, Edward Kanju,
Edwige Gaby Nkouaya Mbanjo, Afolabi Agbona, Peter Kulakow,

Michael Quinn and Jan Debaene

Dissecting the Root Phenotypic and Genotypic Variability of the lowa
Mung Bean Diversity Panel

Kevin O. Chiteri, Talukder Zaki Jubery, Somak Dutta,

Baskar Ganapathysubramanian, Steven Cannon and Arti Singh
NeuralLasso: Neural Networks Meet Lasso in Genomic Prediction

Boby Mathew, Andreas Hauptmann, Jens Léon and Mikko J. Sillanpaa

Frontiers in Plant Science

4 August 2022 | Quantitative Approaches to Plant Breeding


https://www.frontiersin.org/research-topics/20289/quantitative-approaches-to-plant-breeding-concepts-strategies-and-practical-applications
https://www.frontiersin.org/journals/plant-science

'.\' frontiers
in Plant Science

ORIGINAL RESEARCH
published: 02 July 2021
doi: 10.3389/fpls.2021.692205

OPEN ACCESS

Edited by:

Rodomiro Ortiz,

Swedish University of Agricultural
Sciences, Sweden

Reviewed by:

Claudia Teixeira Guimaraes,
Brazilian Agricultural Research
Corporation (EMBRAPA), Brazil
Darlene Lonjas Sanchez,

Texas A&M Agrilife Research

and Extension Center at Beaumont,
United States

*Correspondence:
Felix San Vicente
F.SanVicente@cgiar.org
Xuecai Zhang
xc.zhang@cgiar.org

T These authors have contributed
equally to this work and share first
authorship

Specialty section:

This article was submitted to
Plant Breeding,

a section of the journal
Frontiers in Plant Science

Received: 07 April 2021
Accepted: 08 June 2021
Published: 02 July 2021

Citation:

Ren J, Li Z, Wu R, Zhang A, Liu Y,
Hu G, Cao S, Qu J, Dhliwayo T,
Zheng H, Olsen M, Prasanna BM,
San Vicente F and Zhang X (2021)
Genetic Dissection of Quantitative
Resistance to Common Rust
(Puccinia sorghi) in Tropical Maize
(Zea mays L.) by Combined
Genome-Wide Association Study,
Linkage Mapping, and Genomic
Prediction.

Front. Plant Sci. 12:692205.

doi: 10.3389/fpls.2021.692205

Check for
updates

Genetic Dissection of Quantitative
Resistance to Common Rust
(Puccinia sorghi) in Tropical Maize
(Zea mays L.) by Combined
Genome-Wide Association Study,
Linkage Mapping, and Genomic
Prediction

Jiaojiao Ren'?t, Zhimin Li2%t, Penghao Wu', Ao Zhang*, Yubo Liu®, Guanghui Hu¢,
Shiliang Cao®, Jingtao Qu’, Thanda Dhliwayo?, Hongjian Zheng®, Michael Olsen?,
Boddupalli M. Prasanna?, Felix San Vicente?* and Xuecai Zhang?*

" College of Agronomy, Xinjiang Agricultural University, Urumqi, China, 2 International Maize and Wheat Improvement Center
(CIMMYT), Texcoco, Mexico, ° College of Agronomy, Henan Agricultural University, Zhengzhou, China, * College

of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, China, ° CIMMYT-China Specialty Maize
Research Center, Crop Breeding and Cultivation Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai,
China, ® Maize Research Institute, Heilongjiang Academy of Agricultural Sciences, Harbin, China, ” Maize Research Institute,
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Common rust is one of the major foliar diseases in maize, leading to significant grain
yield losses and poor grain quality. To dissect the genetic architecture of common
rust resistance, a genome-wide association study (GWAS) panel and a bi-parental
doubled haploid (DH) population, DH1, were used to perform GWAS and linkage
mapping analyses. The GWAS results revealed six single-nucleotide polymorphisms
(SNPs) significantly associated with quantitative resistance of common rust at a very
stringent threshold of P-value 3.70 x 10~ at bins 1.05, 1.10, 3.04, 3.05, 4.08, and
10.04. Linkage mapping identified five quantitative trait loci (QTL) at bins 1.03, 2.06,
4.08, 7.08, and 9.00. The phenotypic variation explained (PVE) value of each QTL
ranged from 5.40 to 12.45%, accounting for the total PVE value of 40.67%. Joint GWAS
and linkage mapping analyses identified a stable genomic region located at bin 4.08.
Five significant SNPs were only identified by GWAS, and four QTL were only detected
by linkage mapping. The significantly associated SNP of S10_95231291 detected in
the GWAS analysis was first reported. The linkage mapping analysis detected two new
QTL on chromosomes 7 and 10. The major QTL on chromosome 7 in the region
between 144,567,253 and 149,717,562 bp had the largest PVE value of 12.45%.
Four candidate genes of GRMZM2G328500, GRMZM2G 162250, GRMZM2G 114893,
and GRMZM2G138949 were identified, which played important roles in the response
of stress resilience and the regulation of plant growth and development. Genomic
prediction (GP) accuracies observed in the GWAS panel and DH1 population were 0.61
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and 0.51, respectively. This study provided new insight into the genetic architecture
of quantitative resistance of common rust. In tropical maize, common rust could be
improved by pyramiding the new sources of quantitative resistance through marker-
assisted selection (MAS) or genomic selection (GS), rather than the implementation of
MAS for the single dominant race-specific resistance gene.

Keywords: maize, common rust, quantitative resistance, genome-wide association study, linkage mapping,

genomic prediction

INTRODUCTION

Common rust, caused by Puccinia sorghi, is one of the major foliar
diseases in maize, which can cause up to 49% grain yield loss in
susceptible varieties (Groth et al., 1983). The most sustainable
strategy for controlling common rust is to develop and deploy
resistant maize varieties, which requires the identification of
the new source of resistance to common rust and the further
understanding of the genetic basis and architecture of common
rust resistance (Kibe et al., 2020).

In several recent studies, a broad genetic variation for
common resistance was observed in tropical maize, and a
few tropical maize inbred lines showing good resistance to
common rust were identified (Rossi et al., 2020; Sserumaga
et al., 2020). Among 50 tropical adapted maize breeding lines
developed by International Maize and Wheat Improvement
Center (CIMMYT), 12 lines with broad genetic diversity were
identified as the potential donors of resistance alleles, and these
lines are valuable breeding materials for the development and
deployment of resistant hybrids to control common rust in
tropical maize (Sserumaga et al., 2020). Furthermore, tropical
maize germplasm is also an important source of resistance
for improving common rust in temperate maize, and the six
inbred lines developed by CIMMYT were identified as novel
donors in Argentina for incorporating resistance to the local
germplasm (Rossi et al, 2020). Those studies indicated the
presence of genetic resistance to common rust in tropical maize
germplasm. The donor lines identified in these studies are
valuable donors for improving common rust resistance through
breeding, which also are novel resistance sources for providing
a better understanding of the genetic basis and architecture of
common rust resistance.

Host-plant resistance, including both qualitative and
quantitative resistances, had been identified as the most reliable
and sustainable strategy for controlling common rust in maize
(Zheng et al., 2018; Kibe et al., 2020). Previous efforts to exploit
genetic resistance for common rust have largely been through
dominant resistance (Rp) genes, and more than 26 Rp genes
had been identified on maize chromosomes 3, 4, 6, and 10
(Hooker, 1985; Delaney et al., 1988). The Rp gene is qualitative
and exhibits a high level of resistance to a specific P. sorghi race,
and the resistance allele of Rp genes can be easily fixed into
the breeding materials, but the resistance of Rp genes in some
hybrids could break down due to the emerging P. sorghi race
or multiple races caused infection happened in natural field
condition (Zheng et al., 2018; Kibe et al., 2020). Quantitative

resistance is due to partial or adult plant resistance, which is
non-race-specific and often controlled by several genes to reduce
the rate of fungal development on plant tissues (Olukolu et al.,
2016). A few studies have been carried out on quantitative
resistance to common rust mainly through linkage mapping
(Liibberstedt et al., 1998; Kerns et al., 1999; Brown et al., 2001).
Further studies are required to detect more sources of novel
quantitative resistance alleles and exploit them to develop elite
inbred lines or hybrids having stable and durable host-plant
resistance to common rust.

Several linkage mapping analyses had been conducted
in different genetic backgrounds to detect quantitative trait
loci (QTL) associated with partial resistance to common
rust (Libberstedt et al, 1998; Kerns et al, 1999; Brown
et al, 2001). These studies emphasized QTL detection in
temperate maize germplasm, and QTL associated with partial
resistance to common rust were distributed over all 10
chromosomes, without preference to chromosomes 3, 4, 6,
and 10, which harbor qualitative Rp genes. Some QTL
were overlapped in different studies and were consistent
in different genetic backgrounds. These results suggest that
major QTL associated with partial resistance from various
elite backgrounds are possible to be pyramided for improving
common rust resistance in temperate maize germplasm, and
selection for multiple partial resistance alleles seems to be
more promising than the marker-assisted selection (MAS)
of the Rp genes.

Genome-wide association study (GWAS) is a useful tool
for identifying molecular markers significantly associated with
the target trait and exploring the underlying candidate genes
(Yan et al, 2011; Wang et al, 2019). In a collection of 274
temperate maize inbred lines, the GWAS analysis was conducted
to identify the SNPs significantly associated with common rust
resistance; three loci significantly associated with common rust
resistance were identified; and they were on chromosomes 2,
3, and 8. Candidate genes at these loci had predicted roles in
cell wall modification and in regulating the accumulation of
reactive oxygen species (Olukolu et al., 2016). The combined use
of GWAS and linkage mapping can complement the strengths
and weaknesses of each approach, and this approach has been
successfully used in maize to dissect the genetic basis and
architecture of complex traits (Li et al., 2016; Cao et al,, 2017).
In tropical maize germplasm, the combined use of GWAS and
linkage mapping approach was applied to dissect the genetic basis
of partial resistance to common rust recently (Zheng et al., 2018;
Kibe et al., 2020). The results of these studies provide valuable
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information on understanding the genetic basis of common rust
resistance; the common stable QTL regions identified by both
GWAS and linkage mapping, and the major QTL identified by
GWAS or linkage mapping individually need to be explored
further for developing functional molecular markers for MAS.

Genomic selection (GS), also known as genomic prediction
(GP), is an extension of MAS that uses genome-wide markers to
predict the genomic estimated breeding values (GEBVs) of the
unphenotyped lines for selection (Meuwissen et al., 2001; Crossa
et al, 2014). GP can greatly accelerate the genetic gain per unit
time and the cost in plant breeding programs for complex traits,
and it has been reported in many studies (Gowda et al., 2015;
Zhang et al,, 2015; Beyene et al., 2019; Wang et al., 2020a). To
our knowledge, only one study has been reported evaluating the
potential of GS and GP for improving common rust resistance
in maize, where the GP accuracies ranged from 0.19 to 0.51 in
different populations (Kibe et al., 2020).

In this study, a GWAS panel and a bi-parental DH population
were used to perform GWAS, linkage mapping, and GP
analyses, where both populations were phenotyped in multi-
environment trials to evaluate their responses to common rust
and genotyped with genotyping-by-sequencing (GBS) single-
nucleotide polymorphisms (SNPs). The main objectives of this
study were to: (1) detect the significantly associated SNPs,
major QTL, and putative candidate genes conferring common
rust resistance in tropical maize by the combined use of
GWAS and linkage mapping; (2) explore the potential of
GS and GP for improving common rust resistance; and (3)
estimate the GP accuracies under different factors affecting the
accuracy estimation.

MATERIALS AND METHODS

Plant Materials

A GWAS panel of 282 genetically diverse inbred lines was used
for the GWAS and GP analyses in this study (Supplementary
Table 1). The GWAS panel, Drought Tolerant Maize for
Africa (DTMA), was collected by the Global Maize Program
of CIMMYT. Based on the geographic information and
environmental adaptation, the DTMA panel can be classified
into nine subsets: (1) breeding lines from the lowland tropical
maize breeding program in Mexico, (2) breeding lines from
the highland tropical maize breeding program in Mexico, (3)
breeding lines from the subtropical maize breeding program in
Mexico; (4) inbred lines from the maize physiology breeding
program in Mexico, (5) inbred lines from the maize entomology
breeding program in Mexico, (6) breeding lines from the
lowland tropical maize breeding program in Colombia, (7)
breeding lines from the mid-altitude maize breeding program in
Zimbabwe, (8) breeding lines from the highland tropical maize
breeding program in Ethiopia, and (9) breeding lines from the
maize breeding program of International Institute of Tropical
Agriculture in Nigeria (Cairns et al., 2013; Yuan et al., 2019). A bi-
parental DH population, DH1, was used for the linkage mapping
and GP analyses. This DH population consisted of 189 DH lines,
which were derived from the F; cross formed with two elite

inbred lines of CML495 and La Posta Sequia C7 F64-2-6-2-2-B-B-
B, CML495 shows good resistance to common rust, and La Posta
Sequia C7 F64-2-6-2-2-B-B-B is susceptible to common rust.

Experimental Design

Both populations were evaluated for response to common
rust under consistently high natural disease pressure at several
locations in Mexico. The DTMA panel was evaluated at Agua
Fria in the state of Puebla (110 masl; mega-environment:
lowland tropical) in 2008, 2009, 2010, and 2012. Two tropical
maize inbred lines (B.T.Z.T.R.L.BA90 12-1-1P-1P-1-1-1-1P-1-
B/BTZTVCPR92A 27-7P-1-1P-1P-4P-B-B)-B-60TL-1-1-B-B-B-
B and CML139 were used in all the trials as the resistant and
susceptible checks, respectively. The population of DHI1 was
evaluated in two locations in 2013 at El Batan in the state
of Mexico (2,249 masl; mega-environment: highland tropical)
and Santa Catarina in the state of Nuevo Leon (680 masl;
mega-environment: subtropical), respectively. For the DHI
population, the parental lines were used as the resistant and
susceptible checks. A randomized complete block design with
three replications was used for all trials. Each plot consisted of
11 plants in a 2 m row with a width of 0.75 m.

Disease Evaluation

Plants were visually evaluated for common rust three times at 7-
day intervals, beginning 2 weeks after flowering. Disease severity
was evaluated on a 1-5 scale based on the percentage of leaf
area covered by lesions. A rating scale of 1 corresponds to high
resistance covering 0-10% of the leaf surface, 2 corresponds to
weak to moderate infection covering 10-25% of the leaf surface,
3 corresponds to moderate infection covering 25-50% of the leaf
surface, 4 corresponds to moderate-to-severe infection covering
50-75% of the leaf surface, and 5 corresponds to severe infection
covering > 75% of the leaf surface. For each plot, the final highest
score was used for further analysis. In both the DTMA panel and
the DHI1 population, the resistant and susceptible checks were
used as controls to check for adequate levels of disease infection.

Phenotypic Data Analysis

The multi-environment trial analysis was conducted using
META-R Version 6.04 (Alvarado et al., 2020). A mixed linear
model was used to calculate the best linear unbiased predictors
(BLUPs), variance components, and broad-sense heritability. The
model used for data analysis was as follows:

Yk = n + Gk + Ei + Rj) + EGye + & (1)

where Yjy is the observation of the kth genotype in the ith
environment in the jth replicate, pu is the overall mean, Gy
is the effect of the kth genotype, E; is the effect of the ith
environment, Rj; is the effect of the jth replication nested
on the ith environment, EGy is the effect of the interaction
between the ith environment and kth genotype, and ¢y is the
effect of experimental error. BLUPs across all environments were
used for GWAS, linkage mapping, and GP analyses. Broad-sense
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heritability across all environments was calculated as follows:

o2

h2 _ g
- 2 2
0% + %+

2

variance, O‘ée is the

genotype x environment interaction variance, o2 is the
error variance, i is the number of environments, and j is the
number of replications in each environment. All of the factors

were set as random effects when calculating heritability.

2 . .
where oy is the genotypic

Genotyping and Genotypic Data Analysis
Young leaves of all the inbred lines and the parental lines were
sampled for both populations. DNA extraction was performed
using a CTAB method (CIMMYT, 2005). Genotypic data was
generated using the GBS method at the Cornell University
Biotechnology Resource Center (Ithaca, NY, United States). DNA
sequencing was performed on Illumina HiSeq2000. TASSEL
GBS Pipeline was used for SNP calling to align reads to maize
B73 reference genome v2 (ZmB73_RefGen_v2). Imputation was
carried out with the FILLIN method in TASSEL V5.0 (Bradbury
et al., 2007; Swarts et al., 2014). The imputed GBS dataset was
used for the GWAS and GP analyses, while the unimputed GBS
dataset was used for the linkage mapping analysis (Wang et al.,
2020b). A total of 955,690 SNPs were obtained for each inbred
line, and 570 of them could not be mapped to any of the 10 maize
chromosomes. The number of SNPs on each chromosome ranged
from 148,752 on chromosome 1 to 67,126 on chromosome 10.
SNPs with the missing rate (MR) of >20%, the heterozygosity
rate of >5%, and the minor allele frequency (MAF) of <0.05 were
excluded using the filter function in TASSEL V5.0.

Analyses of Linkage Disequilibrium,

Population Structure, and GWAS

After filtering, 187,409 SNPs were obtained for GWAS in the
DTMA panel. The linkage disequilibrium (LD) analysis was
carried out using TASSEL V5.0 with a sliding window size of
50 SNPs. A squared Pearson correlation coefficient (%) between
the vectors of SNP alleles was used to assess the level of LD
decay across each chromosome, and 12 = 0.1 was used as a cutoff.
Population structure was conducted using the STRUCTURE
V2.3.4 software (Hubisz et al., 2009) to estimate the number of
subgroups in the DTMA panel, where one SNP per LD block
was selected for the following analysis (Duggal et al., 2008). The
parameters were set as follows: length of burn-in period = 30,000,
number of MCMC reps after burn-in = 30,000, ancestry
model = use admixture model, allele frequency model = allele
frequency correlated, number of populations (K) = 1-10, and
number of iterations = 10. STRUCTURE HARVESTER (Earl
and vonHoldt, 2012) was used to visualize STRUCTURE V2.3.4
output, and delta K (AK) value was used to determine the K value
of the number of subgroups.

Analysis of GWAS was conducted in the DTMA panel
using the Fixed and random model Circulating Probability
Unification (FarmCPU) method (Liu et al., 2016) in Genome
Association and Prediction Integrated Tool-R (GAPIT) package

(Lipka et al., 2012). The kinship matrix and the first three PCs
were estimated by GAPIT to assess the population structure and
control the false marker-trait association. The P-value of each
SNP was calculated, and the threshold of P-value was determined
at 3.70 x 10~ by a false discovery rate correction method. The
100 bp source sequences of each significant SNP were used to
do BLAST against the ZmB73_RefGen_v2 genome sequence in
MaizeGDB (Portwood et al., 2019). Within the local LD block of
significant SNPs, the annotated genes that are likely involved in
disease resistance were identified as the putative candidate genes.

Linkage Map Construction and Linkage
Mapping Analysis

A similarity/linkage (SL) method was used for bin map
construction with high-quality unimputed SNPs in the DHI1
population, and the details were previously described by Cao
etal. (2017). In brief, 437 bins were constructed by 31,194 SNPs.
Each bin was regarded as a genetic marker to construct the
linkage map. Linkage map construction was conducted by MAP
function in QTL IciMapping V4.2 software (Meng et al., 2015).
The whole length of the linkage map of DH1 was 988.56 cM
with an average marker (bin) density of 2.26 cM. An inclusive
composite interval mapping (ICIM) approach was conducted for
the linkage mapping analysis using the “BIP” function and the
“ADD” mapping method in QTL IciMapping V4.2. A logarithm
of the odds (LOD) score of 3.0 was used to declare the putative
QTL. The additive effect and phenotypic variation explained
(PVE) of each QTL were estimated.

Genomic Prediction Analysis

Genomic prediction analysis was conducted using the ridge
regression best linear unbiased prediction (RRBLUP) model with
the rrBLUP package (Endelman, 2011) within the DTMA panel
and the DH1 population. In the imputed GBS dataset, TASSEL
version 5.0 was used to filter the SNPs with a MAF > 0.05,
a MR < 20%, and a heterozygosity rate < 5%. After filtering,
187,409 and 53,996 SNPs were used for GP in the DTMA panel
and the DH1 population, respectively. In the DH1 population,
437 bins were also used for the GP analysis to estimate the
prediction accuracy and compared it with the prediction accuracy
estimated using all the 53,996 SNPs. To estimate the effect of
marker density on GP accuracy, the number of SNPs varied from
100 to 50,000 (i.e., 10, 50, 100, 300, 500, 1,000, 3,000, 5,000,
10,000, and 50,000) were used to estimate the prediction accuracy
in the DTMA panel and the DH1 population. In each marker
density, SNPs were randomly selected 100 times. A fivefold cross-
validation scheme repeated 100 times was used to estimate the
prediction accuracy, where the prediction accuracy was defined
as the average value of the correlations between the GEBVs and
the observed breeding values. Training population size (TPS),
ranged from 10 to 90% of the total population size, was selected
to assess the effect of TPS on prediction accuracy in each of
the two populations. The training set was randomly sampled
to predict, and the remaining lines were used as the prediction
set. The GP analysis was repeated 100 times in each population
with different TPS.
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TABLE 1 | Descriptive statistics, variance components, and broad-sense heritability (H2) response to common rust in the Drought Tolerant Maize for Africa (DTMA) panel

and the bi-parental doubled haploid (DH1) population.

Population No. of lines Mean Min. Max. Median sb? Variance components” h?°
o2 o2, o2

DTMA 282 2.32 1.26 4.13 2.30 0.52 0.33* 0.25"* 0.24 0.80

DH1 189 2.25 1.73 3.10 2.20 0.23 0.10* 0.08** 0.20 0.57

43D, standard deviation.
boZ, genotypic variance.
oge, genotype x environment interaction variance.

o2, error variance.

**Significant at P < 0.01.
Ch?, broad-sense heritability.

RESULTS

Phenotypic Variations

The descriptive statistics for the response to common rust in the
DTMA panel and the DHI1 population are presented in Table 1
and Supplementary Figure 1A. The results indicated that there
were abundant phenotypic variations within each population.
In the DTMA panel, the disease scores ranged from 1.26 to
4.13, with a mean of 2.32. In the DH1 population, the disease
scores ranged from 1.73 to 3.10, with a mean of 2.25. The most
resistant (top 10%) and most susceptible lines (bottom 10%) for
common rust in the DTMA panel and the DHI1 populations are
shown in Supplementary Tables 2, 3, respectively. The mixed
model analysis result revealed that the genotypic variance was
statistically highly significant at P < 0.01 in both populations, as
well as the variance of genotype-by-environment interaction. The
estimated broad-sense heritabilities in the DTMA panel and the
DHI1 population were 0.80 and 0.57, respectively.

Basic Information of SNPs Before and
After Filtering

The basic information about GBS data before and after filtering
is shown in Supplementary Table 4. The number of SNPs
after filtering decreased from 955,690 to 187,409 in the imputed
dataset of the DTMA panel and from 955,690 to 31,194 in
the unimputed dataset of the DH1 population. The MR after
filtering decreased from 15.79 to 7.33% in the imputed dataset
of the DTMA panel and from 42.53 to 9.73% in the unimputed
dataset of the DH1 population. The heterozygosity rate increased
in both populations after filtering, and the heterozygosity rates
after filtering in the DTMA panel and the DHI1 population were
2.83 and 3.17%, respectively. The average MAF after filtering
increased from 0.09 to 0.18 in the DTMA panel and from 0.04
to 0.42 in the DH1 population.

Results of LD Decay Distance and

Population Structure in the DTMA Panel

In the DTMA panel, the average LD decay distance across
all the 10 chromosomes was 8.14 kb at an 1 value of 0.1
(Figure 1A), and it ranged from 4.57 kb in chromosome 10-
15.9 kb in chromosome 8. The population structure analysis

showed that the delta K value reached a peak when the K
value was 4, indicating that the DTMA panel can be divided
into four subgroups (Figures 1B,C). The number of lines in
subgroups 1, 2, 3, and 4 was 219, 13, 10, and 40, respectively.
The different responses to common rust in the four subgroups are
shown in Supplementary Figure 1B. The principal component
analysis also revealed four subgroups, corresponding to the four
subgroups identified by STRUCTURE analysis (Figure 1D).

Significantly Associated SNPs and

Candidate Genes Revealed by GWAS

The GWAS results of the DTMA panel are presented in
Table 2 and Figure 2. At a very stringent threshold of P-
value of 3.70 x 107, a total of six SNPs at bins of 1.05, 1.10,
3.04, 3.05, 4.08, and 10.04 were identified to be significantly
associated with common rust resistance in maize. The quantile-
quantile (q-q) plot implied that the population structure and
family relatedness were well controlled in the GWAS using the
FarmCPU method (Figure 2B).

Among all the six SNPs, the two most significantly associated
SNPs were identified on chromosome 1. The most significantly
associated SNP of S1_278132829 was located at the bin of 1.10,
it had the lowest P-value of 7.25 x 107!, and the MAF of this
SNP was 0.25, with an additive effect of 0.13. The candidate gene
of GRMZM2G328500 (278,126,093-278,132,841 bp), encoding a
UDP-glucose 6-dehydrogenase, contains the most significantly
associated SNP of S1_278132829. The second most significantly
associated SNP of S1_89238026 was located at the bin of 1.05,
it had the second-lowest P-value of 9.81 x 107!, and the
MAF of this SNP was 0.32, with an additive effect of 0.13.
It neighbored with the candidate gene of GRMZM2G114893
(89,236,681-89,237,918 bp), which encodes a zinc finger (C,H,
type) family protein.

On chromosome 3, two significantly associated SNPs were
identified, i.e., S3_118933375 located at the bin of 3.04
and S3_147594533 located at the bin of 3.05. The SNP of
$3_118933375 had a MAF of 0.10, with an additive effect of
—0.17, and it was 587 bp away from the candidate gene of
GRMZM2G144004 (118,931,829-118,932,788 bp), encoding a
putative uncharacterized protein. The SNP of S3_147594533 had
a MAF of 0.11, with an additive effect of 0.15, and it was
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FIGURE 1 | Analysis of genetic diversity in the genome-wide association study (GWAS) panel. (A) Linkage disequilibrium decay across all 10 maize chromosomes,
(B) the plot of delta K, (C) the estimated probability membership for each inbred line at K = 4, and (D) the principal component analysis plot showing four subgroups
corresponding to the four subgroups by the STRUCTURE analysis.

TABLE 2 | Significantly associated single-nucleotide polymorphisms (SNPs) and candidate genes revealed by the genome-wide association study analysis.

SNP? P-value Allele® MAF° SNP effect? Putative candidate gene Annotation of candidate genes
S1._89238026 9.81 x 10710 AG 0.32 0.13 GRMzM2G114893 Zinc finger (C2H2 type) family protein
S1.278132829 7.25 x 10~ 11 AT 0.25 0.13 GRMZzZM2G328500 UDP-glucose 6-dehydrogenase
S3_118933375 1.00 x 106 C/T 0.10 —-0.17 GRMZMZ2G 144004 Unknown

S3_147594533 111 x 107 AT 0.11 0.15 GRMZM2G 162250 Zea mays ARGOS6

S4_183913302 2,98 x 1077 G/C 0.17 0.13 GRMzZM2G 138949 BTB/POZ domain-containing protein
S10_95231291 1.32 x 107 C/A 0.10 —-0.16 GRMZzZM2G131536 Unknown

4SNP name, chromosome_position, for example, S1_89238026 represents that the SNP is on chromosome 1, and the physical position is 89238026 bp.

bl etters to the left and right of the */” refer to major allele and minor allele, respectively.
°MAF, minor allele frequency.

dpositive values indicate that the major allele is a resistance allele, and the negative values indicate that the minor allele is a resistance allele.

located at the candidate gene of GRMZM2G162250 (147,591,043~
147,598,482 bp), which encodes a Zea mays ARGOS6 (auxin-
regulated gene involved in organ size) protein.

On chromosome 4, the significantly associated SNP of
S4_183913302 was located at the bin of 4.08, it had a
MAF of 0.17, with an additive effect of 0.13, and this
SNP was close to the candidate gene of GRMZM2G138949

(183,909,192-183,910,514  bp), encoding a BTB/POZ
domain-containing protein. On chromosome 10, the
significantly associated SNP of $10_95231291 was located
at the bin of 10.04, it had a MAF of 0.10, with an
additive effect of —0.16, and this SNP was closely
linked with the candidate gene of GRMZM2G131536
(95,230,282-95,231,024 bp).
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TABLE 3 | Quantitative trait loci detected from the linkage mapping analysis in the doubled haploid (DH1) population.

Chromosome Position (cM) Bin Left marker? Right marker LOD® PVE(%)° Additive effect
1 28 1.03 S$1.31252133 S1_34315390 6.77 10.34 —0.08

2 47 2.06 S2_183941772 S2_188133361 3.49 5.69 0.06

4 74 4.08 S4_184936775 S4_186039203 4.62 6.79 0.06

7 67 7.03 S7_144567253 S7_149717562 7.82 12.45 0.09

9 0 9.00 S9_1260192 S9_2825523 3.70 5.40 —0.06

aMarker name, chromosome_position.
b1.OD, logarithm of the odds.
CPVE, phenotypic variation explained.

Quantitative Trait Loci Detected From
Linkage Mapping Analysis

The linkage mapping results of the DH1 population are presented
in Table 3. In total, five QTL located at bins 1.03, 2.06, 4.08,
7.03, and 9.00 were detected at the threshold of a LOD score
of 3.0. The PVE value of the individual QTL ranged from 5.40
to 12.45%, and the total PVE value for all the five QTL was
40.67%. The QTL on chromosome 7 had the highest LOD score
of 7.82 and the largest PVE value of 12.45%, indicating that
it is a major QTL conferring the common rust resistance in
maize. The common rust resistance alleles were derived from the
resistant inbred line CML495 except for the two QTL located on
chromosomes 1 and 9.

The significantly associated SNP of S4_183913302 identified
by GWAS was closely linked with the QTL detected in DH1 on
chromosome 4, it was flanked by the markers S4_184936775 and
S4_186039203, and this QTL had a LOD score of 4.62 and a
PVE value of 6.79%. However, the most significantly associated
SNP of S1_278132829 identified by GWAS was not validated by
the linkage mapping analysis. The major QTL on chromosome 7
detected from linkage mapping analysis was also not validated by
the GWAS result.

Prediction Accuracies Estimated With
the Different Marker Datasets, Marker

Density, and Training Population Size
The GP accuracies estimated based on GBS SNPs were 0.61 and
0.51 in the DTMA panel and the DH1 population, respectively

(Figure 3A). The GP accuracy based on bin markers was 0.53
in DH1 (Figure 3B). No significant difference in prediction
accuracy was observed between GBS SNPs and bin markers. The
effect of marker density and TPS on the GP accuracy is shown
in Figure 4. In both the DTMA panel and the DH1 population,
the prediction accuracy increased as the number of markers
increased. In the DTMA panel, the prediction accuracy increased
rapidly when the number of markers increased from 10 to 5,000,
and then, the prediction accuracy increased slightly when the
number of markers kept increasing. In the DH1 population, a
sharp increase in the prediction accuracy was observed before
reaching a plateau at about 300 markers, indicating that 300
SNPs were sufficient to achieve good accuracy of common rust
resistance in the DH1 population. Prediction accuracy increased
as the TPS increased in both populations. In the DTMA panel,
the prediction accuracy increased rapidly when the TPS increased
from 10 to 50%, and then, a little improvement in the prediction
accuracy was observed when the TPS kept increasing. When
50% of the total genotypes were used as the training set, a
relatively high prediction accuracy coupled with the smaller
standard error was observed. A similar trend was observed in
the DH1 population.

DISCUSSION

Common rust is a major disease of maize, causing 34% of
the maize area to suffer economic losses (Zheng et al., 2018).
Developing maize varieties with host plant resistance is the
most sustainable strategy for the control of common rust,
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which requires further understanding of the genetic basis and
architecture of common rust resistance. Previous efforts to
exploit genetic resistance for common rust have largely been
through Rp genes, but the resistance of Rp genes could break
down easily. Quantitative disease resistance controlled by several
genes has proven to be highly durable, making it a better
choice for long-term common rust resistance breeding. In this
study, GWAS and linkage mapping analyses were applied to
dissect the genetic base of quantitative resistance of common
rust in maize. GWAS revealed six SNPs significantly associated
with quantitative resistance of common rust at a very stringent
threshold of P-value of 3.70 x 10~°. Linkage mapping identified
five QTL accounting for the total PVE value of 40.67%. These
results provided new insight into the quantitative resistance
of common rust, which implied that major QTL associated
with quantitative resistance from various elite backgrounds are
possible to be pyramided for improving common rust resistance,
and the selection for multiple partial resistance alleles seems to
be more promising than the MAS of the Rp genes in tropical
maize germplasm.

In the GWAS, six SNPs distributed in bins 1.05, 1.10,
3.04, 3.05, 4.08, and 10.04 were associated with common rust
resistance. Except for SNP of S10_95231291, all the SNPs
were reported in previous GWAS and linkage mapping studies
(Lubberstedt et al., 1998; Brown et al., 2001; Zheng et al., 2018;
Kibe et al., 2020). The most and the second most significantly
associated SNPs S1_278132829 and S1_89238026 detected in this
study were also detected by linkage mapping in European flint
germplasm (Liibberstedt et al., 1998). SNP S3_118933375 was in
the same region of qCR3-113, a QTL for common rust (Kibe et al.,
2020), and it was also close to SNP PZE-103072633 (115,864,889)
(Zheng et al., 2018). Both qCR3-113 and PZE-103072633 were
detected in tropical maize germplasm. SNPs S3_147594533 and
S4_183913302 were mapped to the QTL intervals associated with
common rust in sweet corn (Brown et al., 2001). QTL detected
for a target trait are usually different due to the use of different
genetic backgrounds and environments (Ren et al., 2020). Those
common loci detected in different studies were stable QTL for
common rust. SNP S10_95231291 was first reported, it had

an additive effect of —0.16, and it was closely linked with the
candidate gene of GRMZM2G131536. However, the function of
the candidate gene of GRMZM2G131536 is still unknown.

In DHI, linkage mapping revealed five QTL distributed in
bins 1.03, 2.06, 4.08, 7.03, and 9.00, respectively. Three of the five
QTL were reported previously (Liibberstedt et al., 1998; Brown
et al., 2001). The loci in bins 1.03 and 2.06 coincided with QTL
identified by Liibberstedt et al. (1998). The locus in bin 4.08 was
detected by both Liibberstedt et al. (1998) and Brown et al. (2001).
The major QTL located on chromosome 7 was reported in this
study for the first time, and it had the highest LOD score of
7.82 and the largest PVE value of 12.45%. It is a new source of
resistance for common rust, which deserves further investigation.

Joint GWAS and linkage mapping can complement the
advantages and disadvantages of each method (Li et al., 2016;
Cao et al, 2017). In this study, GWAS and linkage mapping were
implemented stepwise to detect loci associated with quantitative
resistance of common rust. The genomic region located at bin
4.08 was detected by both GWAS and linkage mapping. SNP
S4_183913302 was consistent with the locus identified between
markers S4_184936775 and S4_186039203 in DHI1. This locus
was also reported by Liibberstedt et al. (1998) and Brown et al.
(2001). The major QTL located on chromosome 7 identified by
linkage mapping in DH1 was not detected through GWAS in
the DTMA panel. This may be due to the very low frequency
of one of the alleles of the relevant locus in the GWAS
panel or the population structure related to the polymorphism
at this locus (Famoso et al.,, 2011; Cadic et al.,, 2013). The
most significantly associated SNP of S1_278132829 identified by
GWAS was also not validated by the linkage mapping analysis.
It may be because there is no genetic variation at this locus
in the DH1 population. The major QTL identified by GWAS
or linkage mapping individually, and the common stable QTL
region identified by both methods need to be explored further
for developing functional molecular markers for MAS.

The candidate gene analysis can lead to a better understanding
of the genetic basis of common rust resistance. According to
the results of GWAS, six candidate genes were identified
in this study, and the function of four candidate genes
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was annotated. These candidate genes were previously
reported to play important roles in the response of stress
resilience and the regulation of plant growth and development.
GRMZM2G328500 encodes a UDP-glucose 6-dehydrogenase,
which is involved in the nucleotide-sugar interconversion
process (Kost et al, 2020). GRMZMZ2G162250 encodes a
Zea mays ARGOS6 protein controlling plant growth, organ
size, and grain yield. GRMZM2G114893 encodes a zinc finger
(C,H, type) family protein, which is mainly involved in
the regulation of plant growth, development, and tolerance
to biotic and abiotic stresses (Kim et al., 2009; Xiao et al,
2009). GRMZM2G138949 identified in bin 4.08 encodes a
BTB/POZ domain-containing protein, which participates in
a series of physiological and biochemical reactions and also
plays an important role in resistance to plant disease (Cao
et al, 1997; Silva et al, 2015). These results encourage fine-
mapping and cloning of the candidate genes for controlling
common rust in maize.

Genomic prediction and GS have been successfully used in
several crops to accelerate genetic gain in breeding programs for
improving complex traits, including resistance to major maize
diseases (Gowda et al.,, 2015; Liu et al.,, 2021). A study on the
potential of GS and GP to improve the common rust resistance
in maize has been reported by Kibe et al. (2020), where the
GP accuracies within populations ranged from 0.19 to 0.51,
and the GP accuracies estimated from a larger population by
combined several individual populations were higher than those
estimated from the individual population with a smaller size. For

implementing GP and GS to improve common rust resistance
in tropical maize, an independent but related training set is
encouraged to be built to predict the related populations not been
phenotyped. These results were confirmed by this study. The GP
accuracies observed in the DTMA panel and the DH1 population
were 0.61 and 0.51, respectively. It indicates that common rust
resistance in tropical maize could be improved by implementing
GP and GS. Moreover, the factors affecting GP accuracy were
also assessed in this study. Ten levels of marker density were
used to assess the effect of marker density on prediction accuracy
in the two populations. The results showed that the increase
in marker density leads to an increase in prediction accuracy.
The prediction accuracy reached a plateau when the marker
density was 5,000 in the DTMA panel and 300 in the DHI1
panel, which indicated that more makers are required to achieve
good GP accuracy in populations with higher genetic diversity.
A similar phenomenon was found for several traits in maize
(Zhang et al., 2017; Guo et al,, 2020; Liu et al.,, 2021). There
was no significant difference between the prediction accuracy
estimated based on the GBS SNPs and the bins in the DHI
population, which validated the high quality and accuracy of bins
constructed in the bi-parental population. To assess the effect of
TPS on prediction accuracy, nine levels of TPS were selected. As a
result, increasing TPS leads to an increase in prediction accuracy.
When 50% of the total genotypes were used as the training
set, a relatively high prediction accuracy can be achieved. These
results provide valuable information for improving common
rust resistance in tropical maize by implementing GP and GS.
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Wheat is one of the most important cereal crops worldwide. A consensus map combines
genetic information from multiple populations, providing an effective alternative to
improve the genome coverage and marker density. In this study, we constructed a
consensus map from three populations of recombinant inbred lines (RILs) of wheat using
a 90K single nucleotide polymorphism (SNP) array. Phenotypic data on plant height
(PH), spike length (SL), and thousand-kernel weight (TKW) was collected in six, four,
and four environments in the three populations, and then used for quantitative trait
locus (QTL) mapping. The mapping results obtained using the constructed consensus
map were compared with previous results obtained using individual maps and previous
studies on other populations. A simulation experiment was also conducted to assess
the performance of QTL mapping with the consensus map. The constructed consensus
map from the three populations spanned 4558.55cM in length, with 25,667 SNPs,
having high collinearity with physical map and individual maps. Based on the consensus
map, 21, 27, and 19 stable QTLs were identified for PH, SL, and TKW, much more
than those detected with individual maps. Four PH QTLs and six SL QTLs were likely to
be novel. A putative gene called TraesCS4D02G076400 encoding gibberellin-regulated
protein was identified to be the candidate gene for one major PH QTL located on 4DS,
which may enrich genetic resources in wheat semi-dwarfing breeding. The simulation
results indicated that the length of the confidence interval and standard errors of the
QTLs detected using the consensus map were much smaller than those detected using
individual maps. The consensus map constructed in this study provides the underlying
genetic information for systematic mapping, comparison, and clustering of QTL, and
gene discovery in wheat genetic study. The QTLs detected in this study had stable effects
across environments and can be used to improve the wide adaptation of wheat cultivars
through marker-assisted breeding.

Keywords: wheat (Triticum aestivum L.), consensus genetic map, QTL mapping, plant height, spike length,
thousand-kernel weight
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Consensus Map Construction in Wheat

INTRODUCTION

Wheat (Triticum aestivum L.) is one of the most important
cereal crops worldwide, providing about one-fifth of the total
calories consumed by humans. Due to limited farmland and the
rapid increase in human population, there is an urgent need
to accelerate the genetic gain on grain yield through advanced
genetic research and breeding activities in wheat. Genetic linkage
map construction and quantitative trait locus (QTL) mapping are
important areas in genetic research, as they provide fundamental
information for gene cloning, marker-assisted breeding, and
genome structure studies (Meng et al., 2015; Rasheed et al., 2016).

Linkage mapping approach based on individual populations
has become routine in wheat genetic studies to dissect the
genetic architecture of complex traits. However, a large number
of co-localized markers and low marker density due to a
limited genetic variation and a limited number of crossing-
over events are commonly seen with linkage maps constructed
in individual populations. Detected QTLs are usually specific
to designated crosses with wide confidence intervals, hindering
further genetic research on gene fine-mapping and cloning.
Furthermore, linkage mapping in single populations can only
identify QTLs with phenotypic variations from specific crosses,
and each mapping population can only represent a small number
of crossing-over events (Liu and Zeng, 2000). The narrow genetic
basis associated with individual crosses and populations reduces
both phenotypic and genotypic diversity. One way to solve these
problems is to construct a consensus map as the connection
across multiple populations.

A consensus genetic map combines genetic information
from multiple populations, and therefore provides an effective
alternative to improve genome coverage and marker density
(Maccaferri et al., 2015; Allen et al, 2017). A higher marker
density of the consensus map offers the chance to map more
QTLs to narrower intervals and to identify more closely linked
markers for the discovery of causal genes and marker-assisted
selection (MAS) in breeding. Consensus maps can also be used
to validate marker order, characterize genomic diversity, increase
the power of genome-wide association studies, and conduct QTL
meta-analysis (Cavanagh et al., 2013; Wang et al., 2014; Wingen
et al., 2017; Liu et al., 2020).

Some computer tools that can be used for consensus map
construction have been developed in the last 20 years, such
as BioMercator (Arcade et al, 2004), JoinMap (Van Ooijen,
2006), MergeMap (Wu et al., 2010), MultiPoint (Ronin et al.,
2012), and LPmerge (Endelman and Plomion, 2014). Using
these tools, consensus maps have been developed for wheat.
Somers et al. (2004) reported the first consensus map for wheat
based on SSR markers from three doubled haploid (DH) and
a recombinant inbred line (RIL) populations. Cavanagh et al.
(2013) generated a high-density consensus map from seven
populations, consisting of 7,504 single nucleotide polymorphism
(SNP) markers. Wang et al. (2014) integrated six bi-parental DH
populations to generate a consensus map using 40,267 markers.
Liu et al. (2020) developed a consensus map with a total length
of 4,080.5 cM containing 47,309 markers based on 21 individual
linkage maps and three previously reported consensus maps.

In this study, a consensus genetic map was constructed using
three bi-parental populations of RILs in wheat. QTL mapping
was then conducted for plant height (PH), spike length (SL), and
thousand-kernel weight (TKW) using the constructed consensus
map. The mapping results were compared among populations,
and with the results obtained using individual maps with the
purpose of identifying stable and common QTLs. In addition,
a simulation experiment was conducted to demonstrate the
advantages of using a consensus map in QTL mapping.

MATERIALS AND METHODS

Plant Materials and Phenotyping

Experimental Design

The three recombinant inbred line populations used in this study
were derived from crosses Doumai x Shi 4185 (denoted as DS,
275 F.¢ RILs), Gaocheng 8901 x Zhoumai 16 (denoted as GZ,
176 F,.6 RILs), and Zhou 8425B x Chinese Spring (denoted as
ZC, 245 F, . g RILs), which had been previously reported by Wen
et al. (2017). Population DS and its parental lines were planted
at Shunyi (Beijing, China) and Shijiazhuang (Hebei, China)
in 2012-2013, 2013-2014, and 2014-2015 cropping seasons.
Population GZ and its parental lines were planted at Anyang
(Henan, China) and Suixi (Anhui, China) in 2012-2013 and
2013-2014 cropping seasons. Population ZC and its parental
lines were planted at Zhengzhou and Zhoukou (Henan, China)
in 2012-2013 and 2013-2014 cropping seasons. Randomized
complete block designs with three replications were used in field
trials. Each plot had three rows with 1.5m in length and 0.2m
apart between rows. About 50 seeds were sown in each row. Field
management was performed according to local practices.

Plant height was recorded as the average height based on
10 representative plants, measured from the base of the stem
to the top of the spike excluding awns at the late grain-filling
stage. SL was recorded as the average length of 20 representative
spikes in populations DS and GZ, and five representative spikes in
population ZC, measured from the base of the spike to the top of
the spike excluding awns. TKW was evaluated by weighing three
random samples of 500 kernels from each plot after harvest.

Genotyping and Marker Quality Control
Deoxyribonucleic acid was extracted from leaves of 15-day-old
seedlings according to the cetyltrimethyl ammonium bromide
(CTAB) protocol (Sharp et al, 1988). The populations were
genotyped by the 90K wheat Infinium iSelect SNP array (Wang
et al., 2014) at CapitalBio Corporation (http://www.capitalbio.
com) in Beijing, China. Quality control of the genotypic data has
been previously described in Wen et al. (2017), and described
here briefly and as follows. First, heterozygous marker types were
set as missing values. Then, markers with more than 10% of
missing values were deleted. Finally, SNPs with minor allelic
frequency lower than 0.3 were filtered out. The three individual
linkage maps based on these markers were reported by Wen et al.
(2017). SNPs on the three maps were used for consensus map
construction. The R package VennDiagram (Chen and Boutros,
2011) was used to demonstrate the SNP numbers common
among the three individual maps.
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Statistical Analysis for Phenotypic Data
Analysis of variance and calculation of broad-sense heritability
(H?) from phenotypic data were performed using the AOV
function in software QTL IciMapping V4.2 (Meng et al., 2015).
Pearson correlation coefficients among traits were calculated
using mean phenotypic values across environments.

Consensus Genetic Map Construction

First, markers from the three recombinant inbred line
populations were grouped according to their chromosome
information in individual maps reported by Wen et al. (2017).
Markers that were present on the same chromosome in the three
individual maps were treated as anchors. Then, an algorithm
called combined linkage analysis (CLA, developed by the group
of the authors) was used for consensus map construction. To
assure the quality of the map, a limited number of markers
were removed manually if they caused serious inconsistency
in the marker order between the genetic and physical maps,
or excessive expansion of the constructed genetic map. The R
package LinkageMapView (Ouellette et al., 2018) was used to
visualize the constructed consensus map.

Furthermore, four steps were involved in the CLA algorithm:
step 1: derive the theoretical recombination frequencies of
pairwise markers in each mapping population; step 2: estimate
the recombination frequency between two linked markers and
sampling variance of the estimated recombination frequency
in each population. In addition to RIL populations, CLA is
applicable to many other kinds of bi-parental populations, as
described in Meng et al. (2015). For some kinds of mapping
populations such as DH and RIL, the likelihood equation
on recombination frequency has an explicit solution, so the
maximum likelihood estimate can be calculated directly. For
other kinds of mapping populations such as F, and Fs, the
maximum likelihood estimate cannot be succinctly given. In
this situation, either Newton iteration or the expectation-
maximization (EM) algorithm has to be adopted in estimating
the recombination frequency (Zhang et al., 2019). Step 3: estimate
the combined recombination frequency using the estimates and
their sampling variances from individual populations; reciprocal
of sampling variance of the estimated recombination frequency is
used as the weight of the corresponding population. Weight is set
as zero for those populations where the pair-wise recombination
frequency cannot be estimated. Step 4: construct the consensus
linkage map based on the combined estimates of recombination
frequencies between markers; a combination of the nearest-
neighbor algorithm and a two-opt algorithm in solving the
traveling salesman problem (TSP) was used in the marker
ordering (Zhang et al., 2020a).

Comparison of Marker Orders in the
Consensus Map, Physical Map, and
Individual Genetic Maps

Spearman rank correlation was used to measure the collinearity
of marker orders between the different maps, which was
calculated by the R Software. Marker order in each chromosome
in the consensus map was compared with the physical map
order of the respective chromosome. To acquire the physical
positions of the markers, sequences of SNPs were used to BLAST

(Basic Local Alignment Search Tool) against the wheat genome
IWGSC RefSeq v2.0 (https://urgi.versailles.inra.fr/download/
iwgsc/TWGSC_RefSeq_Assemblies/v2.0/, International Wheat
Genome Sequencing Consortium). The E-value threshold in
BLAST was set at 10710, The markers were filtered out if their
alignment lengths were lower than 80% of the query sequence
length or the identities were lower than 0.85. If a marker was
assigned to multiple chromosomes by BLAST, the position on the
same chromosome as the consensus map was used in collinearity
analysis. Marker order comparison was also conducted between
the consensus map and individual maps, as well as among the
three individual maps. For each comparison, only the common
markers on two maps were used in the calculation of collinearity.

QTL Mapping Based on the Consensus
Map

Quantitative trait locus mapping was conducted in the individual
populations using the consensus map. The inclusive composite
interval mapping (ICIM) implemented in the BIP function in
QTL IciMapping V4.2 (Meng et al., 2015) was applied on the
mean phenotypic values across blocks in each environment and
best linear unbiased estimation (BLUE) values across multiple
environments. Scanning step was set at 0.2 cM. Probabilities of
adding and removing variables in stepwise regression were set
at 0.001 and 0.002, respectively. Threshold logarithm of odd
(LOD) score was set at 2.5, same as the QTL mapping studies on
individual maps from the three populations (Gao et al., 2015; Li
et al., 2018).

Quantitative trait loci and quantitative trait locus clusters were
named with chromosomal locations, considering all populations
together. QTLs detected in the same population were considered
to be common if the distance between QTL positions was
<20cM in different environments. QTLs detected in different
populations were considered to be common if the genetic and
physical positions were close enough. In other words, distance
in the linkage map was <20cM in terms of QTL positions,
and distance in the physical map was <25Mb in terms of
the minimum physical distances between flanking makers. In
individual populations, QTLs are considered to be stable if they
are identified in at least half of tested environments. Stable QTLs
for different traits were classified into the same cluster if the
minimum distance between the QTL confidence intervals was
<15cM. The shiny Circos tool (Yu et al, 2018) was used to
visualize QTL positions on the consensus map. Stable QTLs
detected with the consensus map in this study were compared
with those detected by ICIM using individual maps (Gao et al.,
2015; Li et al., 2018), according to physical and genetic positions
of the flanking markers.

Genetic Models Used in Simulation

A simulation study was conducted to compare the QTL mapping
results from the individual and consensus maps. We assumed
that a chromosome has a length of 100cM and contains 101
evenly distributed markers. Considering that the consensus map
always has more markers than each individual map, we assume
that the consensus map contained all the 101 markers, but that
the individual map only contained half of them, i.e., 51 evenly
distributed markers with marker density at 2cM. Three QTL
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TABLE 1 | Mean performance and heritability of plant height (PH), spike length (SL), and thousand-kernel weight (TKW) in the three RIL populations, Doumai x Shi 4185
(DS), Gaocheng 8901 x Zhoumai 16 (GZ), and Zhou 8425B x Chinese Spring (ZC), across multiple environments.

Population Trait Parent? RIL population® H?_by_mean® H?_by_plotd
P1 P2 Mean SD Range

DS PH 73.51 73.54 83.89 7.56 64.99-105.09 0.97 0.69
SL 9.29 8.30 8.77 0.97 6.17-12.10 0.95 0.62
TKW 50.30 35.35 43.56 4.95 30.52-60.10 0.96 0.75
Gz PH 94.38 67.77 90.67 15.82 44.23-118.25 0.99 0.91
SL 8.74 8.97 8.59 0.87 6.60-11.24 0.96 0.72
TKW 43.83 48.17 46.52 3.81 33.46-55.55 0.91 0.59
ZC PH 67.12 1156.08 101.07 14.02 60.568-125.87 0.95 0.83
SL 11.50 8.31 10.14 1.15 6.89-13.83 0.91 0.72
TKW 52.63 29.10 37.12 416 26.52-48.83 0.94 0.81

4Best linear unbiased estimation (BLUE) values across multiple environments. In population DS, P1 and P2 refer to Doumai and Shi 4185, respectively. In population GZ, P1 and P2
refer to Gaocheng 8901 and Zhoumai 16, respectively. In population ZC, P1 and P2 refer to Zhou 8425B and Chinese Spring, respectively.

byvalues were based on BLUE across multiple environments.
CHeritability in broad sense based on replicated means.
9Heritability in broad sense based on plot level.

SD, standard deviation.

distribution models were simulated (Supplementary Table 1). In
model I, a QTL was located at 34.5 cM on the chromosome with
an additive effect of 1. In model II, two QTLs were linked in the
coupling phase, both with an additive effect of 1. In model III,
two QTLs were linked in the repulsion phase with additive effects
of —1 and 1, respectively. The broad sense heritability (H?) was
set at three levels, i.e., 0.05, 0.1, and 0.2 for model I, and 0.1, 0.2,
and 0.4 for models II and III. One thousand RIL populations,
each with a size of 200, were simulated for each model, and
each heritability level by the BIP simulation functionality was
implemented in QTL Ici Mapping V4.2 (Meng et al., 2015). The
consensus map with 101 markers and the predefined QTLs were
used to generate the simulated populations. Both the consensus
and individual maps were used in QTL mapping. For QTL
mapping using individual maps, genotypic data of the 51 markers
were used. For QTL mapping using the consensus map, genotypic
data of the 51 markers were the same as those in individual maps,
but the other 50 markers only present in the consensus map were
set as missing values. For the ICIM QTL mapping method on
simulated populations, the scanning step was set at 0.1 cM and
the threshold LOD score was set at 2.5. Probabilities for entering
and removing variables in the stepwise regression were set at
0.001 and 0.002, respectively. QTL detection power was estimated
according to a support interval of 5 cM centered at the position of
true QTL. If multiple peaks occurred within the support interval,
only the highest one was counted. QTLs identified out of the
support interval were regarded as false positives (Li et al., 2012).
The other parameters were set as default values.

RESULTS

General Information on Both Genotypic
and Phenotypic Data

There were 10,986 markers on the linkage map constructed in
population DS, 11,819 markers in population GZ, and 14,862
markers in population ZC. Populations DS and GZ shared 4,208

common markers; DS and ZC shared 4,420 common markers;
GZ and ZC shared 5,183 common markers; the three populations
had 1,880 markers in common (Supplementary Figure 1). A
total of 25,736 unique markers on the three individual maps were
used for consensus map construction.

Phenotypic means and heritability of the three traits
are shown in Table1 for the three RIL populations across
a number of environments. Frequency distributions in
different populations and environments are shown in
Supplementary Figure 2 for PH, Supplementary Figure 3
for SL and Supplementary Figure 4 for TKW. For PH, Doumai
was taller than Shi 4185 in four environments, but shorter in
the other two environments in population DS; Gaocheng8901
was always taller than Zhoumai 16 in population GZ; Chinese
Spring was always taller than Zhou 8425B in population ZC
(Supplementary Figure 2). For SL, Doumai was longer than Shi
4185 in four environments, almost equal in one environment,
and shorter in the other one environment; Zhoumail6 was
longer than Gaocheng 8901 in three environments, and
shorter in the other environment; Chinese Spring was always
longer than Zhou 8425B (Supplementary Figure 3). For
TKW, Doumai was always higher than Shi 4185; Zhoumai
16 was always higher than Gaocheng 8901; Zhou 8425B was
always higher than Chinese Spring (Supplementary Figure 4).
The three traits were continuously distributed in the three
populations, similar to and typical in most QTL mapping
studies. Much wider ranges were observed in the progenies
in comparison with their parents, except for TKW in two
environments in population ZC (Supplementary Figures 2-4).
Heritability in the broad sense, based on the replicated means,
was quite high for the three traits, ranging from 0.91 to 0.99
(Table 1), while heritability based on the plot level ranged
from 0.59 to 0.91. Correlation coefficients between traits in
the three populations are given in Supplementary Table 2. At
a significance level of 0.01, PH was positively correlated with
TKW in all three populations. SL showed a positive correlation
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FIGURE 1 | Consensus genetic map constructed from the three recombinant inbred line (RIL) populations, Doumai x Shi 4185 (DS), Gaocheng 8901 x Zhoumai 16
(G2), and Zhou 8425B x Chinese Spring (ZC).
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TABLE 2 | Characteristics of the consensus genetic map constructed from the three RIL populations, DS, GZ, and ZC.

Chromosome Length (cM) Marker number Bin number Average BD (cM)? Max BD (cM)® Coefficient® Consistent proportion (%)
1A 192.09 1280 240 0.80 9.22 0.99 50.55
1B 182.47 2014 257 0.71 5.72 0.95 51.07
1D 192.98 700 82 2.35 19.42 0.96 57.93
2A 278.86 1685 268 1.04 10.08 0.99 51.99
2B 290.78 2431 324 0.90 14.73 0.87 45.67
2D 208.48 625 108 1.93 13.68 0.99 71.76
3A 246.30 1381 195 1.26 16.68 0.98 55.72
3B 191.12 1974 219 0.87 9.66 0.94 43.30
3D 213.91 294 60 3.57 23.97 0.74 46.04
4A 225.78 1304 193 117 12.36 0.98 47.22
4B 228.26 713 201 1.14 8.88 0.98 58.53
4D 168.06 106 53 3.17 17.71 0.95 75.68
5A 250.07 1238 255 0.98 18.50 0.96 62.41
5B 279.03 2475 330 0.85 8.33 0.95 46.34
5D 176.72 298 67 2.64 17.76 0.96 68.11
6A 214.24 1696 289 0.74 7.26 0.96 36.30
6B 213.08 1571 252 0.85 6.04 0.96 53.88
6D 168.33 350 73 2.31 25.08 0.96 54.44
7A 215.12 1701 213 1.01 8.00 0.99 62.07
7B 196.83 1577 236 0.83 777 0.98 45.75
7D 226.05 254 64 3.53 28.84 0.99 73.71
Genome

A 1622.47 10285 1653 0.98 18.50 0.98 52.32
B 1681.57 12755 1819 0.87 14.73 0.98 49.22
D 1354.52 2627 507 2.67 28.84 0.94 63.95
Homeologous groups

1 567.54 3994 579 0.98 19.42 0.97 53.19
2 778.12 4741 700 1.1 14.73 0.95 56.47
3 651.33 3649 474 1.37 23.97 0.89 48.35
4 622.10 2123 447 1.39 17.71 0.97 60.48
5 705.82 4011 652 1.08 18.50 0.95 58.95
6 595.64 3617 614 0.97 25.08 0.96 48.21
7 637.99 3532 513 1.24 28.84 0.99 60.51
Total 4558.55 25667 3979 1.15 28.84 0.95 55.17

aAverage distance between two adjacent bins.
bMaximum distance between two adjacent bins.

®Spearman rank correlation coefficient between the consensus map and IWGSC RefSeq v2.0.
9The proportion of SNPs arranged in the order same with those on the corresponding chromosomes of the physical map.

with both PH and TKW in population DS. Other correlations
were non-significant.

Characteristics of the Constructed

Consensus Map

Of the 25,736 unique SNPs on the three individual linkage
maps, 25,667 were assigned to the consensus map, resulting
in 21 linkage groups corresponding to the 21 chromosomes
in hexaploid wheat (Figure1). General information on the
consensus map is provided in Table2, and positions of all
the markers on both the genetic and physical maps are
given in Supplementary Table 3. The consensus map spanned
4,558.55 cM in length, and the number of unique map positions

(denoted as bins) was equal to 3,979. Lengths of the A, B, and D
genomes were 1,622.47, 1,581.57, and 1,354.52 cM, respectively
(Table 2). Chromosome 4D was the shortest, with a length of
168.06 cM, and had the least number of markers (i.e., 106) and
the least number of bins (i.e., 53). Chromosome 2B was the
longest with a length of 290.78 cM, and had the second largest
number of markers (i.e. 2,431) and the second largest number
of bins (i.e., 324). There were 18 gaps longer than 15cM on
the consensus map, 16 of which were located in the D genome
(Supplementary Table 3). Average distance between adjacent
bins was equal to 1.15 cM.

The single nucleotide polymorphism markers (SNPs) number
was similar in the A and B genomes, i.e., 10,285 and 12,755 SNPs,
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but the number was much lower in the D genome, i.e., 2,627
SNPs (Table 2). In comparison with the A and B genomes, the
D genome was shorter and contained much fewer markers and
bins, and more gaps, indicating that fewer crossing-over events
happened on the D genome, which was also observed in the
three individual maps. Although the marker number and bin
number in the D genome were significantly lower than those in
the A and B genomes, results from BLAST indicated that the
constructed consensus map still had nearly complete coverage for
chromosomes in the D genome.

Marker orders on the consensus map and physical map had
high collinearity, with an average Spearman rank correlation
coeflicient of 0.95 across the 21 chromosomes (Table 2, Figure 2).
Rank correlation coefficients were higher than 0.94 for all the
chromosomes except 2B and 3D. The lower coefficient observed
on 3D may be partly due to the much-reduced bin number
when many markers were clustered in bins. Collinearity analysis
between the consensus and physical maps also revealed that
markers in large physical region around the centromeres of
chromosomes tended to be clustered in a short genetic interval
on consensus genetic map (Figure 2), indicating a much stronger
recombination suppression occurred around the centromere
than did that the distal regions.

Comparison of the Consensus Map With

the Three Individual Maps
Wen et al. (2017) reported three linkage maps from
three populations constructed with QTL IciMapping V4.0

(Meng et al., 2015), JoinMap 4.0 (Stam, 1993), and MapDisto 1.7
(Lorieux, 2012). Two of them had 21 linkage groups, and one had
31 linkage groups. The consensus map constructed in this study
had 21 linkage groups, corresponding to the 21 chromosomes in
hexaploid wheat. The marker and bin numbers on the consensus
map were 1.73 and 1.15 times higher than the largest marker
and bin numbers on the three individual maps. The length of
the consensus map was 1.44 times longer than that of the longest
individual map. Longer chromosomes on the individual maps
also tended to be longer on the consensus map. For example, the
two longest chromosomes on the consensus map, i.e., 2B and
5B, ranked first and third in mapping length in each of the three
individual maps.

There were 616 markers with inconsistent chromosomes
on the individual maps, but the inconsistent chromosomes
for each marker were finalized to one unique chromosome
on the consensus map (Supplementary Table 4). Among these
markers, 540 were mapped to single chromosomes that they
were located on the individual maps. For example, marker
wsnp_Ex_c200_391015 was located on chromosomes 7A and
1A on individual maps of populations GZ and ZC, respectively,
which was finalized on chromosome 1A on the consensus map.
Forty-nine markers were mapped to one of the homeologous
chromosomes. For example, marker Tdurum_contig28665_150
was located on chromosomes 1D, 1D, and 2A in populations
DS, GZ, and ZC, respectively, and was finalized on chromosome
1A, a homeologous chromosome of 1D. Twenty-seven markers
were mapped to neither the same chromosome nor homeologous
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chromosomes. For example, marker tplb0024a09_2369 was
located on chromosomes 7D and 4A in populations DS and
ZC, respectively, and was finalized on chromosome 2B on the
consensus map (Supplementary Table 4).

The markers showed high collinearity across chromosomes
between the consensus and individual maps, and the average
Spearman rank correlation coefficient was similar to those
between the individual maps (Supplementary Table 5). Fewer
inconsistencies in orders between the consensus and individual
maps were observed for closely linked markers.

QTLs for PH Detected From the Consensus
Map and Comparison With Those From
Individual Maps

Using the consensus map, a total of 40 QTLs were detected for
PH (Supplementary Table 6), among which 10, 8, and 8 were

stable in populations DS, GZ, and ZC, respectively (Figure 3,
Table 3). Five QTLs were identified in two populations, i.e., gPH-
2B-2, qPH-4B-1, qPH-4D-1, qPH-4D-2, and qPH-5A-2. gPH-2B-2
were repeatedly detected in populations DS and ZC with LOD
scores in the range of 3.62 to 22.98, explaining 1.63-8.05% of the
phenotypic variance (PVE). gPH-5A-2 was repeatedly detected
in populations DS and GZ, with LOD scores ranging from 3.90
to 15.44, and PVE values ranging from 2.58 to 9.63%. qPH-
4B-1, qPH-4D-1, and qPH-4D-2 were repeatedly identified in
populations GZ and ZC, taking the top three ranks in both
populations by average LOD score, PVE value, and additive effect
across environments. gPH-4B-1 was mapped on chromosome 4B
at the interval of 34.98-49.79 Mb on physical map with LOD
scores ranging from 6.31 to 43.49, and PVE values ranging from
8.14 to 30.85%. gPH-4D-1 was mapped on chromosome 4D at
the interval of 14.14-17.01 Mb with LOD scores ranging from
6.54 and 17.10, and PVE values ranging from 8.06 to 16.48%.
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TABLE 3 | Stable quantitative trait loci (QTLs) identified for PH in the three RIL populations, DS, GZ, and ZC using the consensus map.

QTL Pop Environments Position (cM) LOD PVE (%) Add
qPH-1B-2 DS E2/E3/E4/E5/B 95.60-100.20 3.26-38.07 1.18-15.43 1.37 10 5.42
qPH-2A-2 DS E1/E3/E4/E6/B 192.00-195.20 2.79-11.05 1.01-6.32 —2.28t0 —1.15
qPH-2B-2 DS E1/E2/E4/E5/B 224.40-239.60 3.62-22.98 1.63-8.05 —-3.92to —1.26
ZC E11/E13/E14/B 225.80-227.80 3.89-5.52 2.33-4.30 —-3.20to —2.31
qPH-2D-1 ZC E13/E14/B 113.80-114.40 2.89-3.73 1.49-3.08 2.01t02.77
qPH-2D-3 DS E1/E2/EB/E4/B 190.20-193.60 2.58-17.02 0.75-7.21 1.21t03.22
qPH-3A-1 Gz E7/E8/E9/E10/B 34.20-36.80 2.85-4.00 3.48-5.41 2.74 10 4.47
qPH-3A-2 DS E1/E2/EB/E5/B 130.40-148.60 16.23-43.54 6.67-28.31 —5.25t0 —3.25
qPH-3B-2 Gz E7/E10/B 190.60-190.60 2.85-3.33 3.53-4.06 3.08103.77
qPH-4A-2 ZC E11/E13/E14/B 114.60-132.80 3.27-4.43 1.33-4.47 2.36t0 2.60
qPH-4B-1 GZ E7/E8/E9/E10/B 75.00-75.00 6.31-9.52 8.14-10.82 —5.721t0 —38.92
ZC E11/E12/E13/E14/B 74.20-74.40 16.87-43.49 17.92-30.85 5.37 to 11.02
qPH-4B-2 DS E2/E3/E4/E5/E6/B 100.40-102.40 3.12-5.91 1.64-2.54 —1.89t0 —1.34
qPH-4D-1 Gz E7/EB/E9/E10/B 33.20-36.00 6.68-8.86 8.06-13.62 4.71106.87
ZC E11/E12/E13/E14/B 33.40-34.60 6.54-17.10 8.64-16.48 3.90 to 5.83
qPH-4D-2 Gz E7/E8/E9/E10/B 73.20-73.80 6.20-7.83 8.39-10.90 4.57105.58
ZC E11/E12/E13/E14/B 70.80-70.80 4.09-15.72 5.03-12.03 3.00to 5.54
qPH-5A-1 ZC E11/E12/B 76.40-86.20 2.60-3.72 2.07-4.60 1.87 t02.84
qPH-5A-2 DS E1/E2/EB/E4/ES 120.60-125.40 8.34-15.44 2.58-9.63 22410 3.26
GZ E7/E8/E9Q/E10/B 113.20-135.60 3.90-5.52 4.79-6.87 —4.89 to —3.09
qPH-5B GZ E7/E8/E9/E10/B 234.80-237.40 3.60-4.46 4.09-5.54 2.91t04.36
qPH-6A-1 Gz E7/E9/B 154.40-157.00 2.81-3.88 3.36-4.04 —3.35t0 —3.03
qPH-6A-2 DS E1/E3/B 192.60-192.60 4.10-9.47 1.45-4.48 —2.09to —1.26
qPH-6D-1 DS E1/E2/E4/E6/B 71.40-76.20 3.21-6.98 1.33-2.46 1.30to 2.00
qPH-6D-2 ZC E11/E13/E14/B 84.60-84.60 2.75-5.70 1.89-3.38 1.94t02.88
qPH-7A DS E1/E2/EB/E5/B 142.40-145.00 4.84-6.74 1.12-3.11 1.44t01.89

Pop, population; LOD, logarithm of odd; PVE, percentage of phenotypic variance explained; Add, additive effect; E1, 2012-2013 Beijjing; E2, 2012-2013 Shijiazhuang; E3, 2013-2014
Beijjing; E4, 2013-2014 Shijiazhuang; E5, 2014-2015 Beijing; E6, 2014-2015 Shijiazhuang; E7, 2012-2013 Anyang; E8, 2012-2013 Suixi; E9, 2013-2014 Anyang; E10, 2013-2014
Suixi; E11, Zhoukou2013; E12, Zhengzhou2013; E13, Zhoukou2014, E14, Zhengzhou2014; B, best linear unbiased estimation.

qPH-4D-2 was mapped on chromosome 4D at the interval of
32.97-65.01 Mb having LOD scores ranging from 4.09 to 15.72
and PVE values ranging from 5.03 to 12.03%. When the length
of the confidence interval was set at 25 Mb, gPH-4B-1 and qPH-
4D-1 were, respectively, coincident with dwarfing genes Rht-B1
located at 33.61 Mb on 4B and Rht-D1I located at 19.19 Mb on 4D
(IWGSC RefSeq v2.0).

Quantitative trait locus mapping using the individual maps
identified a total of 19 stable QTLs in the three populations,
nine in population DS, and five each in populations GZ
and ZC (Gao et al, 2015; Li et al., 2018). Sixteen of them
were detected using the consensus map; Fifteen of which
were stable across environments (Supplementary Table 7,
Supplementary Figure 5). gPH-2B-2 and qPH-5A-2 were
detected only in one population with the individual maps,
but in two populations with the consensus map (Table 3,
Supplementary Table 7), indicating the reliability of the two
QTLs. With the consensus map, eight other stable QTLs were
identified for PH, i.e., gPH-2D-1, qPH-2D-3, qPH-3B-2, qPH-
4D-2, qPH-6A-1, qPH-6A-2, qPH-6D-2, and qPH-7A, three in

population DS, two each in populations GZ and ZC, and one in
populations GZ and ZC.

QTLs for SL Detected From the Consensus
Map and Comparison With Those From the
Individual Maps

Using the consensus map, a total of 54 QTLs were detected for SL
(Supplementary Table 6), among which 15, 6, and 11 were stable
in populations DS, GZ, and ZC, respectively (Figure 3, Table 4).
qSL-2D-1 was repeatedly identified in populations GZ and ZC
with LOD scores ranging from 2.67 to 20.91, and PVE values
ranging from 2.85 to 31.06%. gSL-2D-2 was repeatedly detected
in populations DS and GZ with LOD scores ranging from 3.20
to 6.40, and PVE values ranging from 1.60 to 6.68%. qSL-5A-2
was repeatedly identified in populations DS and GZ with LOD
scores ranging from 3.31 to 13.93, and PVE values ranging from
1.87 to 7.13%. qSL-6B-4 was repeatedly detected in the three
populations and mapped at chromosome 6B in the interval of
705.19-707.59 Mb on physical map, accounting for 3.36-21.30%
of the phenotypic variance.
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TABLE 4 | Stable QTLs identified for SL in the three RIL populations, DS, GZ, and ZC using the consensus map.

QTL Pop Environment Position (cM) LOD PVE (%) Add
qSL-1A-1 DS E1/E2/E4/E6/B 53.60-75.80 2.96-6.05 1.47-4.43 —-0.22t0 -0.14
qSL-1B-1 ZC E13/E14 2.60-3.80 4.53-6.20 4.13-5.67 —0.35t0 —0.28
qSL-1B-2 ZC E11/B 16.20-16.20 3.33-3.37 2.90-3.88 —0.22 to —0.29
qSL-2A-1 ZC E11/E13/E14/B 210.80-228.60 2.66-6.55 2.34-5.72 —0.33to —0.20
qSL-2D-1 Gz E7/E8/E9/E10/B 32.00-43.20 11.74-20.91 9.84-31.06 0.36 t0 0.59
ZC E11/E12/E13/E14/B 29.20-41.60 2.67-10.18 2.85-8.91 —0.41to —0.24
qSL-2D-2 DS EB/E5/B 50.60-55.00 3.20-5.97 1.60-3.75 -0.18t0 —0.14
Gz E9/E10/B 55.80-57.00 3.97-6.40 2.82-6.68 0.211t00.27
qSL-2D-3 DS E1/E2/EB/E4/ES/B 168.80-192.20 3.35-13.66 2.40-6.17 0.17 t0 0.29
qSL-3A-4 DS E2/E5/B 130.40-139.40 3.71-6.00 1.62-2.45 —0.15t0 —-0.15
qSL-3A-5 ZC E12/E14/B 221.00-238.00 2.76-3.80 2.51-3.06 —-0.22to —0.22
qSL-3B-2 Gz E7/E10 23.60-24.80 3.47-3.80 3.55-4.88 —0.23to0 —0.20
qSL-3B-5 DS E2/E4/E6/B 147.60-148.00 4.07-7.80 1.69-6.75 0.16t0 0.26
qSL-3D-2 DS E1/E2/E5/B 85.20-87.00 4.05-6.81 2.60-2.72 —0.20to —0.16
qSL-4A-1 ZC E11/E12/E13/E14/B 73.00-83.20 3.07-12.13 3.27-11.74 —0.45t0 —0.26
qSL-4A-2 Gz E8/E9/E10/B 85.00-103.60 4.20-6.29 2.78-7.71 —0.26 to —0.22
qSL-4A-3 ZC E11/E12/E13/E14/B 178.20-187.00 6.25-12.99 6.42-11.77 0.34 t0 0.47
qSL-4A-4 DS E1/E2/E5/B 203.40-215.20 5.00-5.90 2.01-3.34 0.14t00.23
qSL-4B-1 DS E1/E2/B 21.00-21.40 4.50-7.41 1.77-3.25 0.14t00.23
qSL-4B-2 DS E1/E2/E3/E4/E5/E6/B 75.00-80.00 4.90-31.94 3.60-16.99 0.21100.45
qSL-4D DS E1/E2/E5/B 56.20-66.60 3.54-16.74 1.656-7.79 0.12t0 0.33
qSL-5A-1 ZC E13/E14 89.80-93.60 2.92-3.83 2.60-3.13 0.21t00.24
QSL-5A-2 DS E1/E2/E5/E6/B 124.20-124.60 4.28-13.93 1.87-7.13 0.15t00.34
GZ E7/E8 122.60-123.40 3.31-4.39 3.67-5.45 —0.21to —0.20
qSL-5A-3 ZC E11/E13/E14/B 190.20-191.00 6.80-11.15 6.25-9.96 0.33t0 0.43
qSL-5A-4 DS E1/E3/E4 241.60-245.20 2.57-3.86 1.568-3.47 -0.17 to —0.15
qSL-6A-1 DS E2/E3/E5/E6/B 165.80-177.60 4.37-9.06 2.27-417 0.17 to 0.21
qSL-6B-4 DS E2/E3/E5/E6/B 180.80-198.60 8.93-35.46 4.00-21.30 —0.50 to —0.23
Gz E7/E9/E10/B 194.20-195.40 4.56-20.58 4.86-10.96 —0.43t0 —0.23
ZC E13/E14 178.60-180.40 3.74-3.79 3.36-3.36 —0.26 to —0.25
qSL-7A-2 ZC E13/E14 137.20-137.20 4.51-5.95 3.77-5.50 —-0.30to —0.27
qSL-7A-3 DS E2/E5/B 1562.00-1562.20 4.16-17.49 1.62-8.52 0.13t00.32

Pop, population; LOD, logarithm of odd; PVE, percentage of phenotypic variance explained; Add, additive effect; E1, 2012-2013 Beijing; E2, 2012-2013 Shijiazhuang; E3, 2013-2014
Beijing; E4, 2013-2014 Shijiazhuang; E5, 2014-2015 Beijing; E6, 2014-2015 Shijiazhuang; E7, 2012-2013 Anyang; E8, 2012-2013 Suixi; E9, 2013-2014 Anyang; E10, 2013-2014
Suixi; E11, Zhoukou2013; E12, Zhengzhou2013; E13, Zhoukou2014; E14, Zhengzhou2014; B, best linear unbiased estimation.

In previous studies, QTL mapping using individual maps
identified six, six, and nine stable QTLs in populations DS,
GZ, and ZC, respectively (Gao et al., 2015; Li et al., 2018). This
study detected all of them except QSL.caas-5AL in population
ZC (Supplementary Table 7, Supplementary Figure 6).
However, according to the linkage map constructed by
Wen et al. (2017) for population ZC and the BLAST result,
QSL.caas-5AL and QSL.caas-5AL.1 tended to be the same.
For the remaining 20 QTLs, 19 with stable effects were
detected using the consensus map. ¢gSL-2D-1, gSL-2D-
2, and ¢qSL-5A-2 were detected only in one population
using the individual maps, but all of them were detected
in two populations using the consensus map (Table4,
Supplementary Table 7). With the consensus map, 10 other
stable QTLs were identified for SL, i.e., qSL-3A-4, qSL-3A-5,
qSL-3B-5, qSL-4A-4, qSL-4B-1, qSL-4B-2, qSL-4D, qSL-5A-1,

qSL-5A-4, and gSL-7A-3, eight for population DS and two for
population ZC.

QTLs for TKW Detected From the
Consensus Map and Comparison With

Those From the Individual Maps

Using the consensus map, a total of 53 QTLs were detected for
TKW (Supplementary Table 6), among which nine, three, and
eight were stable in populations DS, GZ, and ZC, respectively
(Figure 3, Table5). gTKW-4B-2 was repeatedly identified in
populations DS and GZ with LOD scores ranging from 3.08
to 49.22, explaining 7.57-36.51% of the phenotypic variance.
qTKW-4B-2 had the largest LOD score, PVE and additive
effect across environments in population DS. This QTL was
co-localized with gPH-4B-1, corresponding to the dwarfing

Frontiers in Plant Science | www.frontiersin.org

25

August 2021 | Volume 12 | Article 727077


https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/plant-science#articles

Qu et al.

Consensus Map Construction in Wheat

TABLE 5 | Stable QTLs identified for TKW in the three RIL populations, DS, GZ, and ZC using the consensus map.

QTL Pop Environment Position (cM) LOD PVE (%) Add
qTKW-1B-2 DS E1/E2/E3/E6/B 44.40-45.00 4.70-45.92 2.37-22.43 0.93t0 3.72
qTKW-2A-2 DS E2/E3/E4 125.00-125.00 2.57-7.27 1.32-5.90 0.70to 1.15
qTKW-2B-2 DS E4/E5/B 138.80-141.40 2.92-6.43 1.25-3.81 0.73t0 1.32
qTKW-2D-2 ZC E11/E12/E13/E14/B 131.40-132.60 3.91-14.69 4.94-12.32 —1.64to —1.00
qTKW-3A-2 Gz E9/B 148.40-148.60 4.05-5.80 6.56-11.45 1.00 to 1.26
qTKW-3D ZC E11/E12/B 101.40-101.80 3.79-6.44 4.85-6.86 1.00t0 1.18
qTKW-4A-1 ZC E11/E12/B 167.20-167.20 3.94-5.54 4.08-6.72 —1.17 to —0.91
qTKW-4A-2 DS E1/E2/E6/B 200.00-213.40 2.51-4.57 0.89-3.47 —0.87 to —0.73
qTKW-4B-2 DS E1/E2/E3/E4/E5/EG/B 75.00-76.00 13.28-49.22 8.81-36.51 1.60t03.78
GZ E7/E10/B 61.20-75.00 3.08-4.61 7.57-10.68 —1.43to —1.09
qTKW-5A-1 ZC E13/E14 65.40-84.60 3.92-4.67 3.02-3.53 —0.91 to —0.82
qTKW-5A-3 DS E1/E2/E5/E6/B 116.40-124.40 3.83-7.46 2.63-5.05 1.08t0 1.27
qTKW-5A-4 Gz E7/E8/E9/E10/B 106.20-112.00 2.69-4.68 6.36-8.64 —1.28 to —0.94
qTKW-5D-1 DS E1/E2/E3/EA/E5/EE/B 49.20-54.80 6.23-11.44 2.38-7.58 1.12t0 1.66
qTKW-6A-3 ZC E11/E12/E13/E14/B 98.60-102.20 5.67-16.80 7.37-14.28 —1.841t0 -1.28
qTKW-6B-3 ZC E11/E12/B 90.40-93.20 3.66-4.91 3.85-5.09 —1.01to —0.82
qTKW-6B-5 DS E1/E3/E5/E6/B 197.40-198.60 3.62-6.22 1.21-3.36 —1.17 to —0.86
qTKW-7A-1 ZC E11/E12/E13/E14/B 140.40-141.20 2.72-4.77 2.04-5.71 —1.09 to —0.67
qTKW-7B-3 ZC E13/E14 146.20-146.20 4.26-5.27 3.22-4.03 —0.98 to —0.85
qTKW-7B-4 DS E1/E4/ES 168.80-171.40 5.79-18.41 3.10-12.11 1.06 to 2.36

Pop, population; LOD, logarithm of odd; PVE, percentage of phenotypic variance explained; Add, additive effect; E1, 2012-2013 Beijjing; E2, 2012-2013 Shijiazhuang; E3, 2013-2014
Beijing; E4, 2013-2014 Shijiazhuang; E5, 2014-2015 Bejjing; E6, 2014-2015 Shijiazhuang; E7, 2012-2013 Anyang; E8, 2012-2013 Suixi; E9, 2013-2014 Anyang; E10, 2013-2014
Suixi; E11, Zhoukou2013; E12, Zhengzhou2013; E13, Zhoukou2014, E14, Zhengzhou2014; B, best linear unbiased estimation.

gene Rht-Bl. All stable QTLs detected with the individual
maps were also stable when detected with the consensus map
(Supplementary Table 7, Supplementary Figure 7). There were
other three stable TKW QTLs identified using the consensus
map, ie., gTKW-1B-2, qTKW-2D-2, and qTKW-6B-3. gTKW-
1B-2 was mapped on chromosome 1B at the interval of 588.36—
591.14 Mb on the physical map, with LOD scores ranging from
4.70 to 45.92, and PVE values ranging from 2.37 to 22.43% in
population DS. gTKW-2D-2 was mapped on chromosome 2D at
the interval of 523.15-555.13 Mb with LOD scores ranging from
3.91 to 14.69, and PVE values ranging from 4.94 to 12.32% in
population ZC. gTKW-6B-3 was mapped on chromosome 6B
at the interval of 157.21-162.58 Mb with LOD scores varying
from 3.66 to 4.91, and PVE values varying from 3.85 to 5.09%
in population ZC.

QTL Clusters for the Three Traits

As far as the stable QTLs across environments were concerned,
11 QTL clusters were identified and distributed on nine
chromosomes (Supplementary Table 8), six of which affected
two traits (i.e., gClu-2D, qClu-4A-1, qClu-4A-2, qClu-4D, qClu-
6A, and qClu-6B), and five affected all the three traits (ie.,
qClu-3A-1, qClu-4B, qClu-5A-1, qClu-5A-2, and qClu-7A). Eight
clusters affected traits PH and SL. Among them, three clusters
contained both PH and SL QTLs in population DS; one
cluster contained both PH and SL QTLs in population ZC,
and one cluster contained the closely linked PH and SL QTLs
in populations DS and GZ. Each of the five clusters either

increased or decreased both traits simultaneously. Genomic
regions containing the stable QTLs for the three traits were
located on chromosomes 3A, 4B, 5A, and 7A. The cluster on 4B
was close to the Green Revolution gene Rht-Bl1. In cluster gClu-
5A-1, QTLs affecting the three traits were consistently identified
in populations DS and GZ, either increasing or decreasing the
three traits simultaneously.

Potential Applications of the Detected

QTLs in Wheat Breeding

To explore the potential applications of the detected QTLs in
wheat breeding, QTL genotypes and genotypic values of each RIL
in the three populations were predicted on the three traits with
stable QTLs identified using BLUE values across environments
(Supplementary Tables 9-11). For convenience, for the two
alleles at each QTL, one is called positive and the other one
is called negative. Parental sources of the two alleles can be
determined from the sign of the estimated additive effect of the
QTL. Due to the varied objectives on different traits in breeding,
it should be noted that the positive allele is not always favored
and that the negative allele is not always un-favored. For PH,
nine, eight, and eight stable QTLs were used for prediction in
populations DS, GZ, and ZC, respectively. The 10 highest RILs
possessed at least eight, seven, and seven positive alleles in the
three populations, respectively, whereas the 10 lowest RILs had
no more than two positive alleles (Supplementary Table 9). For
SL, 14, 7, and 4 stable QTLs were used for prediction. The 10
highest RILs possessed at least nine, seven, and four positive
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alleles in the three populations, whereas the 10 lowest RILs had
no more than four positive alleles in population DS, no positive
allele in population GZ, and no more than 1 positive allele
in population ZC (Supplementary Table 10). For TKW, seven,
three, and six stable QTLs were used for prediction. The 10
highest RILs possessed at least six, three, and five positive alleles
in the three populations, whereas the 10 lowest RILs had no more
than 1 positive allele (Supplementary Table 11). RILs with the
highest predicted genotypic values always had all the positive
alleles for PH and TKW in the three mapping populations, and
had all the positive alleles for SL in populations GZ and ZC.
RILs with the lowest predicted genotypic values always had all
the negative alleles for PH and SL in populations GZ and ZC,
and had all the negative alleles for TKW in all the three mapping
populations. For PH, all the 10 lowest RILs in population GZ
and the 9 lowest RILs in population ZC contained the negative
alleles at gPH-4B-1 and qPH-4D-1, corresponding to genes Rht-
BI and Rht-DI. For SL, gSL-6B-4 was repeatedly identified in
populations DS and GZ. Eighteen out of the 20 highest RILs in
population DS and 36 highest RILs in population GZ possessed
the positive allele at gSL-6B-4, while 17 out of the 20 lowest
RILs in population DS and 38 lowest RILs in population GZ
possessed the negative allele at gSL-6B-4. For TKW, gTKW-4B-
2 was consistently identified in populations DS and GZ. The
12.36% highest RILs in population DS and the 31.25% highest
RILs in population GZ carried the positive allele at gTKW-
4B-2, while the 17.45% lowest RILs in population DS and the
21.02% lowest RILs in population GZ carried the negative allele at
qTKW-4B-2. Mean observed and predicted values of RILs having
the positive allele at gTKW-4B-2 were equal to 45.13 and 45.24
in population DS, and 47.11 and 47.95 in population GZ. In
contrast, the observed means of RILs having the negative allele
were equal to 42.68 and 40.4 in population DS, and 45.59 and
45.65 in population GZ.

Recombinant inbred lines with the predicted genotypic values
on PH, SL, and TKW can serve for the choice of target genotypes
meeting different breeding objectives, such as wheat cultivars
with medium plant height, large spike length, and medium to
high kernel weight. Given one target genotype, the predicted
allelic combination of RILs can serve for the prediction of cross
performance and the selection of suitable parental lines through
simulation or other genomic prediction approaches (Yao et al.,
2018).

QTL Mapping in Simulated Populations

In 1,000 simulated populations, the estimated QTL positions and
effects using the individual and consensus maps are shown in
Table 6. With the increase in heritability, QTL detection powers
were increased and the false discovery rate (FDR) was decreased
in the three models using either the individual or consensus
maps. Approximately unbiased estimation of QTL positions and
effects was obtained for each defined model and heritability level.
The confidence intervals of QTLs detected from the consensus
map were much narrower, and the associated standard errors
were much smaller than those from individual maps. Detection
power was much lower for QTLs in linkage models IT and III than
that in the unlinked model I at the same heritability levels for

both the individual and consensus maps. FDR was much higher
in models II and III than in model I, indicating the complexity
and difficulty in dissecting linked QTLs in genetic studies.

DISCUSSION

Computer Tools in Consensus Map

Construction

Two strategies have been adopted for consensus map
construction in previous studies (Endelman and Plomion,
2014). The first one is based on the raw data of multiple mapping
populations, and has been implemented in software MultiPoint
(Ronin et al., 2012) and JoinMap (Van Ooijen, 2006). The second
one is based on individual linkage maps previously constructed,
and has been implemented in software BioMercator (Arcade
et al.,, 2004), MergeMap (Wu et al., 2010), LPmerge (Endelman
and Plomion, 2014), and QTL IciMapping (Meng et al., 2015).
The first strategy is usually time-consuming when dealing
with a large number of markers (Wu et al., 2010), which has
drastically restricted the use of a large number of markers in
the consensus map. The second strategy highly depends on the
quality of individual maps and sometimes may result in maps
with unreasonable length (Cavanagh et al.,, 2013; Wang et al,
2014; Wingen et al., 2017).

With the development of high-throughput sequencing
technology, markers that can be used in genotyping mapping
populations are growing rapidly. A large amount of markers
brings a great challenge to consensus map construction,
especially when raw genotypic data are used. The two raw data-
based software packages mentioned above cannot deal with such
a large number of markers used in this study. For example,
both packages cannot generate a consensus map for chromosome
5B, which harbored 929, 1,406, and 1,508 SNPs in populations
DS, GZ, and ZC, respectively. Map-based method only utilizes
marker distances between adjacent markers, which may result
in an inaccurate estimation of recombination frequency between
markers especially when the order of markers changes on
the consensus map. The CLA algorithm is a raw data-based
method used in this study to deal with a large amount of
markers. The combined recombination frequency between any
pair of markers was calculated from the estimates in individual
mapping populations. The estimated recombination frequencies
are recorded in computer memory. Therefore, time can be greatly
saved in computing.

Quality of the Consensus Map

The great number of markers and bins contained in the
consensus map provided higher saturation of markers and better
genome coverage, and expanded the length of the map. Previous
studies have shown that increased recombination events and map
resolution with an increased number of markers and density
could contribute to longer map length (Ferreira et al., 2006;
Wingen et al,, 2017). The longer map length may also suffer
from chromosomal structure differences in different mapping
populations and the ordering algorithm used. Compared with
the A and B genomes, the D genome had fewer unique markers,
larger gaps, and shorter map length, which have been previously
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TABLE 6 | Quantitative trait locus mapping results from 1,000 simulations using the individual and consensus maps in the three genetic models.

Model H?% Map QTL Pos. % SE (cM)® Add + SE° CIL + SE¢ LOD + SE® Power (%) FDR (%)f

0.05 Ind. QTL1 34.32 £ 1.34 1.33 £ 0.22 3.55+0.76 4.03 +1.41 31.5 44.44

Cons. QTL1 34.42 £ 1.36 1.32 £ 0.19 1.89 £ 0.35 3.97 £1.17 33.6 43.72

0.1 Ind. QTL1 34.42 £1.21 1.08 £ 0.21 3.30 £ 0.85 541 +£2.10 711 25.16

Cons. QTL1 34.55 £1.27 1.09 £ 0.25 1.83 £ 0.41 5.62 + 2.96 69.9 27.71

0.2 Ind. QTL1 34.40 +£ 0.94 1.01 £0.16 2.85+0.74 10.03 + 3.02 89.3 12.45

Cons. QTL1 34.46 + 1.12 1.01 £0.16 1.70 £ 0.41 10.07 £ 2.96 90.2 11.57

I 0.1 Ind. QTL1 26.62 + 1.37 2.03+0.35 3.18 £1.05 5.61 +1.92 31.0 31.26
QTL2 34.08 + 1.32 1.99 £0.32 3.27 £ 0.97 527 +1.58 36.3

Cons. QTLA 26.64 + 1.29 2.07 £ 0.67 1.85 £0.37 6.00 + 4.80 28.3 34.9
QTL2 34.18 £ 1.37 1.98 £0.33 1.82 £0.42 5.33+1.68 34.2

0.2 Ind. QTL1 26.80 + 1.21 1.88 £ 0.30 2.84 +£0.83 9.93 + 2.92 40.5 24.91
QTL2 33.78 £ 1.11 1.84 £0.28 2.83 +£1.02 9.54 + 2.53 39.1

Cons. QTL1 26.80 +£ 1.21 1.87 £0.27 1.71 £ 042 9.96 + 2.68 38.1 27.06
QTL2 33.91 £1.20 1.83+£0.27 1.73 £ 0.46 9.52 £ 2.52 37.1

0.4 Ind. QTL1 26.62 + 1.09 1.33 £ 0.40 2.68 +0.84 13.06 + 6.24 571 17.34
QTL2 34.09 + 1.08 1.39 £ 0.40 2.64 +0.86 13.99 + 6.51 63.0

Cons. QTL1 26.66 + 1.130 1.36 £ 0.39 1.63 £ 0.40 13.67 £ 6.29 55.1 19.02
QTL2 34.18 £ 1.180 1.39 £0.43 1.66 £ 0.39 14.19 + 7.01 59.0

1l 0.1 Ind. QTLA 26.11 £ 1.10 —1.04 £0.32 2.78 £0.95 9.561 £5.34 7.4 34.91
QTL2 34.72 £ 1.11 1.04 £0.28 2.92 +0.87 9.26 +£4.13 7.7

Cons. QTL1 26.25 £ 1.04 —1.08 £ 0.35 1.68 £ 0.39 10.40 + 6.04 7.3 40.93
QTL2 34.82 £1.18 1.07 £ 0.31 1.71 £ 0.35 10.03 + 4.85 8.0

0.2 Ind. QTL1 26.19 £ 0.75 —0.98 £ 0.21 2.43 £ 0.63 16.07 + 5.59 26.3 15.18
QTL2 34.58 £ 0.77 0.99 +£0.19 2.37 £0.67 16.24 £ 5.18 25.1

Cons. QTL1 26.08 +£ 0.75 —-0.98 £0.2 1.564 +£0.38 16.12 + 5.36 27.3 16.05
QTL2 34.58 + 0.94 0.96 +£0.18 1.561 £0.39 15.80 + 5.17 271

0.4 Ind. QTL1 26.33 +£ 0.57 —0.95 £0.12 1.76 £ 0.49 30.92 + 6.38 74.8 4.16
QTL2 34.57 £ 0.59 0.94 £0.13 1.76 £ 0.51 30.80 + 6.44 74.9

Cons. QTLA 26.19 £+ 0.66 —0.94 £0.13 1.25 £ 0.36 30.67 £+ 6.83 77.2 5.23
QTL2 34.51 +£0.82 0.94 £0.13 1.27 £0.35 30.65 + 6.51 76.9

aHeritability in broad sense.

bposition in cM and the associated standard error.

CAdditive effect and the associated standard error.
9dConfidence interval length and the associated standard error.
¢LOD scores and the associated standard error.

"False discovery rate.

Ind., individual map; Cons., consensus map.

reported in both consensus and individual maps in wheat (Wang
et al., 2014; Li et al., 2015; Guan et al., 2018).

Collinearity was high between the genetic and physical
positions. Marker order on the consensus and physical maps was
highly correlated at the genome-wide level, but lower collinearity
was sometimes observed in some chromosomal regions, which
was also reported previously (Wingen et al., 2017). Of the 19,320
SNPs on the consensus map that had physical positions, on
average there were 55.17% SNPs arranged in the same order as
those on the corresponding chromosomes of the physical maps,
ranging from 36.3 on chromosome 6A to 75.68% on chromosome
4D (Table 2). A higher proportion of the completely consistent
marker order was found in the D genome (63.95%) than
those in the A genome (52.32%) and the B genome (49.22%),
which may be explained by the lower recombination on the

D genome. The lower recombination events on the D genome
contributed to lower sequence variability and had a weaker
influence on the decay of syntenic block size. Some chromosomal
structural variations were observed on the consensus map, such
as intra-chromosomal translocation and inversion. For example,
inversion happened around 22-25 Mb on chromosome 1A, and
translocation occurred between regions around 88-93 and 106-
109 Mb on chromosome 2A. The collinearity between marker
orders in genetic and physical maps is often disturbed by the
macrostructural variations in wheat, especially for consensus
maps that are constructed from multiple populations. Local
disorder of markers could also be caused by the variation of gene
order in parents and genotyping errors.

The distribution of meiotic recombination events showed that
recombination happened much more frequently in the distal
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chromosomal regions, and that recombination tended to be
suppressed near the centromeres, which was consistent with
previous studies [Sourdille et al, 2004; International Wheat
Genome Sequencing Consortium (IWGSC), 2018]. Collinearity
analysis also showed that some markers might have conservative
orders across populations, since their relative orders were
consistent on the physical and genetic maps. Comparative
analysis among the consensus, physical, and individual maps
indicated the reliability of the consensus map constructed with
the CLA algorithm.

Comparison of the Detected QTLs With

Studies on Other Mapping Populations

In this study, eight stable PH QTLs were detected with the
consensus map but not with the individual maps (Table 7).
Guan et al. (2018) reported a PH QTL on chromosome 4D
at the physical interval of 37.05-62.94Mb, and Ren et al
(2021) reported a PH QTL on the same chromosome at the
physical interval of 47.44-67.64Mb. qPH-4D-2 (chr4D:32.97-
65.01 Mb) was overlapped with the loci reported by Guan et al.
(2018) and Ren et al. (2021). gPH-6A-1 was located within the
physical region as reported by Zanke et al. (2014). gPH-6A-2 was
mapped on chromosome 6A at the interval of 610.97-613.55 Mb.
Similarly, Pang et al. (2020) detected a PH QTL on chromosome
6A at the interval of 609.3-609.9 Mb (IWGSC RefSeq v1.0). gPH-
6D-2 was located at the same marker interval of a PH QTL
that was first reported and validated to be stable in two wheat
populations by Wang et al. (2020). To the best knowledge of the
authors, stable QTLs gPH-2D-1, gPH-2D-3, gPH-3B-2, and qPH-
7A identified in this study were likely to be novel for PH. The
increased marker density in the consensus map contributed to
the detection of these novel QTLs.

For spike length, 10 QTLs were detected with the consensus
map but not with the individual maps (Table 7). Among them,
a stable QTL in population DS, i.e., gSL-4B-2 explaining 3.60—
16.99% of the phenotypic variance, was close to the Green
Revolution gene Rht-Bl. A number of previous studies have
revealed that Rht-B1 has a pleiotropic effect on PH, SL, and TKW
(Schulthess et al., 2017; Sun et al,, 2017; Li et al., 2018). QTL
cluster gClu-4B in which gSL-4B-2 was located affected all three
traits (Supplementary Table 8). However, no stable PH QTL in
qClu-4B was detected in population DS, indicating that gSL-4B-2
may not be the same as Rht-BI. One SL QTL, i.e., QSLsdau-4B,
different from but close to Rht-BI, was precisely mapped and
verified by Deng et al. (2011), which did not affect PH either.
SL-4B-2 was located in a similar position as QSl.sdau-4B, and
was also in a similar physical position of gSL4B.1 (chr4B: 36.7-
37.8 Mb) reported by Pang et al. (2020). For the remaining nine
QTLs, gSL-3B-5 was mapped on chromosome 3B at the interval
of 761.9-774.47 Mb, which was in the similar physical interval
(chr3B: 771.94-788.06 Mb) as reported by Hu et al. (2020); gSL-
4A-4 and gSL-5A-4 were close to those reported in Pang et al.
(2020). Six SL QTLs were likely to be novel because of increased
power when using the consensus map in QTL mapping, i.e.,
qSL-3A-4, qSL-3A-5, qSL-4B-1, qSL-4D, qSL-5A-1, and gSL-7A-3.

Compared with the individual maps, three other TKW QTLs
were stably identified using the consensus map (Table 7), i.e.,
qTKW-1B-2, qTKW-2D-2, and qTKW-6B-3, which were in
similar positions as those reported by Gerard et al. (2019), Zhang
etal. (2020c), and Cook et al. (2021), respectively.

For the three traits, a total of 21 QTLs were identified
using the consensus map but not the individual maps. Among
them, 11 QTLs are consistent with those from previous studies
on other mapping populations, and 10 QTLs are likely to be
novel. Most of the 11 QTLs were first reported in recent years
using high-density linkage maps, indicating that the increase in
marker density improved the power of QTL detection. For the
novel QTLs, six of them that control PH or SL were included
in the cluster that harbored closely linked PH and SL QTLs
(Supplementary Table 8). The PH of the wheat plant is equal
to SL plus the lengths of all internodes above the ground.
Theoretically, loci associated with SL may affect PH as well,
which has been validated by some studies (Buerstmayr et al.,
2011; Lv et al., 2014; Xu et al., 2014; Jahani et al., 2019; Chen
et al., 2020). Furthermore, four novel SL QTLs were close to PH
QTLs that have been reported using individual maps or other
independent studies, indicating the reliability of the novel QTLs
on SL or PH. Gene TaERF8 was identified to be associated with
PH and yield in wheat, and has been cloned from the wheat
cultivar Chinese Spring (Zhang et al., 2020b), one parental line
of population ZC. TaERF8-2D (chr2D: 368.21 Mb) was located
in the flanking marker interval of gPH-2D-1, which was stably
detected in population ZC in the three tested environments
and in population DS in two tested environments. TaERFS-
2D may be a candidate gene for qPH-2D-1. Annotations of
gene functions were also performed for these novel QTLs based
on the wheat reference sequence annotation database (IWGSC
Annotation v1.1) as listed in Supplementary Table 12. The
annotation information will facilitate the future fine mapping,
map-based cloning, and functional analysis of the novel QTLs
identified in this study.

Relationship Between QTLs for
Phenotypically Correlated Traits PH and SL

Plant height is an important agronomic trait highly related to
lodging resistance and harvest index in wheat. SL is highly related
to grain yield by affecting kernel number and spike morphology
(Donmez et al., 2001). Plants with suitable PH and larger spike
are desirable in wheat breeding. Nine of the 21 stable PH
QTLs were close to the stable SL QTLs (Supplementary Table 8),
contributing to the genetic correlation between the two traits.
PH and SL were positively correlated by phenotypic analysis in
population DS, but the correlation was non-significant in the
other two populations. In this study, closely linked PH and SL
QTLs identified in the same population always had genetic effects
at the same directions on both traits. Similar instances have been
reported in previous studies (Buerstmayr et al., 2011; Lv et al.,
2014; Xu et al.,, 2014; Jahani et al., 2019; Chen et al., 2020).
Considering that some QTLs for SL may also affect PH, we
speculated that the closely linked PH and SL QTLs are more likely
to be the same genetic loci and have the same effect directions.
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TABLE 7 | Quantitative trait loci for PH, SL, and TKW detected with the consensus map but not by the individual maps in the three RIL populations, DS, GZ, and ZC.

Trait QTL Pop Environment Physical interval (Mb)? Neighboring loci in previous studies
PH qPH-2D-1 ZC E13/E14/B 344.29-426.06 TaERF8-2D, Zhang et al., 2020b
qPH-2D-3 DS E1/E2/E3/E4/B 617.78-631.92
qPH-3B-2 Gz E7/E10/B 842.16-844.72
qPH-4D-2 GZ E7/E8/EQ/E10/B 32.97-65.01 QPh.cau-4D.2, Guan et al., 2018
ZC E11/E12/E13/E14/B QPh.sau-4D, Ren et al., 2021
qPH-6A-1 Gz E7/E9/B 600.13-600.63
Zanke et al., 2014
qPH-6A-2 DS E1/E3/B 610.97-613.55 QPH6A.4, Pang et al., 2020
qPH-6D-2 ZC E11/E13/E14/B 337.17-361.16 QPh.sicau-6D, Wang et al., 2020
qPH-7A DS E1/E2/E3/E5/B 611.92-621.35
SL qSL-8A-4 DS E2/E5/B 656.58-663.11
qSL-3A-5 ZC E12/E14/B 722.85-748.34
gSL-3B-5 DS E2/E4/E6/B 761.90-774.47 QSL-3B.2, Hu et al., 2020
qSL-4A-4 DS E1/E2/E5/B 719.47-750.82 QSL4A.3, Pang et al., 2020
qSL-4B-1 DS E1/E2/B 6.94-10.81
qSL-4B-2 DS E1/E2/E3/E4/E5/E6/B 34.98-49.80 QSl.sdau-4B, Deng et al., 2011 qSL4B. 1, Pang et al., 2020
qSL-4D DS E1/E2/E5/B 65.53-121.40
qSL-5A-1 ZC E13/E14 437.35-445.46
qSL-5A-4 DS E1/ES/E4 671.95-681.28 qSL5A.2, Pang et al., 2020
qSL-7A-3 DS E2/E5/B 647.11-648.26
TKW qTKW-1B-2 DS E1/E2/E3/E6/B 588.36-591.14 BS00039740_51, Gerard et al., 2019
qTKW-2D-2 ZC E11/E12/E13/E14/B 523.15-555.13 AX-109775854, Zhang et al., 2020c
qTKW-6B-3 ZC E11/E12/B 157.21-162.58 IWB61228-6B, Cook et al., 2021

aphysical positions for the flanking markers of QTLs based on IWGSC_RefSeq v2.0.

E1, 2012-2013 Beijjing; E2, 2012-2013 Shijiazhuang; E3, 2013-2014 Beijing; E4, 2013-2014 Shijiazhuang; E5, 2014-2015 Beijjing; E6, 2014-2015 Shijiazhuang; E7, 2012-2013
Anyang; E8, 2012-2013 Suixi; E9, 2013-2014 Anyang; E10, 2013-2014 Suixi; E11, Zhoukou2013; E12, Zhengzhou 2013; E13, Zhoukou 2014; E14, Zhengzhou 2014, B, best linear

unbiased estimation.

However, whether the closely linked QTLs on PH and SL belong
to the same chromosomal loci with pleiotropic effects or different
closely-linked loci needs further investigation and is beyond the
scope of this study.

Further Analysis for a Major PH QTL

Located on Chromosome 4DS

For plant height, only one QTL was detected on chromosome
4DS using the individual maps in populations GZ and
ZC, but two stable QTLs, ie., qPH-4D-1 and qPH-4D-2,
were identified using the consensus map in the same two
populations, which were linked in the coupling phase (Table 3,
Supplementary Table 7). The BLAST results indicated that gPH-
4D-1 was co-localized with the dwarfing gene Rht-D1. gPH-4D-2
explained 8.39-10.9 and 5.03-12.03% of the phenotypic variance
across environments in populations GZ and ZC, respectively.
The alleles decreasing PH were from parents Zhoumail6 in
population GZ and Zhou 8425B in population ZC.

Guan et al. (2018) reported two QTLs that were also
linked in the coupling phase and located in similar positions
as qPH-4D-1 and qPH-4D-2. qPH-4D-2 was detected in four
environments and with BLUE values across eight environments
in Guan et al. (2018). In addition, gPH-4D-2 was closely
linked with marker wsnp_Ex_c683_1341113, which was also
observed in Guan et al. (2018). As reported by Ren et al.
(2021), gPH-4D-2 was detected in the similar position between

SNPs AX-89692818 and AX-109606880 across environments.
Therefore, it is highly possible that gPH-4D-2 is a novel semi-
dwarfing gene. The common marker wsnp_Ex_c683_1341113
was located at about 54.4 Mb on chromosome 4D (IWGSC
RefSeq v1.0; IWGSC, 2018). A high confidence putative gene,
TraesCS4D02G076400 (50,888,586-50,889,461 bp), is located
around the marker and in the confidence interval of gPH-4D-
2, with the annotation of encoding gibberellin regulated protein
(IWGSC RefSeq v1.1 annotation; IWGSC, 2018). Gibberellin
is an essential endogenous regulator in plant growth. The
well-known dwarfing genes Rht-Blb and Rht-DI1b regulate
DELLA proteins in gibberellin signaling to reduce the response
to gibberellin (Peng et al, 1999). The gibberellin-sensitive
gene Rht8 was also widely used in regulating PH in wheat
(Gasperini et al., 2012). Gene TraesCS4D02G076400 in wheat was
annotated to gene GAST1 (UniProtKB/TrEMBL; Acc:C8C4P9),
first reported in tomato to encode the gibberellins-stimulated
transcript (Shi et al., 1992). GAST1 belongs to the gibberellic acid-
stimulated Arabidopsis (GASA) family, which plays important
roles in plant growth and development, such as stem growth,
plant height, and grain length, width, and weight (de la
Fuente et al.,, 2006; Nahirfiak et al., 2012a,b; Shi et al., 2020).
Furthermore, qPH-4D-2 was detected in two populations in
this study, one from the cross between Zhou 8425B and
Chinese Spring. TraesCS4D02G076400 had high RNA expression
levels in Chinese Spring in different tissues and development
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stages (expVIP, http://www.wheat-expression.com/). Therefore,
TraesCS4D02G076400 is likely to be the candidate gene for gPH-
4D-2. PH is a crucial trait for morphogenesis and grain yield in
wheat. The newly discovered PH QTL on chromosome 4DS in
this study may enrich the genetic resources in breeding for semi-
dwarfing wheat. Reasons that gPH-4D-2 was not identified by
the individual could be the short distance between the QTL and
Rht-D1I, and the lower marker density around the two QTLs in
individual mapping populations.

Advantages of Using Consensus Map in
QTL Mapping

Due to the limited number of crossing-overs and limited genetic
variation in individual populations, linkage maps constructed
from individual mapping populations usually have a large
number of co-localized markers and low marker density. A
consensus map combines the genetic information included in
multiple populations and provides a better genomic coverage
with higher marker density (Maccaferri et al., 2015; Allen et al.,
2017). A consensus map of higher density offers the chance
to map QTLs to narrower chromosomal intervals, which will
facilitate the discovery of causal genes and the identification of
closely linked markers for MAS. Simulation results conducted in
this study confirmed that the use of a consensus map with higher
marker density reduced the confidence interval of detected QTLs.

Even for the same trait, QTLs detected in different populations
using their own genetic maps sometimes are hardly compared
and synthesized, because of the unshared markers and variations
in the genetic background (Sukumaran et al., 2015). Comparisons
on QTL positions estimated from different populations are
usually conducted by anchoring the linked markers to the
genome assembly. However, genome sequences usually have
wide variations between parental varieties, and the anchor
information to the genome sequence may not be completely
accurate. A consensus map provides the direct comparison for
QTLs detected from different populations, which is important,
particularly in species lacking a completely sequenced reference
genome. In this study, we demonstrated that QTL mapping
using a consensus map can better identify common and stable
QTLs across populations and environments. For example, Rht-
BI1 and Rht-DI1, which had been cloned, were the two genes
reducing plant height in wheat (Peng et al., 1999). Each
of them was located almost in the same position in two
populations on the consensus map. gPH-5A-2, qSL-2D-2, gSL-
5A-2, and qTKW-4B-2 were detected in populations DS and
GZ; qPH-2B-2 was detected in populations DS and ZC; qPH-
4B-1, qPH-4D-1, qPH-4D-2, and gSL-2D-1 were identified in
populations GZ and ZC; qSL-6B-4 was detected in all the
three populations. The common QTLs identified in multiple
populations reflected the stable genetic effects of QTLs in
different genetic backgrounds, which might be more valuable
in breeding.

The genetic relationship among PH and SL QTLs as observed
in this study, showed that QTL mapping using the consensus
map can also facilitate the comparison across the correlated traits,
and therefore provide the opportunity to understand the genetic
correlation between phenotypically correlated traits and identify
the QTL-rich genomic regions. Moreover, the consensus map

also provides the chance to detect common QTLs with smaller
effects occurring in different populations.

Further studies may still be needed to determine the key
factors affecting the accuracy of consensus map construction
and subsequent QTL mapping, such as proportion of common
markers shared by multiple mapping populations, inconsistency
degree of marker orders in individual populations, population-
specific recombination frequencies, and the optimum algorithm
used to construct the consensus map. In addition to bi-parental
populations, as have been used in this study, multi-parental
populations have been developed in recent years in crops together
with suitable genetic analysis methods (Gardner et al., 2016;
Zhang et al.,, 2017, 2019; Shi et al.,, 2019; Qu et al., 2020). In
theory, a consensus map can also be constructed by combining
a number of bi-parental and multi-parental populations, when
common markers are shared by these populations.

In conclusion, the consensus map constructed for this study
allows for systematic QTL mapping studies, and comparison
and clustering of mapping results in wheat genetic studies.
The QTL mapping based on the consensus map resulted in
higher accuracy, narrower confidence interval, and a larger
QTL number. The stable QTLs across tested environments and
mapping populations, and the predicted QTL genotypes and
genotypic values can be used to select wheat cultivars with
suitable PH, large SL, and medium to high kernel weight. SNPs
closely linked with these stable QTLs can be used to select suitable
genetic materials and make suitable crosses in wheat breeding
programs. SNPs closely linked to traits can also be converted
into Kompetitive allele-specific PCR (KASP) markers (Kaur et al.,
2021) and then used for large-scale genotyping to screen desirable
individuals in segregating breeding populations.
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Waterlogging is one of the main abiotic stresses severely reducing barley grain
yield. Barley breeding programs focusing on waterlogging tolerance require an
understanding of genetic loci and alleles in the current germplasm. In this study,
247 worldwide spring barley genotypes grown under controlled field conditions were
genotyped with 35,926 SNPs with minor allele frequency (MAF) > 0.05. Significant
phenotypic variation in each trait, including biomass, spikes per plant, grains per
plant, kernel weight per plant, plant height and chlorophyll content, was observed.
A genome-wide association study (GWAS) based on linkage disequilibrium (LD) for
waterlogging tolerance was conducted. Population structure analysis divided the
population into three subgroups. A mixed linkage model using both population structure
and kinship matrix (Q+K) was performed. We identified 17 genomic regions containing
51 significant waterlogging-tolerance-associated markers for waterlogging tolerance
response, accounting for 5.8-11.5% of the phenotypic variation, with a majority of them
localized on chromosomes 1H, 2H, 4H, and 5H. Six novel QTL were identified and
eight potential candidate genes mediating responses to abiotic stresses were located
at QTL associated with waterlogging tolerance. To our awareness, this is the first
GWAS for waterlogging tolerance in a worldwide barley collection under controlled field
conditions. The marker-trait associations could be used in the marker-assisted selection
of waterlogging tolerance and will facilitate barley breeding.

Keywords: barley, waterlogging tolerance, genome-wide associated study, marker-trait association, quantitative
trait loci, candidate genes

INTRODUCTION

Waterlogging is a major abiotic stress that causes oxygen depletion and carbon oxide accumulation
in the rhizosphere (Bailey-Serres and Voesenek, 2008) and has become one of the main concerns
for crops limiting agricultural production globally. It is estimated that, worldwide, 10-16% of the
arable soils are affected by waterlogging (Setter and Waters, 2003; Yaduvanshi et al., 2014). In
western Canada, waterlogging has been identified as an important limiting factor for the crops
grown, including barley. In the last decade, waterlogging was accountable for 52% of post-harvest
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claims for crop losses by farmers in Manitoba and Saskatchewan
[Manitoba Agricultural Services Corporation (MASC), 2017;
Saskatchewan Crop Insurance Corporation (SCIC), 2017].
Waterlogging occurs when there is excess moisture in the soil
caused by high precipitation combined with poor soil drainage,
resulting in anoxic and hypoxia within roots (Arduini et al,
2016). Waterlogging also causes an excess of ethylene and carbon
dioxide that also increases metabolic toxins and microelements
such as iron and manganese in soil solution or roots, reduces
respiration, root conductivity to water, and nutrient uptake, thus
affecting plant growth and survival (Setter and Waters, 2003).

Barley (Hordeum vulgare L.) is the fourth most important
cereal crop globally and Canada’s fourth-largest crop and is
primarily used for livestock feed, malting, and food (FAOSTAT
Production, 2020; Statistics Canada, 2020). Canada is the fourth
largest barley producer and the second-largest malt exporter in
the world. On average, each year, ~$1 billion is directly generated
from the export of feed barley and malt [Canadian Agri-Food
Trade Alliance (CAFTA), 2020]. Barley is more susceptible to
waterlogging stress than other cereals (Setter and Waters, 2003).
Waterlogging stress may cause significant yield losses in barley
that vary from 10 to 50%, depending on factors such as the
depth and duration of flooding, the development stage of the
waterlogged plant, temperature (Setter et al., 1999) and type of
soil (Pang et al., 2004). Waterlogging stress affects the genome-
wide gene expression responses in barley roots, increasing the
expression of many genes related to stress tolerance in barley
roots, including glycolysis and fermentation-related genes, as well
as ethylene-responsive element binding factors, and decreasing
the expression of genes related to starch and sucrose metabolism,
and nitrogen and amino acid metabolism (Borrego-Benjumea
et al., 2020).

In barley, damages caused by soil waterlogging include
chlorosis and premature leaf senescence, reduced root growth,
tillering, dry matter accumulation, number and weight of kernels,
and increased floral sterility (De San Celedonio et al., 2014, 2018;
Masoni et al., 2016; Ploschuk et al., 2018; Sundgren et al., 2018).
Under outdoor conditions in Argentina, Ploschuk et al. (2018)
assessed tolerance to 14-days of early- or late-stage waterlogging
of winter barley, which produced adventitious roots with 19%
of aerenchyma. They showed that photosynthesis was reduced
during waterlogging, but early-waterlogged plants were able to
recover upon drainage with seed production reaching 85% of the
controls, while late-waterlogged plants only attained 32% in seed
production. Sayre et al. (1994) found that the growth stage of
barley from leaf emergence to the booting stage is more sensitive
to waterlogging, while Liu et al. (2020) reported that waterlogging
close to heading is the most susceptible period, with yield losses
primarily attributed to reductions in spikelet fertility and grain
weight. In the Canadian Prairies, it has been projected increased

Abbreviations: BIO, above-ground dry Biomass; CABC, chlorophyll a+b content;
CCC, chlorophyll carotenoids content; GP, number of grains per plant; GWAS,
Genome-wide association study; KWP, kernel weight per plant; LD, linkage
disequilibrium; PH, plant height; QTL, quantitative trait loci/locus; SNP, single
nucleotide polymorphism; SP, number of spikes per plant; WLS, waterlogging
score.

precipitation in the coming years during May-June period (Blair
etal., 2016). This is a critical period in the barley growing season
in this region where increased precipitation reduces barley grain
yield (Borrego-Benjumea et al., 2019). Therefore, it is important
to develop cultivars tolerant to excess moisture and thus to
increase the yield stability of barley.

Waterlogging tolerance is a complex quantitative trait under
strong environmental influence with relatively low heritability
of grain yield in barley (Hamachi et al., 1990). Due to this low
heritability and dependency on environmental conditions, the
direct selection of barley for waterlogging tolerance is time-
consuming and less effective. Marker-assisted selection (MAS) is
an effective approach that can improve the efficiency of breeding
waterlogging-tolerant barley varieties and avoid environmental
effects. MAS requires identifying appropriate quantitative trait
loci (QTL) for traits associated with waterlogging tolerance,
and the development of molecular markers closely linked to
these traits. In barley, major QTL associated with waterlogging
tolerance have revealed numerous genomic regions that affect
important traits, such as chlorophyll fluorescence (Bertholdsson
et al, 2015), root aerenchyma formation in cultivated and
wild barley (Li et al, 2008; Zhang et al, 2016; Zhang X.
et al., 2017), root membrane potential (Gill et al., 2017), root
porosity (Broughton et al., 2015; Zhang et al., 2016), reactive
oxygen species (ROS) formation (Gill et al., 2019), waterlogging
score (Li et al, 2008; Zhou, 2011; Zhou et al.,, 2012), and
yield components (Xue et al., 2010; Xu et al., 2012). All these
major QTL have been mapped using doubled haploids (DH)
populations from bi-parental crosses of contrasting phenotype
parents for waterlogging. Although this approach has been the
most applied and has been very successful in detecting many QTL
for waterlogging tolerance in barley, few of the QTL reported
have been successfully used in MAS.

Association mapping (AM) is another alternative to mapping
QTL associated with complex traits in crops. The AM takes
advantage of historic linkage disequilibrium to uncover genetic
associations. Genome-wide association study (GWAS) requires
high marker density because linkage disequilibrium (LD) is low
in GWAS populations than in bi-parental populations. In GWAS,
the mapping population consists of a diverse set of individuals or
lines drawn from natural populations and breeding populations.
GWAS has been used to detect QTL involved in response
to waterlogging stress in various crops such as maize (Zhang
et al., 2013), rice (Zhang M. et al., 2017), soybean (Cornelious
et al., 2005) and wheat (Sundgren, 2018). In barley, GWAS
has been used to identify QTL for not only agronomic traits,
such as yield and yield components-related traits, using GWAS
(Pasam et al., 2012; Locatelli et al., 2013; Tondelli et al., 2013;
Pauli et al., 2014; Bellucci et al., 2017; Xu et al., 2018) but
also tolerance to abiotic stresses such as salinity (Long et al.,
2013; Fan et al., 2016; Mwando et al., 2020), drought (Varshney
et al., 2012; Jabbari et al., 2018; Tarawneh et al., 2020), acid soil
(Zhou et al,, 2016), and low potassium (Ye et al., 2020) stress
tolerance. However, no information is available for QTL mapping
for waterlogging tolerance in barley by GWAS. In the present
study, we assessed a worldwide barley collection for waterlogging
stress tolerance under controlled field conditions. We evaluated
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the phenotypic and genetic diversity and the patterns of LD
decay across the barley genome. We conducted GWAS for
waterlogging tolerant traits, aiming to uncover novel genomic
regions and identify marker-trait associations for waterlogging
tolerance and confirm the previously identified genomic regions
and single nucleotide polymorphism (SNP) marker associated
with waterlogging tolerance. To our awareness, this is the first
AM study for waterlogging stress tolerance in a worldwide barley
collection under controlled field conditions.

MATERIALS AND METHODS

Plant Material

A spring barley worldwide collection of 247 genotypes, including
advanced breeding lines, cultivars, and landraces, was assembled
and used in this study. The majority of genotypes were from
Canada (30%), the USA (12%), China (10%), and Australia (8%).
The rest were from 35 different countries.

Field Experiment

The barley genotypes were evaluated for waterlogging tolerance
in controlled field conditions in one location at the experimental
station of the Brandon Research and Development Centre
(49052/ N, 99°58' W) in two consecutive years (2016 and 2017).
This location is a place where water is prone to accumulate,
creating excess moisture problems. The soil has a sandy loam
texture. The field trial area was leveled before seeding to
ensure that all plants would be under the same water level.
A ridge was built on the treatment side and was encircled
by a plastic film to avoid water escape. The experimental
design used was a randomized complete block design with
three replications. Each plot represented one experimental unit,
consisting of a single-row plot of 0.92m length containing 25
seeds evenly distributed with 0.31m spacing between rows.
Seeds were sown in late May or early June following standard
agronomic practices. Waterlogging-tolerant genotype Deder2
and waterlogging-sensitive genotype Franklin were used as
checks. The waterlogging stress treatment was initiated at the
tillering stage on the treatment side by adding the water to
0.5-1cm above the soil surface. Waterlogging treatment was
maintained at the same level and continued until the susceptible
checks showed considerable stress symptoms (around 70%
leaf symptom yellowing) and genotypic differences were easily
distinguishable. The treatment duration was 9 and 7 days in
2016 and 2017, respectively. Then water in the waterlogged
plots was drained out, and the plants were allowed to grow
to maturity. Standard agronomic and cultural practices were
applied to the other side of the field, used as control. The
precipitation during the growing season was 394 and 245 mm in
2016 and 2017, respectively.

After full maturity, three individual plants were randomly
harvested from each plot for analytical measurements. The traits
evaluated included above-ground dry Biomass (BIO), number
of spikes per plant (SP), number of grains per plant (GP),
kernel weight per plant (KWP), plant height (PH), chlorophyll
a+b content (CABC), chlorophyll carotenoids content (CCC),
and waterlogging score (WLS) and were measured for 2

years in both treatment and control conditions. WLS was
determined based on plant survival and leaf chlorosis (1 = not
affected by waterlogging, 9 = plants died from waterlogging)
(Supplementary Figure 1) after drainage (Zhou, 2011). For
chlorophyll content determination, the pooled upper second leaf
samples of six plants per plot under waterlogging conditions
and three plants per plot under control were collected after
the last day of treatment. From each pooled tissue leaf sample
per plot, three biological replicates of 50 mg leaf tissue each
were incubated with methanol. The absorbance, at wavelengths
470, 653, and 666 nm, was read using a spectrophotometer
(SpectraMax 190 Microplate Reader). The number of pigments
was calculated according to the formula from Lichtenthaler and
Wellburn (1983). The mean values (three plants from each
replicate x three replicates) of each plot sampled were subjected
to statistical analysis.

Statistical Analysis of Phenotypic Data

All data were analyzed using the statistical software JMP SAS
version 14.1 (SAS Institute Inc., Cary, USA). The phenotypic
data were analyzed using a mixed-effects model with genotype
as a fixed effect, and year and replication nested within year
as random effects. Least-squares means were estimated for
waterlogging-treatment and control datasets within combined
data across years. Pearson’s correlation coefficient between pairs
of traits was estimated to express the relationships between traits
using the least-squares means across the combined years.

Genotyping

The barley collection was grown in the greenhouse to generate
plant tissue for DNA extraction using a standard potting mix,
standard photoperiod conditions (16 h light), and 70% humidity.
Genomic DNA from each genotype was extracted from pooled
leaf tissue samples of four seedlings per genotype using a
Qiagen DNeasy Plant Mini Kit (Qiagen GMbH, Germany).
Before normalization, the quality and quantity of the extracted
DNA were verified using a NanoDrop 1000 spectrophotometer
(Thermo Scientific, Wilmington, Delaware, USA) and agarose
gel electrophoresis, respectively. The samples were genotyped
using the Barley 50K iSelect SNP Array (Illumina Inc., San
Diego, CA, USA), containing 44,040 working assays (Bayer et al.,
2017). All these data is presented in Supplementary Table 0.
The SNP markers were further filtered using thresholds for
minor allele frequency (MAF) of 0.05, missing rate of 0.20, and
heterozygosity of 0.01. The final, filtered set of 35,926 SNPs
was subsequently used for GWAS. Genotypes showing more
than 0.02 heterozygous loci and call rates below 0.95 were also
excluded from further analysis. There were 3551, 5798, 5486,
3904, 6497, 4233, and 5017 SNPs located at chromosomes 1 to
7, respectively, with 1,440 markers of unknown position.

Population Structure, Kinship, and Linkage

Disequilibrium Analyses

The population structure of the 247 barley genotypes, which
represents the genetic similarity among genotypes, was assessed
using the STRUCTURE program. Principal component analysis
(PCA) (JMP Genomics 9.1) and neighbor-joining (NJ) (TASSEL
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5.2.28) tree analysis were used as complementary approaches
to confirm the results obtained using STRUCTURE. The
STRUCTURE software version 2.3.4 (Pritchard et al., 2000) was
used to estimate the most likely number of subpopulations
(K) and the subpopulation coefficients (Q) by detecting allele
frequency differences within the data and assigning individuals
to those subpopulations based on analysis of likelihoods. A
subset of 185 SNP markers, from the final filtered set of 35,926
SNP markers genotyped, were selected every ~25,000,000 bp
on each chromosome through the barley genome, to ensure
that the sample was representative. A Bayesian-based analysis
was run using the admixture ancestry model with correlated
allele frequencies (Falush et al., 2003). The burn-in period was
set at 100,000, and the Markov Chain Monte Carlo (MCMC)
repetitions at 100,000. The number of assumed clusters (k)
was set from k = 1-7, and for each k, five runs were
performed separately. The output data from STRUCTURE were
assessed using STRUCTURE Harvester (Earl and von Holdt,
2012), where the optimum number of subpopulations (K) was
determined by the Evanno method (Evanno et al., 2005). The
K value was considered to be optimum, while AK reaches the
maximum. Data for the most likely number of determining
clusters (K 3) were run to correctly align the clusters
labeled from all five replications in STRUCTURE to obtain
Q coeflicients. The Q matrix with the lowest variance for the
most likely number of k populations was selected and used
as the fixed covariate in GWAS models. PCA was performed
in JMP Genomics version 9.1 (SAS Institute Inc., Cary, USA).
A K matrix representing the proportion of shared alleles for
all pairwise comparisons in each population was computed.
The neighbor-joining phylogenetic tree was implemented in
TASSEL version 5.2.28 (Bradbury et al., 2007), which uses
simple parsimony substitution models and is displayed by
Archaeopteryx software.

The pairwise kinship values (kinship K matrix) for the
association panel were calculated using the Identity-by-Descent
(IBD) method in JMP Genomics 9.1. The K matrix estimates
the relationships among the lines using marker data, rather than
pedigree information, and computes the relationship measures
directly while also accounting for selection and genetic drift.
This kinship matrix was used for the subsequent GWAS in
JMP Genomics as a random factor. The kinship coefficient was
calculated and plotted vs. its frequency in the association panel.

Linkage disequilibrium (LD) analysis of the whole-genome
and each of the seven chromosomes was performed in JMP
Genomics 9.1 using 35,926 SNPs. Squared correlation coefficients
(r*) were used to estimate the LD among the pairwise SNP
markers using the maximum likelihood algorithm. To visualize
the extent of LD, r* was plotted against the map distance (bp),
and a smoothing spline was fitted (A = 100,000). The baseline 2
value was 0.1; an arbitrary value often used to describe LD decay
(Zhu et al., 2008). The LD decay was estimated at the intersection
point of the smoothing spline-fitting curve and the 7* value and
was considered to estimate the extent of LD in the genome. All
LD values above this critical r value were considered to be caused
by genetic linkage.

Genome-Wide Association Mapping

Analysis and SNP Markers Identification

A total of 247 spring barley genotypes were used in this study
based on genotypic and phenotypic data availability. Genome-
wide association (GWA) mapping was conducted on each group
using a total of 35,926 SNPs in JMP Genomics 9.1. Based on the
population structural analysis, the general linear model (GLM)
and mixed linear model (MLM) were run to investigate best-
fit models in the current study to search for SNP associations
with the traits. The MLM model considers both population
structure (Q) and relative kinship (K) effects, and showed the
best approximation of the expected cumulative distribution
of P-values, and therefore, more effective in controlling false
positives, and it was used for GWAS. The population structure
matrix (Q matrix) evaluated using STRUCTURE and the kinship
matrix analyzed using JMP Genomics 9.1 were used for the
model. Association analysis was performed for each trait in each
treatment for the phenotypic mean value of 2016 and 2017.
The estimated effects for each allelic class were obtained directly
from the mixed linear model. Adjusted R? values were estimated
from the linear regression model representing the percentage of
phenotypic variation explained by the associated SNPs.

A GWAS threshold P-value of < 1.6 x 107* [—logio(P-
value) < 3.8] was used for declaring significant-marker trait
associations. They were based on the median of two threshold
methods for determining significant P-values: a more stringent
method of determining P-value (Wang et al., 2012), where the
significance threshold is determined using the equation o =
1/m where m is the number of markers [-logjo(P-value) <
4.5]; and a less stringent method (Chan et al,, 2010) that is still
widely accepted, where the bottom 0.1 percentile distribution
of P-values is used as a threshold for significance [-logig
(P-value) < 3]. Manhattan plots were constructed with the
chromosome position on the X-axis against —-log(P-value) of all
SNPs, and quantile-quantile (QQ) plots of observed P-values
were constructed against expected P-values using JMP Genomics
9.1. The distribution of the QQ plot was considered to select the
best model for each trait. The optimum model for each variable
was determined as the one with the QQ plot with a smaller
deviation from the normal distribution.

The GWAS was performed with the control, waterlogging
treatment and relative datasets. The relative dataset was
calculated as the relative difference between trait performance
at the control and waterlogging treatment conditions. The
markers that were significantly associated were assigned to QTL
regions based on the trait, their chromosomal positions, and the
estimated LD decay (1.460 Mbp). The identified QTL regions
under control conditions were compared with QTL reported
in previous studies in barley dealing with agronomic traits
(Supplementary Table 1), and the waterlogging treatment and
relative datasets were compared with QTL reported in previous
studies in barley for waterlogging stress tolerance-related traits
(Supplementary Table 2). When possible, BarleyMap (http://
floresta.eead.csic.es/barleymap/find/) was used to collect cM
positions from the POPSEQ_2017 genome map (Mascher et al.,
2013) for significant markers in our study, to enable an
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approximate comparison between the physical and genetic map
positions with the previous studies that reported QTL regions in
genetic distance.

The phenotypic allele effect of each SNP locus, on the
evaluated traits, was calculated through comparison of the
average phenotypic value for each genotype for the specific allele
with that of all genotypes (Mei et al., 2013).

Candidate Gene Prediction

We opted to investigate the genes in the vicinity of each
significant marker-trait associations, using a pre-defined
flanking window of 200-kb upstream and downstream, below
the 1.46 Mb LD decay detected in the current barley mapping
collection (Lei et al., 2019). The identified genes were manually
screened for potential annotations. Predicted genes were
extracted from the barley reference genome assembly (IBSC
v2; Mascher et al.,, 2017). Annotations were downloaded from
Ensembl  (http://plants.ensembl.org/Hordeum_vulgare/Info/
Index) and AmiGO Gene Ontology (amigo.geneontology.org).
The role of the potential candidate genes in response to abiotic
stresses, especially waterlogging, was further examined using
published literature.

RESULTS
Phenotypic Data

Phenotypic variation was observed among genotypes for all
traits in both control and waterlogging treatment (Table 1;
Supplementary Figure 2). The frequency distribution of the
genotypes for the investigated traits in the control and
waterlogging treatment is presented in Supplementary Figure 3.
In the control dataset, averaged over 2 years, BIO of the genotypes
varied from 12.5 to 71.9 g, generated 5.4 to 22.4 SP, 9.2 to 312.2
GP, and weighted 0.2 to 14.5g KWP. PH ranged from 18.5 to
95.8 cm, CABC varied from 0.89 to 1.54 mg/g leaf tissue, while
CCC content varied from 0 to 0.17 mg/g leaf tissue (Table 1).
After the exposure to waterlogging stress in the waterlogged
dataset, averaged over 2 years, the genotypes varied in BIO from
1.7 to 36.3g, generated 1.9 to 17.2 SP, 3.5 to 255.8 GP, and
weighted 0.1 to 7.7g KWP. PH ranged from 11.4 to 58.7 cm,
CABC varied from 0.39 to 1.23 mg/g leaf tissue, while CCC varied
from 0 to 0.12 mg/g leaf tissue (Table 1). As for WLS, the mean
was 6.8, with a range from 4.7 to 8.8. Overall, for all genotypes,
waterlogging stress reduced BIO, SP, GP, KWP, PH, CABC, and
CCCby 72.1, 61.7, 67.5, 71.7, 45.1, 38.7, and 54.2%, respectively
(Supplementary Figure 3). The coefficient of variation for the
combined 2 years of data was higher for KWP (38.5 and
49.5% in control and waterlogging treatment, respectively),
and lower for PH (16.0 and 17.4% in control and treatment
conditions, respectively). There were highly significant (P < 0.05)
genotypic differences both on individual and combined years
for all traits except CABC and CCC (Table 1). The frequency
distribution of all the traits generally fits a normal distribution
(Supplementary Figure 3).

Correlations among traits under control and waterlogging
treatment for 2016, 2017, and overall are shown in Table 2. In
the combined 2 years of data, a negative correlation (r = —0.14

to —0.55; P < 0.001) was observed between the WLS and all the
traits (Table 2). Yield component traits (BIO, SP, GP, KWP, and
PH) had high correlations in both control (r = 0.72 to 0.94; P <
0.001) and waterlogging (r = 0.50-0.98; P < 0.001) treatment.

Population Structure, Kinship, and Linkage

Disequilibrium Analyses

The Bayesian approach implemented in STRUCTURE revealed
the presence of three subpopulations with the highest likelihood
for K = 3 (Supplementary Figure4) and partitioned the
247 genotypes into three principal groups composed of 96,
83, and 68 genotypes each. Furthermore, the PCA analysis
displayed consistent results, confirming the existence of the
three subpopulations in agreement with the population structure
analysis by STRUCTURE (Figure 1C), with the first two
coordinates accounting for 72.5% of the genotypic variation
(Figure 1A). The phylogenetic analysis partitioned the 247
genotypes into three principal groups, following the results
obtained with STRUCTURE and PCA analyses (Figure 1B).
Subpopulation 1 is mainly composed of genotypes from the USA
(21), Canada (16), and Australia (8), subpopulation 2 included
genotypes mainly from China (23), Australia (10), Switzerland
(9), and Ethiopia (8), while subpopulation 3 included genotypes
from Canada (55), US (9), Australia (1), Brazil (1) China (1),
and Japan (1).

Squared correlation coefficient (r?) values among the marker
pairs were used to estimate LD decay across all seven
chromosomes (Figure 2) and each chromosome separately. The
mean r?> ranged from 0.0178 (chromosome 5H) to 0.0261
(chromosome 4H). The arbitrary baseline r? value was 0.1. The
LD across all chromosomes decayed at 1,460,356 bp, whereas LD
decay calculated for each chromosome separately ranged between
1,036,588 bp (chromosome 6H) and 2,290,772 bp (chromosome
1H). Based on the LD decay results, 35926 SNPs (MAF >
0.05) will cover the entire barley genome and are adequate for
GWAS with the assembled barley collection. Therefore, the mean
window size of the QTL determined in this barley collection is
+1,460,356 bp from the highest peak of the significant marker-
trait association.

Association Mapping Analysis

We performed GWAS using 35,926 SNPs (with MAF > 0.05)
for the control and waterlogging treatment conditions, as well as
the relative difference between them using the phenotypic overall
field experiment (mean value of 2016 and 2017), and a threshold
P-value of < 1.6 x 1074 [-logio(P-value) < 3.8]. Manhattan
plots showed the significance of markers associated with the
evaluated traits for the overall control, waterlogging treatment
and relative datasets in Figures 3-5. QQ plots displayed that the
expected and observed P-values initially matched, but eventually,
they were delineated and deviated to indicate a reasonable
positive (Supplementary Figures 5-7). Thus, the GWAS analysis
is reliable and not likely to give false negatives (Figures 3-5).

Control Dataset
In the overall control conditions, the GWAS analysis identified
a total of 92 markers significantly associated with BIO (52
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TABLE 1 | Mean values and standard deviations of waterlogging-related traits observed under control and waterlogging treatment in field conditions for 247 spring barley
genotypes.

Trait Year Treatment Mean SD Min Max Red.? SE CV (%) G
BIO (g) 2016 Control 37.3 16.9 25 86.7 71.5% 1.07 45.3
Waterlogged 10.6 6.5 24 50.4 0.41 61.3
2017 Control 42.8 7.7 20.3 79.0 72.6% 0.49 18.0
Waterlogged 1.7 5.4 0.4 31.3 0.34 45.9 o
2016/17 Control 40.1 111 12.5 71.9 72.1% 0.70 27.7 i
Waterlogged 1.2 5.0 1.7 36.3 0.32 44.6 e
SP 2016 Control 12.2 4.9 2.0 25.0 75.1% 0.31 39.9 o
(number) Waterlogged 3.0 2.4 0.0 24.2 0.15 78.7 =
2017 Control 13.8 2.7 6.7 23.4 49.8% 0.17 19.8
Waterlogged 6.9 1.8 2.2 12.2 0.11 25.8
2016/17 Control 13.0 3.0 5.4 22.4 61.7% 0.19 23.3
Waterlogged 5.0 1.6 1.9 17.2 0.10 32.3
GP 2016 Control 150.8 84.3 2.0 430.5 90.0% 5.35 55.9
(number) Waterlogged 15.0 26.2 0.0 329.0 1.7 174.4 o
2017 Control 167.5 49.0 13.4 362.0 47.1% 3.1 29.3 e
Waterlogged 88.6 35.1 1.0 196.9 2.2 39.6 o
2016/17 Control 159.2 57.0 9.2 312.2 67.5% 3.62 35.8 o
Waterlogged 51.8 24.2 3.5 255.8 1.5 46.8 e
KWP (g) 2016 Control 6.3 3.7 0.0 19.0 92.5% 0.23 58.6
Waterlogged 0.5 0.9 0.0 9.1 0.1 182.8
2017 Control 6.6 2.2 0.3 16.1 51.9% 0.14 33.4
Waterlogged 3.2 1.4 0.0 8.6 0.1 43.8
2016/17 Control 6.4 25 0.2 14.5 71.7% 0.16 38.5
Waterlogged 1.8 0.9 0.1 7.7 0.1 49.5 e
PH (cm) 2016 Control 73.5 13.7 17.5 101.3 54.8% 0.87 18.7 e
Waterlogged 33.2 10.7 12.3 65.0 0.7 32.3 NS
2017 Control 725 11.0 19.5 104.0 35.3% 0.70 15.2 o
Waterlogged 46.9 8.6 7.8 70.5 0.5 18.4 o
2016/17 Control 73.0 11.6 18.5 95.8 45.1% 0.74 16.0
Waterlogged 401 7.0 1.4 58.7 0.4 17.4
CABC 2016 Control 1.13 0.2 0.66 1.55 41.3% 0.01 13.75 NS
(mg/g leaf tissue) Waterlogged 0.66 0.3 0.03 1.39 0.02 38.12 NS
2017 Control 1.39 0.1 0.96 1.67 36.6% 0.01 9.63 NS
Waterlogged 0.88 0.2 0.39 1.47 0.01 21.79 e
2016/17 Control 1.26 0.1 0.89 1.54 38.7% 0.01 8.41 NS
Waterlogged 0.77 0.2 0.39 1.28 0.01 21.22 =
CCC 2016 Control 0.06 0.02 0.00 0.12 10.5% 0.00 42.75 NS
(mg/g leaf tissue) Waterlogged 0.05 0.02 0.00 0.09 0.00 34.52 NS
2017 Control 0.14 0.03 0.01 0.22 71.8% 0.00 24.02 NS
Waterlogged 0.04 0.03 0.00 0.16 0.00 82.08 NS
2016/17 Control 0.10 0.03 0.00 0.17 54.2% 0.00 33.38 NS
Waterlogged 0.04 0.02 0.00 0.12 0.00 58.30 NS
WLS 2016 Waterlogged 6.9 1.2 3.3 9.0 0.08 17.5 *
(1-9 rating) 2017 Waterlogged 6.7 0.7 4.7 9.0 0.05 10.8 o
2016/17 Waterlogged 6.8 0.8 4.7 8.8 0.05 12.0 o

BIO, biomass; SF, spikes per plant; GR, grains per plant; KWP, kernel weight per plant; PH, plant height; CABC, chlorophyll a+b; CCC, carotenoids content; WLS, waterlogging score;
SD, standard deviation; Red., Reduction,; SE, standard error; CV, coefficient of variance; G, genotypic effect.

aReduction ratio of all genotypes relative to control.

*Significant at P < 0.05; **significant at P < 0.01; ***significant at P < 0.007; NS not significant.
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TABLE 2 | Pearson’s phenotypic correlation coefficients among mean variables (least-squares entry means) of traits for control and waterlogging treatment measured in

the spring barley collection in field conditions.

Year Control
BIO SP GP KWP PH CABC cccC
2016 BIO 0.83** 0.76"* 0.70"* 0.51*** —0.05 NS 0.07 NS
SP 0.70%* 0.87*** 0.79"** 0.44*** 0.00 NS 0.07 NS
GP 0.71%* 0.79"** 0.94** 0.48"** 0.03 NS 0.04 NS
e KWP 0.71%* 0.81™** 0.96*** 0.48"** 0.02 NS 0.05 NS
g PH 0.25"* 0.46* 0.28"* 0.27%* —-0.12* 0.15"*
§ CABC 0.23* 0.24* 0.12** 0.12* 0.50"* —0.55"**
.g’ CcC 0.18"** 0.10** 0.08* 0.06 NS 0.29"* 0.25"*
g WLS —0.51%** —0.53"* —0.39"* —0.41%** —0.61** —0.47** —0.28"*
§ 2017 BIO 0.71* 0.76"* 0.80"** 0.51*** —0.07 NS 0.10**
S SP 0.61** 0.73"* 0.69"* 0.22 —0.01 NS 0.11*
GP 0.61** 0.76"** 0.96"** 0.35"** —0.02NS 0.04 NS
KWP 0.55"** 0.69* 0.96** 0.37*** —0.08 NS 0.07*
PH 0.51*** 0.32*** 0.51*** 0.49"** —0.08 NS 0.08*
CABC —0.22*** 0.07 NS 0.12** 0.19"** —0.05 NS 0.02 NS
CCC 0.05 NS 0.08* 0.05 NS 0.05 NS 0.04 NS —0.11*
WLS —0.52*** —0.31** —0.32*** —0.27*** —0.42*** 0.27*** —0.12*
2016/17 BIO 0.79" 0.76"** 0.72%** 0.49* 0.02 NS 0.15"**
SP 0.61*** 0.83** 0.76™* 0.35"* 0.06* 0.15"**
GP 0.53"** 0.83*** 0.94** 0.43*** 0.05 NS 0.09*
KWP 0.50"** 0.80*** 0.98"** 0.44** 0.01 NS 0.06*
PH 0.35"** 0.55** 0.53*** 0.52"** —0.10"** 0.04 NS
CABC 0.10"* 0.30* 0.28"** 0.30"** 0.42*** 0.18"**
CCC 0.08"* 0.00 NS —0.04 NS —0.03NS 0.06* 0.00 NS
WLS —0.51*** —0.44*** —0.31%* —0.29"* —0.55"* —0.29"* —0.14***

Control above diagonal, waterlogging treatment below diagonal. The correlations are estimated by the REML method.
BIO, biomass; SF, spikes per plant; G, grains per plant;, KWF, kernel weight per plant; PH, plant height; CABC, chlorophyil a+b,; CCC, carotenoids content.
*Significant at P < 0.05; **significant at P < 0.01; ***significant at P < 0.001; NS not significant.

markers), SP (18 markers), GP (23 markers), KWP (15 markers),
and PH (62 markers), with some markers associated with
multiple traits (Supplementary Table 3). Based on their position
on chromosomes, these 92 significant markers mapped on 28
QTL regions on chromosomes 2H, 3H, 5H, 6H, and 7H, with
each QTL region consisting of 1 to 34 markers, which included
two regions for KWP; four regions for SP and GP; 12 regions for
BIO; and 20 regions for PH (Figure 3; Supplementary Table 3).
Some genomic regions were associated with multiple traits,
indicating possible shared QTL between traits. For BIO in the
control conditions, we found six genomic regions, out of 12,
consisting of clusters of significant markers that mapped at
27.8, 29.1, 515.6, 542.4, and 547.4 Mbp on chromosome 2H,
and at 600.9 Mbp on 5H (Table 3; Supplementary Table 3;
Figure 3); each region consisted of clusters from 2 to up
to 34 markers and explained on average from 6.2 to 12.3%
of the phenotypic variation. Chromosome 2H consisted of
the highest number of markers significantly associated with
BIO (52 SNPs), of which BOPA2_12_30872 had the lowest

P-value (6.3 x 10712) with an allele effect size of 6.8 that
individually explained 17.7% of phenotypic variation for BIO
(Supplementary Table 3). The three genomic regions associated
with SP in the control conditions were mapped at 29.7 Mbp on
chromosome 2H, at 634.9 Mbp on chromosome 3H, and 35.4
Mbp on chromosome 6H and accounted on average for 5.8, 6.8,
6.9, and 6.4% of the phenotypic variation, respectively (Table 3;
Supplementary Table 3). For GP in the control condition, we
found two genomic regions at 29.7 Mbp (clusters of 14 SNPs)
on chromosome 2H and 634.8 Mbp (7 SNPs) on 3H. On
average, each genomic region explained between 6.9 and 7.1%
of the phenotypic variation (Table 3; Supplementary Table 3).
The two genomic regions associated with KWP in the control
conditions were mapped at 29.7 Mbp on 2H (12 SNPs), and at
634.8 Mbp on 3H (3 SNPs). Each region explained, on average,
from 6.1 to 6.7% of the phenotypic variation across the 2 years
(Supplementary Table 3). For PH in the control conditions, we
found nine genomic regions consisting of clusters of at least two
significant markers that mapped at 28.5 Mbp (34 SNPs), 518.3
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FIGURE 1 | Model-based populations of spring barley collection: (A) Two-dimension distribution analyzed by principal component analysis (PCA) by JMP Genomics
9.1, (B) phylogenetic tree constructed by neighbor-joining (NJ) of genetic distance by TASSEL 5.2.28, and (C) Classification of three populations using STRUCTURE
2.3.4. The color code indicates the distribution of the accessions to different populations (Q1: red, Q2: green, Q3: blue) consistent in (A=C).

Q3

Mbp (2 SNPs), 523.4 Mbp (2 SNPs), 550.8 Mbp (2 SNPs), 723.7
Mbp (2 SNPs), and 727.6 Mbp (2 SNPs) on 2H, at 600.9 Mbp
(2 SNPs), 613.3 Mbp on 5H (2 SNPs), and 75.1 Mbp on 7H (2
SNPs). Each region individually explained from 5.8 to 11.4% of
the phenotypic variation (Supplementary Table 3).

Under control conditions, six marker-trait associations
representing genomic regions were associated with different
traits (Table 3). On chromosome 2H, the marker JHI-Hv50k-
2016-69385 at 19.0 Mbp was associated with the traits BIO
and PH, with similar effects in phenotype (6.9 and 5.8%
phenotypic variation, respectively); the marker JHI-Hv50k-
2016-72991 at 27.8 Mbp was coincidental for BIO, SP, and
PH, although with different effects in each trait (from 5.8
to 11.9% phenotypic variation); the marker JHI-Hv50k-2016-
73691 located at 29.6 Mbp was associated with the traits SP,
GP, and KWP; and the marker JHI-Hv50k-2016-94875 at 496.6
Mbp was shared by the traits BIO and PH (6.9 and 5.8%
phenotypic variation, respectively). On chromosome 3H, the
traits GP and KWP were associated with the same marker
JHI-Hv50k-2016-205562 located at 634.8 Mbp, with 8.2 and
6.8% phenotypic variation, respectively (Table 3). Finally, on
chromosome 5H, the traits BIO and PH were associated with

the marker JHI-Hv50k-2016-336773 mapped at 600.9 Mbp with
similar effects for the two traits (6.2 and 7.5% phenotypic
variation, respectively).

Waterlogging Treatment Dataset

In the overall waterlogging treatment conditions, the
GWAS analysis identified a total of 63 markers significantly
associated with BIO (33 markers), SP (11 markers), GP (10
markers), KWP (20 markers), PH (4 markers), and WLS
(25 markers), with some markers associated with multiple
traits (Supplementary Table 4). Based on their position on
chromosomes, these 63 significant SNPs were assigned to 24
QTL regions on chromosomes 1H, 2H, 3H, 4H, 5H, 6H, and 7H,
with each region consisting of 1-30 markers, which included
three regions for BIO; seven regions for GP; nine regions each
for SP and KWP, four regions for PH, and five for WLS (Table 4;
Figure 4). Some QTL regions were associated with multiple
traits, indicating possible shared QTL between traits. For BIO in
the waterlogging treatment conditions, three genomic regions
were detected at 27.8, 28.3, and 516.6 Mbp on chromosome
2H. The genomic region at 28.3 Mbp consisted of the highest
number of markers significantly associated with BIO (32 SNPs),
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FIGURE 2 | Plot of pairwise SNP linkage disequilibrium (LD) r? value as a function of inter-marker genetic distances (Mbp) of 247 spring barley genotypes. The blue
curve represents the smoothing spline regression model fit to LD decay. The red line represents the baseline r* value at 0.1. The intersection of the fitted smoothing
spline and r2 was observed at around 1,460,356 bp.

explaining on average 9.5% of the phenotypic variation of the
trait (Table4; Figure4). The most significant SNP marker,
BOPA2_12_30872 had the lowest P-value (3.3 x 10~%) with
an allele effect size of 2.8 that individually explained 11.8%
of phenotypic variation for BIO (Supplementary Table 4).
For SP in the waterlogging treatment conditions, we found
two genomic regions consisting of clusters of two significant
markers that mapped at 662.0 Mbp on 2H, and at 371,3 Mbp
on 4H. Each region with an allele effect size of 1.2 individually
explained from 7.4 to 8.57% of the phenotypic variation
(Table 4). Clusters of two and three SNPs on chromosomes
2H at 29.6 Mbp and 5H at 568 Mbp, respectively, were
significantly associated with GP in the waterlogging treatment
conditions, which on average, accounted for 6.3 and 7.1% of
phenotypic variation (Table4; Supplementary Table 4). For
KWP in the waterlogging treatment conditions, we found two
genomic regions with at least two SNPs, at 16.8 Mbp (2 SNPs),
and 29.7 Mbp on chromosome 2H (11 SNPs). On average,
each genomic region explained between 6.1 and 6.9% of the
phenotypic variation (Supplementary Table4). The three
genomic regions, with more than one SNP, associated with
WLS in the waterlogging treatment conditions were found
at 29.1 Mbp (17 SNPs) on chromosome 2H, and 0.37 and
569.8 Mbp (four and two SNPs, respectively) on 4H (Table 4;
Supplementary Table 4; Figure4); each region explained
on average from 5.7 to 7.4% of the phenotypic variation.
Chromosome 2H consisted of the highest number of markers
significantly associated with WLS, of which BOPA2_12_30872
had the lowest P-value (7.5 x 10~°) with an allele effect size of

0.4 that individually explained 7.9% of phenotypic variation for
WLS (Supplementary Table 4).

Eight marker-trait associations associated with different traits
were found in the waterlogging treatment conditions (Table 4).
On chromosome 2H, the marker JHI-Hv50k-2016-68186 located
at 16.8 Mbp was associated with the traits GP and KWP, although
with different effects in each trait (from 6.1 to 7.6% phenotypic
variation); the marker BOPA2_12_30872 located at 29.1 Mbp was
coincidental for the traits BIO and WLS, with different effects on
each trait (from 7.9 to 11.8% phenotypic variation); and the traits
GP and KWP were associated to the same marker JHI-Hv50k-
2016-73689 at 29.6 Mbp. On chromosome 4H, the traits SP and
WLS were associated with the marker JHI-Hv50k-2016-225852
at 0.37 Mbp (7.3 and 6.8% phenotypic variation, respectively);
and GP and KWP were associate to the same marker JHI-Hv50k-
2016-249670 located at 512.9 Mbp (~6.1% phenotypic variation).
On chromosome 5H, the traits SP and GP were associated with
the marker JHI-Hv50k-2016-322832 regions at 569.3 Mbp; and
the marker BOPA2_12_11245 at 579.3 Mbp was coincidental for
the traits SP, GP, and KWP, with a similar effect for the three
traits, ~6.2% phenotypic variation (Table4). On chromosome
7H, the marker JHI-Hv50k-2016-449124 located at 13.6 Mbp was
coincidental for the traits GP and KWP, with a similar effect.

Additionally, the analysis showed three markers on
chromosome 2H co-localized in both control and waterlogging
treatment conditions (Tables 3, 4). The marker JHI-Hv50k-
2016-72991 located at 27.8 Mbp was found to be associated with
BIO, SP, and PH under control, and with BIO under waterlogging
treatment conditions; the marker BOPA2_12_30872 at 29.1 Mbp
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FIGURE 3 | Manhattan plots resulting from the SNP-based GWAS in overall control under field conditions. Manhattan plots for Biomass (BIO), Spikes per plant (SP),
Grains per plant (GP), Kernel weight per plant (KWP), and Plant height (PH) are shown in (A-E), respectively, and the x-axis shows SNP loci along the seven barley
chromosomes. The horizontal red line shows the genome-wide significance threshold P-value of 1.6 x 10~ or —logyo (P-value) value of 3.8. GWAS was performed

was identified in BIO under control, and BIO and WL under
waterlogging treatment conditions; and the marker JHI-Hv50k-
2016-80986 located at 73.5 Mbp was identified in PH under both
control and waterlogging treatment conditions.

Relative Dataset
In order to find chromosomal regions that were significantly
associated with waterlogging tolerance response, we analyzed

the relative difference between the control and waterlogging
treatment conditions. In the overall relative dataset, the GWAS
analysis identified a total of 51 markers significantly associated
with BIO (1 SNP), SP (17 SNPs), KWP (4 SNPs), PH (24
SNPs), and WLS (25 SNPs), with some markers associated
with multiple traits (Supplementary Table 5). No significant
markers were detected for GP in the relative dataset, unlike
in the control and waterlogging treatment datasets. Based on
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FIGURE 4 | Manhattan plots resulting from the SNP-based GWAS in waterlogging treatment under field conditions. Manhattan plots for Biomass (BIO), Spikes per
plant (SP), Grains per plant (GP), Kernel weight per plant (GWP), Plant height (PH), and Waterlogging score (WLS) are shown in (A-F), respectively, and the x-axis
shows SNP loci along the seven barley chromosomes. The horizontal red line shows the genome-wide significance threshold P-value of 1.6 x 10~* or -log1o
(P-value) value of 3.8. GWAS was performed using the MLM (Q + K) model in JMP Genomics for the field traits.
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FIGURE 5 | Manhattan plots resulting from the SNP-based GWAS identified in the relative dataset. Manhattan plots for Biomass (BIO), Spikes per plant (SP), Grains
per plant (GP), Kernel weight per plant (GWP), Plant height (PH), and Waterlogging score (WLS) are shown in (A-F), respectively, and the x-axis shows SNP loci along
the seven barley chromosomes. The horizontal red line shows the genome-wide significance threshold P-value of 1.6 x 10~ or -logyg (P-value) value of 3.8. GWAS
was performed using the MLM (Q + K) model in JMP Genomics for the field traits.
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TABLE 3 | List of significant (P < 1.6 x 10~%) marker-trait associations detected by GWAS using the MLM (Q + K) model in JMP Genomics and favorable alleles (bold)
for the assessed traits in the overall control conditions.

Trait Marker? Ch Physical Genetic P-value R? (%)? MAF Allele® Additive
position (bp)® position (cM)® effect
BIO JHI-HV50k-2016-69385" 2H 19,064,497 13.31 3.60E-05 6.90 0.11 TG —6.16
JHI-HV50k-2016-71792" 2H 23,485,824 16.37 6.10E-05 6.40 0.19 T/C -3.19
JHI-Hv50k-2016-72991* 2H 27,836,916 18.91 3.40E-08 11.90 0.10 AT -5.85
BOPA2_12_30872 2H 29,124,597 19.90 6.30E-12 17.70 0.18 A/G —6.77
JHI-Hv50k-2016-94875" 2H 496,673,313 55.01 3.00E-05 6.90 0.08 T/C -5.23
BOPA1_ABC08774-1-1-752" 2H 508,786,535 7.60E-05 6.30 0.05 A/C —-6.07
JHI-Hv50k-2016-95073" 2H 515,576,575 58.64 4.40E-05 6.70 0.08 T/C —4.79
SCRI_RS_127347" 2H 519,110,344 58.64 5.80E-05 6.40 0.11 T/C —4.56
JHI-HV50k-2016-97672° 2H 542,384,101 59.42 1.10E-04 6.00 0.06 AT -5.98
JHI-Hv50k-2016-98186" 2H 547,420,281 59.42 1.10E-04 6.00 0.06 C/G —-5.98
JHI-Hv60k-2016-336773* 5H 600,914,687 126.30 8.70E-05 6.20 0.07 AT -5.97
JHI-Hv60k-2016-336814 5H 600,979,263 8.70E-05 6.20 0.07 T/G -5.97
SP JHI-Hv50k-2016-72991* 2H 27,836,916 18.91 1.50E-04 5.80 0.10 AT -1.25
JHI-Hv50k-2016-73691* 2H 29,669,343 1.60E-05 7.60 0.15 A/G -1.40
JHI-Hv50k-2016-205634 3H 634,932,524 109.80 1.40E-05 7.50 0.35 T/C 1.09
JHI-Hv50k-2016-382988 6H 35,396,724 43.77 3.40E-05 6.90 0.25 A/G —-0.96
GP JHI-Hv50k-2016-73691" 2H 29,669,343 4.70E-06 8.40 0.15 AG —26.84
JHI-Hv50k-2016-88492 2H 134,404,110 55.01 1.50E-04 5.80 0.13 A/G 25.01
JHI-Hv560k-2016-200577 3H 609,227,175 90.16 1.20E-04 6.00 0.27 A/G 16.27
JHI-Hv50k-2016-205562" 3H 634,801,729 108.90 5.60E-06 8.20 0.44 T/C 17.77
Kwp JHI-HV50k-2016-73691* 2H 29,669,343 3.30E-05 7.00 0.15 AG —-1.06
JHI-Hv50k-2016-205562* 3H 634,801,729 108.90 3.60E-05 6.80 0.44 T/C 0.70
PH JHI-Hv50k-2016-69385" 2H 19,064,497 13.31 1.60E-04 5.80 0.11 T/G —6.65
JHI-Hv50k-2016-72991* 2H 27,836,916 18.91 1.80E-06 9.00 0.10 AT -5.90
JHI-Hv50k-2016-73085" 2H 28,455,236 18.91 1.10E-05 7.80 0.41 T/C 9.61
JHI-Hv50k-2016-80986 2H 73,504,389 49.73 3.30E-05 6.90 0.07 T/G —7.98
JHI-Hv50k-2016-86347" 2H 112,364,666 1.40E-04 5.80 0.08 T/C 5.80
JHI-Hv50k-2016-94875" 2H 496,673,313 55.01 1.40E-04 5.80 0.08 T/C —5.81
JHI-Hv50k-2016-95379" 2H 518,293,896 58.00 4.10E-05 6.70 0.08 AG —6.81
JHI-Hv50k-2016-95777° 2H 523,378,213 58.64 1.20E-04 5.90 0.12 AT —6.05
JHI-HV50k-2016-98273 2H 548,916,905 6.30E-07 9.70 0.06 T/C —-8.85
JHI-Hv50k-2016-98501" 2H 550,839,094 59.35 9.00E-05 6.20 0.18 C/G —4.88
JHI-Hv50k-2016-127739 2H 723,652,876 122.90 1.50E-04 5.80 0.13 T/G —4.62
JHI-Hv50k-2016-129870 2H 727,578,152 125.20 6.20E-05 6.40 0.07 A/G —7.42
BOPA2_12_10532" 3H 67,560,907 45.82 7.00E-06 8.00 0.05 C/G —7.71
JHI-Hv50k-2016-330643 5H 587,449,015 114.70 9.60E-05 6.10 0.08 T/C -5.60
JHI-Hv50k-2016-332746 5H 591,637,968 120.10 1.50E-04 5.90 0.07 A/G —7.35
JHI-Hv50k-2016-336773" 5H 600,914,687 126.30 1.40E-05 7.50 0.07 AT -8.13
BOPA2_12_31234f 5H 613,268,086 134.70 2.40E-06 8.80 0.07 AG —-7.10
JHI-HV50k-2016-447227" H 11,309,509 7.78 1.60E-04 5.70 0.05 AT —6.84
JHI-HV50k-2016-468495 ™ 71,962,797 58.04 5.20E-05 6.60 0.10 AT —-5.03
JHI-HV50k-2016-468869" H 75,059,390 59.80 3.30E-05 6.90 0.09 AG -5.21

BIO, biomass; SF, spikes per plant; GF, grains per plant; KWP, kernel weight per plant; PH, plant height; Ch, chromosome number; MAF, minor allele frequency.

aThe marker with the highest R in the genomic region is presented.

bBase pair positions of the marker in the chromosome based on a high-quality reference genome assembly for barley (Hordeum vulgare L.) (Mascher et al., 2017).

¢Genetic marker positions (cM) of the marker obtained from the POPSEQ_2017 genome map in BarleyMap (http.//floresta.eead.csic.es/barleymap/find/) (Mascher et al., 2013).
9R2 (%) indiicates the percentage of phenotypic variation explained by the significant marker.

eAllele that is in bold text is the favorable allele for the trait assessed.

Marker-trait associations that have different positions than the previously identified QTL for yield and yield-related traits published on barley under unstressed conditions.
*Putative QTL that may be associated with multiple traits.
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TABLE 4 | List of significant (P < 1.6 x 10~%) marker-trait associations detected by GWAS using the MLM (Q + K) model in JMP Genomics and favorable alleles (bold)
for assessed traits in the overall waterlogging treatment conditions.

Trait Marker? Ch Physical Genetic P-value R2 (%) MAF Allele® Additive
position (bp)® position (cM)® effect
BIO JHI-Hv50k-2016-72991 2H 27,836,916 18.99 1.30E-05 7.6 0.10 AT —2.51
BOPA2_12_30872* 2H 29,124,597 19.90 3.30E-08 11.8 0.18 A/G -2.75
JHI-Hv50k-2016-95223 2H 516,581,410 57.72 8.80E-05 6.2 0.10 T/C —2.42
SP JHI-Hv50k-2016-3532 1H 3,453,791 4.96 1.30E-04 6.2 0.07 AG 0.85
JHI-Hv50k-2016-68266 2H 16,823,564 11.40 1.70E-05 7.4 0.08 A/G 1.34
JHI-Hv50k-2016-109151 2H 662,018,769 82.51 3.70E-06 8.5 0.06 A/G 1.24
JHI-Hv50k-2016-161633 3H 32,637,255 37.04 4.20E-05 6.7 0.06 AT 0.99
JHI-HV50k-2016-225852" 4H 371,267 0.71 1.80E-05 7.3 0.06 T/C 117
JHI-Hv50k-2016-262685 4H 607,200,114 85.84 7.40E-07 9.6 0.06 AG 1.31
JHI-HV50k-2016-2766241 4H 645,759,577 117.30 7.20E-05 6.3 0.05 T/C 1.20
JHI-HvB0k-2016-322832* 5H 569,308,558 97.51 8.20E-05 6.2 0.05 A/G 1.13
BOPA2_12_11245* 5H 579,324,077 6.50E-05 6.4 0.06 C/G 1.07
GP JHI-Hv50k-2016-68186* 2H 16,813,000 11.40 9.20E-05 6.1 0.11 T/C 10.47
JHI-Hv50k-2016-73689* 2H 29,669,242 3.80E-05 6.8 0.14 AG —-11.29
JHI-HV50k-2016-249670" 4H 512,990,076 54.32 1.10E-04 6.2 0.06 AG 18.71
JHI-HvB50k-2016-322832* 5H 569,308,558 97.51 6.50E-06 8.1 0.05 A/G 18.67
BOPA2_12_11245* 5H 579,324,077 8.60E-05 6.2 0.06 C/G 15.07
JHI-Hv50k-2016-410329° 6H 492,880,745 65.93 2.00E-05 7.3 0.07 A/C 18.63
JHI-Hv50k-2016-449124" 7H 13,658,217 11.54 1.50E-04 5.8 0.35 T/C 7.27
KWP JHI-HV50k-2016-68186"" 2H 16,813,000 11.40 1.30E-05 7.6 0.11 T/C 0.43
JHI-Hv50k-2016-73689* 2H 29,669,242 2.00E-05 7.2 0.14 AG -0.44
JHI-HV50k-2016-82113 2H 79,456,923 49.73 1.40E-04 5.8 0.13 T/G —-0.34
JHI-Hv50k-2016-127867 2H 724,202,574 120.80 1.30E-04 59 0.35 A/G —-0.26
JHI-Hv50k-2016-249670" 4H 512,990,076 54.32 1.40E-04 6.0 0.06 AG 0.68
JHI-Hv50k-2016-322288 5H 568,058,046 97.51 8.10E-05 6.2 0.06 T/G 0.58
BOPA2_12_11245* 5H 579,324,077 1.00E-04 6.0 0.06 C/G 0.55
JHI-HV50k-2016-4243411 6H 562,861,599 105.10 5.70E-05 6.5 0.06 T/G 0.56
JHI-Hv50k-2016-449124" 7H 13,658,217 11.54 1.10E-04 6.0 0.35 T/C 0.27
PH JHI-Hv50k-2016-73570 2H 29,307,953 9.00E-05 6.2 0.12 T/C -3.30
JHI-Hv50k-2016-80986 2H 73,504,389 49.73 7.00E-05 6.3 0.07 T/G —5.31
BOPA2_12_10968 3H 34,959,733 37.04 1.10E-04 6.0 0.06 A/G —4.08
JHI-Hv50k-2016-165725 3H 78,242,146 9.50E-05 6.2 0.30 A/G 3.61
WLS JHI-HvB0k-2016-19217 1H 61,923,247 7.30E-05 6.3 0.07 T/C -0.42
BOPA2_12_30872* 2H 29,124,597 19.90 7.50E-06 7.9 0.18 A/G 0.39
JHI-Hv50k-2016-225852" 4H 371,267 0.71 3.60E-05 6.8 0.06 T/C —0.59
BOPA1_3549-743f 4H 569,760,181 63.39 1.10E-04 6.0 0.40 AG 0.26
JHI-HV50k-2016-421359 6H 554,181,962 92.07 1.40E-04 5.9 0.08 AT —0.40

BIO, biomass; SR, spikes per plant; GR, grains per plant; KWF, kernel weight per plant; PH, plant height; WLS, waterlogging score; Ch, chromosome number; MAF, minor allele frequency.
aThe marker with the highest R? in the genomic region is presented.

bBase pair positions of the marker in the chromosome based on a high-quality reference genome assembly for barley (Hordeum vulgare L.) (Mascher et al., 2017).

®Genetic marker positions (cM) of the marker obtained from the POPSEQ_2017 genome map in BarleyMap (http://floresta.eead.csic.es/barleymap/find/) (Mascher et al., 2013).

9IR2 (%) indlicates the percentage of phenotypic variation explained by the significant marker.

CAllele that is in bold text is the favorable allele for the trait assessed.

Marker-trait associations that have different positions than the previously identified QTL for waterlogging stress-related traits published on barley under waterlogging conditions.
*Putative QTL that may be associated with multiple traits.

their position on chromosomes, these 51 significant SNPs were ~ we centered the discussion on these QTL which we named
assigned to 17 QTL regions on chromosomes 1H, 2H, 4H, 5H,  following the rule: “Q, trait abbreviation, and chromosome
6H, and 7H, with each region consisting of 1 to 42 markers  number. One QTL associated with BIO, named QBIO.2H,
(Table 5; Figure 5; Supplementary Table 5). Some QTL regions  was found on chromosome 2H and explained 6.6% of the
were associated with multiple traits, indicating possible shared  phenotypic variation (Table 5; Figure 5; Supplementary Table 5;
QTL between traits. Supplementary Figure 8). This QTL also accounted for

Since the focus of our study is waterlogging tolerance in ~ BIO under control and waterlogging treatment conditions
barley, and the QTL found in the relative dataset are stable,  (Tables 3, 4). Nine QTL for SP were detected on chromosomes
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TABLE 5 | List of significant (P < 1.6 x 10~%) marker-trait associations detected by GWAS using the MLM (Q + K) model in JMP Genomics and favorable alleles (bold)

for assessed traits identified in the relative dataset.

QTL Trait Marker® Ch Physical Genetic P-value R2 (%)Y  MAF  Allele® Additive
position (bp)® position effect
(cm)°
QBIO.2H BIO JHI-Hv560k-2016-73118 2H 28,612,330 18.91 4.95E-05 6.64 0.43 AG 6.17
QSP.1H-1 SP JHI-Hv50k-2016-20766" 1H 107,293,686 5.17E-05 6.61 0.20 T/C —6.33
QSP1H-2 JHI-Hv50k-2016-20908 1H 187,645,763 47.94 4.31E-06 6.67 0.20 T/C —6.38
QSP.1H-3 JHI-Hv50k-2016-21022 1H 241,516,420 47.94 8.79E-06 7.92 0.18 AG —6.71
QSP1H-4 JHI-HV50k-2016-22269 1H 296,548,971 47.94 1.15E-04 5.98 0.15 T/G —6.12
QSP1H-5 JHI-HV50k-2016-22575 1H 303,086,870 47.94 1.15E-04 5.98 0.15 T/C —6.12
QSP.2H JHI-Hv50k-2016-73693" 2H 29,669,511 1.96E-05 7.24 0.06 A/C 13.31
QSP.5H-1 JHI-HV50k-2016-312394"  5H 532,344,110 1.68E-04 5.79 0.08 T/G 10.59
QSP.5H-2 JHI-HV50k-2016-332745 5H 591,637,898 120.07 1.30E-04 5.98 0.07 AG 8.32
QSP.5H-3 JHI-Hv50k-2016-336773 5H 600,914,687 126.25 9.76E-05 6.07 0.07 AT 8.15
QKWP.2H KWP  JHI-Hv50k-2016-132004 2H 733,399,550 129.78 1.82E-04 5.85 0.06 T/C 6.98
QKWP.4H JHI-Hv560k-2016-230103 4H 10,736,375 29.15 7.30E-05 6.31 0.06 AG 9.95
QPH.2H-1 PH BOPA2_12_30631" 2H 18,521,931 12.11 9.32E-05 6.10 0.50 A/G 2.91
QPH.2H-2 JHI-Hv50k-2016-73693" 2H 29,669,511 5.57E-08 11.46 0.06 AT 12.99
QPH.7H JHI-Hv50k-2016-457680 7H 32,776,909 29.96 8.89E-05 6.14 0.33 A/C —4.13
QWLS.1H WLS  JHI-Hv50k-2016-19217 1H 61,923,247 46.46 7.25E-05 6.29 0.07 T/C —-0.42
QWLS.2H BOPA2_12_30872 2H 29,124,597 19.90 7.51E-06 7.94 0.18 AG 0.39
QWLS.4H-1 JHI-HV50k-2016-225850"  4H 370,916 0.71 4.05E-05 6.85 0.06 T/C —0.58
QWLS.4H-2 BOPA1_3549-743f 4H 569,760,181 63.39 1.08E-04 5.99 0.39 A/G 0.26
QWLS.6H JHI-HV50k-2016-421359"  6H 554,181,962 92.07 1.36E-04 5.85 0.08 AT —0s.40

BIO, biomass; SF, spikes per plant; KWR, kernel weight per plant; PH, plant height, WLS, waterlogging score; Ch, chromosome number; MAF, minor allele frequency.

aThe marker with the highest R? in the genomic region is presented.

bBase pair positions of the marker in the chromosome based on a high-quality reference genome assembly for barley (Hordeum vulgare L.) (Mascher et al., 2017).
CGenetic marker positions (cM) of the marker obtained from the POPSEQ_2017 genome map in BarleyMap (http://floresta.eead.csic.es/barleymap/fina/) (Mascher et al., 2013).

9R? (%) indicates the percentage of phenotypic variation explained by the significant marker.
€Allele that is in bold text is the favorable allele for the trait assessed.

"Marker-trait associations that have different positions than the previously identified QTL for waterlogging stress-related traits published on barley under waterlogging conditions.

*Putative QTL that may be associated with multiple traits.

1H (QSP.1H-1, QSP.1H-2, QSP.1H-3, QSP.1H-4 and QSP.1H-
5), 2H (QSP.2H), and 5H (QSP.5H-1, QSP.5H-2, QSP.5H-3),
and explained 5.8-7.9% of the phenotypic variance (Table 5;
Supplementary Table 5). Two QTL for KWP were detected
on chromosomes 2H (QKWP.2H) and 4H (QKWP.4H) and
explained 5.9-6.3% of the phenotypic variance (Table 5;
Supplementary Table 5). For PH, three QTL were identified,
located on chromosomes 2H (QPH.2H-1 and QPH.2H-2)
and 7H (QPH.7H). The QTL accounted for 6.1-11.5% of the
phenotypic variance (Table5; Supplementary Table5). The
QTL QWT.PH.2H-2 also accounted for PH under control
and waterlogging treatment conditions (Tables 3, 4). Five QTL
affecting WLS were identified and they accounted for 5.9-7.9% of
the phenotypic variance (Table 5; Supplementary Table 5). They
were located in chromosomes 1H (QWLS.1H), 2H (QWLS.2H),
4H (QWLS.4H-1 and QWLS.4H-2) and 6H (QWLS.6H).
These five QTL also accounted for WLS under waterlogging
treatment (Table 4).

One genomic region was associated with various traits
in the relative dataset (Table5). On chromosome 2H, QTL
QWT.BIO.2H, QWT.SP.2H and QWT.PH.2H-2 located at 28-
29 Mbp were associated with BIO, SP, and PH, respectively,

although with different effects in each trait (6.6-11.5% of
phenotypic variation).

Candidate Genes

A total of 205, 190, and 156 genes were located within
a 200-kb genomic region up- and down-stream centered
from 32, 26 and 18 significant marker-trait associations in
control (Supplementary Table 6), waterlogging treatment
conditions (Supplementary Table 7) and relative dataset
(Supplementary Table 8), respectively. Among those markers,
22,19, and 14, from control, waterlogging treatment and relative
datasets, respectively, were located inside genes. We focused
on these genes and identified nine possible candidate genes
associated with the measured traits under the control (Table 6),
13 possible candidate genes associated with these traits under
the waterlogging treatment conditions (Table7), and eight
possible candidate genes associated with the measured traits in
the relative dataset (Table 8).

Significant markers associated with BIO in control conditions
were inside genes (HORVU2Hr1G013400, HORVU2Hr1G071
330, HORVU2Hr1G072400, HORVU2Hr1G075950, HORVU5
Hr1G096320, and HORVU2Hr1G070320) involved in the
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TABLE 6 | Summary of potential candidate genes that contain significant markers associated with the assessed traits under control conditions.

Marker Trait Ch Marker Gene ID Start (bp) End (bp) Gene description
position (bp)

JHI-HV50k-2016-71792 BIO 2H 23,485,824 HORVU2Hr1G011650 23,481,402 23,486,230 Undescribed protein
BOPA2_12_30872 BIO 2H 29,124,597 HORVU2Hr1G013400 29,123,724 29,127,894 Pseudo-response regulator
7
BOPA1_ABC08774-1-1-752 BIO 2H 508,786,535 HORVU2Hr1G071330 508,785,994 508,794,465 Glycine—tRNA ligase
JHI-HV50k-2016-95073 BIO 2H 515,576,575 HORVU2Hr1G071980 515,568,391 515,580,748 Heparan-a-glucosaminide
N-acetyltransferase
SCRI_RS_127347 BIO 2H 519,110,344 HORVU2Hr1G072400 519,108,149 519,110,415 Cytochrome P450
superfamily protein
JHI-HV50k-2016-98186 BIO 2H 547,420,281 HORVU2Hr1G075950 547,420,245 547,422,120 Zinc finger homeodomain 1
JHI-Hv50k-2016-336773 BIO, KWP 5H 600,914,687 HORVU5Hr1G096320 600,914,511 600,916,443 UDP-Glycosyltransferase
superfamily protein
JHI-Hv50k-2016-94875 BIO, PH 2H 496,673,313 HORVU2Hr1G070320 496,671,113 496,676,443 Yellow stripe like 6
JHI-Hv50k-2016-88492 GP 2H 134,404,110 HORVU2Hr1G033730 134,403,521 134,420,781 Proteasome maturation
factor UMP1 family protein
JHI-HV50k-2016-205562 GP, KWP 3H 634,801,729 HORVUSHr1G091170 634,799,742 634,804,670 Receptor kinase 2
JHI-HV50k-2016-73085 PH 2H 28,455,236 HORVU2Hr1G013020 28,452,211 28,456,166 Trichome birefringence-like
4
JHI-Hv50k-2016-86347 PH 2H 112,364,666 HORVU2Hr1G030520 112,360,955 112,366,308 Protein kinase superfamily
protein
JHI-HV50k-2016-95777 PH 2H 523,378,213 HORVU2Hr1G072750 523,377,399 523,379,178 Protein Terminal flower 1
JHI-Hv50k-2016-98501 PH 2H 550,839,094 HORVU2Hr1G076520 550,832,263 550,840,111 Pectinesterase family
protein
JHI-Hv50k-2016-127739 PH 2H 723,652,876 HORVU2Hr1G111640 723,652,502 723,658,875 Plasma membrane ATPase
JHI-HV50k-2016-129870 PH 2H 727,578,152 HORVU2Hr1G113190 727,572,166 727,583,311 Alpha-N-
acetylglucosaminidase
BOPA2_12_10532 PH 3H 67,560,907 HORVUSHr1G021150 67,560,410 67,562,131 Gigantea protein (Gl)
JHI-Hv50k-2016-332746 PH 5H 591,637,968 HORVU5Hr1G093390 591,633,650 591,639,220 Solute carrier family 22
member 1
BOPA2_12_31234 PH 5H 613,268,086 HORVU5Hr1G101820 613,267,130 613,268,378 Undescribed protein
JHI-Hv50k-2016-447227 PH 7H 11,309,509 HORVU7Hr1G008690 11,307,419 11,313,973 Protein kinase superfamily
protein
JHI-HV50k-2016-468495 PH 7H 71,962,797 HORVU7Hr1G034400 71,959,645 71,963,636 Unknown function
JHI-Hv50k-2016-468869 PH 7H 75,059,390 HORVU7Hr1G034990 75,057,969 75,067,902 Kinesin-related protein 11

BIO, biomass; SR, spikes per plant; GR, grains per plant; KWPR, kernel weight per plant; PH, plant height; WLS, waterlogging score; Ch, chromosome number.

regulation of the circadian clock, regulation of flowering time =~ HORVU7Hr1G008690) play a role in cell cycle regulation
and development, embryogenesis, grain size and development,  processes, such as modulating vesicle transport and channel
plant growth, development and senescence (Table 6). The role  activities, and specific transport of various substrates. Another
of the genes HORVU5Hr1G096320 and HORVU2Hr1G033730  group of genes (HORVU2Hr1G072750, HORVU2Hr1G111640,
harboring the markers JHI-Hv50k-2016-336773 and JHI-Hv50k- ~ HORVU2Hr1G113190, and HORVU3Hr1G021150) regulate
2016-88492, respectively, associated with GP and KWP traits  plant growth and reproductive development, flowering time and
were known to be essential in the regulation of seed development  inflorescence architecture (Table 6).

and grain size (Table 6). Several genes (HORVU2Hr1G013020, Most of the genes harboring market-trait associations for the
HORVU2Hr1G076520, and HORVU7Hr1G034990) associated  related traits in waterlogging treatment conditions are known
with the significant markers for PH trait were known to  to play a role in the regulation of waterlogging or other abiotic
be involved in cell wall processes, such as synthesis and  stress responses (Table7). The genes HORVU2Hr1G072140,
deposition of secondary wall cellulose, modulation of cell  encoding Uridylate kinase, and HORVU2Hr1G013400, encoding
wall mechanical stability during fruit ripening, cell wall  Pseudo-response regulator 7 (PRR7), contain significant markers
extension during pollen germination and pollen tube growth,  associated with BIO and are known to play a role in the response
abscission, stem elongation, tuber yield and root development, to abiotic stress, such as salinity, cold and oxidative stress
microtubule-binding proteins involved in the microtubule  (Table7). The four genes HORVU6Hr1G070750 (annotated
control of cellulose microfibril order and cell wall strength. Some  as E3 ubiquitin-protein ligase makorin), HORVU4Hr1G090640
other genes (HORVU2Hr1G030520, HORVU5Hr1G093390, and ~ (E3 ubiquitin-protein ligase RFWD3), HORVU4Hr1G000090
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TABLE 7 | Summary of potential candidate genes that contain significant markers associated with the assessed traits under waterlogging treatment conditions.

Marker Trait Ch Marker Gene ID Start (bp) End (bp) Gene description
position (bp)
JHI-HVv50k-2016-95223 BIO 2H 516,581,410 HORVU2Hr1G072140 516,578,216 516,583,796 Uridylate kinase
BOPA2_12_30872 BIO, WLS 2H 29,124,597 HORVU2Hr1G013400 29,123,724 29,127,894 Pseudo-response
regulator 7
JHI-HV50k-2016-161633 SP 3H 32,637,255 HORVU3Hr1G014290 32,636,782 32,639,178 Delta(8)-Delta(7) sterol
isomerase
JHI-HV50k-2016-276624 SP 4H 645,759,577 HORVU4Hr1G090640 645,757,976 645,762,395 E3 ubiquitin-protein ligase
RFWD3
JHI-HV50k-2016-109151 SP 2H 662,018,769 HORVU2Hr1G094030 662,015,232 662,019,114 Ubiquitin-conjugating
enzyme 3
JHI-Hv50k-2016-3532 SP 1H 3,453,791 HORVU1Hr1G001480 3,453,090 3,454,077 Undescribed protein
JHI-Hv50k-2016-322832 SP, GP 5H 569,308,558 HORVU5Hr1G083110 569,293,089 569,309,305 Leucine-rich repeat
receptor-like protein
kinase
BOPA2_12_11245 SP, GP, KWP 5H 579,324,077 HORVU5Hr1G087730 579,322,710 579,324,607 138 globulin seed storage
protein 2
JHI-Hv50k-2016-225852 SP, WLS 4H 371,267 HORVU4Hr1G000090 369,520 374,029 RING/U-box superfamily
protein
JHI-Hv50k-2016-410329 GP 6H 492,880,745 HORVUBHr1G070750 492,878,969 492,884,688 E3 ubiquitin-protein ligase
makorin
JHI-HV50k-2016-249670 GP, KWP 4H 512,990,076 HORVU4Hr1G061070 512,989,821 512,992,961 C2H2-like zinc finger
protein
JHI-HV50k-2016-82113 KWP 2H 79,456,923 HORVU2Hr1G025510 79,452,094 79,457,099 B3 domain-containing
protein
JHI-HV50k-2016-424341 KWP 6H 562,861,599 HORVUBHr1G087000 562,860,368 562,867,337 Heparanase-like protein 3
JHI-HV50K-2016-127867 KWP 2H 724,202,574 HORVU2Hr1G111780 724,201,388 724,204,020 Receptor-like protein
kinase 4
JHI-Hv50k-2016-322288 KWP 5H 568,058,046 HORVU5Hr1G082670 568,057,965 568,060,772 Undescribed protein
BOPA2_12_10968 PH 3H 34,959,733 HORVUS3Hr1G015050 34,956,640 34,962,056 Enolase-phosphatase E1
JHI-HV50k-2016-165725 PH 3H 78,242,146 HORVUS3Hr1G022270 78,241,796 782,431,36 Pentatricopeptide repeat
336
BOPA1_3549-743 WLS 4H 569,760,181 HORVU4Hr1G069280 569,757,996 569,767,162 Alpha-L-fucosidase 2
JHI-HV50k-2016-19217 WLS 1H 61,923,247 HORVU1Hr1G017900 61,919,204 61,923,605 Transcription factor PIF3

BIO, biomass; SF, spikes per plant; GR, grains per plant; KWR, kernel weight per plant; PH, plant height; WLS, waterlogging score; Ch, chromosome number.

(RING/U-box superfamily protein), and HORVU2Hr1G094030
(Ubiquitin-conjugating enzyme 3) associated with SP, GP,
and KWP regulate abiotic stress signaling pathways, such as
in waterlogging or flooding conditions (Table 7). Also, the
associated genes HORVU5Hr1G083110 (Leucine-rich repeat
receptor-like kinase family protein) and HORVU2Hr1G111780
(Receptor-like protein kinase 4) are known to be involved in
abiotic stress responses, including drought, salt, cold, toxic
metals and other stresses. The gene HORVU2Hr1G025510 (B3
domain-containing protein), associated with SP, is involved
in abiotic stress and disease resistance signaling pathways.
The gene HORVU4Hr1G061070 (C2H2 zinc finger protein)
associated with GP and KWP, participates in mechanisms of
tolerance to salinity, osmotic, cold, drought, oxidative and high-
light stress response (Table 7). The gene HORVU3Hr1G022270
(Pentatricopeptide repeat 336), associated with PH, is known
to regulate plant responses to abiotic stresses (Table?7). The
significant markers associated with WLS were located inside the
genes encoding PRR7 and RING/U-box superfamily protein,

and the genes HORVU4Hr1G069280 (Alpha-L-fucosidase 2),
involved in the response to waterlogging, drought and salinity
stresses, and HORVU1Hr1G017900 (Phytochrome-interacting
factor 3), which regulates the plant response to drought and salt
stresses (Table 7).

In the relative dataset, the significant markers JHI-Hv50k-
2016-20766 and JHI-Hv50k-2016-21022 associated with SP,
were inside the genes HORVU1Hr1G024060 (Arginine/serine-
rich splicing factor 35) and HORVU1Hr1G036060 (tRNA
pseudouridine synthase Al), respectively, that play important
roles in development and response to abiotic stresses (Table 8).
The role of the gene HORVU2Hr1G114940, encoding Cyclic
nucleotide-gated channel 8, contains significant markers
associated with KWP and is known to play a crucial role in
pathways related to cellular ion homeostasis, development,
and defense against biotic and abiotic stresses. The gene
HORVU7Hr1G022410, encoding RNA-binding protein mde7,
was associated with PH and has functional roles during
growth, development, and abiotic stress responses in plants
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TABLE 8 | Summary of potential candidate genes that contain significant markers associated with the assessed traits identified in the relative dataset.

Marker Trait Ch Marker Gene ID Start (bp) End (bp) Gene description
position (bp)
JHI-Hv50k-2016-20766 SP 1H 107,293,686 HORVU1Hr1G024060 107,289,291 107,295,231 Arginine/serine-rich splicing
factor 35
JHI-Hv50k-2016-20908 SP 1H 187,645,763 HORVU1Hr1G031370 187,632,592 187,656,006 tRNA pseudouridine synthase
Al
JHI-Hv50k-2016-21022 SP 1H 241,516,420 HORVU1Hr1G036060 241,482,945 241,524,027 Cationic amino acid
transporter 2
JHI-HV50k-2016-22269 SP 1H 296,548,971 HORVU1Hr1G041530 296,548,421 296,553,191 Predicted protein
JHI-HV50k-2016-22575 SP 1H 303,086,870 HORVU1Hr1G041960 303,085,891 303,088,081 Unknown function
JHI-HV50k-2016-312394 SP 5H 532,344,110 HORVU5Hr1G071230 532,343,847 532,345,355 Unknown function
JHI-HV50k-2016-332745 SP 5H 591,637,898 HORVU5Hr1G093390 591,633,650 591,639,220 Solute carrier family 22
member 1
JHI-Hv50k-2016-336773 SP 5H 600,914,687 HORVU5Hr1G096320 600,914,511 600,916,443 UDP-Glycosyltransferase
superfamily protein
JHI-Hv50k-2016-132004 KWP 2H 733,399,550 HORVU2Hr1G114940 733,394,545 733,400,877 Cyclic nucleotide gated
channel 8
JHI-Hv50k-2016-457680 PH 7H 32,776,909 HORVU7Hr1G022410 32,775,788 32,780,170 RNA-binding protein mde7
JHI-HV50k-2016-19217 WLS 1H 61,923,247 HORVU1Hr1G017900 61,919,204 61,923,605 Transcription factor PIF3
BOPA2_12_30872 WLS 2H 29,124,597 HORVU2Hr1G013400 29,123,724 29,127,894 Pseudo-response regulator 7
JHI-Hv50k-2016-225850 WLS 4H 370,915 HORVU4Hr1G000090 369,520 374,029 RING/U-box superfamily
protein
BOPA1_3549-743 WLS 4H 569,760,181 HORVU4Hr1G069280 569,757,996 569,767,162 Alpha-L-fucosidase 2

SP, spikes per plant; KWF, kernel weight per plant; PH, plant height; WLS, waterlogging score; Ch, chromosome number.

(Table 8). Additionally, the genes HORVU5Hr1G093390 and
HORVUS5Hr1G096320 were harboring markers associated
with SP and were also identified in the control dataset
harboring markers associated with PH, BIO, and KWP.
The genes HORVU1Hr1G017900, HORVU4Hr1G000090, and
HORVU4Hr1G069280 were harboring markers associated
with  WLS and also were identified in the waterlogging
dataset associated with the same trait. Finally, the gene
HORVU2Hr1G013400, encoding PRR7, contained markers
associated with WLS in the waterlogging treatment and relative
datasets, and BIO in the control dataset (Tables 6-8).

DISCUSSION

Waterlogging is becoming one of the challenging issues for
modern agriculture globally. The development of tolerant
cultivars with enhanced resilience to waterlogging stress has
increasing importance to reduce the yield penalty. In this study,
GWAS was performed based on linkage disequilibrium on a
worldwide spring barley collection using control, waterlogging
treatment and relative datasets for identifying QTL associated
with yield-related traits and waterlogging tolerance.

Diverse Phenotypic Variation and
Waterlogging Tolerant Barley Genotypes

In the present study, the barley collection assembled showed
significant phenotypic variation, as well as highly genotypic
differences, for all traits after waterlogging stress treatment,
including BIO, SP, GP, KWP, PH, and WLS, except CABC and

CCC. These results suggest that there is a good potential that
these genotypes can be used to mine alleles for waterlogging
tolerance for introgression into breeding barley lines for
waterlogging tolerance improvement. Waterlogging stress
considerably reduced BIO, SP, GP, KWP, PH, CABC, and CCC
for all genotypes in response to waterlogging stress as expected,
and it is consistent with earlier studies (Li et al., 2008; Xue et al.,
2010). Significant negative correlations were found between WLS
and all other traits.

The barley genotype Deder2 from Ethiopia showed a
tolerant response to waterlogging stress, while the response
of the genotypes Yerong from Australia, TR 587 and CDC
Select from Canada, Champion, Xena, and TR 987 from the
USA, and Harumaki Rokkakumugi from North Corea, was
more moderate. Some of these barley genotypes (e.g., Deder2,
Harumaki Rokkakumugi, and Yerong) were previously reported
(Takeda, 1989; Li et al., 2008) to be tolerant to waterlogging stress
while the others, which are modern cultivars (Canadian Food
Inspection Agency, 2021; Washington State Crop Improvement
Association, 2021; Westland Seed, 2021) and elite breeding
lines, were not reported before and might represent novel
sources of tolerance.

Genome-Wide Association Study Analysis

The GWAS is a powerful approach to locate common alleles
associated with phenotypes with much higher resolution than
linkage mapping because they reflect historical recombination
events in broad-based diversity panels (Nordborg and Weigel,
2008). In this study, three statistical models were compared to
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assess their ability to map QTL and identify SNPs associated
with waterlogging tolerance. Finally, we selected the MLM +
Q + K approach, which accounts for both population structure
(STRUCTURE analyses) and K matrix, because of its statistical
power to control false-positives associations, which has been
used successfully in barley (Pasam et al., 2012; Fan et al., 2016;
Jabbari et al., 2018) and maize (Yu et al., 2006). Population
structure and familial relatedness can result in false positives in
GWAS. Therefore, when GWAS is conducted, these parameters
need to be considered in the model. In the present study, the
level of the genetic structure of the panel was assessed by the
NJ tree, PCA, and STRUCTURE analyses and all showed that
the investigated genotypes are structured into three principal
groups. This provided additional confidence given that most
of the barley population structure studies use only two of
these methods, STRUCTURE and PCA, to confirm their results
(Varshney et al., 2012; Long et al., 2013; Fan et al., 2016; Zhou
et al., 2016; Bengtsson et al., 2017; Jabbari et al., 2018; Thabet
et al,, 2018; Milner et al., 2019; Mwando et al,, 2020; Ye et al.,
2020). Moreover, the LD decay value identified (1.46 Mbp at
r? = 0.1) suggested that the marker coverage is adequate for
further GWAS analysis. A wide range of levels of LD decay,
2-10cM, was reported by previous studies of worldwide barley
collections (Comadran et al.,, 2009; Zhang et al.,, 2009; Pasam
et al., 2012; Varshney et al,, 2012; Long et al., 2013; Zhou et al.,
2016). Comparison to any of these studies is hard to be made
due to several factors such as size and diversity of the germplasm
used, type and number of molecular markers, and measurement
unit. Recently, Mwando et al. (2020) reported a LD decay of 3.5
Mbp (r* = 0.2) in 350 barley accessions using 24,138 DArTseq
and SNP markers. While this time the measurement unit is
the same (Mbp) the results are not directly comparable to our
study either, mainly due to the different germplasm assessed.
Nevertheless, the work conducted by Mwando et al. (2020)
demonstrated successful association mapping was achieved with
a lower number of molecular markers (24,138 vs. 35,926) than
used in our study.

The overall GWAS was able to identify significant QTL in all
control, waterlogging treatment and relative datasets for six (BIO,
SP, GP, KWP, PH, and WLS) out of the eight traits measured.
No significant QTL were detected for CABC and CCC in the
tested conditions. Chlorophyll is one of the major chloroplast
components for photosynthesis, and relative chlorophyll content
has a positive relationship with photosynthetic rate (Guo
et al, 2008). An earlier study reported the identification of
QTL for chlorophyll fluorescence in barley under low oxygen
concentration in hydroponics to simulate waterlogging but not
for chlorophyll content or chlorophyll (Bertholdsson et al., 2015).

Identification of Known
Waterlogging-Related QTL by GWAS

So far, several QTL mapping studies have been conducted using
linkage mapping analysis in barley and many QTL associated
with waterlogging tolerance have been successfully mapped using
bi-parental linkage mapping based on various waterlogging
related traits (Li et al., 2008; Xue et al., 2010; Zhou, 2011;
Xu et al,, 2012; Zhou et al., 2012; Bertholdsson et al., 2015;
Broughton et al, 2015; Zhang et al.,, 2016; Gill et al.,, 2017,

2019; Zhang X. et al., 2017). These studies used DH populations
from bi-parental crosses of contrasting phenotype parents for
waterlogging. Direct comparisons of our GWAS findings with
those studies are intricate, as the marker-trait linkages and
chromosomal locations we identified were based on a worldwide
barley collection not previously investigated for waterlogging
traits. Moreover, different genotyping technologies and different
linkage maps have been used in some of the previous studies, so
the comparison is approximated. In general, our GWA mapping
was highly consistent with those previous waterlogging tolerance
QTL mapping studies conducted in bi-parental populations, and
many QTL were identified for the same or related traits at similar
positions, which confirmed the importance of the loci identified
in the present study.

Some of the waterlogging-related QTLs detected in the
waterlogging treatment dataset in our study are positioned
closer to previously identified waterlogging stress-related QTLs
for similar traits (Xue et al.,, 2010; Xu et al,, 2012; Broughton
et al, 2015; Ma et al.,, 2015). SP trait was associated with
genomic regions related to the markers JHI-Hv50k-2016-3532
(at 3 Mbp on 1H), JHI-Hv50k-2016-109151 (at 662 Mbp on
2H) and JHI-Hv50k-2016-161633 (at 32 Mbp on 3H) were also
associated with the related traits shoot fresh weight (QHSFW.1H)
and tiller number (QHTiller.3H ) in the Franklin x YYXT
mapping population (Broughton et al., 2015), and grains per
spike (GSwl.1 and GSwl.2) in Franklin x Yerong mapping
population (Xue et al., 2010). The marker JHI-Hv50k-2016-3532
was also associated with the QTL for salinity and waterlogging
tolerance (QSlww.YG.1H-1) in a DH population of Gairdner
x YSMI1 (Ma et al, 2015). The marker JHI-Hv50k-2016-
109151 was also closely positioned near the QTL tfsur-1 which
is associated with plant survival in the TX9425 x Franklin
mapping population (Li et al, 2008). One of the genomic
regions associated with KWP, related to the marker JHI-Hv50k-
2016-127867 located at 724 Mbp on 2H was coincident with
the previous identified QTL (SLw2.2) for spike length in the
Franklin x Yerong population (Xue et al., 2010). Zhou (2011)
also reported two QTL (QWL.YeFr.2H.2 and WL5.3) associated
with waterlogging tolerance score, which is positioned near the
marker JHI-Hv50k-2016-127867. WLS trait was associated with
BOPA2_12_30872 located at 29 Mbp on 2H. This genomic
region was previously detected in two different populations,
TX9425 x Naso Nijo (Xu et al., 2012) and YSM1 x Gairdner
(Ma et al,, 2015), for the same trait. Additionally, in our study
BIO was also associated with the same marker that was located
on the genomic region 29.1-29.7 Mbp on chromosome 2H.
Interestingly, in our study, this same region was also associated
with the traits GP, KWP, and PH (JHI-Hv50k-2016-73570
and JHI-Hv50k-2016-73689).

Other waterlogging-related QTL detected in our study were
identified in previous waterlogging stress studies but associated
with different traits (Li et al., 2008; Xue et al., 2010; Zhou, 2011;
Xu et al, 2012; Zhou et al., 2012; Broughton et al., 2015; Ma et al.,
2015; Gill et al., 2017). For example, the traits SP, GP and KWP
were associated with the genomic region 568.0-569.3 Mbp on 5H
that was coincident for the QTL yfsur-2 for plant survival under
waterlogging in the DH population of Yerong x Franklin (Li
et al., 2008).
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In our study, we identified five QTL in the relative dataset
that were positioned closer to previously identified waterlogging
stress-related QTLs for similar traits (Xu et al., 2012; Broughton
et al., 2015; Ma et al.,, 2015). SP was associated with four QTL,
QSP.1H-2, QSP.1H-3, QSP.1H-4, and QSP.1H-5, that were also
associated with the related trait shoot dry weight (QHSDW.1H)
in the Franklin x YYXT mapping population (Broughton et al.,
2015). The QTL QWLS.4H-2 was associated with WLS and
was also present in the waterlogging treatment dataset. Other
waterlogging tolerance-related QTL detected in our study were
identified in previous waterlogging stress studies but associated
with different traits (Xue et al., 2010; Zhou, 2011; Xu et al., 2012;
Broughton et al., 2015; Ma et al., 2015).

Identification of Novel

Waterlogging-Related QTL by GWAS

Among the 37 QTL detected under waterlogging treatment
conditions, 13 QTL were detected on genomic regions where
no waterlogging-related QTL have been previously reported in
barley. These 13 QTL located in 10 different genomic regions,
probably represents novel loci for waterlogging stress. Two
significant associated markers, JHI-Hv50k-2016-68186 and JHI-
Hv50k-2016-68266, were identified on 2H at 16 Mbp. The first
marker was associated with the trait KWP and the second
with SP. On chromosome 4H at 0.37, 512, 569, and 645
Mbp, four markers, JHI-Hv50k-2016-225852, JHI-Hv50k-2016-
249670, BOPA1_3549-743, and JHI-Hv50k-2016-276624, were
identified. The first marker was associated with SP and WLS, the
second marker with GP and KWP, the third marker with WLS
and the last marker with SP. On chromosome 6H at 492, 554, and
562 Mbp, three markers, JHI-Hv50k-2016-410329, JHI-Hv50k-
2016-421359, and JHI-Hv50k-2016-424341, were associated with
GP, WLS, and KWP, respectively. The marker JHI-Hv50k-2016-
449124 was associated with GP and KWP on 7H at 13 Mbp.

In the relative dataset, six QTL (QPH.2H-1, QSP.1H-1,
QSP.5H-1, QWLS.4H-1, QWLS.4H-2, and QWLS.6H) out of 20
were detected on genomic regions that have not been reported in
previous waterlogging-related QTL studies on barley conducted
using bi-parental populations and they probably represent novel
loci for waterlogging tolerance. SP was associated with the
markers JHI-Hv50k-2016-20766 and JHI-Hv50k-2016-312394,
located on chromosome 1H at 107 Mbp and 5H at 532 Mbp,
respectively. The marker BOPA2_12_30631 was associated with
PH on 2H at 18 Mbp. For WLS, three markers were found to
be associated, JHI-Hv50k-2016-225850 and BOPA1_3549-743,
located on 4H at 0.37 and 569 Mbp, respectively, and JHI-Hv50k-
2016-421359 on 6H at 554 Mbp. The genomic regions at 0.37
and 569 Mbp on 4H and 554 Mbp on 6H were co-localized
in waterlogging treatment and relative datasets, associated with
WLS. Interestingly, QWLS.4H-2 is positioned relatively close to
the QTL for aerenchyma formation (QTL-aerenchyma) and root
porosity (QTL-rp4H) (Zhang et al., 2016).

Waterlogging-Related Candidate Genes

In the present study, 92 markers significantly associated with
yield-related traits were identified in control conditions, which
were located along 28 QTL regions on chromosomes 2H, 3H,
5H, 6H, and 7H; 63 significant markers were identified under

waterlogging treatment conditions and mapped along 24 QTL
regions on all chromosomes in the barley genome; while 51
significant markers located in 17 QTL regions distributed along
chromosomes 1H, 2H, 4H, 5H, 6H, and 7H were identified
in the relative data set. Among those QTL, we detected
possible candidate genes that were associated with the measured
traits under the different growing conditions, i.e., control,
waterlogging treatment, and the relative difference between these
two conditions.

Genes affected by waterlogging stress and involved in the
tolerance of barley to this stress are most valuable in waterlogging
breeding programs to develop and improve the efficiency of
waterlogging-tolerant barley varieties. In our study, most of
the potential candidate genes containing significant markers
under waterlogging treatment conditions were detected on 2H
and 4H associated with BIO, GP and PH. However, for the
relative dataset, chromosome 1H contained most of the potential
candidate genes, followed by 2H, 4H, and 5H. Four QTL that
appears to harbor genes associated with abiotic stress tolerance
were detected on both waterlogging treatment and relative
datasets to be associated with WLS. The most significant two are
QWLS.2H, harboring the gene PRR7 (HORVU2Hr1G013400)
on 2H at 29.1 Mbp, is potentially similar to the reported QTL
for membrane potential QMP.TxNn.2H (Gill et al., 2017); and
the novel QWLS.4H-2, harboring the gene Alpha-L-fucosidase
2 (HORVU4Hr1G069280) on 4H at 569.7 Mbp, that is closely
located to the reported QTL for aerenchyma formation (Zhang
etal., 2016). PRR7 has a central role in the abiotic stress response
and influences the regulation of flowering time and ABA-related
processes, including control of genes affecting salinity, cold and
oxidative stress response (Liu et al., 2013). This gene harbored
the BOPA2_12_30872 marker that was also associated with BIO
under waterlogging stress conditions. Alpha-L-fucosidase 2 is
known to be involved in the breakdown of cell wall polymers and
was previously reported to be upregulated in tolerant genotypes
of maize, sesame, and chickpea in response to waterlogging,
drought and salinity stresses, respectively (Thirunavukkarasu
etal,, 2013; Dossa et al., 2017; Kaashyap et al., 2018). These results
indicated the reliability of the QTL in this study. The other two
genes were detected on 1H and 4H. The Transcription factor
PIF3 on QWLS.1H regulates the plant response to drought and
salt stresses in maize (Gao et al.,, 2015) and plays a positive role
in submergence-induced hypocotyl elongation in Arabidopsis
(Wang et al., 2020). RING/U-box superfamily protein on the
novel QWLS.4H-1 is involved in the ubiquitination reaction, a
crucial mechanism that regulates signal transduction in diverse
biological processes, including abiotic stress signaling pathways,
such as in waterlogging or flooding conditions (Voesenek and
Bailey-Serres, 2015; Loreti et al., 2016). This strong ubiquitin
response is a robust indicator of changing physiological situation,
by repurposing proteins through proteolysis. Additionally, the
novel QWLS.6H detected only in waterlogging stress conditions
harbored Receptor kinase 2 that belongs to the largest group
within the receptor-like kinase (RLK) superfamily in plants and
had been reported as having a main role in developmental
processes, signaling networks and disease resistance. Many RLKs
are involved in abiotic stress responses, including drought, salt,
cold, toxic metals and other stresses (reviewed in Ye et al., 2017).
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For example, a hypersensitive response was observed in response
to salt and heat stress in Arabidopsis (Park et al., 2014). The
homolog of the gene HORVU5Hr1G071230, harboring QSP.5H-
1 on 5H at 532 Mbp, in Arabidopsis it is characterized as a cell
wall integrity/stress response component.

Additionally, in our previous study, an RNA-Sequencing
analysis was conducted to explore the mechanisms involved in
the responses of two barley genotypes with tolerant, Deder2, and
moderately-tolerant, Yerong, responses to waterlogging stress
(Borrego-Benjumea et al., 2020). One of the top highly expressed
differentially expressed genes (logFC > 44 and adjusted P <
0.05) in the roots of waterlogged Deder2 and Yerong, was the
upregulated gene Trichome birefringence-like 19 (8.47 logFC)
which is very close to the marker JHI-Hv50k-2016-276624.
This marker in the current study is associated with SP in the
waterlogging treatment conditions. The underlying function of
this gene is the ubiquitous modification of cell wall polymers
by acetylation and is known to play a structural role in plant
growth and microorganism and environmental stresses defenses
(Nafisi et al., 2015), such as salinity and cold (Anantharaman and
Aravind, 2010). The marker JHI-Hv50k-2016-249670, associated
with GP and KWP in the waterlogging treatment conditions, is in
the surroundings of the upregulated gene encoding the protein
very-long-chain3-oxoacyl-CoA reductase 1 (5.26 logFC). This
protein is required for the elongation of fatty acids precursors of
sphingolipids, triacylglycerols, cuticular waxes and suberin, and
play a role in the stress adaptation in rice. The downregulated
gene Copalyl diphosphate synthase 2 (—7.34 logFC) is located
very close to the marker JHI-Hv50k-2016-322288 associated
with KWP in the waterlogging treatment conditions. This gene
responds to arsenic detoxification in rice and it is involved
in the plant adaptive responses to arsenic stress (Singh et al.,
2017). The marker JHI-Hv50k-2016-3532, associated with SP
in the waterlogging treatment conditions, is positioned in the
surroundings of the downregulated gene encoding the protein
Dirigent protein 21 (—4.76 logFC). This protein is involved in the
defense response against salt and drought stress of pepper (Khan
etal., 2018).

Further analysis is necessary to validate the associated
candidate genes. However, this study represents the starting
point of the discovery of candidate genes associated with
waterlogging tolerance as well as the development of useful gene-
based functional markers for barley breeding to speed up the
development of waterlogging tolerant barley cultivars.

CONCLUSION

GWAS based on high-density SNP markers represents a
powerful approach for dissecting complex quantitative traits.
In this study, 247 worldwide spring barley genotypes were
evaluated for yield components-related traits under control
and waterlogging treatment conditions in the field, as well
as the relative difference between these two conditions, and
were genotyped using Barley 50K iSelect SNP Array. GWAS
analysis showed that a total of 92, 63, and 51 markers were
significantly associated with BIO, SP, GP, KWP, PH, and

WLS traits in the control, waterlogging treatment, and relative
datasets, respectively. Seventeen significant associations and
eight potential candidate genes were detected for the relative
dataset. Also, six novel QTL (QPH.2H-1, QSP.1H-1, QSP.5H-
1, QWLS.4H-1, QWLS.4H-2, and QWLS.6H) were detected
on genomic regions that have not been reported in previous
waterlogging-related QTL studies on barley and they probably
represent novel loci for waterlogging tolerance. These findings
provide useful information for waterlogging tolerance in barley
by marker-assisted selection in the future. For further research, it
will be necessary the validation of the associated candidate genes
and the development of markers based on associated SNPs.
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Genomic selection (GS) is becoming an essential tool in breeding programs due to its
role in increasing genetic gain per unit time. The design of the training set (TRS) in GS is
one of the key steps in the implementation of GS in plant and animal breeding programs
mainly because (i) TRS optimization is critical for the efficiency and effectiveness of GS,
(i) breeders test genotypes in multi-year and multi-location trials to select the best-
performing ones. In this framework, TRS optimization can help to decrease the number of
genotypes to be tested and, therefore, reduce phenotyping cost and time, and i) we can
obtain better prediction accuracies from optimally selected TRS than an arbitrary TRS.
Here, we concentrate the efforts on reviewing the lessons learned from TRS optimization
studies and their impact on crop breeding and discuss important features for the success
of TRS optimization under different scenarios. In this article, we review the lessons learned
from training population optimization in plants and the major challenges associated with
the optimization of GS including population size, the relationship between training and
test set (TS), update of TRS, and the use of different packages and algorithms for TRS
implementation in GS. Finally, we describe general guidelines to improving the rate of
genetic improvement by maximizing the use of the TRS optimization in the GS framework.

Keywords: training set optimization, genomic selection, genome-wide markers, statistical design, sparse
phenotyping, genomic prediction, mixed models

1. INTRODUCTION

The rate of genetic gain in plant breeding must be enhanced to meet the demand of humanity for
agricultural products in the next few decades (Xu et al., 2020). Tools, such as genomic assisted
breeding (GAB), that improve the understanding of structural and functional aspects of plant
genomes are key in modern breeding methods. GAB can be defined as the set of breeding tools
(next-generation sequencing, omics information, and statistics) that study whole genomes by
integrating multiple disciplines with new technology from informatics and robotic systems to
improve selection and mating in plant breeding programs (Varshney et al., 2005, 2021). In GAB,
other tools such as genetic transformation and genome editing are currently playing a key role
to select better-adapted genotypes while pursuing faster genetic gains (Zhang et al., 2018). One
of the emergent methodologies within GAB that have revolutionized plant and animal breeding
is genomic selection (GS). GS is considered the most promising tool for genetic improvement of
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the complex traits controlled by many genes, each with
minor effects because (i) GS can increase the rates of
genetic gain through increased accuracy of estimated breeding
values (Heffner et al., 2009), (ii) significantly shorter breeding
cycles (Crossa et al, 2017), and (iii) the better utilization
of available genetic resources through genome-guided mate
selection (Akdemir and Séanchez, 2016).

Breeders test candidate genotypes in multi-year and
multi-location trials to select superior genotypes with high
performance. This approach limits the number of variety
candidates to be tested, and it is the main cause of the fact that
plant breeding programs are time and cost-intensive. A breeding
tool that combines the power of GS and the potential of an
extensive collection of germplasm, assisted by new technologies,
will offer promise in crop breeding to contribute to global food
security (Xu et al., 2020) because it can accelerate the generation
interval by reducing the generation time in plant breeding
programs (Falconer and Mackay, 1996).

Bernardo (1994) was the first who proposed the use of
genomic information as covariates for predicting untested
genotypes but it Meuwissen et al. (2001) who came through with
anew methodology to deal with the challenge of fitting prediction
models when the number of genomic covariates (markers, p) is
larger than the number of data points (n). Since then, simulations
and empirical studies have demonstrated that GS could greatly
accelerate the breeding cycle (Heffner et al, 2009), maintain
genetic diversity within the breeding programs, and increase
genetic gain beyond what is possible with phenotypic selection
or quantitative trait loci (QTL) mapping approaches (Crossa
et al, 2017). Genomic selection is a breeding tool that uses
supervised machine learning approach with a training set (TRS)
to predict genomic estimated breeding values (GEBVs) of an
un-phenotyped test set (TS). (Isidro et al., 2016) of genotypes.
The prediction of GEBVs involves a whole-genome regression
model in which the known phenotypes are regressed on the
markers. The GS models are trained on data that consists of
both phenotypic and genome-wide markers data that is used to
estimate marker (or lines) effects de los Campos et al. (2013). The
combination of the marker effect estimates and the marker data
from the TS is used to calculate GEBVs for the TS. The selection
of individuals is based on the GEBVs as the selection criterion.
The performance of the GS model is determined by calculating
the correlation between GEBVs (genomic predictions) and the
unknown true breeding value. As the true breeding values are
never known, the available phenotypic records in the TRS are
used by cross-validation values to evaluate GS. This is called
prediction ability and should not be confused with prediction
accuracy. The latter provides an estimate of the genotypic
correlation and is estimated as the prediction ability divided by
the square root of the heritability for the trait being predicted
(Dekkers, 2007; Lee et al., 2008; Lorenzana and Bernardo, 2009;
Riedelsheimer et al., 2012). Enhancing GS accuracy is very
important for the success of GS breeding programs since the
expected genetic gain from GS is directly proportional to the
accuracy of GS models (Crossa et al., 2010; de los Campos et al.,
2013).

There are many factors affecting the accuracy in GS by
interacting in a complex network relationship (Zhong et al,
2009; Isidro et al., 2016; Liu et al.,, 2018; Zhang et al., 2019).
Within these factors, there is one that is key to the accuracy of
the prediction models in GS, and it is the design of the TRS
since the predictability of a model is critical for the success
of GS. In this study, the aim is to shed some light on the
different TRS optimization criteria by covering the fundamentals
of TRS optimization and its uses in GS, including selection
strategies for long-term gains. We focus on reviewing the TRS
methods from the literature that can be used as tools for
designing a TRS and constructed an example to compare the TRS
optimization strategies.

2. POPULATIONS IN GS

Genomic selection requires training of statistical models on
available genotypic and phenotypic data from a TRS to make
predictions about new genotypes. The selection of TRS involves
different populations (Figure 1):

1. A calibration set (CS): is the group of genotypes available for
the breeders from which the TRS is selected. If the individuals
in this CS are phenotyped and genotyped, the populations
for GS will be CS (TRS) and TS, and in theory, no need for
optimization of the TRS (branch a in Figure 1). Nevertheless,
a subset of the CS might be preferable, i.e., if very distant
individuals (Lorenz and Smith, 2015) are present, to include or
exclude extreme phenotypes (Lopez-Cruz and de Los Campos,
2021), or to remove irrelevant individuals (Brandariz and
Bernardo, 2018). If only genotypic information is available
and just a subset of them can be used for phenotyping due
to budget restrictions, then a TRS will be carefully identified
from the CS (branch b in Figure 1).

2. Training set (TRS): is where the prediction equation will be
built. The TRS individuals present genotypic and phenotypic
information. Under budget constraints, the aim is to select
the minimum number of genotypes to phenotype, but that
will assure an optimal accuracy on the TS population. The
selection of the best genotypes to select from the CS to create
the TRS is called optimization of the TRS. In TRS, the true
response values are known (phenotypes). In this study, we
used both the genotype and phenotype information from the
TRS to obtain a prediction equation, which predicts the effect
of each marker (or line) on the trait.

3. Remaining set population (RS): is the remaining genotypes
in the CS that are used in the process of optimization. It
could be also reserved for evaluating the performance of the
statistical model before making predictions if the phenotypic
information is available.

. Test or Target set (TS): is the set of genotypes to predict. Only
genotypic information is available in this population.

Therefore, the different populations in GS depend on whether
or not the phenotypic information is available within the
CS. Figurel shows the distinction between the two major
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FIGURE 1 | Populations in genomic selection (GS). CS, calibration set, TRS,
training set, RS, remaining set, and TS is the test set. When CS has all the
phenotypic and genotypic information, CS and TRS are the same populations.
Otherwise, we could have up to four different populations in the GS scheme.
There are two different types of TRS selection problems: in one of these (a),
the CS is already phenotyped and genotyped, and a subset of the CS is used
as a TRS in the modeling stage. In the other (b), the CS is only genotyped and
a TRS is constructed by phenotyping a subset of the CS.

groups of TRS optimization methods found in the literature.
The first group of methods addresses the situation where the
phenotypic information is already available in the CS (Neyhart
et al, 2017; Brandariz and Bernardo, 2018; Lopez-Cruz and
de Los Campos, 2021). They aim to use only a part of the CS
when building a GS model excluding irrelevant genotypic and
phenotypic information. For instance, constructing a TRS from
only the individuals with high or low values of the phenotypes
(Neyhart et al., 2017; Brandariz and Bernardo, 2018), or the
more recently proposed sparse modeling approach Lopez-Cruz
and de Los Campos (2021). The second group of methods,
which is the main focus of discussion in this study, assumes
that the phenotypic information is not available in the CS,
and will be obtained after selecting a TRS. In this case, the
resources of the breeding program are limited and just a subset
of the individuals can be phenotype. In this situation, the TRS
must be carefully built within the CS through an optimization
process, and distinguish four different populations (CS, TRS,
RS, and TS; Figure 1). In both groups of methods, the model
validation is usually accomplished by cross-validation within the
TRS (Hefiner et al., 2009; Luan et al., 2009).

In general, within the TRS optimization framework, when the
objective is to select a TRS to predict the remaining individuals
from the same population we talk about Un-targeted TRS.
Likewise, when a TS is first defined and genotyped, and then
the TRS is optimized specifically around the TS then we define
a targeted TRS. It is important to note, that not all optimization
criteria are sensitive to this distinction, (i.e., refer next section,
PAM, A-OPT, D-OPT), nevertheless, when it is so, this is reflected
in how the optimization criteria are calculated (Lorenz and
Smith, 2015; Akdemir and Isidro-Sanchez, 2019).

In addition, when there is heterogeneity within the
environment such as row/column effects in the field, the
optimal TRS of the phenotypic experiment involves not only the
selection of the TRS but also the placement of genotypes in the
environment (Heslot and Feoktistov, 2020). The experimental
design might need blocking structure and environmental
covariates and in these cases, the order in which the individuals
are positioned in the environment will be important. We refer
to this kind of optimization as the "ordered" optimization as
opposed to the “unordered” optimization (Akdemir et al., 2021).

3. DESIGN OPTIMIZATION CRITERIA

The TRS optimization process is an optimal experimental design
problem, and many aspects of GS implementation captured
the attention of statisticians in the past (Smith, 1918; Kiefer,
1959; Fisher, 1960; Fedorov, 1972; Atkinson and Donev, 1992;
Pukelsheim and Rosenberger, 1993; Fedorov and Hackl, 2012;
Silvey, 2013). The design of the concept of the experiment should
be more used to plan experimental designs in plant breeding
programs and perform sets of well-selected optimization TRS to
get the most informative combination out of the given factors.

The most common design optimization criteria method is
indisputably the classical simple random or stratified sampling,
mainly because of its simplicity and generality (Gentle, 2006), but
also because of the difficulty to sample more efficiently when the
number of candidate solutions is large. We classified the different
design optimization criteria in to three major groups.

e Parametric design criteria are based on the assumption that
the experimenter has specified a model before collecting
the training data. These criteria usually depend on a scalar
function of the information matrix for the model parameters
which indicates the sampling variances and covariances of
the estimated parameters or inferences of the model made
from these models such as predictions for new individuals.
Many popular designs such as the A—, D—, E— criteria (Kiefer
etal., 1985) are derived using a linear model as the underlying
model. A linear model is a regression model where a response
variable is modeled as a linear function of features that are
functions of the explanatory variables plus some residual error:

y=XB+e

where y is the »n dimensional vector for independent
realizations of the response variable, X is the n x p design
matrix for the corresponding explanatory variables and X is
the n x g feature matrix, € is the n dimensional vector of
independent residual terms which we assume to have mean
zero and fixed variance 02 and finally, B is the g dimensional
vector of regression coefficients. The least-squares estimator
for the regression coefficients is given by B = (X'X)"'X'y
and for this estimator of the coefficients we can write the
variance-covariance matrix as

Cov(B) = a2 (X'X)™").

Now, suppose we have a certain design we want to evaluate
which is expressed in a specific design matrix X7gs. Since
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n x n CD matrix for a given TRS, then the mean CD is calculated based on certain diagonals that correspond to TRS or remaining set (RS). The optimization algorithm
is used to find the best TRS. When provided with a design matrix that has heterogeneous rows, then we are also looking for a design in addition to the selection of a
TRS. In this case, both the kinship matrix and the nrrs x g environmental covariates matrix are used to calculate the n x n CD matrix for a given TRS, then the mean
CD is calculated based on certain diagonals that correspond to TRS or RS. The optimization algorithm is used to find the best TRS and best design with this TRS.
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we can write the covariance of the estimated coefficients
as (X’TRSXTRS)_1 up to a proportionality constant (which
is the same for all other possible designs), we can use a
function of this matrix to compare it with other designs. In
general, a scalar function of this matrix is used to order the
different designs. D-optimality criterion, for instance, can be
expressed as |(X/TRSXTR5)|, and designs with higher values
are considered better. A-optimality criterion is expressed as
trace [(XTRS)’XTRS)_I], and designs with lower values are
considered better.

Some other criteria such as CDmean, PEVmean, (Lalog,
1993; Rincent et al., 2012; Isidro et al., 2015) rely on a mixed
model as the underlying model: In the linear mixed-effects
model of interest, the observations are assumed to result from
a hierarchical linear model:

y=EBe, +Zu+e

with E is the n x p design matrix for the environmental
Beny is the p vector of the effects of the
environmental covariates, Z is the n x N design matrix for the
N genotypes in the candidate set, € ~ N, (0, R) is independent
of u ~ Ny(0; G). When using this mixed model in genomic
prediction for a single environment, we use G = Usz and
R = 021, where K is the relationship matrix of the genotypes
(CS and if available the TS). When we use this mixed model
with a multi-environmental genomic prediction, we assume
G=V,®KandR=V,Q1I.

For this model, the CD matrix of # for predicting u is given

by

covariates,

(GZ'PZG) 0 G

where P = V~! — V-IE(E'V™'E)~'E'V~! is the projection
matrix and @ expresses the element-wise division. Usually, the

mean of certain diagonal elements of the CD matrix is used
to measure the quality of a sample. For instance, in a targeted
design, the mean of the diagonal elements that correspond to
the TS genotypes are used. When the design is un-targeted, we
can use the mean over the diagonals that correspond to the
remaining set. Another approach involves the calculation of
the CD matrix for a given set of contrasts then taking the mean
of the diagonals of this matrix (Rincent et al., 2012, 2017).
In Figures 2-4, we diagrammatically illustrate the different
populations, input matrices, the different parts of the CD
matrix, and the process of optimization.

Non-parametric designs criteria are model-free, i.e., they do
not rely on models we intend to use with the resulting
data. Some nonparametric designs are based on distance or
similarity measures and aim to spread the TRS over the design
space (space-filling design). Different measures or metrics
quantify how a set of points is spread out. Some examples are:
(i) partition around medoids (PAM) where the objective is to
find a sequence of objects called medoids that are centrally
located in clusters for a given distance measure, (ii) the
maximin criteria are such that the minimum distance among
the TRS is maximized, (iii) the minimax design (Johnson
et al.,, 1990) where the TRS is such that the maximum of the
minimum distances from the TRS to the rest of the CS or the
TS is minimized, (iv) the Latin hypercube sampling divides the
design region evenly into cubes and ensuring that the sample
contains just one point in each such segment and aims at
ensuring that each of the scalar inputs has the whole of its
range well scanned, according to a probability distribution,
and (v) the minimum spanning tree (MST) (Dussert et al.,
1986). An MST is a tree that connects all the candidate design
points and whose total edge lengths are minimal. Once a
spanning tree of the candidate points is built, the mean and SD
of edge lengths can be calculated. The spanning trees with the
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designs. The optimization algorithm tries to find the design that maximizes this criterion.

smallest mean are called minimal and among them, the ones set to reduce the computational complexity of optimizing
with high variance are preferred. A TRS from an MST can be parametric design criteria.
obtained by recursively pruning out, from the candidate set, e Multiple design criteria. Multiple models optimal
the candidate points on the leaves of the MST with small edge experimental design criteria try to overcome the choice
lengths (Guo et al.,, 2019). issue by combining more than one criteria into one via some
Non-parametric designs such as space-filling designs are type of averaging on multiple-objective optimization methods
well suited to the initial exploration objective. They can be (Pukelsheim, 1993; Akdemir and Séanchez, 2016). In this
used to select a smaller candidate set from a bigger candidate approach, the Pareto front approach is used to evaluate several
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criteria. The Pareto front is a set of non-dominated designs,
i.e., as compared to the design points on the frontier, no other
design point can be found that does not degrade at least one
of these criteria values (as shown in Figure 5).

Many GS experiments will be performed in several environments
and then the TRS optimization aims to find subsets of genotypes
from the candidate set to be tested in each of the environments
and perhaps the corresponding designs within some of these
environments to address the heterogeneity within environments.
The use of CD for this situation is illustrated in a diagram in
Figure 4.

4. TRS OPTIMIZATION FOR SPARSE
PHENOTYPING

The most important current bottleneck in plant breeding
programs is the phenotypic evaluation (Crossa et al., 2017).
Although genotyping is still costly, next-generation sequencing
has decreased genotyping cost more than 100K folds in the last 20
years (National Human Genome Research Institute, 2020), and
therefore, phenotyping needs to be optimized within a breeding
program. The use of GS in breeding programs is potentially
costly without the careful design of populations. When designing
the implementation of the GS scheme into the breeding cycle,
breeders need to focus first on several aspects: (i) to generate
a specific breeding database for GS, (ii) to choose the filial
generation to start GS, and (iii) to select the TRS to start GS
modeling (Albrecht et al., 2011; Clark et al., 2012). The design
of the TRS, also called optimization of the TRS, is the breeding
process that uses the information from these aspects to create a
TRS to start the GS process.

Training set optimization consists of choosing (within a
panel of candidates) a set of training individuals that will better
predict un-phenotyped germplasm in a TS. TRS optimization
has attracted notable interest in the breeding community
for several reasons (Table 1). First, the fact that predictions
are based on markers or line effects calculated on the TRS
raises the question of how to select the TRS to increase the
efficiency and effectiveness of GS. Second, currently, the high
cost of phenotyping makes the phenotype information the
most important constraint in plant breeding programs. Better
allocation of resources within plant breeding programs by
observing a small size but representative TRS would reduce
phenotypic cost and increase the quality of the phenotypic data
by focusing on more expensive traits with more sophisticated
instruments, or increasing complementary measurements of
the same traits (sparse or selective phenotyping). Third, the
traditional optimization process based on random sampling as
a strategy to create the TRS does not always lead to an increase in
predictive ability due to the under or over-representation of the
genetic information in the TRS. The TRS optimization aims to
enhance the process of sparse phenotyping, to reduce the cost of
phenotyping while maintaining high prediction accuracy models.

Two important aspects within the TRS optimization are the
fact that the TRS is a dynamic populations that must be updated

through the breeding cycle program, and also that the TS needs
to be into account when building the TRS (Akdemir et al., 2015).

The design of the TRS was initially started in animal breeding
(Habier et al., 2007, 2010; Clark et al., 2012; Pszczola et al.,
2012). These studies and others in plants (Windhausen et al.,
2012; Wientjes et al., 2013) were focused on the importance
of the relatives for the makeup of the TRS and on how
to update the TRS to improve genomic prediction across
generations. They highlighted how the TRS should be composed
in terms of resemblance between TRS and TS, but they did not
perform any optimization process, TRS was selected randomly.
A random sampling of genotypes from a CS is a risky procedure
because could lead to low-quality coverage of the total genetic
space especially when the CS contains population structure
(Windhausen et al., 2012; Isidro et al., 2015; Bustos-Korts et al.,
2016). In the last decade, many studies (Table 1) examined the
importance of optimization of the TRS by comparing specific
selection criteria to random sampling.

The first study highlighting the importance of using statistical
approaches to develop an optimal TRS was shown by Rincent
et al. (2012) (Table 1). In this study, the objective was to define
which individuals from a calibration (candidate) set are the
optimal ones to predict a selection (TS) candidates. The idea
was to use a criterion that could minimize genetic similarity
within the TRS, because of the more similar the individuals
within the TRS, the more duplication of the alleles, and therefore,
more redundancy. Based on concepts from the mixed model
equations introduced by Laloé (1993), Rincent et al. (2012)
introduced criteria that aimed to maximize the reliability CD,
the square correlation between GEBVs and true breeding values
or minimized the prediction error variance (PEV) on the CS.
In this study, they used a generalized version of CD and
PEV (the contrast between breeding values). They showed that
the optimization criteria improved prediction accuracy when
comparing with random sampling. Rincent et al. (2012) have
shown that mean of the coefficient of determination (CDmean)
captured more genetic variability when building the TRS than
mean of the prediction error variance (PEVmean) and that
an optimized set of 100 lines achieved on average the same
prediction accuracy as a set of 200 lines selected at random.

Isidro et al. (2015) proposed stratified sampling and stratified
CD as alternative algorithms to improve the optimization of TRS
under population structure effects. The optimization of the TRS
based on genomic relationships resulted in higher prediction
accuracies when compared with random sampling. In this study,
they concluded that the optimization of the TRS depended on
the interaction of trait architecture and population structure
and on the ability of the algorithm to capture phenotypic
variance. In the same year, Akdemir et al. (2015) derived a
computationally efficient approximation to the PEV based on
principal components of the genotypes as a criterion for TRS
design that showed less computational burden than previous
criteria. These studies were the first ones that open the door to
other strategies to optimize the TRS. Bustos-Korts et al. (2016)
proposed a TRS construction method that uniformly sampled
the genetic space comprised by the target population (TS) of
genotypes, although, the results were similar to CDmean.
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FIGURE 5 | Pareto front for minimizing the mean genomic distance of TRS genotypes to the TS genotypes (i.e., maximizing the negative of this quantity), and
maximizing the mean genomic distance among the TRS genotypes. The figure represents a toy example where a sample of size 10 is selected from 23 candidate

genotypes to predict 7 TS genotypes (the total number of different solutions is 23 choose 10 which is more than a million). Target genotypes along with selected TRS
and the remaining sets are displayed in the genotypic space represented by the first two principal components of the marker matrix. With different symbols and colors,
we indicate the optimal CD TRS’s for targeted and un-targeted cases, D-optimal TRS, and the TRS selected by PAM. The red dots are the TRS that are on the Pareto
front, i.e., no other TRS will be better than any of these for both criteria (non-dominated solutions). All the brown dots are dominated by the same two criteria. We get
the most diverse set when the mean genetic distance in the TRS is maximal. We get a TRS closest to the TS when we minimize the mean genetic distance (maximize
the negative) of TRS to TS. All of the parametric design criteria and PAM are dominated. Among those, CDmean targeted gives a TRS that is close to the TS. The

remaining optimal TRS’s are genetically diverse. The most genetically diverse set among the optimization criteria is the CDmean calculated for all genotypes in CS.
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TABLE 1 | Key relevant scientific studies on training set (TRS) optimization.

Study CDmean PEVmean Clustering Other criteria Package
Rincent et al. (2012) O O - - Own code
Isidro et al. (2015) O O O - Own code
Akdemir et al. (2015) O O O . STPGA
Lorenz and Smith (2015) - - - Levels of TRS relationship Own code
Bustos-Korts et al. (2016) O - O Uniform Sampling Own code
He et al. (2016) - - Random -

Rincent et al. (2017) O - ] CDpop and Crit_Kin Own code
Neyhart et al. (2017) O O - Top and bottom proportion Own code
Cericola et al. (2017) - - Random sampling Own code
Momen and Morota (2018) u] O Additive and Non-additive Own code
Norman et al. (2018) - - O Random Own code
Akdemir and Isidro-Sanchez (2019) O O - D and A-OPT STPGA
Ou and Liao (2019) O O O r-score TSDFGS
Mangin et al. (2019) O O - EthAcc Own code
Guo et al. (2019) 0 0 PAM FURS STPGA
de Bem Oliveira et al. (2020) - - - Random, Family Random Own code
Adeyemo et al. (2020) - - ] - Own code
Mendonga and Fritsche-Neto (2020) - u] - STPGA
Olatoye et al. (2020) O - - Random Own code
Roth et al. (2020) u] Maximum and Mean relationship STPGA
Sarinelli et al. (2019) - O u] - Own code
Tayeh et al. (2015) O - - - Own code
Atanda et al. (2021) O - - Avg_GRM Own code
Yu et al. (2020) - - - Upper Bound reliability Own code
Ben-Sadoun et al. (2020) O - - CDmean-multi Own code
Heslot and Feoktistov (2020) - PEVridge Own code
Akdemir et al. (2021) 0 0 O - TrainSel
Kadam et al. (2021) m] u] - - STPGA

CDmean, Mean of the coefficient of determination; PEVmean, Mean of the predictor error variance. A cross in the cell indicates that the criterion has been used for TRS optimization.
Criteria different than CD, PEV, and Clustering are shown in the column Other Criteria. The software using R is specified in the Package column.

Other studies also stressed the importance of considering an
other way to construct the TRS by random sampling (Lorenz
and Smith, 2015; He et al., 2016; Cericola et al., 2017; Neyhart
et al,, 2017; Norman et al.,, 2018; de Bem Oliveira et al., 2020;
Olatoye et al., 2020), clustering approaches (Akdemir et al.,
2015; Isidro et al, 2015; Bustos-Korts et al, 2016; Rincent
et al,, 2017; Norman et al, 2018; Guo et al., 2019; Sarinelli
et al,, 2019; Adeyemo et al., 2020), by using different levels of
relatedness between TRS and TS (Lorenz and Smith, 2015; Berro
et al., 2019; Roth et al., 2020) or by using other alternatives
algorithms to CD-mean and PEV-mean such as different design
matrix algorithm (Akdemir and Isidro-Sanchez, 2019), estimated
theoretical accuracy (EthAcc) (Mangin et al., 2019), upper bound
reliability (Yu et al., 2020), or the Fast and Unique Representative
Subset Selection (FURS) (Guo et al., 2014). A criterion that is
derived directly from Pearson’s correlation between GEBVs and
phenotypic values of the TS derived from the GBLUP model
showed higher predictive ability than CD and PEV (Ou and
Liao, 2019). Most aforementioned approaches above, do not
use information from the TS while building the TRS, which is
detrimental for prediction accuracy (Lorenz and Smith, 2015;

Akdemir and Isidro-Sdnchez, 2019; Ou and Liao, 2019). The
main reason for the decrease in accuracies is because the most
informative TRS to predict the TS is the one where individuals
are more closely related to the TS. This is because when pairs of
individuals are closely related, they tend to inherit QTL blocks
in the same linkage phase (Andreescu et al., 2007; Habier et al.,
2010). This is especially critical when there is low marker density
coverage because the assumption in GS of getting at least one
marker in QTL with the trait of interest will not be perfectly met.
The genetic relatedness between TRS and TS was addressed by
Lorenz and Smith (2015), Rincent et al. (2017), and Akdemir
and Isidro-Sanchez (2019). Recently, Atanda et al. (2021) used
the average genomic relationship (AvggRM in Table 1) between
a specific line in the TRS and all lines in the TS, and they
statistically significant increase in the accuracies when compared
with CD in some bi-parental populations. Nevertheless, this
approach as in Rincent et al. (2017) did not consider the possible
alleles duplication within the TRS.

Training optimization selection also has been used for pre-
breeding discovery. Tanaka and Iwata (2018) proposed a strategy
that used genomic prediction in pre-breeding for discovering
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the best genotypes from a large number of candidates. They
demonstrated by simulation that their Bayesian optimization
could reduce the number of phenotyped accessions needed to
find the best accession among a large number of candidates. Their
strategy was based on predict uncertainty of the prediction rather
than based only on high predicted values. Following this strategy,
Tsai et al. (2021) used an augmented expected improvement for
sequential phenotyping to identify the best individual from the
CS. It is important to note that these studies are not focusing on
building a TRS for GP, but on identifying the best candidate to
be used for commercial or mating purposes. These approaches
could be used when phenotyping is very expensive and not
very time-consuming.

In the area of hybrid breeding, the optimization of the TRS
is even more critical than in other breeding systems, since the
selection of superior F1 hybrids (single crosses between fully
inbred lines) implies developing first inbred lines and then
identifying the best hybrid combinations between them. To
facilitate this process, breeders typically split germplasm into
complementary heterotic groups and select lines within each
group for their ability to produce good hybrids when crossed
to lines from a complementary group. The fullest assessment of
single-cross performances would be a complete factorial mating
design achieved by making all possible single crosses. However,
the high number of lines to be evaluated per heterotic group
makes this approach prohibitive (i.e., for 1,000 lines in each
heterotic group, there would be 1 million possible crosses).
Genomic models have been applied to hybrid prediction mainly
in maize (Bernardo, 1994; Schrag et al., 2009; Technow et al.,
2014; Kadam et al,, 2016; Marulanda et al., 2016; Fristche-Neto
et al,, 2018; Seye et al., 2020), and wheat (Zhao et al., 2013, 2014,
2015; Longin et al., 2015; Marulanda et al., 2016; Schulthess et al.,
2017), and less in other species such as rye (Wang et al., 2014)
or sunflower (Reif et al., 2013; Mangin et al., 2017; Dimitrijevic
and Horn, 2018; Heslot and Feoktistov, 2020). These studies have
emphasized the interest in using TRS optimization compared to
the traditional crossing designs.

In general, most of the TRS studies have used model-based
parametric criteria (CDmean, PEVmean, and r-score), followed
by non-parametric (i.e., PAM, FURS), and just a few studies used
their own criteria (i.e., AvgGRM, U score) (Table 1). All these
studies show that there is not a universal criterion to create a TRS.
It will mainly depend on linkage disequilibrium between markers
on TRS vs. TS, the relationship between TRS and TS (Habier
et al., 2007; Goddard, 2009), the genetic architecture of the trait
(McClellan et al., 2007; Jannink, 2010; Burstin et al., 2015), trait
heritability (Hayes et al., 2009), and population structure effects
(Isidro et al., 2015; Rincent et al., 2017).

To shed some light on the different TRS optimization criteria,
we constructed a toy example where we compared several
design criteria (CD, PAM, D-OPT, and r.score) with each other
(Figure 5). In this example, there were 30 genotypes in total,
seven of these genotypes were selected as the TS. The remaining
23 genotypes were used as the CS. We set the TRS size to 10,
giving 23 choose 10 (1144066) different TRS possibilities. For
each of these designs, we calculated the value of the mean genetic
distance among the TRS (DistTgs), and the negative of the mean

genomic distance from TRS to the TS (Distrs). In the Figure,
the red dots are the TRS that are on the Pareto front, i.e., no
other TRS will be better than any of these for both criteria (non-
dominated solutions). Balancing the Distrgrs and Distrs in the
Pareto front gives you different TRS. For instance, when we
minimize the mean genetic distance (maximize the negative) of
TRS to TS, we obtained a TRS closest to the TS (top left graph).
We get the most diverse TRS when the Distrgs in the TRS is
maximal (bottom right graph). If you balance both distances,
then we get a TRS where there is a trade-off between Distrrs
and Distrs. The remaining TRS on the same plot is dominated
with respect to the same two criteria. A TRS is dominated if
we can find another TRS that improves at least one of these
criteria without deteriorating the other criterion value. All of the
design criteria and PAM are dominated with respect to DistTgs
and Distrs. Among those, CDmean targeted gives a TRS that is
close to the TS, where CDmean calculated over the candidate set
(CDMEAN-Cand) comes very close to the most diverse design.
The contours of the density of Distrrs and DistTs over 1144066
different TRS possibilities show that a random design on average
would be dominated by all of the optimal samples and would fall
far away from the Pareto frontier. It is important to understand
the different trade-offs involved in choosing a good TRS since
this will help the experimenter to choose a suitable TRS or a TRS
selection criterion among the alternatives.

Breeding programs usually deal CS’s with 1,000’s or 10,000’s
of genotypes. Although direct enumeration of all the possible
TRS’s is not possible in these cases, multi-objective optimization
techniques can be utilized to approximate the frontier curves and
single-objective optimization tools can be used to find optimal
TRS’s according to several single criteria. Then a plot similar
to the one presented in Figure 5 can be produced to evaluate
the trade-offs among different designs. When the number of
genotypes in the CS is so large that computationally intensive
methods are prohibitive, we recommend using a less intensive
method such as PAM or stratified sampling (Isidro et al., 2015;
Guo et al,, 2019), or one of the space-filling designs to reduce
the number of CS to a manageable size ahead of comprehensive
analysis. A practical overview of the statistical analysis needed to
optimize the TRS using R and issues associated with the analysis
have been addressed along with the R code in the study by Isidro y
Sanchez et al. (2022). In addition, extra information can be found
in the extensive vignette (https://github.com/TheRocinante-lab/
TrainSel/blob/main/inst/TrainSelUsage.pdf).

5. SOFTWARE TOOLS FOR TRS
OPTIMIZATION

While the practical use of TRS optimization in GS is supported
by the literature, as shown above, the number of software tools
for implementation is limited. As far as we are concerned, just
three software have been developed and available for public use.
The package STPGA Akdemir (2017) is an R package that uses
a modified GA for solving subset selection problems but also
allows users to chose from many predefined or user-defined
criteria. Similarly, the package TSDFGS Ou and Liao (2019) is
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an R package that focuses on optimization of the TRS by a
genetic algorithm (GA) and can be used for TRS optimization
based on three built-in design criteria [CDscore, PEVscore, and
Pearson correlation (r-score)]. Recently, Akdemir et al. (2021)
designed a new package called TrainSel to provide many more
options than previous software. For example, TrainSel can select
multiple sets from multiple candidate sets, users can specify
whether or not the resulting set needs to be ordered, or the power
to perform multi-objective optimization. In addition, TrainSel
can be used for searching for solutions to a variety of TRS and
experimental design problems, such as randomized complete
block design, and lattice design, etc. Furthermore, it can be
also used in combinatorial optimization problems for supervised
and also unsupervised learning. The strength of TrainSel is that
it combines TRS optimization with a particular experimental
design, which has not been implemented in both of the above
alternatives by Akdemir et al. (2021).

6. GENERAL GUIDELINES FOR A GOOD
TRS

In this study, we highlight some of the guidelines learned from
the literature when building an optimal TRS:

e When building the first TRS is key to keep, within the
TRS, the historical germplasm used to generate the breeding
populations. This will allow capturing the allelic diversity
within the breeding program.

e The larger the TRS size the better predictions (Daetwyler
et al., 2008; Zhong et al., 2009), since most characters are
quantitative with a large number of loci and a very small effect
size. The number of loci affecting quantitative characters likely
ranges from 2,000 to 4,000 (MacLeod et al., 2016). Although
adding genetically distant individuals might decrease accuracy
(Lorenz and Smith, 2015), this is not a general rule. In
addition, large TRS are needed to capture rare alleles at
high frequencies to obtain a reliable estimate of their effects
(MacLeod et al., 2016), even for highly quantitative traits if
the rare allele is present in the sequencing or the genotyping
is done from coding and regulatory regions.

e Markers can capture genetic relationships among genotypes,
thereby affecting the accuracies of GEBVs (Habier et al,
2007). Therefore, a genetic relationship between TRS and
TS is needed to obtain high accuracies. In general, a TRS
should maximize the relationship with the TS (Albrecht et al,,
2011; Pszczola et al, 2012; Akdemir and Isidro-Sanchez,
2019), but should minimize the relationship within the TRS
(Clark et al., 2011; Lorenz, 2013; Bustos-Korts et al., 2016;
Pszczola and Calus, 2016). That is to say, if TRS and TS
come from different populations or breeding generations, a
drop in accuracy is expected. The main reasons for the drop
in accuracy are because LD between markers and QTL, or
that QTL allele frequencies and/or effects can differ among
populations (Hayes et al., 2009; Wientjes et al., 2015, 2017).
The difference in allele frequencies between TRS and TS
can affect prediction accuracy because allele frequencies can

affect the estimated genomic relationship matrix when GBLUP
models are implemented.

e The TRS must be updated with new genotyped and
phenotyped individuals to assure the accuracy of GEBVs,
is maintained over generations. Otherwise, recombination
events will decrease LD between markers and QTL (Auinger
etal., 2016). As phenotypes are the current bottleneck in plant
breeding programs, the quality of the phenotypes is critical to
the TRS optimization.

e The design of the TRS highly depends on the TS population.
For example, if your TS is highly diverse, your TRS must be
built to capture that diversity, otherwise, a significant drop
in accuracy might occur. That is why targeted optimization
approaches are chosen when building TRS (Akdemir and
Isidro-Sanchez, 2019; Akdemir et al., 2021). From Figure 5
we can observe that we get a TRS closest to the TS when we
minimize the mean genetic distance (maximize the negative)
of TRS to TS. Among the different TRS selection criteria,
CDmean targeted gives a TRS that is close to the TS. The
remaining optimal TRS’s are genetically diverse but the most
genetically diverse set among the optimization criteria is the
CDmean calculated for all genotypes in CS. This type of
evaluation of different design criteria together along with a
frontier curve should shed some light on the selection of a
particular TRS.

e If certain QTL with large effects for traits of interest exists,
then these QTL can be given more influence while selecting the
TRS. This could be done, for example in the mixed modeling
framework by using the QTL as fixed effects (Spindel et al.,
2016). In the non-parametric approach, more weights can be
given when calculating the genetic distance matrix.

e In general, optimization criteria from mixed model theory
(CDmean, PEVmean) performs better than random sampling
under most scenarios, except for scenarios with a large
population structure where these criteria might not be optimal
(Isidro et al., 2015).

7. PERSPECTIVES FOR TRS
OPTIMIZATION

Genomic selection is an emergent methodology that
revolutionized plant and animal breeding, by using a statistical
framework that uses genome-wide markers to predict breeding
values for key breeding traits. In this framework, one critical
step is how to select the best individuals to train the statistical
models. As shown above, there has been quite a great research
in this area, but there are still some questions to be answered.
Following the literature, there is no “best” strategy to optimize
the TRS, and therefore, a comparison between algorithms
focusing on the different factors affecting the TRS on different
populations would be helpful to answers some questions
regarding TRS optimization.

We envision a substantial benefit applying TRS optimization
methods to hybrid prediction, and also sparse testing in multi-
environment, and multi-trait experiments (Jarquin et al., 2014;
Akdemir et al., 2021; Crossa et al., 2021). For instance, in hybrid
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prediction, TRS are traditionally constructed by methods such
as top crosses, North Caroline design, etc. It has been shown
that the TRS optimization methods improve hybrid prediction
accuracies when comparing with the traditional design methods
(Zhao et al., 2015, 2021; Fristche-Neto et al., 2018; Heslot and
Feoktistov, 2020; Yu et al., 2020; Technow et al., 2021).

It is also expected that TRS selection methods will be used
more commonly in multi-environmental phenotypic experiment
design (Montesinos-Lopez et al., 2019; McGowan et al., 2020)
as more flexible and powerful tools such as the package R
TrainSel becomes available for researchers. The use of genomic
information in designing these experiments shifts the attention
from replication of individuals to replication and representation
of alleles in different environments.

In addition, more studies using haplotypes rather than
just markers are needed, since accuracies are greater if TRS
and TS share long-range haplotypes (Akdemir et al, 2015;
Meuwissen et al., 2016; Scott et al., 2021). The decrease of whole
genomic sequencing is allowing us to develop pan-genomes
studies of many crops, which will allow us to switch from
SNPs to longer more important haplotypes in the design of
TRS populations. The development of haplotype-infor