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Common rust is one of the major foliar diseases in maize, leading to significant grain
yield losses and poor grain quality. To dissect the genetic architecture of common
rust resistance, a genome-wide association study (GWAS) panel and a bi-parental
doubled haploid (DH) population, DH1, were used to perform GWAS and linkage
mapping analyses. The GWAS results revealed six single-nucleotide polymorphisms
(SNPs) significantly associated with quantitative resistance of common rust at a very
stringent threshold of P-value 3.70 × 10−6 at bins 1.05, 1.10, 3.04, 3.05, 4.08, and
10.04. Linkage mapping identified five quantitative trait loci (QTL) at bins 1.03, 2.06,
4.08, 7.03, and 9.00. The phenotypic variation explained (PVE) value of each QTL
ranged from 5.40 to 12.45%, accounting for the total PVE value of 40.67%. Joint GWAS
and linkage mapping analyses identified a stable genomic region located at bin 4.08.
Five significant SNPs were only identified by GWAS, and four QTL were only detected
by linkage mapping. The significantly associated SNP of S10_95231291 detected in
the GWAS analysis was first reported. The linkage mapping analysis detected two new
QTL on chromosomes 7 and 10. The major QTL on chromosome 7 in the region
between 144,567,253 and 149,717,562 bp had the largest PVE value of 12.45%.
Four candidate genes of GRMZM2G328500, GRMZM2G162250, GRMZM2G114893,
and GRMZM2G138949 were identified, which played important roles in the response
of stress resilience and the regulation of plant growth and development. Genomic
prediction (GP) accuracies observed in the GWAS panel and DH1 population were 0.61
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and 0.51, respectively. This study provided new insight into the genetic architecture
of quantitative resistance of common rust. In tropical maize, common rust could be
improved by pyramiding the new sources of quantitative resistance through marker-
assisted selection (MAS) or genomic selection (GS), rather than the implementation of
MAS for the single dominant race-specific resistance gene.

Keywords: maize, common rust, quantitative resistance, genome-wide association study, linkage mapping,
genomic prediction

INTRODUCTION

Common rust, caused by Puccinia sorghi, is one of the major foliar
diseases in maize, which can cause up to 49% grain yield loss in
susceptible varieties (Groth et al., 1983). The most sustainable
strategy for controlling common rust is to develop and deploy
resistant maize varieties, which requires the identification of
the new source of resistance to common rust and the further
understanding of the genetic basis and architecture of common
rust resistance (Kibe et al., 2020).

In several recent studies, a broad genetic variation for
common resistance was observed in tropical maize, and a
few tropical maize inbred lines showing good resistance to
common rust were identified (Rossi et al., 2020; Sserumaga
et al., 2020). Among 50 tropical adapted maize breeding lines
developed by International Maize and Wheat Improvement
Center (CIMMYT), 12 lines with broad genetic diversity were
identified as the potential donors of resistance alleles, and these
lines are valuable breeding materials for the development and
deployment of resistant hybrids to control common rust in
tropical maize (Sserumaga et al., 2020). Furthermore, tropical
maize germplasm is also an important source of resistance
for improving common rust in temperate maize, and the six
inbred lines developed by CIMMYT were identified as novel
donors in Argentina for incorporating resistance to the local
germplasm (Rossi et al., 2020). Those studies indicated the
presence of genetic resistance to common rust in tropical maize
germplasm. The donor lines identified in these studies are
valuable donors for improving common rust resistance through
breeding, which also are novel resistance sources for providing
a better understanding of the genetic basis and architecture of
common rust resistance.

Host-plant resistance, including both qualitative and
quantitative resistances, had been identified as the most reliable
and sustainable strategy for controlling common rust in maize
(Zheng et al., 2018; Kibe et al., 2020). Previous efforts to exploit
genetic resistance for common rust have largely been through
dominant resistance (Rp) genes, and more than 26 Rp genes
had been identified on maize chromosomes 3, 4, 6, and 10
(Hooker, 1985; Delaney et al., 1988). The Rp gene is qualitative
and exhibits a high level of resistance to a specific P. sorghi race,
and the resistance allele of Rp genes can be easily fixed into
the breeding materials, but the resistance of Rp genes in some
hybrids could break down due to the emerging P. sorghi race
or multiple races caused infection happened in natural field
condition (Zheng et al., 2018; Kibe et al., 2020). Quantitative

resistance is due to partial or adult plant resistance, which is
non-race-specific and often controlled by several genes to reduce
the rate of fungal development on plant tissues (Olukolu et al.,
2016). A few studies have been carried out on quantitative
resistance to common rust mainly through linkage mapping
(Lübberstedt et al., 1998; Kerns et al., 1999; Brown et al., 2001).
Further studies are required to detect more sources of novel
quantitative resistance alleles and exploit them to develop elite
inbred lines or hybrids having stable and durable host-plant
resistance to common rust.

Several linkage mapping analyses had been conducted
in different genetic backgrounds to detect quantitative trait
loci (QTL) associated with partial resistance to common
rust (Lübberstedt et al., 1998; Kerns et al., 1999; Brown
et al., 2001). These studies emphasized QTL detection in
temperate maize germplasm, and QTL associated with partial
resistance to common rust were distributed over all 10
chromosomes, without preference to chromosomes 3, 4, 6,
and 10, which harbor qualitative Rp genes. Some QTL
were overlapped in different studies and were consistent
in different genetic backgrounds. These results suggest that
major QTL associated with partial resistance from various
elite backgrounds are possible to be pyramided for improving
common rust resistance in temperate maize germplasm, and
selection for multiple partial resistance alleles seems to be
more promising than the marker-assisted selection (MAS)
of the Rp genes.

Genome-wide association study (GWAS) is a useful tool
for identifying molecular markers significantly associated with
the target trait and exploring the underlying candidate genes
(Yan et al., 2011; Wang et al., 2019). In a collection of 274
temperate maize inbred lines, the GWAS analysis was conducted
to identify the SNPs significantly associated with common rust
resistance; three loci significantly associated with common rust
resistance were identified; and they were on chromosomes 2,
3, and 8. Candidate genes at these loci had predicted roles in
cell wall modification and in regulating the accumulation of
reactive oxygen species (Olukolu et al., 2016). The combined use
of GWAS and linkage mapping can complement the strengths
and weaknesses of each approach, and this approach has been
successfully used in maize to dissect the genetic basis and
architecture of complex traits (Li et al., 2016; Cao et al., 2017).
In tropical maize germplasm, the combined use of GWAS and
linkage mapping approach was applied to dissect the genetic basis
of partial resistance to common rust recently (Zheng et al., 2018;
Kibe et al., 2020). The results of these studies provide valuable

Frontiers in Plant Science | www.frontiersin.org 2 July 2021 | Volume 12 | Article 6922056

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


fpls-12-692205 July 2, 2021 Time: 12:27 # 3

Ren et al. Genetic Mapping and GS Common Rust

information on understanding the genetic basis of common rust
resistance; the common stable QTL regions identified by both
GWAS and linkage mapping, and the major QTL identified by
GWAS or linkage mapping individually need to be explored
further for developing functional molecular markers for MAS.

Genomic selection (GS), also known as genomic prediction
(GP), is an extension of MAS that uses genome-wide markers to
predict the genomic estimated breeding values (GEBVs) of the
unphenotyped lines for selection (Meuwissen et al., 2001; Crossa
et al., 2014). GP can greatly accelerate the genetic gain per unit
time and the cost in plant breeding programs for complex traits,
and it has been reported in many studies (Gowda et al., 2015;
Zhang et al., 2015; Beyene et al., 2019; Wang et al., 2020a). To
our knowledge, only one study has been reported evaluating the
potential of GS and GP for improving common rust resistance
in maize, where the GP accuracies ranged from 0.19 to 0.51 in
different populations (Kibe et al., 2020).

In this study, a GWAS panel and a bi-parental DH population
were used to perform GWAS, linkage mapping, and GP
analyses, where both populations were phenotyped in multi-
environment trials to evaluate their responses to common rust
and genotyped with genotyping-by-sequencing (GBS) single-
nucleotide polymorphisms (SNPs). The main objectives of this
study were to: (1) detect the significantly associated SNPs,
major QTL, and putative candidate genes conferring common
rust resistance in tropical maize by the combined use of
GWAS and linkage mapping; (2) explore the potential of
GS and GP for improving common rust resistance; and (3)
estimate the GP accuracies under different factors affecting the
accuracy estimation.

MATERIALS AND METHODS

Plant Materials
A GWAS panel of 282 genetically diverse inbred lines was used
for the GWAS and GP analyses in this study (Supplementary
Table 1). The GWAS panel, Drought Tolerant Maize for
Africa (DTMA), was collected by the Global Maize Program
of CIMMYT. Based on the geographic information and
environmental adaptation, the DTMA panel can be classified
into nine subsets: (1) breeding lines from the lowland tropical
maize breeding program in Mexico, (2) breeding lines from
the highland tropical maize breeding program in Mexico, (3)
breeding lines from the subtropical maize breeding program in
Mexico; (4) inbred lines from the maize physiology breeding
program in Mexico, (5) inbred lines from the maize entomology
breeding program in Mexico, (6) breeding lines from the
lowland tropical maize breeding program in Colombia, (7)
breeding lines from the mid-altitude maize breeding program in
Zimbabwe, (8) breeding lines from the highland tropical maize
breeding program in Ethiopia, and (9) breeding lines from the
maize breeding program of International Institute of Tropical
Agriculture in Nigeria (Cairns et al., 2013; Yuan et al., 2019). A bi-
parental DH population, DH1, was used for the linkage mapping
and GP analyses. This DH population consisted of 189 DH lines,
which were derived from the F1 cross formed with two elite

inbred lines of CML495 and La Posta Sequia C7 F64-2-6-2-2-B-B-
B, CML495 shows good resistance to common rust, and La Posta
Sequia C7 F64-2-6-2-2-B-B-B is susceptible to common rust.

Experimental Design
Both populations were evaluated for response to common
rust under consistently high natural disease pressure at several
locations in Mexico. The DTMA panel was evaluated at Agua
Fria in the state of Puebla (110 masl; mega-environment:
lowland tropical) in 2008, 2009, 2010, and 2012. Two tropical
maize inbred lines (B.T.Z.T.R.L.BA90 12-1-1P-1P-1-1-1-1P-1-
B/BTZTVCPR92A 27-7P-1-1P-1P-4P-B-B)-B-60TL-1-1-B-B-B-
B and CML139 were used in all the trials as the resistant and
susceptible checks, respectively. The population of DH1 was
evaluated in two locations in 2013 at El Batan in the state
of Mexico (2,249 masl; mega-environment: highland tropical)
and Santa Catarina in the state of Nuevo Leon (680 masl;
mega-environment: subtropical), respectively. For the DH1
population, the parental lines were used as the resistant and
susceptible checks. A randomized complete block design with
three replications was used for all trials. Each plot consisted of
11 plants in a 2 m row with a width of 0.75 m.

Disease Evaluation
Plants were visually evaluated for common rust three times at 7-
day intervals, beginning 2 weeks after flowering. Disease severity
was evaluated on a 1–5 scale based on the percentage of leaf
area covered by lesions. A rating scale of 1 corresponds to high
resistance covering 0–10% of the leaf surface, 2 corresponds to
weak to moderate infection covering 10–25% of the leaf surface,
3 corresponds to moderate infection covering 25–50% of the leaf
surface, 4 corresponds to moderate-to-severe infection covering
50–75% of the leaf surface, and 5 corresponds to severe infection
covering > 75% of the leaf surface. For each plot, the final highest
score was used for further analysis. In both the DTMA panel and
the DH1 population, the resistant and susceptible checks were
used as controls to check for adequate levels of disease infection.

Phenotypic Data Analysis
The multi-environment trial analysis was conducted using
META-R Version 6.04 (Alvarado et al., 2020). A mixed linear
model was used to calculate the best linear unbiased predictors
(BLUPs), variance components, and broad-sense heritability. The
model used for data analysis was as follows:

Yijk = µ + Gk + Ei + Rj(i) + EGik + εijk (1)

where Yijk is the observation of the kth genotype in the ith
environment in the jth replicate, µ is the overall mean, Gk
is the effect of the kth genotype, Ei is the effect of the ith
environment, Rj(i) is the effect of the jth replication nested
on the ith environment, EGik is the effect of the interaction
between the ith environment and kth genotype, and εijk is the
effect of experimental error. BLUPs across all environments were
used for GWAS, linkage mapping, and GP analyses. Broad-sense

Frontiers in Plant Science | www.frontiersin.org 3 July 2021 | Volume 12 | Article 6922057

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


fpls-12-692205 July 2, 2021 Time: 12:27 # 4

Ren et al. Genetic Mapping and GS Common Rust

heritability across all environments was calculated as follows:

h2
=

σ2
g

σ2
g +

σ2
ge
/
i+ σ2

e
/
ij

(2)

where σ2
g is the genotypic variance, σ2

ge is the
genotype × environment interaction variance, σ2

e is the
error variance, i is the number of environments, and j is the
number of replications in each environment. All of the factors
were set as random effects when calculating heritability.

Genotyping and Genotypic Data Analysis
Young leaves of all the inbred lines and the parental lines were
sampled for both populations. DNA extraction was performed
using a CTAB method (CIMMYT, 2005). Genotypic data was
generated using the GBS method at the Cornell University
Biotechnology Resource Center (Ithaca, NY, United States). DNA
sequencing was performed on Illumina HiSeq2000. TASSEL
GBS Pipeline was used for SNP calling to align reads to maize
B73 reference genome v2 (ZmB73_RefGen_v2). Imputation was
carried out with the FILLIN method in TASSEL V5.0 (Bradbury
et al., 2007; Swarts et al., 2014). The imputed GBS dataset was
used for the GWAS and GP analyses, while the unimputed GBS
dataset was used for the linkage mapping analysis (Wang et al.,
2020b). A total of 955,690 SNPs were obtained for each inbred
line, and 570 of them could not be mapped to any of the 10 maize
chromosomes. The number of SNPs on each chromosome ranged
from 148,752 on chromosome 1 to 67,126 on chromosome 10.
SNPs with the missing rate (MR) of >20%, the heterozygosity
rate of >5%, and the minor allele frequency (MAF) of <0.05 were
excluded using the filter function in TASSEL V5.0.

Analyses of Linkage Disequilibrium,
Population Structure, and GWAS
After filtering, 187,409 SNPs were obtained for GWAS in the
DTMA panel. The linkage disequilibrium (LD) analysis was
carried out using TASSEL V5.0 with a sliding window size of
50 SNPs. A squared Pearson correlation coefficient (r2) between
the vectors of SNP alleles was used to assess the level of LD
decay across each chromosome, and r2 = 0.1 was used as a cutoff.
Population structure was conducted using the STRUCTURE
V2.3.4 software (Hubisz et al., 2009) to estimate the number of
subgroups in the DTMA panel, where one SNP per LD block
was selected for the following analysis (Duggal et al., 2008). The
parameters were set as follows: length of burn-in period = 30,000,
number of MCMC reps after burn-in = 30,000, ancestry
model = use admixture model, allele frequency model = allele
frequency correlated, number of populations (K) = 1–10, and
number of iterations = 10. STRUCTURE HARVESTER (Earl
and vonHoldt, 2012) was used to visualize STRUCTURE V2.3.4
output, and deltaK (1K) value was used to determine theK value
of the number of subgroups.

Analysis of GWAS was conducted in the DTMA panel
using the Fixed and random model Circulating Probability
Unification (FarmCPU) method (Liu et al., 2016) in Genome
Association and Prediction Integrated Tool-R (GAPIT) package

(Lipka et al., 2012). The kinship matrix and the first three PCs
were estimated by GAPIT to assess the population structure and
control the false marker-trait association. The P-value of each
SNP was calculated, and the threshold of P-value was determined
at 3.70 × 10−6 by a false discovery rate correction method. The
100 bp source sequences of each significant SNP were used to
do BLAST against the ZmB73_RefGen_v2 genome sequence in
MaizeGDB (Portwood et al., 2019). Within the local LD block of
significant SNPs, the annotated genes that are likely involved in
disease resistance were identified as the putative candidate genes.

Linkage Map Construction and Linkage
Mapping Analysis
A similarity/linkage (SL) method was used for bin map
construction with high-quality unimputed SNPs in the DH1
population, and the details were previously described by Cao
et al. (2017). In brief, 437 bins were constructed by 31,194 SNPs.
Each bin was regarded as a genetic marker to construct the
linkage map. Linkage map construction was conducted by MAP
function in QTL IciMapping V4.2 software (Meng et al., 2015).
The whole length of the linkage map of DH1 was 988.56 cM
with an average marker (bin) density of 2.26 cM. An inclusive
composite interval mapping (ICIM) approach was conducted for
the linkage mapping analysis using the “BIP” function and the
“ADD” mapping method in QTL IciMapping V4.2. A logarithm
of the odds (LOD) score of 3.0 was used to declare the putative
QTL. The additive effect and phenotypic variation explained
(PVE) of each QTL were estimated.

Genomic Prediction Analysis
Genomic prediction analysis was conducted using the ridge
regression best linear unbiased prediction (RRBLUP) model with
the rrBLUP package (Endelman, 2011) within the DTMA panel
and the DH1 population. In the imputed GBS dataset, TASSEL
version 5.0 was used to filter the SNPs with a MAF > 0.05,
a MR < 20%, and a heterozygosity rate < 5%. After filtering,
187,409 and 53,996 SNPs were used for GP in the DTMA panel
and the DH1 population, respectively. In the DH1 population,
437 bins were also used for the GP analysis to estimate the
prediction accuracy and compared it with the prediction accuracy
estimated using all the 53,996 SNPs. To estimate the effect of
marker density on GP accuracy, the number of SNPs varied from
100 to 50,000 (i.e., 10, 50, 100, 300, 500, 1,000, 3,000, 5,000,
10,000, and 50,000) were used to estimate the prediction accuracy
in the DTMA panel and the DH1 population. In each marker
density, SNPs were randomly selected 100 times. A fivefold cross-
validation scheme repeated 100 times was used to estimate the
prediction accuracy, where the prediction accuracy was defined
as the average value of the correlations between the GEBVs and
the observed breeding values. Training population size (TPS),
ranged from 10 to 90% of the total population size, was selected
to assess the effect of TPS on prediction accuracy in each of
the two populations. The training set was randomly sampled
to predict, and the remaining lines were used as the prediction
set. The GP analysis was repeated 100 times in each population
with different TPS.
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TABLE 1 | Descriptive statistics, variance components, and broad-sense heritability (H2) response to common rust in the Drought Tolerant Maize for Africa (DTMA) panel
and the bi-parental doubled haploid (DH1) population.

Population No. of lines Mean Min. Max. Median SDa Variance componentsb h2c

σ2
g σ2

ge σ2
e

DTMA 282 2.32 1.26 4.13 2.30 0.52 0.33** 0.25** 0.24 0.80

DH1 189 2.25 1.73 3.10 2.20 0.23 0.10** 0.08** 0.20 0.57

aSD, standard deviation.
bσ2

g, genotypic variance.

σ2
ge, genotype × environment interaction variance.

σ2
e , error variance.

**Significant at P < 0.01.
ch2, broad-sense heritability.

RESULTS

Phenotypic Variations
The descriptive statistics for the response to common rust in the
DTMA panel and the DH1 population are presented in Table 1
and Supplementary Figure 1A. The results indicated that there
were abundant phenotypic variations within each population.
In the DTMA panel, the disease scores ranged from 1.26 to
4.13, with a mean of 2.32. In the DH1 population, the disease
scores ranged from 1.73 to 3.10, with a mean of 2.25. The most
resistant (top 10%) and most susceptible lines (bottom 10%) for
common rust in the DTMA panel and the DH1 populations are
shown in Supplementary Tables 2, 3, respectively. The mixed
model analysis result revealed that the genotypic variance was
statistically highly significant at P < 0.01 in both populations, as
well as the variance of genotype-by-environment interaction. The
estimated broad-sense heritabilities in the DTMA panel and the
DH1 population were 0.80 and 0.57, respectively.

Basic Information of SNPs Before and
After Filtering
The basic information about GBS data before and after filtering
is shown in Supplementary Table 4. The number of SNPs
after filtering decreased from 955,690 to 187,409 in the imputed
dataset of the DTMA panel and from 955,690 to 31,194 in
the unimputed dataset of the DH1 population. The MR after
filtering decreased from 15.79 to 7.33% in the imputed dataset
of the DTMA panel and from 42.53 to 9.73% in the unimputed
dataset of the DH1 population. The heterozygosity rate increased
in both populations after filtering, and the heterozygosity rates
after filtering in the DTMA panel and the DH1 population were
2.83 and 3.17%, respectively. The average MAF after filtering
increased from 0.09 to 0.18 in the DTMA panel and from 0.04
to 0.42 in the DH1 population.

Results of LD Decay Distance and
Population Structure in the DTMA Panel
In the DTMA panel, the average LD decay distance across
all the 10 chromosomes was 8.14 kb at an r2 value of 0.1
(Figure 1A), and it ranged from 4.57 kb in chromosome 10–
15.9 kb in chromosome 8. The population structure analysis

showed that the delta K value reached a peak when the K
value was 4, indicating that the DTMA panel can be divided
into four subgroups (Figures 1B,C). The number of lines in
subgroups 1, 2, 3, and 4 was 219, 13, 10, and 40, respectively.
The different responses to common rust in the four subgroups are
shown in Supplementary Figure 1B. The principal component
analysis also revealed four subgroups, corresponding to the four
subgroups identified by STRUCTURE analysis (Figure 1D).

Significantly Associated SNPs and
Candidate Genes Revealed by GWAS
The GWAS results of the DTMA panel are presented in
Table 2 and Figure 2. At a very stringent threshold of P-
value of 3.70 × 10−6, a total of six SNPs at bins of 1.05, 1.10,
3.04, 3.05, 4.08, and 10.04 were identified to be significantly
associated with common rust resistance in maize. The quantile–
quantile (q–q) plot implied that the population structure and
family relatedness were well controlled in the GWAS using the
FarmCPU method (Figure 2B).

Among all the six SNPs, the two most significantly associated
SNPs were identified on chromosome 1. The most significantly
associated SNP of S1_278132829 was located at the bin of 1.10,
it had the lowest P-value of 7.25 × 10−11, and the MAF of this
SNP was 0.25, with an additive effect of 0.13. The candidate gene
of GRMZM2G328500 (278,126,093–278,132,841 bp), encoding a
UDP-glucose 6-dehydrogenase, contains the most significantly
associated SNP of S1_278132829. The second most significantly
associated SNP of S1_89238026 was located at the bin of 1.05,
it had the second-lowest P-value of 9.81 × 10−10, and the
MAF of this SNP was 0.32, with an additive effect of 0.13.
It neighbored with the candidate gene of GRMZM2G114893
(89,236,681–89,237,918 bp), which encodes a zinc finger (C2H2
type) family protein.

On chromosome 3, two significantly associated SNPs were
identified, i.e., S3_118933375 located at the bin of 3.04
and S3_147594533 located at the bin of 3.05. The SNP of
S3_118933375 had a MAF of 0.10, with an additive effect of
−0.17, and it was 587 bp away from the candidate gene of
GRMZM2G144004 (118,931,829–118,932,788 bp), encoding a
putative uncharacterized protein. The SNP of S3_147594533 had
a MAF of 0.11, with an additive effect of 0.15, and it was
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FIGURE 1 | Analysis of genetic diversity in the genome-wide association study (GWAS) panel. (A) Linkage disequilibrium decay across all 10 maize chromosomes,
(B) the plot of delta K, (C) the estimated probability membership for each inbred line at K = 4, and (D) the principal component analysis plot showing four subgroups
corresponding to the four subgroups by the STRUCTURE analysis.

TABLE 2 | Significantly associated single-nucleotide polymorphisms (SNPs) and candidate genes revealed by the genome-wide association study analysis.

SNPa P-value Alleleb MAFc SNP effectd Putative candidate gene Annotation of candidate genes

S1_89238026 9.81 × 10−10 A/G 0.32 0.13 GRMZM2G114893 Zinc finger (C2H2 type) family protein

S1_278132829 7.25 × 10−11 A/T 0.25 0.13 GRMZM2G328500 UDP-glucose 6-dehydrogenase

S3_118933375 1.00 × 10−6 C/T 0.10 −0.17 GRMZM2G144004 Unknown

S3_147594533 1.11 × 10−7 A/T 0.11 0.15 GRMZM2G162250 Zea mays ARGOS6

S4_183913302 2.98 × 10−7 G/C 0.17 0.13 GRMZM2G138949 BTB/POZ domain-containing protein

S10_95231291 1.32 × 10−7 C/A 0.10 −0.16 GRMZM2G131536 Unknown

aSNP name, chromosome_position, for example, S1_89238026 represents that the SNP is on chromosome 1, and the physical position is 89238026 bp.
bLetters to the left and right of the “/” refer to major allele and minor allele, respectively.
cMAF, minor allele frequency.
dPositive values indicate that the major allele is a resistance allele, and the negative values indicate that the minor allele is a resistance allele.

located at the candidate gene ofGRMZM2G162250 (147,591,043–
147,598,482 bp), which encodes a Zea mays ARGOS6 (auxin-
regulated gene involved in organ size) protein.

On chromosome 4, the significantly associated SNP of
S4_183913302 was located at the bin of 4.08, it had a
MAF of 0.17, with an additive effect of 0.13, and this
SNP was close to the candidate gene of GRMZM2G138949

(183,909,192–183,910,514 bp), encoding a BTB/POZ
domain-containing protein. On chromosome 10, the
significantly associated SNP of S10_95231291 was located
at the bin of 10.04, it had a MAF of 0.10, with an
additive effect of −0.16, and this SNP was closely
linked with the candidate gene of GRMZM2G131536
(95,230,282–95,231,024 bp).
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FIGURE 2 | Genome-wide association study Manhattan and quantile–quantile (q–q) plots for common rust resistance in the Drought Tolerant Maize for Africa (DTMA)
panel. (A) Manhattan plot, the dashed line corresponds to the threshold level defined at P = 3.70 × 10−6 by a false discovery rate correction method; (B) q–q plot.

TABLE 3 | Quantitative trait loci detected from the linkage mapping analysis in the doubled haploid (DH1) population.

Chromosome Position (cM) Bin Left markera Right marker LODb PVE(%)c Additive effect

1 28 1.03 S1_31252133 S1_34315390 6.77 10.34 −0.08

2 47 2.06 S2_183941772 S2_188133361 3.49 5.69 0.06

4 74 4.08 S4_184936775 S4_186039203 4.62 6.79 0.06

7 67 7.03 S7_144567253 S7_149717562 7.82 12.45 0.09

9 0 9.00 S9_1260192 S9_2825523 3.70 5.40 −0.06

aMarker name, chromosome_position.
bLOD, logarithm of the odds.
cPVE, phenotypic variation explained.

Quantitative Trait Loci Detected From
Linkage Mapping Analysis
The linkage mapping results of the DH1 population are presented
in Table 3. In total, five QTL located at bins 1.03, 2.06, 4.08,
7.03, and 9.00 were detected at the threshold of a LOD score
of 3.0. The PVE value of the individual QTL ranged from 5.40
to 12.45%, and the total PVE value for all the five QTL was
40.67%. The QTL on chromosome 7 had the highest LOD score
of 7.82 and the largest PVE value of 12.45%, indicating that
it is a major QTL conferring the common rust resistance in
maize. The common rust resistance alleles were derived from the
resistant inbred line CML495 except for the two QTL located on
chromosomes 1 and 9.

The significantly associated SNP of S4_183913302 identified
by GWAS was closely linked with the QTL detected in DH1 on
chromosome 4, it was flanked by the markers S4_184936775 and
S4_186039203, and this QTL had a LOD score of 4.62 and a
PVE value of 6.79%. However, the most significantly associated
SNP of S1_278132829 identified by GWAS was not validated by
the linkage mapping analysis. The major QTL on chromosome 7
detected from linkage mapping analysis was also not validated by
the GWAS result.

Prediction Accuracies Estimated With
the Different Marker Datasets, Marker
Density, and Training Population Size
The GP accuracies estimated based on GBS SNPs were 0.61 and
0.51 in the DTMA panel and the DH1 population, respectively

(Figure 3A). The GP accuracy based on bin markers was 0.53
in DH1 (Figure 3B). No significant difference in prediction
accuracy was observed between GBS SNPs and bin markers. The
effect of marker density and TPS on the GP accuracy is shown
in Figure 4. In both the DTMA panel and the DH1 population,
the prediction accuracy increased as the number of markers
increased. In the DTMA panel, the prediction accuracy increased
rapidly when the number of markers increased from 10 to 5,000,
and then, the prediction accuracy increased slightly when the
number of markers kept increasing. In the DH1 population, a
sharp increase in the prediction accuracy was observed before
reaching a plateau at about 300 markers, indicating that 300
SNPs were sufficient to achieve good accuracy of common rust
resistance in the DH1 population. Prediction accuracy increased
as the TPS increased in both populations. In the DTMA panel,
the prediction accuracy increased rapidly when the TPS increased
from 10 to 50%, and then, a little improvement in the prediction
accuracy was observed when the TPS kept increasing. When
50% of the total genotypes were used as the training set, a
relatively high prediction accuracy coupled with the smaller
standard error was observed. A similar trend was observed in
the DH1 population.

DISCUSSION

Common rust is a major disease of maize, causing 34% of
the maize area to suffer economic losses (Zheng et al., 2018).
Developing maize varieties with host plant resistance is the
most sustainable strategy for the control of common rust,
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FIGURE 3 | Genomic prediction accuracy of common rust resistance in the DTMA panel and DH1 population. (A) In the DTMA panel and DH1 population estimated
with genotyping-by-sequencing (GBS) single-nucleotide polymorphisms (SNPs); (B) in the DH1 panel estimated with GBS SNPs and bins.

which requires further understanding of the genetic basis and
architecture of common rust resistance. Previous efforts to
exploit genetic resistance for common rust have largely been
through Rp genes, but the resistance of Rp genes could break
down easily. Quantitative disease resistance controlled by several
genes has proven to be highly durable, making it a better
choice for long-term common rust resistance breeding. In this
study, GWAS and linkage mapping analyses were applied to
dissect the genetic base of quantitative resistance of common
rust in maize. GWAS revealed six SNPs significantly associated
with quantitative resistance of common rust at a very stringent
threshold of P-value of 3.70 × 10−6. Linkage mapping identified
five QTL accounting for the total PVE value of 40.67%. These
results provided new insight into the quantitative resistance
of common rust, which implied that major QTL associated
with quantitative resistance from various elite backgrounds are
possible to be pyramided for improving common rust resistance,
and the selection for multiple partial resistance alleles seems to
be more promising than the MAS of the Rp genes in tropical
maize germplasm.

In the GWAS, six SNPs distributed in bins 1.05, 1.10,
3.04, 3.05, 4.08, and 10.04 were associated with common rust
resistance. Except for SNP of S10_95231291, all the SNPs
were reported in previous GWAS and linkage mapping studies
(Lübberstedt et al., 1998; Brown et al., 2001; Zheng et al., 2018;
Kibe et al., 2020). The most and the second most significantly
associated SNPs S1_278132829 and S1_89238026 detected in this
study were also detected by linkage mapping in European flint
germplasm (Lübberstedt et al., 1998). SNP S3_118933375 was in
the same region of qCR3-113, a QTL for common rust (Kibe et al.,
2020), and it was also close to SNP PZE-103072633 (115,864,889)
(Zheng et al., 2018). Both qCR3-113 and PZE-103072633 were
detected in tropical maize germplasm. SNPs S3_147594533 and
S4_183913302 were mapped to the QTL intervals associated with
common rust in sweet corn (Brown et al., 2001). QTL detected
for a target trait are usually different due to the use of different
genetic backgrounds and environments (Ren et al., 2020). Those
common loci detected in different studies were stable QTL for
common rust. SNP S10_95231291 was first reported, it had

an additive effect of −0.16, and it was closely linked with the
candidate gene of GRMZM2G131536. However, the function of
the candidate gene of GRMZM2G131536 is still unknown.

In DH1, linkage mapping revealed five QTL distributed in
bins 1.03, 2.06, 4.08, 7.03, and 9.00, respectively. Three of the five
QTL were reported previously (Lübberstedt et al., 1998; Brown
et al., 2001). The loci in bins 1.03 and 2.06 coincided with QTL
identified by Lübberstedt et al. (1998). The locus in bin 4.08 was
detected by both Lübberstedt et al. (1998) and Brown et al. (2001).
The major QTL located on chromosome 7 was reported in this
study for the first time, and it had the highest LOD score of
7.82 and the largest PVE value of 12.45%. It is a new source of
resistance for common rust, which deserves further investigation.

Joint GWAS and linkage mapping can complement the
advantages and disadvantages of each method (Li et al., 2016;
Cao et al., 2017). In this study, GWAS and linkage mapping were
implemented stepwise to detect loci associated with quantitative
resistance of common rust. The genomic region located at bin
4.08 was detected by both GWAS and linkage mapping. SNP
S4_183913302 was consistent with the locus identified between
markers S4_184936775 and S4_186039203 in DH1. This locus
was also reported by Lübberstedt et al. (1998) and Brown et al.
(2001). The major QTL located on chromosome 7 identified by
linkage mapping in DH1 was not detected through GWAS in
the DTMA panel. This may be due to the very low frequency
of one of the alleles of the relevant locus in the GWAS
panel or the population structure related to the polymorphism
at this locus (Famoso et al., 2011; Cadic et al., 2013). The
most significantly associated SNP of S1_278132829 identified by
GWAS was also not validated by the linkage mapping analysis.
It may be because there is no genetic variation at this locus
in the DH1 population. The major QTL identified by GWAS
or linkage mapping individually, and the common stable QTL
region identified by both methods need to be explored further
for developing functional molecular markers for MAS.

The candidate gene analysis can lead to a better understanding
of the genetic basis of common rust resistance. According to
the results of GWAS, six candidate genes were identified
in this study, and the function of four candidate genes
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FIGURE 4 | Genomic prediction accuracy of common rust resistance in the DTMA panel and DH1 population, when the number of SNPs varied from 100 to 50,000
and training population size (TPS) ranged from 10 to 90% of the total population size. (A) In the DTMA panel estimated with different marker density, (B) in the DTMA
panel estimated with different TPS, (C) in the DH1 population estimated with different marker density, and (D) in the DH1 population estimated with different TPS.

was annotated. These candidate genes were previously
reported to play important roles in the response of stress
resilience and the regulation of plant growth and development.
GRMZM2G328500 encodes a UDP-glucose 6-dehydrogenase,
which is involved in the nucleotide-sugar interconversion
process (Kost et al., 2020). GRMZM2G162250 encodes a
Zea mays ARGOS6 protein controlling plant growth, organ
size, and grain yield. GRMZM2G114893 encodes a zinc finger
(C2H2 type) family protein, which is mainly involved in
the regulation of plant growth, development, and tolerance
to biotic and abiotic stresses (Kim et al., 2009; Xiao et al.,
2009). GRMZM2G138949 identified in bin 4.08 encodes a
BTB/POZ domain-containing protein, which participates in
a series of physiological and biochemical reactions and also
plays an important role in resistance to plant disease (Cao
et al., 1997; Silva et al., 2015). These results encourage fine-
mapping and cloning of the candidate genes for controlling
common rust in maize.

Genomic prediction and GS have been successfully used in
several crops to accelerate genetic gain in breeding programs for
improving complex traits, including resistance to major maize
diseases (Gowda et al., 2015; Liu et al., 2021). A study on the
potential of GS and GP to improve the common rust resistance
in maize has been reported by Kibe et al. (2020), where the
GP accuracies within populations ranged from 0.19 to 0.51,
and the GP accuracies estimated from a larger population by
combined several individual populations were higher than those
estimated from the individual population with a smaller size. For

implementing GP and GS to improve common rust resistance
in tropical maize, an independent but related training set is
encouraged to be built to predict the related populations not been
phenotyped. These results were confirmed by this study. The GP
accuracies observed in the DTMA panel and the DH1 population
were 0.61 and 0.51, respectively. It indicates that common rust
resistance in tropical maize could be improved by implementing
GP and GS. Moreover, the factors affecting GP accuracy were
also assessed in this study. Ten levels of marker density were
used to assess the effect of marker density on prediction accuracy
in the two populations. The results showed that the increase
in marker density leads to an increase in prediction accuracy.
The prediction accuracy reached a plateau when the marker
density was 5,000 in the DTMA panel and 300 in the DH1
panel, which indicated that more makers are required to achieve
good GP accuracy in populations with higher genetic diversity.
A similar phenomenon was found for several traits in maize
(Zhang et al., 2017; Guo et al., 2020; Liu et al., 2021). There
was no significant difference between the prediction accuracy
estimated based on the GBS SNPs and the bins in the DH1
population, which validated the high quality and accuracy of bins
constructed in the bi-parental population. To assess the effect of
TPS on prediction accuracy, nine levels of TPS were selected. As a
result, increasing TPS leads to an increase in prediction accuracy.
When 50% of the total genotypes were used as the training
set, a relatively high prediction accuracy can be achieved. These
results provide valuable information for improving common
rust resistance in tropical maize by implementing GP and GS.
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Wheat is one of the most important cereal crops worldwide. A consensus map combines

genetic information from multiple populations, providing an effective alternative to

improve the genome coverage and marker density. In this study, we constructed a

consensus map from three populations of recombinant inbred lines (RILs) of wheat using

a 90K single nucleotide polymorphism (SNP) array. Phenotypic data on plant height

(PH), spike length (SL), and thousand-kernel weight (TKW) was collected in six, four,

and four environments in the three populations, and then used for quantitative trait

locus (QTL) mapping. The mapping results obtained using the constructed consensus

map were compared with previous results obtained using individual maps and previous

studies on other populations. A simulation experiment was also conducted to assess

the performance of QTL mapping with the consensus map. The constructed consensus

map from the three populations spanned 4558.55 cM in length, with 25,667 SNPs,

having high collinearity with physical map and individual maps. Based on the consensus

map, 21, 27, and 19 stable QTLs were identified for PH, SL, and TKW, much more

than those detected with individual maps. Four PH QTLs and six SL QTLs were likely to

be novel. A putative gene called TraesCS4D02G076400 encoding gibberellin-regulated

protein was identified to be the candidate gene for one major PH QTL located on 4DS,

which may enrich genetic resources in wheat semi-dwarfing breeding. The simulation

results indicated that the length of the confidence interval and standard errors of the

QTLs detected using the consensus map were much smaller than those detected using

individual maps. The consensus map constructed in this study provides the underlying

genetic information for systematic mapping, comparison, and clustering of QTL, and

gene discovery in wheat genetic study. The QTLs detected in this study had stable effects

across environments and can be used to improve the wide adaptation of wheat cultivars

through marker-assisted breeding.

Keywords: wheat (Triticum aestivum L.), consensus genetic map, QTL mapping, plant height, spike length,

thousand-kernel weight
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INTRODUCTION

Wheat (Triticum aestivum L.) is one of the most important
cereal crops worldwide, providing about one-fifth of the total
calories consumed by humans. Due to limited farmland and the
rapid increase in human population, there is an urgent need
to accelerate the genetic gain on grain yield through advanced
genetic research and breeding activities in wheat. Genetic linkage
map construction and quantitative trait locus (QTL)mapping are
important areas in genetic research, as they provide fundamental
information for gene cloning, marker-assisted breeding, and
genome structure studies (Meng et al., 2015; Rasheed et al., 2016).

Linkage mapping approach based on individual populations
has become routine in wheat genetic studies to dissect the
genetic architecture of complex traits. However, a large number
of co-localized markers and low marker density due to a
limited genetic variation and a limited number of crossing-
over events are commonly seen with linkage maps constructed
in individual populations. Detected QTLs are usually specific
to designated crosses with wide confidence intervals, hindering
further genetic research on gene fine-mapping and cloning.
Furthermore, linkage mapping in single populations can only
identify QTLs with phenotypic variations from specific crosses,
and each mapping population can only represent a small number
of crossing-over events (Liu and Zeng, 2000). The narrow genetic
basis associated with individual crosses and populations reduces
both phenotypic and genotypic diversity. One way to solve these
problems is to construct a consensus map as the connection
across multiple populations.

A consensus genetic map combines genetic information
from multiple populations, and therefore provides an effective
alternative to improve genome coverage and marker density
(Maccaferri et al., 2015; Allen et al., 2017). A higher marker
density of the consensus map offers the chance to map more
QTLs to narrower intervals and to identify more closely linked
markers for the discovery of causal genes and marker-assisted
selection (MAS) in breeding. Consensus maps can also be used
to validate marker order, characterize genomic diversity, increase
the power of genome-wide association studies, and conduct QTL
meta-analysis (Cavanagh et al., 2013; Wang et al., 2014; Wingen
et al., 2017; Liu et al., 2020).

Some computer tools that can be used for consensus map
construction have been developed in the last 20 years, such
as BioMercator (Arcade et al., 2004), JoinMap (Van Ooijen,
2006), MergeMap (Wu et al., 2010), MultiPoint (Ronin et al.,
2012), and LPmerge (Endelman and Plomion, 2014). Using
these tools, consensus maps have been developed for wheat.
Somers et al. (2004) reported the first consensus map for wheat
based on SSR markers from three doubled haploid (DH) and
a recombinant inbred line (RIL) populations. Cavanagh et al.
(2013) generated a high-density consensus map from seven
populations, consisting of 7,504 single nucleotide polymorphism
(SNP) markers. Wang et al. (2014) integrated six bi-parental DH
populations to generate a consensus map using 40,267 markers.
Liu et al. (2020) developed a consensus map with a total length
of 4,080.5 cM containing 47,309 markers based on 21 individual
linkage maps and three previously reported consensus maps.

In this study, a consensus genetic map was constructed using
three bi-parental populations of RILs in wheat. QTL mapping
was then conducted for plant height (PH), spike length (SL), and
thousand-kernel weight (TKW) using the constructed consensus
map. The mapping results were compared among populations,
and with the results obtained using individual maps with the
purpose of identifying stable and common QTLs. In addition,
a simulation experiment was conducted to demonstrate the
advantages of using a consensus map in QTL mapping.

MATERIALS AND METHODS

Plant Materials and Phenotyping
Experimental Design
The three recombinant inbred line populations used in this study
were derived from crosses Doumai × Shi 4185 (denoted as DS,
275 F2 : 6 RILs), Gaocheng 8901 × Zhoumai 16 (denoted as GZ,
176 F2 : 6 RILs), and Zhou 8425B × Chinese Spring (denoted as
ZC, 245 F2 : 8 RILs), which had been previously reported by Wen
et al. (2017). Population DS and its parental lines were planted
at Shunyi (Beijing, China) and Shijiazhuang (Hebei, China)
in 2012–2013, 2013–2014, and 2014–2015 cropping seasons.
Population GZ and its parental lines were planted at Anyang
(Henan, China) and Suixi (Anhui, China) in 2012–2013 and
2013–2014 cropping seasons. Population ZC and its parental
lines were planted at Zhengzhou and Zhoukou (Henan, China)
in 2012–2013 and 2013–2014 cropping seasons. Randomized
complete block designs with three replications were used in field
trials. Each plot had three rows with 1.5m in length and 0.2m
apart between rows. About 50 seeds were sown in each row. Field
management was performed according to local practices.

Plant height was recorded as the average height based on
10 representative plants, measured from the base of the stem
to the top of the spike excluding awns at the late grain-filling
stage. SL was recorded as the average length of 20 representative
spikes in populations DS andGZ, and five representative spikes in
population ZC, measured from the base of the spike to the top of
the spike excluding awns. TKW was evaluated by weighing three
random samples of 500 kernels from each plot after harvest.

Genotyping and Marker Quality Control
Deoxyribonucleic acid was extracted from leaves of 15-day-old
seedlings according to the cetyltrimethyl ammonium bromide
(CTAB) protocol (Sharp et al., 1988). The populations were
genotyped by the 90K wheat Infinium iSelect SNP array (Wang
et al., 2014) at CapitalBio Corporation (http://www.capitalbio.
com) in Beijing, China. Quality control of the genotypic data has
been previously described in Wen et al. (2017), and described
here briefly and as follows. First, heterozygous marker types were
set as missing values. Then, markers with more than 10% of
missing values were deleted. Finally, SNPs with minor allelic
frequency lower than 0.3 were filtered out. The three individual
linkage maps based on these markers were reported byWen et al.
(2017). SNPs on the three maps were used for consensus map
construction. The R package VennDiagram (Chen and Boutros,
2011) was used to demonstrate the SNP numbers common
among the three individual maps.
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Statistical Analysis for Phenotypic Data
Analysis of variance and calculation of broad-sense heritability
(H2) from phenotypic data were performed using the AOV
function in software QTL IciMapping V4.2 (Meng et al., 2015).
Pearson correlation coefficients among traits were calculated
using mean phenotypic values across environments.

Consensus Genetic Map Construction
First, markers from the three recombinant inbred line
populations were grouped according to their chromosome
information in individual maps reported by Wen et al. (2017).
Markers that were present on the same chromosome in the three
individual maps were treated as anchors. Then, an algorithm
called combined linkage analysis (CLA, developed by the group
of the authors) was used for consensus map construction. To
assure the quality of the map, a limited number of markers
were removed manually if they caused serious inconsistency
in the marker order between the genetic and physical maps,
or excessive expansion of the constructed genetic map. The R
package LinkageMapView (Ouellette et al., 2018) was used to
visualize the constructed consensus map.

Furthermore, four steps were involved in the CLA algorithm:
step 1: derive the theoretical recombination frequencies of
pairwise markers in each mapping population; step 2: estimate
the recombination frequency between two linked markers and
sampling variance of the estimated recombination frequency
in each population. In addition to RIL populations, CLA is
applicable to many other kinds of bi-parental populations, as
described in Meng et al. (2015). For some kinds of mapping
populations such as DH and RIL, the likelihood equation
on recombination frequency has an explicit solution, so the
maximum likelihood estimate can be calculated directly. For
other kinds of mapping populations such as F2 and F3, the
maximum likelihood estimate cannot be succinctly given. In
this situation, either Newton iteration or the expectation-
maximization (EM) algorithm has to be adopted in estimating
the recombination frequency (Zhang et al., 2019). Step 3: estimate
the combined recombination frequency using the estimates and
their sampling variances from individual populations; reciprocal
of sampling variance of the estimated recombination frequency is
used as the weight of the corresponding population. Weight is set
as zero for those populations where the pair-wise recombination
frequency cannot be estimated. Step 4: construct the consensus
linkage map based on the combined estimates of recombination
frequencies between markers; a combination of the nearest-
neighbor algorithm and a two-opt algorithm in solving the
traveling salesman problem (TSP) was used in the marker
ordering (Zhang et al., 2020a).

Comparison of Marker Orders in the
Consensus Map, Physical Map, and
Individual Genetic Maps
Spearman rank correlation was used to measure the collinearity
of marker orders between the different maps, which was
calculated by the R Software. Marker order in each chromosome
in the consensus map was compared with the physical map
order of the respective chromosome. To acquire the physical
positions of the markers, sequences of SNPs were used to BLAST

(Basic Local Alignment Search Tool) against the wheat genome
IWGSC RefSeq v2.0 (https://urgi.versailles.inra.fr/download/
iwgsc/IWGSC_RefSeq_Assemblies/v2.0/, International Wheat
Genome Sequencing Consortium). The E-value threshold in
BLAST was set at 10−10. The markers were filtered out if their
alignment lengths were lower than 80% of the query sequence
length or the identities were lower than 0.85. If a marker was
assigned to multiple chromosomes by BLAST, the position on the
same chromosome as the consensus map was used in collinearity
analysis. Marker order comparison was also conducted between
the consensus map and individual maps, as well as among the
three individual maps. For each comparison, only the common
markers on two maps were used in the calculation of collinearity.

QTL Mapping Based on the Consensus
Map
Quantitative trait locus mapping was conducted in the individual
populations using the consensus map. The inclusive composite
interval mapping (ICIM) implemented in the BIP function in
QTL IciMapping V4.2 (Meng et al., 2015) was applied on the
mean phenotypic values across blocks in each environment and
best linear unbiased estimation (BLUE) values across multiple
environments. Scanning step was set at 0.2 cM. Probabilities of
adding and removing variables in stepwise regression were set
at 0.001 and 0.002, respectively. Threshold logarithm of odd
(LOD) score was set at 2.5, same as the QTL mapping studies on
individual maps from the three populations (Gao et al., 2015; Li
et al., 2018).

Quantitative trait loci and quantitative trait locus clusters were
named with chromosomal locations, considering all populations
together. QTLs detected in the same population were considered
to be common if the distance between QTL positions was
<20 cM in different environments. QTLs detected in different
populations were considered to be common if the genetic and
physical positions were close enough. In other words, distance
in the linkage map was <20 cM in terms of QTL positions,
and distance in the physical map was <25Mb in terms of
the minimum physical distances between flanking makers. In
individual populations, QTLs are considered to be stable if they
are identified in at least half of tested environments. Stable QTLs
for different traits were classified into the same cluster if the
minimum distance between the QTL confidence intervals was
<15 cM. The shiny Circos tool (Yu et al., 2018) was used to
visualize QTL positions on the consensus map. Stable QTLs
detected with the consensus map in this study were compared
with those detected by ICIM using individual maps (Gao et al.,
2015; Li et al., 2018), according to physical and genetic positions
of the flanking markers.

Genetic Models Used in Simulation
A simulation study was conducted to compare the QTL mapping
results from the individual and consensus maps. We assumed
that a chromosome has a length of 100 cM and contains 101
evenly distributed markers. Considering that the consensus map
always has more markers than each individual map, we assume
that the consensus map contained all the 101 markers, but that
the individual map only contained half of them, i.e., 51 evenly
distributed markers with marker density at 2 cM. Three QTL
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TABLE 1 | Mean performance and heritability of plant height (PH), spike length (SL), and thousand-kernel weight (TKW) in the three RIL populations, Doumai × Shi 4185

(DS), Gaocheng 8901 × Zhoumai 16 (GZ), and Zhou 8425B × Chinese Spring (ZC), across multiple environments.

Population Trait Parenta RIL populationb H2_by_meanc H2_by_plotd

P1 P2 Mean SD Range

DS PH 73.51 73.54 83.89 7.56 64.99–105.09 0.97 0.69

SL 9.29 8.30 8.77 0.97 6.17–12.10 0.95 0.62

TKW 50.30 35.35 43.56 4.95 30.52–60.10 0.96 0.75

GZ PH 94.38 67.77 90.67 15.82 44.23–118.25 0.99 0.91

SL 8.74 8.97 8.59 0.87 6.60–11.24 0.96 0.72

TKW 43.83 48.17 46.52 3.81 33.46–55.55 0.91 0.59

ZC PH 67.12 115.08 101.07 14.02 60.58–125.87 0.95 0.83

SL 11.50 8.31 10.14 1.15 6.89–13.83 0.91 0.72

TKW 52.63 29.10 37.12 4.16 26.52–48.83 0.94 0.81

aBest linear unbiased estimation (BLUE) values across multiple environments. In population DS, P1 and P2 refer to Doumai and Shi 4185, respectively. In population GZ, P1 and P2

refer to Gaocheng 8901 and Zhoumai 16, respectively. In population ZC, P1 and P2 refer to Zhou 8425B and Chinese Spring, respectively.
bValues were based on BLUE across multiple environments.
cHeritability in broad sense based on replicated means.
dHeritability in broad sense based on plot level.

SD, standard deviation.

distribution models were simulated (Supplementary Table 1). In
model I, a QTL was located at 34.5 cM on the chromosome with
an additive effect of 1. In model II, two QTLs were linked in the
coupling phase, both with an additive effect of 1. In model III,
two QTLs were linked in the repulsion phase with additive effects
of −1 and 1, respectively. The broad sense heritability (H2) was
set at three levels, i.e., 0.05, 0.1, and 0.2 for model I, and 0.1, 0.2,
and 0.4 for models II and III. One thousand RIL populations,
each with a size of 200, were simulated for each model, and
each heritability level by the BIP simulation functionality was
implemented in QTL Ici Mapping V4.2 (Meng et al., 2015). The
consensus map with 101 markers and the predefined QTLs were
used to generate the simulated populations. Both the consensus
and individual maps were used in QTL mapping. For QTL
mapping using individual maps, genotypic data of the 51markers
were used. ForQTLmapping using the consensusmap, genotypic
data of the 51 markers were the same as those in individual maps,
but the other 50 markers only present in the consensus map were
set as missing values. For the ICIM QTL mapping method on
simulated populations, the scanning step was set at 0.1 cM and
the threshold LOD score was set at 2.5. Probabilities for entering
and removing variables in the stepwise regression were set at
0.001 and 0.002, respectively. QTL detection power was estimated
according to a support interval of 5 cM centered at the position of
true QTL. If multiple peaks occurred within the support interval,
only the highest one was counted. QTLs identified out of the
support interval were regarded as false positives (Li et al., 2012).
The other parameters were set as default values.

RESULTS

General Information on Both Genotypic
and Phenotypic Data
There were 10,986 markers on the linkage map constructed in
population DS, 11,819 markers in population GZ, and 14,862
markers in population ZC. Populations DS and GZ shared 4,208

common markers; DS and ZC shared 4,420 common markers;
GZ and ZC shared 5,183 commonmarkers; the three populations
had 1,880 markers in common (Supplementary Figure 1). A
total of 25,736 unique markers on the three individual maps were
used for consensus map construction.

Phenotypic means and heritability of the three traits
are shown in Table 1 for the three RIL populations across
a number of environments. Frequency distributions in
different populations and environments are shown in
Supplementary Figure 2 for PH, Supplementary Figure 3

for SL and Supplementary Figure 4 for TKW. For PH, Doumai
was taller than Shi 4185 in four environments, but shorter in
the other two environments in population DS; Gaocheng8901

was always taller than Zhoumai 16 in population GZ; Chinese

Spring was always taller than Zhou 8425B in population ZC
(Supplementary Figure 2). For SL, Doumai was longer than Shi

4185 in four environments, almost equal in one environment,
and shorter in the other one environment; Zhoumai16 was

longer than Gaocheng 8901 in three environments, and

shorter in the other environment; Chinese Spring was always
longer than Zhou 8425B (Supplementary Figure 3). For
TKW, Doumai was always higher than Shi 4185; Zhoumai
16 was always higher than Gaocheng 8901; Zhou 8425B was
always higher than Chinese Spring (Supplementary Figure 4).
The three traits were continuously distributed in the three
populations, similar to and typical in most QTL mapping
studies. Much wider ranges were observed in the progenies
in comparison with their parents, except for TKW in two
environments in population ZC (Supplementary Figures 2–4).
Heritability in the broad sense, based on the replicated means,
was quite high for the three traits, ranging from 0.91 to 0.99
(Table 1), while heritability based on the plot level ranged
from 0.59 to 0.91. Correlation coefficients between traits in
the three populations are given in Supplementary Table 2. At
a significance level of 0.01, PH was positively correlated with
TKW in all three populations. SL showed a positive correlation
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FIGURE 1 | Consensus genetic map constructed from the three recombinant inbred line (RIL) populations, Doumai × Shi 4185 (DS), Gaocheng 8901 × Zhoumai 16

(GZ), and Zhou 8425B × Chinese Spring (ZC).

Frontiers in Plant Science | www.frontiersin.org 5 August 2021 | Volume 12 | Article 72707720

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/plant-science#articles


Qu et al. Consensus Map Construction in Wheat

TABLE 2 | Characteristics of the consensus genetic map constructed from the three RIL populations, DS, GZ, and ZC.

Chromosome Length (cM) Marker number Bin number Average BD (cM)a Max BD (cM)b Coefficientc Consistent proportion (%)d

1A 192.09 1280 240 0.80 9.22 0.99 50.55

1B 182.47 2014 257 0.71 5.72 0.95 51.07

1D 192.98 700 82 2.35 19.42 0.96 57.93

2A 278.86 1685 268 1.04 10.08 0.99 51.99

2B 290.78 2431 324 0.90 14.73 0.87 45.67

2D 208.48 625 108 1.93 13.68 0.99 71.76

3A 246.30 1381 195 1.26 16.68 0.98 55.72

3B 191.12 1974 219 0.87 9.66 0.94 43.30

3D 213.91 294 60 3.57 23.97 0.74 46.04

4A 225.78 1304 193 1.17 12.36 0.98 47.22

4B 228.26 713 201 1.14 8.88 0.98 58.53

4D 168.06 106 53 3.17 17.71 0.95 75.68

5A 250.07 1238 255 0.98 18.50 0.96 62.41

5B 279.03 2475 330 0.85 8.33 0.95 46.34

5D 176.72 298 67 2.64 17.76 0.96 68.11

6A 214.24 1696 289 0.74 7.26 0.96 36.30

6B 213.08 1571 252 0.85 6.04 0.96 53.88

6D 168.33 350 73 2.31 25.08 0.96 54.44

7A 215.12 1701 213 1.01 8.00 0.99 62.07

7B 196.83 1577 236 0.83 7.77 0.98 45.75

7D 226.05 254 64 3.53 28.84 0.99 73.71

Genome

A 1622.47 10285 1653 0.98 18.50 0.98 52.32

B 1581.57 12755 1819 0.87 14.73 0.98 49.22

D 1354.52 2627 507 2.67 28.84 0.94 63.95

Homeologous groups

1 567.54 3994 579 0.98 19.42 0.97 53.19

2 778.12 4741 700 1.11 14.73 0.95 56.47

3 651.33 3649 474 1.37 23.97 0.89 48.35

4 622.10 2123 447 1.39 17.71 0.97 60.48

5 705.82 4011 652 1.08 18.50 0.95 58.95

6 595.64 3617 614 0.97 25.08 0.96 48.21

7 637.99 3532 513 1.24 28.84 0.99 60.51

Total 4558.55 25667 3979 1.15 28.84 0.95 55.17

aAverage distance between two adjacent bins.
bMaximum distance between two adjacent bins.
cSpearman rank correlation coefficient between the consensus map and IWGSC RefSeq v2.0.
dThe proportion of SNPs arranged in the order same with those on the corresponding chromosomes of the physical map.

with both PH and TKW in population DS. Other correlations
were non-significant.

Characteristics of the Constructed
Consensus Map
Of the 25,736 unique SNPs on the three individual linkage
maps, 25,667 were assigned to the consensus map, resulting
in 21 linkage groups corresponding to the 21 chromosomes
in hexaploid wheat (Figure 1). General information on the
consensus map is provided in Table 2, and positions of all
the markers on both the genetic and physical maps are
given in Supplementary Table 3. The consensus map spanned
4,558.55 cM in length, and the number of unique map positions

(denoted as bins) was equal to 3,979. Lengths of the A, B, and D
genomes were 1,622.47, 1,581.57, and 1,354.52 cM, respectively
(Table 2). Chromosome 4D was the shortest, with a length of
168.06 cM, and had the least number of markers (i.e., 106) and
the least number of bins (i.e., 53). Chromosome 2B was the
longest with a length of 290.78 cM, and had the second largest
number of markers (i.e. 2,431) and the second largest number
of bins (i.e., 324). There were 18 gaps longer than 15 cM on
the consensus map, 16 of which were located in the D genome
(Supplementary Table 3). Average distance between adjacent
bins was equal to 1.15 cM.

The single nucleotide polymorphism markers (SNPs) number
was similar in the A and B genomes, i.e., 10,285 and 12,755 SNPs,
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FIGURE 2 | Collinearity of marker orders between the consensus and physical maps. The dotted lines indicate the centromeres of chromosomes.

but the number was much lower in the D genome, i.e., 2,627
SNPs (Table 2). In comparison with the A and B genomes, the
D genome was shorter and contained much fewer markers and
bins, and more gaps, indicating that fewer crossing-over events
happened on the D genome, which was also observed in the
three individual maps. Although the marker number and bin
number in the D genome were significantly lower than those in
the A and B genomes, results from BLAST indicated that the
constructed consensus map still had nearly complete coverage for
chromosomes in the D genome.

Marker orders on the consensus map and physical map had
high collinearity, with an average Spearman rank correlation
coefficient of 0.95 across the 21 chromosomes (Table 2, Figure 2).
Rank correlation coefficients were higher than 0.94 for all the
chromosomes except 2B and 3D. The lower coefficient observed
on 3D may be partly due to the much-reduced bin number
when many markers were clustered in bins. Collinearity analysis
between the consensus and physical maps also revealed that
markers in large physical region around the centromeres of
chromosomes tended to be clustered in a short genetic interval
on consensus genetic map (Figure 2), indicating a much stronger
recombination suppression occurred around the centromere
than did that the distal regions.

Comparison of the Consensus Map With
the Three Individual Maps
Wen et al. (2017) reported three linkage maps from
three populations constructed with QTL IciMapping V4.0

(Meng et al., 2015), JoinMap 4.0 (Stam, 1993), and MapDisto 1.7
(Lorieux, 2012). Two of them had 21 linkage groups, and one had
31 linkage groups. The consensus map constructed in this study
had 21 linkage groups, corresponding to the 21 chromosomes in
hexaploid wheat. The marker and bin numbers on the consensus
map were 1.73 and 1.15 times higher than the largest marker
and bin numbers on the three individual maps. The length of
the consensus map was 1.44 times longer than that of the longest
individual map. Longer chromosomes on the individual maps
also tended to be longer on the consensus map. For example, the
two longest chromosomes on the consensus map, i.e., 2B and

5B, ranked first and third in mapping length in each of the three
individual maps.

There were 616 markers with inconsistent chromosomes

on the individual maps, but the inconsistent chromosomes
for each marker were finalized to one unique chromosome

on the consensus map (Supplementary Table 4). Among these

markers, 540 were mapped to single chromosomes that they
were located on the individual maps. For example, marker
wsnp_Ex_c200_391015 was located on chromosomes 7A and
1A on individual maps of populations GZ and ZC, respectively,
which was finalized on chromosome 1A on the consensus map.
Forty-nine markers were mapped to one of the homeologous
chromosomes. For example, marker Tdurum_contig28665_150
was located on chromosomes 1D, 1D, and 2A in populations
DS, GZ, and ZC, respectively, and was finalized on chromosome
1A, a homeologous chromosome of 1D. Twenty-seven markers
were mapped to neither the same chromosome nor homeologous
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FIGURE 3 | Schematic representation of stable quantitative trait loci (QTLs) for plant height (PH), spike length (SL), and thousand-kernel weight (TKW) detected in

three RIL populations, DS, GZ, and ZC from the consensus map.

chromosomes. For example, marker tplb0024a09_2369 was
located on chromosomes 7D and 4A in populations DS and
ZC, respectively, and was finalized on chromosome 2B on the
consensus map (Supplementary Table 4).

The markers showed high collinearity across chromosomes
between the consensus and individual maps, and the average
Spearman rank correlation coefficient was similar to those
between the individual maps (Supplementary Table 5). Fewer
inconsistencies in orders between the consensus and individual
maps were observed for closely linked markers.

QTLs for PH Detected From the Consensus
Map and Comparison With Those From
Individual Maps
Using the consensus map, a total of 40 QTLs were detected for
PH (Supplementary Table 6), among which 10, 8, and 8 were

stable in populations DS, GZ, and ZC, respectively (Figure 3,
Table 3). Five QTLs were identified in two populations, i.e., qPH-
2B-2, qPH-4B-1, qPH-4D-1, qPH-4D-2, and qPH-5A-2. qPH-2B-2
were repeatedly detected in populations DS and ZC with LOD
scores in the range of 3.62 to 22.98, explaining 1.63–8.05% of the
phenotypic variance (PVE). qPH-5A-2 was repeatedly detected
in populations DS and GZ, with LOD scores ranging from 3.90
to 15.44, and PVE values ranging from 2.58 to 9.63%. qPH-
4B-1, qPH-4D-1, and qPH-4D-2 were repeatedly identified in
populations GZ and ZC, taking the top three ranks in both
populations by average LOD score, PVE value, and additive effect
across environments. qPH-4B-1 was mapped on chromosome 4B
at the interval of 34.98–49.79 Mb on physical map with LOD
scores ranging from 6.31 to 43.49, and PVE values ranging from
8.14 to 30.85%. qPH-4D-1 was mapped on chromosome 4D at
the interval of 14.14–17.01Mb with LOD scores ranging from
6.54 and 17.10, and PVE values ranging from 8.06 to 16.48%.
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TABLE 3 | Stable quantitative trait loci (QTLs) identified for PH in the three RIL populations, DS, GZ, and ZC using the consensus map.

QTL Pop Environments Position (cM) LOD PVE (%) Add

qPH-1B-2 DS E2/E3/E4/E5/B 95.60–100.20 3.26–38.07 1.18–15.43 1.37 to 5.42

qPH-2A-2 DS E1/E3/E4/E6/B 192.00–195.20 2.79–11.05 1.01–5.32 −2.28 to −1.15

qPH-2B-2 DS E1/E2/E4/E5/B 224.40–239.60 3.62–22.98 1.63–8.05 −3.92 to −1.26

ZC E11/E13/E14/B 225.80–227.80 3.89–5.52 2.33–4.30 −3.20 to −2.31

qPH-2D-1 ZC E13/E14/B 113.80–114.40 2.89–3.73 1.49–3.08 2.01 to 2.77

qPH-2D-3 DS E1/E2/E3/E4/B 190.20–193.60 2.58–17.02 0.75–7.21 1.21 to 3.22

qPH-3A-1 GZ E7/E8/E9/E10/B 34.20–36.80 2.85–4.00 3.48–5.41 2.74 to 4.47

qPH-3A-2 DS E1/E2/E3/E5/B 130.40–148.60 16.23–43.54 6.67–28.31 −5.25 to −3.25

qPH-3B-2 GZ E7/E10/B 190.60–190.60 2.85–3.33 3.53–4.06 3.08 to 3.77

qPH-4A-2 ZC E11/E13/E14/B 114.60–132.80 3.27–4.43 1.33–4.47 2.36 to 2.60

qPH-4B-1 GZ E7/E8/E9/E10/B 75.00–75.00 6.31–9.52 8.14–10.82 −5.72 to −3.92

ZC E11/E12/E13/E14/B 74.20–74.40 16.87–43.49 17.92–30.85 5.37 to 11.02

qPH-4B-2 DS E2/E3/E4/E5/E6/B 100.40–102.40 3.12–5.91 1.64–2.54 −1.89 to −1.34

qPH-4D-1 GZ E7/E8/E9/E10/B 33.20–36.00 6.68–8.86 8.06–13.62 4.71 to 6.87

ZC E11/E12/E13/E14/B 33.40–34.60 6.54–17.10 8.64–16.48 3.90 to 5.83

qPH-4D-2 GZ E7/E8/E9/E10/B 73.20–73.80 6.20–7.83 8.39–10.90 4.57 to 5.58

ZC E11/E12/E13/E14/B 70.80–70.80 4.09–15.72 5.03–12.03 3.00 to 5.54

qPH-5A-1 ZC E11/E12/B 76.40–86.20 2.60–3.72 2.07–4.60 1.87 to 2.84

qPH-5A-2 DS E1/E2/E3/E4/E5 120.60–125.40 8.34–15.44 2.58–9.63 2.24 to 3.26

GZ E7/E8/E9/E10/B 113.20–135.60 3.90–5.52 4.79–6.87 −4.89 to −3.09

qPH-5B GZ E7/E8/E9/E10/B 234.80–237.40 3.60–4.46 4.09–5.54 2.91 to 4.36

qPH-6A-1 GZ E7/E9/B 154.40–157.00 2.81–3.88 3.36–4.04 −3.35 to −3.03

qPH-6A-2 DS E1/E3/B 192.60–192.60 4.10–9.47 1.45–4.48 −2.09 to −1.26

qPH-6D-1 DS E1/E2/E4/E6/B 71.40–76.20 3.21–6.98 1.33–2.46 1.30 to 2.00

qPH-6D-2 ZC E11/E13/E14/B 84.60–84.60 2.75–5.70 1.89–3.38 1.94 to 2.88

qPH-7A DS E1/E2/E3/E5/B 142.40–145.00 4.84–6.74 1.12–3.11 1.44 to 1.89

Pop, population; LOD, logarithm of odd; PVE, percentage of phenotypic variance explained; Add, additive effect; E1, 2012–2013 Beijing; E2, 2012–2013 Shijiazhuang; E3, 2013–2014

Beijing; E4, 2013–2014 Shijiazhuang; E5, 2014–2015 Beijing; E6, 2014–2015 Shijiazhuang; E7, 2012–2013 Anyang; E8, 2012–2013 Suixi; E9, 2013–2014 Anyang; E10, 2013–2014

Suixi; E11, Zhoukou2013; E12, Zhengzhou2013; E13, Zhoukou2014; E14, Zhengzhou2014; B, best linear unbiased estimation.

qPH-4D-2 was mapped on chromosome 4D at the interval of
32.97–65.01Mb having LOD scores ranging from 4.09 to 15.72
and PVE values ranging from 5.03 to 12.03%. When the length
of the confidence interval was set at 25Mb, qPH-4B-1 and qPH-
4D-1 were, respectively, coincident with dwarfing genes Rht-B1

located at 33.61Mb on 4B and Rht-D1 located at 19.19Mb on 4D
(IWGSC RefSeq v2.0).

Quantitative trait locus mapping using the individual maps

identified a total of 19 stable QTLs in the three populations,
nine in population DS, and five each in populations GZ

and ZC (Gao et al., 2015; Li et al., 2018). Sixteen of them

were detected using the consensus map; Fifteen of which
were stable across environments (Supplementary Table 7,

Supplementary Figure 5). qPH-2B-2 and qPH-5A-2 were

detected only in one population with the individual maps,
but in two populations with the consensus map (Table 3,

Supplementary Table 7), indicating the reliability of the two
QTLs. With the consensus map, eight other stable QTLs were
identified for PH, i.e., qPH-2D-1, qPH-2D-3, qPH-3B-2, qPH-
4D-2, qPH-6A-1, qPH-6A-2, qPH-6D-2, and qPH-7A, three in

population DS, two each in populations GZ and ZC, and one in
populations GZ and ZC.

QTLs for SL Detected From the Consensus
Map and Comparison With Those From the
Individual Maps
Using the consensus map, a total of 54 QTLs were detected for SL
(Supplementary Table 6), among which 15, 6, and 11 were stable
in populations DS, GZ, and ZC, respectively (Figure 3, Table 4).
qSL-2D-1 was repeatedly identified in populations GZ and ZC
with LOD scores ranging from 2.67 to 20.91, and PVE values
ranging from 2.85 to 31.06%. qSL-2D-2 was repeatedly detected
in populations DS and GZ with LOD scores ranging from 3.20
to 6.40, and PVE values ranging from 1.60 to 6.68%. qSL-5A-2
was repeatedly identified in populations DS and GZ with LOD
scores ranging from 3.31 to 13.93, and PVE values ranging from
1.87 to 7.13%. qSL-6B-4 was repeatedly detected in the three
populations and mapped at chromosome 6B in the interval of
705.19–707.59 Mb on physical map, accounting for 3.36–21.30%
of the phenotypic variance.
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TABLE 4 | Stable QTLs identified for SL in the three RIL populations, DS, GZ, and ZC using the consensus map.

QTL Pop Environment Position (cM) LOD PVE (%) Add

qSL-1A-1 DS E1/E2/E4/E6/B 53.60–75.80 2.96–6.05 1.47–4.43 −0.22 to −0.14

qSL-1B-1 ZC E13/E14 2.60–3.80 4.53–6.20 4.13–5.67 −0.35 to −0.28

qSL-1B-2 ZC E11/B 16.20–16.20 3.33–3.37 2.90–3.88 −0.22 to −0.29

qSL-2A-1 ZC E11/E13/E14/B 210.80–228.60 2.66–6.55 2.34–5.72 −0.33 to −0.20

qSL-2D-1 GZ E7/E8/E9/E10/B 32.00–43.20 11.74–20.91 9.84–31.06 0.36 to 0.59

ZC E11/E12/E13/E14/B 29.20–41.60 2.67–10.18 2.85–8.91 −0.41 to −0.24

qSL-2D-2 DS E3/E5/B 50.60–55.00 3.20–5.97 1.60–3.75 −0.18 to −0.14

GZ E9/E10/B 55.80–57.00 3.97–6.40 2.82–6.68 0.21 to 0.27

qSL-2D-3 DS E1/E2/E3/E4/E5/B 168.80–192.20 3.35–13.66 2.40–6.17 0.17 to 0.29

qSL-3A-4 DS E2/E5/B 130.40–139.40 3.71–6.00 1.62–2.45 −0.15 to −0.15

qSL-3A-5 ZC E12/E14/B 221.00–238.00 2.76–3.80 2.51–3.06 −0.22 to −0.22

qSL-3B-2 GZ E7/E10 23.60–24.80 3.47–3.80 3.55–4.88 −0.23 to −0.20

qSL-3B-5 DS E2/E4/E6/B 147.60–148.00 4.07–7.80 1.69–5.75 0.16 to 0.26

qSL-3D-2 DS E1/E2/E5/B 85.20–87.00 4.05–6.81 2.50–2.72 −0.20 to −0.16

qSL-4A-1 ZC E11/E12/E13/E14/B 73.00–83.20 3.07–12.13 3.27–11.74 −0.45 to −0.26

qSL-4A-2 GZ E8/E9/E10/B 85.00–103.60 4.20–6.29 2.78–7.71 −0.26 to −0.22

qSL-4A-3 ZC E11/E12/E13/E14/B 178.20–187.00 6.25–12.99 6.42–11.77 0.34 to 0.47

qSL-4A-4 DS E1/E2/E5/B 203.40–215.20 5.00–5.90 2.01–3.34 0.14 to 0.23

qSL-4B-1 DS E1/E2/B 21.00–21.40 4.50–7.41 1.77–3.25 0.14 to 0.23

qSL-4B-2 DS E1/E2/E3/E4/E5/E6/B 75.00–80.00 4.90–31.94 3.60–16.99 0.21 to 0.45

qSL-4D DS E1/E2/E5/B 56.20–66.60 3.54–16.74 1.55–7.79 0.12 to 0.33

qSL-5A-1 ZC E13/E14 89.80–93.60 2.92–3.83 2.60–3.13 0.21 to 0.24

qSL-5A-2 DS E1/E2/E5/E6/B 124.20–124.60 4.28–13.93 1.87–7.13 0.15 to 0.34

GZ E7/E8 122.60–123.40 3.31–4.39 3.67–5.45 −0.21 to −0.20

qSL-5A-3 ZC E11/E13/E14/B 190.20–191.00 6.80–11.15 6.25–9.96 0.33 to 0.43

qSL-5A-4 DS E1/E3/E4 241.60–245.20 2.57–3.86 1.58–3.47 −0.17 to −0.15

qSL-6A-1 DS E2/E3/E5/E6/B 165.80–177.60 4.37–9.06 2.27–4.17 0.17 to 0.21

qSL-6B-4 DS E2/E3/E5/E6/B 180.80–198.60 8.93–35.46 4.00–21.30 −0.50 to −0.23

GZ E7/E9/E10/B 194.20–195.40 4.56–20.58 4.86–10.96 −0.43 to −0.23

ZC E13/E14 178.60–180.40 3.74–3.79 3.36–3.36 −0.26 to −0.25

qSL-7A-2 ZC E13/E14 137.20–137.20 4.51–5.95 3.77–5.50 −0.30 to −0.27

qSL-7A-3 DS E2/E5/B 152.00–152.20 4.15–17.49 1.62–8.52 0.13 to 0.32

Pop, population; LOD, logarithm of odd; PVE, percentage of phenotypic variance explained; Add, additive effect; E1, 2012–2013 Beijing; E2, 2012–2013 Shijiazhuang; E3, 2013–2014

Beijing; E4, 2013–2014 Shijiazhuang; E5, 2014–2015 Beijing; E6, 2014–2015 Shijiazhuang; E7, 2012–2013 Anyang; E8, 2012–2013 Suixi; E9, 2013–2014 Anyang; E10, 2013–2014

Suixi; E11, Zhoukou2013; E12, Zhengzhou2013; E13, Zhoukou2014; E14, Zhengzhou2014; B, best linear unbiased estimation.

In previous studies, QTL mapping using individual maps
identified six, six, and nine stable QTLs in populations DS,
GZ, and ZC, respectively (Gao et al., 2015; Li et al., 2018). This
study detected all of them except QSL.caas-5AL in population
ZC (Supplementary Table 7, Supplementary Figure 6).
However, according to the linkage map constructed by
Wen et al. (2017) for population ZC and the BLAST result,
QSL.caas-5AL and QSL.caas-5AL.1 tended to be the same.
For the remaining 20 QTLs, 19 with stable effects were
detected using the consensus map. qSL-2D-1, qSL-2D-
2, and qSL-5A-2 were detected only in one population
using the individual maps, but all of them were detected
in two populations using the consensus map (Table 4,
Supplementary Table 7). With the consensus map, 10 other
stable QTLs were identified for SL, i.e., qSL-3A-4, qSL-3A-5,
qSL-3B-5, qSL-4A-4, qSL-4B-1, qSL-4B-2, qSL-4D, qSL-5A-1,

qSL-5A-4, and qSL-7A-3, eight for population DS and two for
population ZC.

QTLs for TKW Detected From the
Consensus Map and Comparison With
Those From the Individual Maps
Using the consensus map, a total of 53 QTLs were detected for
TKW (Supplementary Table 6), among which nine, three, and
eight were stable in populations DS, GZ, and ZC, respectively
(Figure 3, Table 5). qTKW-4B-2 was repeatedly identified in
populations DS and GZ with LOD scores ranging from 3.08
to 49.22, explaining 7.57–36.51% of the phenotypic variance.
qTKW-4B-2 had the largest LOD score, PVE and additive
effect across environments in population DS. This QTL was
co-localized with qPH-4B-1, corresponding to the dwarfing
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TABLE 5 | Stable QTLs identified for TKW in the three RIL populations, DS, GZ, and ZC using the consensus map.

QTL Pop Environment Position (cM) LOD PVE (%) Add

qTKW-1B-2 DS E1/E2/E3/E6/B 44.40–45.00 4.70–45.92 2.37–22.43 0.93 to 3.72

qTKW-2A-2 DS E2/E3/E4 125.00–125.00 2.57–7.27 1.32–5.90 0.70 to 1.15

qTKW-2B-2 DS E4/E5/B 138.80–141.40 2.92–6.43 1.25–3.81 0.73 to 1.32

qTKW-2D-2 ZC E11/E12/E13/E14/B 131.40–132.60 3.91–14.69 4.94–12.32 −1.64 to −1.00

qTKW-3A-2 GZ E9/B 148.40–148.60 4.05–5.80 6.56–11.45 1.00 to 1.26

qTKW-3D ZC E11/E12/B 101.40–101.80 3.79–6.44 4.85–6.86 1.00 to 1.18

qTKW-4A-1 ZC E11/E12/B 167.20–167.20 3.94–5.54 4.08–6.72 −1.17 to −0.91

qTKW-4A-2 DS E1/E2/E6/B 200.00–213.40 2.51–4.57 0.89–3.47 −0.87 to −0.73

qTKW-4B-2 DS E1/E2/E3/E4/E5/E6/B 75.00–76.00 13.28–49.22 8.81–36.51 1.60 to 3.78

GZ E7/E10/B 61.20–75.00 3.08–4.61 7.57–10.68 −1.43 to −1.09

qTKW-5A-1 ZC E13/E14 65.40–84.60 3.92–4.67 3.02–3.53 −0.91 to −0.82

qTKW-5A-3 DS E1/E2/E5/E6/B 116.40–124.40 3.83–7.46 2.53–5.05 1.03 to 1.27

qTKW-5A-4 GZ E7/E8/E9/E10/B 106.20–112.00 2.69–4.68 6.36–8.64 −1.28 to −0.94

qTKW-5D-1 DS E1/E2/E3/E4/E5/E6/B 49.20–54.80 6.23–11.44 2.38–7.58 1.12 to 1.66

qTKW-6A-3 ZC E11/E12/E13/E14/B 98.60–102.20 5.67–16.80 7.37–14.28 −1.84 to −1.23

qTKW-6B-3 ZC E11/E12/B 90.40–93.20 3.66–4.91 3.85–5.09 −1.01 to −0.82

qTKW-6B-5 DS E1/E3/E5/E6/B 197.40–198.60 3.62–6.22 1.21–3.36 −1.17 to −0.86

qTKW-7A-1 ZC E11/E12/E13/E14/B 140.40–141.20 2.72–4.77 2.04–5.71 −1.09 to −0.67

qTKW-7B-3 ZC E13/E14 146.20–146.20 4.26–5.27 3.22–4.03 −0.98 to −0.85

qTKW-7B-4 DS E1/E4/E5 168.80–171.40 5.79–18.41 3.10–12.11 1.06 to 2.36

Pop, population; LOD, logarithm of odd; PVE, percentage of phenotypic variance explained; Add, additive effect; E1, 2012–2013 Beijing; E2, 2012–2013 Shijiazhuang; E3, 2013–2014

Beijing; E4, 2013–2014 Shijiazhuang; E5, 2014–2015 Beijing; E6, 2014–2015 Shijiazhuang; E7, 2012–2013 Anyang; E8, 2012–2013 Suixi; E9, 2013–2014 Anyang; E10, 2013–2014

Suixi; E11, Zhoukou2013; E12, Zhengzhou2013; E13, Zhoukou2014; E14, Zhengzhou2014; B, best linear unbiased estimation.

gene Rht-B1. All stable QTLs detected with the individual
maps were also stable when detected with the consensus map
(Supplementary Table 7, Supplementary Figure 7). There were
other three stable TKW QTLs identified using the consensus
map, i.e., qTKW-1B-2, qTKW-2D-2, and qTKW-6B-3. qTKW-
1B-2 was mapped on chromosome 1B at the interval of 588.36–
591.14Mb on the physical map, with LOD scores ranging from
4.70 to 45.92, and PVE values ranging from 2.37 to 22.43% in
population DS. qTKW-2D-2 was mapped on chromosome 2D at
the interval of 523.15–555.13Mb with LOD scores ranging from
3.91 to 14.69, and PVE values ranging from 4.94 to 12.32% in
population ZC. qTKW-6B-3 was mapped on chromosome 6B
at the interval of 157.21–162.58Mb with LOD scores varying
from 3.66 to 4.91, and PVE values varying from 3.85 to 5.09%
in population ZC.

QTL Clusters for the Three Traits
As far as the stable QTLs across environments were concerned,
11 QTL clusters were identified and distributed on nine
chromosomes (Supplementary Table 8), six of which affected
two traits (i.e., qClu-2D, qClu-4A-1, qClu-4A-2, qClu-4D, qClu-
6A, and qClu-6B), and five affected all the three traits (i.e.,
qClu-3A-1, qClu-4B, qClu-5A-1, qClu-5A-2, and qClu-7A). Eight
clusters affected traits PH and SL. Among them, three clusters
contained both PH and SL QTLs in population DS; one
cluster contained both PH and SL QTLs in population ZC,
and one cluster contained the closely linked PH and SL QTLs
in populations DS and GZ. Each of the five clusters either

increased or decreased both traits simultaneously. Genomic
regions containing the stable QTLs for the three traits were
located on chromosomes 3A, 4B, 5A, and 7A. The cluster on 4B
was close to the Green Revolution gene Rht-B1. In cluster qClu-
5A-1, QTLs affecting the three traits were consistently identified
in populations DS and GZ, either increasing or decreasing the
three traits simultaneously.

Potential Applications of the Detected
QTLs in Wheat Breeding
To explore the potential applications of the detected QTLs in
wheat breeding, QTL genotypes and genotypic values of each RIL
in the three populations were predicted on the three traits with
stable QTLs identified using BLUE values across environments
(Supplementary Tables 9–11). For convenience, for the two
alleles at each QTL, one is called positive and the other one
is called negative. Parental sources of the two alleles can be
determined from the sign of the estimated additive effect of the
QTL. Due to the varied objectives on different traits in breeding,
it should be noted that the positive allele is not always favored
and that the negative allele is not always un-favored. For PH,
nine, eight, and eight stable QTLs were used for prediction in
populations DS, GZ, and ZC, respectively. The 10 highest RILs
possessed at least eight, seven, and seven positive alleles in the
three populations, respectively, whereas the 10 lowest RILs had
no more than two positive alleles (Supplementary Table 9). For
SL, 14, 7, and 4 stable QTLs were used for prediction. The 10
highest RILs possessed at least nine, seven, and four positive
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alleles in the three populations, whereas the 10 lowest RILs had
no more than four positive alleles in population DS, no positive
allele in population GZ, and no more than 1 positive allele
in population ZC (Supplementary Table 10). For TKW, seven,
three, and six stable QTLs were used for prediction. The 10
highest RILs possessed at least six, three, and five positive alleles
in the three populations, whereas the 10 lowest RILs had nomore
than 1 positive allele (Supplementary Table 11). RILs with the
highest predicted genotypic values always had all the positive
alleles for PH and TKW in the three mapping populations, and
had all the positive alleles for SL in populations GZ and ZC.
RILs with the lowest predicted genotypic values always had all
the negative alleles for PH and SL in populations GZ and ZC,
and had all the negative alleles for TKW in all the three mapping
populations. For PH, all the 10 lowest RILs in population GZ
and the 9 lowest RILs in population ZC contained the negative
alleles at qPH-4B-1 and qPH-4D-1, corresponding to genes Rht-
B1 and Rht-D1. For SL, qSL-6B-4 was repeatedly identified in
populations DS and GZ. Eighteen out of the 20 highest RILs in
population DS and 36 highest RILs in population GZ possessed
the positive allele at qSL-6B-4, while 17 out of the 20 lowest
RILs in population DS and 38 lowest RILs in population GZ
possessed the negative allele at qSL-6B-4. For TKW, qTKW-4B-
2 was consistently identified in populations DS and GZ. The
12.36% highest RILs in population DS and the 31.25% highest
RILs in population GZ carried the positive allele at qTKW-
4B-2, while the 17.45% lowest RILs in population DS and the
21.02% lowest RILs in population GZ carried the negative allele at
qTKW-4B-2. Mean observed and predicted values of RILs having
the positive allele at qTKW-4B-2 were equal to 45.13 and 45.24
in population DS, and 47.11 and 47.95 in population GZ. In
contrast, the observed means of RILs having the negative allele
were equal to 42.68 and 40.4 in population DS, and 45.59 and
45.65 in population GZ.

Recombinant inbred lines with the predicted genotypic values
on PH, SL, and TKW can serve for the choice of target genotypes
meeting different breeding objectives, such as wheat cultivars
with medium plant height, large spike length, and medium to
high kernel weight. Given one target genotype, the predicted
allelic combination of RILs can serve for the prediction of cross
performance and the selection of suitable parental lines through
simulation or other genomic prediction approaches (Yao et al.,
2018).

QTL Mapping in Simulated Populations
In 1,000 simulated populations, the estimated QTL positions and
effects using the individual and consensus maps are shown in
Table 6. With the increase in heritability, QTL detection powers
were increased and the false discovery rate (FDR) was decreased
in the three models using either the individual or consensus
maps. Approximately unbiased estimation of QTL positions and
effects was obtained for each defined model and heritability level.
The confidence intervals of QTLs detected from the consensus
map were much narrower, and the associated standard errors
were much smaller than those from individual maps. Detection
power was much lower for QTLs in linkagemodels II and III than
that in the unlinked model I at the same heritability levels for

both the individual and consensus maps. FDR was much higher
in models II and III than in model I, indicating the complexity
and difficulty in dissecting linked QTLs in genetic studies.

DISCUSSION

Computer Tools in Consensus Map
Construction
Two strategies have been adopted for consensus map
construction in previous studies (Endelman and Plomion,
2014). The first one is based on the raw data of multiple mapping
populations, and has been implemented in software MultiPoint
(Ronin et al., 2012) and JoinMap (Van Ooijen, 2006). The second
one is based on individual linkage maps previously constructed,
and has been implemented in software BioMercator (Arcade
et al., 2004), MergeMap (Wu et al., 2010), LPmerge (Endelman
and Plomion, 2014), and QTL IciMapping (Meng et al., 2015).
The first strategy is usually time-consuming when dealing
with a large number of markers (Wu et al., 2010), which has
drastically restricted the use of a large number of markers in
the consensus map. The second strategy highly depends on the
quality of individual maps and sometimes may result in maps
with unreasonable length (Cavanagh et al., 2013; Wang et al.,
2014; Wingen et al., 2017).

With the development of high-throughput sequencing
technology, markers that can be used in genotyping mapping
populations are growing rapidly. A large amount of markers
brings a great challenge to consensus map construction,
especially when raw genotypic data are used. The two raw data-
based software packages mentioned above cannot deal with such
a large number of markers used in this study. For example,
both packages cannot generate a consensus map for chromosome
5B, which harbored 929, 1,406, and 1,508 SNPs in populations
DS, GZ, and ZC, respectively. Map-based method only utilizes
marker distances between adjacent markers, which may result
in an inaccurate estimation of recombination frequency between
markers especially when the order of markers changes on
the consensus map. The CLA algorithm is a raw data-based
method used in this study to deal with a large amount of
markers. The combined recombination frequency between any
pair of markers was calculated from the estimates in individual
mapping populations. The estimated recombination frequencies
are recorded in computer memory. Therefore, time can be greatly
saved in computing.

Quality of the Consensus Map
The great number of markers and bins contained in the
consensus map provided higher saturation of markers and better
genome coverage, and expanded the length of the map. Previous
studies have shown that increased recombination events andmap
resolution with an increased number of markers and density
could contribute to longer map length (Ferreira et al., 2006;
Wingen et al., 2017). The longer map length may also suffer
from chromosomal structure differences in different mapping
populations and the ordering algorithm used. Compared with
the A and B genomes, the D genome had fewer unique markers,
larger gaps, and shorter map length, which have been previously
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TABLE 6 | Quantitative trait locus mapping results from 1,000 simulations using the individual and consensus maps in the three genetic models.

Model H2a Map QTL Pos. ± SE (cM)b Add ± SEc CIL ± SEd LOD ± SEe Power (%) FDR (%)f

I 0.05 Ind. QTL1 34.32 ± 1.34 1.33 ± 0.22 3.55 ± 0.76 4.03 ± 1.41 31.5 44.44

Cons. QTL1 34.42 ± 1.36 1.32 ± 0.19 1.89 ± 0.35 3.97 ± 1.17 33.6 43.72

0.1 Ind. QTL1 34.42 ± 1.21 1.08 ± 0.21 3.30 ± 0.85 5.41 ± 2.10 71.1 25.16

Cons. QTL1 34.55 ± 1.27 1.09 ± 0.25 1.83 ± 0.41 5.62 ± 2.96 69.9 27.71

0.2 Ind. QTL1 34.40 ± 0.94 1.01 ± 0.16 2.85 ± 0.74 10.03 ± 3.02 89.3 12.45

Cons. QTL1 34.46 ± 1.12 1.01 ± 0.16 1.70 ± 0.41 10.07 ± 2.96 90.2 11.57

II 0.1 Ind. QTL1 26.62 ± 1.37 2.03 ± 0.35 3.18 ± 1.05 5.61 ± 1.92 31.0 31.26

QTL2 34.08 ± 1.32 1.99 ± 0.32 3.27 ± 0.97 5.27 ± 1.58 36.3

Cons. QTL1 26.64 ± 1.29 2.07 ± 0.67 1.85 ± 0.37 6.00 ± 4.80 28.3 34.9

QTL2 34.18 ± 1.37 1.98 ± 0.33 1.82 ± 0.42 5.33 ± 1.68 34.2

0.2 Ind. QTL1 26.80 ± 1.21 1.88 ± 0.30 2.84 ± 0.83 9.93 ± 2.92 40.5 24.91

QTL2 33.78 ± 1.11 1.84 ± 0.28 2.83 ± 1.02 9.54 ± 2.53 39.1

Cons. QTL1 26.80 ± 1.21 1.87 ± 0.27 1.71 ± 0.42 9.96 ± 2.68 38.1 27.06

QTL2 33.91 ± 1.20 1.83 ± 0.27 1.73 ± 0.46 9.52 ± 2.52 37.1

0.4 Ind. QTL1 26.62 ± 1.09 1.33 ± 0.40 2.68 ± 0.84 13.06 ± 6.24 57.1 17.34

QTL2 34.09 ± 1.03 1.39 ± 0.40 2.64 ± 0.86 13.99 ± 6.51 63.0

Cons. QTL1 26.66 ± 1.130 1.36 ± 0.39 1.63 ± 0.40 13.67 ± 6.29 55.1 19.02

QTL2 34.18 ± 1.180 1.39 ± 0.43 1.66 ± 0.39 14.19 ± 7.01 59.0

III 0.1 Ind. QTL1 26.11 ± 1.10 −1.04 ± 0.32 2.78 ± 0.95 9.51 ± 5.34 7.4 34.91

QTL2 34.72 ± 1.11 1.04 ± 0.28 2.92 ± 0.87 9.26 ± 4.13 7.7

Cons. QTL1 26.25 ± 1.04 −1.08 ± 0.35 1.68 ± 0.39 10.40 ± 6.04 7.3 40.93

QTL2 34.82 ± 1.18 1.07 ± 0.31 1.71 ± 0.35 10.03 ± 4.85 8.0

0.2 Ind. QTL1 26.19 ± 0.75 −0.98 ± 0.21 2.43 ± 0.63 16.07 ± 5.59 26.3 15.18

QTL2 34.58 ± 0.77 0.99 ± 0.19 2.37 ± 0.67 16.24 ± 5.18 25.1

Cons. QTL1 26.08 ± 0.75 −0.98 ± 0.2 1.54 ± 0.38 16.12 ± 5.36 27.3 16.05

QTL2 34.58 ± 0.94 0.96 ± 0.18 1.51 ± 0.39 15.80 ± 5.17 27.1

0.4 Ind. QTL1 26.33 ± 0.57 −0.95 ± 0.12 1.76 ± 0.49 30.92 ± 6.38 74.8 4.16

QTL2 34.57 ± 0.59 0.94 ± 0.13 1.76 ± 0.51 30.80 ± 6.44 74.9

Cons. QTL1 26.19 ± 0.66 −0.94 ± 0.13 1.25 ± 0.36 30.67 ± 6.83 77.2 5.23

QTL2 34.51 ± 0.82 0.94 ± 0.13 1.27 ± 0.35 30.65 ± 6.51 76.9

aHeritability in broad sense.
bPosition in cM and the associated standard error.
cAdditive effect and the associated standard error.
dConfidence interval length and the associated standard error.
eLOD scores and the associated standard error.
fFalse discovery rate.

Ind., individual map; Cons., consensus map.

reported in both consensus and individual maps in wheat (Wang
et al., 2014; Li et al., 2015; Guan et al., 2018).

Collinearity was high between the genetic and physical
positions. Marker order on the consensus and physical maps was
highly correlated at the genome-wide level, but lower collinearity
was sometimes observed in some chromosomal regions, which
was also reported previously (Wingen et al., 2017). Of the 19,320
SNPs on the consensus map that had physical positions, on
average there were 55.17% SNPs arranged in the same order as
those on the corresponding chromosomes of the physical maps,
ranging from 36.3 on chromosome 6A to 75.68% on chromosome
4D (Table 2). A higher proportion of the completely consistent
marker order was found in the D genome (63.95%) than
those in the A genome (52.32%) and the B genome (49.22%),
which may be explained by the lower recombination on the

D genome. The lower recombination events on the D genome
contributed to lower sequence variability and had a weaker
influence on the decay of syntenic block size. Some chromosomal
structural variations were observed on the consensus map, such
as intra-chromosomal translocation and inversion. For example,
inversion happened around 22–25Mb on chromosome 1A, and
translocation occurred between regions around 88–93 and 106–
109Mb on chromosome 2A. The collinearity between marker
orders in genetic and physical maps is often disturbed by the
macrostructural variations in wheat, especially for consensus
maps that are constructed from multiple populations. Local
disorder of markers could also be caused by the variation of gene
order in parents and genotyping errors.

The distribution of meiotic recombination events showed that
recombination happened much more frequently in the distal
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chromosomal regions, and that recombination tended to be
suppressed near the centromeres, which was consistent with
previous studies [Sourdille et al., 2004; International Wheat
Genome Sequencing Consortium (IWGSC), 2018]. Collinearity
analysis also showed that some markers might have conservative
orders across populations, since their relative orders were
consistent on the physical and genetic maps. Comparative
analysis among the consensus, physical, and individual maps
indicated the reliability of the consensus map constructed with
the CLA algorithm.

Comparison of the Detected QTLs With
Studies on Other Mapping Populations
In this study, eight stable PH QTLs were detected with the
consensus map but not with the individual maps (Table 7).
Guan et al. (2018) reported a PH QTL on chromosome 4D
at the physical interval of 37.05–62.94Mb, and Ren et al.
(2021) reported a PH QTL on the same chromosome at the
physical interval of 47.44–67.64Mb. qPH-4D-2 (chr4D:32.97–
65.01Mb) was overlapped with the loci reported by Guan et al.
(2018) and Ren et al. (2021). qPH-6A-1 was located within the
physical region as reported by Zanke et al. (2014). qPH-6A-2 was
mapped on chromosome 6A at the interval of 610.97–613.55Mb.
Similarly, Pang et al. (2020) detected a PH QTL on chromosome
6A at the interval of 609.3–609.9Mb (IWGSC RefSeq v1.0). qPH-
6D-2 was located at the same marker interval of a PH QTL
that was first reported and validated to be stable in two wheat
populations by Wang et al. (2020). To the best knowledge of the
authors, stable QTLs qPH-2D-1, qPH-2D-3, qPH-3B-2, and qPH-
7A identified in this study were likely to be novel for PH. The
increased marker density in the consensus map contributed to
the detection of these novel QTLs.

For spike length, 10 QTLs were detected with the consensus
map but not with the individual maps (Table 7). Among them,
a stable QTL in population DS, i.e., qSL-4B-2 explaining 3.60–
16.99% of the phenotypic variance, was close to the Green
Revolution gene Rht-B1. A number of previous studies have
revealed that Rht-B1 has a pleiotropic effect on PH, SL, and TKW
(Schulthess et al., 2017; Sun et al., 2017; Li et al., 2018). QTL
cluster qClu-4B in which qSL-4B-2 was located affected all three
traits (Supplementary Table 8). However, no stable PH QTL in
qClu-4B was detected in population DS, indicating that qSL-4B-2
may not be the same as Rht-B1. One SL QTL, i.e., QSl.sdau-4B,
different from but close to Rht-B1, was precisely mapped and
verified by Deng et al. (2011), which did not affect PH either.
SL-4B-2 was located in a similar position as QSl.sdau-4B, and
was also in a similar physical position of qSL4B.1 (chr4B: 36.7–
37.8Mb) reported by Pang et al. (2020). For the remaining nine
QTLs, qSL-3B-5 was mapped on chromosome 3B at the interval
of 761.9–774.47Mb, which was in the similar physical interval
(chr3B: 771.94–788.06Mb) as reported by Hu et al. (2020); qSL-
4A-4 and qSL-5A-4 were close to those reported in Pang et al.
(2020). Six SL QTLs were likely to be novel because of increased
power when using the consensus map in QTL mapping, i.e.,
qSL-3A-4, qSL-3A-5, qSL-4B-1, qSL-4D, qSL-5A-1, and qSL-7A-3.

Compared with the individual maps, three other TKW QTLs
were stably identified using the consensus map (Table 7), i.e.,
qTKW-1B-2, qTKW-2D-2, and qTKW-6B-3, which were in
similar positions as those reported by Gerard et al. (2019), Zhang
et al. (2020c), and Cook et al. (2021), respectively.

For the three traits, a total of 21 QTLs were identified
using the consensus map but not the individual maps. Among
them, 11 QTLs are consistent with those from previous studies
on other mapping populations, and 10 QTLs are likely to be
novel. Most of the 11 QTLs were first reported in recent years
using high-density linkage maps, indicating that the increase in
marker density improved the power of QTL detection. For the
novel QTLs, six of them that control PH or SL were included
in the cluster that harbored closely linked PH and SL QTLs
(Supplementary Table 8). The PH of the wheat plant is equal
to SL plus the lengths of all internodes above the ground.
Theoretically, loci associated with SL may affect PH as well,
which has been validated by some studies (Buerstmayr et al.,
2011; Lv et al., 2014; Xu et al., 2014; Jahani et al., 2019; Chen
et al., 2020). Furthermore, four novel SL QTLs were close to PH
QTLs that have been reported using individual maps or other
independent studies, indicating the reliability of the novel QTLs
on SL or PH. Gene TaERF8 was identified to be associated with
PH and yield in wheat, and has been cloned from the wheat
cultivar Chinese Spring (Zhang et al., 2020b), one parental line
of population ZC. TaERF8-2D (chr2D: 368.21Mb) was located
in the flanking marker interval of qPH-2D-1, which was stably
detected in population ZC in the three tested environments
and in population DS in two tested environments. TaERF8-
2D may be a candidate gene for qPH-2D-1. Annotations of
gene functions were also performed for these novel QTLs based
on the wheat reference sequence annotation database (IWGSC
Annotation v1.1) as listed in Supplementary Table 12. The
annotation information will facilitate the future fine mapping,
map-based cloning, and functional analysis of the novel QTLs
identified in this study.

Relationship Between QTLs for
Phenotypically Correlated Traits PH and SL
Plant height is an important agronomic trait highly related to
lodging resistance and harvest index in wheat. SL is highly related
to grain yield by affecting kernel number and spike morphology
(Donmez et al., 2001). Plants with suitable PH and larger spike
are desirable in wheat breeding. Nine of the 21 stable PH
QTLs were close to the stable SL QTLs (Supplementary Table 8),
contributing to the genetic correlation between the two traits.
PH and SL were positively correlated by phenotypic analysis in
population DS, but the correlation was non-significant in the
other two populations. In this study, closely linked PH and SL
QTLs identified in the same population always had genetic effects
at the same directions on both traits. Similar instances have been
reported in previous studies (Buerstmayr et al., 2011; Lv et al.,
2014; Xu et al., 2014; Jahani et al., 2019; Chen et al., 2020).
Considering that some QTLs for SL may also affect PH, we
speculated that the closely linked PH and SLQTLs aremore likely
to be the same genetic loci and have the same effect directions.
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TABLE 7 | Quantitative trait loci for PH, SL, and TKW detected with the consensus map but not by the individual maps in the three RIL populations, DS, GZ, and ZC.

Trait QTL Pop Environment Physical interval (Mb)a Neighboring loci in previous studies

PH qPH-2D-1 ZC E13/E14/B 344.29–426.06 TaERF8-2D, Zhang et al., 2020b

qPH-2D-3 DS E1/E2/E3/E4/B 617.78–631.92

qPH-3B-2 GZ E7/E10/B 842.16–844.72

qPH-4D-2 GZ E7/E8/E9/E10/B 32.97–65.01 QPh.cau-4D.2, Guan et al., 2018

ZC E11/E12/E13/E14/B QPh.sau-4D, Ren et al., 2021

qPH-6A-1 GZ E7/E9/B 600.13–600.63
Zanke et al., 2014

qPH-6A-2 DS E1/E3/B 610.97–613.55 qPH6A.4, Pang et al., 2020

qPH-6D-2 ZC E11/E13/E14/B 337.17–361.16 QPh.sicau-6D, Wang et al., 2020

qPH-7A DS E1/E2/E3/E5/B 611.92–621.35

SL qSL-3A-4 DS E2/E5/B 656.58–663.11

qSL-3A-5 ZC E12/E14/B 722.85–748.34

qSL-3B-5 DS E2/E4/E6/B 761.90–774.47 QSL-3B.2, Hu et al., 2020

qSL-4A-4 DS E1/E2/E5/B 719.47–750.82 qSL4A.3, Pang et al., 2020

qSL-4B-1 DS E1/E2/B 6.94–10.81

qSL-4B-2 DS E1/E2/E3/E4/E5/E6/B 34.98–49.80 QSl.sdau-4B, Deng et al., 2011 qSL4B.1, Pang et al., 2020

qSL-4D DS E1/E2/E5/B 65.53–121.40

qSL-5A-1 ZC E13/E14 437.35–445.46

qSL-5A-4 DS E1/E3/E4 671.95–681.28 qSL5A.2, Pang et al., 2020

qSL-7A-3 DS E2/E5/B 647.11–648.26

TKW qTKW-1B-2 DS E1/E2/E3/E6/B 588.36–591.14 BS00039740_51, Gerard et al., 2019

qTKW-2D-2 ZC E11/E12/E13/E14/B 523.15–555.13 AX-109775854, Zhang et al., 2020c

qTKW-6B-3 ZC E11/E12/B 157.21–162.58 IWB61228-6B, Cook et al., 2021

aPhysical positions for the flanking markers of QTLs based on IWGSC_RefSeq v2.0.

E1, 2012–2013 Beijing; E2, 2012–2013 Shijiazhuang; E3, 2013–2014 Beijing; E4, 2013–2014 Shijiazhuang; E5, 2014–2015 Beijing; E6, 2014–2015 Shijiazhuang; E7, 2012–2013

Anyang; E8, 2012–2013 Suixi; E9, 2013–2014 Anyang; E10, 2013–2014 Suixi; E11, Zhoukou2013; E12, Zhengzhou 2013; E13, Zhoukou 2014; E14, Zhengzhou 2014; B, best linear

unbiased estimation.

However, whether the closely linked QTLs on PH and SL belong
to the same chromosomal loci with pleiotropic effects or different
closely-linked loci needs further investigation and is beyond the
scope of this study.

Further Analysis for a Major PH QTL
Located on Chromosome 4DS
For plant height, only one QTL was detected on chromosome
4DS using the individual maps in populations GZ and
ZC, but two stable QTLs, i.e., qPH-4D-1 and qPH-4D-2,
were identified using the consensus map in the same two
populations, which were linked in the coupling phase (Table 3,
Supplementary Table 7). The BLAST results indicated that qPH-
4D-1 was co-localized with the dwarfing gene Rht-D1. qPH-4D-2
explained 8.39–10.9 and 5.03–12.03% of the phenotypic variance
across environments in populations GZ and ZC, respectively.
The alleles decreasing PH were from parents Zhoumai16 in
population GZ and Zhou 8425B in population ZC.

Guan et al. (2018) reported two QTLs that were also
linked in the coupling phase and located in similar positions
as qPH-4D-1 and qPH-4D-2. qPH-4D-2 was detected in four
environments and with BLUE values across eight environments
in Guan et al. (2018). In addition, qPH-4D-2 was closely
linked with marker wsnp_Ex_c683_1341113, which was also
observed in Guan et al. (2018). As reported by Ren et al.
(2021), qPH-4D-2 was detected in the similar position between

SNPs AX-89692818 and AX-109606880 across environments.
Therefore, it is highly possible that qPH-4D-2 is a novel semi-
dwarfing gene. The common marker wsnp_Ex_c683_1341113
was located at about 54.4Mb on chromosome 4D (IWGSC
RefSeq v1.0; IWGSC, 2018). A high confidence putative gene,
TraesCS4D02G076400 (50,888,586–50,889,461 bp), is located
around the marker and in the confidence interval of qPH-4D-
2, with the annotation of encoding gibberellin regulated protein
(IWGSC RefSeq v1.1 annotation; IWGSC, 2018). Gibberellin
is an essential endogenous regulator in plant growth. The
well-known dwarfing genes Rht-B1b and Rht-D1b regulate
DELLA proteins in gibberellin signaling to reduce the response
to gibberellin (Peng et al., 1999). The gibberellin-sensitive
gene Rht8 was also widely used in regulating PH in wheat
(Gasperini et al., 2012). Gene TraesCS4D02G076400 in wheat was
annotated to gene GAST1 (UniProtKB/TrEMBL; Acc:C8C4P9),
first reported in tomato to encode the gibberellins-stimulated
transcript (Shi et al., 1992).GAST1 belongs to the gibberellic acid-
stimulated Arabidopsis (GASA) family, which plays important
roles in plant growth and development, such as stem growth,
plant height, and grain length, width, and weight (de la
Fuente et al., 2006; Nahirñak et al., 2012a,b; Shi et al., 2020).
Furthermore, qPH-4D-2 was detected in two populations in
this study, one from the cross between Zhou 8425B and
Chinese Spring. TraesCS4D02G076400 had high RNA expression
levels in Chinese Spring in different tissues and development
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stages (expVIP, http://www.wheat-expression.com/). Therefore,
TraesCS4D02G076400 is likely to be the candidate gene for qPH-
4D-2. PH is a crucial trait for morphogenesis and grain yield in
wheat. The newly discovered PH QTL on chromosome 4DS in
this study may enrich the genetic resources in breeding for semi-
dwarfing wheat. Reasons that qPH-4D-2 was not identified by
the individual could be the short distance between the QTL and
Rht-D1, and the lower marker density around the two QTLs in
individual mapping populations.

Advantages of Using Consensus Map in
QTL Mapping
Due to the limited number of crossing-overs and limited genetic
variation in individual populations, linkage maps constructed
from individual mapping populations usually have a large
number of co-localized markers and low marker density. A
consensus map combines the genetic information included in
multiple populations and provides a better genomic coverage
with higher marker density (Maccaferri et al., 2015; Allen et al.,
2017). A consensus map of higher density offers the chance
to map QTLs to narrower chromosomal intervals, which will
facilitate the discovery of causal genes and the identification of
closely linked markers for MAS. Simulation results conducted in
this study confirmed that the use of a consensus map with higher
marker density reduced the confidence interval of detected QTLs.

Even for the same trait, QTLs detected in different populations
using their own genetic maps sometimes are hardly compared
and synthesized, because of the unshared markers and variations
in the genetic background (Sukumaran et al., 2015). Comparisons
on QTL positions estimated from different populations are
usually conducted by anchoring the linked markers to the
genome assembly. However, genome sequences usually have
wide variations between parental varieties, and the anchor
information to the genome sequence may not be completely
accurate. A consensus map provides the direct comparison for
QTLs detected from different populations, which is important,
particularly in species lacking a completely sequenced reference
genome. In this study, we demonstrated that QTL mapping
using a consensus map can better identify common and stable
QTLs across populations and environments. For example, Rht-
B1 and Rht-D1, which had been cloned, were the two genes
reducing plant height in wheat (Peng et al., 1999). Each
of them was located almost in the same position in two
populations on the consensus map. qPH-5A-2, qSL-2D-2, qSL-
5A-2, and qTKW-4B-2 were detected in populations DS and
GZ; qPH-2B-2 was detected in populations DS and ZC; qPH-
4B-1, qPH-4D-1, qPH-4D-2, and qSL-2D-1 were identified in
populations GZ and ZC; qSL-6B-4 was detected in all the
three populations. The common QTLs identified in multiple
populations reflected the stable genetic effects of QTLs in
different genetic backgrounds, which might be more valuable
in breeding.

The genetic relationship among PH and SL QTLs as observed
in this study, showed that QTL mapping using the consensus
map can also facilitate the comparison across the correlated traits,
and therefore provide the opportunity to understand the genetic
correlation between phenotypically correlated traits and identify
the QTL-rich genomic regions. Moreover, the consensus map

also provides the chance to detect common QTLs with smaller
effects occurring in different populations.

Further studies may still be needed to determine the key
factors affecting the accuracy of consensus map construction
and subsequent QTL mapping, such as proportion of common
markers shared by multiple mapping populations, inconsistency
degree of marker orders in individual populations, population-
specific recombination frequencies, and the optimum algorithm
used to construct the consensus map. In addition to bi-parental
populations, as have been used in this study, multi-parental
populations have been developed in recent years in crops together
with suitable genetic analysis methods (Gardner et al., 2016;
Zhang et al., 2017, 2019; Shi et al., 2019; Qu et al., 2020). In
theory, a consensus map can also be constructed by combining
a number of bi-parental and multi-parental populations, when
common markers are shared by these populations.

In conclusion, the consensus map constructed for this study
allows for systematic QTL mapping studies, and comparison
and clustering of mapping results in wheat genetic studies.
The QTL mapping based on the consensus map resulted in
higher accuracy, narrower confidence interval, and a larger
QTL number. The stable QTLs across tested environments and
mapping populations, and the predicted QTL genotypes and
genotypic values can be used to select wheat cultivars with
suitable PH, large SL, and medium to high kernel weight. SNPs
closely linked with these stable QTLs can be used to select suitable
genetic materials and make suitable crosses in wheat breeding
programs. SNPs closely linked to traits can also be converted
into Kompetitive allele-specific PCR (KASP)markers (Kaur et al.,

2021) and then used for large-scale genotyping to screen desirable

individuals in segregating breeding populations.
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Waterlogging is one of the main abiotic stresses severely reducing barley grain

yield. Barley breeding programs focusing on waterlogging tolerance require an

understanding of genetic loci and alleles in the current germplasm. In this study,

247 worldwide spring barley genotypes grown under controlled field conditions were

genotyped with 35,926 SNPs with minor allele frequency (MAF) > 0.05. Significant

phenotypic variation in each trait, including biomass, spikes per plant, grains per

plant, kernel weight per plant, plant height and chlorophyll content, was observed.

A genome-wide association study (GWAS) based on linkage disequilibrium (LD) for

waterlogging tolerance was conducted. Population structure analysis divided the

population into three subgroups. A mixed linkage model using both population structure

and kinship matrix (Q+K) was performed. We identified 17 genomic regions containing

51 significant waterlogging-tolerance-associated markers for waterlogging tolerance

response, accounting for 5.8–11.5% of the phenotypic variation, with a majority of them

localized on chromosomes 1H, 2H, 4H, and 5H. Six novel QTL were identified and

eight potential candidate genes mediating responses to abiotic stresses were located

at QTL associated with waterlogging tolerance. To our awareness, this is the first

GWAS for waterlogging tolerance in a worldwide barley collection under controlled field

conditions. The marker-trait associations could be used in the marker-assisted selection

of waterlogging tolerance and will facilitate barley breeding.

Keywords: barley, waterlogging tolerance, genome-wide associated study, marker-trait association, quantitative

trait loci, candidate genes

INTRODUCTION

Waterlogging is a major abiotic stress that causes oxygen depletion and carbon oxide accumulation
in the rhizosphere (Bailey-Serres and Voesenek, 2008) and has become one of the main concerns
for crops limiting agricultural production globally. It is estimated that, worldwide, 10–16% of the
arable soils are affected by waterlogging (Setter and Waters, 2003; Yaduvanshi et al., 2014). In
western Canada, waterlogging has been identified as an important limiting factor for the crops
grown, including barley. In the last decade, waterlogging was accountable for 52% of post-harvest
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claims for crop losses by farmers in Manitoba and Saskatchewan
[Manitoba Agricultural Services Corporation (MASC), 2017;
Saskatchewan Crop Insurance Corporation (SCIC), 2017].
Waterlogging occurs when there is excess moisture in the soil
caused by high precipitation combined with poor soil drainage,
resulting in anoxic and hypoxia within roots (Arduini et al.,
2016). Waterlogging also causes an excess of ethylene and carbon
dioxide that also increases metabolic toxins and microelements
such as iron and manganese in soil solution or roots, reduces
respiration, root conductivity to water, and nutrient uptake, thus
affecting plant growth and survival (Setter and Waters, 2003).

Barley (Hordeum vulgare L.) is the fourth most important
cereal crop globally and Canada’s fourth-largest crop and is
primarily used for livestock feed, malting, and food (FAOSTAT
Production, 2020; Statistics Canada, 2020). Canada is the fourth
largest barley producer and the second-largest malt exporter in
the world. On average, each year,∼$1 billion is directly generated
from the export of feed barley and malt [Canadian Agri-Food
Trade Alliance (CAFTA), 2020]. Barley is more susceptible to
waterlogging stress than other cereals (Setter and Waters, 2003).
Waterlogging stress may cause significant yield losses in barley
that vary from 10 to 50%, depending on factors such as the
depth and duration of flooding, the development stage of the
waterlogged plant, temperature (Setter et al., 1999) and type of
soil (Pang et al., 2004). Waterlogging stress affects the genome-
wide gene expression responses in barley roots, increasing the
expression of many genes related to stress tolerance in barley
roots, including glycolysis and fermentation-related genes, as well
as ethylene-responsive element binding factors, and decreasing
the expression of genes related to starch and sucrose metabolism,
and nitrogen and amino acid metabolism (Borrego-Benjumea
et al., 2020).

In barley, damages caused by soil waterlogging include
chlorosis and premature leaf senescence, reduced root growth,
tillering, drymatter accumulation, number and weight of kernels,
and increased floral sterility (De San Celedonio et al., 2014, 2018;
Masoni et al., 2016; Ploschuk et al., 2018; Sundgren et al., 2018).
Under outdoor conditions in Argentina, Ploschuk et al. (2018)
assessed tolerance to 14-days of early- or late-stage waterlogging
of winter barley, which produced adventitious roots with 19%
of aerenchyma. They showed that photosynthesis was reduced
during waterlogging, but early-waterlogged plants were able to
recover upon drainage with seed production reaching 85% of the
controls, while late-waterlogged plants only attained 32% in seed
production. Sayre et al. (1994) found that the growth stage of
barley from leaf emergence to the booting stage is more sensitive
to waterlogging, while Liu et al. (2020) reported that waterlogging
close to heading is the most susceptible period, with yield losses
primarily attributed to reductions in spikelet fertility and grain
weight. In the Canadian Prairies, it has been projected increased

Abbreviations: BIO, above-ground dry Biomass; CABC, chlorophyll a+b content;

CCC, chlorophyll carotenoids content; GP, number of grains per plant; GWAS,

Genome-wide association study; KWP, kernel weight per plant; LD, linkage

disequilibrium; PH, plant height; QTL, quantitative trait loci/locus; SNP, single

nucleotide polymorphism; SP, number of spikes per plant; WLS, waterlogging

score.

precipitation in the coming years during May-June period (Blair
et al., 2016). This is a critical period in the barley growing season
in this region where increased precipitation reduces barley grain
yield (Borrego-Benjumea et al., 2019). Therefore, it is important
to develop cultivars tolerant to excess moisture and thus to
increase the yield stability of barley.

Waterlogging tolerance is a complex quantitative trait under
strong environmental influence with relatively low heritability
of grain yield in barley (Hamachi et al., 1990). Due to this low
heritability and dependency on environmental conditions, the
direct selection of barley for waterlogging tolerance is time-
consuming and less effective. Marker-assisted selection (MAS) is
an effective approach that can improve the efficiency of breeding
waterlogging-tolerant barley varieties and avoid environmental
effects. MAS requires identifying appropriate quantitative trait
loci (QTL) for traits associated with waterlogging tolerance,
and the development of molecular markers closely linked to
these traits. In barley, major QTL associated with waterlogging
tolerance have revealed numerous genomic regions that affect
important traits, such as chlorophyll fluorescence (Bertholdsson
et al., 2015), root aerenchyma formation in cultivated and
wild barley (Li et al., 2008; Zhang et al., 2016; Zhang X.
et al., 2017), root membrane potential (Gill et al., 2017), root
porosity (Broughton et al., 2015; Zhang et al., 2016), reactive
oxygen species (ROS) formation (Gill et al., 2019), waterlogging
score (Li et al., 2008; Zhou, 2011; Zhou et al., 2012), and
yield components (Xue et al., 2010; Xu et al., 2012). All these
major QTL have been mapped using doubled haploids (DH)
populations from bi-parental crosses of contrasting phenotype
parents for waterlogging. Although this approach has been the
most applied and has been very successful in detectingmanyQTL
for waterlogging tolerance in barley, few of the QTL reported
have been successfully used in MAS.

Association mapping (AM) is another alternative to mapping
QTL associated with complex traits in crops. The AM takes
advantage of historic linkage disequilibrium to uncover genetic
associations. Genome-wide association study (GWAS) requires
high marker density because linkage disequilibrium (LD) is low
in GWAS populations than in bi-parental populations. In GWAS,
the mapping population consists of a diverse set of individuals or
lines drawn from natural populations and breeding populations.
GWAS has been used to detect QTL involved in response
to waterlogging stress in various crops such as maize (Zhang
et al., 2013), rice (Zhang M. et al., 2017), soybean (Cornelious
et al., 2005) and wheat (Sundgren, 2018). In barley, GWAS
has been used to identify QTL for not only agronomic traits,
such as yield and yield components-related traits, using GWAS
(Pasam et al., 2012; Locatelli et al., 2013; Tondelli et al., 2013;
Pauli et al., 2014; Bellucci et al., 2017; Xu et al., 2018) but
also tolerance to abiotic stresses such as salinity (Long et al.,
2013; Fan et al., 2016; Mwando et al., 2020), drought (Varshney
et al., 2012; Jabbari et al., 2018; Tarawneh et al., 2020), acid soil
(Zhou et al., 2016), and low potassium (Ye et al., 2020) stress
tolerance. However, no information is available for QTLmapping
for waterlogging tolerance in barley by GWAS. In the present
study, we assessed a worldwide barley collection for waterlogging
stress tolerance under controlled field conditions. We evaluated
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the phenotypic and genetic diversity and the patterns of LD
decay across the barley genome. We conducted GWAS for
waterlogging tolerant traits, aiming to uncover novel genomic
regions and identify marker-trait associations for waterlogging
tolerance and confirm the previously identified genomic regions
and single nucleotide polymorphism (SNP) marker associated
with waterlogging tolerance. To our awareness, this is the first
AM study for waterlogging stress tolerance in a worldwide barley
collection under controlled field conditions.

MATERIALS AND METHODS

Plant Material
A spring barley worldwide collection of 247 genotypes, including
advanced breeding lines, cultivars, and landraces, was assembled
and used in this study. The majority of genotypes were from
Canada (30%), the USA (12%), China (10%), and Australia (8%).
The rest were from 35 different countries.

Field Experiment
The barley genotypes were evaluated for waterlogging tolerance
in controlled field conditions in one location at the experimental
station of the Brandon Research and Development Centre
(49◦52

′
N, 99◦58

′
W) in two consecutive years (2016 and 2017).

This location is a place where water is prone to accumulate,
creating excess moisture problems. The soil has a sandy loam
texture. The field trial area was leveled before seeding to
ensure that all plants would be under the same water level.
A ridge was built on the treatment side and was encircled
by a plastic film to avoid water escape. The experimental
design used was a randomized complete block design with
three replications. Each plot represented one experimental unit,
consisting of a single-row plot of 0.92m length containing 25
seeds evenly distributed with 0.31m spacing between rows.
Seeds were sown in late May or early June following standard
agronomic practices. Waterlogging-tolerant genotype Deder2
and waterlogging-sensitive genotype Franklin were used as
checks. The waterlogging stress treatment was initiated at the
tillering stage on the treatment side by adding the water to
0.5–1 cm above the soil surface. Waterlogging treatment was
maintained at the same level and continued until the susceptible
checks showed considerable stress symptoms (around 70%
leaf symptom yellowing) and genotypic differences were easily
distinguishable. The treatment duration was 9 and 7 days in
2016 and 2017, respectively. Then water in the waterlogged
plots was drained out, and the plants were allowed to grow
to maturity. Standard agronomic and cultural practices were
applied to the other side of the field, used as control. The
precipitation during the growing season was 394 and 245mm in
2016 and 2017, respectively.

After full maturity, three individual plants were randomly
harvested from each plot for analytical measurements. The traits
evaluated included above-ground dry Biomass (BIO), number
of spikes per plant (SP), number of grains per plant (GP),
kernel weight per plant (KWP), plant height (PH), chlorophyll
a+b content (CABC), chlorophyll carotenoids content (CCC),
and waterlogging score (WLS) and were measured for 2

years in both treatment and control conditions. WLS was
determined based on plant survival and leaf chlorosis (1 = not
affected by waterlogging, 9 = plants died from waterlogging)
(Supplementary Figure 1) after drainage (Zhou, 2011). For
chlorophyll content determination, the pooled upper second leaf
samples of six plants per plot under waterlogging conditions
and three plants per plot under control were collected after
the last day of treatment. From each pooled tissue leaf sample
per plot, three biological replicates of 50mg leaf tissue each
were incubated with methanol. The absorbance, at wavelengths
470, 653, and 666 nm, was read using a spectrophotometer
(SpectraMax 190 Microplate Reader). The number of pigments
was calculated according to the formula from Lichtenthaler and
Wellburn (1983). The mean values (three plants from each
replicate × three replicates) of each plot sampled were subjected
to statistical analysis.

Statistical Analysis of Phenotypic Data
All data were analyzed using the statistical software JMP SAS
version 14.1 (SAS Institute Inc., Cary, USA). The phenotypic
data were analyzed using a mixed-effects model with genotype
as a fixed effect, and year and replication nested within year
as random effects. Least-squares means were estimated for
waterlogging-treatment and control datasets within combined
data across years. Pearson’s correlation coefficient between pairs
of traits was estimated to express the relationships between traits
using the least-squares means across the combined years.

Genotyping
The barley collection was grown in the greenhouse to generate
plant tissue for DNA extraction using a standard potting mix,
standard photoperiod conditions (16 h light), and 70% humidity.
Genomic DNA from each genotype was extracted from pooled
leaf tissue samples of four seedlings per genotype using a
Qiagen DNeasy Plant Mini Kit (Qiagen GMbH, Germany).
Before normalization, the quality and quantity of the extracted
DNA were verified using a NanoDrop 1000 spectrophotometer
(Thermo Scientific, Wilmington, Delaware, USA) and agarose
gel electrophoresis, respectively. The samples were genotyped
using the Barley 50K iSelect SNP Array (Illumina Inc., San
Diego, CA, USA), containing 44,040 working assays (Bayer et al.,
2017). All these data is presented in Supplementary Table 0.
The SNP markers were further filtered using thresholds for
minor allele frequency (MAF) of 0.05, missing rate of 0.20, and
heterozygosity of 0.01. The final, filtered set of 35,926 SNPs
was subsequently used for GWAS. Genotypes showing more
than 0.02 heterozygous loci and call rates below 0.95 were also
excluded from further analysis. There were 3551, 5798, 5486,
3904, 6497, 4233, and 5017 SNPs located at chromosomes 1 to
7, respectively, with 1,440 markers of unknown position.

Population Structure, Kinship, and Linkage
Disequilibrium Analyses
The population structure of the 247 barley genotypes, which
represents the genetic similarity among genotypes, was assessed
using the STRUCTURE program. Principal component analysis
(PCA) (JMP Genomics 9.1) and neighbor-joining (NJ) (TASSEL
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5.2.28) tree analysis were used as complementary approaches
to confirm the results obtained using STRUCTURE. The
STRUCTURE software version 2.3.4 (Pritchard et al., 2000) was
used to estimate the most likely number of subpopulations
(K) and the subpopulation coefficients (Q) by detecting allele
frequency differences within the data and assigning individuals
to those subpopulations based on analysis of likelihoods. A
subset of 185 SNP markers, from the final filtered set of 35,926
SNP markers genotyped, were selected every ∼25,000,000 bp
on each chromosome through the barley genome, to ensure
that the sample was representative. A Bayesian-based analysis
was run using the admixture ancestry model with correlated
allele frequencies (Falush et al., 2003). The burn-in period was
set at 100,000, and the Markov Chain Monte Carlo (MCMC)
repetitions at 100,000. The number of assumed clusters (k)
was set from k = 1–7, and for each k, five runs were
performed separately. The output data from STRUCTURE were
assessed using STRUCTURE Harvester (Earl and von Holdt,
2012), where the optimum number of subpopulations (K) was
determined by the Evanno method (Evanno et al., 2005). The
K value was considered to be optimum, while 1K reaches the
maximum. Data for the most likely number of determining
clusters (K = 3) were run to correctly align the clusters
labeled from all five replications in STRUCTURE to obtain
Q coefficients. The Q matrix with the lowest variance for the
most likely number of k populations was selected and used
as the fixed covariate in GWAS models. PCA was performed
in JMP Genomics version 9.1 (SAS Institute Inc., Cary, USA).
A K matrix representing the proportion of shared alleles for
all pairwise comparisons in each population was computed.
The neighbor-joining phylogenetic tree was implemented in
TASSEL version 5.2.28 (Bradbury et al., 2007), which uses
simple parsimony substitution models and is displayed by
Archaeopteryx software.

The pairwise kinship values (kinship K matrix) for the
association panel were calculated using the Identity-by-Descent
(IBD) method in JMP Genomics 9.1. The K matrix estimates
the relationships among the lines using marker data, rather than
pedigree information, and computes the relationship measures
directly while also accounting for selection and genetic drift.
This kinship matrix was used for the subsequent GWAS in
JMP Genomics as a random factor. The kinship coefficient was
calculated and plotted vs. its frequency in the association panel.

Linkage disequilibrium (LD) analysis of the whole-genome
and each of the seven chromosomes was performed in JMP
Genomics 9.1 using 35,926 SNPs. Squared correlation coefficients
(r2) were used to estimate the LD among the pairwise SNP
markers using the maximum likelihood algorithm. To visualize
the extent of LD, r2 was plotted against the map distance (bp),
and a smoothing spline was fitted (λ = 100,000). The baseline r2

value was 0.1; an arbitrary value often used to describe LD decay
(Zhu et al., 2008). The LD decay was estimated at the intersection
point of the smoothing spline-fitting curve and the r2 value and
was considered to estimate the extent of LD in the genome. All
LD values above this critical r2 value were considered to be caused
by genetic linkage.

Genome-Wide Association Mapping
Analysis and SNP Markers Identification
A total of 247 spring barley genotypes were used in this study
based on genotypic and phenotypic data availability. Genome-
wide association (GWA) mapping was conducted on each group
using a total of 35,926 SNPs in JMP Genomics 9.1. Based on the
population structural analysis, the general linear model (GLM)
and mixed linear model (MLM) were run to investigate best-
fit models in the current study to search for SNP associations
with the traits. The MLM model considers both population
structure (Q) and relative kinship (K) effects, and showed the
best approximation of the expected cumulative distribution
of P-values, and therefore, more effective in controlling false
positives, and it was used for GWAS. The population structure
matrix (Qmatrix) evaluated using STRUCTURE and the kinship
matrix analyzed using JMP Genomics 9.1 were used for the
model. Association analysis was performed for each trait in each
treatment for the phenotypic mean value of 2016 and 2017.
The estimated effects for each allelic class were obtained directly
from the mixed linear model. Adjusted R2 values were estimated
from the linear regression model representing the percentage of
phenotypic variation explained by the associated SNPs.

A GWAS threshold P-value of < 1.6 × 10−4 [−log10(P-
value) < 3.8] was used for declaring significant-marker trait
associations. They were based on the median of two threshold
methods for determining significant P-values: a more stringent
method of determining P-value (Wang et al., 2012), where the
significance threshold is determined using the equation α =

1/m where m is the number of markers [–log10(P-value) <

4.5]; and a less stringent method (Chan et al., 2010) that is still
widely accepted, where the bottom 0.1 percentile distribution
of P-values is used as a threshold for significance [–log10
(P-value) < 3]. Manhattan plots were constructed with the
chromosome position on the X-axis against –log(P-value) of all
SNPs, and quantile-quantile (QQ) plots of observed P-values
were constructed against expected P-values using JMP Genomics
9.1. The distribution of the QQ plot was considered to select the
best model for each trait. The optimum model for each variable
was determined as the one with the QQ plot with a smaller
deviation from the normal distribution.

The GWAS was performed with the control, waterlogging
treatment and relative datasets. The relative dataset was
calculated as the relative difference between trait performance
at the control and waterlogging treatment conditions. The
markers that were significantly associated were assigned to QTL
regions based on the trait, their chromosomal positions, and the
estimated LD decay (1.460 Mbp). The identified QTL regions
under control conditions were compared with QTL reported
in previous studies in barley dealing with agronomic traits
(Supplementary Table 1), and the waterlogging treatment and
relative datasets were compared with QTL reported in previous
studies in barley for waterlogging stress tolerance-related traits
(Supplementary Table 2). When possible, BarleyMap (http://
floresta.eead.csic.es/barleymap/find/) was used to collect cM
positions from the POPSEQ_2017 genome map (Mascher et al.,
2013) for significant markers in our study, to enable an
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approximate comparison between the physical and genetic map
positions with the previous studies that reported QTL regions in
genetic distance.

The phenotypic allele effect of each SNP locus, on the
evaluated traits, was calculated through comparison of the
average phenotypic value for each genotype for the specific allele
with that of all genotypes (Mei et al., 2013).

Candidate Gene Prediction
We opted to investigate the genes in the vicinity of each
significant marker-trait associations, using a pre-defined
flanking window of 200-kb upstream and downstream, below
the 1.46Mb LD decay detected in the current barley mapping
collection (Lei et al., 2019). The identified genes were manually
screened for potential annotations. Predicted genes were
extracted from the barley reference genome assembly (IBSC
v2; Mascher et al., 2017). Annotations were downloaded from
Ensembl (http://plants.ensembl.org/Hordeum_vulgare/Info/
Index) and AmiGO Gene Ontology (amigo.geneontology.org).
The role of the potential candidate genes in response to abiotic
stresses, especially waterlogging, was further examined using
published literature.

RESULTS

Phenotypic Data
Phenotypic variation was observed among genotypes for all
traits in both control and waterlogging treatment (Table 1;
Supplementary Figure 2). The frequency distribution of the
genotypes for the investigated traits in the control and
waterlogging treatment is presented in Supplementary Figure 3.
In the control dataset, averaged over 2 years, BIO of the genotypes
varied from 12.5 to 71.9 g, generated 5.4 to 22.4 SP, 9.2 to 312.2
GP, and weighted 0.2 to 14.5 g KWP. PH ranged from 18.5 to
95.8 cm, CABC varied from 0.89 to 1.54 mg/g leaf tissue, while
CCC content varied from 0 to 0.17 mg/g leaf tissue (Table 1).
After the exposure to waterlogging stress in the waterlogged
dataset, averaged over 2 years, the genotypes varied in BIO from
1.7 to 36.3 g, generated 1.9 to 17.2 SP, 3.5 to 255.8 GP, and
weighted 0.1 to 7.7 g KWP. PH ranged from 11.4 to 58.7 cm,
CABC varied from 0.39 to 1.23mg/g leaf tissue, while CCC varied
from 0 to 0.12 mg/g leaf tissue (Table 1). As for WLS, the mean
was 6.8, with a range from 4.7 to 8.8. Overall, for all genotypes,
waterlogging stress reduced BIO, SP, GP, KWP, PH, CABC, and
CCC by 72.1, 61.7, 67.5, 71.7, 45.1, 38.7, and 54.2%, respectively
(Supplementary Figure 3). The coefficient of variation for the
combined 2 years of data was higher for KWP (38.5 and
49.5% in control and waterlogging treatment, respectively),
and lower for PH (16.0 and 17.4% in control and treatment
conditions, respectively). There were highly significant (P< 0.05)
genotypic differences both on individual and combined years
for all traits except CABC and CCC (Table 1). The frequency
distribution of all the traits generally fits a normal distribution
(Supplementary Figure 3).

Correlations among traits under control and waterlogging
treatment for 2016, 2017, and overall are shown in Table 2. In
the combined 2 years of data, a negative correlation (r = −0.14

to −0.55; P ≤ 0.001) was observed between the WLS and all the
traits (Table 2). Yield component traits (BIO, SP, GP, KWP, and
PH) had high correlations in both control (r = 0.72 to 0.94; P ≤

0.001) and waterlogging (r = 0.50–0.98; P ≤ 0.001) treatment.

Population Structure, Kinship, and Linkage
Disequilibrium Analyses
The Bayesian approach implemented in STRUCTURE revealed
the presence of three subpopulations with the highest likelihood
for K = 3 (Supplementary Figure 4) and partitioned the
247 genotypes into three principal groups composed of 96,
83, and 68 genotypes each. Furthermore, the PCA analysis
displayed consistent results, confirming the existence of the
three subpopulations in agreement with the population structure
analysis by STRUCTURE (Figure 1C), with the first two
coordinates accounting for 72.5% of the genotypic variation
(Figure 1A). The phylogenetic analysis partitioned the 247
genotypes into three principal groups, following the results
obtained with STRUCTURE and PCA analyses (Figure 1B).
Subpopulation 1 is mainly composed of genotypes from the USA
(21), Canada (16), and Australia (8), subpopulation 2 included
genotypes mainly from China (23), Australia (10), Switzerland
(9), and Ethiopia (8), while subpopulation 3 included genotypes
from Canada (55), US (9), Australia (1), Brazil (1) China (1),
and Japan (1).

Squared correlation coefficient (r2) values among the marker
pairs were used to estimate LD decay across all seven
chromosomes (Figure 2) and each chromosome separately. The
mean r2 ranged from 0.0178 (chromosome 5H) to 0.0261
(chromosome 4H). The arbitrary baseline r2 value was 0.1. The
LD across all chromosomes decayed at 1,460,356 bp, whereas LD
decay calculated for each chromosome separately ranged between
1,036,588 bp (chromosome 6H) and 2,290,772 bp (chromosome
1H). Based on the LD decay results, 35,926 SNPs (MAF >

0.05) will cover the entire barley genome and are adequate for
GWAS with the assembled barley collection. Therefore, the mean
window size of the QTL determined in this barley collection is
±1,460,356 bp from the highest peak of the significant marker-
trait association.

Association Mapping Analysis
We performed GWAS using 35,926 SNPs (with MAF > 0.05)
for the control and waterlogging treatment conditions, as well as
the relative difference between them using the phenotypic overall
field experiment (mean value of 2016 and 2017), and a threshold
P-value of < 1.6 × 10−4 [–log10(P-value) < 3.8]. Manhattan
plots showed the significance of markers associated with the
evaluated traits for the overall control, waterlogging treatment
and relative datasets in Figures 3–5. QQ plots displayed that the
expected and observed P-values initially matched, but eventually,
they were delineated and deviated to indicate a reasonable
positive (Supplementary Figures 5–7). Thus, the GWAS analysis
is reliable and not likely to give false negatives (Figures 3–5).

Control Dataset
In the overall control conditions, the GWAS analysis identified
a total of 92 markers significantly associated with BIO (52
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TABLE 1 | Mean values and standard deviations of waterlogging-related traits observed under control and waterlogging treatment in field conditions for 247 spring barley

genotypes.

Trait Year Treatment Mean SD Min Max Red.a SE CV (%) G

BIO (g) 2016 Control 37.3 16.9 2.5 86.7 71.5% 1.07 45.3 ***

Waterlogged 10.6 6.5 2.4 50.4 0.41 61.3 ***

2017 Control 42.8 7.7 20.3 79.0 72.6% 0.49 18.0 ***

Waterlogged 11.7 5.4 0.4 31.3 0.34 45.9 ***

2016/17 Control 40.1 11.1 12.5 71.9 72.1% 0.70 27.7 ***

Waterlogged 11.2 5.0 1.7 36.3 0.32 44.6 ***

SP 2016 Control 12.2 4.9 2.0 25.0 75.1% 0.31 39.9 ***

(number) Waterlogged 3.0 2.4 0.0 24.2 0.15 78.7 **

2017 Control 13.8 2.7 6.7 23.4 49.8% 0.17 19.8 ***

Waterlogged 6.9 1.8 2.2 12.2 0.11 25.8 ***

2016/17 Control 13.0 3.0 5.4 22.4 61.7% 0.19 23.3 ***

Waterlogged 5.0 1.6 1.9 17.2 0.10 32.3 ***

GP 2016 Control 150.8 84.3 2.0 430.5 90.0% 5.35 55.9 ***

(number) Waterlogged 15.0 26.2 0.0 329.0 1.7 174.4 ***

2017 Control 167.5 49.0 13.4 362.0 47.1% 3.11 29.3 ***

Waterlogged 88.6 35.1 1.0 196.9 2.2 39.6 ***

2016/17 Control 159.2 57.0 9.2 312.2 67.5% 3.62 35.8 ***

Waterlogged 51.8 24.2 3.5 255.8 1.5 46.8 ***

KWP (g) 2016 Control 6.3 3.7 0.0 19.0 92.5% 0.23 58.6 ***

Waterlogged 0.5 0.9 0.0 9.1 0.1 182.8 ***

2017 Control 6.6 2.2 0.3 16.1 51.9% 0.14 33.4 ***

Waterlogged 3.2 1.4 0.0 8.6 0.1 43.8 ***

2016/17 Control 6.4 2.5 0.2 14.5 71.7% 0.16 38.5 ***

Waterlogged 1.8 0.9 0.1 7.7 0.1 49.5 ***

PH (cm) 2016 Control 73.5 13.7 17.5 101.3 54.8% 0.87 18.7 ***

Waterlogged 33.2 10.7 12.3 65.0 0.7 32.3 NS

2017 Control 72.5 11.0 19.5 104.0 35.3% 0.70 15.2 ***

Waterlogged 46.9 8.6 7.8 70.5 0.5 18.4 ***

2016/17 Control 73.0 11.6 18.5 95.8 45.1% 0.74 16.0 ***

Waterlogged 40.1 7.0 11.4 58.7 0.4 17.4 ***

CABC 2016 Control 1.13 0.2 0.66 1.55 41.3% 0.01 13.75 NS

(mg/g leaf tissue) Waterlogged 0.66 0.3 0.03 1.39 0.02 38.12 NS

2017 Control 1.39 0.1 0.96 1.67 36.6% 0.01 9.63 NS

Waterlogged 0.88 0.2 0.39 1.47 0.01 21.79 ***

2016/17 Control 1.26 0.1 0.89 1.54 38.7% 0.01 8.41 NS

Waterlogged 0.77 0.2 0.39 1.23 0.01 21.22 **

CCC 2016 Control 0.06 0.02 0.00 0.12 10.5% 0.00 42.75 NS

(mg/g leaf tissue) Waterlogged 0.05 0.02 0.00 0.09 0.00 34.52 NS

2017 Control 0.14 0.03 0.01 0.22 71.8% 0.00 24.02 NS

Waterlogged 0.04 0.03 0.00 0.16 0.00 82.08 NS

2016/17 Control 0.10 0.03 0.00 0.17 54.2% 0.00 33.38 NS

Waterlogged 0.04 0.02 0.00 0.12 0.00 58.30 NS

WLS 2016 Waterlogged 6.9 1.2 3.3 9.0 0.08 17.5 *

(1–9 rating) 2017 Waterlogged 6.7 0.7 4.7 9.0 0.05 10.8 ***

2016/17 Waterlogged 6.8 0.8 4.7 8.8 0.05 12.0 ***

BIO, biomass; SP, spikes per plant; GP, grains per plant; KWP, kernel weight per plant; PH, plant height; CABC, chlorophyll a+b; CCC, carotenoids content; WLS, waterlogging score;

SD, standard deviation; Red., Reduction; SE, standard error; CV, coefficient of variance; G, genotypic effect.
aReduction ratio of all genotypes relative to control.

*Significant at P ≤ 0.05; **significant at P ≤ 0.01; ***significant at P ≤ 0.001; NS not significant.
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TABLE 2 | Pearson’s phenotypic correlation coefficients among mean variables (least-squares entry means) of traits for control and waterlogging treatment measured in

the spring barley collection in field conditions.
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Year Control

BIO SP GP KWP PH CABC CCC

2016 BIO 0.83*** 0.76*** 0.70*** 0.51*** −0.05 NS 0.07 NS

SP 0.70*** 0.87*** 0.79*** 0.44*** 0.00 NS 0.07 NS

GP 0.71*** 0.79*** 0.94*** 0.48*** 0.03 NS 0.04 NS

KWP 0.71*** 0.81*** 0.96*** 0.48*** 0.02 NS 0.05 NS

PH 0.25*** 0.46*** 0.28*** 0.27*** −0.12** 0.15***

CABC 0.23*** 0.24*** 0.12** 0.12** 0.50** −0.55***

CCC 0.18*** 0.10** 0.08* 0.06 NS 0.29*** 0.25***

WLS −0.51*** −0.53*** −0.39*** −0.41*** −0.61*** −0.47*** −0.28***

2017 BIO 0.71*** 0.76*** 0.80*** 0.51*** −0.07 NS 0.10**

SP 0.61*** 0.73*** 0.69*** 0.22*** −0.01 NS 0.11**

GP 0.61*** 0.76*** 0.96*** 0.35*** −0.02 NS 0.04 NS

KWP 0.55*** 0.69*** 0.96*** 0.37*** −0.03 NS 0.07*

PH 0.51*** 0.32*** 0.51*** 0.49*** −0.03 NS 0.08*

CABC −0.22*** 0.07 NS 0.12** 0.19*** −0.05 NS 0.02 NS

CCC 0.05 NS 0.08* 0.05 NS 0.05 NS 0.04 NS −0.11**

WLS −0.52*** −0.31*** −0.32*** −0.27*** −0.42*** 0.27*** −0.12**

2016/17 BIO 0.79*** 0.76*** 0.72*** 0.49*** 0.02 NS 0.15***

SP 0.61*** 0.83*** 0.76*** 0.35*** 0.06* 0.15***

GP 0.53*** 0.83*** 0.94*** 0.43*** 0.05 NS 0.09**

KWP 0.50*** 0.80*** 0.98*** 0.44*** 0.01 NS 0.06*

PH 0.35*** 0.55*** 0.53*** 0.52*** −0.10*** 0.04 NS

CABC 0.10*** 0.30*** 0.28*** 0.30*** 0.42*** 0.18***

CCC 0.08** 0.00 NS −0.04 NS −0.03 NS 0.06* 0.00 NS

WLS −0.51*** −0.44*** −0.31*** −0.29*** −0.55*** −0.29*** −0.14***

Control above diagonal, waterlogging treatment below diagonal. The correlations are estimated by the REML method.

BIO, biomass; SP, spikes per plant; GP, grains per plant; KWP, kernel weight per plant; PH, plant height; CABC, chlorophyll a+b; CCC, carotenoids content.

*Significant at P ≤ 0.05; **significant at P ≤ 0.01; ***significant at P ≤ 0.001; NS not significant.

markers), SP (18 markers), GP (23 markers), KWP (15 markers),
and PH (62 markers), with some markers associated with
multiple traits (Supplementary Table 3). Based on their position
on chromosomes, these 92 significant markers mapped on 28
QTL regions on chromosomes 2H, 3H, 5H, 6H, and 7H, with
each QTL region consisting of 1 to 34 markers, which included
two regions for KWP; four regions for SP and GP; 12 regions for
BIO; and 20 regions for PH (Figure 3; Supplementary Table 3).
Some genomic regions were associated with multiple traits,
indicating possible shared QTL between traits. For BIO in the
control conditions, we found six genomic regions, out of 12,
consisting of clusters of significant markers that mapped at
27.8, 29.1, 515.6, 542.4, and 547.4 Mbp on chromosome 2H,
and at 600.9 Mbp on 5H (Table 3; Supplementary Table 3;
Figure 3); each region consisted of clusters from 2 to up
to 34 markers and explained on average from 6.2 to 12.3%
of the phenotypic variation. Chromosome 2H consisted of
the highest number of markers significantly associated with
BIO (52 SNPs), of which BOPA2_12_30872 had the lowest

P-value (6.3 × 10−12) with an allele effect size of 6.8 that
individually explained 17.7% of phenotypic variation for BIO
(Supplementary Table 3). The three genomic regions associated
with SP in the control conditions were mapped at 29.7 Mbp on
chromosome 2H, at 634.9 Mbp on chromosome 3H, and 35.4
Mbp on chromosome 6H and accounted on average for 5.8, 6.8,
6.9, and 6.4% of the phenotypic variation, respectively (Table 3;
Supplementary Table 3). For GP in the control condition, we
found two genomic regions at 29.7 Mbp (clusters of 14 SNPs)
on chromosome 2H and 634.8 Mbp (7 SNPs) on 3H. On
average, each genomic region explained between 6.9 and 7.1%
of the phenotypic variation (Table 3; Supplementary Table 3).
The two genomic regions associated with KWP in the control
conditions were mapped at 29.7 Mbp on 2H (12 SNPs), and at
634.8 Mbp on 3H (3 SNPs). Each region explained, on average,
from 6.1 to 6.7% of the phenotypic variation across the 2 years
(Supplementary Table 3). For PH in the control conditions, we
found nine genomic regions consisting of clusters of at least two
significant markers that mapped at 28.5 Mbp (34 SNPs), 518.3
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FIGURE 1 | Model-based populations of spring barley collection: (A) Two-dimension distribution analyzed by principal component analysis (PCA) by JMP Genomics

9.1, (B) phylogenetic tree constructed by neighbor-joining (NJ) of genetic distance by TASSEL 5.2.28, and (C) Classification of three populations using STRUCTURE

2.3.4. The color code indicates the distribution of the accessions to different populations (Q1: red, Q2: green, Q3: blue) consistent in (A–C).

Mbp (2 SNPs), 523.4 Mbp (2 SNPs), 550.8 Mbp (2 SNPs), 723.7
Mbp (2 SNPs), and 727.6 Mbp (2 SNPs) on 2H, at 600.9 Mbp
(2 SNPs), 613.3 Mbp on 5H (2 SNPs), and 75.1 Mbp on 7H (2
SNPs). Each region individually explained from 5.8 to 11.4% of
the phenotypic variation (Supplementary Table 3).

Under control conditions, six marker-trait associations
representing genomic regions were associated with different
traits (Table 3). On chromosome 2H, the marker JHI-Hv50k-
2016-69385 at 19.0 Mbp was associated with the traits BIO
and PH, with similar effects in phenotype (6.9 and 5.8%
phenotypic variation, respectively); the marker JHI-Hv50k-
2016-72991 at 27.8 Mbp was coincidental for BIO, SP, and
PH, although with different effects in each trait (from 5.8
to 11.9% phenotypic variation); the marker JHI-Hv50k-2016-
73691 located at 29.6 Mbp was associated with the traits SP,
GP, and KWP; and the marker JHI-Hv50k-2016-94875 at 496.6
Mbp was shared by the traits BIO and PH (6.9 and 5.8%
phenotypic variation, respectively). On chromosome 3H, the
traits GP and KWP were associated with the same marker
JHI-Hv50k-2016-205562 located at 634.8 Mbp, with 8.2 and
6.8% phenotypic variation, respectively (Table 3). Finally, on
chromosome 5H, the traits BIO and PH were associated with

the marker JHI-Hv50k-2016-336773 mapped at 600.9 Mbp with
similar effects for the two traits (6.2 and 7.5% phenotypic
variation, respectively).

Waterlogging Treatment Dataset
In the overall waterlogging treatment conditions, the
GWAS analysis identified a total of 63 markers significantly
associated with BIO (33 markers), SP (11 markers), GP (10
markers), KWP (20 markers), PH (4 markers), and WLS
(25 markers), with some markers associated with multiple
traits (Supplementary Table 4). Based on their position on
chromosomes, these 63 significant SNPs were assigned to 24
QTL regions on chromosomes 1H, 2H, 3H, 4H, 5H, 6H, and 7H,
with each region consisting of 1–30 markers, which included
three regions for BIO; seven regions for GP; nine regions each
for SP and KWP, four regions for PH, and five for WLS (Table 4;
Figure 4). Some QTL regions were associated with multiple
traits, indicating possible shared QTL between traits. For BIO in
the waterlogging treatment conditions, three genomic regions
were detected at 27.8, 28.3, and 516.6 Mbp on chromosome
2H. The genomic region at 28.3 Mbp consisted of the highest
number of markers significantly associated with BIO (32 SNPs),
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FIGURE 2 | Plot of pairwise SNP linkage disequilibrium (LD) r2 value as a function of inter-marker genetic distances (Mbp) of 247 spring barley genotypes. The blue

curve represents the smoothing spline regression model fit to LD decay. The red line represents the baseline r2 value at 0.1. The intersection of the fitted smoothing

spline and r2 was observed at around 1,460,356 bp.

explaining on average 9.5% of the phenotypic variation of the
trait (Table 4; Figure 4). The most significant SNP marker,
BOPA2_12_30872 had the lowest P-value (3.3 × 10−8) with
an allele effect size of 2.8 that individually explained 11.8%
of phenotypic variation for BIO (Supplementary Table 4).
For SP in the waterlogging treatment conditions, we found
two genomic regions consisting of clusters of two significant
markers that mapped at 662.0 Mbp on 2H, and at 371,3 Mbp
on 4H. Each region with an allele effect size of 1.2 individually
explained from 7.4 to 8.57% of the phenotypic variation
(Table 4). Clusters of two and three SNPs on chromosomes
2H at 29.6 Mbp and 5H at 568 Mbp, respectively, were
significantly associated with GP in the waterlogging treatment
conditions, which on average, accounted for 6.3 and 7.1% of
phenotypic variation (Table 4; Supplementary Table 4). For
KWP in the waterlogging treatment conditions, we found two
genomic regions with at least two SNPs, at 16.8 Mbp (2 SNPs),
and 29.7 Mbp on chromosome 2H (11 SNPs). On average,
each genomic region explained between 6.1 and 6.9% of the
phenotypic variation (Supplementary Table 4). The three
genomic regions, with more than one SNP, associated with
WLS in the waterlogging treatment conditions were found
at 29.1 Mbp (17 SNPs) on chromosome 2H, and 0.37 and
569.8 Mbp (four and two SNPs, respectively) on 4H (Table 4;
Supplementary Table 4; Figure 4); each region explained
on average from 5.7 to 7.4% of the phenotypic variation.
Chromosome 2H consisted of the highest number of markers
significantly associated with WLS, of which BOPA2_12_30872
had the lowest P-value (7.5 × 10−6) with an allele effect size of

0.4 that individually explained 7.9% of phenotypic variation for
WLS (Supplementary Table 4).

Eight marker-trait associations associated with different traits
were found in the waterlogging treatment conditions (Table 4).
On chromosome 2H, the marker JHI-Hv50k-2016-68186 located
at 16.8 Mbp was associated with the traits GP and KWP, although
with different effects in each trait (from 6.1 to 7.6% phenotypic
variation); themarker BOPA2_12_30872 located at 29.1Mbp was
coincidental for the traits BIO and WLS, with different effects on
each trait (from 7.9 to 11.8% phenotypic variation); and the traits
GP and KWP were associated to the same marker JHI-Hv50k-
2016-73689 at 29.6 Mbp. On chromosome 4H, the traits SP and
WLS were associated with the marker JHI-Hv50k-2016-225852
at 0.37 Mbp (7.3 and 6.8% phenotypic variation, respectively);
and GP and KWP were associate to the same marker JHI-Hv50k-
2016-249670 located at 512.9Mbp (∼6.1% phenotypic variation).
On chromosome 5H, the traits SP and GP were associated with
the marker JHI-Hv50k-2016-322832 regions at 569.3 Mbp; and
the marker BOPA2_12_11245 at 579.3 Mbp was coincidental for
the traits SP, GP, and KWP, with a similar effect for the three
traits, ∼6.2% phenotypic variation (Table 4). On chromosome
7H, the marker JHI-Hv50k-2016-449124 located at 13.6 Mbp was
coincidental for the traits GP and KWP, with a similar effect.

Additionally, the analysis showed three markers on
chromosome 2H co-localized in both control and waterlogging
treatment conditions (Tables 3, 4). The marker JHI-Hv50k-
2016-72991 located at 27.8 Mbp was found to be associated with
BIO, SP, and PH under control, and with BIO under waterlogging
treatment conditions; the marker BOPA2_12_30872 at 29.1 Mbp
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FIGURE 3 | Manhattan plots resulting from the SNP-based GWAS in overall control under field conditions. Manhattan plots for Biomass (BIO), Spikes per plant (SP),

Grains per plant (GP), Kernel weight per plant (KWP), and Plant height (PH) are shown in (A–E), respectively, and the x-axis shows SNP loci along the seven barley

chromosomes. The horizontal red line shows the genome-wide significance threshold P-value of 1.6 × 10−4 or –log10 (P-value) value of 3.8. GWAS was performed

using the MLM (Q + K) model in JMP Genomics for the field traits.

was identified in BIO under control, and BIO and WL under
waterlogging treatment conditions; and the marker JHI-Hv50k-
2016-80986 located at 73.5 Mbp was identified in PH under both
control and waterlogging treatment conditions.

Relative Dataset
In order to find chromosomal regions that were significantly
associated with waterlogging tolerance response, we analyzed

the relative difference between the control and waterlogging
treatment conditions. In the overall relative dataset, the GWAS
analysis identified a total of 51 markers significantly associated
with BIO (1 SNP), SP (17 SNPs), KWP (4 SNPs), PH (24
SNPs), and WLS (25 SNPs), with some markers associated
with multiple traits (Supplementary Table 5). No significant
markers were detected for GP in the relative dataset, unlike
in the control and waterlogging treatment datasets. Based on

Frontiers in Plant Science | www.frontiersin.org 10 August 2021 | Volume 12 | Article 71165443

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/plant-science#articles


Borrego-Benjumea et al. Barley GWAS for Waterlogging Tolerance

FIGURE 4 | Manhattan plots resulting from the SNP-based GWAS in waterlogging treatment under field conditions. Manhattan plots for Biomass (BIO), Spikes per

plant (SP), Grains per plant (GP), Kernel weight per plant (GWP), Plant height (PH), and Waterlogging score (WLS) are shown in (A–F), respectively, and the x-axis

shows SNP loci along the seven barley chromosomes. The horizontal red line shows the genome-wide significance threshold P-value of 1.6 × 10−4 or –log10
(P-value) value of 3.8. GWAS was performed using the MLM (Q + K) model in JMP Genomics for the field traits.
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FIGURE 5 | Manhattan plots resulting from the SNP-based GWAS identified in the relative dataset. Manhattan plots for Biomass (BIO), Spikes per plant (SP), Grains

per plant (GP), Kernel weight per plant (GWP), Plant height (PH), and Waterlogging score (WLS) are shown in (A–F), respectively, and the x-axis shows SNP loci along

the seven barley chromosomes. The horizontal red line shows the genome-wide significance threshold P-value of 1.6 × 10−4 or –log10 (P-value) value of 3.8. GWAS

was performed using the MLM (Q + K) model in JMP Genomics for the field traits.
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TABLE 3 | List of significant (P < 1.6 × 10−4) marker-trait associations detected by GWAS using the MLM (Q + K) model in JMP Genomics and favorable alleles (bold)

for the assessed traits in the overall control conditions.

Trait Markera Ch Physical

position (bp)b
Genetic

position (cM)c
P-value R2 (%)d MAF Allelee Additive

effect

BIO JHI-Hv50k-2016-69385f,* 2H 19,064,497 13.31 3.60E-05 6.90 0.11 T/G −6.16

JHI-Hv50k-2016-71792f 2H 23,485,824 15.37 6.10E-05 6.40 0.19 T/C −3.19

JHI-Hv50k-2016-72991* 2H 27,836,916 18.91 3.40E-08 11.90 0.10 A/T −5.85

BOPA2_12_30872 2H 29,124,597 19.90 6.30E-12 17.70 0.18 A/G −6.77

JHI-Hv50k-2016-94875f,* 2H 496,673,313 55.01 3.00E-05 6.90 0.08 T/C −5.23

BOPA1_ABC08774-1-1-752f 2H 508,786,535 7.60E-05 6.30 0.05 A/C −6.07

JHI-Hv50k-2016-95073f 2H 515,576,575 58.64 4.40E-05 6.70 0.08 T/C −4.79

SCRI_RS_127347f 2H 519,110,344 58.64 5.80E-05 6.40 0.11 T/C −4.56

JHI-Hv50k-2016-97672f 2H 542,384,101 59.42 1.10E-04 6.00 0.06 A/T −5.98

JHI-Hv50k-2016-98186f 2H 547,420,281 59.42 1.10E-04 6.00 0.06 C/G −5.98

JHI-Hv50k-2016-336773* 5H 600,914,687 126.30 8.70E-05 6.20 0.07 A/T −5.97

JHI-Hv50k-2016-336814 5H 600,979,263 8.70E-05 6.20 0.07 T/G −5.97

SP JHI-Hv50k-2016-72991* 2H 27,836,916 18.91 1.50E-04 5.80 0.10 A/T −1.25

JHI-Hv50k-2016-73691* 2H 29,669,343 1.60E-05 7.60 0.15 A/G −1.40

JHI-Hv50k-2016-205634 3H 634,932,524 109.80 1.40E-05 7.50 0.35 T/C 1.09

JHI-Hv50k-2016-382988 6H 35,396,724 43.77 3.40E-05 6.90 0.25 A/G −0.96

GP JHI-Hv50k-2016-73691* 2H 29,669,343 4.70E-06 8.40 0.15 A/G −26.84

JHI-Hv50k-2016-88492f 2H 134,404,110 55.01 1.50E-04 5.80 0.13 A/G 25.01

JHI-Hv50k-2016-200577 3H 609,227,175 90.16 1.20E-04 6.00 0.27 A/G 15.27

JHI-Hv50k-2016-205562* 3H 634,801,729 108.90 5.60E-06 8.20 0.44 T/C 17.77

KWP JHI-Hv50k-2016-73691* 2H 29,669,343 3.30E-05 7.00 0.15 A/G −1.06

JHI-Hv50k-2016-205562* 3H 634,801,729 108.90 3.60E-05 6.80 0.44 T/C 0.70

PH JHI-Hv50k-2016-69385f,* 2H 19,064,497 13.31 1.60E-04 5.80 0.11 T/G −6.65

JHI-Hv50k-2016-72991* 2H 27,836,916 18.91 1.80E-06 9.00 0.10 A/T −5.90

JHI-Hv50k-2016-73085* 2H 28,455,236 18.91 1.10E-05 7.80 0.41 T/C 9.61

JHI-Hv50k-2016-80986f 2H 73,504,389 49.73 3.30E-05 6.90 0.07 T/G −7.98

JHI-Hv50k-2016-86347f 2H 112,364,666 1.40E-04 5.80 0.08 T/C 5.80

JHI-Hv50k-2016-94875f,* 2H 496,673,313 55.01 1.40E-04 5.80 0.08 T/C −5.81

JHI-Hv50k-2016-95379f 2H 518,293,896 58.00 4.10E-05 6.70 0.08 A/G −6.81

JHI-Hv50k-2016-95777f 2H 523,378,213 58.64 1.20E-04 5.90 0.12 A/T −6.05

JHI-Hv50k-2016-98273f 2H 548,916,905 6.30E-07 9.70 0.06 T/C −8.85

JHI-Hv50k-2016-98501f 2H 550,839,094 59.35 9.00E-05 6.20 0.18 C/G −4.88

JHI-Hv50k-2016-127739 2H 723,652,876 122.90 1.50E-04 5.80 0.13 T/G −4.62

JHI-Hv50k-2016-129870 2H 727,578,152 125.20 6.20E-05 6.40 0.07 A/G −7.42

BOPA2_12_10532f 3H 67,560,907 45.82 7.00E-06 8.00 0.05 C/G −7.71

JHI-Hv50k-2016-330643 5H 587,449,015 114.70 9.60E-05 6.10 0.08 T/C −5.60

JHI-Hv50k-2016-332746 5H 591,637,968 120.10 1.50E-04 5.90 0.07 A/G −7.35

JHI-Hv50k-2016-336773* 5H 600,914,687 126.30 1.40E-05 7.50 0.07 A/T −8.13

BOPA2_12_31234f 5H 613,268,086 134.70 2.40E-06 8.80 0.07 A/G −7.10

JHI-Hv50k-2016-447227f 7H 11,309,509 7.78 1.60E-04 5.70 0.05 A/T −6.84

JHI-Hv50k-2016-468495f 7H 71,962,797 58.04 5.20E-05 6.60 0.10 A/T −5.03

JHI-Hv50k-2016-468869f 7H 75,059,390 59.80 3.30E-05 6.90 0.09 A/G −5.21

BIO, biomass; SP, spikes per plant; GP, grains per plant; KWP, kernel weight per plant; PH, plant height; Ch, chromosome number; MAF, minor allele frequency.
aThe marker with the highest R2 in the genomic region is presented.
bBase pair positions of the marker in the chromosome based on a high-quality reference genome assembly for barley (Hordeum vulgare L.) (Mascher et al., 2017).
cGenetic marker positions (cM) of the marker obtained from the POPSEQ_2017 genome map in BarleyMap (http://floresta.eead.csic.es/barleymap/find/) (Mascher et al., 2013).
dR2 (%) indicates the percentage of phenotypic variation explained by the significant marker.
eAllele that is in bold text is the favorable allele for the trait assessed.
fMarker-trait associations that have different positions than the previously identified QTL for yield and yield-related traits published on barley under unstressed conditions.

*Putative QTL that may be associated with multiple traits.
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TABLE 4 | List of significant (P < 1.6 × 10−4) marker-trait associations detected by GWAS using the MLM (Q + K) model in JMP Genomics and favorable alleles (bold)

for assessed traits in the overall waterlogging treatment conditions.

Trait Markera Ch Physical

position (bp)b
Genetic

position (cM)c
P-value R2 (%)d MAF Allelee Additive

effect

BIO JHI-Hv50k-2016-72991 2H 27,836,916 18.99 1.30E-05 7.6 0.10 A/T −2.51

BOPA2_12_30872* 2H 29,124,597 19.90 3.30E-08 11.8 0.18 A/G −2.75

JHI-Hv50k-2016-95223 2H 516,581,410 57.72 8.80E-05 6.2 0.10 T/C −2.42

SP JHI-Hv50k-2016-3532 1H 3,453,791 4.96 1.30E-04 6.2 0.07 A/G 0.85

JHI-Hv50k-2016-68266 f 2H 16,823,564 11.40 1.70E-05 7.4 0.08 A/G 1.34

JHI-Hv50k-2016-109151 2H 662,018,769 82.51 3.70E-06 8.5 0.06 A/G 1.24

JHI-Hv50k-2016-161633 3H 32,637,255 37.04 4.20E-05 6.7 0.06 A/T 0.99

JHI-Hv50k-2016-225852f,* 4H 371,267 0.71 1.80E-05 7.3 0.06 T/C 1.17

JHI-Hv50k-2016-262685 4H 607,200,114 85.84 7.40E-07 9.6 0.06 A/G 1.31

JHI-Hv50k-2016-276624f 4H 645,759,577 117.30 7.20E-05 6.3 0.05 T/C 1.20

JHI-Hv50k-2016-322832* 5H 569,308,558 97.51 8.20E-05 6.2 0.05 A/G 1.13

BOPA2_12_11245* 5H 579,324,077 6.50E-05 6.4 0.06 C/G 1.07

GP JHI-Hv50k-2016-68186* 2H 16,813,000 11.40 9.20E-05 6.1 0.11 T/C 10.47

JHI-Hv50k-2016-73689* 2H 29,669,242 3.80E-05 6.8 0.14 A/G −11.29

JHI-Hv50k-2016-249670f,* 4H 512,990,076 54.32 1.10E-04 6.2 0.06 A/G 18.71

JHI-Hv50k-2016-322832* 5H 569,308,558 97.51 6.50E-06 8.1 0.05 A/G 18.67

BOPA2_12_11245* 5H 579,324,077 8.60E-05 6.2 0.06 C/G 15.07

JHI-Hv50k-2016-410329f 6H 492,880,745 65.93 2.00E-05 7.3 0.07 A/C 18.63

JHI-Hv50k-2016-449124f,* 7H 13,658,217 11.54 1.50E-04 5.8 0.35 T/C 7.27

KWP JHI-Hv50k-2016-68186f,* 2H 16,813,000 11.40 1.30E-05 7.6 0.11 T/C 0.43

JHI-Hv50k-2016-73689* 2H 29,669,242 2.00E-05 7.2 0.14 A/G −0.44

JHI-Hv50k-2016-82113 2H 79,456,923 49.73 1.40E-04 5.8 0.13 T/G −0.34

JHI-Hv50k-2016-127867 2H 724,202,574 120.80 1.30E-04 5.9 0.35 A/G −0.26

JHI-Hv50k-2016-249670f,* 4H 512,990,076 54.32 1.40E-04 6.0 0.06 A/G 0.68

JHI-Hv50k-2016-322288 5H 568,058,046 97.51 8.10E-05 6.2 0.06 T/G 0.58

BOPA2_12_11245* 5H 579,324,077 1.00E-04 6.0 0.06 C/G 0.55

JHI-Hv50k-2016-424341f 6H 562,861,599 105.10 5.70E-05 6.5 0.06 T/G 0.56

JHI-Hv50k-2016-449124f,* 7H 13,658,217 11.54 1.10E-04 6.0 0.35 T/C 0.27

PH JHI-Hv50k-2016-73570 2H 29,307,953 9.00E-05 6.2 0.12 T/C −3.30

JHI-Hv50k-2016-80986 2H 73,504,389 49.73 7.00E-05 6.3 0.07 T/G −5.31

BOPA2_12_10968 3H 34,959,733 37.04 1.10E-04 6.0 0.06 A/G −4.08

JHI-Hv50k-2016-165725 3H 78,242,146 9.50E-05 6.2 0.30 A/G 3.61

WLS JHI-Hv50k-2016-19217 1H 61,923,247 7.30E-05 6.3 0.07 T/C −0.42

BOPA2_12_30872* 2H 29,124,597 19.90 7.50E-06 7.9 0.18 A/G 0.39

JHI-Hv50k-2016-225852f,* 4H 371,267 0.71 3.60E-05 6.8 0.06 T/C −0.59

BOPA1_3549-743f 4H 569,760,181 63.39 1.10E-04 6.0 0.40 A/G 0.26

JHI-Hv50k-2016-421359f 6H 554,181,962 92.07 1.40E-04 5.9 0.08 A/T −0.40

BIO, biomass; SP, spikes per plant; GP, grains per plant; KWP, kernel weight per plant; PH, plant height; WLS, waterlogging score; Ch, chromosome number; MAF, minor allele frequency.
aThe marker with the highest R2 in the genomic region is presented.
bBase pair positions of the marker in the chromosome based on a high-quality reference genome assembly for barley (Hordeum vulgare L.) (Mascher et al., 2017).
cGenetic marker positions (cM) of the marker obtained from the POPSEQ_2017 genome map in BarleyMap (http://floresta.eead.csic.es/barleymap/find/) (Mascher et al., 2013).
dR2 (%) indicates the percentage of phenotypic variation explained by the significant marker.
eAllele that is in bold text is the favorable allele for the trait assessed.
fMarker-trait associations that have different positions than the previously identified QTL for waterlogging stress-related traits published on barley under waterlogging conditions.

*Putative QTL that may be associated with multiple traits.

their position on chromosomes, these 51 significant SNPs were
assigned to 17 QTL regions on chromosomes 1H, 2H, 4H, 5H,
6H, and 7H, with each region consisting of 1 to 42 markers
(Table 5; Figure 5; Supplementary Table 5). Some QTL regions
were associated with multiple traits, indicating possible shared
QTL between traits.

Since the focus of our study is waterlogging tolerance in
barley, and the QTL found in the relative dataset are stable,

we centered the discussion on these QTL which we named
following the rule: “Q,” trait abbreviation, and chromosome
number. One QTL associated with BIO, named QBIO.2H,
was found on chromosome 2H and explained 6.6% of the
phenotypic variation (Table 5; Figure 5; Supplementary Table 5;
Supplementary Figure 8). This QTL also accounted for
BIO under control and waterlogging treatment conditions
(Tables 3, 4). Nine QTL for SP were detected on chromosomes
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TABLE 5 | List of significant (P < 1.6 × 10−4) marker-trait associations detected by GWAS using the MLM (Q + K) model in JMP Genomics and favorable alleles (bold)

for assessed traits identified in the relative dataset.

QTL Trait Markera Ch Physical

position (bp)b
Genetic

position

(cM)c

P-value R2 (%)d MAF Allelee Additive

effect

QBIO.2H BIO JHI-Hv50k-2016-73118 2H 28,612,330 18.91 4.95E-05 6.64 0.43 A/G 6.17

QSP.1H-1 SP JHI-Hv50k-2016-20766f 1H 107,293,686 5.17E-05 6.61 0.20 T/C −6.33

QSP.1H-2 JHI-Hv50k-2016-20908 1H 187,645,763 47.94 4.31E-05 6.67 0.20 T/C −6.38

QSP.1H-3 JHI-Hv50k-2016-21022 1H 241,516,420 47.94 8.79E-06 7.92 0.18 A/G −6.71

QSP.1H-4 JHI-Hv50k-2016-22269 1H 296,548,971 47.94 1.15E-04 5.98 0.15 T/G −6.12

QSP.1H-5 JHI-Hv50k-2016-22575 1H 303,086,870 47.94 1.15E-04 5.98 0.15 T/C −6.12

QSP.2H JHI-Hv50k-2016-73693* 2H 29,669,511 1.96E-05 7.24 0.06 A/C 13.31

QSP.5H-1 JHI-Hv50k-2016-312394f 5H 532,344,110 1.58E-04 5.79 0.08 T/G 10.59

QSP.5H-2 JHI-Hv50k-2016-332745 5H 591,637,898 120.07 1.30E-04 5.98 0.07 A/G 8.32

QSP.5H-3 JHI-Hv50k-2016-336773 5H 600,914,687 126.25 9.76E-05 6.07 0.07 A/T 8.15

QKWP.2H KWP JHI-Hv50k-2016-132004 2H 733,399,550 129.78 1.32E-04 5.85 0.06 T/C 6.98

QKWP.4H JHI-Hv50k-2016-230103 4H 10,736,375 29.15 7.30E-05 6.31 0.06 A/G 9.95

QPH.2H-1 PH BOPA2_12_30631f 2H 18,521,931 12.11 9.32E-05 6.10 0.50 A/G 2.91

QPH.2H-2 JHI-Hv50k-2016-73693* 2H 29,669,511 5.57E-08 11.46 0.06 A/T 12.99

QPH.7H JHI-Hv50k-2016-457680 7H 32,776,909 29.96 8.89E-05 6.14 0.33 A/C −4.13

QWLS.1H WLS JHI-Hv50k-2016-19217 1H 61,923,247 46.46 7.25E-05 6.29 0.07 T/C −0.42

QWLS.2H BOPA2_12_30872 2H 29,124,597 19.90 7.51E-06 7.94 0.18 A/G 0.39

QWLS.4H-1 JHI-Hv50k-2016-225850f 4H 370,915 0.71 4.05E-05 6.85 0.06 T/C −0.58

QWLS.4H-2 BOPA1_3549-743f 4H 569,760,181 63.39 1.08E-04 5.99 0.39 A/G 0.26

QWLS.6H JHI-Hv50k-2016-421359f 6H 554,181,962 92.07 1.36E-04 5.85 0.08 A/T −0s.40

BIO, biomass; SP, spikes per plant; KWP, kernel weight per plant; PH, plant height; WLS, waterlogging score; Ch, chromosome number; MAF, minor allele frequency.
aThe marker with the highest R2 in the genomic region is presented.
bBase pair positions of the marker in the chromosome based on a high-quality reference genome assembly for barley (Hordeum vulgare L.) (Mascher et al., 2017).
cGenetic marker positions (cM) of the marker obtained from the POPSEQ_2017 genome map in BarleyMap (http://floresta.eead.csic.es/barleymap/find/) (Mascher et al., 2013).
dR2 (%) indicates the percentage of phenotypic variation explained by the significant marker.
eAllele that is in bold text is the favorable allele for the trait assessed.
fMarker-trait associations that have different positions than the previously identified QTL for waterlogging stress-related traits published on barley under waterlogging conditions.

*Putative QTL that may be associated with multiple traits.

1H (QSP.1H-1, QSP.1H-2, QSP.1H-3, QSP.1H-4 and QSP.1H-
5), 2H (QSP.2H), and 5H (QSP.5H-1, QSP.5H-2, QSP.5H-3),
and explained 5.8–7.9% of the phenotypic variance (Table 5;
Supplementary Table 5). Two QTL for KWP were detected
on chromosomes 2H (QKWP.2H) and 4H (QKWP.4H) and
explained 5.9–6.3% of the phenotypic variance (Table 5;
Supplementary Table 5). For PH, three QTL were identified,
located on chromosomes 2H (QPH.2H-1 and QPH.2H-2)
and 7H (QPH.7H). The QTL accounted for 6.1–11.5% of the
phenotypic variance (Table 5; Supplementary Table 5). The
QTL QWT.PH.2H-2 also accounted for PH under control
and waterlogging treatment conditions (Tables 3, 4). Five QTL
affectingWLS were identified and they accounted for 5.9–7.9% of
the phenotypic variance (Table 5; Supplementary Table 5). They
were located in chromosomes 1H (QWLS.1H), 2H (QWLS.2H),
4H (QWLS.4H-1 and QWLS.4H-2) and 6H (QWLS.6H).
These five QTL also accounted for WLS under waterlogging
treatment (Table 4).

One genomic region was associated with various traits
in the relative dataset (Table 5). On chromosome 2H, QTL
QWT.BIO.2H, QWT.SP.2H and QWT.PH.2H-2 located at 28-
29 Mbp were associated with BIO, SP, and PH, respectively,

although with different effects in each trait (6.6–11.5% of
phenotypic variation).

Candidate Genes
A total of 205, 190, and 156 genes were located within
a 200-kb genomic region up- and down-stream centered
from 32, 26 and 18 significant marker-trait associations in
control (Supplementary Table 6), waterlogging treatment
conditions (Supplementary Table 7) and relative dataset
(Supplementary Table 8), respectively. Among those markers,
22, 19, and 14, from control, waterlogging treatment and relative
datasets, respectively, were located inside genes. We focused
on these genes and identified nine possible candidate genes
associated with the measured traits under the control (Table 6),
13 possible candidate genes associated with these traits under
the waterlogging treatment conditions (Table 7), and eight
possible candidate genes associated with the measured traits in
the relative dataset (Table 8).

Significant markers associated with BIO in control conditions
were inside genes (HORVU2Hr1G013400, HORVU2Hr1G071
330, HORVU2Hr1G072400, HORVU2Hr1G075950, HORVU5
Hr1G096320, and HORVU2Hr1G070320) involved in the
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TABLE 6 | Summary of potential candidate genes that contain significant markers associated with the assessed traits under control conditions.

Marker Trait Ch Marker

position (bp)

Gene ID Start (bp) End (bp) Gene description

JHI-Hv50k-2016-71792 BIO 2H 23,485,824 HORVU2Hr1G011650 23,481,402 23,486,230 Undescribed protein

BOPA2_12_30872 BIO 2H 29,124,597 HORVU2Hr1G013400 29,123,724 29,127,894 Pseudo-response regulator

7

BOPA1_ABC08774-1-1-752 BIO 2H 508,786,535 HORVU2Hr1G071330 508,785,994 508,794,465 Glycine–tRNA ligase

JHI-Hv50k-2016-95073 BIO 2H 515,576,575 HORVU2Hr1G071980 515,568,391 515,580,748 Heparan-α-glucosaminide

N-acetyltransferase

SCRI_RS_127347 BIO 2H 519,110,344 HORVU2Hr1G072400 519,108,149 519,110,415 Cytochrome P450

superfamily protein

JHI-Hv50k-2016-98186 BIO 2H 547,420,281 HORVU2Hr1G075950 547,420,245 547,422,120 Zinc finger homeodomain 1

JHI-Hv50k-2016-336773 BIO, KWP 5H 600,914,687 HORVU5Hr1G096320 600,914,511 600,916,443 UDP-Glycosyltransferase

superfamily protein

JHI-Hv50k-2016-94875 BIO, PH 2H 496,673,313 HORVU2Hr1G070320 496,671,113 496,676,443 Yellow stripe like 6

JHI-Hv50k-2016-88492 GP 2H 134,404,110 HORVU2Hr1G033730 134,403,521 134,420,781 Proteasome maturation

factor UMP1 family protein

JHI-Hv50k-2016-205562 GP, KWP 3H 634,801,729 HORVU3Hr1G091170 634,799,742 634,804,670 Receptor kinase 2

JHI-Hv50k-2016-73085 PH 2H 28,455,236 HORVU2Hr1G013020 28,452,211 28,456,166 Trichome birefringence-like

4

JHI-Hv50k-2016-86347 PH 2H 112,364,666 HORVU2Hr1G030520 112,360,955 112,366,308 Protein kinase superfamily

protein

JHI-Hv50k-2016-95777 PH 2H 523,378,213 HORVU2Hr1G072750 523,377,399 523,379,178 Protein Terminal flower 1

JHI-Hv50k-2016-98501 PH 2H 550,839,094 HORVU2Hr1G076520 550,832,263 550,840,111 Pectinesterase family

protein

JHI-Hv50k-2016-127739 PH 2H 723,652,876 HORVU2Hr1G111640 723,652,502 723,658,875 Plasma membrane ATPase

JHI-Hv50k-2016-129870 PH 2H 727,578,152 HORVU2Hr1G113190 727,572,166 727,583,311 Alpha-N-

acetylglucosaminidase

BOPA2_12_10532 PH 3H 67,560,907 HORVU3Hr1G021150 67,560,410 67,562,131 Gigantea protein (GI)

JHI-Hv50k-2016-332746 PH 5H 591,637,968 HORVU5Hr1G093390 591,633,650 591,639,220 Solute carrier family 22

member 1

BOPA2_12_31234 PH 5H 613,268,086 HORVU5Hr1G101820 613,267,130 613,268,378 Undescribed protein

JHI-Hv50k-2016-447227 PH 7H 11,309,509 HORVU7Hr1G008690 11,307,419 11,313,973 Protein kinase superfamily

protein

JHI-Hv50k-2016-468495 PH 7H 71,962,797 HORVU7Hr1G034400 71,959,645 71,963,636 Unknown function

JHI-Hv50k-2016-468869 PH 7H 75,059,390 HORVU7Hr1G034990 75,057,969 75,067,902 Kinesin-related protein 11

BIO, biomass; SP, spikes per plant; GP, grains per plant; KWP, kernel weight per plant; PH, plant height; WLS, waterlogging score; Ch, chromosome number.

regulation of the circadian clock, regulation of flowering time
and development, embryogenesis, grain size and development,
plant growth, development and senescence (Table 6). The role
of the genes HORVU5Hr1G096320 and HORVU2Hr1G033730
harboring the markers JHI-Hv50k-2016-336773 and JHI-Hv50k-
2016-88492, respectively, associated with GP and KWP traits
were known to be essential in the regulation of seed development
and grain size (Table 6). Several genes (HORVU2Hr1G013020,
HORVU2Hr1G076520, and HORVU7Hr1G034990) associated
with the significant markers for PH trait were known to
be involved in cell wall processes, such as synthesis and
deposition of secondary wall cellulose, modulation of cell
wall mechanical stability during fruit ripening, cell wall
extension during pollen germination and pollen tube growth,
abscission, stem elongation, tuber yield and root development,
microtubule-binding proteins involved in the microtubule
control of cellulose microfibril order and cell wall strength. Some
other genes (HORVU2Hr1G030520, HORVU5Hr1G093390, and

HORVU7Hr1G008690) play a role in cell cycle regulation
processes, such as modulating vesicle transport and channel
activities, and specific transport of various substrates. Another
group of genes (HORVU2Hr1G072750, HORVU2Hr1G111640,
HORVU2Hr1G113190, and HORVU3Hr1G021150) regulate
plant growth and reproductive development, flowering time and
inflorescence architecture (Table 6).

Most of the genes harboring market-trait associations for the
related traits in waterlogging treatment conditions are known
to play a role in the regulation of waterlogging or other abiotic
stress responses (Table 7). The genes HORVU2Hr1G072140,
encoding Uridylate kinase, and HORVU2Hr1G013400, encoding
Pseudo-response regulator 7 (PRR7), contain significant markers
associated with BIO and are known to play a role in the response
to abiotic stress, such as salinity, cold and oxidative stress
(Table 7). The four genes HORVU6Hr1G070750 (annotated
as E3 ubiquitin-protein ligase makorin), HORVU4Hr1G090640
(E3 ubiquitin-protein ligase RFWD3), HORVU4Hr1G000090
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TABLE 7 | Summary of potential candidate genes that contain significant markers associated with the assessed traits under waterlogging treatment conditions.

Marker Trait Ch Marker

position (bp)

Gene ID Start (bp) End (bp) Gene description

JHI-Hv50k-2016-95223 BIO 2H 516,581,410 HORVU2Hr1G072140 516,578,216 516,583,796 Uridylate kinase

BOPA2_12_30872 BIO, WLS 2H 29,124,597 HORVU2Hr1G013400 29,123,724 29,127,894 Pseudo-response

regulator 7

JHI-Hv50k-2016-161633 SP 3H 32,637,255 HORVU3Hr1G014290 32,636,782 32,639,178 Delta(8)-Delta(7) sterol

isomerase

JHI-Hv50k-2016-276624 SP 4H 645,759,577 HORVU4Hr1G090640 645,757,976 645,762,395 E3 ubiquitin-protein ligase

RFWD3

JHI-Hv50k-2016-109151 SP 2H 662,018,769 HORVU2Hr1G094030 662,015,232 662,019,114 Ubiquitin-conjugating

enzyme 3

JHI-Hv50k-2016-3532 SP 1H 3,453,791 HORVU1Hr1G001480 3,453,090 3,454,077 Undescribed protein

JHI-Hv50k-2016-322832 SP, GP 5H 569,308,558 HORVU5Hr1G083110 569,293,089 569,309,305 Leucine-rich repeat

receptor-like protein

kinase

BOPA2_12_11245 SP, GP, KWP 5H 579,324,077 HORVU5Hr1G087730 579,322,710 579,324,607 13S globulin seed storage

protein 2

JHI-Hv50k-2016-225852 SP, WLS 4H 371,267 HORVU4Hr1G000090 369,520 374,029 RING/U-box superfamily

protein

JHI-Hv50k-2016-410329 GP 6H 492,880,745 HORVU6Hr1G070750 492,878,969 492,884,688 E3 ubiquitin-protein ligase

makorin

JHI-Hv50k-2016-249670 GP, KWP 4H 512,990,076 HORVU4Hr1G061070 512,989,821 512,992,961 C2H2-like zinc finger

protein

JHI-Hv50k-2016-82113 KWP 2H 79,456,923 HORVU2Hr1G025510 79,452,094 79,457,099 B3 domain-containing

protein

JHI-Hv50k-2016-424341 KWP 6H 562,861,599 HORVU6Hr1G087000 562,860,368 562,867,337 Heparanase-like protein 3

JHI-Hv50k-2016-127867 KWP 2H 724,202,574 HORVU2Hr1G111780 724,201,388 724,204,020 Receptor-like protein

kinase 4

JHI-Hv50k-2016-322288 KWP 5H 568,058,046 HORVU5Hr1G082670 568,057,965 568,060,772 Undescribed protein

BOPA2_12_10968 PH 3H 34,959,733 HORVU3Hr1G015050 34,956,640 34,962,056 Enolase-phosphatase E1

JHI-Hv50k-2016-165725 PH 3H 78,242,146 HORVU3Hr1G022270 78,241,796 782,431,36 Pentatricopeptide repeat

336

BOPA1_3549-743 WLS 4H 569,760,181 HORVU4Hr1G069280 569,757,996 569,767,162 Alpha-L-fucosidase 2

JHI-Hv50k-2016-19217 WLS 1H 61,923,247 HORVU1Hr1G017900 61,919,204 61,923,605 Transcription factor PIF3

BIO, biomass; SP, spikes per plant; GP, grains per plant; KWP, kernel weight per plant; PH, plant height; WLS, waterlogging score; Ch, chromosome number.

(RING/U-box superfamily protein), and HORVU2Hr1G094030
(Ubiquitin-conjugating enzyme 3) associated with SP, GP,
and KWP regulate abiotic stress signaling pathways, such as
in waterlogging or flooding conditions (Table 7). Also, the
associated genes HORVU5Hr1G083110 (Leucine-rich repeat
receptor-like kinase family protein) and HORVU2Hr1G111780
(Receptor-like protein kinase 4) are known to be involved in
abiotic stress responses, including drought, salt, cold, toxic
metals and other stresses. The gene HORVU2Hr1G025510 (B3
domain-containing protein), associated with SP, is involved
in abiotic stress and disease resistance signaling pathways.
The gene HORVU4Hr1G061070 (C2H2 zinc finger protein)
associated with GP and KWP, participates in mechanisms of
tolerance to salinity, osmotic, cold, drought, oxidative and high-
light stress response (Table 7). The gene HORVU3Hr1G022270
(Pentatricopeptide repeat 336), associated with PH, is known
to regulate plant responses to abiotic stresses (Table 7). The
significant markers associated with WLS were located inside the
genes encoding PRR7 and RING/U-box superfamily protein,

and the genes HORVU4Hr1G069280 (Alpha-L-fucosidase 2),
involved in the response to waterlogging, drought and salinity
stresses, and HORVU1Hr1G017900 (Phytochrome-interacting
factor 3), which regulates the plant response to drought and salt
stresses (Table 7).

In the relative dataset, the significant markers JHI-Hv50k-
2016-20766 and JHI-Hv50k-2016-21022 associated with SP,
were inside the genes HORVU1Hr1G024060 (Arginine/serine-
rich splicing factor 35) and HORVU1Hr1G036060 (tRNA
pseudouridine synthase A1), respectively, that play important
roles in development and response to abiotic stresses (Table 8).
The role of the gene HORVU2Hr1G114940, encoding Cyclic
nucleotide-gated channel 8, contains significant markers
associated with KWP and is known to play a crucial role in
pathways related to cellular ion homeostasis, development,
and defense against biotic and abiotic stresses. The gene
HORVU7Hr1G022410, encoding RNA-binding protein mde7,
was associated with PH and has functional roles during
growth, development, and abiotic stress responses in plants
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TABLE 8 | Summary of potential candidate genes that contain significant markers associated with the assessed traits identified in the relative dataset.

Marker Trait Ch Marker

position (bp)

Gene ID Start (bp) End (bp) Gene description

JHI-Hv50k-2016-20766 SP 1H 107,293,686 HORVU1Hr1G024060 107,289,291 107,295,231 Arginine/serine-rich splicing

factor 35

JHI-Hv50k-2016-20908 SP 1H 187,645,763 HORVU1Hr1G031370 187,632,592 187,656,006 tRNA pseudouridine synthase

A1

JHI-Hv50k-2016-21022 SP 1H 241,516,420 HORVU1Hr1G036060 241,482,945 241,524,027 Cationic amino acid

transporter 2

JHI-Hv50k-2016-22269 SP 1H 296,548,971 HORVU1Hr1G041530 296,548,421 296,553,191 Predicted protein

JHI-Hv50k-2016-22575 SP 1H 303,086,870 HORVU1Hr1G041960 303,085,891 303,088,081 Unknown function

JHI-Hv50k-2016-312394 SP 5H 532,344,110 HORVU5Hr1G071230 532,343,847 532,345,355 Unknown function

JHI-Hv50k-2016-332745 SP 5H 591,637,898 HORVU5Hr1G093390 591,633,650 591,639,220 Solute carrier family 22

member 1

JHI-Hv50k-2016-336773 SP 5H 600,914,687 HORVU5Hr1G096320 600,914,511 600,916,443 UDP-Glycosyltransferase

superfamily protein

JHI-Hv50k-2016-132004 KWP 2H 733,399,550 HORVU2Hr1G114940 733,394,545 733,400,877 Cyclic nucleotide gated

channel 8

JHI-Hv50k-2016-457680 PH 7H 32,776,909 HORVU7Hr1G022410 32,775,788 32,780,170 RNA-binding protein mde7

JHI-Hv50k-2016-19217 WLS 1H 61,923,247 HORVU1Hr1G017900 61,919,204 61,923,605 Transcription factor PIF3

BOPA2_12_30872 WLS 2H 29,124,597 HORVU2Hr1G013400 29,123,724 29,127,894 Pseudo-response regulator 7

JHI-Hv50k-2016-225850 WLS 4H 370,915 HORVU4Hr1G000090 369,520 374,029 RING/U-box superfamily

protein

BOPA1_3549-743 WLS 4H 569,760,181 HORVU4Hr1G069280 569,757,996 569,767,162 Alpha-L-fucosidase 2

SP, spikes per plant; KWP, kernel weight per plant; PH, plant height; WLS, waterlogging score; Ch, chromosome number.

(Table 8). Additionally, the genes HORVU5Hr1G093390 and
HORVU5Hr1G096320 were harboring markers associated
with SP and were also identified in the control dataset
harboring markers associated with PH, BIO, and KWP.
The genes HORVU1Hr1G017900, HORVU4Hr1G000090, and
HORVU4Hr1G069280 were harboring markers associated
with WLS and also were identified in the waterlogging
dataset associated with the same trait. Finally, the gene
HORVU2Hr1G013400, encoding PRR7, contained markers
associated with WLS in the waterlogging treatment and relative
datasets, and BIO in the control dataset (Tables 6–8).

DISCUSSION

Waterlogging is becoming one of the challenging issues for
modern agriculture globally. The development of tolerant
cultivars with enhanced resilience to waterlogging stress has
increasing importance to reduce the yield penalty. In this study,
GWAS was performed based on linkage disequilibrium on a
worldwide spring barley collection using control, waterlogging
treatment and relative datasets for identifying QTL associated
with yield-related traits and waterlogging tolerance.

Diverse Phenotypic Variation and
Waterlogging Tolerant Barley Genotypes
In the present study, the barley collection assembled showed
significant phenotypic variation, as well as highly genotypic
differences, for all traits after waterlogging stress treatment,
including BIO, SP, GP, KWP, PH, and WLS, except CABC and

CCC. These results suggest that there is a good potential that
these genotypes can be used to mine alleles for waterlogging
tolerance for introgression into breeding barley lines for
waterlogging tolerance improvement. Waterlogging stress
considerably reduced BIO, SP, GP, KWP, PH, CABC, and CCC
for all genotypes in response to waterlogging stress as expected,
and it is consistent with earlier studies (Li et al., 2008; Xue et al.,
2010). Significant negative correlations were found betweenWLS
and all other traits.

The barley genotype Deder2 from Ethiopia showed a
tolerant response to waterlogging stress, while the response
of the genotypes Yerong from Australia, TR 587 and CDC
Select from Canada, Champion, Xena, and TR 987 from the
USA, and Harumaki Rokkakumugi from North Corea, was
more moderate. Some of these barley genotypes (e.g., Deder2,
Harumaki Rokkakumugi, and Yerong) were previously reported
(Takeda, 1989; Li et al., 2008) to be tolerant to waterlogging stress
while the others, which are modern cultivars (Canadian Food
Inspection Agency, 2021; Washington State Crop Improvement
Association, 2021; Westland Seed, 2021) and elite breeding
lines, were not reported before and might represent novel
sources of tolerance.

Genome-Wide Association Study Analysis
The GWAS is a powerful approach to locate common alleles
associated with phenotypes with much higher resolution than
linkage mapping because they reflect historical recombination
events in broad-based diversity panels (Nordborg and Weigel,
2008). In this study, three statistical models were compared to
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assess their ability to map QTL and identify SNPs associated
with waterlogging tolerance. Finally, we selected the MLM +

Q + K approach, which accounts for both population structure
(STRUCTURE analyses) and K matrix, because of its statistical
power to control false-positives associations, which has been
used successfully in barley (Pasam et al., 2012; Fan et al., 2016;
Jabbari et al., 2018) and maize (Yu et al., 2006). Population
structure and familial relatedness can result in false positives in
GWAS. Therefore, when GWAS is conducted, these parameters
need to be considered in the model. In the present study, the
level of the genetic structure of the panel was assessed by the
NJ tree, PCA, and STRUCTURE analyses and all showed that
the investigated genotypes are structured into three principal
groups. This provided additional confidence given that most
of the barley population structure studies use only two of
these methods, STRUCTURE and PCA, to confirm their results
(Varshney et al., 2012; Long et al., 2013; Fan et al., 2016; Zhou
et al., 2016; Bengtsson et al., 2017; Jabbari et al., 2018; Thabet
et al., 2018; Milner et al., 2019; Mwando et al., 2020; Ye et al.,
2020). Moreover, the LD decay value identified (1.46 Mbp at
r2 = 0.1) suggested that the marker coverage is adequate for
further GWAS analysis. A wide range of levels of LD decay,
2–10 cM, was reported by previous studies of worldwide barley
collections (Comadran et al., 2009; Zhang et al., 2009; Pasam
et al., 2012; Varshney et al., 2012; Long et al., 2013; Zhou et al.,
2016). Comparison to any of these studies is hard to be made
due to several factors such as size and diversity of the germplasm
used, type and number of molecular markers, and measurement
unit. Recently, Mwando et al. (2020) reported a LD decay of 3.5
Mbp (r2 = 0.2) in 350 barley accessions using 24,138 DArTseq
and SNP markers. While this time the measurement unit is
the same (Mbp) the results are not directly comparable to our
study either, mainly due to the different germplasm assessed.
Nevertheless, the work conducted by Mwando et al. (2020)
demonstrated successful association mapping was achieved with
a lower number of molecular markers (24,138 vs. 35,926) than
used in our study.

The overall GWAS was able to identify significant QTL in all
control, waterlogging treatment and relative datasets for six (BIO,
SP, GP, KWP, PH, and WLS) out of the eight traits measured.
No significant QTL were detected for CABC and CCC in the
tested conditions. Chlorophyll is one of the major chloroplast
components for photosynthesis, and relative chlorophyll content
has a positive relationship with photosynthetic rate (Guo
et al., 2008). An earlier study reported the identification of
QTL for chlorophyll fluorescence in barley under low oxygen
concentration in hydroponics to simulate waterlogging but not
for chlorophyll content or chlorophyll (Bertholdsson et al., 2015).

Identification of Known
Waterlogging-Related QTL by GWAS
So far, several QTL mapping studies have been conducted using
linkage mapping analysis in barley and many QTL associated
with waterlogging tolerance have been successfully mapped using
bi-parental linkage mapping based on various waterlogging
related traits (Li et al., 2008; Xue et al., 2010; Zhou, 2011;
Xu et al., 2012; Zhou et al., 2012; Bertholdsson et al., 2015;
Broughton et al., 2015; Zhang et al., 2016; Gill et al., 2017,

2019; Zhang X. et al., 2017). These studies used DH populations
from bi-parental crosses of contrasting phenotype parents for
waterlogging. Direct comparisons of our GWAS findings with
those studies are intricate, as the marker-trait linkages and
chromosomal locations we identified were based on a worldwide
barley collection not previously investigated for waterlogging
traits. Moreover, different genotyping technologies and different
linkage maps have been used in some of the previous studies, so
the comparison is approximated. In general, our GWA mapping
was highly consistent with those previous waterlogging tolerance
QTL mapping studies conducted in bi-parental populations, and
many QTL were identified for the same or related traits at similar
positions, which confirmed the importance of the loci identified
in the present study.

Some of the waterlogging-related QTLs detected in the
waterlogging treatment dataset in our study are positioned
closer to previously identified waterlogging stress-related QTLs
for similar traits (Xue et al., 2010; Xu et al., 2012; Broughton
et al., 2015; Ma et al., 2015). SP trait was associated with
genomic regions related to the markers JHI-Hv50k-2016-3532
(at 3 Mbp on 1H), JHI-Hv50k-2016-109151 (at 662 Mbp on
2H) and JHI-Hv50k-2016-161633 (at 32 Mbp on 3H) were also
associated with the related traits shoot fresh weight (QHSFW.1H)
and tiller number (QHTiller.3H ) in the Franklin x YYXT
mapping population (Broughton et al., 2015), and grains per
spike (GSw1.1 and GSw1.2) in Franklin x Yerong mapping
population (Xue et al., 2010). The marker JHI-Hv50k-2016-3532
was also associated with the QTL for salinity and waterlogging
tolerance (QSlww.YG.1H-1) in a DH population of Gairdner
× YSM1 (Ma et al., 2015). The marker JHI-Hv50k-2016-
109151 was also closely positioned near the QTL tfsur-1 which
is associated with plant survival in the TX9425 × Franklin
mapping population (Li et al., 2008). One of the genomic
regions associated with KWP, related to the marker JHI-Hv50k-
2016-127867 located at 724 Mbp on 2H was coincident with
the previous identified QTL (SLw2.2) for spike length in the
Franklin x Yerong population (Xue et al., 2010). Zhou (2011)
also reported two QTL (QWL.YeFr.2H.2 and WL5.3) associated
with waterlogging tolerance score, which is positioned near the
marker JHI-Hv50k-2016-127867. WLS trait was associated with
BOPA2_12_30872 located at 29 Mbp on 2H. This genomic
region was previously detected in two different populations,
TX9425 x Naso Nijo (Xu et al., 2012) and YSM1 x Gairdner
(Ma et al., 2015), for the same trait. Additionally, in our study
BIO was also associated with the same marker that was located
on the genomic region 29.1–29.7 Mbp on chromosome 2H.
Interestingly, in our study, this same region was also associated
with the traits GP, KWP, and PH (JHI-Hv50k-2016-73570
and JHI-Hv50k-2016-73689).

Other waterlogging-related QTL detected in our study were
identified in previous waterlogging stress studies but associated
with different traits (Li et al., 2008; Xue et al., 2010; Zhou, 2011;
Xu et al., 2012; Zhou et al., 2012; Broughton et al., 2015; Ma et al.,
2015; Gill et al., 2017). For example, the traits SP, GP and KWP
were associated with the genomic region 568.0–569.3 Mbp on 5H
that was coincident for the QTL yfsur-2 for plant survival under
waterlogging in the DH population of Yerong × Franklin (Li
et al., 2008).
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In our study, we identified five QTL in the relative dataset
that were positioned closer to previously identified waterlogging
stress-related QTLs for similar traits (Xu et al., 2012; Broughton
et al., 2015; Ma et al., 2015). SP was associated with four QTL,
QSP.1H-2, QSP.1H-3, QSP.1H-4, and QSP.1H-5, that were also
associated with the related trait shoot dry weight (QHSDW.1H)
in the Franklin x YYXT mapping population (Broughton et al.,
2015). The QTL QWLS.4H-2 was associated with WLS and
was also present in the waterlogging treatment dataset. Other
waterlogging tolerance-related QTL detected in our study were
identified in previous waterlogging stress studies but associated
with different traits (Xue et al., 2010; Zhou, 2011; Xu et al., 2012;
Broughton et al., 2015; Ma et al., 2015).

Identification of Novel
Waterlogging-Related QTL by GWAS
Among the 37 QTL detected under waterlogging treatment
conditions, 13 QTL were detected on genomic regions where
no waterlogging-related QTL have been previously reported in
barley. These 13 QTL located in 10 different genomic regions,
probably represents novel loci for waterlogging stress. Two
significant associated markers, JHI-Hv50k-2016-68186 and JHI-
Hv50k-2016-68266, were identified on 2H at 16 Mbp. The first
marker was associated with the trait KWP and the second
with SP. On chromosome 4H at 0.37, 512, 569, and 645
Mbp, four markers, JHI-Hv50k-2016-225852, JHI-Hv50k-2016-
249670, BOPA1_3549-743, and JHI-Hv50k-2016-276624, were
identified. The first marker was associated with SP and WLS, the
second marker with GP and KWP, the third marker with WLS
and the last marker with SP. On chromosome 6H at 492, 554, and
562 Mbp, three markers, JHI-Hv50k-2016-410329, JHI-Hv50k-
2016-421359, and JHI-Hv50k-2016-424341, were associated with
GP, WLS, and KWP, respectively. The marker JHI-Hv50k-2016-
449124 was associated with GP and KWP on 7H at 13 Mbp.

In the relative dataset, six QTL (QPH.2H-1, QSP.1H-1,
QSP.5H-1, QWLS.4H-1, QWLS.4H-2, and QWLS.6H) out of 20
were detected on genomic regions that have not been reported in
previous waterlogging-related QTL studies on barley conducted
using bi-parental populations and they probably represent novel
loci for waterlogging tolerance. SP was associated with the
markers JHI-Hv50k-2016-20766 and JHI-Hv50k-2016-312394,
located on chromosome 1H at 107 Mbp and 5H at 532 Mbp,
respectively. The marker BOPA2_12_30631 was associated with
PH on 2H at 18 Mbp. For WLS, three markers were found to
be associated, JHI-Hv50k-2016-225850 and BOPA1_3549-743,
located on 4H at 0.37 and 569Mbp, respectively, and JHI-Hv50k-
2016-421359 on 6H at 554 Mbp. The genomic regions at 0.37
and 569 Mbp on 4H and 554 Mbp on 6H were co-localized
in waterlogging treatment and relative datasets, associated with
WLS. Interestingly, QWLS.4H-2 is positioned relatively close to
the QTL for aerenchyma formation (QTL-aerenchyma) and root
porosity (QTL-rp4H) (Zhang et al., 2016).

Waterlogging-Related Candidate Genes
In the present study, 92 markers significantly associated with
yield-related traits were identified in control conditions, which
were located along 28 QTL regions on chromosomes 2H, 3H,
5H, 6H, and 7H; 63 significant markers were identified under

waterlogging treatment conditions and mapped along 24 QTL
regions on all chromosomes in the barley genome; while 51
significant markers located in 17 QTL regions distributed along
chromosomes 1H, 2H, 4H, 5H, 6H, and 7H were identified
in the relative data set. Among those QTL, we detected
possible candidate genes that were associated with the measured
traits under the different growing conditions, i.e., control,
waterlogging treatment, and the relative difference between these
two conditions.

Genes affected by waterlogging stress and involved in the
tolerance of barley to this stress are most valuable in waterlogging
breeding programs to develop and improve the efficiency of
waterlogging-tolerant barley varieties. In our study, most of
the potential candidate genes containing significant markers
under waterlogging treatment conditions were detected on 2H
and 4H associated with BIO, GP and PH. However, for the
relative dataset, chromosome 1H contained most of the potential
candidate genes, followed by 2H, 4H, and 5H. Four QTL that
appears to harbor genes associated with abiotic stress tolerance
were detected on both waterlogging treatment and relative
datasets to be associated with WLS. The most significant two are
QWLS.2H, harboring the gene PRR7 (HORVU2Hr1G013400)
on 2H at 29.1 Mbp, is potentially similar to the reported QTL
for membrane potential QMP.TxNn.2H (Gill et al., 2017); and
the novel QWLS.4H-2, harboring the gene Alpha-L-fucosidase
2 (HORVU4Hr1G069280) on 4H at 569.7 Mbp, that is closely
located to the reported QTL for aerenchyma formation (Zhang
et al., 2016). PRR7 has a central role in the abiotic stress response
and influences the regulation of flowering time and ABA-related
processes, including control of genes affecting salinity, cold and
oxidative stress response (Liu et al., 2013). This gene harbored
the BOPA2_12_30872 marker that was also associated with BIO
under waterlogging stress conditions. Alpha-L-fucosidase 2 is
known to be involved in the breakdown of cell wall polymers and
was previously reported to be upregulated in tolerant genotypes
of maize, sesame, and chickpea in response to waterlogging,
drought and salinity stresses, respectively (Thirunavukkarasu
et al., 2013; Dossa et al., 2017; Kaashyap et al., 2018). These results
indicated the reliability of the QTL in this study. The other two
genes were detected on 1H and 4H. The Transcription factor
PIF3 on QWLS.1H regulates the plant response to drought and
salt stresses in maize (Gao et al., 2015) and plays a positive role
in submergence-induced hypocotyl elongation in Arabidopsis
(Wang et al., 2020). RING/U-box superfamily protein on the
novel QWLS.4H-1 is involved in the ubiquitination reaction, a
crucial mechanism that regulates signal transduction in diverse
biological processes, including abiotic stress signaling pathways,
such as in waterlogging or flooding conditions (Voesenek and
Bailey-Serres, 2015; Loreti et al., 2016). This strong ubiquitin
response is a robust indicator of changing physiological situation,
by repurposing proteins through proteolysis. Additionally, the
novel QWLS.6H detected only in waterlogging stress conditions
harbored Receptor kinase 2 that belongs to the largest group
within the receptor-like kinase (RLK) superfamily in plants and
had been reported as having a main role in developmental
processes, signaling networks and disease resistance. Many RLKs
are involved in abiotic stress responses, including drought, salt,
cold, toxic metals and other stresses (reviewed in Ye et al., 2017).
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For example, a hypersensitive response was observed in response
to salt and heat stress in Arabidopsis (Park et al., 2014). The
homolog of the gene HORVU5Hr1G071230, harboring QSP.5H-
1 on 5H at 532 Mbp, in Arabidopsis it is characterized as a cell
wall integrity/stress response component.

Additionally, in our previous study, an RNA-Sequencing
analysis was conducted to explore the mechanisms involved in
the responses of two barley genotypes with tolerant, Deder2, and
moderately-tolerant, Yerong, responses to waterlogging stress
(Borrego-Benjumea et al., 2020). One of the top highly expressed
differentially expressed genes (logFC ≥ ±4 and adjusted P <

0.05) in the roots of waterlogged Deder2 and Yerong, was the
upregulated gene Trichome birefringence-like 19 (8.47 logFC)
which is very close to the marker JHI-Hv50k-2016-276624.
This marker in the current study is associated with SP in the
waterlogging treatment conditions. The underlying function of
this gene is the ubiquitous modification of cell wall polymers
by acetylation and is known to play a structural role in plant
growth and microorganism and environmental stresses defenses
(Nafisi et al., 2015), such as salinity and cold (Anantharaman and
Aravind, 2010). The marker JHI-Hv50k-2016-249670, associated
with GP and KWP in the waterlogging treatment conditions, is in
the surroundings of the upregulated gene encoding the protein
very-long-chain3-oxoacyl-CoA reductase 1 (5.26 logFC). This
protein is required for the elongation of fatty acids precursors of
sphingolipids, triacylglycerols, cuticular waxes and suberin, and
play a role in the stress adaptation in rice. The downregulated
gene Copalyl diphosphate synthase 2 (−7.34 logFC) is located
very close to the marker JHI-Hv50k-2016-322288 associated
with KWP in the waterlogging treatment conditions. This gene
responds to arsenic detoxification in rice and it is involved
in the plant adaptive responses to arsenic stress (Singh et al.,
2017). The marker JHI-Hv50k-2016-3532, associated with SP
in the waterlogging treatment conditions, is positioned in the
surroundings of the downregulated gene encoding the protein
Dirigent protein 21 (−4.76 logFC). This protein is involved in the
defense response against salt and drought stress of pepper (Khan
et al., 2018).

Further analysis is necessary to validate the associated
candidate genes. However, this study represents the starting
point of the discovery of candidate genes associated with
waterlogging tolerance as well as the development of useful gene-
based functional markers for barley breeding to speed up the
development of waterlogging tolerant barley cultivars.

CONCLUSION

GWAS based on high-density SNP markers represents a
powerful approach for dissecting complex quantitative traits.
In this study, 247 worldwide spring barley genotypes were
evaluated for yield components-related traits under control
and waterlogging treatment conditions in the field, as well
as the relative difference between these two conditions, and
were genotyped using Barley 50K iSelect SNP Array. GWAS
analysis showed that a total of 92, 63, and 51 markers were
significantly associated with BIO, SP, GP, KWP, PH, and

WLS traits in the control, waterlogging treatment, and relative
datasets, respectively. Seventeen significant associations and
eight potential candidate genes were detected for the relative
dataset. Also, six novel QTL (QPH.2H-1, QSP.1H-1, QSP.5H-
1, QWLS.4H-1, QWLS.4H-2, and QWLS.6H) were detected
on genomic regions that have not been reported in previous
waterlogging-related QTL studies on barley and they probably
represent novel loci for waterlogging tolerance. These findings
provide useful information for waterlogging tolerance in barley
by marker-assisted selection in the future. For further research, it
will be necessary the validation of the associated candidate genes
and the development of markers based on associated SNPs.
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Genomic selection (GS) is becoming an essential tool in breeding programs due to its

role in increasing genetic gain per unit time. The design of the training set (TRS) in GS is

one of the key steps in the implementation of GS in plant and animal breeding programs

mainly because (i) TRS optimization is critical for the efficiency and effectiveness of GS,

(ii) breeders test genotypes in multi-year and multi-location trials to select the best-

performing ones. In this framework, TRS optimization can help to decrease the number of

genotypes to be tested and, therefore, reduce phenotyping cost and time, and (iii) we can

obtain better prediction accuracies from optimally selected TRS than an arbitrary TRS.

Here, we concentrate the efforts on reviewing the lessons learned from TRS optimization

studies and their impact on crop breeding and discuss important features for the success

of TRS optimization under different scenarios. In this article, we review the lessons learned

from training population optimization in plants and the major challenges associated with

the optimization of GS including population size, the relationship between training and

test set (TS), update of TRS, and the use of different packages and algorithms for TRS

implementation in GS. Finally, we describe general guidelines to improving the rate of

genetic improvement bymaximizing the use of the TRS optimization in the GS framework.

Keywords: training set optimization, genomic selection, genome-wide markers, statistical design, sparse

phenotyping, genomic prediction, mixed models

1. INTRODUCTION

The rate of genetic gain in plant breeding must be enhanced to meet the demand of humanity for
agricultural products in the next few decades (Xu et al., 2020). Tools, such as genomic assisted
breeding (GAB), that improve the understanding of structural and functional aspects of plant
genomes are key in modern breeding methods. GAB can be defined as the set of breeding tools
(next-generation sequencing, omics information, and statistics) that study whole genomes by
integrating multiple disciplines with new technology from informatics and robotic systems to
improve selection and mating in plant breeding programs (Varshney et al., 2005, 2021). In GAB,
other tools such as genetic transformation and genome editing are currently playing a key role
to select better-adapted genotypes while pursuing faster genetic gains (Zhang et al., 2018). One
of the emergent methodologies within GAB that have revolutionized plant and animal breeding
is genomic selection (GS). GS is considered the most promising tool for genetic improvement of
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the complex traits controlled by many genes, each with
minor effects because (i) GS can increase the rates of
genetic gain through increased accuracy of estimated breeding
values (Heffner et al., 2009), (ii) significantly shorter breeding
cycles (Crossa et al., 2017), and (iii) the better utilization
of available genetic resources through genome-guided mate
selection (Akdemir and Sánchez, 2016).

Breeders test candidate genotypes in multi-year and
multi-location trials to select superior genotypes with high
performance. This approach limits the number of variety
candidates to be tested, and it is the main cause of the fact that
plant breeding programs are time and cost-intensive. A breeding
tool that combines the power of GS and the potential of an
extensive collection of germplasm, assisted by new technologies,
will offer promise in crop breeding to contribute to global food
security (Xu et al., 2020) because it can accelerate the generation
interval by reducing the generation time in plant breeding
programs (Falconer and Mackay, 1996).

Bernardo (1994) was the first who proposed the use of
genomic information as covariates for predicting untested
genotypes but it Meuwissen et al. (2001) who came through with
a newmethodology to deal with the challenge of fitting prediction
models when the number of genomic covariates (markers, p) is
larger than the number of data points (n). Since then, simulations
and empirical studies have demonstrated that GS could greatly
accelerate the breeding cycle (Heffner et al., 2009), maintain
genetic diversity within the breeding programs, and increase
genetic gain beyond what is possible with phenotypic selection
or quantitative trait loci (QTL) mapping approaches (Crossa
et al., 2017). Genomic selection is a breeding tool that uses
supervised machine learning approach with a training set (TRS)
to predict genomic estimated breeding values (GEBVs) of an
un-phenotyped test set (TS). (Isidro et al., 2016) of genotypes.
The prediction of GEBVs involves a whole-genome regression
model in which the known phenotypes are regressed on the
markers. The GS models are trained on data that consists of
both phenotypic and genome-wide markers data that is used to
estimate marker (or lines) effects de los Campos et al. (2013). The
combination of the marker effect estimates and the marker data
from the TS is used to calculate GEBVs for the TS. The selection
of individuals is based on the GEBVs as the selection criterion.
The performance of the GS model is determined by calculating
the correlation between GEBVs (genomic predictions) and the
unknown true breeding value. As the true breeding values are
never known, the available phenotypic records in the TRS are
used by cross-validation values to evaluate GS. This is called
prediction ability and should not be confused with prediction
accuracy. The latter provides an estimate of the genotypic
correlation and is estimated as the prediction ability divided by
the square root of the heritability for the trait being predicted
(Dekkers, 2007; Lee et al., 2008; Lorenzana and Bernardo, 2009;
Riedelsheimer et al., 2012). Enhancing GS accuracy is very
important for the success of GS breeding programs since the
expected genetic gain from GS is directly proportional to the
accuracy of GS models (Crossa et al., 2010; de los Campos et al.,
2013).

There are many factors affecting the accuracy in GS by
interacting in a complex network relationship (Zhong et al.,
2009; Isidro et al., 2016; Liu et al., 2018; Zhang et al., 2019).
Within these factors, there is one that is key to the accuracy of
the prediction models in GS, and it is the design of the TRS
since the predictability of a model is critical for the success
of GS. In this study, the aim is to shed some light on the
different TRS optimization criteria by covering the fundamentals
of TRS optimization and its uses in GS, including selection
strategies for long-term gains. We focus on reviewing the TRS
methods from the literature that can be used as tools for
designing a TRS and constructed an example to compare the TRS
optimization strategies.

2. POPULATIONS IN GS

Genomic selection requires training of statistical models on
available genotypic and phenotypic data from a TRS to make
predictions about new genotypes. The selection of TRS involves
different populations (Figure 1):

1. A calibration set (CS): is the group of genotypes available for
the breeders from which the TRS is selected. If the individuals
in this CS are phenotyped and genotyped, the populations
for GS will be CS (TRS) and TS, and in theory, no need for
optimization of the TRS (branch a in Figure 1). Nevertheless,
a subset of the CS might be preferable, i.e., if very distant
individuals (Lorenz and Smith, 2015) are present, to include or
exclude extreme phenotypes (Lopez-Cruz and de Los Campos,
2021), or to remove irrelevant individuals (Brandariz and
Bernardo, 2018). If only genotypic information is available
and just a subset of them can be used for phenotyping due
to budget restrictions, then a TRS will be carefully identified
from the CS (branch b in Figure 1).

2. Training set (TRS): is where the prediction equation will be
built. The TRS individuals present genotypic and phenotypic
information. Under budget constraints, the aim is to select
the minimum number of genotypes to phenotype, but that
will assure an optimal accuracy on the TS population. The
selection of the best genotypes to select from the CS to create
the TRS is called optimization of the TRS. In TRS, the true
response values are known (phenotypes). In this study, we
used both the genotype and phenotype information from the
TRS to obtain a prediction equation, which predicts the effect
of each marker (or line) on the trait.

3. Remaining set population (RS): is the remaining genotypes
in the CS that are used in the process of optimization. It
could be also reserved for evaluating the performance of the
statistical model before making predictions if the phenotypic
information is available.

4. Test or Target set (TS): is the set of genotypes to predict. Only
genotypic information is available in this population.

Therefore, the different populations in GS depend on whether
or not the phenotypic information is available within the
CS. Figure 1 shows the distinction between the two major
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FIGURE 1 | Populations in genomic selection (GS). CS, calibration set, TRS,

training set, RS, remaining set, and TS is the test set. When CS has all the

phenotypic and genotypic information, CS and TRS are the same populations.

Otherwise, we could have up to four different populations in the GS scheme.

There are two different types of TRS selection problems: in one of these (a),

the CS is already phenotyped and genotyped, and a subset of the CS is used

as a TRS in the modeling stage. In the other (b), the CS is only genotyped and

a TRS is constructed by phenotyping a subset of the CS.

groups of TRS optimization methods found in the literature.
The first group of methods addresses the situation where the
phenotypic information is already available in the CS (Neyhart
et al., 2017; Brandariz and Bernardo, 2018; Lopez-Cruz and
de Los Campos, 2021). They aim to use only a part of the CS
when building a GS model excluding irrelevant genotypic and
phenotypic information. For instance, constructing a TRS from
only the individuals with high or low values of the phenotypes
(Neyhart et al., 2017; Brandariz and Bernardo, 2018), or the
more recently proposed sparse modeling approach Lopez-Cruz
and de Los Campos (2021). The second group of methods,
which is the main focus of discussion in this study, assumes
that the phenotypic information is not available in the CS,
and will be obtained after selecting a TRS. In this case, the
resources of the breeding program are limited and just a subset
of the individuals can be phenotype. In this situation, the TRS
must be carefully built within the CS through an optimization
process, and distinguish four different populations (CS, TRS,
RS, and TS; Figure 1). In both groups of methods, the model
validation is usually accomplished by cross-validation within the
TRS (Heffner et al., 2009; Luan et al., 2009).

In general, within the TRS optimization framework, when the
objective is to select a TRS to predict the remaining individuals
from the same population we talk about Un-targeted TRS.
Likewise, when a TS is first defined and genotyped, and then
the TRS is optimized specifically around the TS then we define
a targeted TRS. It is important to note, that not all optimization
criteria are sensitive to this distinction, (i.e., refer next section,
PAM, A-OPT, D-OPT), nevertheless, when it is so, this is reflected
in how the optimization criteria are calculated (Lorenz and
Smith, 2015; Akdemir and Isidro-Sánchez, 2019).

In addition, when there is heterogeneity within the
environment such as row/column effects in the field, the
optimal TRS of the phenotypic experiment involves not only the
selection of the TRS but also the placement of genotypes in the
environment (Heslot and Feoktistov, 2020). The experimental
design might need blocking structure and environmental
covariates and in these cases, the order in which the individuals
are positioned in the environment will be important. We refer
to this kind of optimization as the "ordered" optimization as
opposed to the “unordered” optimization (Akdemir et al., 2021).

3. DESIGN OPTIMIZATION CRITERIA

The TRS optimization process is an optimal experimental design
problem, and many aspects of GS implementation captured
the attention of statisticians in the past (Smith, 1918; Kiefer,
1959; Fisher, 1960; Fedorov, 1972; Atkinson and Donev, 1992;
Pukelsheim and Rosenberger, 1993; Fedorov and Hackl, 2012;
Silvey, 2013). The design of the concept of the experiment should
be more used to plan experimental designs in plant breeding
programs and perform sets of well-selected optimization TRS to
get the most informative combination out of the given factors.

The most common design optimization criteria method is
indisputably the classical simple random or stratified sampling,
mainly because of its simplicity and generality (Gentle, 2006), but
also because of the difficulty to sample more efficiently when the
number of candidate solutions is large. We classified the different
design optimization criteria in to three major groups.

• Parametric design criteria are based on the assumption that
the experimenter has specified a model before collecting
the training data. These criteria usually depend on a scalar
function of the information matrix for the model parameters
which indicates the sampling variances and covariances of
the estimated parameters or inferences of the model made
from these models such as predictions for new individuals.
Many popular designs such as the A−,D−, E− criteria (Kiefer
et al., 1985) are derived using a linear model as the underlying
model. A linear model is a regression model where a response
variable is modeled as a linear function of features that are
functions of the explanatory variables plus some residual error:

y = Xβ + ǫ

where y is the n dimensional vector for independent
realizations of the response variable, X is the n × p design
matrix for the corresponding explanatory variables and X is
the n × q feature matrix, ǫ is the n dimensional vector of
independent residual terms which we assume to have mean
zero and fixed variance σ

2
e and finally, β is the q dimensional

vector of regression coefficients. The least-squares estimator
for the regression coefficients is given by β̂ = (X′X)−1X′y

and for this estimator of the coefficients we can write the
variance-covariance matrix as

Cov(β̂) = σ
2
ǫ
((X′X)−1).

Now, suppose we have a certain design we want to evaluate
which is expressed in a specific design matrix XTRS. Since
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FIGURE 2 | Diagram of the matrix of the coefficient of determination (CD) criterion in the TRS optimization for unordered and ordered experiments for the un-targeted

case. We assume that we have n genotypes in the candidate set, nTRS genotypes are selected to the TRS. In this case, the n× n kinship matrix is used to calculate the

n× n CD matrix for a given TRS, then the mean CD is calculated based on certain diagonals that correspond to TRS or remaining set (RS). The optimization algorithm

is used to find the best TRS. When provided with a design matrix that has heterogeneous rows, then we are also looking for a design in addition to the selection of a

TRS. In this case, both the kinship matrix and the nTRS × q environmental covariates matrix are used to calculate the n× n CD matrix for a given TRS, then the mean

CD is calculated based on certain diagonals that correspond to TRS or RS. The optimization algorithm is used to find the best TRS and best design with this TRS.

we can write the covariance of the estimated coefficients
as (X′

TRSXTRS)
−1 up to a proportionality constant (which

is the same for all other possible designs), we can use a
function of this matrix to compare it with other designs. In
general, a scalar function of this matrix is used to order the
different designs. D-optimality criterion, for instance, can be
expressed as |(X′

TRSXTRS)|, and designs with higher values
are considered better. A-optimality criterion is expressed as
trace

[
(XTRS)

′XTRS)
−1

]
, and designs with lower values are

considered better.
Some other criteria such as CDmean, PEVmean, (Laloë,

1993; Rincent et al., 2012; Isidro et al., 2015) rely on a mixed
model as the underlying model: In the linear mixed-effects
model of interest, the observations are assumed to result from
a hierarchical linear model:

y = Eβenv + Zu+ ǫ

with E is the n × p design matrix for the environmental
covariates, βenv is the p vector of the effects of the
environmental covariates, Z is the n×N design matrix for the
N genotypes in the candidate set, ǫ ∼ Nn(0,R) is independent
of u ∼ Nq(0;G). When using this mixed model in genomic
prediction for a single environment, we use G = σ

2
k
K and

R = σ
2
e I, where K is the relationship matrix of the genotypes

(CS and if available the TS). When we use this mixed model
with a multi-environmental genomic prediction, we assume
G = Vk ⊗ K and R = Ve ⊗ I.

For this model, the CD matrix of û for predicting u is given
by

(GZ′PZG)⊘ G

where P = V−1 − V−1E(E′V−1E)−1E′V−1 is the projection
matrix and⊘ expresses the element-wise division. Usually, the

mean of certain diagonal elements of the CD matrix is used
to measure the quality of a sample. For instance, in a targeted
design, the mean of the diagonal elements that correspond to
the TS genotypes are used. When the design is un-targeted, we
can use the mean over the diagonals that correspond to the
remaining set. Another approach involves the calculation of
the CDmatrix for a given set of contrasts then taking the mean
of the diagonals of this matrix (Rincent et al., 2012, 2017).
In Figures 2–4, we diagrammatically illustrate the different
populations, input matrices, the different parts of the CD
matrix, and the process of optimization.

• Non-parametric designs criteria are model-free, i.e., they do
not rely on models we intend to use with the resulting
data. Some nonparametric designs are based on distance or
similarity measures and aim to spread the TRS over the design
space (space-filling design). Different measures or metrics
quantify how a set of points is spread out. Some examples are:
(i) partition around medoids (PAM) where the objective is to
find a sequence of objects called medoids that are centrally
located in clusters for a given distance measure, (ii) the
maximin criteria are such that the minimum distance among
the TRS is maximized, (iii) the minimax design (Johnson
et al., 1990) where the TRS is such that the maximum of the
minimum distances from the TRS to the rest of the CS or the
TS is minimized, (iv) the Latin hypercube sampling divides the
design region evenly into cubes and ensuring that the sample
contains just one point in each such segment and aims at
ensuring that each of the scalar inputs has the whole of its
range well scanned, according to a probability distribution,
and (v) the minimum spanning tree (MST) (Dussert et al.,
1986). An MST is a tree that connects all the candidate design
points and whose total edge lengths are minimal. Once a
spanning tree of the candidate points is built, the mean and SD
of edge lengths can be calculated. The spanning trees with the
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FIGURE 3 | Diagram of the matrix of the CD criterion in the TRS optimization for unordered and ordered experiments for the targeted case. We assume that we have

nTS genotypes in the TS, n− nTS genotypes in the CS, nTRS genotypes are selected to the TRS from the CS. In this case, the n× n kinship matrix is used to calculate

the n× n CD matrix for a given TRS, then the mean CD is calculated based on certain diagonals that correspond to TS. The optimization algorithm is used to find the

best TRS. When provided with a design matrix that has heterogeneous rows, then we are also looking for a design in addition to the selection of a TRS. In this case,

both the kinship matrix and the nTRS × q environmental covariates matrix are used to calculate the n× n CD matrix for a given TRS, then the mean CD is calculated

based on diagonals that correspond to TS. The optimization algorithm is used to find the best TRS and best design with this TRS.

FIGURE 4 | Diagram of the matrix of the CD criterion in the TRS optimization for unordered and ordered experiments for the targeted case in a multi-environmental

phenotypic experiment. We assume that we have n genotypes, nts of them are in the target set (TS), the remaining of in the candidate set, nTRS1 genotypes are

selected to the TRS in environment 1, nTRS2 genotypes are selected to the TRS in environment 2. Two environments are assumed to have a positive genetic

covariance, and this is expressed in Vk . The residual genetic covariance expressed in VE is diagonal, meaning that errors are uncorrelated between the two

environments. These covariance matrices along with the genomic relationship matrix and if provided environmental covariates matrices for the environments are used

to calculate the CD matrix (2n× 2n) for a given design. The mean of the diagonals of this matrix that correspond to the TS is used as a criterion for evaluating different

designs. The optimization algorithm tries to find the design that maximizes this criterion.

smallest mean are called minimal and among them, the ones
with high variance are preferred. A TRS from an MST can be
obtained by recursively pruning out, from the candidate set,
the candidate points on the leaves of the MST with small edge
lengths (Guo et al., 2019).

Non-parametric designs such as space-filling designs are
well suited to the initial exploration objective. They can be
used to select a smaller candidate set from a bigger candidate

set to reduce the computational complexity of optimizing
parametric design criteria.

• Multiple design criteria. Multiple models optimal
experimental design criteria try to overcome the choice
issue by combining more than one criteria into one via some
type of averaging on multiple-objective optimization methods
(Pukelsheim, 1993; Akdemir and Sánchez, 2016). In this
approach, the Pareto front approach is used to evaluate several

Frontiers in Plant Science | www.frontiersin.org 5 September 2021 | Volume 12 | Article 71591062

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/plant-science#articles


Isidro y Sánchez and Akdemir Training Optimization for Genomic Selection

criteria. The Pareto front is a set of non-dominated designs,
i.e., as compared to the design points on the frontier, no other
design point can be found that does not degrade at least one
of these criteria values (as shown in Figure 5).

Many GS experiments will be performed in several environments
and then the TRS optimization aims to find subsets of genotypes
from the candidate set to be tested in each of the environments
and perhaps the corresponding designs within some of these
environments to address the heterogeneity within environments.
The use of CD for this situation is illustrated in a diagram in
Figure 4.

4. TRS OPTIMIZATION FOR SPARSE
PHENOTYPING

The most important current bottleneck in plant breeding
programs is the phenotypic evaluation (Crossa et al., 2017).
Although genotyping is still costly, next-generation sequencing
has decreased genotyping cost more than 100K folds in the last 20
years (National Human Genome Research Institute, 2020), and
therefore, phenotyping needs to be optimized within a breeding
program. The use of GS in breeding programs is potentially
costly without the careful design of populations. When designing
the implementation of the GS scheme into the breeding cycle,
breeders need to focus first on several aspects: (i) to generate
a specific breeding database for GS, (ii) to choose the filial
generation to start GS, and (iii) to select the TRS to start GS
modeling (Albrecht et al., 2011; Clark et al., 2012). The design
of the TRS, also called optimization of the TRS, is the breeding
process that uses the information from these aspects to create a
TRS to start the GS process.

Training set optimization consists of choosing (within a
panel of candidates) a set of training individuals that will better
predict un-phenotyped germplasm in a TS. TRS optimization
has attracted notable interest in the breeding community
for several reasons (Table 1). First, the fact that predictions
are based on markers or line effects calculated on the TRS
raises the question of how to select the TRS to increase the
efficiency and effectiveness of GS. Second, currently, the high
cost of phenotyping makes the phenotype information the
most important constraint in plant breeding programs. Better
allocation of resources within plant breeding programs by
observing a small size but representative TRS would reduce
phenotypic cost and increase the quality of the phenotypic data
by focusing on more expensive traits with more sophisticated
instruments, or increasing complementary measurements of
the same traits (sparse or selective phenotyping). Third, the
traditional optimization process based on random sampling as
a strategy to create the TRS does not always lead to an increase in
predictive ability due to the under or over-representation of the
genetic information in the TRS. The TRS optimization aims to
enhance the process of sparse phenotyping, to reduce the cost of
phenotyping while maintaining high prediction accuracymodels.

Two important aspects within the TRS optimization are the
fact that the TRS is a dynamic populations that must be updated

through the breeding cycle program, and also that the TS needs
to be into account when building the TRS (Akdemir et al., 2015).

The design of the TRS was initially started in animal breeding
(Habier et al., 2007, 2010; Clark et al., 2012; Pszczola et al.,
2012). These studies and others in plants (Windhausen et al.,
2012; Wientjes et al., 2013) were focused on the importance
of the relatives for the makeup of the TRS and on how
to update the TRS to improve genomic prediction across
generations. They highlighted how the TRS should be composed
in terms of resemblance between TRS and TS, but they did not
perform any optimization process, TRS was selected randomly.
A random sampling of genotypes from a CS is a risky procedure
because could lead to low-quality coverage of the total genetic
space especially when the CS contains population structure
(Windhausen et al., 2012; Isidro et al., 2015; Bustos-Korts et al.,
2016). In the last decade, many studies (Table 1) examined the
importance of optimization of the TRS by comparing specific
selection criteria to random sampling.

The first study highlighting the importance of using statistical
approaches to develop an optimal TRS was shown by Rincent
et al. (2012) (Table 1). In this study, the objective was to define
which individuals from a calibration (candidate) set are the
optimal ones to predict a selection (TS) candidates. The idea
was to use a criterion that could minimize genetic similarity
within the TRS, because of the more similar the individuals
within the TRS, the more duplication of the alleles, and therefore,
more redundancy. Based on concepts from the mixed model
equations introduced by Laloë (1993), Rincent et al. (2012)
introduced criteria that aimed to maximize the reliability CD,
the square correlation between GEBVs and true breeding values
or minimized the prediction error variance (PEV) on the CS.
In this study, they used a generalized version of CD and
PEV (the contrast between breeding values). They showed that
the optimization criteria improved prediction accuracy when
comparing with random sampling. Rincent et al. (2012) have
shown that mean of the coefficient of determination (CDmean)
captured more genetic variability when building the TRS than
mean of the prediction error variance (PEVmean) and that
an optimized set of 100 lines achieved on average the same
prediction accuracy as a set of 200 lines selected at random.

Isidro et al. (2015) proposed stratified sampling and stratified
CD as alternative algorithms to improve the optimization of TRS
under population structure effects. The optimization of the TRS
based on genomic relationships resulted in higher prediction
accuracies when compared with random sampling. In this study,
they concluded that the optimization of the TRS depended on
the interaction of trait architecture and population structure
and on the ability of the algorithm to capture phenotypic
variance. In the same year, Akdemir et al. (2015) derived a
computationally efficient approximation to the PEV based on
principal components of the genotypes as a criterion for TRS
design that showed less computational burden than previous
criteria. These studies were the first ones that open the door to
other strategies to optimize the TRS. Bustos-Korts et al. (2016)
proposed a TRS construction method that uniformly sampled
the genetic space comprised by the target population (TS) of
genotypes, although, the results were similar to CDmean.
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FIGURE 5 | Pareto front for minimizing the mean genomic distance of TRS genotypes to the TS genotypes (i.e., maximizing the negative of this quantity), and

maximizing the mean genomic distance among the TRS genotypes. The figure represents a toy example where a sample of size 10 is selected from 23 candidate

genotypes to predict 7 TS genotypes (the total number of different solutions is 23 choose 10 which is more than a million). Target genotypes along with selected TRS

and the remaining sets are displayed in the genotypic space represented by the first two principal components of the marker matrix. With different symbols and colors,

we indicate the optimal CD TRS’s for targeted and un-targeted cases, D-optimal TRS, and the TRS selected by PAM. The red dots are the TRS that are on the Pareto

front, i.e., no other TRS will be better than any of these for both criteria (non-dominated solutions). All the brown dots are dominated by the same two criteria. We get

the most diverse set when the mean genetic distance in the TRS is maximal. We get a TRS closest to the TS when we minimize the mean genetic distance (maximize

the negative) of TRS to TS. All of the parametric design criteria and PAM are dominated. Among those, CDmean targeted gives a TRS that is close to the TS. The

remaining optimal TRS’s are genetically diverse. The most genetically diverse set among the optimization criteria is the CDmean calculated for all genotypes in CS.
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TABLE 1 | Key relevant scientific studies on training set (TRS) optimization.

Study CDmean PEVmean Clustering Other criteria Package

Rincent et al. (2012) ✗ ✗ – – Own code

Isidro et al. (2015) ✗ ✗ ✗ – Own code

Akdemir et al. (2015) ✗ ✗ ✗ – STPGA

Lorenz and Smith (2015) – – – Levels of TRS relationship Own code

Bustos-Korts et al. (2016) ✗ – ✗ Uniform Sampling Own code

He et al. (2016) – – – Random –

Rincent et al. (2017) ✗ – ✗ CDpop and Crit_Kin Own code

Neyhart et al. (2017) ✗ ✗ – Top and bottom proportion Own code

Cericola et al. (2017) – – – Random sampling Own code

Momen and Morota (2018) ✗ ✗ Additive and Non-additive Own code

Norman et al. (2018) – – ✗ Random Own code

Akdemir and Isidro-Sánchez (2019) ✗ ✗ – D and A-OPT STPGA

Ou and Liao (2019) ✗ ✗ ✗ r-score TSDFGS

Mangin et al. (2019) ✗ ✗ – EthAcc Own code

Guo et al. (2019) ✗ ✗ PAM FURS STPGA

de Bem Oliveira et al. (2020) – – – Random, Family Random Own code

Adeyemo et al. (2020) – – ✗ – Own code

Mendonça and Fritsche-Neto (2020) – ✗ – STPGA

Olatoye et al. (2020) ✗ – – Random Own code

Roth et al. (2020) – ✗ Maximum and Mean relationship STPGA

Sarinelli et al. (2019) – ✗ ✗ – Own code

Tayeh et al. (2015) ✗ – – – Own code

Atanda et al. (2021) ✗ – – Avg_GRM Own code

Yu et al. (2020) – – – Upper Bound reliability Own code

Ben-Sadoun et al. (2020) ✗ – – CDmean-multi Own code

Heslot and Feoktistov (2020) – – PEVridge Own code

Akdemir et al. (2021) ✗ ✗ ✗ – TrainSel

Kadam et al. (2021) ✗ ✗ – – STPGA

CDmean, Mean of the coefficient of determination; PEVmean, Mean of the predictor error variance. A cross in the cell indicates that the criterion has been used for TRS optimization.

Criteria different than CD, PEV, and Clustering are shown in the column Other Criteria. The software using R is specified in the Package column.

Other studies also stressed the importance of considering an
other way to construct the TRS by random sampling (Lorenz
and Smith, 2015; He et al., 2016; Cericola et al., 2017; Neyhart
et al., 2017; Norman et al., 2018; de Bem Oliveira et al., 2020;
Olatoye et al., 2020), clustering approaches (Akdemir et al.,
2015; Isidro et al., 2015; Bustos-Korts et al., 2016; Rincent
et al., 2017; Norman et al., 2018; Guo et al., 2019; Sarinelli
et al., 2019; Adeyemo et al., 2020), by using different levels of
relatedness between TRS and TS (Lorenz and Smith, 2015; Berro
et al., 2019; Roth et al., 2020) or by using other alternatives
algorithms to CD-mean and PEV-mean such as different design
matrix algorithm (Akdemir and Isidro-Sánchez, 2019), estimated
theoretical accuracy (EthAcc) (Mangin et al., 2019), upper bound
reliability (Yu et al., 2020), or the Fast and Unique Representative
Subset Selection (FURS) (Guo et al., 2014). A criterion that is
derived directly from Pearson’s correlation between GEBVs and
phenotypic values of the TS derived from the GBLUP model
showed higher predictive ability than CD and PEV (Ou and
Liao, 2019). Most aforementioned approaches above, do not
use information from the TS while building the TRS, which is
detrimental for prediction accuracy (Lorenz and Smith, 2015;

Akdemir and Isidro-Sánchez, 2019; Ou and Liao, 2019). The
main reason for the decrease in accuracies is because the most
informative TRS to predict the TS is the one where individuals
are more closely related to the TS. This is because when pairs of
individuals are closely related, they tend to inherit QTL blocks
in the same linkage phase (Andreescu et al., 2007; Habier et al.,
2010). This is especially critical when there is low marker density
coverage because the assumption in GS of getting at least one
marker in QTL with the trait of interest will not be perfectly met.
The genetic relatedness between TRS and TS was addressed by
Lorenz and Smith (2015), Rincent et al. (2017), and Akdemir
and Isidro-Sánchez (2019). Recently, Atanda et al. (2021) used
the average genomic relationship (AvgGRM in Table 1) between
a specific line in the TRS and all lines in the TS, and they
statistically significant increase in the accuracies when compared
with CD in some bi-parental populations. Nevertheless, this
approach as in Rincent et al. (2017) did not consider the possible
alleles duplication within the TRS.

Training optimization selection also has been used for pre-
breeding discovery. Tanaka and Iwata (2018) proposed a strategy
that used genomic prediction in pre-breeding for discovering
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the best genotypes from a large number of candidates. They
demonstrated by simulation that their Bayesian optimization
could reduce the number of phenotyped accessions needed to
find the best accession among a large number of candidates. Their
strategy was based on predict uncertainty of the prediction rather
than based only on high predicted values. Following this strategy,
Tsai et al. (2021) used an augmented expected improvement for
sequential phenotyping to identify the best individual from the
CS. It is important to note that these studies are not focusing on
building a TRS for GP, but on identifying the best candidate to
be used for commercial or mating purposes. These approaches
could be used when phenotyping is very expensive and not
very time-consuming.

In the area of hybrid breeding, the optimization of the TRS
is even more critical than in other breeding systems, since the
selection of superior F1 hybrids (single crosses between fully
inbred lines) implies developing first inbred lines and then
identifying the best hybrid combinations between them. To
facilitate this process, breeders typically split germplasm into
complementary heterotic groups and select lines within each
group for their ability to produce good hybrids when crossed
to lines from a complementary group. The fullest assessment of
single-cross performances would be a complete factorial mating
design achieved by making all possible single crosses. However,
the high number of lines to be evaluated per heterotic group
makes this approach prohibitive (i.e., for 1,000 lines in each
heterotic group, there would be 1 million possible crosses).
Genomic models have been applied to hybrid prediction mainly
in maize (Bernardo, 1994; Schrag et al., 2009; Technow et al.,
2014; Kadam et al., 2016; Marulanda et al., 2016; Fristche-Neto
et al., 2018; Seye et al., 2020), and wheat (Zhao et al., 2013, 2014,
2015; Longin et al., 2015; Marulanda et al., 2016; Schulthess et al.,
2017), and less in other species such as rye (Wang et al., 2014)
or sunflower (Reif et al., 2013; Mangin et al., 2017; Dimitrijevic
and Horn, 2018; Heslot and Feoktistov, 2020). These studies have
emphasized the interest in using TRS optimization compared to
the traditional crossing designs.

In general, most of the TRS studies have used model-based
parametric criteria (CDmean, PEVmean, and r-score), followed
by non-parametric (i.e., PAM, FURS), and just a few studies used
their own criteria (i.e., AvgGRM, U score) (Table 1). All these
studies show that there is not a universal criterion to create a TRS.
It will mainly depend on linkage disequilibrium between markers
on TRS vs. TS, the relationship between TRS and TS (Habier
et al., 2007; Goddard, 2009), the genetic architecture of the trait
(McClellan et al., 2007; Jannink, 2010; Burstin et al., 2015), trait
heritability (Hayes et al., 2009), and population structure effects
(Isidro et al., 2015; Rincent et al., 2017).

To shed some light on the different TRS optimization criteria,
we constructed a toy example where we compared several
design criteria (CD, PAM, D-OPT, and r.score) with each other
(Figure 5). In this example, there were 30 genotypes in total,
seven of these genotypes were selected as the TS. The remaining
23 genotypes were used as the CS. We set the TRS size to 10,
giving 23 choose 10 (1144066) different TRS possibilities. For
each of these designs, we calculated the value of the mean genetic
distance among the TRS (DistTRS), and the negative of the mean

genomic distance from TRS to the TS (DistTS). In the Figure,
the red dots are the TRS that are on the Pareto front, i.e., no
other TRS will be better than any of these for both criteria (non-
dominated solutions). Balancing the DistTRS and DistTS in the
Pareto front gives you different TRS. For instance, when we
minimize the mean genetic distance (maximize the negative) of
TRS to TS, we obtained a TRS closest to the TS (top left graph).
We get the most diverse TRS when the DistTRS in the TRS is
maximal (bottom right graph). If you balance both distances,
then we get a TRS where there is a trade-off between DistTRS
and DistTS. The remaining TRS on the same plot is dominated
with respect to the same two criteria. A TRS is dominated if
we can find another TRS that improves at least one of these
criteria without deteriorating the other criterion value. All of the
design criteria and PAM are dominated with respect to DistTRS
and DistTS. Among those, CDmean targeted gives a TRS that is
close to the TS, where CDmean calculated over the candidate set
(CDMEAN-Cand) comes very close to the most diverse design.
The contours of the density of DistTRS and DistTS over 1144066
different TRS possibilities show that a random design on average
would be dominated by all of the optimal samples and would fall
far away from the Pareto frontier. It is important to understand
the different trade-offs involved in choosing a good TRS since
this will help the experimenter to choose a suitable TRS or a TRS
selection criterion among the alternatives.

Breeding programs usually deal CS’s with 1,000’s or 10,000’s
of genotypes. Although direct enumeration of all the possible
TRS’s is not possible in these cases, multi-objective optimization
techniques can be utilized to approximate the frontier curves and
single-objective optimization tools can be used to find optimal
TRS’s according to several single criteria. Then a plot similar
to the one presented in Figure 5 can be produced to evaluate
the trade-offs among different designs. When the number of
genotypes in the CS is so large that computationally intensive
methods are prohibitive, we recommend using a less intensive
method such as PAM or stratified sampling (Isidro et al., 2015;
Guo et al., 2019), or one of the space-filling designs to reduce
the number of CS to a manageable size ahead of comprehensive
analysis. A practical overview of the statistical analysis needed to
optimize the TRS using R and issues associated with the analysis
have been addressed along with the R code in the study by Isidro y
Sánchez et al. (2022). In addition, extra information can be found
in the extensive vignette (https://github.com/TheRocinante-lab/
TrainSel/blob/main/inst/TrainSelUsage.pdf).

5. SOFTWARE TOOLS FOR TRS
OPTIMIZATION

While the practical use of TRS optimization in GS is supported
by the literature, as shown above, the number of software tools
for implementation is limited. As far as we are concerned, just
three software have been developed and available for public use.
The package STPGA Akdemir (2017) is an R package that uses
a modified GA for solving subset selection problems but also
allows users to chose from many predefined or user-defined
criteria. Similarly, the package TSDFGS Ou and Liao (2019) is
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an R package that focuses on optimization of the TRS by a
genetic algorithm (GA) and can be used for TRS optimization
based on three built-in design criteria [CDscore, PEVscore, and
Pearson correlation (r-score)]. Recently, Akdemir et al. (2021)
designed a new package called TrainSel to provide many more
options than previous software. For example, TrainSel can select
multiple sets from multiple candidate sets, users can specify
whether or not the resulting set needs to be ordered, or the power
to perform multi-objective optimization. In addition, TrainSel
can be used for searching for solutions to a variety of TRS and
experimental design problems, such as randomized complete
block design, and lattice design, etc. Furthermore, it can be
also used in combinatorial optimization problems for supervised
and also unsupervised learning. The strength of TrainSel is that
it combines TRS optimization with a particular experimental
design, which has not been implemented in both of the above
alternatives by Akdemir et al. (2021).

6. GENERAL GUIDELINES FOR A GOOD
TRS

In this study, we highlight some of the guidelines learned from
the literature when building an optimal TRS:

• When building the first TRS is key to keep, within the
TRS, the historical germplasm used to generate the breeding
populations. This will allow capturing the allelic diversity
within the breeding program.

• The larger the TRS size the better predictions (Daetwyler
et al., 2008; Zhong et al., 2009), since most characters are
quantitative with a large number of loci and a very small effect
size. The number of loci affecting quantitative characters likely
ranges from 2,000 to 4,000 (MacLeod et al., 2016). Although
adding genetically distant individuals might decrease accuracy
(Lorenz and Smith, 2015), this is not a general rule. In
addition, large TRS are needed to capture rare alleles at
high frequencies to obtain a reliable estimate of their effects
(MacLeod et al., 2016), even for highly quantitative traits if
the rare allele is present in the sequencing or the genotyping
is done from coding and regulatory regions.

• Markers can capture genetic relationships among genotypes,
thereby affecting the accuracies of GEBVs (Habier et al.,
2007). Therefore, a genetic relationship between TRS and
TS is needed to obtain high accuracies. In general, a TRS
should maximize the relationship with the TS (Albrecht et al.,
2011; Pszczola et al., 2012; Akdemir and Isidro-Sánchez,
2019), but should minimize the relationship within the TRS
(Clark et al., 2011; Lorenz, 2013; Bustos-Korts et al., 2016;
Pszczola and Calus, 2016). That is to say, if TRS and TS
come from different populations or breeding generations, a
drop in accuracy is expected. The main reasons for the drop
in accuracy are because LD between markers and QTL, or
that QTL allele frequencies and/or effects can differ among
populations (Hayes et al., 2009; Wientjes et al., 2015, 2017).
The difference in allele frequencies between TRS and TS
can affect prediction accuracy because allele frequencies can

affect the estimated genomic relationshipmatrix when GBLUP
models are implemented.

• The TRS must be updated with new genotyped and
phenotyped individuals to assure the accuracy of GEBVs,
is maintained over generations. Otherwise, recombination
events will decrease LD between markers and QTL (Auinger
et al., 2016). As phenotypes are the current bottleneck in plant
breeding programs, the quality of the phenotypes is critical to
the TRS optimization.

• The design of the TRS highly depends on the TS population.
For example, if your TS is highly diverse, your TRS must be
built to capture that diversity, otherwise, a significant drop
in accuracy might occur. That is why targeted optimization
approaches are chosen when building TRS (Akdemir and
Isidro-Sánchez, 2019; Akdemir et al., 2021). From Figure 5

we can observe that we get a TRS closest to the TS when we
minimize the mean genetic distance (maximize the negative)
of TRS to TS. Among the different TRS selection criteria,
CDmean targeted gives a TRS that is close to the TS. The
remaining optimal TRS’s are genetically diverse but the most
genetically diverse set among the optimization criteria is the
CDmean calculated for all genotypes in CS. This type of
evaluation of different design criteria together along with a
frontier curve should shed some light on the selection of a
particular TRS.

• If certain QTL with large effects for traits of interest exists,
then these QTL can be givenmore influence while selecting the
TRS. This could be done, for example in the mixed modeling
framework by using the QTL as fixed effects (Spindel et al.,
2016). In the non-parametric approach, more weights can be
given when calculating the genetic distance matrix.

• In general, optimization criteria from mixed model theory
(CDmean, PEVmean) performs better than random sampling
under most scenarios, except for scenarios with a large
population structure where these criteria might not be optimal
(Isidro et al., 2015).

7. PERSPECTIVES FOR TRS
OPTIMIZATION

Genomic selection is an emergent methodology that
revolutionized plant and animal breeding, by using a statistical
framework that uses genome-wide markers to predict breeding
values for key breeding traits. In this framework, one critical
step is how to select the best individuals to train the statistical
models. As shown above, there has been quite a great research
in this area, but there are still some questions to be answered.
Following the literature, there is no “best” strategy to optimize
the TRS, and therefore, a comparison between algorithms
focusing on the different factors affecting the TRS on different
populations would be helpful to answers some questions
regarding TRS optimization.

We envision a substantial benefit applying TRS optimization
methods to hybrid prediction, and also sparse testing in multi-
environment, and multi-trait experiments (Jarquín et al., 2014;
Akdemir et al., 2021; Crossa et al., 2021). For instance, in hybrid
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prediction, TRS are traditionally constructed by methods such
as top crosses, North Caroline design, etc. It has been shown
that the TRS optimization methods improve hybrid prediction
accuracies when comparing with the traditional design methods
(Zhao et al., 2015, 2021; Fristche-Neto et al., 2018; Heslot and
Feoktistov, 2020; Yu et al., 2020; Technow et al., 2021).

It is also expected that TRS selection methods will be used
more commonly in multi-environmental phenotypic experiment
design (Montesinos-López et al., 2019; McGowan et al., 2020)
as more flexible and powerful tools such as the package R
TrainSel becomes available for researchers. The use of genomic
information in designing these experiments shifts the attention
from replication of individuals to replication and representation
of alleles in different environments.

In addition, more studies using haplotypes rather than
just markers are needed, since accuracies are greater if TRS
and TS share long-range haplotypes (Akdemir et al., 2015;
Meuwissen et al., 2016; Scott et al., 2021). The decrease of whole
genomic sequencing is allowing us to develop pan-genomes
studies of many crops, which will allow us to switch from
SNPs to longer more important haplotypes in the design of
TRS populations. The development of haplotype-informed DNA
markers will enable the selection of new haplotype combinations,
which will increase the opportunity to attain optimized genetic
combinations for improved performance and disrupt linkage
drag (Varshney et al., 2021).

An unresolved issue in TRS optimization is the determination
of the size of TRS. The size of TRS is usually dictated by
the budget for the experiment, however, a breeder might need
guidance for selecting a TRS size to avoid redundancy of
individuals. For example, even though a breeder might have the
resources to do 20 individuals, the breeder should know what is
the optimal size to experiment. The optimal size of the TRS can
be obtained from the multi-objective optimization framework
Akdemir et al. (2019). The solutions on the Pareto front of an
optimization problem Markowitz (1968), where one or more
design criteria along with the TRS size are optimized, will provide
the experimenter with a scenery of the optimal design space at
each sample size. The usual methods of selecting a solution on a
frontier can guide the determination of the TRS size.

Finally, a comparison of criteria with different populations,
different genetic architectures, heritability values, and

relationships among TRS and TS is needed, especially to
evaluate if some previous claims in the TRS optimization area
are true under the same population scenarios.
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The goal of a plant breeding program is to develop new cultivars of a crop kind with

improved yield and quality for a target region and end-use. Improved yield across

locations and years means better adaptation to the climatic, soil, and management

conditions in the target region. Improved or maintained quality renders and adds

value to the improved yield. Both yield and quality must be considered simultaneously,

which constitutes the greatest challenge to successful cultivar development. Cultivar

development consists of two stages: the development of a promising breeding

population and the selection of the best genotypes out of it. A complete breeder’s

equation was presented to cover both stages, which consists of three key parameters

for a trait of interest: the population mean (µ), the population variability (σG), and the

achieved heritability (h2 or H), under the multi-location, multi-year framework. Population

development is to maximize µσG and progeny selection is to improve H. Approaches

to improve H include identifying and utilizing repeatable genotype by environment

interaction (GE) through mega-environment analysis, accommodating unrepeatable GE

through adequate testing, and reducing experimental error via replication and spatial

analysis. Related concepts and procedures were critically reviewed, including GGE

(genotypic main effect plus genotype by environment interaction) biplot analysis, GGE

+ GGL (genotypic main effect plus genotype by location interaction) biplot analysis, LG

(location-grouping) biplot analysis, stability analysis, spatial analysis, adequate testing,

and optimum replication. Selection on multiple traits includes independent culling

and index selection, for the latter GYT (genotype by yield∗trait) biplot analysis was

recommended. Genomic selection may provide an alternative and potentially more

effective approach in all these aspects. Efforts were made to organize and comment

on these concepts and procedures in a systematic manner.

Keywords: heritability, genotype by environment interaction, optimum testing, optimum replication, multi-trait

selection, biplot analysis, mega-environment analysis, breeder’s equation
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INTRODUCTION

Plant breeding plays a key role in meeting the human needs
for more food, nutrition, and fiber under a changing climate.
The goal of a plant breeding program is to develop new
cultivars of a crop kind with improved yield and quality for
its target region and end-use. All theories, concepts, processes,
procedures, and analyses related to plant breeding are developed
and implemented around this goal. A target region is the target
population of environments, which is the sum of soil, climatic,
biotic, and abiotic conditions plus common management
practices that are likely to be encountered in the region. Improved
yield means improved adaptation to the target region, which
is reflected in improved mean performance and stability of
performance across locations and years in the target region.
Improved quality means improved adaptation to the end-uses
that bring value and income to the growers in the target region.
Both the target environments and the target end-usesmay change
over time, in a predictable or unpredictable manner. Yield is the
result from integrating numerous traits including various yield
components, agronomic traits, disease resistances, and tolerance
to various abiotic stresses characteristic of the target region.
Consequently, yield in different regions may mean different ways
of packaging these traits and underlying gene alleles. Likewise,
quality is a collective term of many parameters for a specific
end-use. Thus, dealing with many traits simultaneously is an
essential task of cultivar development, although most breeding-
related publications deal with only a single trait, typically yield.
The relation between yield and other traits is analogous to that
between the skin and the hair of a fur or that between the
trunk and the branches of a tree; other traits gain importance
only when attached to (i.e., combined with) high yield (Yan
and Frégeau-Reid, 2008; Yan et al., 2019a). Plant breeding is
a mature discipline of applied sciences, with well-developed
concepts and procedures. Nevertheless, a systematic combing
and narration of the numerous, sometimes confusing, concepts
and procedures should help both new and experienced breeders
in their work toward developing superior cultivars. The concepts
and procedures in plant breeding are indeedmuch easier to tackle
for a single trait. So, much of the discussion will be on a single
trait while keep in mind that multi-trait selection is essential to
cultivar development, which is discussed in the last section. In
addition, genomic selection (Goddard and Hayes, 2007; Heffner
et al., 2009; Jannink et al., 2010) has become a growing point
or integral part in most plant breeding programs. Its role will
be briefly mentioned when the various concepts and procedures
are discussed.

THE COMPLETE BREEDER’S EQUATION

The cultivar development process includes two stages: the
development of a promising breeding population and
the identification of the best progeny out of it. Breeding
success can be measured by the following equation, referred
to as the Complete Breeder’s Equation (modified from
Yan et al., 2019b),

B = (µ + ihσG)/(YC
)
, (1)

in comparison with the well-known Breeder’s Equation of
Eberhart (1970),

1G = ihσG/Y. (2)

Here B stands for breeding success per unit time and cost and
1G stands for selection gain over the population mean per unit
time, for a trait of interest (typically yield). µ is the mean of
the breeding population, σG is the square root of the genotypic
variance of the population, i is the selection intensity in the
unit of σG, h is the square root of achieved heritability (h2 or
H), Y is the length of the breeding cycle in years, and C is the
operation cost per year. µ , σG and h are to be estimated from
environments representing the target region. A target region may
consist of multiple mega-environments, as will be discussed later.
For the time being the target region is assumed to be a single
mega-environment. A mega-environment is defined as a group
of environments that share the same best cultivar(s) (Gauch and
Zobel, 1997; Yan et al., 2000).

Relative to Equation 2, Equation 1 emphasizes the importance
of population mean in cultivar development and serves as a
reminder that any selection progress is on the basis of the
population mean. The inclusion of C emphasizes that cultivar
development is an enterprise that must consider the cost for the
achieved genetic gain.

Cultivar development consists of two stages: population
development and progeny selection. Practical breeders would
agree that developing a promising breeding population, i.e.,
making a promising cross or crosses, is the crucial first step
toward cultivar development. A promising breeding population
is the basis for any meaningful selection effort. This point may
be implied in Eberhart (1970) and by later researchers (e.g.,
Cobb et al., 2019; Rutkoski, 2019) when discussing the Breeder’s
Equation but its importance to cultivar development can never
be overemphasized, thus implicitly indicated in Equation 1. The
potential of a breeding population for cultivar development,
shorted as population potential (P), depends on both the
population mean (µ) and the population variability (σG):

P =
√

µσG. (3)

Apparently, if there is no genetic variability, there would be no
selection progress; if the population mean is low, it is unlikely
to lead to any superior cultivars regardless of selection strategies.
Practical plant breeders are well aware of the importance of
the population mean. They cross best with best and look for
recombinants better than both parents (Duvick, 1996). A high µ

is usually achieved by using currently the most popular, usually
the highest yielding, cultivars as parent(s), while a high level
of σG is achieved by choosing parents that are different and
complementary in yield components, agronomic traits, disease
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resistances, and quality traits, and by use of a large enough
breeding population. Crossing an adapted local cultivar with a
geographically distant cultivar with desired traits led to some of
the most important wheat cultivars in China (Zhao et al., 1981).
In the era of genomic selection, µ and σG and therefore P can
be predicted for any pair or set of potential parents for a trait
of interest if reliable genomic models are available (Wang et al.,
2018).

Usually, the genetic variability in a breeding population is
created by crossing different parents, but it can also be created
through induced mutations by treating a superior cultivar with
γ radiation, chemical mutagen treatment, transposons, genetic
transformation, or gene editing (e.g., van Harten, 1998; Kharkwal
et al., 2004; Shu et al., 2012).

To maximize µσG may suggest that µ and σG are equally
important. In cultivar development, however, µ may be more
important than σG although both are essential. The use of
backcross, recurrent selection, and crosses between closely
related breeding lines (e.g., Rasmusson and Phillips, 1997) are
examples to ensure a high µ at the expense of σG. On the
contrary, wide crosses (e.g., Baum et al., 1992) can bring much
variability to the population at the expense of reduced population
mean. Wide crosses are essential to introduce novel genes and
traits from wild species (e.g., Ma et al., 2018; numerous research
done worldwide for various crops), which are crucial to long-
term crop improvement; however, they are unlikely to directly
lead to superior cultivars.

SELECTION GAIN, SELECTION
EFFICIENCY, SELECTION INTENSITY,
CULLING RATE, AND HERITABILITY

Equation 2 or the second part Equation 1 consists of factors
determining the selection gain and is known as the Breeder’s
Equation. It may be more accurately referred as the breeder’s
equation for progeny selection. Here σG is fixed for a given
breeding population, i is a parameter artificially set, and h is
the square root of achieved heritability. In fact, while i is the
artificially set selection intensity, ih is the realized selection
intensity. Cobb et al. (2019) discussed approaches to improving
breeding efficiency in the framework of Equation 2, with the
emphasis on reducing Y . Rutkoski (2019) reviewed the basis and
approaches to achieve genetic gain.

Equation 1 can be better understood from Figure 1. Assume
that the breeding population is normally distributed with a mean
µ and a variability σG. The X-axis is the range of the phenotypic
values and the Y-axis is the frequency density. The area under the
curve is unity (1 or 100%).With a selection intensity ih, genotypes
to be culled lie on the left side of the vertical line defined by
x = µ + ihσG, and genotypes to be retained lie on the right
side of the line. The area α is the proportion of the population
to be retained and 1 − α is proportion to be culled. α is also
the probability for ihσG < 0, while 1 − α is the probability for
ihσG > 0. In other words, α is the probability for a genotype
with a phenotypic value of µ + ihσG to be no better than the
population mean.

FIGURE 1 | A chart of normal distribution to show the relationships among

various parameters in the Complete Breeder’s Equation. µ is the mean of the

breeding population; σG is the square root of the genotypic variance of the

population; i is the artificially set selection intensity in the unit of σG; h is the

square root of achieved heritability (h2 or H); α is the portion of the population

to be selected; it is also the probability that the best genotypes are not

included in the selected portion.

An extended interpretation is that α is the risk that the
best genotype in the population is not retained at the selection
intensity ih. Apparently, the risk is reduced as ih is increased
while h is the only objective variable. If h = 0, then ih = 0, and
α = 50%. As h approaches unity, α approaches 0. This provides
a clue for the choice of i. According to the normal distribution
table, if α is set to 0.0001, then z = ih = 3.7. Therefore, it
is rational to set i = 3.7 at α = 0.0001. The relationships
between heritability, ih, and α at i = 3.7 for some selected
heritability values are listed in Table 1, assuming a population
size of n = 10, 000.

If α is interpreted as the percentage of the population that
must be retained to ensure that the best genotype(s) is included,
then the number of genotypes must be selected, N, will be:

N = nα, (4)

where n is the effective population size, i.e., the number of unique
genotypes in the breeding population. The inverse of N may be
defined as the rate of selection success (Yan et al., 2019b):

S = 1/N. (5)

For example, for n = 10, 000, H = 0.9, and i = 3.7, we
have α = 0.02% and N = 2 (Table 1). That is, for a population
of 10,000 unique genotypes, an achieved heritability of 0.9 would
guarantee that the best genotype is between the top two. A
smaller N means less time (in years) and cost that are needed to
single out the best genotype. In the extreme case, if a selection
method (genomic prediction or any other approach) is accurate
enough to identify the best genotype (i.e., N = 1) out of a
breeding population, then all the time and cost associated with
subsequent testing would be saved. In contrast, in the Ottawa oat
breeding program, it takes about seven years of visual selection
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TABLE 1 | The realized selection intensity (z = ih), the proportion of the population to be retained (α), and the number of genotypes to be retained (N) at different levels of

heritability (H or h2) assuming a population of n = 10, 000 and a selection intensity of i=3.7.

H = h2 h z = 3.7h (1-α) α (%) N (n = 10,000) Corresponding breeding stages in Yan et al. (2019b)

0.0 0.00 0.00 0.5000 50.00 5000

0.1 0.32 1.17 0.8790 12.10 1210 Stage 3.1 (yr1)

0.2 0.45 1.65 0.9505 4.95 495

0.3 0.55 2.03 0.9788 2.12 212 Stage 3.2 (yr2)

0.4 0.63 2.34 0.9904 0.96 96

0.5 0.71 2.62 0.9959 0.41 41 Stage 4.1 (yr3)

0.6 0.77 2.87 0.9980 0.21 21 Stage 4.2 (yr4)

0.7 0.84 3.10 0.9990 0.10 10 State 4.3 (yr5)

0.8 0.89 3.31 0.9995 0.05 5 Stage 4.4 (yr6)

0.9 0.95 3.51 0.9998 0.02 2 Stage 4.5 (yr7)

1.0 1.00 3.70 0.9999 0.01 1 Cultivar release

and yield trials to identify the best genotypes out of a breeding
population (Yan et al., 2019b; last column of Table 1, this paper).
Each year ∼10,000 F2 derived breeding lines are planted in a
hill nursery and 1,000 are visually selected in the field and the
seed lab. Assuming that the best genotype is included in these
selected lines, the rate of selection success for this stage (the “Hill
Nursery” stage or Stage 3.1) is ∼1/1000, roughly corresponding

to assuming an H = 0.1 (Table 1). The 1,000 selected lines are
then planted in yield plots and ∼200 lines are visually selected

(the “Observation Plot” stage or Stage 3.2). The accumulative
rate of selection success for these two years of visual selection
is, therefore, ∼1/200, corresponding to H = 0.3 (Table 1). It

takes four to five additional years of multi-location test to single
out the best few genotypes as potential new cultivars (Stages 4.1

to 4.5 in Table 1). Experience indicates that the top genotypes

at the Stage 4.3 are usually the ones to be released as cultivars;

this corresponds to H = 0.7 (Table 1). Trials in Stages 4.4

and 4.5 (years 2 and 3 of the Registration Test) are conducted
mainly to verify the results and to obtain data required for official
variety registration.

Genomic selection applied at the Hill Nursery stage (Stage
3.1) is expected to dramatically improve the rate of selection
success so as to reduce the number of years spent in visual
selection and yield trials (Y , Equations 1 and 2). A minimum
requirement for a viable genomic selection procedure is to
improve the selection efficiency to an extent that covers
the extra cost spent in genotyping, phenotyping, and model
development. Alternatively, genomic selection is justified if it
can identify the best genotypes that may be discarded by the
breeder’s eye.

The parameter i should be set according to the population
size such that α = 1/n. This reflects the idea that a larger
population allows a higher selection intensity at the same level
of heritability and that the top genotype is the best genotype
(N = 1) when h = 1. According to the normal distribution
table, i should be set at 2.05, 2.33, 3.00, and 3.71 when
n = 50, 100, 1,000, and 10,000, respectively. The relationship
among heritability, selection intensity, and probability of false
culling (α) is displayed in Figure 2. Incidentally, Singh and

FIGURE 2 | The relationship between heritability (H or h2) and probability of

false culling (α) at four levels of selection intensity (i). It is suggested that the

probability of false culling that can be tolerated be set according to the

population size (n) such that α = 1/n; i can then be determined by α by

consulting the normal distribution table. The vertical line of H = 0.75 indicates

the target heritability to be achieved for reliable selection.

Chaudhary (1977) suggested setting i = 2.063 at α = 0.05, in line
with this idea.

Alternatively, the achieved heritability may be used as
the culling rate when the population is small; the number
of genotypes that must be retained can then be roughly
estimated by:

N = n
(
1− h2

)
. (6)

When h2 = 0, no genotype would be discarded because the
selection is completely unreliable; and when h2 = 1, all but
the top performing genotype can be discarded because any
observed difference is genetic and heritable. For example, if n
= 40 and h2 = 0.95, then 95% or 38 of the 40 entries can be
discarded and the top two performing genotypes can be selected
or recommended.
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To summarize, for a given breeding population and a given
target environment, the allowable culling rate, the allowable
selection intensity, the achievable rate of selection success,
and the expected selection gain are all determined solely by
the achieved heritability, in a curvilinear fashion (Figure 2).
Therefore, heritability is the single most important concept in
progeny selection.

HERITABILITY UNDER THE
MULTI-LOCATION, MULTI-YEAR
FRAMEWORK

Cultivars are developed to adapt to a specific target region, i.e., to
the environments that may be encountered across locations and
years in a target region. Therefore, the heritability discussed so
far must be defined in the multi-location, multi-year framework
(Comstock and Moll, 1963; DeLacy et al., 1996; Atlin et al.,
2000). According to the general linear model, a phenotype, i.e.,
an observed value, is a mixed effect of environmental main
effect (E), genotypic main effect (G), genotype by environment
interaction (GE), and experimental error (ε), where E is the
sum of location main effect (L), year main effect (Y), and their
interaction (LY). Assuming orthogonal experimental design i.e.,
the same set of genotypes are tested at the same set of locations
each year with the same number of replicates, the phenotypic

variance is σ
2
P = σ

2
G +

σ
2
GL
l

+
σ
2
GY
y +

σ
2
GLY
ly

+
σ
2
ε

lyr
. The entry-mean

heritability, i.e., the proportion of phenotypic variance that can
be explained by the genetic variance at the entry mean level, is
estimated by (Fehr, 1991; DeLacy et al., 1996):

Hrly =
σ
2
G

σ
2
P

=
σ
2
G

σ
2
G +

σ
2
GL
l

+
σ
2
GY
y +

σ
2
GLY
ly

+
σ 2

ε

rly

, (7)

where Hrly stands for heritability across l locations in y years

with r replicates; σ
2
GL, σ

2
GY , and σ

2
GLY are the variances for

the genotype by location interaction (GL), genotype by year
interaction (GY), and genotype by location by year interaction
(GLY), respectively; and σ

2
ε
is the variance for experimental error.

When trials are not conducted orthogonally regarding
genotypes, location, years, or replicates, which is usually the case,
each trial (location-year combination) may be considered as an
environment, and the heritability can be estimated by

Hrly =
σ
2
G

σ
2
G +

σ
2
GE∑y
i=1 li

+
σ 2

ε∑y
i=1

∑li
j=1 rij

, (8)

where σ
2
GE is the variance for genotype by environment

interaction. For convenience, Equation 7 will be used in
further discussions. Restricted maximum likelihood (REML)
is the preferred method for estimating the various variances,
particularly when the data are unbalanced (e.g., Gilmour et al.,
1995). REML is implemented in all software packages with a
mixed model procedure.

Heritability for a single trial can be estimated by

Hr =
σ
2
G

σ
2
G +

σ 2
ε

r

, (9)

However, Hr can be used to assess the data quality of a trial but
not for making final selections. For making section decisions,
Equation 7a below should be used instead:

Hrly =
σ
2
G

σ
2
G +

σ
2
GL
1 +

σ
2
GY
1 +

σ
2
GLY
1 +

σ 2
ε

r

. [7a]

That is, although the interaction terms cannot be estimated from
a single trial, they must be factored in when making selection
decisions. It can be seen that Hr is an inflated estimation of Hrly

for a trial because the denominator in Equation 7a should be
much larger than that in Equation 9.

Likewise, a heritability can be estimated for multi-location
trials conducted in a year,

Hrl =
σ
2
G

σ
2
G +

σ
2
GL
l

+
σ 2

ε

rl

, (10)

but it is not to be used to make final selection decisions. Instead,
equation 7b should be used,

Hrly =
σ
2
G

σ
2
G +

σ
2
GL
l

+
σ
2
GY
1 +

σ
2
GLY
l

+
σ 2

ε

rl

. [7b]

Hrl is an inflated estimation of Hrly for a single-year test. The
definition of heritability in the form of Equation 7 is the only
valid definition to be used in Equation 1; Figure 1, and Table 1,
with h =

√
Hrly, even though Hrly cannot be directly estimated

in some stages of the breeding cycle. It should be noted that
the definition of heritability is in line with the concept of mixed
models. It consists of variances for G, GE (= GL + GY +

GLY), and experimental error but excludes that for E (= L +

Y + LY), implying a mixed model. It implies that G, GE, and
experimental error are considered as random effects but E as fixed
effects (DeLacy et al., 1996). Researchers are often puzzled on
which effects should be treated as random and which fixed when
analyzing multi-environment trials data using mixed models
(Piepho et al., 2003); for the purpose of genotype evaluation,
this is clear from the definition of heritability. The definition
of heritability is also consistent with the concept of GGE biplot
analysis, which excludes E and focuses on G and GE for cultivar
and test environment evaluation (Yan et al., 2000; Yan and Kang,
2002; Yan and Tinker, 2006; Yan, 2014).

All efforts made to improve selection efficiency are also
efforts to improve the heritability as defined in Equation 7
or Equation 8. Put it differently, all possible approaches to
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improve selection efficiency reside in the definition of heritability.
These include approaches to deal with GE and approaches to
minimize experimental error. Dealing with GE include two
steps: (1) identifying and utilizing repeatable GE, a process
often referred to as mega-environment analysis (Yan, 2014, 2015,
2016, 2019), and (2) accommodating unrepeatable GE through
adequate testing (Yan et al., 2015; Yan, 2016, 2021). Dealing with
experimental error includes adequate replication (Yan et al., 2015;
Yan, 2021) and spatial variation adjustment (Cullis and Gleeson,
1991; Gilmour et al., 1997; Cullis et al., 1998; Burgueño et al.,
2000; Qiao et al., 2000; Yang et al., 2004; Yan, 2014).

MEGA-ENVIRONMENT ANALYSIS AND
UTILIZATION OF REPEATABLE GE

Repeatable GE vs. Unrepeatable GE
Mega-environment analysis is analysis of the G+GE patterns
aiming at dividing a target region into meaningful subregions
or mega-environments (subregions and mega-environments are
used interchangeably in this article). Among the components
of GE, GY and GLY are obviously unrepeatable because it is
impossible to predict the environments of next year. It is possible,
though, that some of the GL is repeatable as the soil and
daylength at a location are fixed. Some management factors such
as irrigation, fertilizer application, and fungicide application may
also lead to repeatable GE (Cooper et al., 2021), which are lumped
as “common management practices in the target region or mage-
environment” for simplicity. Assuming that the test locations can
be divided into two or more groups (subregions), the variance
for GL will be divided into variance for genotype by subregion
interaction (σ 2

GS), which is the repeatable part, and genotype
by location interaction within subregions (σ 2

GL(s)
), which is the

unrepeatable part, of GL (Atlin et al., 2000; Yan, 2016):

σ
2
GL = σ

2
GS + σ

2
GL(s) (11)

and the number of test locations l will also be divided among
the subregions:

l =

s∑

k=1

lk (12)

where lk is the number of test locations within subregion k.
Subdivision of the target region into subregions will improve the
overall heritability if the genotype by subregion interaction is
sufficiently large, because the genotype by subregion interaction
is converted into genotypic main effect within subregions when
genotype evaluation is conducted by subregion:

H
′

rly =
σ
2
G + σ

2
GS

(σ 2
G + σ

2
GS)+

σ
2
GL(S)

l
+

σ
2
GY
y +

σ
2
GLY
ly

+
σ2

ε

rly

(13)

where H
′

rly
is the entry-mean heritability when genotype

evaluation is conducted by subregion. On the other hand,

dividing a region into subregions may lead to reduced heritability
within a subregion due to the smaller number of test locations
(Equation 12). Thus, Atlin et al. (2000, 2011) warned that
subdivision of a target region should be avoided if genotype by
subregion interaction is small relative to G. They used the genetic
correlation between divided subregions and the undivided whole
region (rG) as a measure to decide whether the target region
should be divided, which is defined as:

rG =

√
σ
2
G

σ
2
G + σ

2
GS

(14)

They suggested that subdivision should be avoided if rG is
high, although an explicit criterion was not given. In fact, the
correlation between candidate subregions should be a more
meaningful measure.

Nevertheless, if a subregion is found to be distinct from
other subregions, it should be treated as such; if a subregion
is economically important, it is justifiable to increase the
number of test locations within it to achieve a sufficiently
high heritability or selection reliability. The merit of dividing a
target region into meaningful subregions is to allow selection
and deployment of subregion-specific cultivars to achieve a
higher genetic gain within each subregion and thereby the
whole region. Annicchiarico (2021) presented a recent example
that selection for mega-environment specific cultivars increased
genetic gains, in addition to a good review on the subject
matter. An essential condition for dividing a target region into
subregions is the presence of substantial crossover genotype by
subregion interactions (discussed below).

How to Reveal Repeatable GE
To investigate whether heritability can be improved by dividing
a target region into subregions, the prerequisite is a good
hypothesis on how to divide the target region. Various
approaches have been used in dividing a jurisdictional region
into agroclimatic regions as reviewed in Yan et al. (2011). A poor
hypothesis will lead to the false conclusion that the target region
cannot be divided and thereby miss the opportunity to utilize
the repeatable GE. For example, Atlin et al. (2000) hypothesized
that western Canada (including Alberta, Saskatchewan, and
Manitoba) and eastern Canada (including Ontario, Quebec, and
Maritime provinces) were two barley mega-environments and
rejected the hypothesis. Based on the same dataset, however, Yan
and Tinker (2005) showed two clear mega-environments, with
locations in Alberta and Saskatchewan as one mega-environment
and locations in Manitoba and the eastern Canadian provinces
as the other. For another example, in analyzing the data of a
set of maize hybrids tested at 24 sites in six African countries
in 2009, Atlin et al. (2011) hypothesized that each country was
a mega-environment and concluded that there was no mega-
environment differentiation. However, a country is a political
entity rather than an ecoclimatic region, so the hypothesis per
se is questionable. A good hypothesis on mega-environment
differentiation must be based on the G+GE patterns. Two
methods have been developed to reveal repeatable GE patterns:
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GGE + GGL biplot analysis (Yan, 2014, 2015, 2016) and LG
(location-grouping) biplot analysis (Yan, 2019; Yan et al., 2019b,
2021).

GGE + GGL Biplot Analysis
As the definition of heritability in Equation 7 or Equation
8 suggested, data from multi-location, multi-year trials are
required to conduct GGE + GGL biplot analysis, where GGE
stands for G + GE (meaning fitting G + GE by principal
components), and GGL for G + GL. In variety trials, usually the
same set of genotypes are tested at all locations in a year but
different sets of genotypes are tested in different years, because
poor genotypes are dropped and new genotypes added each
year. Consequently, multi-location, multi-year data are typically
unbalanced. Nevertheless, usually a sizable number of common
genotypes are tested in two or more consecutive years; this allows
missing values in the genotype by environment two-way table to
be imputed based on certain procedures (e.g., Yan, 2013). Data
from such trials can be investigated using a GGE + GGL biplot
(Yan, 2014, 2015, 2016), as shown in the example below.

The yield data from the 2013 to 2019 Quebec Oat Registration
and Recommendation trials are used here as an example (data
available from the author upon request). Each year 41 to 46
registered oat cultivars or breeding lines were tested at eight to
10 locations. The locations represent three ecoclimatic zones of
Quebec (Yan et al., 2011; Yan, 2015). Zone 1 was represented
by NDHY1 (St Hyacinthus) and STHU1 (St. Huber), Zone 2 by
PRIN2 (Princeville), PINT2 (Pintendre), STAU2 (St. Augusta),
and STET2 (St. Etienne), and Zone 3 by NORM3 (Normandin),
HEBE3 (Hebertville), CAUS3 (Causapscal), and LAPO3 (La
Pocatière); the number at the end of each location code indicates
the zone it belongs. In addition, the trials were also conducted at
OTT (Ottawa in Ontario), which is geographically close to Zone
1 of Quebec. A total of 118 genotypes and 67 trials (location by
year combinations) were involved in these seven years, forming
a 118-genotype by 67-trial two-way table, with 63% missing
values. The first step of the analysis was to generate a GGE
biplot containing the 118 genotypes and the 67 trials (Figure 3).
The GGE biplot was constructed by the first two principal
components from subjecting the trial-standardized genotype by

FIGURE 3 | GGE biplot to show the relative yield of 116 oat genotypes in 67 trials from the 2013–2019 Quebec provincial oat trials. The genotypes are displayed in

blue and the trials in red. Each trial is displayed as a location-year combination. The Quebec locations are: NDHY1 (St Hyacinthus) and STHU1 (St. Huber) in Zone 1,

PINT2 (Pintendre), PRIN2 (Princeville), STAU2 (St. Augusta), and STET2 (St. Etienne) in Zone 2, and NORM3 (Normandin), CAUS3 (Causapscal), HEBE3 (Hebertville),

and LAPO3 (La Pocatière) in Zone 3. OTT (Ottawa) is a location in Ontario. PC1 and PC2 are the first two principal components from singular value decomposition of

the trial-standardized yield data (“Scaling = 1,” “Centering = 2”), with the singular values fully partitioned to the trial scores (“SVP = 2”) for proper visualization of the

correlations among trials.
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trial two-way table to singular value decomposition, after proper
singular value partition (Yan, 2002). The most obvious message
from this fairly crowed biplot is that the trials placed on the
upper portion of the biplot and those on the lower portion were
negatively correlated, as indicated by the obtuse angles between
them. This indicates existence of strong GE. The second step is
to summarize the trials conducted at a location by a location
marker, the placement of which is determined by the mean
coordination of the trials (Figure 4). For example, the placement
of the location LAPO3 (in red) was determined by the seven
trials conducted at LAPO3, namely LAPO3_13, LAPO3_14,
LAPO3_15, LAPO3_16, LAPO3_17, LAPO3_18, and LAPO3_19
(in black). The genotypes are represented by “+” for clarity. The
biplot in Figure 4 is both a GGE biplot and a GGL biplot, thus
the term GGE+GGL biplot.

In Figure 4 the 10 locations are clearly separated into two
groups: group 1 include locations NORM3, HEBE3, CAUS3,
PRIN2, PINT2, and STAU2 on the upper quadrant, and group
2 include locations NDHY1, STHU1, LAPO3, and OTT on

the lower quadrant. Thereby the GE is divided into repeatable
GE and unrepeatable GE. The genotype by location group
interaction, i.e., the difference in the placement between the
two location groups, is the repeatable GE; the genotype by trial
interaction within groups, i.e., the variation in the placement
among the trials within each of the two location groups, is the
unrepeatable GE. The two location groups suggests two different
mega-environments. All locations in mega-environment 1
(ME1) belong to Zone 2 or Zone 3 of Quebec; locations in mega-
environment 2 (ME2) consists of two Zone 1 locations, a Zone 3
location, and OTT. Thus, the mega-environment differentiation
was largely, but not completely, consistent with the
agroclimatic zones.

LG Biplot Analysis
Presented in Figure 5 is the LG biplot based on the same dataset
that was used to generate the GGE + GGL biplot (Figure 4).
The steps to construct the LG biplot follows. First, a genetic
correlation matrix among locations was calculated for each year.

FIGURE 4 | GGE + GGL biplot modified from Figure 3 to show two groups of locations or oat mega-environments (ME) in Quebec. Mega-environment 1 (ME1)

consists of Zone 2 and Zone 3 locations PINT2, PRIN2, STAU2, STET2, CAUS3, HEBE3, and NORM3, and mega-environment 2 (ME2) includes locations NDHY1,

STHU1, LAPO3, and OTT. The trials conducted at each location are presented as a cluster of trials, with the location name placed at the center and the individual

trials, indicated by the last two digits of the year, placed around it, and the trials are connected to the center with straight lines. Two locations are regarded as

belonging to the same mega-environment if their clusters overlap; they are regarded as belonging to different mega-environments otherwise. The variation in the

placement of the locations between mega-environments represents repeatable GE and the variation in the placement of the trials within mega-environments

represents unrepeatable GE. The genotypes are displayed as “+” in blue for clarity.
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FIGURE 5 | LG biplot to show two oat mega-environments in Quebec. PC1

and PC2 are the first two principal components from singular value

decomposition of the location by trial two-way table of correlations, without

centering (“Centering = 0”) or scaling (“Scaling = 0”). The LG biplot is a

location by trial biplot, with the locations presented in blue and the trials in red.

The trials conducted at each location are presented as a cluster of trials, with

the location name placed at the center and the individual trials, indicated by

the last two digits of the year, placed around it. The trials are connected to the

location with straight lines. Two locations are regarded as belonging to the

same mega-environment (ME) if their clusters overlap; they are regarded as

belonging to different mega-environments otherwise. The same two MEs (ME1

and ME2) shown in Figure 4 are shown in this LG biplot. The variation in the

placement of the locations between mega-environments represents

repeatable GE and the variation in the placement of the trials within

mega-environments represents unrepeatable GE.

Second, the yearly correlation matrices were stacked to form a
location by trial two-way table of correlations, each trial being
a location-year combination. Third, the location by trial table
was submitted to singular value decomposition, without entering
or scaling (“centering = 0, scaling = 0”). Fourth, the resulting
first two principal components were used to construct a location
by trial biplot. Fifth, as in the GGE + GGL biplot, the trials
conducted at a location in different years were summarized by a
location marker defined by the mean coordination of the trials.
Finally, the trials at a location are displayed as a cluster, with
the location marker as the center and the trials in different
years as members; the trials and the location are connected
with straight lines. If the clusters of two locations overlap,

they are regarded as belonging to the same mega-environment;
if they do not overlap, they are considered as belonging to
different mega-environments. In the LG biplot, the variation
among trials and locations within a mega-environment, i.e.,
the variation among trials at overlapping locations, represents
unrepeatable GE; the variation between two mega-environments
represents repeatable GE. It can be seen that the same two
mega-environments shown in the GGE+GGL biplot (Figure 4)
are clearly separated in the LG biplot (Figure 5); thus, the two
approaches are functionally equivalent or similar. Importantly,
the LG biplot has the advantage that it does not require any
common genotypes to be tested in different years. Therefore,
it can be used to reveal repeatable GE and delineating mega-
environments using multi-year trial data in which completely
different sets of genotypes are tested in different years (Yan et al.,
2021).

A general comment on the use of biplots follows. A 2-D biplot
is usually used for data visualization for convenience and on the
understanding that the most important patterns in the data are
captured by the first two principal components. However, there
may be cases where some important patterns exist in higher order
principal components. This is usually indicated by the presence
of vectors that are obviously shorter than others. When this is
the case, variation not displayed in the biplot can be explored by
biplots displaying a subset of the data. A recent example can be
found in Yan et al. (2021).

Utilization of Repeatable GE by Selecting
Mega-Environment Specific Cultivars
The approach to utilizing repeatable GE is to select separately
for each mega-environment, preferably using the mean vs.
stability view of the GGE biplot (Figure 6). The red line with
a single arrow passes through the biplot origin and the mean
environment (which has mean coordination of all environments)
and is referred to as the average environment axis (AEA) or
GGE-Mean axis; the arrow points to higher mean yield. The
blue line with arrows at both ends points to greater instability
in either direction; it can be referred as the GGE-stability axis
(Yan, 2001; Yan and Kang, 2002; Yan and Tinker, 2006). This is
an extended application of the inner-product property of a biplot
(Gabriel, 1971). Thus, the three highest yielding cultivars in ME1
across 2013–2019 were Akina>Nicolas>Nice (Figure 6A), and
those for ME2 were Nicolas > Akina > Richmond (Figure 6B).
Therefore, the repeatable GE can be utilized by recommending
different sets of cultivars in ME1 and ME2.

The similarity/dissimilarity in cultivar ranking between ME1
and ME2, along with that in the undivided whole region, are
further presented in the which-won-where view of the GGE
biplot in Figure 7. The polygon or which-won-where view of
the GGE biplot (Yan et al., 2000) is also an extended application
of the inner-product property of a biplot (Gabriel, 1971). The
polygon was formed by connecting the genotypes that are placed
away from the biplot origin in all directions. For each polygon
side a line perpendicular to it was drawn from the biplot origin.
These lines dissect the biplot into sectors. For each sector, the
genotype at the vertex is the nominal highest yielder for the
environments or mega-environments fell in it. In this case, Akina
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FIGURE 6 | GGE biplots to show the mean yield and instability of 13 oat cultivars in (A) mega-environment 1 (ME1) and (B) mega-environment 2 (ME2), across

2013–2019. See Figure 4 and associated text for the definitions of ME1 and ME2. PC1 and PC2 are the first two principal components from singular value

decomposition of trial-standardized yield data (“Centering = 2,” “Scaling = 1”). The singular values were entirely partitioned to the genotypic scores (“SVP = 1”) for

proper genotype evaluation. The trials are represented by “o” for clarity. The red line with a single arrow is the average environment axis (AEA), the arrow pointing to

higher mean yield. The blue line with arrows on both ends is the instability axis, the arrows pointing to greater instability in either direction.

was the highest yielder in ME1 while Nicolas was the highest
yielder in ME2 and “ALL,” indicating crossover genotype by
subregion interaction. On the other hand, ME1 was placed close
to the radiate line labeled “1,” which separates ME1 from ME2;
this means that Akina had higher yield than Nicolas in ME1
but not by much. The two mega-environments were moderately
correlated (r = 0.652; Figure 7) and shared Akina and Nicolas
as the top two yielding cultivars, though in a reversed order.
Thus, the two oat mega-environments in Quebec were classified
as sub mega-environments within one of the three major oat
mega-environments in Canada (Yan et al., 2021).

ACCOMMODATION OF UNREPEATABLE
GE THROUGH ADEQUATE TESTING

The solution to accommodating unrepeatable GE is to test
adequately within a target mega-environment, i.e., to test at
a sufficiently large number of locations in a sufficiently large
number of years with sufficiently large number of replicates
so as to sufficiently sample the environments and to achieve a
sufficiently high heritability as defined in Equation 7 or Equation
8. It is obvious that more replicates, more locations, and more
years will lead to a higher heritability. The solution to identify
widely adapted cultivars (within a meg-environment) is to
“test widely” (Troyer, 1996). However, each additional replicate,
location, or year involves considerable cost. As a compromise
between selection reliability and test cost, the concept “adequate
test” was proposed and defined (Yan et al., 2015; Yan, 2016).

The terms “adequate testing,” “optimum testing,” and “minimum
testing” are used interchangeably in this article to indicate that
a minimum level of testing in terms of years, locations, and
replicates must be conducted to achieve sufficiently reliable
selection. When tested inadequately, the selection intensity
must be lowered according to the achieved heritability, to
prevent superior genotypes from being mistakenly discarded.
The “optimum” level of replicates, locations, or years was defined
as one to achieve a heritability of 0.75, based on examining a
heritability response curve (Yan et al., 2015; Figure 2 this article).
However, Cobb et al. (2019) suggested that a heritability of 0.5
was sufficient for reliable selection of the best 10 individuals to be
used to start the next breeding cycle.

Optimum Number of Years
Based on Equation 7 and assuming neglectable GL and
experimental error or unlimited number of locations and
replicates, the minimum number of years required to achieve a
heritability of 0.75 can be estimated by

ymin = max[1, 3(
σ
2
GY

σ
2
G

)] (15)

For example, based on the yield data from three-year spans of
Quebec provincial oat tests, the estimated minimum number
of years to achieve a heritability of 0.75 was from 1.2 to 6.3
and averaged 3.2 (Table 2), while the officially required number
of years to register a cultivar is three. So, the requirement for
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FIGURE 7 | The which-won-where view of the GGE biplot to show the relative yield of 13 oat cultivars in mega-environment 1 (ME1), mega-environment 2 (ME2), and

the undivided Quebec oat growing regions (ALL). The polygon was formed by connecting the genotypes that are placed away from the biplot origin in all directions.

For each polygon side a line perpendicular to it was drawn from the biplot origin. These lines dissect the biplot into sectors. For each sector, the genotype at the

vertex is the nominal highest yielder for the environments or mega-environments fell in it. In this case, Akina was the highest yielder in ME1 while Nicolas was the

highest yielder in both ME2 and “ALL.”

three years of testing was adequate and appropriate in general.
More years of testing were required for the 2016–2018 and the
2018–2020 (Table 2) spans due to reduced genetic variability and
therefore achieved heritability.

Optimum Number of Locations
Yearly multi-location trials are usually balanced as the same set
of genotypes are tested at all locations. Therefore, it is convenient
to use yearly data to estimate the number of locations required
for adequate testing. Assuming an infinite number of replicates
or negligible experimental error, the heritability within a year
(Equation 10) can be reduced to

Hrl,max =
σ
2
G

σ
2
G +

σ
2
GL
l

(16)

whereHrl,max is the maximum achievable within-year heritability
(Yan, 2021). Based on this equation, the minimum number
of locations required to achieve a heritability of 0.75 can be
estimated by (Yan et al., 2015; Yan, 2021)

lmin = max[1, 3(
σ
2
GL

σ
2
G

)] (17)

The minimum number of locations so estimated is expected
to differ with the year. Therefore, it should be estimated for
a number of years to achieve a good understanding on the
required number of test locations for a target mega-environment
(Yan et al., 2015). Presented in Table 2 are the estimated yearly
minimum number of locations based on the 2013–2019 Quebec
provincial oat trial data for the two mega-environments as
well as for the undivided Quebec oat growing region. When
estimated for the undivided region, the mean number was 8.4,
in comparison to the actual number of locations of 9.6. Thus, the
number of locations used was more than adequate in most years.

Interestingly, when estimated for each mega-environment,
the estimated minimum number was ∼one location more than
that actually used (7.3 vs. 5.9 for ME1 and 4.6 vs. 3.7 for
ME2). Thus, even though there is a clear mega-environment
differentiation, the trials in one mega-environment still provided
useful information to selection for the other, because the two
mega-environments were positively correlated (Figure 7). In
contrast, the southern vs. northern oat mega-environments in
eastern Canada were uncorrelated, and as a result, the total
required number of locations was smaller when estimated
separately for each mega-environment than that when estimated
for the undivided region (Yan et al., 2015). In a Canada-wide
study, the southern vs. northern mega-environments in eastern

Frontiers in Plant Science | www.frontiersin.org 11 September 2021 | Volume 12 | Article 72451782

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/plant-science#articles


Yan Key Concepts and Procedures in Plant Breeding

TABLE 2 | The minimum number of years (ymin) required to achieve a heritability (H) of 0.75 estimated on the yield data of three-year spans from the Quebec provincial oat

registration trials.

Three-year span No. of genotypes σ 2
G

σ 2
GY

σ 2
GLY

σ 2
P

H ymin

2013–2015 26 0.63 0.25 0.50 0.71 0.88 1.2

2014–2016 23 0.70 0.34 0.58 0.81 0.86 1.5

2015–2017 27 0.48 0.53 0.73 0.65 0.73 3.3

2016–2018 27 0.30 0.64 0.80 0.52 0.59 6.3

2017–2019 27 0.52 0.49 0.70 0.68 0.76 2.8

2019–2020 30 0.29 0.42 0.64 0.43 0.68 4.3

Mean 3.2

TABLE 3 | The estimated minimum number of locations in comparison to that actually used for the Quebec provincial oat trials.

The whole region ME1a ME2a ME1 + ME2

Year Actual Estimated Actual Estimated Actual Estimated Estimatedb

2013 8 11.2 5 5.7 3 4.6 10.3

2014 9 6.8 6 4.6 3 2.4 7.0

2015 10 6.8 6 9.6 4 1.5 11.1

2016 10 5.9 6 3.4 4 8.3 11.7

2017 10 8.2 6 8.8 4 1.4 10.2

2018 10 7.4 6 6.9 4 6.1 13.0

2019 10 12.5 6 12.4 4 7.7 20.1

Mean 9.6 8.4 5.9 7.3 3.7 4.6 11.9

aSee Figure 4 or Figure 5 for the definition of mega-environment 1 (ME1) and mega-environment 2 (ME2); bThe estimated number for ME1 +ME2 is the sum of the estimated number

for ME1 and that for ME2.

Canada were designated as ME1 and ME2, respectively, while
the twoQuebecmage-environments in Figure 4 or Figure 5were
designated asME2a andME2b (Yan et al., 2021). Given the results
in Table 3, cultivar recommendation for each of the two Quebec
mega-environments should consider performance both within
the mega-environment and across the whole region, as shown in
Figure 7.

Optimum Number of Replicates
Several classic studies investigated the optimum numbers of
years, seasons, test locations, and replicates for the allocation
of a fixed number of plots or fund according to the relative
magnitudes of various variance components (Sprague and
Federer, 1951; Hanson and Brim, 1963; Wricke andWeber, 1986;
Swallow and Wehner, 1989). Conclusions from this “resource
allocation” approach inevitably led to the suggestion to maximize
the number of locations and/or years and to minimize the
number of replicates (i.e., to use a single replicate) (McCann
et al., 2012; Schmidt et al., 2018). However, this conclusion
applies only when it is possible to increase the number of
locations and/or years. For a breeding program or a regional crop
recommendation committee, yield trials are conducted every year
at a more or less fixed number of locations. Researchers need to
know the minimum or optimum number of replicates under this
scenario. To answer this question, an equation was derived from

the definition of heritability on the single trial basis, in the form
of Equations 15 and 17 (Yan et al., 2015). More recently, another
equation was developed for estimating the optimum number of
replicates in a multi-location context (Yan, 2021):

rl = max[1, 3

(
σ
2
ε

σ
2
G

) (
Hrl, max

l

)
] (18)

where rl is the optimum number of replicates given the number
of locations l, and Hrl, max is as defined in Equation 16. Equation
18 shows that the required number of replicates is determined by

the relative magnitude of experimental error variance,
σ
2
ε

σ
2
G

, and

is modified by the number of locations in a non-linear manner,

because an increase in the number of locations also improves

Hrl, max (Equation 16). Applying this equation to the yield data

of some oat trials conducted across Canada, it was determined

that two replicates would suffice to identify the highest yielding

oat cultivars (Yan, 2021). Applying this equation to the 2015–
2019 yield data of barley, oat, spring wheat, and winter wheat
trials conducted in Ontario also led to the conclusion that two

replicates would suffice (Yan et al., 2000). It is recommended

that similar analysis be conducted for other crops and regions.
Regional variety trials are usually conducted with three or four

replicates. Reducing the number of replicates to two, if supported,
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can substantially reduce the evaluation cost or allow more
genotypes to be evaluated with the same cost.

Importantly, reliable estimation of the various variances are
a prerequisite to accurate estimation of the optimum number of
years, optimum number of locations, and optimum number of
replicates for adequate testing (Arief et al., 2015).

Adjust for Spatial Variation
The discussions on optimum testing and optimum replication
above assumed that the field and management are uniform
within each trial. However, spatial variation within trials has been
recognized as a major source of experimental error. Traditionally
it is controlled by blocking, i.e., dividing a replicate into blocks,
such as the so-called incomplete blocks design (R.A. Fisher, from
Street, 1990). This is referred to “dealing with spatial variation by
design.” In the last three decades, spatial analysis and adjustment
becomes an increasingly popular research subject and a routine
practice in the analysis of crop variety trials. The use of spatial
analysis makes experimental design more flexible.

In a variety evaluation trial, g genotypes are usually allocated
into a rectangular field of b rows (blocks) and c column (plots).
The observed value in a plot, Yij, is, therefore, combined effects of
the row, the column, the genotype, and the experimental error:

Yij = µ + rowi + colj + gk+εij, (19)

µ being the mean of the trial. The effects of rows and columns
can be modeled by various spatial analysis techniques (Cullis and
Gleeson, 1991; Gilmour et al., 1997; Cullis et al., 1998; Burgueño
et al., 2000; Qiao et al., 2000; Yang et al., 2004). Spatial analysis
is a within-trial analysis so it is also referred to “local analysis”
(Kempton et al., 1994; Grondona et al., 1996). A straightforward
and intuitive approach is to use a polynomial regression to model
any trend across the plots within each block (Yan, 2014), which
is routinely used in the Ottawa oat breeding program. The order
of the polynomial regression can be set according to the block
size of the block. An iterative procedure can be used to adjust
the Yij values so as to minimize the experimental error. Adjusted
genotypic values are then calculated from the adjusted plot values
at the final iteration. Spatial adjustment based on polynomial
regression usually leads to reduced trial coefficient of variation
and increased trial heritability (Yan, 2014). The plot values, and
thus the genotypic values, will not be altered if no spatial trend is
found. An example of spatial trend adjustment for a block of 36
plots in an oat trial conducted in Ontario in 2019 is presented
in Figure 8. This procedure can also be used to fill missing
plot values.

Genomic Selection: To Replace
Multi-Environment Evaluation With
Multi-Model Prediction
Some researchers believe that genomic selection will eventually
replace breeders’ visual selection and even alter the role of
yield trials in making selection and recommendation decisions
(Heffner et al., 2009; Jannink et al., 2010). Indeed, encouraging
results of genomic selection have started to emerge as advanced
genotyping, bioinformatics, and genomic modeling procedures

have become available (e.g., Tinker et al., 2016; Bekele et al.,
2018). The confidence on genomic selection comes from two
aspects. First, genome-wide markers can sufficiently capture the
genotypic variability of a relevant breeding population tested in
a relevant environment (i.e., a trial at a location in a year). That
is, the genetic variability of the breeding population observed in
the trial can be accurately captured by a genomic model. Second,
genomic models can be developed for a large number of trials
that sufficiently to fully represent the target mega-environment.
Assumingmmodels have been developed fromm trials covering
multiple locations and years, then predicting the performance
of a breeding population using m models would be equivalent
to testing the breeding population in m trials. This represents a
great advantage of genomic selection over conventional selection
because in a practical breeding program, it is impossible to test a
large breeding population in replicated trials, let alone at multiple
locations in multiple years. Assuming a genotype by model two-
way table of predictions for a breeding population, the achievable
heritability with genomic selection, Hm, can be estimated by

Hm =
σ
2
G

σ
2
G +

σ
2
GM
m

(20)

where σ
2
GM is the variance for genotype by model interaction. As

m increases, the achievable heritability with genomic selection
and hence selection reliability can become much higher than
what is achievable by conventional selection (Yan et al., 2019b).
From this viewpoint, genomic selection is potentially a much
more effective approach to dealing with unrepeatable GE.

On the other hand, yield trials aiming at genomic model
development are large and expensive; it remains a question as
to when model development can be considered complete and
such trials are no longer needed (Yan et al., 2019b). If the year
factor is completely random, then genomic model development
may be considered complete at some point when sufficient data
(years and locations) have been obtained. However, if there is a
trend in climatic change, data from recent years would be more
relevant for predicting future-year performances, and the trials
must continue. It is also a question whether routinely conducted
yield trials with a limited number of entries can be used to
replace the large-scale trials for genomic model development or
refinement, although it was so suggested (Heffner et al., 2009).
Cost efficiency will continue to be a determinant factor to the
application of genomic selection in plant breeding.

SELECTING FOR MEAN PERFORMANCE
AND SELECTING AGAINST INSTABILITY

Superior cultivars must demonstrate high and stable yield cross
the target mega-environment. Cultivars yielded well in some
environments but poorly in others, relative to other cultivars, are
said to be unstable and undesirable as they can cause unbearable
losses to growers. Various stability indices have been developed
in order to quantify instability. Lin et al. (1986) reviewed nine
stability or instability parameters and classified them into four
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groups. More parameters were proposed after that (e.g., Huehn,
1990). The initial idea of stability analysis was to select against
unstable genotypes rather than to select for stable genotypes.
This idea was somehow twisted to treating a stability index as
a positive trait, which caused confusion among researchers. It
would be less confusing to call these stability indices as instability
indices. The large number of indices are also confusing to
practical breeders. The purpose of this section is to reinstall the
original idea of stability analysis and to clear up the confusions.

First, a stability index should reflect a genotype’s susceptibility
to GE, because it is GE that caused its unstable performance
across environments. The numerous stability parameters may
be classified according to its composition in terms of G, E,
and GE. In the classification of Lin et al. (1986), stability
indices in Group B involve GE only; they are suitable instability
parameters. Indices in group A involve both E and GE; they are
not suitable parameters because GE is confounded with E. The
linear regression coefficient b against E in Eberhart and Russell
(1966) (Group C) is a genotype’s response to E; its usefulness
depends on how well the linear regression fits the data (Lin
et al., 1986), which is usually poor (Zobel et al., 1988). When
the fit is sufficiently good, b = 1 means stable, b > 1
means good performance in high-yielding environments, and
b < 1 means good performance in low-yielding environments
(Ceccarelli, 1989). Deviation from the linear regression (Group
D) is merely a measure of the goodness of fit of the linear
regression and is not a useful measure of stability.

Second, stability analysis is a concept of selection within a
mega-environment. So, it should be conducted within mega-
environments rather than across mega-environments, unless

the mega-environments are highly correlated. In such cases,
the mega-environments should be merged and treated as a
single mega-environment.

Third, a stability index representing GE must be used in
combination with the mean performance (G), thus the term
G+GE or GGE (Yan et al., 2000, 2007). High stability (less GE)
is desirable only when combined with high mean performance.
High stability is least desirable when combined with low mean
yield because it means consistently low yielding (Yan et al., 2007).
Parameters or procedures combining both G and GE include the
superiority index of Lin and Binns (1988, 1994) and the stability
index of Kang (1993). In addition, several graphical methods also
combines G and GE. These include the AMMI1 biplot (Zobel
et al., 1988) and the AEA view of the GGE biplot (Figure 6;
Yan, 2001). Zobel et al. (1988) showed that AMMI analysis was
superior to the joint regression of Eberhart and Russell (1966)
and Alwala et al. (2010) concluded GGE biplot analysis to be a
better platform than the joint regression. There is some debate
on whether AMMI or GGE is a better approach in analyzing yield
trial data (Gauch, 2006; Yan et al., 2007; Gauch et al., 2008; Yan,
2011). Many studies compared AMMI and GGE biplot analysis
and concluded that GGE biplot analysis was superior (e.g., Badu-
Apraku et al., 2012; Amira et al., 2013; Hoyos-Villegas et al., 2016;
Oliveira et al., 2019). AMMI analysis was advocated as a means
to separate “signal” (true GE) from “noise” (error) in GE and a
means to use the GE-signal to adjust the genotypic means (Gauch
and Zobel, 1988; Gauch, 2013). AMMI1 or AMMI2 (i.e., main
effects plus the first one or two principal components of GE) is
often found the best AMMI model, and the AMMI1 biplot is
often used as a visual tool for genotype evaluation (Gauch, 2006).

FIGURE 8 | An example to show the plot values within a block as adjusted according to the field trend modeled by a polynomial regression.

Frontiers in Plant Science | www.frontiersin.org 14 September 2021 | Volume 12 | Article 72451785

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/plant-science#articles


Yan Key Concepts and Procedures in Plant Breeding

Unfortunately, the AMMI1 biplot is not an effective graphical
presentation of G + GE because G is often masked by the
much larger E in it, because its G and GE axes are in different
units, and because it does not have the inner-product property
of a true biplot (Yan, 2011). Similar to AMMI analysis, GGE
biplot analysis can also be viewed as a means to separate signal
from noise. In a two-dimensional GGE biplot such as that in
Figure 6, the first two principal components are considered as
signals and the higher dimensions as noise. This GGE biplot
displays the amount of G+GE in between that of AMMI1
and AMMI2; so, it should be close to the best model in most
cases. In the AEA view of the GGE biplot (Figure 6), the GGE-
mean axis represents the GE-adjusted genotypic means, while
the GGE-stability axis represents the genotypes’ susceptibility to
unrepeatable GE (instability). Both axes pass through the biplot
origin and are perpendicular to each other, meaning that they are
independent parameters. Thus, the AEA view of the GGE biplot is
a convenient tool for visual analysis of genotype-by-environment
data and for visual selection for mean performance and
against instability.

Finally, “test adequately” is much more important than any
stability analysis. When tested adequately, genotypes with high
mean performance should also be genotypes that are relatively
stable, because it is not possible for a highly unstable genotype to
achieve very high mean performance. However, when not tested
adequately, as indicated by a low heritability across locations
and years, neither the estimated mean nor the estimated stability
is reliable, and a low selection intensity or culling rate must
be applied. In such cases, selection should be mainly on mean
performance, rather than on stability. Instead, effort should be
made to understand the causes of the instability for a high-
yielding genotype. For example, severe lodgingmay be the reason
for its low yield in a severely lodged trial. If severe lodging rarely
occurs in the target region, then the genotype is expected to
show good mean yield and stability when tested adequately; if
lodging is a common yield-limiting factor in the target region,
then the genotype is expected to have low mean yield when
tested adequately.

SELECTION FOR MULTIPLE TRAITS

While geneticists can focus on a single trait and ignore others,
breeders must deal with multiple traits. In addition to high
yield, which is always the most important breeding objective,
a cultivar must meet a minimum requirement for each and
every trait that is important to the relevant growers, processors,
and end-users. In fact, the greatest challenge in plant breeding
is to combine all desirable traits in a single genotype, because
key breeding objectives are often adversely associated, due to
either genetic linkage or pleiotropy (e.g., Tanksley, 1983; Yan and
Wallace, 1995; Asins, 2002; Cooper et al., 2009; Hao et al., 2014;
Crespo-Herrera et al., 2016). Strategies for multi-trait selection
include independent culling and index selection (Simmonds
and Smartt, 1999; Yan and Frégeau-Reid, 2008; Yan, 2014).
Independent culling is to cull all genotypes that fail to meet the

minimum requirement for any breeding objective, because such
genotypes will not be accepted as cultivars. Index selection is to
rank genotypes based on an index that is composed to reflect
the perceived economic values of the genotypes. Independent
culling can be implemented at all stages in the breeding cycle
but it is more important in the early breeding stages when
multi-location yield trials are not possible. Index selection
is mainly implemented in the yield trial stage, at which all
important traits can be determined. For cultivar development-
oriented genomic selection, both independent culling and index
selection should be conducted.

Independent Culling
Independent culling is important to ensure that selected high
yielding genotypes will be accepted by growers and end-users; it is
also an effective approach to reduce the breeding population size
safely and speedily. Assume that t is the number of independently
inherited breeding objectives, each with a heritability h2

k
, with

k = 1, . . . t. If h2
k
is used as the culling rate for trait k, then

the joint culling rate would be:

h2t = 1−

t∏

1

(1− h2k) (21)

and the number of genotypes must be retained to ensure that the
best genotype is selected is:

N = n(1− h2t ), or (22)

N/n = 1− h2t ,

N/n being the proportion of the breeding population that must
be retained. For example, assume the culling rate for each of
five traits is 0.3, then, according to Equation 21, the joint culling
rate would be 0.83, and the retaining rate would be 0.17 or 17%.
Therefore, a large proportion of the population can be safely
culled by independent culling if multiple traits are considered,
even though the heritability or culling rate is low for each trait.
This explains the effectiveness of visual selection (culling) by
an experienced breeder, who can visualize and select on many
traits simultaneously.

Genomic selection for oat yield in eastern Canada proves
effective (Bekele, Tinker, and Yan, unpublished results); it should
also be effective for other traits that are more simply inherited
than yield. Therefore, independent culling based on genomic
models is expected to be more accurate than visual selection
by even the most experienced breeder. If the traits under
consideration are positively correlated, the overall culling rate
would be lower than when they are independent; the overall
culling rate would be higher if the traits are negatively correlated,
which is often the case. The overall culling rate can be much
higher if some of the target traits are simply inherited and less
affected by GE and experimental error, for example, oil content
in oat (Hizbai et al., 2012; Yan et al., 2016).
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GYT (Genotype by Yield∗trait) Analysis
A large portion of the genotypes that survived independent
culling should be qualified as a cultivar if they are sufficiently high
yielding. Therefore, the focus of selection following independent
culling should be on yield although other target traits should
also be considered. Selection based on a selection index is the
common method for selection on multiple breeding objectives
(note but: not any traits). Here, the GYT (genotype by yield∗trait)
analysis (Yan and Frégeau-Reid, 2018; Yan et al., 2019a) is
recommended over the traditional index selection.

In traditional index selection, the superiority of genotype i, Pi,
is calculated as

Pi = w0yi +

t∑

j=1

(wjxij), (23)

where t is the number of breeding objectives that are to be
selected in addition to yield, yi is the standardized yield for
genotype i, w0 is the weight assigned for yield, wj is the weight
assigned for trait j, and xij is the standardized value of genotype i
for trait j.

In the GYT approach, the superiority of a genotype may be
presented as

Pi = yi

t∑

j=1

(wjxij). (24)

The selection index for a genotype is usually presented as the
standardized value of Pi. The difference between the traditional
selection index (Equation 23) and the GYT approach (Equation
24) follows. In traditional index selection, the weight for a trait
other than yield is a fixed value for all genotypes, while in the
GYT approach it varies with the yield level of each genotype.
In traditional index selection the emphasis is on the levels of

the traits; in the GYT approach it is on the levels of yield-
trait combinations. The GYT concept is better in reflecting
the economic value of a trait. For example, superior lodging
resistance (or high protein) has little value in a low yielding
genotype but it is highly valuable in a high yielding genotype.
Consequently, based on the traditional selection index, a low
yielding genotype may be ranked the highest due to its superior
levels in other traits; such genotypes will not be accepted as
cultivars by growers, however (Yan et al., 2019a). This problem
can be prevented with the GYT approach, as the genotypes
ranked highest will always have high yield levels.

Another advantage of the GYT approach is that the superiority
and the trait profiles of the genotypes can be visually investigated
in a biplot, referred to as GYT biplot (Yan and Frégeau-Reid,
2018; Yan et al., 2019a,b). As an example, the mean values of
the 13 oat cultivars for eight important traits from the 2013–

2019 Quebec oat trials are presented in Table 4, ranked by
their GYT index. The steps to construct a GYT biplot follow.

First, standardize the genotype by trait table for each trait.
Second, multiply yield with each trait to form a genotype
by yield-trait combination two-way table. Third, subject the

weighted genotype by yield-trait two-way able to singular value
decomposition to obtain the principal components (PC). Fourth,
multiply each of the yield-trait combination PC scores with
the assigned weight. And finally, construct a biplot using the
genotypic and trait combination scores of the first two principal
components based on the yield-trait combination preserving
singular value partition. Note that for milling oat a higher
value is more desirable for all the traits listed in Table 4 except
lodging and oil content. For these two traits a smaller value
is more desirable; they were therefore given a weight of “−1.”
The information contained in Table 4 can be visualized in a
GYT biplot (Figure 9). The biplot clearly shows the rank of
the genotypes in their GYT index, i.e., Nicolas > Akina >

Kara > Richmond >. . .> Avatar. Thus, Nicolas and Akina

TABLE 4 | Mean trait values of 13 oat cultivars tested in the 2013–2019 Quebec provincial oat trials and their GYT (Genotype by Yield*Trait) index.

Genotype Traits and weights

Yield (kg ha−1) β-glucan(%) Groat (%) Oil(%) Protein (%) Test weight

(kg hl−1)

1000-Kernel

Weight (g)

Lodging(0–9) GYT Index

1 1 −1 1 1 1 −1

Nicolas 5,948 4.3 73.9 6.1 13.2 53.4 35.8 2.9 1.3

Akina 5,853 4.8 72.7 7.1 13.4 52.3 38.0 2.4 1.2

Kara 5,680 4.7 71.9 8.0 14.0 54.0 38.1 2.0 0.9

Richmond 5,631 3.8 71.7 5.4 12.6 55.1 39.2 3.0 0.5

Canmore 5,447 4.6 71.6 7.6 14.2 54.9 39.5 3.3 0.3

Nice 5,559 4.4 72.6 8.4 13.5 53.3 38.5 3.9 0.1

Orrin 5,468 4.4 71.1 6.9 13.3 54.2 38.5 3.5 0.1

Adele 5,354 4.6 75.3 8.4 12.8 54.0 38.7 4.5 −0.3

Dieter 5,183 4.1 73.4 5.7 14.0 54.3 38.9 3.6 −0.4

Synextra 5,171 4.3 72.0 7.3 14.9 56.0 37.3 3.7 −0.4

Vitality 5,049 4.0 75.7 7.9 13.6 53.9 40.3 3.9 −0.9

Hidalgo 5,158 4.7 74.3 8.0 13.1 53.1 34.5 4.0 −0.9

Avatar 5,060 3.9 74.8 7.9 12.2 56.6 36.2 4.9 −1.3
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FIGURE 9 | GYT biplot to display the yield-trait combinations of 13 oat cultivars tested in the 2013–2019 Quebec provincial oat trials. The biplot was based on

singular value decomposition of yield-trait combination standardized data (“Centering = 2, Scaling = 1”). The red line with a single arrow is the average yield-trait axis,

the arrow pointing to higher GYT index. The blue line with arrows on both ends indicate contrasting trait profiles of the genotypes. For example, it showed Richmond

to be strong yield-oil combination but weak in yield-β-glucan combination, while Kara had the opposite trait profile to that of Richmond.

should be selected and recommended to the Quebec oat growers
without hesitation; they are in fact the most important two
cultivars in Quebec. The biplot also shows the trait profiles of
the genotypes. For example, it shows that Richmond is superior
in having a low oil content but inferior in having a low β-
glucan content. In fact, all cultivars placed above the red line
(the GYT index axis) have relatively low oil and low β-glucan
whereas the opposite is true for cultivars placed below the GYT
index axis. “Y∗Oil(−1)” and “Y∗Lodging(−1)” indicate that oil
content and lodging score were given a weight of “−1” because
high oil content and high lodging are undesirable for milling
oat (Figure 9).

The GYT biplot approach has been adopted in multi-trait
selection for various crops (Boureima and Abdoua, 2019; de
Oliveira et al., 2019; Hamid et al., 2019; Mohammadi, 2019;
Gouveia et al., 2020; Mahmoud et al., 2020; Merrick et al., 2020;
Badu-Apraku et al., 2021; Sofi et al., 2021; Tsenov et al., 2021; Xu
et al., 2021).

CONCLUSIONS

Plant breeding plays a key role in meeting the increasing need
for food, fiber, health, and comfort and in combating the
adverse impacts of the changing climate. Plant breeding consists

of two stages: breeding population development and progeny
selection. For cultivar development, population development
is more important than progeny selection but has largely
been neglected in the literature. Hence, a “complete breeder’s
equation” was presented, which contains three key parameters:
the population mean, the population variability, and the achieved

heritability under the multi-location, multi-year framework.
The value of a breeding population is measured by both

the population mean and the population variability. For
progeny selection, the key is to improve the heritability, i.e.,
selection reliability. Three aspects were identified to improve

heritability: utilizing repeatable GE through mega-environment
analysis, accommodating unrepeatable GE by adequate testing,
and adequate replication and adjusting for spatial variation.

Procedures for mega-environment analysis include GGE +

GGL biplot analysis and LG biplot analysis. Adequate testing
includes estimation and use of an optimum number of
years, locations, and replicates. Cultivar evaluation within a
mega-environment should select for mean performance and
select against instability, with GGE biplot analysis being a
preferred graphical method. A stability index is meaningful
only when combined with high mean yield. Adequate testing
is more important than any stability analysis. Last but not
least, cultivar development must consider multiple traits; both
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independent culling and index selection are essential. GYT
biplot analysis is a preferred method for index selection. In
addition, genomic selection is an alternative and potentially
more effective approach in all stages and aspects of cultivar
development if reliable models are developed and if it can be
done cost-efficiently.
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Jianzhong Wu1,2, Dequan Sun2, Qian Zhao3, Hongjun Yong1, Degui Zhang1,
Zhuanfang Hao1, Zhiqiang Zhou1, Jienan Han1, Xiaocong Zhang1, Zhennan Xu1,
Xinhai Li1* , Mingshun Li1* and Jianfeng Weng1*

1 Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China, 2 Institute of Forage and Grassland
Sciences, Heilongjiang Academy of Agricultural Sciences, Harbin, China, 3 Institute of Crop Cultivation and Tillage,
Heilongjiang Academy of Agricultural Sciences, Harbin, China

Heterosis, which has greatly increased maize yields, is associated with gene expression
patterns during key developmental stages that enhance hybrid phenotypes relative
to parental phenotypes. Before heterosis can be more effectively used for crop
improvement, hybrid maize developmental gene expression patterns must be better
understood. Here, six maize hybrids, including the popular hybrid Zhengdan958 (ZC)
from China, were studied. Maize hybrids created in-house were generated using an
incomplete diallel cross (NCII)-based strategy from four elite inbred parental lines.
Differential gene expression (DEG) profiles corresponding to three developmental stages
revealed that hybrid partial expression patterns exhibited complementarity of expression
of certain parental genes, with parental allelic expression patterns varying both
qualitatively and quantitatively in hybrids. Single-parent expression (SPE) and parent-
specific expression (PSE) types of qualitative variation were most prevalent, 43.73 and
41.07% of variation, respectively. Meanwhile, negative super-dominance (NSD) and
positive super-dominance (PSD) types of quantitative variation were most prevalent,
31.06 and 24.30% of variation, respectively. During the early reproductive growth stage,
the gene expression pattern differed markedly from other developmental stage patterns,
with allelic expression patterns during seed development skewed toward low-value
parental alleles in hybrid seeds exhibiting significant quantitative variation-associated
superiority. Comparisons of qualitative gene expression variation rates between ZC
and other hybrids revealed proportions of SPE-DEGs (41.36%) in ZC seed DEGs that
significantly exceeded the average proportion of SPE-DEGs found in seeds of other
hybrids (28.36%). Importantly, quantitative gene expression variation rate comparisons
between ZC and hybrids, except for transgressive expression, revealed that the ZC rate
exceeded the average rate for other hybrids, highlighting the importance of partial gene
expression in heterosis. Moreover, enriched ZC DEGs exhibiting distinct tissue-specific
expression patterns belonged to four biological pathways, including photosynthesis,
plant hormone signal transduction, biology metabolism and biosynthesis. These results
provide valuable technical insights for creating hybrids exhibiting strong heterosis.
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INTRODUCTION

Maize is an important crop that contributes significantly to the
production of food and industrial raw materials around the
world. Genetic improvement of maize mainly depended on its
abundant genetic diversity and strong heterosis. Heterosis is
a ubiquitous biological phenomenon in which hybrids exhibit
superior performance relative to the biparental value of their
parents for one or more traits. Researchers have been studying
heterosis in depth from diverse perspectives. Environmental
influences on heterosis (Duvick, 2005), which emphasize the
environmental adaptability of plants to overcome the bottleneck
of stresses. Combining ability effect tends to suggest that parental
combining ability selection is the effective approach in hybrid
breeding (Makumbi et al., 2011; Zhang et al., 2015). Genetic
distance dominance (Wu et al., 2016) of heterosis suggests
that the combination of combing ability tests and genetic
relationship analysis can be used to define heterotic groups
for breeding selection and genetic improvement. Changes in
chromosome dose in multiple regions of the genome regulate
quantitative traits, which reflect the influence of dose variation
of chromosome dosage effects (Birchler et al., 2016). QTL
interactions was used to analyze component accumulation of
related quantitative traits could reasonably explain the genetic
basis of part of heterosis (Xiang et al., 2016; Zhu et al., 2016).
Allelic variation in gene expression might play a protective
role in defense against adverse environments (Hoecker et al.,
2008; Waters et al., 2017). “omics effects” can also be used to
interpret heterosis at different levels (Huang et al., 2016; Alonso-
Peral et al., 2017). Low DNA methylation was found in maize
hybrids (where methylation inhibits gene expression), but not in
rice as a whole, revealing the DNA methylation and epigenetic
effects (Groszmann et al., 2013; Dapp et al., 2015). All of the
hypotheses above attempt to reveal the genetic mechanisms
controlling heterosis.

Although the exact molecular mechanisms behind heterosis
remain unknown (Schnable and Springer, 2013), three
competing, but not mutually exclusive, hypotheses propose
that dominance effects, over-dominance effects, epistatic effects,
or some combination thereof explain the genetic control of
heterosis. Dominant hypothesis emphasizes the introduction of
new ideal type dominant allele in the process of plant growth
and development, the dominant allele more popular than the
recessive allele (Davenport, 1908; Bruce, 1910; Jones, 1917).
Over-dominance hypothesis emphasizes the complementarity
between alleles of the offspring of hybrids, and holds that the
heterozygous state is more favorable than the homozygous
state (East, 1908; Shull, 1908; Larièpe et al., 2012). Epistatic
interactions hypothesis emphasizes the favorable alleles in the
role of heterosis gain. For any site, the effect can be produced by

Abbreviations: QTLs, quantitative trait loci; DEGs, differentially expressed
genes; PCE, parental co-silence expression; PSE, parent-specific expression; HSE,
hybrid-specific expression; SPE, single-parent expression; PAVs, presence-absence
variations; PHCE, parent-hybrid co-expression; PSE, parent-specific expression;
NSD, negative super-dominance; ND, negative dominance; PND, partial negative
dominance; MP, mid-parent; PPD, partial positive dominance; PD, positive
dominance; PSD, positive super-dominance.

additive dominant or over-dominance (Minvielle, 1987; Schnell
and Cockerham, 1992; Frascaroli et al., 2007). It should be noted
that heterosis in self-pollinated species (e.g., rice) may involve
different genetic interactions from heterosis in cross-pollinated
species (e.g., maize), so both dominant and epistatic hypotheses
may be related (Garcia et al., 2008).

Plant breeding is the aggregation of superior alleles from
different germplasm sources. The aggregation of favorable alleles
from different parents in the hybrids can exhibit much greater
effects and may result in elite varieties (Cai et al., 2014). At
present, intervarietal hybrid advantage is the main technical
term used to describe unknown underlying mechanism(s)
responsible for superior hybrid maize characteristics, with few
mechanistic clues obtained from past studies that focused on
maize germplasm-associated heterosis groups and patterns (Reif
et al., 2003; Aguiar et al., 2008; Zhang et al., 2018; Annor et al.,
2020). Nevertheless, early maize varieties cultivated in China
possessed limited genetic diversity that has hindered attempts
to substantially increase hybrid maize yields in recent decades.
A large number of alleles were deleted by long-term artificial
selection, caused losses in diversity as reflected by reduced
allele numbers through elimination of unfavorable alleles (Gao
et al., 2017). Indeed, the lack of adequate parental genetic
variation has caused breeding efforts utilizing numerous heterosis
groups to fail to improve grain yield, prompting researchers
to investigate heterosis mechanisms associated with strong
predominant hybrid maize.

The superior allele is the basis of the dominant expression
in hybrids. Allelic specific expression in hybrids is one of the
mechanisms of heterosis (Ma et al., 2021). Researchers have
speculated that heterosis-associated gene expression may be
influenced by multiple biological processes, including DNA
sequence variation, gene copy number change, histone
modification, transcription factor regulation and DNA
methylation (Zarayeneh et al., 2017). In one study, large
numbers of DEGs detected during differentiation of maize
spikelets and florets were identified based on gene expression
profile differences between hybrid Zhengdan 958 and its
parental lines Zheng58 and Chang7-2. Intriguingly, this set of
DEGs encoded transcription factors or enzymes involved in
biosynthesis of stress-related metabolites, suggesting that such
genes are key players in heterosis expression (Li et al., 2012).
Meanwhile, altered parental gene expression patterns observed
in hybrid offspring indicate that intergenerational differential
gene expression can generate hybrid phenotypes that are either
superior or inferior to parental phenotypes (Stupar et al., 2008).
Most DEGs showed inconsistent expression in tissues, which
suggested extensive variation in the regulation of gene expression
in a tissue-specific manner, about 97% of the single-parent
expressed (SPE) genes exhibited intermediate or transgressive
expression in hybrids, which might provide a wide range of
opportunities for hybrid complementation through heterosis
(Zhou et al., 2019). From the perspective of genome composition,
genes of hybrid originate from these of parental inbred lines,
thus, changes in gene expression and regulation in hybrid
offspring must be responsible for heterosis, as demonstrated in
previous studies that compared gene expression profiles between
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hybrids and parent lines (Guo et al., 2004; Harrison et al., 2012;
Paschold et al., 2012, 2014; Baldauf et al., 2016). However,
studies comparing gene expression patterns among hybrids have
not been reported.

The specific expression pattern of superior alleles is
the molecular basis of heterosis to achieve. Hybrids can
selectively express beneficial alleles under specific spatiotemporal
conditions, thus showing superiority (Shao et al., 2019). Recently,
transcriptomic analysis has served as a valuable tool for revealing
regulatory mechanisms underlying differential expression of
parental alleles and DEGs in hybrids vs. parental lines (Fu et al.,
2015) and effects of parental genetic variations on expression
of genes in hybrids (Hu et al., 2016; Li et al., 2016). Differential
gene expression in hybrids may be responsible for heterosis,
all possible patterns of gene action supports the hypothesis
that multiple molecular mechanisms contribute to heterosis
(Swanson-Wagner et al., 2006). The expression level of parental
alleles in rice hybrids is unbalanced, which is considered to
be one of the important mechanisms leading to heterosis
(Shao et al., 2019; Lv et al., 2020). Therefore, the study of gene
expression patterns in maize hybrids will play an important
role in elucidating the heterosis mechanism. Although many
hypotheses have been proposed regarding gene expression
between parents and progeny that may reasonably explain
one aspect of heterosis, but few studies investigating heterosis
intensity of hybrids have been reported.

Regulation of gene expression runs through the whole
development stage, but the significance of gene expression
varies in stages of crop development. Many genes with specific
functions are expressed only at a certain stage of plant growth
and development, and their abnormal expression may lead
to the generation of new phenotypes (Ferrándiz et al., 2000).
Therefore, the study of gene expression changes in time and
space is an important way to understand the mechanism of
plant growth and development. Leaf, the most important site
of photosynthesis in plants, is an essential source-to-sink sugar
transport organ needed to sustain the entire reproductive process
including grain yield. Indeed, leaf enlargement is a highly
important characteristic of maize hybrids (Swanson-Wagner
et al., 2006; Frascaroli et al., 2007). Maize spike differentiation,
during which the plant meristem gradually shifts from vegetative
to reproductive growth, is another key stage affecting maize
yield. During maize spike differentiation, paired axillary spikelet
meristem and floret meristem, which determine the number
of rows and grains per ear, respectively, form and ultimately
affect maize grain yield (Bommert et al., 2005; Pautler et al.,
2013). Thus, leaves during the five-leaf stage, ears during
the spikelet differentiation stage and seeds at 15 days post-
pollination represent important transitions from maize vegetative
to reproductive growth and are thus of great significance for
breeding of high-yield maize.

Zhengdan958, a commercially successful hybrid variety
created by Chinese maize breeding programs from parental
inbred lines Zheng58 and Chang7-2 was studied here due to
its expression of strong heterosis with regard to grain yield (Li
et al., 2012; Kogelman et al., 2014; Yang et al., 2020). Over the
past 10 years, this hybrid has been planted across China and

is prized for its high and stable yield, high quality, resistance
to high planting density, broad adaptability and resistance to
multiple diseases and pests (Ma et al., 2018; Zhang et al., 2018).
In this study, four typical maize inbred parental lines and six
hybrids created from them using an incomplete diallel cross
(NCII) strategy followed by comprehensive mRNA sequencing
were used to investigate the effect of gene expression abundance
of parental lines on hybrids, the variation of gene expression
pattern among hybrids, and the specific expression gene and
their pattern of Zhengdan958. Ultimately, results of this work
should enhance our understanding of heterosis mechanisms so
that heterosis can be harnessed to improve maize and other crops.

RESULTS

Identification of Gene Expression
Abundance in Four Parental Lines
Numbers of differentially expressed genes (DEGs) were similar
between hybrids and inbred lines, with ear (E) the source of
the highest number of DEGs and leaf (L) and seed (S) yielding
basically similar numbers of DEGs (Supplementary Figure 1).
In particular, the number of DEGs in inbred parental line C
seed was significantly lower than corresponding numbers found
in other inbred parental lines. Notably, differences in transcript
abundance between inbred parental lines for a given hybrid could
be characterized as one of three difference types: expression
abundance of the parental allele from one inbred line was greater
than (>) that of the other, was less than (<) that of the other
or was equal (=) to that of the other (Figure 1). In the present
study, numbers of detected DEGs based on higher or lower
mRNA-level abundance in leaf and ear organs of pairs of inbred
parental maize lines were relatively similar. However, for some
pairs of inbred lines as Z and C, C and M, C and Q, special
ratios of parental gene expression levels in hybrid seeds relative
to other tissues were observed as follows: NZ>C:NZ<C ≈ 3:1,
NC>M :NC<M ≈ 1:3, NC>Q:NC<Q ≈ 1:3. Thus, differences in
allelic expression abundance between superior inbred parental
lines and other lines suggests that superior inbred parental lines
provide a more diverse and extensive selection background that
supports a greater range of variation of gene expression in hybrid
offspring. We might also infer from these results that hybrids with
dominant gene action for a given trait are only produced when
transcript abundance of genes derived from the superior inbred
parental line reaches a certain proportion of the total transcript
abundance derived from genes of both parental lines.

Partial Parental Expression of Alleles in
Six Hybrids
Notably, no significant differences were found among
total numbers of genes expressed among different hybrids
(Supplementary Figure 1). However, presence-absence
variations (PAVs) of DEGs that were detected in the four
parental lines appeared as qualitative differences in hybrid
differential gene expression profiles, with PAVs accounting for
19.18% of all differences detected in hybrid transcript expression
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FIGURE 1 | Variation in the number of DEGs between parental inbred lines. Nz>c denotes the number of genes whose value of FPKM is greater in parent Zheng58
than in parent Chang7-2, and the same goes for other acronyms. The numbers at the top of the bar chart represent the number of different types of DEGs, the hollow
five-pointed stars show special proportions of the number of genes, and the tissues [leaves (L), ears (E), and seeds (S)] shown in different colors are listed on bottom.

patterns. Of all PAVs, single-parent expression (SPE) and parent-
specific expression (PSE) variations, the most extreme types of
partial expression patterns involving high- or low-value parent
alleles, were detected in DEGs in greatest proportions of 43.73
and 41.07%, respectively (Figure 2A). Expression patterns of
most DEGs (80.82%) were of the parent-hybrid co-expression
(PHCE) type (Supplementary Table 2). Among PHCE-type
DEGs, we observed two predominant transgressive expression
patterns, negative super-dominance (NSD) and positive super-
dominance (PSD), with NSD and PSD proportions of all hybrid
DEGs found to be 31.06 and 24.30%, respectively (Figure 2B).
Therefore, we conclude that partial parental expression of alleles,
which allele expressed biased toward to one of their parents,
was responsible for qualitative variation in gene expression,
while PHCE-type variations led to quantitative variation in gene
expression. We thus presume that PHCE-type variations could
be the main driving factor of heterosis expression in maize.

Partial parental expression of parental alleles in tissues of
hybrids was consistent, but strength of partial expression was
tissue-specific. With regard to qualitative variation, the number
of SPE-DEGs with high parental partial expression exceeded the
number of PSE-DEGs with low parental partial expression by
6.57%. Specifically, numbers of SPE-DEGs in leaves and ears
were 50.85 and 45.12% greater, respectively, than corresponding
numbers of PSE-DEGs, while in seeds the number of SPE-DEGs
was only 61.60% of the number of PSE-DEGs. With regard
to quantitative variation, the number of genes with expression
biased toward that of the low-value parent (NSD-, ND-, and
PND-DEGs) in hybrids was 26.52% higher than the number of

genes whose expression was biased toward that of the high-value
parent (PSD-, PD-, and PPD-DEGs). Notably, hybrids with
biased gene expression toward alleles of the low-value parent
exhibited significantly superior levels of quantitative variation.

Ultimately, both qualitative and quantitative variations were
found to be associated with specific gene expression patterns in
seeds as compared to leaves and ears, such as high proportions
of PCE-, PSE- and NSD-DEGs and lower proportions of
SPE-, PSD-, PD-, and PPD-DEGs in seeds as compared to
corresponding proportions found in leaves and ears. Among
qualitative variants, expression of alleles in hybrid seeds tended
to be biased toward expression of low-value parent (PSE)
alleles or was completely silent (PCE). However, with regard to
quantitative variation, the number of NSD-DEGs in seeds was
about 2.5 times the average number detected in leaves and ears,
while the combined number of PSD-, PD- and PPD-DEGs in
seeds was only 32.99% of the average number of DEGs in leaves
and ears. Meanwhile, the number of DEGs exhibiting mid-parent
allelic expression patterns was only about half of DEG numbers
for other stages. Ultimately, hybrid gene expression patterns
associated with the early reproductive growth stage significantly
differed from patterns associated with other stages and were more
highly influenced by alleles with partial to low parental expression
patterns than by alleles with high parental expression.

Specific Patterns of Gene Expression in
the Zhengdan958
To further clarify genes associated with various expression
patterns in hybrids, we compared expression profiles of various
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FIGURE 2 | Gene expression pattern in hybrids. Qualitative changes (PAVs) and quantitative changes (PHCE) in gene differential expression were represented in
panels (A,B), respectively. The numbers in the bars represent the DEGs in different gene expression types (horizontal classification), and the different colors indicate
that each tissue part is listed in the figure.

genes exhibiting PAV and PHCE expression patterns in different
tissues of ZC and other hybrids. ZC seeds yielded the highest
number of SPE-DEGs and lowest number of PCE-DEGs, in
opposition to gene expression patterns of hybrids overall.
Although DEGs in ZC seeds with PAV-type expression patterns
did not have a significant quantitative advantage, the total
number of SPE-DEGs was highest, comprising 41.36% of all
PAVs, a proportion that was 58.55% higher than the average
proportion of SPE-DEGs for all other hybrids (28.36%). However,
the proportion of ZC seed PCE-DEGs was only 45.60% of the
overall average proportion for other hybrids (Figure 3A), while
ZC seed PHCE-type expression trends were opposite to overall
gene expression trends in hybrids. Specifically, lowest numbers
of NSD-DEGs were found in ZC seeds, which comprised only
51.12% of the average number of NSD-DEGs detected in all
other hybrids. Meanwhile, ND-DEGs, PND-DEGs, MP-DEGs,
PPD-DEGs and PD-DEGs numbers in ZC seeds significantly
exceeded average numbers in other hybrid seeds by 39.88, 105.08,
124.47, 94.42, and 60.14%, respectively, (Figure 3B). No other
notable associations were found in leaves and ears in this study
except for a result indicating the number of PSD-DEGs in ears of
ZC was only 2/3 that of ears of other hybrids (Supplementary
Figure 2). Therefore, we conclude that unique distribution
patterns of DEGs in ZC are highly relevant to ZC grain yield-
related heterosis.

Zhengdan 958-Specific Genes and Their
Enrichment Pathway
To determine factors unique to ZC as the dominant hybrid,
we identified 90, 118 and 137 ZC-specific DEGs in leaves
(Figure 4A), ears (Figure 4B) and seeds (Figure 4C),
respectively, that were not co-expressed in different tissues
(Supplementary Figure 3). Details of ZC-specific genes are

listed in Supplementary Table 3. The results indicated that these
ZC-specific genes were expressed exclusively in different tissues,
with synergistic expression of these genes forming the molecular
basis for ZC comprehensive superiority relative to other hybrids.

In leaves, 33 HSE-DEGs, 48 SPE-DEGs and 9 PHCE-DEGs
were identified, including 4, 1, 1, 2 and 1 DEGs with NSD-,
ND-, PND-, MP- and PSD-type expression patterns, respectively.
Among these DEGs, one HSE-DEG, Zm00001d024372, showed
significant expression activity (Figure 4D) and was found to
encode chloroplastic chlorophyll a-b binding protein. Thus,
we inferred that Zm00001d024372 was an important ZC leaf
protogene. Results of subsequent functional enrichment analyses
indicated that specific ZC leaf DEGs were mainly enriched in
biological pathways plant hormone signal transduction, MAPK
signaling pathway-plant and photosynthesis—antenna proteins
(Figure 4G). In ears, 29 HSE-DEGs, 62 SPE-DEGs and 27 PHCE-
DEGs, including 9, 6, 2, 3, 1 and 6 DEGs with NSD-, ND-,
PND-, PPD-, PD- and PSD-type expression patterns (Figure 4E),
were enriched for photosynthesis, glutathione metabolism and
brassinosteroid biosynthesis pathways (Figure 4H). In seeds, 43
HSE-DEGs, 80 SPE-DEGs and 14 PHCE-DEGs, including 7, 4,
1 and 2 DEGs with NSD-, ND-, MP- and PSD-type expression,
were identified (Figure 4F). These DEGs were mainly enriched
for pathways plant hormone signal transduction, arginine
biosynthesis, glutathione metabolism and other biological
pathways (Figure 4I). Taken together, these results indicate that
ZC-specific DEGs were significantly and generally enriched for
multiple biological pathways that included photosynthesis, plant
hormone signal transduction, biology metabolism of glutathione,
tryptophan, and others and biosynthesis of tropane, piperidine,
pyridine alkaloid and diterpenoid (Figure 5B).

Gene Ontology (GO) pathway analysis showed that functions
of these genes were mainly related to two of the three main
GO categories (Supplementary Table 4). In the category of
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FIGURE 3 | Gene expression patterns in seeds of hybrids. The differential expression of DEGs in seeds of hybrids with PAV (A) and PHCE patterns (B), where the
expression quantity of different types of genes is marked on the bar, and different colors in the figure represent different types of DEGs listed on the right side of the
figure. The abscissa is the number of differentially expressed genes.

biological process, genes detected within ZM00001D000361
(myb115), Zm00001d019230 (sid1), Zm00001d051465 (zag5),
and ZM00001D053895 (bhlh51) play important roles in the
morphogenesis of floral organs, such as the anther and anther
wall tapetum. In the category of molecular function, the
protein product of ZM00001D028264 participates in lipid
IVA biosynthesis due to its UDP-3-O-[3-hydroxymyristoyl]
N-acetylglucosamine deacetylase activity, the protein product of
ZM00001D039634 (d1) participates in gibberellin biosynthesis
due to its gibberellin 3-beta-dioxygenase activity, the protein
product of Zm00001d036535 (oec33) has oxygen evolving
activity, the protein product of Zm00001d048593 (rca1) has
ribulose-1,5-bisphosphate carboxylase/oxygenase activator
activity and the protein product of ZM00001D042122
participates in quercetin sulfate biosynthesis due to its
brassinosteroid sulfotransferase activity (Figure 5A). Taken
together, all of these protogene-associated enrichment pathways
contribute to the overall dominance of ZC.

Among expression patterns of DEGs specifically expressed
in each hybrid within the subset of PAV-type DEGs, SPE-
DEGs showed a quantitative expression advantage over HSE-
DEGs, while no notable variant-related expression advantage was
found for PHCE-type DEGs (Supplementary Figure 4). These
results thus suggest that impacts of advantageous effects due
to dominant expression of PAV-type DEGs exceeded effects of
co-dominant expression by hybrid-specific DEGs.

DISCUSSION

Comparisons of Transcript Abundance
Among Inbred Lines Reveal Parental
Allele-Associated Complementation
Effects
Differential gene expressions are thought to play important
roles in plant phenotypic development (Wallace et al., 2014),
with intergenerational differential gene expression producing

hybrid phenotypes that are either superior or inferior to parental
phenotypes (Stupar et al., 2008). Furthermore, enrichment in
hybrids of advantageous DEGs associated with certain parental
alleles may explain superior hybrid qualities (Shao et al., 2019).
Given the strong correlation between differential gene expression
and hybrid performance, hybrid viability can be predicted by
examining transcriptional activity at parental level (Thiemann
et al., 2010). Intriguingly, here the number of DEGs varied
significantly in different tissues, with greater numbers of genes
found to be expressed in young ears in both hybrids and
inbred parental lines, while numbers of expressed genes were
similar in leaves and grains (Supplementary Figure 1). This
result suggests that differences in gene expression abundance
of parental inbred lines benefits the hybrid when the total
numbers of DEGs are consistent or nearly consistent among
parents and hybrid offspring. Notably, here we discovered that
differences in transcript abundance between parental inbred lines
and hybrid offspring varied among hybrids. Specifically, in seeds
of dominant hybrids, the proportion of expressed genes was
skewed to represent greater expression abundance of transcripts
from one parent (Figure 1). This “asymmetry” of gene expression
abundance between parental inbred lines may support a wider
range of gene expression complementarity in hybrid offspring
that can appear as heterosis. Therefore, we support the idea that
specific expression of different alleles leads to a broader plasticity
of gene expression (Shao et al., 2019).

Tissue-Specific Expression of Alleles
Provides Opportunities for Heterosis at
Various Stages
Tissue-specific genes refer to genes specifically expressed
in different tissues that generate products conferring plants
with specific morphological and structural characteristics and
physiological functions. Tissue-specific gene expression can lead
to phenotypic variation, especially in the case of dominant gene
expression in hybrid tissues and organs that endows hybrids
with special traits (Zhou et al., 2019). In this study, trends of
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FIGURE 4 | Gene expression specificity of Zhengdan958 in different tissues. The DEGs of Zhengdan958-specific genes in leaves (A), ears (B) and seeds (C), and
their expression patterns in leaves (D), ears (E) and seeds (F) and the enrichment biological pathways in leaves (G), ears (H) and seeds (I). The Venn diagrams
(A–C) show the distribution of DEGs of Zhengdan958-specific genes, and the overlapping regions represent the genes that are co-expressed among/between
hybrids. The transition of colors from red to blue in heat maps (D–F) shows that the expression abundance of DEGs changes from high to low, the color bands on
the right indicate different gene expression types, and the number of genes is listed near the type names in the figures. The size of dots in the bubble charts (G–I)
represents the number of genes, and the color of the dots representing the P-value which listed in the figures.

variations of DEGs numbers among different tissues of hybrids
and inbred parental lines were consistent (Supplementary
Figure 1). Meanwhile, DEGs numbers varied significantly
in different tissues, with numbers of genes expressed in
ears significantly exceeding numbers expressed in leaves and
seeds. This result could reasonably be attributed to the fact
that switching of maize plants from vegetative growth to
reproductive growth requires coordinated co-expression of a
large number of genes.

In general, characterizations of tissue-specific expressed genes
have improved our understanding of relationships between gene
expression and tissue development (Xiao et al., 2010). Here, gene
expression patterns differed significantly among different tissues.
Regardless of whether the entire overall gene expression pattern

of a hybrid resulted from qualitative variation or quantitative
variation, significantly lower numbers of genes in hybrids
exhibited expression patterns that were biased toward expression
patterns of high-value parental genes than were biased toward
expression patterns of low-value parental genes. We also found
that hybrid seed-associated expression patterns significantly
differed from expression patterns found in other tissues of
hybrids, with numbers of PCE-DEGs, PSE-DEGs and NSD-DEGs
detected in seeds that were respectively four times, two times and
2.5 times greater than corresponding numbers in ears or leaves.
Meanwhile, numbers of PSD-DEGs, PD-DEGs, PPD-DEGs and
MP-DEGs in seeds were respectively about one-third, one-third,
one-half and one-half corresponding numbers associated with
ears or leaves. Therefore, analysis of tissue-specific expression of
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FIGURE 5 | Enrichment circle diagram of Zhengdan958-specific genes. The Top-20 pathway circles of significant enrichment difference were drawn on all the
Zhengdan958-specific genes based on GO (A) and KEGG (B) enrichment pathways. Four circles in the circle diagram from outside to inside. The first circle is the
enriched classification, and outside the circle is the scale of the number of genes, different colors represent different classifications. The second circle is the number
of background genes in this category, the more genes the longer the bar, the smaller the value the redder the color. The third circle shows the total number of target
genes. Rich factor value of each classification in the fourth circle.

DEGs in seeds, which represent the early reproductive growth
stage, revealed underlying molecular mechanisms for heterosis
in maize tissues that influenced grain yield, an observable trait.
Validation of these results awaits further investigation.

Gene Expression Patterns of Allele
Confers Heterosis Intensity Changes
A plethora of studies based on comparisons of differential gene
expression profiles between maize hybrids and their parental
inbred lines have elucidated mechanisms responsible for maize
hybrid vigor. In one study, about 8.9–15.3% of genes were
differentially expressed between hybrid and parental inbred lines
in maize embryos at 6 days post-pollination (Meyer et al., 2007).
In another study, Stupar and Springer found that F1 progeny
of inbred lines B73 and Mo17 exhibited significant differences
in gene expression during seedling and young spike stages and
in embryonic tissue as compared with expression patterns in
parents (Stupar and Springer, 2006). In yet another study of the
Zhongdan 808 hybrid, DEGs derived from parent NGS exhibited
greater relative transcript abundance increases than did DEGs
derived from parent CL11 (Hu et al., 2016), although these results
were not related to the degree of heterosis, as studied in this work.

As mentioned above in the introduction section, we confirmed
that the overall superior performance of ZC has led to large-scale
ZC planting in China. To explore molecular mechanisms at the
gene transcriptional level that are responsible for ZC superiority
relative to other hybrids, we investigated ZC transcriptional gene
expression patterns and compared them to expression patterns
of other hybrids. Due to our main interest in grain yield-
related heterosis, here we focused on ZC seed gene expression,
not gene expression in leaves and ears, in order to study
yield-related heterosis. Notably, ZC hybrid gene expression
trends with regard to both qualitative and quantitative types of

variation were diametrically opposed to trends observed for other
hybrids, especially for expression trends in seeds (Figure 3 and
Supplementary Figure 2).

Differential gene expressions exhibiting SPE- and PCE-
type expression patterns comprised the highest and lowest
proportions, respectively, of DEGs identified in ZC seeds
and respectively exhibited greatest biases toward expression
of high-value and low-value parental alleles. Of PAV-type
DEGs, SPE-DEGs comprised the highest proportion and PCE-
DEGs comprised the lowest proportion of average hybrid
DEGs. Such gene expression trends may provide clues to
understanding why PAV-type DEGs are predominant in hybrid
ZC. Importantly, NSD-type variation was the least prevalent
type of variation observed for quantitative variants, while
all other expression pattern types, except for those with an
overdominance expression pattern, showed obvious quantitative
advantages in ZC seeds. Ultimately, preferential expression in
ZC seeds of high-value parental genes exhibiting qualitative
variation played an important role in dominant expression of
the hybrid. Meanwhile, quantitative-type expression of genes
of the ultra-low-value parent (such as NSD) were lowest,
thus illustrating that preferential expression of superior alleles
derived from high-value parents played an important role
development of hybrid advantage, which was consistent with
the previous research in rice (Huang et al., 2015). Thus,
overall gene expression patterns in hybrids in combination with
comparative advantages should be helpful for guiding future
breeding programs.

Enrichment of Superior Specific Alleles
Promotes Heterosis
Differential gene expressions are thought to play important roles
during plant phenotypic development (Wallace et al., 2014).
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Furthermore, connections among advantageous alleles of
parental genes have been proposed to explain hybrid vigor
(Shao et al., 2019). In other words, higher levels of parental
gene expression in hybrids could be due to enrichment of
advantageous DEGs. The most direct strategy for identifying
differences at the molecular level between ZC and other hybrids
would be to screen for ZC-specific DEGs within the set of
DEGs of all hybrids. Here, we analyzed expression patterns
and enrichment pathways associated with ZC-specific DEGs
detected in different tissues (Figure 4). The number of DEGs
with expression patterns aligning with the PAVs model exceeded
the number aligning with the PHCE model, regardless of whether
the DEGs were unique to ZC or other hybrids. While analyzing
expression pattern of ZC-specific genes, we assumed that these
genes were already expressed in ZC and therefore were not
HSE-type and PCE-type genes. Obviously, DEGs with PAV type
expression patterns comprised the largest proportion of genes
with altered expression associated specifically with hybrids,
including the ZC.

It is noteworthy that a tissue-specific gene expressed
in leaves (Stelpflug et al., 2016; Hoopes et al., 2019),
chloroplastic chlorophyll a-b binding protein-encoding
gene (ZM00001D024372, Lhca1), was identified as having
significantly higher activity in ZC tissues (Figure 4D). This
finding was important in that light-harvesting protein complexes
(LHC I) form proteins encoded by Lhca1 and other genes (Lhca2,
Lhca3, Lhca4, etc.) to trap sunlight within photosystem I (PSI),
a key photosynthetic system in higher plants (Qin et al., 2015).
Our suggestion is that Lhca1 should be targeted as a potentially
useful gene source as part of future maize molecular breeding
strategies to boost grain yield of maize.

In biological systems, various genes perform biological
functions in coordination with one another. Coordinated
gene functions associated with DEGs can be elucidated
using KEGG pathway analysis to identify pathways with
significantly enriched DEGs representation as compared to the
genomic background. Here we found that enriched pathways
associated with ZC-specific DEGs varied among different
tissues, including plant hormone signal transduction in leaves,
glutathione metabolism in ears, and arginine biosynthesis
in seeds, all of which were key nodes of interconnected ZC-
specific key biological pathways. Obviously, the enrichment
of protogenes gradually shifted from photosynthetic signal
to regulation of plant hormones and then to biosynthesis of
amino acids at different developmental stages of maize from
vegetative growth center to reproductive growth center. Overall,
enrichment of ZC-specific DEGs was associated with pathways
related to photosynthesis, glutathione metabolism and plant
hormone signal transduction contributed to comprehensive
phenotypic expression associated with heterosis. These
results were validated by GO enrichment analysis, in which
numerous genes were found to be functionally associated
with biological processes related to biological regulation and
response to stimulus and to molecular functions associated
with binding and catalytic activity. Thus, superior alleles
accumulate in the process of biosynthesis improvement, thereby
promotes heterosis.

CONCLUSION

Heterosis has greatly boosted maize production and benefited
human populations by providing greater food and economic
security. Nevertheless, hybrid heterosis effects for a given
combination of inbred parental lines cannot yet be predicted.
In this study, six hybrids generated via incomplete diallel
crosses of inbred parental lines were subjected to differential
expression analysis to assess heterosis intensity. In general,
the difference in gene expression abundance of alleles from
parental inbred lines forms the basis of dominant performance
of hybrids. Here, global gene expression patterns differed
significantly between ZC and other hybrids, due to differences
in both qualitative variation and quantitative variation of
DEGs. By comparing gene expression patterns between ZC
and other hybrids, the gene expression pattern of this strong
predominant hybrid was revealed as was the important role
of partial parental expression in heterosis. Meanwhile, we
identified ZC-specifically expressed genes, as well as enrichment
pathways associated with the set of identified genes. Annotation
results indicated that enriched protogenes were associated
with multiple biological pathways, such as photosynthesis,
plant hormone signal transduction, ion channel regulation and
other pathways associated with binding and catalytic activities.
Intriguingly, we found that synergistic effects of expression
of multiple distinct tissue-specific genes in ZC promoted
comprehensive heterosis. This study provides new perspectives
for elucidating molecular mechanisms that underlie heterosis
and can serve as a technical reference for designing breeding
programs that harness strong heterosis effects to improve maize
and other crops.

MATERIALS AND METHODS

Plant Materials and Growth Conditions
Four elite maize inbred lines, Zheng58, Chang7-2, Mo17, and
Qi319, were the typical lines of Reid, Sipingtou, Lancaster and
P group, respectively. Six their hybrids, Zheng58 × Chang7-
2, Zheng58 × Mo17, Zheng58 × Qi319, Chang7-2 × Mo17,
Chang7-2 × Qi319, and Mo17 × Qi319, based on an
incomplete diallel cross (NCII) were planted in April of 2019
at the Changping Station at the Institute of Crop Science,
Chinese Academy of Agricultural Sciences (116◦13′ E, 40◦15′
N) in Beijing, China. Among these hybrids, Zhengdan958 is
a commercially successful hybrid variety from Chinese maize
breeding programs with the strong heterosis of yield (Li et al.,
2012; Kogelman et al., 2014).

Tissue samples were collected as follows: (1) for leaf samples,
three top leaves were collected from five-leaf stage seedlings and
pooled; (2) for ear samples, more than 10 young ear tissues were
collected at the stage of spikelet differentiation based on the
phenotypic identification under a microscope and pooled; and (3)
for seed samples, developing kernels containing embryo in the
middle of ear were collected at 15 days after pollination (DAP).
For each tissue, we sampled six biological replicates, three of
which were used for subsequent analysis while the rest served as
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a backup. Tissues were sampled, frozen immediately in liquid N2,
and then stored at−80◦C until being used for RNA extraction.

For the convenience of subsequent description, the names
of each maize line, hybrid, and sampled tissue are abbreviated
as follows: Zheng58 (Z), Chang7-2 (C), Mo17 (M), Qi319
(Q), Zheng58 × Chang7-2 (ZC), Zheng58 × Mo17 (ZM),
Zheng58 × Qi319 (ZQ), Chang7-2 × Mo17 (CM), Chang7-
2 × Qi319 (CQ), Mo17 × Qi319 (MQ), Leaf (L), Ear (E), and
Seed (S). Thus, the first biological replicate of a leaf sampled from
the Zheng58× Chang7-2 (ZC) hybrid is abbreviated as ZC_L1.

Construction and Sequencing of mRNA
Libraries for RNA-Seq Analysis
A total of 90 samples of maize tissue (10 genotypes × 3
tissues × 3 biological replicates) were qualified for RNA
sequencing (RNA-Seq) library construction. Tissues at the
same stage of development were sampled from different plants
and mixed to diminish differences between genotypes caused
by sampling times.

We extracted total RNA with TRIzol Reagent (Invitrogen,
CA, United States) according to the manufacturer’s
recommendations. The quantity and purity of total RNA
samples were analyzed on the Bioanalyzer 2100 and RNA 1000
Nano Lab Chip Kit (Agilent, CA, United States) with RIN
number > 7.0. We purified poly(A +) RNA from 5 mg of total
RNA by two purification rounds on poly-T oligo magnetic beads.
After mRNA was purified, it was fragmented in a fragmentation
buffer containing divalent cations at high temperature. We
then reverse-transcribed the RNA fragments following the
procedures in the mRNA-Seq sample preparation kit (Illumina,
San Diego, CA, United States) to generate the cDNA libraries.
The libraries were then subjected to paired-end sequencing
(2 bp × 150 bp, PE150) on an Illumina HiSeq 4000 platform
at LC-BIOTECHNOLOGIES (LC Sciences, United States) Co.,
Ltd.,1 according to the company’s recommendations.

Analysis of Illumina RNA-Seq Data
We sequenced the transcriptomes of each genotype and tissue
combination and generated a total of 3,899 billon raw paired-
end 150-bp Illumina reads comprising a total of 584.86 gigabases
(Gb) of sequence. We aligned the raw reads from each sample
to the B73 maize genome2 using Hisat2 (version 2.0.5) (Kim
et al., 2016), which excludes some reads based on quality data
and maps high-quality reads to the reference genome, with a
minimum intron length of 20 bp and a maximum intron length
of 50 kb, and other parameters set to defaults. We removed low-
quality reads that contained sequencing adaptors or sequencing
primers, reads containing more than 5% unascertained bases,
and bases below Q20 before assembly. Up to 20 multiple
alignments and at most two mismatches per read were allowed
in HISAT when we mapped reads to the B73 reference genome.
We used StringTie (version 1.3.4d) (Pertea et al., 2015) to
calculate FPKM values (fragments per kilobase of exon model

1www.lc-bio.com/
2ftp://ftp.ncbi.nlm.nih.gov/genomes/genbank/plant/Zea_mays/latest_assembly_
versions/GCA_000005005.6_B73_RefGen_v4

per million mapped reads) for RNAs in each sample. The genes
with FPKM less than 1 were defined as non-expressed genes,
so they were deleted in the calculation process. We used the R
Bioconductor package “Mfuzz” (Kumar and Futschik, 2007) to
cluster expressed genes according to the expression profiles of the
parent-hybrid triplets. Short-read transcripts were reconstructed
using Cufflinks (version 2.0) (Trapnell et al., 2012) and Trinity
(version 0.1.0-alpha.14) (Haas et al., 2013), and then were
mapped to the B73 maize genome using GMAP (Thomas and
Serban, 2010) and were filtered for alignment coverage > 85%
and alignment identity > 90%. A total of 3,257 billon cleaned
paired-end reads comprising 488.57 Gbp of valid sequence data
were produced. The results of sequence statistics and quality
control were list in Supplementary Table 1. We have submitted
the raw sequence data to NCBI (BioProject: PRJNA682889), and
which has yet to be released.

Functional Enrichment Analysis
Enrichment analyses of DEGs were conducted using
FuncAssociate 3.0 (Berriz et al., 2009) using Ensembl gene
identifiers. GO enrichment analysis was performed using the
OmicShare tools, a free online platform for data analysis3.
Firstly, all DEGs were mapped to GO terms in the Gene
Ontology database4, gene numbers were calculated for every
term, significantly enriched GO terms in DEGs comparing to
the genome background were defined by hypergeometric test.
The calculated p-value was gone through FDR correction, taking
FDR ≤ 0.05 as a threshold. GO terms meeting this condition
were defined as significantly enriched GO terms in DEGs. We
used the ggplot2 program package to display the results of GO
(Gene ontology) and KEGG (Kyoto Encyclopedia of Genes
and Genomes,5) enrichment analyses. In addition, KO (KEGG
Orthology) labels were used to represent the classification of
proteins with similar functions in the same pathway.

Identification of Gene Expression
Patterns
For each triplet comprising the set of parents and their hybrid,
differences in gene expression could follow one of five patterns:
(1) parental co-silence expression (PCE), in which the genes are
expressed in parents but not in their hybrid; (2) parent-specific
expression (PSE), in which genes are expressed in only one parent
but not in the other parent and their hybrid; (3) hybrid-specific
expression (HSE), in which genes are expressed only in the hybrid
but not in its parents; (4) single-parent expression (SPE), in
which genes are expressed in hybrid and one of its parents; and
(5) parental-hybrid co-expression (PHCE), in which genes are
expressed in the hybrid and both of its parents.

Models 1–4 (PCE, PSE, HSE and SPE) represent qualitative
variations in differential gene expression that are essentially
similar to presence-absence variations (PAVs) except that the
gene is present in each genotype but are expressed only in a
certain individual or genotype and not in another. As in the

3www.omicshare.com/tools
4http://www.geneontology.org/
5www.genome.jp/kegg
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quantitative gene expression pattern (PHCE) model, hybrids can
be divided into three categories (high-value parents, middle-
value parents, and low-value parents) and seven subcategories
according to their A value (Stupar and Springer, 2006), where:

A = (Pmax − F1)/(Pmax − Pmin)

In the formula, Pmax, Pmin, and F1 represent levels of the
parent with higher gene expression, the parent with the lower
expression, and that of their hybrid, respectively. The categories
of high-value parents, middle-value parents, and low-value
parents include 2 (A < 0.0, 0 ≤ A < 0.2), 3 (0.2 ≤ A < 0.4,
0.4 ≤ A < 0.6, 0.6 ≤ A < 0.8), and 2 (0.8 ≤ A < 1.0,
A ≥ 1.0) subcategories with the A values corresponding to
the interval in parentheses (Trapnell et al., 2009). Then all
the genes of the aforementioned PHCE gene sets expressed
in hybrids were divided into seven groups corresponding to
positive super-dominance (PSD), positive dominance (PD),
partial positive dominance (PPD), mid-parent (MP), partial
negative dominance (PND), negative dominance (ND), and
negative super-dominance (NSD) gene action.
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Supplementary Figure 1 | Number of DEGs in hybrids and their parental inbred
lines among tissues. Histogram depicting the numbers of DEGs in each genotype
(inbred lines and hybrids) and tissues [leaves (L), ears (E), and seeds (S)] with
colors listed on the right. The columns in the histogram are divided in two sections
by wide gaps. The bottom half depicts the number of DEGs in L, E, and S of
maize inbred lines Z, C, M, and Q, which represent Zheng58, Chang7-2, Mo17,
and Qi319. The top half depicts the number of DEGs in L, E, and S of the hybrids,
which include Zheng58 × Chang7-2 (ZC), Zheng58 × Mo17 (ZM),
Zheng58 × Qi319 (ZQ), Chang7-2 × Mo17 (CM), Chang7-2 × Qi319 (CQ), and
Mo17 × Qi319 (MQ). The different inbred and hybrid genotypes are shown on the
y-axis, and the numbers of significant DEGS expressed by the different genotypes
are shown on the x-axis.

Supplementary Figure 2 | Gene expression patterns in leaves and ears of
hybrids. The differential expression of DEGs in leaves of hybrids with PAV (A) and
PHCE patterns (B), and the PAV (C) and PHCE (D) patterns in ears, where the
expression quantity of different type of genes is marked on the bar, and colors in
the figure represent different types of DEGs listed on the right side of the figure.

Supplementary Figure 3 | Distributions of ZC-specific DEGs in tissues. Venn
diagram with colors represent leaves (L), ears (E), and seeds (S), the numbers of
DEGs are listed in the corresponding section.

Supplementary Figure 4 | Expression patterns of specific genes expressed in
different hybrids. The differential expression of DEGs in leaves (L), ears (E), and
seeds (S) of hybrids with PAV (A) and PHCE (B) patterns. The composition of
genes with different expression patterns in PHCE in leaves (L), ears (E) and seeds
(S) was calculated in proportion to the total genes, respectively. Six hybrids:
Zheng58 × Chang7-2 (ZC), Zheng58 × Mo17 (ZM), Zheng58 × Qi319 (ZQ),
Chang7-2 × Mo17 (CM), Chang7-2 × Qi319 (CQ), and Mo17 × Qi319 (MQ).

Supplementary Table 1 | Descriptive statistics and quality control information for
RNA-Seq data. Genotypes and tissue are abbreviated as follows: Zheng58 (Z),
Chang7-2 (C), Mo17 (M), Qi319 (Q), Zheng58 × Chang7-2 (ZC),
Zheng58 × Mo17 (ZM), Zheng58 × Qi319 (ZQ), Chang7-2 × Mo17 (CM),
Chang7-2 × Qi319 (CQ), Mo17 × Qi319 (MQ), Leaf (L), Ear (E) and Seed (S).
Thus, the first biological replicate of a leaf sampled from the Zheng58 × Chang7-2
(ZC) hybrid is abbreviated as ZC_L1. All genotypes were compared to the B73
maize genome with the mapped reads and ratio in the last column.

Supplementary Table 2 | Gene expression patterns in hybrids. Gene expressed
with qualitative (PAVs) and quantitative (PHCE) variation in different tissues [leaves
(L), ears (E), and seeds (S)] in the hybrids, which include Zheng58 × Chang7-2
(ZC), Zheng58 × Mo17 (ZM), Zheng58 × Qi319 (ZQ), Chang7-2 × Mo17 (CM),
Chang7-2 × Qi319 (CQ), and Mo17 × Qi319 (MQ). The Gene expression patterns
listed include different gene actions of parental co-silence expression (PCE),
parent-specific expression (PSE), hybrid-specific expression (HSE), single-parent
expression (SPE), negative super-dominant (NSD), negative dominant (ND), partial
negative dominant (PND), mid-parent (MP), partial positive dominant (PPD),
positive dominance (PD), and positive super-dominance (PSD).

Supplementary Table 3 | Details of Zhengdan958-specific DEGs. Distribution,
expression patterns and enrichment pathways of Zhengdan958-specific genes in
different tissues (leaves, ears, and seeds). The Gene expression patterns (Models)
listed include different gene actions of hybrid-specific expression (HSE),
single-parent expression (SPE), and parental/hybrid co-expression (PHCE).

Supplementary Table 4 | Details of Zhengdan958-specific genes in Gene
ontology. Gene Ontology analysis were conducted with three categories of
Biological Process, Cellular Component and Molecular Function in GO Term (level
1) by the Zhengdan958-specific genes, which were describes the molecular
functions the gene products may perform, the cellular environment in which they
are exposed, and the biological processes involved. The genes were assigned to
the GO Term (level 2) listed with the rank in order of most to least of gene numbers.
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Comparative genomics and meta-quantitative trait loci (MQTLs) analysis are important

tools for the identification of reliable and stable QTLs and functional genes controlling

quantitative traits. We conducted a meta-analysis to identify the most stable QTLs

for grain yield (GY), grain quality traits, and micronutrient contents in wheat. A total

of 735 QTLs retrieved from 27 independent mapping populations reported in the last

13 years were used for the meta-analysis. The results showed that 449 QTLs were

successfully projected onto the genetic consensus map which condensed to 100

MQTLs distributed on wheat chromosomes. This consolidation of MQTLs resulted in

a three-fold reduction in the confidence interval (CI) compared with the CI for the

initial QTLs. Projection of QTLs revealed that the majority of QTLs and MQTLs were

in the non-telomeric regions of chromosomes. The majority of micronutrient MQTLs

were located on the A and D genomes. The QTLs of thousand kernel weight (TKW)

were frequently associated with QTLs for GY and grain protein content (GPC) with

co-localization occurring at 55 and 63%, respectively. The co- localization of QTLs for

GY and grain Fe was found to be 52% and for QTLs of grain Fe and Zn, it was found to

be 66%. The genomic collinearity within Poaceae allowed us to identify 16 orthologous

MQTLs (OrMQTLs) in wheat, rice, and maize. Annotation of promising candidate genes

(CGs) located in the genomic intervals of the stable MQTLs indicated that several

CGs (e.g., TraesCS2A02G141400, TraesCS3B02G040900, TraesCS4D02G323700,

TraesCS3B02G077100, and TraesCS4D02G290900) had effects on micronutrients

contents, yield, and yield-related traits. The mapping refinements leading to the

identification of these CGs provide an opportunity to understand the genetic mechanisms

driving quantitative variation for these traits and apply this information for crop

improvement programs.
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INTRODUCTION

Most agricultural systems focus on increasing crop productivity
and grain yield (GY) and fewer efforts have been devoted to the
grain yield–quality tradeoff. However, a shift from prioritizing
yield to more emphasis on quality, such as nutrient content
is gaining ground in breeding programs (Khush et al., 2012).
Extending the existing concepts for a simultaneous selection of
GY, quality traits, and micronutrient contents seems necessary
to facilitate the development of varieties with an effective
combination of yield potential and end-use quality (Michel et al.,
2019). A rapid increase inmicronutrient deficiency in food grains
has resulted in micronutrient malnutrition among consumers.
Fe and Zn deficiencies are serious and prevalent sources of
malnutrition in developing countries with high consumption of
cereals, such as wheat (Black et al., 2013; Shahzad et al., 2014;
Kumar et al., 2019). Diets based on staple food crops with Zn
and Fe deficiency have been widely recognized as a major global
health problem that affects almost three billion people (Murray
and Lopez, 2013). Breeding crops through biofortification is
a practical approach to cope with Fe and Zn deficiencies by
increasing the grain Fe content (GFeC) and grain Zn content
(GZnC) within the edible parts of staple food crops, especially
cereals (Stein, 2010; Liu et al., 2019; Shariatipour and Heidari,
2020).

Wheat biofortification through breeding methods is a
promising strategy to ameliorate Fe and Zn deficiencies in
developing countries (Liu et al., 2019). One of themost important
challenges in breeding for micronutrients are negative genetic
trade-offs between yield and micronutrient traits (Flatt and
Heyland, 2011; Fabian and Flatt, 2012). At the genetic level, such
trade-offs are thought to be caused by alleles with antagonistic
pleiotropic effects or by linkage disequilibrium between loci
(Fabian and Flatt, 2012). While GFeC and GZnC biofortification
is an important objective in wheat breeding programs, other
important traits, such as GY and grain protein content (GPC)
typically cannot be compromised. The wheat quality is measured
by its rheological traits, such as GPC (Goel et al., 2019) since
wheat is a major source of protein accounting for 19% of human
protein intake in the developing countries (Braun et al., 2010).
The genetic control of quality traits and GY is complex (Zilic
et al., 2011; Velu et al., 2018; Giancaspro et al., 2019; Liu
et al., 2019). A high priority of breeders is to develop high-
quality genotypes that balance acceptable yield potential while
maintaining quality characteristics, both of which are highly
dependent on the co-variance between GY and the major quality
(i.e., GZnC, GFeC, and GPC) criteria (Michel et al., 2019).
However, a negative correlation between the GY and quality
traits is challenging (Simmonds, 1995; Velu et al., 2016; Michel
et al., 2019). In addition to this, our research indicates that
protein concentration in grain decreases under elevated air CO2

Abbreviations:AIC, akaike information criterion; AICc, corrected AIC; AWE, the

average weight of evidence; BIC, Bayesian information criterion; CI, confidence

interval; GCs, candidate genes; GO, gene ontology; GWAS, genome wide

association studies; LOD, the logarithm of odds; MQTL, meta- quantitative

trait loci; MTP, metal tolerance proteins; OrMQTL, orthologous MQTL; QTL,

quantitative trait loci; SNP, single-nucleotide polymorphism.

concentrations of 550 µmol/mol (Fernando et al., 2012). By the
end of the twenty-first century, it is predicted that the global
temperature will rise from 1.1 to −3.1◦C and the atmospheric
CO2 concentration will reach above 550 ppm under intermediate
scenarios (Pachauri et al., 2014) and that heat waves will occur
with a higher frequency and longer duration (Pachauri et al.,
2014). Given these future climate scenarios, it is critical to
anticipate the effects of future growing environments and focus
on breeding strategies that compensate for changes in grain
quality. Likewise, it is important to have an inclusive breeding
objective that tracks a portfolio of indirect traits responsible
for grain quality and productivity, such as the assessment of
dry matter accumulation, photosynthesis, coleoptile growth,
carbon isotope discrimination, plant senescence, and rheological
properties (Rebetzke et al., 2008; Liang et al., 2010; Vijayalakshmi
et al., 2010; Goel et al., 2019).

Because of the large genome size and limited genome sequence
information in wheat, the typical mapping intervals are quite
large in most studies especially for the complex quality traits (Li
Q. et al., 2020) and so further refinement is needed to narrow
down theQTL intervals. Developing a statistically derived catalog
of relevant loci is critical for developing marker-assisted selection
(MAS) approaches in breeding programs. These markers can
be applied to the quantitative trait loci (QTLs) that regulate
the accumulation of high mineral nutrient concentration in
grain along with QTLs for GY and grain quality traits. The
QTL mapping method involves creating a QTL continuity map
to identify genomic regions associated with quantitative traits
(Mohan et al., 1997). Although QTL mapping is a powerful
approach for detecting the genomic regions associated with
complex traits, the genetic effects of QTL identified in different
studies may not be present or are simply not tested in different
genetic backgrounds and environments (Zhang L. Y. et al., 2010).
In addition, the number of traits that can be measured in any
single study is always resource limited (Acuña-Galindo et al.,
2015). Overall, biparental populations are strongly influenced
by different factors consisting of parents, the size and type
of population, the choice of marker sets, and environmental
conditions (Li et al., 2013; Izquierdo et al., 2018; Lei et al., 2018;
Zhao et al., 2018).

In the last decade, an efficient approach called meta-QTL
(MQTL) analysis has emerged in order to circumvent these
restrictions. The MQTL method was initially developed by
Goffinet and Gerber (2000) and was then improved by Veyrieras
et al. (2007) is a method that gathers QTL data from independent
experiments, years, location, and genetic backgrounds to detect
stable QTLs (Goffinet and Gerber, 2000; Arcade et al., 2004;
Hanocq et al., 2007; Sosnowski et al., 2012). The meta-QTL
analysis integrates the information of QTLs from different
population types and sizes identified in different environmental
conditions to find stable MQTLs in a narrower genomic region
with small CI (Goffinet and Gerber, 2000; Hanocq et al., 2007; Li
et al., 2013).

The MQTL analysis allows for the dissection of genetic
correlation among different traits (Truntzler et al., 2010; Danan
et al., 2011; Xiang et al., 2012; Badji et al., 2018; Delfino et al.,
2019). Hence, the MQTL analysis helps to enquire co-location
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of QTLs relying on dense marker maps that are responsible for
different desirable traits including micronutrient contents, GY,
and quality traits (Delfino et al., 2019). Currently, the MQTL
analysis has become popular research in most studies (Goffinet
and Gerber, 2000) related to micronutrients content (Raza et al.,
2019), yield (Zhang L. Y. et al., 2010; Avni et al., 2018), and quality
traits (Quraishi et al., 2017) to overcome the inconsistent QTL
information reported for GZnC, GFeC, GPC, and yield traits.
Further, MQTL analysis helps to identify the candidate genes
(CGs) and refine genomic regions for yield and quality traits
(Raza et al., 2019). However, little is known about the relation of
micronutrients and quality-relatedMQTLs with agronomic traits
in wheat.

The transferability of QTLs between cereals based on the
analysis of syntenic regions and genomic collinearity helps to
identify stable and important QTLs for use in breeding programs.
The aims of this study were to perform a QTL meta-analysis
to (1) identify QTLs that are consistently associated with grain
quality, yield traits, and micronutrient content (2) explore the
co-localized QTLs controlling GY, GPC, GZnC, and GFeC in the
wheat genome, and (3) assess the transferability of QTLs between
wheat, rice, and maize based on the comparative genomics and
the orthologous MQTL (OrMQTS) mining. The outcome of this
study will aid plant breeders in refining micronutrients, GY,
and quality traits for crop improvement through marker-assisted
breeding. Refining our understanding of the genetic architecture
of micronutrients, GY, and quality traits often leads to the
interrelationship between the regions of the genome that may
be more challenging to breed independently. The MQTL is an
analytic procedure that helps refine these relationships between
CGs by providing for precision and statistical power.

MATERIALS AND METHODS

QTL Database Development
A database consisted of 735 quantitative trait loci (QTLs) derived
from 27 independent mapping populations (assessed between
2006 and 2019) assigned to 70 traits (Table 1) was used for
the meta-QTL (MQTL) analysis. The independent populations
consisted of 20 recombinant inbred lines (RILs) and 7 double
haploids (DH) populations, with population sizes ranging from
92 to 485 lines (Supplementary Table 1). The reported position,
the proportion of the phenotypic variance (R2), and the logarithm
of odds (LOD score) of the initial QTLs were used for the analysis
ofmeta-QTLs. ForQTLs withmissing LODorR2, the values were
estimated by the following equation (Nagelkerke, 1991):

R2 = 1− 10(−2LOD/n)

where n represents the size of the population.

Constructing Consensus Genetic Map and
QTL Projection
The data files of the 27 maps were integrated with the Somers
(Somers et al., 2004) reference map for the construction of
a consensus genetic map. Attempts to use other mapping
studies consisting of single-nucleotide polymorphism (SNP)

were unsuccessful due to the lack of SNP density in the
regions for the meta-QTL analysis. The constructed map file
for each population consisted of information on cross-type,
population size, map function, map units, and the position of
different markers in different linkage groups. The individual
QTLs derived from independent populations were projected onto
the consensus genetic map consisted of 3,394markers with a total
length of 3,412.5 cM.

Meta-QTL Analysis
Meta-QTL analysis was performed in BioMercator v4.2 (Arcade
et al., 2004; Sosnowski et al., 2012). For n QTLs, the BioMercator
tests the most likely assumption based on Akaike information
criterion (AIC), corrected AIC (AICc), AIC 3 candidate models
(AIC3), Bayesian information criterion (BIC), and an average
weight of evidence (AWE) criteria in which the prevalent value
among them was considered as the best fit. The consensus QTL
from the optimal model was reported as MQTL. Consequently,
the MQTL position and distribution on each linkage group were
presented as a heatmap using pheatmap R package (Kolde, 2013).
Moreover, the initial QTLs with 95% confidence interval (CI),
QTL density in the identified MQTL, and the distribution of
MQTLs were drawn on the linkage groups using shinyCircos web
tool based on the R program (Yu et al., 2017). The variation
of QTL density for different traits toward centromeric and
telomeric genomic regions was estimated following the approach
by Martinez et al. (2016). The QTL density was determined by
counting the number of QTLs for each trait on 50 cM intervals
across the wheat genome, starting from the centromere region
of a linkage group at position 0. The centromere position was
retrieved from the study by Wan et al. (2017).

Functional Candidate Genes in MQTLs
Intervals
The MQTLs containing more than five trait-QTLs from different
experiments were considered as the most stable consensus
regions and were analyzed for the detection of functional
candidate genes (CGs). To identify the functional CGs, the
sequences of the flanking markers for each MQTL were
retrieved from “Grain Genes” database (https://wheat.pw.usda.
gov/browse?class=probe;query=BARC%2A;begin=351) for the
simple sequence repeat (SSR) flanking markers and “Diversity
Array Technology” (https://www.diversityarrays.com/) (DArT)
flankingmarkers. For flankingmarkers lacking a definite position
on the wheat genome, the closest markers on the genetic
consensus map were selected to determine the MQTL position.
Additionally, for those flanking markers lacking sequence
information in databases, the forward and reverse sequences were
retrieved from the “Grain Genes” database and were used for
the Basic Local Alignment Search Tool (BLAST) analysis against
the newest wheat reference genome (IWGSC RefSeq v2.0) for
detecting the genomic position of each MQTL. The annotation
and gene ontology (GO) of genes lying at the MQTL interval
were retrieved from EnsemblPlants (http://plants.ensembl.org/
index.html) using the new wheat genome (IWGSC v2.0). Finally,
the orthologous of genes located at each MQTL interval were

Frontiers in Plant Science | www.frontiersin.org 3 October 2021 | Volume 12 | Article 709817107

https://wheat.pw.usda.gov/browse?class=probe;query=BARC%2A;begin=351
https://wheat.pw.usda.gov/browse?class=probe;query=BARC%2A;begin=351
https://www.diversityarrays.com/
http://plants.ensembl.org/index.html
http://plants.ensembl.org/index.html
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/plant-science#articles


Shariatipour et al. Genomic Analysis of Wheat Traits

TABLE 1 | The list of assessed traits in meta-quantitative trait loci (MQTL) analysis.

Trait Abbreviation Trait Abbreviation

200KW 200-kernel weight GY Grain yield

25%G 25% green leaf area GZnC Grain Zn content

50%G 50% green leaf area HI Harvest index

75%G 75% green leaf area HW Hectoliter weight

AGB Above ground biomass KH Kernel hardness

BDT Break down time KL Kernel length

BM Biomass KW Kernel width

BY Biological yield LDMA Leaves dry matter accumulation

CDMA Culm dry matter accumulation LL Leaf length

CID Carbon isotope discrimination LS Lodging score

DA Days to anthesis LW Leaf width

DDT Dough development time LY Leaf yellowing

DGC Dry gluten content MDR Maturity date

DH Days to heading MRS Maximum rate of senescence

DPM Days to physiological maturity MTI Mixing tolerance index

DST Dough stability time NG Number of grain per spike

DTF Days to flowering PDMA Plants dry matter accumulation

FFD Factor form density PGMS Percent green at maximum senescence

FLH Flag leaf height PH Plant height

FWA Flour water absorption PLH Penultimate leaf height

GAS Grain area size PT Productive tillers/m2

GCuC Grain Cu content SD Seed diameter

GFD Grain filling duration SDS Sedimentation rate

GFeC Grain Fe content SHS Shattering score

GFR Grain filling rate SHZnC Shoot Zn content

GL Grain length SL Spike length

GL/GW Grain length/grain width ratio SN Spike number

GMnC Grain Mn content SNS Spikelet number per spike

GN Grain number SW Spike weight

GPC Grain protein content TKW Thousand kernel weight

GPL Grain perimeter length TMRS Time to maximum rate of senescence

GSeC Grain Se content TN Tiller number/m2

GW Grain width UIH Uppermost internode height

GWe Grain weight/ear WGC Wet gluten content

GWs Grain weight/spike ZnE Zn efficiency

investigated in rice to describe the functional CGs based on their
reported functions in wheat or rice.

Identification of Traits Within MQTLs
To analyze traits within the MQTL regions, the MQTL results
were converted into binary scores (0 or 1) on the basis of the
absence/presence of an individual trait-QTL within an MQTL
region. We tabulated the number of times a trait was present
within an MQTL, the number of QTLs for a trait present
within an MQTL (implying confirmation of the QTL), and the
number of times the traits were able to be co-localized within
an MQTL. A chi-squared test with one degree of freedom was
performed to determine traits showing significant co-localization
with grain protein content (GPC), grain zinc content (GZnC),
grain Fe content (GFeC), and grain yield (GY) beyond what

would be expected for a random distribution of QTL within
MQTL throughout the genome. The expected number of MQTL
associated with a trait and each GPC, GZnC, GFeC, and GY
were separately calculated bymultiplying the number of observed
MQTL for a trait by the proportion of MQTL containing
GPC, GZnC, GFeC, and GY QTL(s). Traits within the MQTL
regions were also analyzed using IBM SPSS Statistics v.24. The
simple regression analysis was performed using Minitab v. 18 to
determine the effect of MQTLs on the association of GY, GPC,
GFeC, and GZnC.

MQTLs and GWAS Comparison
The detected MQTLs were compared with the significant
loci associated with different quantitative traits identified in
wheat genome-wide association studies (GWAS). The mapped
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FIGURE 1 | Distribution of quantitative trait loci (QTLs) for traits on all chromosomes represented as the number of QTLs per distance (50 cM), starting from the

centromeric region of each chromosome where it was considered at the position 0 cM. Each dot represents the exact location of each QTL.

coordinates of the identified significant loci through GWAS were
compared to those found with the MQTL analysis.

Orthologous MQTL
Due to the high synteny among genes in Poacaea, the most stable
and promising wheat MQTLs were evaluated for the detection of
the orthologous MQTLs (OrMQTL) in rice (Lei et al., 2018; Raza
et al., 2019; Khahani et al., 2020), and maize (Semagn et al., 2013;
Wang et al., 2013, 2016). A set of orthologous genes at theMQTLs
regions was considered as a criterion of a syntenic region using
EnsemblPlants (http://plants.ensembl.org/index.htmldatabase).

RESULTS

Genomic Quantitative Trait Loci
Distributions
The individual traits of quantitative trait loci (QTLs) used in
this study are listed in Supplementary Table 2. The QTLs for
thousand kernel weight (TKW) (18.03%), grain yield (GY),
(13.11%), and a number of grains per spike (NS) (13.11%)
were the most frequently reported agronomic QTLs identified in
the tested mapping populations. The grain Fe content (GFeC)
(33.33 %) and grain Zn content (GZnC) (28.21 %) of QTLs for
micronutrient traits and grain protein content (GPC) (64.00 %)
and sudden death syndrome (SDS) (10.00 %) of QTLs for quality
traits were frequent.

Our results suggest a non-random distribution of QTLs within
the wheat genome. Distribution of QTLs on the basis of physical
size [χ2

(2) = 60.17, P = 8.58E−14] showed that 254, 326, and
155 QTLs were located on the A, B, and D genomes, respectively.
The QTL distribution was significantly different among the seven
chromosome groups [χ2

(6)
= 47.12, P = 1.77E−8], ranging from

as few as 76 QTLs on group 6 to as many as 165 QTLs on Group
2. Chromosome 3B with 75 QTLs had the highest number of
QTLs, followed by chromosome 2B (62 QTLs) and 2A (61 QTLs),
while chromosome 3A with 10 QTLs had the lowest QTL. The
distribution of QTL over the genetic linkage map with respect
to centromeric and telomeric regions was distinctly non-random
(Figure 1). The non-telomeric region of each chromosome (−50
up to + 50 cM intervals) had the highest number of QTLs
(Figure 1).We did not detect QTLs at 100 cM for the tested traits.

The distribution of meta QTLs (MQTLs) indicated that a
cluster of MQTLs was mapped to the non-telomeric regions.
Besides, MQTL_5B_4 and MQTL_6B_1 were located near the
centromeric region of chromosomes 5B and 6B, respectively
(Figure 2). There was a significant correlation between the
number of initial QTLs and MQTLs (r = 0.46, P < 0.03).
The number of MQTLs per chromosome varied from two
(chromosomes 3A and 5D) to eight (chromosomes 1B, 2A,
and 6B).

Meta-QTL Analysis
Of the 735 initial QTLs, 449 were successfully projected onto
the genetics consensus map and used in the meta-QTL analysis
(Figure 3). A total of 100 MQTLs were detected and the number
of individual QTL per MQTL ranged from 1 to 43 (Figures 4,
5; Supplementary Figure 1). The number of traits present per
MQTL region ranged from 1 to 18. Among the identified
MQTLs, MQTL_3B_1 that contained 43 QTLs had the highest
number of initial QTLs followed by MQTL_7A_3 with 29
initial QTLs (Supplementary Table 3). These twoMQTLs can be
considered as the most stable QTLs under different experimental
conditions. The detailed information of MQTLs consisted of the
chromosome number, position, confidence interval (CI), flanking
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FIGURE 2 | Distribution of meta-quantitative trait loci (MQTLs) for assessed traits on all chromosomes represented as a number of MQTLs per distance (50 cM),

starting from the centromeric region of each chromosome where it was considered at position 0 cM. Each dot represents the exact location of each MQTL.

markers, and traits which are shown in Table 2. The higher
marker density of the consensus map compared with the lower
marker density in the independent linkagemaps helped to reduce
the CI of QTLs up to three-fold with an average of 4.63 cM in
MQTLs compared with the mean CI of 13.73 cM for the original
QTLs. Among the detected MQTLs, the CI of 11 MQTLs was
reduced up to <1 cM (Table 2).

Functional Identification of Candidate
Genes
The genomic positions of the stable MQTLs and the number
of functional candidate genes (CGs) in their intervals are
reported in Table 3. The range for the number of the
CGs annotated in the tested meta-QTLs was between 20
and 802. The MQTL_4D_1, MQTL_4B_3, MQTL_3B_1,
and MQTL_5A_4 harbored the greatest number of CGs.
Among the detected CGs on MQTL regions, several well-
known genes including psbL (21.896318-21.896434Mb), psbT
(21.905522-21.905638Mb), rpl33 (21.899696-21.899896Mb),
and rps4 (24.160684-24.161289Mb) genes were located in
the MQTL_3D_4 region. In addition, the miR166 gene was
detected in the MQTL_4D_1 (450.196302-450.196403Mb)
and MQTL_7A_4 (561.152174-561.152339Mb) regions.
Furthermore, several CGs with unknown annotation
in wheat and were orthologous to genes in rice were
identified (Supplementary Tables 4, 5). Overall, some
CGs, such as TraesCS2A02G141400, TraesCS3B02G040900,
TraesCS4D02G323700, TraesCS3B02G077100, and
TraesCS4D02G290900 were uncovered with a possible role
in micronutrient contents, yield, and yield-related traits.

Traits Analysis Within MQTLs
Our data show the unequal contribution of individual QTL across
the detected MQTLs (Figure 6 and Supplementary Table 3).
Individual QTL for TKW were present in 41 of the 100 MQTL
regions, the most for any agronomic trait, followed by GY (38
MQTL). Among quality traits, QTLs for GPC was the most
distributed QTLs which were located among 19 MQTLs. The
GFeC and GZnC QTLs were presented in 19 and 12 MQTLs,
respectively (Supplementary Table 3).

Analysis for the co-localization of QTLs revealed that QTLs
for GY and TKW were frequently co-localized with QTLs
of the target traits (GPC, GFeC, and GZnC). The QTLs
for TKW showed 52% co-localizations with QTLs for GPC
(Supplementary Table 6). The GY QTLs showed 52% co-
localization with the QTLs for GFeC. Results also indicated
66% co-localization between grain Fe and grain Zn QTLs. Co-
localization frequency for GY (R2 = 80.81%) was strongly
associated with the total number of MQTL for a trait. The
association of co-localization frequency with the overall number
of MQTL for a trait was relatively strong for GPC (R2 =

65.58%), GFeC (R2 = 58.74%), and GZnC (R2 = 56.00%). For
most traits, association with target traits (GPC, GZnC, GFeC,
and GY) did not differ from the expected on the basis of chi-
squared analysis. However, the association of traits with GY,
GPC, GFeC, and GZnC as target traits was more than expected
(Supplementary Table 6).

Comparison of the Identified MQTLs and
QTL Mapping in the Wheat GWAS
The comparison of the MQTL locations with genome-wide
association studies (GWAS) QTL regions showed that 21
significant signals (SNPs-linked QTLs) of the available wheat
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FIGURE 3 | Distribution of projected quantitative trait loci (QTLs) across the wheat (Triticum aestivum L.) chromosomes. The numbers inside each parenthesis

represent the number of QTLs.

GWAS map were co-located with MQTLs of seven of the 35
traits tested in our study (Table 4). The results indicated the
co-localization of significant single-nucleotide polymorphisms
(SNPs) for GY (6 SNPs), a number of grains per spike (NG) (1
SNPs), plant height (PH) (4 SNPs), spike length (SL) (2 SNPs),
spike number (SN) (1 SNPs), spike number per spike (SNS)
(4 SNPs), and thousand kernel weight (TKW) (3 SNPs) traits
in the wheat GWAS with the identified MQTLs in our study.
For instance, the MQTL_4A_3, MQTL_4A_4, and MQTL_4B_3
identified for TKW in our study were positioned in the genomic
regions of themajor signal reported for TKW in the wheat GWSA
map. Overall, the co-located MQTLs and significant GWAS
signals were distributed on chromosomes 1B, 2B, 3B, 4A, 4B, 4D,
5A, 7A, and 7B (Table 4).

Orthologous MQTL Mining of Wheat in
Rice and Maize
The comparative analysis for QTLs in wheat, rice, and maize
resulted in the identification of orthologous MQTL (OrMQTL).

Nine OrMQTLs were detected for wheat and rice including
five OrMQTL for GY and two for PH, and GFeC/GZnC,
respectively. Moreover, seven OrMQTL were identified in
wheat and maize consisting of six and one OrMQTL for
GY and PH, respectively. Among the uncovered OrMQTLs,
the OrMQTL_10 was a cross-species QTL in wheat, rice,
and maize (Figure 7; Table 5). The MQTL_7B_2, MQTL_3B_4,
MQTL_4D_1, and MQTL_5A_4 for GY in wheat were in
the co-linear regions for rice GY MQTLs on chromosome
6 (MQTL6-2), 1 (MQTL-YLD3), 3 (MQTL-YLD9), and 11
(MQTL-YLD19), respectively (Table 5). The wheat MQTL_4B_1
and MQTL_7B_5 were in the co-linear region of MQTLs
for PH on chromosome 3 (MQTL-PH11) and 10 (MQTL-
PH26) in rice (Table 5). In addition, wheat MQTL_2A_1,
MQTL_4D_1 and MQTL_4D_1 were in the co-linear regions
of MQTLs of GFeC and GZnC on chromosome 7 (rMQTL7.1),
6 (rMQTL6.3) and 7 (rMQTL7.2) in rice (Table 5). The
MQTL_1B_1, MQTL_2A_1, MQTL_4A_3, MQTL_4B_2, and
MQTL_4B_3 on wheat chromosomes 1B, 2A, 4A, and 4B
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were in located in the co-linear regions of the MQTLs of GY
on chromosomes 1 (MQTL7), 5 (MQTL29), 1 (MQTL10), 8
(MQTL44), and 2 (MQTL23) in maize (Table 5). Furthermore,
an OrMQTL for MQTL_3D_3 on wheat chromosome 3D
was detected on chromosome 10 (MQTL107) harboring the
MQTL for PH in maize (Table 5). One of the wheat MQTLs
(MQTL_7B_3) on chromosome 7B was located in the syntenic
region of maize MQTLs chromosome 5 (MQTL5.5) and 6
(MQTL66), respectively, as well as rice MQTLs on chromosome
6 (MQTL-YLD14) for GY (Figure 7; Table 5). The genes located
at the OrMQTL regions and their annotations were reported
in Supplementary Table 7. Interestingly, the well-known and

proved orthologous genes including OsCYP72A18, OsFbox146,
NAC22, SD37, BRD2, OsMAPK4, and ZmMPK5 were identified
in rice and maize OrMQTLs.

DISCUSSION

Quantitative Trait Loci and
Meta-Quantitative Trait Loci Distribution
Over the Wheat Genome
Analysis of the genetic control of quantitative traits is a challenge
in plant breeding that is due to the complexity and the

FIGURE 4 | Position of detected meta-quantitative trait loci (MQTLs) on the wheat genome associated with micronutrient content, grain quality, and quantitative traits

with 95% confidence interval (CI). Each color in a different linkage group indicates the number of initial QTLs involved in each MQTL. The flanking markers for each

MQTL are presented on the left side of the linkage groups.
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FIGURE 4 | Continued

difficulty of stacking numerous alleles for their control (Izquierdo
et al., 2018). Meta-quantitative trait loci (MQTL) analysis made
possible the consolidation of individual QTL intoMQTL regions.
The MQTL analysis and the comparative genomic approaches
help to identify consensus QTLs and conserved genes across
genomes and species. In the current MQTL analysis, we used
information from over 60% of the individual QTLs to identify
MQTLs that showed the statistical power of MQTL analysis for
combining wheat QTLs that were in the range of 54–84% that
have been reported in the previous studies of MQTL in wheat

(Löffler et al., 2009; Acuña-Galindo et al., 2015; Soriano and
Alvaro, 2019). In this study, we narrowed down the confidence
interval (CI) of the detected MQTL regions compared to the
initial QTLs used in our MQTL analysis. The efficacy of MQTL
analysis in refining the CI for previously known QTLs as well as
for validating their effects across different genetic backgrounds
and environments is well-demonstrated (Goffinet and Gerber,
2000; Wu and Hu, 2012).

The results showed that QTLs and MQTLs had higher density
in the non-telomeric and near-centromeric regions. The QTL
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FIGURE 5 | Circus plot showing distribution of QTLs and MQTLs on 21 linkage group of wheat. The outermost circle indicates the length of each linkage map on the

consensus genetic map. The second circle indicates the initial QTLs with 95% confidence intervals. The third circle displays the density of QTLs in each MQTLs. The

fourth circle displays the position of detected MQTL related to assessed traits based on heatmap illustration. The last inner circle demonstrated common markers links

between different genome (A, B, and D) of each linkage groups.

result from the genetic segregation of sequence polymorphisms
at functional elements, such as regulatory sequences upstream
of genes and/or coding sequences (Flint and Mackay, 2009; Salvi
and Tuberosa, 2015). Therefore, it is expected that QTL density
on a genetic map is driven by gene density, polymorphism
rate at functional sites in genetic regions, and the frequency

of recombination. This finding was in line with the result of
Martinez et al. (2016), which illustrated higher QTLs densely
mapped to the near centromeres on the genetic maps.

In the quality traits category, QTLs for grain protein
content (GPC), grain Fe content (GFeC), and grain Zn content
(GZnC) traits were the most observed QTLs in the identified
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TABLE 2 | Description of detected meta-quantitative trait loci (MQTL).

MQTL name Chromosome Flanking markers Position (cM) CI (cM) Individual QTL present in MQTL*

MQTL_1A_1 1A BE470613.3–cwem0012 74.13 3.6 GWe

MQTL_1A_2 1A barc176–wPt-7726 83.88 2.9 SNS

MQTL_1A_3 1A barc0350–cfa2226 105.4 1 GY, SD, SL, SNS, TKW

MQTL_1A_4 1A Xcfe257.2–Xpsp3151 113.51 2.1 DA, GY, NG, SD, SL, SW, TKW

MQTL_1A_5 1A wPt-2855–wPt-663949 169.72 8.6 GMnC, SL

MQTL_1B_1 1B gwm608–barc0008 15.34 4.31 DA, DPM, GFD, HW, SD, SDS, TKW

MQTL_1B_2 1B barc8–wPt-0705 27.06 2.98 BDT, DA, DPM, GFD, GPC, HW, SDS, SL, TKW

MQTL_1B_3 1B wmc813–

LTR6150/ISSR3.380

35.00 2.75 BDT, GFD, GY, HW, NG, SDS, TKW

MQTL_1B_4 1B barc80–wmc728 48.11 3.2 BDT, DDT, DST, FWA

MQTL_1B_5 1B gwm140–aac/gac-10 53.01 3.19 DDT, DST, FWA, GY

MQTL_1B_6 1B agt/ctg-1–act/gcg-2 61.31 2.49 DDT, DST, FWA, LS, SW

MQTL_1B_7 1B act/cagt-1–ctcg/gtg-8 66.96 2.39 DDT, DST, FWA, MDR

MQTL_1B_8 1B aag/cag-4–acc/cag-5 82.21 0.42 DDT, DST, FWA, NG, SL

MQTL_1D_1 1D gwm147–Xcfe78.1 19.18 9.09 GFD, GPC, SDS, SNS

MQTL_1D_2 1D Xbarc62.1–Xcwm70.2 34.03 2.94 DPM, GPC, SDS, TKW

MQTL_1D_3 1D Xbarc240y–gwm0642 40.35 6.75 CDMA, DPM, GPC, PDMA, SDS

MQTL_1D_4 1D Xcwm63.1–ww127.1 50.36 4.12 NG, PDMA

MQTL_1D_5 1D Xcfd27.2–gwm337 59.23 2.18 CDMA, PDMA, TKW

MQTL_2A_1 2A Xgwm382.1–wmc382 22.80 1.4 50%G, 75%G, GFeC, GPC, GY, GZnC, MRS, SNS, TKW, TMRS

MQTL_2A_2 2A wmc149–gwm497.1 36.87 3.35 50%G, 75%G, GCuC, GFeC, GMnC, GPC, GWs, GY, MRS, NG,

SNS, TMRS

MQTL_2A_3 2A XPsr666–gdm101 54.37 3.09 25%G, 50%G, 75%G, DDT, DTF, GFD, GWs, GY, MRS, NG, TKW

MQTL_2A_4 2A barc5–wPt-3114 68.17 6.85 BY, GFD, GY, MRS, NG

MQTL_2A_5 2A Xswes940.2–aca/cta-11 93.68 3.15 GFR, GPC, LDMA, TKW

MQTL_2A_6 2A wmc612–gwm4c 118.53 4.94 GFR, SN, TKW

MQTL_2A_7 2A gwm311–wPt-799664 146.19 3 GMnC, NG

MQTL_2A_8 2A Xbarc122–gwm122 170.28 0.39 GFR, GWs, GY, NG, KW

MQTL_2B_1 2B cfd188–barc13 48.48 0.42 GFD, GY, KL, KW, NG, PH, SNS, TKW

MQTL_2B_2 2B gwm114 -Xmag3478 54.01 2.68 GY, KL, KW, NG, SN, SNS, TKW

MQTL_2B_3 2B Xwmc617.1–Xmag3798 79.57 4.22 GPC, HI, SNS, TKW

MQTL_2B_4 2B Xbarc160–Xwmc344.4 133.37 1.29 GY, NG

MQTL_2D_1 2D wms102–gwm515 60.77 3.82 PH, SL, SW

MQTL_2D_2 2D cfd233–aca/cta-2 74.48 1.97 NG, LY, PH

MQTL_2D_3 2D agc/gcg-3.5–wmc445 85.6 3.58 PH

MQTL_3A_1 3A Xbarc310–Xbarc321 1.00 3 LDMA

MQTL_3A_2 3A Xwmc264–Xbarc1165 111.77 7 DA, PGMS, SNS

MQTL_3B_1 3B wmc754–wPt-1191 81.11 1.99 BM, CID, DA, DTF, GN, GPC, GY, HI, LY, NG, PH, SL, SN, SNS,

SW, TKW, TN

MQTL_3B_2 3B wPt-664724–P39/M31-2 92.92 2.65 GY, HI, LY, NG, PH, SL, SN, SNS, TKW, TN

MQTL_3B_3 3B P39/M50-2–cfb3059 109.1 2.07 75%G, SNS, TKW

MQTL_3B_4 3B barc176–wmc632 114.03 2.38 75%G, GY, NG, SNS, TKW, TMRS

MQTL_3B_5 3B cgt/ctcg-146–wPt-666764 119.72 0.38 75%G, DH, GY, SL, SNS, TKW, TMRS

MQTL_3D_1 3D cfd223–wPt-743340 32.58 9.44 GZnC, SN, TKW

MQTL_3D_2 3D Xgwm892–wPt-8914 66.11 14.3 PH

MQTL_3D_3 3D wPt-733972–wPt-666681 121.94 3.88 BM, GCuC, GFeC, GPC, GY, HI, PH

MQTL_3D_4 3D wPt-664771–wPt-742685 140.91 13.53 BM, GFeC, GPC, GY, HI, PH

MQTL_3D_5 3D wPt-741976–wPt-740544 218.00 9.27 GSeC, GZnC

MQTL_4A_1 4A wPt-664971–BE399880 54.58 1.71 GL, GPC, GPL, GY, GZnC, NG, SNS

MQTL_4A_2 4A tgc/agc-166–cfd30 73.07 1.94 DH, GL, GPL, GY, GZnC, HW, NG, SDS, SN, SNS, TKW

(Continued)
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TABLE 2 | Continued

MQTL name Chromosome Flanking markers Position (cM) CI (cM) Individual QTL present in MQTL*

MQTL_4A_3 4A wPt-3374–wmc0258 88.37 0.3 FWA, GL, GPC, GPL, HW, MDR, NG, SDS, TKW

MQTL_4A_4 4A wmc776–wPt-9305 105.92 1.62 FWA, GCuC, GL, GPL, HW, LDMA, NG, SDS, SNS, TKW

MQTL_4A_5 4A Xgwm832–Xmag3733 135.87 0.71 FWA, GCuC

MQTL_4B_1 4B wPt-0037–wmc0047 9.07 4.66 DA, DPM, HW, MTI, PH, SD, SDS

MQTL_4B_2 4B wPt-3608–wmc125 11.84 3.76 DA, DPM, HW, MTI, PH, SD, SDS

MQTL_4B_3 4B gwm0149–Xcfd222 19.71 7.9 GN, GY, HW, KW, MTI, PH, SD, SDS, TKW

MQTL_4B_4 4B wmc710–Xbarc1096 28.20 0.01 GN, HW, KW, MTI, PDMA, PH, SD, SDS, TKW

MQTL_4D_1 4D Rht-D1–wmc285 17.98 1.87 GCuC, GFeC, GMnC, GY, SN, SNS

MQTL_4D_2 4D wPt-732586–Xsrap11a 41.00 2.06 GFeC, GMnC, GZnC, SN

MQTL_4D_3 4D cfd65–gwm609 100.02 5.4 GFeC, GMnC, GSeC, SD

MQTL_4D_4 4D barc108–Xbarc1183 172.97 6.6 GFeC, GZnC

MQTL_5A_1 5A wPt-6048–barc10 1.87 4.02 DA, DPM, PT

MQTL_5A_2 5A Xcwem32.2–wmc59 46.08 5.03 DPM, LDMA

MQTL_5A_3 5A Xbarc358.2–barc40 69.46 3.35 75%G, DA, DPM, GFD, MRS, PH, SHS, SW

MQTL_5A_4 5A wPt-9834–gwm126 78.56 3.22 75%G, DA, DPM, GFeC, GWe, GY, LS, LY, MRS, SHS

MQTL_5A_5 5A gwm595–Xbarc247 88.51 5.49 GFeC, GZnC

MQTL_5B_1 5B cfd5–BE404594-175 0.00 1.65 DPM

MQTL_5B_2 5B BE404594-175–wmc773 2.20 1.07 GY

MQTL_5B_3 5B wPt-6135–gwm540 16.10 4.55 DH, GY, SL, TKW

MQTL_5B_4 5B gdm116–gwm271 40.43 0.28 DH, GFD, GY, LDMA

MQTL_5D_1 5D Xgdm99.2–Xbarc286 40.43 4.17 25%G, KL, PGMS, SNS

MQTL_5D_2 5D cfa2104–ww152 47.41 0.34 25%G, DST, GPC, HW, GY, KH, KL, NG, PGMS, SN, WGC

MQTL_6A_1 6A wPt-1381–wPt-0938 16.14 5.04 GWe, PH, TKW

MQTL_6A_2 6A agg/cat-6–wPt-2636 26.8 2.68 NG, PDMA, SNS

MQTL_6A_3 6A Xgwm82–wmc807 58.75 5.2 BM, NG, SNS

MQTL_6A_4 6A Xgwm732–Xswes123.3 72.28 2.11 SNS

MQTL_6A_5 6A wmc206–cwem49f 108.86 3.32 SNS, TKW

MQTL_6B_1 6B gctg/ctt-1–agc/tgc-3 48.00 7 GY, MDR

MQTL_6B_2 6B Dupw216–aca/ctga-7 77.00 5.1 DH

MQTL_6B_3 6B act/gcg-11–agc/tgc-7 93.87 2.71 SHS, SW

MQTL_6B_4 6B wPt-7662–gwm613 120.97 4.47 DA, PH

MQTL_6B_5 6B wmc486–wmc487 130.30 5.1 PGMS, PH, TKW

MQTL_6B_6 6B wPt-2786–barc0045 138.66 4.87 GY, PGMS, TKW

MQTL_6B_7 6B cfa2110–agc/ctc-6 159.43 5.9 GY, PGMS, TKW, TMRS

MQTL_6B_8 6B barc0247–wPt-1325 184.32 15.62 NG, PGMS

MQTL_6D_1 6D cfd0049–Xswes123.6 8.23 19.83 PT, SN

MQTL_6D_2 6D Xswes123.7–Xcft3103 43.93 15.84 GY, SN

MQTL_6D_3 6D wmc749–barc175 65.91 6.6 GY, NG, SN

MQTL_6D_4 6D Xcfa2114–gpw95010 85.38 21.45 GY, SN

MQTL_7A_1 7A wmc497–wPt-6217 45.93 1.82 CID, DA, DGC, DPM, GFD, GFeC, GPC, GZnC, KH, NG, PH, PT,

SDS, SL, SNS, TKW

MQTL_7A_2 7A cfd13–gwm4 51.07 1.48 CID, DA, DGC, DPM, GFD, GFeC, GPC, GZnC, KH, LS, NG, PH,

PT, SDS, SHS, SNS, TKW, TMRS

MQTL_7A_3 7A Xwmc475.1–cfa2257 59.28 0.75 CID, DA, DGC, DPM, GFD, GFeC, GPC, GY, GZnC, KH, NG, PH,

PT, SDS, SHS, SL, SNS, TKW

MQTL_7A_4 7A wPt-1259–Xmag2931.3 74.58 3.1 DGC, GPC, KH, PH, SDS, TKW

MQTL_7B_1 7B U260–gwm569 61.32 4.04 50%G, DH, DPM, GFeC, GL/GW, GPL, NG, SL

MQTL_7B_2 7B wPt-4342–wPt-7813 72.66 0.89 50%G, DH, DPM, GFD, GFeC, GFR, GL/GW, GPL, GY, GZnC,

KH, NG, PH, SD, SL, TKW, TMRS

(Continued)
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TABLE 2 | Continued

MQTL name Chromosome Flanking markers Position (cM) CI (cM) Individual QTL present in MQTL*

MQTL_7B_3 7B wPt-6372–barc176 83.18 2.37 50%G, DH, DPM, GCuC, GFeC, GFR, GL/GW, GPL, GY, KH, NG,

PH, SL, TKW

MQTL_7B_4 7B Xcau12.3–barc126 98.82 8.22 50%G, DPM, GFeC, GL/GW, GPL, GY, KH, PH, TKW

MQTL_7B_5 7B Xbarc1073.2–wmc10 121.38 3.87 GFeC, GL/GW, GPL, KH, NG, SN, SNS, TKW

MQTL_7B_6 7B Xgwm3036–gwm146 132.26 2.72 GFeC, GL/GW, GPL, NG, SNS, TKW

MQTL_7D_1 7D wmc121–wmc489 89.41 4.94 50%G, SD, TMRS

MQTL_7D_2 7D wmc473–wmc94 98.52 5.16 GY, SD

MQTL_7D_3 7D gtg/cagt-4–wmc824 121.60 3.82 LY, PH

MQTL_7D_4 7D barc53–cfd0083 149.45 35.94 SHS

* The full name of assessed traits are displayed in Table 1.

MQTLs (Supplementary Table 2). In agronomic traits, QTLs for
thousand kernel weight (TKW), grain yield (GY), and number of
grains per spike (NG) were the most frequent QTLs identified
in the MQTLs regions. The outcome of a MQTL analysis in
tetraploid wheat revealed that more than 10 loci were associated
with TKW (Avni et al., 2018). Besides, in another MQTL analysis
in wheat, individual QTLs for TKW, GY, and kernel number
had the highest number of individual QTLs in MQTL regions.
This result shows the importance of these QTLs for tested traits.
The probable assumptions for a higher frequency of QTLs for
agronomic traits are easy to measure and frequent data for these
traits in different genetic mapping studies. On the other hand,
the TKW, GY, NG, GPC, GFeC, and GZnC traits are multi-genic,
highly heritable, and relatively insensitive to the environment
(especially, TKW) which suggests a high likelihood of different
populations carrying different suites of relevant alleles (Cooper
et al., 1995; Bezant et al., 1997; Avni et al., 2018; Velu et al., 2018;
Zhang et al., 2020).

MQTLs and Functional Candidate Genes
Gene annotation analysis for the MQTL regions helps clarify
our understanding of their genetic architecture and refining the
targets of breeding for these traits. The results of functional
genomics for the identified MQTLs showed that several
well-known genes consisted of psbL for electron transfer in
photosystem II (PSII) (Ozawa et al., 1997), psbT encoding a
PSII subunit for maintaining optimal PSII activity under adverse
growth conditions (Monod et al., 1994), rpl33f or structural
constituent of ribosome and translation which confers tolerance
to cold stress (Rogalski et al., 2008; Moin et al., 2017), and the
rps4 gene for the regulation of translational fidelity in wheat
were located in the MQTl_3D_4 region. In addition, the miR166
gene was detected in theMQTL_4D_1 andMQTL_7A_4 regions.
Comparative genomic approaches start with making some form
of alignment of genome sequences and looking for orthologous
sequences in the aligned genomes and checking to what extent
those sequences are conserved. Based on these, genome and
molecular evolution are inferred and this may, in turn, be put
in the context of phenotypic evolution or population genetics.
Analysis of the conservation and diversification of the miR166
family have shown that miR166 members play a wide and
important regulatory role in seed development. More recently,

a short-tandem target mimic (STTM) method was used to
verify if miR166 regulates important agronomic traits in rice
(Zhang et al., 2017). In a study, transgenic STTM165/166 plants
showed significantly reduced seed number and sterile siliques in
Arabidopsis, suggesting that miR166 plays a vital role in seed
development and it might be useful evidence to improve inferior
grain size in wheat (Wang et al., 2018).

Among the detected and annotated genes in the MQTLs
regions in this study, the OsMED9 (TraesCS3B02G077100),
which is an orthologous gene of rice, was identified in the
MQTL_3B_1 region that was associated with GY and its
components. A diverse array of MED genes has been identified
for the regulation of GY and yield components in crop plants
(Malik et al., 2016). The results indicated that the MQTL_4D_1
of our study was located in the regions of the rice orthologous
BG1 (TraesCS4D02G290900), OsIDD1 (TraesCS4D02G262500),
and OsPAO (TraesCS4D02G309000) genes in wheat. These genes
are associated with metal ion binding, flowering time, days to
heading, senescence, gravitropism, yield, and yield-related traits
(Wu et al., 2008; Liu et al., 2015; Chen et al., 2016; Deng
et al., 2017; Mishra et al., 2017). Overexpression of BG1 leads
to larger grain size in rice (Liu et al., 2015) and manipulation
of BG1 increases plant biomass, grain size, and GY in rice and
Arabidopsis (Liu et al., 2015; Mishra et al., 2017). OsIDD1 could
rescue the never-flowering phenotype of rid1 by a transition
from vegetative to reproductive growth in rice (Deng et al.,
2017), and the PAOs protein-encoding genes (Chen et al.,
2016) regulate cellular polyamine levels which are critical for
embryogenesis (Bertoldi et al., 2004; De-la-Pena et al., 2008),
germination (Bethke et al., 2004; Liszkay et al., 2004), root
growth (Cona et al., 2005), flowering and senescence (Kakkar
and Sawhney, 2002), and mineral deficiency (Moschou et al.,
2008, 2009). The orthologous Ghd7 (TraesCS5A02G541200) that
was among 427 genes located in the MQTL_5A_4 region in
our study involves photoperiodism, flowering, days to heading,
plant height (PH), and yield traits. Enhanced expression of
Ghd7 under long-day conditions delays heading and increases
PH and panicle size in rice. The Ghd7 gene plays crucial
role in increasing the productivity and adaptability of rice
globally (Xue et al., 2008). The uncovered rice orthologous D27
(TraesCS7B02G319100) and BRD2 (TraesCS7B02G484200) genes
in wheat in chromosome 7B region are known to control tillering,
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TABLE 3 | The genomic position of most stable meta-quantitative trait loci (MQTLs) on the wheat genome and number of genes in their genomic intervals.

MQTL Chr. No Genomic position

on the wheat

genome (Mb¶)

Number of

initial trait

QTLs

Number of

genes laying at

the MQTL

interval

MQTL Chr. No Genomic position

on the wheat

genome (Mb¶)

Number of

initial trait

QTLs

Number of

genes laying at

the MQTL

interval

MQTL_1A_4 1A 508.04–511.15 8 48 MQTL_4B_1 4B 601.95–640.98 7 348

MQTL_1B_1 1B 16.23–27.30 7 170 MQTL_4B_2 4B 644.87–652.88 7 113

MQTL_1B_2 1B 564.78–571.06 9 53 MQTL_4B_3 4B 509.04–576.50 9 479

MQTL_1B_3 1B 678.45–681.00 7 30 MQTL_4B_4 4B 597.03–608.25 9 105

MQTL_2A_1 2A 77.88–91.56 10 160 MQTL_4D_1 4D 425.23–490.12 6 802

MQTL_2A_2 2A 38.75–56.93 12 189 MQTL_5A_3 5A 439.58–444.92 8 46

MQTL_2A_3 2A 504.28–507.77 11 23 MQTL_5A_4 5A 671.39–702.96 10 427

MQTL_2B_1 2B 686.82–707.65 8 223 MQTL_5D_2 5D 28.96–34.08 11 38

MQTL_2B_2 2B 760.14–762.08 7 28 MQTL_7A_1 7A 1.47–4.99 16 86

MQTL_3B_1 3B 16.67–50.54 18 457 MQTL_7A_2 7A 49.58–53.07 18 30

MQTL_3B_2 3B 784.63–788.79 11 58 MQTL_7A_3 7A 25.06–41.48 18 233

MQTL_3B_4 3B 822.58–830.11 6 112 MQTL_7A_4 7A 560.02–563.50 6 35

MQTL_3B_5 3B 814.18–826.25 7 221 MQTL_7B_1 7B 32.55–36.92 9 55

MQTl_3D_3 3D 31.87–38.29 7 63 MQTL_7B_2 7B 669.71–693.34 17 241

MQTl_3D_4 3D 16.88–30.37 6 250 MQTL_7B_3 7B 557.05–582.70 14 170

MQTL_4A_1 4A 474.79–488.25 7 66 MQTL_7B_4 7B 38.87–41.30 9 20

MQTL_4A_2 4A 151.24–182.24 11 116 MQTL_7B_5 7B 741.47–744.92 8 107

MQTL_4A_3 4A 632.62–656.77 9 204 MQTL_7B_6 7B 729.40–740.72 6 93

MQTL_4A_4 4A 732.61–734.94 10 59 – – – – –

¶ Mb, represents mega base pair.
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FIGURE 6 | Distribution of QTLs controlling different traits in detected MQTL regions.

heading date, PH, and yield traits in rice (Hong et al., 2005; Lin
et al., 2009; Liu et al., 2016).

The identified rice orthologous D18 (TraesCS2B02G570800),
OsRPK1 (TraesCS5D02G034200), DRUS1, and DRUS2
(TraesCS4A02G133800) genes within the MQTL_2B_2,
MQTL_4A_2, and MQTL_5D_2 regions of our MQTLs
were associated with PH in wheat (Itoh et al., 2002; Zou et al.,
2014; Pu et al., 2017). Manipulating these genes lead to varieties
with dwarf and semi-dwarf phenotype and such phenotypes
possess short and strong stalks, exhibit less lodging, and a greater
proportion of assimilation partitioned into the grain, resulting in
further yield increases (Hedden, 2003).

The identified rice orthologous OsRLCK189
(TraesCS1A02G317300), OsGH3-4 (TraesCS1A02G320200), FT-
L (TraesCS2B02G511400), OsRLCK57 (TraesCS3B02G600300),
OsHK1 (TraesCS2B02G495500), AIM1 (TraesCS3D02G077200),
andWOX11 (TraesCS2A02G100700) genes in wheat was located
in MQTL_1A_4, MQTL_2A_2, MQTL_2B_1, MQTL_3B_5,
and MQTl_3D_3 regions show a role in root growth and
inflorescence and floral development (Richmond and Bleecker,
1999; Izawa et al., 2002; Vij et al., 2008; Ogiso-Tanaka et al.,
2013; Zhao et al., 2015, 2020; Cheng et al., 2016; Xu et al., 2017;
Lehner et al., 2018; Kong et al., 2019). Inflorescence development
in cereals directly affects grain number and size which are key
determinants of yield (Yamburenko et al., 2017).

The rice orthologous OsMTP12 (TraesCS2A02G141400),
OsMTP9 (TraesCS3B02G040900), and OsMTP1
(TraesCS4D02G323700) belonging to the metal tolerance
protein (MTP) gene family were identified in the MQTL_2A_1,
MQTL_3B_1, and MQTL_4D_1 interval of the wheat genome
in the present study. The MTP gene family plays a critical role
in metal transport, mainly in Zn, Mn, Fe, Cd, Co, and Ni,
metal homeostasis, and tolerance (Gustin et al., 2011; Zhang
and Liu, 2017; Ram et al., 2019). The increased expression of
MTP genes during seed development and their potential role
in metal homeostasis during the seed filling stage had been
documented (Ram et al., 2019). The MTP1 and MTP12 genes
share a characteristic histidine-rich loop toward the c-terminal,
which is known to have a role in Zn-binding (Ram et al., 2019).

The MQTL_1A_4, MQTL_3B_5, MQTL_4B_1,
MQTL_4B_2, MQTL_4B_3, MQTL_4B_4, MQTL_7A_1,
and MQTL_7A_4 interval regions harbored rice orthologous
VAL1 (TraesCS4B02G314600), PROG1 (TraesCS4B02G354000),
D14 (TraesCS4B02G258200), LPL2 (TraesCS4B02G308000),
OsINV3 (TraesCS7A02G009100), and OsRLCK218
(TraesCS7A02G385300) genes with a role in diverse development
and growth traits including leaf development, PH, shoot
branching, panicle and tiller number, grain number, grain and
spikelet size, and GY (Vij et al., 2008; Zhou et al., 2016; Morey
et al., 2018; Wu et al., 2018; Yao et al., 2018; Zhang et al., 2018;
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TABLE 4 | The collinear meta-quantitative trait loci (MQTLs) with the significant loci in wheat genome-wide association studies.

Trait* Wheat MQTL Chromosome (genomic position in Mb) SNP marker name (genomic position in Mb) Wheat GWAS references

GY MQTL_3B_1 3B (16.67–50.54Mb) AX_109881378 (20.5–22.0) Li et al., 2019

MQTL_4A_2 4A (151.24–182.24Mb) M8680 (157.56) Mathew et al., 2019

MQTL_5A_4 5A (671.39–702.96Mb) AX-110458478 (692.17) Hu et al., 2020

AX-108839508 (692.16)

AX-109388349 (692.18)

AX-108829895 (692.39)

NG MQTL_7B_2 7B (669.71–693.34Mb) S7B_687521301 (687.52) Jamil et al., 2019

PH MQTL_4D_1 4D (425.23–490.12Mb) AX-95235641 (442.17) Hu et al., 2020

MQTL_7B_2 7B (669.71–693.34Mb) AX-110149206 (676.25) Hu et al., 2020

AX-95658823 (675.28)

AX-95149761 (680.08)

SL MQTL_1B_2 1B (564.78–571.06Mb) AX-109901032 (566.19) Li Q. et al., 2020

MQTL_7A_3 7A (25.06–41.48Mb) AX-109394807 (29.32) Hu et al., 2020

SN MQTL_4A_2 4A (151.24–182.24Mb) AX-109066809 (179.94) Li Q. et al., 2020

SNS MQTL_2B_1 2B (686.82–707.65Mb) AX-111551006 (706.93) Li Q. et al., 2020

MQTL_4D_1 4D (425.23–490.12Mb) AX-169338181 (433.00)

AX-111020167 (471.23)

MQTL_7A_1 7A (1.47–4.99Mb) AX-111542213 (4.55)

TKW MQTL_4A_4 4A (732.61–734.94Mb) S4A_733664972 (733.66) Jamil et al., 2019

MQTL_4A_3 4A (632.62–656.77Mb) AX-111600193 (642.37) Li Q. et al., 2020

MQTL_4B_3 4B (509.04–576.50Mb) AX-94402252 (564.39) Hu et al., 2020

*Full names of traits are displayed in Table 1.

Deng et al., 2020). These candidate genes (CGs) at the detected
MQTL regions can potentially have the same function as their
orthologous varieties in rice and therefore regulate various
developmental and growth-related traits in wheat. Identification
of these confines stable chromosomal regions and CGs that
influence economically important traits in wheat can help to
expedite wheat improvement in future breeding programs.

The MQTLs detected in this study will help identify CGs in
these regions responsible for desirable traits and generate allele-
specific markers through allele mining (Leung et al., 2015; Ogawa
et al., 2018) for marker-assisted selection (MAS) application in
pre-breeding population. Allele mining is a promising approach
to dissect naturally occurring allelic variation at QTLs/CGs
controlling desirable traits (e.g., yield, quality, and micronutrient
content) which has potential applications in crop improvement
programs (Kumar et al., 2010; Gokidi et al., 2017; Kumari et al.,
2018). The data raised from this MQTL study help to refine
genomic targets for validation and subsequent development of
haplotypic markers in breeding programs. Information of the
identified MQTLs can also be used for genetic transformation
or allele screening in germplasm collections (ecoTilling) for
finding new alleles capable of improving yield, quality, and
micronutrient traits (Izquierdo et al., 2018; Belzile et al.,
2020). Additionally, a promising application of the variation
within these MQTL regions might be their introduction as
fixed effects in genomic selection (GS) models to increase
the accuracy of the prediction models in their use in wheat
breeding programs (Spindel et al., 2016; Izquierdo et al.,
2018).

MQTL and Traits Analysis
The QTLs projection on a consensus map allows for the
inspection of co-location across traits and categories, which is
especially relevant for complex traits (Delfino et al., 2019). The
association between trait classes by analyzing the co-localization
frequency of individual trait-QTLs demonstrated that TKW
with 55% and 63% co-localization frequencies was frequently
associated with GY and GPC. In addition, GY and GFeC had the
highest co-localization frequency with GFeC (52%) and GZnC
(66%), respectively. The results of MQTL analysis of our study
confirmed correlations identified for QTLs of TKW and GY (An-
Ming et al., 2011; Azadi et al., 2014; Mahdi-Nezhad et al., 2019),
TKW and GPC (Wang L. I. et al., 2012; Goel et al., 2019), and
GFeC and GZn (Roshanzamir et al., 2013; Pu et al., 2014; Tiwari
et al., 2016; Liu et al., 2019) in other studies. Co-localization of
QTLs for correlated traits has been identified by Wang et al.
(2018). Co-localization of QTLs could be due to the pleiotropy or
the presence of different linked genes in the same regions that can
partly explain the correlation that exists between traits (Bhatta
et al., 2018). The tightly linked genomic regions or pleiotropy can
partly explain the correlation that exists between traits (Crespo-
Herrera et al., 2016). The result of co-localization frequency of
target traits (GY, GPC, GFeC, and GZnC) with the detected
MQTLs in our study showed interacting MQTLs which affects
the association of traits at the genomic level. Acuña-Galindo et al.
(2015) demonstrated that TKW was most frequently associated
with GY in MQTL regions, with 57% co-localization. The co-
localization of TKW and GPC QTLs has been observed in the
genetic analysis of wheat (Goel et al., 2019). The positive and

Frontiers in Plant Science | www.frontiersin.org 16 October 2021 | Volume 12 | Article 709817120

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/plant-science#articles


Shariatipour et al. Genomic Analysis of Wheat Traits

FIGURE 7 | The syntenic region of meta-quantitative trait loci (MQTLs) among the wheat, rice, and maize. Orthologous MQTL (OrMQTL)_10 indicates syntenic regions

among identified MQTLs for grain yield (GY) control in wheat (MQTL_7B_3), rice (MQTL-YLD14), and maize (MQTL5.5 and MQTL66). The genomic position,

chromosome number, and common genes among the wheat, rice, and maize are indicated.

highly significant associations of GPC and TKW traits have been
reported in different wheat populations in other studies (Peleg
et al., 2009; Badakhshan et al., 2013; Krishnappa et al., 2017).
According to Liu et al. (2019), mineral nutrient concentrations
and yield components have shown commonQTLswhich is in line
with co-localized QTLs for grain Zn, Fe QTLs in the tetraploid
and hexaploid wheat in other studies (Peleg et al., 2009; Xu
et al., 2012; Crespo-Herrera et al., 2016; Krishnappa et al., 2017;
Velu et al., 2017). In a recent QTL analysis study on rice, grain
Fe and grain yield QTLs were found to be co-localized (Dixit
et al., 2019). Crespo-Herrera et al. (2016) suggested the possibility
of simultaneous breeding for GFeC and GZnC traits due to
their co-localized QTLs. The current co-localization analysis
within MQTLs regions indicates the possibility of simultaneous
breeding of micronutrient content, grain quality, and GY by
pyramiding the QTL regions through marker-assisted selection
(MAS). Using -MAS, the specific regions can be transferred to

the elite wheat genotypes to simultaneously increase the contents
of various traits (Saini et al., 2020). Therefore, an attempt to
pyramid QTLs responsible for GY, TKW, GPC, GZnC, and
GFeC may accelerate progress in wheat variety development.
The QTL pyramiding strategy has been used for simultaneous
improvement of traits through MAS in wheat (Wang P. et al.,
2012; Feng et al., 2018; Gautam et al., 2020; Muthu et al., 2020).
A clear understanding of the co-location of QTLs and their effect
on target traits, such as grain Fe and Zn concentrations and yield
is very important for using the major effect of QTLs in marker-
assisted breeding (Swamy et al., 2018). The results of MQTL
analysis in our study showed that the location of 18 MQTLs was
in agreement with the position of the QTLs in the meta-QTL
studies by Zhang A. et al. (2010), Acuña-Galindo et al. (2015),
and Kumar et al. (2020). However, our work adds to this body of
genomic mapping research by identifying newMQTL specific for
GY, grain quality, and micronutrient content.
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TABLE 5 | The OrMQTLs detected in rice and maize according to the syntenic region with MQTLs in wheat.

Trait Orthologous

MQTL (OrMQTL)

Wheat MQTL Wheat chr. no.

(genomic position in Mb)

Rice/Maize

original MQTL

name

Rice chr. no.

(genomic position in Mb)

Maize chr. no. (genomic

position in Mb)

Rice/Maize MQTL

reference

GY OrMQTL_1 MQTL_7B_2 7B (674.1981–674.2014) MQTL6-2 6 (3.1029–3.1075) – Lei et al., 2018

OrMQTL_2 MQTL_3B_4 3B (828.4199–828.7654) MQTL-YLD3 1 (25.0457–25.0494) – Khahani et al., 2020

OrMQTL_3 MQTL_4D_1 4D (459.6856–459.6870) MQTL-YLD9 3 (14.6804–14.6827) – Khahani et al., 2020

OrMQTL_4 MQTL_5A_4 5A (700.1772–700.1789) MQTL-YLD19 11 (10.4749–10.4777) – Khahani et al., 2020

OrMQTL_5 MQTL_1B_1 1B (27.1500–27.1501) MQTL7 – 1 (224.7216–224.7217) Wang et al., 2013

OrMQTL_6 MQTL_2A_1 2A (82.1848–82.1880) MQTL29 – 5 (19.2226–19.2254) Wang et al., 2013

OrMQTL_7 MQTL_4A_3 4A (647.0874–647.0936) MQTL10 – 1 (275.0211–275.0279) Wang et al., 2013

OrMQTL_8 MQTL_4B_2 4B (649.4698–649.4752) MQTL44 – 8 (47.1438–47.1520) Wang et al., 2013

OrMQTL_9 MQTL_4B_3 4B (518.0952–518.0999) MQTL23 – 2 (122.6755–122.6792) Wang et al., 2016

OrMQTL_10 MQTL_7B_3 7B (569.4388–582.6560) MQTL-YLD14 6 (28.8459–29.5240) – Khahani et al., 2020

7B (568.6510–582.6560) MQTL5.5 – 5 (55.3131–58.7190) Semagn et al., 2013

7B (568.1069–579.8265) MQTL66 – 6 (89.3129–90.9312) Wang et al., 2016

PH OrMQTL_11 MQTL_4B_1 4B (619.5886–635.8693) MQTL-PH11 3 (1.8624–2.2252) – Khahani et al., 2020

OrMQTL_12 MQTL_7B_5 7B (741.5702–741.5720) MQTL-PH26 10 (13.3596–13.3632) – Khahani et al., 2020

OrMQTL_13 MQTL_3D_3 3D (33.2949–33.2960) MQTL107 – 10 (69.4836–69.4849) Wang et al., 2016

GFeC, GZnC OrMQTL_14 MQTL_2A_1 2A (88.2949–88.2975) rMQTL7.1 7 (7.3945–7.3976) – Raza et al., 2019

OrMQTL_15 MQTL_4D_1 4D (484.6841–484.6880) rMQTL6.3 6 (21.3970–21.3993) – Raza et al., 2019

MQTL_4D_1 4D (461.4899–461.4930) rMQTL7.2 7 (19.9760–20.0812) – Raza et al., 2019

OrMQTL, orthologous MQTL; GY, grain yield; PH, plant height; GFeC, grain Fe content; GZnC, grain Zn content.
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Comparative Genomic Analysis and
Orthologous MQTL
The genome-wide association studies (GWAS) approach can
help in gene discovery and in the analysis of the genetic basis
of complex traits for the improvement of wheat. Comparative
analysis of the wheat GWAS with the identified current MQTLs
suggested the co-localization of 12 MQTLs (MQTL_1B_2,
MQTL_2B_1, MQTL_3B_1, MQTL_4A_2, MQTL_4A_3,
MQTL_4A_4, MQTL_4B_3, MQTL_4D_1, MQTL_5A_4,
MQTL_7A_1, MQTL_7A_3, and MQTL_7B_2) and significant
genomic regions of wheat traits that have been identified in the
wheat GWAS studies (Jamil et al., 2019; Li et al., 2019; Mathew
et al., 2019; Hu et al., 2020; Li X. et al., 2020). Some of the QTL
hotspots suggested common genetic markers for wheat traits
for further use in marker-assisted breeding that increase genetic
gain in breeding programs. The identified OrMQTLs in this
study can facilitate the detection of the underlying regulatory
genes with evolutionary history and conservative function. The
current MQTL analysis defines a genome-wide landscape on the
most stable genetic markers and CGs related to micronutrient
content, yield, and yield-related traits as the most economically
important traits in wheat. The straight-up comparative genomics
in our study indicated high synteny between wheat, rice, and
maize QTLs especially for GY suggesting possible corroborating
evidence of acting the same way in different species that was
in line with the results of other MQTL studies (Ahn et al.,
1993; Moore et al., 1995; Gale and Devos, 1998; Feuillet and
Keller, 1999; Minx et al., 2005). Despite the high interest in the
identification of genes involved in GY and yield-related traits
in maize and wheat as two economically important crops, the
responsible genes have largely remained unknown due to their
complex genomes. Given a close evolutionary relation among
grass genomes (Gaut, 2002), a synteny analysis of wheat, maize,
and rice through the identification of OrMQTLs enabled us
to broaden our genetic information and leads to uncover the
possible function of unknown CGs among these species. Here
we selected the most promising wheat MQTLs to explore their
conserved syntenic regions reported in similarMQTLs studies on
the same traits in rice and maize to identify OrMQTLs (Table 5).
For the wheat MQTL_3B_4 of our study, there is an MQTL in
the syntenic region in rice (Khahani et al., 2020) controlling
OrMQTL_2 containing a rice OsCYP72A18 orthologous gene
(TraesCS3B02G609400 and TraesCS3B02G609600) for grGY
(Swamy and Sarla, 2011). Moreover, the wheat MQTL_4D_1
and MQTL_7B_2 of our study were located in the syntenic
regions of the rice genome on chromosomes 3 (OrMQTL_3)
and 6 (OrMQTL_1), respectively. These two OrMQTLs
encompass OsFbox146 (TraesCS4D02G288900) and OsFbox297
(TraesCS7B02G405900) orthologous genes for genetic control of
GY in rice (Swamy and Sarla, 2011; Lei et al., 2018). Furthermore,
the syntenic region of wheat MQTL_4B_1 possessed the two
orthologous rice genes, NAC22 (TraesCS4B02G328600)
and CYP96B4/SD37 (TraesCS4B02G342400) located on
chromosome 3 (OrMQTL_11) which control plant growth
(Tamiru et al., 2015; Hong et al., 2016). In the syntenic regions
of the MQTL_2A_1 and MQTL_4D_1 of our study, there
was orthologous OsZIP1/OsZIP8 (TraesCS2A02G143400) and

OsFerroportin (TraesCS4D02G323100) genes on chromosomes
7 (OrMQTL_14) and 6 (OrMQTL_15) of rice which are related
to Zn and Fe transport/homeostasis (Morrissey and Guerinot,
2009; Bashir et al., 2011; Alagarasan et al., 2017) (Table 5).

More intriguingly, the syntenic regions of the wheat
MQTL_7B_3 on both chromosome 6 of rice (OrMQTL_10)
and chromosome 5 of maize, harbored the rice (OsMAPK4,
Os06g0699400) and maize (ZmMPK5, Zm00001d014658)
and orthologous gene in wheat (TraesCS7B02G322900). The
mitogen-activated protein kinase (MAPK) cascades play
important roles in regulating plant growth (PH), development,
and stress responses (Zhu et al., 2020). The maize ZmMPK5
is induced by various stimuli, involved in defense signaling
pathways in various abiotic/biotic stress, confers tolerance
to stresses (Zhang A. et al., 2010; Zhang et al., 2014), and
subsequently leads to enhancement of plant growth and
yield. Due to the key role of OsMAPK4 in plant growth,
grain development (Liu et al., 2018; Chen et al., 2021), and
subsequently in GY, the results of the current syntenic analysis
suggest the same function for TraesCS7B02G322900 and
Zm00001d014658 genes located in OrMQTL_10 interval
(Figure 7; Table 5; Supplementary Table 7).

CONCLUSION

The results of this study introduced several novel meta-
quantitative trait loci (MQTLs) for improving wheat in multi-
purpose breeding programs by identifying key genomic regions
associated with agronomic performance, grain quality traits, and
micronutrients content. The results of our MQTL analysis have
significantly increased the power and precision of our ability
to map wheat traits and will provide greater resolution for
future fine mapping and marker development. Importantly, our
data identify co-localization between grain yield (GY) QTLs
with grain Zn content (GZnC), grain Fe content (GFeC), and
grain protein content (GPC) QTLs that suggest an opportunity
for simultaneous breeding for these traits. This study also
provides an example for the value of comparative analysis
between evolutionarily close cereal species for the identification
of genomic regions and candidate genes (CGS) controlling
quantitative traits. Our finding shows the utility of MQTL
analysis for refining the location of genomic regions associated
with a variety of traits and helps understand how their relative
map positions can be exploited for crop improvement. Overall,
these findings can lead to both increased selection efficiency
and accuracy for breeding by providing the basis for marker
development in a marker-assisted selection (MAS) program
and for identifying a novel source of variation through allele
mining efforts in genetic resource collections. Lastly, these
refined MQTLs provide the basis for further focus on the genetic
mechanisms controlling micronutrients, GY, and quality traits.
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Training set construction is an important prerequisite to Genomic Prediction (GP),

and while this has been studied in diploids, polyploids have not received the same

attention. Polyploidy is a common feature in many crop plants, like for example banana

and blueberry, but also potato which is the third most important crop in the world

in terms of food consumption, after rice and wheat. The aim of this study was to

investigate the impact of different training set construction methods using a publicly

available diversity panel of tetraploid potatoes. Four methods of training set construction

were compared: simple random sampling, stratified random sampling, genetic distance

sampling and sampling based on the coefficient of determination (CDmean). For

stratified random sampling, population structure analyses were carried out in order

to define sub-populations, but since sub-populations accounted for only 16.6% of

genetic variation, there were negligible differences between stratified and simple random

sampling. For genetic distance sampling, four genetic distancemeasures were compared

and though they performed similarly, Euclidean distance was the most consistent. In the

majority of cases the CDmean method was the best sampling method, and compared

to simple random sampling gave improvements of 4–14% in cross-validation scenarios,

and 2–8% in scenarios with an independent test set, while genetic distance sampling

gave improvements of 5.5–10.5% and 0.4–4.5%. No interaction was found between

sampling method and the statistical model for the traits analyzed.

Keywords: training set construction, potato, sampling technique(s), genomic prediction (GP), auto-tetraploid

INTRODUCTION

The utilization of DNA marker information for selection in breeding programs has increased over
the last two decades and can be attributed to two factors: the decrease of genotyping costs, and
the advances in quantitative genetics methodology. Genomic prediction (GP) is an example of one
such methodological breakthrough that estimates breeding or genotypic values (depending on the
application) by regressing known phenotypes against high density molecular markers (Meuwissen
et al., 2001). GP allows the prediction of phenotypes frommarker information which speeds up the
breeding cycle, as the performance of new material can be assessed prior to phenotype expression
(Heffner et al., 2010).
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The potential genetic gains from GP hinge on its ability
to predict phenotypes accurately. This prediction accuracy is
dependent on various factors including but not restricted to:
trait heritability (Heffner et al., 2009), statistical models (de los
Campos et al., 2013), genetic architecture of traits (Daetwyler
et al., 2013), population structure (Asoro et al., 2011; Guo
et al., 2014) as well as the size and composition of the
training/calibration set (Pszczola et al., 2012; Rincent et al., 2012;
Bustos-Korts et al., 2016; Akdemir and Isidro-Sanchez, 2019).
This study focuses on the composition of the training set; those
individuals with both phenotype and genotype information, that
are used to train the model and estimate the marker effects
used to make future predictions. Having both input and target
information, the training provides the necessary data so that
statistical models can learn and estimate the relationship between
explanatory variables and the target (James et al., 2013). The
training set should be constructed in a way that it covers a space
which closely resembles the space occupied by future test sets.
This is important for GP because in more recent times, due
to relatively cheap genotyping, molecular marker information
(explanatory variables), can often be collected more efficiently
than phenotype information (target). The question is, which
individuals should be phenotyped and thus be used to calibrate
the model and generate reliable predictions for individuals
without phenotypic information?

Various sampling strategies are available for training set
construction. Simple random sampling allows each individual
in the population an equal probability of being in the training
set and does not utilize any prior information regarding
the material. If population structure exists and the material
is separated into sub-populations, this information can be
included in a sampling method known as stratified sampling.
Stratified random sampling selects individuals based on their
sub-population membership. Studies in diploids have shown that
this method is superior to simple random sampling, although
the improvement depends on the extent of the separation
between sub-populations (Isidro et al., 2015). When there is
little population structure, uniform coverage of the genetic space
may be more suitable, and this is achieved with genetic distance
sampling (Jansen and van Hintum, 2007). This methodology was
first introduced to define core collections for germplasm banks,
but the principle can be extended to construction of the training
set, because similar to core collections, the objective is to obtain
a subset of individuals that contain the genetic diversity present
in a larger population. Rincent et al. (2012) proposed another
method for sampling the training set that evaluates the quality
of prediction for a set of genotypes. An algorithm was developed
that chooses a training set that maximizes prediction accuracy,
based on prediction error variance (PEV) and coefficient of
determination (CD) measures (Rincent et al., 2012).

Numerous comparative studies have evaluated different
methods of training set construction (Asoro et al., 2011; Isidro
et al., 2015; Bustos-Korts et al., 2016; Akdemir and Isidro-
Sanchez, 2019). These past studies have been conducted on
diploids (2 copies of each chromosome) whereas in this study,
the focus is on tetraploids (4 copies of each chromosome). Plants
often exhibit polyploidy, as seen in potato (Solanum tuberosum),

which is an auto-tetraploid and the subject of this article. There
is potential for genetic gain in applying genomic prediction to
potato (Slater et al., 2016), and this was put into practice in
recent studies (Habyarimana et al., 2017; Sverrisdóttir et al., 2017;
Endelman et al., 2018). The current study seeks to investigate
the first step of GP not emphasized in the aforementioned
papers, which is the impact of training set construction on GP
accuracies in tetraploid potato. A secondary aspect of this study
is the investigation of genetic distance measures, as these will
be required to implement genetic distance sampling. Various
measures of genetic distance exist, and the effect it has on
selection accuracy has not yet been evaluated. There are some
proposedmeasures that are allegedly more suitable for polyploids
by accounting for allele dosage in polyploid heterozygotes, and by
considering the presence of unknown alleles, where the absence
of one allele does not necessarily imply presence of the other
(Dufresne et al., 2014).

To ensure that the training set construction method would be
robust for many GPmodels, three types of statistical models were
assessed to generate prediction accuracies. They belong to three
general categories of GP models: no marker selection, marker
selection and models that capture non-additive effects. This was
included in the study to investigate the presence/absence of a
relationship between the sampling method for constructing the
training set and the statistical model. The aim is to uncover
the most suitable method for constructing the training set when
GP for tetraploids is performed, and whether suitable methods
exhibit codependencies with other influences including statistical
model, sample size and trait architecture.

MATERIALS AND METHODS

Plant Materials
Phenotypic and genotypic data were collected and made publicly
available by The Solanaceae Coordinated Agricultural Project
(SolCAP). The SolCAP North American potato diversity panel is
a compilation of elite potato germplasm from breeding programs
across the U.S., as well as historical varieties from the NRSP-6
potato gene bank (Hirsch et al., 2013), and includes tetraploid
species, diploid species, wild species and some diploid and
tetraploid genetic stocks. For this study only the 190 cultivated
tetraploid lines that contained both phenotypic and genotypic
data were analyzed. Additional information about these lines was
provided including release dates and the classification of each
variety into one of six market classes: French Fry processing,
Chip Processing, Table Russet, Round White table, Yellow and
Pigmented (Hamilton et al., 2011). Genotyping was done with an
Infinium SNP array of 8303 markers, and analyses to determine
allelic dosages were performed with GenomeStudio. Poor quality
SNPs, and SNPs unable to distinguish between the heterozygous
classes were removed, leaving 3763 bi-allelic SNPs with reliable
information on allelic dosages (Hirsch et al., 2013). For all
calculations utilizing SNP information, the marker matrix was
coded categorically (AAAA, AAAB, AABB, ABBB, and BBBB) or
as a numerical measure of the number of alternate alleles present
(0,1,2,3, and 4), where “A” is the reference allele and “B” the
alternative allele.
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Genomic Prediction was conducted for the three quantitative
traits, especially important to the French fry and potato chip
markets: tuber length (millimeters), tuber fructose and sucrose
content (milligrams gram−1 fresh weight). Information on these
traits were reported in the study by Rosyara et al. (2016), and were
chosen so that for this study, we examine traits with high broad-
sense heritabilities like tuber length and fructose content (h2 =

0.91 and h2 = 0.85, respectively), and sucrose content, a trait
with intermediate heritability (h2 = 0.67) (Rosyara et al., 2016).
These traits, among others were measured in as many as four
environments (New York 2010,Wisconsin 2010, New York 2011,
and Wisconsin 2011) however not all traits were measured in
all environments. The trials consisted of a randomized complete
block design with two replicates in each environment and using
a linear model accounting for experimental design variables,
phenotypic values were generated as the best linear unbiased
estimator (BLUE) (Rosyara et al., 2016).

Analyses
Population Structure
To assess population structure for the definition of strata,
the marker data was analyzed using three methods: Principal
Components Analysis (PCA), Discriminant Analysis of Principal
Components (DAPC) and Analysis of Molecular Variance
(AMOVA). In a population with distinct sub-divisions, a
significant portion of the genetic variability of the population
can be attributed to the differences between sub-populations.
AMOVA estimates variance components of various factors,
including the contribution of subgroups to a population’s total
variability (Excoffier et al., 1992). Population structure can
also be visualized and quantified using Principal Components
(Jombart, 2008). Market classes were given for the SolCAP North
American diversity panel, and to visualize the extent of separation
between these classes, DAPC was implemented. Unlike PCA
which looks at overall variability (between and within classes),
DAPCmaximizes the between group variation with respect to the
variation within groups (Jombart et al., 2010).

Sampling Methods
To evaluate training set construction methods, prediction
accuracies were compared. Accuracy was defined as the
correlation between observed phenotypic values and genotypic
values of the validation/test set predicted by the corresponding
genomic prediction model. The underlying hypothesis is that the
prediction accuracy may be affected by the training set used to
calibrate the model; a training set that does not cover the design
space will result in poor predictions of the test set. In this study,
four methods for constructing the training set were compared:
simple random sampling, stratified random sampling, genetic
distance sampling and the CDmean method.

• Simple Random Sampling (SRS): Training set construction is
equivalent to taking a subset of a larger set. For simple random
sampling, members of this subset are chosen randomly and
completely by chance so that each individual from the panel
has an equal probability to be selected for the training set.

• Stratified Random Sampling (STRAT):Using the population
analysis results to define strata, this method randomly
selects individuals from each sub-population, ensuring that
every sub-population is represented in the sample, while
maintaining the same strata proportions.

nS =
n

N
× NS

For the above equation nS is the number of individuals in the
sample from stratum S, NS is the number of individuals in the
population from stratum S, while n and N are the total sample
size and total number of individuals, respectively.

• Genetic Distance Sampling (GD): This method requires as
input, the distances between genotypes calculated from the
marker data. From the initial pool, one individual is randomly
selected and all individuals within a radial distance r are
discarded and will no longer be candidates for sampling. This
ensures that the next individual sampled will not be genetically
similar to the first individual. From the remaining set, a second
individual is selected and again, all individuals within a genetic
distance of r are discarded. This process is continued until the
desired training set size is attained. The size of the sampling
radius r, is dependent on the desired sample size. A larger
sample size requires a smaller r and vice versa. The method
is described in more detail in Jansen and van Hintum (2007),
and is implemented in Genstat (VSN-International 2015). This
implementation requires a similarity matrix, with a diagonal of
1′s and the off-diagonals in the range of [0, 1].

This similarity matrix comprises of pairwise measures of
genetic similarity between individuals, which Jansen and van
Hintum calculated using the simple matching coefficient.
The authors go on to suggest the Jaccard’s similarity index
as a suitable alternative (Jansen and van Hintum, 2007).
Suggestions for calculating the genetic distance between
polyploids have been made in literature (Dufresne et al.,
2014), and include the Jaccard similarity index. As part of this
study, four genetic distance measures were compared. These
measures were chosen due to their suitability for SNP data,
polyploids and their frequency of use.

1. NEI’S GENETIC DISTANCE makes the biological
assumptions of an infinite alleles model and that genetic
distances are a result of mutation and drift (Nei, 1972). A
categorical marker matrix (AAAA, AAAB, AABB, ABBB,
and BBBB) was used as input, and the Nei’s distance
between two individuals X and Y was calculated using
the formula:

DXY = −ln

∑2
i=1

∑r
j=1 pij,xpij,y√∑2

i=1(
∑r

j=1 p
2
ij,x)

∑2
i=1(

∑r
j=1 p

2
ij,y)

where r represents the total number of markers and pij,x,

is the proportion of the ith allele present at the jth locus in
individual X. For example, a particular locus with genotype
AAAB has p = 0.75 for the reference allele “A.” This
study uses bi-allelic markers hence the summation over
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the number of alleles is limited to two terms (
∑2

i=1). The
distance matrix was converted to a similarity matrix by
subtracting from one, in accordance with the requirements
of the genetic distance sampling algorithm.

2. EUCLIDEAN DISTANCE makes no biological assumptions
as it is purely a geometric distance measure. Using the
numerical coding of the marker matrix (0,1,2,3, and 4) this
measure calculates the distance between two individuals X
and Y :

DXY =

√√√√
r∑

j=1

(Xj − Yj)2

In this equation Yj can be interpreted as the number of

alternate alleles at the jth marker in individual Y . The
Euclidean distance matrix was converted to the similarity
measure, and scaled to fit within the desired range [0, 1]
using the following transformation:

1−

(
DXY

max(DXY )

)

3. JACCARD’S SIMILARITY INDEX does not make any
biological assumptions and requires as input the numerical
representation of the SNP data. The distance between two
individuals X and Y is calculated as:

DXY =

∑r
j=1 |Xj ∩ Yj|∑r
j=1 |Xj ∪ Yj|

In the above expression, |Xj ∩Yj| is the number of alternate

alleles common to both individuals X and Y at the jth

marker, while the term |Xj∪Yj| refers to the total number of
alternate alleles at this samemarker for individualsX andY ,
without repetition (for tetraploids the maximum value for
this term is 4). The resulting output was then converted to
a similarity matrix.

4. KOSMAN AND LEONARD’S GENETIC DISTANCE differs
from previously mentioned genetic distance measures as
it takes into account the ploidy level of the individuals
(Kosman and Leonard, 2005). With the numerical marker
matrix of allele dosages (0, 1, 2, 3, and 4) as input, this
measure calculates the similarity between two individuals
X and Y :

DXY =
1

r

r∑

j=1

Xj ∩ Yj

q

In this equation, Xj ∩ Yj corresponds to the number of

shared alleles at the jth marker, which is divided by q
the number of chromosome copies (4 for tetraploid), and
averaged over all r markers.

• Generalized coefficient of determination (CDmean): The
generalized coefficient of determination is a training set
selection method based on the maximization of the precision
of the prediction of differences (or contrast) between the

average value of the entire population of candidate individuals
and each individual in the test set (Rincent et al., 2012).
Maximizing Equation 1 (below), leads to the maximization of
the precision of contrasts.

CD(c) = diag

[
c′(A− λ(Z′MZ + λA−1)−1)c

c′Ac

]
(1)

Where c is the matrix of contrasts between each individual
without phenotype information and the average of the
candidate individuals, λ is the ratio between the residual and
additive genetic variances, Z is a design matrix that will be
used in GP models to relate observations to genomic values
(seen in Equation 3 in a later section), andM is an orthogonal
projector on the subspace spanned by the columns of the fixed
effects design matrix, X (also seen in Equation 3), such that
M = I − X(X′X)−X′. A is the additive realized genomic
relationship matrix as calculated by VanRaden (2008):

A =
QQ′

2
∑r

j=1 pj(1− pj)
(2)

Where Q is a matrix calculated from Qij = Wij + 1− 2pj, with
i individuals (rows) and j markers (columns). The term pj is

the frequency of the reference allele of the jth marker andW is
the numerical marker matrix, centered and scaled such that
genotypes coded as allele dosages {0, 1, 2, 3, 4} now become
{−1,−0.5, 0, 0.5, 1}. The supporting literature (Rincent et al.,
2012) reports negligible differences in selected samples, when
different estimations of the genomic relationship matrix are
used. This was confirmed in a small preliminary analysis
where three different methods of calculating this matrix were
tested, as prediction accuracies were similar between methods.
Therefore, the VanRaden method was chosen as it is well-
known in the context of genomic prediction.

From the description of λ above, its calculation requires
an estimate of trait heritability (h2) and though we have
phenotypic data and can therefore estimate this value for
the traits in question, this may not always be the case in
practice. Often the decision of which genotypes are to be
put in the field to garner phenotypic measurements, is made
before estimates of heritability can be performed, as this
calculation requires phenotypic data. Secondly, the individuals
to be selected may not have to be chosen on the merit of one
single trait, but rather by more traits with varying degrees of
heritability. The supporting literature (Rincent et al., 2012),
suggests and provides evidence that the use of an intermediate
value of heritability (example 0.5), selects training sets very
similar to those using more extreme values of heritability. A
small preliminary analysis was performed and these results
confirmed that the heritability estimate had little to no impact
on prediction accuracy and therefore, for this study, the
heritability input for the CDmean method was set at 0.5 for
all traits.

The code for implementing both the CDmean method
and genetic distance sampler, can be found in the
Supplementary Material.
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Prediction Scenarios
The training set selection methods were compared by two cross
validation schemes: the training-validation (TV) scheme and the
training-test (TT) scheme. The TV scheme follows a typical
cross-validation approach where a portion of the individuals
are used to train the model (training set) and those not part
of the training set, used to evaluate model prediction accuracy
(validation set). The effect of training set size was assessed by
choosing 50, 75, 100, 125, and 150 individuals out of the total 190
with each sample size repeated 100 times. We must consider that
the training and validation sets are complementary, therefore the
size of the validation set depends on the size of the training set,
so comparisons across training set sizes are not equally precise
(see Figure 1). Additionally, when a diverse set of individuals are
chosen, an equally diverse set of individuals are left behind, which
may impose some bias. Another important consideration from an
application point of view, is that in a real situation a breeder will
have individuals that were not phenotyped at all, so we want to
assess the performance of the sampling methods assuming that
the information of some of the individuals is truly absent, which
the TV scheme does not fully represent.

Therefore, a second approach (TT scheme) was used where
the composition and size of the validation (test) set, is
independent of the composition and size of the training set. In
each realization of the TT scheme, we first randomly sampled
40 individuals as test set leaving the remaining 150 as the pool
from which to sample the training set. Following the different
sampling methods, we chose 25, 50, 75, and 100 genotypes from
the remaining 150, as training set (see Figure 2). In turn, the
sampling of the training set was repeated 50 times, making the
accuracy of a particular realization the average of 50 repetitions
of the same sampling method, that sample a certain number of
individuals to train a particular statistical model and predict a
given test set. This entire process was then repeated 50 times,
each time with a new test set. This methodology ensures that
all training set selection methods train a model that predicts the
same test set and gives better assessment of training set selection
methods. In addition, we investigated larger sizes of the test set
(70, 95). For a test set of 70 individuals, training set sizes are
the same as seen above (25, 50, 75, and 100), but for a test set
of 95 individuals, the training sets evaluated were of sizes 30, 45,
60, and 75.

Genomic Prediction Models
The purpose of this study was to uncover a superior training set
sampling method based on the accuracy of predictions. These
predictions were generated with three different whole genome
regression models, in order to investigate the presence/absence
of an interaction between training set selection method and
genomic prediction model.

• GBLUP:

y = Xβ + Zu+ ǫ (3)

For Equation 3, y is a vector of phenotypic BLUEs, β is a vector
of fixed effects (only the intercept in our case), u is a vector
of genotypic values with distribution u ∼ N(0,Aσ

2
g ). A is the

FIGURE 1 | Training-Validation (TV) Scheme: Out of 190 individuals, 50

individuals are sampled as the training set to train the model and validated

using the remaining 140 individuals in the green oval. This is repeated 100

times for each training set sampling method. The entire process was then

repeated for training set sizes 75, 100, 125, and 150 (which impacts the size

of the validation set).

genomic relationship matrix as calculated in Equation 2 and
σ
2
g is the additive genetic variance. X and Z are designmatrices

as described previously and ǫ is the vector of residuals with
distribution ǫ ∼ N(0, σ 2

ǫ
). σ 2

ǫ
is the residual variance.

• RKHS: The model for Reproducing Kernel-Hilbert Spaces
(RKHS) is the same as Equation 3, with one difference in
that the genotypic values have a different distribution: u ∼

N(0,Kσ
2
g ). The genomic relationship matrix A, is replaced by

the kernel matrix,K = exp−
D
θ , where D is a Euclidean distance

matrix and θ a tuning parameter. The tuning parameter
controls how fast the relationship between two genotypes
decays as the distance between the corresponding pairs of
marker vectors increases (Jiang and Reif, 2015). To estimate
θ , a grid search was conducted between (0, 1] and the value
that gave the maximum log-likelihood was chosen (Endelman,
2011). Applying RKHS in this study allows for the implicit
modeling of non-additive effects.

• BAYES Cπ :

y = Xβ +Wb+ ǫ (4)
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FIGURE 2 | Training-Test (TT) Scheme: Out of the 190 individuals a test set of

40 individuals were randomly selected. The remaining 150 individuals were

now candidates for the training set and from this set, 25 individuals were

selected and used to train the model that predicts the test set. This was

performed 50 times for each training set sampling method. This process was

repeated for 50 different test sets. The analysis was performed at varying

training set sizes (25, 50, 75, and 100).

In Equation 4, where W is our matrix of marker information,
b is a vector of marker effects. Bayes Cπ assumes that marker
effects come from a mixture distribution with a proportion
of markers (π) having zero effect and the remainder (1 − π)
having non-zero effects, such that for the jth marker:

bj =

{
0 :with probability π

∼ N(0, σ 2
b
) :with probability 1− π

The proportion of zero effect markers π , was estimated from
the data. For this study, 5,000 iterations were performed with
2,500 discarded as burn-in, with the BGLR package (Prez
and Campos, 2014). In preliminary analyses, larger number
of iterations were tested and the outcomes were identical, in
terms of prediction accuracy and convergence diagnostics.

Prediction Accuracy
As mentioned in previous sections, the ranking of the training
set construction methods will be based on a measure of
prediction accuracy. For both the TV and TT schemes, the
observed phenotypic values of the training set are fed to the
statistical models to estimate marker effects, while the phenotypic
values of the validation (TV scheme) and the test set (TT
scheme), are hidden from the model. Predictions are made on
those individuals with hidden phenotypes, and the prediction
accuracy is defined as the Pearson correlation between observed
phenotypic values and the predicted genotypic values. Factors
that may influence prediction accuracy are sample size, statistical

model and the training set construction method, as well as
various interactions between these factors. To answer this
question, an Analysis of Variance (ANOVA) was carried out
where the correlation (prediction accuracy) is treated as the
response variable such that accuracy = f (size,model,method)
in a full factorial model. To conform to normality assumptions,
these correlations (accuracies) were transformed using Fisher’s z
transformation, z = 1

2 (ln(
1+r
1−r )).

All analyses were executed in R Core Team (2020), except for
genetic distance sampling which was performed in Genstat as
mentioned previously.

RESULTS

The 3,763 SNPs were reduced to 3,262 after the following filtering
steps. For the 190 phenotyped tetraploid lines, monomorphic
markers, unmapped markers, markers with a minor allele
frequency of<5% andmarkers withmissing values formore than
30 of the 190 individuals were removed.

Population Structure
The classification of the population into the six market classes,
gives two subpopulations with <20 individuals. This is not ideal
for stratified sampling as parameter estimates from these very
small subgroups will produce large standard errors. Furthermore,
based on past population structure results for this diversity panel,
there are indications that some of these sub-populations can
be merged.

PCA and DAPC results show that the six market classes can
indeed be reduced to a smaller number of groups (Figure 3).
Principal Components Analysis (Figure 3A) found that the first
two principal components account for <10% of the explained
variance with the 1st principal component capturing 5% of
the variability, while the 2nd component explains only 3.55%.
The decision on which classes should be merged were made
by inspecting the results from DAPC (see Figure 3B). For
this analysis, 100 principal components and three discriminant
functions were chosen. From here we see that the French Fry
processing and Table Russet market classes show considerable
overlap, as well as the Chip processing and Round White table
market classes.

The pigmented class is clearly separated but one question
arose: Where does the yellow market class belong? AMOVA
analyses found that genetic variation due to population structure
was the highest (16.6%), when the yellow class was placed with
chip processing and round white table classes, as suggested
by the DAPC plot (Figure 3B). Other population structure
configurations were analyzed, including each of the six separate
market classes as its own sub-population, as well as maintaining
the three clearly separated groups seen in Figure 3B, but
placing the yellow market group with the pigmented class (see
Appendix). Placing the yellow class with the chip and round-
white class, instead of the pigmented class was supported by both
AMOVA analyses and pairwise Fst statistics between the groups.
Between Yellow and Pigmented, Fst = 0.0165, while between
Yellow and Chip Processing-Round White table, Fst = 0.0098
(where Fst values closer to zero indicate populations that are
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FIGURE 3 | Illustration of the population structure explained by the first 2 principal components (PCA) and discriminant analysis of the principal components (DAPC)

showing the separation of the 6 market classes. (A) PCA with market classes. (B) DAPC of market classes.

TABLE 1 | Correlation between different genetic distance matrices.

Euclidean Nei Jaccard

Nei 0.989

Jaccard 0.927 0.941

Kos.&Leo. 0.967 0.975 0.977

more genetically similar). For the remainder of the study, the
discrete population structure used for stratification is defined by
the three groups suggested in Figure 3B, with the yellow market
class merged with the neighboring group of chip processing and
round white table potatoes.

Genetic Distance Measures
Four different genetic distance measures were used to perform
genetic distance sampling, and the sampled individuals were
used to train the model. Prediction was performed on the left
out individuals as described in the TV scheme. The similarities
(correlations) between the different genetic distance matrices
were assessed by a Mantel test (Table 1).

There is very little difference between the distance measures
for the material in this study. The lowest correlations (0.927 and
0.941) occurred with the Jaccard distance measure, however this
degree of similarity is still quite high.

The prediction accuracies from a common GBLUP model
were quantified for three different traits (tuber length, fructose
and glucose content), at sample sizes ranging from 50
to 150, for different genetic distance measures (Figure 4).
It can be concluded that the choice of distance measure
had a minor impact on prediction accuracy. Prediction
accuracy is expected to increase as sample size increases
and Euclidean distance was the most consistent measure
across all traits. The remaining three measures displayed
non-monotonically increasing prediction accuracies as sample
size increased. Additionally, the Kosman Leonard distance,

along with having very little application in literature, becomes
computationally heavy when there are more than 10,000
markers. For this study, the Euclidean distance will be used
henceforth when applying genetic distance sampling for training
set construction.

Genomic Prediction: TV Scheme
After determining a suitable distance measure for genetic
distance sampling, methods for acquiring the training set were
compared (Figure 5).

Each row of Figure 5 shows a single trait with the different
genomic prediction models, and compares the prediction
accuracies across sample sizes ranging from 50 to 150. For
all traits, a difference is clearly observed between training
set selection methods: with simple random and stratified
random sampling (random methods) behaving similarly while
genetic distance sampling and the CDmean method (analytical
methods) sampled training sets, gave more accurate predictions.
As expected, an increase in sample size increased prediction
accuracy, but this was at a higher rate when using the analytical
methods of selecting individuals. The lines above and below
the points indicate the standard errors of the estimate of
average accuracy, and the random sampling methods resulted
in larger standard errors than the analytical methods. For
all trait-statistical model combinations, the random methods
of selecting the training set were not significantly different;
stratifying the population before sampling, did not improve
the accuracy of genomic prediction, in comparison to a
simple random sample of the training set. Even though the
analytical methods consistently performed better than the
random methods, the comparative performance between the
two analytical methods varied with traits. For tuber length,
the genetic distance sampler selected a more optimal training
than the CD method at lower sample sizes (50 and 75),
but this difference diminished as the size of the training set
increased. The CD mean method generally outperformed the
genetic distance sampler in predicting fructose and sucrose,
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FIGURE 4 | Prediction accuracy under different distance measures for genetic distance sampling with a GBLUP statistical model. Each graphical window represents

a different trait, with varying sample sizes on the x-axis and the outcome variable, prediction accuracy on the y-axis. The different colored lines represent different

distance measures.

more noticeably so at higher sample sizes. Interestingly, at
sample size 50 and 75, genetic distance sampling led to more
accurate predictions of sucrose content, a result also observed
for tuber length. Despite these minor differences, the results
across all traits give clear support for utilizing analytical methods
of selecting the training set, and some indication that the
CDmean method is the better of the two analytical training set
selection strategies.

The results shown in Figure 5, include information about the
three different statistical models. The possibility of an interaction
between statistical model and training set selection method was
evaluated in this study, and results from anANOVA analysis were
used to quantify the impact of this interaction (Table 2).

The magnitude of the F-values in Table 2 indicate how
important a term is for predicting the outcome, which is the
accuracy of genomic predictions in this case. The most important
factor for driving genomic prediction accuracies is sample size,
followed by the training set selection method and then the
interaction between these two variables. The interaction of
interest, between samplingmethod and statistical model, explains
very little of the variation in prediction accuracy. There is no
particular combination of sampling method and statistical model
that results in more accurate predictions but rather, the main
effects of these two variables. Results inTable 2 are based on tuber
length, and these results were consistent across all traits, with
sampling method being highly significant, and its interaction
with statistical model, non-significant. An interesting result is
the significant interaction between sample size and sampling
method which was consistent across all traits. This means that

the sampling methods do not benefit equally from an increase in
sample size, a result also observable from Figure 5.

For fructose, when the sample size is tripled (from 50 to 150),
simple random sampling and stratified sampling improved by
19 and 23%, respectively, whereas genetic distance sampling and
the CDmean method resulted in improvements of 27 and 31%,
respectively. For sucrose, the CDmean method showed a 37%
improvement by tripling the sampling size while simple random
sampling improved by 25%. The relative improvement of using a
analytical sampling method was greater for sucrose and fructose
content. At the median sample size of 100, CDmean showed
an improvement in prediction accuracy of 4, 14, and 13% for
tuber length, fructose and sucrose content, respectively, when
compared to simple random sampling. The genetic distance
sampler for these traits (tuber length, fructose and sucrose
content, respectively), showed improvements of 5.5, 10.5, and
10.5% in comparison to simple random sampling.

Genomic Prediction: TT Scheme
As discussed before, the objectives for using Genomic Prediction
may vary. In many cases the objective is to predict new breeding
lines (or clones) and for this scenario we have randomly selected
a test set of 40 out of the 190 individuals. These 40 individuals
represent the independent test set, and all sampling methods will
construct the training set from the remainder of individuals. The
trained model then performs predictions for the test set. In this
way, each sampling method predicts the same test set.

Similar to the previous section, we looked at the prediction
accuracy for three statistical models with sample sizes ranging
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FIGURE 5 | Prediction accuracy for the 3 traits under the TV scheme (training and validation only). Each graphical window displays a different trait-statistical model

combination, with varying sample sizes on the x-axis and prediction accuracy on the y-axis. The different colored lines represent different training set selection

methods.
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TABLE 2 | ANOVA table showing the significance of the statistical model, sample

size, training set selection method, and interactions for the prediction accuracies

of tuber length (TV Scheme).

df SS MS F-value Pr(>F)

Method 3 0.278 0.0925 319 < 2× 10−16

Sample size 1 0.386 0.386 1,330 < 2× 10−16

Model 2 9.08 × 10−3 4.54× 10−3 15.7 1.27× 10−5

Method: sample size 3 0.0605 0.0202 69.6 4.66× 10−15

Method: model 6 5.58× 10−4 9.30× 10−5 0.321 0.922

Sample size: Model 2 9.42× 10−4 4.71× 10−4 1.63 0.211

Method: sample size: model 6 3.53 × 10−4 5.88× 10−5 0.203 0.974

Residuals 36 0.104 2.90× 10−4

from 25 to 100, and compared the impact of the sampling
method (Figure 6). The accuracies of the TT Scheme are a bit
lower and are accompanied by larger standard errors than those
observed in the TV Scheme, due to the application involving a
test set, which is usually more difficult to predict but represents
a more realistic scenario encountered by breeders. Nonetheless
the decrease in accuracy was not drastic. The differences between
sampling methods is still present, but less obvious than in
the TV Scheme, especially at higher sample sizes where the
accuracies of the various sampling methods converged as was
expected, due to the significant overlap of individuals sampled
in a limited population space of 150 varieties. This convergence
is not observed in the TV Scheme and will be discussed in
another section. At the lower sample sizes, where the potential
overlap of training sets is reduced, the analytical methods give
significantly higher accuracies than the random methods. For
tuber length, genetic distance sampling and the CDmeanmethod
result in similar prediction accuracies for sample sizes ≥50,
but for sucrose content, this similarity was dependent on the
statistical model applied.

In comparison to the TV scheme, the results of the TT scheme
exhibit a more significant impact due to statistical model, and to
test whether there is an interaction with the sampling method an
ANOVA analysis was conducted.

Similar to the results from the TV scheme shown in Tables 2,
3 shows that for the TT scheme, sample size was the most
important factor driving prediction accuracy, and there was
no interaction between the statistical model and the sampling
method. It was noteworthy that the hierarchy of importance of
predictive variables was quite different between schemes. Our
factor of interest, sampling method, though still significant in the
TT application, was not the second most important variable as
seen before, but replaced by statistical model in the hierarchy.
Also different to the TV scheme, the TT scheme results show no
interaction between sample size and the sampling method. The
results in Figure 6 and Table 3 were similar to those observed
for fructose content, with CDmean only slightly outperforming
the rest, but with even less differentiation between sampling
methods. The ANOVA analysis for fructose content (not shown),
showed that there was little to no impact of different training set
construction methods.

Although this paper does not primarily focus on statistical
models, it is still interesting to observe the differences in
predictive performance (Table 4). For all traits, the GBLUP
model gave the lowest accuracy of predictions, while the Bayes
C model worked just as well as the RKHS model.

Application of the TT scheme to breeding programs, usually
involves a test set of hundreds or even thousands of new
potential cultivars. In this study it was impossible to emulate
this application, still the impact of increasing the test size was
investigated. For this investigation, we conducted the same
analyses as seen in TT scheme but used a larger test set (70
and 90 individuals). There were no changes in the findings; the
analytical methods, especially CDmean, sampled training sets
that predicted the test sets with greater accuracy than the random
methods (results not shown). Similar to the results seen above,
these differences disappeared at larger sample sizes and were only
evident at smaller training set sizes, where the overlap of sampled
individuals between methods was minimal.

DISCUSSION

Training set construction has been proven to be important for
GP in diploids and in this study, shown to be important for
GP in tetraploids. Both ploidy levels benefit from incorporating
genomic information into analytical methods of sampling the
training set, when compared to random methods that do not
directly utilize genomic information.

Only 190 varieties were included in this study which may limit
the extrapolation of results to traditional breeding programs.
Breeders often make selections within a particular market group.
In these scenarios, one must decide if to train models using only
individuals belonging to the target market group or allow for
the borrowing of information from other market classes. Our
study was too small to answer this question, however it has been
shown that combining individuals from both within and across
market classes, can lead to predictions that are as good as, and
often better than predictions made from exclusively within the
market class (Rio et al., 2019). This is especially valid when the
population structure is less definitive, as seen in this study.

As we are predicting heterogeneous populations, the use of
interaction models may be considered (Lehermeier et al., 2015),
where population structure induces heterogeneity of marker
effects. For the interaction models, sub-populations should be
large enough and definitive enough to estimate marker effects,
but in this study our sub-populations were small. As population
structure and size increase in magnitude, the Sparse Selection
Index is another promising alternative (Lopez-Cruz and Campos,
2021).

TV Scheme
For the training-validation scenario, results show a clear
differentiation between the random methods (simple random
sampling and stratified random sampling) and the analytical
methods (genetic distance sampling and CDmean method).
This separation between methods was not dependent on the
statistical model used to make predictions which was confirmed
by ANOVA analyses of prediction accuracies. As sample size
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FIGURE 6 | Prediction Accuracy for tuber length and sucrose content with a test set of size 40. Each graphical window represents a different trait-statistical model

combination, with varying sample sizes on the x-axis and prediction accuracy on the y-axis. The different colored lines represent different training set sampling

methods.

increased so did prediction accuracy due to the fact that the
estimation of marker effects is improved as the size of the training
set increases, a finding also reported in studies of diploid crops
(Rincent et al., 2012; Daetwyler et al., 2013; Bustos-Korts et al.,
2016; Akdemir and Isidro-Sanchez, 2019). The improvement in
accuracy awarded from a larger sample, is greater when applying
an analytical method of sampling the training set. This result
was supported by the significant interaction between sampling
method and sample size. In training set construction for the

TV scheme, we are essentially choosing a subset of individuals
(randomly or analytically), that would calibrate the model used
to make predictions on the subset of individuals not chosen
for training; in essence the training set and validation sets are
complements of each other. If we were to picture the population
space spread evenly over four quadrants, and during training set
construction, by chance all the members of a given quadrant
belonged to the training set, then this quadrant would not be
represented in the validation set. Our model would be trained
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TABLE 3 | ANOVA table showing the importance of the statistical model, sample

size and training set selection method and interactions for the prediction

accuracies of tuber length (TT Scheme).

df SS MS F-value Pr(>F)

Method 3 0.0136 4.52 × 10−3 5.94 0.00352

Sample size 1 0.213 0.213 280 9.75× 10−15

Model 2 0.404 0.202 265 < 2× 10−16

Method: sample size 3 8.79 × 10−4 2.93 × 10−4 0.385 0.765

Method: Model 6 3.71 × 10−4 6.18 × 10−5 0.0810 0.998

Sample size: Model 2 2.01 × 10−3 1.01 × 10−3 1.32 0.285

Method:sample size:model 6 3.45 × 10−4 5.75 × 10−5 0.0760 0.998

Residuals 24 0.0183 7.61 × 10−4

Higher F-values or Mean Sum Sq values indicate higher predictive power of a variable.

in a space where it is not making predictions, leading to poor
predictive potential. As the size of the training set increases using
random methods, there is a chance that we continue to calibrate
the model using redundant misrepresentative information, and
the gain from increasing sample size is contested by predicting
individuals that are genetically distant from the members of
the training set. For this reason, the predictive power gained
by adding one individual to the training set, is greater when
using an analytical method for selecting the training set over
a random sampling method. Analytical methods of training set
construction allow the space occupied by the training set to
be similar to that of the validation set, and as we increase the
size of the training set, the information provided for model
calibration continues to describe the entire genetic space in
more detail, and not randomly over-represent a few areas with
redundant information.

Taking a closer look at the random methods, we see that
stratifying our samples had very little impact on prediction
accuracy in comparison to simple random sampling. Diploid
studies have shown that stratification based on population
structure information may not be beneficial to constructing the
training set, when there is no extensive separation between sub-
populations (Isidro et al., 2015; Bustos-Korts et al., 2016). The
panel of tetraploid potatoes used in this study showed little
population structure, with only 16% of the total variation due
to population structure. Therefore, stratification before sampling
did not improve the accuracy of GP in comparison to simple
random samples, similar to the results of comparable studies of
diploid species with little sub-population separation (Isidro et al.,
2015).

For sucrose and fructose content, the CDmean method
sampled training sets that lead to more accurate predictions,
however for tuber length, the genetic distance sampler chose
an equally optimal training set. The extra information that is
incorporated by the CDmean method, may help in choosing a
training set, better equipped for traits that are harder to predict.
In a study comparing training set construction methods among
various diploid species and different traits (Bustos-Korts et al.,
2016), the results showed no significant difference between the
CDmean method and genetic distance sampler. Genetic distance

TABLE 4 | Marginal means and standard errors for prediction accuracy for varying

combinations of statistical model (columns) and trait (rows).

GBLUP RKHS BAYES.C

Tuber length (s.e. = 0.010) 0.708 0.792 0.792

Fructose (s.e. = 0.007) 0.450 0.580 0.571

Sucrose (s.e. = 0.005) 0.364 0.412 0.406

sampling establishes a radius that is used to exclude individuals
that are genetically close to a previously chosen member
of the training set, and only considers genomic information
(genetic distance). The CDmean method though, makes use
of more information than the genetic distance sampler: trait
variability and heritability. For traits that are influenced by non-
genetic (environmental) factors, like fructose and sucrose content
(Kumar et al., 2004), genomic information alone will not be as
beneficial as having both genomic and phenotypic information.
The combined information of trait variability and heritability,
as well as genomic relationships between individuals, allows the
CDmean method to construct a training set that produces higher
accuracies for these traits. However, this necessity for phenotypic
input information, in addition to the increased computational
load, can make the CDmean method less attractive than genetic
distance sampling.

Distance Measures
The differences between distance measures is very small when
compared by correlation diagnostics. We were not able to
explain the unexpected behavior exhibited by the Nei’s, Jaccard
and Kosman and Leonard genetic distances, where for fructose
and sucrose content, the accuracy of predictions did not
monotonically increase as sample size increased. The fact that
Euclidean distance produced accuracies that were monotonically
increasing with sample size, motivates the use of this measure
in this study. However, this finding is not conclusive for all
tetraploid studies: only bi-allelic markers were available for this
study, but tetraploid individuals can have up to four alleles
(Silva et al., 2005; Salimi et al., 2016). The Kosman and Leonard
distances can utilize this information as it considers the number
of different alleles at a given marker, and this is expected
to produce better measures of distance between individuals
(Kosman and Leonard, 2005; Dufresne et al., 2014), whereas the
Euclidean distance uses a count of one particular allele (reference
allele) as input to calculate genetic distances. This study did not
contain the multi-allelic marker information needed to truly test
the differences between the distance measures, and for scenarios
like this that are limited to bi-allelic markers, the difference
between distance measures will not be relevant.

TT Scheme
To investigate the impact that the training set has on the
prediction of new potential cultivars, the TT scheme was
introduced which includes a randomly chosen test set. As
expected, there was a decrease in overall prediction accuracy
(Akdemir and Isidro-Sanchez, 2019). The divergence in accuracy
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between the random and analytical methods as sample size
increased, observed in the TV scheme was not seen in the TT
scenario. This is due to the fact that all methods predict the same
group of individuals, and leave a limited pool of candidates to
be selected for training the model. As a result, there was overlap
in the training sets sampled by the various sampling methods.
Secondly, the composition of the trainng set had no affect on
the individuals where predictions were made, an unavoidable
situation with the TV scheme. The TT Scheme reveals that the
differences between training set construction methods depend
on the scenario for which these methods are applied; scenarios
with an independent test set (new breeding material) or instances
where it may be more cost and time efficient to phenotype a
few individuals and predict the rest (phenotyping platforms, TV
scheme). These results are not conclusive, due to the moderate
number of individuals in this study. The performance at the
smaller sample sizes for the TT scheme may give an impression
of what an ideal situation would look like, where there is a
large population thus minimizing the overlap of individuals
in the training sets constructed by the different methods.
At these low sample sizes, the CDmean method constructed
training sets led to more accurate predictions. Similar to the TV
scenario, there is evidence that the utilization of both genomic
and phenotypic information by the CDmean method is more
beneficial for predicting traits highly influenced by non-genetic
(environmental) factors. The genetic distance sampler maintains
its position as the second best sampler. In spite of the limitation
created by the population size, the evidence is still substantial: for
GP of tetraploids in a training-test scenario, analytical methods of
sampling the training set lead to better predictions, as seen also in
diploids (Bustos-Korts et al., 2016; Akdemir and Isidro-Sanchez,
2019).

Prediction Models
The performance of the prediction models can be explained
by the architecture of the traits analyzed. GBLUP models work
best for traits controlled by many small effects while models
that perform marker selection are better suited for traits that
are controlled by a few large effect QTL (de los Campos et al.,
2013). A previous Genome Wide Association Study (GWAS)
was conducted on the same diversity panel as this study, where
significant QTLs were detected for tuber length, but not for
sucrose and fructose content (Rosyara et al., 2016). Other studies
have found that sucrose and fructose content are controlled by a
small number of loci (Bradshaw et al., 2008; Sliwka et al., 2016;
Rak et al., 2017). It is therefore not surprising that the BayesCπ

model was able to make better predictions of all three traits in
comparison to the GBLUP model.

Having four copies of each chromosome, one may expect that
tetraploids exhibit more inter-locus interactions (epistasis) in
comparison to diploids (Stich and Gebhardt, 2011). When non-
additive effects like dominance and epistasis are present, they can
be captured with the RKHSmodel (Gianola and vanKaam, 2008).
Tuber length did not benefit from accounting for these effects
while sucrose and fructose content showed little improvement.
Fry color, strongly related to sugar content (Pritchard and Adam,
1994), can attribute the majority of its variability to additive

effects, however there is a small contribution by non-additive
effects (Endelman et al., 2018). This helps to explain the small
but present improvement of the RKHS model over the BayesCπ

model for these two traits.

CONCLUSIONS

• Genomic prediction of individuals with limited population
structure requires a sampling method that uniformly covers
the genetic space of the breeding population as opposed
to stratified sampling based on discrete classifications into
sub-populations.

• When GP is implemented to lessen the resources consumed
by phenotyping, a portion of the population is phenotyped
to train a model that predicts the remaining individuals. The
TV scheme results show the value of explicitly using genomic
information to sample the training set.

• The CDmean method of selecting a training set should be
utilized for genomic prediction in potato, as it is robust
to sample size, trait architecture, statistical model and
application scenario.

• Further investigation has to be done before these results can be
extrapolated to other traits and other polyploid crops. Testing
on larger pools of varieties with more distinct subgroups
is required.
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APPENDIX A: AMOVA TABLE TO ANALYSE
VARIABILITY DUE TO POPULATION
STRUCTURE

Appendix A1 | AMOVA analysis showing sources of variation from different

configurations of population structure.

Source of variation df SS MS Est. Var. Percentage

AMOVA with 6 market classes: | CP | RWT | Y | P | FFP | TR |

Among subpops 5 0.208 4.16 × 10−2 1.16 × 10−3 14.78

Within subpops 184 1.234 6.71 × 10−3 6.71 × 10−3 85.22

Total 189 1.442 100

AMOVA with 3 market classes: | CP,RWT,Y | P | FFP,TR |

Among subpops 2 0.154 7.72 × 10−2 1.37 × 10−3 16.61

Within subpops 187 1.288 6.89 × 10−3 6.89 × 10−3 83.39

Total 189 1.442 100

AMOVA with 3 market classes: | CP,RWT | Y ,P | FFP,TR |

Among subpops 2 0.152 7.62 × 10−2 1.19 × 10−3 14.71

Within subpops 187 1.290 6.90 × 10−3 6.90 × 10−3 85.29

Total 189 1.442 100

AMOVA with 4 market classes: | CP,RWT | Y | P | FFP,TR |

Among subpops 3 0.178 5.93 × 10−2 1.29 × 10−3 15.93

Within subpops 186 1.264 6.80 × 10−3 6.80 × 10−3 84.07

Total 189 1.442 100

AMOVA with 2 market classes: | CP | RWT,Y ,P,FFP,TR |

Among subpops 1 0.075 7.51 × 10−2 8.05 × 10−4 9.97

Within subpops 188 1.367 7.27 × 10−3 7.27 × 10−3 90.03

Total 189 1.442 100

df, Degrees of freedom; SS, Sum of Squared deviations; MS, Mean Sum of Squared

Deviations; Est. Var, Estimated Variance components; CP, Chip Processing; RWT, Round

White Table; Y, Yellow (Y); P, Pigmented; FFP, French Fry Processing; TR, Table Russet.

Classes grouped together between vertical lines (|).
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Shizhong Xu5* , Mingshun Li2* and Wenxin Liu1*
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Beijing Municipality/National Maize Improvement Center/College of Agronomy and Biotechnology, China Agricultural
University, Beijing, China, 2 Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China, 3 Leibniz
Institute of Plant Genetics and Crop Plant Research (IPK), Stadt Seeland, Germany, 4 Institute of Plant Breeding, Seed
Science and Population Genetics, University of Hohenheim, Stuttgart, Germany, 5 Department of Botany and Plant
Sciences, University of California, Riverside, Riverside, CA, United States

Heterosis contributes a big proportion to hybrid performance in maize, especially
for grain yield. It is attractive to explore the underlying genetic architecture of
hybrid performance and heterosis. Considering its complexity, different from former
mapping method, we developed a series of linear mixed models incorporating multiple
polygenic covariance structures to quantify the contribution of each genetic component
(additive, dominance, additive-by-additive, additive-by-dominance, and dominance-by-
dominance) to hybrid performance and midparent heterosis variation and to identify
significant additive and non-additive (dominance and epistatic) quantitative trait loci
(QTL). Here, we developed a North Carolina II population by crossing 339 recombinant
inbred lines with two elite lines (Chang7-2 and Mo17), resulting in two populations of
hybrids signed as Chang7-2 × recombinant inbred lines and Mo17 × recombinant
inbred lines, respectively. The results of a path analysis showed that kernel number per
row and hundred grain weight contributed the most to the variation of grain yield. The
heritability of midparent heterosis for 10 investigated traits ranged from 0.27 to 0.81.
For the 10 traits, 21 main (additive and dominance) QTL for hybrid performance and 17
dominance QTL for midparent heterosis were identified in the pooled hybrid populations
with two overlapping QTL. Several of the identified QTL showed pleiotropic effects.
Significant epistatic QTL were also identified and were shown to play an important
role in ear height variation. Genomic selection was used to assess the influence of
QTL on prediction accuracy and to explore the strategy of heterosis utilization in maize
breeding. Results showed that treating significant single nucleotide polymorphisms as
fixed effects in the linear mixed model could improve the prediction accuracy under
prediction schemes 2 and 3. In conclusion, the different analyses all substantiated
the different genetic architecture of hybrid performance and midparent heterosis in
maize. Dominance contributes the highest proportion to heterosis, especially for grain
yield, however, epistasis contributes the highest proportion to hybrid performance of
grain yield.

Keywords: maize, hybrid performance, midparent heterosis, epistatic effect, pleiotropic loci, genomic selection
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INTRODUCTION

Heterosis is the phenomenon that a hybrid outperforms its two
parents (Birchler et al., 2006; Lippman and Zamir, 2007). Maize
is the most successful example for the utilization of heterosis in
crops to improve agricultural production, as single-cross varieties
of maize have substantially contributed to the improvement
of maize production in the past decades (Hochholdinger and
Baldauf, 2018). There are three hypotheses to explain the
genetic basis of heterosis: dominance (Bruce, 1910; Jones,
1917), overdominance (East, 1936) and epistasis (Powers, 1944).
Many studies were performed to test these hypotheses, but
the results often varied, depending on the populations and the
traits studied, suggesting that heterosis is a complex genetic
phenomenon. One commonly used design to study heterosis
is the North Carolina Design III (NCIII) or Triple Testcross
Design which allows to estimate the contribution of additive,
dominance, and epistasis effects to heterosis (Melchinger et al.,
2007b; Garcia et al., 2008). In a maize study, a total of 264
F3 genotypes were generated by intercrossing B73 and Mo17,
and the F3 genotypes were then backcrossed to the two parents.
The results showed that nearly all heterozygous individuals
performed better than the homozygous individuals, supporting
the overdominance (or pseudo-overdominance) hypothesis
(Stuber et al., 1992). Conversely, the analysis of hybrid maize
data from another NCIII design showed that dominance loci
contributed the most to heterosis in maize, while the additive-
by-additive effects contributed the most to the heterosis of rice
(Garcia et al., 2008).

An alternative design is the North Carolina Design II (NCII)
or factorial design, where a set of males is crossed with a set of
females in a balanced or unbalanced way. In a partial NCII of
maize, eight main effect (additive and dominance) QTL and 37
epistatic QTL pairs were identified (Bu et al., 2015). In addition
to the NC mating designs, advanced maize populations were also
developed and used for analysis of heterosis. For example, Wei
et al. (2016) detected 36 heterotic loci from a series of single-
segment substitution lines. Using near-isogenic lines for QTL
detection, many additive QTL and additive-by-additive QTL
pairs were detected (Melchinger et al., 2007a; Reif et al., 2009).
An immortalized F2 population (IMF2) was also a promising
mating design for dissecting the genetic basis of heterosis and
epistasis QTL (Hua et al., 2003; Xu, 2013; Guo et al., 2014;
Yi et al., 2019).

Linear mixed models (LMM) are a powerful tool for the
genetic dissection of complex traits and are widely used in
plant and animal breeding (Yu et al., 2006; Xu et al., 2014;
Cui et al., 2020). In a hybrid population of rice, a LMM
incorporating multiple polygenic covariance structures to control
the genetic background was developed (Xu, 2013). In wheat,
a quantitative genetics approach was proposed to dissect the
genetic basis of grain-yield heterosis, allowing QTL mapping of
dominance, epistasis and heterotic loci for midparent heterosis
(MPH) (Jiang et al., 2017). In addition to QTL mapping, genomic
selection (GS) has become a new tool for plant breeding and
the genetic dissection of complex traits (Meuwissen et al., 2001)
and has been applied to hybrid wheat (Zhao et al., 2013, 2015b;

Jiang et al., 2017), hybrid rice (Cui et al., 2020) and hybrid maize
(Albrecht et al., 2014; Technow et al., 2014).

The general combining ability (GCA) is a measure for the
average performance of a line in different hybrid combinations,
while the specific combining ability (SCA) describes the deviation
of a hybrid from the performance expected based on the GCA
of its two parental lines. The additive and additive-by-additive
variances contribute to the variation of GCA, while the non-
additive polygenic variances contribute to the variation of SCA
(Reif et al., 2007). A two-step approach has been widely used to
study the genetics underlying hybrid performance, where the first
step consists of estimating the GCA, SCA and the MPH (Guo
et al., 2014; Zhou et al., 2018; Yi et al., 2019) and the second
step represents the QTL mapping step with the GCA, SCA and
MPH treated as the traits of interest. In a previous genome-wide
association study (GWAS) with an NCII population, different
coding schemes for the genotypes were applied, namely the
additive, dominance and recessive coding (Hyun et al., 2008;
Liu et al., 2021). However, the additive model was usually not
sufficient to explain hybrid performance and MPH. Thus, more
elaborate models incorporating non-additive effects should be
used to study heterosis.

In this study, we developed a NCII population of maize by
crossing a set of 339 recombinant inbred lines (RILs) with two
elite inbred lines, resulting in two populations of hybrids. A total
of 10 traits were recorded in four to five environments and
high-density genotypic data were obtained by genotyping-by-
sequencing of the RILs and resequencing of the parents. The
aims of this study were to (1) evaluate the heritability of MPH
and the relative contribution of various traits to grain yield, (2)
perform QTL mapping for main (additive and dominance) and
non-additive effect loci for hybrid performance and MPH, (3)
identify QTL hotspots for yield-related traits, (4) explore the
mechanisms of heterosis and hybrid performance, and (5) assess
the accuracy of genomic prediction in various breeding schemes.

MATERIALS AND METHODS

Plant Materials
A RIL population consisting of 365 F11 lines was developed
by crossing inbred lines Qi319 as the male parent and Ye478
as the female parent originating from two different heterotic
groups of maize (Zhou et al., 2016). Two hybrid populations were
developed by crossing the RILs to two female testers, Chang7-
2 and Mo17, and the two populations Chang7-2 × RIL and
Mo17 × RIL were named TC and TM, respectively (Zhou et al.,
2018). Different numbers of offspring were obtained from the two
hybrid populations. A total of 339 common lines from the RIL,
TC, and TM populations were retained for further analysis.

Experimental Design and Phenotypic
Evaluation
The RIL, TC, and TM populations, their parents and the hybrids
(Chang7-2 × Qi319, Mo17 × Qi319, Chang7-2 × Ye478, and
Mo17 × Ye478) were field-evaluated in two different locations,
Xinxiang (35.19◦N and 113.53◦E) and Shijiazhuang (37.27◦N and
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113.30◦E), in two consecutive years, 2015 and 2016, resulting
in 2 × 2 = 4 different environments. Traits recorded include
plant height (PH, cm), ear height (EH, cm), row number per ear
(RNPE, count), kernel number per row (KNPR, count), kernel
thickness (KT, mm), kernel width (KW, mm), kernel length (KL,
mm), volume weight (VW, g/L), hundred grain weight (HGW, g)
and grain yield per plant (GY, g). Furthermore, in 2017, the VW
trait was evaluated in the RIL population, traits HGW and GY
were evaluated in all the three populations (RIL, TC, and TM) in
one of the two locations, Xinxiang. Detailed descriptions of the
traits evaluated can be found in a previous study (Lu et al., 2020).

We used a randomized incomplete block design with two
replicates in each environment. To avoid competition, the
RIL and the hybrid populations were planted separately. Each
genotype was planted in two rows with a row interval of 0.6 m,
a row length of 4 m and a plant interval of 0.25 m.

Phenotypic Data Analysis
The combination between year and location was considered as an
environment (a total of 4 or 5 environments). The studentized
residual razor method (Bernal-Vasquez et al., 2016) was used
to remove outliers with a threshold of 2.8. The best linear
unbiased estimations (BLUE) of the fixed effects and the variance
components of the random effects were estimated using the
following model:

yijk = µ+ Gi + Ej + G ∗ Eij + Rk(Ej)+ εijk,

where yijk was the phenotypic value of the kth replicate of
genotype i from the jth environment, µ was the overall mean,
Gi (i = 1, 2,..., 339) was the effect of the ith genotype, Ej (j = 1,
2,..., 5) was the effect of the jth environment, G ∗ Eij was the
genotype-by-environment interaction effect, Rk(Ej) (k = 1, 2)
was the effect of the kth replicate nested in the jth environment,
εijk was the residual. For estimation of variance components, all
random effects were assumed to be normally distributed with
mean 0 and variances denoted by σ2

G , σ2
G×E and σ2

ε for Gi, G ∗ Eij
and εijk, respectively. The broad-sense heritability of a trait was
defined as (Falconer and Mackay, 1996),

H2
=

σ2
G

σ2
G +

σ2
G×E
NE
+

σ2
ε

NE×NR

,

where NE = 4 or 5 was the number of environments and NR = 2
was the number of replicates within each environment.

Genetic analysis of MPH was conducted in two steps (Jiang
et al., 2017). The first step was represented by BLUE of the trait
value for each parent and each hybrid. The BLUE of the trait
value obtained from the two replicates in one environment was
calculated with the following formula:

yik = µ+ Gi + Rk + εik,

where yik was the trait value for the kth replicate of genotype i, µ
was the mean of the trait under the current environment, Gi was
the genetic value of the ith genotype and Rk was the effect of the
kth replicate assumed to follow a N(0, σ2

R) distribution, εik was
assumed to follow a N(0, σ2

ik) distribution.

The MPH was defined as (Melchinger et al., 2007b):

MPH = H − (P1 + P2)/2.

Where H was the BLUE value of hybrids, P1 was the BLUE
value of Chang7-2 or Mo17 (corresponding to female parent of
hybrid), P2 was the BLUE value of RIL (corresponding to the male
parent of hybrid).

The second step in the MPH analysis required the following
mixed model:

MPHij = µ+ Gi + Ej + εij,

where MPHij was the MPH value calculated in the first step for
hybrid (genotype) i in environment j, Gi (i = 1, 2, . . ., 339) was
the genetic effect of MPH for the ith hybrid, Ej was effect of the jth
environment and εij was the residual. Noted that Gi was treated as
a fixed effect in the BLUE calculation or a random effect following
a N(0, σ2

G) distribution in variance estimation, Ej was treated as
a random effect following a N(0, σ2

E) distribution and εij was
assumed to be N(0, σ2

ε ) distributed. The variance components
of the above linear mixed model were implemented using the
ASReml 3.0 package in R (Gilmour et al., 2009).

In addition, the hybrid performance was decomposed into
GCA, SCA and interaction with the environment using a two-
step method. In the first step, the BLUEs in RIL, TC and TM
populations were calculated within each environment following
the same formula above. In the second step, the following formula
was applied to the hybrid performance (Zhao et al., 2015a):

y = µ+ E+ GCARIL + GCATester + SCA+ GCARIL ∗ E+ GCATester ∗ E+ SCA ∗ E+ ε.

Where y was the hybrid performance, µ was the mean, E was
the environment effect, GCARIL was the GCA of RILs, GCATester
was the GCA of testers, the rest was the interaction between GCA,
SCA, and environment, ε was the error. All effects were treated
as random following normal distributions. The variances were
estimated in ASReml 3.0 package in R (Gilmour et al., 2009).

Path analysis can be used to determine the relative
contribution of independent variables to a response variable.
Path analysis was implemented in the R package sem by taking
GY as the response variable and the other traits as independent
variables. Path coefficient pi of variable Xi was obtained by

pi = bi
√
SSXi

/
SSY , where bi was the partial correlation, SSXi

and SSY were sum of square for Xi and the response variable Y ,
respectively. Path diagrams were drawn with the semPlot package
in R, where values above 0.14 (p = 0.01, n = 339) were displayed.

Genomic Data Analyses
The genotyping procedures for the RILs, the two parents of the
RILs, and the two testers were described in a previous study
(Zhou et al., 2016). In brief, for the four parents, the paired-
end sequencing libraries were created with a fragment length
of ∼500 bp and were sequenced on an Illumina HiSeq 2000
sequencer. The resequencing depth was ∼30×. For the RILs, a
genotyping-by-sequencing (GBS) strategy was applied. A total
of 137,699,000 reads were generated. On average, there were
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357,376 reads per individual, which was approximately a 0.07-
fold coverage of the maize genome. The cleaned reads were
obtained after quality control.

The filtered high-quality reads of the four parents and the
RILs were mapped to the reference genome (B73_RefGen_v4)
with BWA (Li and Durbin, 2009). SAMtools (Li, 2011) were used
to call SNPs with quantity over 20 and a total of 41,791,163
SNPs were finally produced. Details regarding the parameters
for the SNP calling process can be found in a previous report
(Zhou et al., 2016). After filtering of all SNPs for minor allele
frequency < 0.05, missing rate > 0.1 and unknown physical
positions, a total of 36,095 SNPs remained in the data set
for analysis. Missing genotypes of SNPs were imputed using
the BEAGLE software package (version v5) with the default
parameters (Browning and Browning, 2016).

The low-coverage high-throughput sequence technologies like
GBS generate sequences that are often error-prone, which might
lead to errors for detection of genetic variants (Ma et al.,
2019). Therefore, the hmm.vitFUN.rils function in the R package
MPR.genotyping was used to correct the genotyping errors using
a Hidden Markov model with errorRate = 0.05 (Xie et al., 2010).
The SNPs with high error probabilities were either corrected or
set to missing values.

The bin function in the ICIMapping package was used to
bin redundant markers with missing rate > 0.2 and a distortion
p-value < 0.001, while missing values and anchor information
were considered at the same time (Meng et al., 2015). After
the above imputation and correction, there were still a little
proportion of missing values left, then the argmax method in
qtl/R was used to perform the final imputation additive-by-
dominance and (Broman et al., 2003). Finally, a total of 4,141
bins were discovered across the entire maize genome. The genetic
map was constructed using the map function in the IciMapping
package with the default parameter values (Meng et al., 2015).

Mapping Quantitative Trait Loci in
Recombinant Inbred Line, TC, TM, and
Pooled TC-TM Populations
To determine the contribution of each genetic component to
hybrid performance and MPH variation and identify significant
non-additive QTL, firstly, we combined the TC and TM
populations to form a pooled population called TC-TM. For 341
lines (337RILs, 2 parents; 2 testers) lines, if the genotypes were the
same as Ye478, it was coded as “1”; if the genotypes were the same
as Qi319, it was coded as “−1”, then the genotypes of the hybrids
were inferred from their parents (the RILs and the testers). The
additive and dominance coding matrices, Z and W, for individual
j at marker kwere coded as Zjk =

{
1 0 −1

}
for the additive effect

and Wjk =
{

0 1 0
}

for the dominance effect.
The linear mixed model for variance component analysis was

(Xu, 2013; Jiang et al., 2017):

y = Xβ+ ξa + ξd + ξaa + ξad + ξdd + ε, (1)

where y was an n× 1 vector of phenotypic values of the hybrids
and Xβ captured the fixed effects of the model that were not
relevant to genetic effects. The design matrix for the fixed

effects was X = [X0,X1], where X0 was an n× 1 vector of
unity (a vector with all elements being 1) and X1 was an n× 1
vector indicating one of the two populations, Xj1 = 0 for TC
and Xj1 = 1 for TM. The last term of model (1) was a vector
of residuals. The remaining terms in model (1) were various
polygenic effects (each polygenic effect was an n× 1 vector)
and were defined below. ξa =

∑m
k=1 Zkak was the polygenic

additive effect; ξd =
∑m

k=1 Wkdk was the polygenic dominance
effect; ξaa =

∑m−1
k=1

∑m
k′=k+1(Zk#Zk′)(aa)kk′ was the polygenic

additive-by-additive effect; ξad =
∑m

k,k′=1,k′ 6=k(Zk#Wk′)(ad)kk′
was the polygenic additive-by-dominance effect;
ξdd =

∑m−1
k=1

∑m
k′=k+1(Wk#Wk′)(dd)kk′ was the polygenic

dominance-by-dominance effect. The operator # represented
element-wise product of matrices. In the formulas above, ak and
dk were the additive and dominance effect for marker k, (aa)kk′ ,
(ad)kk′ , and (dd)kk′ were the additive-by-additive, additive-
by-dominance and dominance-by-dominance effect between
markers k and k’, respectively. The distributions for the polygenic
and residual effects were ξa ∼ N(0,Kaσ

2
a), ξd ∼ N(0,Kdσ

2
d),

ξaa ∼ N(0,Kaaσ
2
aa), ξad ∼ N(0,Kadσ

2
ad), ξdd ∼ N(0,Kddσ

2
dd),

and ε ∼ N(0, Iσ2), where Ka, Kd, Kaa, Kad, and Kdd were the
corresponding kinship matrices calculated using the method
given by Xu (2013). The six variance components (five genetic
variance components and the residual variance) were estimated
using the BGLR package in R (Pérez and De Los Campos, 2014)
with the number of iterations set at 15,000 and the number of
burn-in set at 5,000.

The variance-covariance matrix of y was

var(y) = Kaσ
2
a + Kdσ

2
d + Kaaσ

2
aa + Kadσ

2
ad + Kddσ

2
dd + Iσ2.

Let λx = σ2
x/σ

2 , where σ2
x was one of the five genetic variance

components and σ2 was the residual variance. The above variance
could be rewritten as

var(y) = (Kaλa + Kdλd + Kaaλaa + Kadλad + Kddλdd + I)σ2.

Define

K = Kaλa + Kdλd + Kaaλaa + Kadλad + Kddλdd,

so that
var(y) = (K + I)σ2.

Let
ξ = ξa + ξd + ξaa + ξad + ξdd.

Model (1) could be rewritten as

y = Xβ+ ξ + ε, (2)

which was the null model for the GWAS of main effect and
epistatic effect detection. On this null model, we added a specific
marker or marker pair to the model to test the putative effect.

To test the additive effect of marker k, we added Zkak to the
null mode so that the linear mixed model became:

y = Xβ+ Zkak + ξ + ε. (3)
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Let e = ξ + ε , so that the model was rewritten as:

y = Xβ+ Zkak + e. (4)

The expectation of model (4) was E(y) = Xβ+ Zkak and the
variance was:

var(y) = var(e) = var(ξ + ε) = (K + I)σ2.

Let us perform eigenvalue decomposition for matrix K,
K = UDUT , where U was the eigenvector matrix and D was a
diagonal matrix holding the eigenvalues. So,

var(e) = U(D+ I)UTσ2.

Let QT
=

√
(D+ I)−1UT and pre-multiply equation (4) by

QT leading to

QTy = QT(Xβ+ Zkak + e) = QTXβ+ QTZkak + QTe. (5)

Let y∗ = QTy, X∗ = QTX, Z∗k = QTZk and e∗ = QTe. The
above linear mixed model was

y∗ = X∗β+ Z∗kak + e∗. (6)

The variance of the transformed residuals was

var(e∗) = var(QTe)
= QTU(D+ I)UTQσ2

=

√
(D+ I)−1UTU(D+ I)UTU

√
(D+ I)−1σ2

=

√
(D+ I)−1(D+ I)

√
(D+ I)−1σ2

=

√
(D+ I)−1√(D+ I)

√
(D+ I)

√
(D+ I)−1σ2

= Iσ2.

The expectation and variance of y∗ were E(y∗) = X∗β+ Z∗kak
and var(y∗) = Iσ2. Therefore, model (6) became a simple linear
model with a homogeneous residual variance. The conventional
least squares method could be used to estimate the parameters
and test for the marker effect. Since the model of the transformed
phenotypic values was very simple, the “lm” function in
R was applied to estimate the marker effect and test the
significance of the marker.

Considering the dominance and epistatic effects, we adopted
a more general likelihood ratio test (LRT) for a particular effect.
The likelihood ratio test for the additive effect of marker k was

LRT = −2
[
L0(β̂)− L1(β̂, âk)

]
,

where L0(β̂) was the likelihood value evaluated from the null
model given in equation (7) below,

y∗ = X∗β+ e∗, (7)

and L1(β̂, α̂k) was the likelihood value evaluated from the
full model given in equation (6). The LRT statistic was
eventually converted into the log of odds (LOD) score using
LOD = LRT/4.61. If the intervals of different QTL were
overlapped or the genetic distance of peak SNP of two QTL was
within 0.65 cM (the average density in the whole genome), we
called such QTL as a pleiotropic QTL (a QTL affecting more
than one trait).

Dominance effect of marker k was detected using the same
model as the additive effect except that Zk was replaced by Wk. In
the following, we called the significant additive and dominance
QTL as the main effect QTL.

The additive-by-additive effect was detected by the following
likelihood ratio test,

LRT = −2
[
L0(β̂, âk, âk′)− L1(β̂, âk, âk′ , (aa)kk′)

]
,

where the null model was

y∗ = X∗β+ Z∗kak + Z∗k′ak′ + e∗, (8)

and the full model was

y∗ = X∗β+ Z∗kak + Z∗k′ak′ + (Z
∗

k#Z∗k′)(aa)kk′ + e∗, (9)

Similarly, the additive-by-dominance effect was detected using

LRT = −2
[
L0(β̂, âk, d̂k′)− L1(β̂, âk, d̂k′ , (ad)kk′)

]
.

The null model and the full model were

y∗ = X∗β+ Z∗kak +W∗k′dk′ + e∗, (10)

and

y∗ = X∗β+ Z∗kak +W∗k′dk′ + (Z
∗

k#W∗k′)(ad)kk′ + e∗, (11)

respectively. Similarly, the dominance-by-additive effect was
detected using

LRT = −2
[
L0(β̂, âk, d̂k′)− L1(β̂, âk, d̂k′ , (da)kk′)

]
.

The null model and the full model were

y∗ = X∗β+ Z∗kak +W∗k′dk′ + e∗, (12)

and

y∗ = X∗β+ Z∗kak +W∗k′dk′ + (W
∗

k #Z∗k′)(da)kk′ + e∗, (13)

respectively. Finally, the dominance-by-dominance effect was
tested using

LRT = −2
[
L0(β̂, d̂k, d̂k′)− L1(β̂, d̂k, d̂k′ , (dd)kk′)

]
.

The corresponding null model and full model were

y∗ = X∗β+W∗kdk +W∗k′dk′ + e∗, (14)

and

y∗ = X∗β+W∗kdk +W∗k′dk′ + (W
∗

k #W∗k′)(dd)kk′ + e∗, (15)

respectively. LOD scores were converted the same way as we did
for the additive effect.

An empirical threshold of 2.5 for the LOD score was used
to determine significance of an additive or a dominance effect.
A LOD threshold of 5.0 was used to determine the significance
of an epistatic effect (Churchill and Doerge, 1994; Xu, 2013).
A confidence interval in the genome was determined for each
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detected QTL with the following steps: (1) all significant SNPs
passing the threshold were selected; (2) the most significant
SNPs were kept within a 10 cM interval; (3) the QTL interval
was formed using a 1.5-LOD drop-off method (Broman,
2001). The names of QTL referred to McCouch’s method
(McCouch et al., 1997), and a dash (–) was added to designate
different datasets.

The estimated additive and dominance effects for each QTL
were extracted from the estimated regression coefficients (ak
and dk) from the models presented above. The proportion of
the phenotypic variance explained (PVE) contributed by each
QTL was calculated using (Utz et al., 2000; Garin et al., 2017),

PVE = 1−
RSSFull
RSSNull

,

where RSSFull was the residual sum of squares of the full model
and RSSNull was the residual sum of squares of the null model.

We also performed QTL mapping in the RIL, TC and TM
population separately. The model was the same as described
above except that only the additive and additive-by-additive
polygenic effects were used to control genetic background. QTL
mapping for MPH was conducted using a similar linear mixed
model to the original traits. Details of the MPH analysis can be
found in a previous study (Jiang et al., 2017).

Genomic Selection
The genetic effects of single-cross hybrids can be dissected into
additive, dominance and epistatic polygenic effects as mentioned
before. Here, we only considered the first two components in the
genomic prediction model. The linear mixed model was (Su et al.,
2012; Xu et al., 2014).

y = Xβ+ ξa + ξd + ε,

where y was the phenotype vector, Xβ represented the fixed effect,
ξa was the additive polygenic effect with an assumed distribution
of ξa ∼ N(0,Kaσ

2
a), ξd was the dominance polygenic effect with

a distribution of ξd ∼ N(0,Kdσ
2
d), Ka was the additive kinship

matrix and Kd was the dominance kinship matrix.
Three genomic prediction schemes were proposed to mimic

the scenarios in practical genomic hybrid breeding. Scheme
(1), abbreviated as CV1: to predict the trait values for the
TM population from the phenotypes and genotypes of the
TC population or vice versa. Scheme (2), abbreviated as CV2:
to select the hybrids sharing the same RILs in TC and TM
population as the training set to predict the rest of the
population. Scheme (3), abbreviated as CV3: to select the
hybrids having the different RILs in TC and TM population
as the training set to predict the rest of the population.
Scheme (1) and (2) belong to the so-called T1 case, and
scheme (3) is in the category of T2 (Technow et al., 2014;
Zhao et al., 2015a). The three scenarios are illustrated in
Supplementary Figure 1.

The across population prediction in scheme (1) was conducted
using a model that contained only the additive polygenic effect.
For schemes (2) and (3), the prediction models contained
both the additive and the dominant polygenic effects. The

predictions were implemented with the BGLR software package
in R (Pérez and De Los Campos, 2014). The prediction accuracy
was assessed with a two-fold cross-validation scheme. In each
run, 1/2 of the lines were removed from the training set
and then the correlation between the predicted values and
the observed values of the removed lines was calculated. The
two-fold cross-validation was repeated 200 times. In addition,
significant SNPs were treated as fixed effects in the prediction
model, which has been termed wGS (Bernardo, 2014; Würschum
et al., 2018). For example, when the TC population was
used to predict the TM population, the QTL detected in
the TC population were treated as fixed effects in the linear
mixed model used to predict the TM population. For schemes
(2) and (3), QTL detected from the pooled population of
TC and TM were treated as fixed effects included in the
models to predict the rest of the population. For comparison,
the additive model with kinship matrix inferred from RILs
population was used to yield the prediction accuracy of 10
traits using a two-fold cross-validation scheme in TC and
TM population, respectively. This process was repeated 200
times. Data visualization was done with the ggplot2 and ggpubr
packages in R (Wickham, 2016).

RESULTS

Phenotypic Variation and Heritability in
the Recombinant Inbred Line, TC, and
TM Populations
The RIL population showed a larger variation for the 10
investigated traits than the TC and TM populations (Table 1
and Figure 1). The genetic variance components were significant
(p < 0.01) for all traits in the three populations. Except
for the trait VW in the TM population, the variance of
the genotype-by-environment interaction was also significant
(p < 0.01) for all traits. The estimated broad-sense heritability
ranged from 0.68 for VW to 0.95 for PH in the RIL
population, from 0.57 for VW to 0.91 for PH and KT
in the TC population, and from 0.60 for GY to 0.89 for
PH in the TM population. In general, PH had the highest
heritability and VW or GY had the lowest heritability.
The obtained moderate to high heritability implied that
the experimental designs and phenotyping procedures were
appropriate and accurate.

The MPH for traits KT and VW was negative on average
in both the TC and TM populations, which means that the
hybrids often had phenotypic values lower than the mean
of the two parents (Figure 1). In both the TC and TM
populations, GY had the highest heterosis, followed by PH and
EH (Supplementary Table 1), and the genetic variances of MPH
were statistically significant for all traits. The heritability of MPH
in the TC population ranged from 0.36 for VW to 0.81 for
PH, while the heritability of MPH ranged from 0.27 for VW
to 0.78 for PH in the TM population. The moderate to high
heritability of MPH lay the foundation to dissect the genetic
architecture of heterosis.
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TABLE 1 | Summary statistics for 10 traits in the recombinant inbred line population developed by Ye478 × Qi319 (RIL), Chang7-2 × RIL (TC), and Mo17 × RIL
(TM) populations.

Population Traits Min Max Mean SD CV (%) σ2
G σ2

G*E σ2
ε NE H2

RIL PH 138.88 223.17 179.28 15.29 8.53 217.97** 26.64** 45.08 4 0.95

EH 45.48 94.49 67.87 8.91 13.13 73.83** 9.39** 17.18 4 0.94

RNPE 8.91 14.41 11.79 0.90 7.63 0.71** 0.13** 0.34 4 0.90

KNPR 12.57 32.21 23.31 3.25 13.95 8.69** 3.72** 4.03 4 0.86

KT 40.49 69.81 52.59 3.98 7.57 13.40** 2.84** 9.54 4 0.88

KW 76.29 104.84 89.60 4.26 4.75 15.28** 3.07** 13.34 4 0.86

KL 86.65 115.59 100.17 5.14 5.13 21.96** 5.76** 17.26 4 0.86

VW 509.00 732.26 640.84 32.39 5.05 606.28** 399.41** 2026.25 5 0.68

HGW 17.68 33.72 25.27 2.90 11.46 7.30** 2.41** 4.70 5 0.88

GY 20.47 84.90 53.83 11.76 21.86 113.05** 59.47** 65.54 5 0.86

TC PH 204.20 271.68 247.23 9.34 3.78 77.97** 8.67** 42.30 4 0.91

EH 98.15 134.09 113.17 6.49 5.73 35.49** 5.53** 28.35 4 0.88

RNPE 12.47 16.74 14.36 0.73 5.05 0.44** 0.07** 0.46 4 0.86

KNPR 31.36 43.04 37.74 1.59 4.22 2.07** 1.00** 3.42 4 0.75

KT 36.29 46.66 40.44 1.72 4.25 3.18** 0.15** 2.29 4 0.91

KW 84.78 104.00 95.24 3.02 3.17 7.15** 2.16** 8.99 4 0.81

KL 111.28 132.37 124.22 3.63 2.92 9.22** 4.60** 17.58 4 0.73

VW 489.34 633.25 555.35 21.81 3.93 252.96** 143.69** 1238.20 4 0.57

HGW 22.09 34.48 26.77 1.87 6.98 2.47** 1.33** 5.11 5 0.76

GY 99.01 158.78 131.15 9.68 7.38 53.37** 35.86** 235.67 5 0.63

TM PH 212.26 280.26 259.11 8.61 3.32 65.16** 15.32** 31.10 4 0.89

EH 84.30 117.25 100.55 6.27 6.24 33.39** 8.11** 20.62 4 0.88

RNPE 11.44 14.06 12.66 0.48 3.77 0.18** 0.03** 0.23 4 0.83

KNPR 29.00 45.17 38.95 2.22 5.69 3.44** 2.86** 4.20 4 0.74

KT 39.84 57.03 46.04 2.17 4.72 3.79** 0.69** 4.65 4 0.83

KW 87.14 105.99 94.79 2.76 2.91 6.02** 0.98** 8.00 4 0.83

KL 109.41 128.48 118.74 3.43 2.89 8.62** 1.98** 15.39 4 0.78

VW 491.34 627.42 563.82 20.76 3.68 237.35** 68.33 1102.22 4 0.61

HGW 24.16 34.25 28.39 1.75 6.16 2.17** 1.31** 4.68 5 0.75

GY 94.99 152.12 125.65 8.74 6.95 40.76** 45.49** 180.99 5 0.60

SD, standard deviation; CV, coefficient of variation; σ2
G, genotypic variance; σ2

G*E , genotype-by-environment interaction variance; σ2
ε , error variance; NE , the number of

environments; H2, broad-sense heritability; **, significance at 0.01 level; PH, plant height; EH, ear height; RNPE, row number per ear; KNPR, kernel number per row; KT,
kernel thickness; KW, kernel width; KL, kernel length; VW, volume weight; HGW, hundred grain weight; GY, grain yield per plant.

For PH, EH, RNPE, KT, and KL the GCA variance of
testers (σ2

GCATester
) had larger values than the GCA variance

of RILs (σ2
GCARIL

), which indicated that the testers played
an important role in hybrid performance. The SCA/GCA
ratios indicating a relative contribution of additive and non-
additive (dominance and epistasis) effects to phenotypic
variation ranged from 0.04 for KT and 0.77 for GY
(Supplementary Table 2). And for GY, the variance of
SCA (σ2

SCA) was higher than both σ2
GCATester

and σ2
GCARIL

,
which was consistent with the large MPH variation in
phenotype (Figure 1J).

Trait Correlation and Path Analysis in the
Three Populations
Relatively high correlations between traits were observed in the
three populations (Figure 2A). The correlation between traits
KNPR and GY was r = 0.69 (p < 0.01) and the correlation
between KL and GY was 0.57 (p < 0.01) in the RIL population,

which were the highest among the correlations between GY and
the other traits. In the TC population, the highest correlations
of GY occured between GY and HGW (r = 0.50, p < 0.01) and
between GY and KL (r = 0.45, p < 0.01). In the TM population,
the highest correlations were between GY and KNPR (r = 0.54,
p< 0.01) and between GY and KL (r = 0.41, p< 0.01).

It is difficult to determine which trait contributes the most
to the variation of grain yield only through correlation analysis
between GY and the other traits. We therefore next performed
a path analysis of all traits with GY (Figures 2B–D). By taking
GY as the response variable and all other traits as independent
variables, we estimated the path coefficients for every trait. In the
RIL population, the highest path coefficients occurred for KNPR
(0.60) and for HGW (0.36). The trait HGW had the highest path
coefficient (0.79), followed by KNPR (0.54) in the TC population.
In the TM population, the highest path coefficient was 0.79 for
KNPR, followed by 0.62 for HGW. In summary, KNPR and
HGW contributed most to the variation of grain yield.
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FIGURE 1 | Phenotype and midparent heterosis (MPH) distributions for 10 traits in the recombinant inbred line population developed by Ye478 × Qi319 (RIL),
Chang7-2 × RIL (TC), and Mo17 × RIL (TM) populations. (A) PH, plant height; (B) EH, ear height; (C) RNPE, row number per ear; (D) KNPR, kernel number per
row; (E) KT, kernel thickness; (F) KW, kernel width; (G) KL, kernel length; (H) VW, volume weight; (I) HGW, hundred grain weight; (J) GY, grain yield per plant;
MPH.TC, MPH in TC population; MPH.TM, MPH in TM population.
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FIGURE 2 | Correlation and path analysis of 10 traits in the recombinant inbred line population developed by Ye478 × Qi319 (RIL), Chang7-2 × RIL (TC), and
Mo17 × RIL (TM) populations. (A) Correlation coefficients between grain yield per plant (GY) and the other traits. (B) Correlation and path coefficients between GY
and the other traits in the RIL population, (C) in the TC population, and (D) in the TM population. The lines toward GY are the path coefficients and the other lines
among the traits are correlation coefficients. Only coefficients larger than 0.14 (p = 0.01, n = 339) are displayed. **, significance at 0.01 level; *, significance at 0.05
level; PH, plant height; EH, ear height; RNPE, row number per ear; KNPR, kernel number per row; KT, kernel thickness; KW, kernel width; KL, kernel length; VW,
volume weight; HGW, hundred grain weight; GY, grain yield per plant.

Main Effect Quantitative Trait Loci
Mapping in the Recombinant Inbred
Line, TC, and TM Populations
A high-density genetic map was constructed using 4,141 bins,
covering 2669.49 cM of the maize genome (Supplementary
Table 3 and Supplementary Figure 2). The average density of
the marker map was 0.64 cM/bin in the whole genome, enabling
a high resolution for QTL mapping.

To dissect the genetic architecture of the 10 traits, we first
examined the additive model with the additive polygenic effect
plus the additive-by-additive polygenic effect to control the
genomic background (Supplementary Table 4). The additive
(narrow-sense) heritability in the RIL population ranged from
0.25 for VW to 0.69 for PH. In the TC population, it ranged

from 0.31 for VW to 0.70 for RNPE and in the TM population,
it ranged from 0.38 for VW to 0.72 for EH. Generally, the
proportion of phenotypic variance explained by the additive
effects was greater than that explained by the additive-by-additive
effects for all 10 traits. We also found that the proportion
of variance explained by the additive-by-additive effects for
the traits RNPE, KT, KW, KL, and GY was larger in the
RIL population than the corresponding proportion in the TC
and TM populations (Supplementary Table 4), illustrating that
further studies are needed to understand the non-additive genetic
architecture of these traits.

We also mapped QTL for the 10 traits in the RIL, TC, and
TM populations, respectively (Figure 3A and Supplementary
Table 5). In the RIL population, a total of 16 QTL were
identified on eight chromosomes and five superior alleles were
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FIGURE 3 | Quantitative trait loci (QTL) distribution and pleiotropic QTL detected in the recombinant inbred line population developed by Ye478 × Qi319 (RIL),
Chang7-2 × RIL (TC), and Mo17 × RIL (TM) populations. (A) QTL distribution and hotspots in the whole genome shown for RIL, TC, and TM populations.
TC-TM-Main is the mapping results for the additive and dominance effects of QTL from the pooled population of TC and TM. MPH represents the result of
dominance QTL mapping for MPH. (B) Venn diagram showing the numbers of overlapping QTL between the RIL, TC, and TM populations. (C) Trait-QTL network for
the 10 traits and QTL identified in the RIL, TC, and TM populations. The connections between traits and QTL are linked if a QTL was identified for the respective trait.
PH, plant height; EH, ear height; RNPE, row number per ear; KNPR, kernel number per row; KT, kernel thickness; KW, kernel width; KL, kernel length; VW, volume
weight; HGW, hundred grain weight; GY, grain yield per plant.

from the Ye478 parental line over the 10 traits. In the TC
population, a total of 18 QTL were identified, among which
10 superior alleles came from the Ye478 parent. 19 QTL were

identified in the TM population, among which eight superior
alleles originated from the Ye478 parent. Three common QTL
were jointly identified in the RIL and TM populations, two
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QTL were shared by the RIL and TC populations, and six
QTL were jointly detected in the TC and TM populations
(Figure 3B). One QTL (MQTL15) located in the interval
from 162.93 to 172.23 Mb on chromosome 3 was shared
among all three populations. This QTL was associated with
KW in the RIL and the TC population and with HGW in all
three populations (Figure 3C). A few other QTL also showed
pleiotropic effects. For example, MQTL9 located between 1.71
and 4.67 Mb on chromosome 2 was associated with RNPE
and KL in the TC population and with KNPR and KL in
the TM population.

In the above QTL mapping results, low overlapping ratios
among TC, TM and RIL populations were observed. In
addition, in phenotype, the top 10 lines in the TC population
did not match those identified in the TM population or
vice versa (Supplementary Figures 3A,B). The two genetic
phenomenons suggested that non-additive effects were important
for hybrid performance. In this case, it is interesting to
further dissect the hybrid performance to mine dominance
and epistatic QTL.

Multiple Variance Components
Dissection and Main Effect Quantitative
Trait Loci Mapping for Hybrid
Performance and Midparent Heterosis in
the TC-TM Population
We dissected the contribution of all five variance components
(additive, dominance, and three epistatic polygenic variances)
by Bayesian generalized linear regression (Pérez and De
Los Campos, 2014) based on the hybrid performance
and MPH in the TC-TM population. The results for the
hybrid performance showed that additive-by-additive was
the most important polygenic effect for the traits PH, EH,
and KT, additive-by-dominance was predominant for VW
and dominance was the most important polygenic effect
for the remaining traits (Supplementary Table 6). For
the analysis of MPH, the additive-by-dominance variance
contributed the most for traits KT, KW, VW, and HGW,
while the dominance variance contributed the most for
the other six traits (Supplementary Table 7). Different
proportions of dominant variances among 10 traits showed
the complexity of heterosis.

We implemented a mixed model to test the main (additive
and dominance) effects of a specific marker for both the hybrid
performance and the MPH for all traits in the pooled TC-TM
population. A total of 21 main effect QTL were identified for
the 10 traits for hybrid performance (Supplementary Table 5
and Figure 4A). Among them, one had a significant dominance
effect for KNPR and was located in the interval 210.29–211.57 Mb
on chromosome 2 (Figure 4B and Supplementary Figure 4).
For the other 20 QTL, the additive and dominance effects
were confounded due to the fact that there were only two
genotypes per locus (Supplementary Figure 4). Moreover, a
total of 17 dominance QTL were detected for MPH for the 10
traits (Figure 4C and Supplementary Table 5). Interestingly,
only two detected QTL were in common between MPH

and hybrid performance (Figure 4A). The pleiotropic QTL
MQTL43 located in the interval around 80.08–112.87 Mb
on chromosome 10 was associated with EH and GY in the
MPH dataset and with PH, EH and GY in the TC-TM-
Main dataset (Supplementary Table 5 and Figure 4C). The
lack of common QTL between MPH and hybrid performance
implies that the two phenomena might have different genetic
architectures, consistent with the results of the variance
component analysis.

Epistasis Plays an Important Role in
Hybrid Performance
For hybrid performance in the TC-TM population, we
scanned the entire genome to identify significant epistasis
loci for the 10 traits and 197, 176, 131, and 112 significant
epistatic pairs of loci were identified for additive-by-additive,
additive-by-dominance, dominance-by-additive and dominance-
by-dominance effects, respectively (Supplementary Table 8).
The number of significant locus pairs varied across traits and
the proportion of explained variance of an epistatic interaction
ranged from 3.46 to 4.52%. For grain yield, only one significant
additive-by-dominance QTL were detected. We observed
the phenomenon of a continuous region interacting with
another locus in the genome. For example, for additive-by-
additive mapping, the interaction between a cluster of adjacent
SNPs on chromosome 8 (Chr8_180048590, Chr8_180913576,
Chr8_181023046, and Chr8_180032314) and a locus on
chromosome 6 (Chr6_166754537) was significantly associated
with PH (Supplementary Table 8).

EH had a more simple genetic architecture compared to
GY and the variation of MPH for EH was also higher
(Supplementary Table 1). We therefore used the trait EH as
an example to investigate the epistatic effects in the RIL and
the two hybrid populations. In the RIL population, no QTL
was identified (Figure 5A). However, in the pooled TC-TM
population, two main effect QTL for hybrid performance were
identified on chromosomes 1 (TC-TM-Main-qEH1 represented
by the peak SNP Chr1_131115160) and 10 (TC-TM-Main-qEH10
represented by the peak SNP Chr10_91890676) (Figure 5B). For
MPH, however, only the MPH-qEH10 QTL had a significant
dominance effect as well as several additional small-effect
QTL (Figure 5C). We further tested the additive-by-additive
interactions between TC-TM-Main-qEH1 and all other SNPs
(4,140 in total). None of the tested effects were significant in
the RIL population (Figure 5D). However, several significant
interactions were identified in the pooled TC-TM population
(Figure 5E). Further analysis confirmed the interaction between
the two loci TC-TM-Main-qEH1 and TC-TM-Main-qEH10
in the pooled TC-TM population (Figure 5F). The specific
type of epistatic effect between the two loci in the TC-
TM population could not be determined because there were
only two different genotypes at each locus. However, as
we observed that the additive-by-additive effect was not
significant between these two loci in the RIL population,
we concluded that it is likely the additive-by-dominance or
dominance-by-dominance effects that led to the detection
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FIGURE 4 | Results of the main effect quantitative trait loci (QTL) mapping in the pooled Chang7-2 × RIL (TC)-Mo17 × RIL (TM) population and dominance effect
QTL mapping for midparent heterosis (MPH). (A) Venn diagram showing the numbers of pleiotropic QTL overlapping between TC-TM-Main and MPH. TC-TM-Main
is the mapping results for the additive and dominance effects of QTL from the pooled population of TC and TM. MPH represents the result of dominance QTL
mapping for midparent heterosis. (B) Dominance QTL identified for kernel number per row in the pooled TC-TM population. (C) Trait-QTL network for 10 traits and
QTL identified in the TC-TM-Main and MPH datasets. The connections between traits and QTL are linked if a QTL was identified for this trait. PH, plant height; EH,
ear height; RNPE, row number per ear; KNPR, kernel number per row; KT, kernel thickness; KW, kernel width; KL, kernel length; VW, volume weight; HGW, hundred
grain weight; GY, grain yield per plant; LOD, log of odds.

of this epistatic QTL in the hybrid population but not in
the RIL population.

Correlation Between the Number of
Favorable Quantitative Trait Loci and
Hybrid Performance
We chose a slightly lower significance threshold of LOD = 2.0
to obtain more loci for this analysis, which yielded four and
six significant QTL for GY in the TC and TM population,
respectively. If the performance of heterozygous genotypes was

better than that of homozygous genotypes at one QTL, it
was called a heterozygous favorable QTL; otherwise, it was
called a homozygous favorable QTL. The correlations between
the number of favorable QTL and the hybrid performance
were calculated for all 10 traits (Supplementary Table 9). The
correlations between the hybrid performance and the number
of favorable homozygous QTL (r1), the number of favorable
heterozygous QTL (r2) and the total number of favorable QTL
(r3) varied across traits, but were significant for most of traits in
both the TC and TM populations.
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FIGURE 5 | Quantitative trait loci (QTL) mapping results for the trait ear height. (A) QTL mapping in the recombinant inbred line population developed by
Ye478 × Qi319 (RIL) population. (B) In the pooled Chang7-2 × RIL (TC)-Mo17 × RIL (TM) population, and (C) dominance QTL mapping for midparent heterosis.
(D) Test for epistasis between the QTL TC-TM-Main-qEH1 (peak single nucleotide polymorphisms is Chr1_131115160) on chromosome 1 and the other 4,140
markers in the RIL population. (E) Test for epistasis between the QTL TC-TM-Main-qEH1 (peak single nucleotide polymorphisms is Chr1_131115160) on
chromosome 1 and the other 4,140 markers in the pooled TC-TM population. The red horizontal line indicates the significance threshold used for QTL detection and
the blue line is the threshold to identify the loci for the favorable QTL analysis. (F) The interactions between different genotypes of QTL TC-TM-Main-qEH1
(Chr1_116118501; Aa, AA) and different genotypes of QTL TC-TM-Main-qEH10 (Chr10_91890676; bb, Bb). The diamond indicates the mean value of different
genotypes. LOD, log of odds.

In the TC population, three of the four QTL for GY
were heterozygous favorable QTL and r1, r2, and r3 were
0.16 (Supplementary Table 9), 0.43 (Figure 6A) and 0.41
(Figure 6B), respectively. In the TM population, only two
of the six detected QTL were heterozygous favorable QTL
and r1, r2, and r3 were 0.42 (Figure 6C), 0.25 (Figure 6D),
and 0.47 (Figure 6E), respectively. These results illustrate that

superior hybrids can be selected by combining favorable alleles
at significant loci.

Genomic Selection Accuracy in Different
Breeding Schemes
For genomic selection within populations, the prediction
accuracy ranged from 0.70 for RNPE to 0.40 for VW in
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FIGURE 6 | Correlations between the number of favorable quantitative trait loci (QTL) and grain yield per plant (GY). (A) Correlation between the number of all
favorable QTL and GY in Chang7-2 × RIL (TC) population and (B) between the number of favorable heterozygous QTL and GY in TC population. (C) Correlation
between the number of all favorable QTL and GY in Mo17 × RIL (TM) population and (D) between the number of favorable heterozygous QTL and GY in TM
population. (E) Correlation between the number of favorable homozygous QTL and GY in TM population.
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TC and ranged from 0.63 for KT to 0.51 for GY in TM
population (Figure 7A). Generally, traits with a low heritability
usually had a low prediction accuracy, like VW in TC and GY
in TM population.

The three cross-validation schemes were shown in
Supplementary Figure 1. For strategy 1 (CV1), when using
the TC population to predict the TM population (TC_TM), the
prediction accuracy ranged from 0.305 for GY to 0.699 for EH
(Figure 7B). Conversely, the prediction accuracy ranged from
0.287 for GY to 0.73 for EH when the TM population was used to
predict the TC population (TM_TC). When the significant QTL
identified in the training population were included as fixed effects
in the prediction model, this did not result in an improvement of
the prediction accuracy for most of the traits. Only a few traits,
e.g., EH and KL, showed a slight improvement. For some traits,
e.g., KNPR and KT, the prediction accuracy even decreased.

For the second cross-validation strategy (CV2), the lowest
prediction accuracy was 0.49 for VW and the highest prediction
accuracy was 0.90 for RNPE. For the third cross-validation
strategy (CV3), the lowest prediction accuracy was 0.53 for GY
and the highest prediction accuracy was 0.92 for KT and RNPE
(Figure 7C). The results also showed that the prediction accuracy
of CV3 was higher than within population scheme and CV1,
CV2, regardless of whether GS or wGS was applied. The wGS
taking potential QTL as fixed had a higher prediction accuracy
than GS in both CV2 and CV3 (Figure 7C).

DISCUSSION

Hundred Grain Weight and Kernel
Number per Row Significantly Contribute
to the Variation of Grain Yield
Grain yield is a complex trait, affected by many genetic and
non-genetic factors. The three traits that were found to mainly
contribute to GY are HGW, RNPE, and KNPR. In earlier studies,
the focus has been placed on correlation analysis between traits.
In general, moderate to high correlations were observed between
GY and many other traits (Cui et al., 2016; Li et al., 2020, 2021).
However, it is difficult to determine which trait contributes the
most to grain yield. Path analysis is an alternative approach that
allows examining the relative importance of a component trait
to the variation of the target trait. Our results revealed that
regardless of whether the population was the RIL population or
the hybrid population, HGW and KNPR had the highest path
coefficients thus, contributed the most to the variation of GY
(Figures 2B–D). Consequently, HGW and KNPR are promising
indirect traits to improve GY in hybrid breeding in maize.

Identification of Quantitative Trait Loci
Using an Additive Genetic Model
Previous studies in the underlying populations (RIL, TC, and
TM) focused on additive genetic models, where the genotypes
and phenotypes of the RIL population were used to map QTL
by treating the GCA as traits (Zhou et al., 2018; Lu et al.,
2020). In this study, the genotypes and phenotypes of two hybrid

populations were used to detect significant main (additive and
dominance) effects and epistatic QTL. Only two common QTL
were identified between the RIL and the TC hybrid population,
and three common QTL were identified between the RIL and the
TM hybrid population (Figure 3B). These results indicated that
the non-additive genetic effect played an important role, which
meant that a line with a moderate value of GY can still yield a
high GY when crossing with testers (Supplementary Figure 3).
And an additive model was not enough to explain heterosis.

Non-additive Polygenic Effects Play an
Important Role in Hybrid Performance
The proportion of phenotypic variance explained by the additive-
by-additive effects in the RIL population was higher for most
traits than that in the TC and TM populations (Supplementary
Table 4). And the unparallel relationship between RILs and
hybrid populations (Supplementary Figure 3) inspired further
exploration of the genetic basis in the combined TC-TM hybrid
population using a model integrating non-additive polygenic
effects. Based on the estimated variance components, we
conclude that the prominent gene action varies across traits
(Supplementary Table 6). For example, the prominent variance
was the additive-by-additive component for the trait PH, but
for GY the prominent variance was the dominance component.
This presents a considerable challenge for selecting elite single-
cross hybrids and for uncovering the importance of non-additive
genetic effects because additive variance is not a prominent factor
to control the variation of any of the investigated traits.

Identification of Quantitative Trait Loci
Using a Non-additive Model
For genetic dissection of the hybrid performance, Xu (2013)
proposed a new mixed model method for QTL mapping by
incorporating multiple polygenic covariance structures, which
consist of the additive, dominance, and epistatic variance
components. In theory, each particular effect could be tested in
a model by controlling all other genetic effects as background.
Similarly, a quantitative genetic framework was proposed for the
genetic dissection of MPH (Jiang et al., 2017). The above two
linear mixed models are very similar in the polygenic background
control. The main difference is the response variable, in the
former it is the performance of the hybrid (Xu, 2013) and in
the latter the MPH (Jiang et al., 2017). It should be noted that
the hybrid performance could not be simply replaced by MPH
with just the removal of the additive effect from the linear mixed
model (Jiang et al., 2017). In our study, the GBS technology
only covered about 0.07-fold of the genome in our populations.
The two tester lines had the same genotype at 95% of the loci,
which resulted in the pooled TC-TM population having just two
genotypes at 95% of loci. Two genotypes per locus mimick a
backcross population so that the additive effects are confounded
with the dominance effects, which explains why the TC-TM-
Add model was nearly the same as the TC-TM-Dom model
(with one exception for a dominance QTL) (Supplementary
Figure 4). Regardless of the high similarity between the hybrid
populations and the hypothetical BC population, the hybrid
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FIGURE 7 | Genomic prediction accuracy of different cross-validation strategies. (A) Prediction accuracy within Chang7-2 × RIL (TC) and Mo17 × RIL (TM)
population. RIL, the recombinant inbred line population developed by Ye478 × Qi319. (B) Prediction accuracy of 10 traits of cross-validation strategy 1 (CV1).
TC_TM represents TM predicted by the TC population; TM_TC represents TC predicted by the TM population. (C) Prediction accuracy of 10 traits of cross-validation
strategy 2 (CV2) and cross-validation strategy 3 (CV3). wGS is a weighted genomic selection that incorporates the peak single nucleotide polymorphisms (SNP) of
potential target quantitative trait loci as fixed effects. PH, plant height; EH, ear height; RNPE, row number per ear; KNPR, kernel number per row; KT, kernel
thickness; KW, kernel width; KL, kernel length; VW, volume weight; HGW, hundred grain weight; GY, grain yield per plant.

populations still had advantages. In a dominance test for MPH,
17 significant dominance loci were detected (Figure 4A) and
for hybrid performance, a set of significant epistatic loci was
identified (Supplementary Table 8).

Improve Prediction Accuracy by
Integrating Functional Markers
In genomic selection models like GBLUP or rrBLUP, all SNPs
were treated equally or had the same distribution when treated
as random. Actually, significant QTL contributed more to the
variation of traits. In such a case, significant SNPs should be
treated differently. In this study, those SNPs were included in
the fixed effect in the GS model to explore whether prediction
accuracy could be improved. For cross-validation scheme 1, just

two of 10 traits, namely EH and KL showed slight improvement.
We guess that TC and TM populations had different genetic
backgrounds (Li et al., 2019) and those QTL made different
effect within two different populations. So the QTL effect was
estimated biasedly when only one tester population as training
population. But for CV2 and CV3, the population used for
QTL mapping consisted of lines from both TC and TM, in
this case, improvements were observed for all traits harboring
QTL (Figure 7C). By comparison, it showed that CV3 scheme
had superiority over the within population scheme, CV1, and
CV2, which inspired us that when there were some known
functional QTL in a target population, a strategy treating known
QTL as fixed effects with CV3 design was a better choice for
genomic prediction.
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Relationship Between Midparent
Heterosis and Hybrid Performance
Hybrid performance is the phenotypic value of the hybrid,
which is the sum of the midparent heterosis and the midparent
value. Hybrid performance is controlled by the additive, the
dominance and all four epistatic polygenic effects, whereas
MPH is not affected by the additive effect because the additive
effect does not contribute to heterosis (Jiang et al., 2017). In
this study, we confirmed the different genetic architecture of
hybrid performance and MPH as both had only two QTL
in common (Figure 4A), which is consistent with a previous
study (Hua et al., 2003). Furthermore, the variance component
ratios were also different between hybrid performance and
MPH (Supplementary Tables 6, 7). In a wheat study, the
midparent value showed a negative correlation with MPH
but was positively correlated with the hybrid performance
(Boeven et al., 2020). In our study, we observed the correlation
between the hybrid performance and MPH was 0.77 (p < 0.01)
(Supplementary Figure 5A), and a positive correlation of 0.23
(p < 0.01) between the hybrid performance and midparent
value (Supplementary Figure 5B), while a negative correlation
between midparent value and MPH for grain yield of −0.45
(p < 0.01) (Supplementary Figure 5C). And the path
analysis also highlighted the superior contribution of MPH
to hybrid performance in hybrid population (Supplementary
Figure 5D). In plant hybrid breeding, we aim to select
a single-cross hybrid with both high MPH and midparent
value, but these seem to be contradictory goals considering
the negative correlation. Consequently, hybrid breeding must
balance the two and target hybrid performance to achieve high
performing hybrids.

Mechanisms of Midparent Heterosis and
Hybrid Performance
Although dominant and additive effects couldn’t be separated
and dominant degree couldn’t be estimated in this study, multiple
variance components dissection provided possibility to assess the
mechanism of heterosis and hybrid performance. Results showed
the dominance contributed the highest proportion for MPH
of most traits, especially for GY and KNPR (Supplementary
Table 7). However, it was found that the epistasis (sum of
additive-by-additive, additive-by-dominance, and dominance-
by-dominance) contributes the highest proportion to hybrid
performance of GY, PH, EH, and KNPR (Supplementary
Table 6). The results were similar to a previous report in maize
(Tang et al., 2010). A series of linear mixed models incorporating
multiple polygenic covariance structures together with NCII
population provide possibility to explore the genetic factors and
mechanism of heterosis.
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Supplementary Figure 1 | Three different cross-validation schemes. (A)
Cross-validation strategy 1. (B) Cross-validation strategy 2. (C) Cross-validation
strategy 3. RILs, the recombinant inbred lines developed by Ye478 × Qi319.

Supplementary Figure 2 | Collinearity between the genetic and physical maps.

Supplementary Figure 3 | Parallel maps of grain yield per plant (GY) in the
recombinant inbred line population developed by Ye478 × Qi319 (RIL),
Chang7-2 × RIL (TC), and Mo17 × RIL (TM) populations. (A) GY was ranked
based on the TC population. (B) GY was ranked based on the TM population.

Supplementary Figure 4 | Venn diagram showing the numbers of pleiotropic
quantitative trait loci (QTL) overlapping among TC-TM-Add, TC-TM-Dom and
MPH. TC-TM-Add represents the mapping results for the additive effects in the
pooled population of Chang7-2 × RIL (TC) and Mo17 × RIL (TM). RIL, the
recombinant inbred line population developed by Ye478 × Qi319; TC-TM-Dom
represents the mapping results for the dominance effects in the pooled population
of TC and TM; MPH represents the result of dominance QTL mapping for
midparent heterosis.

Supplementary Figure 5 | Correlations and path coefficients among hybrid
performance, midparent heterosis (MPH) and midparent value. (A) Correlation
between MPH and hybrid performance. (B) Correlation between midparent value
and hybrid performance. (C) Correlation between midparent value and MPH. (D)
The path coefficients among hybrid performance, MPH and midparent value.

Supplementary Table 1 | Summary statistics for 10 traits for midparent heterosis
in the Chang7-2 × RIL (TC), and Mo17 × RIL (TM) populations.

Supplementary Table 2 | Variance of general combining ability (GCA) and
specific combining ability (SCA) and their interaction with the environment.

Supplementary Table 3 | Summary statistics for the genetic distances across 10
linkage groups of the maize genome.

Supplementary Table 4 | Variance components and proportion of the phenotypic
variance contributed by each variance component in the recombinant inbred line
population developed by Ye478 × Qi319 (RIL), Chang7-2 × RIL (TC), and
Mo17 × RIL (TM) populations, respectively.

Supplementary Table 5 | QTL mapping results for 10 traits in the recombinant
inbred line population developed by Ye478 × Qi319 (RIL), Chang7-2 × RIL (TC),
Mo17 × RIL (TM) populations, the pooled TC-TM population and
heterosis dataset.
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Supplementary Table 6 | Variance components and proportion of the phenotypic
variance contributed by each variance component in the pooled Chang7-2 × RIL
(TC)-Mo17 × RIL (TM) population.

Supplementary Table 7 | Variance components and proportion of the phenotypic
variance contributed by each variance component for midparent heterosis.

Supplementary Table 8 | Significant epistatic paired loci for 10 traits identified
from the pooled Chang7-2 × RIL (TC)-Mo17 × RIL (TM) population.

Supplementary Table 9 | Correlations between the number of harbored
favorable quantitative trait loci (QTL) and hybrid performance for 10 traits in
Chang7-2 × RIL (TC) and Mo17 × RIL (TM) population, respectively.
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Due to the climate change and an increased frequency of drought, it is of enormous
importance to identify and to develop traits that result in adaptation and in improvement
of crop yield stability in drought-prone regions with low rainfall. Early vigour, defined
as the rapid development of leaf area in early developmental stages, is reported to
contribute to stronger plant vitality, which, in turn, can enhance resilience to erratic
drought periods. Furthermore, early vigour improves weed competitiveness and nutrient
uptake. Here, two sets of a multi-reference nested association mapping (MR-NAM)
population of bread wheat (Triticum aestivum ssp. aestivum L.) were used to investigate
early vigour in a rain-fed field environment for 3 years, and additionally assessed
under controlled conditions in a greenhouse experiment. The normalised difference
vegetation index (NDVI) calculated from red/infrared light reflectance was used to
quantify early vigour in the field, revealing a correlation (p < 0.05; r = 0.39) between the
spectral measurement and the length of the second leaf. Under controlled environmental
conditions, the measured projected leaf area, using a green-pixel counter, was also
correlated to the leaf area of the second leaf (p < 0.05; r = 0.38), as well as to the
recorded biomass (p < 0.01; r = 0.71). Subsequently, genetic determination of early
vigour was tested by conducting a genome-wide association study (GWAS) for the
proxy traits, revealing 42 markers associated with vegetation index and two markers
associated with projected leaf area. There are several quantitative trait loci that are
collocated with loci for plant developmental traits including plant height on chromosome
2D (log10 (P) = 3.19; PVE = 0.035), coleoptile length on chromosome 1B (–log10

(P) = 3.24; PVE = 0.112), as well as stay-green and vernalisation on chromosome 5A
(–log10 (P) = 3.14; PVE = 0.115).

Keywords: Triticum aestivum, normalised difference vegetation index, NDVI, nested association mapping,
genome-wide association study, GWAS

Abbreviations: Abbreviations; CoV, coefficient of variation; DAS, days after sowing; EV, early vigour; GH, greenhouse;
GRAMMAR, genome-wide rapid association using mixed model and regression; GWAS, genome-wide association study; L1,
leaf one; L2, leaf two; LMM, linear mixed model; MAF, minor allele frequency; Ma-NAM, Mace derived nested association
mapping population; MR-NAM, multi-parent nested association mapping population; N, nitrogen; NDVI, normalised
difference vegetation index; PC, principal component; PLA, projected leaf area (measured using the green pixel counter);
Sc-NAM, scout derived nested association mapping population; SD, standard deviation; Su-NAM, Suntop derived nested
association mapping population; TLA, total leaf area (= calculated area of L1 + L2); Var, variance.
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INTRODUCTION

Global climate change is considered one of the biggest and
most complex challenges the mankind has faced. One effect
that has been observed since 1970, which leads to severe yield
losses, is the increased occurrence of erratic drought phenomena
(Liu et al., 2019). Specifically, the agricultural sector is facing
serious challenges since drought-stress is considered the most
limiting factor in rain-fed cropping systems (Hu and Xiong,
2014). Based on calculations of the Intergovernmental Panel on
Climate Change (IPCC), it is predicted that the global mean
surface temperature will rise 2◦C more in the 20-year period
from 2046 to 2065, than in the comparable period between
1986 and 2005, with a total increase of 4.8◦C by 2100 (IPCC,
2015). As a result, more frequent heat and drought events are
to be expected and to be classified as a major threat to the
primary production sector in general and the wheat production
in particular (Steinfort et al., 2017). Based on crop modelling
scenarios, it is predicted that global wheat production will fall
by 6% per 1◦C temperature increase (Asseng et al., 2013). In
particular, the Australian wheat production region is expected to
experience a strong increase in drought and heat events, with a
yield decrease of up to 20% projected from a median temperature
increase of 2◦C (Asseng et al., 2015). The severe impact of
strong drought events has already been observed during the
“Millennium Drought” between 2001 and 2009, where major
reductions in production were recorded. In southern Australia in
particular, production was severely decreased due to the impact
of drought during this phase (Dijk et al., 2013). Large areas of
the southern and western wheat-cropping regions in Australia
have a Mediterranean climate, which is defined by terminal
droughts (Siddique et al., 1990; Whan et al., 1991; Botwright
et al., 2002; Rebetzke et al., 2008; Sadras and Dreccer, 2015;
Rebetzke et al., 2017).

Consequently, there has been a growing focus on commercial
and public breeding programs to identify traits associated with
water-use efficiency to increase the yield potential under water-
limited conditions (Lopes and Reynolds, 2012; Passioura, 2012).
Potential traits of interest include long coleoptiles, which enable
deeper sowing in the soil profile and improved access to water
reservoirs underneath a dry surface soil, as well as reduced
tillering to lessen unnecessarily metabolism into the non-fertile
emerging tillers (Richards et al., 2010). Another is early vigour
(EV), defined as the rapid production of leaf area during the
early development phase of the plant (López-Castañeda et al.,
1996). The primary advantage of EV is the increased biomass
production early in the season and the rapid closure of the
canopy, which can reduce evaporation of soil water, which
then increases water availability (López-Castañeda and Richards,
1994; Condon et al., 2004). Early canopy closure also leads
to minimized solar radiation on the soil and to an enhanced
competitiveness of the crop against weeds (Dingkuhn et al., 1999;
Coleman et al., 2001; Lemerle et al., 2001; Bertholsson, 2005).
Mediterranean growing areas are water-limited environments
which are characterized by experiencing late seasons droughts.
According to Richards et al. (1987) and López-Castañeda
et al. (1995), EV offers great potential for increasing water-use

efficiency in such drought-prone regions. Additional advantages
that may be associated with EV include larger uptake of essential
plant nutrients, superior tolerance to aluminium stress, as
well as improved yield under high temperatures and elevated
atmospheric CO2 concentration (Coleman et al., 2001; Lemerle
et al., 2001; Liao et al., 2004; Bertholsson, 2005; Ludwig
and Asseng, 2010; Valle and Calderini, 2010; Ryan et al.,
2015). Previous studies in wheat have already identified various
physiological traits associated with EV, such as the embryo size
(Moore and Rebetzke, 2015), coleoptile length (Clarke et al., 1991;
Rebetzke et al., 2007), tiller size, and leaf characteristics (Rebetzke
and Richards, 1999; Rebetzke et al., 2007, 2017).

Several studies have highlighted the beneficial effect of
increased EV on yield performance in specific environments.
Nevertheless, due to insufficient knowledge about genetic
variation and lack of information on the economic value of the
trait, EV has only been introduced into breeding programs to
a limited degree (Rebetzke et al., 2017). However, Botwright
et al. (2002) demonstrated the positive effect of EV on yield
performance in medium and low rainfall regions in combination
with favourable soil conditions, such as sandy soils. Early vigour
has significant implications for water demand. For example,
a slight increase in leaf area growth during the vegetative
growth stages can lead to an increase in biomass, transpiration
area, and water use (Asseng and van Herwaarden, 2003). This
can result in rapid depletion of soil water prior to anthesis,
which may have a negative impact on grain yield during
flowering time and grain filling (Richards and Townley-Smith,
1987). According to Turner and Nicolas (1998), strong vigorous
genotypes have deeper and greater water uptake compared
to less vigorous genotypes and are subsequently considered
to be advantageous in low rainfall environments, including
Mediterranean growing regions. However, despite a clear genetic
effect on EV, its interaction with the environment, soil type, and
available fertilizer is substantial. For example, EV may adversely
affect yield if managed unfavourably. Therefore, ensuring that
the crop is provided with sufficient nitrogen (N) is essential in
order to prevent premature N deficiency due to excessive biomass
production (Asseng and van Herwaarden, 2003).

To determine the impact of EV on yield, a better
understanding of the physiological mechanisms of the trait
along with its genetic control is required. In addition, efficient
and low-cost phenotyping procedures are needed to assess
EV in wheat. The aim of this study was (i) to investigate
the physiological characteristics that drive EV in wheat in
the field and under controlled conditions, (ii) to assess the
efficiency of phenotyping methodologies under greenhouse
and field conditions, and (iii) to identify genomic regions
influencing EV in wheat.

MATERIALS AND METHODS

Plant Material
To evaluate EV in the field, a set of 685 spring wheat genotypes
(further referred to as Set 1) was randomly selected from a multi-
reference nested association mapping population (MR-NAM).
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The MR-NAM population was developed based on 11 diverse
founder lines which were crossed with the commercially used
wheat varieties Suntop (AGT), Scout (LPB), and Mace (AGT),
then consequently adapted to the environmental conditions
of the western, northern, and southern cropping regions of
Australia, respectively (Richard et al., 2015). The founder lines
were selected according to key traits, such as drought adaptation
and stay-green (e.g., Dharwar Dry, Drysdale), root architecture
traits (e.g., Seri) or adaptation to nematodes, and disease
resistance (e.g., Wylie, Gregory) (Richard et al., 2015; Christopher
et al., 2021). After crossing the founder lines with the three
parental lines, using an incomplete crossing scheme, the 15
F1 lines were generated. Subsequently, these 15 F1 lines were
used for population development through inbreeding, which
produces1474 F4-derived lines and were then segmented into
15 genetically diverse families. These 15 families comprised four
Mace-derived families, forming a conventional NAM population
which was denoted as the Mace-NAM (Ma-NAM) component
of the MR-NAM, five Scout-derived families (Sc-NAM), and
six Suntop-derived families (Su-NAM). The NAM population
was genotyped using the DArT-seq genotype-by-sequencing
platform, producing over 25,000 polymorphic markers (Richard
et al., 2015). The first set (SET 1) was tested in experimental
years, 2015 and 2016, respectively. In 2017, a randomly selected
subset comprising 210 lines (referred to as Set 2) was selected
and was tested in the field in a greenhouse (GH) environment. In
order to provide a more detailed information of the physiological
characteristics, a core set was formed within Set 2, which was
intensively investigated in the field and in the GH experiment.

Experimental Design
Evaluating Early Vigour Under Field Conditions
Field trials were conducted over 3 years from 2015 to 2017.
All field trials were carried out under rain-fed conditions at
the Hermitage Research Facility (HRF), Warwick, Queensland,
Australia (28.21◦S, 152.10◦E, 480 m above sea level). The HRF
site is characterized by alkaline, cracking, and heavy clay soils
with high water-holding capacity. Cropping season is from
May to October, with an average rainfall of 211 mm and an
average temperature of 14◦C. Further information regarding the
environmental conditions is given in Table 1. Sites were sown
with yield plots, each plot measuring 2 m × 6 m, containing 7
rows at 25 cm spacing, with a target crop density of 100 plants/m2.
To precisely reach the target crop density, thousand seed weight
and germination rate were determined for seed of each genotype,
while the sowing rates were calculated for each genotype. To
avoid any artefacts in seed size, the seeds of the lines used in

each trial were sourced from a common site and the year of the
seed propagation. Seeds were generated from fully irrigated seed-
increase rows sown at 0.5 m row spacing and fertilizer was applied
to provide for the non-limiting conditions for both water and
nutrients. Furthermore, diseases and weeds were controlled as
necessary. This allowed for the full potential seed size of each
genotype to be expressed during seed production. In all trials,
no specific selection for seed size were performed. In each year
the trials received 120 kg/ha−1 of urea prior to sowing, and
40 kg/ha−1 of Starter Z R© (Incitec Pivot Fertilisers, Southbank,
VIC, Australia; 10.5% N, 19.5% P, 2.2% S, 2.2% Zn) was applied at
sowing. Plant protection measures were applied as necessary. All
field trials were designed as a partially replicated (p-rep) block
design with percentage of partial replication of 34, 29, and 62% in
2015, 2016, and 2017, respectively.

Across the field trials, the normalised difference vegetation
index (NDVI) was used as a quantitative measure for EV. The
NDVI measurements were collected using a hand-held NTech
Greenseeker R© model 505, manufactured by NTech Industries,
Ukiah, CA, United States. By attaching the device to the body by
using a harness, the measurement could be carried out constantly
at a height of 1 m. The NDVI has been reported as a very
useful index for studying the dynamics of canopy development
and of senescence patterns of wheat (Lopes and Reynolds, 2012;
Christopher et al., 2014). This vegetation index has also been
previously used to evaluate EV in wheat (Li et al., 2014). In this
study, NDVI measurements were collected at 29 days after sowing
(DAS) for all field trials.

In 2017, detailed measures were captured to fully understand
the physiological properties. A core set consisting of 30 genotypes
was compiled from Set 2 and was intensively examined at the
time of the NDVI measurement. The core set included all
founder and reference lines from the MR-NAM population, along
with selected good-performing lines from other unpublished
experiments. From each of the 30 genotypes, ten plants per
plot were randomly sampled for each genotype, while the leaf
characteristics were recorded by measuring the length and width
of the first (L1) and the second leaf (L2). Subsequently, the
approximate leaf area for L1 and L2 was calculated by multiplying
the measured length by the width. The sum of the calculated leaf
areas of L1 and L2 was then expressed as the total leaf area (TLA).

Evaluating Early Vigour Under Controlled Conditions
The GH experiment was conducted using 210 genotypes from
Set 2. The greenhouse chamber temperature was set on 22◦C
during daytime and 17◦C during night time, while the lighting
conditions were set to provide a 12-h photoperiod. Furthermore,

TABLE 1 | Details for environmental conditions for wheat trials subjected to analyses in this study.

Trial Location State Sowing date CIR [mm] PAWC [mm] AvgT [◦C] RAD (MJ m−2)

NAM 2015 HRF, Warwick QLD 11.06.2015 103.4 329.6 13.1 2,318

NAM 2016 HRF, Warwick QLD 22.07.2016 303.1 212.1 14.9 2,430

NAM 2017 HRF, Warwick QLD 27.05.2017 112.4 286.47 14.2 2,276

Shon are trials name and year (Trial), location and state, sowing date, cumulative in-crop rainfall in mm (CIR), plant available water capacity of the soil in mm (PAWC), daily
average temperature from sowing to maturity in ◦C (AvgT), and cumulative radiation from sowing to maturity in MJ m−2 (RAD).
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the plants were irrigated on a daily basis. A single plant was
grown per pot using 250 ml pots with 70 mm diameter. The
potting media had a pH of 5.5–6.5 and was a composition of
70% pine bark (0–5 mm) and 30% coco peat, as well as fertilizers.
Furthermore, Osmocote R© (ICL SF, Sydney, NSW, Australia),
containing 19.4% N, 16% P, and 5% K, was added to the potting
media to guarantee sufficient nutrients during the experiment.

The trial was designed as a fully replicated, randomized, and
complete block design with six replications per genotype.

To measure leaf dimensions on a larger scale within the
GH experiment setup, this study evaluated the extent of the
image analysis methods that will be suitable for this purpose.
For this purpose, a green pixel counter was programmed using
the MATLAB R© (MathWorks, Inc., Natick, MA, United States)

FIGURE 1 | Mode of operation of the green pixel counter, analysis takes place in two steps. First capture of the green pixels in the image as indicated by the red
outlined area (left). Second, removal of all non-green pixels (right).

TABLE 2 | Descriptive statistics for collected field data for Set 1 (685 lines) and the subsets of lines Set 2 (210 lines) and core set (30 lines) captured at 21 and 29 days
after sowing (DAS).

Set Parameter Unit DAS Year Descriptive statistics

Mean Min Max SD CoV

Set 1 NDVI 29 2015 0.343 0.26 0.449 0.17 0.5

11 NDVI 29 2016 0.259 0.14 0.447 0.2 0.77

Set 2 NDVI 29 2015 0.341 0.26 0.456 0.03 0.09

12 NDVI 29 2016 0.339 0.27 0.461 0.04 0.11

13 NDVI 21 2017 0.325 0.22 0.394 0.04 0.12

14 NDVI 29 2017 0.264 0.19 0.416 0.03 0.13

Core Set NDVI 29 2015 0.344 0.28 0.398 0.03 0.08

15 NDVI 29 2016 0.276 0.19 0.403 0.06 0.22

16 NDVI 21 2017 0.245 0.22 0.317 0.03 0.11

17 NDVI 29 2017 0.321 0.24 0.391 0.04 0.13

18 TLA [cm2] 21 2017 6.973 5.7 9.609 1.08 0.16

19 Leaf area L1 [cm2] 21 2017 3.569 2.67 4.658 0.48 0.13

20 Leaf area L2 [cm2] 21 2017 3.404 1.82 5.904 0.98 0.29

21 Length L1 [cm] 21 2017 10.83 8.59 13.12 1.11 0.1

22 Width L1 [cm] 21 2017 0.33 0.3 0.39 0.03 0.08

23 Length L2 [cm] 21 2017 10.68 8.15 16.96 1.88 0.18

24 Width L2 [cm] 21 2017 0.315 0.22 0.41 0.05 0.15

25 TLA [cm2] 29 2017 9.971 6.66 12.78 1.46 0.15

26 Leaf area L1 [cm2] 29 2017 4.221 2.75 5.62 0.63 0.15

27 Leaf area L2 [cm2] 29 2017 5.75 3 7.793 1.04 0.18

28 Length L1 [cm] 29 2017 12.04 9.01 13.85 1.04 0.09

29 Width L1 [cm] 29 2017 0.349 0.3 0.42 0.03 0.09

30 Length L2 [cm] 29 2017 15.49 10.3 18.33 1.6 0.1

Width L2 [cm] 29 2017 0.369 0.29 0.47 0.04 0.12

Shown are the set of lines examined (Set), parameter examined, unit (NDVI is an index without units), time of measurement in days after sowing (DAS), year of experiment
as well as for each set examined, mean value, minimum (Min), maximum (Max), variance (Var), standard deviation (SD), and coefficient of variation (CoV).
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FIGURE 2 | Core set leaf parameters recorded under field conditions. (A) Showing leaf length values captured at 21 DAS and 29 DAS and (B) showing leaf width
values captured at 21 DAS and 29 DAS. Error bars represent standard error.

programming language. The pixel counter identifies green pixels
in an image to calculate a projected leaf area (PLA) and is a low-
cost approach for image analysis (Figure 1). The measured PLA,
using the green pixel counter, is analogous to the TLA, estimated
as the sum of the areas of L1 and L2, as calculated from the
length and width of each. With the default settings, images were
taken using a Canon Eos 750D R© camera. To reduce variation
between images, the camera was mounted on a tripod at 80 cm
distance from a platform on which every pot was placed. To
avoid interference with other pixels or light sources, the image
was taken in a closed room with consistent lighting conditions.
In addition, a black background was placed behind the plant to
exclude any other colour pigments from the picture, reducing
them only to black and green pigments. The image analysis was
conducted two times: first at 17 DAS and second at 21 DAS.
At 17 DAS, images were captured for genotypes in Set 2. At 21
DAS all replications of the core set of Set 2 were imaged, as well
as recorded manually. Again, the length and width of L1 and
L2 were measured.

Statistical Analyses of Phenotype Data
For the calculation of the best linear unbiased estimators
(BLUEs), the linear mixed model (LMM) described in Eq. 1

was used. For the calculation of the LMM, the R-language-based
packages lme41 combined with lsmeans2 were used.

Pijkl = µ + gi + Wk + Cj + Rl + eijkl (1)

where Pijkl is the phenotypic value of the ith genotype, in the kth
replication, µ stands for the overall mean, gi describes the fixed
effects of the ith genotype. The random effects are Wk, which is
the kth replication, Cj, which represents the jth column, and Rl
representing the lth row. The error term is represented by eijkl.

Pearson correlation matrices were created using the R
package psych. Principal component analysis was conducted
using the R package stats. For the Pearson correlation, as well
as for the principal component analysis, we used the BLUEs
described in Eq. 1.

Association Mapping
Association mapping was performed using the R package
GenABEL (Aulchenko et al., 2007). Genome-wide rapid

1http://CRAN.R-project.org/package=lme4
2https://cran.r-project.org/web/packages/lsmeans/index.html
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FIGURE 3 | (A) Core set leaf area parameters showing leaf area of leaf 1 (L1), leaf 2 (L2) as well as total leaf area (TLA) measured at 21 DAS and 29 DAS,
respectively. (B) Core set NDVI parameters from NDVI15, NDVI16, and NDVI17 at 21DAS as well as NDVI17 at 29DAS. Error bars represent standard error.

association studies, using the mixed model and regression
(GRAMMAR) method, initially estimate the residuals from the
LMM on the assumption that the SNPs have no effect (null
model). Subsequently, GRAMMAR then treats the residuals as
phenotypes for further genome-wide analysis, using a standard
linear mixed model (Zhou and Stephens, 2012). A total of 685
lines were genotyped using the presence/absence Diversity
Arrays Technology genotyping-by-sequencing (SillicoDArTsTM)
platform. By applying zero mismatches and gaps, as well as a
stringent alignment using BLASTN (Altschul et al., 1990), we
were able to uniquely anchor 15,146 SNPs to a single position
of the wheat Chinese Spring reference genome (RefSeq v1.0).
The allelic association was calculated for NDVI, after accounting
for population structure by implementing the first principal
component, as well as the genome-wide kinship matrix for
the genotypic trait values of NDVI and PLA. Prior to analysis,
markers with more than 10% missing data or minor allele
frequency (MAF) less than 5% were excluded from the analysis.
A total number of 9,432 high-quality and polymorphic markers
remained for the analysis. The cut-off value for markers being
identified as significantly associated with the trait was set at the
arbitrary threshold of –log10 (P) > 3 which corresponds to a
p cut-off of 0.001 significance level. The phenotypic variation
explained by a given QTL (PVE) was calculated separately,
according to Shim et al. (2015).

This study estimated broad sense (H2) and narrow sense
(h2) heritability by using the R package sommer (Covarrubias-
Pazaran, 2016). A marker-based approach to estimate σ2

A, σ2
D,

by calculating additive and dominance relationship matrices, was
applied. The models to estimate h2 and H2 are given in Eqs. 2,
3, respectively.

h2
=

σ2
A

σ2
P

(2)

H2
=

σ2
A + σ2

D
σ2
P

(3)

With σ2
A as the additive genetic variance, σ2

D as the
dominance genetic variance, and σ2

P as the phenotypic variance.

RESULTS

Phenotypic Characterisation of Early
Vigour
Expression of Early Vigour in the Field
Basic descriptive statistical indicators (minimum, maximum, and
mean), variation (Var), standard deviation (SD), coefficient of
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variation (CoV) for NDVI, and leaf parameters of Set 1, Set 2,
and the core set are all given in Table 2. For Set 1, the largest
mean NDVI values were observed in 2015. For Set 2 and the core
set, the largest mean values were reached in 2016, while in Set 2,

the overall maximum mean NDVI was recorded in 2015. All leaf
parameters which were measured in the core set showed larger
values at 29 DAS compared to those recorded at 21 DAS (Table 2).
Within the core set the largest values for L1 were reached by

FIGURE 4 | NDVI and leaf parameters captured for the core set of 30 lines in field trials from 2015 to 2017. For each trait, the population distribution is displayed in
the centre diagonal. The upper right shows the Pearson correlation coefficient for each trait combination. The lower left half shows the scatter plot with fitted line for
each trait combination. * significant at p < 0.05; ** significant at p < 0.005; *** significant at p < 0.001.

TABLE 3 | Descriptive statistics for collected GH data for core set (30 lines) captured at 17 and 21 days after sowing (DAS).

Set Parameter DAS Year Descriptive statistics

Mean Min Max Var SD CoV

Core Set Seed weight [g] – 2017 0.095 0.068 0.121 0.000 0.012 0.129

31 PLA [cm2] 17 DAS 2017 13.895 8.236 19.681 7.740 2.913 0.210

32 PLA [cm2] 21 DAS 2017 14.795 10.635 20.348 4.350 2.158 0.146

33 Biomass [g] 21 DAS 2017 0.067 0.010 0.108 0.001 0.024 0.364

34 TLA [cm2] 21 DAS 2017 11.254 6.915 16.493 5.659 2.518 0.224

35 Leaf area L1 [cm2] 21 DAS 2017 3.707 1.983 5.125 0.714 0.904 0.244

36 Leaf area L2 [cm2] 21 DAS 2017 7.548 4.600 12.203 2.933 1.799 0.238

37 Length L1 [cm] 21 DAS 2017 9.943 6.750 12.100 1.239 1.273 0.128

38 Width L1 [cm] 21 DAS 2017 0.366 0.267 0.483 0.003 0.060 0.164

39 Length L2 [cm] 21 DAS 2017 16.445 12.500 21.700 3.487 2.034 0.124

Width L2 [cm] 21 DAS 2017 0.452 0.358 0.583 0.004 0.063 0.138

Shown are the set of lines examined (Set), parameter examined, unit, time of measurement (DAS), year of experiment as well as mean value, minimum (Min), maximum
(Max), variance (Var), standard deviation (SD), and coefficient of variation (CoV).
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Dharwah dry at 21 DAS and SUNTOP-2 at 29 DAS (Figure 2A).
Furthermore, a significant (p < 0.05) difference between the
genotypes was observed at 21 DAS and 29 DAS, with a smaller
phenotypical variation at 21 DAS compared to the measurement
at 29 DAS (Supplementary Table 1). For leaf length L2, similar
results were observed with significant (p < 0.05) phenotypical
variation at both time points, with a smaller variation at 21 DAS
compared to 29 DAS (Supplementary Table 1). The largest leaf
length L2 values were reached by SUNTOP-205 at 21 DAS and
SUNTOP-2 at 29 DAS, respectively (Figure 2B). Regarding the
leaf length of L1, the largest values were reached by SUNTOP-
2 at 21 DAS and by Gladius at 29 DAS. For width L1, only
at 29 DAS, a significant (p < 0.05) phenotypical variation
could be observed (Supplementary Table 1). By comparing leaf
area values calculated within the core set, it was observed that
SUNTOP-2 showed the largest values for L1 at 21 DAS and 29
DAS, as well as for TLA at 21 DAS. For leaf area, L2 at 21 DAS,
29 DAS and TLA at 29 DAS, MACE-148 showed the largest
values (Figure 3). For all leaf area traits which were recorded
at 21 DAS, the phenotypical variation is smaller compared to
the phenotypical variation at 29 DAS (Supplementary Table 1).
In order to examine the impact of each leaf characteristic on
the TLA, Pearson correlation coefficients for each factor were

estimated (Figure 4). Person correlation analysis revealed a larger
significant (p < 0.001) correlation between TLA at 21 DAS and
leaf area L2 at 21 DAS (r = 0.89), than between TLA and leaf
area L1 at 21 DAS (p < 0.05 r = 0.42). A similar correlation can
be observed for L1 and L2 at 21 DAS, and L2 parameters at 21
DAS. Notably, a significant (p < 0.05) correlation was observed
between NDVI 17 21 DAS and leaf length L2 at 21 DAS (r = 0.39).
Furthermore, the relationship between the leaf area of L1 and
L2 at 29 DAS and leaf parameters at 29 DAS shows similarities
to the calculation made at 21 DAS. Leaf area L1 at 29 DAS
shows stronger correlations with leaf TLA at 29 DAS (r = 0.79),
compared to 21 DAS. However, the L2 area at 29 DAS (r = 0.93)
shows a stronger correlation to TLA at 29 DAS. Interestingly, the
correlation between area L1 and L2 at 21 DAS, and the L1 and L2
at 29 DAS (r = 0.47) is slightly smaller than the correlation with
L2 area at 29 DAS (r = 0.51) and leaf length L2 at 29 DAS.

Expression of Early Vigour Under Controlled
Conditions
In order to understand how EV can be determined under
controlled conditions, this study conducted a trial testing Set 2
as well as the core set within a GH environment. Basic statistical
indicators are given in Table 3. Figure 5A reveals that the leaf

FIGURE 5 | Core set leaf parameters recorded under controlled conditions. (A) Showing leaf length values captured at 21 DAS and (B) showing leaf width values
captured at 21 DAS. Error bars represent standard error.
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length and leaf width of L2 exceeds L1 for almost all genotypes
at 21 DAS. The only exceptions are the leaf widths of MACE-
148 and of MACE-193, where L1 and L2 had similar values
(Figure 5B). The largest leaf length values for L1 and L2 were
reached by SUNTOP-447 (Figure 5A). As in field conditions,
Gladius reached the largest values for leaf width L1 as well as for
leaf width L2 (Figure 5B). Furthermore, for all the measured leaf
parameters, significant (p < 0.05) differences can be observed.
However, the recorded phenotypical differences show a lower
variation compared to the field conditions (Supplementary
Table 2). The calculated leaf area showed a significant (p < 0.05)
phenotypical difference, particularly the L2, as well as the L1&L2
values (Supplementary Table 2). The SUNTOP-447 exhibited
the largest values for leaf length, leaf area L2, and L1&L2,
respectively. Maximum leaf area and L1 were exhibited by
MACE-212 (Figure 6A). Only around two-thirds of the core set
showed increased PLA at 21, compared to 17 DAS (Figure 6B).
Pearson coefficients of correlation showed a significant positive
relationship of the collected dry matter with the PLA 17 DAS
(p < 0.05; r = 0.46) and with PLA 21 DAS (p < 0.001; r = 0.71).
Furthermore, the PLA at 21 DAS shows a positive correlation
to leaf width L2 (r = 0.34), as well as to area L2 (r = 0.38) and
TLA (r = 0.39). As under field conditions, the TLA of L1 and
L2 is more affected by area L2 (r = 0.96). However, area L1

(r = 0.85) seems to have a greater impact on TLA in the GH
compared to the field. Furthermore, it is noteworthy that dry
mass measured at harvest at 21 DAS shows a positive correlation
to all captured leaf characteristics. Moreover, seed weight (SW)
showed no significant correlation to any other trait (Figure 7).

Components of Early Vigour
To determine which physiological parameters of the leaf had the
greatest influence on EV, a principal component (PC) analysis
was performed. The analysis was conducted for the core set data
and included parameters such as the leaf measurements at 21 DAS
and at 29 DAS in the field, or at 21 DAS in the GH, as well as
dry matter content, grain weight, and the respective NDVI values
from 2015 to 2017 (Figure 8). For the field data, the NDVI in 2015
(NDVI 15) was largely associated with parameters connected to
L2 at 21 DAS, and to leaf length and area of L2 at 29 DAS. The
NDVI 16 and NDVI 17 at 29 DAS showed a strong association
with area L1 at 21 DAS and area L1 at 29 DAS. In this regard,
it became apparent that several parameters recorded at 29 DAS,
such as area L1 and L2 and leaf width L2, were strongly correlated
as well. Interestingly, for NDVI at 21 DAS, no association to any
physiological parameters of the leaf was observed. In the GH, it
could be observed that area L1 and L2 were slightly and closely
more associated with area L2 than with area L1. Furthermore,

FIGURE 6 | (A) Core set leaf area parameters showing leaf area of leaf 1 (L1), leaf 2 (L2) as well as total leaf area (TLA) measured at 21 DAS in greenhouse
experiment in 2017. (B) Core set projected leaf parameters (PLA) recorded at 17DAS and 21DAS. Error bars represent standard error.
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FIGURE 7 | Projected leaf area (PLA) by green pixel count method and leaf parameters captured for core set in greenhouse experiment. For each trait, the
population distribution is displayed in the centre diagonal. The upper right shows the Pearson correlation coefficient for each trait combination. The lower left half
shows the scatter plot with fitted line for each trait combination. * significant at p < 0.05; ** significant at p < 0.005; *** significant at p < 0.001.

area L2 appeared to be in a stronger association to leaf width
L2 than to leaf length L2. The PLA at 17 DAS and PLA at 29
DAS showed a strong association to each other. However, apart
from dry mass, no significant associations to any of the leaf
parameters were observed.

Identifying Genetic Determinants of Early
Vigour
Genetic analysis was performed with NDVI values for the 685
genotypes from Set 1 in 2015 (NDVI’15) and in 2016 (NDVI’16),
along with NDVI values from 2015 to 2017, and the PLA
data from the GH trial in 2017 in the 221 genotypes of Set
2. Several SNP markers exceeded the arbitrary threshold of
association (–log10 (P) = 3) for NDVI and PLA across all years
in the genome-wide association study. A total of 41 QTL were
associated [–log10 (P) = 3] with either NDVI or PLA. The
majority of trait-associated SNP markers (21) were associated
with NDVI at 21 DAS in 2017 in Set 2 (Figure 9). Chromosome
positions of all identified marker-trait associations for NDVI and
PLA in the different environments are summarized in Table 4.
All the identified QTL PVE was low and was ranged between
0.024 to 1.35%. The five most significant QTL, QSG.qwr-3B.1,
QSG.qwr-2A.3, QSG.qwr-3D.1, QSG.qwr-1A.1, and QSG.qwr-
5B.2 accounted for 0.4% of the variation (Table 4). Most QTL
effects were small and few, as QTL were detected in multiple
environments or across traits, reflecting the genetic complexity

and the strong environmental dependency of EV traits. This
finding is consistent with several other studies that have also
identified multiple QTL for several EV related traits located
on different chromosomes (Table 5). In accordance with this
observation, the narrow-sense heritability of both NDVI in Set
1 was found to be moderate with h2 = 0.22–0.28, and small for
NDVI and PLA in Set 2 with h2 = 0.08–0.04 (Table 6).

DISCUSSION

The first objective of this study was to provide information on
physiological components that contribute to EV of wheat, both
in the field and under controlled conditions. Several studies
observed a strong contribution of leaf width to a specific leaf area,
and consequently to EV (Rebetzke and Richards, 1999; Richards
and Lukacs, 2002; Maydup et al., 2012). Our results showed that
the variation in EV is strongly associated with the leaf length
of both L1 and L2 in the field, as well as in the GH. For both
leaves (L1 and L2), leaf length is the main contributor to a larger
leaf area development, and, consequently, to an increased EV.
Furthermore, leaf length of L2 showed a slightly greater impact
on the area of L1 and L2 with an advancing development. This
finding agrees with other studies reporting a significant positive
correlation between the area of L2 and the leaf length (Nursinow
et al., 2011; Boden et al., 2014; Moore and Rebetzke, 2015; Duan
et al., 2016). The data revealed faster development of L2 in the
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FIGURE 8 | Biplot from principal component analysis for core set field (A), core set greenhouse (B).

FIGURE 9 | Manhattan plots for (A) NDVI17 at 21DAS and (B) PLA at 17DAS. The horizontal line at –log10 (P) = 3 indicates the chosen probability threshold to
indicate a significant association with the trait.

GH compared to the field studies. This was also observed by
Rebetzke et al. (2007) and leads to the conclusion that EV can
be recorded at earlier stages under controlled conditions than
in the field. Previous studies have reported that embryo size
is a highly heritable trait that is strongly associated with leaf
area (López-Castañeda et al., 1996; Rebetzke and Richards, 1999;
Aparicio et al., 2002; Moore and Rebetzke, 2015). Since it has
been established that embryo size increases with seed weight in
wheat (Moore and Rebetzke, 2015) and barley (López-Castañeda
et al., 1996), this study used seed weight to indirectly evaluate
the impact of embryo size on EV. In the GH experiment, it
was not possible to demonstrate the positive impact of embryo
size on EV by using seed weight, since no significant correlation
with any measured leaf parameter was observed. Nonetheless,
several studies reported a positive effect of the embryo size on
early vigour in wheat (Rebetzke and Richards, 1999; Richards
and Lukacs, 2002; Moore and Rebetzke, 2015). In other studies,
however, the total variation in EV could not be exclusively
explained by the considering seed weight (Maydup et al., 2012),

and the seed density has also been suggested as a potentially
more decisive factor in determining EV (Ball et al., 2011). This
partially explains why no correlation between seed weight and
EV parameters could be found in the present study. In the
GH experiment, biomass was recorded and was exhibited as a
significant correlation with the area of L2, as well as area of L1 and
L2, suggesting an increased above-ground biomass for genotypes
with greater EV. Richard et al. (2019) reported that lines with
increased above-ground biomass were strongly associated with an
increased grain yield.

The second objective of this study was to evaluate high-
throughput methods to precisely record physiological leaf
characteristics in field and greenhouse trials. Mullan and
Reynolds (2010) reported a significant correlation between
NDVI, leaf area, and biomass. These PCA results from the current
study tended to confirm that NDVI and the leaf area are related.
Although the biomass in the field was not separately measured,
a significant positive correlation between biomass and leaf area
in the GH experiment suggested a putative relationship. In the
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TABLE 4 | QTL identified with significant association to phenotypic traits (P-value > −log10 (P) = 3).

QTL name Chr Position [bp] Trait DAS Year P-value PVE No. of reported
genes in ± 20kb

Gene-ID Start position [bp] End position [bp]

QSG.qwr-1A.1 1A 530870345 NDVI 21 2017 3.68 0.135 1 TraesCS1A02G341200 530883540 530884786

QSG.qwr-1A.2 1A 537895686 PLA 17 2017 3.39 0.125 – NA NA NA

QSG.qwr-2A.1 2A 758570584 NDVI 21 2017 3.17 0.114 3 TraesCS2A02G552800 758553979 758559790

TraesCS2A02G552900 758583247 758587695

TraesCS2A02G553000 758588329 758589199

QSG.qwr-2A.2 2A 768989573 NDVI 21 2017 3.34 0.120 3 TraesCS2A02G573200 768981429 768983083

TraesCS2A02G573300 768996829 768998744

TraesCS2A02G573400 769002934 769004935

QSG.qwr-2A.3 2A 769344238 NDVI 21 2017 4 0.152 1 TraesCS2A02G574300 769340976 769344226

QSG.qwr-2A.4 2A 775175704 NDVI 21 2017 3.06 0.113 1 TraesCS2A02G583000 775165226 775166200

QSG.qwr-3A.1 3A 8267133 NDVI 21 2017 3.08 0.107 2 TraesCS3A02G008800 8253788 8255463

TraesCS3A02G008900 8258758 8260510

QSG.qwr-3A.2 3A 9212918 NDVI 21 2017 3.64 0.134 1 TraesCS3A02G011400 9210008 9210976

QSG.qwr-3A.3 3A 9463808 NDVI 21 2017 3.03 0.107 3 TraesCS3A02G011800 9444895 9445740

TraesCS3A02G011900 9473058 9473828

TraesCS3A02G012000 9480858 9481594

QSG.qwr-3A.4 3A 711365648 NDVI 21 2017 3.5 0.122 1 TraesCS3A02G480500 711380680 711385803

3A 711366350 NDVI 21 2017 3.27 – NA NA NA

QSG.qwr-4A.1 4A 744471786 NDVI 21 2017 3.28 0.119 1 TraesCS4A02G499600 744456472 744458084

QSG.qwr-5A.1 5A 526386152 NDVI 29 2015 3.14 0.115 5 ENSRNA050011196 526378014 526378087

ENSRNA050021751 526384607 526384709

TraesCS5A02G315700 526393365 526396850

TraesCS5A02G315800 526396904 526400499

TraesCS5A02G315900 526400750 526402134

QSG.qwr-5A.2 5A 529810097 NDVI 29 2015 3.54 0.025 – NA NA NA

QSG.qwr-5A.3 5A 592515889 NDVI 29 2015 3.07 0.030 1 TraesCS5A02G398700 592518737 592520426

QSG.qwr-6A.1 6A 5480626 NDVI 29 2015 3.14 1 TraesCS6A02G011800 5473439 5480862

QSG.qwr-7A.1 7A 263934 NDVI 21 2017 3.24 0.112 2 TraesCS7A02G000200 242359 246258

TraesCS7A02G000300 250565 253987

QSG.qwr-7A.2 7A 51498553 PLA 17 2017 3.1 0.112 – NA NA NA

QSG.qwr-7A.3 7A 130596094 NDVI 21 2017 3.03 0.106 1 TraesCS7A02G177400 130608975 130613414

QSG.qwr-7A.4 7A 694049656 NDVI 29 2016 3.63 0.040 2 TraesCS7A02G506800 694053373 694053943

TraesCS7A02G506900 694060394 694067693

QSG.qwr-1B.1 1B 37762680 NDVI 29 2016 3.12 0.037 – NA NA NA

QSG.qwr-1B.2 1B 84949441 NDVI 29 2016 3.47 0.039 – NA NA NA

QSG.qwr-1B.3 1B 658902240 NDVI 21 2017 3.24 0.113 3 TraesCS1B02G434300 658908133 658910735

TraesCS1B02G434400 658911233 658914898

TraesCS1B02G434500 658915051 658919932

QSG.qwr-3B.1 3B 22137315 NDVI 29 2016 4.24 0.051 1 TraesCS3B02G042800 22129256 22130588

QSG.qwr-5B.1 5B 52306024 NDVI 21 2017 3.06 0.114 1 TraesCS5B02G046800 52317367 52318139

QSG.qwr-5B.2 5B 162778081 NDVI 29 2015 3.64 0.030 1 TraesCS5B02G110800 162771499 162776936

QSG.qwr-5B.3 5B 576298790 NDVI 29 2015 3 0.024 – NA NA NA

QSG.qwr-7B.1 7B 748033995 NDVI 29 2015 3.27 0.026 1 TraesCS7B02G497400 748012557 748015135

QSG.qwr-1D.1 1D 52680610 NDVI 29 2016 3.2 0.035 1 TraesCS1D02G072300 52658816 52664518

QSG.qwr-1D.2 1D 111980607 NDVI 21 2017 3.15 0.112 1 TraesCS1D02G116200 111967743 111980590

QSG.qwr-1D.3 1D 134460288 NDVI 21 2017 3.28 0.120 – NA NA NA

QSG.qwr-1D.4 1D 461051177 NDVI 21 2017 3.21 0.112 1 TraesCS1D02G389300 461052237 461057083

QSG.qwr-2D.1 2D 19551003 NDVI 29 2016 3.19 0.035 3 TraesCS2D02G051300 19543541 19544843

TraesCS2D02G051400 19555735 19557093

TraesCS2D02G051500 19561151 19563368

QSG.qwr-2D.2 2D 69503900 NDVI 29 2017 3.05 0.100 2 TraesCS2D02G120100 69502005 69504329

TraesCS2D02G120200 69504557 69510365

QSG.qwr-2D.3 2D 362486328 NDVI 29 2017 3.11 0.108 – NA NA NA

QSG.qwr-3D.1 3D 325183855 NDVI 29 2015 3.76 0.032 – NA NA NA

QSG.qwr-3D.2 3D 481926113 NDVI 21 2017 3.04 0.113 1 TraesCS3D02G368700 481908948 481926630

QSG.qwr-5D.1 5D 138341788 NDVI 21 2017 3.31 0.115 – NA NA NA

QSG.qwr-5D.2 5D 179786153 NDVI 21 2017 3.3 0.115 1 TraesCS5D02G123000 179762666 179778583

QSG.qwr-6D.1 6D 50627689 NDVI 29 2015 3.35 0.027 – NA NA NA

QSG.qwr-7D.1 7D 533491186 NDVI 29 2015 3.11 0.026 – NA NA NA

Shown are QTL identifier, chromosome location (Chr), Positions refer to physical positions [bp] on reference genome Chinese Spring (RefSeq v1.0), trait, time of
measurement (DAS), year of measurement (Year), probability of association with trait by chance [−log10 (p-value)], phenotypic variation explained by a given QTL
(PVE), number of genes with 20 kb of the QTL SNP location (No. of genes ± 20 kb), name of genes reported within the 20 kb radius of the QTL SNP (Gene-ID), start and
end position of reported gene in [bp] (Start Position [bp]/ End Position [bp]).
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TABLE 5 | Summary of early vigour related QTL reported in previous publications.

Trait QTL/marker name Chr Publication

Coleoptile length QClp.ipk-1A 1A Landjeva et al., 2008

Coleoptile length QClp.ipk-1B 1B

Coleoptile length ksuG9c 1A Rebetzke et al., 2007

Coleoptile length Stm55ltgag 2D

Coleoptile length psr426 5A

Coleoptile length psr326b 5D

Embryo size gwm18 1B Moore and Rebetzke, 2015

EV, canopy temperature 41 3B Bennet et al., 2012

Ground cover QGCw.caas-1A.1 1A Li et al., 2014

Ground cover QGCw-caas-1D 1D

Ground cover QGCs-caas-2A.2 2A

Ground cover QGCs.caas-3B.1 3B

Ground cover QGCw-caas-5B 5B

Ground cover QGCw.caas-5B 5B

Ground cover QGCwcaas-5D 5D

Ground cover QGCscaas-6A 6A

Ground cover QGCs-caas-6A 6A

Leaf length gwm261 2D Moore and Rebetzke, 2015

Leaf length cdo669b 4B

Leaf length E36/M60-210-P1 2D Steege et al., 2005

Leaf length E48/M48-217-P2 5D

Leaf length E48/M60-225-P1 6D

Leaf length E45/M52-150-P1 7D

Leaf width wmc190 2D Moore and Rebetzke, 2015

Leaf width wmc289 5B

Leaf width E45/M52-274-P1 1D Steege et al., 2005

Leaf width Xgwm458 1D

Leaf width E42/M51-482-P2 2D

Leaf width Xgwm165 4D

Leaf width E42/M52-241-P1 5D

Leaf width E51/M52-189-P1 7D

NDVI QNDVIs-caas-3A 3A Li et al., 2014

NDVI QNDVIw-caas-6D 6D

NDVI QYld.aww-1B.2 1B Tura et al., 2020

NDVI QTgw.aww-1B 1B

Relative growth rate QRgr.saas-5A 5A Li et al., 2017

Root dry weight QRdw.saas-5A 5A

Root length QRlp.ipk-1A 1A Landjeva et al., 2008

Root length QRlp.ipk-7D 7D

Shoot biomass Rht-B1 4B Ryan et al., 2015

Shoot biomass Rht-D1 4D

Shoot biomass wmc525 7A

Shoot fresh weight QSfw.saas-5A 5A Li et al., 2017

Shoot dry weight QSdw.saas-5A 5A

Total leaf area QTla.saas-5A 5A

Reported trait (Trait), name of the respective QTL or marker that is associated with
the trait (QTL/Marker Name), chromosome on which the QTL or marker is located
(Chr), cited publication which reported QTL (Publication).

correlation analysis, only one significant correlation between
NDVI and leaf parameters could be established, which was
NDVI17 at 21 DAS and leaf length L2 at 21 DAS. This confirms
that leaf length L2 contributes more to an increased EV compared
to leaf dimensions of L1. This is also supported by other studies

TABLE 6 | Narrow-sense (h2) and broad-sense heritability for NDVI and PLA
recorded in set 1 (685 lines) and set 2 (210 lines).

Set Trait DAS Year Heritability

h2 H2

Set 1 NDVI 29 2015 0.22 0.28

NDVI 29 2016 0.28 0.38

Set 2 NDVI 29 2015 0.05 0.06

NDVI 29 2016 0.04 0.05

NDVI 21 2017 0.07 0.08

NDVI 29 2017 0.06 0.07

PLA 17 2017 0.04 0.04

Trait, time of measurement (DAS), year of measurement (Year), and narrow sense
heritability (h2) as well as broad sense heritability (H2).

(López-Castañeda et al., 1996; Richards and Lukacs, 2002; Duan
et al., 2016). In terms of high-throughput phenotyping methods
for EV in GH environments, this study tested the ability of a
green pixel counter as a low-cost method. Since embryo size
strongly affects EV, the method is not able to explain the trait
completely. However, the results for PLA calculated by the green
pixel counter indicate great potential to measure EV under
controlled conditions. In particular, the leaf parameters of L2
showed a significant correlation with PLA, as well as with the
biomass. Furthermore, the green pixel counter was successfully
used to measure coleoptile tiller length, a trait which strongly
affects EV and is also highly correlated to embryo size.

The third aim of this study was to achieve a better
understanding of EV genetics in wheat. The GWAS for Set 1 and
Set 2 revealed 41 SNP markers for NDVI and for PLA, which
were linked to 60 protein-coding regions across 17 chromosomes.
Consistent with previous studies, the present study shows that
EV in wheat is a quantitative trait with numerous QTL located
across several chromosomes (Li et al., 2014; Moore and Rebetzke,
2015; Boudiar et al., 2016). Numerous studies have reported the
effect of dwarfing genes on coleoptile length (Rebetzke et al.,
2007; Li et al., 2017), coleoptile width (Rebetzke et al., 2014), and
leaf epidermal cell dimension (Botwright et al., 2005). In most
of these studies, the influence of dwarfing genes was highlighted.
The gibberellic acid (GA)-insensitive dwarfing genes Rht B1b
on chromosome 4B and Rht D1db on chromosome 4D have
been reported to reduce coleoptile length and, consequently, EV,
since they decrease epidermal cell length in leaf tissue (Ellis
et al., 2004; Rebetzke et al., 2007; Yu and Bai, 2010; Li et al.,
2017; Rebetzke et al., 2017). In our study, no SNP markers were
detected on either one of the 4B or 4D chromosomes. This
suggests that NDVI and PLA are the less affected traits by the
presence of Rht B1b and of Rht D1b. Comparable results were
reported in Li et al. (2014), were none of the parental lines that
carried Rht-B1b, and only one parental line contained Rht-D1b,
while no QTL was identified on chromosome 4D. However, a
significant correlation could be observed between Rht-D1 and
NDVI and the ground cover in certain environments. The Rht
8, on the short arm of chromosome 2D, is a GA-responsive
dwarfing gene reported to have a secondary effect of reducing
epidermal cell length. Hence, it is more appropriate for achieving
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good canopy cover in combination with a semi-dwarf growth
habit (Botwright et al., 2005). Chai et al. (2019) reported the
WRKY transcription factor TraesCS2D01G051500 as a possible
candidate gene for Rht8. We identified QTL QSG.qwr-2D.1 in
the vicinity of TraesCS2D01G051500, and found this QTL to
be significantly associated with NDVI17 at 29 DAS. Several
studies have identified QTL associated with coleoptile length
on chromosome 1B, including markers XpGTG-mTCGA294 (Yu
and Bai, 2010) and wsnp_CAP11_c2596_1325540 (Ma et al.,
2020). This study confirms that chromosome 1B is a region
of interest for EV, since three significant QTL were detected
on this chromosome. That applies particularly to QSG.qwr-
1B, which is located at the same region on the long arm
region of chromosome 1B as wsnp_CAP11_c2596_1325540, as
reported in Ma et al. (2020). Another region of interest is
chromosome 5A, which is also considered as the most important
chromosome for stay-green traits (Shi et al., 2017; Liu et al., 2019),
including the isopentenyl transferase gene (Gan and Amasino,
1995). Furthermore, chromosome 5A harbours several major
developmental genes, such as the vernalisation gene Vrn1, frost
resistance gene Fr1, as well as genes for ear emergence time and
for the plant height (Sutka and Snape, 1989; Kato et al., 1999;
Galiba et al., 1995).

The results of the current phenotypic investigation extended
our insights into the EV trait in wheat. The key characteristics
of EV and the relationship with other traits, such as biomass,
were successfully identified. In addition, this study presents
effective methods that can be used to detect EV in the
field, as well as under controlled conditions. In particular,
the connection between the leaf length parameters and the
NDVI highlights the great potential of NDVI, especially if
given recent advances in unmanned aerial vehicle or drone
phenotyping platforms (Shi et al., 2016). Nevertheless, potential
interactions due to environmental factors must be clarified by
practical crop management for a better understanding, since
factors such as sowing time, sowing depth, sowing rate, and row
spacing may also influence EV. In particular, the interaction and
value of EV in specific target environments must be clarified.
Furthermore, it has to be considered that yield predictions based
on EV can be very challenging. Since the trait is recorded
at a very early developmental stage, its relationship to yield
performance can subsequently be influenced by a multitude
of complex environmental factors. For example, abiotic stress
factors have a particularly decisive influence on yield and its
yield components, especially during key developmental stages,
such as tillering and flowering. Nevertheless, EV is essential
for good crop establishment and, therefore, can impact yield
even at this early stage. Hence, we suggest incorporating EV

measurements into experiments by using the NDVI data in
performance evaluations, such as stay-green trials. Our genomic
analysis has identified QTL that is associated with EV, which
are co-located or are closely linked to key genes controlling the
plant development, such as plant height, coleoptile length, stay-
green, and vernalisation. The results support the theory that EV
is a trait regulated by pleiotropic genes. These findings may help
identify the key drivers and determine potential trade-offs with
important agronomic traits. Given that the trait is underpinned
by many QTL with small effects, marker-assisted selection or
gene-based approaches are likely to be challenging; however,
genomic prediction approaches provide a suitable option for
future breeding.
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The ever-changing global environment currently includes an increasing ambient
temperature that can be a devastating stress for organisms. Plants, being sessile,
are adversely affected by heat stress in their physiology, development, growth, and
ultimately yield. Since little is known about the response of biochemical traits to high-
temperature ambiance, we evaluated eight parental lines (five lines and three testers)
and their 15 F1 hybrids under normal and high-temperature stress to assess the
impact of these conditions over 2 consecutive years. The research was performed
under a triplicate randomized complete block design including a split-plot arrangement.
Data were recorded for agronomic, biochemical, and fiber quality traits. Mean values
of agronomic traits were significantly reduced under heat stress conditions, while
hydrogen peroxide, peroxidase, total soluble protein, superoxide dismutase, catalase
(CAT), carotenoids, and fiber strength displayed higher mean values under heat
stress conditions. Under both conditions, high genetic advance and high heritability
were observed for seed cotton yield (SCY), CAT, micronaire value, plant height, and
chlorophyll-a and b content, indicating that an additive type of gene action controls these
traits under both the conditions. For more insights into variation, Pearson correlation
analysis and principal component analysis (PCA) were performed. Significant positive
associations were observed among agronomic, biochemical, and fiber quality-related
traits. The multivariate analyses involving hierarchical clustering and PCA classified the
23 experimental genotypes into four groups under normal and high-temperature stress
conditions. Under both conditions, the F1 hybrid genotype FB-SHAHEEN× JSQ WHITE
GOLD followed by Ghuari-1, CCRI-24, Eagle-2 × FB-Falcon, Ghuari-1 × JSQ White
Gold, and Eagle-2 exhibited better performance in response to high-temperature stress
regarding the agronomic and fiber quality-related traits. The mentioned genotypes could
be utilized in future cotton breeding programs to enhance heat tolerance and improve
cotton yield and productivity through resistance to environmental stressors.

Keywords: high-temperature stress, upland cotton (Gossypium hirsutum L.), principal component analysis (PCA),
heritability, Gossypium
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INTRODUCTION

Cotton is the world’s most important natural fiber and oil
crop (Patel et al., 2021; Salimath et al., 2021). Climate
change in recent decades has resulted in outbreaks of biotic
and abiotic stressors that negatively affect plant yield and
quality. Among abiotic stressors, heat stress is one of the
most detrimental constraints, limiting cotton production by
disturbing its normal growth, physiological, and developmental
processes. Pakistan ranks fifth among top cotton-producing
countries after India, China, United States, and Brazil
(Khan et al., 2020), even though the nations cotton zone
average temperature ranks highest among cotton-growing
areas worldwide (Saleem et al., 2021). In Pakistan, the
average temperature of the cotton-growing belt remains at
37◦C/25◦C (day/night) as compared to the United States 30◦C
/24◦C, China’s 29◦C/18◦C, and India’s 34◦C/21◦C (Saleem
et al., 2021). During the early growth period (May–June),
the temperature remains as high as 40–45◦C, and at times
reaches 50◦C.

Like most crop plants, cotton is susceptible to heat stress,
especially during the developmental (Zahid et al., 2016) and
reproductive phases (Salman et al., 2019). The most notable
effects include flower shedding at the flowering phase, leading
to stunted growth and reduced boll weight, and ultimately
lower yields (Xu et al., 2020). At the peak of the reproductive
phase, exposure to heat stress very often results in reduced
seed cotton yield (SCY); whereas slightly lower temperatures
at this time are more favorable and produce a better yield
(Sarwar et al., 2017). Previous studies report some of the
optimum temperatures for various growth and developmental
stages of the cotton crop: for cottonseed germination 12◦C,
root development 30◦C, and seedling development for boll
development 25.5–29.5◦C (Conaty et al., 2012; Lokhande and
Reddy, 2014). A temperature range of 32–40◦C usually negatively
impacts root development, and when the temperature rises to
36◦C, stomatal conductance decreases. The weight of the boll
reduces as the temperature rise from 25.5 to 29.5◦C (Conaty
et al., 2012; Lokhande and Reddy, 2014). Singh et al., 2007
reported that each 1◦C rise of temperature in the field reduces
the SCY by 110 kg ha−1. Pollen tube germination, growth,
and elongation are adversely affected by a temperature increase
from 28 to 30◦C. At 28◦C, optimum pollen germination occurs
(Burke et al., 2004) and the germination rate decreases as the
temperature rises sharply from 28 to 37◦C. Therefore, high-
temperature stress reduces the germination rate, plant growth,
photosynthetic rate, fruiting branches, membrane integrity, boll
weight, and increases boll abscission, all of which lead to
lower yield (Salman et al., 2019). Heat stress is also related
to reduced boll size and the number of seeds per boll that
limit fertilization efficiency (Pettigrew, 2008). In Pakistan, the
average boll weight is 2–3 g, which is lower than in other
countries (Saleem et al., 2021). High-temperature stress decreases
the chlorophyll content, ultimately reducing the photosynthetic
rate and translocation of assimilates to reproductive organs and
thus, increases senescence (Rafiq et al., 2013; Dabbert and Gore,
2014). High-temperature stress also distorts stomatal movement

and stomatal conductance 28–30◦C resulting in poor gaseous
exchange, ultimately effecting photosynthesis and ultimately the
productivity (Conaty et al., 2012).

This high temperature abiotic stress affects plant antioxidant
activities, leading to decreased SCY (Kamal et al., 2017). Under
high-temperature stress, oxidative stress is induced to generate
reactive oxygen species (ROS) (Kocsy et al., 2004). Under heat
stress, ROS such as hydrogen peroxide (H2O2), superoxide
radical (O2

−), singlet oxygen (1O2), and hydroxyl radicals
are produced in higher amounts (Choudhury et al., 2013).
Their increased production may irreversibly damage plant cells
through the oxidation of different cellular compartments such
as chloroplasts, peroxisomes, and mitochondria (Roychoudhury
et al., 2012). In plants, tolerance to oxidative damage is
directly correlated with the production of antioxidant enzymes
(Almeselmani et al., 2009). To scavenge the damaging ROS, the
cotton plant activates the production of detoxifying enzymes
including superoxide dismutase (SOD), peroxidases (POD),
catalase (CAT), and non-enzymatic antioxidants including
carotenoids, flavonoids, ascorbate, and tocopherols (Suzuki et al.,
2012). Since high-temperature stress is a detrimental factor in
cotton production, the development of heat-tolerant germplasm
is a prominent objective of today’s cotton breeders, who aim to
achieve higher yields under heat stress (Teixeira et al., 2013).

Numerous approaches can be adopted to face and overcome
high-temperature abiotic stress in cotton. Scientists consider the
development of heat-tolerant germplasm as reliable, long-lasting,
cost-effective, and the best possible solution for combating
this stress. Through conventional breeding, a significant level
of tolerance in cotton can be achieved. Moreover, the global
mean temperature is constantly increasing, urging cotton
breeders to search for hidden potential genotypes from the
existing germplasm via effective screening approaches based
on particular morphological, biochemical, and physiological
traits (Salman et al., 2019). The selection of cotton genotypes
tolerant to heat stress is a prerequisite for cotton breeding
improvement programs.

Understanding multivariate statistics necessitates an
understanding of high-dimensional geometry and a
conceptualization of linear algebra (Stewart and Thomas,
2008). Unlike univariate and bivariate models, multivariate data
addresses several issues simultaneously. Multivariate analysis
can provide many options to test and summarize the power of
linear relationships across multiple variables (Timm, 2002). For
example, in correlation tests, parametric and non-parametric
options are present while using this technique. Plant breeders
can use multivariate analysis to understand differences across
variables and their possible associations (Dhamayanthi et al.,
2018). For using standard least-square fit, several reports state
that environmental indicators may significantly correlate with
quantitative traits, including crop yield (Zhang et al., 2010;
Sellam and Poovammal, 2016; Zhou et al., 2021). Hence, simple
ANOVA functions are usually inefficient for describing the
effect of environmental indicators with the desired productivity
and quality owing to higher complexity in a different set of
variables (Hoaglin and Welsch, 1978; Goos and Meintrup,
2016). Principal component analysis (PCA) and cluster analysis
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have received more attention owing to impact during recent
decades (Mohammadi and Prasanna, 2003). PCA can efficiently
analyze the interaction among traits and the performance of
genotypes and efficiently dissect trait association (Aslam et al.,
2017). Cluster analysis groups have rows together that share
similar values across several variables and are considered as
an exploratory technique that helps to understand clumping
structures in data (Rathinavel, 2018). Correlation analysis is
mainly used to understand the degree of relationship and
its nature across traits. It can deal with the basic notion of
an association across various traits, which can help in the
selection of genotypes with the desired combination of traits
(Ghafoor et al., 2013).

Multivariate analyses comprise highly acceptable and precise
methods and techniques to explore the potential genetic variation
existing in the available germplasm (Malik et al., 2014). It can also
exploit prospective genetic associations and patterns of variability
within the studied germplasm. Worldwide, multivariate analyses
are used to study a range of crops, especially maize, wheat,
cotton, and sorghum (Ali et al., 2011; Ajmal et al., 2013; Jarwar
et al., 2019). Hence, the current work was designed to evaluate
suites of biochemical, morphological, and agronomic traits
of available potential cotton existing genotypes via univariate
and multivariate analyses under heat stress with the aim of
developing new heat resilient cultivars. Such research would
yield basic information regarding high-temperature resilience
potential in existing genotypes that may prove valuable and
advantageous for developing heat-tolerant cotton cultivars in
cotton breeding improvement programs across heat-stricken
climatic regions.

MATERIALS AND METHODS

Plant Materials and Experimental Layout
During the normal cotton growing season of November 2017,
50 cotton genotypes were screened against heat stress based
on SCY under field conditions at FB Genetics, Four Brothers
Group, Pakistan. The experiment was performed in the field
under two treatments, i.e., normal and heat stress (5–6◦C above
normal for 12 days at 50% flowering) following a split-plot
arrangement under a randomized complete block design (RCBD)
with two replications. The plant × plant and row × row
distance was 30 and 75 cm, respectively, with a 6 m row
length for each genotype under each replication. The temperature
was raised by constructing a tunnel using polythene sheets
for 12 days at 50% flowering and it was removed at night.
After screening, eight cotton genotypes were selected as parents
regarding their SCY under heat stress. The selected parental
material was crossed in line × tester mating fashion in the
following season to obtain the subsequent F1 hybrids. The
five heat-tolerant genotypes were kept as female lines, namely,
Ghuari-1, Badar-1, Eagle-2, CCRI-24, and Fb-Shaheen. The three
sensitive genotypes were kept as male testers: Fb-Falcon, Fb-
Smart 1, and JSQ White Gold.

The 15 F1 hybrids and their eight parents are listed in
Table 1, and were planted at the field research area in

the normal cotton growing season under normal and high-
temperature stress conditions for 2 consecutive years, 2018
and 2019. Experimental layout was performed in a split-plot
arrangement under RCBD. The plant × plant and row × row
distance was kept as 30 and 75 cm, respectively, with a
6 m row length for each genotype under each replication.
The seed of the selected genotypes was manually sown
(dibble method) on furrows in June. The crop was harvested
in October each year. The R × R and P × P distance
was 75 and 30 cm, respectively. The experiment was laid
out in a triplicated manner under RCBD following a split-
plot arrangement. All the culture and agronomic practices
were performed following local recommendations across crop-
growing seasons over 2 years.

Imposition of High-Temperature Stress
During September, when all genotypes were at the 50% flowering
stage, heat stress was implemented for 12 days during both
the years. The covering of the polythene tunnel enhanced
the temperature (5–6◦C) during the daytime and the tunnel
was removed during the night (Muhammad et al., 2018).
The minimum and maximum temperatures inside the tunnel
were continuously recorded (Both et al., 2015) throughout the
crop growing season (Supplementary Table 1A). After the
implementation of high-temperature stress, data were collected
regarding biochemical characters. The maximum and minimum
temperature ranges recorded during the crop growing season are
given in Supplementary Table 1B.

Biochemical Traits
For the determination of biochemical traits, leaf samples were
collected from the experimental genotypes after the imposition
of high-temperature treatment for 12 days. The quantification
of H2O2, CAT, peroxidase (POD), total soluble proteins (TSP),
chlorophyll contents (Chl), and carotenoids (Car) in the leaves
was performed to assess the effect of stress on biochemical
attributes of the plants. For this purpose, the fourth fully
expanded top leaf was considered for sampling from each
genotype for biochemical analyses following the sampling
method used by Song et al. (2014). Enzyme extraction was
conducted on 0.5 g of cotton leaf samples. The leaves were
cut with the help of a leaf pincher and then crushed and
ground with 1–2 mL of chilled potassium phosphate buffer (pH
7.8). The prepared mixture was then centrifuged for 5 min at
1,400 rpm. Residues were discarded and the supernatant was
collected for the determination of biochemical attributes via UV
spectrophotometer at different wavelengths (Sarwar et al., 2019).

Hydrogen Peroxide (µmol/g-FW)
For the determination of H2O2, the Velikova protocol was
followed (Velikova et al., 2000). Fresh leaf tissues (0.5 g) were
blended by using trichloroacetic acid (TCA, 5 mL of 0.1% (w/v)
solution) and then centrifuged at 12,000 rpm for 12 min. The
supernatant was collected in a volume of 0.5 mL, and then 0.5 mL
of phosphate buffer (pH 7.0) and 1 mL of potassium iodide were
added. At the 390 nm wavelength of the UV spectrophotometer,
the absorbance capacity of each sample was recorded.
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TABLE 1 | List of lines, testers, and their cross combinations used in the experiment.

Lines Testers Crosses Crosses Crosses

Ghuari-1 Fb-Falcon Ghuari-1 × Fb-Falcon Badar-1 × Js White Gold CCRI-24 × Fb-Smart1

Badar-1 Fb-Smart 1 Ghuari-1 × Fb-Smart1 Eagle-2 × Fb-Falcon CCRI-24 × JSQ White Gold

Eagle-2 JSQ White Gold Ghuari-1 × JSQ White Gold Eagle-2 × Fb-Smart1 Fb-Shaheen × Fb-Falcon

CCRI-24 Badar-1 × Fb-Falcon Eagle-2 × JSQ White Gold Fb-Shaheen × Fb-Smart1

Fb-Shaheen Badar-1 × Fb-Smart1 CCRI-24 × Fb-Falcon Fb-Shaheen × JSQ White Gold

Catalase (U/mg Protein)
Enzyme extract (0.1 mL) was mixed with 3 mL of the
reaction mixture, containing 5.9 mM H2O2 and 50 mM
potassium phosphate buffer (7.0 pH). CAT activity was recorded
at the wavelength of 240 nm (Liu et al., 2009) using a
spectrophotometer.

Peroxidase (U/mg Protein)
The POD solution contained 50 mM phosphate buffer (pH = 5),
40 mM H2O2, 20 mM guaiacol, and 0.1 mL of enzyme extract
according to Liu’s protocol, after certain amendments (Liu et al.,
2009). At 470 nm, absorbance changes were recorded by the
spectrophotometer.

Total Soluble Proteins (mg/g-FW)
The Bradford reagent method was used for the determination
of protein content. Aliquots of 100 µL of the sample
were blended with 5 mL of Bradford reagent. At 595 nm
wavelength, the absorbance was recorded (Bradford, 1976) using
a spectrophotometer.

Chlorophyll Content and Carotenoids Assay
The Arnon method (Arnon, 1949) with specific alterations
measured Chl a and b contents and carotenoid pigments.
A volume of 8–10 mL of 80% acetone (v/v) was used for crushing
a 0.50 g sample of the cotton leaf. Filter paper was used to obtain
a homogenized solution. A spectrophotometer was employed to
record the absorbance of the final solution at 645 and 663 nm
wavelengths. Chl a and b contents and Car were estimated by
using the following formulas.

Chlorophyll a
(

µg
g

FW
)
= [12.7 (OD 663)−2.69 (OD 645)]

×
v

1000 × w

Chlorophyll b
(

µg
g

FW
)
= [22.9 (OD 665)−4.48 (OD 663)]

×
V

1000 × w

Carotenoids
(

µg
g

FW
)
=

Acar

Em
× 1000

Acar
= OD 480+0.114(OD 663)− 0.638(OD 645)

where,
W = weight of leaf sample, V = volume of sample, Em = 2,500

Yield and Fiber Quality Traits
At crop agronomic maturity, data from five plants of each
genotype regarding yield-related traits were recorded. The yield-
related traits included plant height (PH), the number of bolls
(TNB), boll weight (BW), SCY, and lint percentage (lint%).
A representative sample from seed cotton obtained from the
experimental genotypes was taken and weighed. The ginning of
seed cotton samples was accomplished with the help of a single
roller ginning machine (Testex, Model: TB510C) to separate seed
and lint, and the ginning outturn was estimated by dividing
the weight of lint in a sample by the seed cotton weight of the
sample, expressed in percentage. Lint was further subjected to
fiber quality analysis for the estimation of fiber strength (g/tex)
(STR), short fiber (SF), micronaire value (MIC), reflectance (%)
(RD), upper half mean length (mm) (UHML), and uniformity
index ratio (%) (UI) with a high-volume instrument (HVI-900,
USTER, United States), following ASTM protocol, publication
D5867-05 for HVI analysis (ASTM, 2005).

Statistical Analysis
The preliminary screening data comprising of 50 upland cotton
accessions based on yield performance across heat and normal
conditions were subjected to a linear mixed model using ANOVA,
followed by the construction of an ANOM-decision chart to
graphically represent the genotypic behavior for selection of
parents for crossing through analysis of mean methods as
described by Nelson et al. (2005). These analyses were performed
using default and standardization options with SAS-JMP Pro 16
(SAS Institute Inc., Cary, NC, United States, 1989–2021). In this
method, if a single or group of genotypes plotted statistics fell
outside of the decision limits, then the test indicated a statistical
difference between that group’s statistic and the overall average
of the statistic for genotypes/groups (Yiğit and Mendeş, 2017).
Based on the ANOM-decision charts, genotypes performing
better across both normal and stress conditions having significant
differences from means and falling above the upper decision
level (UDL) can be considered as tolerant, whereas the genotypes
having significant reduction of yield having a significant
difference from means below the lower decision level (LDL) in
stress treatment can be considered as susceptible.

Data collected from evaluation of parents and F1s across
normal and heat stress for agronomic, biochemical, and fiber
traits has been subjected to analysis of variance (Steel et al.,
1997) to estimate genetic variability among parents and their
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FIGURE 1 | ANOM-decision chart with decision limits 38.47–50.03 for seed cotton yields across normal and heat stress (alpha > 0.05%). It provides a graphical test
for simultaneously comparing the mean performance of these 50 cotton genotypes across normal and heat stress. Red-colored heads represent significant deviation
from the mean, either above upper decision level (UDL) or below lower decision level (LDL).

subsequent hybrids. Means and standard errors were calculated
and used throughout all the data sets (Gomez and Gomez, 1984).
The years were then pooled to obtain mean values for further
analyses. The method proposed by Singh and Chaudhary (1985)
was used to calculate broad-sense heritability (H2b). For the
categorization of H2b, a method based on a range of values was
used, as follows: low H2b had a < 30% value, medium H2b values
range between 30 and 70%, and high H2b values above 70%.
The H2b was classified following the procedure given by Johnson
(Johnson et al., 1955). Genetic advance percentage (GAM) is
calculated by the method proposed by Poehlman and Sleper
(1995) under a 20% selection intensity. For multivariate analyses,
average data was taken for replications. Subsequently, means
were subjected to multivariate analyses, including correlation
matrix (Pearson correlation) and PCA (Correlation based), two-
way cluster analysis (hierarchical clustering), and construction
of a distance-based tree using Ward’s method; all these analyses
were performed using default analyses and standardization
options with SAS-JMP Pro 16 (SAS Institute Inc., Cary, NC,
United States, 1989–2021).

To validate the results and also to determine the performance
of genotypes with a high SCY and good fiber quality across
normal and heat stress, 3D scatterplots were constructed based
on stress tolerance indices, including mean performance (MP),
geometric mean performance (GMP), and stress tolerance index
(STI) for normal and heat stress with the help of the freely
available online software package iPASTIC developed by Pour-
Aboughadareh et al. (2019). To rank and identify the best
genotypes having stable and better yields across both conditions,
the representative trait was used according to the method given
by Ketata et al. (1989). Based on this approach, the average sum

of rank (ASR) corresponding to all variables/indices was used
as an indicator for selecting the best genotypes. According to
this procedure, the lowest rank was assigned to the genotype
having the best performance for the corresponding variable;
hence, genotypes with the lowest value for ASR and lowest values
for standard deviation were denoted as the best ones.

RESULTS

The results from the preliminary screening experiment
across normal and heat stress conditions, represented in
Supplementary Table 2, revealed non-significant results for
replications, whereas significant effect estimates were found for
genotypes, treatment, and genotype treatment interaction for
SCY. The results for mean comparisons through the analysis
of mean methods (ANOM)-decision chart were constructed
to represent the genotypic behavior for selection based on the
ANOM. Based on the results shown in Figure 1, five genotypes
were declared as tolerant since their means fell above the UDL
across both normal and stress conditions without significantly
decreasing SCY due to imposed stress. These five heat-tolerant
cotton lines/genotypes were used as female lines for crossing:
Ghuari-1, Badar-1, Eagle-2, CCRI-24, and Fb-Shaheen. We also
selected three heat susceptible genotypes because they produced
a significant decline in SCY across heat-stress conditions
compared with a higher yield performance in normal conditions.
These genotypes had a significantly higher yield in normal
conditions, i.e., above the UDL, whereas they had significantly
reduced yield performance in heat stress, i.e., below the LDL.
These genotypes were: Fb-Falcon, Fb-Smart 1, and JSQ White
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TABLE 2 | Summary of mean square values regarding the influence of high-temperature stress on different traits of the studied cotton genotypes of parents and their F1 hybrids across the 2 experimental years.

Traits Genotypes Heat Stress Genotypes × Heat
Stress

Heat stress
× Year

Genotypes
× Year

Heat stress
× Year ×

genotype

1st year 2nd year 1st year 2nd year 1st year 2nd year

Plant Height 137.68** 151.7** 487.600 619.8 27.789** 30.0** 3.96 2.18 1.37

Number of bolls 36.650** 37.90** 877.93* 838.2* 14.092** 10.53** 0.23 1.61 1.26

Boll weight 0.2247** 0.184** 0.0088 0.182 0.0824** 0.04817 0.05 0.01 0.03

Seed cotton yield 249.63** 237.4** 1808.5* 2329.0* 57.09** 60.01** 16.44 5.44 7.33

Ginning out-turn 65.164 ** 51.28** 67.151* 103.5 13.489 18.16** 1.962 1.552 1.59

Hydrogen peroxide 29.950** 23.57** 326.4** 611.5** 7.286** 3.691** 22.1** 1.278 1.8 *

Catalase 2,261** 2,123** 7,143** 7,178** 598** 556** 2.0 5.0 4.0

Peroxidase 542.3** 446.5** 9,675** 90,382.* 321.5** 323.5** 54.3** 9.45* 5.32

Super-oxidase dismutase 145.4** 131.2** 38,581** 40,782.* 120.0** 87.3** 15.2 15.6* 21.0**

Total soluble protein 24.11** 18.4** 3,009** 2,978.8* 14.47** 16.6** 0.04 2.41** 2.47**

Chlorophyll contents a 0.094** 0.10** 6.723** 8.52** 0.055** 0.04** 0.05** 0.00 0.00

b 0.011** 0.01** 0.431** 0.59** 0.005** 0.004** 0.006** 5.01 7.94*

Carotenoids 0.011** 0.010** 4.248* 4.019** 0.005** 0.003** 0.001 0.000 0.00

Short fiber 0.900** 0.86** 0.960 1.86 1.524** 1.46** 0.074 0.02 0.079*

Fiber strength 22.62** 30.8** 29.50 3.25 13.04** 20.4** 26.18** 8.26 ** 11.7**

MIC value 1.351** 1.06** 0.841** 0.26** 0.262** 0.19** 1.02** 0.10* 0.10*

Reflectance 10.44** 14.4** 225.3** 186.5* 9.09** 11.7** 0.918 2.759 2.214

Uniformity index 6.96** 22.07** 102.6* 53.5** 14.28** 16.62** 3.962 10.9** 11.0**

Upper half mean length 9.54** 11.4** 40.445 16.5 4.85** 7.6** 2.63 2.54 2.92

*Significance (α = 0.05), **highly Significant (α = 0.01).
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TABLE 3 | Genetic components of variability, genetic advance percentage means, and heritability (broad sense) estimate studied traits across normal (N) and heat stress
(HT) conditions for pooled data across the years 2018 and 2019.

SOV Max Mini Mean CV% GCV PCV H2b% GAM

Plant height (cm) N 99.80 66.00 83.68 3.86 7.33 8.29 78.29 13.37

HT 98.80 68.20 78.49 3.45 8.49 9.16 85.85 16.20

Number of bolls N 29.80 12.20 20.63 11.15 19.04 22.06 74.46 33.84

HT 20.60 7.20 14.59 11.87 14.78 18.95 60.80 23.74

Boll weight (g) N 3.75 2.31 3.01 5.46 7.18 9.02 63.32 11.77

HT 3.74 2.04 2.92 6.36 6.77 9.29 53.17 10.17

Seed cotton yield (g) N 69.20 29.60 50.31 5.29 15.52 16.40 89.59 30.26

HT 69.63 26.41 40.25 8.11 22.06 23.51 88.09 42.66

Ginning out turn% N 59.87 39.82 50.55 5.22 7.90 9.47 69.60 13.58

HT 59.57 39.41 48.57 5.17 7.09 8.77 65.27 11.79

Hydrogen peroxide (µmol/g) N 15.10 2.30 6.63 23.69 38.80 45.46 72.85 68.22

HT 18.58 3.36 11.78 14.21 17.78 22.76 61.05 28.62

Catalase (U mg−1 protein) N 112.00 15.00 66.54 4.82 40.36 40.65 98.59 82.56

HT 314.00 207.10 243.21 2.24 10.06 10.30 95.26 20.22

Peroxidase (U mg−1 protein) N 90.00 12.40 42.62 7.29 43.30 43.91 97.25 87.96

HT 123.60 89.90 105.29 2.55 5.69 6.24 83.33 10.71

Superoxide dismutase (U mg−1 protein) N 71.30 36.30 55.90 5.72 13.85 14.98 85.44 26.36

HT 119.10 79.60 98.01 3.96 6.18 7.34 70.84 10.71

Carotenoids N 0.34 0.05 0.21 12.46 26.85 29.60 82.29 50.17

(mg g−1 FW) HT 0.80 0.47 0.63 6.05 8.84 10.71 68.14 15.04

Reflectance N 84.12 69.40 75.38 3.28 3.46 4.77 52.76 5.18

HT 76.95 68.45 72.53 1.61 2.20 2.72 64.97 3.65

The upper half mean length (mm) N 33.14 21.92 26.89 6.82 7.40 10.07 54.09 11.22

HT 30.01 20.92 26.04 5.44 6.50 8.48 58.81 10.28

Uniformity index % N 97.36 80.14 86.20 3.09 3.78 4.88 59.88 6.02

HT 87.80 80.14 84.67 2.06 2.26 3.06 54.63 3.44

Short fiber contents (%) N 10.20 5.40 8.13 5.87 10.50 12.03 76.17 18.87

HT 9.50 7.20 7.85 3.44 6.80 7.62 79.63 12.50

MIC (units) N 6.90 4.00 5.12 5.25 12.01 13.11 83.94 22.67

HT 5.90 3.80 5.23 4.06 8.50 9.42 81.43 15.80

Total soluble protein contents (mg g−1 FW) N 9.42 1.18 4.65 21.92 20.17 29.79 45.86 28.15

HT 29.33 9.30 16.03 10.85 23.85 26.20 82.85 44.71

Chlorophyll a contents (mg g−1 FW) N 1.75 0.59 1.12 6.43 21.99 22.91 92.13 43.48

HT 0.80 0.22 0.51 10.58 21.56 24.02 80.60 39.88

Chlorophyll b contents (mg g−1 FW) N 0.50 0.11 0.37 7.53 20.04 21.41 87.63 38.65

HT 0.29 0.09 0.21 12.60 20.23 23.83 72.05 35.38

Fiber strength (g/tex) N 39.80 20.03 30.54 8.74 13.14 15.78 69.34 22.53

HT 39.80 25.10 32.05 5.70 7.53 9.44 63.62 12.37

SOV, Source of variation); CV%, coefficient of variation; GCV%, genotypic coefficient of variation; PCV%, phenotypic coefficient of variance); H2b, broad sense heritability;
GAM, genetic advance per percent means.

Gold, and were selected to be used as testers (male parent) in
crossing (Figure 1).

Analysis of variance showed significant differences among
parents and F1 hybrids under heat stress during both years; this
pointed toward the existence of genetic divergence (Table 2).
The Genotypes × Treatment interaction for all traits was highly
significant, suggesting that all parents and hybrids behaved
differently under heat stress (Table 2). The analysis of variance
for heat stress × year showed non-significant interactions for
all traits except H2O2, POD, Chl a and b contents, STR, and
MIC. The genotypes × year interaction showed non-significant

interactions for all traits except SOD, TSP, Chl-a content, STR,
MIC, and UI. The heat stress × year × genotypes interaction
showed non-significant interactions for all traits except H2O2,
SOD, TSP, Chl-b content, SF, STR, MIC, and UI (Table 2).
Overall, heat stress negatively affected all agronomic and yield-
related traits in all-cotton genotypes during both years. The
following traits: PH, TNB, BW, SCY, Lint%, Chl a an b, SF, RD,
and UI were reduced in all genotypes under high-temperature
stress (Table 3). The mean values for H2O2, TSP, STR, CAT,
SOD, POD, and Car increased under heat stress whereas the mean
values for Chl a and b decreased (Table 3).

Frontiers in Plant Science | www.frontiersin.org 7 January 2022 | Volume 12 | Article 727835186

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


fpls-12-727835 January 7, 2022 Time: 14:8 # 8

Zafar et al. Genetic Variability in Cotton Under Heat Stress

FIGURE 2 | Scatterplot correlation matrix of the 19 ionic yield and fiber-related traits of 23 cotton genotypes grown under normal (left) and high-temperature stress
(right) conditions. In the upper panel, red and blue circles indicated positive and negative correlations, respectively, with increasing color intensity reflecting a higher
coefficient. The lower panel indicates the bivariate density distributions with ellipses between each pair of traits and trendline of the correlated traits. PH = plant
height (cm), TNB = number of bolls, BW = boll weight (g), SCY = seed cotton yield (g), SF = short fiber contents (%), STR = fiber strength (g/tex), UHML = upper half
mean length (mm), MIC = micronaire value (unit), RD = reflectance, UI = uniformity index (%), H2O2 = hydrogen peroxide (µmol/g), CAT = catalase (U mg-1 protein),
POD = peroxidase (U mg-1 protein), SOD = superoxide dismutase (U mg-1 protein), TSP = total soluble protein (mg g-1 FW), Chl a and b = chlorophyll contents
(A,B) (mg g-1 FW), Caro = carotenoid (mg g-1 FW).
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Genetic Components of Various
Characters Under Normal and Heat
Stress Conditions
The mean values for all traits under normal and heat stress
conditions were estimated. Based on these mean values following
traits: PH (83.68), TNB (20.63), BW (3.01), UHML (26.89), SCY
(50.31), Lint% (50.55), RD (75.38), UI (86.20), MIC (5.12), Chl-a
contents (1.12), and Chl-b contents (0.37) exhibited higher mean
values under normal conditions. In contrast, H2O2 (11.78), POD
(105.29), TSP (16.03), SOD (98.01), Car (0.63), CAT (243.21),
and STR (32.05) displayed higher mean values under high-
temperature conditions (Table 2). The coefficient of variation
was also computed to determine the precision of the experiment.
A lower value of coefficient of variation (CV%) indicated a
precise and accurate experiment. The following traits: PH, BW,
Lint%, CAT, POD, SOD, SF, MIC, RD, UHML, UI, MIC, and
STR had lower coefficient of variation (CV%) values under
normal and stress conditions. Under both conditions, the traits
TNB, SCY, Car, TSP, Chl a and b, and H2O2 had moderate
to high coefficient of variation (CV%) values (Table 3). The
genotypic coefficient of variation (GCV) was observed to be
slightly lower than the phenotypic coefficient of variation (PCV)
for all the studied traits under both conditions, indicating that
the environment was the least influential on these traits. An
increasing H2b and genetic advance mean per percent (GAM)
was observed in CAT, MIC, SCY, Chl a and b contents, and PH
under both conditions. Moderate H2b and GAM were exhibited
by TNB, H2O2, Car, SF, and STR under normal and stress
conditions (Table 3).

Correlation Analysis
Correlation analysis was performed to estimate the relationship
among studied traits under normal and high-temperature stress
conditions. The morphological trait, SCY, revealed significant
positive associations with TSP, BW, POD, CAT, and Chl a and b
under both the conditions. The biochemical trait, TSP, exhibited
a significant positive association with H2O2, POD, and Chl a and
b under both the conditions. BW displayed a highly significant
positive association with H2O2. The biochemical traits showed
a significant positive correlation with POD, CAT, Chl a and
b, and Car under both conditions (Figure 2). The remainder
of the correlations were inconsistently significant under both
conditions, and some were insignificant or negatively correlated
among themselves under normal and stress conditions. The
correlation of PH with most traits in normal conditions was
significantly positive, reducing TNB, SCY, TSP, BW, H2O2, POD,
CAT, Chl a, and b, and Car under control stress conditions. The
trait of SOD also reduced its significantly positive correlations
with POD, H2O2, BW, TSP, CAT, Chl a and b, Car, MIC, STR,
and UHML from normal to stress conditions. However, with
SCY, TNB, PH, SF, and UI the positive correlations of SOD
changed to negative ones under heat stress conditions. The
negative correlation of SOD with Lint% changed to a positive
correlation under heat stress. The significant positive correlation
of UI with STR changed to a non-significant level under the stress
condition (Figure 2).

FIGURE 3 | Hierarchical clustering of 23 cotton genotypes for biochemical,
yield, and fiber-related traits under normal (A) and high-temperature stress (B)
conditions.

Cluster Analysis
Agglomerative hierarchical clustering (AHC) analysis was
performed for the estimation of the degree of dissimilarity among
experimental genotypes based on morphological, physiological,
and biochemical traits measured under normal and high-
temperature stress conditions. The cluster tree was shaped using
the agglomerative hierarchical approach based on a “bottom-up”
technique. The technique uses every single observation at the
initial level as an individual cluster. These individual observations
move forward to the next level, forming a hierarchy after pairing
up successively until the final distinct cluster. The Euclidean
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distance method was used to calculate the distances between
genotype pairs. Subsequently, all the genotypes were clustered
together to create a full-fledged dendrogram via operating Ward’s
method. A two-way clustering technique was utilized through
AHC to build a two-way cluster diagram.

This analysis divided all 23 experimental genotypes into four
groups under both normal and heat stress conditions. Under
normal conditions, Group-1, Group-2, Group-3, and Group-
4 enclosed seven, one, 12, and three genotypes, respectively
(Figure 3). Under high-temperature stress, these 23 genotypes
were clustered again into Group-I, Group-II, and Group-III,
comprising five, one, 14, and three genotypes, respectively
(Figure 3). Different colors represented different clusters. Based
on the performance of genotypes, which is depicted in the
diagram through a color gradient from red to blue (highest to
lowest) obtained from clustering, and under both under normal
and heat stress conditions, the following genotypes performed
well: FB-SHAHEEN × JSQ WHITE GOLD, CCRI-24, Ghauri-1,
Eagle-2 × FB-Falcon, Ghuari-1 × JSQ White Gold, and Eagle-2
regarding agronomic, biochemical, and fiber quality attributes.

Principal Component Analysis
Principal component analysis is a multivariate statistical
approach to studying and simplifying complicated and huge
datasets. Based on the correlation among studied characters and
extracted clusters, the variation patterns in cotton genotypes were
also investigated using PCA to assess the genetic diversity of the
genotypes and their relationship with the studied traits. Under
both conditions, the total variation was divided into 19 principal
components (PCs), out of which the first four PCs displayed > 1
eigenvalue. In contrast, the remaining PCs exhibited lower
eigenvalues (Figure 4). The first four PCs contributed 79.56% to
total variability among the cotton genotypes evaluated for various
ionic, yield, and fiber quality traits under both conditions. While
the remainder of all PCs shared 20.44% of the total variability
under both conditions. PC-1 shared 44.3%, PC-2 exhibited
17%, PC-3 revealed 10.8%, and PC-4 displayed 7.46% of total
variability among the genotypes for the studied characters. PC-
1 contributed the most cumulative variability to the treatment,
followed by PC-2, PC-3, and PC-4 (Figure 4).

The summary biplot of studied traits along with their
magnitudes of variation is displayed in Figure 4. All the
genotypes under normal and stress conditions were distributed
inside the correlation eclipse between the first two PCs (Figure 4,
left). A relative distance of variables from the origin of PC-
1 and PC-2 revealed a contribution of each variable to total
variation for the accessions studied. It covered the plot from
start to end and provided information about the diversity present
among the genotypes. The second summary biplot in Figure 4
(right) between PC-1 and PC-2 explained 61.3% of the total
variation. It reveals that most biochemical traits and a few others
between the two PCs were positively correlated with each other:
namely Car, CAT, SOD, TSP, POD, H2O2, STR, and BW. The
length of vectors originating from the center is a depiction of
the correlation amount among traits. These were validation of
the correlations mentioned above among the studied traits under
both conditions. The TNB, SCY, BW, UHML, Chl a and b, Car,

H2O2, POD, TSP, and SOD had long vectors and revealed higher
variation, whereas lint%, PH, MIC, STR, and UI exhibited the
least variability. The SF, UI, and RD did not follow a desirable
direction. PCA results displayed clear discrimination among all
studied genotypes across normal and high-temperature stress
conditions among the four PCs contributing to the maximum.
The elaborated distribution details of studied traits under both
normal and stress conditions among the four PCs are displayed
in a scatterplot matrix in Figure 5. In this biplot, Car, CAT,
SOD, TSP, POD, H2O2, STR, and BW show a positive correlation
between PC2 and PC3 biplot, validating the correlation results.

The traits of POD, SOD, and H2O2 were closed and positively
correlated in the biplot of PC-1 and PC-3. The biplot of PC-
4 had the least variation compared with PC-1, with PC-2,
and PC-3 being independent. In this biplot, SF and UI were
more discriminating traits and had a strong positive correlation.
The biplot of PC-1 with PC-4 contributed lower variation as
compared with PC-2 and PC-3. In this biplot, RD, UHML,
PH, and TNB lay close to each other and exhibited positive
associations among themselves.

Stress Tolerance Indices
We have estimated stress tolerance indices (STI) based on
mean performance (MP), geometric mean performance (GMP),
and STI for test genotypes, considering yield as the most
critical indicator for screening regarding heat-tolerant genotypes.
In this method, genotypes were ranked according to their
MP, GMP, and STI. For MP and GMP genotypes were with
higher values, whereas STI ≥ 1 have been considered for heat
tolerance (Fernandez, 1992). Out of the 23 studied genotypes,
five accessions had an STI value ≥ 1, and the highest values
for STI were recorded for FB-Shaheen × JSQ White Gold
(1.82), Ghuari-1 (1.27), CCRI-24 (1.26), Eagle-2 × FB-Falcon
(1.11), Ghuari-1 × JSQ White Gold (1.04), and Eagle-2 (0.91)
(Supplementary Table 3). According to the theory proposed
by Fernandez (1992), a 3D scatterplot plot was constructed to
categorize 23 test genotypes of upland cotton, including lines
and their F1 hybrids; four groups were observed (Figure 6). The
genotypes categorized as Group A had a relatively consistent
performance across normal temperature and heat stress. Group
B included accessions with higher performance through normal
conditions; as far as group C was concerned, it comprised
genotypes having high performance across the stress. In contrast,
group D had genotypes with lower performance across both
conditions (Supplementary Table 3). Based on cluster analysis,
PCA, and STI, the genotypes FB-Shaheen × JSQ White Gold,
CCRI-24, Ghuari-1, Eagle-2× FB-Falcon, Ghuari-1× JSQ White
Gold, and Eagle-2 demonstrated superior performance under
both conditions, and thus were identified as heat stress-tolerant
(Figure 6 and Supplementary Table 3).

DISCUSSION

Of all abiotic stressors, high-temperature stress is a major
constraint in improving cotton yield and production, affecting
numerous attributes and physiological and metabolic processes
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FIGURE 4 | Summary of (A) bar chart displaying eigenvalue and variation percentage contribution by all principal components (PCs), (B) a biplot between PC1 and
PC2 displaying the distribution of 23 cotton genotypes under normal and high-temperature stress conditions (C) contribution of various traits in variation for
genotypes under normal and high-temperature stress conditions.

(Snider et al., 2011; Xu et al., 2020). The development of
high-yielding cotton cultivars with high-temperature resilience
are needed to endure the warming global climate. To date,
enormous efforts have been made to develop heat-tolerant cotton
genotypes. Plant breeders’ first choice always relies on the
available genetic diversity of various desirable characters among
existing germplasm (Pour-Aboughadareh et al., 2018; Majeed
et al., 2019). Up-to-date information regarding genetic variability
and heritability is necessary to enhance breeding programs in
order to develop heat-tolerant cotton cultivars (Tang et al., 1996).

Five lines and three testers were crossed in Line × Tester
fashion (5 × 3), and 15 F1 hybrids were obtained subsequently.
Using CV for the studied traits, the variation assists with
enhancing crop yields by assembling beneficial genes from
genetically divergent genotypes. CV also assists in depiction
of the precision regarding the experiment conducted. Genetic
variation is highly prone to fluctuations that take place in
a plants’ environment. As the genome of a plant tries to
adapt according to the vagaries of its environment, internal
modifications occur to produce desirable, modified, and flexible
phenotypes. Those traits exhibiting high GCV and PCV with
low adverse environmental effects are advantageous for selection.
Cultivars with such characters should be selected to develop
desirable and adaptable genotypes (Kaleri et al., 2016; Chaudhari
et al., 2017). In this work, phenotypic variance was higher
than the genotypic variance for all the studied characters.
The GCV was slightly lower than PCV showing the lower
environmental variance, which indicates that these characters
were less affected by the environment (Singh et al., 2013; Ahmadi
et al., 2016). Our findings are also supported by previous reports
(Khan et al., 2014).

Genetic improvement of crop plants relies on the magnitude
of heritability of economic traits (Ma-Teresa et al., 1994; Ahmadi
et al., 2016). Traits with high heritability and genetic advance

express their features by being transmitted to the next generation
in higher percentages. A high H2b, coupled with high GAM, may
contribute to genetic gain owing to the selection process. Such
a trend was observed in this work with CAT, MIC, SCY, PH,
and Chl a and b content, indicating additive gene action. The
mentioned traits can prove helpful in the selection of genotypes
at early stages to be used further in improvement-based breeding
programs. Interestingly, similar results were observed in earlier
studies (Nawaz et al., 2019; Singh et al., 2019; Bhatti et al.,
2020). The following traits: TNB, H2O2, Car, SF, and STR,
had moderate H2b and GAM under both normal and stress
conditions (Adhikari et al., 2018). Higher PCV, GCV, H2b, and
GAM favor stabilized selection regarding the accumulation of
alleles owing to the predominance of additive genes (Jamil et al.,
2020). Some studies also suggest that heat tolerance is heritable
(Snider et al., 2010, 2011).

Previous findings on high mean values are incongruent with
our findings for PH (Majeed et al., 2019), Chl content (Van
Der Westhuizen et al., 2020), Lint% (Azhar et al., 2009), BW
(Snider et al., 2011), fiber quality traits (Snider et al., 2009),
and antioxidant enzymes (Gür et al., 2010; Kamal et al., 2017;
Majeed et al., 2019). In this work, as temperature elevated, H2O2
production was observed to increase; however, owing to the
scavenging activity of CAT and POD, its damaging impacts were
prevented (Li et al., 2007; Sekmen et al., 2014). CAT and POD
convert the toxic H2O2 into water and oxygen (Farooq et al.,
2018). An increase in CAT, TSP, and POD contents is generally
observed in high-yielding cultivars as these are actively involved
in scavenging H2O2 to maintain its optimum level (Gosavi et al.,
2014; Hussain et al., 2021). The genotypes that showed higher
CAT, POD, and TSP values were optimal for H2O2 level and
were declared as heat-tolerant genotypes. Similar results have
been observed previously in cotton (Gür et al., 2010), wheat
(Sairam et al., 2000), chickpea (Kaushal et al., 2011), and moth
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FIGURE 5 | Scatterplot of PC1, PC2, PC3, and PC4 displaying their contribution to the total variability of genotypes based on studied agronomic, biochemical, and
fiber-related traits under normal and high temperature stress conditions.

bean (Harsh et al., 2016). Carotenoids also increase under stress
conditions as they are mainly involved in safeguarding singlet
oxygen (McElroy and Kopsell, 2009).

A correlation matrix is used to study the dependency of
variables upon each other for better phenotypes to give improved

yields (Li and Ji, 2005; Pour-Aboughadareh et al., 2021). The
positively associated traits TSP, BW, POD, CAT, Chl a and b,
and Car were in line with earlier reports in cotton (Wan et al.,
2007). SCY exhibited a positive relationship with TSP, BW, POD,
CAT, and Chl a and b content. BW showed a higher positive
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FIGURE 6 | Three-dimensional scatterplots based on seed cotton yield
across normal (SCY-Normal) and heat stress (SCY-Heat) conditions, and
stress tolerance indices: (A) mean performance (MP), (B) Geometric mean
performance (GMP) and (C) Stress Tolerance (STI).

relationship with H2O2. Similar positive correlations among
traits were also reported in earlier studies (Song et al., 2015;
Majeed et al., 2019; Mangi et al., 2021).

In some cotton cultivar leaves, the antioxidant enzymes
become upregulated under heat stress but remain unable to
safeguard cells from oxidative injury (Snider et al., 2009). This

study represented the F1 hybrid genotype FB-SHAHEEN × JSQ
WHITE GOLD with high SCY, BW, TNB, CAT, SOD, POD, and
Chl content under both normal and stress conditions. This F1
hybrid genotype was also observed to be superior in terms of
fiber quality traits. The other F1 hybrids, CCRI-24× JSQ WHITE
GOLD, and EAGLE-2 × JSQ WHITE GOLD showed maximum
lint%, whereas the minimum lint% was recorded for GHUARI-
1× FB-FALCON under both conditions. The parental genotypes
Eagle-2 and CCRI-24 were superior in yield and fiber quality
parameters under both conditions.

To select the best genotypes for agronomic, fiber-related, and
biochemical traits, their discrimination from remaining low-
performing ones was attained using hierarchical cluster analysis,
indicating that they be utilized further in breeding programs
(Chunthaburee et al., 2016). The genotypes were clustered into
four distinct groups. Group-1 and Group-2 included superior
performing genotypes under normal and stress conditions,
discriminating them as heat tolerant. Similarly, the PCA analyses
revealed the first four PCs as significant contributors to the
total variation covering 79.56% toward biochemical, fiber-related,
and agronomic traits. These results affirmed the differences
among genotypes regarding studied traits under normal and
stress conditions, which can prove helpful for their utilization
in future breeding programs regarding the improvement of heat
tolerance of cotton cultivars. These efficient statistical techniques
are employed for the discrimination of genotypes for their
diversity evaluation. The results of PCA in the current study are
congruent with previous findings on cotton genotypes by other
researchers (Saeed et al., 2015; Shabbir et al., 2016; Jamil et al.,
2020). Out of the first four PCs the maximum contribution to
the total variation residing in the experimental germplasm was
from PC1 and PC2, which is in line with earlier reports related to
PCA (Amna et al., 2013; Isong et al., 2017). The traits Car, CAT,
SOD, TSP, POD, H2O2, STR, and BW, contributed to the first two
PCs under both conditions (Javed et al., 2017). Thus, multivariate
analyses are a rich source of efficiency, precision, and accuracy
regarding the outcomes obtained from experimental studies.

Among the various stress tolerance indices, MP, GMP, and STI
have been extensively used in various studies and are suitable
selection criteria, as these parameters enable us to identify
individuals with high performance regarding stress-tolerance
potential under unfavorable conditions (Pour-Aboughadareh
et al., 2017). In the same way, many scientists have used
these indices in several crops to enable them to assess stress-
tolerant genotypes for further utilization in stress breeding
programs. These indices have successfully helped to discriminate
the genotypes as they revealed a minimal reduction in yield
in response to a stress condition, compared with the other
studied genotypes. These outcomes align with the findings
of other research where these indices distinguished tolerant
genotypes from sensitive genotypes (Naghavi et al., 2013;
Khalili et al., 2014, 2016, 2018; Etminan et al., 2019; Noorka
et al., 2019). Furthermore, the grouping of genotypes for high-
temperature tolerance made through these indices is almost
the same as we obtained from results of hierarchical clustering
and PCA, thus validating the high reliability of the methods
used. Hence, tolerant accessions based on STI, AHC, and
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PCA results could be grown across higher temperature regions
with limited penalties to their growth. The F1 hybrid FB-
SHAHEEN × JSQ WHITE GOLD followed by Ghuari-1, CCRI-
24, Eagle-2 × FB-Falcon, Ghuari-1 × JSQ White Gold, and
Eagle-2 were identified as more heat tolerant as compared with
the remaining experimental genotypes.

Several previous studies have documented that species with
higher heat tolerance show an increasing trend in antioxidant
enzyme activity in response to high-temperature stress, but
susceptible species fail to do so. Thus, the evidence accumulated
from current data indicates that intrinsic antioxidant resistance
mechanisms of plants may exhibit a strategy for the enhancement
of tolerance against heat stress. However, to perform selection
efficiently for genetically transformed heat-tolerant plants, the
effects of underlying mechanisms under heat stress on plant
morphology, physiology, growth, and antioxidative responses
must first be identified.

CONCLUSION

The continuously warming global climate drives plant genotypes
to adapt through the modification of specific phenotypes. With
this scenario of escalating temperature, the development of
cultivars that may endure abrupt fluctuations without adversely
affecting yield is necessary. The first solution is to screen
the available cotton germplasm for its potential against high-
temperature stress. Most plants exhibit high antioxidant enzyme
activities as an important step involving the heat tolerance
mechanism. This work identified that the F1 hybrid genotype: FB-
SHAHEEN × JSQ WHITE GOLD, followed by Ghuari-1, CCRI-
24, Eagle-2× FB-Falcon, Ghuari-1× JSQ White Gold, and Eagle-
2 were the best performers under stress and normal conditions
as they were not adversely affected. The adverse effects of
heat stress usually include disruption of routine morphological,
physiological, biochemical, and fiber characters in cotton and
ultimately affect yield. Potential genotypes can be efficiently
employed in future cotton breeding programs to improve cotton
crop yield and productivity by enhancing their heat tolerance to
withstand the changing climate.
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Formalized breeding schemes are a key component of breeding program design and
a gateway to conducting plant breeding as a quantitative process. Unfortunately,
breeding schemes are rarely defined, expressed in a quantifiable format, or stored in a
database. Furthermore, the continuous review and improvement of breeding schemes
is not routinely conducted in many breeding programs. Given the rapid development
of novel breeding methodologies, it is important to adopt a philosophy of continuous
improvement regarding breeding scheme design. Here, we discuss terms and definitions
that are relevant to formalizing breeding pipelines, market segments and breeding
schemes, and we present a software tool, Breeding Pipeline Manager, that can be used
to formalize and continuously improve breeding schemes. In addition, we detail the use
of continuous improvement methods and tools such as genetic simulation through a
case study in the International Institute of Tropical Agriculture (IITA) Cassava east-Africa
pipeline. We successfully deploy these tools and methods to optimize the program size
as well as allocation of resources to the number of parents used, number of crosses
made, and number of progeny produced. We propose a structured approach to improve
breeding schemes which will help to sustain the rates of response to selection and help
to deliver better products to farmers and consumers.

Keywords: breeding scheme, breeding pipeline, market segment, product profile, continuous improvement,
genetic simulation

INTRODUCTION

A breeding program is the sum of breeding pipelines to achieve breeding targets for a set of
market/target segments1 Only after rigorous market and social studies have been carried out and
an impactful pipeline investment case is presented to the leadership of an organization/institution,
a breeding pipeline is created to carry out trait discovery, population improvement, product
development, introgression efforts, seed dissemination/commercialization or a combination of one
or several of these (tiers). Any pipeline should have a clear deliverable/product to be handed
at the end of the pipeline and a clear customer (another pipeline lead, another organization,
etc.). A market segment is defined by the target population of environments in which the final

1Breeding Pipeline (2021). Breeding Pipeline: Scope and Approach. Available online
at: https://globalrust.org/dggw/breeding-pipeline
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product is grown, as well as descriptions of the target
clients and product traits that are valued for production
and consumption by farmers and end-users. Products to be
placed in a market segment are described through product
profiles/concepts; detailed descriptions of the traits and their
thresholds (or range of values) to be found in the desired product
or variety (sometimes based on current variety in the market)
that aims to increase the likelihood of acceptance in the market.
A breeding pipeline within a program may target one or more
market segments and the associated product profiles using one
or more breeding schemes. Breeding schemes are a collection
of crossing, evaluation, and selection (CES) tasks and decisions
which vary across breeding stages (e.g., in the crossing block vs.
advanced yield testing in plants) and ultimately define a breeding
strategy (Henryon et al., 2014; Yabe et al., 2017; Cobb et al., 2019;
Pook et al., 2020; Gaynor et al., 2021; Figure 1).

Because CES decisions are numerous in a breeding program,
breeding schemes can be difficult to describe succinctly and
consistently, especially in the context of particular modes of
crop reproduction and emerging breeding technologies (Yabe
et al., 2017). Breeding leads or other experts typically visualize
CES tasks and decisions as illustrative flow charts or tables.
Unfortunately, some may not contain all information necessary
to reproduce the breeding scheme in other places and may not
fully visualize the resource allocation at different stages. Examples
of these decisions, which may happen once or repeatedly at
different stages of the breeding scheme, are:

• Crossing decisions: number of parents, number of
crosses, number of progeny, type of cross, and mate
allocation method, etc.
• Evaluation decisions: number of locations, replication

level within and among locations, number of checks,
experimental design, and plot sizes, etc.
• Selection decisions: percentage of individuals selected

(selection intensity), the selection method (e.g., culling,
index, tandem), and the selection unit, etc.

Another layer of complexity in communicating breeding
schemes is that the number of stages in a scheme depends
on the biology of the species, the multiplication ratio, the
evaluation steps required to identify new parents, and the
complexity of the market segment and product profile(s) for
the desired final product (Henryon et al., 2014). Most breeding
programs have a crossing stage to recombine elite parents,
stages to multiply progeny and/or generate progeny derivatives
such as testcrosses or inbred derivatives (e.g., lines), and
multiple stages to test progeny derivatives for their potential as
new parents or products. This stage-gate process in breeding
programs is repeated cyclically, generating a recurrent selection
scheme which, if effective, increases the population mean for
the set of traits of interest (Allard, 1999; Chao and Ishii,
2005; Cooper, 2008). Additionally, programs do not wait until
a cycle of the stage-gate process is completed to restart the
process, and instead run several generations in parallel. A set
of genotypes at a given stage within a given cycle is commonly
referred to as a cohort or a selection stream (Figure 2).

Generations may be discrete or overlapping depending on
whether the parents of the cohort genotypes are selected from
a single unique cohort or from multiple cohorts. Overlapping
generations are more common and lead to more blurred genetic
boundaries between cohorts, as cohorts tend to be more related
with overlapping generations compared to discrete in absence
of inbreeding control (Meuwissen and Sonesson, 1998). In
summary, formalized breeding schemes are necessary to clarify
the structure of breeding program pipelines.

Despite the inherent complexity of CES decisions, in some
organizations breeding schemes are rarely shared formally or
presented in writing. It is common for breeding leads to inherit
a breeding program and its scheme from their predecessor.
Usually, the predecessor transfers the breeding scheme verbally
and practically rather than providing a quantitative description
of the scheme in a formal document or software. This requires
overlap between breeders and on-site presence of the predecessor,
potentially for years at a time. Information about the breeding
scheme may also be spread among several staff members within
the program, interspersed in various publications, or buried
in personal notes or presentations. Unfortunately, this method
of transferring breeding schemes has led to the total loss of
information (and even germplasm) of many breeding programs
that have disappeared in the last century (Baenziger, 2006; Gepts
and Hancock, 2006; Morris et al., 2006). Improved transferring
methods could allow increased interoperability among breeders
and better preservation of pedigrees, data, and germplasm.

In addition, codified, systematic documentation of breeding
schemes could spur continuous improvement and lead to
increased genetic gain and varietal turnover (EiB2). As suggested
by Bernardo (2002), plant breeding programs should be
managed as formal industrial processes that allow better
breeding methods to be adopted as they become available to
ensure sustainable, steady production of high-quality products.
Industrial processes require a clear flow of subprocesses
(tasks and decisions) and development of standard operating
procedures (SOPs) that ensure minimization of production
errors. Several methodologies, such as SixSigma and LEAN
among others, were proposed in the 20th century to manage
and continuously improve different components of industrial
processes in the automotive, communications, and robotics
industries (Bhuiyan and Baghel, 2005; Schroeder et al., 2008).
Project management tools used in these methodologies, together
with modern mathematical and computational tools like
simulation and optimization, could easily be extrapolated
to draft, formalize, manage, and improve breeding schemes
successfully, in contrast to the artisanal approach to breeding
common during the 20th century.

Improving a complex process like a breeding program requires
understanding of how each process-related decision affects the
outcome (e.g., genetic gain or probability of releasing a new
product) and how varying these decisions affect the outcome.
Given the cost and time associated with piloting new methods
or ways to run this complex process, the use of simulations

2https://www.cgiar.org/wp/wp-content/uploads/2018/05/SC6-04_Multi-Funder-
Breeding-Initiative-update.pdf
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FIGURE 1 | Graphical representation of the relationship between target segments and pipelines of a breeding program. Market segments defined by agroclimatic
regions, clients and product features are formalized in product profiles; trait descriptions of desired products to irrupt in the market. Breeding programs are
represented as the sum of breeding pipelines focused on one or more of the following tasks: product design, trait discovery, population improvement, product
development, trait introgression, or product dissemination. Each breeding pipeline may have one or more breeding schemes (strategies) to attend the market
segments and the associated product profiles.

has a particular relevance to the design of breeding schemes (Li
et al., 2012; Murray and Atlin, 2017; Yabe et al., 2017). Stochastic
simulations of whole breeding programs rarely have been used
to improve performance of breeding programs due to lack of
computational and software resources in past decades (Gaynor
et al., 2021). Currently, simulation technology is available and
practical, and it should be incorporated into breeding scheme
improvement efforts.

Here, we propose a process to formalize and improve the
breeding schemes. In addition, we introduce a publicly available
software tool, Breeding Pipeline Manager (BPM), which has
capabilities to quantitatively document and record breeding
schemes as well as the market segments and product profiles
they target in a standardized yet customizable way. The BPM
module can be added to any compatible enterprise breeding
system (database) to link the phenotypic data to clear targets,
pipelines and breeding schemes (Gao et al., 2020). In addition,
we discuss the use of classical continuous improvement tools
combined with state-of-the-art simulation and mathematical
tools to continuously improve breeding schemes. We conclude

by providing a case study of the use of these tools and methods
in the improvement of the International Institute of Tropical
Agriculture (IITA)-cassava breeding scheme. We expect that this
framework will assist plant breeding professionals in conducting
breeding as a systematic process and to help establish continuity
and prevent inconsistency in breeding programs. Furthermore,
we expect that formalizing breeding schemes will increase their
rates of response to selection (i.e., genetic gain) by motivating
critical examination of the schemes used and their opportunities
for improvement.

MATERIALS AND METHODS

Enabling Methodology and Software to
Formalize Breeding Targets and
Schemes
We applied the continuous improvement methodology known
as six-sigma to approach breeding as a process and enable
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FIGURE 2 | Typical structure of a breeding pipeline. (A) Breeding scheme illustrating crossing, evaluation, and selection decisions (columns), which are made once
or multiple times across the stage gate process (rows) in a cyclical fashion to achieve genetic gain. (B) A graphical representation of cohorts (parallel cycles of
breeding) and how they overlap when recycling occurs and parents are taking from multiples stages.

breeding scheme improvements. Six-sigma is a five-step
method: define, measure, analyze, improve, and control
[DMAIC, (d@.′meı.ık)]. The steps are undertaken iteratively
to create a cyclical method for continuous improvements.
Six-sigma was originally proposed by Bill Smith at Motorola
in 1986 to improve industrial processes, in which 99.99966%
of all opportunities to produce some features of a part are
statistically expected to be free of defects (Tennant, 2017).

In the case of plant breeding, this would imply producing
better varieties than the ones existing in the market and
steady genetic gains with higher probability. The six-sigma
method reflects the scientific method, but it is used for process
management rather than hypothesis testing. To increase
the efficiency and ease of use of six sigma tools (e.g., value
stream mapping, correlation analysis, etc.) by breeding teams,
we developed a software named Breeding Pipeline Manager
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(BPM) to document, describe, and visualize market segments,
product profiles and breeding schemes. BPM is available at
http://bpm.excellenceinbreeding.org? In collaboration with
multiple breeding programs for a wide range of crops within
the CGIAR, such as line, hybrid, and clonally propagated
species, we identified breeding decisions which fell into three
categories: crossing, evaluation and selection decisions. We
then summarized breeding schemes and decisions as a table
containing the breeding stages in rows (e.g., seedling nursery,
stage 1 yield testing, etc.) and the CES tasks and decisions in
columns. BPM provides a graphical user interface for capturing
breeding schemes in a standard format. BPM also allows users
to create visualizations (flowcharts) of their breeding scheme.
In addition, the BPM allows market segment and product
profile definition and users can link breeding schemes to
market segments.

The BPM back-end was developed in Node JS, an open-source,
cross-platform, and scalable JavaScript runtime environment.
The front-end graphical user interface was developed in
React JS. The source code is available at https://gitlab.com/
excellenceinbreeding/module2. The platform leverages NodeJS
asynchronous technology to perform intensive calculations
without affecting the performance of other functionalities of the
system. In addition, the platform uses Docker containerization
technology for continuous development and integration (Merkel,
2014; Boettiger, 2015). This will not only enable automation of
the deployment process but also horizontal scaling on any cloud
infrastructure (depending on traffic). An online manual showing
the details of the available features of the software and their use
can be found once connected in the tool under the question mark
bar at the bottom menu.

Application of Continuous Improvement
in Breeding Programs: IITA-Cassava
Example
We selected the CGIAR IITA-Cassava program to showcase
the importance of using enabling tools and simulations to
continuously optimize breeding programs. The IITA cassava
program is situated in different parts of sub-Saharan Africa to
serve region-specific challenges and market segments. The IITA-
Cassava east-Africa pipeline, situated in Uganda, was chosen to
showcase the use of SixSigma and the BPM tool to improve
their breeding scheme. The five six-sigma steps were applied
as follows in the cassava program. The problem was defined as
lower than achievable genetic gain for traits of interest under
the current scheme. The breeding targets and scheme were
measured (documented) by capturing all CES decisions across
all stages using the BPM tool (as described in the next section)
through several interactions with the breeders. The analysis of
the measured decisions and the genetic gain indicators revealed
many possible improvements. We first chose to analyze the
crossing decisions in the breeding scheme to identify possible
improvements. The number of parents (nParents), number of
crosses (nCrosses), number of progeny per cross (nProgeny), and
recycling strategy were prioritized for evaluation via stochastic
simulation in AlphaSimR (Gaynor et al., 2021). We proposed
an improvement plan based on the close-to-optimal number of

parents, number of crosses, number of progeny, and recycling
strategy identified via simulation. The improvement plan used
the A3 format (referring to the size of an A3 sheet that
describes a project briefly) common in project management
(Anderson et al., 2011). We then controlled the improvement by
monitoring how key performance indicators (a set of quantifiable
measurements used to gauge an institution’s overall long-term
performance) stated in the improvement plan changed as the
improvements proceeded.

Stochastic Simulation to Improve
Crossing Decisions in IITA-Cassava
East-Africa Pipeline
Current and Alternative Programs
As a clonally propagated crop, cassava breeders currently have
adopted a four-stage evaluation strategy in addition to the
crossing block stage and the seedling nursery stage where
planting material is multiplied. These evaluation stages include
stage 1 (clonal evaluation; CE), stage 2 (preliminary yield trial;
PYT), stage 3 (advanced yield trial; AYT), and stage 4 (uniform
yield trial; UYT; Table 1). The summary of the advancement
decisions across the different stages in the current (baseline)
pipeline that was to be improved is as shown in Table 1. The
pipeline began with only four parents selected to have the target
traits for the target markets. From the four parents, 12 crosses
were made, each with 136 progeny, thus resulting in 1,632
individuals. All 1,632 were multiplied in the seedling nursery and
then evaluated at stage 1 in one environment and one replication
per environment. Based on performance at stage 1 testing, 120
individuals were selected and advanced to stage 2 testing in
two environments and two replications per environment. From
stage 2 evaluation, 64 individuals were selected and advanced to
stage 3 testing in two environments and three replications per
environment. Finally, 24 individuals were selected and advanced
to stage 4 testing in two environments and three replications
per environment. Recycling of parents was planned to occur
at PYT and UYT. This information was input into BPM and
the scheme was simulated to address specific questions related
to crossing decisions as prioritized by the breeding team. The
program was interested in knowing if the use of four parents
was adequate to sustain genetic gain. The program also inquired
how to improve their recycling strategy, particularly from which

TABLE 1 | Summary of IITA-Cassava east-Africa pipeline numbers
handled by stage.

Stage Year nParents nCrosses nProgeny/
cross

nIndividuals %
Selected

Crossing block 1 4 12 136 1,632 –

Seedling
nursery

1 – 12 136 1,632 100

Stage 1 (CE) 2 – 12 136 1,632 100

Stage 2 (PYT) 3 – – – 120 7.35*

Stage 3 (AYT) 4 – – – 64 53.3*

Stage 4 (UYT) 5-6 – – – 24 37.5

*Stages where the recycling occurs to form the new crossing block. Recycling from
the combined PYT and AYT leads to an average cycle time of 3.5 years.
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stage to recycle and whether to recycle from multiple stages. Here,
we share the results for improving these decisions among many
others that are currently being improved. It should be noted
that the IITA pipelines in other regions, particularly for West
Africa, use a greater number of parents (∼100) in their crossing
block and therefore were not subject to this improvement. The
simulation exercise is expected to find an optimal number of
parents between these two extremes and useful for the East-Africa
pipeline and develop some high-level guidelines for the test of the
IITA-cassava pipelines.

Simulation Parameters: Treatments
To keep the resources constant with the baseline, we restricted
the number of individuals (nIndividuals) at the F1 stage to 1,632
in all experimental simulation treatments. We then developed
a grid to evaluate different numbers of parents in the crossing
block using the following possible numbers of parents (nParents):
4, 8, 16, 32, and 64. The number of possible crosses for each
level of number of parents was constrained to a maximum of
nParents ∗ (nParents − 1)/2, which is equivalent to all possible
combinations of parents or a half-diallel, while considering
the initial restriction that the number of individual progeny
(nIndividuals) must be equal to 1,632. This resulted in the
following possible numbers of crosses: 6, 12, 24, 48, 96, 204, 408,
or 816. To keep the number of individual progeny constant at
1,632, the number of progeny per cross was set to 272, 136, 68,
34, 17, 8, 4, 2 for numbers of crosses equal to 6, 12, 24, 48, 96, 204,
408, and 816 respectively. The number of individual progeny is
always equal to the number of crosses multiplied by the number
of progeny per cross.

As such, a total of 24 simulation treatments were defined
(Table 2). To identify the optimal number of parents, number
of crosses, number of progeny per cross, and the best recycling
strategy, a stochastic genetic simulation was conducted in the R
package AlphaSimR (Gaynor et al., 2021).

Simulation Parameters: Genome and
Evaluation
Burn-In Genome Sequence
For each replicate, a genome consisting of 18 chromosome
pairs was simulated for the hypothetical plant species similar
to cassava. These chromosomes were assigned a genetic length

TABLE 2 | Summary of factor values combined for number of parents, number of
crosses, and number of progeny per cross to produce a total of 1,632 progeny.

Number of Parents Number of Crosses Number of Progeny per cross

4 6 2

8 12 4

16 24 8

. . .* . . .* . . .*

64 816 272

. . .* indicates the numbers duplicate until reaching the final numbers in the row.
All treatment combinations going beyond the 1,632 progeny were not run.
This allowed comparison of these factors’ influence on genetic gain at a
fixed program size.

of 1.43 Morgans and a physical length of 8 × 108 base
pairs. Sequences for each chromosome were generated using
the Markovian coalescent simulator (MaCS; Chen et al.,
2009) implemented in AlphaSimR (). Recombination rate was
inferred from genome size (i.e., 1.43 Morgans/ 8 × 108 base
pairs = 1.8 × 10−9 per base pair), and mutation rate was set to
2 × 10−9 per base pair. Effective population size was set to 30 to
mimic an evolution history of natural and artificial selection.

Burn-In Founder Genotypes
Simulated genome sequences were used to produce 4
founder non-inbred individuals. These founder individuals
served as the initial parents in the burn-in phase. Sites
segregating in the founders’ sequences were randomly selected
to serve as 100 quantitative trait nucleotides (QTN) per
chromosome (1,800 total).

Burn-In Phenotypes
A single highly complex trait representing an index of tuber
yield, dry matter, cassava mosaic disease, total carotenoids and
sprouting was simulated for all founders. The genetic value of
this trait was determined by summing its QTN allelic effects. To
model genotype-by-environment (GxE) interaction, allele effects
depends on the value of an environmental effect which changes
over years. For a given year, the allele effects followed this
formula:

ai
(
wj

)
= bi +miwj,

where ai is the allele effect for QTN i, wj is the environmental
effect for year j, bi is the QTN intercept and mi is the
QTN slope on the environmental effect. The slope, intercept,
and environmental effects were sampled from the following
normal distributions. This equation is equivalent to Finlay–
Wilkinson regression. Details on the full formulation of genotype
by environment interaction simulation features enabled in
AlphaSimR can be found in Gaynor (2021). In the case of
the cassava program, a variance component for genotype by
year (σ2

GxY 2) and genotype by location (σ2
GxL 1) interactions

were defined and summed to produce the genotype by year by
location (σ2

GxYxL 3) interaction variance components used in the
addTraitAG() function in the varGxE argument in AlphaSimR
for a trait with additive gene action and GxE interaction. Main
genotype variance component was assumed equal to 1 (σ 2

G 1).
The genetic values of each non-inbred individual were used to
produce phenotypic values by adding random noise sampled
from a normal distribution with mean 0. The variance of
the random error was varied according to the three stages of
evaluation in the breeding program based on the plot size and
number of replications per entry currently used according to
the different experimental designs used at the different stages
(augmented design at stage 1 and randomized completely blocked
design in posterior stages). The values for these error variances
were set to achieve levels of plot heritability reported by the
cassava program currently estimated at the different stages.

In order to simulate the multi-environment testing common
in breeding programs, the variance components for genotype by
year and genotype by locations were used to simulate a matrix
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TABLE 3 | Summary of simulation features for the genome and phenotypes.

Simulation features

Burn-in Genome sequence 100,000 generations of evolution

18 chromosome pairs

1.43 Morgans per Chromosome

8 × 108 base pairs per chromosome

2 × 10−9 mutation rate

Founder genotypes 4 non-inbred founders

1,800 QTN (additive GxE effects)

Normally distributed QTN effects
σ2

GxY 2, σ2
GxL 1, σ2

GxYxL 3, σ2
G 1

Recent breeding 20 years of modern breeding

Non-inbred cloned individuals

Conventional breeding

Evaluation Future breeding 20–60 years of breeding

Testing alternative allocation of resources

Equal cost programs

Conventional breeding

of possible slopes for the environmental covariate used by the
setPheno() function in the p-value argument (years in rows and
locations in columns). The values were sampled depending on

the year and number of locations used for a given stage to
approximate the GxE. A summary of simulation features for the
genome and phenotypes can be found in Table 3.

Population means and standard errors at Stage 1 of yield
evaluation across the 20–60 years of breeding for the treatments
described previously were computed using the dplyr library in R
(Wickham et al., 2021), and plotted using the ggplot2 library in
R (Wickham, 2011). One hundred replicates were run for each
simulation treatment.

RESULTS AND DISCUSSION

Adapting Continuous Improvement Tools
and Concepts in the Improvement of
Breeding Schemes
Following the paradigm of approaching breeding as an industrial
process (Bernardo, 2002), we adapted the six-sigma methodology
to continuously improve the breeding schemes of breeding
programs (Figure 3). Under this framework, we follow the
project methodology Plan-Do-Study-Act inspired by William
Edwards Deming named DMAIC, an acronym standing for
Define, Measure, Analyze, Improve and Control steps that

FIGURE 3 | Graphical representation of breeding as a process. The design component of the breeding process, which includes activities such as defining market
segments, product profiles, and breeding schemes, is shown in blue. The engineering component of the process, where crossing, evaluation, and selection activities
for product development and population improvement are made, is shown in red. The delivery component of the breeding process, where activities like material
increase and registration, occur are shown in green. Image taken with permission from Covarrubias-Pazaran (2020).
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FIGURE 4 | Graphical representation of the six-sigma process applied to the continuous improvement of breeding schemes (strategies). (A) Description of the
DMAIC steps. (B) Different tools to support continuous improvement of crossing, evaluation, and selection (CES) decisions in breeding schemes.

are cyclically repeated to reflect the continuous or cyclical
approach (Aguayo, 1991; Figure 4). To demonstrate the use
of the continuous improvement methodologies to optimize
breeding processes leveraging from measuring tools like the
breeding pipeline manager (BPM) and stochastic simulation,
we engaged in discussions with the IITA Cassava program.
First, the cassava team registered their breeding pipelines
and the market segments targeted per pipeline. We found
the IITA-cassava program to be composed of five breeding
pipelines and on average tackling six market segments. The
market segments and accompanying pipelines are stratified
by a combination of regional consumption preferences and
prevailing biotic and abiotic stresses. For example, most of the
produced cassava in West Africa goes to processed (granulated
and paste) products while in east Africa, the predominant
preference is for fresh consumption with minimal processing
(boiling, roasting and flour from dried roots). Subsequently,
we focused on the IITA-Cassava east-Africa pipeline targeting
market segments listed by breeders and generally described

as fresh market and high-quality flour. Even though we
proposed six-sigma for improving breeding schemes, the reader
should keep in mind that continuous improvement applies
to all components of the breeding process including the
management roles which are responsible of the encouraging and
incentivizing improvements.

Defining a Problem
The step of defining the problem was adapted to breeding
scheme improvement by defining the problem as a suboptimal
rate of response to selection (genetic gain) but pointing to
one of the many crossing-evaluation-selection (CES) tasks
and decisions at a given stage as the possible root of the
problem. We found tools such as Project charter useful to
define the problem (McKeever, 2006). We proceeded to use
the project charter to define or state the problem in the IITA-
Cassava east-Africa pipeline as having “potential for greater
response to selection without increased expenditures.” Details
in the business case, goal statement, timeline, scope, and
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TABLE 4 | Project charter applied to the IITA-Cassava east Africa program.

Problem statement
The rate of genetic gain in the
IITA-Cassava east-Africa breeding
program is less than or equal to 1% per
year for traits of interest, and the rate of
variety turnover is lower than possible.

Business case
By optimizing the breeding schemes
using quantitative genetics principles,
we can increase the response to
selection per dollar invested per unit
time.

Goal statement
Reduce cycle time to the biological
limit, optimize the trade-off between
selection intensity and accuracy,
manage the genetic variance, while
constraining possible alternatives to
similar level of resources.

Team members
Cassava head of breeding Cassava
breeders Quantitative Geneticist

Scope
Crossing, evaluation and selection
(CES) decisions included in the
breeding scheme.

Timeline
One to two CES tasks and decisions
improved per year.

TABLE 5 | Features defining a market segment.

Client features Environment features Product features

Geographical region Temperature Mode of reproduction

Income Humidity Maturity

Education Vegetation Color

Farm size Water availability Shape

Soil fertility Biofortification

Altitude End use

Soil pH

Production system

Prevailing biotic stresses

The features of the client being served, the features of the target population
of environments (TPE), and the final product characteristics are displayed.
These three sets of features define a market segment in the breeding pipeline
manager (BPM) tool.

team members can be found in Table 4. Unfortunately, we
found that estimates of realized genetic gain were not available
in the program to justify the definition of the problem.
However, given the lack of an efficient recurrent selection
strategy, we assumed the definition of the problem to be
relevant to the program.

Software Development to
Measure/Document Breeding Programs
To facilitate the measuring step of the continuous improvement
approach proposed, in which CES decisions are recorded for
further analysis (Bhuiyan and Baghel, 2005), we developed the
BPM software. The breeding pipeline manager tool (BPM) is
equipped with a module to define breeding pipelines as the sum
of efforts to deliver a product. Breeding pipeline definition is
the highest-level unit of information clustering in the BPM tool.
The pipeline can be linked to market segments defined by the
user. The market segment is defined in the BPM tool as the
sum of the client, the target population of environments (TPE),
and final product characteristics displayed in Table 5. These aim
to capture the characteristics that can make breeding a more
targeted effort according to Ragot et al. (2018) (Figure 5A). The

BPM module can be incorporated to any enterprise breeding
system (database) to properly link the generated phenotypic
data to clear target segments and pipelines. Market segments
for the cassava pipeline were captured using the BPM tool
and are shown in Figure 5A. The major focus is on lowland
high-rainfall, late maturity, long, hard cassava for fresh and
flour consumption.

On top of defining the market segments, breeding programs
must describe specifics of the product to be released in the
market. Here, the concept of product profile (sometimes referred
to as product concept) applies (Ragot et al., 2018; Carey et al.,
2021). The existence of these profiles can make the difference
between success and failure (Carey et al., 2021; Mwanga et al.,
2021). The BPM tool has a module to define product profiles and
link them to specific market segments, and the cassava breeders
used the tool to formalize such profiles (Figure 5B). One of
the product profiles for example is focused on achieving defined
levels of fresh yield, plant height, dry matter and cassava mosaic
disease resistance.

Part of the design of breeding pipelines is the creation
of a blueprint or a breeding scheme that will allow the
breeder to achieve the product profile for the market segment
while maximizing the genetic gain of the breeding population
per dollar invested (Henryon et al., 2014). The blueprint
should specify all the crossing, evaluation and selection
tasks and decisions occurring at the different stages (e.g.,
recombination, multiplication and testing stages) for the
purposes of population improvement and product development.
Most breeding programs have these two purposes coupled
in a way that advancement decisions influence the recycling
decisions. Others have proposed and shown that decoupling the
population improvement from product development by moving
the recycling decision to very early stages (e.g., F2, nursery or
multiplication stages) will increase the rates of genetic gain.
Better products can be expected when the product development
process is regarded as separate from a rapid cycling population
improvement strategy (Gaynor et al., 2017).

Crossing, evaluation and selection (CES) decisions comprising
the breeding scheme can and should be recorded at the highest
level of detail and safeguarded for the benefit of the breeding
organization in case of any adverse circumstances. In Table 6
we show the CES decisions that should be considered to
capture the level of resolution and detail necessary to avoid
loss of valuable information; these can be recorded by the BPM
tool in the breeding scheme module. The software allows for
breeding pipelines to manage multiple breeding schemes, as
may happen when a program has a principal breeding scheme,
but one or more parallel experimental breeding schemes, to
accelerate genetic gains.

Measuring the Process
The measuring step of the six-sigma process was adapted by
recording numerically and categorically all the different CES
decisions across the various stages directly impacting genetic
gain (e.g., number of parents, # crosses, # progeny, coupling
method, etc.). The lack of available tools to measure/record
breeding schemes was the motivation to develop the BPM
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FIGURE 5 | Snapshot of some market segments and product profiles defined in the breeding pipeline manager (BPM) tool for the IITA-cassava east-Africa pipeline.
(A) Two market segments for a cassava program with defined client, environment and product features, mainly distinguished by the end use. (B) Example product
profile for a cassava market segment featuring quality, survival, output, and agronomic traits.

TABLE 6 | Examples of crossing, evaluation and selection decision recorded by the BPM tool across the different stages of the breeding program, defining the
breeding strategy.

Evaluation Selection Crossing

Plant portion harvested in the previous season to be
planted in the current season (e.g., seed, tuber, cutting)

Surrogate of merit (e.g., BLUE, BLUP, GBLUP) per
phenotyped trait

Crossing or multiplication unit (e.g., family,
individual)

Cultivation method of the plant portion (e.g., pot, plot, petri
dish)

Number of locations per phenotyped trait Crossing or multiplication method (e.g., 2-way
cross, 3-way cross)

Experimental design Selection method (e.g., visual, culling, index) Parent coupling method (e.g. random mating,
optimum contribution)

Total number of locations Method to model genotype x environment
interaction

Number of potential female parents

Replications per location Method to model spatial adjustment Number of potential male parents

Plot width and units (e.g., 1 m2) Selection intensities for different selection units
(e.g., families, lines, female parents)

Total number of crosses or total number of unique
materials to multiply

Plot length and units (e.g., 1 m2) Recycling unit Number of progeny per cross or number of clones
multiplied

Sparse testing percentage Recycling generation Molecular technology

Sparse testing bridging method Number of selection units recycled Number of molecular marker sites

Number of checks Purpose of molecular technology (QC, GS, etc.)

Percentage of check plots Population used in genomic selection as the
training (prediction) set

tool presented above, although the BPM tool is inspired by
the Value Stream Mapping approaches commonly used in
process management (Singh et al., 2011). We measured or
recorded the breeding scheme of the IITA-Cassava program
using the BPM tool to capture all crossing, evaluation and
selection decisions across the different breeding stages and a

portion can be observed in Figure 6. We captured seven stages
(crossing block, multiplication and five stages of yield and
agronomic evaluation) across 52 different CES decisions for
the East-Africa cassava pipeline that informed the analysis
step to identify areas for improvement (Figures 4, 5).
These decisions comprise the crossing, evaluation and
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FIGURE 6 | Graphical representation of BPM capabilities to record and display breeding schemes. (A) The evaluation decision across stages of an IITA-Cassava
breeding scheme mapped in the breeding pipeline manager (BPM) tool are displayed in columns, and sequential stages are displayed in rows. (B) The capability to
draw flowcharts with the available information in the breeding schemes is displayed.

selection strategies for both population improvement and
product development.

Analyzing the Problem
The analysis step was adapted to breeding scheme improvement
by replacing approaches such as correlation analysis. Correlation
analysis is a method that links a response variable or
key performance indicator (KPI) to another variable in the
production process to understand relationships that could
indicate the part of the process that needs to be refined. We

instead conducted an analysis based on known quantitative
genetic relationships between the various CES decisions and
genetic gain (e.g., program size affects genetic gain depending
on how effectively genetic variance is utilized and also linked to
selection intensity). Additional tools like Fishbone (diagram to
articulate the root causes of the problem) are not discouraged
but we limited this exercise to one-to-one meetings with the
breeding team to discuss the possible gaps while analyzing
the current scheme together in the light of quantitative
genetic principles (Ishii and Lee, 1996). We initially found
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FIGURE 7 | Results from simulations comparing different numbers of parents and crosses combinations subject to the constraint of ∼1,600 individuals manageable
for a time-horizon of 20 and 60 years of breeding. In panels (A,B) the genetic gain (relative to the mean) measured in advanced yield trial (AYT) individuals is shown
(y-axis) as a function of a different number of crosses (x-axis) for two breeding-time horizons (20 and 60 years) for different number of parents (colored boxes) is
shown. In panel (C) the genetic gain (relative to the mean) measured in advanced yield trial (AYT) individuals is shown (y-axis) as a function of a different number of
parents (x-axis) for the breeding-time horizon of 20 years comparing different compositions of the crossing block are shown. The red, green and blue boxes
represent crossing blocks composed by recycling AYT, PYT, or a mix of PYT and AYT individuals respectively.

several possible areas of improvement, including the small
size of the program, the experimental design used at yield
and agronomic evaluation stages, the coverage of the target
population of environments (TPE), the opportunity to use
molecular information, the potential improvement of analytical
methods for genetic evaluation, a possibility to select the best
families at earlier stages, the possibility to reduce the cycle length,
and other decisions such as an improved crossing plan. Since it is
well-known from classic quantitative genetics theory that using
resources properly to maximize the genetic variance observed
among and within families can maximize response to selection
(Lynch and Walsh, 1998; Hallauer et al., 2010), we chose to
optimize the decisions of number of parents, number of crosses
and number of progeny per cross given the low number of
parents used by the program in the crossing block and very likely
limiting the rate or sustainability of genetic gains. Although we
first focused on improving the resource allocation for the number
of parents, crosses and progeny, the reader should remember
that as a continuous improvement process, the other areas of
opportunity identified should also be improved right after or at
the same time depending on the resources available. This is just
an example of how to implement breeding scheme improvement.

Using Simulation to Optimize the
Process
Prior to recommending an improvement plan, we used genetic
simulation (Gaynor et al., 2021) to identify optimal use of
resources (plots available) by defining a grid of possible
treatments that contained different combinations of number of
parents, crosses and progeny subject to the constraint of 1,632
individuals at the F1 stage assuming other factors constant (e.g.,
properly resourced, properly tested, etc.). Regarding recycling
strategy, using overlapping cohorts to recycle (i.e., a mixed
crossing block composed half of parents from the PYT and

half of parents from the AYT) lead to higher genetic gain
regardless of the number of parents (Figure 7A). Based on
this observation, we evaluated the effect on genetic gain of the
number of parents, crosses and progeny while recycling from the
mixed PYT and AYT.

For the single complex trait which represented an index of
multiple traits, the decision of the number of parents provided
the greatest opportunity to increase genetic gain. An excessive
number of parents -here, more than 30- always resulted in
decreased genetic gain compared to use of fewer than 30 parents
at both the 20 and 60-year time horizons (Figure 7C). At the
20-year time horizon, the optimal number of parents was ∼8–
16. However, at the 60-year time, the optimal number of parents
increased to between 16 and 32.

Increasing the number of crosses generally increased gain,
but with diminishing returns to additional crosses at a given
number of parents. At low numbers of parents, not enough
possible unique crosses were available to take advantage of gains
possible by increasing the number of crosses. Interestingly, the
optimal number of crosses also differed in the short (20-year)
and long (60-year) terms. At the 20-year timepoint, schemes with
fewer crosses and more progeny per cross tended to have higher
gain across numbers of parents, but at the 60-year timepoint
schemes with relatively more crosses and fewer progeny had
higher gain. However, even at the 60-year timepoint, the optimal
number of crosses was much less than the possible half-diallel
of unique crosses.

Given the genetic parameters specified for the cassava
program, the use of ∼8–16 parents, ∼24 crosses and ∼68
progeny per cross in each crossing block per year was the
optimal distribution to maximize genetic gain at the 20-year time
horizon (Figure 7A). At the 60-year time horizon, the optimal
distribution was 16–32 parents, 60 crosses, and ∼30 progeny
per cross (Figure 7B). To consider both short- and long-term
interests of the breeding program, we chose to recommend use
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of 15–30 parents recycled from the combined PYT and AYT
stages with 40 crosses and 40 progeny, given the constraint of the
program to handle∼1,632 materials to start.

Improving the Process
The improvement step in the six-sigma method was adapted
to breeding scheme improvement by using management tools
like the A3 format to reflect the current and future state of
the CES decision (subprocess) together with an action plan
laying with detail the actions required to achieve the future state
(Supplementary File 1; Anderson et al., 2011). We included a
RACI chart (responsible, accountable, consulted and informed
people in the improvement plan) to formalize the process
to achieve the desired improvement. Is important to notice
that a RACI chart can and should be employed during the
management of the different tasks of the breeding process and
not only for the continuous improvement of breeding schemes.
We propose that the future state and actions included in the
improvement plan should be guided by sound quantitative
genetics principles and recommendations coming from state-
of-the-art tools, such as evaluation of new strategies by genetic
simulation (Mi et al., 2014; Gaynor et al., 2017; Pook et al., 2020,
2021). We expect that results obtained through simulation can
identify close-to-optimal solutions and changes to the breeding
CES tasks and decisions.

Based on the simulation findings, a meeting with the
IITA-cassava breeding team was held to discuss the optimal
scenarios revealed by simulations and the next steps. The
recommendation to use between 15 and 30 parents in
the crossing block depending on the target breeding-time-
horizon was and to use a mixed crossing block of parents
from both the PYT and the AYT was accepted by the
team. The improvement plan developed by the IITA-cassava
program included detailing the current and future state can
be found in the Supplementary File 1. The improvement
plan developed included actions like team agreement on the
modification of the number of parents, number of crosses
and number of progeny per cross used in the crossing block,
the development of a new SOPs for the crossing block
stage, training the technicians to execute the new SOPs,
monitoring the genetic gain across years to confirm the positive
change, among others.

Controlling the Improvement Process
The control step was adapted to breeding program improvement
by adding a monitoring section to the improvement plan
that keeps track of the progress of the action plan through
the inclusion of key performance indicators (KPIs), deadlines,
and risks, as it does in other industrial processes. To
monitor or control the progress of the improvement plan in
the IITA-cassava, deadlines and key performance indicators
for the different actions were defined and monitored to
ensure that changes occur. Once the new process was
adopted, we moved to the next possible crossing evaluation or
selection decision that could be causing low rates of genetic
gain. This process is still undergoing together with other
improvements identified.

CONCLUSION

There is tremendous potential of systematizing breeding as
an industrial process and enabling continuous improvement
methodologies (e.g., six-sigma) to the different crossing,
evaluation, selection decisions and other parts of the breeding
process. Successful implementation of these methodologies has
potential to increase the rate of genetic gain and delivery
of better products in breeding programs. To guarantee such
improvements in genetic gain, the recommended changes must
be near-optimal or at least better than the current strategy.
We propose the use of genetic simulation to identify these
solutions to guide the continuous improvement steps. The
work with the IITA-cassava program resulted in improved
resource allocations and adjustments to the proper number
of parents to sustain gains for the breeding time horizon
of interest. These and other improvements achieved through
the same approach in other CES decisions are ongoing. We
expect that this generalized framework will assist plant breeding
professionals in transitioning toward conducting breeding as an
industrial process, help prevent discontinuity and inconsistency
in breeding pipelines and their schemes and implement a
culture of continuous improvement in all areas of their
breeding programs.
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Mung bean [Vigna radiata (L.) Wilczek] is a drought-tolerant, short-duration crop, and a
rich source of protein and other valuable minerals, vitamins, and antioxidants. The main
objectives of this research were (1) to study the root traits related with the phenotypic
and genetic diversity of 375 mung bean genotypes of the Iowa (IA) diversity panel and (2)
to conduct genome-wide association studies of root-related traits using the Automated
Root Image Analysis (ARIA) software. We collected over 9,000 digital images at three-
time points (days 12, 15, and 18 after germination). A broad sense heritability for days
15 (0.22–0.73) and 18 (0.23–0.87) was higher than that for day 12 (0.24–0.51). We
also reported root ideotype classification, i.e., PI425425 (India), PI425045 (Philippines),
PI425551 (Korea), PI264686 (Philippines), and PI425085 (Sri Lanka) that emerged as
the top five in the topsoil foraging category, while PI425594 (unknown origin), PI425599
(Thailand), PI425610 (Afghanistan), PI425485 (India), and AVMU0201 (Taiwan) were top
five in the drought-tolerant and nutrient uptake “steep, cheap, and deep” ideotype. We
identified promising genotypes that can help diversify the gene pool of mung bean
breeding stocks and will be useful for further field testing. Using association studies,
we identified markers showing significant associations with the lateral root angle (LRA)
on chromosomes 2, 6, 7, and 11, length distribution (LED) on chromosome 8, and
total root length-growth rate (TRL_GR), volume (VOL), and total dry weight (TDW)
on chromosomes 3 and 5. We discussed genes that are potential candidates from
these regions. We reported beta-galactosidase 3 associated with the LRA, which has
previously been implicated in the adventitious root development via transcriptomic
studies in mung bean. Results from this work on the phenotypic characterization, root-
based ideotype categories, and significant molecular markers associated with important
traits will be useful for the marker-assisted selection and mung bean improvement
through breeding.
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INTRODUCTION

There is an increasing demand, particularly in Western cultures,
for plant-based protein sources, including analogs of meat, egg,
and dairy (Wild et al., 2014; Joshi and Kumar, 2016; Niva
et al., 2017; Aschemann-Witzel et al., 2020). Numerous factors
influence this change, including social, political, environmental,
ethical, health-focused, technological, and economical (Vinnari,
2008; Markiewicz, 2010). Pulses such as lentils (Lens culinaris),
horse beans (Dolichos spp.), lupins (Lupinus albus L.), common
beans (Phaseolus vulgaris), chickpea (Cicer arietinum), field
peas (Pisum sativum), cowpeas (Vigna unguiculata), fava beans
(Vicia faba), mung bean [Vigna radiata (L.) Wilczek], urd
beans (Vigna mungo), and food-grade soybeans (Glycine max)
have consistently been used as protein sources in the global
south (Niva et al., 2017). The plant protein demand has
been fueled by the sustainable production of pulses coupled
with their health benefits and the production of meat analogs
(Wild et al., 2014; Niva et al., 2017). Residents of sub-Saharan
Africa, the Caribbeans, and South America consume more than
10 kg/capita/year of pulses, compared to 3 kg/capita/year among
Western cultures (Akibode and Maredia, 2012).

Mung bean (V. radiata L. Wilczek), initially domesticated in
India, is now cultivated in over 7 million hectares worldwide
(Nair et al., 2019; Aski et al., 2021). Mung bean is a short-
duration crop, usually between 60 and 90 days from planting to
harvest (Sandhu and Singh, 2021). Mung beans, being relatively
heat- and drought-tolerant, may be helpful in the agricultural
adaptation to climate change (Pataczek et al., 2018; Wang et al.,
2018). Mung bean is easily digestible, with seed composition
of 22–28% protein, 1–1.5% fat, and 60–65% carbohydrates, as
well as minerals, vitamins, and antioxidants (Jahan et al., 2020;
Aski et al., 2021; Sandhu and Singh, 2021). Mung beans are
consumed as whole grain, sprouted gram, split dhal, and mung
bean flour in Indian dishes (Nair et al., 2019; Aski et al., 2021).
The complementation of mung beans with cereals provides a
balanced intake of required nutrients. In Western cultures, mung
beans are consumed mostly as sprouts and, more recently, as
processed products such as meat substitutes, egg substitutes,
chips, no-nut butter, and pasta (Sandhu and Singh, 2021). The
demand for plant-based protein in the United States has led
to enhancing existing and establishment of breeding programs
at United States institutions, including at Iowa State University
(Sandhu and Singh, 2021). However, due to limited breeding
efforts in North America, there is a knowledge gap in agronomic
trait diversity including root traits that are emerging as important
area of research and breeding efforts (Lynch, 2007; White et al.,
2013; Burridge et al., 2017).

Root system architecture (RSA) can be defined as the
morphology of the root system at many scales, both global
(i.e., the entire root system) and local (i.e., primary and lateral
root levels), as well as the spatial variability of the morphology
(Hodge et al., 2009; Rogers and Benfey, 2015; Lobet et al.,
2019; Aski et al., 2021). The morphometric traits include the
number, length, volume, mass, shape, angle, depth, etc. The
spatio-temporal variation seen in RSA of different plants reflects
the phenotypic plasticity and the genotype × environment

interaction (Rogers and Benfey, 2015; Lobet et al., 2019). Roots
have a great impact on yield and plant fitness by providing
plants with the structural stability, nutrient foraging, plant-
microbe interactions, preventing soil erosion, aeration, and water
extraction (Hodge et al., 2009; Rogers and Benfey, 2015).

The desired root phenotypes by plant breeders will be ones
that enhances plant adaptation to the edaphic stress while
maintaining or increasing yields, for example, deeper and
proliferating roots are desired during water-deficient stresses in
the changing climate (Gaur et al., 2008; Aski et al., 2021). Lynch
and Brown (2001) coined the term “topsoil foraging ideotype,”
which is characterized by proliferation of lateral roots, long root
hairs, association with mycorrhizal fungi, and suited to uptake
of the immobile phosphorus mineral from the topsoil stratum
(White et al., 2013). The “steep, cheap, and deep” ideotype
(Lynch, 2013) optimizes on the uptake of water and the soluble
nitrogen in the soil minimizing leaching. The “steep, cheap,
deep” is characterized by thick and long primary roots, high
affinity for N by epidermal cells, and the high concentration
of cortical aerenchyma cells (White et al., 2013). Falk et al.
(2020b) used the term “informative root” (iRoot) category to
capture the biological significance of the captured root traits as
would simulate field conditions. They reported that the topsoil
foraging had a faster total root length-growth rate (TRL_GR),
wider (WID), and a large TRL upper root ratio (TRLUpper). The
steep, cheap, and deep ideotype contained a deeper primary root
length (PRL), faster TRL_GR, steep lateral root angles (LRA), and
lower solidity traits (SOL2). These works have been possible due
to the use of computer vision and machine learning in extraction
of complex traits.

Advances in computer vision, machine learning, and high-
throughput phenotyping (HTP) technologies, coupled with
efficient statistical methods and collaborative research, have
opened the way for more research to be carried out in plants
as reviewed in Singh et al. (2016, 2018), Atkinson et al. (2019),
Ghosal et al. (2019), Parmley et al. (2019), and Singh A. et al.
(2021). The use of these technologies has been implemented in
the collection of agronomic and yield estimation traits (Riera
et al., 2021), detection of abiotic and biotic stress (Naik et al.,
2017; Zhang et al., 2017; Nagasubramanian et al., 2018, 2019), and
monitoring plant health (Ghosal et al., 2018). However, as shown
in Falk et al. (2020a), computer vision and machine learning-
based methods are essential to advance the root phenotyping
and large-scale studies (Singh et al., 2016, 2018; Singh D.
P. et al., 2021). Root phenotyping is classified depending
on where it is carried out, i.e., in controlled environments
or in the field, destructive or nondestructive, and whether
the HTP uses 2-dimensional (2D) or 3-dimensional (3D) to
capture the traits of interest (see reviews, Atkinson et al., 2019;
Singh A. K. et al., 2021).

Previous methods developed for extracting roots in the field
include destructive methods such as “shovelomics” (Trachsel
et al., 2011), the use of soil cores (Wasson et al., 2016), and
nondestructive methods such as electrical resistance tomography
(Srayeddin and Doussan, 2009), electromagnetic inductance
(Shanahan et al., 2015), and ground penetrating radar (Liu
et al., 2018). Soil opacity is still a limiting factor to access roots
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in most field experiments. Controlled environmental methods
include the use of rhizotrons, which utilize soil (Rellán-Álvarez
et al., 2015), nonsoil methods such as hydroponics (Aski et al.,
2021), transparent artificial growth media (Ma et al., 2019),
and growth pouches (Tan and Nopamornbodi, 1979). The high-
throughput nature of acquiring 2D root images from controlled
environments necessitated the development of the image analysis
software to extract the traits (Atkinson et al., 2019). Commercially
available software includes WinRhizo (Regent Instruments,
Quebec, Canada). The open-source software available for use
includes SmartRoot (Lobet et al., 2011), RootNav (Pound et al.,
2013), GiaRoots (Galkovskyi et al., 2012), DART (Le Bot
et al., 2010), Ez-Rhizo (Armengaud, 2009), DIRT (Das et al.,
2015), ARIA (Pace et al., 2014; Falk et al., 2020a), RhizoVision
(Seethepalli et al., 2020), MyRoot (Betegón-Putze et al., 2019),
and IJ_Rhizo (Pierret et al., 2013). A combination of the methods
above has been used to study the roots of a variety of plants
under various conditions. Species of plant roots studied include
common bean (Bonser et al., 1996), maize (Hund et al., 2009;
Zheng et al., 2020), wheat (Atkinson et al., 2015), pearl millet
(Passot et al., 2016), soybean (Falk et al., 2020a), and canola (Gioia
et al., 2016). In a recent study, Aski et al. (2021) utilized modified
hydroponics to study the RSA phenotypic diversity of the
mung bean mini-core collection at the World Vegetable Center
(formerly known as Asian Vegetable Development and Research
Center [AVRDC]) (Schafleitner et al., 2015). As this software is
capable of generating the useful data on multiple phenotypic root
traits, these also lend themselves to genetic studies.

Genome-wide association studies (GWAS) is a statistical
tool that uses historical recombination events to uncover the
significant genotypic variation associated with the phenotypic
variation for the trait of interest (Huang and Han, 2014;
Tibbs Cortes et al., 2021). GWAS has been extensively used to
investigate important agronomic traits such as plant height, days
to flower, yield, nutrient content, flood and drought tolerance,
and insect and pest resistance in maize (Yang et al., 2014), soybean
(Zhang et al., 2015; Fang et al., 2017), common bean (Kamfwa
et al., 2015), mung bean (Sandhu and Singh, 2021), and rice
(Huang et al., 2010) among others.

The current study was conducted with the objectives to (1)
study the diversity of the RSA trait in the Iowa (IA) mung
bean panel, (2) contextualize these RSA traits with root-based
ideotypes, and (3) conduct GWAS on RSA traits and identify
candidate genes for these associations.

MATERIALS AND METHODS

Plant Materials
A total of 376 accessions were used in this study. A total of
372 Plant Introductions (PI) were filtered from the 482 IA
mung bean panel (Sandhu and Singh, 2021) using the identity-
by-state method in SNPRelate and genetic distance of Nei
(Zheng et al., 2012). PIs that were common among the two
methods were dropped. The 482 PIs were a part of the over
3,000 mung bean accessions obtained from the United States
Department of Agriculture-Germplasm Resources Information

Network (USDA-GRIN), in Griffin Georgia that were able to
flower and form pods in IA conditions. Three Asian Vegetable
mung bean (AVMU) lines, namely, AVMU001, AVMU0201, and
AVMU9701, were included as checks, since they are improved
cultivars from the WVC, formerly AVRDC (Fernandez and
Shanmugasundaram, 1988).

Experimental Design and Germination
Protocol
This study used a randomized incomplete block design, with
each growth chamber serving as a replicate, for a total of
eight replications for the experiment. Two growth chambers
were used for an increased throughput. Each chamber had four
blocks. Each block contained six complete and two incomplete
sub-blocks. Each complete sub-block held twelve genotypes,
while each incomplete sub-block held eleven genotypes. The
genotypes were randomized within each block and sub-blocks.
Randomization was generated using the R package blocksdesign
(Edmondson and Edmondson, 2021). The procedures described
in Falk et al. (2020a) were followed with little modification in
the experimental design (Figure 1). First, ten seeds of each
genotype were equally spaced near the top (∼1′′) of a 9′′ × 12′′
germination paper. The paper was rolled into germination rolls.
All the germination rolls for each sub-block were rubber banded
and labeled with a tag. Once all the 376 were planted, water was
filled halfway in the rectangular bucket, and the rolls transferred
to a Conviron growth chamber (Controlled Environments Ltd.,
Winnipeg, Canada) set at 25◦C for 16 h of light and 20◦C
for 8 h darkness. The lighting was set to 276–280 µmol/s/m2

and constantly monitored using the LI-250A photometer (Li-
Cor Biosci-sciences, Lincoln, NE, United States). On the 5th day
of germination, a representative sample for each genotype was
picked and carefully placed onto the 12′′ × 18′′ blue germination
paper (Anchor Paper, Minneapolis, MN, United States). Labeled
bar-coded tags are stapled onto the 1′′ folded top of the blue
paper. A 12′′ × 16′′ brown blotting paper (Anchor Paper,
Minneapolis, MN, United States) was carefully placed on top of
the blue paper. Two full blue papers are clipped together using
binder clips and placed in the rack on the plot number in the
chamber. Chamber conditions were monitored daily.

Imaging, Image Processing, and Trait
Extraction
A high-throughput imaging station was set up similar to the one
reported by Falk et al. (2020a). Images were captured using a
Canon T5i digital SLR camera (lens: EF-S 18–55 mm f/3.5–5.6
IS II) (Canon USA, Inc., Melville, NY, United States). The setup
allowed for the automated renaming of images captured using
the SmartShooter software (Hart, 2021; Figure 1E). The seedlings
were imaged on days 12, 15, and 18 without moving roots.
Exceptions to moving were on day 12 where some secondary
roots did not emerge from the fold and on day 18, when some
of the roots of the genotypes were overgrowing the length of the
blue paper. The days to image and the spacing were determined
by a preliminary study. On the 18th day, the seedlings were cut at
the junction between the shoot and camera-visible root section.
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FIGURE 1 | Workflow from seed to phenotyping roots, (A) germination roll, (B) germination rolls banded by sub-block, (C) seedlings in the four blocks inside the
growth chamber, (D) genotypes pooled out for imaging, (E) imaging platform, (F) captured root, and (G) preprocessed root ready for trait extraction.

The root and shoot of each genotype were placed in small brown
bags. The wet-cut seedlings were dried in growth chambers set at
34◦C/24 h for 2 days, with the light set to 276–280 µmol/s/m2 and
stored for weighing. Each root and shoot of the genotype were
measured using the Ohaus portable weighing balance (Ohaus
Corporation, NJ, United States).

More than 9,000 (376 genotypes × 8 reps × 3 time points)
images were collected from the whole experiment. The images
were first rotated manually to portrait orientation to enable
consistent preprocessing. Images with no germinated seed, herein
referred to as blank, were excluded from processing. JPEGCrops
(2021), an open-source software, was used to auto crop all the
images in a batch by cutting off the top part with the labeled
bar-coded tag. The images were then converted into black/white
images by thresholding (heuristically using red, green, and blue,
LAB, or Hue, Saturation, and Value color spaces). This was
carried out using the image processing step and followed by
the trait extraction step within the improved Automatic Root
Image Analysis (ARIA) 2.0 tool (Falk et al., 2020a). Different
color spaces were used due to the variations in the images caused
by unequal lightning and water spots. The ARIA 2.0 tool runs
on Matlab (2020a). Traits extracted in ARIA are shown in the
Supplementary Materials (Supplementary Table 1).

Statistical Analysis
All the analyses were carried out using the R statistical software (R
Core Team, 2021). A separate code was written for the extraction
of median LRA. Outliers were filtered out using the Tukey’s box
plot method (Hoaglin, 2003). A soybean genotype previously

included was dropped due to clear visual differences with mung
beans. The preprocessing steps above left 8,611 observations
represent 375 genotypes for the analysis. Most of the reported
analysis is from day 15 data with references and comparisons
to days 12 and 18. Day 15 was chosen as a good representation
of root growth between day 12 and day 18. A subset of ARIA
traits was used for the analysis (Table 1). They were informed
by traits used in a similar study by Aski et al. (2021) and traits
important for the iRoot categories: topsoil foraging, and steep,
cheap, and deep ideotypes described by Falk et al. (2020b).
A mixed linear model (Eq. 1) was used to extract the best linear
unbiased predictors (BLUPs) for each trait per genotype. All
model variables were considered a random effect except chamber,
which was a fixed effect. The model was run within the H2Cal
function from the inti package (Lozano-Isla, 2021), which utilized
the unbalanced data (Cullis et al., 2006; Piepho and Möhring,
2007; Schmidt et al., 2019). Broad sense heritability (H) was
calculated using Eq. 2 (Cullis et al., 2006). Pearson correlations
were used to draw correlations among the root traits.

Yijkl = µ + Chamberi + (1|Chamber :Block)ij + (1|Chamber :

Block : Sub− block)ijk + (1|Genotype)l + eijkl (1)

Where µ is the overall population mean, Yijkl is the phenotypic
trait, Chamberi is the fixed effect of the ith growth chamber (1|
Chamber:Block)ij is the random interaction effect between the ith
chamber and the jth block (1| Chamber:Block:Sub-block)ijk is the
three way random interaction effect between the ith chamber, jth
block and kth sub-block (1| Genotype)l is the random effect of
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TABLE 1 | Subset of traits of mung bean root architecture extracted from the Automated Root Image Analysis (ARIA) software and used for the analysis, clustering, and
iRoot category.

Trait name Symbol Unit Trait description

Total root length TRL cm Cumulative length of all the roots in centimeters

Primary root length PRL* cm Length of the primary root in centimeters

TRLUpper TRLUpper* cm Total root length of the upper one third

Depth DEP cm The maximum vertical distance reached by the root system

Width WID* cm The maximum horizontal width of the whole RSA

Diameter DIA cm Diameter of the primary root

Lateral root branches LRB Count Number of lateral root branches

Network area NWA Count The number of pixels that are connected in the skeletonized image

Convex area CVA cm2 The area of the convex hull that encloses the entire root image

RhizoArea RHZO cm2 Length of 2 mm surrounding the TRL

Primary root surface area PRA cm2 Surface area of the primary root

Volume VOL cm3 Volume of the primary root

Lateral root angles LRA* Angle Root angles along the extent of all lateral roots

Solidity SOL* Ratio The fraction equal to the network area divided by the convex area

Length distribution LED Ratio TRLUpper/TRLLower

Total root length-growth rate TRL_GR* cm/day (TRL_day 15 – TRL_day 12)/3

*Traits used for iRoot ideotypes. RSA, root system architecture.

the lth genotype, and eijkl is the random error term following the
N(0,q2e).

H2
Cullis = 1− V̄BLUP

1 /2δ2
g (2)

Where δ2
g is the genotypic variance and V̄BLUP

1 is the mean
variance of the difference of two genotypic BLUPs for the
genotypic effect (Schmidt et al., 2019).

Root Ideotypes, Phenotypic, and
Genotypic Diversity
The iRoots were formed by first ranking the genotypes under each
trait, getting the sum of the ranks and then ranking the sums for
each category. For topsoil foraging, the genotypes were ranked
individually under the TRL_GR, WID, and TRLUpper. The sum
of the ranks was ranked, and this yielded to the final ranking of
each genotype. A similar approach was used for the “steep, cheap,
and deep” ideotype using the TRL_GR, steep LRA, and SOL2.

The principal component analysis (PCA) and hierarchical
clustering were used in both the phenotypic and genotypic
clustering of the genotypes using the Euclidean distance matrix.
The base R function hclust with methods “complete” and
“prcomp” was used. The package factoextra (Kassambara and
Mundt, 2020) was used to determine the optimum number
of clusters to be used by comparing 30 different indices. The
clusters were related to the country of origin. Heat maps
were developed according to the trait performance and iRoot
category ranking using the Complex Heatmap package (Gu
et al., 2016). Phenotypic and genotypic dendrograms were made
using the dendextend (Galili, 2015) and circlize (Gu et al.,
2014) packages. The pairwise fixation index (Fst) was calculated
between the two genotypic clusters using the function genet.dist
(method = “WC84”) within the ade4 package (Dray Stéphane,
2007). Fst is an indication of the amount of differentiation within

subpopulations, with low Fst indicating high gene flow (low
genetic diversity) (Wright, 1965).

Genome-Wide Association Analysis
In total, 26,550 SNPs (marker data) were obtained using
genotype-by-sequencing and preprocessed earlier by Sandhu and
Singh (2021). Sites with >15% missing data and minor allele
frequency > 0.01 were filtered out. GWAS was carried out
using BLUPs on all the trait data. Associations were conducted
using the Trait Analysis by aSSociation, Evolution, and Linkage
(TASSEL, Bradbury et al., 2007) software using a linear mixed
model (Yu et al., 2006). Both the kinship matrix and PCA
were generated in TASSEL controlling for population structure.
Bonferroni correction with p-value = 0.05 was used to control for
false positives and declare significant associations (Kuo, 2017).
Manhattan plots for visualizing the associations were carried
out in R using the CMplot library in the rMVP package (Yin
et al., 2021). Authors also used a newly developed computational
framework, selection of variables with embedded screening
(SVEN), a Bayesian based model to run GWAS (Li et al., 2020).
The identification of candidate genes was carried out by locating
the significant SNP on the sequenced and annotated mung bean
genome using the “genome data viewer” tool at the National
Center for Biotechnology Information (NCBI; Kang et al., 2014).

RESULTS

Descriptive Statistics, Correlation, and
Heritabilities
We observed the significant phenotypic variability for root traits.
The coefficient of variation (CV) ranged from 2 to 19% and
standard deviation (SD) from 0.01 to 628.67 (different units of
measurements for traits). Most of the traits had low SD, i.e., <10
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except for TRL, VOL, TRLUpper, and CVA that had SD < 100,
while RHZO had an SD > 500. TRL, TRLUpper, CVA, WID,
NWA, RHZO, and TRL_GR had 10% < CV < 20%, while
the rest of the traits had CV < 10% (Table 2). Day 12 CV
ranged from 0 to 22% while for day 18 was 0–28%. Dry matter
weight measurements, including shoot dry weight (SDW), root
dry weight (RDW), and total dry weight (TDW) had CV 24, 28,
and 26%, respectively, at day 18 (Supplementary Table 2).

The correlation between the root traits varied. TRLUpper was
highly correlated with WID, CVA, and TRL_GR. NWA was
highly correlated with WID, CVA, TRL_GR, TRLUpper, RHIZO,
and TRL. LRA had the lowest correlation with the other traits.
There was no correlation between LRA and VOL, and DIA
(Figure 2). Correlation on day 12 was high. Negative correlations
were observed at day 18 with SOL2 being negatively correlated to
most traits and LRA negatively correlated with root shoot ratio
(RSR) (image not shown).

Broad sense H ranged from 0.22 to 0.73. LRA and WID had
the lowest and highest H at 0.22 and 0.73, respectively. DIA, VOL,
surface area, LRB, and LRA had H < 0.5, while TRL, PRL, LED,
TRLUpper, CVA, DEP, WID, NWA, RHZO, SOL2, and TRL_GR
had H > 0.5 (Table 2 and Figure 3). H was high at days 15 and
18 and low on days 12 for most of the traits. Day 12 H ranged
from 0.24 to 0.51, with TRLUpper having the highest H. Day 18
H ranged from 0.23 to 0.87, with dry weight traits (i.e., SDW,
RDW, and TDW) showing higher levels at 0.84, 0.87, and 087,
respectively (Supplementary Table 2).

Root Ideotypes
We described two root ideotypes, namely, topsoil foraging
and “steep, cheap, and deep.” PI425425 (India), PI425045
(Philippines), PI425551 (Korea), PI264686 (Philippines), and

TABLE 2 | Descriptive statistics and broad sense heritability of a subset of root
traits from day 15 of the Iowa (IA) mung bean genotypes estimated from eight
replications.

Trait Mean Median Min Max SD CV (%) H

TRL 230.22 225.56 159.22 325.48 35.1 15 0.66

PRL 42.72 42.65 36.48 48.06 1.7 4 0.54

LED 2.05 2.04 1.53 2.6 0.19 9 0.51

DIA 0.24 0.24 0.23 0.26 0.01 3 0.31

VOL 261.41 260.76 223.14 316.38 17.76 7 0.29

Surface area 31.42 31.45 28.9 34.76 1.06 3 0.24

TRLUpper 150.85 149.35 99.82 216.32 22.63 15 0.64

CVA 412.66 407.67 258.73 567.28 65.28 16 0.66

DEP 37.74 37.7 33.47 40.66 1.16 3 0.53

WID 18.68 18.4 11.69 25.47 2.88 15 0.73

NWA 2.82 2.77 1.98 3.95 0.41 15 0.64

LRB 137.67 137.82 124.39 152.1 4.28 3 0.32

RHZO 4651.19 4588.15 3272.6 6280.68 628.27 14 0.63

SOL2 140.92 140.94 107.82 164.14 9.6 7 0.57

LRA 50.23 50.18 46.64 53.36 1.11 2 0.22

TRL_GR 24.64 23.88 15.76 39.69 4.64 19 0.68

Full trait descriptions are in Table 1. SD, standard deviation; CV, coefficient of
variation; H, broad sense heritability.

FIGURE 2 | Correlations among the root traits at day 15 using the Iowa (IA)
mung bean panel. Experiments were conducted in controlled environment
chambers and included eight replications.

PI425085 (Sri Lanka) emerged as top five in the topsoil foraging
category. PI425594 (unknown origin), PI425599 (Thailand),
PI425610 (Afghanistan), PI425485 (India), and AVMU0201
(Taiwan) were top five in the “steep, cheap, and deep”
ideotype (Table 3 and Figure 4). For day 18, the PI425551
(Korea), PI264686 (Philippines), PI426026 (Thailand), PI425085
(Sri Lanka), and PI426042 (Australia) were the top five
in the topsoil foraging category. In the “steep, cheap, and
deep” ideotype, PI264686 (Philippines), PI425551 (Korea),
PI363514 (India), and PI425599 (Thailand) were the top four
(Supplementary Table 3). No iRoot categories were created on
day 12 since TRL_GR could not be calculated.

Phenotypic and Genotypic Clusters
Three distinct phenotypic clusters were observed using the root
trait data, while two clusters were observed from the SNP data
of the genotypes (Figure 5). Phenotypic clusters 1, 2, and 3 had
69, 163, and 135 genotypes, respectively. Genotypic clusters 1
and 2 had 48 and 319 genotypes, respectively. India had the
highest number of genotypes in both genotypic clusters 1 (37)
and 2 (197). The United Kingdom had 13 genotypes in genotypic
cluster 2, while the rest of the countries had less than 10 genotypes
in each cluster. The United Kingdom and United States had
no genotypes in genotypic cluster 1 (Supplementary Figure 1).
Similarly in the phenotypic clusters 1, 2, and 3, India led with
17, 94, and 123 genotypes. The rest of the countries had less than
ten genotypes (Supplementary Table 3). On day 18, there were
two phenotypic clusters and two genotypic clusters. Phenotypic
clusters 1 and 2 had 250 and 117 genotypes, respectively.
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FIGURE 3 | Broad sense heritability (H) of select root related traits at days 12, 15, and 18. Experiments were carried out with the IA mung bean panel with
genotypes grown in growth chambers.

Genotypic clusters had similar composition as from day 15. In the
phenotypic cluster, India had 132 and 102 genotypes in clusters
1 and 2. The rest had less than 10 genotypes (Supplementary
Figure 2 and Supplementary Table 4).

PC1 and PC2 explained 7.6 and 3.9% of the total genotypic
variation in the IA mung bean GWAS panel (Figure 6). The
PCs were not able to discern any distinct subpopulations.
Superimposition of iRoot ranking on the PCs showed that
genotypes from India dominated both in the “steep, cheap, and
deep” and topsoil foraging (Figures 6C,D). For day 18, the top
genotypes in the “steep, cheap, and deep” category are mostly
from India, while in the topsoil foraging, they are mostly from the
other countries, Australia, the United Kingdom, and others with
few from India (Supplementary Figure 3). The complex heat
map showed the patterns and correlations among the genotypic
clusters, iRoot type rank, and root trait performance used in

TABLE 3 | Top five genotypes by iRoot rank categories from day 15 image
analysis.

Topsoil foraging Country “Steep, cheap, and deep” Country

PI425425 India PI425594 Unknown origin

PI425045 Philippines PI425599 Thailand

PI425551 Korea PI425610 Afghanistan

PI264686 Philippines PI425485 India

PI425085 Sri Lanka AVMU0201 Taiwan

clustering (Figure 7). Most of the traits in genotypic cluster 2 had
a better ranking in the topsoil foraging, while cluster 1 contained
mostly the worst ranked in the same category. Genotypes were
evenly distributed in ranking among the genotypic clusters 1 and
2 in the “steep, cheap, and deep” iRoot category. Some of the
best genotypes for the traits, including TRLUpper, RHZO, NWA,
WID, and CVA, were in genotypic cluster 2, while cluster 1 was
dominated by low values in the above traits. LRA, SOL2, LED,
LRB, PRL, and DEP looked evenly distributed within genotypic
clusters 1 and 2 (Figure 7). The pairwise Fst was 0.05.

Genome-Wide Association Studies and
Candidate Genes
Association studies revealed significant SNPs for traits on
different days. Day 12 LRA had seven significant SNPs. Day
15 LED had one significant SNP. On day 18, TRL_GR, TDW,
and volume each had one significant SNP, while LED had two
significant SNPs (Figure 8). Out of the seven SNPs for day 12
LRA, the first three had no mapping on the mung bean genome
with no gene ID, genomic context, and gene description. On day
18, significant marker 8_10447903 for LED is an uncharacterized
gene. Significant SNPs were found for the same trait LED, for
days 15 and 18, marker 8_11481602 and marker 8_10447903,
respectively. A summary of the significant SNP associations from
the TASSEL software is presented in Table 4.

Day 12 SNP markers 2_2226549, 2_19972687, 7_19972687,
and 11_7608353 were associated with LRA. Marker 2_2226549
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FIGURE 4 | Mung bean iRoot ideotypes, (A) top two genotypes in the topsoil foraging and (B) top two genotypes in the steep, cheap, and deep after ranking the
genotypes in the IA mung bean panel.

FIGURE 5 | Day 15 phenotypic (A) and genotypic (B) clusters of the root traits and single-nucleotide polymorphism (SNP) data, respectively, generated using
hierarchical clustering of the core traits for all the genotypes. The labels represent the Plant Introductions (PI) and country of origin.

is located within an exon for a gene described as lignin forming
anionic peroxidase (LOC106755829). Marker 2_19972687 is
located within an exon encoding a gene (-)-germacrene D
synthase-like (LOC106753988). Marker 7_19972687 is located

within an exon of the beta-galactosidase 3 gene (LOC106768494).
Marker 11_7608353 associated with LRA also located within
an exon for a gene described as protein FAR1-RELATED
SEQUENCE 5 (LOC106776541). The same significant SNP
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FIGURE 6 | Day 15 principal component analysis of the genotypes for the IA mung bean panel, (A) colored by country of origin, (B) colored by genotypic clusters,
(C) color gradient showing ranking in the steep, cheap, and deep iRoot category, and (D) color gradient showing ranking in the topsoil foraging iRoot category (the
lower the rank, the better the genotype).

marker 8_11481602 associated with LED from days 15 and 18
was found within the exon of a monodehydroascorbate reductase
gene (LOC106772343). Day 18 SNP marker 8_10447903 was
found within an intron for an uncharacterized gene but close
to the LOC106772343 gene. Day 18 SNP marker 3_10004492
associated with TRL_GR is located within the exon for a
gene coding for mannose-1-phosphate guanylyltransferase 1
(LOC106757974). Day 18 SNP maker 5_35265704 associated
with TDW is located in the exon for a gene described
as putative dehydration-responsive element-binding protein
2H (LOC106760865).

Selection of variables with embedded screening resulted
in several significant markers for most of the traits across
the 3 days (Figure 9, Supplementary Figures 4–6, and
Supplementary Table 5). Two markers for LED (8_44518003)
and TDW (5_35265704) from day 18 did overlap with TASSEL
results. Marker 8_44518003 is an exon within the gene
encoding monodehydroascorbate reductase (LOC106772343),
while marker 5_35265704 was found within the gene encoding
putative dehydration-responsive element-binding protein 2H
(LOC106760865). Day 18 marker for TRLUpper (2_22583526)
was found within an exon in the gene encoding coilin
(LOC106756657), while marker for DEP (5_23119832) was

found in an exon within the gene encoding expansin-
A11 (LOC106761944).

DISCUSSION

Controlled environments have been successfully used to study
organisms out of their in situ environments (Crop Science
Controlled Environment Research Guidelines, 2021). Plants in
controlled environments may be exposed to similar conditions
as would be in the field to help better achieve the objectives under
study (Tibbitts and Langhans, 1993). There have been successful
results for measuring various above-ground phenotypes in
controlled environments, but below-ground phenotypes pose
additional challenges (White et al., 2013). While studies in
controlled environments do not imitate what in situ root
environments look like, they are helpful in a priori screening
of genotypes to minimize the heavy below-ground phenotyping
work required in the field (Lynch and Brown, 2012; Li R. et al.,
2015; Ye et al., 2018).

Mung beans are mostly grown on residual moisture after
primary crops in most of Southeast Asia (Poehlman and Milton,
1991; Aski et al., 2021). In the Western world, mung beans
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FIGURE 7 | Heat map revealing patterns between the genotypic clusters, iRoot category, and root traits performance for the genotypes in the IA mung bean panel.
The dendrogram on the y-axis represents the genotypic clusters (green = 1 and pink = 2). The dendrograms on the top represent the iRoot category and root trait
performance.

planted in the summers depend highly on the moisture residue,
often following a wet, cold spring. In IA, mung beans are planted
around the first week of June, capitalizing on the intense solar
radiation for rapid growth (Sandhu and Singh, 2021). This would
explain why mung beans, like other legume species, would be
ideal with the “steep, cheap, and deep” root ideotypes, to chase
the water and the soluble nitrogen before the establishment
of root nodules for atmospheric nitrogen fixation. Schneider
et al. (2021) showed that steep root angles improved nitrogen
uptake in silico in maize. Using the OpenSimRoot model, an 11%
increase in nitrogen uptake and a 4% increase in plant biomass
were predicted at 40 days of growth (Schneider et al., 2021).

Lynch and Brown (2012) showed that common bean
genotypes with wide basal root angles were superior in
phosphorus (P) acquisition, while the ones with narrow basal
root angles were superior in water acquisition during drought
conditions. A recent study looked at the P efficiency of mung
bean root morphology traits in low and optimum conditions
(Reddy et al., 2020), a trait associated with topsoil foraging. They
found Indian improved cultivars would be better with regards to
P foraging. We identified the top genotypes, including PI425425
(India), PI425045 (Philippines), PI425551 (Korea), PI264686
(Philippines), and PI425085 (Sri Lanka), in the topsoil foraging
(Table 3). Our hypothesis is that this represents the improved
germplasm developed in India or after migration from India,
while some of the lower ranks are still landraces or wild relatives,

but this will need to be evaluated further in field conditions.
For example, AVMU0201 is from Taiwan, the World Vegetable
Center (Brassica, 2014) (formerly AVRDC), which has been
breeding mung beans since the 1970s. Accessions PI425045 and
PI264686 are from the Philippines, which also hosts a duplicate
mung bean collection at the University of the Philippines, Los
Banos (Poehlman and Milton, 1991).

We reported a wide variability of the root trait phenotype in
the IA mung bean panel during the early stages of development
(Table 2). Indian genotypes represented 24, 56, and 89% in the
phenotypic clusters 1, 2, and 3 with an overall presence of 67%
(Supplementary Figure 4). The high H for traits on days 15
and 18 could be due to better capture of the traits by ARIA
unlike day 12 as it might be too early for trait development
and differentiation. The high correlation could also be explained
by the fact that young plants are utilizing all nutrients for
the vegetative growth. These conclusions cannot be assumed
to represent the rest of the developmental stages of mung
bean plants, prompting the need for further studies. Similar
observations were made in soybean (Falk et al., 2020b).

Genetic variability is one of the most important factors in
a breeder’s toolbox (Cobb et al., 2019). Indian genotypes were
76 and 67% in the genotypic clusters 1 and 2 with an overall
presence of 63% (Supplementary Figure 4). The lack of clear
subpopulations as indicated by the PCs shows the homogeneity
within the mungbean accessions (Figure 6). Previous studies
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FIGURE 8 | Manhattan plots of –log10(p) vs chromosomes of SNP markers
associated with the mung bean traits lateral root angles (LRA) (day 12), length
distribution (LED) (day 15), and volume (VOL), LED, total dry weight (TDW),
total root length-growth rate (TRL_GR) for day 18. The threshold line is the
Bonferroni correction at p = 0.05 [at –log10(p) = 5]. Significant SNPs are
highlighted in red and annotated with the marker name. Trait—SNP
associations performed using the Trait Analysis by aSSociation, Evolution, and
Linkage (TASSEL) software.

have shown similar results using simple sequence repeat markers
in the Indonesian germplasm (Lestari et al., 2014) and the
USDA germplasm (Wang et al., 2018). In other studies, the
STRUCTURE (Pritchard et al., 2000) analysis showed between
3 and 6 subpopulations although no clear pattern was seen
according to their geographical origins (Lestari et al., 2014; Wang
et al., 2018; Sandhu and Singh, 2021). A similar observation,
attributed to population admixture, was shown in common bean
(Burle et al., 2010). The low Fst of 0.05 shows a high gene flow
or low differentiation between the two genotypic clusters. The
low Fst in this study confirms similar earlier reports within the
USDA collections (Wang et al., 2018) and within the Indonesian
germplasm (Lestari et al., 2014). Overall, results indicate a narrow
genetic diversity in mung bean (Poehlman and Milton, 1991;
Singh D. P. et al., 2021). Early breeders had to opt for mutation
breeding to increase the genetic diversity. The narrow genetic
base can be explained by the self-pollinated nature, very low
cross-pollination frequencies, and poor hybridization of mung
bean with otherVigna species (Poehlman and Milton, 1991; Singh
D. P. et al., 2021). The narrow genetic diversity within the IA
panel seems to reflect the fact that most of the accessions were
collected on the Indian subcontinent, where mung bean was
domesticated (Fuller, 2007). Our results support the idea that, in
pulses, the lack of genetic diversity is due in part to the continuous
use of a few genotypes as parents in the population development
(Kumar et al., 2011). This shows the urgency of breeding efforts
to diversify the genetic basis.

Adaptive roots to biotic and abiotic stresses will play a key
role in bridging the yield gap in crop plants in the changing
climate. A solid understanding of the genetic and environmental
factors impacting the RSA will be important to the breeding of
stable cultivars (see review, Lynch, 2007; Koevoets et al., 2016).
RSA traits associated with response to abiotic stresses, including
nutrient deficiency, drought tolerance, salinity, flooding, and
temperature, and the underlying candidate genes have previously
been studied (see review, Koevoets et al., 2016). Narrow LRA,
high LED, and increased LRB were highly correlated to high
P accumulation in Arabidopsis (Gruber et al., 2013), maize
(Zhu et al., 2005), and common bean (Bonser et al., 1996).
Auxins and strigolactones are key regulators in root and shoot
development. An auxin receptor TRANSPORT INHIBITOR
RESPONSE1 (TIR1) was shown to be responsible for the change
in LRB as a response to low P levels (Pérez-Torres et al., 2008).
Reduced LRB and increased PRL are characteristics of the “steep,
cheap, and deep” ideotype, where the plant increases resource
allocation to chase water and the mobile N in the deeper soil as
evidenced in Arabidopsis and maize (Lynch, 2013). The nitrate
transporters NRT1.1 and NRT2.1 were identified for the reduced
LRB and increased PRL (Linkohr et al., 2002). The extended root
system in Arabidopsis (Yu et al., 2008), rice, cotton, and poplar
(Yu et al., 2013) was attributed to HD-ZIP transcription factor
(HDG11) which promotes cell elongation by up-regulating cell
wall loosening proteins hence important for drought tolerance.

In the current study, several putative candidate genes
were identified for root traits associated with genes involved
in the plant growth and development and stress tolerance
response (Table 4). Lagrimini et al. (1997) proposed that
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TABLE 4 | Significant single-nucleotide polymorphisms (SNPs) for results of association studies for traits across days 12, 15, and 18 as run in the Trait Analysis by
aSSociation, Evolution, and Linkage (TASSEL) software.

Day Trait Marker Chr Pos p Add_effect MarkerR2 Gene ID Genomic context Gene description

12 LRA 6_19440349 6 19440349 5.65E-08 –1.53E+00 0.10564 None None None

LRA 2_9095694 2 9095694 4.26E-07 1.44515 0.08585 None None None

LRA 7_11284246 7 11284246 3.86E-06 NaN 0.06085 None None None

LRA 2_2226549 2 2226549 6.50E-06 –1.10E+00 0.06824 LOC106755829 Exon Lignin-forming anionic
peroxidase-like

LRA 7_1916612 7 1916612 6.55E-06 –1.12E+00 0.06827 LOC106768494 Exon Beta-galactosidase 3

LRA 2_19972687 2 19972687 8.13E-06 1.54662 0.07675 LOC106753988 Exon (–)-Germacrene D
synthase-like

LRA 11_7608353 11 7608353 8.66E-06 1.06558 0.06673 LOC106776541 Exon Protein FAR1-RELATED
SEQUENCE 5

15 LED 8_11481602 8 11481602 2.22E-06 0.09192 0.07531 LOC106772343 Exon Monodehydroascorbate
reductase

18 TRL_GR 3_10004492 3 10004492 4.26E-06 –2.48E+00 0.06752 LOC106757974 Exon Mannose-1-phosphate
guanylyltransferase 1

LED 8_11481602 8 11481602 4.86E-07 0.1291 0.08614 LOC106772343 Exon Monodehydroascorbate
reductase

LED 8_10447903 8 10447903 5.27E-06 –1.14E-01 0.07111 LOC106771882 Intron Uncharacterized
LOC106771882

TDW 5_35265704 5 35265704 4.92E-06 0.00902 0.06543 LOC106760865 Exon Putative
dehydration-responsive
element-binding protein

2H (DREB2)

FIGURE 9 | Selection of variables with embedded screening (SVEN) plots of marginal inclusion probability (MIP) vs chromosomes of SNP markers associated with
the mung bean traits LRA (day 12), LED (day 15), and LED, VOL, TDW, TRL_GR for day 18. Significant SNPs are boxed with the marker name.

anionic peroxidases, associated with LOC106755829 (day 12
LRA), play a role in plant host defense using a transformed
tobacco (Nicotiana tabacum L.) plant. They have also been
identified as major enzymes in cell wall lignification and found
in large quantities in the xylem tissue (Sasaki et al., 2007).
(-)- Germacrene D synthase, associated with LOC106753988 (day
12 LRA), is a member of sesquiterpene synthases family of
plant proteins that have the capability of converting a precursor
molecule farnesyl diphosphate into many sesquiterpene isoforms
(Picaud et al., 2006). (-)- Germacrene D synthase catalyzes
the formation (-)- Germacrene D, which is known to have
strong effects on insects. Beta-galactosidase 3 is associated
with Loci LOC106768494 (day 12 LRA), which has been

implicated in adventitious root development via transcriptomic
studies in mung bean (Li S.-W. et al., 2015). In rice, beta-
galactosidase 1 and 2 were found to be highly expressed in
the root and shoot seedlings, with less expression in flowers
and immature seeds. Beta-galactosidases are important in the
breakdown of molecular complexes (carbohydrates, glycolipids,
and glycoproteins) that contain galactose (Chantarangsee et al.,
2007). Beta-galactosidases would be important in the supply
of the required energy from storage reserves during the rapid
growth phase. The Far-related sequence (FRS) family, associated
with LOC106776541 (day 12 LRA), is conserved among plants.
Genes in this family are involved in multiple cellular processes
(Lin Ma-FAR1). For example, Arabidopsis (Arabidopsis thaliana)
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mutants of fhy3 were less sensitive to both osmotic and salinity
stress while also reducing the ABA-dependent inhibition of
seedling root elongation, seedling greening, and germination
(Tang et al., 2013; Ma and Li, 2018).

Transcripts of the gene encoding monodehydroascorbate
reductase associated with LOC106772343 (day 15 and 18
LED), an antioxidant enzyme, were significantly reduced in
the root elongation zone when roots for tall fescue (Festuca
arundinaceaSchreb.cv. “K-31”) when exposed to water stress (Xu
et al., 2015). Water stress is associated with high concentration of
reactive oxygen species. A mutation in theArabidopsis CYT1 gene
encoding mannose-1-phosphate guanylyltransferase 1 associated
with LOC106757974 (day 18 TRL_GR) showed deficiency in
the cell wall after depletion of GDP mannose. The mutants
exhibited radial swelling and accumulation of callose at the
root tip. The functional analysis revealed mannose-1-phosphate
guanylyltransferase 1 is involved in N-glycosylation during the
cellulose synthesis (Lukowitz et al., 2001). An orthologous gene
(DREB1A/CBF3 and DREB2A) associated with LOC106760865
(day 18 TDW), in Arabidopsis, encodes transcription factors
that are involved in activating downstream genes involved in
drought and cold stress (Sakuma et al., 2006). In another study,
DREB2A proteins were found to increase the stress tolerance by
modulating root architecture traits like the lateral root number
and root length (Shukla et al., 2006; Agarwal et al., 2010).

Selection of variables with embedded screening loci associated
with LOC106756657 (day 18 TRLUpper) and LOC106761944
(day 18 DEP) were associated with the adventitious root
development in mung bean like the TASSEL results (Li S.-W.
et al., 2015). Coilin is important in the formation of Cajal bodies,
which are mostly associated with RNA processes. Kanno et al.
(2016) suggest that coilin may be acting in multiple levels fine
tuning expression of some genes important for environmental
adaptation. Expansins are proteins involved with cell wall
loosening and modification, partly mediated by the pH expansion
of the cell wall during plant growth (Lee et al., 2001). In rice,
Zhiming et al. (2011) identified a gene encoding EXPA17 that was
important for the root hair growth, which requires intensive cell
wall modification.

The high H among the dry weight measurements can be used
in the selection of parents with the root to shoot ratio (RSR)
previously used as a measure of the photosynthetic materials
allocations (Figure 3). During a low supply of water, nitrogen,
and phosphorus in the soil, more resources are allocated to roots
relative to shoots (Xu et al., 2015; Lynch et al., 2021). Within
legumes QTLs for fibrous rooting/surface area (Abdel-Haleem
et al., 2011), root length (Prince et al., 2015), lateral root number,
and root thickness (Manavalan et al., 2015; Prince et al., 2019)
in soybean have been mapped. In cowpea, QTLs for basal root
angle, root diameter, median width, and width accumulation
were reported (Burridge et al., 2017). In pea, root length QTL
(Fondevilla et al., 2010) and in common bean basal root angle
QTL have been identified. Root length density, root surface
area, RDW ratio, and root depth in chickpea have been mapped
(Jaganathan et al., 2015). In cereals for, maize and sorghum
associations with area, convex hull area, median width, maximum
width, width-profile angle, and adjusted depth were identified
(Zheng et al., 2020), deep root mass, and the number of deep

roots in rice (Courtois et al., 2013) and PRL, RDW in wheat
(Sanguineti et al., 2007).

Our study has elucidated the phenotypic and genotypic
variability for the root traits in the 375 genotypes in the IA
mung bean panel. We identified candidate genotypes that can
now be advanced to the greenhouse or field for further testing,
especially for the root ideotypes. If their trait response and
expression can be confirmed, these can be utilized as parents in
the breeding program. Using GWAS, we identified significant
markers associated with several RSA traits. Taken together,
the ideotypes after field evaluation and significant markers
can be utilized as tools for marker-assisted selection and crop
improvement in mung bean breeding programs.
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Prediction of complex traits based on genome-wide marker information is of central

importance for both animal and plant breeding. Numerous models have been proposed

for the prediction of complex traits and still considerable effort has been given to improve

the prediction accuracy of these models, because various genetics factors like additive,

dominance and epistasis effects can influence of the prediction accuracy of such models.

Recently machine learning (ML) methods have been widely applied for prediction in

both animal and plant breeding programs. In this study, we propose a new algorithm

for genomic prediction which is based on neural networks, but incorporates classical

elements of LASSO. Our new method is able to account for the local epistasis (higher

order interaction between the neighboring markers) in the prediction. We compare

the prediction accuracy of our new method with the most commonly used prediction

methods, such as BayesA, BayesB, Bayesian Lasso (BL), genomic BLUP and Elastic

Net (EN) using the heterogenous stock mouse and rice field data sets.

Keywords: neural networks, LASSO, local epistasis, genomic selection, whole genome prediction

INTRODUCTION

The introduction of Genomic Selection (GS) (Meuwissen et al., 2001) along with the availability
of low cost genotyping platforms has resulted in a major paradigm shift in both animal and plant
breeding. Since then, GS has been successfully applied for efficient selection and accelerating the
breeding process in various breeding programs (Spindel et al., 2015; Garner et al., 2016; Hickey
et al., 2017; Voss-Fels et al., 2019). Even though GS has now been widely implemented in practice,
still considerable effort has been given to improve the prediction accuracy in GS beyond the current
limits. Various factors can affect the prediction accuracy in GS includingmarker density, heritability
of the trait, population size, constitution of the learning population and the statistical model used
to predict the genomic breeding values (Meuwissen, 2009; Liu et al., 2018; Norman et al., 2018).
Recently many studies tried to incorporated the transcriptome data (Li et al., 2019; Azodi et al.,
2020) into genomic prediction models, in order to improve the prediction accuracy in GS.

The genomic prediction models can be divided roughly into two classes: (1) genomic best linear
unbiased prediction (GBLUP) based on linear mixed models and (2) the whole-genome regression
(WGR) based on multilocus regression models. In the first approach, the genetic background of
the trait is assumed to be polygenic while in the latter, more oligogenic genetic background is
assumed. Again in the first, molecular markers are used to construct the genomic relationship
matrix while in the latter, molecular markers represent considered set of regression variables in
the model. However, note that WGR model can be written also as the GBLUP model with a
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trait-specific relationship matrix having own variance
component for each SNP in the diagonal (Zhang et al.,
2010; Piepho et al., 2012; Resende et al., 2012; Shen et al., 2013).

Epistasis (genetic interaction) is one of the major reason
for the non-linearity in the genotype-phenotype relationship
and considerable efforts have been given to model epistasis
in genomic prediction models (Hu et al., 2011; Wittenburg
et al., 2011; Wang et al., 2012; Jiang and Reif, 2015). Recently,
many studies even pointed out the importance of local epistasis
(interactions that span short segments of the genome) (Wei
et al., 2014; Akdemir and Jannink, 2015; Akdemir et al.,
2017; He et al., 2017; Liang et al., 2020). Although it is
well known that epistasis (both local and global) interactions
contribute to many complex traits (Taylor and Ehrenreich,
2014, 2015; Albert and Kruglyak, 2015), most of the genomic
prediction models account for the pair-wise interactions due
to the computational complexity of screening through all
possible combinations.

Most of the WGR models used in GS are based on linear
regression procedure and have been successfully adopted to
predict complex phenotype in plant and animal breeding
programs (Meuwissen et al., 2001; Park and Casella, 2008;
Mathew et al., 2019). Nonlinear extensions of these methods
with dominance and epistasis has been also considered (Nishio
and Satoh, 2014; Jiang and Reif, 2015; Varona et al., 2018;
Olatoye et al., 2019). However, recent development in the
field of machine learning enable us to use profound nonlinear
methods for the prediction of complex traits in breeding. Among
the machine learning methods, deep learning (DL) methods
received much attention due to their outstanding prediction
properties (LeCun et al., 2015). Although improved accuracy
can be questioned, many recent studies successfully applied
deep learning for various genomic problems (Uppu et al.,
2016; Bellot et al., 2018; Montesinos-López et al., 2018, 2019;
Crossa et al., 2019; Liu et al., 2019; Pérez-Enciso and Zingaretti,
2019).

Often these learning methods are applied in a black-
box manner and standard architectures that worked well in
disciplines like natural language processing and computer vision
are transferred to genomic prediction. Even though results
are encouraging, interpretability remains an issue (Waldmann,
2018). However, as an exception, there is a study presenting
an interpretable neural network model (see Zhao et al., 2021).
Also, in this study we propose to design a domain specific
learning system that is motivated by neural networks, but
incorporates classical elements of lasso. The resulting algorithm
is termed NeuralLasso, that is capable of incorporating higher
order nonlinear interactions between contributingmarkers in the
local neighborhood. Unlike the method of Zhao et al. (2021),
our non-Bayesian approach is focusing on modeling high-
order local interactions. In the terminology of neural networks,
predictions are performed in a single layer and ℓ1 sparsity on
the learned parameters is incorporated, hence the relation to
classical lasso models. We compare the prediction accuracy of
NeuralLasso with the most commonly used GP methods such as
BayesA, BayesB, BL, GBLUP, and EN using the mouse and rice
data sets.

MODELS AND METHODS

Whole Genome Regression Model
Let us consider a standard genomic prediction model

y = Xβ + Zw+ ǫ. (1)

Here, y is a vector of observed phenotypes for n lines, β contains
the fixed effects, X represents the incidence matrix for the fixed
effects, Z = Zi1,Zi2, ...Zip is the n×p (p is the number of markers)
matrix for the genotypes coded as 0,1,2, w = (w1,w2....wp)
is a column vector of marker effects and ǫ corresponds to the
residual, following a normal distribution as ǫ ∼ N(0, Iσ 2

e ). For
simplicity, here we assume no fixed effects other than overall
mean (note that it is possible to pre-correct fixed effects away
from the phenotype before neural network analysis).

The number of markers usually exceeds the number of
observations in genomic prediction problems and regularization
is applied in order to obtain solution to Equation (1). A
regularized regression function can be formulated as

β̂ , ŵ = argmin
β ,w




n∑

i=1

(yi − Xβ −

p∑

j=1

Zijwj)
2 + P(λ,w)


 . (2)

Here, the function P(λ,w) is the penalty function with
regularization parameter λ ≥ 0. Least absolute shrinkage and
selection operator (lasso) (Tibshirani, 1996) based on the penalty
term called ℓ1-norm, which is the sum of the absolute coefficients
and Ridge Regression based on the ℓ2-norm penalty which
the sum of squared coefficients are the most commonly used
regularized regression methods. The EN method which is a
compromise between lasso and ridge regression penalties can be
represented as:

β̂ , ŵ = argmin
β ,w

{
n∑

i=1

(yi − Xβ −

p∑

j=1

Zijwj)
2 + λ

p∑

j=1

[
1

2
(1− α)w2

j + α|wj|

] }

(3)

where 0 ≤ α ≤ 1 is the penalty weight. The EN penalty is
controlled by α and when α = 1 EN is identical to lasso, whereas
EN is equivalent to ridge regression when α = 0.

NeuralLasso
We design our model based on the underlying Equation (1). That
is, given the genotypes in Z, instead of finding the matrix w
we seek to find a parametrizable (nonlinear) mapping 3θ , with
parameters θ , such that

3θ (Z) = y. (4)

The question is how to construct such a mapping 3θ and
what do the parameters of θ represent. In the following we
aim to derive a model, that is motivated by neural networks,
but follows the classical architecture of lasso as presented in
Equation (3). For this purpose, we will shortly review classic
neural network architectures.
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Background on Neural Networks
The underlying premise of a neural network is to combine
affine linearmappings and pointwise nonlinearities to construct a
nonlinear mapping in a repeating multi-layered fashion (LeCun
et al., 2015; Schmidhuber, 2015; Goodfellow et al., 2016). In its
most general form we can write the main building block of a
neural network for an input z ∈ R

n (genotypes) and output
y ∈ R

m (phenotype) as

y = ϕ(Cz + b), (5)

where C ∈ R
m×n is a linear transformation matrix, b ∈ R

m

an additive affine component, the so-called bias, and finally
ϕ(·) a point-wise acting nonlinear function. A popular choice
for this nonlinear function is given by the rectified linear unit
ReLU(x) : = max(x, 0). A multi-layered neural network would be
now given as a repeated composition the blocks in Equation (5),
where each block is called one layer. Nevertheless, in this work
we concentrate on so-called shallow networks that consist only
of one layer. The specific network architecture is now defined by
the structure of the affine linear transformation C. The obvious
choice of a dense matrix C is called a fully connected layer, as
each data point in the input vector is related with each point
in the output vector. Such a fully connected layer learns specific
weights for each location in the input and hence is locally varying.
Another option for the choice of linear mapping would be given
by convolutions, if represented as matrices this would result in
a sparse representation. Sparse representations are desirable, as
they can be implemented efficiently and reduce the amount of
parameters significantly. Nevertheless, the choice of convolutions
as linear transformation is not optimal in our setting, as these are
translationally invariant and hence do not encode any locality. In
the following, we aim to design a transformation that is sparse,
but does also encode locality to combine the strength of both.

Formulating NeuralLasso
The first important part is to define the underlying
transformation given as the matrix C for our proposed model
is based on the requirement to encode locality, while taking
neighborhood relationships into account. For this purpose, we
follow (Arridge and Hauptmann, 2019) and define a sparse
subdiagonal matrix C ∈ R

p×p, where p is the number of markers,
and a neighborhood of size N, such that the main diagonal and
the N subdiagonals below and above are non-zero. That is for
N = 0 we simply have a diagonal matrix and for N = 1 we have
a tridiagonal matrix such as

C =




c0,1 c1,1
c−1,2 c0,2 c1,2

. . .
. . .

. . .

c−1,n−1 c0,n−1 c1,n−1

c−1,n c0,n



. (6)

Given the matrix C we could formulate a lasso problem
that takes interactions in the local neighborhood into account

by minimizing

Ĉ = argmin
C

n∑

i=1


yi −

p∑

j=1

(CZT
i )j




2

+ λ

N∑

j=−N

p∑

i=1

|cj,i|. (7)

Note, that for N = 0 no neighborhood relation is taken
into account and the model reduces to the basic lasso scheme
similar to Equation (3). As the above model in Equation (7)
only considers linear interactions in the local neighborhood, we
want to combine this sparse subdiagonal matrix with classical
elements of neural networks, i.e., nonlinear activation functions
and additional bias vectors to allow for nonlinear interactions, as
outlined previously.

The Proposed Model for Local Epistatic Interactions
We will now consider the building block of a neural network
as in Equation (5) for one layer, but consider multiplication
with the subdiagonals of C separately to introduce nonlinear
effects between neighboring loci. In the following, we will
fix the neighborhood to N = 2, that is a neighborhood
window of 5 loci. We will model the nonlinear interaction by
a maximum thresholding using ReLU for the 3 central loci and
no nonlinearity for the outer two loci. This way we enforce an
interaction effect of the 5-neighborhood. Given the (sub)diagonal
vectors ci ∈ R

p for i = −2, . . . , 2 the non-linear parametrized
model can be formulated as

3C(Zj) =

2∑

n=−2

p∑

i=1

ϕi(cn,izi+n + bn,i), (8)

where zi = 0 for i < 1 or i > p, and ϕi(x) = ReLU(x) =

max(x, 0) for i = −1, 0, 1 and ϕi(x) = x otherwise. That is, if
we write all terms down we get

3C(Zj) =

p∑

i=1

(c−2,izi−2 + b−2,i)+ (c2,izi+2 + b2,i)

+ReLU(c−1,izi−1 + b−1,i)+ ReLU(c0,izi + b0,i)

+ReLU(c1,izi+1 + b1,i).

(9)

The resulting NeuralLasso then formulates as

{Ĉ, b̂} = argmin
{C,b}

n∑

j=1

[
yj − 3C(Zj)

]2
+ λ

2∑

n=−2

p∑

i=1

(
|cn,i| + |bn,i|

)
.

(10)
The parameters Ĉ and b̂ can then be found by any suitable
optimisation algorithm. ReLU functions were chosen, here,
because of their ability to keep some of the linearity and
introducing nonlinearity only by thresholding. Note that if all
the ReLU activations are changed to linear functions then the
model reduces to a sparse perceptron with biases (i.e., a single-
layer neural network), which will be an overparametrized version
of the lasso approach.Wewill shortly discuss our implementation
in the next section.

For the final estimation, we are only left with estimating
the penalty weight λ as in the classic lasso model. This can be
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achieved in a similar manner as used by Waldmann et al. (2019),
here, we use a slightly modified bisection method and a single
set of training data i.e., one realization of training and validation
split. We then initialize a starting interval [a, b] for λ, chosen
based on prior knowledge for the range of λ. We then compute
the correlation coefficient for λ = a, b, i.e., the end points of
the interval [a, b], and the mid point λ = a + b/2. Then, we
identify the value for λ with the largest correlation coefficient. If
it is one of the end points, we shift the interval around the end
point, which becomes the new mid point. If, otherwise, the mid
point has the highest correlation value, we keep the mid point,
but halve the interval size. We then repeat the process for the
new subinterval and compute the correlation for either one new
point, if shifted, or two, if halved.

We note that for simplicity we have made here certain
fixed choices and formulated NeuralLasso only for univariate
continuous outcomes using fixed neighborhood size of 5, with
ReLU as activation function and one layer. However, note that
these are not arbitrary choices. As was stated earlier, ReLU was
employed for its beneficial property of including linear functions
as special case, if appropriate biases are learned. Some choices
were found based on experimenting (e.g., neighborhood size of 5
provided good predictive performance) and some of the choices
(use of ReLU and linear activation functions) are discussed more
in the discussion section. We refer to the Appendix A for more a
general formulation of NeuralLasso using variable neighborhood
size and activation functions.

Example Analysis
In order to compare the prediction accuracy of differentmethods,
we analyzed the rice field data which is publicly available at
http://www.ricediversity.org/data/ and a heterogeneous stock
mouse population [see Valdar et al. (2006) for more details].
We selected traits in these data sets, which cover many levels
of heritabilities (ranging from 0.25 to 0.75) and arguably many
different genetic architectures.

Rice field data: The rice data set consists of 413 diverse
accessions of O. sativa collected from 82 different countries
(Zhao et al., 2011). The accessions were genotyped with single
nucleotide polymorphism (SNP) markers and 33,569 SNPs were
available for the analysis after excluding markers with minor
allele frequency (MAF)> 0.05, duplicated markers and missing
values > 20%. In this study, we analyzed the traits flowering time
(FT) (in three different locations) and amylose content (AMY).
The trait FT was measured in three different locations, the first
location (ARK) was in Stuttgart, Arkansas, USA, the second one
in Aberdeen (ABR) and the third location was Faridpur (FAD),
Bangladesh (see Zhao et al., 2011 for more details). Out of the
413 lines, phenotypic informations were available for 371 lines
in all three environments with the trait FT and 393 lines for the
trait AMY. Genetic architecture underlying the trait (some traits
are affected by many genes and some are by only few number of
genes) is often play an important role in the prediction accuracy
of different statistical methods. Thus we decided to consider
two traits (FT and AMY) with different genetic architecture in
this study. The narrow-sense SNP-heritabilities (h2) of the traits

were 0.50, 0.70, 0.50, and 0.26 for the phenotypes AMY, ARK,
ABR, and FAD, respectively. Here, h2 were estimated as: h2 =
σ
2
g /(σ 2

g + σ
2
e ), where σ

2
g and σ

2
e are the genomic and residual

variances, respectively. The variance components were estimated
using GBLUP method.

Heterogeneous stock mouse data: The mice data (see Valdar
et al., 2006) consists of 1940 individuals with 10345 biallelic SNP
markers after excluding markers with minor allele frequency
(MAF) = 0.05 and missing values = 20%. In this study, we
analyzed the trait “body weight,” which was measured at the age
of 6 weeks. The narrow-sense SNP-heritability (h2) of the trait
“body weight” was 0.58.

Results: To demonstrate the superiority of our new approach,
we compared the prediction accuracy (Pearson correlation
coefficient between the observed and predicted phenotypes) of
NeuralLasso with the most commonly used GP methods using
the rice data set. The GP methods we are considering here are
the GBLUP (Meuwissen et al., 2001), least absolute shrinkage
and selection operator (lasso) (Tibshirani, 1996) and elastic net
(EN) (Hoerl and Kennard, 1970). Also, Bayesian WGR models
we choosed to consider here are the BL (Park and Casella, 2008),
BayesA and BayesB (Meuwissen et al., 2001). Predictive abilities
of BayesA, BayesB and BL were estimated using the R-package
BGLR (Pérez and de los Campos, 2014). Whereas the predictive
abilities of GBLUP and EN were estimated using the R-packages
rrBLUP (Endelman, 2011) and glmnet (Simon et al., 2011),
respectively. To estimate the predictive accuracy of NeuralLasso,
the model was implemented in Python with TensorFlow
and the scripts used in this study will be publicly available
at: https://github.com/asHauptmann/NeuralLasso. Optimization
was performed with the Adam algorithm and a cosine decay from
10−3 to 10−5 with 3,000 iterations, as batch size we used the full
sample size.

In order to compare the prediction accuracies we used five-
fold cross-validation (CV), for that we used 80% of the data as
the training set and the remaining 20% as the validation set. To
remove the influence of random partitions on the accuracy, we
repeated the cross-validation procedure 50 times and took the
mean value. Additionally, we also used the same training and
validation sets with the different GP methods. In the analysis
using BGLR, we used the default priors and considered 10,000
Markov Chain Monte Carlo iterations with a burn-in period of
3,000 iterations. For the EN estimation using glmnet, we set α to
0.33 in Equation (3) based on cross validation.

In Table 1, we can see the prediction accuracies of different
methods in four traits (ARK, ABR, FAD, AMY) of rice data set,
as well as trait body weight of mice data set. These traits together
cover many levels of SNP-heritabilities. In traits ARK, ABR, and
AMY of rice and trait body weight of mice, NeuralLasso seems to
slightly outperform all the other methods, suggesting some role
of local interactions in the genetic architecture of the trait. In trait
FAD, the superior performance is much smaller and performance
is practically the same with the GBLUP. This is likely due tomuch
smaller SNP-heritability of the FAD than the other traits (see also
Figure 1which shows ordering of themethods in their prediction
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TABLE 1 | Mean prediction accuracy based on 50 CV replicates using different approaches for the traits with rice (ARK, ABR, FAD, AMY) and mice (WEIGHT) data sets

are shown along with the corresponding heritability (h2) estimate for the trait.

GBLUP BayesA BayesB BL ElasticNet NeuralLasso h2

Rice

ARK 0.664 0.666 (+0.30) 0.662 (−0.30) 0.665 (+0.15) 0.613 (−7.68) 0.672 (+1.20) 0.70

ABR 0.568 0.579 (+1.93) 0.565 (−0.52) 0.562 (−1.05) 0.546 (−3.87) 0.589 (+3.69) 0.50

FAD 0.473 0.477 (+0.84) 0.477 (+0.84) 0.474 (+0.21) 0.416 (−12.05) 0.478 (+1.05) 0.26

AMY 0.447 0.45 (+0.67) 0.451 (+0.89) 0.442 (−1.11) 0.419 (−6.26) 0.463 (+3.58) 0.50

Mice

WEIGHT 0.512 0.525 (+2.53) 0.521 (+1.75) 0.527 (+2.92) 0.503 (−1.75) 0.532 (+3.90) 0.58

Additionally, the percentage difference in prediction accuracy compared to the commonly used GBLUP estimation method is provided in the bracket.

FIGURE 1 | Mean prediction accuracy calculated based on 50 cross validations for different traits from the rice and mice data sets plotted against the corresponding

estimation methods.

accuracies). Superiority of NeuralLasso method becomes clear
also from here.

DISCUSSION

In this study, we have presented a shallow neural networkmethod
which takes into account higher order local epistatic interactions
in eachmarker’s neighborhood. In recent years, machine learning
methods including deep learning (DL) methods have been widely
considered for GP, however neural network methods perform

similarly or worst to the classical linear methods (Azodi et al.,
2019; Zingaretti et al., 2020; Montesinos-López et al., 2021). In
this study with the tested cases, our proposed method seems
to improve the prediction accuracy slightly over traditional
methods. We believe that the accuracy of NeuralLasso will
depend on the complexity of the trait. Unlike the traditional
genomic prediction models which are able to account for the
two-loci genome-wide interactions, NeuralLasso account for only
the additive and higher order local epistatic genetic effects. Thus
there is a reduced chance that the local epistatic genetic effect will
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disappear due to recombination and will be passed on to several
generations (Akdemir and Jannink, 2015).

Even though, deep neural networks have been popular so far,
size of learning data need to be large in many cases. We believe
that more shallow networks like the one presented here may turn
out to be useful and important in the future due to their more
limited learning data size requirements.

In fact, our proposed model is not a single-layer neural
network, i.e., a perceptron. In the classic perceptron the
nonlinearity is applied after summation, in our case the
nonlinearity is applied before to allow for nonlinear interactions.
On the other hand, one could say it is only one layer, but with
several channels, for each member of the neighborhood, that are
combined nonlinearly. In summary, this is why we say the model
is motivated by neural networks, but does not clearly fit in the
classic notion of a neural network. Finally, that is why we also do
not describe our model as a neural network, but as NeuralLasso,
motivated by the design of neural networks.

We also tested the performance of NeuralLasso when
changing all non-linear ReLU functions to linear ones (results
not shown). In those experiments, the prediction accuracies of
NeuralLasso method clearly dropped down in the rice data set
but stayed at about the same level in the mice data [when ReLU
functions in Equation (9) were replaced by linear functions].
This is well in line with what one expects to see in rice data
(high level of epistasis) and in mice data (small or no level of
epistasis). Therefore, the latter experiment arguably means that
our NeuralLasso may also be capable of taking into account
some other context-specific effects than only epistasis, because its
predictive performance was so high in mice data set.

In this study, we only considered small genomic region,
however, NeuralLasso can be adjusted to account for higher
order genetic interactions in larger genomic region of interest,
chromosome-wise or whole genome scale. Although this might
be computationally challenging, it will be interesting to see if
this turns out to be important in the future. In order to reduce

the computational burden, one can also first perform a genome-
wide association study (GWAS) and only account the regions of
interest (e.g., candidate gene regions) in NeuralLasso.

As in all genomic predictions, not any single statistical method
is clearly superior in their prediction accuracy for all traits, but
their performance depends on factors such as genetic architecture
and heritability of the trait. However, NeuralLasso performance
was found here to be promising and it is worth of considering in
the future.
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