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The true revolution in the age of digital neuroanatomy is the ability to extensively quantify ana-
tomical structures and thus investigate structure-function relationships in great detail. Large-scale 
projects were recently launched with the aim of providing infrastructure for brain simulations. 
These projects will increase the need for a precise understanding of brain structure, e.g., through 
statistical analysis and models.

From articles in this Research Topic, we identify three main themes that clearly illustrate how 
new quantitative approaches are helping advance our understanding of neural structure and 
function. First, new approaches to reconstruct neurons and circuits from empirical data are 
aiding neuroanatomical mapping. Second, methods are introduced to improve understanding of 
the underlying principles of organization. Third, by combining existing knowledge from lower 
levels of organization, models can be used to make testable predictions about a higher-level 
organization where knowledge is absent or poor. This latter approach is useful for examining 
statistical properties of specific network connectivity when current experimental methods have 
not yet been able to fully reconstruct whole circuits of more than a few hundred neurons.
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INTRODUCTION

The true revolution in the age of digital neuroanatomy is the ability to extensively quantify
anatomical structures and thus investigate structure-function relationships in great detail. Large-
scale projects were recently launched with the aim of providing infrastructure for brain simulations.
These projects will increase the need for a precise understanding of brain structure, e.g., through
statistical analysis and models.

From articles in this Research Topic, we identify three main themes that clearly illustrate
how new quantitative approaches are helping advance our understanding of neural structure
and function. First, new approaches to reconstruct neurons and circuits from empirical data are
aiding neuroanatomical mapping. Second, methods are introduced to improve understanding of
the underlying principles of organization. Third, by combining existing knowledge from lower
levels of organization, models can be used to make testable predictions about a higher-level
organization where knowledge is absent or poor. This latter approach is useful for examining
statistical properties of specific network connectivity when current experimental methods have not
yet been able to fully reconstruct whole circuits of more than a few hundred neurons.

RECONSTRUCTION

The first theme illustrates how novel quantitative anatomical methods are reducing the time and
effort taken to reconstruct neurons and networks even when data are incomplete.

Modeling the electrophysiological computations made by single neurons requires a precise
reconstruction of their morphology. Blackman et al. (2014) assessed the accuracy of neuronal
reconstructions of biocytin-labeled cells against reconstructions from fluorescence-based imaging
using 2-photon microscopy. The authors conclude that biocytin-labeled cells are more accurate at
reproducing diameter values which is in particular crucial for electrophysiology modeling, while
faster fluorescence-imaging reconstruction methods are appropriate for tasks such as cell-type
classification.

Identifying cell types based on accurate tracings is very time-consuming. From such tracings of
microscopic images, it is known that retinal cell types can be identified by their laminar position
in the network (Sümbül et al., 2014a). Taking advantage of this link between macroscopic and
microscopic features, Sümbül et al. (2014b) show how automated volumetric reconstructions can
be performed more rapidly using the fluorescence distribution directly obtained from the image
stacks.
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Integrating structural and functional data has always been
central to reconstructing neural circuits. Here, Ullo et al. (2014)
apply a novel method that uses structural data of in vitro neuronal
networks to constrain estimates of functional connections
underlying spiking data of the same network acquired with
microelectrode arrays. The general idea could also apply to the
more complex structures in vivo.

Our understanding of synaptic connectivity is largely based
on measurements from brain slice preparations. However, some
of the complex 3D geometry of neurons is unavoidably lost
by slicing. This problem affects connectivity measurements,
especially for long-range connections. Two articles address
this problem. First, van Pelt et al. (2014) validate a statistical
approach (implemented in the NETMORPH software) for
inferring complete neuronal reconstructions from incomplete
slice data. From these completed neuronal morphologies, the
authors explain how this information can be used to estimate
connectivity in large-scale networks. Second, Miner and Triesch
(2014) use a computational model to propose how differences in
the experimental procedure such as slice thickness and sampling
area can explain differences observed in experimentally-derived
results.

Abnormalities in subcellular organelle morphology and
distribution characterize a variety of neuropathological
conditions. To aid faster quantification, Perez et al. (2014)
combine image processing methods with a supervised, multi-
resolution machine learning algorithm to automatically segment
specific types of cellular organelles (mitochondria, lysosomes,
nuclei, and nucleoli) from electron microscopy (EM) image
stacks. The authors demonstrate how this approach should
generalize to other organelle types and scale to large 3D datasets
from serial electron microscopy.

DESCRIPTION

The second theme in this Research Topic is that mathematical
techniques are applied to describe the spatial properties of
neurons and networks at a range of scales (Eglen et al., 2008;
Hansson et al., 2013). Firstly, two papers used spatial statistics
to examine spatial patterning within a region of neural tissue.
Anton-Sanchez et al. (2014) studied the spatial distribution of
synapses in layers I to VI of rat cortex in three dimensions.
They found that synapses are distributed randomly, subject only
to not physically overlapping with each other, although density
variations were found between different layers. Moving from
the distribution of synapses to distributions of neurons, Keeley
and Reese (2014) proposed a new metric for evaluating the
spatial regularity in two-dimensional distributions of neuronal
somata. They suggest a normalization term for the widely-used
regularity index measure that compares the average and the
standard deviation of the distance between cells. Using various
genetically inbred strains their new measure is found to be
effective in detecting genes controlling spatial patterning in
various genetically inbred strains using quantitative trait loci
approaches.

The papers by Anton-Sanchez et al. (2014) and Keeley
and Reese (2014) both analyse the distribution of synapses

and neurons by treating these objects as points in space.
Polavaram et al. (2014) by contrast studied the detailed
morphology of individual neurons to search for key features
underlying the variability in axonal and dendritic morphologies.
By comparing around 5000 neuron morphologies curated
from the Neuromorpho.org repository, they discovered six
main morphological classes, with clustering driven mainly by
biological factors, such as cell type, rather than technical factors,
such as recording laboratory.

The study by Polavaram et al. (2014) highlights the difficulties
in performing quantitative analysis of data recorded across many
laboratories. Instead of reanalysing raw data, Beul and Hilgetag
(2014) performed a detailed literature review of rodent cortex
anatomy to evaluate the evidence for a universal “canonical
microcircuit” (Douglas and Martin, 2004). Beul and Hilgetag
suggest such a canonical microcircuit, proposed based on data
from cat striate cortex, is unlikely to apply into other regions
of the cortex where the granular layer (layer 4) is reduced or
absent—the “agranular areas” of cortex. Instead, they propose a
revised wiring diagram, with reduced inhibition between upper
and deep layers in these agranular regions.

GENERATIVE MODELING

The third and final theme that emerged from this collection of
articles concerns the usage of generative methods to bridge the
gap between single neurons and the overall network structure
(Budd and Kisvárday, 2012). Computational models sometimes
based on simple self-organizing principles exist that reproduce
biology at a high level of detail both at the microscopic and
macroscopic scales (Schneider et al., 2014). Complementing
these approaches, large databases have emerged that embed the
biological details captured at the microscopic scale into the
context of larger scale structures (Chiang et al., 2011). The
resulting generative approaches allow for a better intuition of
the underlying principles for higher-level organization and for
making predictions in cases where data are currently sparse or
missing.

Egger and colleagues provide a software package NeuroNet
that generates a statistical connectome model of the barrel
cortex while taking into account statistical measures of synapse
and soma distributions as well as a small subset of complete
realistic cellular morphologies for all cell types (Egger et al.,
2014). The resulting statistical connectome is in line at all
scales with experimental anatomical and electrophysiological
measurements in barrel cortex and indicates that cortical
connections are probabilistic as a function of dendrite and axon
overlap.

In the study by Egger et al. registering the reconstructed
morphologies and synaptic positions to the barrel outlines is
essential to generate their statistical connectome. In a similar
line, the context in the circuit is the defining feature of the
study by Torben-Nielsen and de Schutter that provides a software
tool in Python called NeuroMaC to generate synthetic dendritic
morphologies within the constraints provided by a given piece
of tissue (Torben-Nielsen and De Schutter, 2014). The synthetic
neuronal morphologies are grown both considering the context
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of large-scale circuit features and the interactions with other
growing dendritic trees in the vicinity.

Aćimović and colleagues study the relationship between
dendritic shape and network measures using statistical models at
both micro- and macroscopic scales albeit in a simplified setting
that allows analytical solutions to be obtained (Acimovic et al.,
2015). For analytical tractability, the small scale dendritic and
axonal shapes are described by density fields that predict network
motif distributions and can be compared with experimental data
(Song et al., 2005; Rieubland et al., 2014).

Brain disorders are often accompanied by alterations in the
higher level context in which neurons are embedded. Using a
model of structural plasticity, Butz et al. (2014) analyse how such
global structural changes can affect network connectivity. It is
argued that local homeostatic structural plasticity mechanisms
can cause changes in network topology.

With the parametric anatomical modeling (PAM) technique
by Pyka et al. (2014) the precise shape of macroscale anatomical
structures is incorporated into neural network models. Using
empirically-based mapping rules and connectivity kernels to
generate realistic pathway trajectories, spatial connectivity
matrices, and axonal conduction distances, Pyka and colleagues
make testable predictions for interlaminar connectivity
parameter distributions.

Finally, long-range connections require fast and reliable
axonal signal propagation and Neishabouri and Faisal (2014)
have studied a recently observed structural formation of
proteins and lipids known as lipid rafts (Pristerà et al.,
2012) in thin, unmyelinated axons in the peripheral nervous

system. Using realistic stochastic modeling of individual ion
channels, Neishabouri and Faisal show that while action potential
conduction in such systems was reliable, it did not offer any
obvious gain in either conduction velocity or metabolic cost over
a uniform ion channel density.

CONCLUSION

With these articles we hope the reader will appreciate that
understanding neural structure quantitatively and its functional
relations is more than a handle turning exercise of known
algorithms but a creative interdisciplinary endeavor of a variety
of approaches across different species, brain regions, and spatial
scales. Here, authors have managed to coax information out of
noisy data obtained at the extremes of methodological resolution;
they have discovered new ways of describing anatomical
organization; and arrived at novel ideas that when implemented
in a generative way provide an anatomical framework for
large-scale network models of the brain. To maximize this
creativity from limited funding, there is an obvious need to
provide an environment in which individual exploration, data
access, collaboration, and reproducibility is made much easier
through an open and shared informatics framework (Green et al.,
2015).
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Accurate 3D reconstruction of neurons is vital for applications linking anatomy and

physiology. Reconstructions are typically created using Neurolucida after biocytin

histology (BH). An alternative inexpensive and fast method is to use freeware such

as Neuromantic to reconstruct from fluorescence imaging (FI) stacks acquired using

2-photon laser-scanning microscopy during physiological recording. We compare these

two methods with respect to morphometry, cell classification, and multicompartmental

modeling in the NEURON simulation environment. Quantitative morphological analysis

of the same cells reconstructed using both methods reveals that whilst biocytin

reconstructions facilitate tracing of more distal collaterals, both methods are comparable

in representing the overall morphology: automated clustering of reconstructions from

both methods successfully separates neocortical basket cells from pyramidal cells

but not BH from FI reconstructions. BH reconstructions suffer more from tissue

shrinkage and compression artifacts than FI reconstructions do. FI reconstructions, on

the other hand, consistently have larger process diameters. Consequently, significant

differences in NEURON modeling of excitatory post-synaptic potential (EPSP) forward

propagation are seen between the two methods, with FI reconstructions exhibiting

smaller depolarizations. Simulated action potential backpropagation (bAP), however, is

indistinguishable between reconstructions obtained with the two methods. In our hands,

BH reconstructions are necessary for NEURON modeling and detailed morphological

tracing, and thus remain state of the art, although they are more labor intensive, more

expensive, and suffer from a higher failure rate due to the occasional poor outcome of

histological processing. However, for a subset of anatomical applications such as cell type

identification, FI reconstructions are superior, because of indistinguishable classification

performance with greater ease of use, essentially 100% success rate, and lower cost.

Keywords: morphology, reconstruction, cell-type classification, multicompartmental modeling, interneurons,

2-photon imaging, Neurolucida, neocortex

INTRODUCTION

Investigations of neuronal morphology have been a key feature

of neuroscience since the studies of Ramón y Cajal and before

(Ramón y Cajal, 1911; Senft, 2011). More recently, the drive to

explain the relationship between neural structure and function

has required more accurate and quantifiable models of neu-

ral morphology. Such reconstructions are vital across subfields

such as cell-type identification (Ascoli et al., 2008), connectomics

(Helmstaedter, 2013), computer modeling (Vetter et al., 2001;

Sarid et al., 2007; Gidon and Segev, 2012) and studies of morphol-

ogy itself (Cannon et al., 1999). Depending on the scope of the

study, different levels of accuracy, completeness, resolution and

throughput of reconstructions may be required; this is reflected

in choice of imaging and reconstruction method, from electron

microscopy to fluorescence imaging (FI). The development of

techniques such as biocytin labeling of physiologically recorded

cells, genetic labeling, 2-photon laser-scanning microscopy

(2PLSM) and digital analysis have greatly aided efforts to bridge

physiology and anatomy (Ascoli, 2006; Svoboda, 2011; Thomson

and Armstrong, 2011). Detailed reconstructions, in combination

with physiological data, have provided valuable insight into the

connectivity, structure and function of neural circuits (Douglas

and Martin, 2004). Increases in the number and accessibility of

reconstructed neurons promise new approaches; for example,

resources such as NeuroMorpho.Org allow researchers access to

a large pool of reconstructions from published studies, which can

be mined for further data (Ascoli et al., 2007). Use of such inter-

linked datasets of 3D reconstructions may be key in “big science”

initiatives such as the Human Brain Project, and for any project

wishing to simulate the brain (Markram, 2013).
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Currently, digital reconstructions at the single-cell and

microcircuit level are most often created manually using the

Neurolucida system with biocytin labeled cells (Halavi et al.,

2012). This said, neuronal reconstructions are increasingly based

on other methods; for example fluorescent markers have been

more frequently used over the past decade, and newer studies take

advantage of technologies such as 2PLSM and freeware recon-

struction software such as Neuromantic (Buchanan et al., 2012;

Halavi et al., 2012; Myatt et al., 2012). However, the use of dif-

ferent reconstruction methods may yield different results. For

example, BH based reconstructions can exhibit shrinkage and dis-

tortion when compared to reconstructions from 2PLSM FI (Egger

et al., 2008). As such, the choice of reconstruction method could

have a significant effect in itself on the results of e.g., cell classifi-

cation and computer modeling. Despite this, there has been little

quantification of the effects of method choice on morphologi-

cal measurements and computer simulations. Here, we compare

and contrast 16 reconstructions of the same 8 cells using the

currently most popular method—Neurolucida reconstruction of

biocytin-filled cells—and one increasing in use—reconstructions

from 2PLSM FI stacks. We identify the strengths and weak-

nesses of either method for specific applications, and we make

recommendations as to their appropriate use.

METHODS

ELECTROPHYSIOLOGY/SLICE PREPARATION

Procedures conformed to the UK Animals (Scientific Procedures)

Act 1986 and to the standards and guidelines set in place by

the Canadian Council on Animal Care, with appropriate licenses.

Mice aged P12-P20 were anesthetized with isoflurane and decapi-

tated. Brain dissection was performed in ice-cold artificial cere-

brospinal fluid (aCSF; in mM: NaCl, 125, KCl, 2.5; MgCl2,

1; NaH2PO4, 1.25; CaCl2, 2; NaHCO3, 26; Dextrose, 25; bub-

bled with 95% O2/5% CO2). Acute brain slices (visual cor-

tex, near-coronal, 300 µm thick) were prepared with a Leica

VT1200S vibratome, and incubated in 37◦C aCSF for up to

1 h, after which they were allowed to cool to room temper-

ature. Patch-clamp recordings were then performed in slices

in the whole-cell configuration at 32-34◦C. Patch pipettes (4–

6 M�) were produced with a P-1000 electrode puller (Sutter

Instruments) from medium-wall capillaries, and held internal

solution containing, in mM: KCl, 5; K-Gluconate, 115; K-HEPES,

10; MgATP, 4; NaGTP, 0.3; Na-Phosphocreatine, 10; for imag-

ing/reconstruction: 10–40 µM Alexa Fluor 594 and 0.5–1.0% w/v

Biocytin. Internal was adjusted with KOH to pH 7.2–7.4. Primary

visual cortex was targeted based on the presence of a granular

layer 4. All recordings were performed in layer 5 (L5), identi-

fied by the presence of large L5 pyramidal cell (PC) somata. L5

PCs were targeted based on a thick apical dendrite; interneu-

rons (INs) were targeted based on small, rounded somata,

and were verified by fast-spiking response to rheobase current

injection. PCI-6229 boards (National Instruments, Austin, TX)

were used for data acquisition, with custom software (Sjöström

et al., 2001) running in Igor Pro 6 (WaveMetrics Inc., Lake

Oswego, OR). All recordings were made in current clamp and

were filtered at 5–6 kHz and acquired at 10 kHz. Neurons were

patched at 400X or 600X magnifications using a SliceScope (see

below, Scientifica Ltd.) with infrared video Dodt contrast. All

recordings were made in the C57BL/6 strain. Electrophysiology

procedures were used solely to ascertain cell health, fill cells

with dyes and verify cell-type online by inspection of spiking

properties.

HISTOLOGICAL PROCESSING AND NEUROLUCIDA RECONSTRUCTION

After recording, slices were histologically processed to enable

biocytin-based reconstructions. Slices were fixed in 4%

paraformaldehyde/4% sucrose in phosphate-buffered saline

(PBS; pH 7.2–7.4) overnight at 4◦C. The following day, slices

were washed for 3 × 15 mins in PBS. Subsequently, slices were

permeabilized in pre-cooled 100% methanol at −20◦C for

5–10 mins. Slices were then washed in PBS a further 3 × 10 mins.

Endogenous peroxidases were blocked in 1% H2O2 for 15 mins

at room temp. Further 3 × 5 min PBS washes were performed.

Slices were then incubated with Vectastain ABC elite kit (Vector

Labs) overnight at 4◦C. The next day, slices were washed a

further 3 × 10 mins in PBS, and incubated with ImmPact SG

Peroxidase substrate (Vector Labs) to initiate staining reaction.

The staining was stopped when developed (around 10 mins) with

PBS. Further 3 × 5 min PBS washes were performed, and slices

were mounted/coverslipped in Mowiol (Sigma-Aldrich). Filled

neurons in mounted and coverslipped slices were reconstructed

using the Neurolucida system (MBF Bioscience) with a 100×

oil-immersion objective. Resulting Neurolucida DAT files were

converted to SWC using the freeware NLMorphologyConverter

(www.neuronland.org).

2-PHOTON IMAGING AND FLUORESCENCE RECONSTRUCTION

2PLSM (Denk et al., 1990) was performed using a workstation

custom built from a SliceScope (Scientifica) microscope fitted

with an MDU (Scientifica), with photomultipliers in epifluores-

cence configuration. Scanners were Thorlabs GVSM002/M 5-mm

galvanometric mirrors. A MaiTai BB (Spectraphysics) Ti:Sa laser

tuned to 800–820 nm for Alexa 594 excitation was used for exci-

tation. Uniblitz LS6ZM2/VCM-D1 shutters were used to gate the

laser, while laser power level was controlled manually using a

polarizing beam splitter (Melles Griot PBSH-450-1300-100 with

AHWP05M-980 half-wave plate) and monitored using a power

meter (Melles Griot 13PEM001/J) after a fraction of the beam was

picked off with a glass slide.

PCI-6110 boards (National Instruments) were used to acquire

imaging data using custom versions of ScanImage v3.5–3.7

(Pologruto et al., 2003) in Matlab (MathWorks, Natick, MA).

3D image stacks with slices of 512 × 512 pixels were acquired at

2 ms/line with z-steps of 1–2 µm. To reduce noise, each slice of

the stack was an average of three frames. Resulting TIFF stacks

were subsequently 3D-median filtered for inspection and for fig-

ures, but not for the reconstruction process. Stack brightness

and contrast were altered in MacBiophotonics ImageJ (www.

macbiophotonics.ca). Parameters were chosen to allow visual-

ization and manual tracing of neurites with the least possible

artificial enlargement of diameters. Registration of stacks was

performed manually in Neuromantic (http://www.reading.ac.uk/

neuromantic) and reconstruction of neurons was performed in

this environment.
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MORPHOLOGICAL ANALYSIS

Images of reconstructed cells (e.g., Figure 2) were rendered

using NEURON. Quantitative analysis of reconstructions in

SWC format was performed using either L-measure (Scorcioni

et al., 2008), for which details of each function are available at

http://cng.gmu.edu:8080/Lm/help/index.htm, or with our cus-

tom software qMorph written in Igor Pro, previously described

in Buchanan et al. (2012). In L-measure, results are for the entire

cell (axons and dendrites pooled together). The L-measure func-

tion “Length” refers to average compartment length, so in Table 1

we have referred to this as “Compartment length” for clarity.

Custom software was used to create density maps, convex hulls

and Sholl analysis (Sholl, 1953). Prior to analysis, morphologies

were rotated slightly (16.97 ± 5.36◦ on average) to align apical

dendrite/pial surface directly upward. Morphologies were aligned

on the soma for all analyses.

To create density maps, each compartment of a reconstruc-

tion was represented by a 2D Gaussian aligned on its XY center,

with its amplitude proportional to compartment length and its

sigma fixed to 25 µm. These Gaussians were summed to create

a smoothed 2D projection of morphology (density map). Axon

and dendrite were treated separately. Individual density maps

were peak normalized to enable averaging across reconstructions.

Symmetry in density maps is a result of mirroring of reconstruc-

tions, however analyses on individual cells were performed on

non-mirrored data. Ensemble maps for axon and dendrite were

normalized, assigned color lookup tables and merged with a log-

ical OR (e.g., Figure 2). Gamma correction was used to better

visualize weak densities.

Convex hulls were created for each reconstruction based on

2D projections of axonal and dendritic arbors, using the gift-

wrapping algorithm, also known as the Jarvis march (Jarvis,

1973). Ensemble hulls are convex hulls of all hulls of a certain

type, including mirror images. Sholl analysis was performed in

radial coordinates, moving in increasing 6.5 µm steps from r = 0,

with the origin centered on the cell soma, and counting the num-

ber of compartments crossing a given radius. Sholl diagrams are

averaged without normalization. Maximum value is the maxi-

mum number of crossings, whilst critical radius is the radius at

which the maximum number of crossings was found. Maximum

Sholl radius is the furthest radius with at least one crossing (the

enclosing radius).

Process diameters were calculated using L-measure to obtain

averages of cells (axon and dendrite measured separately).

Diameters of visually matched locations between reconstructions

of the same cells with different methods were measured manually

in Neuromantic.

STATISTICAL COMPARISONS

Results are reported as mean ± s.e.m. unless otherwise stated.

Comparisons were made using paired samples t-test for equal

means, unless otherwise stated. No corrections for multiple

comparisons were applied, as for the purposes of this paper we

feel it is more important and preferable to highlight potential

differences between methods than to overlook them. Statistical

tests were carried out in Igor Pro, Microsoft Excel and/or JMP

(SAS). At least three animals were used for each group analyzed,

and ncell = nanimal (Aarts et al., 2014). Significance levels p < 0.05,

p < 0.01 and p < 0.001 are denoted by one, two, and three stars

respectively.

DATA CLUSTERING

Multidimensional hierarchical data clustering was performed

on the first two principal components of standardized data

in JMP using Ward’s method and the Euclidean distance

as linkage metric; or normal mixtures iterative clustering,

which is based on the expectation-maximization algorithm

(http://www.jmp.com/support/help/Normal_Mixtures.shtml).

Prior to clustering, we performed principal component analysis

on all variables listed in Table 1. In order to achieve fair weighting

of morphological features in clustering, we identified pairs of

variables in the resulting correlation matrix where r > 0.8,

and excluded the variable which had the lower loading value

in PCA (Tsiola et al., 2003). Clustering of morphologies was

thus performed on the first 2 principal components of 27

measured parameters. From L-measure, we used Diameter,

Length, PathDistance, Branch_Order, Taper_1, Contraction,

Daughter_Ratio, Parent_Daughter_Ratio, Partition_asymmetry,

Bif_ampl_local, Helix, Fractal_Dim. From our custom software

qMorph, we used distance to center of axonal cloud, angle

to center of axonal cloud, most distal axonal compartment

x-coordinate, most distal axonal compartment y-coordinate,

most distal dendritic compartment x-coordinate, angle to most

distal dendritic compartment, axon hull x-center, axon hull

width, dendritic hull x-center, dendritic hull y-center, dendritic

hull width, axon Sholl max value, axon Sholl critical radius,

dendrite Sholl critical radius, axon Sholl maximum/enclosing

radius.

SIMULATIONS

All Simulations were performed in NEURON 7.2 (Hines and

Carnevale, 1997). Plots were created using a combination of

Matlab and Igor Pro.

To explore the differences in the electrical behavior of FI and

BH reconstructions of the same original cell, we studied active

back propagation of APs and passive forward propagation of

EPSPs along the apical dendrite of NEURON models based on

these reconstructions. During a simulation, the peak potential at

every segment along a path from the soma to the apical tuft was

recorded and was plotted against the distance of the recording

site from the origination point of the apical dendrite. The dis-

tance was measured as the Euclidean distance between the two

points in space, and a path from soma to the tip was picked

by hand.

Model initialization

In order to build a model from the reconstructions, the active

and passive membrane properties from the model of Stuart and

Häusser (2001) were used. The passive membrane properties

were initialized with specific membrane and axial resistivities

RM of 12,000 �cm2, RA of 150 �cm and a specific membrane

capacitance CM of 1 µF
cm2 . Active membrane conductances con-

stituted by mechanisms for fast sodium and slow potassium

currents were uniformly distributed over the membrane with

gNa = 30
pS

µm2 and gKv = 50
pS

µm2 in dendrites and at the soma.

To avoid end-effects the sodium conductance in basal dendrites
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Table 1 | Morphometry.

PC (Fl) PC (BH) P-value BC (Fl) BC (BH) P-value

(paired t-test; (paired t-test;

n = 5 cells) n = 3 cells)

MORPHOMETRIC MEASURE

X-Center of axonal density cloud (X) −7.20 ± 7.28 6.96 ± 15.58 0.2717 −13.95 ± 17.76 7.57 ± 16.53 0.2601

Y-Center of axonal density cloud (Y) −30.13 ± 30.50 −7.25 ± 44.83 0.4133 −29.09 ± 7.39 −57.21 ± 36.28 0.5317

Euclidean distance to axonal cloud center (µm) 59.60 ± 18.31 87.60 ± 18.94 0.2437 44.31 ± 9.65 75.88 ± 29.36 0.4555

Angle to axonal cloud center (◦) −15.59 ± 47.87 39.83 ± 45.46 0.2843 −116.37 ± 21.78 −73.23 ± 33.52 0.4680

X-Center of dendritic density cloud (X) 2.65 ± 4.79 −8.17 ± 6.28 0.0580 −19.78 ± 8.01 −9.28 ± 11.07 0.1320

Y-Center of dendritic density cloud (Y) 159.08 ± 32.28 189.65 ± 50.31 0.2116 12.21 ± 10.25 −4.40 ± 15.38 0.2179

Euclidean distance to dendritic cloud center (µm) 159.43 ± 32.23 190.55 ± 50.02 0.2007 31.24 ± 6.22 35.11 ± 4.56 0.7542

Angle to dendritic cloud center (◦) 89.05 ± 1.98 94.43 ± 2.79 0.0455 27.07 ± 69.31 33.41 ± 61.84 0.8199

Most distal axonal compartment (X) −31.83 ± 18.68 196.39 ± 184.98 0.2777 −100.11 ± 48.27 −19.63 ± 158.43 0.6853

Most distal axonal compartment (Y) 259.49 ± 154.65 217.77 ± 182.32 0.7911 −188.26 ± 3.11 −284.15 ± 158.60 0.6911

Euclidean distance to most distal axonal

compartment (µm)

394.73 ± 48.99 580.31 ± 69.04 0.0241 229.51 ± 13.28 468.62 ± 93.33 0.1523

Angle to most distal axonal compartment (◦) 58.00 ± 37.47 44.22 ± 29.24 0.7170 −115.07 ± 12.50 −79.13 ± 35.37 0.3929

Most distal dendritic compartment (X) −65.98 ± 43.90 −130.45 ± 49.65 0.3602 15.03 ± 63.92 −52.30 ± 119.22 0.5273

Most distal dendritic compartment (Y) 537.10 ± 43.13 556.52 ± 70.89 0.6946 55.69 ± 94.62 37.19 ± 107.44 0.6367

Euclidean distance to most distal dendritic

compartment (µm)

547.91 ± 44.08 581.67 ± 67.72 0.4536 216.10 ± 5.18 299.08 ± 12.59 0.0135

Angle to most dital dendritic compartment (◦) 97.08 ± 4.45 103.57 ± 6.07 0.4061 3.65 ± 49.96 18.47 ± 61.80 0.5366

Axon hull X center (X) −9.68 ± 13.67 48.22 ± 39.77 0.1124 −16.11 ± 18.00 −4.28 ± 39.89 0.7269

Axon hull Y center (Y) 5.14 ± 56.98 −21.62 ± 57.86 0.5231 −42.23 ± 8.59 −90.65 ± 57.26 0.5355

Axon hull width (µm) 348.21 ± 39.72 672.47 ± 55.36 0.0036 357.46 ± 12.82 572.72 ± 30.10 0.0106

Axon hull height (µm) 587.62 ± 58.75 751.04 ± 171.29 0.2808 281.82 ± 10.25 475.71 ± 121.74 0.3560

Dendrite hull X center (X) −5.38 ± 9.99 −8.95 ± 12.44 0.6333 −15.75 ± 12.70 −21.95 ± 23.87 0.7363

Dendrite hull Y center (Y) 198.48 ± 25.84 203.68 ± 47.22 0.8349 25.26 ± 11.10 17.30 ± 16.88 0.6852

Dendrite hull width (µm) 284.90 ± 11.56 392.02 ± 70.34 0.1876 299.56 ± 11.55 398.70 ± 17.58 0.0440

Dendrite hull height (µm) 672.59 ± 48.90 736.56 ± 80.09 0.3240 291.05 ± 28.34 335.77 ± 52.82 0.4017

Sholl maximum value (axon) 16.60 ± 2.50 15.00 ± 1.90 0.5381 42.33 ± 8.69 43.67 ± 3.14 0.8995

Sholl critical radius (axon; µm) 96.05 ± 8.24 102.85 ± 28.52 0.8590 80.75 ± 11.40 106.25 ± 6.58 0.3745

Sholl maximum value (dendrite) 36.20 ± 1.62 36.80 ± 4.94 0.8738 21.00 ± 1.61 21.67 ± 2.91 0.8259

Sholl critical radius (dendrite; µm) 45.05 ± 4.96 48.45 ± 12.72 0.7174 49.58 ± 12.22 60.92 ± 13.35 0.7618

Maximum/enclosing Sholl radius (axon; µm) 388.45 ± 49.52 573.75 ± 67.68 0.0207 225.25 ± 13.17 466.08 ± 93.45 0.1535

Maximum/enclosing Sholl radius (dendrite; µm) 541.45 ± 44.93 578.85 ± 67.45 0.4057 211.08 ± 4.39 296.08 ± 11.61 0.0131

L–MEASURE FUNCTION

Soma_Surface (µm2) 317.40 ± 56.87 138.98 ± 19.97 0.0320 240.08 ± 19.11 132.67 ± 24.57 0.1240

Width (µm) 306.76 ± 21.79 537.38 ± 80.28 0.0775 301.10 ± 18.59 406.52 ± 17.76 0.0237

Height (µm) 684.17 ± 39.19 807.29 ± 89.55 0.1152 298.58 ± 12.11 484.32 ± 153.62 0.3717

Depth (µm) 83.00 ± 4.25 57.20 ± 8.68 0.0078 80.33 ± 6.77 46.61 ± 6.40 0.1075

Diameter (µm) 1.49 ± 0.15 0.83 ± 0.02 0.0078 1.03 ± 0.07 0.60 ± 0.02 0.0409

Compartment length (µm) 6.16 ± 0.58 5.12 ± 0.55 0.1269 4.69 ± 0.42 3.54 ± 0.43 0.1490

EucDistance (µm) 182.06 ± 20.44 219.98 ± 35.73 0.1189 89.66 ± 4.42 120.49 ± 20.96 0.2700

PathDistance (µm) 245.02 ± 24.46 296.27 ± 48.19 0.1207 187.87 ± 14.84 259.50 ± 48.38 0.3262

Branch_Order (–) 6.02 ± 1.43 5.93 ± 1.37 0.7786 5.22 ± 1.37 7.70 ± 2.17 0.2244

Taper_1 (–) 0.04 ± 0.01 0.04 ± 0.00 0.3019 0.03 ± 0.01 0.02 ± 0.00 0.6474

Contraction (–) 0.93 ± 0.00 0.91 ± 0.01 0.2746 0.90 ± 0.01 0.91 ± 0.01 0.7058

Daughter_Ratio (–) 1.75 ± 0.10 1.72 ± 0.10 0.8576 1.68 ± 0.16 1.38 ± 0.13 0.2962

Parent_Daughter_Ratio (–) 0.97 ± 0.02 0.86 ± 0.02 0.0213 1.04 ± 0.02 0.93 ± 0.01 0.0731

Bif ampl_local (◦) 69.24 ± 3.01 74.57 ± 7.23 0.3557 75.40 ± 2.77 88.84 ± 3.75 0.0376

Helix (µm) 0.00 ± 0.00 0.00 ± 0.00 0.1138 0.00 ± 0.00 0.00 ± 0.00 0.6200

Fractal_Dim (–) 1.02 ± 0.00 1.02 ± 0.00 0.5532 1.03 ± 0.00 1.02 ± 0.01 0.4992

Morphological measures used for comparison of reconstruction methods (Figures 2, 3) in pyramidal and basket cells. Measures were generated using either in-

house software (see Methods) or L-measure (listed as function names from the software to reduce ambiguity). Comparisons with significance levels p < 0.05 and

p < 0.01 are highlighted in green and yellow respectively. (–) indicates unit less measures such as counts and ratios.
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and apical oblique dendrites was reduced to gNa = 8
pS

µm2 . In den-

drites, all conductances and the capacitance were multiplied by 2

to account for spines. The axon was treated as completely myeli-

nated without spike initiating regions with gNa = 10
pS

µm2 , and

gKv = 0
pS

µm2 and a reduced CM of 0.04 µF
cm2 .

Backpropagation of APs

To standardize across reconstructions, a rheobase spike was gen-

erated and recorded. All backpropagation simulations were per-

formed by replaying this spike at the soma. For spike generation,

a spike-initiating hillock was added to the reconstruction PC

FI 2 (20130205) with gNa = 10000
pS

µm2 and gKv = 500
pS

µm2 . The

rheobase spike was then triggered by injection of a 5 ms current

of 1.0215 nA.

Forward propagation of EPSPs

For EPSP generation, an alpha-synapse with a τrise of 0.3 ms, a

τfall of 3 ms and a gmax of 5 nS was used. This was inserted at a

dendritic location with prominent surrounding morphology, to

ensure that it could reliably be positioned at an identical location

for both the BH and the FI reconstructions of the same neuron.

Length constants

Length constants were determined by injecting a 300-ms-long

constant current of 50 pA at matched locations (as with the

EPSPs above). When steady state was reached (we arbitrarily

picked t = 149 ms), the membrane voltage was plotted vs. dis-

tance from injection site. Length constants λ, were measured by

fitting exponentials to these plots in Igor PRO.

RESULTS

MORPHOMETRIC COMPARISON OF RECONSTRUCTION METHODS

Neocortical L5 pyramidal cells (PCs) and basket cells (BCs) were

targeted based on soma shape and were subsequently identified by

spiking properties (data not shown) and morphology. We filled

cells with both biocytin and Alexa 594, and reconstructed using

Neurolucida software on BH tissue and Neuromantic software

on 2PLSM FI stacks, resulting in two morphological recon-

structions of each cell (see Methods and Figure 1). Subjectively,

reconstructions appeared similar with both methods, although

BH allowed tracing of horizontal axonal/dendritic collaterals for

longer distances (Figure 2A), perhaps because thin distal pro-

cesses dye-filled so slowly that BH but not FI distal tips were

readily visualized. In addition, BH involves an amplification step

that further improves visualization of poorly labeled processes.

PCs were identified by their characteristic apical dendrite, and

their axons were largely confined to L5 with the occasional

ascending process. BCs were characterized by axonal and den-

dritic arbors ramifying extensively within L5, with few processes

venturing outside this layer.

We quantitatively analyzed morphology with L-measure, a

freely available software for morphological analysis (Scorcioni

et al., 2008). Comparison of measurements for entire cells (see

Table 1) revealed a wider arbor width for BH reconstructions of

BCs (p < 0.05), and smaller depth (p < 0.01) and somatic sur-

face area (p < 0.05) for BH reconstructions of PCs (Table 1).

Whilst a wider arbor width for BH BC reconstructions likely

reflects the greater ease of tracing distal collaterals with this

method, the smaller depth and somatic surface area of BH PC

reconstructions are likely due to shrinkage during fixation and

differences in software soma modeling, respectively.

Examination of branch-level and bifurcation-level measures

(Table 1, see Methods), using L-measure highlighted the gen-

eral similarity of reconstructions, as most metrics were indis-

tinguishable (Table 1). That said, parent-daughter ratio, defined

as the ratio of process diameter between daughter and parent

at each bifurcation point, was significantly lower for BH PC

reconstructions (p < 0.05). Local bifurcation amplitude (angle

between two new branches at a bifurcation) was also significantly

larger for BH BC reconstructions (p < 0.05; Table 1).

When quantifying morphology, it is often useful to sepa-

rately analyze axonal and dendritic segments. For example, axonal

morphology is thought to be more important than dendritic mor-

phology for IN classification (Markram et al., 2004; Ascoli et al.,

2008; DeFelipe et al., 2013). As previously described (Buchanan

FIGURE 1 | Flowchart indicating typical reconstruction steps with

either method. BH reconstructions take longer due to histology and

require multiple setups for recording and reconstruction with

Neurolucida. As FI can be monitored online during 2PLSM image

acquisition, there is in effect a 100% yield of complete

reconstructions, whereas with BH, histological processing occasionally

fails or is incomplete, in our hands giving a yield of around 50–80%

(see main text).
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FIGURE 2 | The BH approach enables better reconstruction of thin distal

arbors. (A) Representative reconstructed morphology pairs of a single

pyramidal cell (PC; left) and basket cell (BC; right) generated with

fluorescence imaging (FI) or biocytin histology (BH). Reconstructions

appeared qualitatively similar, but BH allowed for tracing of longer collaterals.

There was also some expansion of BH reconstructions in XY, perhaps due to

compression (see main text). (B) Density maps indicate average distribution

of axonal (yellow) and dendritic (magenta) arbors, whilst convex hulls (dotted

lines) show maximum extent. Reconstructions are aligned on soma. For FI

reconstructions, the imaged area is represented by a dotted rectangle,

outside of which any arbors would have been missed. Axonal convex hull

width was larger in BH reconstructions for PCs (p < 0.01) and BCs (p < 0.01),

as was dendritic hull width for BCs (p < 0.05). Distance to furthest axonal

compartment was larger for BH reconstructions of PCs (p < 0.05), whilst

distance to furthest dendritic compartment was larger for BH reconstructions

of BCs (p < 0.05). Angle to relative dendritic center was larger in BH PC

reconstructions (p < 0.05). Other measures were not significant. See Table 1

and Methods for full details. (C) Sholl analysis (see Methods) of each cell

type/reconstruction method. Maximum value and critical radius were not

significant for any comparison, however furthest radius with at least one

crossing was significantly larger in BH reconstructions of PCs for axon

(p < 0.05) and in BH reconstructions of BCs for dendrite (p < 0.05). Yellow

and magenta denote axon and dendrite crossings, with paler hues indicating

±SEM. See Table 1 for details.

et al., 2012), we also analyzed morphology by comparison of

axonal and dendritic convex hulls and density maps using custom

software (Figure 2B; Table 1; see Methods). Whilst reconstruc-

tion with BH allowed tracing of more distal collaterals, reflected

by significant differences in mean axon hull width (p < 0.01)

and distance from soma to the furthest axonal compartment

(p < 0.05) for PCs, and both axonal (p < 0.05) and dendritic

(p < 0.05) hull width and distance from soma to the furthest

dendritic compartment (p < 0.05) for BCs, most other measures

derived this way were indistinguishable between reconstruction

methods (for full detail see Table 1). This suggests that FI and

BH may perform similarly for cell classification and morphome-

try that does not rely chiefly on thin distal tips of arborizations. In

addition, indistinguishable measures included the relative density

and hull centers of axonal and dendritic arbors, indicating that

both methods are in fact comparable in revealing the majority of

axonal and dendritic morphology.

Angle to the center of the dendritic density cloud was sig-

nificantly but only slightly different between FI and BH recon-

structions for PCs (p < 0.05; Table 1), but not for BCs. Although

significant, this may be a spurious finding, since reconstructions

were manually aligned to point straight up, which may introduce

human error and a bias. However, this remained significant even

when we tried to carefully account for any bias, so we report this

as is.

Sholl analysis (Sholl, 1953) is a classical quantitative method

used to analyze neuronal morphology based upon the number

of crossings made by processes over usually soma-centered con-

centric circles of increasing radius. Sholl analysis indicated that

both methods yielded largely similar reconstructions (Figure 2C);

differences in maximum value and critical radius (see Methods)

were not significant for either cell type (Table 1). However, the

furthest radius with at least one crossing was larger with BH for

axon but not dendrite in PCs, and dendrite but not axon for
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BCs (Table 1). This probably reflects both the capacity to visual-

ize more distal processes with BH, and shrinkage or compression

of BH-processed slices after coverslipping. Compression results in

smaller depth of BH reconstructions and to expansion in the XY

axes (see Table 1).

Overall, whilst BH allows better reconstruction of very distal

processes, seen in e.g., wider arbor extents and maximum Sholl

radii, reconstructions were largely indistinguishable between

methods (Table 1), indicating that both methods are suitable for

analysis of morphology. Although FI/2PLSM based reconstruc-

tions are limited by the extent of imaging captured, it may be

possible to recover more distal processes using this method by

capturing images from a wider area, even if there does not appear

to be fluorescence signal when viewing online (see area imaged

for FI reconstructions, Figure 2B).

When investigating neural circuits, it is vital to properly

identify anatomical cell type as, for example, synaptic features

may differ widely at connections between different cells (Ascoli

et al., 2008; Blackman et al., 2013; DeFelipe et al., 2013). We

explored the impact of reconstruction method on cell classifica-

tion using multidimensional hierarchical clustering of all recon-

structions from both methods (see Methods and Figures 3A,B).

This approach independently segregated reconstructions into two

major clusters, each containing exclusively BCs or PCs. Within

the two BC and PC clusters, however, reconstructions from BH

or FI did not further segregate into distinct sub-clusters. Taken

together, these results suggest that both reconstruction methods

produce enough detail to reliably classify different neuronal types,

while at the same being so similar in terms of outcome that the

choice of method does not impact cell classification appreciably.

This said, a pair of reconstructions of the same cell using BH

and FI formed a nearest-linkage neighbor in only one case (BC

2; Figure 3A), highlighting that whilst classification performance

was similar between methods, there were still appreciable mor-

phological differences between reconstructions of the same cell

completed with BH or FI. Clustering of all reconstructions into

two groups using the expectation-maximization algorithm (nor-

mal mixtures clustering in JMP) also separated PCs and BCs with

no errors (Figure 3B). Whilst clustering of morphologies resulted

in two major cell classes here, it should be noted that both PCs

(Groh et al., 2010) and BCs (Markram et al., 2004) may consist of

further subtypes.

RECONSTRUCTIONS FROM 2PLSM HAVE LARGER PROCESS DIAMETER

When creating 3D reconstructions of neurons to be used for e.g.,

computer modeling, it is important for these to be as accurate as

possible, as even quite subtle structural differences can have quite

dramatic effects on biophysical properties (Vetter et al., 2001;

Schaefer et al., 2003). For example, differences in process diam-

eter between reconstructions will affect membrane surface area,

process volume, number of ion channels, axial resistance, length

constant, and in turn propagation of electrical signals. Changes

in laser power during acquisition of fluorescence images and

image processing prior to reconstruction when using 2PLSM/FI

may have affected reconstructed process diameter. Comparison of

reconstructions based on FI or biocytin histology (BH) revealed a

significant trend for those created using 2PLSM/FI to have larger

process diameter than those based on BH (Figure 4).

We compared differences in average process diameter between

the two reconstruction methods using L-measure. Diameter was

consistently significantly larger for reconstructions made using

FI for axonal and dendritic compartments of both cell types

(Figure 4B). Differences in process diameter between reconstruc-

tion methods were investigated in more detail by comparing the

diameter of many individually matched compartments for each

PC dendrite using manual measurements (Figures 4C,D). All but

FIGURE 3 | BH and FI reconstruction methods have similar overall

morphometric performance. (A) Hierarchical clustering of the first 2

principal components of 27 morphological variables (see Methods)

independently segregated all reconstructed cells into two major clusters,

each exclusively containing PCs or BCs. Further subclusters did not

segregate reconstructions from FI or BH. Taken together, this indicates their

similarity for morphological cell classification. Each label on the y-axis is a

reconstruction, with coloring indicating cell and method type. Linkage

distance is plotted on the x-axis, indicating the level of dissimilarity between

clusters. (B) In agreement, expectation-maximization clustering also

separated BCs from PCs. Crosses denote BCs, and dots PCs. As in (A),

coloring indicates reconstruction method (blue or yellow = FI; green or red =

BH). Ovals denote the region where 90% of observations in each cluster are

expected to fall.
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FIGURE 4 | FI reconstructions suffer from systematically enlarged

process diameters. (A) Two reconstructions of the same cell using FI

(top) and BH (bottom). Inset: zoom highlighting differences in diameter for

dendrite (black) and axon (red). Arrows in inset: example of matched

dendritic locations, quantified in Figures 3C,D. (B) Average differences in

process diameter for PCs and BCs using either method. FI reconstruction

resulted in consistently larger diameter for PCs (n = 5 cell pairs, FI vs. BH;

axon 1.20 ± 0.14 µm vs. 0.67 ± 0.04 µm, p < 0.05; dendrite

1.65 ± 0.17 µm vs. 0.84 ± 0.03 µm, p < 0.01) and BCs (n = 3 cell pairs;

axon 0.89 ± 0.04 µm vs. 0.55 ± 0.04 µm, p < 0.05; dendrite 1.40 ±

0.16 µm vs. 0.71 ± 0.03 µm, p < 0.05). Average diameters for entire cells

are found in Table 1. (C) Differences in diameter for manually matched

dendritic locations using either method (see Figure 3A). All but one

matched measurements were plotted above the line of equality, reflecting

the tendency of FI reconstructions to have larger process diameter (PCs;

n = 5 cell pairs; n = 25 segment pairs; FI vs. BH Diameter; mean 1.80 ±

0.15 µm vs. 0.91 ± 0.09 µm; p < 0.001). (D) The degree of agreement

between the two methods is ascertained using a Bland-Altman or Tukey

mean-difference plot (Bland and Altman, 1986). FI diameter—BH diameter

is plotted against averaged process diameters, (FI+BH diameter)/2. Middle

dotted line indicates a positive mean difference (0.89 ± 0.13 µm), showing

that FI reconstructions consistently suffer from exaggerated process

diameters. The upper and lower dotted lines indicate ±2SD and the 95%

limits of agreement (SD = 0.64 µm). Linear regression (not shown)

identified a significant slope (0.56; p < 0.05), showing that FI reconstruction

overestimates diameters more for larger diameters. ∗p < 0.05, ∗∗p < 0.01.

one of the matched segments had a larger diameter when recon-

structed from 2PLSM stacks (n = 25; n = 5 cells; FI vs. BH,

1.80 ± 0.15 µm vs. 0.91 ± 0.09 µm; p < 0.001). Taken together,

these results show that FI reconstructions consistently exagger-

ate compartment diameter, on average and also typically for

individual compartments.

EFFECT OF RECONSTRUCTION METHOD ON SINGLE-CELL MODELING

A major use of 3D reconstructions of neurons is in single-cell

and network modeling, using software such as NEURON (For

review, see Brette et al., 2007). Differences between reconstruction

methods, particularly in features such as process diameter, are

expected to have considerable effects on the results of such mod-

eling (Vetter et al., 2001; Tsay and Yuste, 2002; Acker and White,

2007). Complete morphological reconstruction may be vital for

accurate simulation of features such as PC coincidence detection

(Schaefer et al., 2003) or responses to stimulation such as whisker

deflection (Sarid et al., 2013). To quantify these effects, we exam-

ined the effect of reconstruction method choice on single-cell

modeling of action potential backpropagation (bAP) and EPSP

forward propagation in the NEURON simulation environment

(Figure 5), comparing models of the same cells based on mor-

phologies generated using either BH or FI.

To investigate bAP simulations, we generated a rheobase spike

at the soma of each model and recorded the resulting peak poten-

tials in the apical dendrite at given distances away from the soma

(Methods, Figures 5A,B). Interestingly, whilst models based on

FI reconstructions exhibited a small trend for smaller depolariza-

tions, this was indistinguishable between methods at all locations

(Figure 5B). The effect of reconstruction method on modeling

may thus be subtle and dependent on which aspects one is investi-

gating. We should also point out that these findings might depend

on the choice of model parameters; modifying the degree of den-

dritic excitability, for example, is not unlikely to bring out other

differences.

Next, we investigated simulation of EPSP forward propa-

gation. Here, we generated simulated EPSPs using the same

parameters (see Methods) at matched locations on FI and BH

reconstructions of the same cells, and measured resulting peak

depolarizations across the morphology. Ensemble averaging of
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FIGURE 5 | FI reconstructions introduce errors in multicompartmental

computer models. (A) Sample reconstructions of the same cell indicating

peak potentials resulting from of simulated back-propagating action

potentials (bAPs) (top row) or forward-propagating EPSPs (bottom row). FI

and BH reconstructions are on the left and right, respectively. Whilst bAP

simulations are relatively similar, EPSP simulation results in smaller

depolarization and local differences for the FI reconstruction. Arrows

indicate the location of simulated synapses. Distal branches of

morphologies are slightly cropped for clarity. (B) Ensemble averages of

bAPs in PCs reconstructed using FI or BH, measured as peak amplitude at

a given distance from the origin of the apical dendrite at the soma. Peak

voltages were indistinguishable between methods at all distances. Vertical

bars denote ± SEM. (C) Distance-normalized ensemble average of

simulated forward-propagating EPSP amplitude in PCs reconstructed with

either method shows a striking reduction of depolarizations in FI

reconstructions. Distance from soma is normalized to the distance of the

simulated synapse. Region of significance is indicated by black bar (paired

t-test, p < 0.05).

results revealed that simulations in FI reconstructions yielded

smaller depolarizations (Figure 5C; areas where p < 0.05 indi-

cated by bar). As EPSPs were generated at different distances

from the soma in different cells, normalization of results to the

somato-synaptic distance revealed the differences better, with FI

reconstructions generating considerably smaller depolarizations

(peak potential; BH vs. FI; 15.65 ± 1.63 mV vs. 6.27 ± 0.33 mV;

p < 0.01; other areas of significance where p < 0.05 indicated by

black bar in Figure 5C).

As systematic differences in process diameter may be expected

to affect the spatial rate of voltage decay for both bAPs and

EPSPs (Segev, 1998), we measured the length constant in each

reconstruction (see Methods) and compared this between BH

and FI. Surprisingly, the length constant did not vary sig-

nificantly between methods (λBH = 308.518 ± 46.319 µm vs.

λFI = 321.128 ± 65.185 µm, p = 0.80), despite FI systematically

overestimating process diameters (see above). Presumably, this

was because of other non-systematic differences between recon-

struction methods and general variability that overshadowed the

effect of diameter on length constant.

Overall, whilst differences in simulated bAPs were marked

but not systematically different, there was a dramatic and

consistent difference between methods in EPSP simulation, with

FI reconstructions exhibiting smaller depolarizations in response

to the same simulated synaptic stimulation. We therefore

conclude that FI reconstructions are generally not suitable for

multicompartmental computer modeling.

DISCUSSION

In this paper, we have quantified the effect of reconstruction

method choice on morphometry and computer modeling by

direct comparison of cells reconstructed using two commonly

used methods. The one method, BH, is well established since

many years back and is widely considered state of the art, for

several good reasons. The other method, FI, is rapidly gaining

in popularity, which is why it is important to know its pitfalls

as well as its advantages in comparison to BH. By comparing

these two methods, we have identified strengths and limitations of

either method for such purposes, and we can in turn make recom-

mendations as to the suitability of each for different applications.

According to our results, FI is as a rule of thumb preferable for

cell-type classification scenarios, whilst BH is superior for multi-

compartmental modeling and other applications requiring highly

detailed tracing of thin arborizations with accurate diameter

measurements.

QUANTITATIVE MORPHOLOGICAL ANALYSIS AND CELL-TYPE

CLASSIFICATION

One of the most common uses of 3D reconstructions such as

those compared here is analysis of morphology, particularly in

Frontiers in Neuroanatomy www.frontiersin.org July 2014 | Volume 8 | Article 65 | 17

http://www.frontiersin.org/Neuroanatomy
http://www.frontiersin.org
http://www.frontiersin.org/Neuroanatomy/archive


Blackman et al. Comparison of neuronal reconstruction methods

order to establish cell type. For example, axonal morphology is

often cited as the most important determinant of cortical IN cell

type (Markram et al., 2004; Wang et al., 2004; Toledo-Rodriguez

et al., 2005; Ascoli et al., 2008). Increasingly, many properties of

neural circuits such as synapse type and ion channel expression

are found to be dependent on anatomical cell class (Blackman

et al., 2013); therefore it is vital to accurately verify morpho-

logical type in any study where there may be cell-type-specific

differences.

Our results indicate that FI and BH reconstructions are equal

in providing an accurate representation of local morphology, with

most morphological measures being indistinguishable between

the two (Table 1). Unsupervised clustering results in successful

separation of cell type in both methods (Figure 3). Whilst both

methods appear to generate equivalent results for this purpose,

FI reconstructions may confer a number of benefits that make

them preferable in cell classification. Firstly, FI reconstructions,

due to the ability to monitor FI online during electrophysiology

experiments, effectively have a 100% yield for most purposes,

as compared to the 50-80% yield of BH in our hands, which

is dependent on post-recording histology (Figure 1). The lower

yield of BH is highly dependent on the experimenter’s experience

and training with this state-of-the-art method, as well as on other

factors such as cell type and age of the brain tissue. Although

the yield can clearly be improved with experience and training, it

will never reach 100%. FI-based reconstructions, however, are in

our hands quite straightforward and are in fact an excellent train-

ing opportunity for volunteering undergraduate students who are

just starting working in a lab. In addition, with FI, cell type may

also be subjectively identified online whilst recording, increas-

ing the throughput of electrophysiology experiments targeting

a particular cell type. Furthermore, the unwanted distortions

and shrinkage seen with BH reconstructions are avoided when

using FI.

With all methodological comparisons, it is important to con-

sider the costs involved. As FI reconstructions do not require

histological processing or a dedicated setup for reconstruction,

and image stacks can be acquired at the same time as electrophys-

iological recording, the time to generate a single reconstruction

is much less than with BH, which can translate into saving run-

ning costs. Furthermore, FI reconstructions require less auxiliary

equipment and use of consumables than BH reconstructions,

resulting in lower cost per reconstruction. FI reconstructions do,

however, require the initial high setup cost of the laser-scanning

microscope, so this reasoning only applies for labs that already

have access to 2PLSM or to confocal imaging. In our eyes, these

benefits, together with the almost equal performance of FI and

BH in revealing local morphology, make FI the preferred method

in studies focusing on cell-type classification. This said, some cell

types may extend over much larger areas than those described

here (Lichtman and Denk, 2011). Whilst increasing fluorophore

concentration, fill time and area imaged may increase the visi-

ble extent of FI reconstructions (see Figure 2), our results show

that BH reconstructions reveal more distal processes (Table 1;

e.g., hull width, max. Sholl radius, etc.), and therefore may

be preferable if reconstruction over large distances is required.

Even so, FI of axonal arborizations ranging several millimeters

has successfully been carried out (see for example Pressler and

Strowbridge, 2006; Williams et al., 2007), suggesting that this

problem is possible to overcome by fine-tuning the FI reconstruc-

tion method. Mapping connectivity on larger scales using FI may

be possible with whole-brain methods such as serial two-photon

tomography (Ragan et al., 2012; Osten and Margrie, 2013).

MULTICOMPARTMENTAL COMPUTER MODELING

Another major use of 3D reconstructions is in single-cell

multicompartmental modeling. In this application, accuracy is

paramount; even subtle differences in morphology may have con-

siderable effects on both passive and active properties of neurons

and models (Segev et al., 1995; Vetter et al., 2001). For exam-

ple, dendritic morphology is thought to play a key role in the

level of coupling in cortical pyramidal cell coincidence detec-

tion (Schaefer et al., 2003). Our results reveal that differences in

morphology resulting from reconstruction method choice alone

have large and significant effects on simulation of EPSP prop-

agation. FI reconstructions consistently exhibit much smaller

depolarizations than BH reconstructions (Figure 5).

The major contributing factor to these results is likely the large

differences in dendritic diameter obtained between the two meth-

ods. Differences in measured process diameter alone would affect

models of e.g., synaptic efficacy (Holmes, 1989) and voltage atten-

uation (Stuart and Spruston, 1998). Our results show that FI

reconstructions consistently and significantly have larger process

diameters, both on average and for matched compartments. As

both BH and FI methods allow visualization of spines and axonal

varicosities, a lack of spine detection is unlikely to be the cause

of the larger diameters seen in FI. This finding is not unexpected,

however, since increasing the laser power during acquisition of

2PLSM fluorescence images typically results in an apparent thick-

ening of dendrites and axons. Neurite diameters obtained with

2PLSM are also subjectively affected by brightness/contrast set-

tings during the reconstruction procedure, with a tendency for

broadening of diameters when adjusting look-up tables to com-

pensate for weak fluorescence. This problem seems much smaller

with BH, presumably because the contrast produced with the his-

tological amplification process is generally quite sufficient in and

of itself. Due to the wavelength used, the theoretical resolution

limit of light microscopes is also better than that of 2PLSM. This

difference is compounded by the typical usage of high numerical

aperture oil-immersion objectives with BH.

Although we have not tested this, we suspect that the neurite

thickening problem might be considerably smaller with confocal

microscopy than with 2PLSM, since its resolution limit is much

better. It would be interesting to see a side-by-side comparison of

FI reconstructions from 2PLSM and confocal microscopy stacks.

As diameter appears to be the main contributing factor for

differences in computer modeling between FI and BH recon-

structions of the same cells, it may be possible to correct for

this, assuming that the differences are systematic. Preliminary

results using a correction factor determined from differences

in diameter of matched compartments suggest that it is pos-

sible to recover EPSP amplitudes in FI reconstructions to the

levels seen with BH by manipulating diameter alone (data not

shown). However, whilst it may be possible to determine specific
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correction parameters for a particular setup and experimenter

by directly comparing diameter differences, these parameters

may not be the same in alternate situations. For example, wide

inter-experimenter differences in diameter and simulation results

have been described when reconstructing from multiphoton data

(Losavio et al., 2008). Another important factor to consider is that

without technically demanding dendritic recordings, it is diffi-

cult to ascertain completely the ground truth, i.e., which of BH

or FI is closer to reality. This said, the higher resolution and bet-

ter signal-to-noise ratio found with BH justifies its position as a

gold standard and as such BH reconstructions can be considered

a benchmark or gold standard.

Because of the factors described above, and the large differ-

ences between EPSP modeling with FI and BH reconstructions,

we recommend the use of BH in all multicompartmental model-

ing applications. This is further supported by the greater morpho-

logical detail revealed in BH reconstructions; it has been shown

that even small differences in dendritic arborization may have

large effects on the physiological properties of pyramidal cells

(Schaefer et al., 2003), and simulations of such properties should

therefore be based on the most accurate and complete morpho-

logical reconstructions possible. In contrast to neurite diameters

and number of branches, the distortions and shrinkage seen with

BH reconstructions are not likely to affect simulations much, and

are therefore less of an issue for modeling as opposed to in mor-

phometric applications (Schaefer et al., 2003). Until resolution-

limit breaking FI reconstruction methods (see below) become

commonplace, BH-based reconstructions are likely to remain

state of the art for all multicompartmental computer-modeling

applications.

ALTERNATIVE APPROACHES AND IMPROVEMENTS

In this study we have chosen to focus on two commonly used

methods to reconstruct detailed morphologies of single neu-

rons, in order to provide a broadly applicable comparison of

their strengths and weaknesses. However, a range of alternative

methods are becoming increasingly available which may offer

means to address some of the problems identified here, although

these are often far more expensive, technically demanding and

time-consuming.

For FI reconstructions, a key issue identified in this study is a

potential lack of accuracy at levels of high detail, due to scatter-

ing of laser light in brain tissue, effects of image processing and a

worse resolution limit than light microscopy. FI under the diffrac-

tion limit is however possible with super-resolution techniques

such as structured illumination microscopy (SIM) or stimulated

emission depletion (STED) (Hell, 2007; Ding et al., 2009; Evanko,

2009) and such methods potentially offer the ability to produce

reconstructions at a detail suitable for accurate NEURON mod-

eling using 2PLSM, although this would incur higher costs. An

alternative way to create highly detailed reconstructions from FI

is to use microinjection of fluorescent dyes in fixed tissue fol-

lowed by confocal microscopy with deconvolution, although with

this method anatomy cannot be combined with electrophysiol-

ogy (Dumitriu et al., 2011). As noted above, confocal FI imaging

may in general produce reconstructions with different properties

to the 2PLSM derived reconstructions used here.

In contrast, a potential shortcoming of BH reconstructions

identified in this study is the propensity to be affected by tis-

sue distortions and deformations, particularly in the z-axis.

Furthermore, there is a risk with BH of reconstructing from

incompletely processed tissue—especially when a novice is first

learning to use the technique—which may skew results. Recently,

an improved biocytin staining protocol with slow dehydration

and using the embedding medium Eukitt has been shared, which

preserves some cytoarchitectonic features and allows for eas-

ier shrinkage correction in all dimensions (Marx et al., 2012).

Compared with the far more common method used here, this

may result in more realistic morphologies and allow for layer and

area-specific morphometry without the use of markers such as

cytochrome c oxidase. This method would also presumably result

in even more accurate morphologies to be used in NEURON

modeling. This said, it is not currently widely used and requires

many more reagents than the standard protocol used in this

study.

CONCLUDING REMARKS

In this study, we have quantitatively compared reconstructions

from two popular methods (FI and BH) and identified consistent

and significant differences in aspects of their resulting mor-

phologies and use in computer modeling. Whilst both methods

perform similarly for many morphological applications including

cell classification, BH reconstructions reveal more distal neurites

but suffer from compression and distortion artifacts. In com-

puter modeling, FI reconstructions result in smaller simulated

EPSPs, primarily due to the systematically larger diameters of cells

reconstructed with this method. Therefore, care must be taken

in reconstruction method choice for a particular application. In

modeling studies particularly, mixing reconstructions from dif-

ferent methods may introduce measureable differences that do

not represent that of underlying physiology and anatomy. In our

hands, BH reconstructions are the gold standard for accuracy—

however FI reconstructions are preferable for cell classification

applications due to lower cost, higher throughput, and ease of use.
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The shape and position of a neuron convey information regarding its molecular and
functional identity. The identification of cell types from structure, a classic method, relies
on the time-consuming step of arbor tracing. However, as genetic tools and imaging
methods make data-driven approaches to neuronal circuit analysis feasible, the need for
automated processing increases. Here, we first establish that mouse retinal ganglion cell
types can be as precise about distributing their arbor volumes across the inner plexiform
layer as they are about distributing the skeletons of the arbors. Then, we describe an
automated approach to computing the spatial distribution of the dendritic arbors, or arbor
density, with respect to a global depth coordinate based on this observation. Our method
involves three-dimensional reconstruction of neuronal arbors by a supervised machine
learning algorithm, post-processing of the enhanced stacks to remove somata and isolate
the neuron of interest, and registration of neurons to each other using automatically
detected arbors of the starburst amacrine interneurons as fiducial markers. In principle,
this method could be generalizable to other structures of the CNS, provided that they
allow sparse labeling of the cells and contain a reliable axis of spatial reference.

Keywords: cell types, classification, retinal ganglion cells, reconstruction, stratification, laminar structures

1. INTRODUCTION
The classification of neuronal types is far from complete.
Advances in genetic engineering for sparse and specific label-
ing (Gong et al., 2003; Wickersham et al., 2006, 2007; Kim
et al., 2008; Chung et al., 2013; Ke et al., 2013) offer improved
data acquisition and molecular identification of neuronal classes.
However, the need for structural information has not dimin-
ished because what defines a true neuronal type is not clear when
only molecular information is available. One challenge facing a
successful classification is to ensure that every cell type is rep-
resented in the sample set. For the structural approach, dense
reconstruction of tissues imaged by electron microscopy offers
a solution to this completeness problem (Denk and Horstmann,
2004; Hayworth et al., 2006; Bock et al., 2011). On the other
hand, electron microscopy is not yet capable of either obtain-
ing large enough sample sets to capture the biological variability
within individual cell types, or imaging cells with very large neu-
ronal arbors. Light microscopy offers high throughput imaging
and a large field of view to complement electron microscopy.
However, the time-intensive tracing step represents a bottleneck
of the overall program.

Recently, it was shown that neurons in the mammalian
retina can achieve submicron precision in their laminar posi-
tioning (Sümbül et al., 2014). This was done by combining
an arbor density formalism (Stepanyants and Chklovskii, 2005)
with a neurite based registration system for sparsely labeled
neurons. The ensuing arbor density classification suggests that
a robust classification of all mammalian retinal ganglion cells
is within reach. However, this study and many other previous
attempts (Sun et al., 2002; Badea and Nathans, 2004; Kong et al.,
2005; Coombs et al., 2006; Völgyi et al., 2009) depend on manual
tracing of individual neuronal arbors, which is a time-intensive
task. Tracing a neuronal arbor creates a “skeleton representa-
tion” of the arbor, which consists of interconnecting line segments
going through the dendrites. The thickness of dendrites along the
line segments is often ignored because tissue preparation artifacts
can result in unreliable estimates. In contrast, a volumetric rep-
resentation includes both the skeleton and the dendrite thickness
along the skeleton. Here, we propose an automated method using
volumetric analysis to aid the classification of neuron types. At
the heart of our approach is the simple observation that while the
arbor density representation in Sümbül et al. (2014) requires a
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precise characterization of laminar positioning, it does not uti-
lize detailed descriptions of arbors. In particular, we demonstrate
that volumetric stratification precision of neurons can match the
trace-based precision in the mammalian retina. Our method is
designed for sparse imaging scenarios. It does not address the
problem of separating the arbors of overlapping neurons from
each other, for which tracing may still be required. Kim et al.
(2014) recently used volumetric analysis and semi-manual arbor
reconstruction to identify bipolar and starburst amacrine cells in
an electron microscopy setting.

Volumetric reconstruction of neuroanatomy from an image
stack involves obtaining a digital representation of the neu-
ronal arbor (i.e., a voxel is “white” if it belongs to the cell, and
“black” otherwise), and registering this representation to other
neuronal structures to achieve a comparative description. As a
first step to reconstruct a sparsely labeled neuron, we use a con-
volutional network (LeCun et al., 1998), which is a supervised
machine-learning architecture, to enhance the image quality and
suppress the acquisition noise. Although robust and accurate
reconstruction of neuronal morphology is still a largely unsolved
problem, it has become a bottleneck only recently as a result
of the advances in high-throughput imaging. The demand for
automated reconstruction prompted the Digital Reconstruction
of Axonal and Dendritic Morphology Challenge (DIADEM chal-
lenge) (Brown et al., 2011). The challenge helped disseminate
many novel approaches (Bas and Erdogmus, 2011; Chothani
et al., 2011; Narayanaswamy et al., 2011; Turetken et al., 2011;
Wang et al., 2011; Zhao et al., 2011). We anticipate that some of
these approaches may be preferable to the convolutional network
module of our method depending on the imaging conditions.
A common problem is that when labeling is not sparse enough,
cells other than the neuron of interest are also reconstructed.
Our solution is to apply a post-processing routine to remove
extraneous objects after the initial reconstruction step.

In the mammalian retina, the dendrites of the starburst
amacrine interneuron form two parallel surfaces in the inner
plexiform layer, which serve as fiducial marks (Haverkamp and
Wässle, 2000). When the tissue is not flattened to preserve inter-
nal structure, it assumes a wavy form under the microscope.
We solve this problem by digitally flattening (unwarping) the
stack with the guidance of starburst surfaces after the imag-
ing is done. Finally, we obtain a common depth coordinate by
registering the starburst surfaces from different stacks to each
other.

2. MATERIALS AND METHODS
2.1. THE DATASET
We use the retinal ganglion cells (RGCs) from a recent study
on the classification of retinal cell types (Sümbül et al., 2014).
The dataset was obtained by confocal microscopy at a voxel size
of 0.4 µm×0.4 µm×0.5 µm. This dataset also includes the rela-
tive positions of On and Off starburst amacrine interneurons for
each RGC, by staining for choline acetyltransferase (Haverkamp
and Wässle, 2000), thereby allowing a stratification analysis of
RGCs based on starburst amacrine arbors. The methodologi-
cal bottleneck of that study was the semi-automated tracing of
RGC arbors, which required an average time of 40 min per

trace with experienced tracers. The full dataset includes five
strongly defined cell types, which have consistent and specific
functional, molecular, and structural identifiers. We focus here
on this subset, and omit the stacks where labeling is too dense
(i.e., existence of many neurites in close proximity from more
than one neuron) or too dim for fully automated analysis. In a
few cases, the starburst surfaces were weakly stained; these were
also omitted. After this culling, two neuron types did not have
enough representatives for statistical analysis and were omitted
altogether. The final dataset comprises 50 neurons that form three
molecularly, physiologically, and structurally homogeneous cell
types.

The JAM-B neurons express the junction adhesion molecule
JAM-B, respond to offset of upward moving stimuli, and their
arbors are asymmetric in the dorsal-ventral axis (in the central
retina) (Kim et al., 2008). The W3 neurons express the TYW3
gene, are sensitive to local edges, and have one of the smallest
arbor sizes in the mammalian retina (Kim et al., 2010). The BDa
neurons express the FSTL4 gene, are On-Off direction sensitive,
and arborize twice (Kim et al., 2010). Finally, these cell types are
known to stratify at characteristic depths in the inner pexiform
layer with submicron precision [distance from the On starburst
surface: 15.6 µm (JAM-B), 5.5 µm (W3), 0.3 µm (BDa)—
BDa neurons stratify again 0.3 µm distal to the Off starburst
surface] (Sümbül et al., 2014).

2.2. VOLUMETRIC RECONSTRUCTION OF SPARSELY LABELED
NEURONS FROM MANUAL TRACES

We use the concept of simple pixel from digital topology (Bertrand
and Malandain, 1994) to probe whether neuronal mass attains
the stratification precision achieved by the arbor traces (skele-
tons). A simple pixel is defined as a pixel that does not change
the topology of the digital image when its value is flipped. (i.e.,
does not create/remove objects, holes, splits, mergers) Similar
approaches were previously used in the reconstruction of dense
electron microscopy images of neuronal tissue (Jain et al., 2010;
Helmstaedter et al., 2013). Specifically, we inflate the individ-
ual traces by respecting the topology of the traces (via simple
pixel characterization), and the geometry of the neurons (via
thresholding the brightness values in the raw image). We use
60% of the maximum brightness value in an image stack as the
threshold. We iterate the inflation process 62 times, potentially
inflating by a single layer of voxels at each step so that somata as
large as (62× 2+ 1)× 0.4 µm= 50 µm in diameter are properly
characterized. Algorithm 1 presents a pseudocode of the steps.
The resulting three dimensional binary stacks are seemingly per-
fect characterizations of neuronal morphology based on the raw
image stacks and the arbor traces (Figure 1) because they respect
both the tree structure (through tracing, Figure 1B), and the den-
dritic widths (through inflation, Figure 1D). The caveat is that the
resulting volumetric representations depend on the laborious task
of (semi-) manual tracing.

2.3. AUTOMATED ENHANCEMENT AND POST-PROCESSING OF RGC
ARBORS

Various approaches have been developed recently for automated
reconstruction of neuronal morphology from sparsely labeled
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Algorithm 1 | Pseudocode for topologically constrained inflation of a

trace. Binary operations on same-size arrays are to be interpreted

elementwise. ¬ (⊕) denotes negation (exclusive-or). imdilate dilates

its first argument using its second argument as the kernel. nnz

returns the number of nonzero (true) entries in an array. Matlab

notation is used in the array on line 12.

Algorithm Inflating a trace.

Input:

1. rawImage, traceImage (m× n× p), maximumGrowthRadius,
threshold (scalar)

Output: volume (m× n× p)

2. (*Initialization *)

3. volume← traceImage, target← rawImage ≥ threshold

4. dilationKernel←(3× 3× 3, binary) 6-neighborhood

5. (*Growth *)

6. for i ← 1 to maximumGrowthRadius

7. do mask← imdilate(volume, dilationKernel) & ¬ volume

8. volumeCopy← volume, previousDiff← -1, current Dif← 0

9. while currentDiff �= previousDiff

10. do differenceVoxels← mask & (volume ⊕ target)

11. for each (x, y, z) such that differenceVoxels (x,y,z)= true

12. do patch← volumeCopy(x-1:x+1,y-1:y+1,z-1:z+1)

13. if simple26(patch) (* Bertrand and Malandain

1994*)

14. then volume(x,y,z)← ¬volume(x,y,z)

15. previousDiff←currentDiff

16. currentDiff← nnz(differenceVoxels)

image stacks (Al-Kofahi et al., 2002, 2008; Schmitt et al., 2004;
Zhang et al., 2007; Losavio et al., 2008; Peng et al., 2010, 2011;
Srinivasan et al., 2010; Bas and Erdogmus, 2011; Turetken et al.,
2011; Wang et al., 2011; Xie et al., 2011; Choromanska et al., 2012;
Turetken et al., 2012; Gala et al., 2014). While these methods can
capture the geometrical layout of neuronal arbors, imperfections
in tissue handling and imaging (e.g., non-uniform labeling of
neurites, high density labeling, low signal-to-noise ratio images)
often result in topological errors such as missing branches and
extraneous structures. On the other hand, blurring and pro-
jection operations are robust against local mistakes. Therefore,
topological imperfections in the reconstruction may be accept-
able for cell type identification purposes so long as the general
morphology of a neuron is captured properly. As a first step,
we use the convolutional network based enhancement of RGC
arbors reported in Sümbül et al. (2014). A convolutional net-
work is a feed-forward network of convolutional filters whose
outputs are transformed by a non-linearity (e.g., sigmoid). An
advantage of such a supervised machine learning approach is that
it does not have free parameters to adjust. Rather, the paradigm
depends on the existence of a labeled training set through which
the various parameters are automatically optimized. The net-
work is trained to transform noisy gray-scale images of sparsely
labeled neurons into cleaner binary images. Here, we improve
the architecture and filter sizes, and provide an efficient imple-
mentation that does not need specialized hardware (http://www.

github.com/zlateski/znn3). The resulting network has 8 layers

FIGURE 1 | Volumetric reconstruction of a BDa neuron starting from a

trace. Maximum intensity projections of the raw image stack (A), the
manually traced arbor (B), the inflated trace after one round of topologically
constrained inflation (C), and the inflated trace after 62 rounds of
topologically constrained inflation (D). In each panel, large image: xy
projection, bottom: zy projection, right: xz projection. Scale bar, 40 µm;
bottom-right, xy projection image in panel D.

with 8 perceptrons in each hidden layer except for the last hid-
den layer, which is a fully connected layer of 100 perceptrons.
The filter sizes within each layer are identical and are as fol-
lows: 5× 5× 1, 5× 5× 1, 3× 3× 3, 5× 5× 1, 3× 3× 3, 3×
3× 3, 1× 1× 1, 1× 1× 1. Therefore, the overall patch size to
decide whether the central voxel of the patch belongs to a neu-
rite or not is 19× 19× 7 voxels (7.6 µm ×7.6 µm ×3.5 µm).
The network has all-to-all connectivity between subsequent lay-
ers, and is trained by backpropagation learning LeCun et al.
(1998).

When the density of labeling is not low enough, somata and
neurites of other neurons appear in the image stacks. On the
other hand, the reconstructed arbors may have breaks due to
dim/inhomogeneous labeling. Therefore, we devise a simple post-
processing routine to isolate the neuron of interest. The algorithm
uses connected component analyses and basic morphological
image operations (i.e., opening and dilation) to remove extrane-
ous structures and somata. In particular, the algorithm detects
the largest object in the image stack and removes the objects
that are smaller than a given size and farther from the largest
object than a given distance. Somata are removed by locating
and removing the white regions that are large enough to fully
enclose a given ellipsoid (Algorithm 2). While soma size is known
to carry information on neuronal identity, it is a weak classi-
fier (Sun et al., 2002; Coombs et al., 2006; Völgyi et al., 2009).
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Algorithm 2 | Pseudocode for post-processing a binary volume.

Various binary operations are as defined in Algorithm 1. Matlab

notation is used for brevity. bwlabeln returns an array the same size

as its argument, where voxels are assigned different values iff they

belong to different objects (26-connectivity). regionVolumes returns a

list of object sizes. bwareaopen removes from its first argument all

objects whose volumes are smaller than the second argument.

imopen performs a morphological opening operation on its first

argument using a cubic kernel whose edge length is given by the

second argument.

Algorithm Post-processing

Input:

1. inStack (m× n× p), dilationRadius, sizeThreshold, searchRadius
(scalar)

Output: outStack (m× n× p)

2. (* Initialization *)

3. threshold←0.7, conservativeThreshold←0.5

4. kernel←binary spherical kernel of radius dilationRadius

5. somaKernel←binary spherical kernel of radius searchRadius

6. (* Normalize the stack *)

7. inStack←inStack-min(inStack(:)), inStack← inStack/max(inStack(:))

8. (* Binarize and dilate the stack *)

9. connectedStack←imdilate(inStack>threshold, kernel)

10. (* Retain the largest component – connected-components
analysis *)

11. labels←bwlabeln(connectedStack)

12. indices←sort(regionVolumes(labels), ’descend’)

13. inStack(labels �= indices(1))←false

14. (* Binarize the stack conservatively and remove small
components *)

15. inStack←inStack>conservativeThreshold

16. inStack←bwareaopen(inStack, sizeThreshold)

17. (* Open and dilate the stack to remove big lumps *)

18. lumps←imdilate(imopen(inStack, searchRadius), searchRadius)

19. outStack←inStack & ¬ lumps

The final image stacks may include axonal projections from other
neurons, imperfectly suppressed noise, missing small branches,
extraneous branches from other neurons, and splits/mergers of
the neuronal arbor depending on the image quality and the spar-
sity of labeling in the tissue. Nevertheless, the next few subsections
demonstrate that the reconstruction quality is high enough to
study stratification patterns and probe neuronal identity.

2.4. QUASI-CONFORMAL UNWARPING OF VOLUMETRIC DATA AND
LAMINAR REGISTRATION

We use the automatically detected starburst surfaces in individ-
ual stacks as fiducial marks (Figure 2). We find quasi-conformal
mappings that independently transform the detected starburst
surfaces into flat surfaces as described in Sümbül et al. (2014)
to maximally preserve local angles within the surfaces (Levy
et al., 2002). The two flattened surfaces are registered to each
other in-plane by matching the xy coordinates of the patch
in which both starburst layers are the flattest. We extend the
resulting transformation to other points in the image stack by
using local polynomial approximations (quadratic in xy, linear

in z). In particular we apply the transformation to individual
voxels of the binary three-dimensional representation of a neu-
ron, rather than its trace points. The transformed voxels are
scaled and shifted in z so as to place the flattened On star-
burst surface at z = 0 µm and the flattened Off starburst surface
at z = 12 µm. Figure 3 depicts the dramatic effect of unwarp-
ing on a BDa neuron. Finally, the histogram of depth positions
of the voxels (depth profile) is obtained by gridding onto a
Cartesian grid with a resolution of 0.5 µm (Figure 3D). The grid-
ding step uses a Kaiser-Bessel kernel (Jackson et al., 1991) to
maintain accuracy in laminar registration, and applies weights
to individual voxels to compensate for the distance fluctuations
between warped voxels. Note that if the arbor density function is
obtained by blurring in xy only (and not in z), then the depth
profile is the projection of the three-dimensional arbor density
function.

2.5. STATISTICAL MEASURES AND OTHER METRICS
The peak position of a depth profile is the signed distance from
the On starburst layer at which the profile achieves its maxi-
mum value. [The On (Off) layer is located at z = 0 µm (z =
12 µm.)] For the bistratified BDa cells, a second peak position is
also reported. This second peak position is defined as the depth
value at least 6 µm away (half the distance between starburst lay-
ers) from the first peak position, at which the remaining profile
achieves its maximum value.

We assume that the peak positions of the depth profiles of
individual neurons of a given type are independent and iden-
tically distributed (i.i.d.) with N(μ, σ 2). The distribution of
the sample variance of n i.i.d. N(μ, σ 2) observations is given
by χ2

n− 1(t(n− 1)/σ 2)(n− 1)/σ 2 , where χ2
n− 1(t) denotes the

chi-squared distribution with n− 1 degrees of freedom. The sym-
metrical 95% confidence interval for σ , given the sample standard
deviation s, is

[√
(n− 1)s2

X−2
n−1(0.975)

,

√
(n− 1)s2

X−2
n−1(0.025)

]
, (1)

where X−2
n− 1 denotes the inverse cumulative distribution function

of χ2
n− 1.

We use the Brown-Forsythe test to infer whether the differ-
ent reconstruction methods return significantly different variance
values for the peak stratification position of cells of the same type.

We define the “signal” in each normalized depth profile for
cells of a given type as the average normalized profile over cells
of that type. Then, the “noise” in each profile is the difference of
the profile from the “signal” component. We define the signal-to-
noise ratio (SNR) for a cell type as the average, of the Euclidean
norm of the signal divided by the Euclidean norm of the noise,
over all cells of that type.

The Crest factor is defined as the peak amplitude of a profile
divided by the root-mean-square value of the profile. That is, it is
the ratio of the peak value to the average value. It indicates how
extreme the peak is in a given depth profile. Since narrow and
sharp peaks in a profile where the “background” regions are small
makes it easy to detect a cell type in the presence of many cell
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FIGURE 2 | Fully automated enhancement and post-processing of

RGC arbors (green), and detection of starburst surfaces (red).

Left: xy (A), xz (B), and zy (C) projections of the raw image of
an RGC. Right: xy (D), xz (E), and zy (F) projections of the

processed arbors and detected starburst surfaces of the same
RGC. Starburst surfaces within a slab are shown and starburst
somata are removed for better visualization. Scale bar, 40 µm;
lower-right, panel D.

types, we use the Crest factor as a figure of merit for the different
approaches analyzed in this paper.

3. RESULTS
3.1. PROJECTIONS OF VOLUMETRIC DATA PRESERVE THE

STRATIFICATION PRECISION OF RGCs
We obtain the volumetric reconstructions of all 50 neurons in
the dataset by inflating their manually reconstructed traces as
described in Algorithm 1. These volumetric reconstructions were
unwarped and registered, to obtain depth profiles of all neurons
in the dataset. Figure 4 shows the average profiles for each neu-
ron type generated from the volumetric reconstructions together
with the average profiles of the traces (skeletons). Two qualita-
tive observations emerge: (i) The peak positions of the average
profiles are preserved across the two methods. The distribution
of mass along the skeletons of neurons preserve the peak strati-
fication depth of the skeletons. (ii) The peaks of the normalized
profile averages are lower in the volume-based approach because
the branches close to the soma are typically thicker than the dis-
tal branches. Table 1 tabulates the Crest factors for both methods,
and quantifies the observation that the trace profiles have slightly
sharper peaks. Profiles with sharper peaks are preferable when
identifying cell types in the presence of a heterogeneous dataset,
similar to spectroscopy.

The specificity of stratification peaks -not just their average- is
important to be able to identify cell types. The sample standard
deviations of the peak position for each cell type do not change
significantly between the skeleton-based and volume-based depth
profiles (Brown-Forsythe test—See Tables 1, 2 for individual n
and p-values). This suggests that neurons of a given type are as
precise about distributing their neuronal volume in depth as they
are about distributing their skeleton-based presence.

Table 1 also tabulates the mean SNR values over the three cell
types using both the trace profiles and the trace-based volumetric

profiles (Methods). Higher SNR values indicate stereotypical
distributions. While n = 3 pairs are too few to probe statisti-
cal significance with rigor, the trace-based volumetric profiles
do not seem to have lower SNR values than the trace profiles.
(Right-sided Wilcoxon signed rank test, n = 3 pairs, p = 0.75)

3.2. AN AUTOMATED METHOD TO PROBE RGC IDENTITY
The stereotypy of the profiles of volume-based reconstructions
obtained by inflating manual traces suggests that it may be possi-
ble to avoid the laborious task of manual tracing altogether for
cell type identification purposes. For comparison, we begin by
implementing simple thresholding: Each image stack is thresh-
olded at 60% of its maximum brightness value. Then, somata
are removed and the resulting binary stack is unwarped and
registered as described in the Methods. The results are not impres-
sive: The extraneous structures and imaging artifacts contaminate
many stacks significantly. As a simple proxy, we observe that the
mistakes perturb the depth profiles enough to create spurious
peaks far away from the original stratification peak in 11 out of
50 stacks (Figure 5A). Therefore, this simple approach is not suit-
able for automation. This is especially clear for cells that stratify
close to the ganglion cell layer. After removing the part of the
profiles where z < −6 µm, we find that the stratification stereo-
typy of the depth profiles is essentially preserved (Tables 1, 2).
Nevertheless, even in this restricted region, the presence of objects
that do not belong to the neuron makes type identification harder,
as reflected by the low SNR values and the Crest factors (Table 1
and Figure 5C).

While the threshold based approach may allow for cell type
identification when the image stacks are sparsely labeled and
have very low noise, insufficient suppression of the background
noise and failure to isolate the neuron of interest from other
structures prevents it from working reliably on our dataset.
Therefore, we apply the convolutional network described in the
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FIGURE 3 | Warping neuronal mass reveals volumetric depth profiles.

Left: xy (A), xz (C), and yz (E) projections of a BDa cell reconstruction
obtained by inflating its trace. Right: xy (B), xz (D), and yz (F)

projections of the reconstructions after soma removal and

quasi-conformal unwarping of the white voxels. Note the depth alignment
of neurites after warping. (G) The normalized depth profiles of the RGC
based on its trace (skeleton) and trace-based volumetric reconstruction.
Scale bar, 40 µm; bottom-right, panel B.

Methods on the image stacks to suppress the background noise,
retain the neuronal structures, and connect the occasionally
disconnected neurite pieces. Subsequently, we apply the post-
processing routine (Methods) to remove the extraneous struc-
tures from the image stack that are not critically close to the
neuron of interest. Notably, no manual labor is used in this
scheme.

A drawback is that the automated approach occasionally
causes splits and mergers in the reconstruction and includes
extraneous structures. On the other hand, the depth profiles—
one-dimensional arbor densities that serve as proxies for the
three-dimensional arbor densities—identify the stratification
peaks correctly (Figure 5B). Moreover, the sample standard devi-
ation of the peak position did not change significantly in any of
the three neuron types (Brown-Forsythe test—See Tables 1, 2 for
individual n and p-values). The Crest factors for this automated
method are lower than those of the trace profiles, but they are
roughly the same as those of the trace-based volumetric profiles.

Lastly, the mean SNR value for the automated method is lower
than that for the trace-based approaches, but it is higher than the
threshold method’s mean SNR value (Table 1).

4. DISCUSSION
Identifying and providing experimental access to homogeneous
cell types of nervous systems is a prerequisite to understanding the
fundamental principles of brain function in health and disease.
Recently, it was shown that a method using a neurite based reg-
istration system and an arbor density representation of neurons
is capable of robustly identifying the mammalian RGC types in
a highly heterogeneous sample set (Sümbül et al., 2014). Notably,
that study relied on traces of neuronal arbors, which are time con-
suming to obtain. Here, we show that the spatial distribution of
the arbor volume attains a stratification precision similar to that
of the arbor trace. Based on this observation, we describe an auto-
mated method that can remove the time intensive tracing step in
identifying cell types. We anticipate our approach to be useful in
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FIGURE 4 | Depth profiles of trace-based volumetric reconstructions

maintain the stereotypy attained by the depth profiles of arbor traces

while having lower peaks. (A) Depth profiles of the arbor traces, (B),
depth profiles of the topology preserving inflations of the traces.

Table 1 | Mean and standard deviation values for the peak positions

and norms of the depth profiles.

Stratification peak Crest factor SNR

JAMB (20) CB2 (15) BDa (15) JAMB CB2 BDa

Trace 16.13± 1.01 5.30± 0.41 0.37± 0.23
12.20± 0.25

4.22 4.96 5.86 5.25

Trace-based
volume

15.43± 1.22 5.43± 0.26 0.40± 0.21
12.37± 0.23

3.69 4.16 4.85 5.68

Automated 15.70± 1.16 5.30± 0.25 0.43± 0.18
12.33± 0.24

3.55 4.09 4.97 4.45

Thresholded
volume (*)

15.35± 1.28 5.37± 0.30 0.37± 0.23
12.43± 0.18

2.79 3.86 3.82 3.24

Values are given as mean ± SD. The number of samples (n-values) are denoted

in parantheses next to the cell type names. (*) Peaks at z < −6 μm are not

considered in the calculation of stratification means and standard deviations.

integrating structural information to studies that investigate the
molecular or functional dynamics of neurons, as well as purely
anatomical pursuits.

We quantify the stratification precision as the standard devia-
tion of the peak position of the depth profiles. We do not observe
significant differences between the stratification precisions of the
depth profiles of the traces and the volumes obtained by inflating
the traces or by our automated method (Table 2). This sug-
gests that the depth distribution of the overall mass can be as
stereotyped as that of of the skeletal mass. Another observation
suggesting volumetric stereotypy is the lack of a significant dif-
ference between the mean SNR values of the normalized depth
profiles of the traces and the volumes obtained by inflating the
traces.

Table 2 | Statistical measures of the variability in peak positions.

Stratification peak

JAMB (20) CB2 (15) BDa (15)

Confidence [0.75, 1.42] [0.29, 0.61] [0.16, 0.34]

intervals [0.18, 0.37]

Trace-based vol. 0.22 0.05 0.68, 0.46

Automated 0.24 0.21 0.38, 0.72

Thresholded(*) 0.23 0.21 1.00, 0.11

The first row indicates the 95% confidence interval of the reported standard

deviation values of the peak positions based on the traces. The remaining rows

are the p-values of the Brown-Forsythe test of equal variance between the indi-

cated method and the trace method. The n-values are denoted in parantheses

next to the cell type names. (*) Peaks at z < −6 μm are not considered.

We have argued that the presented method can be useful in
identifying cell types using three-dimensional arbor densities.
However, we have not attempted a formal classification of the cells
used in this study. While Figure 5C, Tables 1, 2 clearly suggest
that such an attempt would be successful, classification becomes a
hard task only in the presence of a highly heterogeneous dataset.
On the other hand, considering that the automated approach can
maintain the stratification precision attained by the trace based
analysis and the arbor density representation in Sümbül et al.
(2014) used substantial in-plane blurring (and no axial blurring),
it is plausible that arbor densities generated from the output of
our automated method can be classified successfully not only in
the presently studied dataset of three cell types, but also in a more
heterogeneous sample set.

We observe that the peak values of the normalized volumet-
ric profiles are smaller than those of the normalized trace profiles.
This can be explained by the fact that branches closer to the soma
are typically thicker than the distal branches, presumably to min-
imize signal propagation delays while keeping arbor volume to a
minimum (Chklovskii and Stepanyants, 2003).

Dim or inhomogeneous labeling of neurites, denser (not
sparse enough) labeling of neurons, and high noise levels
often result in imperfect reconstructions with the current state-
of-the-art automated approaches. Our convolutional network
implementation is not immune to such imperfections, either.
Removal of failing image stacks decreases the throughput of
the overall method. On the other hand, standard approaches
in machine learning, such as boosting and training deeper net-
works with larger training data, suggest ways of increasing the
throughput by providing better noise suppression and better
reconstruction of arbor topology. Moreover, while other auto-
mated reconstruction methods often require manual tuning
of free parameters, they can be inserted instead of our con-
volutional network implementation as well (Al-Kofahi et al.,
2002, 2008; Schmitt et al., 2004; Zhang et al., 2007; Losavio
et al., 2008; Peng et al., 2010, 2011; Srinivasan et al., 2010; Bas
and Erdogmus, 2011; Turetken et al., 2011, 2012; Wang et al.,
2011; Xie et al., 2011; Choromanska et al., 2012; Gala et al.,
2014).
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FIGURE 5 | Enhancement and post-processing enable automated

peak detection and produce sharper depth profiles with higher

SNR values. (A) Normalized depth profiles obtained by thresholding the
raw stack display large build-ups close to the ganglion cell layer that
create spurious profile peaks and low SNR values. (B) Enhancement
and post-processing remove objects not belonging to the neuron of
interest while retaining the neuron to produce depth profiles with

consistent peak positions and higher SNR values. C, Peak values vs.
peak positions of all four methods. Symbols indicate the mean values,
and the lower/upper bounds indicate the 10th and 90th percentiles.
Each color indicates a different method as defined in the legend, and
each panel depicts a single cell type as indicated at the top. Both
peaks are shown for the bistratified BDa neurons. Peaks at z < −6 µm
are not considered for the threshold method.

While we investigate retinal ganglion neurons in this study, our
approach only assumes (i) the existence of an arbor marker spe-
cific to a cell type and (ii) a method of labeling cells sparsely in a
laminar structure. Therefore, it is readily extendible to other neu-
ron classes of the retina. In particular, the same fiducial marks
(starburst amacrine cells) and very similar sparse labeling meth-
ods can be used to study the classification and co-stratification of
bipolar and amacrine cell classes. The effort required to trace a
neuron increases as the complexity of its arbor increases. Hence,
the potential impact of our method is higher for neurons whose
total dendritic lengths are larger. Cortical neurons are typically
much larger than retinal neurons, and classifying them is an
impending problem (Ascoli et al., 2008). Traditionally, obtaining
datasets of cortical neurons that capture their diversity has been
a practical challenge. However, recent advances in tissue clarifi-
cation and a multiplicity of genetic or viral methods (Gong et al.,
2003; Wickersham et al., 2006, 2007; Kim et al., 2008; Chung et al.,
2013; Ke et al., 2013) enable high-throughput structural imag-
ing of such neurons. Therefore, we speculate that our approach
can be useful in automating the discovery and identification
of cortical cell types if the two requirements mentioned above
are met.
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Despite many structural and functional aspects of the brain organization have been
extensively studied in neuroscience, we are still far from a clear understanding of the
intricate structure-function interactions occurring in the multi-layered brain architecture,
where billions of different neurons are involved. Although structure and function can
individually convey a large amount of information, only a combined study of these two
aspects can probably shade light on how brain circuits develop and operate at the
cellular scale. Here, we propose a novel approach for refining functional connectivity
estimates within neuronal networks using the structural connectivity as prior. This is
done at the mesoscale, dealing with thousands of neurons while reaching, at the
microscale, an unprecedented cellular resolution. The High-Density Micro Electrode
Array (HD-MEA) technology, combined with fluorescence microscopy, offers the unique
opportunity to acquire structural and functional data from large neuronal cultures
approaching the granularity of the single cell. In this work, an advanced method based
on probabilistic directional features and heat propagation is introduced to estimate the
structural connectivity from the fluorescence image while functional connectivity graphs
are obtained from the cross-correlation analysis of the spiking activity. Structural and
functional information are then integrated by reweighting the functional connectivity graph
based on the structural prior. Results show that the resulting functional connectivity
estimates are more coherent with the network topology, as compared to standard
measures purely based on cross-correlations and spatio-temporal filters. We finally use
the obtained results to gain some insights on which features of the functional activity are
more relevant to characterize actual neuronal interactions.

Keywords: connectomics, structural connectivity, functional connectivity, high-density Micro Electrode Array,

electrophysiology, graph heat kernel, probabilistic directional feature, Von Mises distribution

1. INTRODUCTION
Brain processing is widely recognized to be distributed over a
wide range of different scales, involving an impressive num-
ber of cells with heterogeneous phenotypes that are structurally
and functionally organized in a sophisticated and still unclear
architecture. Disentangling the intricate contributions of single
neurons constituting large brain circuits from the strongly cor-
related phenomena shaping brain function is one of the biggest
challenges in neuroscience. To complicate things further, most
of the neuronal processing taking place in the nervous system
is characterized by a limited observability and still requires the
additional improvement of currently existing neurotechnologies.
Indeed, while direct measurements are only possible at very small
scales (i.e., monitoring the intracellular potential of a few sin-
gle neurons or up to a few hundreds of neurons with 2-photon
microscopy), larger scale mechanisms can commonly be observed

through indirect non-invasive modalities (i.e., brain imaging)
but rather loosing the resolution of single cells. Given these two
opposite experimental approaches that have characterized the
neuroscientific research over the last decades, what still remains
unanswered is how to bridge the structural and functional aspects
observed at the different scales.

In the last few decades efforts have been put forward for the
investigation of the so-called connectome, i.e., the reconstruction
of the neural connectivity at different scales (Sporns et al., 2005;
Leergaard et al., 2012). The term connectomics has a very broad
scope, ranging from single-neuron interplays (microscale connec-
tomics) to pathways between large brain regions (macroscale con-
nectomics, Yap et al., 2010). Reconstructing the brain connectome
across these scales is fundamentally important to understand the
constituent parts of the nervous system, their multiple interac-
tions and the advanced cognitive functions that they support,
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both in normal and pathological neurodegenerative conditions.
By promoting the analysis of different aspects of brain behavior,
connectomic studies typically involve two complementary forms
of information: structure and function.

In the literature these two aspects are usually studied sepa-
rately. Part of the efforts focuses on a dense reconstruction of
the structural connectivity, while complementary studies address
the analysis of synchronous patterns of neuronal activation for
estimating the functional connectivity.

However, structure and function are tightly interrelated. By
looking at fine-scale interactions, we are learning that the func-
tional properties of single neurons are strongly driven by their
anatomical interconnections with other cells, dendritic arboriza-
tions, and synaptic distributions. At the same time, single-
neuron physical links affect the expression of functional patterns
throughout the entire network by placing constraints on which
functional interactions are more likely to occur. Consequently,
it is getting crucial to combine a detailed description of the
anatomical connectivity patterns with physiological parameters
to capture the way functional properties emerge from structural
configurations at the cellular scale.

This work addresses this challenge by proposing a combined
structural and functional analysis of large neuronal networks
that are functionally resolved at an unprecedented resolution,
approaching the scale of single-neurons.

The joint study of structure and function has been recently
gaining interest in the context of brain imaging modalities
(Rykhlevskaia et al., 2008), where it is possible to observe large-
scale interactions. Recent attempts address the estimation of
functional connectivity guided by the structural connectivity as
prior (Deligianni et al., 2011; Chen et al., 2013; Zhu et al.,
2013). The underlying hypothesis is that the functional con-
nectivity must reflect the existence of structural paths connect-
ing functionally linked regions (Honey et al., 2010). However,
macroscale approaches are not suitable for single-neuron resolu-
tion as they deal with large areas (billions of neurons) that make
any fine-grained analysis unfeasible.

On the other hand, microscale connectomics achieves good res-
olution by focusing on single or few cells, but looses the informa-
tion on network-wide topology and interplays. A new branch of
investigation is recently emerging studying the so-called mesoscale
that, in principle, could overcome the limitations of micro and
macro studies. Mesoscale connectomics refers to the analysis of
connectivity at the level of neuronal circuits with a micrometric
spatial resolution (Sporns, 2012). Interestingly, high-level func-
tions such as learning and memory build on stratified non-linear
mechanisms that can be particularly witnessed at this scale (Jimbo
et al., 1999; Marom and Eytan, 2005). Although there is still no
clear indication about the possibility of bridging the gap between
the different scales at which the brain is currently investigated,
there are studies highlighting the role of specific neurons (hub
neurons) in determining emergent network dynamics (Bonifazi
et al., 2009).

Thanks to recent technological advances, it is nowadays pos-
sible to collect high-resolution structural and functional infor-
mation at the mesoscale from cultured neuronal networks. This
enables the development of new methodologies for a combined

structural and functional analysis at this scale. In particular, novel
generations of active Micro Electrode Arrays (MEAs), such as the
High-Density MEA (HD-MEA) chips introduced by Berdondini
et al. (2009), allow to record the electrical activity of neuronal net-
works from thousands of electrodes at sub-millisecond resolution
and at the granularity of the single cell. The combination of such
a high-resolution functional data with fluorescence microscopy
imaging can enable the unprecedented mapping of both activ-
ity and structure of neural assemblies at a cellular level. Indeed,
relatively sparse neuronal cultures–grown on-chip by seeding few
thousand cells–allow to acquire detailed spatio-temporal record-
ing of neuronal activity and topographic distribution of neurons
with respect to the electrode array. This provides the unique
chance of correlating functional activity with neuronal topology
over large assemblies.

This work proposes a computational framework for the joint
analysis of functional and structural connectivity at the mesoscale
which takes advantage of the remarkable spatial resolution offered
by HD-MEAs.

In particular, we start from the reasonable hypothesis that the
presence of a strong structural connection makes a functional
connection more likely to occur. The influence of the network
topology on the functional behavior has been already proven on
a theoretical level (Kriener et al., 2009). Furthermore, distance
and strength of cross-correlation have been proven to be related
also in vivo (Hirase et al., 2001) and in vitro (Shlens et al., 2006).
However, experimental studies at neuronal resolution covering
large networks are typically more difficult to carry out due to
both technological constraints and problem complexity. Here, we
address this task by developing a set of computational algorithms
that enables the combined structural and functional analysis of
networks with thousands of neurons.

This could not be done on conventional MEAs that typically
integrate 60–256 microelectrodes, and where existing studies are
typically limited to the analysis of network-wide electrophysi-
ological activity. Consequently, the absence of any anatomical
evidence to support functional hypotheses strongly limits the
potentiality of this analysis. Few recent attempts have been
presented in literature addressing multimodal studies at the
mesoscale. Abdoun et al. (2011) introduced the NeuroMap soft-
ware tool for handling MEA recordings co-registered with fluo-
rescence images. However, in this tool, the image is used only
for visualization purposes. Another multimodal study has been
proposed by Becchetti et al. (2012) for differentiating the func-
tional activity of excitatory and inhibitory neurons from MEA
recordings and GAD67-GFP imaging. Their method is based on
a manual extraction of the structural information (i.e., visu-
ally classifying excitatory from inhibitory cells) lacking in any
further characterization of the network anatomy (e.g., the topol-
ogy). As no structural connectivity information is available, the
assessed statistical properties of the electrophysiological signals
only account for local functional dynamics, discarding more com-
plex network interactions. Furthermore, in both cases the use of
standard MEAs (up to few hundred electrodes) offers poor spa-
tial resolution. Unlike HD-MEAs, these systems cannot provide
the possibility of monitoring both single-cell activity and wide
network dynamics at the same time.
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In this paper, we propose a framework for integrating mul-
timodal information acquired on HD-MEAs with the aim of
refining the estimate of functional connectivity using the struc-
tural connectivity as prior. Specifically, we localize neurons with
respect to the electrode array and estimate the structural connec-
tivity of the electrodes to compute the topological distance along
the paths connecting them. This is used as structural information
to refine a rough estimate of functional connectivity based only
on cross-correlations. As extensively suggested in the literature
(Feldt et al., 2011), graph theory is used to support the analysis by
describing the network connectivity with graph representations.
Neuronal networks perfectly fit into this framework as it provides
the flexibility to characterize both structure and function from
anatomical and electrophysiological observations (Bullmore and
Sporns, 2009).

An overview of the proposed approach is provided in Figure 1.
Structural connectivity maps are first estimated from fluorescence
images of the neuronal culture by using local directional features
and heat propagation (Ullo et al., 2013). The obtained prior on
the existing anatomical links is then used to refine the estimate of
functional connectivity which is obtained from cross-correlation
measures of the electrophysiological signals, as introduced by
Maccione et al. (2012). In this fashion, the anatomical informa-
tion offers a reference space facilitating the interpretation of the
observed functional interactions.

The contributions of this paper are twofold. First, we introduce
a computational framework capable of estimating the structural
connectivity of large neuronal assemblies and we show how more
reliable estimates of functional connectivity can be obtained by
incorporating such structural information as prior. Second, we
use the obtained results to formulate new hypotheses on rele-
vant features of the electrophysiological activity that can better
characterize functional interactions between neurons.

2. MATERIALS AND METHODS
2.1. ELECTROPHYSIOLOGICAL RECORDINGS AND CELL CULTURE

STAINING
Cell cultures were recorded by means of High-Density Micro
Electrode Arrays (HD-MEAs). These commercially available
devices (www.3brain.com), have been extensively described in
Imfeld et al. (2008) and Berdondini et al. (2009). Briefly, high-
density MEAs allow simultaneous extracellular recordings from
4096 square electrodes (pitch = 42 μm) arranged in a 64× 64
layout (2.7 by 2.7 mm2 active area) at a sampling rate of about
7 kHz per channel.

Primary hippocampal neurons from rat embryos at E18 were
dissociated by enzymatic digestion and seeded on HD-MEAs
previously sterilized and coated with polylisine adhesion factor
(Maccione et al., 2010, 2012). Drops of 30–50 μL were seeded
over the active area of the chip at a nominal low concentra-
tion of 100–150 cell/μL. After 2–3 weeks in incubator, cultures
develop a sparse interconnected network structure showing syn-
chronous functional activity. Extracellular electrophysiological
recordings of neuronal signals were acquired at 18–19 Days In
Vitro. Spontaneous activity was recorded for 10–15 min as con-
trol condition, followed by another 10–15 min recording under
chemical stimulation by adding 30 μMol Bicucculline.

After electrophysiological recordings, neuronal tissues were
fixed on the chip array in 4% paraformaldehyde for 20 min and
stained with NeuN for neuronal nuclei and β3-tubulin for axonal
and dendritic arborization (Maccione et al., 2012). Cultures were
then inspected under a microscope, collecting multiple fields at
20× magnification with a micro positioning stage. The acquired
portions were then stitched together using Adobe Photoshop CS3
and the open source free software Fiji (http://fiji.sc/Fiji).

2.2. MULTIMODAL DATASET DESCRIPTION
The combination of the HD-MEA technology with the
immunofluorescence microscopy results in multimodal datasets,
each consisting of a high-resolution fluorescence image—i.e., the
structural data—and a set of electrophysiological recordings—i.e.,
the functional data1.

For the purpose of our experiments, two different neuronal
networks were cultured on HD-MEAs under the same experi-
mental conditions. Figure 5A shows the fluorescence images of
the two cultures. In each neuronal culture about one thousand of
cells were grown, showing a strong degree of structural connectiv-
ity. As we aim at investigating the excitatory functional connectiv-
ity, we focus on the analysis of the electrophysiological recordings
with added Bicucculline, a blocker of the inhibitory pathway.
This choice limits the number of potential inhibitory connec-
tions and is a desirable condition since the cross-correlation (as
defined by Equation 3) is only designed to detect excitatory func-
tional connections (Garofalo et al., 2009). The raw electrical
signal recorded by each electrode was encoded, after spike detec-
tion (Maccione et al., 2009), as a sparse vector of size fs × tr ,
where fs is the sampling frequency and tr is the recording time
interval. The whole network recording is arranged in a sparse
matrix, where the indexing (i, j) refers to the electrode at row
i and column j in the electrode array. Each electrode (i, j) is
then associated to a vector with the time stamps of the corre-
sponding spiking activities. This encoding of the spiking activity
is used as input data for estimating the functional connectivity
(see Section 2.4).

The presented cases of study were selected as representative in
terms of number of neurons, density of connections and number
of functionally-correlated signals. Detailed information on each
dataset are reported in Table 1. First order statistics on cell culture
dynamics are in line with previous studies (Maccione et al., 2012).

2.3. STRUCTURAL CONNECTIVITY ANALYSIS FROM FLUORESCENCE
IMAGES

Dissociated neuronal cultures show extensive and fuzzy connec-
tivity that makes structural analysis computationally hard. To
tackle this challenge, a method based on heat propagation is used
to estimate the structural connectivity of neuronal assemblies
with dense connectivity, as reported in Ullo et al. (2013).

The method provides a description of the network topology in
terms of a graph where nodes correspond to the electrodes and
edges represent structural connections. In fact, this provides the

1Imaging and electrophysiological datasets will be available on CARMEN
(https://portal.carmen.org.uk) upon request of access credentials to the cor-
responding author.
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FIGURE 1 | Overview of the approach. Structural and functional connectivity maps are separately estimated from the multimodal datasets acquired on
HD-MEAs. The functional graph is then refined using the structural information as prior.
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Table 1 | HD-MEA dataset description.

Dataset Image size # Active electrodes MFR (Hz) MBR (#burst/min) MFIB (Hz) MBD (ms)

Chip-253 2985× 2982 146 1.63± 0.12 8.76± 0.06 71.23± 0.25 122.80± 0.60

Chip-250 2928× 2946 181 0.77± 0.09 4.08± 0.04 59.82± 0.29 150.38± 0.88

common reference frame to relate the functional signal recorded
by the HD-MEA to the network anatomy.

Maps of electrode connectivity are determined using a Graph
Heat Kernel (GHK) framework (Belkin and Niyogi, 2003; Bai
et al., 2010) based on probabilistic directional features (Ullo et al.,
2013). These features encode the local directionality of the neu-
rites within small patches of the image corresponding to the MEA
electrodes. A feature consists in a histogram with 8 entries, each
representing the probability of the current electrode being con-
nected to each of its adjacent neighbors (both horizontal, vertical,
and diagonal adjacency are considered).

In its general formulation, a GHK allows to estimate the struc-
ture of a graph by computing the amount of heat that propagates
from a source to a destination node. The intuition behind the use
of a GHK for structural connectivity estimation can be explained
by first considering the lattice formed by the regular MEA struc-
ture. A weighted graph can be defined on this lattice where the
electrodes are nodes and edge weights are given by their degree of
connectivity, i.e., by the values of the corresponding probabilistic
directional features (see Figure 2). If we placed a certain amount
of heat on a seed node and let it propagate through the graph, heat
propagation would favor the edges having higher weights, i.e.,
corresponding, in principle, to stronger connections. As a result,
the amount of heat reaching a destination electrode from the seed
could be considered as an estimate of the strength of their con-
nectivity. Repeating this propagation for all seed electrodes, we
can obtain an estimate of the whole-network structural connec-
tivity. Only electrodes having neurons in their recording area are
considered as seeds, as they are the ones substantially contributing
to the electrophysiological activity.

Further details on the structural analysis will be provided in
the following sections.

2.3.1. Probabilistic directional features.
A preprocessing pipeline is first run to detect neuronal nuclei
and reconstruct the electrode array from the image as reported
in Ullo et al. (2012). Specifically, the MEA reconstruction allows
to compute an electrode-based partition of the image, i.e., a par-
tition into small patches corresponding to the electrode areas (see
Figure 3A). The proposed directional features are then extracted
from each patch with the aim of obtaining the probability
of connection between neighboring electrodes as explained by
Figures 3B,C. The features characterize the local configuration
of neurites’ orientations using a directional Von Mises Mixture
(VMM) model fitted to a number of line segments.

Von Mises distributions are widely used to describe directional
statistics on the circle (Mardia and Jupp, 2000) and are defined
by two parameters: mean μ and concentration κ . The larger is
the value of the concentration, the higher is the clustering of the
points around the mode placed at θ = μ.

FIGURE 2 | Heat propagation. A heat source is placed at the seed
electrode and propagated according to the probability of connection
defined by the directional feature. Heat propagation favors directions
with higher probability of connection. The adjacent electrodes
(numbered from 1 to 8) are reached by a different amount of
heat according to the seed feature, as described by the colormap.

In our framework, segments—approximating real neurites—
are detected at each image patch using the Hough Transform.
A different Von Mises distribution is then fitted to each of the
segment endpoints. The goal is to describe the main neurite ori-
entations inside the patch and the corresponding uncertainty in
each of the given directions. Uncertainty is associated to the angles
at which a neurite exits/enters the patch and is due to the approx-
imation of real neurites by line segments (which can be affected
by errors caused by noise, blurring, etc.). To fit the parameters
of the Von Mises (VM) distribution, we compute the angle θA

(θB) as the projection of the segment endpoint A (B) onto the cir-
cle circumscribing the patch, as shown in Figure 3B. The angle
defines the mean μA (μB) of the VM fitted at endpoint A (B)
which represents the most probable angle at which the neurite
enters/exits the patch. To model the uncertainty of this orienta-
tion we compute the distance dA (dB) between endpoint A (B) and
the boundary of the patch. The higher this distance, the higher
the uncertainty of the neurite crossing the boundary exactly at
the estimated angle. Consequently, the concentration parameter
κA (κB) is set as inversely proportional to distance dA (dB).

For a patch with n segments, 2n VM distributions will be fit-
ted to the data and used to define the VMM model. As the Hough
Transform assigns each segment a vote depending on its evidence
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FIGURE 3 | Preprocessing and feature extraction. (A) The Micro
Electrode Array reconstruction is used to partition the image into
small patches corresponding to the electrode areas. (B) A Von
Mises Mixture (VMM) model is fitted to a set of segments

detected on the patch to describe the uncertainty of local neurite
orientation. (C) The VMM is then discretized to obtain the
feature, i.e., an histogram describing the probability of connection
with adjacent electrodes.

on the image, votes are used to define mixture proportions. As a
results, segments having stronger evidence will be assigned higher
weight in the mixture model. An example of VMM model is
shown in Figure 3C.

Finally, the obtained probability distribution is discretized in
the 8 neighboring directions. This is done by computing the area
under the probability density function of the VMM model in 8
different sectors of the circle, as shown in Figure 3C. This results
in a histogram in which each entry represents the probability of
the current electrode being connected to its neighbors.

2.3.2. Graph heat kernel
The heat kernel specifies how the information flows across a net-
work or a manifold in time. Generally speaking, the goal of the
heat kernel is to reduce the dimensionality of high-dimensional

data lying on sub-manifolds, so it is related to the concept of
spectral clustering (Luxburg, 2007). Similarly, it can be used to
geometrically characterize the structure of a graph residing on a
manifold by defining its pattern of geodesic distances (Bai et al.,
2010).

Given a weighted graph G = (V, E, W), where V is the set
of nodes, E ⊆ V × V is the set of edges, and W the matrix
of edge weights, the heat diffusion on G is defined by the
heat equation:

(
LG + ∂

∂t

)
ht = 0; (1)

where ht is the heat distribution at time t and LG is the Graph
Laplacian operator (Belkin and Niyogi, 2003). In particular, LG =
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D− A, where A is the symmetric adjacency matrix defined on
graph G, and D is the diagonal degree matrix whose diagonal
elements are given by D(x, y) =∑y∈V A(x, y).

As the time derivative of the kernel is determined by the
graph Laplacian, the solution of the heat equation is obtained by
exponentiating the Laplacian eigensystem over time. According
to spectral graph theory, the heat kernel has the following
eigendecomposition (Bai et al., 2010):

ht(x, y) =
|V |∑

i= 0

e−λitφi(x)φi(y), (2)

where ht(x, y) is the heat kernel element for nodes x and y, and
λi and φi are the ith eigenvalue and eigenvector of the Graph
Laplacian, respectively.

The heat kernel ht(x, y) is the solution of the heat equation
with heat source placed at point x at time t = 0, and represents
the amount of heat at point y after time t.

The heat kernel solution is generally computed in two
steps: (1) the manifold is approximated by the adjacency
graph A computed from data points and incorporating neigh-
borhood information, and (2) the weighted graph Laplacian
is used to estimate the real manifold, optimally preserv-
ing such neighborhood information (Belkin and Niyogi,
2003).

In our application, the weighted adjacency matrix A is
obtained from the probabilistic directional features, by defining
each element A(x, y) as the histogram value for the edge connect-
ing electrode x to electrode y (defining their probability of being
connected by a neurite). Due to the way features are defined, his-
togram values are not symmetric in the two directions, so the
matrix A needs to be symmetrized, as requested by the GHK for-
mulation. This is done by summing the probability contributions
in the two edge directions.

The output of the heat kernel is a |V | × |V | adjacency matrix
(4096× 4096 in our case) indicating the electrode connectiv-
ity in terms of amount of heat propagated after time t from
a seed electrode. Matrix weights are normalized (divided by
the maximum value in the matrix) to obtain the final struc-
tural connectivity map. As a matter of fact, this matrix is quite
sparse, as only electrodes having neurons in their recording
area are taken into consideration as nodes. This allows to limit
the connectivity estimation to actual neurons lying on elec-
trodes that can contribute to the electrical activity recorded by
the HD-MEA.

In the GHK framework, heat propagation is regulated by the
time parameter t. Figure 4 shows the influence of this parame-
ter on the final estimate. It can be observed that, when t grows, a
larger portion of the graph is explored, resulting in the overlap of
multiple feature contributions (in addition to the initial seed fea-
ture). While this makes it more likely to introduce false positives,
it also allows to discover new branches in the network connectiv-
ity and to compensate for imprecise and noisy local contributions.
Hence, setting the value of t is a trade-off that strongly depends on
the size of the considered domain (in our case the 64× 64 matrix
of electrodes).

2.4. FUNCTIONAL CONNECTIVITY ANALYSIS FROM SPIKING ACTIVITY
A cross-correlation based approach for functional connectiv-
ity estimation applied to electrophysiological recordings of in
vitro populations has been recently validated on the HD-MEA
recording system in Maccione et al. (2012). Cross-correlations
are computed between pairs of electrode signals to obtain a first
rough estimate of functional connectivity. For each pair of elec-
trodes (x, y) (with at least one spike to ensure presence of activity)
the following cross-correlation function (cross-correlogram) is
evaluated among their spike trains:

Cxy(τ ) = 1√
NxNy

Nx∑
s= 1

τ + (	τ /2)∑
ti = τ−(	τ /2)

x(ts) y(ts + ti) (3)

with Nx (Ny) being the number of spikes in train x (y), ts the
spike occurrence time in train x and 	τ the time window in which
synchronous spikes in train y are counted. 	τ is set at 0.5 ms.

The resulting normalized cross-correlations are then post-
processed using a filtering strategy to remove false positives
not compatible with biological prior. In particular, the maxi-
mum propagation velocity for in vitro biological preparations
(400 mm/s, Bonifazi et al., 2005) is used to discard physiologi-
cally implausible links, i.e., links having correlation peak latency
below this value. Such a physiological filter also accounts for
delayed spikes in post-synaptic cells. Cross-correlations are then
thresholded to retain only statistically significant links. To this
aim, the cross-correlation of jittered spike trains [by ±5 ms, thus
maintaining the same Inter Spike Interval (ISI) distributions]
is computed as null model and a significance threshold Cs is
defined using a non-parametric statistical test at p-value p = 0.05.
This shuffling procedure, also called dithering (Grün and Rotter,
2010), is repeated 100 times on each randomly-selected pair of
channels. The probability of the jittering was set as uniform in
the±5 ms time interval.

The thresholded functional graph, weighted by the cross-
correlation values, relies entirely on the recorded electrophys-
iology, discarding the valuable information coming from the
structural modality.

2.5. COMBINING STRUCTURAL AND FUNCTIONAL INFORMATION
We build on the hypothesis that functional co-activation com-
monly relies on anatomical connections to refine the esti-
mate of Functional Connectivity (FC) from our Structural
Connectivity (SC) prior. In order to coherently combine struc-
tural and functional information, the refinement process starts
from the unthresholded cross-correlation values obtained after
spatio-temporal filtering.

As a first step, we observe that the functional connectivity
estimates are unaware of the actual neuronal distribution on
the array of electrodes. Due to noise affecting the spike detec-
tion and/or strong dendritic arborization (whose activity can
be, in some cases, detected by the MEA), electrodes with no
neuron in their recording area are sometimes included in the
graph. As the proposed structural analysis is capable to retrieve
a unique correspondence between neurons and electrodes, the
first refinement stage consists in discarding such nodes from
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FIGURE 4 | Influence of time on heat propagation. The heat propagation
time directly influences the estimated connectivity. (A) The input image and
seed electrode. (B) The corresponding probabilistic directional feature. Higher
histogram values in bins #1 and #5 reflect the structure of neurites in the
patch (spreading horizontally). (C) Result of the GHK propagation at time

t = 1. Electrodes are colored based on the amount of heat propagated from
the seed. After time t = 1 the seed feature mainly contributes to the
propagation, so electrodes 1 and 5 have warmer colors. (D–E) Results at
t = 10, 25. Although the pattern of propagation partially preserves the initial
layout, more contributions come from neighboring features.

the FC graph. Additionally, neuronal correlations have been
shown to decay with physical distance (Vincent et al., 2013).
Nevertheless, cross-correlation measures do not strictly reflect
this behavior—due to noise and random co-activations—and
the resulting FC graphs frequently present a substantial num-
ber of long-range links that are improbable, given the underlying
network topology. Thresholding strategies, used to select a sub-
set of somehow relevant links, are typically based on purely
empirical observations due to the absence of any ground truth
information.

We take advantage of the relationship between functional cor-
relation and structural distance, to define the second step of our
refinement strategy, called reweighting.

Specifically, the FC values (i.e., normalized cross-correlation
peaks) associated to the functional graph are reweighted based
on the distance of the corresponding nodes. This measure—
called structural distance—is the euclidean distance computed
along the shortest path connecting the nodes on the structural
graph. In principle, we want our algorithm to penalize func-
tional links according to this value. To this aim, a functional
link connecting electrodes x and y with cross-correlation peak
defined as:

CP(x, y) = max
τ

Cxy(τ ), (4)

is reweighted according to the following formula:

W(x, y) = C̃P(x, y)(1+ dxy) (5)

with dxy being the structural distance and C̃P(x, y) being the
cross-correlation peak normalized in the interval [0, 1]. As the
distance dxy is also normalized in the same interval [0, 1], the
resulting weights W reflect our initial hypothesis.

Finally, a threshold of statistical significance for the estimated
functional links is determined by applying the reweighting pro-
cess to the null model introduced in Section 2.4. A statistical
significance test at p-value p = 0.05 is then used to define a sig-
nificance threshold Ws. As will be discussed in Section 3, results
of the refined and thresholded FC graphs show that, by incor-
porating the structural information as prior, it is possible to
provide estimates of functional connectivity more coherent with
the network topology.

2.6. CLASSIFICATION OF FUNCTIONAL CONNECTIONS
After the reweighting and thresholding of the initial FC graph,
a subset of the original functional links is discarded. We want
to investigate if the two classes of discarded and retained con-
nections are characterized by distinguishable functional features.
First of all, this would allow to show that the structural prior
is not only imposing an a priori constraint on the functional
connectivity but it is effectively selecting links that behave differ-
ently from a functional point of view. Second, this investigation
could give some insights on how to effectively detect functional
links purely from the analysis of the electrophysiological activ-
ity. Former studies (e.g., Ostojic et al., 2009) are informative on
how the cross-correlation function is affected by variations of the
network background activity, the synaptic strengths and the local
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network connectivity. In line with these studies, we compute a set
of features of the cross-correlogram (i.e., cross-correlation peak,
time lag of the peak, spread of the cross-correlation function)
that might be informative on the occurrence of actual functional
connections. For each discarded/retained link, functional features
are computed from the analysis of the original spike trains. As
they are not affected by our structural prior, this allows to high-
light any intrinsic property of the functional activity capable of
revealing real co-activations. The sets of discarded/retained links
are then regarded as two classes and a linear Support Vector
Machine (SVM) (Duda et al., 2000) is trained/tested on these data
to quantify the discriminative power of different combinations of
features. The functional features considered in this study are the
following:

1. cross-correlation peak (CP)
2. counts/occurrences of the cross-correlation peak (CO)
3. cross-correlation time lag (Cτ )
4. entropy of the cross-correlation function (CH)
5. firing rates of the correlated electrodes (MFRx, MFRy).

Features CP and CO are related to the strength of a given func-
tional link, whereas the time lag of the peak (Cτ ) will likely
be proportional to the closeness of the correlated nodes. The
spread of the cross-correlation function can be informative of
the nature of a given link: broad functions would likely corre-
spond to unreliable and noisy cross-correlations. As previously
shown in Maccione et al. (2012), this feature is also related to
the link length. Here, instead of resorting to a gaussian fit of the
cross-correlation functions (Maccione et al., 2012), the spread is
measured in terms of the more general entropy measure (CH)
quantified as

CH = −
∑

Cn(τ ) log2 Cn(τ ) (6)

with Cn(τ ) = C(τ )/
∑

τ C(τ ).
We also included the mean firing rates (MFRx, MFRy) that are
typically used to quantify first order statistics of cell culture
dynamics. In principle, the firing rates cannot be regarded as
effective predictors of any correlated activity, however, at higher
firing rates the probability of coincident events (i.e., correlated
activities) increases. In addition, since CO is related to CP by
the geometric mean of MFRx and MFRy (by the relation CO =
CP T

√
MFRx ·MFRy, with T being the length of the recording

session), this further motivates the investigation of the inter-
play between all the features determining the cross-correlation
function.

To evaluate the performance of the classifier, we adopt a cross
validation (CV) procedure. The original dataset is split into two
complementary subsets used, respectively, for training and testing
the classifier. Specifically, a standard 10-fold CV is carried out that
consists in subdividing the original dataset into ten subsets, the
training is performed on 9/10 of them and the accuracy (i.e., per-
formance) of the linear SVM classifier is evaluated on the tenth.
This procedure is repeated ten times by alternating the tested sub-
set. The performance of the linear SVM is then quantified as the

mean and standard deviation of the accuracies obtained by the
10-fold CV procedure.

3. RESULTS AND DISCUSSION
3.1. FUNCTIONAL CONNECTIVITY ESTIMATION FROM STRUCTURAL

PRIOR
The proposed approach was applied to the analysis of the two
HD-MEA datasets described in Section 2.2. The structural con-
nectivity of the network was first estimated by running the GHK
algorithm for each seed electrode, i.e., for each electrode hav-
ing at least one neuron in its recording area. Propagation time
was chosen experimentally and set to t = 25, taking into account
the extent of the domain, i.e., the 64× 64 initial lattice defined
on the MEA structure. The value provides a good trade-off
between the capability of the system of exploring the graph and
the introduction of spurious connections due to the extended
contribution of neighboring features. For further details on the
study of the time parameter the reader is referred to Ullo et al.
(2013). The estimated SC graphs are shown in Figure 5B and both
reflect the strong degree of connectivity of the networks (5570
and 7808 SC links were estimated for Chip-253 and Chip-250,
respectively).

Functional connectivity graphs were computed for the two
neuronal cultures using the cross-correlation algorithm, followed
by spatio-temporal filtering and thresholding, as described in
Section 2.4. The resulting FC maps are provided in Figure 6A
where functional links are color-coded based on the value of the
cross-correlation peak. Both graphs—even after selecting only the
statistically significant connections—present a substantial num-
ber of long-range links. According to what is suggested in Section
2.5, electrodes without any neuron in their recording area were
first removed from the functional graphs. This allowed to reduce
the number of functional links by 22% in the case of Chip-253
and by 37% for Chip-250.

The proposed reweighting method was then applied to inves-
tigate which of the remaining functional links actually relied on
a structural path. It should be noted that the use of the shortest
path between pairs of electrodes is a choice that favors shorter
structural connections which are more likely to be direct or,
in general, morphologically plausible. Although this does not
guarantee that the chosen path is the one actually active, we
assume that—statistically—minimal paths are the most proba-
ble ones (Vincent et al., 2013). Figure 7A shows the distribution
of functional weights with and without the graph refinement. A
substantial decrease in the number of functional connections can
be observed as a result of incorporating the structural informa-
tion into the initial FC estimates. To better highlight this effect,
weight vs. distance scatter plots are also provided in Figure 7B.
The plots are referred to the initial functional links obtained after
spatio-temporal filtering and after removing the electrodes with-
out neurons. Points are color-coded using a heat colormap based
on the link’s cross-correlation. It can be observed that higher
correlations correspond to shorter paths and that an increase
in the structural distance weakens the corresponding functional
correlation. The red line represents the significance threshold Cs

obtained from the statistical test. Although applying this thresh-
old would allow to discard 37.1% of connections for Chip-250
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FIGURE 5 | Structural connectivity graphs. (A) Original fluorescence images of two neuronal networks (Chip-250 and Chip-253). (B) Resulting structural
connectivity graphs estimated with the GHK framework. The networks present high degree of connectivity (5570 SC links for Chip-253 and 7808 links for Chip-250).

and 68.3% for Chip-253, the result still presents many long-range
functional links.
Unfortunately, after the statistical significance test, there is no easy
or intuitive way for neuroscientists to make a further distinction
between relevant and spurious connections. More conservative
estimates of functional connectivity are sometimes provided by
ranking the estimated links according to their cross-correlation
values and selecting the strongest K (e.g., K = 100, Maccione
et al., 2012). However, the problem of determining a satisfac-
tory value for K still remains. Ideally, we would like to threshold
the FC graph in order to privilege short-range connections while
penalizing long-range ones. At the same time, we want to allow
the selection of links with substantial correlation even on long
distances.

The proposed reweighting formula allows to meet these
requirements, as shown by the scatter plots of Figure 7C. Points
are plotted according to their new weight but they maintain the
initial color of Figure 7B. This allows to highlight how the signif-
icance threshold applied to the reweighted graph can effectively
discard functional links that are too distant, even when they have
significant correlation. Figure 6B shows the refined functional

graphs for the two networks under study obtained after applying
the significance threshold Ws. Results present an overall decrease
in the number of FC links by 86.5% for Chip-253 and 83.7%
for Chip-250 with respect to the initial cross-correlation esti-
mates. As opposed to the functional connectivity graph shown
in Figure 6A, the introduced strategy automatically selects func-
tional connections that are more coherent with the structural
topology of the network. This can be more evidently observed in
the case of Chip-253, where the culture presents a clear clustering
into two subnetworks that are almost completely separated from
each other. Nevertheless, the initial estimate of the FC graph—
relying only on the electrophysiological signals—included a mas-
sive amount of links connecting the two subnetworks. Thanks to
the reweighting process we are capable of filtering such FC links,
retaining only the ones being coherent with the structural prior
or showing a substantially strong correlation. The introduced
reweighting formula allows to penalize correlation with distance
while modulating the contribution of the structural prior, based
on the amount of evidence on the functional co-activation.
Thanks to the proposed formulation, lower correlations are
more strongly penalized with distance—thus imposing stronger
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FIGURE 6 | Functional connectivity graphs. (A) Functional connectivity
graphs estimated computing cross-correlations on the pairwise
electrophysiological signals and applying spatio-temporal filters and a
significance threshold based on dithering. Functional links are color-coded

based on the value of their correlation peak. (B) The same graphs obtained
after removing electrodes without any neuron and reweighting based on the
structural distance. The refined FC graph shows a better coherence with the
network topology.

structural prior—whereas higher correlations are less influenced
by the neuronal displacement as the functional evidence prevails.
This provides a more conservative estimate of functional connec-
tivity, as compared to other weighting functions. For instance,
in case of a negative exponential function [i.e., CP(x, y)e−dxy ],
at a given distance, higher correlations would be more penalized
than smaller ones. This would imply a substantial influence of the
structural prior, even in presence of strong evidence of functional
co-activation. On the contrary, with our approach structural
and functional information are combined preserving the con-
tribution of clear functional observations without imposing a
too strong structural prior. Table 2 summarizes the quantitative
results on the structural and functional analysis of the considered
datasets.

3.2. RELEVANT FEATURES FOR FUNCTIONAL ANALYSIS
We want to investigate if the functional features of dis-
carded/retained FC links can suggest new hypotheses on the way
neurons functionally interact. To this purpose, we want to assess
and compare the relevance of commonly used functional fea-
tures for the classification of FC links belonging to the two classes
(discarded or retained links, according to the structural prior).

Some of these functional features are directly computed from
the cross-correlation function. The cross-correlation peak CP,
its time lag Cτ and the spread CH are reported in Figure 8A.
Then, as indicated in Section 2.6, CO is computed from CP,
MFRx, and MFRy. To gain some insights on the potential dis-
criminative power of each feature, we first compared their distri-
butions across the two classes of discarded/retained connections.
Results are shown in the box plots of Figure 8B. As intuitively
expected, the distribution of correlation peaks CP is significantly
different from one class to the other, as this feature is directly
involved in the FC graph estimation. The features CH and Cτ

show smaller values in the retained dataset, indicating that the
reweighting procedure was effective in selecting cross-correlation
functions with reduced spreads and time lags. The latter result
shows that the retained features actually correspond to more
reliable (i.e., lower entropy) and more physiological (i.e., the
peak is closer to the integration time of synaptic events) func-
tional links. Then, subsets of the considered features were used
to train and test the SVM classifier. The corresponding ranked
accuracies (mean ± std on 10-fold cross-validation) are reported
in Figure 8C and confirm that CP is the most significant fea-
ture (x-axis: 1–4). Interestingly, Figure 8C shows that when CP
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FIGURE 7 | (A) Distribution of functional weights before and after
reweighting. (B) Weight vs. distance plot before reweighting. Points are
color-coded with a heat colormap based on the correlation value. The
significance threshold Cs is computed using a statistical test with p-value

p = 0.05. (C) Weight vs. distance plot after reweighting. Thanks to the
structural prior, the new significance threshold Ws allows to select functional
connections that are more coherent with the structural topology of the
network.

Table 2 | Quantitative structural/functional information.

Chip-253 Chip-250

Structure
Neurons 1312 1152

SC links 5570 7808

Function
FC links (initial estimate) 4085 16290

FC links (above threshold Cs) 1294 9788

Discarded FC links (above threshold Cs w.r.t. initial estimate) 2791 (68.3%) 6052 (37.1%)

Structure + Function

FC links (neurons only) 3187 10296

FC links (neurons only, above threshold Cs) 1041 6258

FC links (final estimate: reweighted, above threshold Ws) 553 2654

Discarded FC links (reweighted w.r.t. initial estimate) 3532 (86.5%) 13636 (83.7%)
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FIGURE 8 | Classification features and results. (A) Cross-correlation
features used in the classification process. The peak of cross-correlation CP ,
its peak time Cτ and the corresponding spread CH are considered. (B) Box
plots of the feature distributions in the discarded and retained link classes.

The retained class shows significantly higher CP and lower CH . (C) The
classification accuracy in Chip-250 and Chip-253 shows a similar ranking, from
1 (highest) to 17 (lowest), as function of the considered features. The used
combinations of features are encoded in gray below the plot.

is removed from the tested features (x-axis: 5 on) a reasonable
level of accuracy can still be achieved by the linear SVM. This
holds true for different combinations of features (Figure 8C, x-
axis: 5–7 for Chip-250; x-axis: 5–9 for Chip-253) indicating that
other features are also informative for discriminating retained
from filtered links. Specifically, the mean firing rates (MFRx,

MFRy) can be alternatively combined with the CO, CH , and Cτ

features still yielding a good discriminative power. Finally, the
computed accuracies reach a plateau (Figure 8C, x-axis: 8–17
for Chip-250; x-axis: 11–17 for Chip-253) that corresponds to
the noise level of the classifier (i.e., the chance of a random
classification). Indeed, based on Table 2, the noise level (ACCη)
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was computed analytically2 and matched with the corresponding
plateaus (Chip-250: ACCη = 74.2%; Chip-253: ACCη = 82.6%).
The plateau region is characterized by single as well as subgroups
of features (e.g., CO, Cτ , {MFRx, MFRy} and CH) that are inef-
fective for discriminating the retained from the discarded links.
In conclusion, apart from CP, we found that different combi-
nations of features can also be effective in discriminating the
retained from the discarded links thus motivating the develop-
ment of alternative algorithms that incorporate this informa-
tion to improve the detection of structurally-coherent functional
connectivity maps.

3.3. GENERAL DISCUSSION AND PERSPECTIVES
The study of the relationship between structure and function
at the mesoscale, taking advantage of multielectrode arrays and
fluorescence microscopy, has to face two important issues: (i) a
limited optical resolution for the structural description, and (ii)
the need for resolving single neurons from extracellular record-
ings on the functional aspect. Knowing this limitation in reso-
lution, a central concept in our approach is to take advantage
from the combination of partial descriptions of structure and
function to generate a refined estimate of the network activity.
Furthermore, to place our study in the best conditions to properly
validate the proposed ideas, we adopt low-density cell cultures
and high-density MEAs. As a matter of fact, this combination
allows to typically record one single-unit from each electrode
of the 4096-array (this holds for about 90% of the electrodes).
This settings allows to minimize the shared variance given by
the potential recording of many neurons from a single electrode.
On the other side, the issue of cross-talk that might be given
by the recording of the same neuron from many nearby elec-
trodes is minimized by the low-density culture condition and by
the electrode density of the CMOS-MEA that provides a small
inter-electrode separation of 21 μm. Finally, we deliberately use
low-density cell cultures as they enable to validate the proposed
framework allowing to identify single neurons and estimate their
connectivity within large neuronal networks. However, in prin-
ciple, the basic concepts of the presented methodology might
also be applied to denser cell cultures, to ex vivo brain tissue
preparations or even to in vivo experimental studies on subsets
of neural populations expressing fluorescent markers. This would
be feasible upon the adoption of sufficiently high-resolution
microscopy and recording techniques. For instance, having higher
plating densities would imply a much larger number of struc-
tural connections. In this case, the problem complexity would
lie in a correct and reliable encoding of the local neuritic archi-
tecture. As the proposed local directional features are capable
to deal with complex structures showing many crossing and
branching neurites, despite the increase in the computational
load, it would be possible to apply the same feature-based anal-
ysis. The heat kernel propagation could then be used to esti-
mate the structural connectivity even in such denser neuronal
preparations.

2ACCη = max(nDIS, nRET)/(nDIS+ nRET) with nDIS/nRET correspond-
ing to the cardinalities of the discarded/retained data sets.

4. CONCLUSIONS
Although functional analysis at the mesoscale is typically car-
ried out with coarse or absent structural information, thanks to
the HD-MEA technology and to the proposed structural analy-
sis, it was possible to move a step forward relating network-scale
functional and structural data at cellular resolution.

In this paper, we presented a computational framework
capable of estimating structural and functional connectivity
graphs from immunofluorescence images and electrophysiolog-
ical recordings of in vitro neuronal networks cultured on HD-
MEAs. As functional correlation and structural distance have
been shown to be related both theoretically and in different exper-
imental conditions (Hirase et al., 2001; Shlens et al., 2006; Kriener
et al., 2009; Vincent et al., 2013), we introduced a reweight-
ing strategy that allows to refine correlation-based measures of
functional connectivity using the acquired structural prior. Such
refined estimates were then used to investigate the role of different
functional features in actual neuronal interactions. Our analysis
showed that the combination of structure and function allows
to obtain reliable functional connectivity graphs that are more
coherent with the network topology and, as a consequence, with
the known distance-dependent neuronal behavior. The classifica-
tion results also allowed to reveal how different combinations of
features can be more informative than others when targeting the
detection of correlated functional activities.

Thanks to the cellular resolution offered by the HD-MEA tech-
nology, the proposed approach allowed, for the first time, to
obtain a full characterization of the structural and functional con-
nectivity at the mesoscale with a granularity of the single cell.
This first attempt in combining structure and function at this
level paves the way toward a deeper understanding of the low-
level functions of complex circuits from which higher-level brain
behaviors emerge.

Further investigation will target the analysis of more advanced
reweighting techniques, based on a probabilistic modeling of the
relationship between cross-correlation and structural distance or
other relevant features of the structural graph. Complementary
future work will address the analysis of dissociated networks with
selective immunofluorescence staining to separate the contribu-
tions of inhibitory and excitatory subnetworks and study their
structure-function interplay.
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Neuronal information processing in cortical networks critically depends on the organization
of synaptic connectivity. Synaptic connections can form when axons and dendrites come
in close proximity of each other. The spatial innervation of neuronal arborizations can
be described by their axonal and dendritic density fields. Recently we showed that
potential locations of synapses between neurons can be estimated from their overlapping
axonal and dendritic density fields. However, deriving density fields from single-slice
neuronal reconstructions is hampered by incompleteness because of cut branches.
Here, we describe a method for recovering the lost axonal and dendritic mass. This
so-called completion method is based on an estimation of the mass inside the slice
and an extrapolation to the space outside the slice, assuming axial symmetry in the
mass distribution. We validated the method using a set of neurons generated with
our NETMORPH simulator. The model-generated neurons were artificially sliced and
subsequently recovered by the completion method. Depending on slice thickness and
arbor extent, branches that have lost their outside parents (orphan branches) may occur
inside the slice. Not connected anymore to the contiguous structure of the sliced neuron,
orphan branches result in an underestimation of neurite mass. For 300 μm thick slices,
however, the validation showed a full recovery of dendritic and an almost full recovery
of axonal mass. The completion method was applied to three experimental data sets of
reconstructed rat cortical L2/3 pyramidal neurons. The results showed that in 300 μm
thick slices intracortical axons lost about 50% and dendrites about 16% of their mass.
The completion method can be applied to single-slice reconstructions as long as axial
symmetry can be assumed in the mass distribution. This opens up the possibility of
using incomplete neuronal reconstructions from open-access data bases to determine
population mean mass density fields.

Keywords: neuronal morphology, reconstruction, slices, density fields, cut branches, recovery

INTRODUCTION
Cognition emerges from electrical activity dynamics in neuronal
networks in the brain. These networks consist of a large num-
ber of neurons from a multitude of cell types connected to each
other via synapses. Neurons innervate space through their axonal
and dendritic arborizations and synapses may be formed when
axonal and dendritic arbors are sufficiently close in space (Peters,
1979; Mishchenko et al., 2010). The shape of neuronal arboriza-
tions is therefore a crucial determinant of synaptic connectivity in
the brain. Neurons show a large variability in shape but maintain
characteristics typical for their cell type. The distribution of den-
dritic and axonal mass in space can be described as a mass density
field, indicating at each location in space the amount of den-
dritic and axonal mass (in terms of length or volume). Averaging
these density fields over a population of neurons gives a statistical
representation of how this cell type distributes its mass in space.

Potential locations for synaptic connections between neurons
can be found by searching all spatial locations where axonal
and dendritic branches are sufficiently close to each other (Van

Pelt et al., 2010). In a recent study we showed that the num-
ber of potential locations can also be derived from the overlap
between axonal and dendritic density fields (Van Pelt and Van
Ooyen, 2013). Thus, for creating neuronal networks with neurons
at different locations in space and originating from a variety of
cell types, knowledge about their population mean density fields
is sufficient to estimate the number of potential synapse loca-
tions between these neurons. Note, however, that for estimating
actual connectivity additional knowledge is required of the prob-
ability that a synapse will develop at a potential location (e.g.,
Mishchenko et al., 2010). Thanks to open-access data bases neu-
ronal reconstructions from a large number of cell types have now
become widely available [e.g., NeuroMorpho.org (Ascoli, 2006)
and SenseLab (Shepherd et al., 1997)]. These data could, in prin-
ciple, be used for calculating population mean density fields for
each cell type represented in the data base. However, many of
the reconstructions originate from stained neurons in single slices
with thicknesses up to about 300 μm. With axonal and dendritic
arborizations extending beyond the spatial boundaries of single

Frontiers in Neuroanatomy www.frontiersin.org June 2014 | Volume 8 | Article 54 |

NEUROANATOMY

47

http://www.frontiersin.org/Neuroanatomy/editorialboard
http://www.frontiersin.org/Neuroanatomy/editorialboard
http://www.frontiersin.org/Neuroanatomy/editorialboard
http://www.frontiersin.org/Neuroanatomy/about
http://www.frontiersin.org/Neuroanatomy
http://www.frontiersin.org/journal/10.3389/fnana.2014.00054/abstract
http://community.frontiersin.org/people/u/5655
http://community.frontiersin.org/people/u/611
http://community.frontiersin.org/people/u/33286
mailto:j.van.pelt@vu.nl
http://www.frontiersin.org/Neuroanatomy
http://www.frontiersin.org
http://www.frontiersin.org/Neuroanatomy/archive


van Pelt et al. Density field completion

slices, all these reconstructions have cut endings and are thus
incomplete (Figure 1). This incompleteness hampers the use of
these reconstructions for density field estimations.

In the present study a method is developed to estimate the lost
axonal and dendritic parts by extrapolating densities calculated
from the observed parts inside the slices to the space outside the
slices, assuming axial symmetry in the axonal and dendritic mass
distribution. This so called completion procedure is described in
the section Materials and Methods and applied to three differ-
ent data sets of rat cortical layer 2/3 pyramidal neurons for which
axial symmetry can be assumed. A vital part of the study is the
validation of the method. To this end, 50 neurons generated with
our NETMORPH simulator (Koene et al., 2009) were artificially
sliced with varying slice thicknesses, and subsequently subjected
to the completion procedure. Comparison of the original mass
distributions with the sliced ones and the completed ones showed
the level of recovery obtained.

For slices of thickness of 300 μm or thicker the validation study
showed that the completion procedure resulted in a (almost) full
recovery of the dendritic and axonal mass density fields from
the incomplete reconstructed neurons. An important aspect in
the recovery of cut arborizations is the occurrence of orphan
branches, i.e., branches which have lost their parents located out-
side the slice. These orphan branches are no longer part of the
contiguous reconstructed structure and thus result in an under-
estimate of the mass of the arborization inside the slice, which
cannot be recovered by the completion method. This especially
occurred for larger arborizations (axons) in thin slices of 100 or
200 μm thickness.

MATERIALS AND METHODS
MASS DENSITIES IN 3D SPACE
The completion method is based on the calculation of the neu-
ronal mass densities inside the slices and extrapolating these
densities to the area outside the slices. For this extrapolation it is
assumed that the mass densities of the neuronal arborizations are
axial symmetric (Figure 2A). This is a plausible assumption for
pyramidal neurons, which have the apical main shaft as symmetry

FIGURE 1 | Cartoon of (A) a front view of a slice with a pyramidal

neuron extending its apical (dark blue) and basal (red) dendritic

branches in the XY direction of the slice, and (B) a side view of the

slice with the neuron having many branches cut in the Z-direction of

the slice. The cut endings are indicated by colored dots with the lost
branches indicated in light blue. Axonal branches are not shown in these
cartoon images.

axis. Using an axial-radial coordinate system, the neuronal mass
is determined for a given height and a given radius, thus sum-
ming all the mass in a ring as is illustrated in Figure 2A. For
a fully intact neuron, the radius of the integration ring ranges
from zero up to the maximal radial extension of the arboriza-
tions. The total mass distribution of a neuron becomes a function
of height and radius. Evidently, in the case of pyramidal neurons,
these distributions can also be obtained separately for axons and
(apical and basal) dendrites. For a sliced neuron, its radial exten-
sion in the XY direction of the slice can become as large as in the
intact neuron, but in the Z-direction it is limited by the boundary
planes of the slice. Also the integration ring will be complete for
small radii but becomes incomplete at one or two sides for larger
radii. In the last case the ring is reduced to two separate ring seg-
ments (Figure 2B). The estimation of the mass densities is then
restricted to the remaining parts of the integration rings.

METHOD FOR ESTIMATING MASS DENSITIES OUTSIDE THE SLICES
With the assumption of axial symmetry, the densities in the
fractional parts of the integration rings inside the slice can be
extrapolated to their complementary parts outside the slice. The
volume of the integration ring inside and outside the slice is
fully determined by the position of its center (i.e., the symme-
try axis), the radius of the integration ring, and the thickness of
the slice. Three situations can be distinguished. The ring can be
fully contained in the slice, it can extend the slice on one side,
or it can extend the slice on both sides (Figures 2C–E). The neu-
ronal masses can only be obtained for the volume fraction of the
ring inside the slice. For an integration ring with radius r (point-
ing to the center of the ring), the volume fraction F(r) of the ring
area (or volume) within the slice can be expressed in terms of the
thickness of the slice (T), the position of the ring center within
the slice (H) and the radius of the ring (r).

A. Ring fully within slice:
H > r and T −H > r.

Ring volume fraction: F (r) = 2πrδr

2πrδr
= 1.

B. Ring extends the slice on one of its sides:

H > r and T −H ≤ r, with γ = arccos

(
T − H

r

)
.

Ring volume fraction: F (r) = βrδr

2πrδr
= β

2π
= 2π − 2γ

2π
=

π − arccos

(
T −H

r

)
π

.

C. Ring extends on both sides of the slice:

H ≤ r and T −H ≤ r, with α = arccos

(
H

r

)
and γ =

arccos

(
T −H

r

)
.

Ring volume fraction: F (r) = 2βrδr

2πrδr
= β

π
= π − α− γ

π
=

π − arccos

(
H

r

)
− arccos

(
T −H

r

)
π

.

Frontiers in Neuroanatomy www.frontiersin.org June 2014 | Volume 8 | Article 54 | 48

http://www.frontiersin.org/Neuroanatomy
http://www.frontiersin.org
http://www.frontiersin.org/Neuroanatomy/archive


van Pelt et al. Density field completion

FIGURE 2 | (A) An axial radial coordinate system is used and axial
symmetry is assumed. The distribution of mass is obtained by summing
all the mass per integration ring (yellow-orange ring) at a given axial
position (height) and with a given radius. The final distribution is given as a
function of radius and height. (B) Within the restricted space of a slice,
the integration ring becomes fractionated when it exceeds the slice
boundary. (C–E) Three different conditions for the integration ring in a slice
of thickness T. The integration ring has its center at a distance H from

one of the boundaries, has a radius r (pointing to the center of the ring)
and a thickness δr. It can (C) be fully contained in the slice, (D) extend the
slice on one of its sides, or (E,B) extend on both of its sides. (F) Effect of
slicing of a neuron leaving a contiguous structure within the slice (dark
blue), lost branches outside the slice (red) and orphan branches within the
slice (light blue and marked in dashed ellipses). These orphan branches
have lost their parent branches and therefore their connection to the dark
blue contiguous structure.

An estimate of the mass in a full ring Mring(r, h, δr, δh) with
radius r and at height h and with radial thickness δr and height δh
can be obtained by dividing the experimentally observed neuronal
mass Mobs(r, h, δr, δh) in the part of the ring inside the slice by the
ring volume fraction. Thus,

Mring(r, h, δr, δh) ≈ Mobs(r, h, δr, δh)

F(r)
.

For the mass density in the ring Dring(r, h) we now obtain

Dring(r, h) = Mring(r, h, δr, δh)

Vring
= Mring(r, h, δr, δh)

2πrδrδh

with Vring the volume of the full ring. In our analysis, integration
rings with a radial thickness of δr = 1 μm and height δh = 1 μm
are used.

ORPHAN BRANCHES
Neuronal arborizations may extend beyond the boundaries of
a slice but more distal parts may bend back into the slice
(Figure 2F). Such branches have lost their parent branches and
are called orphan branches. Orphan branches are no longer con-
nected with the proximal parts of the arborization inside the slice.
As the reconstruction procedure quantifies only the contiguous
parts of the arborization inside the slice, the orphan branches are
lost. In the calculation of the mass densities from the contiguous
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part inside the slice, this then results in an underestimation of the
neuronal mass. As the completion procedure extrapolates from
this neuronal mass, it does not solve the problem of lost orphan
branches.

SLICE THICKNESS AND POSITION OF NEURONS INSIDE A SLICE
For the completion procedure it is important to know the
thickness of the slice and the position of the cell body with respect
to both boundary planes of the slice (Z-axis). Although the thick-
ness of the slices is provided in most reconstructions, this is not
the case for the cell’s position in the slice, so that we had to esti-
mate the cell’s position from the reconstructions themselves. For
this estimation we used the fact that all cut terminal tips have
approximately the same Z-coordinate. To this end we calculated
the Z-coordinates of all terminal tips of both axons and dendrites
in the reconstruction and obtained a frequency distribution along
the Z-axis. When the distribution showed a sudden increase in
frequency (number of tips) at one or both of its ends, this was
interpreted as the effect of cutting. When a frequency increase
was observed at the low-Z end of the distribution, the cut part
of the cell’s arborization was aligned at the low-Z end of the slice.
When a frequency increase was observed at the high-Z end of the
distribution, the cut part of the cell’s arborization was aligned at
the high-Z end of the slice. Finally, when a frequency increase
was observed at both sides of the distribution, it indicated the
actual thickness of the slice. The thickness information and the
estimated cell positions were used in the completion procedure.

POPULATION AVERAGES OF THE MASS DENSITIES
The mass density completion procedure was applied to the
arborizations of individual neurons because the procedure
depends on the position of the individual neuron inside the
slice, which varies from neuron to neuron. To obtain a pop-
ulation average of the estimated mass densities, the cells were
aligned by their somata and all the cells were rotated in
such a way that their apical main stem was pointing into the
Y-direction.

ALIGNMENT PROCEDURE
For the alignment of the apical dendrite, the orientation of the
apical main stem was needed. As the data formats in the recon-
struction files generally do not distinguish between apical main
stem, and apical tuft and oblique branches, this information
needed to be derived from the supplied data. To this end, an iter-
ative procedure was applied of pruning terminal line pieces off
the apical dendrite, until it was reduced to a single segment with
one terminal line piece. The tip coordinate of this terminal line
piece together with the exit coordinate from the soma of the apical
dendrite provided the alignment line piece with which to rotate
the whole cell in the XY plane (i.e., around the Z-axis) in such a
way that the projection of the alignment line piece onto the XY
plane was pointing into the Y-direction. Alternatively, a rotation
in the XYZ space could have been applied so that the alignment
line pieces were all pointing into the Y-direction. However, such a
rotation would also have changed the Z-coordinates of the ter-
minal tips in the arborizations and would have hampered the
use of tip coordinates for estimating the cell’s position in the

slice. As a consequence, the orientation of the alignment seg-
ment could maintain a slightly tilted angle with respect to the
Z-axis, while the Z-axis itself was taken as symmetry axis for the
calculation of the mass distribution. Given the wide spread of
arborization mass, the effect of a possibly slightly tilted orienta-
tion on the final estimated mass distribution was assumed to be
negligible.

VALIDATION
Crucial for the completion procedure is its validation, i.e.,
whether the masses of the completed neurons are equal to
those of the original non-sliced neurons. Such a validation is
not possible for experimental data sets of sliced neurons, but
can be done for a set of model-generated neurons. For this
validation, we used a set of 50 neurons, generated with our
NETMORPH simulator (Koene et al., 2009). These model neu-
rons were subsequently sliced according to several slice thick-
nesses, followed by the density field completion procedure.
The masses of the original and of the completed neurons
were subsequently compared. Because in this case the mass
of orphan branches was also known, the comparisons were
made from completions with and without inclusion of orphan
branches.

DATA SETS
NETMORPH-generated neurons
The data set of neuronal arborizations used for validating the
mass completion procedure was obtained with our simulator
NETMORPH (Koene et al., 2009). A number of 50 random
neuron morphologies were generated with growth parameters
optimized on a set of rat cortical L2/3 pyramidal neurons, recon-
structed by Svoboda (Shepherd and Svoboda, 2005) and made
available by the NeuroMorpho.org data base (Ascoli, 2006). This
same data set was also used and described in an earlier study (Van
Pelt and Van Ooyen, 2013).

Svoboda data set
This dataset consists of 11 young adults (25–36 days PN) Sprague
Dawley rat somatosensory barrel cortex L2/3 pyramidal neurons,
reconstructed by Svoboda (Shepherd and Svoboda, 2005) from
300 μm thick slices, and made available by the NeuroMorpho.org
database (Ascoli, 2006).

Markram data set
This dataset consists of 33 young (13–15 days PN) Wistar rat
somatosensory cortex L2/3 pyramidal neurons, reconstructed by
Wang et al. (2002) from 300 μm thick slices, and made available
by the NeuroMorpho.org database (Ascoli, 2006).

Parnavelas-Uylings data set
This dataset originates from a study on basal dendritic devel-
opment in female Sprague-Dawley rat visual cortex pyrami-
dal and non-pyramidal neurons (Parnavelas and Uylings, 1980;
Uylings et al., 1994). Reconstructions of 153 Golgi stained
pyramidal dendrites from slices with a thickness of about
120 μm were obtained from layer 2/3 at different ages of
postnatal cortical development (10, 14, 18, 24, 30, and 90
days PN).
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FIGURE 3 | Illustration of slicing of a NETMORPH neuron for slice

thicknesses T of (A) 1000 µm, (B) 800 µm, (C) 400 µm, (D) 200 µm, and (E)

100 µm. The neurons are plotted as projections onto the XY plane and onto the
YZ plane. Neurons have their somata in the center of the slice and are aligned

with their apical dendrite pointing into the Y-direction. The Z-axis denotes the
depth of the slice. Note that slicing in the Z-direction also influences the
neuronal ranges in the X- and Y-directions. The panels show the axonal
arborizations in green, the basal dendrites in red and the apical dendrites in blue.

RESULTS
VALIDATION—DATA NETMORPH
For one of the NETMORPH-generated neurons an example is
given in Figure 3 to demonstrate the impact of slicing on the
remaining morphology within the slice.

To validate the completion procedure, the 50 NETMORPH
generated neurons were artificially sliced with slice thicknesses
of 100, 200, 300, 400, 500, 600, 1000, or 2000 μm. First, the
neurons were aligned with their apical main stem pointing into
the Y-direction, and with the slicing perpendicular to the Z-axis.
For the position of the neurons in the slice, two choices could be
made. With the somata positioned in the center of the XY plane of
the slice, the Z-coordinate was put either in the center of the slice
(thus with equal distances to both cutting sides of the slice), or
was uniform randomly selected within an 80% Z-range (between
10 and 90%) or within a 60% Z-range (between 20 and 80% of
the Z-range). After slicing, the axial-radial mass distribution was
obtained for each individual neuron followed by the completion
procedure, which was applied excluding or including orphan
branches. The results of the completion procedure were finally
summed and averaged over all the NETMORPH neurons in the
data set.

The results for a slice thickness of 200 μm, 80% range ran-
dom Z-coordinates of the somata, and ignoring orphan branches
are shown in Figure 4. Figure 4A displays the axial-radial mean
dendritic mass distribution, in the top part for several axial
positions (summed per 50 μm height steps) and in the bottom
part summed over all heights. The dashed histograms present
the masses of the sliced dendrites, while the solid lines present

the completed dendritic mass distributions. Both distributions
coincide at small radial distances from the axis, but the com-
pleted ones become increasingly higher at larger radial distances.
Evidently this is caused by the larger correction factors at higher
radial distances. The distribution for the non-sliced original full
dendrites is also included in the bottom panel of Figure 4A as a
red solid line. The total mass of 5264 μm of the dashed (sliced)
distribution deviated 19.7% from the original dendritic mass of
6552 μm, while the completion procedure resulted in a mass of
6399 μm, deviating only 2.3% from the original mass (Table 1).
Figure 4B displays the mean mass distribution as a function of the
radial distance to the soma of the sliced dendrites (dashed), of the
completed ones (black solid line), and of the original non-sliced
dendrites (red solid line). This distribution is related to a 3D Sholl
diagram which counts the number of intersections with a set of
concentric spheres (in practice, however, the Sholl method is most
frequently applied to 2D projections, see Uylings and Van Pelt
(2002) for a discussion on Sholl diagrams). The tail in both dis-
tributions originates from the apical dendrites. Figure 4C shows
the positions of the somata in the Z-direction of the slice (filled
circles) as well as the distribution of Z-coordinates of the termi-
nal tips per neuron. The effect of cutting is clearly seen in the
accumulation of terminal tips at the boundary layers of the slice.
Figures 4D–F show the findings for the mean axonal mass dis-
tribution. Note that panel 4D extends over larger axial (Y-axis)
and radial distances than panel 4A for the dendritic mass dis-
tribution. The summed radial distribution shows a substantial
difference between the sliced axonal distribution (dashed) and the
completed one (black solid line), with a mean total axonal mass
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FIGURE 4 | Completion of sliced NETMORPH neurons with a slice

thickness of 200 µm. Orphan branches were not included in the
completion procedure. (A) Axial-radial distribution of mean dendritic mass
per neuron. The dashed distributions show the mass as obtained within
the slice, while the solid black curves show the mass distributions after
completion. The axial axis (Y-axis) is binned with bins of 50 μm, containing
their respective radial distributions, which are scaled according to the
numbers in the upper right corner in each bin. Thus the mass distribution
at a Y-position of -50 μm has a maximum mass of 330 μm per radial bin of
10 μm. The bottom graph in (A) shows the radial dendritic mass
distribution summed over all axial Y-positions. The black curve for the
completed mass distribution has a strong overlap with the red curve for
the full non-sliced dendrites. (B) Distribution of dendritic mass as a
function of the radial distance to the soma (this distribution is similar to a

3D Sholl diagram). Again, there is strong overlap between the black curve
for the completed mass distribution and the red curve for the full
non-sliced dendrites. (C) Graph illustrating the positions of the cell bodies
(solid circles) of the 50 neurons along the depth of the slice (Z-axis). In
this example the cell positions were uniform randomly chosen in an 80%
range of the full depth. The graph also includes the frequency distributions
of the dendritic tip Z-coordinates per neuron. With a binning of 10 μm each
frequency per bin is plotted as a horizontal line piece centered in the bin
and symmetrical around the vertical position axis. The tips of these line
pieces are subsequently connected to each other. The frequency scale is
indicated by the small bar left underneath the panel. Clearly is shown how
the number of tips (length of the horizontal line piece) can accumulate at
the boundary planes, indicating the presence of cut endings. Panels (D–F)

show similar results for the axonal arborizations.
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per neuron of 4239 μm for the sliced axon and of 8531 μm for
the completed mass, while the original axon (red solid line) had a
total length of 10655 μm. Thus, in 200 μm thick slices, 60.2% of
the original axonal mass was lost, while the completion procedure
reduced the axonal loss to 19.9% (Table 1). Comparison of the
black and red solid lines in the bottom panel of Figure 4D clearly
shows the level of axonal recovery obtained in the case of 200 μm
thick slices. The difference in the level of recovery between den-
drites and axons appears to be related to the fraction of conserved
mass in the slice (see the results shown in Figure 5E).

Table 1 summarizes the effects of slicing on the dendrites
and axons of 50 NETMORPH-generated neurons, depending on

slice thickness and soma positions in the slice. Also are shown
the results of the completion algorithm, taking or not taking
into account the orphan branches. The original mean (apical
and basal) dendritic and axonal lengths are 6552 and 10655 μm,
respectively.

As expected, slicing has a significant effect on the length of
axons and dendrites. For instance, centrally located neurons
in 100 μm thick slices loose 34.5% of their dendritic length
and 85.9% of their axonal length; in 200 μm thick slices the
neurons loose 12.0% of their dendritic length and 61.1% of
their axonal length; and in 300 μm thick slices they loose 4.0%
of their dendritic length and 37.3% of their axonal length. A

Table 1 | Effect of slicing on the length of apical and basal dendrites and axons, and the lengths after completion.

Apical and basal dendrites (6552 µm) Axons (10655 µm)

Length cut dendrites Length completed dendrites Length cut axons Length completed axons

Slice thickness Length (µm) Deviation (%) Length (µm) Deviation (%) Length (µm) Deviation (%) Length (µm) Deviation (%)

EXCLUDING ORPHAN BRANCHES

Central soma positions in slice

100 4294 34.5 6065 7.4 1505 85.9 4148 61.1
200 5764 12.0 6446 1.6 4140 61.1 7926 25.6
300 6288 4.0 6553 0.0 6684 37.3 9817 7.9
400 6481 1.1 6557 −0.1 8225 22.8 10,356 2.8
500 6544 0.1 6551 0.0 9143 14.2 10,457 1.9
600 6551 0.0 6551 0.0 9791 8.1 10,615 0.4
1000 6552 0.0 6552 0.0 10,567 0.8 10,655 0.0
2000 6552 0.0 6552 0.0 10,655 0.0 10,655 0.0

Random soma positions in 80% range of slice thickness (10–90%)

100 3856 41.1 5945 9.3 1484 86.1 4125 61.3
200 5264 19.7 6399 2.3 4239 60.2 8531 19.9
300 5818 11.2 6445 1.6 6428 39.7 10,350 2.9

Random soma positions in 60% range of slice thickness (20–80%)

100 4082 37.7 6086 7.1 1581 85.2 4481 57.9
200 5513 15.9 6440 1.7 4109 61.4 7993 25.0
300 6069 7.4 6499 0.8 6594 38.1 10313 3.2
INCLUDING ORPHAN BRANCHES

Central soma positions in slice

100 4363 33.4 6257 4.5 2748 74.2 9907 7.0
200 5777 11.8 6468 1.3 5155 51.6 10,421 2.2
300 6288 4.0 6553 0.0 7055 33.8 10,568 0.8
400 6481 1.1 6557 −0.1 8362 21.5 10,560 0.9
500 6544 0.1 6551 0.0 9213 13.5 10,562 0.9
600 6551 0.0 6551 0.0 9813 7.9 10,647 0.1
1000 6552 0.0 6552 0.0 10,567 0.8 10,655 0.0

Random soma positions in 80% range of slice thickness (10–90%)

100 4052 38.2 6352 3.1 2817 73.6 10,285 3.5
200 5316 18.9 6475 1.2 5192 51.3 10,933 −2.6
300 5842 10.8 6478 1.1 6875 35.5 11,165 −4.8

Random soma positions in 60% range of slice thickness (20–80%)

100 4196 36.0 6325 3.5 2799 73.7 10,164 4.6
200 5534 15.5 6472 1.2 5199 51.2 10,734 −0.7
300 6076 7.3 6508 0.7 7019 34.1 11,052 −3.7

Results are shown for 50 sliced NETMORPH neurons for several slice thicknesses, with central or random positions of somata within the slices, and excluding or

including orphan branches. The original neurons had a mean dendritic length of 6552 μm and a mean axonal length of 10655 μm.
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FIGURE 5 | (A,B) Plots of mass loss (%) vs. slice thickness of NETMORPH
generated neurons centrally located in the artificial slice. (A, solid green curve)
Loss of axonal mass by slicing. (A, dashed green curve) Remaining axonal mass
loss mass after completion without orphan branches. (A, dotted green curve)
Remaining axonal mass loss after completion including orphan branches. (B,
solid red curve) Loss of dendritic mass by slicing of NETMORPH generated
neurons centrally located in the slice. (B, dashed red curve) Remaining dendritic
mass loss after completion without orphan branches. (B, dotted red curve)
Remaining dendritic mass loss after completion including orphan branches.
(C,D) Plots of mass loss by slicing and recovery by completion vs. the mean
radial center-of-mass of the sliced axonal and dendritic arborizations. The 50
NETMORPH generated neurons were artificially sliced by 300 μm thick slices.

The neuronal somata were uniform randomly located within a 80% range of the
slice thickness. The original 50 NETMORPH generated neurons had a mean
dendritic radial center of mass at 70 μm and a mean axonal radial center of
mass at 204 μm. (C) Scatterplot of the mass loss of the individual sliced axonal
(green) and dendritic (red) arborizations. (D) Scatterplot of the recovery by
completion of the individual sliced axonal (green) and dendritic (red)
arborizations. (E) Plot of recovery values vs. the mass conserved in the slices.
The data points (excluding orphan branches) are labeled with the slice thickness
(in μm). The positioning of the somata in the slices is indicated by circles for the
central position, by squares for the 80% range and by drops for the 60% range
random positioning. Axonal data are plotted in green and dendritic data in red.
Overlap of data points is indicated by a star.

significant recovery of the lost parts was obtained by applying the
completion procedure. For instance, when orphan branches were
not included, dendritic loss in 100 μm thick slices was reduced
from 34.5% down to 7.4%, and axonal loss from 85.9 to 61.1%.
When orphan branches were included, dendritic loss was further
reduced to 4.5% and axonal loss to 7.0%. In 300 μm thick slices,
dendritic recovery of centrally located neurons excluding orphan
branches resulted in 0% dendritic loss and 7.9% axonal loss, and
including orphan branches in 0% dendritic loss and 0.8% axonal
loss.

When the neurons were randomly placed in the slice, the losses
were slightly higher for the dendrites, but more or less similar for
the axons because the larger extent of the axons makes them less
sensitive to the precise position in the slice. Also with random
placement the completion procedure was able to greatly reduce
the loss. For instance, in the case of a Z-range of 10–90%, the
dendritic loss of 41.1% in 100 μm thick slices was reduced by
completion without orphan branches to 9.3%, and with orphan
branches to 3.1%. Axonal loss of 86.1% was reduced by com-
pletion without orphan branches to 61.3%, and with orphan
branches to 3.5%.

The results in Table 1 show that the completion procedure that
takes orphan branches into account is able to fully recover the
original mass, with loss values around zero. Small negative loss
values also occur, indicating an overcompensation, which can be
expected when, as a result of statistical fluctuations in the spatial

distribution of the arbors, the mass densities inside the slice are
somewhat larger than outside the slice. The full recovery of den-
dritic and axonal mass when orphan branches are included can
be considered as a validation of the completion procedure. In the
absence of knowledge about orphan branches, which is usually
the case, the completion procedure is still able to recover dendritic
mass to values very close to the original mass, with a deviation of
less than 2.3% in the case of 200 μm thick slices, and less than
1.6% in 300 μm thick slices.

Intracortical axons extend their branches at large distances
from the slice and their loss in 100 μm and 200 μm thick slices
is substantial (up to 85.9 and 61.1%, respectively). Although the
completion procedure significantly reduces these losses (to 61.1%
in 100 μm thick slices, to 25.6% in 200 μm thick slices, and to
7.9% in 300 μm thick slices), knowledge of orphan branches is
required for a full recovery.

The loss of dendritic and axonal mass by slicing depends on
the spatial extent of dendritic and axonal arbors in relation to
the slice thickness. The NETMORPH neurons have a mean radial
center of dendritic mass at 70 μm, and a mean radial center of
axonal mass at 204 μm. The dependence of mass loss on slice
thickness as well as the results from the completion procedure
is depicted in Figure 5, displaying the mass loss of neurons with
their somata in the center of the slice. Clearly is shown that for
300 μm thick slices, completion without orphan branches results
in a full recovery of the dendrites (dashed red curve in 5A), with
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a loss of 0% (Table 1), and an almost full recovery of the axons
(dashed green curve in 5B), with a loss of 7.9% (Table 1).

Figure 5C shows a scatter plot of the mass losses of the axonal
and dendritic arborizations of each individual neuron vs. the
radial center-of-mass of these arborizations after slicing. These
data were obtained for neurons with their somata uniform ran-
domly positioned in a 80% range of the slice thickness of 300 μm.
Thus the closest distance of a soma to the cutting plane is 30 μm.
Figure 5D shows a scatter plot of the recovery results vs. the radial
center-of-mass of the individual axons and dendrites within the
slice. Figures 5C,D reveal a large scatter in the individual data
points, originating from the large variability in morphologies of
the axonal and dendritic arborizations and the effect of cutting.
The larger extent of axonal arborizations in comparison with den-
dritic arborizations (as reflected by the larger values for their
radial center-of-masses) causes also larger values for their mass
losses by slicing, as shown in Figure 5C. Nevertheless, for these
300 μm thick slices, there is almost full recovery of both axons
(95.7%) and dendrites (98.3%). Note that the axonal recovery
is better than shown in Figure 5A because of the different posi-
tions of the somata in the slices. The uniform random positions
of somata are more realistic than a central positioning. The find-
ings in Figure 5 thus show that the completion procedure results
in (almost) full recovery of the mass distributions of axonal and
dendritic arborizations when they were cut by 300 μm thick slices.
The amount of scatter in the data points appears to depend also
on the locations of the somata in the slices. In Supplementary
Figure S5, the results are also shown for centrally located neu-
rons, and for uniform random placements in a 60% range of the
300 μm thick slices.

Whether recovery results are related to the fraction of the orig-
inal neuronal mass conserved in the slice is shown in Figure 5E
using the data in Table 1 (excluding orphan branches). Both the
axonal (green) and dendritic (red) data points show a clear depen-
dency of recovery result on the fraction of conserved mass. The
data points are labeled by the section thickness and the position-
ing scheme used. Averaged over the three positioning schemes
we observe for the dendrites, that a conserved mass of 62.2%
(100 μm) relates to a recovery of 91.8%, a conserved mass of
84.1% (200 μm) relates to a recovery of 98.1%, and a conserved
mass of 92.5% (300 μm) relates to a recovery of 99.2%. For the
axons, a conserved mass of 14.3% (in 100 μm thick slices) relates
to a recovery of 39.9%, a conserved mass of 39.1% (200 μm)
relates to a recovery of 76.4%, and a conserved mass of 61.6%
(300 μm) relates to a recovery of 95.3%. Clearly is shown in
this figure how the red dendritic data points for 100–300 μm
thick slices intermingle with the green axonal data points for
300–1000 μm thick slices. Thus dendrites and axons show sim-
ilar relationships obtained for different slice thicknesses, which
leads us to the conclusion that recovery results relate to the frac-
tion of conserved mass, while this relation is independent of the
slice thickness.

DATA SVOBODA
The 11 rat parietal cortical L2/3 pyramidal neurons were
reconstructed from 300 μm thick slices (Shepherd and Svoboda,
2005). Figure 6 shows a selection of four of these neurons as
projections on the XY plane and the YZ plane. A full display of all

11 neurons is shown in Supplementary Figure S1. While the XY
projections show the full extent of the arbors, the YZ projections
clearly show the accumulation of terminal tips at the intersection
of the XY and YZ planes.

The axial-radial mass distributions of the reconstructed
neurons after mass completion are shown in Figures 7A,D for
(apical and basal) dendrites and axons, respectively. Particularly
the summed radial distributions in Figures 7A,D and the radial
to soma distributions in Figures 7B,E show the extent of the
corrections, which were much larger for the axons than for the
dendrites. Figures 7C,F clearly show the cut endings, which
appear as an accumulation of cut terminal tips at one side of
the arborizations. This accumulation was used as a criterion
to align the neurons within their slices. The total length of the
completed mass distributions is shown in Table 2A. The mean
dendritic length increased from 7865 to 9289 μm, and the mean
axonal length from 4692 to 9118 μm. The radial center-of-mass
of the reconstructed dendrites was equal to 76 μm and that of the
reconstructed axons 195 μm. Based on the validation results with
the NETMORPH neurons (Figure 5) and the thickness of the
slices in the Svoboda data set (300 μm), we may expect an almost
full recovery of the axonal and dendritic mass. This implies that
by slicing 15% of the dendritic mass was lost, and 49% of the
intracortical axonal mass (within an uncertainty range of a few
percent).

DATA MARKRAM
The 33 Wistar rat somatosensory cortical L2/3 pyramidal neurons
were reconstructed by Wang et al. (2002) from 300 μm thick
slices, and are shown in Figure 8 as projections on the XY plane
and the YZ plane. While the XY projections show the full extent
of the arbors, the YZ projections clearly show the accumulation
of terminal tips at the intersection of the XY and YZ planes.

The axial-radial mass distributions of the original neurons
and after mass completion are shown in Figures 9A,D for (apical
and basal) dendrites and axons, respectively. Particularly the
summed radial distributions in Figures 9A,D and the radial
to soma distributions in Figures 9B,E show the extent of the
corrections, which were much larger for the axons than for
the dendrites. Figures 9C,F clearly show the cut endings as an
accumulation of cut terminal tips at one side of the arborizations,
which was used as a criterion to align the neurons within their
slices. The length of the completed mass distributions is shown
in Table 2B. The mean dendritic length increased from 3790 to
4567 μm, and the mean axonal length from 3211 to 6177 μm.
The radial center-of-mass of the reconstructed dendrites was
59 μm and that of the reconstructed axons 160 μm. Based on the
validation results with the NETMORPH neurons (Figure 5) and
the thickness of the slices in the Markram data set (300 μm), we
may expect an almost full recovery of the axonal and dendritic
mass. This implies that by slicing 17% of the dendritic mass
was lost, and 48% of the intracortical axonal mass (within an
uncertainty range of a few percent).

DATA PARNAVELAS-UYLINGS
The data from Parnavelas and Uylings originate from a study
of (basal) dendritic development in rat visual cortex pyramidal
neurons (Uylings et al., 1994). Golgi stained dendrites were
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FIGURE 6 | Selection of 4 out of 11 reconstructions of rat cortical

L2/3 pyramidal neurons (Shepherd and Svoboda, 2005) plotted as

projections on the XY and YZ planes. The neurons are aligned
with their apical main stem into the Y-axis. (A) Plot of axons and

dendrites with axons in green, basal dendrites in red and apical
dendrites in blue. (B) Plot of apical and basal dendrites only. A full
display of all the 11 reconstructions is given in Supplementary
Figure S1.

reconstructed from slices with a thickness of about 120 μm.
Reconstructions were obtained from 153 layer 2/3 pyramidal cells
at different ages of cortical development, i.e., at 10, 14, 18, 24, 30,
and 90 days postnatal (PN). Figure 10 shows a selection of the 24
L2/3 pyramidal reconstructions at the age of 90 days PN. A full
display of all the neurons is given Supplementary Figure S4.

The results of the completion procedure for the 90 days PN
data set are shown in Figure 11. With a mean length of 2022 μm
for the reconstructed basal dendrites and 2532 μm for the com-
pleted masses, the mass loss by slicing becomes 20%. However,
the validation study (Table 1) has shown that for 100 and 200 μm
thick slices dendritic recovery still leaves a deficit of 7.1 and 1.7%,
respectively, for somata within a 60% range of the slice thickness.
Based on these validation findings, we may expect that the out-
come of the completion procedure of 2532 μm deviates less than
7% from the original mean dendritic mass, thus in the range of
2532–2723 μm. The outcomes of the completion procedure for
the other age groups are listed in Table 2C.

DISCUSSION
The aim of this study was to explore the feasibility of density field
completion of incompletely reconstructed neurons. The underly-
ing idea was that when the density of the arborizations within
the slices can be estimated, an extrapolation to the space out-
side the slice is possible under the assumption of axial symmetry.
The method for this extrapolation is based on simple geometrical
considerations.

OTHER APPROACH FOR RECOVERING CUT ARBORIZATIONS
The problem of incomplete reconstructions by slicing has recently
also been studied by Hill et al. (2012). The algorithm they devised
for morphological repair was to derive a statistical growth model
from the intact parts of the arborizations and then to regrow the
cut portions. Using Bayesian spatial distributions, cut dendrites

were regrown point by point. Axons were separately repaired by
pasting subtrees from the intact parts. Invariance to axial rota-
tions was also assumed. While Hill et al. (2012) attempted to
recover the individual branches outside the slice volume, our
approach aimed at recovering the population mean axonal and
dendritic mass density fields by extrapolating the observed mass
distributions within the slices to the outside space by simple geo-
metrical relationships. Our approach is not model-based, and
the only assumption used is that of axial symmetry in the mass
distributions.

VALIDATION OF THE COMPLETION METHOD
For the validation of the completion procedure we used a set of
50 neurons generated with our NETMORPH simulator. The neu-
rons were subsequently sliced with different slice thicknesses, and
subjected to the completion procedure. Comparison of the sliced
masses and completed masses then showed how well the comple-
tion procedure was able to recover the lost masses. It turned out
that a complete recovery was indeed possible provided that all the
original mass of the sliced neurons within the slices was used. This
outcome validated the completion procedure. However, the orig-
inal mass within a slice includes the contiguous part seen from
the soma, as well as the mass of orphan branches that lost their
connection with the contiguous part within the slice. Because the
orphan branches are not included in experimental reconstruc-
tions, they remain a missing part of the reconstructed neurons
and therefore affect the degree of mass recovery. However, the
number of orphan branches depends on the slice thickness and
the spatial extent of the arborizations. From the validation data
it turned out that this missing part for dendrites in the case of
300 μm thick slices was negligibly small, while for intracortical
axons the missing part was less than 8% for centrally located
neurons (Figure 5). For randomly located neurons in 300 μm
thick slices a full (i.e., better than 98%) dendritic recovery and an
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FIGURE 7 | Mass completion of rat cortical L2/3 pyramidal neurons

reconstructed from 300 µm thick slices by Shepherd and Svoboda

(2005), and obtained from the NeuroMorpho.org database. For the
description of the different panels see the legend of Figure 4.
Lacking information on the soma positions in the slices, we aligned

the neurons at the side with an accumulation of cut endings as
shown in panels (C) and (F). Because for some neurons the
Z-range was larger than 300 μm, the Z-range in the panel was set
at 400 μm with the neurons aligned at their cut endings at the top
of the panel.

almost full axonal recovery (i.e., better than 95%) was obtained
by the completion procedure.

DEPENDENCE ON SOMA LOCATIONS IN SLICES
The validation study revealed that the mean loss of mass
in a population of neurons depends on the positions of the

somata within the slice. However, a systematic trend could
not be derived from Table 1, because the outcomes for the
three different location options also depended on the slice
thickness and the extent of arborization (dendritic or axonal).
Apparently, these geometrical parameters all play a role in the
final outcome.
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Table 2 | Outcomes of the completion procedure applied to (A) the dataset of Svoboda, (B) the dataset of Markram, and (C) the

Parnavelas-Uylings datasets of all age groups in the developmental study, viz. 10, 14, 18, 24, 30, and 90 days PN.

A. COMPLETION RESULTS OF SVOBODA RECONSTRUCTIONS

Slice thickness 300 μm Length apical and basal dendrites (µm) Length axons (µm)

Actual Completed Mass loss (%) Actual Completed Mass loss (%)

7865 9289 15 4692 9118 49

B. COMPLETION RESULTS OF MARKRAM RECONSTRUCTIONS

Slice thickness 300 μm Length apical and basal dendrites (µm) Length axons (µm)

Actual Completed Mass loss (%) Actual Completed Mass loss (%)

3790 4567 17 3211 6177 48

C. COMPLETION OF PARNAVELAS-UYLINGS RECONSTRUCTIONS

Slice thickness 120 μm Length basal dendrites (µm)

Age groups (PN) (No.) Actual Completed Mass loss (%)

10 (30) 419 446 6

14 (28) 826 935 12

18 (24) 1368 1568 13

24 (24) 938 1036 9

30 (23) 1041 1160 10

90 (24) 2022 2532 20

The data represents the actual measured axonal and dendritic length from the reconstructions, the recovered length after the completion procedure, and an estimate

of the mass loss (%). Note that the mass loss (%) is estimated relative to the recovered length (and not relative to the true length, which is unknown).

FIGURE 8 | Selection of reconstructions of 33 Wistar rat cortical

L2/3 pyramidal neurons (Wang et al., 2002) plotted as

projections on the XY and YZ planes. (A) Projections of both
axons and dendrites with axons in green, basal dendrites in red and

apical dendrites in blue. The basal and apical dendrites are
separately shown in (B). The neurons are aligned with their apical
main stem into the Y-axis. A full display of the 33 neurons is given
in Supplementary Figures S2, S3.

RELATION BETWEEN CONSERVED MASS IN SLICE AND RECOVERY
RESULT
Recovery results appear to relate to the fraction of conserved mass
in the slice. Both the dendritic and the axonal data show a similar
relationship. In particular the observation that dendritic data

points in this relation for 100 μm thick slices coincide with axonal
data points for 300 μm thick slices, and for 200 and 300 μm thick
slices are intermingled with axonal data points for 400–1000 μm
thick slices shows that this relationship is independent of the slice
thickness itself. Thus, the fraction of conserved mass in the slice
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FIGURE 9 | Mass completion of 33 Wistar rat cortical L2/3

pyramidal neurons reconstructed from 300 µm thick slices by

Wang et al. (2002), and obtained from the NeuroMorpho.org

database. For the description of the different panels see the legend
of Figure 4. Lacking information on the soma positions in the slices,

we aligned the neurons at the side with an accumulation of cut
endings as shown in panels (C) and (F). Because for two neurons
the Z-range was larger than 300 μm, the Z-range in the panel was
set at 400 μm with the neurons aligned at their cut endings at the
top of the panel.

determines the level of recovery obtained. For instance, a recovery
result better than about 95% requires a conserved mass in the slice
larger than about 60%. This relation may be of practical value as
it provides guidance for the required slice thickness which will be
different for axons and dendrites. Whether a similar relationship
between conserved mass and recovery result is obtained when the
method is applied to experimentally fully reconstructed neurons

instead of NETMORPH generated neurons is still an open
question.

APPLICATION TO EXPERIMENTAL DATA SETS
Based on the positive outcomes of the validation study, we
have analyzed three data sets of reconstructed neurons, two
of which were obtained from the NeuroMorpho.org data
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FIGURE 10 | A selection of rat visual cortex layer 2/3 pyramidal basal dendrites at the age of 90 days PN, reconstructed by Parnavelas-Uylings

(Uylings et al., 1994), and plotted as projections onto the XY and YZ plane. A full display of all the neurons is given in Supplementary Figure S4.

FIGURE 11 | Mass completion of basal dendrites of 24 rat visual cortex

L2/3 pyramidal neurons (age 90 days PN), reconstructed from 120 µm

thick slices by Parnavelas-Uylings (Uylings et al., 1994). For the description
of the different panels see the legend of Figure 4. Lacking information on the

soma positions in the slices, we aligned the neurons at the side with an
accumulation of cut endings as shown in (C). Because for some neurons the
Z-range was larger than 120 μm, the Z-range in the panel was set at 200 μm
with the neurons aligned at their cut endings at the top of the panel.

base and one was provided by one of the authors of this
study.

The Svoboda data set (Shepherd and Svoboda, 2005) resulted
in a recovery of the mean dendritic length of 9289 μm (from the
actual measured value of 7865 μm, indicating a loss by slicing
of 15%). Axonal length was recovered up to 9118 μm (from the
actual measured value of 4692 μm, indicating a mass loss of 49%),
but this outcome may still be about 5% from the true value (see
discussion in the previous two paragraphs).

The Markram data set (Wang et al., 2002) resulted in a recov-
ery of the mean dendritic length of 4567 μm (from the actual
measured value of 3790 μm, indicating a loss by slicing of 17%).
Axonal length was recovered up to 6177 μm (from the actual mea-
sured value of 3211 μm, indicating a mass loss of 48%), but this
outcome may still be about 5% from the true value (see discussion
in the previous two paragraphs).

The Parnavelas-Uylings data set (Uylings et al., 1994) resulted
in a recovery of the mean basal dendritic length of the 90 days age

group of 2532 μm (from the actual measured value of 2022 μm,
indicating a loss by slicing of 20%). These dendritic reconstruc-
tions were, however, made from 120 μm thick slices and the
recovery result may still be about 7% from the true value (see
Table 1, dendritic deviation for 100 μm thick slices with random
positions in 20–80% range).

The outcomes of the three data sets are not directly compara-
ble, because of different ages of the rats used (25–36 days PN for
the Svoboda data, 13–15 days PN for the Markram data, and 90
days PN for the Parnavelas-Uylings data), and the restriction in
the last data set to basal dendrites only.

It is interesting to note that the Svoboda and the Markram data
set show similar mass losses for axons (48–49%) and dendrites
(15–17%) in 300 μm thick slices. Apparently, the mean mass loss
is not so sensitive to the difference in the mean radial center-of-
masses of the cut axons (195 and 160 μm) and cut dendrites (76
and 59 μm) in the Svoboda and Markram data set, respectively.
This is also in line with the more or less uncorrelated scatter of the
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individual NETMORPH neuron data in Figure 5C. Nevertheless,
the axonal and dendritic losses do differ significantly in all these
cases.

SHRINKAGE OF THE TISSUE
The described completion/recovery method, and thus the quality
of its outcomes, is independent of homogeneous tissue shrink-
age. The 3D metrical properties of the arborizations, however, are
affected by shrinkage. In quantifying the 3D geometry of neuronal
arborizations, one needs to take tissue shrinkage into account,
which occurs in histological and staining procedures. The extent
of shrinkage is different for different staining techniques, and is
even different for different Golgi techniques. For the Markram
data set based on HRP staining, Wang et al. (2002) reported a 25%
shrinkage of the slice thickness and ∼10% anisotropic shrinkage
along the X- and Y-axes. Only shrinkage of thickness was cor-
rected. Shrinkage correction in the Svoboda data set (Shepherd
and Svoboda, 2005) was not reported. No shrinkage correction
was applied for the Parnavelas-Uylings data set (Uylings et al.,
1994). Uylings et al. (1986, 1989) summarized tissue shrinkage
values for different Golgi staining procedures. Linear shrinkage
between 5 and 10% was reported for Golgi-Cox and rapid Golgi
staining, and of 5–20% for Golgi-Kopsch staining. Thus, depend-
ing on histological and staining procedures, tissue shrinkage is an
important issue in quantitative studies of 3D neuronal arboriza-
tions. Correction for shrinkage is only possible when the actual
amount of anisotropic shrinkage in X, Y, and Z direction is
known.

AXIAL SYMMETRY
A key assumption in the completion procedure is axial (rota-
tional) symmetry in the distribution of axonal and dendritic
mass. Because such symmetry is often assumed for pyramidal
neurons, we have selected cortical layer 2/3 pyramidal neuron
reconstructions for this study. While this assumption may be
reasonably valid for basal dendritic arborizations that locally
innervate space, it may not be valid for non-pyramidal dendrites
(Parnavelas and Uylings, 1980) and axons that extend their arbors
not only to local but also to remote locations. Clearly, single
slice axonal reconstructions visualize only the local part of axonal
arbors. Because the completion procedure recovers only this local
axonal part, the axial symmetry assumption may still be valid.

DENSITY FIELDS
The paper dealt with the estimation of the axial-radial distribu-
tion of axonal and dendritic mass. The calculation of axonal and
dendritic densities is a straightforward extension and proceeds by
dividing the mass in an integration ring (see Figure 2) by the vol-
ume of the ring (see Materials and Methods; see also Van Pelt and
Van Ooyen, 2013).

DENSITY FIELDS AND SYNAPTIC CONNECTIVITY ESTIMATION
Recently, we have shown that potential synaptic connectivity
between neurons in a network can be estimated from their
axonal and dendritic density fields (Van Pelt and Van Ooyen,
2013; McAssey et al., 2014). Thus, for constructing neuronal
networks and their inter-neuron connectivity one does not need
as many neuronal reconstructions as there are neurons in the

network, but can use the population mean density fields instead.
The availability of density fields for a variety of neuronal cell
types is thus important. While for a large variety of cell types
reconstructions have become available in open-access data bases,
their incompleteness hampers a full use of the data. When with
our method full density fields can be recovered from incomplete
single-slice reconstructions, the open-access data become even
more valuable, as they now can also be used for building neuronal
networks and connectivity studies.

It has to be noted that the estimation of the number of synapses
not only requires the number of potential synapse locations but
also the probability that synapses actually are formed at these
locations. A detailed EM study of the hippocampal neuropil by
Mishchenko et al. (2010) showed that this probability was vari-
able and dependent on ultrastructural details, such as dendritic
circumference and actual axo-dendritic touches. Helmstaedter
(2013) emphasizes in his review on dense neural circuit recon-
struction that in “mapping neuronal circuits, it is important to
detect synaptic contacts between neurons, but it is in many cases
even more important to be able to exclude synaptic connectivity
between neurons to determine the structure of a wiring diagram,”
Clearly, the estimation of potential synapse locations is only one,
but still crucial, factor in estimating synaptic connectivity.

Nevertheless, the realism of network connectivity estimates
based on overlapping axonal and dendritic arborizations has
recently been demonstrated by Hill et al. (2012) and Van Ooyen
et al. (2014). In a statistical study, Hill et al. (2012) found that
random alignment of axonal and dendritic arbors provides a suf-
ficient foundation for specific functional connectivity to emerge
in local neural microcircuits. In a computational study, Van
Ooyen et al. (2014) found that the synaptic connectivity emerg-
ing between neurons that grow out in the absence of any guidance
cues showed a good agreement with available experimental data
on spatial locations of synapses on dendrites and axons, number
of synapses by which neurons are connected, connection proba-
bility between neurons, distance between connected neurons, and
pattern of synaptic connectivity.

SUPPLEMENTARY MATERIAL
The Supplementary Material for this article can be found online
at: http://www.frontiersin.org/journal/10.3389/fnana.2014.

00054/abstract
Supplementary Figures give a full display of the neurons

obtained from the NeuroMorpho.org database and used for the
application of the completion method. Additional scatter plots
are given of the loss of mass by slicing and recovery by comple-
tion vs. the radial center-of-mass in the axonal and dendritic mass
distribution of the sliced neurons.
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The neuroanatomical connectivity of cortical circuits is believed to follow certain
rules, the exact origins of which are still poorly understood. In particular, numerous
nonrandom features, such as common neighbor clustering, overrepresentation of
reciprocal connectivity, and overrepresentation of certain triadic graph motifs have been
experimentally observed in cortical slice data. Some of these data, particularly regarding
bidirectional connectivity are seemingly contradictory, and the reasons for this are unclear.
Here we present a simple static geometric network model with distance-dependent
connectivity on a realistic scale that naturally gives rise to certain elements of these
observed behaviors, and may provide plausible explanations for some of the conflicting
findings. Specifically, investigation of the model shows that experimentally measured
nonrandom effects, especially bidirectional connectivity, may depend sensitively on
experimental parameters such as slice thickness and sampling area, suggesting potential
explanations for the seemingly conflicting experimental results.

Keywords: cortical networks, graph theory, nonrandom connectivity, network topology, common neighbor, motifs,

cortical slices

1. INTRODUCTION
Synaptic connectivity forms the anatomical substrate which gives
rise to our cognitive abilities. It has been shown that much of
the lateral recurrent connectivity of the cortex is significantly
nonrandom. That is to say that the statistics of local connec-
tivity do not follow that of a directed Erdős-Rényi graph, i.e.,
a graph in which all possible connections exist with equal and
independent probability (Erdős and Rényi, 1960). For exam-
ple, Holmgren et al. (2003), Song et al. (2005), and Ko et al.
(2011) note the presence of greater than expected bidirectional
connectivity, a feature that has been suggested as a key require-
ment for the sort of large-scale recurrent excitation that is seen
and computation that is believed to take place in the neocor-
tex (Douglas et al., 1995). Lefort et al. (2009), on the other
hand, notes no excess of bidirectional connectivity. Song et al.
(2005) additionally notes greater than expected counts of certain
triangular or triadic network motifs (three-neuron connectivity
patterns) (Milo et al., 2002). Yoshimura et al. (2005) exam-
ines specific microstructure, including bidirectional connections,
within cortical columns. Perin et al. (2011) notes greater than
expected common neighbor clustering, a phenomenon in which
pairs of neurons sharing a greater number of common neigh-
bors are more likely to be connected themselves, while Perin et al.
(2013) further examines the structural implications of this above-
chance common neighbor clustering. Morgan and Soltesz (2008),
Litwin-Kumar and Doiron (2012), and McDonnell and Ward
(2014) highlight some of the functional implications of cluster-
ing in balanced cortex-like networks. Rubinov and Sporns (2010)
provides an overview of graph measures that might be applied to
brain networks.The abundance of nonrandom features suggests
that there may be some computational or metabolic advantage to

the particular connectivity structure of the cortex. It is an open
question which nonrandom features are developed as a result of
direct genetic programming, neural plasticity under structured
input, and spontaneous self-organization (Prill et al., 2005).

The connectome, which we take here to refer to the micro-
scale, or neuron-and-synapse connectivity of the brain Sporns
et al. (2005) is a detailed and difficult thing to study. Numerous
methods exist for its study, including (but not limited to) increas-
ingly detailed histological techniques (Kleinfeld et al., 2011, for
example) and, more commonly, as they allow access to synap-
tic strengths and dynamics in addition to structure, electro-
physiological recordings. We focus here on the most common
implementation of the latter, involving the preparation of and
recording from in vitro slices of cortical tissue. Though it pro-
vides more information about individual connections, the overall
picture provided by electrophysiological techniques is affected
by sampling biases and constraints (Seung, 2009). Traditionally,
the primary concern regarding such biases and constraints has
been accurate reconstruction of very small sections of circuitry.
However, as techniques improve and the available sections get
larger and more densely sampled, and in particular as statisti-
cal network measures are utilized more and more, it becomes
important to study the effect of these biases and constraints on
the network measures as well.

We examine here a simple model for horizontal connectivity
in the cortex under intersomatic distance-dependent connec-
tion constraints. This simple distance-dependence results in the
formation of several nonrandom features including, but not
limited to, common neighbor clustering, excess reciprocal or
bidirectional connectivity, and an overrepresentation of certain
triadic motifs. We perform virtual slicing and sampling on this
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model, similar to what would be done in a physiological exper-
iment, and examine how the results depend on slice thickness
and the size of the sampling area from which cells are probed.
We find, encouragingly, that such complex nonrandom features
can be seeded (if not fully instantiated to the degree at which they
are experimentally observed) by such simple distance-dependent
phenomenon. We also find, more troublingly, that the observed
representation of some of these features depends strongly on
interactions of scale between the connectivity profiles, the cor-
tical structures, and the slicing and sampling thereof. We discuss
in this paper the implications of these phenomena and conclude
that in order to correctly interpret data on cortical connectiv-
ity and its nonrandom features, close attention has to be paid
to the exact experimental parameters such as slice thickness and
sampling area.

2. MATERIALS AND METHODS
Our model is designed to represent a virtual slab of cortical
layer V in rodents. The slab’s dimensions are 1000 × 1000 µm,
with a thickness of 300 µm (the lattermost dimension describing
the approximate thickness of layer V of the rodent cortical sheet
(Schüz and Palm, 1989) (see Figure 1). We assume a cortical neu-
ronal density of at least 20000 excitatory neurons per cubic mm,
resulting in a total population of 6000 neurons, which are pop-
ulated into the volume in a random, uniform fashion. This is a
slight reduction in neuronal density from biological values, but
is sufficient to demonstrate the phenomena we wish to explore
and is necessary for rapid computational tractability. Though is
is known that horizontal cortical axonal projections can reach
lengths of several millimeters (Hirsch and Gilbert, 1991), we
choose to focus on local, sub-millimeter connectivity, as this is
the scale of the microstructure typically being examined in net-
work measure studies of cortical wiring. Various connectivity
models, ranging in complexity from simple piecewise dense and
sparse connectivity radii (Voges et al., 2010a,b) to detailed recon-
structions based on axonal and dendritic structure (Stepanyants
et al., 2008; Kleinfeld et al., 2011), have been produced from
experimental data. We select a continuous radial function for
distance-dependent connectivity as solution between these two
extremes. Our profile is a Gaussian with a half-width of 200 µm.
This particular profile is chosen as a middle ground between the
results of Song et al. (2005), who find no distance dependence
up to a scale of 80–100 µm, and the results of Holmgren et al.
(2003) and Perin et al. (2011), who find exponential distance
dependence at a scale of 150–300 µm. The Gaussian compromise
coarsely approximates both the flat top of the former result and
the decay of the latter.

To produce the model graph, first, a 6000 × 6000 element
distance matrix is constructed, with each element representing
the euclidian distance between each pair of neurons. The bound-
ary conditions are non-periodic, corresponding to slice boundary
truncation. The connectivity profile function is then applied to
each element, producing an unnormalized probability matrix,
with each entry representing the pairwise connection probabil-
ity. Self-connection probabilities are set to zero. The matrix is
flattened into a vector and then the cumulative sum of the vec-
tor is taken and normalized, producing a cumulative distribution

function (CDF). A look up table map is generated mapping each
interval in the CDF to a particular pair of neurons.

The network is treated as a directed graph. A global connec-
tion fraction FC is chosen upon model initialization, and the
model is populated by generating random numbers in the inter-
val [0, 1] against the CDF and instantiating the edge mapped to
the CDF interval in which each random number falls (reject-
ing already-instantiated edges) until the total number of edges
reaches Nedges = FC × (N2

nodes − Nnodes).
Two sequential reduction procedures are then performed on

the graph in order to simulate experimental sampling of the net-
work. The first procedure simulates slicing. The virtual volume
of the network is truncated along the X axis in Figure 1 to corre-
spond to the dimensions of a typical slice (50–500 µm, depending
on the experiment). Edges and nodes that fall outside the trunca-
tion region are eliminated from the graph. The second procedure
roughly simulates probing and sampling. In this procedure, a
subset of nodes Nsample are randomly selected from a centered
cylindrical volume within the slice of radius rsample (50–300 µm,
depending on the experiment), and a subgraph is constructed
from these nodes and their respective edges. This subgraph is then
taken to be equivalent to an electrophysiologically obtained sam-
ple. An example geometry of this virtual slicing and sampling is
shown in Figure 1).

For any selected network, be it complete, a virtual slice, or a
virtual sample, we compare properties against ensembles of two
types of control graphs. The first control is a comparison against

FIGURE 1 | An example of simulated slicing and sampling geometry,

using a 300 µm slice and a 50 µm radius sampling area.

Frontiers in Neuroanatomy www.frontiersin.org November 2014 | Volume 8 | Article 125 | 64

http://www.frontiersin.org/Neuroanatomy
http://www.frontiersin.org
http://www.frontiersin.org/Neuroanatomy/archive


Miner and Triesch Distance-dependent effects in simulated cortical slices

a purely random graph. It is a directed Erdős-Rényi graph (Erdős
and Rényi, 1960) parametrized by the same number of nodes and
number of edges as the selected network.

The second control is a graph that naturally and randomly
attains the amount of overrepresented bidirectional connections
induced by the distance dependent connectivity, but contains no
higher order effects. It is essentially a modified directed Erdős-
Rényi-like graph parametrized by the number of nodes and the
two independent probabilities of unidirectional connections and
reciprocal or bidirectional connections. More explicitly, from the
model graph, the fraction of node pairs that are unidirectionally
connected and the fraction of node pairs that are bidirectionally
connected is calculated. A new graph is then randomly populated
with the same fractions of unidirectionally connected and
bidirectionally connected edge pairs in an Erdős-Rényi-like
fashion. This controls against an overrepresentation of motifs
driven solely by excess bidirectional connectivity while preserving
overrepresentation of motifs driven by higher order or more
subtle forms of clustering.

The Python package NetworkX (Hagberg et al., 2008) and a
publicly available software script that counts triadic motifs in a
directed graph (Levenson and van Liere, 2011) are used to assist
in the construction and analysis of graphs.

We will make comparisons between different sample and slice
sizes based on overall connection fraction, bidirectional con-
nection fraction, triadic motif count, and common neighbor
clustering. We will demonstrate that sampling scale has a notable
effect on how such properties are observed.

3. RESULTS
We select a global target connection fraction of 0.025 for the
1000 × 1000 × 300 µm layer V slab, as this produces a local
connection fraction of 0.1 for a medium-sized slice and sam-
ple, as observed in numerous layer V slice studies (Thomson and
Deuchars, 1997; Thomson et al., 2002). We select three slice thick-
nesses (in addition to the complete network) and three sampling
radii with 100 neuron subsamples (except in the case of small
sections, in which case the maximum number of neurons in the
section is sampled). We will examine the complete network and

complete slice statistics, as well as the sample statistics for each
condition, and note how they vary. Unless otherwise specified, we
average over five network samples.

The global connection fraction and bidirectional connection
fraction for each condition is given in Tables 1, 2. We note
that in general, for a given slice size, the overall connection
fraction decreases with increasing sampling radius. This is an
obvious result of local clustering due to the distance-dependent
connection probability. Similarly, we note that as sampling
radius increases, the number of bidirectional connections over
chance (as compared to an Erdős-Rényi graph) increases. This
is also a result of local clustering due to the distance-dependent
connection probability.

We examine the common neighbor behavior in Figures 3–6.
The common neighbor effect is measured as follows. Pairs of
neurons sharing each possible number of commonly connected
neighbors (up to some maximum value) are counted, ignoring
directionality (see Figure 2). For each number of commonly
connected neighbors, the number of connected neuron pairs

FIGURE 2 | Common neighbor clustering illustrated. Tested nodes are
red; common neighbors are blue.

Table 1 | Overall connection fraction (standard error).

Slice size 50 µm radius sample 150 µm radius sample 250 µm radius sample Complete section

Complete network 0.1343 (0.0063) 0.1066 (0.0014) 0.0749 (0.0030) 0.0250 (0.0000)

500 µm slice 0.1343 (0.0063) 0.1057 (0.0024) 0.0720 (0.0012) 0.0401 (0.0001)

300 µm slice 0.1343 (0.0063) 0.1060 (0.0021) 0.0827 (0.0034) 0.0495 (0.0001)

100 µm slice 0.1343 (0.0063) 0.1151 (0.0016) 0.0936 (0.0025) 0.0566 (0.0007)

Table 2 | Bidirectional connection fraction (standard error) [fraction of chance – Erdős-Rényi control].

Slice size 50 µm radius sample 150 µm radius sample 250 µm radius sample Complete section

Complete network 0.0195 (0.0042) [1.0828] 0.0124 (0.0012) [1.0962] 0.0066 (0.0014) [1.1832] 0.0020 (0.0000) [3.1705]

500 µm slice 0.0195 (0.0042) [1.0828] 0.0126 (0.0013) [1.1228] 0.0065 (0.0006) [1.2561] 0.0034 (0.0000) [2.1140]

300 µm slice 0.0195 (0.0042) [1.0828] 0.0115 (0.0010) [1.0253] 0.0084 (0.0013) [1.2185] 0.0046 (0.0001) [1.8877]

100 µm slice 0.0195 (0.0042) [1.0828] 0.0143 (0.0014) [1.0841] 0.0101 (0.0017) [1.1517] 0.0060 (0.0001) [1.8915]
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is divided by the total number of neuron pairs, resulting in a
connection probability conditioned on the number of common
neighbors. The the steeper the slope of this measure as a function
of number of common neighbors is, the stronger the effect
(Perin et al., 2011). For an Erdős-Rényi graph, this common
neighbor effect measure will have, on average, a slope of zero and
a value equal to the overall connection probability (up until the
maximum number of neighbors). Common neighbor clustering
should not be confused with more traditional clustering measures
(Watts and Strogatz, 1998; Fagiolo, 2007). Common neighbor
effect is taken here as an undirected measure for two reasons:
alignment with the convention of Perin et al. (2011), and because
our simple structural model has no directional preference, and
can thus make no prediction about it. In an actual biological or
more complex simulated system, it is likely that in and out (to
and from) common neighbor effects would produce different
results, as is suggested in the supplementary material of Perin
et al. (2011).

Figure 3 shows the total common neighbor effect for each
entire slice. We note, firstly, that the slope of the common
neighbor clustering increases with decreasing section size, and
secondly, that the saturation point decreases with decreasing sec-
tion size. We speculate that this occurs due to the truncation
of connections that occurs upon slicing, and the resulting ten-
dency of only nearby neurons to be well-connected. Similarly, for
each individual slice thickness (Figures 4–6), the saturation point
increases with decreasing sampling radius. The overall effect also
becomes less pronounced for the smaller (in this case, 100 neu-
ron) samples, as would be expected. The strength of common
neighbor clustering is sensitive to both the neuronal and connec-
tion densities, and the size of the distance-dependent connection
probability, particularly as it relates to the sampling scale. It is the
sensitivity to the relationship between these scales that we wish to
emphasize in these results.

Experimental data (Perin et al., 2011) shows an above-chance
common neighbor effect stronger than the one demonstrated by
our model for similar sampling conditions, suggesting the pres-
ence of additional clustering mechanisms in the cortex beyond
the simple geometric ones examined in our model. One predic-
tion our model makes is that after a linear or near-linear rise in
connection probability as function of common neighbor count,
the connection probability saturates for some large number of
common neighbors. It can be extrapolated, despite the increased
common neighbor effect seen in physiological data, that this sort
of turnover and saturation effect will still necessarily occur for a
large number of common neighbors given a sufficiently thorough
sampling of a section of cortical tissue.

We examine the counts of occurrences of directed triadic
motifs (possible directed triangular subgraph configurations; see
Figure 7) in the simulated tissue sections compared with Erdős-
Rényi random graphs for complete sections and for a sampled
300 µm slice in Figures 8, 9 (which is representative of sliced
and sampled behavior, as it is observed that sliced and sam-
pled behavior does not vary much between slice sizes; only
sample radii). We note an excess of motifs with bidirectional
connections. This is trivially expected from distant-dependent
connection probabilities; since each direction in an edge is treated
independently it will of course be the case that many minimally
separated nodes will be bidirectionally connected, and, more
generally that inter-group connectivity will be increased among
tight groups of neurons. Furthermore, it is trivially the case that
given an excess of bidirectional connections, triads containing
them will be overrepresented. We wish to correct for this sec-
ond effect, and do so via the bidirectionality corrected control
described in the Materials and Methods section and elucidated
below.

We examine triadic motif counts against bidirectionality-
corrected random graphs for complete sections and for a sampled

FIGURE 3 | Common neighbor clustering for complete network and slices (full sampling): pairwise connection probability as a function of number of

commonly connected neighbors. Error bars indicate standard error of the mean. Average over five populations.
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FIGURE 4 | Common neighbor clustering for 500 µm slice: pairwise connection probability as a function of number of commonly connected

neighbors. Error bars indicate standard error of the mean. Average over five populations.

FIGURE 5 | Common neighbor clustering for 300 µm slice: pairwise connection probability as a function of number of commonly connected

neighbors. Error bars indicate standard error of the mean. Average over five populations.

300 µm slice in Figures 10, 11. Again, sliced and sampled behav-
ior does not vary much between slice sizes; only sample radii.
We note that even after bidirectionality correction, excesses of
closed-loop (i.e., connected on all sides) triadic motifs contain-
ing bidirectionally connected pairs remain. Of interest as well is
the excess of closed but non-bidirectional triadic motifs (num-
bers 10 and 11) remaining. We note, in general, that motifs
10 -16 remain overrepresented, a phenomenon seen as well in
Song et al. (2005). An underrepresentation of motif 8, which
is observed in Song et al. (2005) with a similar strength to the
aforementioned overrepresentations, is not seen in our model.

However, the purpose of this paper is not to fully analyze the
more subtle effects of distant-dependent clustering, but rather to
examine the implications of similar clustering occurring at the
same spatial scale as variations in sampling. We note, firstly, that
as slice size decreases, the statistics of the complete slice approach
the statistics of the sample. This follows logically from the fact
that the sample occupies an increasing fraction of the slice by
volume for a smaller slice. Along similar lines, we note that thin-
ner slices exhibit less variation in the counts between sampling
radii. For a sufficiently thin slice, one could hypothetically move
from a three-dimensional to a two-dimensional reference model,
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FIGURE 6 | Common neighbor clustering for 100 µm slice: pairwise connection probability as a function of number of commonly connected

neighbors. Error bars indicate standard error of the mean. Average over five populations.

FIGURE 7 | Triadic motif key.

FIGURE 8 | Triadic motif counts for complete sections (full sampling). Error bars indicate standard error of the mean. Average over five populations.
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FIGURE 9 | Triadic motif counts for 300 µm slice. Error bars indicate standard error of the mean. Average over five populations.

FIGURE 10 | Bidirectionally corrected triadic motif counts for complete sections (full sampling). Error bars indicate standard error of the mean. Average
over five populations.

approximating a sheet. We also note that post-bidirectionality
correction in the control, the variation between slice sizes and
sample radii is smaller than it was pre-bidirectionality correction
in the control. This is a strong indicator that any motif surveys
undertaken would benefit from using a bidirectionality or simi-
lar (as in Song et al., 2005) correction on the control in order to
maximize consistency and universality in results.

4. DISCUSSION
As we are able to access larger and denser subsamples of the
connectome, complex network measures (Rubinov and Sporns,

2010) are becoming an increasingly important way of under-
standing both the structure and function. Such measures have
already been applied to the complete connectome of C. elegans
(Varshney et al., 2011). While elements of this study are highly
telling, they do not provide a direct comparison to cortical slice
studies, which are subsampled portions of a very different struc-
ture, even if the individual elements are similar. Currently, cortical
slice studies provide some of the best information we have about
the wiring structure of the cortex on a microscopic scale.

In order to understand this microstructure, it is very impor-
tant to study and examine the statistics of connectivity at scales
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FIGURE 11 | Bidirectionally corrected triadic motif counts for 300 µm slice. Error bars indicate standard error of the mean. Average over five populations.

of tens to hundreds of µm—this will be vital to understanding
the self-organizational and computational principles underlying
the structure of the brain (Prill et al., 2005; Sporns et al., 2005;
Seung, 2009). However, at the same time, extreme care must be
taken, as relatively small variations in section size and sampling
density can lead to significantly differing results, as this is also the
scale at which naturally occurring simple clustering may occur,
and at which the statistical transition from microstructure to
macrostructure may take place as well.

It is thus of great importance that experimenters take this
into account and, accordingly, provide all available information
regarding neuron type and approximate density, sampling space
distribution, slice thickness, and other parameters that might
lead to sampling biases. Various studies of such microstructure
have shown conflicting results. Reiterating, Song et al. (2005) and
Holmgren et al. (2003) noted an excess of bidirectional connec-
tivity in layer V and layer II / III, respectively. However, Lefort
et al. (2009) noted no such excess. It is possible that this could
be a result of sampling from different parts of the cortex which
exhibit significantly different micro-organization, or that small
differences in sectioning size and sampling procedure could lead
to such differences. It is this latter concern that we would like to
emphasize.

We have not reproduced the sampling procedures used in these
studies exactly, but rather provided a generic sampling simulation
from which we can gain some qualitative insight into real-world
experimental results. Examining the aforementioned studies, we
note that Song et al. (2005) used a 300 µm slice (Sjöström et al.,
2001) with a roughly ellipsoid sampling area with radii of approx-
imately 100 and 50 µm on the major and minor axes, respectively.
Holmgren et al. (2003) also used a 300 µm slice, recording in
an irregular shape out to a maximal radius of nearly 300 µm.
Our model does not reproduce the high degree of excess bidirec-
tional connections observed under these parameters, but it does
result in an above-chance representation. Lefort et al. (2009), who

noted no excess of bidirectional connections, used a 300 µm slice
as well, further subdividing these into 100 µm sections, which
would correspond to a centered recording radius of 50 µm—a
radius at which our model does not exhibit a noteworthy excess of
bidirectional connectivity, and suggesting an explanation for why
their results appear potentially at odds with other cortical slice
studies.

Our model demonstrating this concern is a simple graph
model that, while it does not completely reproduce the nonran-
dom features noted in electrophysiological surveys, does repro-
duce some of them at a presumably natural scale. It is our belief
that such a model provides a more reasonable, realistic, and gen-
eral baseline for measuring the statistics of nonrandom cortical
connectivity than a simple Erdős-Rényi graph. Certain observed
complex features have been necessarily excluded to avoid an
overly ad-hoc model. For example, our model does not repro-
duce the common neighbor clustering asymmetry in the in- and
out-degree noted in the supplementary materials of Perin et al.
(2011).

That the examined features depend so sensitively on section
size in the presence of order 100 µm scale clustering should be
both enlightening and concerning, particularly when most sam-
pling procedures operate around this scale. Other factors such
as neuronal type and local density almost certainly play into
such effects as well. The model is not exhaustive, and numerous
parameters, including the exact size and form of the connection
probability profile and neuronal connection densities, could be
varied. The thrust of the example provided in this paper is not
to provide an exhaustive catalog of scenarios, but to demonstrate
how sensitive the observed nonrandom effects of clustering mech-
anisms are to small variations in sampling. With this brief and
simple demonstration in mind, the authors encourage experi-
menters to include all available information about neuronal and
connection density and scale, as well as the full extent of exact
sampling techniques in any study of such nonrandom features
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so that they can be best understood in the context of a complete
graph.
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Electron microscopy (EM) facilitates analysis of the form, distribution, and functional status
of key organelle systems in various pathological processes, including those associated
with neurodegenerative disease. Such EM data often provide important new insights into
the underlying disease mechanisms. The development of more accurate and efficient
methods to quantify changes in subcellular microanatomy has already proven key to
understanding the pathogenesis of Parkinson’s and Alzheimer’s diseases, as well as
glaucoma. While our ability to acquire large volumes of 3D EM data is progressing rapidly,
more advanced analysis tools are needed to assist in measuring precise three-dimensional
morphologies of organelles within data sets that can include hundreds to thousands
of whole cells. Although new imaging instrument throughputs can exceed teravoxels
of data per day, image segmentation and analysis remain significant bottlenecks to
achieving quantitative descriptions of whole cell structural organellomes. Here, we present
a novel method for the automatic segmentation of organelles in 3D EM image stacks.
Segmentations are generated using only 2D image information, making the method
suitable for anisotropic imaging techniques such as serial block-face scanning electron
microscopy (SBEM). Additionally, no assumptions about 3D organelle morphology are
made, ensuring the method can be easily expanded to any number of structurally and
functionally diverse organelles. Following the presentation of our algorithm, we validate
its performance by assessing the segmentation accuracy of different organelle targets
in an example SBEM dataset and demonstrate that it can be efficiently parallelized on
supercomputing resources, resulting in a dramatic reduction in runtime.

Keywords: serial block-face scanning electron microscopy, 3D electron microscopy, electron microscopy,

automatic segmentation, image processing, organelle morphology, neuroinformatics

INTRODUCTION
Advances in instrumentation for 3D EM are fueling a renais-
sance in the study of quantitative neuroanatomy (Peddie and
Collinson, 2014). Data obtained from techniques such as SBEM
(Denk and Horstmann, 2004) provide unprecedented volumetric
snapshots of the in situ biological organization of the mammalian
brain across a multitude of scales (Figure 1A). When combined
with breakthroughs in specimen preparation (Deerinck et al.,
2010), such datasets reveal not only a complete view of the mem-
brane topography of cells and organelles, but also the location of
cytoskeletal elements, synaptic vesicles, and certain macromolec-
ular complexes.

Harnessing the power of these emerging 3D techniques to
study the structure of whole cell organellomes is of critical
importance to the field of neuroscience. Abnormal organelle mor-
phologies and distributions within cells of the nervous system are
characteristic phenotypes of a growing number of neurodegener-
ative diseases. Aberrant mitochondrial fragmentation is believed

to be an early and key event in neurodegeneration (Knott et al.,
2008; Campello and Scorrano, 2010), and changes in mitochon-
drial structure have been observed in Alzheimer’s disease (AD)
neurons from human biopsies (Hirai et al., 2001; Zhu et al., 2013).
Additionally, altered nuclear or nucleolar morphologies have been
observed in a host of pathologies, including AD (Mann et al.,
1985; Riudavets et al., 2007), torsion dystonia, (Kim et al., 2010),
and Lewy body dementia (Gagyi et al., 2012).

Our ability to quantify and understand the details of these
subcellular components within the context of large-scale 3D EM
datasets is dependent upon advances in the accuracy, throughput,
and robustness of automatic segmentation routines. Although a
number of studies have extracted organelle morphologies from
SBEM datasets via manual segmentation, (Zhuravleva et al.,
2012; Herms et al., 2013; Holcomb et al., 2013; Wilke et al.,
2013; Bohórquez et al., 2014), their applications are limited to
only small subsets of the full stack due to the notoriously high
labor cost associated with manual segmentation (Figure 1B).
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FIGURE 1 | The manual segmentation of organelles from SBEM image

stacks represents a significant bottleneck to quantitative analyses.

(A) A typical SBEM dataset consists of individual image slices collected in
increments of δ nm, with the values of δ reported in the literature typically
falling in the range of 20–100 nm (Peddie and Collinson, 2014). To cover a
neuroanatomical region of any significance, the size of such datasets
quickly enters the realm of teravoxels and analyses utilizing manual
segmentation become intractable. (B) A scatter plot of the amount of time
required for a highly trained neuroanatomist to segment all instances of a
specific organelle in SBEM tiles of size 2000× 2000 pixels demonstrates
this impediment. Average values are represented by horizontal bars
(mitochondria = 5.01 min, lysosomes = 3.43 min, nuclei = 0.93 min,
nucleoli = 1.24 min). Since mitochondria are ubiquitously present
throughout most tissues, extrapolation of their average segmentation time
per tile to the size of a full dataset can reliably predict the actual
segmentation time required for such a volume. For a dataset the size of the
one used in this report (stack volume ∼450,000 μm3, tile size ∼60 μm2),
the manual segmentation of all mitochondria would require roughly 2.3
years, placing it well outside the realm of feasibility. This effect is further
exacerbated when experiments requiring segmentations from SBEM
stacks over multiple samples or experimental conditions are desired.

Automatic segmentations generated based on thresholds or
manipulations of the image histogram (Jaume et al., 2012;
Vihinen et al., 2013) may require extensive manual editing of their
results to achieve the accurate quantification of single organelle
morphologies.

The development of computationally advanced methods for
the automatic segmentation of organelles in 3D EM stacks has
led to increasingly accurate results (Vitaladevuni et al., 2008;
Narashima et al., 2009; Smith et al., 2009; Kumar et al., 2010;
Seyedhosseini et al., 2013a). Recently, Giuly and co-workers pro-
posed a method to segment mitochondria utilizing patch classi-
fication followed by isocontour pair classification and level sets
(Giuly et al., 2012). Lucchi et al. (2010, 2012) developed an
approach that trains a classifier to detect supervoxels that are
most likely to belong to the boundary of the desired organelle.
An approach to automatically segment cell nuclei using the soft-
ware package ilastik to train a Random forest voxel classifier

followed by morphological post-processing and object classifica-
tion was proposed by Sommer et al. (2011), Tek et al. (2014).
Though they yield impressive results, many current approaches
utilize assumptions about the 3D morphology of the organelle
target. This is problematic not only because it makes their expan-
sion to the segmentation of other organelles non-trivial, but
also because the typical SBEM dataset contains a heterogeneous
mixture of organelle morphologies across multiple cell types.
Therefore, there is a clear need for a robust method to accurately
segment various organelles in SBEM stacks without any a priori
assumptions about organelle morphology.

In this work, we present a method for the robust and accu-
rate automatic segmentation of morphologically and function-
ally diverse organelles in EM image stacks. Organelle-specific
pixel classifiers are trained using the cascaded hierarchical model
(CHM), a state-of-the-art, supervised, multi-resolution frame-
work for image segmentation that utilizes only 2D image infor-
mation (Seyedhosseini et al., 2013b). A series of tunable 2D filters
are then applied to generate accurate segmentations from the
outputs of pixel classification. In the final processing step, 3D
connected components are meshed together in a manner that
minimizes the deleterious effects of local and global imaging arti-
facts. Finally, we demonstrate that our method can be easily and
efficiently scaled-up to handle the segmentation of all organelles
in teravoxel-sized 3DEM datasets.

MATERIAL AND METHODS
The description and validation of our method are arranged into
three sections. In the first section, the workflow is described in
detail. In the second, the robustness and accuracy of our method
are validated by applying it to four different organelle targets
(mitochondria, lysosomes, nuclei, and nucleoli) from a test SBEM
dataset. In the third section, we describe experiments that demon-
strate how our method can be easily scaled-up to accommodate
the segmentation of teravoxel-sized datasets.

THE PROPOSED METHOD
Image alignment and histogram specification
All individual images of the input SBEM stack are converted to
the MRC format and appended to an 8-bit MRC stack using
the IMOD programs dm2mrc and newstack, respectively (Kremer
et al., 1996). Sequential images within the stack are then trans-
lationally aligned to one another in the XY-plane using the
cross-correlational alignment algorithm of the IMOD program
tiltxcorr. To ensure consistency throughout the stack, the his-
tograms of all images are matched to that of the first image
in the stack using a MATLAB (The MathWorks, Inc., Natick,
MA, U.S.A.) implementation of the exact histogram specification
algorithm (Coltuc et al., 2006).

Generation of training images and labels
Once an organelle target has been selected by the experimenter,
the next step is to generate a set of organelle-specific training
images and labels to subsequently train a CHM pixel classifier.
A set of N seed points, P, are selected throughout the processed
SBEM stack in locations that possess at least one instance of the
desired organelle, such that:
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Pi = (xi, yi, zi)∀i ∈ {1, . . . , N}

These points should be chosen in a manner that yields a wide dis-
tribution throughout the stack. After the selection of seed points,
every instance of the chosen organelle is manually segmented in
a Q × R pixel tile centered at each Pi. Following manual seg-
mentation, all tiles are extracted from the full SBEM stack using
the IMOD program boxstartend. The extracted tiles will serve
as training images, Ti. Binary training labels, Bi, are generated
from each Ti by applying the corresponding manual segmenta-
tion as a mask using the IMOD program imodmop. Thus, the
final outputs from training data generation are (1) a stack of 8-
bit, grayscale training images, Ti, and (2) a stack of corresponding
binary organelle masks, Bi. Both stacks are of size Q × R × N. A
flow chart illustrating this process is shown in Figure 2.

Training organelle pixel classifiers with the cascaded hierarchical
model
The CHM consists of bottom-up and top-down steps cascaded
in multiple stages (Seyedhosseini et al., 2013b). The bottom-up
step occurs in a user-specified number of hierarchical levels, L. At
each level, the input stacks Ti and Bi are sequentially downsam-
pled and a classifier is trained based on features extracted from the
downsampled data as well as information from all lower levels of
the hierarchy. After classifiers have been trained at all levels, the
top-down path combines the coarse contextual information from

higher levels into a single classifier that is applicable to images at
native resolution. This whole process is then cascaded in a num-
ber of stages, S, where the output classifier from the previous stage
serves as the input classifier for the subsequent stage. The final
output is a pixel classifier, CS,L, that is applicable to images at the
native pixel size of Ti and Bi. For optimal results, the number of
stages chosen should be greater than one. The exact number of
stages and levels chosen depends on a host of factors, including
the size of Ti and Bi and the computational resources available to
the experimenter.

Probability map generation
In the next step, a stack of test images, Ij, are selected to apply
the pixel classifier to. Depending on the goals of the experiment,
these images may be full slices of the SBEM volume or extracted
subvolumes. Prior to pixel classification, each Ij is split into an m
× n array of tiles such that the dimensions of each tile are roughly
equivalent to the lateral dimensions of the training stacks, Q ×
R (step 3 of Algorithm 1). Tiling is performed with an overlap
of U pixels between adjacent tiles. The choice of U is dependent
on the size of the training stacks as well as the organelle target; in
general, ideal values of U should fall in the range of 2–10% of Q
and R. The previously generated CHM pixel classifier, CS,L, is then
applied to each tile, yielding m × n probability map tiles (step 5
of Algorithm 1). All processed tiles are then stitched together to
yield a final probability map, Mj (step 7 of Algorithm 1). When

FIGURE 2 | A flow chart of the steps involved in training data generation.

The generation of a set of training data for mitochondrial automatic
segmentation is shown here. First, a set of seed points, Pi, are selected such
that a wide distribution throughout the volume is achieved (bottom left). Tiles
of size Q × R centered at each seed point are extracted to serve as training
images, Ti. All instances of the desired organelle target are manually

segmented by a trained neuroanatomist on each training image. These
manual segmentations are then used as masks to binarize each Ti such that
pixels of value one correspond to pixels of Ti that are positive for the desired
organelle. This process is repeated N times to yield stacks of training images
and their corresponding training labels, Bi. These stacks are then used to train
a CHM classifier, CS,L, with the desired number of stages, S, and levels, L.

Frontiers in Neuroanatomy www.frontiersin.org November 2014 | Volume 8 | Article 126 | 74

http://www.frontiersin.org/Neuroanatomy
http://www.frontiersin.org
http://www.frontiersin.org/Neuroanatomy/archive


Perez et al. Autosegmentation of organelles for SBEM

Algorithm 1 | Organelle segmentation using tiled input images.

1: Declare values of m, n, U, G, α, and λ

2: for every test image Ij do

3: Generate k=m× n tiles of Ij with overlap U

4: for every k do

5: Apply the CHM classifier CS,L to the k-th tile

6: end for

7: Stitch all k tiles together to yield the probability map, Mj

8: Normalize Mj

9: Classify Mj using Otsu’s multi-level method with G gray levels,

yielding Oj

10: Threshold Oj at the G-th level, giving the initial position mask Kj

11: Perform morphological shrinking on Kj

12: Segment Mj by evolving active contours at initial positions

specified by each unique 2D connected component of Kj.

Iterate α times with a smoothing factor of λ. The output is

SEGj, the final segmentation of Ij.

13: end for

stitching, the pixels in Mj that correspond to regions of overlap
between adjacent tiles are set to the maximum intensity pixel from
all contributing tiles. Finally, Mj is normalized such that each pixel
ranges from [0, 1], with one representing the highest probability
(step 8 of Algorithm 1). This process is then repeated over each Ij

to yield the final stack of probability maps.

Binarization of probability maps
Each probability map, Mj, is binarized by evolving active contours
(Chan and Vese, 2001) at automatically determined initial posi-
tions. For an unsupervised determination of the initial positions,
the probability map Mj is first thresholded using Otsu’s multi-
level method (Otsu, 1979) with G unique gray levels (step 9 of
Algorithm 1). The output from this operation is Oj, a map in
which each pixel of Mj has been classified into one of G unique
levels, with the zeroth level corresponding to the approximate
background. This map is then binarized by thresholding Oj at a
pixel intensity of G, yielding a mask of initial positions, Kj (step
10 of Algorithm 1). This binary mask is then made smaller by
applying two iterations of morphological shrinking (step 11 of
Algorithm 1) and used to initialize the evolution of active con-
tours with a number of iterations and smoothing factor specified
by α and λ, respectively (step 12 of Algorithm 1). Each 2D con-
nected component of Kj serves as a unique initial position for
contour evolution. For best results, α should be at least 50. The
choice of λ depends largely on the organelle target and pixel size
of the test images, but in general should fall in the range of 0–
8. Larger values of λ can be used when the pixel size is small.
If the pixel size is too large (i.e., above 10 nm/pixel), smoothing
should be turned off by setting λ to zero. The value of G signifi-
cantly alters the results, and its choice is dependent on the goals
of the experimenter. Low values of G tend to emphasize true pos-
itives at the risk of retaining false positives. As G is increased, false
positives are more readily removed, but so are true positives. The
final output from this process is SEGj, the organelle segmentation
of the input grayscale image, Ij. An illustration of this process is
shown for two test images in Figure 3.

Meshing
Each output SEGj is converted to the MRC format and appended
to an MRC stack. Contours are drawn around each 2D connected
component using the IMOD program imodauto. The output con-
tours are then three-dimensionally meshed together using the
program imodmesh, and separate 3D connected components are
sorted into different objects using the program imodsortsurf.
Meshing is performed using the low resolution option to reduce
the effect of translational artifacts between subsequent image
slices.

EXPERIMENTAL VALIDATION
Tissue processing, image acquisition, and preprocessing
The suprachiasmatic nucleus (SCN) of one 3-month-old, male
C57BL/6J mouse was harvested and prepared for SBEM using
a standard protocol (Wilke et al., 2013). The resin-embedded
tissue was mounted on an aluminum specimen pin and pre-
pared for SBEM imaging as previously described (Holcomb et al.,
2013). Imaging was performed by detection of backscattered
electrons (BSE) using a Zeiss Merlin scanning electron micro-
scope equipped with a 3View ultramicrotome (Gatan). The SBEM
image stack was acquired in ultrahigh vacuum mode using an
accelerating voltage of 1.9 kV, a pixel dwell time of 500 ns, and
a spot size of 1.0. Sectioning was performed with a cutting thick-
ness of 30 nm. BSE images were acquired at 800x magnification
with a raster size of 32,000 pixels × 24,000 pixels, yielding a
pixel size of 3.899 nm/pixel. A total of 1283 serial images were
acquired, resulting in an image stack with tissue dimensions of
roughly 124.8× 93.6× 38.5 μm (∼450,000 μm3). The specimen
was then removed from the chamber, and an image of a diffrac-
tion grating replica specimen (Ted Pella, Redding, CA, U.S.A.)
was acquired for calibration of the lateral pixel size. Low mag-
nification images of the block-face were acquired before and
after sectioning. Image alignment was performed as described in
Section Image Alignment and Histogram Specification. Following
alignment, the stack was downsampled in the XY-plane by a fac-
tor of two, yielding a final stack with pixel dimensions of 16,000×
12,000× 1283 and pixel sizes of 7.799 nm/pixel and 30 nm/pixel
in the lateral and axial dimensions, respectively. Since prelim-
inary results did not demonstrate noticeable differences in the
output of our method between the native resolution stack and
the downsampled stack, downsampling was performed to reduce
processing time. Exact histogram specification was performed
as previously described. All image alignment and pre-processing
steps were performed on a custom workstation (Advanced HPC,
San Diego, CA, U.S.A.) with the following configuration: Xeon
X5690 3.47 GHZ CPU, 48 GB RAM, 32 TB HDD, NVIDIA
Quadro FX 3800, CentOS release 6.2.

Automatic segmentation
The four types of organelles targeted for automatic segmentation
were mitochondria, lysosomes, nuclei, and nucleoli. These tar-
gets were chosen because they are morphologically and texturally
diverse, and thus pose a significant test of the robustness of our
method.

For each organelle target, 90 seed points were placed through-
out the SBEM stack as described in Section Generation of
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FIGURE 3 | The binarization of probability maps using active

contours initialized by a multi-level Otsu threshold yields accurate

segmentation results. Colorized maps, M, of a nucleus (A) and
lysosomes (D) generated by applying Otsu’s method with multiple
levels to probability maps obtained by CHM pixel classification. Each
color corresponds to a unique level of the threshold. Six gray levels
(G = 6) were used for the nucleus and four (G = 4) were used for
the lysosomes. Initial positions (B,E) were determined by selecting

pixels corresponding to only the highest levels of each threshold
followed by two iterations of morphological shrinking. Output
segmentations (C,F) were obtained by evolving active contours about
each of the initial positions in (B,E) with 100 iterations and a
smoothing factor of 8 (α = 100, λ = 8). In the case of the lysosome
images, note that a myelinated axon that was originally detected by
the classifier as a false positive (D, arrow) has been removed from
the final segmentation by the application of our method (F, arrow).

Training Images and Labels. Training data and labels were cre-
ated using the values shown in Table 1. Of the 90 tiles generated
for each organelle, 50 were randomly selected for use in training
a CHM classifier; the other 40 were set aside to use as test data
for validation. Organelle-specific CHM classifiers were trained
using the values shown in Table 1. The performances of all classi-
fiers were evaluated by preparing receiver operating characteristic
(ROC) curves (Fawcett, 2006). Each classifier was then used to
generate probability maps of the 40 test images corresponding
to its organelle. Segmentation was performed as described in
Section Binarization of Probability Maps using the values shown
in Table 1. All training, pixel classification, and segmentation
steps were performed on the National Biomedical Computation
Resource (NBCR) cluster, rocce.ucsd.edu (http://rocce-mgr.
ucsd.edu/).

Validation of the active contour segmentation of CHM probability
maps
Evaluation metrics were computed for each set of organelle-
specific test images by comparing their segmentations with man-
ually segmented ground truth. For each stack, the confusion
matrix consisting of the number of true positive (TP), false pos-
itive (FP), true negative (TN), and false negative (FN) pixels was
computed and used to calculate the true positive rate (TPR),
false positive rate (FPR), precision, accuracy, and F-value, such
that:

TPR = TP

TP+ FN

FPR = FP

FP+ TN

Precision = TP

TP+ FP

Accuracy = TP+ TN

TP+ FN+ FP+ TN

F− value = 2 × Precision × TPR

Precision+ TPR

This analysis was then repeated with segmentations gener-
ated from the same probability maps, but with a number of
different unsupervised binarization algorithms: (1) Minimum
error thresholding (Kittler and Illingworth, 1986), (2) Maximum
entropy thresholding (Kapur et al., 1985), and (3) Otsu’s single-
level method (Otsu, 1979). The performance of each algorithm,
as quantified with the above metrics, was compared against that
of our own method for each organelle target.

Since ground truth was available, the pixel intensity threshold
that maximized the F-value of each probability map with respect
to its corresponding ground truth was determined by computing
the F-value at incrementally increasing thresholds from [0, . . . ,1]
and taking the maximum value.
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Table 1 | Parameter sets used for the validation of specific organelle targets.

Parameter Variable Mitochondria Lysosomes Nuclei Nucleoli

Number of training slices N 50 50 50 50

Lateral dimensions of each training slice Q, R 500, 500 500, 500 500, 500 500, 500

Number of CHM levels L 2 2 2 2

Number of CHM stages S 2 2 2 2

Size of tile array m, n 2, 2 2, 2 2, 2 2, 2

Tiling overlap U 50 50 20 50

Gray levels for multi-level Otsu thresholding G 3 2 2 2

Active contour iterations α 80 200 300 90

Smoothing factor λ 7 4 8 10

FIGURE 4 | ROC curves for CHM classifiers of various organelles. ROC curves for mitochondrial (A), lysosomal (B), nuclear (C), and nucleolar (D) CHM
classifiers generated with two stages and two levels.

SCALE-UP TO TERAVOXEL-SIZED DATASETS
Determination of optimal downsampling levels for different
organelles
Since the segmentation of entire SBEM datasets is compu-
tationally intensive, we first decided to determine to what
degree input images could be downsampled before segmenta-
tion results were adversely affected. Downsampled versions of
each set of training images, training labels, and test images
were prepared for all four organelle targets. Downsampling was
performed by factors of two, three, four, and five, yielding

pixel sizes of roughly 15.59, 23.39, 31.19, and 38.90 nm/pixel,
respectively. CHM classifiers with two stages and two levels
were trained for each set of downsampled, organelle-specific
training images and labels. Probability maps were computed
with m = 2, n = 2, and U = 20. Segmentations were gener-
ated using the active contour method with G = 2, α = 100,
and λ = 0. For each set of output segmentations, evalua-
tion metrics were computed as described in Section Validation
of the Active Contour Segmentation of CHM Probability
Maps.

Frontiers in Neuroanatomy www.frontiersin.org November 2014 | Volume 8 | Article 126 | 77

http://www.frontiersin.org/Neuroanatomy
http://www.frontiersin.org
http://www.frontiersin.org/Neuroanatomy/archive


Perez et al. Autosegmentation of organelles for SBEM

Segmentation of organelles from a full SBEM stack
The entire test dataset was laterally downsampled by a factor of
eight, yielding a final stack with dimensions of 4000× 3000×
1283 pixels. The corresponding CHM classifiers generated in
Section Determination of Optimal Downsampling Levels for
Different Organelles were applied to produce stacks of probabil-
ity maps at this pixel size for nuclei, nucleoli, and mitochondria.
Processing was performed using an 8× 6 tile array with an over-
lap of 20 pixels between adjacent tiles. Tiling, pixel classification,
stitching, and binarization were performed using one CPU for
each input image. One hundred total CPUs were used, such that
100 images were processed in parallel to expedite processing. All
steps were performed on the National Biomedical Computation
Resource (NBCR) cluster, rocce.ucsd.edu. Following probability
map generation, all images were appended to organelle-specific
MRC stacks, and contours and surface renderings were generated
as described in Section Meshing.

COMPARISON TO A PREVIOUSLY PUBLISHED ALGORITHM
The results of our approach to nuclear automatic segmentation
were validated by comparison with the results obtained by the
algorithm of Tek et al. (2014). The full dataset was first downsam-
pled to isotropic voxel dimensions (30× 30 × 30 nm), resulting
in a stack of size 4029× 3120 × 1283 voxels. Training data and
images consisted of a 500× 500 × 50 subvolume of the down-
sampled stack containing two adjacent nuclei. Ground truth data
were generated by manual segmentation of all neuronal, glial, and
endothelial cell nuclei across fifty consecutive slices from the cen-
ter of the dataset. A CHM pixel classifier with two stages and
two levels was trained and applied to all images in the stack.
Similarly, an ilastik voxel classifier was trained using all possible
features with the same training images serving as input (Sommer
et al., 2011). This classifier was subsequently applied to all images
in the downsampled stack. CHM probability maps were bina-
rized using the proposed method. The ilastik probability maps
were binarized by thresholding at the level p = 0.5, followed by
the application of the object detection algorithm of Tek and col-
leagues with Vth1 and Vth2 set to 25 and 10,000, respectively (Tek
et al., 2014).

The source code for CHM and all related scripts are available
to download from http://www.sci.utah.edu/software/chm.html.
The training images, training labels, and test images used in this
study have also been made available to download at this URL.

RESULTS
ROC curves for each organelle-specific CHM classifier are shown
in Figure 4. In comparison to those for the other organelle clas-
sifiers, the ROC curve for the lysosomal classifier (Figure 4B)
demonstrates a sparseness of data points with a low FPR. This
is due to the extreme electron density of the lysosomal compart-
ment and the number of other features in EM images that closely
approximate it. Myelin sheaths (Figure 3D), plasma membranes,
and other organelles cut en face can resemble the lysosomal com-
partment in both pixel intensity and texture and are frequently
detected as false positives. Therefore, intelligent post-processing
routines that utilize size and morphology are needed to separate
lysosomes from such false positives.

FIGURE 5 | Binarization of probability maps using active contours

outperforms other methods. A CHM classifier for mitochondria was
applied to a 500× 500 pixel test image (A), generating the probability map
shown in (B). Note that regions of pixels corresponding to the Golgi
apparatus (yellow arrows) were detected in the probability map. The Golgi
apparatus can often confuse mitochondrial pixel classifiers because it has a
texture very similar to that of the mitochondrial matrix. The results of
binarization of the probability map using maximum entropy (C) and Otsu’s
single-level method (D) are shown. Using these techniques, regions of the
Golgi are permitted into the final segmentation as false positives. The
resultant segmentation obtained by our method of binarization with active
contours (G = 2, α = 100, λ = 8) is shown in (E). Instances of the Golgi
apparatus were automatically removed during processing. This
segmentation (F = 0.863, accuracy = 0.985) is a highly faithful
representation of the ground truth (F).

A comparison of our proposed active contour binarization
method to the other methods tested is shown in Figure 5 using
mitochondria as an example. Since the Golgi apparatus can some-
times display a texture similar to that of the mitochondrial matrix,
the presence of this organelle can confuse the mitochondrial clas-
sifier (Figures 5A,B, arrows). Segmentations generated with the
maximum entropy algorithm (Figure 5C, recall = 0.992, preci-
sion = 0.498, F = 0.670, accuracy = 0.948) and Otsu’s single-
level method (Figure 5D, recall = 0.958, precision = 0.687, F =
0.812, accuracy= 0.977) retain elements of the Golgi apparatus as
false positives. However, probability map binarization using the
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FIGURE 6 | The results of our method are consistent when applied to

diverse organelle targets. The application of our method to different
organelle targets yields consistent results without the need to significantly
change the input parameters. Shown here are test images, each of size
500× 500 pixels, and their corresponding probability maps, segmentations,

and manually segmented ground truth images. The final column shows a
transparent overlay of the segmentation onto the test image. The evaluation
metrics for each test image are as follows: Mitochondria, F = 0.844, accuracy
= 0.984; lysosomes, F = 0.872, accuracy = 0.997; nuclei, F = 0.971,
accuracy = 0.971; nucleoli, F = 0.91, accuracy = 0.977.

proposed active contour method eliminates these false positives
(Figure 5D, recall = 0.908, precision = 0.804, F = 0.863, accu-
racy = 0.985) when compared to the ground truth (Figure 5E).
Output probability maps and active contour segmentations from
example test images of each organelle are shown in comparison
to their corresponding ground truth in Figure 6.

The segmentation evaluation metrics for each full stack of
40 organelle-specific test images are shown in Table 2. The pro-
posed active contour segmentation method resulted in a supe-
rior recall for all four organelles and a superior F-value for
mitochondria, lysosomes, and nucleoli when compared to the
other segmentation methods. The F-value for nuclear segmen-
tation is negligibly better using Otsu’s single-level method. The
lack of distinction between these two binarization methods for
nuclei is due largely to the already high quality of nuclear
probability maps. The accuracy values obtained for each stack
using active contour segmentation were 0.985, 0.997, 0.972,
and 0.979 for mitochondria, lysosomes, nuclei, and nucleoli,
respectively.

A histogram of the probability map pixel intensity thresh-
olds that maximize the F-value for each test image are show
in Figure 7. The wide spread of optimal threshold values for
each organelle demonstrates the importance of using an unsuper-
vised algorithm for probability map binarization, such as the one
proposed here. Simply setting a pixel intensity threshold for each
probability map would yield poor segmentations for a number
of test images. This is especially true in very large SBEM images,
where alterations in staining or focus may occur differentially
throughout regions of the image stack.

The results of our downsampling experiment are shown
in Figure 8. The resultant F-value for segmentation of nuclei
and nucleoli remains remarkably consistent across the whole
range of pixel sizes tested. The F-values for mitochondria and
lysosomes exhibit substantial reductions at pixel sizes greater
than ∼15 nm/pixel, corresponding to an overall downsampling
of the original SBEM stack by a factor of four. The persistence of a
high F-value across all scales tested for nuclei and nucleoli is likely
due to their larger size and more regular texture in comparison
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to the other organelles. This is especially true for mitochondria,
whose cristae architectures may differ dramatically from region
to region.

The required wall clock time and random access memory
(RAM) required for CHM classifier training and pixel classifica-
tion for each organelle at each level of downsampling are shown
in Table 3. The time and RAM required for probability map bina-
rization are not shown because they are negligible with respect
to training and classification. These results indicate that, in cases
where segmentation accuracy is not dramatically affected, a vast
amount of time and computational resources can be saved by
downsampling the input image stacks. Simple extrapolation of
pixel classification times shows that the time required by a single

Table 2 | Segmentation evaluation metrics for the tested organelle

targets using various methods of probability map binarization.

F -value Precision Recall Jaccard Index

MITOCHONDRIA

Minimum Error 0.635 0.994 0.466 –

Max. Entropy 0.669 0.991 0.505 –

Otsu Single-level 0.816 0.957 0.712 –

Active Contours 0.877 0.867 0.886 0.780

LYSOSOMES

Minimum Error 0.433 0.985 0.277 –

Max. Entropy 0.492 0.940 0.508 –

Otsu Single-level 0.812 0.899 0.737 –

Active Contours 0.841 0.854 0.828 0.726

NUCLEI

Minimum Error 0.963 0.958 0.968 –

Max. Entropy 0.644 0.603 0.692 –

Otsu Single-level 0.971 0.979 0.963 –

Active Contours 0.970 0.973 0.968 0.942

NUCLEOLI

Minimum Error 0.781 0.998 0.641 –

Max. Entropy 0.811 0.996 0.684 –

Otsu Single-level 0.898 0.973 0.835 –

Active Contours 0.910 0.902 0.918 0.835

CPU to apply a nuclear pixel classifier to our full test dataset
would be reduced from ∼5.9 to ∼0.4 years when the input data
are downsampled by a factor of 10.

These time and memory requirements were dramatically
reduced by implementing tiling and processing over multiple
CPUs. During segmentation of the full, downsampled dataset, the
average processing time per 500× 500 tile was 3.28 ± 0.39 min
(average and standard deviation, N = 600), with no significant
difference in average time between organelles. By utilizing par-
allel processing with 100 CPUs, probability maps for the entire
stack were generated in roughly 33 h. An example full slice

FIGURE 8 | Input images can be downsampled to various degrees

before the segmentation results are negatively affected. Each
organelle-specific stack was downsampled by factors of two, four, six,
eight, and ten. Separate classifiers were trained at each different pixel size
and segmentations were generated for each stack using our method. Here,
the F -value of each resultant stack is compared across the different pixel
sizes obtained after downsampling. The F -value of nuclei (blue) and nucleoli
(magenta) is remarkably independent of the level of downsampling across
all levels tested. The F -values for mitochondria (red) and lysosomes (green)
significantly decline as the level of downsampling is increased.

FIGURE 7 | The wide distribution of optimum pixel intensity

thresholds demonstrates the usefulness of our method for

probability map binarization. The probability map pixel intensity
threshold that maximized the F -value with respect to ground truth
was determined for all of the 40 test images analyzed for each
organelle. The histogram of optimal thresholds shown here

demonstrates the need for an unsupervised method of binarization.
Simple thresholding of all probability maps at a single user-specified
intensity level would result in poor results for many of these test
images. Binarization using our method circumvents this problem by
adapting the results to the unique histogram of each probability map
in an unsupervised manner.
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Table 3 | Runtime and memory requirements for nuclear CHM classifier training and pixel classification at various levels of downsampling.

nm/pixel Classifier Training Pixel Classification

Dimensions Time (h) RAM (GB) Time (min) RAM (GB)

7.79 500× 500× 50 23.98 87.24 12.73± 0.90 4.54± 0.03

15.59 250× 250× 50 20.35 39.38 4.67± 0.15 2.08± 0.04

23.39 166× 166× 50 7.95 18.16 2.03± 0.03 1.68± 0.05

31.19 125× 125× 50 4.71 10.83 1.18± 0.02 1.52± 0.04

38.90 100× 100× 50 3.18 7.38 0.90± 0.04 1.41± 0.04

The dimensions of the stack of training images and labels used to train the classifier are given. The values for pixel classification correspond to the average values

required to generate a probability map for one tile of roughly 60 µm2 at the tissue level (1000 × 1000 pixels at 2x downsampling). Values are reported as the mean

and standard deviation (N = 40 for each). Time is reported as the wall clock time for the indicated process.

FIGURE 9 | Automatic segmentation can be efficiently scaled to handle

full slices from teravoxel-sized SBEM datasets. Probability maps of full
images from the SCN dataset were generated by downsampling the image,
computing probability maps of individual tiles, and stitching these tiled
maps together. Shown here are probability maps of mitochondria (B), nuclei
(C), and nucleoli (D) computed from the same full slice (A). The full slice
was downsampled by a factor of two prior to mitochondrial pixel
classification and a factor of eight before nuclear and nucleolar pixel
classification. Common residual errors during mitochondrial pixel
classification are the false detection of endothelial cells (arrow) and nucleoli
or clusters of chromatin in the nucleus (asterisk). A common error
encountered during nuclear pixel classification is the false detection or
regions of cytoplasm devoid of membrane-bound organelles (arrowhead).
These residuals are frequently removed by the application of the proposed
probability map segmentation algorithm. Scale bar = 20 μm.

and its corresponding nuclear probability map are shown in
Figures 9A,C. Figures 9B,D depict additional probability maps
of mitochondria and nucleoli, respectively. The full slice proba-
bility maps of these other organelles were computed in a manner
similar to that of the nuclei.

When applied to the segmentation of nuclei from the full SCN
dataset following downsampling to isotropic voxel dimensions,
the proposed method achieved a precision, recall, and F-value of
0.976, 0.977, and 0.977, respectively. Similarly, the method of Tek
et al. (2014) achieved a precision, recall, and F-value of 0.976,
0.542, and 0.697, respectively, when applied to the same dataset

FIGURE 10 | Output surface renderings of manually segmented

organelles within an SCN neuron. The plasma membrane of a neuron
was manually traced in its entirety throughout the dataset. The size of this
neuron with respect to the full dataset (bottom left, scale bar = 20 μm)
demonstrates the scale of the segmentation challenge. An enlarged version
of this neuron with a transparent plasma membrane is shown in the upper
left corner. Surface renderings of the nucleus (yellow), nucleolus (cyan), and
mitochondria (green) were generated from the output of our automatic
segmentation workflow. Two cross-sectional planes through the neuron
reveal the corresponding SBEM slice with transparent overlays of the
probability maps for the three organelles (scale bar = 2 μm). Output
renderings such as these can be used to analyze any number of
parameters, including organelle morphology and clustering throughout the
whole cell.

using the same training data. Due to an already high precision and
low number of false positives, the final object classification step
performed by Tek and coworkers was omitted. Evaluation metrics
were computed using fifty consecutive manually annotated slices
as ground truth.

A surface rendering of a full SCN neuron containing ren-
derings of its nucleus, nucleolus, and mitochondria is shown in
Figure 10. The plasma membrane of the neuron was manually
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segmented by a trained neuroanatomist. The surface renderings
of all organelles were automatically generated, with minor manual
corrections applied.

DISCUSSION
As recently as a few years ago, the notion of reconstructing
and morphologically characterizing the organelle networks of
even a few whole cells was considered a monumental challenge
(Noske et al., 2008). The advent and widespread adoption of
high throughput, volumetric EM techniques has threatened to
change that notion, with the caveat that our ability to segment
and analyze data must first catch up with our ability to collect it.
With that goal in mind, this study aimed to develop a method
for the accurate automatic segmentation of organelles in EM
image stacks that: (1) could be easily adapted to any organelle of
interest, and (2) could be applied to teravoxel-sized datasets in a
computationally efficient manner.

Since it does not make any large-scale, a priori assumptions
about the morphology of the segmentation target, the proposed
method can be applied to segment diverse organelles with ease.
The only geometrical properties assumed throughout the method
are boundary smoothness and a cross-sectional area that is suf-
ficient enough to prevent the removal of true positives following
binary shrinking. Both of these assumptions are valid for virtually
all organelles under practical imaging conditions. CHM classi-
fiers can be trained for any dataset or organelle target if given
the proper training data, and the output segmentations from our
method can be tuned to the demands of unique experiments.
For example, decreasing the number of gray levels, G, used in
the multi-level Otsu thresholding step will emphasize true posi-
tives at the expense of including false positives, which can often
be excluded by post-processing filters. Additionally, it is easier to
remove false positives by manual correction or crowd-sourcing
(Giuly et al., 2013) than it is to add missing true positives.

The proposed method performed favorably when compared
to a recently published algorithm for the automatic segmenta-
tion of cell nuclei (Tek et al., 2014). It is interesting to note that
the performance of our method was very similar when trained
using either images from consecutive slices of the same nuclei
(precision = 0.976, recall = 0.977) or single slice images from a
variety of nuclei (precision = 0.973, recall = 0.968). This sim-
ilarity demonstrates the robustness of the CHM pixel classifier
for this task. It is likely that the segmentation results obtained
by applying the method of Tek and colleagues to the SCN dataset
could be strengthened by training an ilastik voxel classifier against
a greater diversity of nuclei.

Another advantage of the proposed method lies in its scala-
bility to full datasets. The generation of probability maps from
small tiles of the input image minimizes the required RAM.
Additionally, it allows for computation to be easily expedited
by parallelizing the processing of individual tiles across multi-
ple CPUs. Our demonstration that accurate results for certain
organelles can be achieved on downsampled stacks also helps
expedite processing. One can envision an experiment in which
a teravoxel-sized SBEM stack collected at high resolution for
axon tracking can then be downsampled and have its nuclei
or mitochondria automatically segmented at a fraction of the

computational cost that would have been required at its native
resolution. As innovative methods to rapidly acquire even larger
datasets continue to be developed (Mohammadi-Gheidari and
Kruit, 2011; Helmstaedter et al., 2013; Marx, 2013), this reduction
in computational cost will prove critical.

Although it is beyond the scope of this paper, a number of 3D
post-processing steps that would lead to further improvements in
the results of automatic segmentation can be proposed. A simple
size exclusion filter could be applied to 3D connected compo-
nents to remove false positives that do not fall within the possible
size range for the given organelle. A scan over every segmented
slice of each 3D component could be performed to look for aber-
rant spikes or troughs in 2D metrics such as perimeter or area.
The locations of these spikes and troughs would indicate slices
on which a poor segmentation occurred, and these slices could
be correspondingly removed and replaced by interslice interpola-
tions. The application of such processes to the output from our
method will be the subject of future development.

In conclusion, this paper introduces novel methods for the
automatic segmentation of organelles from EM image stacks that
are both robust and able to handle datasets of any size. These
tools fill a critical need by allowing for the quantitative analy-
sis of volumetric EM datasets at a scale between that of current
connectomics approaches (Briggman and Denk, 2006; Anderson
et al., 2011; Bock et al., 2011; Briggman et al., 2011; Kleinfeld et al.,
2011; Varshney et al., 2011; Helmstaedter et al., 2013; Kim et al.,
2014) and that afforded by genetically encoded markers for small
molecule localization (Shu et al., 2011; Martell et al., 2012; Boassa
et al., 2013).
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The biggest problem when analyzing the brain is that its synaptic connections are
extremely complex. Generally, the billions of neurons making up the brain exchange
information through two types of highly specialized structures: chemical synapses (the
vast majority) and so-called gap junctions (a substrate of one class of electrical synapse).
Here we are interested in exploring the three-dimensional spatial distribution of chemical
synapses in the cerebral cortex. Recent research has showed that the three-dimensional
spatial distribution of synapses in layer III of the neocortex can be modeled by a random
sequential adsorption (RSA) point process, i.e., synapses are distributed in space almost
randomly, with the only constraint that they cannot overlap. In this study we hypothesize
that RSA processes can also explain the distribution of synapses in all cortical layers. We
also investigate whether there are differences in both the synaptic density and spatial
distribution of synapses between layers. Using combined focused ion beam milling and
scanning electron microscopy (FIB/SEM), we obtained three-dimensional samples from
the six layers of the rat somatosensory cortex and identified and reconstructed the
synaptic junctions. A total volume of tissue of approximately 4500 3μm and around 4000
synapses from three different animals were analyzed. Different samples, layers and/or
animals were aggregated and compared using RSA replicated spatial point processes. The
results showed no significant differences in the synaptic distribution across the different
rats used in the study. We found that RSA processes described the spatial distribution of
synapses in all samples of each layer. We also found that the synaptic distribution in layers
II to VI conforms to a common underlying RSA process with different densities per layer.
Interestingly, the results showed that synapses in layer I had a slightly different spatial
distribution from the other layers.

Keywords: spatial distribution of synapses, neocortex, dual-beam electron microscopy, FIB/SEM, replicated spatial

point patterns, random sequential adsorption, 3D Ripley’s K function, Besag’s L function

1. INTRODUCTION
A very dense network of neuronal and glial processes occupies the
space between the cell bodies of the neurons, glia, and blood ves-
sels. This is commonly referred to as “the neuropil.” Given that
most synapses are found here and the neuropil accounts for the
largest volume of the cerebral cortex, it follows that most synaptic
interactions take place in the neuropil (Alonso-Nanclares et al.,
2008). The majority of these synapses are chemical synapses (for
simplicity’s sake referred to as synapses) which are identified at
the electron microscope level for the following elements: synaptic
vesicles in the presynaptic axon terminal adjacent to the presy-
naptic density, a synaptic cleft (with electron-dense material in
the cleft) and densities on the cytoplasmic faces in the pre- and
postsynaptic membranes.

One major issue in cortical circuitry is to ascertain how
synapses are distributed and whether or not synaptic connections

are specific or not (DeFelipe et al., 2002b). To understand the
anatomical design principles of cortical circuits, it is essential
to analyze the ultrastructure of all components of the neu-
ropil and in particular the number and spatial distribution of
synapses. Furthermore, synaptic size plays an important role in
the functional properties of synapses (Schikorski and Stevens,
1997; Takumi et al., 1999; Lüscher et al., 2000; Tarusawa et al.,
2009). Thus, numerous researchers have been trying to find sim-
ple and accurate methods for estimating the distribution, size and
number of synapses. To this end, two sampling procedures are
currently available: one is based on serial reconstructions and the
other on single sections. Clearly, serial reconstruction should be
the method of choice for the challenging task of unraveling the
extraordinary complexity of the nervous system. Indeed, serial
sectioning transmission electron microscopy is a well-established
and mature technology for collecting three-dimensional data

Frontiers in Neuroanatomy www.frontiersin.org August 2014 | Volume 8 | Article 85 |

NEUROANATOMY

85

http://www.frontiersin.org/Neuroanatomy/editorialboard
http://www.frontiersin.org/Neuroanatomy/editorialboard
http://www.frontiersin.org/Neuroanatomy/editorialboard
http://www.frontiersin.org/Neuroanatomy/about
http://www.frontiersin.org/Neuroanatomy
http://www.frontiersin.org/journal/10.3389/fnana.2014.00085/abstract
http://community.frontiersin.org/people/u/124663
http://community.frontiersin.org/people/u/99617
http://community.frontiersin.org/people/u/6768
http://community.frontiersin.org/people/u/5
http://community.frontiersin.org/people/u/113559
mailto:l.anton-sanchez@upm.es
http://www.frontiersin.org/Neuroanatomy
http://www.frontiersin.org
http://www.frontiersin.org/Neuroanatomy/archive


Anton-Sanchez et al. Three-dimensional distribution of cortical synapses

from ultrathin sections of brain tissue (Stevens et al., 1980; Harris
et al., 2006; Hoffpauir et al., 2007; Mishchenko et al., 2010;
Bock et al., 2011). It is based on imaging ribbons of consecutive
sections with a conventional transmission electron microscope
(TEM). However, the major limitation is that it is extremely time-
consuming and difficult to obtain long series of ultrathin sections,
often making it impossible to reconstruct large volumes of tissue.
Hence, the recent development of automated electron microscopy
techniques is a vital step forward in the study of neuronal circuits
(Briggman and Denk, 2006; Knott et al., 2008; Merchán-Pérez
et al., 2009). Using combined focused ion beam (FIB) milling
and scanning electron microscopy (SEM), we have recently shown
(Merchán-Pérez et al., 2014) that synapses in the neuropil of layer
III of the rat somatosensory cortex show a nearly random spatial
distribution, with the only constraint that they cannot overlap in
space; distribution that can be modeled by a random sequential
adsorption (RSA) process (Evans, 1993), where synapses are given
a random position in space and assigned a certain size derived
from experimental data.

The aim of this research was to explore the three-dimensional
distribution of synapses in the cerebral cortex as a whole and,
particularly, find out whether there is a general pattern of dis-
tribution of synapses for the six cortical layers, and identifying
any possible similarities and differences between layers. To do
this, we studied the density of synapses and their spatial dis-
tribution as follows. First, we analyzed the synaptic density in
each of the six layers of the somatosensory cortex and examined
whether there were significant differences between layers. Second,
we performed spatial modeling to test whether each sample from
different neocortical layers conforms to an RSA model. Third, we
used replicated spatial point patterns to analyze similarities and
differences in the synaptic spatial distribution between groups of
samples of each cortical layer.

Finally, note that we have used postnatal day 14 Wistar rats
since we intend to integrate these data with other anatomical,
molecular and physiological data that have already been collected
from the same cortical region of the P-14 Wistar rats. The final
goal is to create a detailed, biologically accurate model of the brain
within the framework of the Blue Brain Project (http://bluebrain.

epfl.ch/).

2. MATERIALS AND METHODS
2.1. TISSUE PREPARATION AND THREE-DIMENSIONAL ELECTRON

MICROSCOPY
Three male Wistar rats sacrificed on postnatal day 14 were
used for this study. They were handled in accordance with
the guidelines for animal research set out in European Union
Directive 2010/63/EU, and all procedures were approved by the
Spanish National Research Council (CSIC) local ethics commit-
tee. Animals were administered a lethal intraperitoneal injection
of sodium pentobarbital (40 mg/kg) and were intracardially per-
fused with 2% paraformaldehyde and 2.5% glutaraldehyde in
0.1M phosphate buffer. The brain was then extracted from the
skull and vibratome sections (150 microns thick) were obtained,
processed for electron microscopy and flat-embedded in Araldite
according to a previously described protocol (Merchán-Pérez
et al., 2009, 2014). Three-dimensional brain tissue samples were

obtained from flat-embedded vibratome sections using a com-
bined focused ion beam/scanning electron microscope (FIB-
SEM). This electron microscope (Neon40 EsB, Carl Zeiss NTS
GmbH, Oberkochen, Germany) combines a high-resolution field
emission SEM column with a focused gallium ion beam which
mills the sample surface, removing thin layers of material on a
nanometer scale.

Stacks of serial sections were obtained from the six corti-
cal layers (see Table 1). Samples from layer III were used in a
previous study (Merchán-Pérez et al., 2014). To select the exact
location of the samples in the different cortical layers, we first
obtained plastic semithin sections (2 μm thick) from the block
surface, which we stained with toluidine blue. These sections were

Table 1 | Animal ID, volume, counts, and density of synaptic junctions

per sample in each layer of the somatosensory cortex.

Sample Animal Volume No. of synapses/

(μm3) synapses μm3

Layer I
1 w33 210.61 180 0.855
2 w35 177.20 128 0.722

Layer II
1 w33 224.35 230 1.025
2 w35 139.51 127 0.910
3 w35 149.03 206 1.382

Layer III

1 w31 149.13 147 0.986
2 w31 157.15 109 0.694
3 w33 186.45 173 0.928
4 w33 176.44 178 1.009
5 w33 176.28 167 0.947
6 w33 175.55 165 0.940
7 w33 191.28 189 0.988
8 w35 247.58 198 0.800
9 w35 178.40 201 1.127
10 w35 165.06 168 1.018

Layer IV
1 w33 154.59 172 1.113
2 w35 140.63 178 1.266
3 w35 123.81 162 1.308

Layer V
1 w33 165.62 117 0.706
2 w33 218.01 198 0.908
3 w33 207.95 175 0.842

Layer VI

1 w33 185.32 92 0.496
2 w35 183.55 85 0.463
3 w31 179.97 102 0.567
4 w31 280.09 107 0.382

All Samples 4543.55 3954 0.870

Mean

Layer I 193.91 154 0.794
Layer II 170.96 188 1.098
Layer III 180.33 170 0.940
Layer IV 139.68 171 1.222
Layer V 197.19 163 0.828
Layer VI 207.23 97 0.466

Total quantities and mean for each layer are shown.
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then photographed with a light microscope. The last of these
light microscope images (corresponding to the section imme-
diately adjacent to the block face) was then collated with low
power SEM photographs of the block surface. In this way, we
were able to accurately identify the regions of the neuropil to
be studied. To obtain each sample from the selected location,
the FIB was positioned perpendicular to the block surface. Next,
a trench (approximately 30 μm wide, 20 μm high and 15 μm
deep) was excavated on the block surface. Since the SEM col-
umn is positioned at an angle of 54◦ to the FIB column, the
distal face of the trench can be imaged with the SEM after each
milling cycle. The milling/imaging cycle was then set to remove
20 nm of material from the distal face of the trench. After remov-
ing each slice, the milling process was paused and the freshly
exposed surface was imaged with a 1.8 kV acceleration poten-
tial using the in-column energy selective backscattered electron
detector (EsB). The milling and imaging processes were sequen-
tially repeated to acquire long series of images by means of a
fully automated procedure, outputting a stack of images that
represented a three-dimensional sample of the tissue. The total
number of serial sections per sample ranged from 189 to 363
(mean= 258.6), the imaged field of view was approximately 7.6
× 5.7 microns, and image resolution in the XY plane ranged from
3.7 to 11.10 nm/pixel. Z-axis resolution (section thickness) was 20
nm. In this way, the total tissue volume that was actually milled
away during the milling/imaging cycles was relatively small, and
we were able to obtain multiple samples from different layers or
from neighboring regions within the same layer.

Synaptic junctions within each stack of serial sections were
visualized, automatically segmented and reconstructed in three
dimensions using Espina software (Morales et al., 2011). In order
to calculate the number of synapses per unit volume, we applied a
three-dimensional unbiased counting frame (Howard and Reed,
2005). Espina software output the volume of the unbiased count-
ing frame, the number of synaptic junctions inside the frame,
the spatial position of the centroids or centers of gravity of the
synaptic junctions, and an estimation of their sizes using Feret’s
diameter (the diameter of the smallest sphere circumscribing
the synaptic junction). Brain tissue shrinks during processing
for electron microscopy, especially during osmication and plas-
tic embedding. To estimate the shrinkage in our samples, we
measured the surface area and thickness of the vibratome sec-
tions before and after they were processed for electron microscopy
(Oorschot et al., 1991; Merchán-Pérez et al., 2009). The estimated
linear, area and volume shrinkage factors were 0.90, 0.81, and
0.73, respectively. To obtain an estimate of the pre-processing val-
ues, all measured distances, areas and volumes were divided by
their corresponding shrinkage factor. After correcting for tissue
shrinkage, the samples that were subsequently used for spatial
statistical analysis consisted of a cloud of points representing the
centers of gravity or centroids of synaptic junctions. Each of these
points had an associated Feret’s diameter as an estimation of the
size of each synaptic junction.

2.2. SPATIAL STATISTICS
Within the field of spatial statistics, spatial point processes are
mathematical models that describe the arrangement of elements

randomly or irregularly distributed in space. A spatial point pat-
tern is defined as a realization of a spatial point process (Illian
et al. (2008) provides a good introduction to the topic). The ele-
ments in the pattern are represented by point coordinates in the
appropriate dimension. In this study, our elements are synaptic
junctions located in three dimensions.

Spatial point process statistics provides the tools to charac-
terize patterns in terms of the number and distribution of the
elements. To do this, two aspects are mainly analyzed: inten-
sity (average number of points per unit volume, denoted by λ)
and inter-point interactions, closely related to distances between
points.

2.2.1. Synapse density in different layers
The most important numerical summary characteristic for a
point process is the intensity λ. Point intensity is the simplest dis-
tributional property and is similar to the use of the sample mean
in classical statistics. Thus, the first step in our analysis was to esti-
mate the synaptic density of each layer and, more specifically, to
study whether there were significant differences between synap-
tic densities in different layers of the somatosensory cortex. We
used the simulation process described below along with a multiple
mean comparison test.

We calculated a fixed-volume sampling box to extract sub-
samples from the original experimental samples. The x, y, z
dimensions of this box were equal to the smallest x, y, z dimen-
sions of the experimental samples, so the box could be applied to
any of the samples without exceeding their boundaries. We then
used this box to extract centroids from randomly selected sam-
ples of each layer at random locations. We repeated this process 50
times for each layer, thus obtaining 50 different synaptic densities
per layer. See Figure 1.

To study whether there were significant differences between
synaptic densities of the different layers, we performed a multi-
ple mean comparison test on the 50 extracted densities for each
of the six cortical layers. Because not all of the necessary assump-
tions for ANOVA were satisfied (data were normally distributed
but homoscedasticity was not met, i.e., the variance of data in
each layer was not the same), we used the Kruskal-Wallis test and
then applied the Mann-Whitney test with the Bonferroni method
to adjust the p-values for pair-wise comparisons.

2.2.2. Modeling of spatial point processes
Merchán-Pérez et al. (2014) recently showed that the RSA model
adequately describes the spatial distribution of synaptic junctions
in layer III. The second step in the analysis of the entire cerebral
cortex was to test the RSA model for each of our samples from
layer I to VI.

Although virtually all cortical synapses can be accurately iden-
tified as asymmetric (or Gray’s type I) and symmetric (or Gray’s
type II) using FIB/SEM (Merchán-Pérez et al., 2009), we consid-
ered synaptic junctions as a whole. This was because it was not
feasible to test RSA models for such a small number of symmetric
synapses (they accounted for less than 10% of the total number
of synapses found in any cortical layer). Furthermore, as reported
previously (Merchán-Pérez et al., 2014), results were similar when
all synapses (asymmetric and symmetric) were studied as a single
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FIGURE 1 | Diagram of data extraction to analyze whether the synaptic

densities of cortical layers are significantly different. The figure shows
how we randomly selected a sample from layer III, then we extracted, also
randomly, a box inside this sample and counted the number of synaptic

junctions in the box. We repeated this process 50 times for each layer. The
dimensions of the box were the same for all layers, and it had the maximum
volume that could be extracted from all the samples, i.e., it had the minimum
length in each dimension (x, y, z) considering all samples.

group and when only asymmetric synapses were analyzed. Thus,
for simplicity’s sake, we will use synaptic junctions to refer to both
types of synapses.

An RSA process (Evans, 1993) is a type of hard-core pro-
cess, i.e., two points cannot be placed closer than a mini-
mum distance, where locations are chosen randomly, subject
only to the distance constraint. These minimum distances can
be fixed or, as in our case, calculated according to a prob-
ability density function. Considering that the synaptic junc-
tions cannot overlap, and therefore the minimum distances
between synapses are limited by the size of the junctions at
least, the RSA process is particularly well suited here. We have
used Feret’s diameter of each synaptic junction as an estimate
of its size. As in Merchán-Pérez et al. (2014) for layer III,
we found that Feret’s diameters in all layers were lognormally
distributed.

To test the RSA models we used one of the summary charac-
teristics most commonly used in the analysis of spatial point pro-
cesses, namely Ripley’s K function and, particularly, a common
transformation of it, Besag’s L function (Ripley, 1977).

Ripley’s K function for a distance d, K(d), is defined as the
expected number of other points of the process within a distance
d of a typical point of the process divided by the intensity. The
Miles-Lantuéjoul-Stoyan-Hanisch translation edge-correction is
often used to estimate K(d) (Ohser, 1983; Baddeley et al., 1993):

K̂(d) = vol(B)2

N(B)2

∑
xk ∈B

∑
xl �= xk

1{||xk − xl|| ≤ d}
γB(xk − xl)

, (1)

where 1{·} denotes the indicator function, || · || is the Euclidean
distance, N(B) is the number of points falling in a region B ⊂ R

3,
xk, k = 1, . . . , N(B) are the observed points, vol(B) is the vol-
ume of the region B and γB is the ‘set covariance’, γB(xk − xl) =
vol({x|x + xk − xl ∈ B}) = vol (B ∩ (B− (xk − xl))).

The homogeneous spatial Poisson point process, also known
as complete spatial randomness (CSR), is considered as the
reference model in spatial point process statistics, since it rep-
resents a boundary condition between regular and clustered
patterns. A random pattern, where a point is equally likely
to occur at any location regardless of the locations of other
points, follows a CSR process. The patterns known as regular
patterns show repulsion, i.e., the distances between points are
larger than expected in a random pattern of the same inten-
sity. Furthermore, patterns where points tend to be closer than
they should be for a given intensity are known as clustered
patterns.

The three-dimensional CSR process has the following expres-
sion for the K function (a clustered pattern curve will be shifted
to the left, whereas a regular pattern curve will be shifted to the
right):
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KCSR(d) = 4

3
πd3. (2)

Besag’s L function is a commonly used transformation of the K
function. The 3D expression is:

L(d) = 3

√
3

4π
K(d). (3)

This transformation converts the CSR K function to the straight
line LCSR(d) = d, making the plots much easier to assess visually.
The transformation approximately stabilizes the variance of the
estimator, also facilitating deviation assessment. For the L func-
tion, a regular pattern curve will be below the diagonal (CSR) and
a clustered pattern will be above.

The expression of Ripley’s K function for the RSA process is
analytically unknown, so we have to use RSA simulations. To
simulate an RSA process we need to know its intensity and the
probability density function of the minimum distances between
points. In our case, we need the synaptic density λ and the μ

and σ parameters of the lognormal distribution of Feret’s diam-
eters. An RSA process simulation starts with an empty window
to which spheres, whose radii follow the lognormal distribu-
tion fitted using Feret’s diameters, are added randomly one at a
time. If the new simulated synapse intersects with any existing
sphere, the new sphere is rejected, and another sphere is generated
with another location and radius. The process continues until the
target intensity is reached.

For example, Figure 2 shows the K and L summary func-
tions of experimental sample 1 from Layer I (blue), the average
of 99 RSA simulations performed for this sample (green) and
the functions for a CSR process (red). Each RSA simulation
had the same intensity as the original sample, and the size of
simulated synapses was calculated according to the lognormal

distribution fitted using Feret’s diameters of all the synapses
of the sample. Generally, the K functions were very similar to
each other across all distances for all the samples. Moreover,
for short distances (200–300 nm), the L functions of the sam-
ples and RSA processes were well below the diagonal line (CSR)
representing the empty space around centroids which should
not contain any centroid (non-overlapping synapse constraint).
From about 400 nm onwards, the L functions of both mod-
els and experimental samples were again very similar to each
other.

To test differences between two summary functions we used
simulation-based envelopes. The statistical rationale of this com-
mon procedure is to be found in Monte Carlo testing. Taking the
advice of Baddeley et al. (2014), we transformed the K function
into the L function and used global envelopes since we had no
prior information about the range of spatial interaction. Note that
Monte Carlo tests “are strictly invalid, and probably conservative,
if parameters have been estimated from the data” (Diggle, 2003).
To overcome this obstacle, we adjusted an RSA process for each
sample j in each layer i (i = I,. . ., VI) and estimated the parame-
ters λ̂ij, μ̂ij and σ̂ij using only the remaining samples of the same
layer. The sizes of the simulated synapses were calculated accord-
ing to the lognormal distribution fitted using Feret’s diameters of
these remaining (mi − 1) samples in layer i, where mi is the num-
ber of samples in layer i. If volit denotes the volume of sample t in
layer i, then

λ̂ij =

mi∑
t= 1
t �= j

λitvolit

mi∑
t= 1
t �= j

volit

. (4)

FIGURE 2 | Layer I, Sample 1. An example of K and L functions for CSR and
RSA processes. K (left) and L (right) functions of the experimentally observed
data (blue) along with the theoretical CSR (red) and the average of 99 RSA
process simulations fitted for sample 1 (green). The K functions of the

sample, CSR and RSA processes are very similar. The L functions of the RSA
and the experimentally observed sample are positioned well below the
diagonal (CSR) for short distances and are fairly close to the diagonal for
larger distances.
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The RSA null hypothesis was tested as follows. For each sample,
we performed 99 RSA simulations with the described parameters.
We calculated the average L function of all these simulations
and took this average, L̄, to be an estimate of the theoretical
mean value of the L summary statistic for the RSA model. The
global envelope is a region of constant width 2wmax, where wmax

is determined as the furthest deviation between L̄ and any of
the L functions of a separate set of 99 RSA simulations with
the same parameters at any distance d along the horizontal axis.
We rejected the null hypothesis if the L function of the sample
lay outside the envelope for any value of d (see Section 3.2 and
Figure 3).

We analyzed spatial patterns using R software and the spat-
stat package (Baddeley and Turner, 2005; Baddeley, 2010). We
obtained the translation edge-correction estimator of Ripley’s
K function in three dimensions for both the observed samples
and the RSA simulations using the K3est function included in
the spatstat package and we directly calculated the L functions
from K functions using Equation (3). To compute the simulation
envelopes of the L functions we used the envelope.pp3 function,
also included in the spatstat package. We used this function with
the three-dimensional point pattern for each sample and 198
three-dimensional point patterns of RSA simulations performed
for that sample.

2.2.3. Replicated spatial point patterns
Replicated spatial point patterns are a particular situation in the
spatial point processes field where different patterns are consid-
ered as instances of the same process and are said to form a
group. In our case we have several samples of each layer of the
somatosensory cortex, so we conducted an analysis in the context
of replicated patterns.

Let nij (j = 1, . . . , mi) be the number of synapses for the jth
sample in the ith group (i = 1, . . . , g). Given an estimate of the
K function for each sample j in each group i, K̂ij(d), the estimated
mean function for each group is defined as

K̄i(d) =

mi∑
j= 1

wijK̂ij(d)

mi∑
j= 1

wij

, i = 1, . . . , g. (5)

Different weights wij have been proposed in the literature for
function aggregation; see Pawlas (2011) for a review. Myllymäki
et al. (2012) chose to use wij = n2

ij to aggregate K functions
together with linear mixed models to investigate the spatial struc-
ture of epidermal nerve fibers. Jafari-Mamaghani et al. (2010)
used wij = nij to study the three-dimensional distribution of

FIGURE 3 | Analysis of spatial patterns using global envelopes (sample 1

for each layer of the somatosensory cortex). The L functions of the
experimentally observed samples are shown in blue, and the averages of 99
RSA simulations are shown in green. The shaded area represents the
envelopes of values calculated from a separate set of 99 RSA simulations.

We do not reject the RSA null hypothesis for any sample because no
observed L function lies outside the envelope for any value of distance d . The
results for all samples in the study were the same (see Supplementary
material). Dashed red lines show the theoretical value for CSR (for the
purpose of visual comparison only).
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pyramidal neurons in the mouse barrel cortex. The weight wij =
nij was also recommended by Diggle (2003). In this paper, we also
chose this option.

We performed the Diggle test (Diggle et al., 1991, 2000) to
study similarities and differences between groups of replicated
data. This test uses a bootstrap procedure to check whether there
are significant differences between empirical K functions of inde-
pendent replicates. Using 5000 bootstrap iterations, we studied
whether there were differences between the study animals and
between different cortical layers.

It is scientifically correct to construct an aggregated estimator
of the K function without assuming a common intensity across
all replicates because the K function is defined as independent of
the intensity. This assumes that the hypothesis of a common K
function and varying intensity is plausible, as would be the case
if the replicates were different intensity versions of a common
underlying process (Diggle, 2013). To test if this applied in our
case, we adjusted a global spatial model for groups of replicates
in which the Diggle test found no significant differences. Then
we applied different random thinning procedures (i.e., randomly
deleting points from the original model) and introduced a cross-
validation technique to honestly estimate the goodness-of-fit of
the resulting models.

More explicitly, assume that A, B, and C were the groups where
the Diggle test found no significant differences, and let mA, mB,
and mC be the number of samples in each group. We adjusted
the global spatial model RSAglobal with parameters μglobal, σglobal,
and λglobal. Parameters μglobal and σglobal were obtained by fit-
ting the lognormal distribution of Feret’s diameters considering
all synapses of all samples from groups A, B, and C and were used
to estimate the size of the synapses in the global model. Let λij

be the synaptic density for the jth sample in the ith group, λglobal

was chosen such that λglobal > λij for all i,j, i.e., we considered a
global model that was denser than each of the samples separately
(we chose to make λglobal 1% denser than the maximum density
of each sample separately).

Our goal, then, was to check whether groups A, B, and C,
whose K functions were found not to be significantly different,
were different thinned versions of a common underlying process.
In other words, we wanted to find out whether the processes that
described the spatial distribution of samples from groups A, B,
and C were different thinned versions of the global spatial model
RSAglobal.

To do this, we ran 198 dense RSAglobal simulations with the
estimated parameters μglobal, σglobal, and λglobal. Then we thinned
each of these dense simulations for each sample in each group.
We used a cross-validation technique to check if these simulations
had the same spatial distribution as the experimentally observed
sample. Specifically, we applied the following cross-validation
process for each sample j (test sample) in each group i:

1. First, we estimated λ̂ij using the remaining (mi − 1) samples

(training samples) in group i. The aggregated λ̂ij was calcu-
lated by weighting the densities of the training samples by their
volume as in Equation (4).

2. Second, we randomly thinned the 198 dense RSAglobal simu-
lations until we obtained an intensity equal to the estimated

density λ̂ij. Thus we obtained a set of 198 thinned RSAij sim-
ulations for sample j of group i. These simulations were like
the original simulations but had a density equal to the inten-
sity estimation for the test sample. This process is shown in
Figure 4.

3. Finally, we again used simulation-based envelopes to test for
differences in the spatial distributions of the thinned simu-
lations and the experimentally observed sample. We used 99
simulations to estimate the theoretical mean value of the L
function for the RSAij model. We used the other 99 to calculate
the maximum absolute difference from this theoretical mean
value, which is necessary to build the envelope.

3. RESULTS
We obtained 25 samples from the six layers of the somatosensory
cortex of three 14-day-old rats by FIB/SEM microscopy. We had
a total reconstructed tissue volume of approximately 4500 μm3

containing almost 4000 3D reconstructions of synapses. For each
of these synapses, we had information on its 3D position (cen-
ter of gravity or centroid) and an estimate of its size based on
Feret’s diameter. We obtained the density of each sample, that is,
the number of synapses per unit volume, and the mean density
for each layer (Table 1).

3.1. SYNAPSE DENSITY IN DIFFERENT LAYERS
The density of the samples range from 0.382 synapses/μm3 in a
sample of layer VI to 1.382 synapses/μm3 in a sample of layer
II. The overall mean density is 0.870 synapses/μm3 in all layers.
See Table 1 for details. As shown in Figure 5, the mean den-
sity of layer I is 0.794 synapses/μm3, whereas layers II and III
have mean densities of 1.098 and 0.940 synapses/μm3 respec-
tively, which increases up to the maximum mean density of 1.222
synapses/μm3 in layer IV and then drops again in layer V (0.828
synapses/μm3) down to the minimum mean density in layer VI,
0.466 synapses/μm3.

Following the simulation and mean comparison process
described in Section 2.2.1, we looked for significant differences
between the densities of the different layers of the somatosensory
cortex. Using the Kruskal-Wallis test we found that there were dif-
ferences between the density of layers (p-value ≤ 2.2× 10−16),
which is consistent with a recent work (Crandall, 2013). Pair-
wise comparisons revealed that there was no significant difference
between the densities of layers I vs. V or between the densities of
layers II vs. III.

Apart from density analysis, one of the first steps often per-
formed to explore the spatial distribution of a spatial pattern is
to obtain the distance to the nearest neighbor. So, in addition
to the location and Feret’s diameters of synapses of each sample,
which were on average 404.73 nm, we measured the distance of
each synapse to its nearest synapse. The mean distances to near-
est neighbor measured between centroids of synaptic junctions
ranged from 533.78 nm in a sample of layer II to 794.63 nm in
a sample of layer VI, and the overall mean distance to the near-
est synapse was 641.58 nm. This information is shown in Table 2.
Using the Kruskal-Wallis test we found that there were significant
differences between the distances to the nearest synapse between
layers of the somatosensory cortex (p-value ≤ 2.2× 10−16). We
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FIGURE 4 | Diagram of the random thinning process for three groups of

replicated point patterns, A, B, and C, for which the Diggle test did not

find significant differences. Our goal is to check if these groups are
differentially thinned versions of a common underlying RSA process. Random
thinning of dense simulations is performed for each experimentally observed
sample j in each group i (test sample, shown in blue). Random thinning

continues until we reach the intensity λ̂ij , estimated from all samples in group
i excluding sample j. Then, for each experimentally observed sample j in each
group i, we used simulation-based envelopes to test for differences in the
spatial distributions of the thinned RSA simulations and the sample (we used
99 thinned simulations to estimate the L function for the RSAij model and the
other 99 to calculate the maximum deviation necessary to build the envelope).

FIGURE 5 | (Left) Mean synaptic density of the six layers of the

somatosensory cortex. The synaptic density of the six layers is significantly
different. However, we found no significant differences between the
densities of layers I vs. V or between the densities of layers II vs. III. (Right)

Mean distance to nearest synapse for each layer. Nearest synapse distances
are significantly different in the six layers of the somatosensory cortex, but
we found no significant differences between distances of layers I vs. V, I vs.
VI, II vs. III, and III vs. V.
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Table 2 | Mean distances from a synapse to its nearest neighbor and

mean Feret’s diameters.

Sample Mean distance to Mean Feret’s

nearest neighbor diameter of synaptic

(nm) ± SD junctions (nm) ± SD

Layer I
1 682.09± 201.96 459.01± 196.20

2 684.95± 242.28 442.01± 207.62

Layer II
1 613.06± 191.74 429.69± 183.35

2 680.80± 204.30 453.67± 184.03

3 533.78± 177.72 340.96± 143.25

Layer III

1 600.10± 193.62 377.19± 159.63

2 680.33± 200.79 462.18± 177.52

3 620.15± 206.34 437.62± 168.04

4 615.28± 208.79 414.22± 169.04

5 647.70± 228.39 466.03± 215.91

6 605.46± 231.85 423.38± 169.83

7 599.08± 244.67 397.29± 168.22

8 643.36± 193.31 427.90± 168.15

9 580.30± 203.76 378.35± 166.60

10 625.62± 209.32 405.43± 175.62

Layer IV
1 562.38± 228.22 397.83± 155.06

2 539.84± 208.77 354.90± 129.26

3 564.29± 214.38 353.52± 134.01

Layer V
1 701.03± 235.69 414.84± 161.68

2 632.66± 263.23 380.71± 173.12

3 641.75± 216.35 404.49± 186.79

Layer VI

1 730.74± 272.02 425.60± 146.11

2 766.04± 371.24 394.42± 176.28

3 694.07± 301.23 325.66± 114.03

4 794.63± 357.46 351.45± 153.30

Nearest neighbor distances are measured between centroids of synaptic junc-

tions. Feret’s diameters are an estimate of the size of synaptic junctions

(diameter of the smallest sphere circumscribing each junction).

applied the Mann-Whitney test and adjusted the p-values using
the Bonferroni method for pair-wise comparisons. There were
no significant differences for layers I vs. V, I vs. VI, II vs. III,
and III vs. V. Notice that we found no differences between the
synaptic densities of layers I vs. V and II vs. III either (see
Figure 5).

3.2. MODELING OF SPATIAL POINT PROCESSES
A recent paper (Merchán-Pérez et al., 2014) analyzed the three-
dimensional spatial distribution of synapses in the somatosensory
cortex. Merchán-Pérez and colleagues adjusted CSR and RSA
models showing that RSA processes modeled the synaptic distri-
bution more adequately. However, this study was limited to layer
III of the somatosensory cortex. We extend this analysis to all
layers of the cortex here.

To test the null hypothesis of RSA we used simulation-based
envelopes. Figure 3 shows the envelopes of the first sample of each

layer of the somatosensory cortex (the envelopes for all samples
are shown in the Supplementary material). The averages of the
L functions of 99 RSA simulations performed for each sample
are represented in green. The shaded area is a region of constant
width 2wmax. The width wmax was calculated with a separate set of
99 RSA simulations as described in Section 2.2.2 using the spat-
stat package. The dashed red lines show the theoretical value for
CSR for visual comparison only.

The null hypothesis is rejected if the L function of the experi-
mentally observed sample (blue) lies outside the envelope for any
value of distance d. The L functions of samples 2 and 7 from
layer III and sample 2 from layer IV were very close to the upper
boundary of the envelope at a distance of about d =300 nm but
did not lie outside the envelope. The remaining samples were
completely within the envelope for all values of d. So, we did not
reject the RSA model for any of the 25 analyzed samples.

3.3. REPLICATED SPATIAL POINT PATTERNS
Taking advantage of the fact that we had several samples of each
layer of the somatosensory cortex, we used replicated spatial point
patterns in order to detect similarities and differences between
groups. Because we had seen that synaptic densities between lay-
ers of the somatosensory cortex were different, we used the K
function because it does not depend on intensity. We aggregated
the K functions of each group using the number of synapses, as
explained in Section 2.2.3 [wij = nij, Equation (5)] (Diggle et al.,
1991; Diggle, 2013).

As discussed, we performed the Diggle test to compare differ-
ent groups of K functions (Diggle et al., 1991, 2000). The first
step was to check whether there were any differences between
the three animals. We applied the Diggle test to g = 3 groups
of sizes m1 = 12, m2 = 9 and m3 = 4 and obtained a p-value =
0.724. Thus, we did not detect differences between animals in the
study. Figure 6 shows the aggregated K and L functions for each
of the three animals. After ruling out differences between ani-
mals, we studied whether there were differences in the synaptic
distribution between layers.

Considering each layer of the cortex as a group of replicates, we
calculated the aggregated L function of each group transforming
the aggregated K function of the group [Equation (5)]. Figure 7
shows the L function of each observed sample in each layer as
dashed blue lines, the aggregated L function of each layer in dark
blue and the average of 99 RSA simulations fitting the RSA model
for all the samples of the layer in green. We calculated the param-
eters λ̂i, μ̂i, and σ̂i of the RSAi model for each layer i, i = I,. . .,
VI, calculating the volume-weighted average of the parameters λij

of each sample j in layer i and fitting the lognormal distribution
of Feret’s diameters using all synapses in this layer. Figure 7 also
shows the envelope obtained using a separate set of 99 RSA sim-
ulations with the same parameters, as explained in Section 2.2.2.
For visual comparison, we added the theoretical L function for
a random pattern (dashed red diagonal). Because all the aggre-
gated L functions were within the boundaries of the envelopes, we
did not reject the RSA model for any layer of the somatosensory
cortex.

Applying the Diggle test for g = 6 groups of sizes m1 = 2,
m2 = 3, m3 = 10, m4 = 3, m5 = 3, and m6 = 4, we obtained
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FIGURE 6 | Aggregated K and L functions for each animal. The Diggle test found no significant differences between the three animals used in the study.

FIGURE 7 | For each layer, aggregated L function (dark blue) of

experimentally observed data (dashed blue) along with the average of

99 RSA simulations (green) fitting the model for all samples of the layer.

This figure shows the envelope obtained using a separate set of 99 RSA

simulations. We do not reject the RSA model for any layer of the
somatosensory cortex because all the aggregated L functions were within
the boundaries of the envelopes. We added the theoretical L function for a
random pattern (dashed red diagonal) for the purpose of visual comparison.

a p-value of 0.002. Thus, we could conclude that there were
differences between the six layers of the cortex. To better under-
stand synaptic spatial distribution, we applied the Diggle test six
times with g = 2 groups, each time forming a group with the K

functions of all samples of one layer and the other group with the
K function of all samples of the remaining layers. In this analysis,
the group of samples from layer I was the only one significantly
different from the other group (samples from layers II to VI)
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with a p-value of 0.009. The Diggle test found no significant dif-
ferences between groups of replicates formed by layers II to VI
(g = 5, p-value = 0.1176). Moreover, the Diggle test found no
significant differences between the distribution of samples from
layers II to VI in pair-wise comparisons of these layers. Figure 8
shows the aggregated K and L functions of all six layers (the two
identified groups are shaded differently, i.e., layer I in green and
layers II to VI in violet). Layer I functions are slightly shifted to the
right compared to the other layers, so the repulsion in the spatial
distribution of its synapses appears to be greater.

In Section 3.1 we saw that layers of the somatosensory cor-
tex did not have a common synaptic density, so we wanted to
find out whether we had different thinned versions of a common
underlying process in layers from II to VI (Diggle, 2013). We did
this analysis introducing for the first time in this context a cross-
validation technique to honestly estimate the goodness-of-fit of
the resulting models.

With the simulation and thinning process described in Section
2.2.3, we performed 198 dense RSAglobal simulations with a vol-
ume of 300 μm3 and a density of 1.4 synapses/μm3 (λglobal = 1.4,
a density greater than the density of any of the samples), i.e.,
each RSAglobal simulation had 420 synapses. For each sample j
(test sample) in group i (we had a group consisting of layers II
to VI), we calculated the synaptic density of its RSAij model using
the remaining samples of the same layer [Equation (4)]. Table 3
shows the estimated intensity λ̂ij for each experimental sample.
For each sample, we randomly thinned each of the 198 dense
RSAglobal simulations until they had the estimated intensity λ̂ij.
The sizes of the simulated synapses were calculated using the log-
normal distribution fitted using Feret’s diameters of all samples of
the group. Table 3 also shows these parameters. Note that μglobal

and σglobal are equal because all these layers were modeled as a
common RSAglobal process. Figure 9 shows one dense RSAglobal

simulation for the group of layers II to VI and two thinned RSA
simulations for two different samples in the study.

We validated the RSAij model with the test sample i using
simulation-based envelopes. To do this, we used the function
envelope.pp3 included in the spatstat package. The L functions
of sample 7 from layer III and sample 2 from layer IV touched
the upper boundary of the envelope slightly at distances around
200–300 nm but did not lie outside the envelope. However, sam-
ple 1 from layer IV did lie just outside the envelope at distances
around 300–400 nm (envelopes for all RSAij models are shown
in Supplementary material). The remaining samples were com-
pletely within the envelope. Thus, for all 23 samples in layers II
to VI, except for only sample 1 in layer IV, we did not reject the
null hypothesis of RSA, i.e., we validated the hypothesis that the
synaptic distribution of layers II to VI of the somatosensory cor-
tex are different thinned versions of a common underlying RSA
process.

4. DISCUSSION
Historically, spatial point processes have been more related to
applications in which data collection tended to be costly (e.g.,
forestry). For this reason, the study of several independent sam-
ples as realizations of the same process was not usually considered.
Recently, the field of replicated point patterns is growing strongly
since technological advances have simplified sampling, particu-
larly 3D sampling. In fact, much of the research on replicated
point patterns is related to biological issues, including applica-
tions to neuroanatomical data (Diggle et al., 1991, 2000; Baddeley
et al., 1993; Wager et al., 2004; Jafari-Mamaghani et al., 2010;
Burguet et al., 2011; Myllymäki et al., 2012; Burguet and Andrey,
2014). Indeed, neuroanatomical data in the form of spatial point
patterns is fundamental for revealing the spatial architecture of
the different brain regions at all levels of analysis, from light

FIGURE 8 | Aggregated K and L functions for each layer. The Diggle test found no significant differences between K functions of layers II, III, IV, V, and VI
(shown in different shades of violet). Layer I (green) is significantly different from other layers.
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Table 3 | Estimated intensity λ̂ij for samples in layer II to VI using only

the remaining samples of the same layer [Equation (4)].

Density Size (Feret’s)

diameters)

Sample Animal λ̂ij μglobal σglobal

Layer II
1 w33 1.154

5.911 0.4042 w35 1.168

3 w35 0.981

Layer III

1 w31 0.936

5.911 0.404

2 w31 0.963

3 w33 0.941

4 w33 0.932

5 w33 0.939

6 w33 0.940

7 w33 0.934

8 w35 0.962

9 w35 0.919

10 w35 0.932

Layer IV
1 w33 1.286

5.911 0.4042 w35 1.200

3 w35 1.186

Layer V
1 w33 0.876

5.911 0.4042 w33 0.782

3 w33 0.821

Layer VI

1 w33 0.457

5.911 0.4042 w35 0.466

3 w31 0.438

4 w31 0.508

μglobal and σglobal parameters are the same because layers II to VI form a group,

and they were obtained using Feret’s diameters of all samples of the group. We

thinned RSAglobal simulations modeled with λglobal =1.4 and parameters μglobal

and σglobal until we reached the estimated intensity λ̂ij for each sample.

microscopy (e.g., spatial distribution of neurons) to electron
microscopy (e.g., spatial distribution of synapses). In this paper,
we performed an analysis in the context of replicated point pat-
terns by exploiting the fact that we have been able to obtain a
relatively large number of samples containing the spatial distri-
bution of synapses in the neuropil from several layers of the rat
cerebral cortex. Using the Diggle test (Diggle et al., 1991, 2000)
we detected groups of replicates (groups of patterns considered
as instances of the same process) whose spatial distribution was
found not to be significantly different. Then we modeled these
groups using a global RSA replicated spatial point process. In
order to collect and explain the variability in each group’s synaptic
density, we introduced a thinning procedure in the global model.
To honestly estimate the goodness-of-fit of the resulting mod-
els, we used for the first time in this context a cross-validation
technique for models within each group of replicates.

Our results confirm the assumption that the spatial distribu-
tion of synaptic junctions in the neuropil is nearly random, with
the only constraint that synapses cannot overlap in space—a

scenario that can be modeled by an RSA process. This model
had already been suggested for layer III synapses (Merchán-Pérez
et al., 2014) and is now extended to all neocortical layers. We
found that the spatial distribution of synapses in all samples of
each layer can be described by RSA processes. We also found that
the spatial distribution of synapses in the neuropil of layers II
to VI follows a common underlying RSA process with different
synaptic densities. Interestingly, the results showed that the
synaptic spatial distribution in layer I is slightly different than in
other layers, suggesting that, although an RSA process suitably
fits layer I synaptic distribution, the repulsion in the spatial
distribution of synapses in this layer is slightly higher than in the
other layers.

Since the synaptic density in the cerebral cortex changes with
age, e.g., Rakic et al. (1986, 1994); Bourgeois and Rakic (1993);
DeFelipe et al. (1997), and we used P-14 rats, the conclusion of
this study regarding spatial distribution may not be applicable at
other time points during development. Note, however, that the
spatial distribution of synapses follows the same pattern in dif-
ferent cortical layers in spite of significant differences in their
synaptic densities. Furthermore, our preliminary results in the
adult human cerebral cortex also suggest that the spatial dis-
tribution of synapses is nearly random (Blazquez-Llorca et al.,
2013). Therefore, random spatial distribution of synapses is prob-
ably a common general pattern of cortical synaptic organization.
Nevertheless, further studies in other cortical areas, species and
ages would be necessary to verify these conclusions.

The assumption that the distribution of synapses in the
neuropil of layers I to VI follows an RSA model with different
intensities (synaptic densities) per layer has several interesting
implications. First, the position of a given synapse in the neu-
ropil is practically independent of the position of neighboring
synapses, so they can be arbitrarily close to one another with the
only physical constraint that they cannot overlap. Second, the
density of synapses varies by layers and also locally. Importantly,
early studies of the cerebral cortex proposed that the density of
synapses was relatively constant throughout the cortical layers,
as well as across different cortical areas and different species.
This uniformity in synaptic density led O’Kusky and Colonnier
(1982) to propose that it probably reflects the optimal number
of synapses and that it may be due to some limiting metabolic
or structural factor. However, most comparisons were only
qualitative and not based on statistical analyses. It now appears
that, using appropriate stereological counting methods (disector
or size-frequency methods; see DeFelipe et al., 1999), there
are significant differences in the estimated number of synapses
per volume between certain layers in several species (reviewed
in DeFelipe et al., 2002a). In this study, we also found using
FIB/SEM that there may be significant differences between
certain cortical layers. This method has the advantage that it
provides the actual number of synapses per volume instead of
estimations based on the analysis of single electron microscope
images (Merchán-Pérez et al., 2009).

Our results showed no significant differences in the synaptic
distribution between the different rats used in the study, and RSA
processes properly described the spatial distribution of synapses
in all cortical layers. This argues in favor of a common general
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FIGURE 9 | (A) RSA simulation with λ = 1.4 for the group of layers II, III, IV, V, and VI. (B) Thinned RSA simulation, λ = 0.932, for sample 10 of layer III. λ estimated
from the remaining nine samples of layer III. (C) Thinned RSA simulation,λ = 0.457, for sample 1 of layer VI.λestimated from the remaining three samples of layer VI.

principle of synaptic organization. However, the mean density of
synapses across the six layers was significantly different, with the
exception of layers I vs. V and layers II vs. III. This is an impor-
tant observation in terms of connectivity, as these differences or
similarities in density of synapses between layers may provide us
with some fundamental rules to generate hypothetical circuits in
order to gain a better understanding of cortical organization. This
also means that, due to physical constraints, the volume of the
neuropil that the dendritic tree of a given neuron occupies may
vary depending of the density of neurons in the layer where this
neuron is located. In turn, its chances of establishing synapses
would be greater the more neuropil volume it occupies. This idea
was put forward by Von Economo (1926) in his interpretation
of Nissl’s observation in terms of the evolutionary significance of
the differences between species in cortical neuronal density (Nissl,
1898). Nissl observed that “in the mole and dog, cortical neurons
were more crowded than in man.” Von Economo proposed that
the greater separation between neurons the richer the fiber plexus
between them will be, increasing the chance for neuronal interac-
tions. Thus, the larger separation of neurons in humans compared
to other species could be construed as a sign of a greater com-
plexity of the connections between neurons. Using this approach,
several authors have identified an inverse relationship in the adult
cerebral cortex between neuronal density and the number of
synapses per neuron in different cortical areas/layers/species, but
this principle does not appear to be generally applicable (DeFelipe
et al., 2002a). Since in this study we found no significant differ-
ences in the density of synapses in layer I vs. V—the density of
neurons in layer V is much greater than in layer I—, or between
layer II vs. III—the density of neurons in layer III is much less
than in layer II (work in preparation)—, this principle does not
appear to be applicable to the 14-days-old rat somatosensory cor-
tex either. In this regard it is important to keep in mind that the
dendrites present in the neuropil of a given layer belong to both
local neurons and neurons located below and above that layer, as
dendrites, of pyramidal cells particularly, may cross several layers
during their ascending course toward layer I, whereas their basal
dendrites may invade the layer underneath, respectively. It follows
that the number of synapses that a given neuron receives cannot
be predicted solely on the basis of the synaptic density of the layer
in which it is located.

Finally, the application of FIB/SEM to analyze the neuropil
also revealed the existence of local variability in the synap-
tic density within each layer. This local variability would be
the product of mere chance and can be explained (and mod-
eled) by RSA processes. The between-layers variability, however,
cannot be put down to chance, except possibly for the differ-
ences between layers I and V and between layers II and III.
This would imply, as previously suggested (Merchán-Pérez et al.,
2014), that spatial specificity in the neocortex is scale depen-
dent. It is well known that at the macroscopic and mesoscopic
scales the mammalian nervous system is a highly ordered and
stereotyped structure, where connections are established in a
highly specific and ordered way, like, for example, the con-
necting pathways of the visual system. Even at the microscopic
level, it is clear that different areas and layers of the cortex
receive specific inputs (Nieuwenhuys, 1994). At the ultrastruc-
tural level, however, our results seem to indicate that number
and distribution of synapses follow a nearly random pattern.
This could mean that, as the axon terminals reach their desti-
nation, the spatial resolution that they achieve is fine enough
to find a specific cortical layer but not to make a synapse on
a smaller target, such as a specific dendritic branch or den-
dritic spine within that layer. For example, axon terminals from
a certain thalamic nucleus reach specific areas and layers of
the cerebral cortex but, once there, they would form synapses
randomly among their possible targets to a greater or lesser
extent depending on particular classes of the postsynaptic neu-
rons. For instance, studies by White and colleagues performed on
the mouse somatosensory cortex found a specificity of synaptic
connections by combining anterograde degeneration of thalamic
axonal fibers with the retrograde transport of horseradish perox-
idase to identify the projection sites of pyramidal cells (revised
in White, 1989). They examined at the electron microscope level
pyramidal cells projecting to ipsilateral cortical areas, to the tha-
lamus and to the striatum and they found that each of these
populations of pyramidal cells receives a characteristic propor-
tion of their layer IV dendritic synapses from thalamocortical
axon terminals. Corticothalamic cells receive the greatest num-
ber of thalamocortical synapses, corticocortical cells the next
highest number, and corticostriatal cells the least. Therefore, at
the synaptic scale, the specificity of connections would rely not
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on spatial cues but on other mechanisms such as molecular or
activity-dependent cues.
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Retinal neurons are often arranged as non-random distributions called “mosaics,” as their
somata minimize proximity to neighboring cells of the same type.The horizontal cells serve
as an example of such a mosaic, but little is known about the developmental mechanisms
that underlie their patterning.To identify genes involved in this process, we have used three
different spatial statistics to assess the patterning of the horizontal cell mosaic across a
panel of genetically distinct recombinant inbred strains. To avoid the confounding effect
of cell density, which varies twofold across these different strains, we computed the
“real/random regularity ratio,” expressing the regularity of a mosaic relative to a randomly
distributed simulation of similarly sized cells. To test whether this latter statistic better
reflects the variation in biological processes that contribute to horizontal cell spacing, we
subsequently compared the genomic linkage for each of these two traits, the regularity
index, and the real/random regularity ratio, each computed from the distribution of nearest
neighbor (NN) distances and from the Voronoi domain (VD) areas. Finally, we compared
each of these analyses with another index of patterning, the packing factor. Variation
in the regularity indexes, as well as their real/random regularity ratios, and the packing
factor, mapped quantitative trait loci to the distal ends of Chromosomes 1 and 14. For the
NN and VD analyses, we found that the degree of linkage was greater when using the
real/random regularity ratio rather than the respective regularity index. Using informatic
resources, we narrowed the list of prospective genes positioned at these two intervals to
a small collection of six genes that warrant further investigation to determine their potential
role in shaping the patterning of the horizontal cell mosaic.

Keywords: nearest neighbor, Voronoi domain, packing factor, retinal mosaic, QTL, recombinant inbred strain,

haplotype, principal component analysis

INTRODUCTION
The organizing principles by which neurons of a given type are
distributed within a structure in the central nervous system have
gone largely unexplored. The retina is the primary exception to
this, where neuronal populations have been shown to be arranged
in non-random distributions known as “mosaics” (Wässle and
Riemann, 1978). The patterning present in these mosaics arises
from local interactions between neighboring cells of the same type
that prohibit close proximity, and can be simulated using minimal
distance spacing rules constraining random distributions of cells
(Eglen, 2006). While the biological processes that underlie these
spacing rules have been elucidated, and may vary depending upon
the type of neuron (Reese and Keeley, 2014), the molecular mech-
anisms responsible for their execution have only recently been
addressed (Kay et al., 2012).

Several spatial statistics have been employed to study the
orderliness of such retinal mosaics, including the analysis of
nearest neighbor (NN) distances and Voronoi domain (VD)
areas (Cook, 1996; Galli-Resta et al., 1997). The frequency dis-
tribution of these measures for many orderly retinal mosaics
approximates a Gaussian distribution, whereas those derived from
random simulations of cells have a more Poisson distribution. One

commonly used shorthand for describing the “regularity” in such
orderly distributions has been to determine the mean NN distance
or VD area within a sampled field and divide it by the SD (Wässle
and Riemann, 1978; Raven and Reese, 2002). Commonly described
as the “regularity index,” such computed ratios will be larger for
Gaussian distributions relative to density-matched random distri-
butions. In this manner, real retinal mosaics have been shown to
be more regular than random distributions, and the magnitude of
the regularity index is assumed to have some biological relevance
for the orderliness in such mosaics.

We have argued elsewhere that the degree of regularity in a
retinal mosaic should be assessed relative to a density-matched
random distribution of similarly sized cells, rather than to a ran-
dom distribution of points (Reese and Keeley, 2014), because
the physical size of the cells constrains spatial positioning. As
either density or soma size increases, so does the degree of reg-
ularity achieved by a random distribution of cells, and it is
the difference from such a random simulation that should be
critical for understanding the processes contributing to the for-
mation of regularity. In the present study, we have explored
this relationship explicitly, analyzing the regularity indexes of
the mosaic of horizontal cells in the mouse retina across three
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strains of mice, the C57BL/6J strain, the A/J strain, and their
F1 cross, each of which varies in the density of these cells.
We show that by normalizing each regularity index relative
to density-matched random distributions constrained by soma
size, achieved by computing a “real/random regularity ratio,”
we enhance the differences between the strains that should
more acutely reflect the biological processes contributing to this
patterning.

A recent study demonstrated that variation in the NN regularity
index for the mosaic of cholinergic amacrine cells across a panel
of 25 genetically distinct recombinant inbred mouse strains can
be mapped to a discrete genomic locus. This suggests that the reg-
ularity index of a mosaic reflects a biological process or processes
at work. Indeed, that study identified a candidate genetic con-
tributor that, when rendered non-functional, reduced the mosaic
regularity of the neuronal population (Keeley et al., 2014b). In the
present study, we examined the NN regularity index and VD reg-
ularity index of the population of horizontal cells across this same
panel of recombinant inbred strains. We then sought validation of
the above normalization procedure for the regularity index, ask-
ing whether the real/random regularity ratio showed heightened
linkage to the variation in genotype across the strains. Finally, we
compared the results to another measure of spatial patterning,
the “packing factor” (Rodieck, 1991). Using all three measures,
we demonstrate that the variation in the patterning of horizontal
cells is associated with two genomic loci on Chromosomes (Chrs)
1 and 14.

MATERIALS AND METHODS
Adult retinas, between 1 and 3 months of age, were exam-
ined from the following strains: the C57BL/6J (B6/J hereafter)
and A/J parental strains, the B6AF1 cross, and 25 strains of
the AXB/BXA recombinant inbred strain-set. The data for these
strains were derived from digitized images from a previous study
examining the variation in horizontal cell number across these
strains; details of the tissue harvesting, immunofluorescence, and
microscopy are provided therein (Whitney et al., 2011). All retinal
tissues harvested from mice were collected in accord with AVMA
guidelines and under authorization by the Institutional Animal
Use and Care committee at the University of California, Santa
Barbara.

Each retina was sampled at four central and four peripheral
locations surrounding the optic nerve head (i.e., two fields in each
retinal quadrant). The sampled fields were 225,802 sq. μm in area,
with an aspect ratio of 1:1.25, and had a total number of hori-
zontal cells ranging from 93 to 413, depending upon the strain
(mean = 205). The X,Y coordinates of every calbindin-positive
horizontal cell were determined, from which we computed the
NN distance and VD area for every cell in each field, exclud-
ing those cells along the border with uncertain NN distances
or VD areas. The regularity index for each statistic was calcu-
lated for each field by dividing the mean NN distance or VD
area by the SD. The eight regularity indexes for a given retina
were then averaged to produce the average regularity index for a
given animal (sampling only one retina per mouse), with mul-
tiple animals being sampled for each strain. The number of
mice sampled in each strain is indicated in the histograms. For

each real field, a random field, being 225,625 sq. μm in area
(475 μm× 475 μm), matched in density and constrained by aver-
age soma diameter (9.1 ± 0.7 μm; mean ± SD), was generated
and similarly analyzed, to permit a direct comparison to the reg-
ularity index that would be achieved from a random distribution
of horizontal cells of the same density. The real/random regu-
larity ratio was computed by dividing the regularity index for
a given mouse by the average regularity index of its density-
matched random simulations. Additionally, for each sampled
field, the packing factor was calculated. A value on a bounded
scale between 0 and 1, the packing factor describes the extent to
which a mosaic approximates a hexagonal lattice, with a value
of 0 representing a random mosaic of dimensionless points and
a value of 1 representing a perfect lattice. The packing factor
was calculated by dividing the effective radius derived from the
density recovery profile by the theoretical maximum radius that
could be achieved by a lattice of the same density (Rodieck,
1991).

The variation in the regularity indexes, the real/random regu-
larity ratios, and the packing factor across the recombinant inbred
and parental strains was mapped to the variation in strain hap-
lotype across the genome using the simple interval mapping tool
of GeneNetwork1, yielding a likelihood ratio statistic (LRS) for
assessing linkage between phenotype and genotype. GeneNetwork
computes 2000 permutations of the strain data to compute sugges-
tive (p < 0.63) and significant (p < 0.05) thresholds for the LRS
as another means of assessing the relative probabilities that any
quantitative trait locus (QTL) contains a causal gene contribut-
ing to the variation in each trait. GeneNetwork also computes
2000 bootstrap tests to determine the relative robustness of each
QTL detected. Principal component analysis (PCA) was also per-
formed in GeneNetwork to determine the eigenvector that best
accounts for the variance across the NN real/random regular-
ity ratio, VD real/random regularity ratio, and packing factor;
before performing the PCA, GeneNetwork normalized the data
such that the distribution of each trait had a mean of zero and
a SD of one. The first principal component derived from this
analysis was then used as a novel quantitative trait that was sub-
sequently mapped. All datasets were deposited in the AXB/BXA
phenotypes database of GeneNetwork under accession ID #10282
(horizontal cells, nearest neighbor regularity index), #10283 (hori-
zontal cells, Voronoi domain regularity index), #10288 (horizontal
cells, nearest neighbor real/random regularity ratio), #10289
(horizontal cells, Voronoi domain real/random regularity ratio),
#10291 (horizontal cells, packing factor), and #10292 (horizon-
tal cells, patterning PCA). All positional data are relative to the
NCBI37/mm9 build of the mouse genome.

RESULTS
The population of horizontal cells exhibits substantial variation
across different mouse strains, showing a nearly twofold variation
in number. The B6/J strain contains nearly twice as many hori-
zontal cells as does the A/J strain, while their F1 cross (B6AF1)
falls almost equally between them (Raven et al., 2005a). Figure 1
illustrates sample fields taken from each of these three strains,

1http://www.genenetwork.org
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FIGURE 1 | (A) Sample fields from the A/J (green), B6AF1 (blue), and B6/J
(red) strains, immunolabeled with an antibody to calbindin to reveal the
retinal horizontal cells. (B,C) Their somal distributions, alongside density-
matched random distributions constrained by soma size, are shown for
direct comparison. Calibration bar = 100 μm.

along with density- and size-matched random simulations for
direct comparison. It is immediately apparent that the pattern-
ing in the real mosaics is distinct from those random simulations,
their cells being more regularly distributed. Less obvious from the
sample fields is any difference in their regularity, but if we compute
the NN regularity index for multiple retinas from each strain, they
appear to differ, with the lowest density A/J strain being the most
regular, having an average NN regularity index of 5.30, followed
by the B6AF1 strain, having a slightly lower regularity index of
5.00, while the B6/J strain, containing the greatest density of hori-
zontal cells, having the lowest regularity index of 4.56 (Figure 2A).
A similar difference was seen for the VD regularity index, as the
A/J, B6AF1, and B6/J strains achieved average regularity indexes of
6.14, 5.62, and 5.15, respectively (Figure 2B).

The regularity indexes for density-matched, soma-size con-
strained, random simulations are also shown, for each of the
same mice, in Figures 2A,B as de-saturated colored symbols.
These random simulations have regularity indexes extending from
∼2.0 to 3.0, being more regular than theoretical random dis-
tributions associated with dimensionless points (Cook, 1996).
Note though that these random distributions differ between
the strains, climbing as a function of increasing cell den-
sity, due to the space-occupying nature of the cells (although
to a lesser extent for the VD analysis). As a consequence,
the differences in the patterning between the strains, relative
to what they would achieve were they randomly distributed,
must be under-appreciated when comparing their regularity
indexes alone, particularly for the NN analysis. If, however, we
normalize each regularity index by taking into consideration

this density-dependency of the random simulations (dividing
the former by the latter to compute the real/random regu-
larity ratio), the strain differences become more conspicuous
(Figures 2C,D).

To examine further the utility of this real/random regularity
ratio, we have computed the regularity indexes for real and simu-
lated random fields for each of the 25 recombinant inbred strains
of mice of the AXB/BXA strain-set. The means and SE for each
strain are summarized in Table 1. Their regularity indexes vary
from 4.54 to 5.59 for the NN analysis and from 5.02 to 6.12
for the VD analysis (Figures 3A,B), with some strains having
regularity indexes higher than the parental A/J strain or lower
than the parental B6/J strain. As indicated above, however, these
strains also vary in their average horizontal cell densities, and so
the real magnitude of the differences in these regularity indexes,
relative to random distributions of cells, is obscured. If those
regularity indexes are normalized, as above, by computing the
real/random regularity ratio (Figures 3C,D; Table 1), a conspicu-
ous change is revealed in the strain distribution pattern, indicated
by the arrows linking the bars in the histograms in Figure 3.
This is most readily apparent by considering the relative posi-
tioning of the parental A/J strain in the NN analysis (green bar
in Figures 3A,C), which has migrated to the higher extreme of
this strain distribution pattern, there being one other strain with
a higher real/random regularity ratio (the BXA2 strain). In short,
the normalization has led to a re-ordering of the strains according
to how regular they are relative to their density-matched random
simulations.

While Figures 2A,B might suggest that the difference in regu-
larity is related to density, Figures 4A,B show no such relationship
between the NN or VD regularity index and average horizontal
cell density across this entire collection of strains. While there
are slight negative relationships between the regularity indexes
and density, they are non-significant (NN regularity index vs.
density, r = –0.36, p= 0.06; VD regularity index vs. density, r = –
0.33, p= 0.08). Many strains with identical average densities have
conspicuously different regularity indexes, making clear that the
differences in regularity index between the parental and F1 strains
shown in Figure 2 should be independent of their differences in
density. Such variation in regularity should reflect differences in
the effectiveness by which horizontal cells space themselves apart.
Normalizing the regularity index yields a reordering of the strains
(Figures 3C,D) that should better portend the actions of biolog-
ical processes underlying this variation in the regularity of the
horizontal cell mosaic.

Further validation of this view is provided by mapping the
variation in regularity across the 25 strains to the variation in
haplotype composition across their genomes. Figure 5A shows
the resultant whole genome map for the NN regularity index,
indicating the presence of two QTL that each surpass the sug-
gestive threshold defined by permutation testing (gray horizontal
dashed line in Figure 5A), positioned at the distal ends of Chrs
1 and 14. At each of these loci, the presence of A alleles is
associated with an increase in the NN regularity index. The
QTL on Chr 1 is associated with an LRS score of 18.67, just
below the significant threshold (pink horizontal dashed line in
Figure 5A). The QTL on Chr 14 is associated with an LRS score
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FIGURE 2 | (A,B) The NN and VD regularity indexes for individual mice
of the A/J (green), B6AF1 (blue), and B6/J (red) strains as a function
of cell density (indicated by the saturated colored symbols across the
top). Each regularity index is the average of eight sampled fields per
retina, while the density indicated is the average density for those
eight fields. The regularity index for random simulations of the same
average density (and constrained by soma size) are shown for
comparison (indicated by the de-saturated colored symbols across the

bottom). Notice the increase in regularity for the random distributions
as a function of increasing density. (C,D) The NN and VD real/random
regularity ratio (being the real regularity index divided by the random
regularity index) for each retina presented in (A,B). A ratio of 1.0
would signify a mosaic that is no different from a random distribution
matched in density and constrained by soma size. By normalizing the
regularity index in this manner, the differences between the strains are
enhanced.

of 13.51. Figure 5B, by contrast, shows the whole genome map
produced using the NN real/random regularity ratio. Variation
in this ratio trait also maps to the same pair of loci, but the
locus on Chr 1 is now associated with an LRS score of 23.26
that far surpasses the significant threshold, the latter having
declined slightly, both a consequence of the strain reordering.
Minimal changes were observed with the linkage to the locus on
Chr 14.

Variation in the VD regularity index across these strains also
mapped to these same genomic loci on Chrs 1 and 14, with the
presence of A alleles at each locus being associated with an increase
in VD regularity index; the QTL on Chr 14, however, had an
LRS score that was now higher than the QTL on Chr 1, the latter
failing to reach the suggestive threshold (Figure 5C). Mapping
the variation in the VD real/random regularity ratio increased the
LRS scores for each of these QTL (from 13.04 to 14.41 for the peak
on Chr 14; from 10.35 to 12.32 for the peak on Chr 1), elevating
that on Chr 1 to surpass the suggestive threshold (Figure 5D).
These results suggest that the real/random regularity ratio may
be an effective means for comparing regularity across strains that
exhibit a large variation in density.

The packing factor is another measure of spatial patterning,
describing how well a mosaic approximates a hexagonal lattice,
which takes into consideration the density of each field. We

therefore asked whether the variation in packing factor across
the recombinant inbred strains would correlate to either of the
regularity indexes or regularity ratios, and whether this variation
would map to the same genomic loci or might identify entirely
novel ones. The packing factor, like the regularity indexes, var-
ied between the parental strains, with the A/J strain have a higher
degree of packing than the B6/J strain (0.35 vs. 0.32), as well
as across the recombinant inbred strains, ranging from 0.31 to
0.36 (Figure 6A). The packing factor across the strains was pos-
itively, and significantly, correlated to both regularity indexes
and ratios, though to a greater extent for the regularity ratios
(Figure 6B; r = 0.69, p = 2.3 × 10−5 for NN real/random
regularity ratio; and Figure 6C; r = 0.70, p = 1.3 × 10−5

for VD real/random regularity ratio), although this association
was not as great as the correlation between the two regularity
ratios themselves (r = 0.83, p = 4.3 × 10−9). This varia-
tion in packing factor across the recombinant inbred strains
mapped to the same genomic locus on Chr 14, associated with
an LRS score of 16.45 approaching the significant threshold
(Figure 6D). A hint of the locus on Chr 1 was also detected,
although the LRS score at this locus did not pass the sugges-
tive threshold. As before, the presence of A alleles at each of
these loci was associated with an increase in the packing factor
trait.
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Table 1 |The averages and SE for the two regularity indexes, the two regularity ratios, and the packing factor for the two parental strains, the F1

strain, and the 25 recombinant inbred strains.

NN Regularity Index NN Regularity Ratio VD Regularity Index VD Regularity Ratio Packing Factor

Strain N Average SE Average SE Average SE Average SE Average SE

C57BL/6J 4 4.53 0.14 1.56 0.06 5.15 0.17 2.29 0.10 0.316 0.005

A/J 3 5.22 0.07 2.07 0.03 6.14 0.14 2.93 0.07 0.352 0.003

B6AF1 4 5.00 0.07 1.87 0.03 5.62 0.19 2.62 0.09 0.339 0.004

AXB1 4 5.37 0.11 2.01 0.04 5.65 0.17 2.61 0.10 0.338 0.002

AXB2 2 5.40 0.10 2.04 0.08 6.06 0.21 2.85 0.06 0.360 0.000

AXB4 4 4.82 0.04 1.82 0.02 5.55 0.12 2.57 0.05 0.335 0.006

AXB5 4 5.19 0.09 1.89 0.04 5.88 0.14 2.74 0.08 0.340 0.003

AXB6 3 4.87 0.12 1.82 0.05 5.04 0.15 2.36 0.09 0.324 0.004

AXB8 4 4.79 0.11 1.79 0.04 5.59 0.11 2.58 0.06 0.324 0.005

AXB10 4 4.63 0.03 1.62 0.02 5.06 0.03 2.27 0.02 0.317 0.004

AXB12 4 4.85 0.20 1.84 0.08 5.36 0.15 2.50 0.07 0.338 0.004

AXB13 3 5.35 0.10 2.04 0.05 5.52 0.14 2.57 0.06 0.340 0.008

AXB15 4 5.05 0.12 1.77 0.04 5.66 0.15 2.56 0.05 0.337 0.003

AXB18 4 5.13 0.10 1.90 0.02 5.56 0.03 2.56 0.05 0.324 0.004

AXB23 3 4.84 0.06 1.80 0.04 5.46 0.06 2.54 0.05 0.330 0.005

AXB24 4 4.93 0.11 1.93 0.05 5.02 0.08 2.36 0.03 0.330 0.002

BXA1 4 4.63 0.09 1.70 0.04 5.17 0.13 2.39 0.06 0.323 0.005

BXA2 4 5.57 0.05 2.12 0.02 6.05 0.09 2.85 0.06 0.358 0.008

BXA4 4 5.59 0.11 2.03 0.07 6.12 0.14 2.80 0.07 0.315 0.006

BXA7 4 4.85 0.11 1.77 0.05 5.36 0.08 2.48 0.06 0.324 0.002

BXA11 4 5.35 0.08 1.98 0.05 5.87 0.04 2.73 0.03 0.321 0.004

BXA12 4 4.92 0.05 1.77 0.01 5.61 0.12 2.55 0.05 0.334 0.004

BXA13 4 4.79 0.04 1.72 0.02 5.31 0.03 2.44 0.02 0.321 0.003

BXA16 4 4.54 0.10 1.68 0.04 5.28 0.12 2.47 0.03 0.317 0.003

BXA17 4 5.32 0.07 1.97 0.04 5.67 0.16 2.62 0.08 0.334 0.003

BXA24 4 5.34 0.10 2.06 0.04 5.98 0.09 2.84 0.05 0.355 0.002

BXA25 4 4.66 0.12 1.69 0.04 5.31 0.13 2.41 0.04 0.326 0.005

BXA26 4 4.54 0.07 1.72 0.04 5.36 0.07 2.51 0.04 0.325 0.002

The difference in this map and those achieved by using the
regularity ratios as traits might suggest that the spatial measures
of regularity vs. packing are each modulated somewhat indepen-
dently by distinctive biological processes. Yet given the high degree
of correlation between these three traits (the NN and VD regu-
larity ratios and the packing factor), we wondered whether the
differences in these whole genome maps reflected the actions of a
few unusual strains; the BXA4 strain, for example, had the lowest
packing factor of any strain analyzed, yet had regularity ratios that
were in the top quarter of all strains (Figures 6B,C). We conse-
quently performed PCA to determine if a single component could
account for most of the variance observed across the three traits.
Indeed, the first principal component accounted for over 80% of
the total variance (Figure 7A), with each of the three traits con-
tributing equally. The distribution of recombinant inbred strains
along the first principal component is shown in Figure 7B. Whole

genome mapping of this new quantitative trait revealed the two
previously elucidated QTL on Chr 1 and Chr 14, with LRS scores
of 18.15 and 16.00, respectively, with the former QTL crossing
the significant threshold and the latter falling slightly beneath
(Figure 7C). We conclude that both loci contain genetic vari-
ants that contribute to the difference in horizontal cell patterning
across the recombinant inbred and parental strains, but that there
is no basis for concluding that the two loci modulate distinctive
biological processes, for instance, one that modulates local spacing
vs. another than coordinates patterning across larger distances.

It is of further interest to note that most of the varia-
tion observed across the recombinant inbred strains could be
attributed to the magnitude of the effects at these two loci,
regardless of which trait was analyzed. For instance, the addi-
tive effect of A alleles at the loci on Chrs 1 and 14 upon
the NN regularity ratio was 0.25 and 0.19, respectively (e.g.,
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FIGURE 3 | (A,B) The average NN and VD regularity index (±SE) for the
three strains shown in Figures 1 and 2 (colored bars) along with the 25
recombinant inbred strains of the AXB/BXA strain-set (gray bars). The n in
each bar indicates the number of mice sampled. (C,D) The real/random

regularity ratios for the same collection of strains. Note that the ordering
of the strains has changed considerably due to this normalization,
indicated by arrows, although more so for the NN analysis than the VD
analysis.

FIGURE 4 | (A) The relationship between NN regularity index and average
horizontal cell density across the 28 strains. The slight negative correlation
is not significant, the Pearson correlation coefficient (r ) being –0.36
(p = 0.06). (B) The correlation between the VD regularity index and
horizontal cell density was not significant (r = –0.33, p = 0.08).

Figure 5B), their summed effects equaling 79% of the range
in this ratio across the strains (Figure 3C; Table 2). The same
summed additive effects for the VD regularity ratio equaled
73%, while that for the packing factor equaled 71% (Table 2).
Such a large proportion of the variation in all three traits
being attributed to only two genomic loci may explain the
somewhat step-like (rather than smooth) progression in trait
values across the strains shown in Figures 3C,D and 6A, as
well as that observed for the first principal component in
Figure 7B.

A list of all candidate protein-coding genes at these two
loci is presented in Table 3. For each gene, a summary of
protein structure and function was obtained from the Uniprot
database2, while genetic variants present between the two parental
strains were obtained from the Wellcome Trust Sanger Institute’s
Mouse Genomes Project3. Top candidates had known functional
roles in cell-to-cell communication, cytoskeletal rearrangement
or transcriptional regulation, as well as genetic variants in reg-
ulatory regions (such as upstream, downstream, splicing, or
untranslated regions), which may alter gene expression, and/or
in protein-coding regions, which may affect protein sequence
and function. The QTL on Chr 1 is extremely narrow, and
of the genes at this locus, Esrrg and Ush2a were the most
compelling (Figure 7D). Esrrg belongs to a family of con-
stitutively active nuclear receptors that modulate transcription

2http://www.uniprot.org/
3http://www.sanger.ac.uk/resources/mouse/genomes/
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FIGURE 5 | (A) Whole genome map for NN regularity index. The blue trace
indicates the LRS across the mouse genome, indicating the strength of
linkage between phenotype with genotype (left y-axis). The red and green
traces indicate those locations across the genome where the presence of
B vs. A alleles, respectively, correlate with an increase in trait values, the
magnitude of which is indicated for each allele (additive effect; right y-axis).
The gray and pink horizontal dashed lines indicate the suggestive (p < 0.63)
and significant (p < 0.05) thresholds for LRS scores determined through
permutation testing of the strain data. A significant QTL is detected on the
distal end of Chr 1, while a suggestive QTL is detected on the distal end

of Chr 14. The yellow bars indicate the bootstrap analysis (being the
proportion of bootstrap samples mapping to a given locus), assessing the
robustness of the mapping to any genomic locus. (B) Whole genome map
for the NN real-random regularity ratio, with all conventions as in (A). Note
that the LRS score associated with the peak of the QTL on Chr 1 has
increased, while the significant threshold has declined. (C,D) Whole
genome maps (following the conventions as in A) for the VD regularity
index and VD regularity ratio reveal the same two QTL on Chrs 1 and 14.
Note that the LRS scores associated with each QTL increased after
mapping the regularity ratio.
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FIGURE 6 | (A) Average packing factor (±SE) across the two parental strains,
the F1 cross, and the 25 recombinant inbred strains. (B,C) The packing factor
across the strains is significantly and positively correlated to both the NN and
VD regularity ratio, with r values of 0.69 (p = 2.3 × 10−5) and 0.70
(p = 1.3 × 10−5), respectively. (D) Whole genome map, with conventions as

in Figure 5A, for packing factor across the strains. A suggestive QTL on Chr
14 was observed, with a peak LRS nearing the significant threshold (pink
horizontal dashed line). While the second highest LRS score was associated
with the locus on Chr 1, it failed to cross the suggestive threshold (gray
horizontal dashed line).

by binding to estrogen response elements, and is expressed in
the nervous system, including the retina, throughout devel-
opment (Hermans-Borgmeyer et al., 2000). Ush2a encodes the
protein Usherin, mutations in which can lead to Usher syn-
drome, a developmental disease affecting both the visual and
auditory pathways (Liu et al., 2007). Usherin is a single-pass
transmembrane protein with a large extracellular domain that
contains many fibronectin- and laminin-like domains, bearing
similarity to Megf10 and Megf11, both of which have been
shown to affect horizontal cell regularity (Kay et al., 2012).
While Ush2a is thought to be expressed solely in photore-
ceptor cells in adult retinas, it is also expressed in prenatal
development, potentially in developing horizontal cells. The
QTL on Chr 14 encompasses a larger interval: top candidates
include Farp1, Dock9, Zic2, and Itgbl1 (Figure 7E). Farp1 and
Dock9 both play a role in cytoskeletal dynamics, and could be
potential regulators of horizontal cell movement, a suggested
mechanism for achieving mosaic regularity. Zic2 is expressed
in the embryonic and early postnatal retina and has been
shown to affect various processes, including retinal ganglion
cell axon pathfinding and progenitor cell proliferation (Her-
rera et al., 2003; Watabe et al., 2011). Finally, Itgbl1 encodes a
secreted integrin-like protein that has several EGF-like repeat
domains, which resemble those of the Megf proteins, although
little is known about this protein aside from these structure
similarities.

DISCUSSION
The non-random distribution of like-type neurons within a
structure has been considered a defining feature of neuronal
populations (Cook, 2003), yet the molecular mechanisms that
establish these “mosaics” are relatively unknown. Spatial statis-
tics such as the regularity index and the packing factor can
be used to describe the orderliness of these distributions. By
treating these statistics as quantifiable traits, one can map such
variation in spatial patterning across mouse strains to the vari-
ation in haplotype structure of their genomes. This, in turn,
facilitates the pursuit of candidate genes and their variants
that regulate cell patterning. The present study has adopted
this approach, revealing two distinct genomic loci on Chrs
1 and 14 that control the patterning of the horizontal cell
mosaic.

The regularity index, being either the mean NN distance or
VD area divided by the SD of those values, has a lower bound
defined by a theoretical random distribution of dimensionless
points, but has no upper bound, as the variance in either mea-
sure approaches zero. While it effectively describes the spatial
order of a two-dimensional point pattern, it has generally been
used to indicate simply that a mosaic is more regular than a ran-
dom point pattern. Beyond this, it has seen little comparative
application beyond demonstrations that the regularity index is
altered by experimental or genetic manipulations. Interpreting
such alterations, of course, requires a consideration of whether
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FIGURE 7 | (A) Principal component analysis (PCA) using the NN regularity
ratio, VD regularity ratio, and packing factor traits as variables, revealed a
first principal component that accounted for over 80% of the total variance
across these traits. (B) The value for each recombinant inbred strain along
this first component was used to create a new trait that could be mapped.
Notice that the two parental strains are located near the extremes of the
distribution. (C) Whole genome map for the association between this first
component with genotype across the strains, with conventions as in
Figure 5A. Both previously identified QTL, on Chrs 1 and 14, have high
LRS scores, with the former passing the significant threshold and the latter

closely approaching it. (D,E) Haplotype maps of the 25 recombinant inbred
strains and two parental strains through a 10 Mb region centered at the
QTL on Chrs 1 and 14, with the A haplotype indicated in green, and the B
haplotype in red. A single strain (AXB18) is heterozygous for A and B
alleles at the Chr 1 locus, and is indicated in blue. The strains are ordered,
from bottom to top, by their increasing value of the first component. Three
genes (colored rectangles below each LRS trace) reside at the narrow
genomic locus on Chr 1, while 25 genes are present at the locus on Chr
14, which were narrowed down to six top candidate genes based on
bioinformatic analysis.

the manipulation also changes the number of elements in the
mosaic, a common variable following such perturbations, a vari-
able also observed across different strains of mice (Keeley et al.,
2014a).

In the present study, we consider directly the role that den-
sity plays upon constraining a random simulation of horizontal

cells, and how computing the regularity index without taking
this into consideration underestimates the differences in regularity
between mosaics. Indeed, we go on to show that, by calculating
the real-to-random regularity ratio, we map more robust QTL
with stronger linkage on Chrs 1 and 14. These results would
suggest that the real/random regularity ratio, be it derived from
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Table 2 |The range of variation in the two regularity ratios and the

packing factor, and the magnitude of the two QTL effects for each

trait, as well as their summed proportion of the range.

Total

variation

across all

strainsa

Additive effect

of two A alleles

Chr 1 QTLb

Additive effect

of two A alleles

Chr 14 QTLb

Percent

of total

variation

NN Regularity

Ratio

0.57 0.25 0.19 79%

VD Regularity

Ratio

0.66 0.24 0.23 73%

Packing

Factor

0.045 0.014 0.018 71%

aFromTable 1.
bFrom Figures 5B,D and 6D.

the NN analysis or the VD analysis, more acutely discriminates
strains by the actions of biological processes that space cells
apart.

THE REAL/RANDOM REGULARITY RATIO
This transformation of the data, creating the real/random regu-
larity ratio, is not without its caveats and limitations. For instance,
this ratio will by necessity change as a function of develop-
ment: before the retina has achieved its adult size, but after the
cells have approached their mature diameters, so the regularity
index of random simulations for these denser mosaics in smaller
(younger) retinas will be larger, yielding lower real/random reg-
ularity ratios relative to more mature retinas, even when the
patterning of the real distributions does not differ (e.g., see Raven
and Reese, 2002, for a comparison of real distributions vs. ran-
dom simulations of the horizontal cell mosaic in B6/J at 3 weeks
of age). Likewise, some experimental or genetic manipulations
that alter the patterning of a retinal mosaic also affect somal size
substantially (Cantrup et al., 2012). In such instances, particularly
where cell density and retinal area change as well, the calculation
of the real/random regularity ratio would likely provide little addi-
tional insight into understanding the factors controlling nerve cell
spacing.

In the present study, we have compared the patterning of
horizontal cells across mature mouse retinas that show little vari-
ation in retinal area but conspicuous twofold variation in cell
number, consequently yielding large differences in horizontal cell
density (the slight differences in retinal area across the strains,
like the slight differences in age, show no significant correlation
with density, regularity index, regularity ratio nor packing fac-
tor). While horizontal cells are notoriously plastic (Poché and
Reese, 2009), and can hypertrophy to an excess of twice their nor-
mal somal area, for example, in the absence of Pten (Cantrup
et al., 2012), they do not exhibit any change in soma size across
the present strains (Figure 1). We have, consequently, carried
out this transformation of the regularity index where only cell
density varies across the strains. That this transformation might
be meaningful for understanding the biology of mosaic order

is suggested by the reordering of the strains, yielding stronger
linkage between phenotype with genotype (Figure 5). While it
is true that the QTL on Chrs 1 and 14 were detected without
transforming the data in this manner, in one of the cases (the
QTL on Chr 1 for VD regularity index), it was sub-threshold and
likely would have gone unexamined in the absence of the other
analyses. The present results, therefore, would substantiate the
principle that where density varies conspicuously in the absence
of other differences in the population, correcting for this effect
of density upon spacing should enhance detection of genomic
linkage.

Across the recombinant inbred strains, computing the reg-
ularity ratio had a greater effect on reordering the strains in
the NN analysis than the VD analysis (Figure 3), since random
simulations for the latter measure varied less across fields with dif-
ferent densities (Figure 2). This fact, due to the relatively greater
constraining effect of soma size upon the linear NN measure
than upon the areal VD measure, along with the high correla-
tion between the two measures of regularity, might lead one to
believe that the VD regularity index is a sufficient and complete
measure of mosaic patterning. However, despite the more mod-
est changes in strain order between the VD regularity index and
regularity ratio, the ratio statistic still increased the strength of
linkage at each QTL. And while both regularity index were cor-
related, the QTL on Chromosome 1 was most prominent using
the NN spatial statistic. These results suggest that both the NN
and VD regularity ratios provide valuable information about hor-
izontal cell regularity, and should be used in a complementary
fashion.

THE PACKING FACTOR
We also compared the results obtained using the real/random reg-
ularity ratio with those from the packing factor analysis (Rodieck,
1991), which also varied across the strain-set. One attraction of
the packing factor is that it has both a lower and an upper bound,
ranging from 0 (a random distribution of dimensionless points)
to 1 (being a perfect hexagonal matrix). Another is that this mea-
sure is normalized for density, as it is the ratio of the effective
radius to the maximal radius permissible for a hexagonal lattice
of identical density (Rodieck, 1991). We found that the variation
in packing factor across the strains showed the strongest linkage
on Chr 14, whereas the QTL on Chr 1 failed to cross the sugges-
tive threshold. The packing factor, therefore, did not completely
recapitulate the same genome maps that were generated using the
real/random regularity ratios, particularly that for the NN anal-
ysis. It is important to bear in mind that the packing factor is
not a measure of regularity (Rodieck, 1991); rather, it is a distinc-
tive measure of patterning, and therefore might be indicative of
distinctive biological processes that contribute to nerve cell pat-
terning. Because the horizontal cell mosaic in the mouse retina
does not evidence the presence of higher order patterning as found
in a lattice, even with substantial jitter (Reese and Keeley, 2014),
and since the packing factor was so strongly correlated with either
regularity ratio, the present results would suggest that the measures
of regularity and packing are assessing similar qualities present in
these real mosaics. The PCA would support this conclusion. By
using this PCA to reduce the dimensionality of the data, a single
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trait emerges, capturing most of the variation in patterning across
the recombinant inbred and parental strains. Mapping the varia-
tion in this principal component, we recapitulated both genomic
loci, each showing strong linkage (evidenced through permuta-
tion testing) and reproducibility (evidenced by bootstrap testing).
Each locus must contain genetic variants that affect the patterning
of horizontal cells, presumably by modulating their intercellular
spacing at the local level.

GENETIC VARIANTS MODULATE HORIZONTAL CELL PATTERNING
INDEPENDENT OF DENSITY
The regularity of the horizontal cell mosaic is not significantly
correlated with the variation in horizontal cell density, and the
mapping of the variation in horizontal cell patterning does not
coincide with the genomic locus on Chr 13 mapped by the
variation in horizontal cell number or density (Whitney et al.,
2011). Horizontal cells are known to interact with one another
as they assemble their mosaics and initiate their differentiation
(Raven et al., 2005b; Poché et al., 2008; Huckfeldt et al., 2009),
and they use Megf10 and Megf11 to drive that assembly into
regular distributions (Kay et al., 2012). The present QTL map-
ping exercise indicates that genetic variants on Chrs 1 and 14
should modulate this process. Of the candidate genes at these
loci, the gene at the very peak of the QTL on Chr 1, Ush2a,
is notable because of the structural similarities of the Usherin
protein to the Megf proteins. While it is well-known for its struc-
tural role in the connecting cilium of developing photoreceptors,
it is expressed in developing retina at very early stages (Huang
et al., 2002), during the period when horizontal cells are being
generated, and well before outer segment formation. Whether
it is expressed transiently in developing horizontal cells remains
to be seen. Additionally, the guanine nucleotide exchange fac-
tor Farp1 is a particularly intriguing candidate at the peak of
the QTL on Chr 14 due to its role in dendritic morphogene-
sis (Cheadle and Biederer, 2012), as well as its interaction with
Sema6A and PlexA4 proteins (Zhuang et al., 2009), both shown
to be involved in horizontal cell development (Matsuoka et al.,
2012). Future studies will examine the candidates at these two
genomic loci in further detail to understand the genetic and
molecular control of horizontal cell patterning in the developing
retina.
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Neuronal morphology is diverse among animal species, developmental stages, brain
regions, and cell types. The geometry of individual neurons also varies substantially
even within the same cell class. Moreover, specific histological, imaging, and
reconstruction methodologies can differentially affect morphometric measures. The
quantitative characterization of neuronal arbors is necessary for in-depth understanding
of the structure-function relationship in nervous systems. The large collection of
community-contributed digitally reconstructed neurons available at NeuroMorpho.Org
constitutes a “big data” research opportunity for neuroscience discovery beyond the
approaches typically pursued in single laboratories. To illustrate these potential and related
challenges, we present a database-wide statistical analysis of dendritic arbors enabling the
quantification of major morphological similarities and differences across broadly adopted
metadata categories. Furthermore, we adopt a complementary unsupervised approach
based on clustering and dimensionality reduction to identify the main morphological
parameters leading to the most statistically informative structural classification. We
find that specific combinations of measures related to branching density, overall size,
tortuosity, bifurcation angles, arbor flatness, and topological asymmetry can capture
anatomically and functionally relevant features of dendritic trees. The reported results only
represent a small fraction of the relationships available for data exploration and hypothesis
testing enabled by sharing of digital morphological reconstructions.

Keywords: L-Measure (RRID:nif-0000-00003), NeuroMorpho.Org (RRID:nif-0000-00006), neuroinformatics, dendritic

topology, cluster analysis, cellular neuroanatomy

INTRODUCTION
The diversity of neuronal morphologies can have broad and pro-
found functional consequences in the nervous system, which
have only begun to be understood. Dendritic geometry directly
impacts (and mediates) computational processes such as sig-
nal integration, coincidence detection, and logical operations
(London and Häusser, 2005). The location, orientation, and
shape of neural arbors enable (and strongly affect) network
connectivity, providing the anatomical substrate to investigate
structure-function relationship at the circuitry level (Shepherd
and Svoboda, 2005; Briggman and Denk, 2006; Kajiwara et al.,
2008; Weiler et al., 2008; Burgalossi et al., 2011; Ropireddy
and Ascoli, 2011; Brown et al., 2012). These areas of scientific
investigation apply to the morphological differences observed
both within and between neuron types across animal species,
developmental stages, and brain regions (Figure 1).

Three-dimensional digital reconstructions of axonal and den-
dritic arbors, combined with neuroinformatics tools and com-
putational approaches, allow considerable opportunities for
data processing, analysis, and modeling at both cellular- and
systems-level (Parekh and Ascoli, 2013). The open availability
of these reconstructions in databases such as NeuroMorpho.Org
(Figure 2) enables re-analysis of shared data (Ascoli, 2007). As

of version 5.6, the repository contained over 10,000 reconstruc-
tions contributed by 120 laboratories from 21 species, 85 brain
regions and 123 cell types, representing more than 240,000 hours
of manual tracing. NeuroMorpho.Org users can browse the data
by animal species, brain region, cell type, and contributing lab.
The “search by” option can be used to select and combine spe-
cific metadata criteria (Figure 2, left panel top) from a drop-down
menu of categories such as developmental stage, experimental
condition, and reconstruction method. The morphometry search
functionality (Figure 2, left panel bottom) allows users to find
neurons matching any combination of more than 20 morphomet-
ric criteria. From the resulting summary list of neurons (Figure 2,
middle panel), individual pages for each reconstruction can be
retrieved, thus displaying related metadata, a link to the associated
publication, and the pre-computed morphometrics (Figure 2,
right panel). Each reconstruction is downloadable as the stan-
dardized version along with the original contributed version. The
log files detailing the changes made during the standardization
process are available for download as well. From the individual
neuron pages, users can also launch an animation file and an
interactive 3D viewer.

Quantitative morphometry of neuronal reconstructions is
often used for shape analysis (Uylings and van Pelt, 2002;
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FIGURE 1 | Sample of NeuroMorpho.Org reconstructions representing

the anatomical diversity of dendritic and axonal trees. Each image is
labeled (clockwise from its right side) with the somatic brain region,
neuron types, total arbor length, and arbor width. Somata: red; axons:

gray; (basal) dendrites: green; apical dendrites: magenta. NeuroMorpho.Org
IDs of these neurons from left to right: 06787, 04183, 04457, 06312,
05713, 04477, 00779, 06216, 00777, 05491, 00888, 06904, 06141, 06295,
07707, 07763, 00690, 00606.
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FIGURE 2 | Search and download features available in

NeuroMorpho.Org. Users can query the database via a number of
functionalities to obtain desired reconstructions. The example provided here
shows two such options. Reconstructions can be identified by selecting
specific metadata across different categories such as species, brain region,
cell type, staining method, and original file format (left panel, top).
Alternatively, reconstructions can be selected by a morphometric search (left

panel, bottom), wherein users can restrict the search to a specific arbor type
(for example, apical dendrites) and define quantitative criteria to restrict
particular measures (such as length or number of bifurcations) to ranges of
interest. The resulting reconstructions can be displayed (among other
options) with a summary of associated metadata (middle panel). The
complete metadata and morphometric details are included within each
individual neuron page (right panel).

Van Ooyen et al., 2002; Rocchi et al., 2007), also in conjunction
with biologically-inspired computational simulations (Ascoli
et al., 2001; Van Ooyen, 2011). For example, statistical distribu-
tion of morphological features are used in stochastic growth algo-
rithms for generating virtual trees (Van Pelt et al., 1997; Donohue
and Ascoli, 2008; Koene et al., 2009; Evans and Polavaram, 2013;
Memelli et al., 2013). Moreover, statistical analyses of neuronal
reconstructions facilitate and support theoretical investigations.
These studies for instance provided evidence for optimal wiring
principles of neuronal arbors (Wen and Chklovskii, 2008) and
their power law distributions, which may relate to synaptic input
sampling (Lee and Stevens, 2007; Snider et al., 2010; Teeter and
Stevens, 2011; Cuntz et al., 2012).

This study uses the L-Measure software tool (Scorcioni et al.,
2008) to extract morphometric data from neuronal arbors for

large scale statistical analyses of available data. L-Measure com-
putes simple statistics of morphometric features as well as their
frequency distribution and inter-dependence (e.g., how arbor
length varies with path distance from the soma). This tool has
been used in a broad range of applications, including mul-
tidimensional analysis of neuronal shape (Costa et al., 2010;
Zawadzki et al., 2012) and comparative studies of sensory neu-
rons in the fly (Ting et al., 2014) and of respiratory neurons in
the pre-Bötzinger complex (Koizumi et al., 2013). In conjunction
with L-Neuron (Ascoli and Krichmar, 2000), L-Measure has also
been employed to generate and validate a large-scale model of the
dentate gyrus with half a million neurons (Schneider et al., 2012).
L-Measure has also enabled analysis of non-neuronal arbors such
as arterial vasculature (Wright et al., 2013), and was integrated
into other digital reconstruction and analysis systems, such as the
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Farsight toolkit (http://farsight-toolkit.org) and Vaa3D (https://
code.google.com/p/vaa3d).

With the first successes in high-throughput automatic digi-
tal neuronal tracing (Chiang et al., 2011) and overall increasing
volumes of published and shared reconstructions (Halavi et al.,
2012), “big data” opportunities for knowledge mining are start-
ing to emerge. On the one hand, this increasing availability of
shared data may foster remarkable discoveries. On the other,
the heterogeneous source of data and disparate experimental
conditions also pose non-trivial challenges to database-wide anal-
yses. As a step toward large database analysis, here we utilize
exploratory data analysis to quantify morphological similarities
and differences across broadly diverse dendritic arbors. In the
process, we recognize several critical limitations when pooling
together widely non-uniform data sets. Consequently, we propose
selection criteria and methodological choices aimed to maxi-
mize the potential biological relevance of the results. With such a
research design, dimensionality reduction and unsupervised clus-
tering reveal tentative morphological relationships between spe-
cific neuron types involving branching density, topology, size, and
tortuosity. At the same time, we identify the most delicate factors
in both data and metadata that must be considered to optimize
the impact of future large-scale morphological investigations.

METHODS
SELECTION OF DATASETS AND MORPHOMETRIC FEATURES FOR
ANALYSIS
The entire pool of 10,004 reconstructions downloaded from
NeuroMorpho.Org v5.6 was screened for a pre-determined set
of inclusion criteria to improve interpretability of the results.
Specifically, in order to be considered for analysis, digital neuron
reconstructions had to (a) belong to the “control” experimen-
tal condition; (b) contain at least four dendritic bifurcations;
(c) include branch-path information and not just bifurcation
connectivity; and (d) have non-zero depth range (eliminating
two-dimensional tracings). The 7,143 reconstructions matching
these characteristics were analyzed by their NeuroMorpho.Org
metadata assignments to specific animal species, brain region,
and cell type. Subsequently, for the purpose of cluster analysis
chi-square testing (see below), groups of fewer than 40 neurons
in any metadata combination of species, brain region, cell type,
and lab of origin were excluded to ensure sufficient statistical
power (Yates et al., 1999). This further selection reduced the num-
ber of reconstructions to 5,099, divided into 45 unique metadata
groups.

Because of the major differences between axonal and dendritic
morphology, and the remarkable abundance of reconstructed
dendrites relative to axons, only dendritic arbors were included in
this study. Focusing on a more consistent and comparable dataset
allows addressing more biologically relevant questions. Moreover,
this choice reduces the errors due to incomplete reconstructions,
which are considerably more severe for projection axons than for
dendrites.

L-Measure allows extraction of approximately 100 distinct fea-
tures from each neuron (see http://cng.gmu.edu:8080/Lm for
full listing and detailed definitions). Of these, all measures
related to branch diameter were excluded due to their strong

dependence on imaging resolution, optical magnification, and
other experimental details causing excessive inter-laboratory vari-
ability (Scorcioni et al., 2004). All other features were subjected
to cross-correlation analysis, and those with correlation greater
than 80% were sequentially eliminated one at a time (re-running
the cross-correlation at each step) as they were considered highly
redundant with the rest of the features. This selection left 27
features (Table 1) that were used for the remainder of the anal-
ysis. Dendritic arbor size measures consisted of total length,
number of tips, height, width, and depth. Bifurcation measures
included average partition asymmetry as well as amplitude, tilt,
and torque angles measured locally with the adjacent tracing
points or remotely with the preceding and following bifurcations
or terminations. Branch measures consisted of length, tortuos-
ity, and fractal dimension. Lastly, local measures included branch
order, terminal degree, path distance from soma, and helicity.

Table 1 | Coefficients of variation of all L-Measure derived

morphometric features.

Morphometric features CV for Dendrites

Hierarchy groups Cluster groups

I. WHOLE TREE/NEURON SIZE

Summed total arbor length 1.38 0.57

Number of arbor tips 1.65 1.82

Total arbor width 0.68 0.43

Total arbor height 0.65 0.51

Total arbor depth 1.12 0.65

II. BIFURCATION MEASURES

Avg. partition asymmetry 0.27 0.26

Avg. local amplitude angle 0.17 0.17

Max. local amplitude angle 0.19 0.18

Avg. remote amplitude angle 0.21 0.18

Max. remote amplitude angle 0.24 0.23

Avg. local tilt angle 0.14 0.13

Max. local tilt angle 0.08 0.08

Avg. remote tilt angle 0.09 0.08

Max. remote tilt angle 0.05 0.05

Avg. local torque angle 0.17 0.16

Max. local torque angle 0.11 0.11

Avg. remote torque angle 0.18 0.17

Max. remote torque angle 0.10 0.10

III. BRANCH MEASURES

Avg. tortuosity 0.08 0.07

Avg. fractal dimension 0.03 0.02

Max. fractal dimension 0.15 0.14

Avg. branch path length 0.59 0.41

Max. branch path length 0.81 0.53

IV. COMPARTMENT MEASURES

Max. branch order 0.85 0.85

Avg. terminal degree 0.71 0.68

Max. path distance from soma 0.76 0.57

Max. branch helicity 0.19 0.16

A detailed description of each metric is provided at http:// cng.gmu.edu:8080/

Lm/ help/ index.htm.
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PRINCIPAL COMPONENT ANALYSIS (PCA) AND CLUSTER ANALYSIS
In order to reduce the dimensionality of the morphometric space
for unsupervised clustering, PCA was run on the feature dataset
using the “prcomp” routine in R (v. 2.15.1). This transforma-
tion rotates all extracted measures (27 features for 5,099 arbors)
such that the first dimensions in the new space capture the most
variance (in decreasing order). Prior to PCA, all features were
normalized by their respective standard deviations, and the fea-
tures with absolute skewness greater than unity (17/27) were
log-transformed. Negatively skewed distributions were inverted
and distributions with negative values were shifted prior to log-
transformation. These steps ensure an approximately normal
distribution of the input features, as assumed by PCA and sub-
sequent clustering. The resulting first 17 components, accounting
for 95% of the variance, were retained for cluster analysis.

Next, the dendritic arbors were clustered based on their prin-
cipal morphometric components to seek a shape-based classifi-
cation independent of a priori metadata grouping. We selected a
model-based approach, in which mixtures of Gaussians are found
that together have maximal likelihood to fit the data. A cluster is
the collection of arbors that are most likely to come from the same
multivariate Gaussian (referred to as a cluster model). We used
the R “MCLUST” package (Farley and Raftery, 2006) for estimat-
ing optimal model parameters and selecting the most likely model
type given the dataset. The model types include spherical, ellip-
soidal (with a diagonal covariance matrix), and ellipsoidal with
orientation (indicating correlation between dimensions). This
flexibility makes model-based clustering a more suitable choice
than other popular methods (e.g., K-means) for analysis of het-
erogeneous data sets collated from different experiments, labs,
and conditions. Not only are clusters not limited to fit spherically
symmetric distributions, but also each cluster is allowed to have
its own distinct variance, shape, and orientation.

MCLUST implements Expectation Maximization (EM) to
select models using the Bayesian information criterion (BIC). The
BIC computes the log likelihood of the cluster model, but includes
a penalty for the number of parameters weighted by the log of the
dataset size. Thus, goodness of fit is balanced against model sim-
plicity according to the following equation, whereby the largest
value determines the best model:

BIC = −2 · ln L̂ + k · ln (n) (1)

Here, L̂ is the maximized likelihood computed on the marginal
likelihood P(y|Mi) of the candidate model Mi given the observed
data y (y1, . . . yn); k is the number of free parameters to be
estimated; and n is the number of data points.

The specification of MCLUST model types and parameters is
coded by three letters in each of three positions. The three posi-
tions represent the model size, shape, and orientation variables,
respectively. Letter “E” indicates that the parameters are equiv-
alent across all clusters, “V” signifies variable parameter values,
and “I” denotes that the corresponding parameter is not appli-
cable. For example, “EII” indicates spherical Gaussians (no shape
or orientation) with equal size among clusters, which corresponds
to the traditional K-means method. Similarly, the “VVV” model
type indicates varying size, shape, and orientation parameters.

This latter model was determined by EM to be optimal for the
data analyzed here despite its greater BIC cost implied by the
larger number of free parameters. Thus, EM provides information
theory-derived evidence that the performance of simple uniform
spherical (K-means-like) clustering is sub-optimal for the data
used in this study.

Cluster distances from the center of coordinates were mea-
sured by Z score to account for relative variance. Pairwise cluster
distances were computed as the distances between the corre-
sponding centers normalized by the cluster scatters, which are
defined as averaged distance of the cluster points from the respec-
tive cluster center (Dunn, 1973). The associations among clusters
and metadata groups were assessed using the chi-square test of
independence, using the (marginal) frequencies of group and
cluster occurrences to calculate the expected association matrix,
and computing the Bonferroni-corrected p-values of the observed
co-occurrences from the standardized residuals.

RESULTS
VARIABILITY OF DENDRITIC MORPHOLOGY AND COMPARISON BY
METADATA
To quantify the heterogeneity of the data, we computed the coef-
ficient of variation (CV) for each of the 27 measured features
over the entire set of 7,143 neurons as well as over the subset
of 5,099 neurons used in cluster analysis (Table 1). Tortuosity,
fractal dimension, and tilt angle are the least variable features,
with a CV of less than 10%. In contrast, size measures are the
most variable, with a CV close to or greater than unity. This
apparent distinction between “local” (branch-level) vs. “global”
(neuron-level) features may reflect both the effect of biological
constraints (e.g., varying dimensions of different species from
insects to human) and experimental conditions (slice vs. whole-
animal preparations). Most other metrics display intermediate
CV values.

Dendritic morphologies were then compared across species,
cell types, and brain regions. The corresponding metadata infor-
mation for each reconstruction in NeuroMorpho.Org was orga-
nized hierarchically (Figure 3), forming groups with a sufficient
number of neurons to enable statistical comparison of the results
(at least 55 for species, 300 for brain regions, and 100 for cell
types). Groups with fewer reconstructions were combined into
“others” together with the reconstructions missing the detailed
metadata information at the corresponding level of the hierarchy
(marked as “not reported” in NeuroMorpho.Org).

The “leaf” nodes in each of the three metadata hierarchies
(12 for species, 14 for brain regions, and 10 for cell types) were
compared with a selection of representative morphometric fea-
tures (Figure 4). In a limited set of cases, individual groups could
be distinguished from the rest or from each other. For example,
blowfly and cat reconstructions stood out against the neurons of
all other species for their large topological asymmetry and Z span,
respectively. The dendritic arbors of magnopyramidal cells tended
to have extensive total length but low fractal dimension, whereas
granule cells displayed opposite characteristics. At the same time,
most groups show extensive overlap of their morphometric vari-
ance, preventing firm statistical conclusions. Part of the reason
for such broad distributions is likely due to the non-uniform
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FIGURE 3 | NeuroMorpho.Org v5.6 data is categorized along three

major metadata dimensions, namely species, brain regions, and cell

types. Reconstructions are hierarchically organized in each of these
dimensions. Every node in the hierarchy is labeled by the number of
associated reconstructions. The line lengths are proportional to the size

of the child nodes relative to their parent nodes. (A) In the species
hierarchy nodes with fewer than 55 reconstructions are grouped
together with the “not reported” data under “Others.” In the brain
regions (B) and cell type (C) hierarchies the grouping thresholds are
300 and 100, respectively.

nature of archive-wide data sets pooled together across different
experiments and laboratories. It is also clear that these metadata
dimensions are not mutually independent because of evolution-
ary constraints (e.g., bony fishes lack a neocortex) and the finite
sample of reconstructions (e.g., all monostratified ganglion cells
came from the mouse retina). More generally, while popular in
comparative anatomy, such a pairwise approach lacks the ability
to reveal multivariate effects that are unavoidable given the non-
random association between metadata groups and experimental
conditions.

EXTRACTING PRIMARY MORPHOLOGICAL FEATURES BY PCA AND
CLUSTER MODELS
In order to overcome the above limitations, we adopted
an unsupervised clustering approach following dimensional-
ity reduction with PCA. The first step is to reduce the ini-
tial parameter space to fewer orthogonal dimensions capturing
most of the data variability. In mathematical terms, PCA identi-
fies the linearly independent combinations of variables ordered
by the amount of variance they explain. From the (27) orig-
inal morphometric features, the first 17 dimensions of PCA

covered 95% of the data variance and were used for cluster
analysis.

The first 6 of these principal components were responsi-
ble for three quarters of the variance and displayed distinctive
compositions of their primary morphometric features (Table 2).
Identifying the heaviest contributors in the linear combination
of morphometric features of each principal component (“load-
ings”) is useful to aid subsequent interpretation of the results.
The first component (PC1) is positively loaded on bifurcation
angles and negatively on branch path length, reflecting high
branching density. The morphometric features most descriptive
of PC2 and PC3 are respectively overall size and branch tortu-
osity. Together, the first three components capture the majority
of the data variance. The simplest morphological descriptors of
PC4, PC5, and PC6 are arbor flatness (related to torque angle),
fractal dimension (or “space filling”), and topological asymmetry
(the average normalized sub-tree partition at bifurcation points),
respectively.

In order to produce the most informative statistical model,
unsupervised clustering selects the optimal number of clusters as
well as their parameters, by maximizing the BIC. These data were
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FIGURE 4 | Inter-group differences of representative morphometric

features within each main metadata dimension. Crosshairs represent
medians and quartile ranges of each group corresponding to the leaf nodes
in the hierarchies shown in Figure 3. Dotted lines indicate “other” groups
with merged data. (A) Differences in arbor depth and topological
asymmetry among species. (B) Differences in arbor width and average
bifurcation angle among brain regions. (C) Differences in fractal dimension
and total arbor length among cell types.

best fit to six clusters with varying size, shape, and orientation
(Figure 5). The numerical difference between this model and the
variant with constant cluster shape, however, was minimal (and
is undetectable in Figure 5A). The same model type, moreover,
performed nearly as well with five or seven clusters as indicated
by the absence of a clear peak in the BIC plot. We experimented
with these alternative model variant and numbers of clusters and
found no substantial differences in findings. At the same time,
the data were not adequately described by traditional spherical
clusters, even if with unequal sizes (Figure 5A).

Since six clusters correspond to the maximum value for
both top model types, we selected this number as the most
suitable for exploratory analysis. Such a choice, nevertheless,
should not be taken to reflect a ground truth that only six

Table 2 | Primary morphometric loading (with absolute values of 0.25

or higher) of the first six principal components of the dendritic arbors

used in cluster analysis.

Principal Component Morphometric features Loading

PC1 (27% of cumulative
variance): branching density

Max. remote amplitude angle 0.29
Avg. remote amplitude angle 0.27

Max. local amplitude angle 0.26

Avg. terminal degree 0.25

Max. branch order 0.25

Avg. branch path length −0.28

Avg. remote tilt angle −0.26

PC2 (43% of cumulative
variance): size

Summed total arbor length 0.4
Total arbor height 0.36

Max. path distance from soma 0.34

Total arbor width 0.33

PC3 (58% of cumulative
variance): branch tortuosity

Avg. tortuosity 0.42
Avg. fractal dimension 0.34

Avg. local tilt angle −0.34

PC4 (64% of cumulative
variance): arbor flatness

Avg. remote torque angle 0.63
Avg. local torque angle 0.62

PC5 (70% of cumulative
variance): fractal dimension and
tilt angles

Max. fractal dimension 0.37

Avg. fractal dimension 0.35

Avg. remote tilt angle 0.35

Avg. tortuosity 0.25

Max. remote tilt angle −0.32

Avg. remote amplitude angle −0.36

PC6 (75% of cumulative
variance): partition asymmetry
and depth

Avg. partition asymmetry 0.41

Total arbor depth 0.35

“true” classes exist within the data. This selection simply max-
imizes the inter-similarity of co-clustered classes relative to
classes in other clusters given the scope, size, quality, and
composition of the available dataset. To determine if further
differences exist between classes that associate with the same
cluster, it would be appropriate to run the same analysis on
a subset of the data (sub-clustering). This additional analysis,
however, requires larger datasets to meet the selection crite-
ria based on a minimum number of reconstructions in each
dataset.

The two-dimensional data projection on the first and second
components illustrates the relative discrimination of clusters by
branching density and arbor size (Figure 5B). Cluster ranking
by variance-normalized distance from the center of coordinates
(Figure 5C) allows for focused analysis on clusters farther from
the origin (a–d), and thus morphologically distinctive, relative
to those closer (e and f ) to the origin. The six clusters contain
respectively 585 (a), 1488 (b), 762 (c), 555 (d), 818 (e), and 891 (f )
reconstructions. Pairwise distances (Figure 5D) reveal that one
and the same cluster (b) is both the farthest from (a) and closest
to (e) than to other clusters.
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FIGURE 5 | Unsupervised cluster analysis of dendritic morphology. (A)

Maximization of BIC reveals marginal performance of spherical clustering
with equal (EII) or unequal size (VII) alike relative to the models allowing
ellipsoidal clusters. Among those, those accounting for unequal orientation
(EEV, VEV, and VVV) performed better, especially with unequal size (VEV and
VVV). The highest BIC value was attained at 6 clusters with varying size,

shapes and orientation (VVV). (B) Scatter plot of color-coded cluster
assignments (a through f ) projected on the first two principal components.
The ovals represent best fitting cluster parameters. (C) Cluster ranking by Z
score distance from the origin of coordinates. (D) Pairwise inter-cluster
distances normalized by the corresponding scatters. Farthest distances are in
green and nearest are in red.

STATISTICAL ASSOCIATIONS BETWEEN CLUSTERS AND METADATA
COMBINATIONS
Unsupervised cluster models segregate neuronal reconstructions
solely based on morphological features. This classification is
thus complementary to, and independent of, the metadata asso-
ciated with each reconstruction. The correspondence between
the six morphological clusters and the 45 unique metadata
groups characterized by species, brain region, neuron type, and
lab of origin can shed light on the most important morpho-
metric signatures of each metadata group. The 45-by-6 chi-
square contingency matrix (Table 3) reports the probabilities
that the observed over-representation and under-representations
of associations between morphological clusters and metadata
groups would be due to chance if the observed numerical
compositions of each cluster and group were independent of
each other. For example (first data row in Table 3), pyramidal
neurons from mouse primary somatosensory cortex in Smit–
Rigter’s archive are significantly over-represented in cluster a
(p < 0.0002 = 10−3.73) and significantly under-represented in
cluster b (p < 0.001 = 10−3.05). In contrast, the proportion of
these same neurons in cluster d is within the range expected

from the sizes of this metadata group and morphological
cluster.

Interestingly, each and every metadata group is over-
represented in, and thus associated with, one of the six mor-
phological clusters. The majority (38/45) are associated with
exactly one cluster, and all of the remaining (7/45) are each split
between just two clusters. Most possible metadata/cluster pairs
deviated significantly from the random distribution expected
from the “null hypothesis”: 53 out of 270 were significantly over-
represented and 87 out of 270 significantly under-represented.
This overall partition of metadata groups in distinct clusters
constitutes a remarkable outcome for a fully unsupervised clas-
sification method. Certain metadata groups are over-represented
in one morphological cluster and under-represented in all
other clusters, such as ganglion cells from mouse retina in
Masland’s archive (cluster a) and pyramidal cells from human
prefrontal cortex in Jacobs’ archive (cluster b). Other meta-
data groups are over-represented in one morphological clus-
ter, but otherwise scattered throughout all other clusters per
the respective numerical abundance, such as pyramidal cells
from monkey frontal lobe in Luebke’s archive (cluster d)
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Table 3 | Matrix of positive (green) and negative (red) associations between metadata groups (rows) and morphological clusters (columns).

Metadata group (species, type, lab) a b c d e f

Mouse S1 pyramidal (Smit–Rigter) 3.73 −3.05 NS 25.31 NS NS

Rat retinal ganglion (Rodger) 58.05 −4.47 NS NS NS NS

Blowfly visual lobe tangential (Borst) 93.95 −3.52 NS NS NS NS

Mouse retinal ganglion (Chalupa) 212.99 −15.11 NS −3.31 −6.15 −1.52

Mouse retinal ganglion (Masland) 304.69 −23.3 −9.06 −5.8 −9.99 −9.6

Human S1 pyramidal (Jacobs) −1.84 31.11 −2.6 NS NS −2.57

Human parietal lobe pyramidal (Jacobs) NS 32.41 −2.21 NS NS −2.49

Human temporal lobe pyramidal (Jacobs) NS 39.85 −1.76 NS NS −2.59

Human M1 pyramidal (Jacobs) −4.94 61.98 −7.3 NS NS −6.02

Human V1 pyramidal (Jacobs) −6.93 81.1 −9.97 −4.45 NS −9.14

Human prefrontal pyramidal (Jacobs) −14.12 196.33 −19.1 −7.79 −4.08 −18.98

Rat prefrontal pyramidal (De Koninck) NS −5.52 11.26 NS NS NS

Rat S1 pyramidal (Meyer) NS −5.33 25.2 NS NS NS

Rat frontal lobe pyramidal (Kawaguchi) NS −2.19 30.36 NS NS NS

Rat S1 pyramidal (Staiger) NS −2.57 32.87 NS NS NS

Rat S1 pyramidal (Markram) NS −5.74 38.27 NS NS NS

Mouse neocortex pyramidal (Yuste) NS −5.52 47.63 NS NS NS

Mouse S1 pyramidal (Krieger) NS −4.76 82.58 NS NS −1.58

Mouse V1 pyramidal (Yuste) NS −5.42 85.76 NS −1.57 NS

Mouse S1 pyramidal (Yuste) −3.75 −15.5 98.82 −1.96 −4.27 NS

Monkey frontal lobe pyramidal (Luebke) NS NS NS 8.28 NS NS

Rat DG granule (Claiborne) NS −1.66 NS 41.01 NS NS

Monkey temp. sulcus pyramidal (Wearne_Hof) NS NS NS 64.5 NS NS

Elephant neocortex pyramidal (Jacobs) NS −2.23 NS 67.98 NS NS

Monkey prefrontal pyramidal (Lewis) −2.57 −13.46 −4.27 169.52 −4.83 NS

Human inferior frontal gyrus pyramidal (Lewis) −2.84 −9.65 −4.47 253.7 −5.01 −5.18

Rat S1 interneuron (Helmstaeder) NS −1.85 NS NS 3.96 NS

Human ant. long insular gyrus pyr. (Jacobs) −4.34 18.18 −6.49 NS 6.57 −7.07

Human middle short insul. gyrus pyr. (Jacobs) −4.28 18.1 −6.41 NS 8.52 −6.97

Rat M1 basket (Kawaguchi) NS −3.52 NS NS 11.51 NS

Human post. short insular gyrus pyr. (Jacobs) −4.31 11.27 −6.45 NS 13.61 −7.02

Rat S1 pyramidal (Svoboda) NS NS NS NS 17.32 NS

Rat S1 basket (Markram) NS NS NS NS 18.41 NS

Rat brainstem motoneuron (Cameron) NS −2.28 NS NS 35.45 NS

Mouse M1 pyramidal (DeFelipe) NS −4.94 NS NS 49.32 NS

Mouse basal ganglia med. spiny (Kellendonk) NS −6.66 NS NS 75.01 NS

Mouse S1 basket (Yuste) NS −2.38 7.9 NS NS 4.61

Fish retinal ganglion (Stevens) 17.87 −3.62 NS NS NS 6.3

Rat CA3 interneuron (Jaffe) NS −3.09 NS NS 1.58 11.2

Mouse S1 interneuron (Yuste) −1.95 −11.53 24.29 −2.22 NS 15.12

Salamander retinal ganglion (Miller) NS −4.28 NS NS NS 34.77

Rat basal forebrain large aspiny (Smith) NS −5.9 NS NS NS 64.41

Rat basal forebrain medium spiny (Smith) −1.46 −8.47 NS NS NS 81.6

Mouse S1 pyramidal (Brumberg) −1.54 −10.28 NS −1.83 NS 97.16

Rat olfactory bulb pyramidal (Brunjes) −4.47 −17.11 NS −4.11 −3.92 125.81

The Bonferroni adjusted p-values obtained by the chi-square test of independence are converted for ease of comparison into log10 values, inverting the sign for

overrepresented (green) cells. The color gradient shows the interaction strength. Non-significant (p > 0.05) associations are indicated with NS.

and motoneurons from rat brainstem in Cameron’s archive
(cluster e).

Several observations can be made that transcend individual
archive identities. All rodent retinal ganglion cell groups are asso-
ciated with cluster a, whereas fish and salamander retinal ganglion

cells groups are associated with cluster f. The relative cluster posi-
tions in the first two principal components and the corresponding
morphological loadings (Figure 5B and Table 2) suggest that the
retinal ganglion cells are larger and with denser branching in
rodents than in non-mammals. Neocortex pyramidal cell groups
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are distributed across all clusters, with preference mostly based on
species (most notably, human in b, rodents in c, and monkey in d).
All rodent non-cortical and non-pyramidal cell groups are found
in cluster f (along with salamander and fish retinal ganglion cells).
Such metadata heterogeneity, together with this cluster’s mini-
mal distance from the morphological center (Figure 5C) suggests
a putative “catch-all” role for cluster f, which makes it broadly
representative of the whole dataset.

In several cases, the split of a metadata group into two mor-
phological clusters reflects previously reported relations. For
example, three groups of pyramidal neurons from the (ante-
rior, middle, and posterior) human insular gyrus in the Jacobs’
archive divided between clusters b and e according to structural
differences related to the subject’s gender (Anderson et al., 2009).
Similarly, mouse primary somatosensory pyramidal cells are over-
represented in both clusters a and d, consistent with the reported
differences between young and adult animals (Smit-Rigter et al.,
2012). The grouping of neurons from younger mice with retinal
ganglion cells (in cluster a) and from the older mice with pyra-
midal cells of larger mammals, such as monkey, elephant, and
human (in cluster d), could be expected since the former groups
are characterized by the shortest branch path length and the lat-
ter groups by the largest. The scattered clustering of pyramidal
neurons, however, does not necessarily reflect existing biologi-
cal relations, but might rather result from the combination of
the choice of analysis algorithms, selection of parameters, and
experimental differences.

The other splits of metadata groups between two clusters
(Table 3) similarly revealed differences likely due to experimental
procedures, such as staining protocol or slicing direction, which
were not recognized in the original reports (Anderson et al.,
1995; Soloway et al., 2002; Goldberg et al., 2003; MacLean et al.,
2005; Nikolenko et al., 2007; Woodruff et al., 2009). For exam-
ple, the separate clustering of different mouse S1 pyramidal cell
datasets can be explained by the differences between intracellular
biocytin injection (e.g., Yuste’s archive) and bulk Golgi staining
(e.g., Brumberg’s archive). While the mechanisms underlying the
different visualization by these techniques are not yet fully under-
stood (Thomson and Armstrong, 2011), the histological labeling
information is available as metadata in NeuroMorpho.Org, thus
aiding interpretation.

A complementary way to examine the associations between
morphological clusters and metadata groups is to systematically
analyze the composition of each cluster in terms of its associated
groups, broken down by fraction of group, fraction of cluster, and
neuron count (Table 4). For example (first data row in Table 4),
33% of the mouse S1 pyramidal cells from the Smit–Rigter archive
are in cluster a, accounting for only 3% of this cluster (17 out
of 560 neurons). The sums of cluster fractions in Table 4 corre-
spond to the proportion of neurons in each cluster (e.g., 97% for
cluster a) made up by the cluster’s associated metadata groups
(green entries in Table 3). The remaining portions of the clusters
are composed of neurons falling outside of their associated clus-
ter. Notably, the blowfly tangential cell group is associated with
cluster a. Moreover, clusters b and c are exclusively associated
with human pyramidal cell (in which only basal dendrites are
reconstructed) and rodent neocortex cell groups respectively.

PAIRWISE MORPHOMETRIC COMPARISONS OF NEURON GROUPS
IDENTIFIED BY CLUSTER ANALYSIS
Exploratory inspection of neuronal clusters in the 6-dimensional
space of principal morphometric components together with the
association between clusters and metadata groups (Tables 3, 4)
suggested closer inspection of specific morphological features in
selected pairs of neuronal groups defined by their species, brain
region, and cell type. The first example pertains to rodent reti-
nal ganglion cells (Figure 6), which are characterized by high
branching density and related morphological features (e.g., wide
bifurcation angles). These neurons, pooled from mice and rats
in four different archives, constitute 80% of cluster a, the farthest
away from the center (Figure 5C and Table 4). At the opposite end
along the first principal components is cluster b, entirely made of
human pyramidal basal dendrites. Visual inspection (Figure 6B)
reveals the distinctive shapes of rodent ganglion cells and human
basal dendrites. Statistical analysis of the two main morphological
loadings of PC1 (bifurcation amplitude and branch path length)
confirmed the considerable difference between these two neuron
groups, even when including those found in clusters other than a
and b (Figure 6C).

The second most prominent group in cluster a is constituted
by blowfly tangential sensory neurons. These neurons share with
the rodent ganglion cells not only comparable branching den-
sity properties captured by PC1 (low branch path length and
high bifurcation angle), but also similar distributions on PC2
through PC5 and all corresponding morphological features load-
ing on those dimensions. These include measures of size (e.g.,
total dendritic length and spanned volume), of space filling (frac-
tal dimension and tortuosity), and of arbor planarity (torque and
tilt angles). Such tight alignment on the first five principal com-
ponents along with the morphological co-clustering suggests a
structural basis for the functional commonalities between blowfly
tangential cells and retinal ganglion cells, both of which process
motion-sensitive visual information (Kong et al., 2005; Cuntz
et al., 2008).

Nevertheless, rotation on the sixth principal component
exposed a surprising and nearly perfect separation between reti-
nal ganglion cells and blowfly tangential cell (Figure 6A). Since
the main morphological feature loading on PC6 is topologi-
cal asymmetry (the average partition of terminal degree over
all bifurcations), we compared the distribution of this mea-
sure between the two neuron classes (Figure 6D). This analysis
demonstrated that blowfly tangential neurons have much more
asymmetric bifurcations than ganglion cells (and most typical
neurons). Interestingly, the data projection over the first and sixth
principal components (Figure 6A) also suggested a linear rela-
tionship between topological asymmetry and branching density
in rodent retinal ganglion cells but not in other groups. The
Pearson correlation coefficients for branching density and asym-
metry index (R = −0.50) and for bifurcation amplitude remote
and asymmetry (R = 0.51) are both statistically highly significant
(p < 10−10).

Rotating the data along the first and third principal com-
ponents (related to branching density and tortuosity, respec-
tively) revealed another distinct relationship across pyramidal
cells from different species, brain regions, and developmental
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Table 4 | Composition of the six morphological clusters in terms of their over-represented metadata groups.

Cluster Metadata group Fraction of group Fraction of cluster Counts

a Mouse S1 pyramidal (Smit–Rigter) 0.33 0.03 17

Fish retinal ganglion (Stevens) 0.51 0.05 29

Rat retinal ganglion (Rodger) 0.76 0.09 50

Mouse retinal ganglion (Chalupa) 0.85 0.26 151

Mouse retinal ganglion (Masland) 0.99 0.44 257

Blowfly visual lobe tangential (Borst) 1 0.1 56

Total 0.97 560

b Human posterior short insular gyrus pyramidal (Jacobs) 0.53 0.07 106

Human anterior long insular gyrus pyramidal (Jacobs) 0.59 0.08 118

Human middle short insular gyrus pyramidal (Jacobs) 0.59 0.08 117

Human S1 pyramidal (Jacobs) 0.79 0.06 95

Human V1 pyramidal (Jacobs) 0.8 0.15 226

Human M1 pyramidal (Jacobs) 0.8 0.12 176

Human parietal lobe pyramidal (Jacobs) 0.86 0.06 84

Human prefrontal pyramidal (Jacobs) 0.88 0.29 434

Human temporal lobe pyramidal (Jacobs) 0.91 0.06 91

Total 0.97 1447

c Rat prefrontal pyramidal (De Koninck) 0.43 0.05 39

Mouse S1 interneuron (Yuste) 0.47 0.09 66

Mouse S1 basket (Yuste) 0.5 0.03 22

Rat S1 pyramidal (Meyer) 0.6 0.06 45

Rat S1 pyramidal (Markram) 0.66 0.07 57

Mouse S1 pyramidal (Yuste) 0.71 0.17 128

Mouse neocortex pyramidal (Yuste) 0.75 0.08 58

Rat S1 pyramidal (Staiger) 0.8 0.05 37

Rat frontal lobe pyramidal (Kawaguchi) 0.81 0.04 34

Mouse V1 pyramidal (Yuste) 0.96 0.1 73

Mouse S1 pyramidal (Krieger) 0.99 0.09 68

Total 0.83 627

d Monkey frontal lobe pyramidal (Luebke) 0.43 0.03 18

Monkey S1 pyramidal (Smit–Rigter) 0.59 0.05 30

Rat DG granule (Claiborne) 0.77 0.06 33

Monkey prefrontal pyramidal (Lewis) 0.79 0.23 126

Elephant neocortex pyramidal (Jacobs) 0.9 0.08 44

Monkey temporal sulcus pyramidal (Wearne_Hof) 0.93 0.07 40

Human inferior frontal gyrus pyramidal (Lewis) 0.96 0.26 146

Total 0.78 437

e Human anterior long insular gyrus pyramidal (Jacobs) 0.32 0.08 63

Human middle short insular gyrus pyramidal (Jacobs) 0.33 0.08 66

Rat CA3 interneuron (Jaffe) 0.34 0.02 20

Human posterior short insular gyrus pyramidal (Jacobs) 0.37 0.09 74

Rat S1 interneuron (Helmstaeder) 0.4 0.03 23

Rat M1 basket (Kawaguchi) 0.54 0.04 30

Rat S1 pyramidal (Svoboda) 0.58 0.05 38

Rat S1 basket (Markram) 0.65 0.04 33

Mouse M1 pyramidal (DeFelipe) 0.74 0.08 67

Mouse basal ganglia medium spiny (Kellendonk) 0.83 0.1 85

Rat brainstem motoneuron (Cameron) 0.88 0.05 38

Total 0.66 537

(Continued)
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Table 4 | Continued

Cluster Metadata group Fraction of group Fraction of cluster Counts

f Mouse S1 interneuron (Yuste) 0.45 0.07 63

Fish retinal ganglion (Stevens) 0.47 0.03 27

Mouse S1 basket (Yuste) 0.48 0.02 21

Rat CA3 interneuron (Jaffe) 0.55 0.04 32

Salamander retinal ganglion (Miller) 0.78 0.06 50

Rat olfactory bulb pyramidal (Brunjes) 0.8 0.18 164

Mouse S1 pyramidal (Brumberg) 0.88 0.13 112

Rat basal forebrain medium spiny (Smith) 0.88 0.11 95

Rat basal forebrain large aspiny (Smith) 0.9 0.08 73

Total 0.72 637

Associations between metadata groups and morphological clusters are quantified as fraction of the group, fraction of the cluster, and absolute neuron count of

group/cluster intersection. Within cluster, groups are arranged in ascending order of the group fraction.

FIGURE 6 | Similarities and differences of rodent retinal ganglion cells

with other neurons within and across clusters. (A) All rodent retinal
ganglion cells together with blowfly tangential cells (cluster a) show highest
branching density along PC1 compared to others metadata groups. The
human basal pyramidal cell cluster (b) is highlighted for comparison. PC6
separates the tangential and ganglion cells, showing sub-cluster differences.
The retinal cells also show a pattern of increasing partition asymmetry with
increasing branching density. (B) Sample images of retinal ganglion cells

(top), blowfly tangential cells (middle), and human basal pyramidal cells
(bottom). NeuroMorpho.Org IDs of these neurons from left to right: 06464,
05352, 05405, 06652, 01895, 06640, 03723, 03724, 03722. (C) Rodent
ganglion cells have larger amplitude angles compared to human basal
pyramidal cells (and most other cell classes). (D) Rodent ganglion cells also
display shorter branch length, corresponding to higher branching density.
(E) The blowfly neurons, while sharing similar branch path length and
amplitude angles with the retinal cells, have higher topological asymmetry.
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stages (Figure 7). Specifically, neocortical pyramidal cells from
rodents (clusters c) and primates (cluster d) display a trend
of increasing branch tortuosity with increasing branch density
(Figure 7A). Visual examination of morphologies selected from
the corresponding clusters in the PC1-PC3 scatter plot demon-
strates a correspondence in the increase of branch density and
branch tortuosity (Figure 7B). The least tortuous trees, and many
of the primate neurons, are noted to be incomplete reconstruc-
tions, in which only dendrites proximal to the soma are traced. In
contrast, the dendrites of rodent neocortical pyramidal neurons
tend to be fully reconstructed in both apical and basal arbors.

CRITICAL ASSESSMENT OF POTENTIAL CONFOUNDS
In the course of the iterative process of data inspection, hypoth-
esis formulation, research design, and quantitative analysis, we
encountered numerous challenges pertaining to data valida-
tion, curation, and standardization across labs. After a prelim-
inary exploration of the entire content of NeuroMorpho.org,
we decided to include in our study only approximately half of
the available neurons. Specifically, we chose to avoid multi-lab
analysis of axons, because of the extreme dependence of axonal
morphology on experimental conditions. In our early analysis
attempt that did not segregate axons from dendrites, biological
findings became practically impossible to disentangle from major
artifacts. This selection effectively defines a standard of minimal
requirements for effectively comparing neural arbors.

Moreover, we excluded measures related to branch diameter
(branch power ratios, surface areas, occupied volume, etc.) due
to their strong sensitivity on the inter-laboratory variety of label-
ing or staining, imaging resolution or optical magnification, and
other experimental details affecting tracing conditions (Scorcioni
et al., 2004). Furthermore, most reconstructed cells originate
from preparations in acute brain slices (in vitro). In the primary

somatosensory region of rat neocortex (S1), this common prepa-
ration may result in trimming off more than 50% of the dendritic
arbor (Oberlaender et al., 2012). These slicing artifacts impact
larger brains to a greater extent, as reflected by the fact that human
cells are only represented by basal dendrites. In addition to species
differences, trimming effects also depend on animal age, slicing
thickness and orientation, and the depth of electrode penetration
in the tissue. For these reasons, when mining the cluster analy-
sis results, we paid particular attention to only report findings as
“biological” (Figures 6, 7) that were not based on size or any mor-
phometrics significantly affected by trimming artifacts. Instead,
we identified correlations based on measures such as branching
density, tortuosity, and branch angles, all of which have been
previously found to be consistent between in vitro and in vivo
preparations (Pyapali et al., 1998).

On the one hand, this judicious design allowed the indepen-
dent reproduction of findings reported in prior publications.
These included several cases of “split metadata groups” into
two morphological clusters, which reflected structural differences
related to the subject’s gender (Anderson et al., 2009) or devel-
opmental stage (Smit-Rigter et al., 2012). On the other hand,
experimental artifacts still contributed to clustering, and other
splits of metadata groups between two clusters (Table 3) revealed
differences likely due to staining protocol or slicing direction,
which were not recognized or discussed in the original reports
(Anderson et al., 1995; Soloway et al., 2002; Goldberg et al.,
2003; MacLean et al., 2005; Nikolenko et al., 2007; Woodruff
et al., 2009). Thus, database-wide analyses can reveal potential
confounds not easily pinpointed in individual studies.

One of the most common artifacts of tissue processing is
shrinkage, and this factor is also highly variable among labs.
Shrinkage differentially affects the slice planar and perpendic-
ular dimensions (the latter typically producing a larger effect).

FIGURE 7 | Rodent and primate cortical pyramidal cells show a distinct

linear relationship between PC1 and PC3. (A) The majority (71%) of cluster
c consists of rodent cortical pyramidal cells, whereas a similar proportion of
cluster d (72%) corresponds to primate pyramidal cells, which tend to be only
partially reconstructed. (B) Sample images of incomplete primate pyramidal

cells in the top row (1–4) and rodent cortical pyramidal cells in the bottom
(5–8). The numbers indicate their corresponding position in the cluster plot
illustrating the progressive increase in branching density and tortuosity in
both clusters. The NeuroMorpho.Org IDs of these neurons from left to right:
01821, 01526, 01627, 01623, 09630, 09474, 02569, 00266.
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Thinner slices tend to shrink more and so do preparations from
younger animals. The duration of the experimental procedure
may also impact shrinkage, as do the bathing and embedding
media. Shrinkage can be measured in all dimensions and it can
therefore be compensated for by multiplying the resulting posi-
tion coordinates by an appropriate correction factor. However,
this post-processing operation also exacerbates noise due to light
diffraction and other experimental errors. These sources of errors
tend to be larger in the direction corresponding to the depth
of the slice (“Z”), which is usually estimated through a piezo-
controller in the motorized stage. Moreover, shrinkage typically
varies both within and between sections, and an accurate cali-
bration therefore requires multiple repeated measurements that
add to the already demanding labor intensity of digital recon-
struction. For these reasons, shrinkage is not always measured,
reported or corrected for. This variability across published stud-
ies further worsens the numerous sources of differences due to
experimental processing.

In light of the above consideration, we specifically looked for
potential shrinkage-related confounds in the clustering results.
Out of 56 unique combinations of clusters, metadata groups,
and corresponding published articles, only 14 reported shrinkage
estimates or mentioned shrinkage altogether. Of those, a mere 5
applied the corresponding correction to the data. Unsurprisingly
given the limited sample, we found no statistically signifi-
cant association between both corrected or uncorrected values
and clustering. Next, we examined slicing thickness, which was
reported in 49 (out of 56) cases (with median 200 µm). Values
varied broadly from 80 to 400 µm, with 85% of them falling
between 120 and 350 µm. No statistical association was found
between clustering and these values. The lack of explicit shrink-
age information prevents firm conclusions and leaves open the
possibility that some of the findings we report may be ultimately
due to slicing artifacts. However, the low coefficient of variation
of measurements typically sensitive to shrinkage, especially tor-
tuosity and fractal dimension (Table 1), suggests that the noise
related to shrinkage (as opposed to that affecting size measures)
may affect most of the analyzed data to a similar degree.

Fully assessing the potential usefulness of the reported results
will require additional investigation. For example, morpholog-
ically detailed electrophysiological simulations might be use-
ful to explore how the observed relations between datasets
(Figure 6) or between morphological variables (Figure 7) could
affect input/output relationship of individual neurons (e.g.,
Scorcioni et al., 2004; Komendantov and Ascoli, 2009). Similarly,
the effect of these morphological relations on potential network
connectivity could be studied by embedding the digital recon-
structions in an appropriate three-dimensional model of the
surrounding neural tissue (e.g., Chiang et al., 2011; Ropireddy
and Ascoli, 2011). The continuous expansion of the available pool
of neuronal reconstructions will also enable the future validation
and refinement of these results with additional or independent
datasets.

DISCUSSION
This work illustrates how shared morphological data can lead to
new observations of potential neurobiological interest by enabling

statistical quantification of commonalities and differences among
neuron groups. However, our results also demonstrate the chal-
lenges of working with large-scale datasets from heterogeneous
sources, even after extensive effort in metadata curation and man-
agement as well as in data standardization and selection. Direct
analysis of selected morphometric features among large neuron
groups organized by the main metadata dimensions of species,
brain region, and cell type failed to reveal meaningful patterns
beyond the well-known variability of neuronal shape. At the same
time, systematic pairwise examination of all 45 neuronal groups
with distinct species, brain region, cell type, and lab of origin
for each of the 27 main morphological features would produce
more than 50,000 comparisons, raising questions of scientific
interpretation and statistical significance.

To overcome these issues, we adopted principal component
analysis to identify the most discriminant morphological fea-
tures throughout the dataset, and model-based cluster analysis to
segregate neuron groups solely on the basis of the morphomet-
ric characteristics. This approach allowed rigorous examination
of the statistical associations between clusters and metadata and
inspection of the most informative morphological measurements
on the basis of their principal component loadings. The results
revealed morphological differences between specific cell types
and animal species that were robust to lab provenance while
retaining considerable sensitivity to developmental stages and fine
regional location as well as to the original experimental condi-
tions. For example, neocortical pyramidal cells from rodents and
primates alike display a trend of increasing branch tortuosity with
increasing branch density (Figure 7A). This distinct relationship,
holding across different species, brain regions, and developmen-
tal stages, appears robust to slicing artifacts as demonstrated
by the co-alignment of both partially reconstructed and fully
reconstructed neurons (Figure 7B).

The primary features of dendritic morphology corresponded
to branching density, size, space filling, and bifurcation asymme-
try. Of these features, size is likely to be the most dramatically
impacted by differential trimming artifacts from brains of varying
size. Nevertheless, the most interesting biological findings were
based on branch- or bifurcation-level observations. Rodent reti-
nal ganglion cells stood out for their extreme branching density,
and clustered together with other neuron types involved in pri-
mary sensory processing as well as with developing pyramidal
cells from the somatosensory cortex of 6–9 day-old rat. Moreover,
the results also highlighted species differences within the same
cell types by differentiating retinal cells of rodent from those
of fish and amphibians. Specifically, ganglion cells have denser
branching and wider bifurcation angles in rodents than in non-
mammalian vertebrates (Figures 5B, 6, Table 2). This observa-
tion is based on pooling of mice and rats data from four different
labs in one cluster, and of fish and salamander from two different
labs in the other, and we failed to find any methodological reasons
that could explain these morphological differences.

Blowfly tangential sensory neurons are similar to the rodent
ganglion cells in many morphological features (e.g., low branch
path length, comparable fractal dimension, tortuosity, and arbor
planarity), possibly providing a geometric correlate for their sim-
ilar function in processing motion-sensitive visual information
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(Kong et al., 2005; Cuntz et al., 2008). Nevertheless, retinal
ganglion cells and blowfly tangential cells can also be neatly dis-
tinguished due to the much more asymmetric bifurcations of
the latter neurons (Figure 6A) relative to those of the former
(and of most typical neurons). Interestingly, cluster analysis also
suggested a linear relationship between topological asymmetry
and branching density in rodent retinal ganglion cells but not
in other groups, pointing to a previously unrecognized peculiar
morphological signature of this class only.

The branching density of mature cortical pyramidal cells,
in contrast, was at the opposite end relative to ganglion cells
(also demonstrating the effect of developmental changes) and
displayed a distinctive correlation with branch tortuosity. Adult
neocortex pyramidal cells represent the largest population in
NeuroMorpho.Org and come from a broad range of animals,
anatomical subregions, layers, and experimental conditions,
enabling certain morphological differentiations (e.g., rodent S1
vs. primate M1). Non-cortical neurons, including striatal, olfac-
tory, and others, were distinguished for the smaller size and larger
variability of their dendritic arbors.

Several recent investigations have adopted similar analysis
designs and strategies for dimensionality reduction, mainly for
the purpose of exploratory neuron type classification (e.g., Kong
et al., 2005; McGarry et al., 2010; Santana et al., 2013). Alternative
approaches to develop automated machine-learning classifiers for
identifying neuron types also promise to be effective for large data
sets. The present exploratory study used multivariate morpho-
metric analysis to identify the most informative morphological
features that distinguish between neuron groups organized by
their metadata. We predict that statistical morphometric mining
will also prove to be useful for developing quantitative hypothe-
ses and for designing computational models of dendritic growth.
At the same time, we discussed the considerable challenge of pool-
ing together data from disparate experimental conditions, and the
resulting analysis limitations.

Generation of standardized morphological data across labo-
ratories and research designs could yield much more powerful
large-scale data mining. In particular, we are convinced that bet-
ter clustering would result from more consistent data collection.
Systematic reliability assessment of experimental protocols can
maximize morphological reproducibility and minimize tracing
artifacts (e.g., Dercksen et al., 2014). Any such improvements
would also help refine cluster analysis by reducing variability.
Unfortunately, the arguably “ideal” experimental choices (in vivo
labeling, reconstructions at the resolution limit of light, system-
atic measurement and compensation of tissue shrinkage, serial
tracing across histological sections, etc.) also correspond to the
most labor-intensive conditions for manual or semi-manual mor-
phological reconstructions. This tension between quality, sample
size, and research cost underscores the need and desirability
of fully automated and broadly applicable tracing technologies
(Brown et al., 2011; Donohue and Ascoli, 2011).
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Based on regularities in the intrinsic microcircuitry of cortical areas, variants of a
“canonical” cortical microcircuit have been proposed and widely adopted, particularly in
computational neuroscience and neuroinformatics. However, this circuit is founded on
striate cortex, which manifests perhaps the most extreme instance of cortical organization,
in terms of a very high density of cells in highly differentiated cortical layers. Most other
cortical regions have a less well differentiated architecture, stretching in gradients from
the very dense eulaminate primary cortical areas to the other extreme of dysgranular
and agranular areas of low density and poor laminar differentiation. It is unlikely for
the patterns of inter- and intra-laminar connections to be uniform in spite of strong
variations of their structural substrate. This assumption is corroborated by reports of
divergence in intrinsic circuitry across the cortex. Consequently, it remains an important
goal to define local microcircuits for a variety of cortical types, in particular, agranular
cortical regions. As a counterpoint to the striate microcircuit, which may be anchored
in an exceptional cytoarchitecture, we here outline a tentative microcircuit for agranular
cortex. The circuit is based on a synthesis of the available literature on the local
microcircuitry in agranular cortical areas of the rodent brain, investigated by anatomical
and electrophysiological approaches. A central observation of these investigations is a
weakening of interlaminar inhibition as cortical cytoarchitecture becomes less distinctive.
Thus, our study of agranular microcircuitry revealed deviations from the well-known
“canonical” microcircuit established for striate cortex, suggesting variations in the intrinsic
circuitry across the cortex that may be functionally relevant.

Keywords: cytoarchitecture, intrinsic circuitry, interlaminar connectivity, striate cortex, structural variation

INTRODUCTION
The cerebral cortex is arguably one of the most complex physical
systems. Untangling the intricate relations of the myriad elements
of the gray matter is one of the formidable challenges of science,
as already pronounced by Santiago Ramon y Cajal:

“Devotion to the cerebral hemispheres, enigma of enigmas, was
old in me. . .the supreme cunning of the structure of the gray
matter is so intricate that it defies and will continue to defy
for many centuries the obstinate curiosity of investigators. That
apparent disorder of the cerebral jungle, so different from the
regularity and symmetry of the spinal cord and of the cerebellum,
conceals a profound organization of the utmost subtlety which is
at present inaccessible.” (Cajal, 1937)

Decades later, the picture has become more refined, but a
comprehensive understanding of the cortical microarchitecture
still remains a fundamental scientific challenge. A crucial step
was the recognition that the cerebral cortex is locally structured
into horizontal compartments (“layers”) as well as vertical units
(“columns”) which both may be of functional relevance. Tradi-
tionally, the isocortex has been characterized in the context of a
six-layered scheme (Brodmann, 1909; Vogt, 1910; von Economo,
2009), as opposed to three-layered allocortex. This scheme is,

however, subject to substantial variation in the relative promi-
nence of layers and disrupted in a considerable number of cortical
areas. Nonetheless, and in spite of his acknowledgment that “the
distinction of six layers can be both arbitrary and conventional”
(von Economo, 2009), already von Economo himself asserted
that “on practical grounds, we retain the six-layer division” (von
Economo, 2009). Indeed, the simplified concept of a uniformly
six-layered isocortex has prevailed (Zilles and Amunts, 2012) and
become generally accepted.

The radial organization of the cortex became a subject of
interest when vertical columns spanning all cortical layers were
proposed to exist (Lorente de Nó, 1949; Mountcastle, 1957),
with uniform columns repeating across the cortex to form an
intermediate-level neural substrate for information processing.
Within these columns, connectivity across cortical layers appeared
stereotypical (Szentagothai, 1978; Gilbert and Wiesel, 1983).
While there is still considerable debate about the existence, precise
definition and the extent of heterogeneity in the cellular composi-
tion of cortical columns (Rakic, 2008; da Costa and Martin, 2010;
Rockland, 2010; Smith, 2010a,b,c,d; Carlo and Stevens, 2013;
Herculano-Houzel et al., 2013), the concept of radial cortical
organization was later extended to the notion of a “canonical”
microcircuit (Douglas et al., 1989; Douglas and Martin, 1991,

Frontiers in Neuroanatomy www.frontiersin.org January 2015 | Volume 8 | Article 165 | 129

http://www.frontiersin.org/Neuroanatomy
http://www.frontiersin.org/Neuroanatomy/editorialboard
http://www.frontiersin.org/Neuroanatomy/editorialboard
http://www.frontiersin.org/Neuroanatomy/editorialboard
http://www.frontiersin.org/Neuroanatomy/about
http://www.frontiersin.org/Journal/10.3389/fnana.2014.00165/abstract
http://community.frontiersin.org/people/u/125355
http://community.frontiersin.org/people/u/18170
mailto:s.beul@uke.de
http://www.frontiersin.org/Neuroanatomy
http://www.frontiersin.org/
http://www.frontiersin.org/Neuroanatomy/archive


Beul and Hilgetag Microcircuitry of the agranular cortex

FIGURE 1 | (A) Cytoarchitectonic differentiation varies across the
cortex. This lateral view of the human brain shows broad variations in
granule cell presence as described by von Economo (2009). (B) Laminar
origin and termination patterns of extrinsic cortico-cortical connections
vary according to the relative architectonic differentiation of the
connected areas. Projection origins (terminations) shift from

infragranular to supragranular layers, as the source (target) area
becomes more strongly differentiated. This rule results in unilaminar
profiles for projections between areas that are unequal in their
differentiation, and multilaminar profiles for areas with more similar
differentiation. (A) adapted from von Economo (2009), (B) adapted from
Barbas and Rempel-Clower (1997).

2004), as a generic template of intrinsic cortical circuitry. The
computations performed by such a fundamental neuronal circuit
are thought to be prescribed by the intrinsic circuitry within a
cortical column, with functional specificity added by patterns of
axonal inputs and outputs to and from the column. Substan-
tial work has been devoted to the computational performance
and theoretical properties of the “canonical” microcircuit (e.g.,
Douglas et al., 1989, 1995; Haeusler and Maass, 2007; George
and Hawkins, 2009; Haeusler et al., 2009; Wagatsuma et al., 2011;
Bastos et al., 2012; Habenschuss et al., 2013). In the primate
prefrontal cortex, the “canonical” microcircuit was shown to be
subject to modifications from the striate circuit (Heinzle et al.,
2007; Godlove et al., 2014). More generally, abundant data is
available on variants of intrinsic connectivity in cortical regions
such as prefrontal cortex (Melchitzky et al., 2001), somatosen-
sory cortex (Lübke and Feldmeyer, 2007; Petersen, 2007; Lefort
et al., 2009; Feldmeyer et al., 2013) or auditory cortex (Barbour
and Callaway, 2008; Oviedo et al., 2010; Watkins et al., 2014).
Nonetheless, the notion of a “canonical” microcircuit, which has
gained popularity especially in the computational neuroscience
community and has also inspired neuroengineering solutions
(e.g., Merolla et al., 2014), is still largely based on work in
one particular cortical area, striate cortex. Moreover, much of
this work has concentrated on the cat and non-human primate
brain (Douglas and Martin, 2007a). Striate cortex is not only
special in the amount of probing it has undergone, but is also
exceptional in its cytoarchitectonic differentiation. Striate cortex
is the cortical region with the highest neuron density, sporting
numbers substantially higher than the remainder of the cortex
(Schüz and Palm, 1989; Collins et al., 2010; Cahalane et al.,
2012; Herculano-Houzel et al., 2013). The number of (sub)layers
that can be identified is also higher in striate cortex than in
other regions of the cortex. Instead of all parts of the cortex
being uniformly differentiated, cytoarchitectonic differentiation

changes gradually across the cortex (Sanides, 1970; von Economo,
2009; Zilles and Amunts, 2012), as illustrated in Figure 1A for
the human brain. The spectrum of differentiation ranges from
striate cortex, the most clearly eulaminate area, to agranular areas
that lack the inner granular layer (L4), and have few identifi-
able sublayers as well as very low neuron density. In between
these two extremes, one can find areas that are still eulaminate,
but without the remarkable clarity of differentiation or dense
packing of neurons found in striate cortex, such as prestriate
cortex, as well as dysgranular areas with a lower density of
neurons, a dissolving inner granular layer and fewer identifi-
able sublayers. Quantitative differences in many aspects of the
structural organization of cortical tissue have been extensively
demonstrated (e.g., Beaulieu and Colonnier, 1989; Defelipe et al.,
1999; Dombrowski et al., 2001; Yáñez et al., 2005; Collins et al.,
2010).

The variation in local cortical structure needs to be taken
into account when describing a “canonical” microcircuit, because
it is unlikely for the patterns of inter- and intra-laminar con-
nections to be uniform in spite of strong variations of their
structural substrate. Indeed, experimental results, for example
from rodent barrel cortex, demonstrate that intrinsic connec-
tivity is not uniform across the cortex (Sato et al., 2008;
Meyer et al., 2013; Reyes-Puerta et al., 2014). Heterogeneity in
cytoarchitectonic differentiation has been shown to have con-
sequences for other aspects of structural connectivity in the
brain. The laminar patterns of extrinsic connections which link
brain regions along white matter pathways are strongly asso-
ciated with the relative cytoarchitectonic differentiation of the
connected areas (Barbas, 1986; Barbas and Rempel-Clower, 1997;
Medalla and Barbas, 2006; Hilgetag and Grant, 2010; Beul et al.,
2014). The stereotypic laminar patterns that have been found
in non-human primate and cat cortex (Figure 1B) show dis-
tinctly infra- and supragranular origins and terminations for
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projections between areas of weak differentiation and areas of
strong differentiation, while these patterns change gradually
towards multilaminar origin and termination profiles as the dif-
ference in differentiation between the connected areas becomes
less pronounced.

Since the variation of cytoarchitectonic differentiation is an
aspect of cortical organization that is insufficiently considered in
discussions of intrinsic circuitry, we here want to raise awareness
of the importance of architectonic differences, by providing a
first approximation of general features of intrinsic circuitry in
agranular regions of the cerebral cortex. We do this by assimilating
information from the available literature on inter- and intralam-
inar connectivity in the agranular frontal cortex of the rodent
brain, in order to present a tentative model of intrinsic circuitry
in cortical regions on the opposite end of the differentiation
spectrum than has previously been predominantly considered for
such models. This variation is crucial for applying insights gained
from such model circuits in a realistic way, for example in the
biological grounding of in silico experiments (e.g., Merolla et al.,
2014).

In the following review, we briefly introduce current accounts
of the “canonical” microcircuit, and then highlight a report of
experimental results that reveal variation in interlaminar inhi-
bition across cortical regions of distinct cytoarchitecture (Kätzel
et al., 2011). Subsequently, we present the result of the literature
survey we performed regarding data that can shed light on the
intrinsic microcircuitry in agranular cortex. We chose to concen-
trate on the rodent brain, capitalizing on the relative abundance
of experimental data available for this popular animal model. In
comparison, fewer studies report on intrinsic circuitry in non-
human primates, and only a small proportion of those considered
agranular cortical regions, which are relatively infrequent in the
primate brain. By focusing on the rodent brain, we can therefore
provide a more detailed sketch of the intrinsic circuitry in agranu-
lar cortex without having to incorporate data across a wide range
of species, which would have been a more uncertain approach.

INTRINSIC CIRCUITRY IN GRANULAR CORTEX
Over the last decades, general features of intrinsic circuitry in
striate cortex have emerged from studies in the cat and non-
human primate. Connections are proposed to form a process-
ing loop across cortical layers, where recurrent excitation and
inhibition are interlinked, which leads to amplification of inputs
into the cortical column and appropriate modulation of the
ensuing activity (Markram et al., 2004; Douglas and Martin,
2004, 2007a; Bannister, 2005; Lübke and Feldmeyer, 2007). To
probe the local microcircuitry, diverse experimental methods with
different degrees of sensitivity and reliability have been used. Two
investigations that supplied the most comprehensive data on cat
striate cortex employed electrophysiological and morphological
approaches, respectively. Thomson et al. (2002) used dual intra-
cellular recordings to characterize synaptic connections across
cortical layers. Binzegger et al. (2004) reconstructed the morphol-
ogy of neurons in striate cortex in three dimensions and estimated
the number of synaptic contacts between different cell types. Both
data sets have been adapted and used in various studies, for exam-
ple, in the construction of computational models (e.g., Haeusler

and Maass, 2007; Haeusler et al., 2009; Bastos et al., 2012; Du et al.,
2012; Potjans and Diesmann, 2014). But even though the same
model system, cat striate cortex, was considered across these stud-
ies, there currently exists no definite scheme of this area’s intrinsic
circuitry. There are, for example, diverging data on whether
recurrent excitation occurs between L3 and L5 or between L4 and
L3 (cf. Thomson et al., 2002; Thomson and Bannister, 2003 and
Binzegger et al., 2004; Douglas and Martin, 2004).

Such discrepancies may be reconciled by future experimen-
tal findings. In contrast, reports of differences in interlami-
nar activation patterns across cortical regions point towards
the existence of genuine variations in intrinsic circuitry across
the brain. Kätzel et al. (2011) used genetically targeted pho-
tostimulation to comprehensively map inhibitory-to-excitatory
connectivity in three distinct regions of mouse cortex. They
assessed intra- and interlaminar connectivity in striate cor-
tex, primary somatosensory and primary motor cortex. As
mentioned before, striate cortex is by far the most differen-
tiated cortical region, even in the rodent brain (Herculano-
Houzel et al., 2013), where it is less well differentiated than
for example in the primate. Primary somatosensory cortex,
although still clearly eulaminate, is already much less dense
and comprises fewer distinguishable sublayers, while primary
motor cortex is even less cytoarchitectonically differentiated
(Collins et al., 2010; Herculano-Houzel et al., 2013). Primary
motor cortex thus ranges in the lower end of the differenti-
ation spectrum with dysgranular cortical regions, although it
is sometimes classified as agranular (lacking an inner granu-
lar layer, L4): see Shipp (2005) and García-Cabezas and Bar-
bas (2014) for an extensive discussion of this issue. Other
than probing connectivity in three cortical regions process-
ing different modalities, this study can, therefore, be used to
demonstrate potential differences regarding intrinsic circuitry
in three areas occupying different positions in the differen-
tiation spectrum. While Kätzel et al. (2011) report relatively
uniform patterns of intralaminar inhibition across these three
cortical regions, interlaminar inhibitory-to-excitatory connectiv-
ity differed substantially (Figure 2). In striate cortex, consid-
erable interlaminar inhibition was observed between all layers
(L2/3, L4, L5/6). In primary somatosensory cortex, a similar
pattern of interlaminar inhibition was reported, but without
inhibition between L2/3 and L5/6. In primary motor cortex,
in contrast, no substantial inhibition between L2/3, L4, and
L5/6 was evident. Thus, across the three sampled regions, inter-
laminar inhibitory-to-excitatory connectivity was progressively
weaker in less cytoarchitectonically differentiated areas. Inter-
preting the results this way, we assume that they reflect gen-
uine variation in the presence of interlaminar inhibition, and
not the impact of other aspects of structural variation across
the studied areas. For example, systematic differences in cellu-
lar morphology across the sampled areas could lead to skewed
results from applying the same measurement approach to all
areas. Nonetheless, these observations support the notion that
intrinsic circuitry cannot be uniform in the face of considerable
variation of the structural substrate, as is the case in regions of
the cerebral cortex with profoundly differing cytoarchitectonic
differentiation.
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FIGURE 2 | Interlaminar inhibition varies across mouse cortex.
As cytoarchitectonic differentiation becomes weaker, the abundance
of interlaminar inhibitory-to-excitatory connectivity decreases. By
contrast, intralaminar connectivity, including intralaminar inhibition,
appears relatively unchanged (Intra-laminar connections, which are

all-to-all, are not shown). Column colors follow the color coding of
cytoarchitectonic differentiation in Figure 1: yellow-weakly
differentiated cortex to dark green-strongly differentiated cortex.
Adapted by permission from Macmillan Publishers Ltd: Kätzel
et al. (2011).

TENTATIVE INTRINSIC CIRCUITRY OF THE AGRANULAR
CORTEX
Figure 3 summarizes our review of the available literature on
intrinsic interlaminar circuitry in the agranular frontal cortex
of the rodent brain and puts it in comparison to a recent
rendering of the intrinsic circuitry in striate cortex. Excitatory-
to-excitatory connections from L2/3 to L5 have clearly been
demonstrated in rat agranular frontal cortex by measuring exci-
tatory postsynaptic currents (EPSC) in monosynaptically cou-
pled pyramidal neurons in L5, induced by stimulation in L2/3
(Kang, 1995; Otsuka and Kawaguchi, 2008, 2009, 2011; Hirai
et al., 2012). One of these paired recording studies (Otsuka
and Kawaguchi, 2009) additionally demonstrated the existence
of excitatory-to-inhibitory connections from L2/3 to L5, a find-
ing also reported by Apicella et al. (2012) in mouse motor
cortex. The experiments of Hirai et al. (2012) showed that
reciprocal connections to the excitatory-to-excitatory connec-
tions from L2/3 to L5 exist from L5 pyramidal cells to L2/3
pyramidal cells. This observation is confirmed in medial entorhi-
nal cortex of the rat (van Haeften et al., 2003), which can
be considered agranular since its layer IV (“lamina dissecans”)
is mainly acellular (Andersen et al., 2007). The microscopy
study of van Haeften et al. (2003) traced the processes of
pyramidal cells in the deep layers ramifying in superficial lay-
ers, and identified the synaptic contacts made by those neu-
rons. The analysis revealed excitatory-to-excitatory, as well as
excitatory-to-inhibitory, connections from deep to superficial
layers.

Considering the trend of weakening inhibitory-to-excitatory
connectivity in cytoarchitectonically less differentiated areas
(Kätzel et al., 2011, see above), we consider it likely that there
exists no substantial interlaminar inhibition of excitatory neu-
rons in rodent agranular frontal cortex, which is reflected in
our tentative circuit diagram. The study by van Haeften et al.

(2003) in medial entorhinal cortex, which reports an absence of
inhibitory-to-excitatory synapses from deep to superficial layers,
supports the same conclusion. Van Haeften et al. furthermore
report that only a small percentage of the observed synapses
could potentially be classified as inhibitory-to-inhibitory, thus
giving little evidence for such a connection from deep to super-
ficial layers. Considering the reciprocal inhibitory-to-inhibitory
connection from superficial to deep layers, we could find no
studies reporting either on the absence or presence of such a
connection. In the circuit diagram (Figure 3), we did not include
connections which could only be inferred from exclusively mor-
phological results (e.g., Kawaguchi, 1993, 1995; Kawaguchi and
Kubota, 1997; Kubota et al., 2011), since we did not consider data
on the spatial spread of axon collaterals sufficiently reliable to
demonstrate a functional connection, given that synapse forma-
tion has been shown to be highly specific (e.g., Kozloski et al.,
2001; Brown and Hestrin, 2009). For these reasons, Figure 3B
indicates no inhibitory interlaminar connections, although the
validity of this assessment of course remains contingent upon
further experimental data.

By contrast, there is abundant evidence for rich intralaminar
connectivity including excitatory-to-inhibitory and inhibitory-
to-excitatory connections (Kang, 1995; Somogyi et al., 1998;
Kawaguchi and Kondo, 2002; Barthó et al., 2004; Otsuka
and Kawaguchi, 2009; Fino and Yuste, 2011; Kätzel et al.,
2011). Therefore, we assumed a stereotypical pattern of con-
nectivity within deep and superficial layers as illustrated in
Figure 3B.

The intrinsic circuitry we have sketched here thus com-
prises interlaminar excitatory connections that connect neuronal
populations from both upper and lower layers to excitatory
as well as inhibitory neuron populations in the complemen-
tary cortical layers. Within upper and lower layers, intralami-
nar connections reciprocally connect excitatory and inhibitory
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FIGURE 3 | (A) Intrinsic circuitry in granular cat striate cortex. Adapted
from Potjans and Diesmann (2014) who largely based their diagram on
Binzegger et al. (2004). (B) Tentative scheme of intrinsic circuitry in
agranular rodent frontal cortex. Intralaminar connectivity in agranular

cortex is similar to that in granular cortex, but interlaminar connectivity
differs. Column colors follow the color coding of cytoarchitectonic
differentiation in Figure 1: yellow-weakly differentiated cortex to dark
green-strongly differentiated cortex.

neuron populations. This intrinsic interlaminar circuitry is strik-
ingly similar to the simplified original circuit diagram for the
striate cortex of Douglas et al. (1989), and allows for recur-
rent excitation and inhibition. These physiological interactions
were inferred to underlie essential computational mechanisms
in striate cortex (Douglas et al., 1995; Douglas and Martin,
2007b, 2009). The microcircuitry as we sketch it here should
accordingly be able to support elemental neural functions, such
as the amplification of weak inputs through positive feed-
back or gain control and signal normalization through negative
feedback.

DISCUSSION
The starting question of this review was whether there exists a
generic template of intrinsic microcircuitry in the cortex, despite
pronounced regional differences in cytoarchitectonic organiza-
tion. The answer depends strongly on how broadly the concept of
stereotypy is framed (Silberberg et al., 2002), but even for the cor-
tical region studied most intensely in this context, striate cortex,
there exists as yet no consensus on a detailed “canonical” micro-
circuit. Moreover, differences in circuitry have been reported
across the cortex, which are consistent with the changes in the
structural substrate in which intrinsic connectivity is embedded.
In order to account for these structural differences, we propose
a tentative circuit diagram for the agranular frontal cortex of the
rodent brain, an agranular region which is strikingly opposed to
striate cortex in its cytoarchitectonic organization. Our review of
the existing literature points to an intrinsic circuit that features
excitatory-to-excitatory and excitatory-to-inhibitory connections
from upper layers to lower layers, as well as from lower layers to
upper layers (Figure 3B), but shows no interlaminar inhibitory-
to-inhibitory or inhibitory-to-excitatory connections. This circuit

is based on multiple approaches for structural and functional
circuit investigation (such as electrophysiological paired record-
ings using microstimulation, anatomical tracing experiments, or
examination of morphological features using light and electron
microscopy), with different caveats and varying levels of reli-
ability. Importantly, the information was drawn from studies
whose primary goal was not necessarily the characterization of
interlaminar circuitry. Our circuit diagram is therefore subject to
debate and should be modified in the light of future information.
In compiling the circuit diagram, we engaged in some common
simplifications regarding the anatomical substrate in which the
connections are placed. In studying intrinsic circuitry, distinct
sublayers are often collapsed, as for example when layers 5A,
5B and 6 are considered collectively as “infragranular” layers.
This treatment may be misleading, since different (sub)layers
have been shown to be involved in distinct processing circuits
(for example, Lübke and Feldmeyer, 2007). The same caveat
holds for the merging of diverse neuron types into the two main
classes of inhibitory and excitatory neurons. It discards a wealth
of functionally relevant information about morphological and
physiological differences between neuron types, as well as about
cell type specific connectivity (Kozloski et al., 2001; Silberberg
et al., 2002; Thomson and Bannister, 2003; Kampa et al., 2006;
Otsuka and Kawaguchi, 2008, 2009, 2011; Brown and Hestrin,
2009; Xu and Callaway, 2009; Apicella et al., 2012; Hirai et al.,
2012). Not to disambiguate such significant anatomical features
introduces additional uncertainty about the validity of any intrin-
sic circuit diagram. Moreover, note that a description of general
layer-to-layer connectivity within a column, as we propose here,
does not necessarily reflect synaptic circuits formed by individual
neurons across layers, as, for example, Binzegger et al. (2004) have
estimated. Thus, there may exist functionally relevant differences
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between the average laminar interconnections described here
and the specific laminar microcircuits formed within these aver-
age patterns. A further dimension that is missing from many
descriptions of local microcircuitry is an estimation of connection
strength. However, with current technology, structural measures
of strength, such as the frequency of connections from one cell
type onto another or the number of involved synapses and their
morphology, can only be obtained by arduous manual labor.
Moreover, the translation of structural into functional strength,
as expressed by the amplitude of evoked postsynaptic currents, is
opaque: number, size, morphology and position of synapses mat-
ter, as do numerous molecular mechanisms regulating synaptic
function at both the pre- and postsynaptic site. In addition, the
impact of evoked currents on postsynaptic cell function depends
on many further factors. All these aspects are not static, but
can potentially change on short time scales (Squire et al., 2008;
Buonomano and Maass, 2009; Dityatev et al., 2010; Eroglu and
Barres, 2010; Silver, 2010; Ribrault et al., 2011; Arnsten et al.,
2012; Camiré and Topolnik, 2012; Caroni et al., 2012; Cortés-
Mendoza et al., 2013; Dallérac et al., 2013; Vitureira and Goda,
2013; Chevaleyre and Piskorowski, 2014).

Although the proposed intrinsic circuitry for agranular cortex
is still speculative, the issue we address remains crucial (Marcus
et al., 2014). There has to be variation in intrinsic circuitry across
the cerebral cortex, because the composition of the cortex is
not uniform, but highly variable on a number of dimensions.
We are convinced that a better understanding of the intrinsic
cortical circuitry is essential for an improved comprehension of
its physiology, and has to take into account differences in the
cortical structural substrate. We hope that we have provided a
starting point for discussion which will lead to the synthetization
of new insights from available data or further experimental efforts
to elucidate circuitry outside of striate cortex, taking structural
variation into consideration.
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Sensory-evoked signal flow, at cellular and network levels, is primarily determined by
the synaptic wiring of the underlying neuronal circuitry. Measurements of synaptic
innervation, connection probabilities and subcellular organization of synaptic inputs are
thus among the most active fields of research in contemporary neuroscience. Methods to
measure these quantities range from electrophysiological recordings over reconstructions
of dendrite-axon overlap at light-microscopic levels to dense circuit reconstructions of
small volumes at electron-microscopic resolution. However, quantitative and complete
measurements at subcellular resolution and mesoscopic scales to obtain all local and
long-range synaptic in/outputs for any neuron within an entire brain region are beyond
present methodological limits. Here, we present a novel concept, implemented within an
interactive software environment called NeuroNet, which allows (i) integration of sparsely
sampled (sub)cellular morphological data into an accurate anatomical reference frame of
the brain region(s) of interest, (ii) up-scaling to generate an average dense model of the
neuronal circuitry within the respective brain region(s) and (iii) statistical measurements of
synaptic innervation between all neurons within the model. We illustrate our approach
by generating a dense average model of the entire rat vibrissal cortex, providing the
required anatomical data, and illustrate how to measure synaptic innervation statistically.
Comparing our results with data from paired recordings in vitro and in vivo, as well as with
reconstructions of synaptic contact sites at light- and electron-microscopic levels, we find
that our in silico measurements are in line with previous results.

Keywords: Peters’ rule, barrel cortex, cortical column, thalamus, axon, dendrite

INTRODUCTION
One of the major challenges in neuroscience is to relate results
from structural and functional measurements across multiple
spatial scales. Current anatomical approaches either provide
information of synaptic connectivity at macroscopic, i.e., between
brain regions (e.g., using bulk injections of retro/anterograde
agents, Oh et al., 2014), mesoscopic, i.e., between cell types (e.g.,
using transgenic animal models, Wickersham et al., 2007), micro-
scopic, i.e., between small numbers of individual neurons (e.g.,
using multi-electrode recordings in acute brain slices in vitro,
Feldmeyer et al., 1999; Perin et al., 2011) or nanoscopic scales, i.e.,
reconstructing synaptic contact sites within small volumes (e.g.,
using electron microscopy in dense, Briggman et al., 2011, or
sparsely labeled tissue, Schoonover et al., 2014). While all of these
approaches provided important structural information about the
neuronal circuitry, results obtained at different scales (and often
even at the same scale when obtained by different methods) are
largely incompatible. This prevents from generating wiring dia-
grams that provide quantitative and complete information of the

number and subcellular location of all synaptic in/outputs for any
neuron within and across brain areas (commonly referred to as
“dense connectome”).

At present, methods that allow for measurements of synap-
tic connectivity at sufficiently high resolution (i.e., (sub)cellular
levels) can be grouped into three main categories: First, electro-
physiological approaches determine connectivity between pairs
(or small numbers) of neurons using simultaneous patch-
clamp recordings (e.g., Feldmeyer et al., 1999; Lefort et al.,
2009), or combinations of single neuron recordings with opti-
cal stimulation, such as glutamate uncaging (Callaway and Katz,
1993; Schubert et al., 2007) or channelrhodopsin-assisted cir-
cuit mapping (Petreanu et al., 2009). Often, these approaches are
combined with labeling the recorded neurons, allowing for recon-
struction of the respective soma locations, dendrite morphologies
and putative contact sites at light-microscopic levels (Feldmeyer
et al., 1999, 2002; Sun et al., 2006; Frick et al., 2008; da Costa
and Martin, 2011). Paired recording/reconstruction approaches
are however limited to acute brain slices in vitro, where slice
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thicknesses of 300 μm result in substantial cutting of dendrites
(Oberlaender et al., 2012a) and axons (Oberlaender et al., 2011),
limiting these measurements to close-by neurons.

Second, electron-microscopic approaches, such as serial block
face scanning (SBFSEM, Denk and Horstmann, 2004) or ion-
beam techniques (Merchan-Perez et al., 2009), allow for auto-
mated imaging of small tissue volumes containing sparse (Lang
et al., 2011) or densely labeled (Briggman et al., 2011) neu-
ronal structures. Whereas technical issues of these microscope
systems, which currently prevent from imaging larger volumes
(e.g., an entire cortical column), may be overcome in the near
future (Mikula et al., 2012), annotation and reconstruction of
the rapidly increasing image data renders as the major bottle-
neck, limiting these approaches to tissue samples of at most 0.5×
0.5× 0.5 mm3 (Helmstaedter, 2013). Despite great progress in
automated tracing (Kim et al., 2014), crowd sourcing of man-
ual annotation (Helmstaedter et al., 2011) and combinations of
manual and automated tools (Takemura et al., 2013), genera-
tion of complete dense connectomes (i.e., wiring diagrams that
specify all in/outputs to a neuron) will require reconstructions of
entire brain areas, spanning volumes of several cubic millimeters
to centimeters, spatial scales that are multiple orders of magnitude
beyond the present limits of these techniques.

Third, statistical approaches allow to determine cell type-
and/or location-specific connectivity patterns by measuring
structural overlap between reconstructed axons and dendrites of
individual (Lubke et al., 2003) or bulk-labeled neurons (Meyer
et al., 2010). Such approaches are commonly referred to as appli-
cation of Peters’ rule (White, 1979), but the validity of predicting
synaptic connectivity by axo-dendritic overlap remains contro-
versial (Mishchenko et al., 2010). The primary reason for this
controversy arises from the fact that to date a quantitative and
coherent framework to measure structural overlap is missing.
Specifically, Peters’ rule is often misinterpreted in a binary fash-
ion, namely if dendrites and axons of two neurons overlap within
a certain volume, it is assumed they are connected (Brown and
Hestrin, 2009). In contrast, if dendrites and axons do not over-
lap, there will be no contact, the strongest implication from this
approach. However, independent of the spatial scale at which the
overlap is measured, within the respective overlap volume, den-
drites and axons from other (unstained) neurons will be present
and are equally likely to be connected to the stained neurons.
Thus, overlap can never be assumed as evidence for a connection,
but has to be interpreted as a probability for a connection with
respect to all present neurons instead.

Here, we present a novel approach, implemented within an
interactive software environment called NeuroNet (NN), which
formulates a coherent framework to measure structural over-
lap between two neurons, yielding connection probabilities with
respect to all neurons present in the overlapping volume. This
quantitative version of Peters’ rule requires generation of an aver-
age dense model of the neuronal circuitry; dense referring to the
fact that every neuron within the model of the brain structure
of interest (i) has to be distributed according to measured 3D
soma distributions, (ii) is represented by a complete 3D recon-
struction of soma/dendrites/axon found at the respective location
and (iii) contains information of cell type, as well as subcellular

distributions of dendritic spines, diameters and axonal boutons
(Figure 1A). NN allows integrating such anatomical data into a
common reference frame that describes the average geometry, as
well as its variability across animals, of the brain region(s) of
interest (Figure 1B). Within the resolution of the reference frame,
NN further allows to calculate synaptic innervation between any
two neurons in the model, always taking all other neurons within
the respective overlap volumes into account (Figure 1C). The
resultant dense “statistical” connectome yields pairwise connec-
tion probabilities, numbers of putative synaptic contacts and
subcellular synapse distributions for all neurons within an entire
brain region, allowing for comparison of these in silico measure-
ments with electrophysiological, light- and electron-microscopic
data.

We illustrate our approach using the vibrissal part of rat
primary somatosensory cortex (i.e., barrel cortex, vS1), present
the required anatomical data and compare our in silico mea-
surements of cell type-specific local (i.e., within a layer 4 (L4)
barrel) and long-range (i.e., between thalamus and L4, L5, and
L6 in vS1) innervation with previous results. Because our in sil-
ico measurements match previous in vitro/vivo data, we conclude
that our concept of generating an average dense network model
and providing a coherent framework to calculate Peters’ rule in
terms of innervation probabilities is an accurate alternative to any
currently available connectivity mapping method. In addition,
our approach now opens the possibility to investigate location-
specific differences of connectivity within a population, as well as
presence of higher-order connectivity patterns within and across
cell types.

METHODS
DESIGN OF NeuroNet SOFTWARE
The interactive software environment NN is implemented as
an extension package for the Amira visualization software (FEI-
Visualization Sciences Group, 2014), allowing for 3D visualiza-
tion of anatomical input data, dense neuronal networks and
synaptic connectivity measurements (Dercksen et al., 2012).
NN comprises three major building blocks. First, the interface
between NN and the anatomical input data is implemented as
a NeuralNetworkSpecification data object. The user creates such
a data object as a first step (initialized as an empty network)
and loads all required input data (see specifications of data and
format below). The NeuralNetworkSpecification object encapsu-
lates all required anatomical data and can be saved to disk.
Second, a network assembly module called NeuronDistributor
takes the NeuralNetworkSpecification object as its input, integrates
all anatomical data and performs an up-scaling operation to gen-
erate an average dense model of the network. The output of the
NeuronDistributor module is a SpatialGraphSet data object, con-
taining a list of transformed morphologies with an associated cell
type. This SpatialGraphSet can be saved to disk. Third, a connec-
tivity computation module called NeuralNetworkAnalyzer takes
as input the NeuralNetworkSpecification and the SpatialGraphSet
to calculate axo-dendritic overlaps between individual neu-
rons. This compute module offers a query interface and
selection/visualization options. The output generated by the
NeuralNetworkAnalyzer includes a dense statistical connectome
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FIGURE 1 | Generating dense statistical connectomes. (A) Generating a
dense statistical connectome of a brain or brain region requires a
standardized 3D reference frame of this brain region. The reference frame is
used to register all anatomical data obtained from different experiments to a
common coordinate system. Anatomical data to be collected from the brain
region of interest: Number and 3D distribution of excitatory and inhibitory
neuron somata; 3D reconstructions of representative samples of dendrites
and axons of excitatory and inhibitory neuron cell types; determination of
postsynaptic target densities, e.g., spine densities and dendrite surfaces, and

presynaptic bouton densities for excitatory and inhibitory neuron cell types.
(B) Anatomical data are assembled into a complete 3D network model. First,
based on their 3D location, excitatory and inhibitory neuron somata are
assigned to different anatomical substructures of the brain regions and to cell
types. Next, somata of all cell types are replaced with dendrite and axon
morphologies of the respective cell types. (C) Innervation from neuron i to
neuron j is computed in 3D at a resolution determined by the anatomical
variability of the 3D reference frame. This computation takes all possible
postsynaptic targets of neuron i in addition to neuron j into account.
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as represented by an innervation matrix Iij (for all selected neu-
ron pairs i and j), as well as aggregate statistics about cell type-
and location-specific connectivity, such as the convergence, diver-
gence, connection probabilities, average number of synapses per
cell or per cell type, and information about the number of neu-
rons per cell type. These data can be saved as AmiraMesh tables or
text files.

All routines of NN are implemented in C++ and the soft-
ware is available for download online at http://www.zib.de/
software/neuronet, including a manual for installation/usage and
an exemplary dataset for testing the software. Downloads are
available for Windows and Linux operating systems. NN sup-
ports multi-threaded computation using the OpenMP libraries.
Computations presented in the Results section were performed
on a desktop computer with 8 CPUs and 48 GB RAM. Hardware
requirements depend on the size (number of neurons, den-
dritic/axonal lengths) of the neuronal network. For example,
calculating connectivity between thalamus and all excitatory neu-
rons within a single cortical column required memory of∼12 GB
RAM. Instead, for networks containing several hundreds of thou-
sands of neurons (e.g., for entire vS1), we recommend a compute-
server with at least 64 CPUs and 500 GB RAM.

ANATOMICAL INPUT DATA
Mandatory anatomical input data to NN comprise: 1. a stan-
dardized 3D reference frame, 2. 3D distributions of excitatory
and inhibitory neuron somata, 3. representative samples of cell
type-specific complete 3D morphological reconstructions and 4.
measurements of cell type-specific subcellular distributions of
soma/dendrite surface areas, dendritic spines and axonal bou-
tons. In the following we introduce the formats for presenting the
respective data to NN, provide example datasets for rat vS1 and
review methodological approaches that allowed generating these
example datasets (all anatomical data used in the Results sec-
tion were acquired using experimental procedures carried out in
accordance with the animal welfare guidelines of the Max Planck
Society).

Standardized 3D reference frame
The most important prerequisite to assemble average dense mod-
els of the neuronal circuitry is the definition of a standardized
3D reference frame that allows integration of anatomical data
obtained from many animals. In general, the reference frame
describes the 3D geometry of the brain region(s) of interest in
terms of anatomical landmarks. Further, it specifies the variabil-
ity of these landmarks across animals, which serves as a resolution
limit of the average circuit model. More specifically, the 3D ref-
erence frame has to describe (i) the boundaries of the brain
region(s) of interest, (ii) anatomical substructures within these
regions, and (iii) a global and/or multiple local coordinate sys-
tems. The latter reflects the general scenario that brain areas have
irregular and/or curved boundaries and sub-structures.

In case of rat vS1, the 3D reference frame has been gener-
ated by reconstructing the pial surface of entire rat cortex, the
white matter tract (WM) and the circumferences of 24 corti-
cal barrel columns (i.e., each representing one of the large facial
whiskers on the animal’s snout, Woolsey and Van der Loos, 1970),

using high-resolution 3D images of the left hemisphere of Wistar
rats at an age of 28 days (Egger et al., 2012). Repeating these
reconstructions for 12 animals of the same strain and age, we
superimposed all geometries using rigid transformations, mini-
mized the distances between the respective center locations of the
24 barrel columns and calculated the average column center loca-
tions, column diameters and orientations, as well as the average
3D surfaces of the pia and WM above and below vS1, respectively
(Figure 2A). The column centers are given with respect to a global
coordinate system, where the z-axis is defined as the shortest
perpendicular axis between the center of the barrel column rep-
resenting the D2 whisker and the pial surface above the column.
The x-axis points from the D2 center toward the center of the first
adjacent rostral column (i.e., along the whisker row toward D3).
The y-axis points approximately toward the first adjacent caudal
column (i.e., along the whisker arc toward C2).

Because the pial and WM surfaces are curved, the orienta-
tion of each barrel column is tilted with respect to the (D2)
z-axis. Therefore, we determined 23 additional local coordinate
systems (i.e., for each barrel column), using the same approach
used to determine the global D2 coordinate system. The final
standardized reference frame of rat vS1 thus comprises the aver-
age pial and WM surfaces, 24 column center coordinates and
diameters with respect to the global D2 coordinate system and
24 z-axes, representing local coordinate systems that define the
orientation of each barrel column within the curved cortex. We
further determined the variability of these anatomical landmarks
across animals. The standard deviations (SDs) of the column
center locations were on average ∼90 μm, of the pia-WM dis-
tances ∼100 μm and of the column orientations ∼4.5 degrees
(Egger et al., 2012). Thus, the geometry was remarkably preserved
across animals and we defined the resolution limit of our average
network model accordingly as 50 μm. Consequently, the volume
comprising the standardized reference frame of rat vS1 was super-
imposed with a grid of 50× 50× 50 μm3 voxels and a local z-axis
was calculated for each voxel by interpolating from the respective
nearest barrel column axes.

The 3D reference frame of rat vS1 is presented to NN as
follows: (1) A spreadsheet (csv file) contains information about
the barrel column geometries with respect to the global coor-
dinate system, i.e., the 3D center locations, column radii and a
unit vector pointing along the respective orientation. Each col-
umn is further assigned a unique identifier (substructure) label.
(2) A 3D vector field (AmiraMesh vector field) containing unit
vectors at 50 μm resolution pointing toward the curved pial sur-
face. In general, such vector fields should be sampled at the
resolution of the 3D reference frame. (3) 3D boundary surfaces
(AmiraSurface format) describing the 3D volume of the brain
region (here: pial and WM surfaces). Additional boundary sur-
faces of anatomical substructures can be provided, e.g., borders of
cytoarchitectonic cortical layers. NN currently supports the refer-
ence frame of vS1, but can be easily extended to other brain areas
that can be described by 3D boundary surfaces and global and/or
local coordinate systems. The resolution (i.e., voxel grid used for
computations in NN, see below) can be adjusted to any value
as determined by the inter-animal variability of the respective
reference frame.
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FIGURE 2 | Anatomical data used for generating dense statistical

connectomes of rat vibrissal cortex (vS1). (A) Left: Rat vS1 contains
segregated anatomical structures, called barrels, which are arranged
somatotopically to the pattern of the large facial whiskers. Right top:
Tangential view of barrels in the standardized rat vS1 cortex (see inset on
left). These barrels provide natural landmarks for registration of anatomical
data into the standardized reference frame. Bottom: Semi-coronal view of
barrel columns in 3D. Pial and white matter (WM) surfaces delineate the
vertical cortical boundaries in 3D. (B) 3D distribution of excitatory (left) and
inhibitory (right) neuron somata with respect to cortical barrel columns in rat
vS1. Center: Close-up view of neuron somata in insets in left and right panels.
(C) Left: 3D dendrite reconstructions of 10 excitatory (black) and 5 inhibitory
(green) cell types. Right: 3D dendrite (black) and axon (blue) reconstruction of

an excitatory L5 slender-tufted pyramidal neuron. (D) Close-up views of the
soma and dendrite surface reconstructions of an excitatory (black, top) and an
inhibitory (green, bottom) neuron, corresponding to the dendrite
morphologies marked with an asterisk (*) in (C). (E) Determination of
dendritic spines, dendrite surface and axonal boutons of a L4 spiny stellate
neuron. Top: z-projection of a 50 μm thick section containing the soma,
dendrites and axon branches. Center: From left to right: Close-up view of
dendrite branch in left inset in top panel; close-up view of dendrite segment
in inset in panel to the left; digital reconstruction of dendrite surface and
spine locations of dendrite segment in panel to the left. Bottom left: Close-up
view of axon branch in right inset in top panel. Bottom right: Close-up view of
axon segment in inset in bottom left panel, with digital reconstruction of axon
and bouton locations along the axon (shifted for visualization).

3D soma distributions
The second anatomical prerequisite to generate an average dense
model of the neuronal circuitry are measurements of the num-
ber and 3D distribution of excitatory and inhibitory neuron
somata for the entire brain region(s) of interest. These distribu-
tions have to be obtained with respect to, and at the resolution
of, the anatomical reference frame. In case of rat vS1, we stained
50 μm thick histological sections, cut tangentially to the D2 bar-
rel column axis from the pia toward the WM, for NeuN (Mullen
et al., 1992) and GAD67 (Kaufman et al., 1986; Kobayashi et al.,
1987; Julien et al., 1990) to reveal all excitatory and inhibitory
neurons, respectively. Using automated soma detection software
(Oberlaender et al., 2009b), we determined the 3D center loca-
tions of all excitatory/inhibitory neuron somata for entire rat vS1

of four Wistar rats (age 28–29 days, Meyer et al., 2013, Figure 2B).
For each counting dataset, we superimposed a 50 μm voxel grid
and generated two 3D somata distributions for excitatory and
inhibitory neurons, respectively (i.e., number of somata in 103

per mm3). The two average soma density fields are provided to
NN as 3D images (AmiraMesh format). We further determined
the number of neurons per thalamic barreloid (Land et al., 1995;
Meyer et al., 2013), which provide whisker-specific input to the
respective barrel column (Brecht and Sakmann, 2002).

Cell type-specific 3D morphologies
The third prerequisite to generate an average dense model
of the neuronal circuitry are reconstructions of complete 3D
soma/dendrite/axon morphologies. The morphological dataset
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has to be representative for the brain region, fulfilling two cri-
teria: (1) objective classification approaches should reveal all
axo-dendritic cell types (i.e., dendrite as well as axon projection
patterns are similar within, but significantly different between cell
types) reported for the brain region(s) of interest (see, Narayanan
et al., under review, for excitatory cell types in rat vS1), and (2)
spatial sampling of neurons should be performed at the resolu-
tion of the anatomical reference frame (i.e., revealing location-
dependent differences in morphology, spatial distribution and
overlap of different cell types). For each cell type, a number of
properties is defined using a spreadsheet (csv file) with prede-
fined format: (1) whether the cell type is excitatory or inhibitory,
(2) whether the morphology should be rotated during network
assembly, i.e., if dendrites display asymmetric projections, such
as polar dendrites pointing toward the center of a substructure
(e.g., L4ss, Egger et al., 2008), (3) whether the reconstructions
contain only axon or dendrites/axon, (4) whether the cell type
has somata within and/or outside sub-structures (e.g., L4ss are
only located inside the column, but not in septa between columns,
Staiger et al., 2004; Bruno and Sakmann, 2006; Egger et al., 2008),
and (5) the density of presynaptic contact sites (i.e., boutons)
per μm axon, differentiated by sub-structures, in particular one
value for boutons in infragranular, granular and supragranular
layers of vS1, respectively. Finally, the spatial distribution of each
cell type is determined by 3D boundary surfaces that describe the
(sub)regions(s) where the cell type is found. If more than one cell
type is present within such a 3D region, the relative frequency
of morphologies from each cell type within the overlap region is
specified using spreadsheets (csv files) with predefined format.

In case of rat vS1, we labeled individual neurons with Biocytin
using cell-attached recordings in vivo (Pinault, 1996; Narayanan
et al., 2014). After cutting the brain into 100 μm thick vibratome
sections (i.e., tangential to the D2 barrel column axis, from the
pia toward the WM), manual tracing software (e.g., NeuroLucida)
or custom-designed semi-automated imaging and tracing sys-
tems (Oberlaender et al., 2007, 2009a; Dercksen et al., 2014)
allow reconstruction of complete 3D morphologies with respect
to the anatomical reference frame of rat vS1. Doing so, we
reconstructed 153 excitatory neurons across the entire corti-
cal depth (i.e., from L2 to L6) and used objective classification
approaches to subdivide our sample into 10 axo-dendritic exci-
tatory cell types (Figure 2C, Narayanan et al., under review).
Because we obtained morphologies for every 50 μm of cortical
depth, our spatial sampling is regarded as representative for rat
vS1. Further, the 10 excitatory cell types represent all morpho-
logical classes that have been reported to date for rat vS1: L2
pyramids (L2, n = 16) and L3 pyramids (L3, n = 30) (Brecht
et al., 2003; Staiger et al., 2014); L4 star pyramids (L4sp, n = 15),
L4 spiny-stellates (L4ss, n = 22) and L4 pyramids (L4py, n = 7)
(Staiger et al., 2004); L5 slender-tufted pyramids (L5st, n = 18)
and L5 thick-tufted pyramids (L5tt, n = 16) (Hallman et al.,
1988; Larkman and Mason, 1990); L6 corticocortical pyramids
(L6cc, n = 11), L6 corticothalamic pyramids (L6ct, n = 13) and
L6 inverted pyramids (L6inv, n = 5) (Kumar and Ohana, 2008).
Consequently, sampling ∼1% of all excitatory neurons located
within a barrel column of rat vS1 is regarded as representative for
all cell type-specific soma/dendrite/axon morphologies. Further,

we reconstructed the cortical parts of thalamocortical axons (with
respect to the reference structures of vS1, n = 14), labeled in vivo
in the ventral posterior medial nucleus (VPM) of rat vibrissal
thalamus (Oberlaender et al., 2012b). Similarly, axo-dendritic
cell types of inhibitory interneurons (INH) need to be defined.
Figure 2C illustrates five axo-dendritic INH types, as previously
reported (Helmstaedter et al., 2009; Koelbl et al., 2013) and kindly
provided by Moritz Helmstaedter, Dirk Feldmeyer and Hanno S.
Meyer. At this point, it remains to be investigated whether these
classes can be regarded as representative of rat vS1 in terms of
the above stated criteria. INH morphologies are thus used purely
for illustration of our approach throughout the present article.
Further, in contrast to the excitatory dataset, INH morphologies
were obtained by recording/labeling in acute brain slices in vitro.
The total number of morphologies used in the subsequent appli-
cation examples is 371 (153 excitatory and 204 inhibitory neurons
from vS1 and 14 thalamocortical neurons from VPM).

NN expects these morphologies to be organized into folders
according to [sub-structure label (e.g., barrel column ID)]/[cell
type folder name]. The morphologies are specified either as Amira
SpatialGraphs (Dercksen et al., 2014) or in the NEURON hoc lan-
guage (Hines and Carnevale, 1997). If presented as SpatialGraphs,
the branches comprising the morphologies have to be labeled
as Soma, ApicalDendrite, BasalDendrite, or Axon, respectively.
If specified in the hoc language, branches have to be labeled
soma, apical for apical dendrites, dendrite for basal dendrites,
or axon, respectively. Each cell type is represented twice, both
as an axon cell type and a dendrite cell type. This imple-
mentation allows including long-range connections from cell
types located in other brain regions (e.g., VPM axons, where
soma/dendrites are located in the thalamus). The number of
these long-range axon morphologies is specified in NN using a
spreadsheet (csv file) with predefined format. In case of VPM
axons, the number of morphologies innervating a respective bar-
rel column is determined from cell counts in thalamus (i.e., the
number of neurons per whisker-specific barreloid, Meyer et al.,
2013).

Subcellular morphological statistics
The final anatomical prerequisite to generate an average dense
model of the neuronal circuitry is measurements of the density
of postsynaptic target sites (PSTs), i.e., spines along dendrites
of excitatory neurons and surface areas of somata and den-
drites of excitatory/inhibitory neurons for all cell types present
within the brain region(s) of interest. 3D reconstruction of soma
and dendrite diameters of excitatory and inhibitory neurons was
performed manually using NeuroLucida software (Figure 2D).
Dendritic spine densities and axonal bouton densities were deter-
mined manually from high-resolution 3D image stacks (92×
92× 200 nm3 voxel size) along skeleton tracings of in vivo labeled
neurons of all cell types (Figure 2E). These data are grouped by
morphological cell type.

Connections between cell types are specified in NN using a
spreadsheet (csv file) with predefined format. For each possible
connection between two cell types, the presynaptic cell type, post-
synaptic cell type, as well as the normalized number of PSTs per
μm2 area, and/or per μm branch length is defined, based on
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measured values (using the methods stated above) for each cell
type and substructure (soma, apical dendrite, or basal dendrite).
This meta-connectivity list thus specifies general knowledge of
whether two cell types can in principle connect to each other
and at which substructures. For example, inhibitory interneurons
may specifically innervate somata and dendritic shafts of excita-
tory neurons. Thus, connections from interneuron to excitatory
cell types can be specified in the meta-connectivity list such that
PSTs are exclusively calculated by the surface areas of the exci-
tatory somata and dendrites (i.e., soma/dendrite surface-specific
PSTs). In contrast, connections from excitatory to excitatory cell
types may be specified in the meta-connectivity list such that
PSTs are calculated exclusively by the spine densities (i.e., dendrite
length-specific PSTs).

DATA INTEGRATION AND UP-SCALING TO GENERATE AVERAGE DENSE
CIRCUIT MODELS
Upon availability of the above described anatomical data in
appropriate formats, NN automatically generates an average
dense representation of the neuronal circuitry of the brain region
defined by the reference frame (Figure 3). First, the cell type-
specific boundary surfaces are integrated (Figure 3A shows a sub-
sample of the cell type-boundaries) into the 3D reference frame.

Next, the excitatory and inhibitory somata distributions are reg-
istered into the 3D reference frame. Excitatory and inhibitory
soma positions are generated for all voxels in the soma density
grid by multiplying the respective density values with the voxel
volume (e.g., 503 μm3) and rounding to the nearest integer. 3D
soma locations within a voxel are drawn from a uniform distribu-
tion. Based on the 3D location, each soma is further assigned to
a unique substructure (barrel column) and cell type (Figure 3B).
Each soma is assigned to the barrel column (modeled as a cylin-
der) that is closest to the 3D soma position. To determine the
cell type, first the region containing the soma is determined by
identifying its location with respect to the cell type boundary
surfaces. The cell type is then selected randomly based on the rel-
ative frequency of cell types within this region (as specified by the
respective csv file). Soma/dendrite morphologies are then placed
at all computed soma positions (Figure 3C). For each soma, a
dendrite morphology is chosen at random from all morphologies
fulfilling the following criteria: (1) the cell type of the morphol-
ogy is the same as the cell type assigned to the soma, (2) the
morphology is registered to the sub-structure (e.g., column) that
is closest to the new soma location, and (3) the soma location
of the morphology is not further away from the new soma loca-
tion than one voxel of the reference frame resolution (i.e., in case

FIGURE 3 | Network assembly process. (A) Standardized 3D reference
frame of rat vibrissal cortex, with 3D organization of horizontal (i.e., barrel
columns) and vertical (i.e., layers) structures. Every point in this brain region
can be assigned to a barrel column and a cortical layer with 50 μm precision.
(B) 3D distribution of 530,000 somata of 10 excitatory and 5 inhibitory cell
types. (C) Replacement of somata with cell type-specific 3D dendrite
morphologies. (D) Replacement of somata with cell type-specific 3D axon

morphologies. Shown here: Thalamocortical axons from VPM (black),
intracortical axons of inhibitory interneurons (green). (E) Top: Close-up view
of inset in (B). Center: Close-up view of inset in (C), showing the dendrites of
a single L4 spiny stellate (L4ss) neuron (red) next to all dendrites from all cell
types in the neighboring barrel column. Bottom: Close-up view of inset in (D),
showing a single thalamocortical VPM axon (blue) next to all axons from two
cell types in the neighboring barrel column.
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of rat vS1, the original soma location of the morphology and its
location within the model are within± 50 μm along the z-axis of
the respective column). The latter step guarantees that potential
location-specific morphological properties are preserved within
the resolution limit of the reference frame. Lastly, the morpholo-
gies are transformed as follows: (i) translation of the morphology
to the new soma location; (ii) rotation around the soma, such
that the vertical orientation is preserved and optionally (iii) cells
with asymmetric projection patterns (e.g., polar dendrites) are
rotated such that their orientation is retained (e.g., L4ss are
rotated around the column axis to preserve projections toward
the barrel column center). Third, axon morphologies of each cell
type are inserted to match the number of somata/dendrites for
each cell type (Figure 3D). For each soma, an axon morphology
is chosen at random from all morphologies fulfilling the follow-
ing criteria: (1) the cell type of the morphology is the same as the
cell type assigned to the soma, and (2) the morphology is regis-
tered to the substructure (e.g., column) that is closest to the soma
location. In contrast to dendrite morphologies, axon morpholo-
gies are not transformed to new soma locations to prevent that
rotation/translation results in loss of location-specific projection
patterns (e.g., L4ss neuron in vS1 display axons confined to the
respective barrel column containing the soma (Egger et al., 2008)
and hence translations would result in inappropriate innervation
of septal areas). Long-range axons innervating the modeled brain
region (i.e., their somata are located elsewhere) are registered in
the same way as cell types with somata inside the brain region of
interest, preserving their vertical and horizontal projection pat-
terns with respect to the reference frame at 50 μm resolution.
Then, long-range axons are up-scaled (i.e., duplicated) until the
number of morphologies specified for this cell type (i.e., in the
input csv file) is reached (e.g., VPM axons are up-scaled to meet
the average number of somata per thalamic barreloid, e.g., 311
for the D2 whisker, Meyer et al., 2013). The result of the network
assembly step is a dense representation of the neuronal circuitry
of an entire brain region, where each neuron of a measured 3D
soma distribution is represented by dendrite/axon morphologies
of the appropriate cell type and location/orientation within the
resolution of the geometrical reference frame (Figure 3E).

CALCULATION OF STATISTICAL SYNAPTIC INNERVATION AT
SUBCELLULAR LEVELS
The dense statistical connectome Iij is computed as follows: First,
for each presynaptic neuron i its axon is converted into a 3D bou-
ton density at the resolution of the reference frame by clipping
the axon of neuron i with all six faces of each voxel, summing up
the length of the respective axon branches within the voxel and
multiplying this value by the cell type- and substructure-specific
bouton length density. Second, each postsynaptic neuron j is con-
verted into a 3D PST density at the resolution of the reference
frame by clipping the soma and dendrites of neuron j with all
six faces of each voxel, summing up the length and the surface
area of the respective dendrite branches and the soma and multi-
plying these values by the connection-specific PST length or area
density. Dendrite and soma surface area are computed from the
diameter values along the branches using trapezoidal integration.
3D PST densities of each postsynaptic neuron j for connections

with neurons of cell type T(i) of the presynaptic neuron i in the
voxel centered on −→x are determined as the sum of two terms
PSTspines + PSTsurface) :

PSTj
(−→x , T(i)

) = ∑
labels L

lj,L(−→x ) · λT(i),T(j)(L)

+
∑

labels L

aj,L(−→x ) · αT(i),T(j)(L)

Here, label L refers to a subcellular structure of the postsynap-
tic neuron, i.e., soma, basal dendrite or apical dendrite. lj,L(−→x )
is the total length of all compartments of label L of neuron j
inside the voxel centered on−→x (in μm). λT(i),T(j)(L) is the length
PST density (e.g., 1 spine per μm basal dendrite) for connections
from neurons of type T(i) to neurons of type T(j) onto target
structures with label L (in μm−1), as provided by spine density
measurements and specified in the meta-connectivity spread-
sheet. aj,L(−→x ) is the total surface area of all compartments of
label L of neuron j inside the voxel centered on −→x (in μm2).
αT(i),T(j)(L) is the surface PST density (e.g., 0.4 PSTs per μm2

soma surface) for connections from neurons of type T(i) to neu-
rons of type T(j) onto target structures with label L (in μm−2).
Whereas spine and bouton distributions can be measured (e.g.,
using the methods stated above), we derived surface PST densi-
ties by assuming that the total number of boutons Ball(

−→x ) from
all presynaptic cell types T(i) should match the number of total
PSTs from all cell types T(j):∑

i,j

PSTsurface,j(
−→x , T(i)) = Ball(

−→x )− PSTspines(
−→x )

Reducing this equation to 1 dimension (i.e., collapsing the 3D
densities to the z-axis), we fit the respective surface PST den-
sity values αT(i),T(j) using standard least squares algorithms (see
fitting result in the online meta-connectivity list).

Third, the precision (across animal variability) of the geomet-
rical reference frame determines the voxel resolution, i.e., the
smallest scale at which axo-dendritic overlap can be calculated
between morphologies obtained in different animals. Thus, loca-
tions of somata/dendrites/axons within a voxel cannot be further
resolved and proximity of boutons and PSTs within a voxel cannot
be used to estimate synaptic innervation. Instead, we assume that
all PSTs within a voxel are equally likely to receive any bouton in
the same voxel (i.e., independent synapse formation at resolutions
smaller than the accuracy of the reference frame). The probability
that neuron j is targeted by a bouton within the voxel centered on−→x is then given by:

pj(
−→x , T(i)) = PSTj(

−→x , T(i))

PSTall(
−→x , T(i))

Here, PSTall(
−→x , T(i)) refers to the total number of potential

postsynaptic contact sites for connections with presynaptic cell
of type T(i) in the voxel centered on−→x , i.e.,

PSTall(
−→x , T(i)) =

∑
j

PSTj(
−→x , T(i))
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If Bi boutons from neuron i are present in the voxel at −→x , the
probability that neuron j is targeted by n of these boutons is given
by the binomial distribution:

P(n; pj, Bi) =
(

Bi

n

)
pn

j (1− pj)
Bi−n

Average values for Bi and pj in our networks are O(101)-O(102)
and O(10−3), respectively. Given the∼5 orders of magnitude dif-
ferences between Bi and pj, we can approximate the binomial
distribution by a Poisson distribution (i.e., Bi→∞ and pj→ 0):

P
(
n; Ĩij(
−→x )

) = Ĩn
ij (
−→x )

n! exp(− Ĩij(
−→x ))

Here, we defined the average innervation Ĩij(
−→x ) from neuron i to

neuron j in the voxel at−→x :

Ĩij(
−→x ) := Bi(

−→x ) · pj(
−→x )

The connectivity statistics between any two neurons (i,j) can thus
be described by the 3D scalar field Ĩij(

−→x ). The probability of find-
ing a connection between any two neurons i and j within a specific
voxel located at−→x is further given by:

pij(
−→x ) = 1− P(n = 0; Ĩij(

−→x )) = 1− exp(− Ĩij(
−→x ))

Because we assume that synapses in different voxels are formed
independently of another, the total probability of finding a con-
nection between two neurons i and j is:

pij = 1−
∏
−→x

P(n = 0; Ĩij(
−→x )) = 1− exp(−

∑
−→x

Ĩij(
−→x ))

= 1− exp(− Iij)

Here, Iij : = �−→x Ĩij(
−→x ) is the total (i.e., summed over all voxels)

average innervation from neuron i to neuron j. Intuitively, Iij is
the expected number of synapses connecting neuron i to neuron j.

CALCULATION OF STATISTICAL SYNAPTIC INNERVATION AT CELL TYPE
LEVELS
Using the innervation matrix Iij for all pairs of neurons in
the network, analyses can be extended to the population level,
allowing comparison with pairwise connectivity measurements
performed in vitro/vivo. In silico, pairwise connectivity between
two populations (pre: A and post: B) can be described by three
experimentally accessible parameters: the convergence Cb, i.e., the
fraction of the presynaptic population connected to a single post-
synaptic neuron b ∈ B, the divergence Da, i.e., the fraction of the
postsynaptic population targeted by a single presynaptic neuron
a ∈ A, and the connection probability PAB, i.e., the probability
that any two neurons a ∈ A, b ∈ B are connected. We can now
define these three quantities in terms of the neuron-to-neuron
connection probability pij = 1− exp(− Iij) introduced above:

Cb =
〈
pab
〉
a∈A

Da =
〈
pab
〉
b∈B

PAB =
〈
pab
〉
a∈A,b∈B

Here, 〈· · · 〉a∈A is the ensemble average across all neurons a in
population A etc. Additionally, we can compute the distribution
of the number of synapses per connection nAB between these two
populations by averaging across the individual synapse number
distributions nij := P(n; Iij):

nAB = 〈nab〉a∈A,b∈B = 〈Poisson(Iab)〉a∈A,b∈B

RESULTS
APPLICATION EXAMPLE 1: DENSE 3D MODEL OF RAT vS1
Based on the anatomical input data (Figure 2) specified in the
Methods section, we used NN to generate an average dense model
of entire rat vS1 (Figure 3). The model consists of 10 excitatory
and 5 inhibitory axo-dendritic cell types, in 24 barrel columns.
The total volume of the vS1 model was 6.4 mm3 (Egger et al.,
2012).

First, the average 3D distributions of excitatory and inhibitory
somata were registered to the reference frame and somata were
placed and assigned to cell types (Figure 3B) and anatomical sub-
structures as described above (i.e., each soma contains four labels:
the nearest barrel column, whether the soma is inside the col-
umn or within the septum, the cell type, excitatory or inhibitory).
The total number of neurons within the model was 529926,
with 462436 being excitatory and 67490 being inhibitory. Neuron
numbers and their 3D distributions are within the mean ± SD
(529715 ± 39104) of the measured soma distributions at 50 μm
resolution (Meyer et al., 2013). Next, NN replaced each soma by
appropriate 3D soma/dendrite/axon morphologies, using the up-
scaling routines specified in the Method section (Figures 3C–E).
The somata and dendrites of each neuron were converted into
3D PST surface densities, reflecting the respective surface areas
multiplied with connection-specific PST distributions. Likewise,
dendrites of excitatory neurons and axons of all neurons were
converted into 3D PST spine and bouton distributions, respec-
tively (see meta-connectivity list online for all values). The resul-
tant total soma/dendrite surface area (i.e., of all neurons in rat
vS1) was 1.9× 1010 μm2. The total number of spines was 5.2×
109, and the total number of boutons was 6.4× 109.

The average bouton (synapse) density across entire rat vS1
was 1 bouton per μm3, which matches previous measurements
(0.94 ± 0.12 synapses per μm3) of synapse densities using
electron-microscopic tomography on small tissue (∼200 μm3)
volumes of rat vS1 (Merchan-Perez et al., 2014). Hence, the
up-scaled model of entire rat vS1 resembles the average struc-
tural organization of this brain region at mesoscopic (geometry
within 50 μm inter-animal variability), microscopic (cellular dis-
tributions within 7% inter-animal variability) and nanoscopic
(bouton densities) scales. Consequently, within the margins spec-
ified by the respective inter-animal variability (SDs of geometry,
soma distribution, cell type-specific dendrite/axon projections,
and spine/bouton densities), we consider the dense 3D model of
rat vS1 as a precise average representation of this particular piece
of neuronal tissue.
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APPLICATION EXAMPLE 2: STATISTICAL CONNECTOME OF RAT vS1
Within the dense model of rat vS1, we used NN to determine
structural overlap of PSTs and presynaptic boutons between all
pairs of neurons, always taking all neurons present in the respec-
tive overlap volumes into account. Figure 4 illustrates this process
on the example of one L4ss neuron (j) being innervated by one
thalamocortical axon (i) originating in VPM (Figures 3C–E).
First, NN determines the bounding box (BB) around the den-
drites of the postsynaptic neuron (Figure 4A left) and calculates
the number of PSTs for each 50 μm voxel within the BB. In case
of VPM neurons innervating L4ss (i.e., excitatory cell types), PSTs
are limited to spines (Schoonover et al., 2014) as specified in the

meta-connectivity input file (see Methods). The exemplary L4ss
neuron comprises a total of 4640 spines, with a maximum of
523 spines per voxel (Figure 4A right). Second, NN determines
the number of presynaptic boutons present in any voxel where
dendrites and axons of the two neurons overlap. For the present
example, the particular VPM axon has a total of 2964 boutons in
the overlap volume, with up to 94 boutons per voxel.

However, within the overlap volume, dendritic spines origi-
nating from other excitatory neurons are present, rendering as
equally likely contact sites for the VPM boutons as the spines of
the exemplary L4ss neuron. The total number of spines within
the BB of the overlap volume was 2.1× 107, with a maximum

FIGURE 4 | Computation of statistical innervation between neurons in

dense networks. (A) Left: VPM axon (blue) and L4ss dendrite (red) from
Figures 3C–E. The grid used for computing bouton, spine and dendrite
surface densities is shown for scale. Right: Calculation of the 3D
innervation density Ĩij (

−→x ) from the VPM axon to the L4ss dendrite. The
gray-colored squares in the grid represent the maximum projection of the
respective pre/postsynaptic quantity. Scale bar shows maximum value of
the respective pre/postsynaptic quantity in the grid. Above each scale bar,

the total number of pre/postsynaptic elements in the grid is shown. (B)

Resulting subcellular 3D innervation density Ĩij (
−→x ). (C) Left top: Connection

probability from neuron i to neuron j as a function of the total innervation
Iij . Bottom: Possible range of the number of synapses from neuron i to
neuron j, nij (95th percentile for n > 0) as a function of the total
innervation Iij . Right: Four possible synapse distributions and their
probability of occurrence for the innervation from the VPM axon to the
L4ss dendrite, computed from the 3D innervation density in (B).
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of 130,000 spines per voxel. Furthermore, VPM axons could also
target somata and/or dendritic shafts of inhibitory interneurons
(Staiger et al., 1996, as specified in the meta-connectivity input
file), where a total of 1.8× 106 PSTs on inhibitory surfaces are
present within the BB of the overlap volume, with a maximum
of 13,500 surface PSTs per voxel. Consequently, the 3D innerva-
tion field Ĩij(

−→x ) between the dendrites of the L4ss neuron (j) and
the axon of the VPM neuron (i), was determined with respect to
all other potential PSTs (i.e., excitatory and inhibitory) present in
the overlap volume. In addition, the number of all available tar-
get sites (2.3× 107) was four orders of magnitude larger than the
number of spines/boutons from the individual neurons, justify-
ing the approximation of the binomial connection probability by
a Poisson distribution.

The resultant 3D innervation field Ĩij(
−→x ) between the two

exemplary neurons is shown in Figure 4B. Summing across all
voxels results in the total innervation Iij = 0.66, with a max-
imal innervation of 0.11 per voxel. This innervation number
corresponds to a pairwise connection probability of pij = 0.48,
and to a range of putative synapses between i and j of nij =
0–3 (Figure 4C left). Thus, even though the axonal arbor of
the example VPM neuron displays substantial overlap with
the dendritic arbor of the example L4ss neuron, the proba-
bility of these two neurons being connected according to our
quantitative implementation of Peters’ rule is less than 50%.
Because there are on the order of 1000 other potential post-
synaptic target neurons projecting dendrites into the overlap
region, approaches that calculate connectivity from structural
overlap without normalization by the total number of PSTs (e.g.,
Brown and Hestrin, 2009) will result in gross overestimation of
connection probabilities.

In consequence, we argue that structural axo-dendritic over-
lap should never be calculated from sparse morphological data
alone and that connectivity measurements by Peters’ rule should
not be presented in a binary fashion (i.e., overlap equals con-
nectivity, no overlap equals no connectivity). Instead, structural
overlap in the present form results in innervation measurements
at subcellular (reference frame) resolution, which can be con-
verted into pairwise connection probabilities and a range of
putative synapse numbers. In case of the present example, the
overlap between 2964 VPM boutons with 4640 L4ss spines did
thus not result in a connection probability of 1, but instead, the
probability that the two neurons were unconnected was 52%,
that they were connected by a single synapse was 34%, and by
two or three synapses was 12% and 2%, respectively (Figure 4C
right).

APPLICATION EXAMPLE 3: COMPARISON OF IN SILICO WITH IN
VITRO/VIVO CONNECTIVITY

In the following, we compare our in silico measurements of
pairwise connection probabilities and putative synaptic contact
sites with previously reported measurements in rat vS1 using
(i) paired recording/reconstruction between L4ss neurons in
vitro (Feldmeyer et al., 1999; Petersen and Sakmann, 2000), (ii)
dual recordings and correlation analysis between VPM and L4,
L5A, L5B, and L6 neurons in vivo (Bruno and Sakmann, 2006;
Constantinople and Bruno, 2013), and (iii) electron-microscopic

reconstructions of synaptic contact sites between VPM and indi-
vidual L4ss neurons (Schoonover et al., 2014). For compari-
son, we restricted in silico connectivity measurements between
the respective cell types to neurons located within a sin-
gle barrel column (D2, Figures 5A–C) and averaged connec-
tivity measurements across all neurons of the respective D2
populations.

The D2 column comprised 17810 excitatory neurons includ-
ing 4657 neurons of L4 cell types (2480 L4ss; 1707 L4sp; 470
L4py), 1386 L5st, 1103 L5tt, 1391 L6cc, 767 L6inv, and 4048
L6ct neurons. Further, the D2 column model contained 2545
inhibitory neurons and 311 thalamocortical axons originating in
the D2 barreloid (Meyer et al., 2013) of the VPM. Computing
the innervation Iij for all pairs of VPM and L4, L5st, L5tt, and
L6 neurons, respectively, as well as for all pairs of L4ss neurons,
allowed calculating the respective neuron-to-neuron connection
probabilities pij and the average distribution of the number of
synapses per connection nAB (Figure 5D). Further, we computed
the cell type averages of (i) convergence between L4ss neurons,
as well as between VPM and L4, L5st, L5tt, and L6 neurons in
our D2 column model, and (ii) the 99th percentile of the number
of putative synapses, and compared these numbers to experi-
mental results (Figure 5E). The in silico L4ss-to-L4ss convergence
measurements yielded a value of 0.31 ± 0.10, compared to 0.31–
0.36 as measured in vitro (Feldmeyer et al., 1999; Petersen and
Sakmann, 2000). VPM-to-L4 convergence was 0.40± 0.13 (in sil-
ico), compared to 0.43± 0.08 (in vivo). VPM-to-L5st convergence
was 0.29 ± 0.10 (in silico), compared to 0.17 ± 0.12 (in vivo).
VPM-to-L5tt convergence was 0.38 ± 0.10 (in silico), compared
to 0.44 ± 0.17 (in vivo) and VPM-to-L6 convergence was 0.19 ±
0.09 (in silico), compared to 0.09 ± 0.14 (in vivo) (Bruno and
Sakmann, 2006; Constantinople and Bruno, 2013). The in sil-
ico measurements of pair-wise connection probabilities matched
the previously reported cell type-specific values within one SD.
Interestingly, even though somata of the different cell types inter-
mingled within and across cortical layers, our model predicted
cell type-specific differences in synaptic connectivity within lay-
ers (e.g., VPM to L5st vs. L5tt). These findings are in line with
previous reports that revealed that synaptic connectivity is in
general cell type- and not layer-specific (Shepherd et al., 2005;
Brown and Hestrin, 2009). To further evaluate how the sam-
ple size of morphological reconstructions affects our connectivity
estimates, we repeated these measurements and progressively
increased the number of VPM axons used for up-scaling from 1
to 14. We found that increasing the sample size beyond ∼5 VPM
axons did not change our results (Figure 5F), indicating that at
least 5 axon reconstructions are required to capture the vari-
ability of projection patterns (at 50 μm resolution) within a
cell type.

Finally, the range of putative synapses per connection for
L4ss-to-L4ss connections was 1–5 (in silico), compared to 2–5
(in vitro, Feldmeyer et al., 1999). For VPM-to-L4 connections, the
range was 1–6 (in silico), compared to 1–6 (in vivo, Schoonover
et al., 2014). Whereas the in silico ranges of putative synapses
per connection matched the previous in vitro/vivo results, our
predictions showed that the most likely scenario for intercon-
nected L4ss should be that they share only a single synaptic
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FIGURE 5 | Validation of the rat vibrissal cortex statistical connectome.

(A) Cell type-specific distribution of neuron somata in the model D2 column.
(B) Cell type-specific distribution of dendrites in the model D2 column from
(A). Note that large basal dendrites of L3 pyramidal neurons located in the
septum around the L4 barrel obscure dendrites of L4ss located inside the
barrel. (C) Distribution of L4ss axons (blue) and VPM axons (black) in the
model D2 column from (A). (D) Distribution of neuron-to-neuron innervation
Iij , the neuron-to-neuron connection probability pij and the average
distribution of the number of synapses per connection nij for the four
postsynaptic cell types in (B) and the two presynaptic cell types in (C). (E)

Comparison of pair-wise connectivity statistics in the model D2 column (in

silico) and experimental results from physiological and anatomical
measurements in vitro and in vivo. Top: convergence of intra-barrel
connectivity and thalamocortical connectivity from VPM. Bottom: Observed
and calculated range of number of synapses per connection (in silico: 99%
cumulative range of the average distribution of nij ). (F) Effect of the size of
the sparse morphological sample on connectivity measurements. Top: Mean
convergence of thalamocortical input from VPM to four cell types in the
model D2 column (see E for color-code) as a function of the VPM axon
sample size. Bottom: Standard deviation of the convergence of
thalamocortical input to these four cell types as a function of the VPM axon
sample size.

connection. However, reconstructions from paired-recordings
revealed a more bimodal distribution, i.e., pairs of L4ss share
either no contacts, or if they are connected, they share more than
one contact (Feldmeyer et al., 1999). This potential discrepancy

could arise from limitations to identify weakly connected L4ss
(i.e., just one synaptic contact) using paired-recordings, or could
indicate that our assumption of independent synapse formation
is not justified for L4ss.
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APPLICATION EXAMPLE 4: ANALYSIS OF HIGHER-ORDER
CONNECTIVITY PATTERNS
Because the average dense model of rat vS1 resembles the struc-
tural organization of this neuronal tissue at meso-, micro- and
nanoscopic scales (see Application example 1) and structural
overlap measurements within the model reproduced cell type-
specific pairwise connectivity measurements (see Application
example 3), we investigated whether the resultant dense statistical
connectome can be used to investigate higher-order connectivity
patterns beyond pairwise measurements.

The simplest higher-order pattern to be investigated is con-
nectivity between three neurons (Sporns and Kotter, 2004; Song
et al., 2005), in the following referred to as triplet motifs. To do
so, we calculated the innervation matrix Iij (i.e., dense statistical

connectome) for the population of L4ss neurons within the D2
barrel column and randomly selected three neurons from the
matrix (Figures 6A–B). The six entries specifying innervation
between the three neurons in the Iij matrix yield connectivity
statistics about each possible connection in terms of triplet motifs.
Triplet motifs are illustrated as triangles of nodes (i.e., each node
representing one of the three respective neurons, Figure 6C),
connected by uni- and/or bidirectional edges (i.e., each edge rep-
resenting synaptic connections between two neurons, and the
direction specifies pre- and postsynaptic partners, respectively).
For example, the innervation from neuron 1 to neuron 2 is deter-
mined by the matrix entry I12 = 0.68, which corresponds to a
pairwise connection probability of p12 = 0.49. This can be inter-
preted as the probability that the triplet motif contains an edge

FIGURE 6 | Higher-order connectivity in dense statistical connectomes.

(A) The connection matrix between L4ss neurons of the D2 barrel in rat
vibrissal cortex. Each entry represents the innervation Iij between pre- and
postsynaptic neurons i and j. Connections between three neurons are
highlighted. (B) Zoom into the connection matrix (see box in A) around the
matrix entry representing the connection from neuron 1 to neuron 2. (C) Left:
Innervation between three example L4ss neurons (highlighted in A), and the
respective connection probabilities and strengths (see also Figure 4C). Right:
One possible configuration of a three-neuron motif between these three

neurons. Bottom: Summation over all configurations resulting in this motif
(motif ID 7) gives the total probability of occurrence of this motif for these
three neurons and the L4ss network, respectively. (D) Probability of finding
each non-redundant three-neuron motif, calculated from the pairwise
innervation. All 16 non-redundant motifs are listed at the bottom. Top: Motif
distribution for the three neurons from (C). Bottom: Motif distribution for the
L4ss network from (A). (E) Deviation of motif occurrence probability from
expected value based on the average connection probability of L4ss neurons.
Top: Three neurons from (C). Bottom: L4ss network from (A).

Frontiers in Neuroanatomy www.frontiersin.org November 2014 | Volume 8 | Article 129 | 149

http://www.frontiersin.org/Neuroanatomy
http://www.frontiersin.org
http://www.frontiersin.org/Neuroanatomy/archive


Egger et al. Calculation of dense statistical connectomes

from node 1 to node 2. Conversely, the probability that this
particular edge is missing is 1-p12 = 0.51.

In general, three nodes can be connected by 64 different motifs
of bidirectional edges. However, multiple motifs are redundant
(e.g., 1 connected to 2 and no other edge present is the same
motif as 2 connected to 3 and no other edge is present). Thus, the
64 triplet motifs can be reduced to 16, of which 7 contain three
edges (three-connected), 6 contain two edges (two-connected, 2
contain one edge (one-connected) and 1 motif (no edges) repre-
sents the absence of any connections between the three neurons
(Figures 6D–E). Using the pairwise connection probabilities for
the three example neurons (i.e., p12, p21, p13, p31, p23, p32) allows
computing the probability of finding each triplet motif by multi-
plying the probability of finding/not finding all six possible edges.
For example, the probability that the three neurons are connected
according to motif 7 (i.e., three-connected by unidirectional
edges) is computed as follows:

p = (1− p12) · p21 · (1− p13) · p31 · (1− p23) · p32 = 0.092

There are five other possibilities of arranging connections
between these three neurons that result in the same triplet motif.
Thus, the total probability of finding this triplet motif among
these three neurons is the sum over these six individual connec-
tion arrangements, resulting in a total probability of p123 = 0.146
(Figure 6C).

In the same way, we calculated the probability of occur-
rence for each of the 16 possible non-redundant triplet motifs,
illustrated as a motif spectrum (Sporns and Kotter, 2004,
Figure 6D top). Further, we extended the motif analysis to the
entire population of L4ss neurons in the D2 model, by repeat-
ing the motif probability calculations 10 times for 2000 randomly
selected neuron triplets. Each triplet was allowed to share at most
one neuron with any other triplet. For each triplet, we com-
puted the motif spectrum as described for the example neurons,
and averaged these spectra to obtain the distribution of triplet
motifs within the L4ss network (Figure 6D bottom). Finally, we
compared the triplet motif spectrum of the L4ss network in a
D2 barrel column with the distribution expected when assum-
ing uniform connectivity. This scenario represents the case where
average pairwise connection probabilities are known (e.g., p =
0.31 between L4ss neurons, as determined statistically or by
paired recordings) and connectivity within the population is
assumed to be homogenous (i.e., lack of variability within a pop-
ulation caused by cell- and/or location-specific morphological
variations).

The deviations between the “uniform” spectra of triplet motifs
from those predicted by the dense statistical connectome were
substantial (Figure 6E). For example, motif 2 (unidirectional
loop) is much less likely (∼30%) compared to assuming uniform
connectivity, whereas the remaining three-connected motifs are
in general more likely. In contrast, two-connected motifs are in
general less likely. Thus, the average dense model of the L4ss net-
work yields high-order connectivity patterns that are significantly
(p < 0.0001, z-score > 5 for all motifs except for motifs 8 and
15) different from a uniformly connected random network with
equal pairwise connection probability.

DISCUSSION
In the present study, we introduced a novel quantitative approach
for measuring synaptic connectivity at subcellular resolution and
mesoscopic scales. The measurements are based on sparse mor-
phological datasets, integrated into a common anatomical ref-
erence frame that allows up-scaling to an average dense model
of the neuronal circuitry and determining axo-dendritic overlap
between any two neurons in the model. Illustrating our approach
for excitatory thalamo- and intracortical circuits in rat vS1, we (i)
defined the mandatory anatomical information required to gen-
erate average dense circuit models, (ii) introduced the interactive
software environment NN to calculate Peters’ rule with respect
to all neurons present in axo-dendritic overlap volumes, and (iii)
found that our cell type-specific in silico measurements are in line
with previously reported in vitro/vivo data.

PREVIOUS APPROACHES TO GENERATE AVERAGE NEURONAL
NETWORK MODELS
In recent years, multiple approaches began integrating morpho-
logical data to generate anatomically well-constrained neuronal
network models. However, compared to NN, where synaptic con-
nectivity is measured within the circuit model itself, previous
approaches require synaptic connectivity data as input. For exam-
ple, neuroConstruct (Gleeson et al., 2007) connects randomly dis-
tributed neurons to networks using average pairwise connection
probabilities, thereby neglecting for example location-specific dif-
ferences in connectivity. BlueBuilder (Kozloski et al., 2008), devel-
oped within the BlueBrainProject (Markram, 2006), generates
neuronal networks, where in vitro labeled dendrite and axon mor-
phologies are integrated into an idealized cortical column (i.e.,
neglecting column-specific geometry and soma distributions)
and putative dendrite-axon contacts (at a predefined distance)
are pruned until they match predefined connectivity statistics
(originating from paired-recordings in vitro, Ramaswamy et al.,
2012).

Therefore, we argue that our approach can be regarded as
more general for investigating structural organization principles
of the neuronal circuitry. First, the present concept relies on def-
inition of a standardized 3D reference frame that describes the
average geometry of the brain structure (and substructures) of
interest. Consequently, no assumptions about the mesoscopic
organization of neuronal circuits are required. For example, in
case of rat vS1, we previously reported that each cortical bar-
rel column has a specific diameter, height and orientation, and
barrel columns representing whiskers located within different
rows along the animals’ snout have substantially deviating vol-
umes (Egger et al., 2012). Such whisker row-specific organization
patterns may substantially influence connectivity, e.g., increased
connectivity between columns in the same row compared to
across whisker rows, an effect that would be missed by assum-
ing that cortical columns are elementary and uniform structural
building blocks (Markram, 2006).

Second, the up-scaling to a dense average circuit model is
based on measured 3D distributions of excitatory and inhibitory
neurons. Consequently, no assumptions about the microscopic
(i.e., cellular) organization of the neuronal circuits are required.
For example, in case of rat vS1, we previously reported that
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separation between individual barrel columns is only present
within the distribution of excitatory neurons in L4, where neu-
ron densities are significantly lower in the septum, compared
to densities in barrel columns (Meyer et al., 2013). In contrast,
neither excitatory distributions in superficial and infragranular
layers, nor densities of inhibitory somata throughout the cortical
sheet displayed differences between columns and septa. Such exci-
tatory/inhibitory location-specific cellular organization patterns
may substantially influence connectivity, e.g., the relative fraction
of excitatory to inhibitory connections may be higher within the
L4 barrel compared to septa and/or other layers (van Vreeswijk
and Sompolinsky, 1996), effects that would be missed by assum-
ing uniform and/or randomly distributed neuron somata (Rockel
et al., 1980; Carlo and Stevens, 2013).

Finally, connectivity measurements are based upon complete
3D reconstructions of in vivo labeled neurons. Consequently,
no assumptions about (sub)cellular organization of the neu-
ronal circuits are required. For example, in case of rat vS1,
we previously reported that axons of excitatory neurons are
in general not confined to the dimensions of a single cortical
column (Oberlaender et al., 2011). Thus, extrapolation of den-
drite/axon morphologies from in vitro labeling/reconstruction
(Hill et al., 2012; Ramaswamy et al., 2012) will miss cell type
and/or location-specific horizontal axonal projection patterns,
resulting in assessments of connectivity by structural overlap
that are biased toward close-by neurons (e.g., within columns
compared to across columns). Further, substantial cutting of
dendrites/axons during multi-electrode recordings in vitro will
result in unsystematically hampered measurements of pairwise
connection probabilities (i.e., depending on cell type, location
and distance of the recorded neurons), questioning whether con-
straining connectivity within neuronal network models by such
data (Lefort et al., 2009; Perin et al., 2011) will result in anatomi-
cally realistic representations of the neuronal circuitry.

In summary, because organizational principles of the neuronal
circuitry are generally influenced by brain region- and species-
specific mesoscopic, cellular and subcellular quantities, genera-
tion of well-constrained network models should not be based on
assumptions, but on measurements of these quantities instead.
Assessments of these quantities provide information about the
respective variability across animals, allowing to determine (i)
the appropriate resolution for connectivity measurements within
an average representation of the neuronal circuitry and (ii) how
representative the average model is (i.e., in terms of SDs of
(sub)cellular properties).

VALIDITY OF PETER’S RULE
The validity of measuring synaptic innervation by structural
overlap between dendrites and axons has been discussed con-
troversially (Stepanyants and Chklovskii, 2005; Shepherd et al.,
2005; Mishchenko et al., 2010; Briggman et al., 2011). Specifically,
reconstructions at electron-microscopic resolution provided evi-
dence that proximity of axons and dendrites at submicron res-
olution in general does not imply that the two neurons form
synaptic contacts (Mishchenko et al., 2010). Further, pairwise
connection probabilities obtained by paired-recordings in vitro
were considered to contradict measurements of structural overlap

after reconstructing morphologies of the respective neuron pairs
(Shepherd et al., 2005; Brown and Hestrin, 2009).

However, to date, neither the appropriate spatial resolution
to apply Peters’ rule, nor a coherent framework to obtain struc-
tural overlap in terms of connection probabilities with respect
to all neurons projecting dendrites into the overlapping volume
existed. We provide both. First, the resolution for determining
structural overlap within an average network model (i.e., inte-
gration of morphological data from different animals) is defined
by the inter-animal variability of the geometrical reference frame
used to integrate the data. Increasing the voxel size will provide
less accurate connectivity estimates (i.e., cells or cell types that do
not overlap at 50 μm resolution may overlap at 100 μm scales). In
contrast, decreasing the voxel size below the precision of the reg-
istration framework would imply inappropriate accuracy. Hence,
implications of synaptic innervation below the resolution limit, or
even at submicron resolution, are beyond the limits of Peters’ rule.
Instead, measurements of subcellular synapse locations remain
exclusive to reconstructions at electron-microscopic levels (but
see, Druckmann et al., 2014; Schoonover et al., 2014).

Second, we illustrate that in general, millions of potential post-
synaptic target sites (PSTs) from unstained neurons are present
within the overlap volume of two stained neurons. Hence, when
normalizing innervation by the total number of PSTs, the resul-
tant innervation and pairwise connection probabilities are small.
In case of the exemplary calculation between the dendrites of
one L4ss and one thalamocortical VPM axon in rat vS1, overlap
between∼4500 spines and∼3000 boutons did not result in a con-
nection probability of one, but instead there is a 52% chance that
the two neurons are unconnected. Hence, connectivity measure-
ments by structural overlap have to be performed with respect
to all neurons, for example using the present approach of gen-
erating an average dense model of the brain region of interest.
Consequently, the absence of synaptic contacts at touching den-
drites and axons in sparsely labeled tissue should not be regarded
as a violation of Peters’ rule.

HIGHER-ORDER CONNECTIVITY IN DENSE STATISTICAL AND
ELECTRON-MICROSCOPIC CONNECTOMES
In addition to illustrating that pairwise connection probabilities
determined by structural overlap are in line with measurements
using conventional recording/reconstruction techniques, we pro-
vide a strategy that allows investigation of higher-order connec-
tivity patterns within dense statistical connectomes. On the exam-
ple of the population of L4ss neurons located within a barrel of
rat vS1, we determined the probabilities of obtaining all possible
three-neuron (triplet) motifs and compared the resultant motif
spectra with those to be expected from randomly connected net-
works that have the same average pairwise connection probability.
Interestingly, we found that the two spectra displayed significant
deviations. For example, unidirectional triplets (i.e., recurrent
loops) are much less likely to occur within the L4ss population
compared to randomly connected networks. In contrast, other
triplet configurations were significantly more likely. Arguably
such deviations can be considered as evidence for specificity in
the organization of the neuronal circuitry, for example caused
by inhomogeneous distributions of somata (e.g., excitatory soma
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density decreases from the barrel center toward the borders),
dendrites and axons (e.g., polar dendrite morphologies pointing
toward the barrel center).

Hence, we suggest using statistical spectra of higher-order
motifs as a definition of cell type-specific “structural fingerprints”
for the respective neuronal circuits. Comparing these finger-
prints with dense connectomes obtained at electron-microscopic
resolution, will indicate whether such cell type-specific higher-
order patterns can be explained by the meso- and microscopic
organization of the network, or whether additional specificity
originates at nanoscopic scales. In consequence, not the absence
of synapses between touching dendrites/axons, but deviations
of higher-order connectivity patterns observed in statistical and
electron-microscopic dense connectomes should be considered as
evidence for violations of statistical network organization.

CONCLUSION
We present a novel concept for measuring pairwise and high-
order connectivity patterns at subcellular resolution and meso-
scopic scales. We provide the required software to generate aver-
age dense circuit models, to calculate structural overlap, and to
convert these measurements into dense statistical connectomes.
Further, we describe the anatomical data necessary to assess struc-
tural organizational principles of the neuronal circuitry with-
out assumptions about homogeneity at meso/microscopic and
subcellular scales. Given that the required anatomical data is
available, we consider our approach as generalizable to other
brain structures and species. This sets the stage to generate
well-constrained network models that allow simulating sensory-
evoked signal flow to provide unprecedented insight into the
interplay between the structural organization and function of the
respective local and long-range neuronal circuits.
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Neuronal morphologies are pivotal for brain functioning: physical overlap between dendrites
and axons constrain the circuit topology, and the precise shape and composition of
dendrites determine the integration of inputs to produce an output signal. At the same
time, morphologies are highly diverse and variant. The variance, presumably, originates
from neurons developing in a densely packed brain substrate where they interact (e.g.,
repulsion or attraction) with other actors in this substrate. However, when studying neurons
their context is never part of the analysis and they are treated as if they existed in
isolation. Here we argue that to fully understand neuronal morphology and its variance
it is important to consider neurons in relation to each other and to other actors in the
surrounding brain substrate, i.e., their context. We propose a context-aware computational
framework, NeuroMaC, in which large numbers of neurons can be grown simultaneously
according to growth rules expressed in terms of interactions between the developing
neuron and the surrounding brain substrate. As a proof of principle, we demonstrate that
by using NeuroMaC we can generate accurate virtual morphologies of distinct classes
both in isolation and as part of neuronal forests. Accuracy is validated against population
statistics of experimentally reconstructed morphologies. We show that context-aware
generation of neurons can explain characteristics of variation. Indeed, plausible variation is
an inherent property of the morphologies generated by context-aware rules. We speculate
about the applicability of this framework to investigate morphologies and circuits, to classify
healthy and pathological morphologies, and to generate large quantities of morphologies
for large-scale modeling.

Keywords: dendrite, morphology, computational modeling, growth cone, extracellular space

INTRODUCTION
Neuronal morphology is important for brain functioning. The
interplay between dendritic and axonal morphology limits the
microcircuits (Peters and Payne, 1993), and the shape and com-
position of dendrites define how inputs are integrated to produce
outputs (London and Häusser, 2005; Silver, 2010; Torben-Nielsen
and Stiefel, 2010). As such, it is not surprising that changing mor-
phological traits and morphological anomalies are implicated in
neuro-developmental and degenerative diseases (Kaufmann and
Moser, 2000; Dierssen and Ramakers, 2006). Nevertheless, neu-
rons come in all shapes and sizes. The diversity is said to express the
difference between neuron classes while variation represents the
intra-class differences (Soltesz, 2005). Diversity originates from
the genetic make-up of neurons (Jan and Jan, 2010; Tavosanis,
2012). By contrast, the variance can be assumed to originate from
interactions between the developing neuron and the brain sub-
strate, its context (McAllister, 2000; Scott and Luo, 2001; Landgraf
and Evers, 2005; Jan and Jan, 2010; Tavosanis, 2012). Indeed, in
both axonal (Mortimer et al., 2008) and dendritic (Gao,2007; Cove
et al., 2009) development a plethora of microscopic interactions
have been revealed to influence branching patterns and “guide”
the direction of growth. Thus, a neuron’s context holds the key to
understanding morphological variance.

Unfortunately, the context surrounding a neuron has his-
torically been neglected in the analysis and quantification of

morphologies. In a highly influential work, Hillman argued that
dendritic morphologies could be described completely and accu-
rately by a finite set of morphometric descriptors (Hillman, 1979).
Thus, the idea was born that careful description of morphometrics
measured from isolated neurons would be sufficient to charac-
terize neuronal morphology. Later, when digital reconstructions
became more common practice, this idea inspired the way neurons
are represented digitally: a pure representation of the morphology
itself without any information about the context. Currently, a dig-
ital representation consists of a set of points in three dimensions
with additional information on how they are linked to each other,
as is done in the de facto standard SWC format (Cannon et al.,
1998).

As a consequence, morphometric features used to quantify and
analyze morphologies (such as the order and degree of points in
the neuronal tree or neurite lengths) relate to the neuron itself and
are unable to describe any characteristic of the context. Hence,
statistical approaches to analyze morphologies and their variance
that use these morphometric features are bound to fail to describe
neuronal morphologies correctly as contextual influences includ-
ing boundaries, capillaries and other neurons, cannot be taken
into account. Indeed, in earlier work it was shown that the vari-
ance in morphometric features can be so high that no statistical
model can be constructed to accurately describe the limited data
(Torben-Nielsen et al., 2008).
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An alternative, albeit in practice closely related to the pure sta-
tistical approach to study neuronal morphologies is the so-called
“generative approach” (Ascoli et al., 2001; van Pelt and Uylings,
2002; Stiefel and Sejnowski, 2007; Torben-Nielsen and Cuntz,
2014). In this approach virtual morphologies are generated de novo
using morphogenetic algorithms. In most cases, these algorithms
adhere to the ideas proposed by Hillman and sample from statisti-
cal distributions representing morphometric features to generate
a morphology (Eberhard et al., 2006; Lindsay et al., 2007; Torben-
Nielsen and Cuntz, 2014). Clearly, these methods can mimic
statistical properties of the data set but fail to capture contex-
tual influences and plausible variation (but see Samsonovich and
Ascoli, 2003). Notable exceptions exist and target specific char-
acteristics of the context. Luczak proposed a generative method
based on diffusion-limited aggregation to illustrate how competi-
tion over resources and the spatial distribution thereof could shape
dendritic morphologies (Luczak, 2006). In another work, Cuntz
and colleagues proposed a generative approach based on high-level
wiring constraints. By generating multiple virtual morphologies
in the same volume, competition over resources could be mim-
icked (Cuntz et al., 2010). In previous work, we demonstrated
that self-referential contextual cues (e.g., self-avoidance, soma-
tropism, and membrane stiffness) could be used to explain some
characteristics of dendritic morphologies (Memelli et al., 2013).
Recently, CX3D was designed to simulate neuronal development
based on intrinsic and extrinsic, contextual factors (Zubler et al.,
2013).

In this work we argue that in order to fully understand neu-
ronal morphologies we need to break with the view that neurons
can be treated as independent, isolated entities. Therefore, we
propose a new approach to study morphologies in which large
numbers of virtual morphologies are generated simultaneously
de novo while embedded in a virtual brain substrate, resulting
in a mechanistic – in contrast to a statistical – description of
morphologies. In this approach, morphologies are generated by
repeatedly extending simulated, phenomenological growth cones
that are guided by interactions with other actors in the brain
substrate.

We designed and implemented a prototype of the proposed
computational framework, NeuroMaC (“Neuronal Morphologies
and Circuits”). We showcase the functionality of our framework
related to single neuron morphologies by synthesizing spinal cord
motor neurons, hippocampal granule cells and cortical layer 5
(L5) pyramidal neurons. All results are validated against publicly
available, experimentally reconstructed morphologies.

MATERIALS AND METHODS
OUTLINE
The rationale behind our proposed framework is based on two key
experimental findings. The first is that the genetic make-up of a
neuron determines its shape to a large extent. In cell culture exper-
iments, neurons have a recognizable morphology, albeit one that
differs from in situ occurrences (Banker and Cowan, 1977; Krieg-
stein and Dichter, 1984). Second, the genetic make-up of neurons
also appears to outline a blueprint of neurons in terms of interac-
tions with the substrate in which they develop. Growth is mainly
determined by growth-cones that contain filopodia-like structures

that sense the molecules present in the extracellular matrix. Sen-
sation of these molecules then influences when a growth cone
branches or terminates as well as the direction of elongation (Itoh
et al., 1993; Scott and Luo, 2001; Mortimer et al., 2008; Jan and
Jan, 2010).

We extrapolate these key findings to operational concepts in our
framework that simulates phenomenological growth cones called
fronts. Broadly speaking, fronts contain growth rules that can be
expressed in terms of interactions with other agents present in the
substrate. Interactions are always “local” in the sense that a front is
able to sample its direct surrounding. As such, fronts are a simple
metaphor for biological growth cones.

Figure 1 outlines the concepts underlying NeuroMaC. Based
on the “local” nature of sensing and sampling of fronts we can
decompose the simulated brain volume into small sub volumes
(SVs). Each SV has full knowledge about all contained fronts and
contextually relevant actors in the substrate, e.g., boundaries and
other neurons amongst others. All SVs repeatedly extend all active
fronts contained inside their spanned volume. Because fronts also
have a physical dimension with a location and a radius, extend-
ing fronts creates the simulated neurites by creating a frustum
between the initial position of a front and the new position after
extension. Details about the construction rules of fronts are pro-
vided in the next section and for now it suffices to understand
that – in line with the behavior of growth cones – fronts can
extend, branch or terminate, and that they can use contextual cues
to influence these actions. Once the active fronts are extended,
the SVs perform the crucial step of checking and resolving struc-
tural overlaps while simultaneously recording locations of putative
synapses. As a result, generation of morphologies and construc-
tion of a circuit (without structural overlaps) can be performed in
one pass.

NeuroMaC
We designed and implemented NeuroMaC in accordance to the
rationale and key concepts outlined above. Here we describe in-
depth the components of the proposed framework.

Multi-agent architecture and parallelization
NeuroMac is designed as a multi-agent system, that is, different
components of the framework work autonomously and commu-
nicate with each other through messages. A multi-agent system
allows straightforward parallelization with the number of com-
puting cores to ensure scalability. NeuroMaC has two agent types:
one central administration agent and multiple SV-agents.

The administration agent performs all internal housekeeping.
It reads a configuration file (Table 1) that defines the simula-
tion and system specific settings. Subsequently the administration
agent decomposes the brain substrate into smaller SVs and ini-
tializes the SVs. During initialization each SV is assigned a space
it controls together with all environmental details required for
the fronts to develop. The administration agent maintains a cen-
tral clock to synchronize updating of fronts in each SV. A clock
ensures that irrelevant issues such as execution time on the com-
puting resource do not bias simulated growth. In case an updated
front moves outside of the space covered by a particular SV, the
administration agent brokers the migration of that front to the
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FIGURE 1 | Schematic of the proposed context-aware framework,

NeuroMaC, to generate virtual morphologies. (A) The simulated brain
substrate is decomposed into small sub volumes (SVs). Sub volumes keep
track of all neurites and other relevant actors inside their spanning volume.
(B) Algorithm performed by each sub volume during one simulated,
centrally controlled time step. (C) Fronts are implemented as cellular
automaton-like machines and conceptually related to growth cones in that

they update their location based on the local context. Full lines: neurites
(black and gray: existing; green: newly added). Circles represent active
(filled) or inactive (open) fronts. Dashed lines represent the contextual cues
influencing the direction of growth of an active front to be extended
(indicated by a red circle). Here the contextual cues are defined by an
inertial forward-directed influence, another neurite, and a gradient in the
substrate.

appropriate new host SV. All updates inside an SV are communi-
cated to the central agent, which compiles a centralized output file
containing all neuronal morphologies.

The SV agents perform the same behavior in parallel. The
number of these agents can scale with the number of available
computing nodes; more nodes results in smaller decomposed
volumes and faster run times. Conceptually, SVs represent the
direct neighborhood surrounding a developing growth cone. Dis-
tal parts of the brain substrate are of no concern to a growth
cone as all contextual cues are sensed in the direct vicinity. SVs
contain all local information about the substrate itself, e.g., bound-
aries, laminar structure, same and other neuron structures, etc.
Diffusible molecules in the extracellular space can promote long-
distance interactions and while we do not simulate diffusion
explicitly, the effect of contextual cues can propagate from SV
to SV so that these are also locally available for growth cones.
Any cue not on the hosting SV or on one of the direct neighbors
is summarized (averaged) and only this information is revealed
to active fronts. This measure is valid because it is irrelevant
for an active front to know the exact locations of very distant
cues.

During each general time step SVs execute the algorithm listed
in Figure 1B. However, just before the algorithm is executed, each
SV communicates with its neighbors to query their contained vol-
ume. This is needed because, if an active front is close to an SV
boundary (e.g., close enough that it might interact with a neurite
contained in a neighboring SV), it also has to sense the neigh-
boring substrate. During the main algorithm, SVs call each active
front inside their volume, in randomized order, to compute its

next location (see next section). Once the SV receives the updated
front, it performs several checks. First, it checks if the new loca-
tion of the front is still inside the volume it spans. If not, the
front is migrated to another SV. Otherwise, the SV checks whether
the new front physically overlaps with existing fronts and neu-
rites. Overlap is tested between two fronts and their associated
line segments. That is the line segment between a front and its
parent. If the minimal distance between two such line segments
is smaller than the sum of the radii of both associated fronts we
consider this to be an overlap. Unless the radius of a front is dras-
tically smaller than that of its parent front, this method yields
adequate results. When a potential overlap is detected, the SVs
will try to resolve it by randomly perturbing the front’s location.
If the conflict cannot be resolved in a predetermined number of
attempts, the front is terminated at its previous position. When all
active fronts are updated and validated, the corresponding newly
formed neurites are communicated to the administration agent.
Putative synapse locations are computed in the same way (and at
the same time) as the structural overlaps with the difference that
a maximally allowed distance is set by the user that reflects the
pre-synaptic bouton and post-synaptic spine size. Although rudi-
mentary, this method yields a list of putative synapse locations
that can be pruned in a post-processing step (Hill et al., 2012), but
also see van Pelt et al. (2010).

Growth cones as cellular automata
In NeuroMaC fronts are phenomenological implementations
resembling biological growth cones. An active front is a front that
is still developing; an inactive front becomes continuation point,
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Table 1 | Exemplar configuration file used in NeuroMaC.

[system]

# framework related settings

seed = 2

proxy_sub_port = 5599

proxy_pub_port = 5560

pull_port = 55002

time_out = 10000

# simulation related settings

no_cycles = 105

out_db = models/L5_pyramid/forest_Z8.db

synapse_distance = 5

# attempts to resolve overlap-conflicts

avoidance_attempts = 2

[substrate]

# settings about the simulated brain substrate

dim_xyz = [6000.0,1800.0,1410]

# volume decomposition into xa x ya x za SVs

xa=6

ya=6

za=1

# laminar structure

virtual_LAYER = {6:[[0,0,0],[2000,2000,471]],\

5:[[0,0,471],[2000,2000,826]],\

4:[[0,0,826],[2000,2000,1090]],\

3:[[0,0,1090],[2000,2000,1192]],\

2:[[0,0,1192],[2000,2000,1311]],\

1:[[0,0,1311],[2000,2000,1406]]}

#pia as boundary

pia = models/L5_pyramid/pia_forest.pkl

[cell_type_1]

# settings related to the growth rules

no_seeds = 100

algorithm = Full_detailed

location = [[250,250,800],[5750,1550,1180]]

soma_radius = 10

The configuration follows the Python ConfigParser structure. Parameters are
pooled in several sections and parameter values can take the form of executable
Python statements. A description is in the main text.

branching point or a terminal tip. As such, neurites are represented
by frusta connecting subsequent fronts (Figure 1C; Cannon et al.,
1998; Ascoli et al., 2007).

Fronts have a dual identity. On the one hand they are physi-
cal structures with a location and radius in space. On the other
hand, a front is a cellular automaton-like machine that contains
its own growth rules describing how and when it should extend,
branch or terminate (see Table 2 for an example). When an active
front is not terminating, it either produces one or two new fronts;
the old front becomes inactive and the newly formed front(s)
become(s) active fronts. The location of the new front is com-
puted in accordance to a front’s construction rules and locally
available information. Information can be everything that is con-
tained in the SV. For instance, homotypic (Grueber et al., 2005;
Marks and Burke, 2007; Memelli et al., 2013) and same-type (Scott
and Luo, 2001; Jan et al., 2003) cues can be used, or, the transient

laminar information through which a front might travel (Hevner
et al., 2003; Chen et al., 2005). The aforementioned cues have a
direct biophysical interpretation, but also more phenomenologi-
cal cues such as (directional) information related to a boundary
can be used in our framework. A biological counterpart thereof
could be envisioned to be Reelin secreted by Cajal-Retzius cells
(Frotscher, 1998; Marin-Padilla, 1998). Construction rules define
how the front interacts with these other inhabitants of the SV: no
interaction, repulsion or attraction. Hence, the context is used
as a guidance cue (Figure 1C). The influence of these cues can
be distance-dependent mimicking gradients of secreted molecules
(Mortimer et al., 2008). In addition, fronts can also modify the
substrate by secreting entities: phenomenological representations
of secretion molecules that can in turn be used as a guidance cue
(Hentschel and van Ooyen, 1999).

IMPLEMENTATION
We implemented a prototype in Python and use ZeroMQ
(Hintjens, 2013) to send messages between the components
because it has the ability to buffer large messages and operate
asynchronously. The algorithm underlying the behavior of an
active front is a Python script and is the only part that has to
be implemented by an end-user. This prototype is available on
https://groups.oist.jp/cnu/neuromac.

Combined, the eminent features of NeuroMaC are: (1)
Context-aware generation of virtual morphologies that will not
overlap with one another in space; (2) The ability to detect and
record synapses on the fly; and (3) Straightforward scalability and
parallelization to generate large numbers of morphologies at the
same time.

RESULTS
In order to validate the proposed framework we generated sets of
virtual neuronal morphologies and compared them to the statis-
tics of experimentally reconstructed morphologies. We validate
NeuroMaC by demonstrating that we can (1) generate mor-
phologies in isolation as current state of the art approaches do,
(2) populate a space by generating a forest of non-overlapping
and interacting hippocampal granule cells, and (3) generate fully
context-aware morphologies that interact with the environment
(L5 pyramidal neurons in a laminar architecture). We selected
these neuron types because motor neurons and hippocampal
granule neurons are often used in algorithmic generation; pyra-
midal neurons were chosen because their higher morphological
complexity and assumed context-dependence. The experimentally
reconstructed neurons were downloaded from NeuroMorpho.org
(Ascoli et al., 2007). We took two motor neuron archives, the
Burke archive (N = 6, Cullheim et al., 1987) and the Fyffe
archive (N = 8, Alvarez et al., 1998). The granule neurons come
from the Lee archive (N = 25, Carim-Todd et al., 2009). Pyra-
midal neurons are layer 5, secondary motor cortex neurons
and come from the Kawaguchi archive (N = 10, Hirai et al.,
2012).

MOTOR NEURONS IN ISOLATION
Motor neurons have a relatively straightforward morphology
that, from the point of view of an external observer, is fairly
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Table 2 | Complete Python code used to implement the growth rules underlying the generated motor neurons (illustrated in Figure 2).

from growth_procs import unit_sample_on_sphere,\
direction_to,\
gradient_to,\
normalize_length,\
get_entity,\
get_eigen_entity,\
prepare_next_front

L_NORM = 40 # fixed-size elongations
def extend_front(front,seed,constellation):

if front.order== 0 : # this is the soma, create the stems
new_fronts = []
for i in range(np.random.randint(8,17)):

rnd_dir = unit_sample_on_sphere()
new_pos = front.xyz + normalize_length(rnd_dir,L_NORM)
new_front = prepare_next_front(front,new_pos,\

set_radius=8.0,add_order=True)
new_front.swc_type=2
new_fronts.append(new_front)

return new_fronts
else:

# Follow a simple branching rule in all other cases
bif_prob = 0.6 / (front.order*2.5)
if front.order > 5 :

bif_prob = 0.03

if np.random.random() > bif_prob: # continue a front
# random component
rnd_dir = unit_sample_on_sphere()
# unit vector of current heading
heading=normalize_length(front.xyz - front.parent.xyz,1)
# soma-tropism, sample direction away from the soma
soma_dir = -1.0 * normalize_length(direction_to(front,\

[front.soma_pos],what = "nearest"),0.4)
# combine all infliences on the new direction of growth
new_dir = heading,1.0+ soma_dir + rnd_dir
new_pos = front.xyz + normalize_length(new_dir,L_NORM)
new_front = prepare_next_front(front,new_pos,\

radius_factor = 0.9,add_order = False)

if np.random.random() < 0.06 and front.path_length > = 600:
return []

return [new_front]
else: # branch a front, generate two child fronts

new_fronts = []
for i in range(2):

rnd_dir = unit_sample_on_sphere()
heading = front.xyz - front.parent.xyz
new_dir = normalize_length(heading,1.5) +rnd_dir
new_pos = front.xyz+normalize_length(new_dir,L_NORM)
new_front = prepare_next_front(front,new_pos,\

radius_factor = 0.7,add_order = True)
new_fronts.append(new_front)

return new_fronts

NeuroMaC contains auxiliary function to build fronts and sample the context; these functions are first imported.The main function “extend_front” is called by the sub
volume and contains the actual growth rules. In this example, a single contextual cue, soma-tropism, is used.

context-independent (Figures 2A–C). We devised a purely phe-
nomenological growth rule to mimic the final morphology con-
sisting of two sub rules: one rule for the initial front (=the
soma) and one rule for all other fronts. The full Python
code of the growth rule is listed in Table 2. At the soma
(“front.order == 0”), multiple stems are created in random
directions around the soma. Once the stems are created fronts

can bifurcate with a probability inversely proportional to the
branching order, terminate with a small probability or extend
otherwise. When a front grows outside the assigned substrate
space it is terminated. Current heading, repulsion by the soma
and a random component set the direction of a bifurcating or
extending front. Typical resultant virtual morphologies are listed
in Figures 2D–F.
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FIGURE 2 | Validation of generated alpha motor neurons. (A–C)

Exemplar experimentally reconstructed spinal cord alpha motor neurons
[A,B from the Fyffe archive (Alvarez et al., 1998), C from the Burke archive
(Cullheim et al., 1987)]. (D–F) Virtual morphologies generated by
NeuroMaC. (G–I) Quantitative comparison. Population morphometrics are
shown for the Burke (“Burke”) and Fyffe (“Fyffe”) archives and for the

generated morphologies (“Syn”). (G) Euclidean distance between the
soma and each terminal point in all morphologies. (H) Topological order of
each branching point in all morphologies. (I) Occurrence of branching
points in each morphology as a function of Euclidean distance (i.e.,
Sholl-intersections, see main text). See Table 3 for detailed statistics of
these (and other) morphometrics.

Visual inspection shows high resemblance between the exem-
plar and generated motor neuron morphologies. We then checked
the global morphometric, namely the Euclidean distance between
the soma and terminal tips (Figure 2G) and the two-dimensional
local metrics “order” that expresses the occurrences of branch-
ing points as a function of branching order (Figure 2H), and,
“Sholl-like,” a quick implementation of the Sholl metric that mea-
sures branch points as a function of Euclidean distance from
the soma (Figure 2I). Trends contained in the experimentally
reconstructed neurons (labeled “Burke” and “Fyffe”) are repli-
cated by the generated neurons (labeled “Syn”). We quantify
the distribution by the median (M) and median absolute devi-
ation (MAD) because the shape of the resultant distribution
of the measures is unknown a priori and do not necessar-
ily follow a normal distribution. Spread of the distribution is
quantified with the interquartile range (IQR). Quantification
is listed in Table 3. From the quantification we can see that
there is a fair difference between the exemplar archives and
that the generated neurons fit well between the values of the
exemplars.

Both visual inspection and the quantitative measures show a
good correspondence between the experimentally reconstructed
and generated morphologies. These results are on par with the pre-
viously published results (Memelli et al., 2013), and hence we can

conclude that by using NeuroMaC we can create sets of neurons
generated in isolation.

A FOREST OF HIPPOCAMPAL GRANULE NEURONS
Next we set to generate granule cells, both in isolation and in a
“forest” setting, that is, many neurons packed in one volume with
all neurons being generated simultaneously. Three experimentally
reconstructed exemplar morphologies are shown in Figures 3A–C.
We devised a straightforward construction rule in a similar vein to
the rule used for the virtual motor neurons. Once the soma and two
initial branches are created, branching occurs with a probability
that decreases with the centrifugal order of the front. The direction
of growth is determined by repulsion away from same-neuron
dendrites, the current heading of a dendrite, and the direction
towards the superficial part of the substrate, which in this case is
the superficial part of the dentate gyrus. A random component
is added to all growth directions as well. We generated two sets
of virtual morphologies, namely a set in which each neuron was
generated in isolation (N = 25, Figures 3D–F are representative
examples) and one set in which 100 morphologies were generated
simultaneously in a (Figure 3G). The growth instructions were
kept identical in both sets. The simulated volume, however, was
increased 20-fold in the forest setting (i.e., 1300 μ×300 μ×225 μ,
with 225 μ being a plausible depth of the dentate gyrus). Note that
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Table 3 | Quantification of generated and experimentally

reconstructed alpha motor neurons.

Synthetic Burke Fyffe

# branch points M 125 161 55

MAD 11 12.5 20

IQR 41 23.7 82

Euclidean D M 750 926 616

MAD 171 184 277

IQR 352 372 380

Max order M 7 9 7

MAD 0 0 1

IQR 1 0 2.5

Order M 3 4 4

MAD 1 1 1

IQR 2 2 3

Sholl-like M 600 575 445

MAD 240 171 213

IQR 480 350 435

Total length M 69,674 105,373 28,876

MAD 14,041 8730 14,691

IQR 24,220 14,169 41,363

Distribution of observed morphometrics are given by the median (M), median
absolute deviation (MAD) and inter-quartile range (IQR). Values shown for the
generated (“synthetic”) morphologies and the morphologies originating from the
Burke and Fyffe archives (see main text).

in the “forest” setting, developing morphologies interact indirectly
with each other through overlap-prevention.

Visually the generated morphologies bear strong resemblance
to the exemplar ones. We then measured the Euclidean distance
between some and terminal tips and the maximum order in a tree
(Figures 3H,I), as well as the two-dimensional“Order”and“Sholl-
like” metric (Figures 3J,K) for the set of exemplar morphologies
(“Lee”) and the sets of morphologies generated in isolation (“Syn”)
and in a forest setting (“Forest”). To avoid biases introduced to an
unequal number of samples, we randomly picked 25 morpholo-
gies from the forest and computed the appropriate features from
this subset. The histograms indicate similar trend in the data of all
data sets. Quantification of all measured morphometrics is pro-
vided in Table 4. It is interesting to note that the variance in the
morphologies generated in a forest setting is higher. This obser-
vation results from the fact that all these neurons are generated
simultaneously. As a result, some branches would overlap with
each other. Overlaps are detected and an attempt is undertaken
to resolve the overlap. However, if no quick resolution is found,
the branch is terminated. In the forest setting, the somata are
close to each other and some conflicts in the proximal branches
could not be resolved and caused very small Euclidean length
and low maximal order in rare cases (Figures 3H,I, left-most
red bars). The two dimensional metric indicate a good match
in the topological and geometrical distribution of branch points
(Figures 3J,K).

Even though the neurons in the forest setting were densely
packed (Figure 3G) no overlaps occurred as neurite locations
were either corrected or terminated during the validity checks
performed by the SVs. Therefore, we conclude that with Neu-
roMaC we can generate forests of non-overlapping, plausible
morphologies.

CONTEXT-AWARE L5 PYRAMIDAL NEURONS
As a final demonstration of the capabilities of NeuroMaC, we
generated context-dependent layer 5 pyramidal neuron mor-
phologies. Three exemplar morphologies are shown in Figure 4A.
By visually examining these morphologies, we can observe some
morphological traits such as a difference in“height”but these traits
are hard to relate to their context. However, from canonical circuit
information, we know that the somas are located in layer 5, that
their basal dendrites remain mainly in L5 and may extend a bit
into L4, that their apical dendrite extends to the superficial parts
and ends close to the pia (in L1) after branching extensively in
layers L3–L1, and, that oblique dendrites sprout from the apical
trunk in L4. The remarkable difference in “height” of the apical
tree, is a clear signature of this context dependence as more super-
ficially located pyramidal cells cannot extend as far as more deeply
positioned ones.

We designed construction rules that take these canonical,
contextual traits based on laminar structure into account. A
truncated code snippet is listed in Table 5 to indicate particu-
lar context-dependent growth rules. Note that the growth rules
are different for basal and apical dendrites, and a further divi-
sion of the apical growth rules into rules for L5/L4, oblique
dendrites, and the dendrites in L3/L2/L1. At the soma, we gen-
erate an appropriate number of basal stems and one apical stem.
The basal dendrite branches with a probability inverse propor-
tional with the centrifugal order; at orders higher than 6 no
branching is allowed. Termination of a basal branch occurs with
a small probability or when a branch grows outside the lim-
iting volume. Direction of growth is again influenced by the
heading and same-neuron repulsion and an additional random
factor. The apical branch is contextually aware and the con-
struction rules change depending on the layer it is in (Table 5,
“extend_apical_front”). Layer-dependent behavior is biologically
feasible because in cortex some transcription factors are exclu-
sively expressed in layer specific neurons (Hevner et al., 2003; Chen
et al., 2005). In layers 5 and 4, oblique dendrites can sprout and
grow away from their initial branch point at the apical trunk. In
subsequent layers (3, 2, and 1) neurons can branch with layer
specific probabilities as long as a maximum increase in order
has not occurred yet in one layer. Same-neuron repulsion, cur-
rent heading, a distance-dependent attraction to the pia, and a
random component determine the direction of growth in the
superficial layers 3–1. Apical neurites can terminate as soon as
they reach layer 3 (and later 2 and 1) with a small probability.
All apical neurites are terminated if the pia is closer than 35 μ

away.
Two sets of morphologies are generated; again one with neu-

rons in isolation (N = 10 to match the sample size in the
Kawaguchi archive) and one with 100 simultaneously generated
morphologies in a forest setting. The volume in the “forest” setting
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FIGURE 3 | Validation of generated hippocampal granule cells. (A–C)

Experimentally reconstructed granule cells (from the Lee archive; Carim-Todd
et al., 2009). (D–F) Virtual morphologies generated by NeuroMaC. (G) Forest
of 100 simultaneously generated, non-overlapping granule cells. (H–K)

Quantitative comparison. Population morphometrics are shown for the Lee
archive (“Lee”), synthetic neurons generated in isolation (“Syn”) and as part

of a forest (“Forest”). (H) Euclidean distance between all terminal tips and
the soma. (I) Maximum topological order in the individual morphologies. (J)

Topological order of each branching point in all morphologies. (K) Occurrence
of branching points in each morphology as a function of Euclidean distance
(i.e., Sholl-intersections). SeeTable 4 for a detailed quantification of these
(and other) morphometrics.

was a rectangle of size 6000 μ× 1800 μ× 1400 μ, where 1400 μ is
the estimated depth of L5 in the exemplar data. All morphologies
from the former set are plotted in Figure 4B along with the canon-
ical virtual laminar architecture in which they grew (blue line: pia,
red dashed lines: layer boundaries. Layer 1 is at the top and layer 5
at the bottom; layer 6 is not shown). The forest from the latter set
is plotted in Figure 4C.

Visually, the generated neurons clearly exhibit the morpholog-
ical traits summarized above. Furthermore we compared the total
number of branch points (Figure 4D), the Euclidean distance to
the terminal tips (Figure 4E) and the total length (Figure 4F). A
quantification of all measured morphometrics is listed in Table 6.
The basal and apical dendrites are treated separately in these
measures. The basal trees show great correspondence with the

exemplar morphologies in terms of the Euclidean distance to
the terminal tips and the total length of the dendritic trees. The
number of branch points in the generated neurons is markedly
higher than in the exemplar ones; a range of [19,39] for the
Kawaguchi archive and [20,52] and [19,53] for the generated
neurons in isolation and forest setting, respectively. Given a
correct match with the total length and the Euclidean distance
to the tips, we speculate that the simple branching and ter-
mination rules are not sufficient for the basal trees, although
the low number of branch point can also result from incom-
plete reconstructions (Anwar et al., 2009, but also see Section
“Discussion”).

Considering the apical trees, we observe a mismatch in the
Euclidean distances and the total length between the exemplar
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Table 4 | Quantitative description of experimentally reconstructed

hippocampal granule neurons and their generated counterparts.

Lee “Isolation” “Forest”

# branch points M 13 12 13

MAD 1 4.5 5

IQR 2 8.25 9

Euclidean D M 207 199 197

MAD 12.7 11.7 16.7

IQR 26.2 41.7 68

Max order M 5 5 5

MAD 0 1 1

IQR 1 1 1

Order M 3 3 3

MAD 1 1 1

IQR 1 1 1

Sholl-like M 77 79 75

MAD 38.5 40.5 40.1

IQR 84 85 80

Total length M 2255 1846 1590

MAD 258 437 505

IQR 391 1001 922

Generated morphologies can be generated in isolation or in a forest setting. Pre-
sentation as inTable 3 . Values shown for the morphologies from the Lee archive
and the morphologies generated in “Isolation” and in the “Forest” settings (see
main text).

and the generated morphologies. We attribute both to a dif-
ference in the oblique dendrites. As seen in Figure 4E (left
panel, “Kawaguchi”), there is a peak of terminals in the apical
dendrite that terminate close to the soma. While the gener-
ated data also displays a second peak due to terminals of the
oblique dendrites, this peak is less pronounced and shifted to
greater Euclidean distances. We speculate that in the exemplar
dendrites, more oblique dendrites sprouted more proximally than
in our model. Given a major thalamic synaptic pathway in cor-
tex projecting to layer 4 and synapsing onto oblique dendrites
(Meyer et al., 2010; Oberlaender et al., 2012), it is not unreason-
able to think the oblique dendrites mainly sprout in layer 4 as
in our model. But, as said, an SWC file does not contain any
contextual information so the true dimensions of the laminar
architecture of the animals from which the neurons were recon-
structed remain a guess. Moreover, we consider the ability of
NeuroMaC to construct context-dependent dendrites a quality,
even if no context-dependent information related to the exemplar
morphologies was directly available. The fact that the apical trees
generated by NeuroMaC all reach the L1 – and not further – are a
great illustration of this context-dependence.

Our results indicate a clear and valid context-dependence,
which is similar to the morphological traits in the exemplar
data. Therefore, we can conclude that the generated morpholo-
gies exhibit context-dependent morphological traits that match to
the traits discovered in the exemplar data.

DISCUSSION
We started this work with the observation that there is a large
discrepancy between the way neuronal morphologies are studied
(in isolation) and the way they develop and take their shape (in
interaction with a dense surrounding substrate). From experi-
mental studies it appears that the surrounding brain substrate, the
context of all neurons, plays a pivotal role in shaping the morphol-
ogy and resultant brain circuits. To overcome this discrepancy, we
proposed a new computational framework, NeuroMaC, to study
how neuronal morphologies emerge from interactions with other
actors in the brain substrate.

We opted for a phenomenological framework for the sake of
conceptual simplicity and to curb computational costs. Construc-
tion rules are conceptually related to the genetic make-up of a
neuron and express how a neuron has to grow in terms of repul-
sive or attractive interactions with the surrounding substrate.
A phenomenological framework helps to reduce the computa-
tional resources in contrast to biologically and physically detailed
ones. Moreover, the design of NeuroMaC as a multi-agent system
ensures scalability with the number of available processors. As a
consequence of the design choices, NeuroMaC can be used to gen-
erate large numbers of interacting morphologies simultaneously.
This feature is unrivaled. CX3D, an existing computational tool
aims to simulate the whole of cortical development, from migra-
tion over polarization and differentiation to dendrite and axon
formation. However, the main version is serial (i.e., not parallel)
which limits its applicability to generate multiple full morpholo-
gies at the same time. NETMORPH, a tool capable of generating
large cortical networks (Koene et al., 2009) adopts a strategy in
which a volume is populated by adding neurons that are generated
in isolation. The topology of neurons is based on a mechanis-
tic growth rule but the geometry assigned to embed the topology
in space is statistically sampled from exemplar data. Hence, in
NETMORPH all neurons are independent and not based on any
contextual cues (van Ooyen et al., 2014). Although it has to be
noted that exemplar data contains morphologies that are shaped
through contextual interactions and, therefore, if a model suc-
ceeds in reproducing morphological traits it implicitly captures
some of these interactions. Historically, ArborVitae (Senft and
Ascoli, 1999) was proposed to generate large networks of neu-
rons simultaneously and with some phenomenological interaction
based on resource competition. While promising initial results
were generated, this tool is no longer in development. Hence, Neu-
roMaC is currently the only computational framework to study
explicitly how neurons grow together while interacting with the
environment.

We demonstrated that by using NeuroMaC we can generate
plausible neuronal morphologies with construction rules based
on local interactions, which inhabit the same simulated substrate
and have no physical overlaps. In the current work, construction
rules underlying the growth of morphologies are a crude approx-
imation of the hypothesized growth rules used by neurons. The
aim of this work was not so much the generation of the most “real-
istic” morphologies or morphological traits but rather showcasing
the power and usability of our new framework. As such, we illus-
trated that construction rules expressed in terms of repellants and
attractors are a useful metaphor to study morphologies.
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FIGURE 4 | Validation of generated layer 5 pyramidal neurons.

(A) Experimentally reconstructed layer 5 pyramidal neurons (from the
Kawaguchi archive). (B) Virtual morphologies generated by NeuroMaC.
Simulated laminar structure (L1–L5, from top to bottom) indicated by
dashed lines; blue line represents the pia. (C) Forest of 100
simultaneously generated, non-overlapping pyramidal neurons. (D–F)

Quantitative comparison. Population morphometrics are shown for the

Kawaguchi archive, synthetic neurons generated in isolation (“Syn”)
and as part of a forest (“Forest”). Statistics are given for basal
(left panels) and apical (right panels) trees separately. Shown are
total number of branching points (D), Euclidean distance between
terminal tips and the soma (E) and the total length of the
dendrites (F). Detailed statistics of these (and other) morphometrics
in Table 6.

NeuroMaC can be used in any desired way on the contin-
uum between small and large spatial scales and their associated
level of biological detail. At one end of this continuum it can
be used to study the effects of detailed, biologically plausible
construction rules. This way, studies can be conducted investi-
gating how particular construction rules representing biophysical
processes influence morphological traits. On the other end of
the continuum, one could opt to use less detailed rules to
generate full morphologies and, because putative synapse loca-
tions are recorded as well, the resultant circuits. Of course,
highly detailed construction rules can also be used (at little
extra computational cost) to generate full circuits and any “inter-
mediate” level of detail can be implemented as well. However,
while it is possible to compute the propagation of micro-
scopic rules to the meso-scale circuit, it can be a tedious

task to analyze the whole circuit at large for traces of the
underlying microscopic interactions. Another noteworthy fea-
ture of NeuroMaC is that it supports a mixed-methodology
with respect to the growth rules. That is, existing context-
independent neurogenetic algorithms can be implemented in
a straightforward fashion so that they can be used as growth
rules. As such, a simulated brain substrate could be populated
by morphologies grown in accordance to different methodolo-
gies.

One important observation is that our virtual morphologies
generated in a forest setting exhibit a larger variance than present
in the exemplar data (Figures 3I,J and 4D,F). This effect is smaller
but still present in the neurons generated in isolation. We turn to
the data sets of experimentally reconstructed neurons to explore
the issue of variance.
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Table 5 | Code snippet illustrating the growth rules to generate layer 5 pyramidal neurons.

def extend_front(front,seed,constellation):
if front.order = = 0:

new_fronts = []
apical_front = create_apical_branch(front,constellation)
basal_fronts = create_basal_branches(front,constellation)
new_fronts.append(apical_front)
new_fronts.extend(basal_fronts)
return new_fronts

elif front.swc_type = = 3:
if front.update_cycle < = np.random.randint(35,47):

return extend_basal_front(front,constellation)
else:

return []
else

return extend_apical_front(front,constellation)
def create_apical_branch(front,constellation):

# create one branch in direction of the pia
pia = get_entity("pia",constellation)
dir_to_pia = direction_to(front,pia,what = "nearest")
new_dir = normalize_length(dir_to_pia,3.0)
new_pos = front.xyz + normalize_length(new_dir,APICAL_NORM)
new_front = prepare_next_front(front,new_pos,\

set_radius = 1.0,add_order = True)
return new_front

def create_basal_branches(front,constellation):
for i in range(np.random.randint(5,11)):

# construct a number of basal branches
. . .

def extend_basal_front(front,constellation):
# branch, continue or terminate

def extend_apical_front(front,constellation):
# terminate branches too close to the pia

# sprout oblique dendrites in L5 or L4
if (front.layer = = 4 or front.layer = = 5) and not front.oblique:

# special rule for oblique dendrites
if front.oblique:

# compute next location and return
# continue or terminate oblique branch?

# layer specific rules for fronts in different layers
if front.layer > = 3:

# branch, continue or terminate

if front.layer = = 2:
# branch, continue or terminate

if front.layer = = 1:
# branch, continue or terminate

The code is incomplete and merely for the purpose to illustrate some of the context-dependent cues such as growth direction to the pia and layer specificity (for the
apical tree).

We can start by assuming that the data is a good represen-
tative of all neurons. In that case, our data exhibits too much
variation. Here the explanation would be that the used branching
rules are too simple and that branch probability and termina-
tion are also dependent on both intrinsic and extrinsic signals.
Intrinsic signals could be mediated through the production and
transport of actin filaments that are required for scaffolding the
neuronal membrane (Graham and van Ooyen, 2004). A detailed,
mechanistic rule based on these intrinsic properties has been pro-
posed (van Pelt and Verwer, 1986; van Pelt and Schierwagen,

2004) and could be used in our framework. Extrinsic signals
are inherently context-dependent. Experimental work has demon-
strated that the presence of specific molecules in the extra-cellular
space influence branching and termination properties (Itoh et al.,
1993; Dimitrova et al., 2008). While we did not address biologi-
cally plausible termination and branching conditions, we did use
the contextual laminar architecture as a cue to set layer specific
branching probabilities, and fronts in close proximity to the pia
were terminated. Another way of restricting virtual morphologies
is by generating them inside a limited space as applied here to
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Table 6 | Quantitative description of experimentally reconstructed L5

pyramidal neurons and their generated counterparts.

Kawaguchi “Isolation” “Forest”

# branch

points

apical M 46 40.5 33

MAD 3 10 5

IQR 4.7 13.7 10

basal M 31 30 32

MAD 1.5 6 5.5

IQR 2.5 14.2 10

Euclidean D apical M 407 561 552

MAD 198 116 98.3

IQR 409 265 237

basal M 125 138 137

MAD 28.5 35.7 38.8

IQR 62.1 76.7 85.9

Max order apical M 17.5 19 18

MAD 2.5 1 2

IQR 4.7 2.5 4.7

basal M 5 5 5

MAD 1 0 0

IQR 1.7 0 0

Order apical M 10 16 15

MAD 5 3 3

IQR 10 8 8

basal M 2 3 3

MAD 1 1 1

IQR 1 2 2

Sholl-like apical M 345 521 554

MAD 224 171 131

IQR 448 378 322

basal M 41 70 70

MAD 13.3 35 42

IQR 28.3 77 84

Total length apical M 7327 5645 4882

MAD 489 637 853

IQR 846 1398 1568

basal M 4439 3398 3664

MAD 518 672 1461

IQR 945 1461 1263

Generated morphologies can be generated in isolation or in a forest setting. Basal
and apical dendrites are treated separately. Presentation as in Table 3 . Values
shown for the morphologies from the Kawaguchi archive and the morphologies
generated in “Isolation” and in the “Forest” setting (see main text).

the neurons generated in isolation. In such cases, a neurite ter-
minates once it leaves the designated space (Cuntz et al., 2010;
Memelli et al., 2013). This might explain in part why the neurons
generated in isolation and in a limited space show less variance
(Figures 3H,I and 4E,F). However, since one of the future goals of

this work is to generate full circuits, and because synapse occur-
rence is proportional to structural overlap between axons and
dendrites (Peters and Feldman, 1976), we cannot constrain the
space and generate large ensembles of neurons simultaneously (as
in the forest setting, Figures 3G and 4C). Therefore, future work
will also focus on the design of proper rules for branching and
termination.

We can also start an argument by assuming that the exem-
plar is not representative for all neurons. It has been demon-
strated that reconstructed neurons contain a lot of biases related
to reconstruction methods and selection by the experimenter
(Horcholle-Bossavit et al., 2000; Kaspirzhny et al., 2002; Szilágyi
and De Schutter, 2004; Steuber et al., 2004). For instance, the
experimenter might select only “typical” neurons that are labeled
well in the slice, which leads to a strong bias in the data. Also, neu-
rons at the edge of a slice are more likely to be selected for technical
reasons while precisely these neurons might be affected by the slice
preparation in that neurites might be cut. Because these biases are
not documented it is hard to make an estimate of their effect on
the sample. As such, another option remains to explain the large
variance in the generated data remains: the construction rules can
be incomplete. Clearly the rules employed in this work are phe-
nomenological and only crudely mimic morphological traits, so
are incomplete. But assuming the rules are correct has interesting
implications mainly because of the predictive power associated
with a mechanistic model. Having a mechanistic explanation of
neuron morphology has the advantage that morphological traits of
various kinds can be predicted. For instance, age has an influence
on morphologies and makes classifying neurons of varying age to
correct classes nearly impossible (but see da Fontoura Costa et al.,
2002). With a mechanistic model, morphologies corresponding
to a certain age could be generated and serve as ground truth.
Similarly, to assess pathological cases, simulated knock-outs could
be predicted. Predictions, in turn, could be used to validate the
phenomenological construction rules: predict the outcome of a
particular knock-out and compare the resultant traits in silico and
in vitro.

In conclusion, we designed, implemented and validated a new
computational framework in accordance to a paradigm shift in
the study of neuronal morphologies: away from studying mor-
phologies in isolation to a study of neuronal morphologies as
participants in their neuronal context. We demonstrated the
potential of this new framework to study variation in neuronal
morphology through a “generative” approach. Future research
will focus on the generation and emergence of complete micro-
circuits.
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Aćimović J, Mäki-Marttunen T and

Linne M-L (2015) The effects of

neuron morphology on graph theoretic

measures of network connectivity: the

analysis of a two-level statistical

model. Front. Neuroanat. 9:76.

doi: 10.3389/fnana.2015.00076

The effects of neuron morphology on
graph theoretic measures of network
connectivity: the analysis of a
two-level statistical model
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We developed a two-level statistical model that addresses the question of how properties

of neurite morphology shape the large-scale network connectivity. We adopted a

low-dimensional statistical description of neurites. From the neurite model description

we derived the expected number of synapses, node degree, and the effective radius,

the maximal distance between two neurons expected to form at least one synapse. We

related these quantities to the network connectivity described using standard measures

from graph theory, such as motif counts, clustering coefficient, minimal path length, and

small-world coefficient. These measures are used in a neuroscience context to study

phenomena from synaptic connectivity in the small neuronal networks to large scale

functional connectivity in the cortex. For these measures we provide analytical solutions

that clearly relate different model properties. Neurites that sparsely cover space lead to

a small effective radius. If the effective radius is small compared to the overall neuron

size the obtained networks share similarities with the uniform random networks as each

neuron connects to a small number of distant neurons. Large neurites with densely

packed branches lead to a large effective radius. If this effective radius is large compared

to the neuron size, the obtained networks have many local connections. In between

these extremes, the networks maximize the variability of connection repertoires. The

presented approach connects the properties of neuron morphology with large scale

network properties without requiring heavy simulations with many model parameters.

The two-steps procedure provides an easier interpretation of the role of each modeled

parameter. Themodel is flexible and each of its components can be further expanded.We

identified a range of model parameters that maximizes variability in network connectivity,

the property that might affect network capacity to exhibit different dynamical regimes.

Keywords: network connectivity, neuron morphology, theoretical model, neurite density field, graph theory, motifs

1. Introduction

We analyze how the low-resolution properties of single neuron morphology constrain the
connectivity within a large population of neurons. We develop a two-level framework that includes
details of single cell morphology while allowing the analysis of large populations of neurons as
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well as the derivation of compact analytical expressions for
most of the considered aspects of morphology and connectivity.
The presented framework can further be extended to take
into account additional aspects of neuronal morphology and
additional properties of connectivity.

In this work, single neurons and neurites are modeled
statistically. Each axon and each dendrite is represented by a
single neurite field, the probability distribution that describes
the density of the neurite branches within a limited area of the
neurite. This way each neuron consists of one neurite field for the
dendrite, one for the axon, and the parameter that determines
the average distance between the dendrite and axon centers. The
adopted neurite field model is discussed in the literature. The
studies in Snider et al. (2010) and Teeter and Stevens (2011)
propose a universal method to describe different neuronal types
based on the description of neurite fields of dendrites. A study in
Cuntz (2012) demonstrates how realistic neuronal morphologies
arise when dendrite segments, distributed according to Snider
et al. (2010), get connected using the optimal wiring principle.
In van Pelt and van Ooyen (2013) the realism of the obtained
synaptic distributions and connectivity probabilities was tested
for neurons modeled using density fields.

The use of graph theoretic measures to quantify neuronal
connectivity is a methodology adopted from the classical studies
of network theory. In various studies and different contexts,
it has been demonstrated how such measures can distinguish
between functionally different network types. The methodology
has been applied to very different networks, from computer
networks to social networks, and from gene regulatory networks
to neuroanatomy (Boccaletti et al., 2006). Theoretical studies,
on the other hand, focus on analysis of generic networks
of coupled oscillators demonstrating how statistical properties
of network connectivity change the overall dynamics of the
complex system. A particularly interesting question in such
studies is the search for connectivity that optimizes some aspects
of network functionality. Some commonly addressed concepts
include small-world networks that minimize the average distance
between network nodes while maximizing the cooperation
across the node neighborhood. Another concept is the scale-
free network that installs system dynamics on the edge between
order and disorder, thus maximizing the repertoire of dynamical
regimes that a system can exhibit as well as the information
diversity in the system (Boccaletti et al., 2006; Mäki-Marttunen
et al., 2011). Small-world networks were first introduced in
Watts and Strogatz (1998), and then addressed in other studies,
also in the neuroscience context (Boccaletti et al., 2006; Herzog
et al., 2007; Kriener et al., 2009; Voges et al., 2010; Sporns,
2011; McAssey et al., 2014). They were often examined in the
context of the large-scale recordings of whole-brain activity, or
the anatomical large-scale connectivity between brain regions
(Sporns, 2011). For the smaller-scale networks of individual
neurons it is relatively difficult to estimate the small-world
property as it requires tracking the synaptic connectivity between
neurons in large populations (particularly in order to estimate
path lengths). Most of the studies present in the literature
examine theoretical concepts through mathematical models,
or analyze functional connectivity estimated from recordings.

In our previous study, we examined a large repertoire of
connectivity measures aiming to find a consistent descriptor of
connectivity that has implications on network dynamics (Mäki-
Marttunen et al., 2013). Two measures were distinguished, the
clustering coefficient for networks with binary distribution of
node degrees, and maximal eigenvalue for networks with more
variability in the in-degree distribution.

In this study, we primarily focus on the estimation of
motif counts (Milo et al., 2002). Motifs represent minimal
networks with structured connectivity and are as such suitable for
experimental studies. In three previous studies, the non-random
distribution of motifs was demonstrated in small networks of
pyramidal cells (Song et al., 2005; Perin et al., 2011), and
also in networks of interneurons (Rieubland et al., 2014). The
implications of these non-random features of connectivity are
yet to be explained. Using a theoretical model we derived closed-
form expressions for motif counts that do not depend on the
network size, but only on the average density of neurons. In
addition, the clustering coefficient, that was already found to
significantly affect the network activity (Mäki-Marttunen et al.,
2013), can be straightforwardly computed from motif counts, as
demonstrated in what follows.

A relatively large part of the paper is dedicated to
analytical approach to solving the considered two-level model
as well as the obtained closed-form solutions. Understanding
different levels of organization in neuronal systems and the
interaction between those levels is a frequently discussed
issue in computational neuroscience literature (Frégnac et al.,
2007; Deco et al., 2008). Even the detailed single-level models
can become computationally exhaustive and complex, and
combining them into multilevel models leads to an explosion in
complexity that can obscure the interactions between particular
model components. A suggested alternative is the mean-field
approximation of each level before linking it to higher-levels
of organization (Deco et al., 2008; Sompolinsky, 2014). The
presented study complies with this methodology.We first analyze
the level of neurons in order to derive simple properties relevant
for the network level in themodel. In this way, the dimensionality
of that level is compressed, which provides the possibility of
deriving simpler expressions for the second level characteristics.

Several approximations were adopted when constructing the
model of this paper. The neurite structure is described statistically
and the fine details of neurite structure are lost. The fine patterns
of synaptic distribution are also averaged out. The organization
of neurons in the space is chosen to be simple and corresponds
to cell cultures more so than to the cortical tissue. Finally,
the activity-dependent synaptic reorganization is not considered
in this study. Synapses are formed solely based on geometry,
and the obtained connectivity corresponds more to potential
connectivity as defined in Stepanyants and Chklovskii (2005).
In the discussion, we will address some relevant properties of
neuronal systems that are not part of the model, and propose a
way to incorporate them in the presented framework.

The main result of this study are the analytical expressions for
several frequently addressed network measures, including motif
counts, clustering coefficient, and path length between network
nodes. We particularly addressed motif counts, as they represent
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the smallest possible networks with structured connectivity. As
they capture only the local properties of connectivity, they can
be measured experimentally, as demonstrated in Song et al.
(2005), Perin et al. (2011), and Rieubland et al. (2014). In
addition, the clustering coefficient can be straightforwardly
computed from motif counts. From the clustering coefficient
and path length, we computed small-world coefficients using
two definitions from the literature (Watts and Strogatz, 1998;
Telesford et al., 2011). The addressed connectivity measures
depend on several model parameters. Some of the parameters
contribute as multiplicative constants, while others show non-
linear relations to the considered measures. The most interesting
parameter is the ratio between the effective radius of a neurite and
the distance between the axon and dendrite centers of the same
neuron. The effective radius is the maximal distance that permits
a connection between two neurons. Depending on this ratio,
a network can have a connectivity similar to uniform random,
or similar to locally coupled network. The most interesting
situations are in between these two extremes, where the network
increases variability in its connectivity repertoire.

2. Methods

To address the principal goal of this study, in other words, to
analyze how neuronal morphology can affects connectivity in
large networks, we constructed a two-level model. The first level
specifies the anatomic properties of each neurite statistically,
by defining a probability distribution of neurite branches.
The probability distribution is non-zero only within a limited
area, the support of neurite distribution. This low-resolution
description of neurites was already analyzed in several studies
(Snider et al., 2010; Teeter and Stevens, 2011; van Pelt and van
Ooyen, 2013). It depends on a small number of parameters, four
for the two-dimensional neurites, and is suitable for the analysis
of large-scale network connectivity. The second level defines the
properties of the neuronal population. In order to emphasize
neuron morphology we selected the simplest network model, a
two-dimensional virtually infinite-size network with a uniform
distribution of neurons. Every pair of sufficiently close axon-
dendrite branches forms synapses, the number of synapses is
proportional to the axon-dendrite overlap (Peters’ rule, Peters
and Feldman, 1976; Peters et al., 1991). The obtained synapses
correspond to potential connectivity as defined in Stepanyants
and Chklovskii (2005). Activity dependent synapse formation
and pruning was not considered in this study, although it has
been shown to play an important role in remodeling synaptic
patterns. Including the activity-dependent mechanisms would
require a dynamical model with a more complex synapse
formation rule, eventually also described statistically. Activity-
induced modifications of neurite distribution might also be
considered. In this study, we wanted to analyze a simpler model
where the role of morphology was emphasized, as it is the most
stable among several properties that shape the connectivity in
large networks. The concepts presented here can be combined
with models of other relevant mechanisms, including the models
of network activity, e.g., the one described in Mäki-Marttunen
et al. (2013).

The first part of Methods Section gives a detailed description
of the analyzed model. The second part presents the analysis
of neurite distribution and shows how its properties determine
first-order connectivity statistics under the adopted synapse
connectivity rule. In the third part, we present closed-form
analytical expressions for the two network measures and an
iterative method to obtain another measure frequently addressed
in the literature (Sporns, 2011).

2.1. Model Description
The model consists of several components, including a neuronal
population description, single neuron and single neurite
description, and the rule for establishing contacts between
neurons (i.e., potential synapses). All these components are
illustrated in Figure 1.

2.1.1. Population of Neurons (Figure 1A)
Neurons are distributed randomly in the two-dimensional space
of the size L × L, where L is chosen to be much bigger than
the neuron size, thus making the space around each neuron
virtually infinite. The population of neurons is homogeneous, all
of the neurons have identical properties and they are randomly
oriented in space. The neurons are uniformly distributed in
space with the density equal to 1

l2
, i.e., a square of the size

l × l contains on average one neuron, which gives a total

of N = L2

l2
neurons. To avoid boundary conditions, the

edges of the surface are wrapped to form a torus and provide
virtually infinite space (which is illustrated in Figure 1A). The
model corresponds to the arrangement of neurons in dissociated
neuronal cultures. A model of the cortical tissue, on the other
hand, requires a non-uniform arrangement of neurons that
should follow the distribution of the considered cell types across
layers. In addition, the non-random orientation of neurons could
be imposed.

2.1.2. Neuron and Neurite Models (Figure 1B)
All of the neurons in the model are identical and consist of
two neurite fields, one for the (basal) dendrite and one for
the axon. The dendrite is centered in the soma and the axon
center is at a distance 1ad from the soma. For the uniform
distribution of somata and the random orientation of axons,
the distribution of axon centers becomes equal to the one of
somata. The neurites are modeled statistically, as a distribution
of neurite segments on a finite area, the distribution support. In
this study, we considered circular supports with a radius Ra for
axons and Rd for dendrites, where Ra ≥ Rd. We analyzed cases
with uniform and truncated Gaussian distributions of neurites,
described by density functions pa(x, y) for axons and pd(x, y) for
dendrites. The expression for the uniform distribution is given
by Equation (1) and for the truncated Gaussian by Equation (2),
with parameters (xa/d, ya/d)—the coordinates of the axon and
dendrite centers, σd, σa—the variances along both axes.

Ca/d = 1− exp

(
−

R2
a/d

2σ 2
a/d

)
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FIGURE 1 | (A) Population of neurons. Each neuron is illustrated as an

8-shaped surface (to make it more visible, one such surface is colored

blue). The population of neurons is homogenous, all of the neurons have

identical properties and they are randomly oriented. The population lays in

the planar space of the size L× L. The dimension L is chosen to be much

bigger than the size of the neurons. To avoid boundary conditions, the

plane is projected on a torus (indicated by four arrows). (B) Neuron and

neurite models. The axon (a) and dendrite (d) are modeled as density

distributions pa/d (x, y) on a limited circular support with radii Ra/d . The axon

and dendrite centers are at a distance 1ad . The example in (B) shows the

neurites modeled as truncated Gaussians with the parameters: (axon)

Ra = 500µm, σa = 0.9Ra, (dendrite) Rd = 200µm, σd = 0.7Rd , and the

distance between neurite centers 1ad = 400µm. The x and y axes are in

[µm], the z axis shows the value of density distribution for the given

coordinates (x, y). (C) Neurite segments and density fields. Each neurite

is divided into segments of length 2D, and a circle of radius D can be

circumscribed around the middle of the segment. For a dendrite with Nd
segments, the total dendrite length is Ld = 2DNd . Neurite distribution

describes the probability of finding individual segments within the neurite

support. It is derived by superimposing many neurites of the same type. (D)

Potential synapse formation rule. An axon-dendrite pair can form a

synapse if an axon segment crosses the near neighborhood of a dendrite

segment, the near neighborhood is a circle of radius D circumscribed

around the dendrite segment (blue circle in the figure). The dendrite

segment can form at most one synapse with the considered axon, but it

can at the same time form a synapse with every other axon that crosses its

near neighborhood (a dendrite segment with two synapses shown in the

figure, the two arrows indicate synapse positions).

are the normalization coefficients that compensate for the cut off
part of Gaussians. The presented results can be extended to more
general forms of density distributions and elliptic distribution
supports.

pa/d(x, y) =
{

1
R2
a/d
π
, (x− xa/d)

2 + (y− ya/d)
2 ≤ R2

a/d

0, else
(1)

pa/d(x, y) =




1
2πσ 2

a/d
Ca/d

exp

(
− (x− xa/d)

2 + (y− ya/d)
2

2σ 2
a/d

)
,

0,

(x− xa/d)
2 + (y− ya/d)

2 ≤ R2
a/d

else

(2)

2.1.3. Neurite Segments and Density Fields

(Figure 1C)
We introduce the maximal number of neurite segments, Na for
axons and Nd for dendrites, for two reasons. First, this concept
allows us to compute the expected number of synapses between
an axon-dendrite pair, which is an important first step in the
derivation of the considered connectivity measures. Second, it

connects the individual neurites with the statistical description
of neurite fields, which is illustrated in Figure 1C. Each neurite
is discretized into segments of length 2D. In what follows we
will call D the unit length of a neurite, so each neurite segment
is two units long. If the total length of a neurite is La/d, then
La/d = 2DNa/d. The neurite field describes the probability of
finding every neurite segment inside the neurite support, and it
can be obtained by superimposing many neurites. We assume
that the dendrite center coincides with the soma center as we
represent all dendrite branches with the same density field.

2.1.4. Potential Synapse Formation Rule (Figure 1D)
We adopted a simple rule that forms synapses between a pair of
neurons independently from other neurons in the population,
the number of obtained synapses is proportional to the overlap
between the two neurites (Peters’ rule, Peters and Feldman,
1976; Peters et al., 1991). Consider a dendrite-axon pair, for
each dendrite segment we examine its near neighborhood, a ball
of radius D centered in the segment center (delineated with a
blue circle in Figure 1D). If there is any axon segment present
in this ball, the potential synapse between these segments is
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established. If there is more than one axon segment, only one,
randomly selected, of them will form a potential synapse with
the dendrite segment. Consequently, every dendrite segment
can form at most one potential synapse with the considered
axon, but it can simultaneously form potential synapses with
other axons that cross its near neighborhood. In the example
in Figure 1D, the near neighborhood of a dendrite segment is
crossed by two axons and two potential synapses are formed (the
blue arrows indicate positions of the potential synapses). This is
a rather mild constraint on the number of synapses and in a large
population of neurons the number of synapses per neurite can
become unrealistically high. Still, it is a reasonable assumption
when analyzing potential connectivity, as we are interested in
estimating the number of all possible contact places, which
is much bigger than the number of actually formed synapses.
Alternative rules that take into account all the available segments
from all the proximal axons can also be defined.

2.2. The Methodology Used to Analyze Neurites:
Connectivity between Axon-dendrite Pairs
2.2.1. Expected Number of Synapses per Neurite
From the neurite description and the adopted synapse formation
rule we derived the expression for the expected number of
synapses per neurite (S, Equation 3). The details of the derivation
of the expression are given in the Supplementary Material 1.
The same expression was already proposed in the literature to
estimate the number of synapses from neurite density fields
(Peters et al., 1991; Liley and Wright, 1994; van Pelt and van
Ooyen, 2013). In van Pelt and van Ooyen (2013), an equivalent
equation was derived using less strict assumptions about the
distribution of axonal field than the one adopted in our study.

S = NaNdD
2
π

∫ ∫
�a∩�d

pa(x, y) pd(x, y) dx dy (3)

Replacing the expressions for neurite field distributions into this
equation gives the final formula for the expected number of
synapses

S =
NaNdD

2

R2π
· φ(ρ, η,M) =

4NaNdD
2

12π
ρ
2
φ(ρ, η,M). (4)

Here, R = Ra +Rd
2 is the average neurite radius, 1 is the

distance between the considered axon-dendrite pair of two
proximal neurons, ρ = 1

2R = 1

Ra +Rd
is the normalized

distance between the axon-dendrite pair, η = Ra −Rd
Ra +Rd

is the

asymmetry index that accounts for the different size of the axons
and dendrites, and M is the set of parameters that determine
the distribution of neurite segments. M is an empty set for a
uniform distribution andM =

{
σ, kσ

}
for the considered case of

truncated Gaussian distribution. Here, σ = σd
2R is the normalized

dendrite distribution variance, and kσ = σd
σa

is the ratio
between the dendrite and axon variances. In what follows, the
function φ(ρ, η,M) will be called distance-dependent expected
number of synapses as it describes the dependency between the
expected number of synapses and the axon-dendrite distance.
This function can be evaluated analytically for the uniform

distribution and numerically for the truncated Gaussians, all
relevant derivations are given in Supplementary Material 1
and the function is further discussed in Results Section. The
only requirement for this function is to be reversible, at least
partially. Similarly, the function ρ

2
φ(ρ, η,M) will be called

size-dependent expected number of synapses as it describes the
dependency on the average neurite size.

2.2.2. Computation of Node Degree and Effective

Radius from Neurite Field Distributions (Figure 2A)
Two neurons are expected to connect if their axon-dendrite
pair has S ≥ 1. The expected number of synapses depends
on the model parameters (Na,Nd,D,1,R) and the normalized
parameters ρ, η, and M. First we fix all the parameters except 1
(and ρ), and then we find themaximal axon-to-dendrite distance
1max (and ρmax) which satisfies the condition S ≥ 1. This
maximal distance is called the effective radius of a neurite and
its computation is illustrated in Figure 2A. The circle centered
in the neurite with the radius equal to the effective radius is
called the connectivity area. The effective radius integrates the
properties of both, the axon and the dendrite, and is consequently
equal for both types of neurites. Once it is computed, it
simplifies the analysis of network connectivity. Every neuron
can be represented as two circles of radius 1max with the
distance between the circle centers being 1ad. Different network
connectivity measures are computed from the intersection of
pairs of circles for several neurons.

S ≥ 1 ⇒
NaNdD

2

R2π
φ(ρ, η,M) ≥ 1

⇒ ρ ≤ φ−1
(

R2π

NaNdD2
, η,M

)

⇒ 1 ≤ 2R · φ−1
(

R2π

NaNdD2
, η,M

)

⇒ 1max = 2R · φ−1
(

R2
π

NaNdD2
, η,M

)
(5)

The function φ(·) has to be invertible with respect to the first
argument. Here, φ−1(x, η,M) means the inverse of φ with
respect to argument x and with η andM considered as constants.
In case of uniform distribution, the function φ is monotonic
without discontinuities only for η ≤ ρ < 1. The analysis of
this case, shown in Results Section, confirms that the general
conclusions still apply.

Finally, the node degree, equal for all the neurons, can be
computed as a function of the effective radius. The average
number of output connections for a neuron is equal to the
average number of dendrite centers within the connectivity area
of its axon

ndegree =
1

2
maxπ

l2
=

4R2π

l2
ψ

(
R2π

2NaNdD2
, η,M

)
, (6)

where ψ(x, η,M) =
(
φ(x, η,M)−1

)2
.

2.2.3. Constraints on Model Parameters
So far, no constraints on model parameters were imposed,
but obviously a random choice in the 8-dimensional space
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FIGURE 2 | (A) Definition of the effective radius and the connectivity

area. The effective radius is the distance between an axon center A1 and a

dendrite center BX that satisfies the condition S̄(1) = 1. Every point within

the connectivity area of A1 is at a distance smaller than 1max from A1.

(B) Normalized coordinate system. The polar coordinate system is fixed

to the representative neuron N1 defined by its axon center A1 and dendrite

center B1. The coordinate center is in the axon center A1, and the

coordinate axis goes from A1 to the dendrite center B1. The angular

coordinate is measured counterclockwise from the coordinate axis. All radial

coordinates are normalized, i.e., divided by 1ad , so that B1 has coordinates

(0,1) and BX coordinates (αX , rmax ), where rmax =
1max
1ad

. (C) 2-Node motif

counts. The panel illustrates two steps in the computation of the expected

numbers of 2-node motifs. In the first step, the position of the dendrite center

B2 is chosen within the connectivity area of axon A1. In the second step,

axon A2 is chosen on the circle of radius 1 around B2 (the red dashed line).

The function κ1 gives the probability that A2 falls within the connectivity area

of B1, κ1 is determined by the angle between points B2, I and J. (D) 3-Node

motif counts. In the first step, the positions of two dendrite centers, B2 and

B3, are chosen within the connectivity area of axon A1. The second step

defines the position of axon center A2, placed on the circle of radius 1

around B2 (the dashed red line). Intersections of this circle with the

connectivity areas of dendrites B1 and B3 define functions κ1 (the red line), κ

(the orange line), and λ (the purple line), which are determined by the angles

∠B2IJ, ∠B2KL, and ∠B2JK, respectively. The expected number of motifs for

all three-node motifs can be computed considering different positions of A2

with respect to the connectivity areas of B1 and B3, and as a combination of

functions κ1, κ, and λ. (E) M2 and M9 counts: Computation of the

expected numbers of M2 and M9 requires additional steps. In the first step,

the axon center A3 is chosen within the connectivity area of B1. In the

second step, the dendrite center B2 is chosen in the connectivity area of A1

but outside the connectivity area of A3 (dark green area). In the third step, the

dendrite center B3 is chosen on the circle of radius 1 around A3 (the dashed

red line), but outside of the connectivity area of A1 (unshaded part of the

dashed red line). The fourth step is identical as the second step in (D).

{
D,Na,Nd,R, η, ρ, σ, kσ

}
can lead to unrealistic morphologies.

In this work, we will not search for biologically realistic
parameters using reconstructed neurons or detailed simulations

of neurites, e.g., using NETMORPH toolbox (Koene et al., 2009).
This will be addressed in our future work. Here, we only give a set
of weak conditions necessary for having feasible morphologies.
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Condition 1: Upper bound for the number of neurite

segments. Figure 1C illustrates the discretization of neurites into
segments of length 2D. A circle of radius D is circumscribed
around each such segment. As shown in Figure 1C, these circles
overlap only immediately after their branching points. As we
assume thatD is small compared to the average segment between
two branching points, we can also assume a small number of
overlapping circles compared to the total number of circles
covering a neurite. If, in addition, we assume that the number of
neurite segments should not be too dense, and that the neurites
tend to avoid self-intersections, we derive the following upper
bound for the number of neurite segments:

Nd ≤
R2
d
π

D2π
, Na ≤

R2aπ

D2π
.

Right sides of the equations give the approximate number of
circles of radius D inside the neurite of radius Rd/a. For the
truncated Gaussian we have an additional relation:

Na ≤ Na · f
(

Ra√
2σa

)
≤

R2aπ

D2π
, Nd ≤ Nd · f

(
Rd√
2σd

)
≤

R2
d
π

D2π
.

If we replace the parameters (Ra,Rd, σa, σd) with the normalized
parameters (R, η, σ, kσ ) the relation becomes:

Na ≤ Na · f
(
(1+ η)kσ
2
√
2σ

)
≤
(
(1+ η) R

D

)2

,

Nd ≤ Nd · f
(
1− η
2
√
2σ

)
≤
(
(1− η)R

D

)2

. (7)

The function f (x) = x2

1−exp(−x2) is derived in the Supplementary

Material (see Supplementary Material 1, derivation of Equation
4) for the upper bound ofNa. The relation forNd follows from the
same analysis when switching the roles of dendrites and axons.

Condition 2: Weak lower bound for the number of neurite

segments. Each neurite should have at least one connected
straight fiber. If the neurite radius is Rd/a, the fiber length should
be at least 2Rd/a. Clearly, a better approximation for a single fiber
would be elliptic support with a longer diagonal equal to Ra/d and
a shorter onemuch smaller than Ra/d. But, if we only consider the
circular support of neurites, as it is done in this study, the single
fiber of length 2Rd/a is approximated with a circle of the radius
Rd/a. Therefore, we have

Na ≥
2Ra

2D
, Nd ≥

2Rd

2D
. (8)

Condition 3: Connected network. In order to have a connected
network the following relation between themodel parameters has
to hold:

ndegree ≥ 1⇒ ψ

(
R2π

2NaNdD2
, η,M

)
≥

l2

2R2π
. (9)

Condition 4: The inverse of function φ. The model parameters
should be in the range of values where the inverse of φ exists:

0 ≤
R2π

2NaNdD2
≤ φmax(η,M). (10)

Condition 5: Upper bound for the expected number of

synapses. As each dendrite segment accommodates at most one
synapse with a proximal axon, the upper bound of S can be
estimated as the total number of circles of the radius D that can
be placed inside the axon-dendrite intersection area:

S ≤
‖�a ∩�d‖

D2π
.

In cases when the number of neurite segments is much smaller
than the neurite radius this upper bound allows more than one
synapse per neurite segment, so a more strict constraint should
be imposed:

S ≤ min{Na,Nd} ⇒ φ(ρ, η,M) ≤
R2π

2D2
·max

{
1

Na
,
1

Nd

}
.

(11)

2.3. The Methodology Used to Analyze Networks:
Statistical Measures of Network Connectivity
We analyze network connectivity by computing standard
statistical measures, such as motifs, clustering coefficient,
harmonic path length, and two versions of small-world
coefficient. Most of the section is dedicated to motifs, and the
expression for clustering coefficient directly follows from it. The
harmonic path length is computed using an iterative procedure.
Small-world coefficients are adopted from the literature (Watts
and Strogatz, 1998; Telesford et al., 2011) and will only be
described in brief. We compute the connectivity measures for
one fixed cell, the neuron N1, which is the representative of
all the neurons in the homogeneous population. We consider
all the other neurons (N2, N3,. . . ,Nk) that can form different
connectivity patterns with N1.

2.3.1. Coordinate System and Normalization

(Figure 2B)
The polar coordinate system is fixed to the neuron N1, with the
axon center A1 and the dendrite center B1. The center of the
coordinate system is in A1 and the coordinate axis follows the
direction from A1 to B1. The angular coordinate is measured
counterclockwise with respect to the coordinate axis and takes
values α ∈ [−π, π]. The radial coordinates are normalized,
i.e., divided by 1ad, so that B1 has the coordinates (0, 1), and
a dendrite center BX on the edge of connectivity area has

the coordinates
(
αX, rmax = 1max

1ad

)
1. Figure 2B illustrates the

described coordinate system2.

1To simplify the explanations in the text we sometimes use the notation for neurite

centers when talking about the corresponding neurites. For example, A1 could

stand for “the center of the axon of neuron N1” but also for “the axon of neuron

N1.” Since all neurons have equal properties, the only parameters that distinguish

them are the coordinates of their centers.
2The notation r is simultaneously used for radial coordinates in the coordinate

system of axon A1 and the axon-dendrite distances between A1 and other

dendrites, because these distances are at the same time radial coordinates in the

coordinate system of A1.
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2.3.2. Notation
The symbol BRx (X) is used to denote “a ball” or “a circular
neighborhood.” The subscript indicates the normalized radius,
and the center of the ball is given between brackets. If the center
X has the coordinates (αX , rX), the ball BRx (X(αx, Rx)) is a set of
all points X(α, r) such that

||A1X|| =
√
r2 + r2x − 2r rx cos(α − αx) ≤ Rx ·

This notation is also used to mark the connectivity area of a
neurite, for example Brmax (A) is the connectivity area of an axon
centered in A. If we replace the inequality in the expression above
with an equality the expression corresponds to the edge of the
ball, the circle CRx (X).

2.3.3. Expected Number of Two-Node Motifs

(Figure 2C)
Figure 2C illustrates the two-step method for computation of
two-node motifs. We consider two connected two-node motifs,
i.e., whether two neurons have a unidirectional (N1 → N2) or a
bidirectional (N1 ↔ N2) connection. For the bidirectional motif
we will use the notation M1 − 2, and for the unidirectional the
notation M2 − 2. In the first step (the left side of Figure 2C),
the position of the dendrite center B2 is chosen inside the
connectivity area of axon A1 which, according to the definition of
the connectivity area, results in the connection N1 → N2. From
the model definition, the axon-dendrite distance in a neuron is
fixed to 1ad (1 in the normalized coordinate system) and the
orientation of the neuron is random in the 2D space. Therefore,
for the fixed B2 the axon center A2 can take any position on the
circle of radius 1 centered in B2, C1(B2), with equal probability.
This circle is shown as a red dashed line on the right side of
Figure 2C. Given the set of possible positions of A2, we can
compute the probability that A2 falls inside the connectivity area
of B1, which would give a bidirectional connection between the
two neurons. This probability is proportional to the part of the
circle C1(B2) that falls inside the connectivity area around B1
(highlighted in Figure 2C), and is also described by the function
κ1. If A2 is outside the connectivity area of B1, the resulting motif
will be the unidirectional connection N1 → N2.

From this analysis we can estimate the probability that neuron
N2 forms a unidirectional or a bidirectional motif with the
neuronN1. To compute the expected number of two-node motifs
for N1 we should consider all the possible positions of B2 (and
consequently A2) within the connectivity area of A1, which is
done by integrating over all the coordinates B2(α2, r2) inside
the ball Brmax (A1). In addition, the expression obtained for the
motif M2 − 2 is multiplied by two as we should consider two
directions of the connection, N1 → N2 and N2 → N1. The
obtained expected numbers of motifs are given by the following
expressions:

NM1− 2 =
1

2
ad

2l2π

∫ rmax

0

∫
π

−π
κ1(α, r) r dr dα, (12)

NM2− 2 =
1

2
ad

l2π

∫ rmax

0

∫
π

−π
(2π − κ1(α, r)) r dr dα.

If the effective radius is larger than the axon-dendrite distance
in a neuron (1max > 1ad) the dendrite center B1 falls inside
the connectivity area of its axon A1. In the considered model,
the dendrite centers coincide with the somata and, in general
case, they should not be dimensionless. We neglect the finite
size of the somata assuming it to be much smaller than the
size of the neurite field and the connectivity area. If the somata
are not negligible, a correction needs to be applied in order to
exclude possibility that some dendrite center overlaps with B1.
The correction coefficients for all 2-node and 3-node motifs are
given in Supplementary Material 2.

2.3.4. The Definition of κ1 and κ

The function κ1 describes the probability that A2 falls inside the
connectivity area of B1, Brmax (B1), and is proportional to the
intersection between this connectivity area and the circle C1(B2).
The intersection is determined by the angle ∠B2IJ shown in
Figure 2C, this angle is entirely determined by the coordinates
of the dendrite centers B1(0, 1) and B2(α2, r2). Similarly, we can
define a more general function κ if we replace B1 with some other
dendrite center B3(α3, r3) with arbitrarily chosen coordinates.
This way we have κ1(α2, r2) = κ(α2, r2, 0, 1)

3. The function κ
is shown by the orange line in Figure 2D, and it is equal to the
angle ∠B2KL shown in the same panel

κ
′(α2, r2, α3, r3) = 2 arccos

(
1−r2max+d223

2d23

)
,

d23 = ‖B2B3‖ =
√
r22 + r23 − 2r2r3 cos(α2 − α3).

One special case has to be considered when defining κ ′. If
the distance between the dendrite centers is smaller or equal
to 1max − 1ad, i.e., if the circle C1(B2) entirely belongs
to the connectivity area of the other dendrite, the function
κ
′(·) becomes complex as its argument becomes larger than

1. However, the intersection angle in this case is 2π . This
special case is taken into account in the final definition
of κ(·):

κ(α2, r2, α3, r3) =

κ
′(α2, r2, α3, r3), |rmax − 1| < ‖B2B3‖ < rmax + 1

2π, ‖B2B3‖ ≤ rmax − 1, rmax ≥ 1
0, ‖B2B3‖ ≥ rmax + 1
0, ‖B2B3‖ ≤ 1− rmax, rmax < 1

(13)

2.3.5. Three-Node Connectivity Patterns (Figure 2D)
Figure 2D describes the two-step procedure needed to evaluate
the expected number of the majority of three-node motifs. In the
first step, two dendrite centers B2 and B3 are placed inside the
connectivity area of the axon A1, which ensures the connections
from N1 to N2 and N3. In the second step, the position of the
axon center A2 is chosen on the circle C1(B2) around the dendrite
center B2. The intersections of this circle with the connectivity
areas around B1 and B3 determine possible connectivity patterns
between the three neurons, and the lengths of these intersections

3The functions κ1 and κ are introduced as two separate notions in order to simplify

the notation in the equations that follow.
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are proportional to the probabilities of the connectivity
patterns.

The intersection C1(B2) ∩ Brmax (B1) defines the function κ1,
as in the case of 2-node motifs, which corresponds to the angle
∠B2IJ in Figure 2D and is colored red. The intersection C1(B2)∩
Brmax (B3) defines the function κ , a generalization of κ1, which
is shown in orange in Figure 2D and corresponds to the angle
∠B2KL. If the circle and both connectivity areas intersect, the
function λ is non-zero. This is shown in purple in Figure 2D and
corresponds to the angle ∠B2KJ.

If A2 falls inside the connectivity area around B1, but outside
of the connectivity area around B3, the neuron N2 will have a
bidirectional connection with N1 but no connection toward N3

(although, it is possible that it receives a connection from N3).
The probability for this is proportional to the function (κ1 − λ).
If A2 falls inside the connectivity area of B3, but outside the
one of B1, the neuron N2 receives a unidirectional connection
from N1, and also forms the connection with N3 (which might
be unidirectional or bidirectional, depending on the position of
axon A3). Finally, if A2 falls within the intersection between two
connectivity areas, neuronN1 has a bidirectional connection with
N2 and at least a unidirectional connection to N3.

The same analysis is repeated for the intersections between the
circle C1(B3), which defines the possible positions of the axon
center A3, and the connectivity areas around B1 and B2. This
gives the probabilities for the remaining connections. Finally, the
following probabilities correspond to the connectivity patterns
between the three neurons:

N2 → N1,N3:
1

2π
λ(α2, r2, α3, r3), (14)

N2 → N1, N2 6→ N3:
1

2π

(
κ1(α2, r2)− λ(α2, r2, α3, r3)

)
,

N2 → N3, N2 6→ N1:
1

2π

(
κ(α2, r2, α3, r3)

− λ(α2, r2, α3, r3)
)
,

N2 6→ N1,N3:
1

2π

(
2π − κ(α2, r2, α3, r3)

− κ1(α2, r2)+ λ(α2, r2, α3, r3)
)
,

N3 → N1,N2:
1

2π
λ(α3, r3, α2, r2),

N3 → N1, N3 6→ N2:
1

2π

(
κ1(α3, r3)− λ(α3, r3, α2, r2)

)
,

N3 → N2, N3 6→ N1:
1

2π

(
κ(α3, r3, α2, r2)

− λ(α3, r3, α2, r2)
)
,

N3 6→ N1,N2:
1

2π

(
2π − κ(α3, r3, α2, r2)

− κ1(α3, r3)+ λ(α3, r3, α2, r2)
)
.

The expressions on the right are divided by 2π , as the full circle
corresponds to the probability 1.

2.3.6. Definition of λ

The first step is to find the angular coordinates of the intersection
points between the circle C1(B2) and the edges of the two

connectivity areas, Crmax (B1) and Crmax (B3). These points are
indicated as I, J, K, and L in Figure 2D. The same is done for the
intersections between C1(B3) and the edges of connectivity areas
around B1 and B2. The following list summarizes these angles:

I(ϕ211 ), J(ϕ212 ): C1(B2) ∩ Crmax (B1),

K(ϕ231 ), L(ϕ232 ): C1(B2) ∩ Crmax (B3),

ϕ
31
1 , ϕ

31
2 : C1(B3) ∩ Crmax (B1),

ϕ
32
1 , ϕ

32
2 : C1(B3) ∩ Crmax (B2).

The angles ϕ211,2 and ϕ
31
1,2 always exist as the corresponding

intersections exist for every B2 and B3 inside the connectivity
area of A1. The intersections ϕ231,2, ϕ

32
1,2 exist when rmax ≥ 1, but

for rmax < 1 an additional condition for the coordinates of B2
and B3 has to be imposed.

The function λ depends on the length of the arc between
these angles, which is independent of the choice of the reference
coordinate system. The simplest equations are obtained if we
translate the coordinate system from A1 to B2, then rotate it to
have the coordinate axis in the direction from B2 to B1. The
new coordinate center is B2, while B1 maintains the zero angular
coordinate. The first translation requires the following coordinate
transform

r̃ cos(α̃) = r cos(α)−r2 cos(α2), r̃ sin(α̃) = r sin(α)−r2 sin(α2).

The second rotation is done by subtracting the angular
coordinate of B1 in the translated system, equal to τ (0, 1, α2, r2),
from all other angles. The relations between the original
coordinates and the coordinates in the translated-then-rotated
system are:

r̃ =
√
r2 + r22 − 2r r2 cos(α − α2),

α̃ = τ (α, r, α2, r2)− τ (0, 1, α2, r2),

τ (α, r, α2, r2) = arctan

(
r sin(α)− r2 sin(α2)

r cos(α)− r2 cos(α2)

)
.

Function τ updates the angular coordinates after the translation
of the coordinate system to (α2, r2). In the new coordinate system
the intersecting angles between C1(B2) and Brmax (B3) are given as

ϕ̃
23
1,2 = α̃3 ∓ arccos

(
1− r2max + r̃23

2r̃3

)

= τ (α3, r3, α2, r2)∓
1

2
κ(α3, r3, α2, r2).

All the relevant intersection angles are:

C1(B2) ∩ Crmax (B1): ϕ̃
21
1,2 = τ (0, 1, α2, r2)∓

1

2
κ1(α2, r2),

C1(B2) ∩ Crmax (B3): ϕ̃
23
1,2 = τ (α3, r3, α2, r2)

∓
1

2
κ(α3, r3, α2, r2),

C1(B3) ∩ Crmax (B1): ϕ̃
31
1,2 = τ (0, 1, α3, r3)

∓
1

2
κ1(α3, r3),
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C1(B3) ∩ Crmax (B2): ϕ̃
32
1,2 = τ (α2, r2, α3, r3)

∓
1

2
κ(α2, r2, α3, r3) = ϕ̃231,2.

Obtaining the length of the intersection arc from these angles
requires considering each possible mutual position of the three
angles. This problem was solved using the following procedure.
The four angles were sorted from smallest to largest into a vector
of angles ϕ̃(α2, r2, α3, r3). The sorted angles parcel the circle
C1(B2) into four arcs. For each arc we evaluated the distance
between its middle point and the two centers B1 and B3. If
both distances are smaller than rmax, it indicates that the whole
segment belongs to the intersection area Brmax (B1) ∩ Brmax (B3).
All the segments that passed this test were summed up to obtain
the function λ′(α2, r2, α3, r3). This function is non-zero when all
three circles intersect. If dendrites B1 and B3 do not overlap, the
function is zero. The function can be expressed as

λ
′ =

∑
Cond. |φi − φj| · h(rmax − d1i,j) · h

(
rmax − d3i,j

)
Cond. : i = 1..4, j = mod(i, 4)+ 1,

dki,j =
√(

1+ r̃2
k
− 2r̃k cos(φi + φj/2)

)
, k = 1, 3.

The function h(·) is the Heaviside function, equal to one if the
argument is positive and equal to zero otherwise. The variables
d1i,j and d3i,j are distances from the middle points of the four arcs

to the dendrite centers B1 and B3, respectively. The variables ϕi
are the sorted angles from the vector ϕ̃.

If C1(B2) does not intersect with dendrite B1 or B3, the
function λ′ is not defined, and the extension of the definition
given by Equation (15) is needed. The first case in the list
corresponds to the situation when all three circles intersect and
the length of the intersection angle is between 0 and 2π . When
‖B2B3‖ ≤ rmax − 1 the circle C1(B2) is inside Brmax (B3) and
λ = 2π . On the contrary, when ‖B2B3‖ ≤ 1 − rmax, the area
Brmax (B3) is inside C1(B2) and the function is zero. It is also zero
when ‖B2B3‖ ≥ 1 + rmax, i.e., when the circle and the area are
missing each other.

λ(α2, r2, α3, r3) =


λ
′(α2, r2, α3, r3), ‖B1B2‖ > rmax − 1

& |rmax − 1| < ‖B2B3‖ < 1+ rmax

κ1(α2, r2), ‖B1B2‖ > rmax − 1 & ‖B2B3‖ ≤ rmax−1

κ(α2, r2, α3, r3), ‖B1B2‖ ≤ rmax − 1
& |rmax − 1| < ‖B2B3‖ < rmax + 1

2π, ‖B1B2‖ ≤ rmax− 1 & ‖B2B3‖ ≤ rmax− 1

0, ‖B2B3‖ ≤ 1− rmax

0, ‖B2B3‖ ≥ rmax + 1

(15)

2.3.7. Minimal Set of Connectivity Patterns Needed to

Describe Three-Node Motifs, the Definition of Central

Node in a Connectivity Pattern
To compute the expected numbers of three-node motifs one
has to analyze all the possible connectivity patterns between
the three neurons N1, N2, and N3, each represented by two
circular connectivity areas, one for the dendrite and one the for
axon. Figure 3A shows the standard schematic representation of
the 3-node motifs (Milo et al., 2002), and Figure 3B shows all
the possible connectivity patterns between N1, N2, and N3 that
correspond to each of the motifs4. We will demonstrate how
this full list of patterns can be reduced to 10 representative ones,
sufficient to compute the expected counts for all the motifs. These
10 patterns are shown in red in the table and are also marked
with the star symbol. The choice of the patterns is somewhat
arbitrary and an alternative set can also be adopted, which should
not affect the obtained expected numbers of motifs. Reduction
to the minimal set of patterns also ensures that each pattern is
counted only once.

First, we need to introduce the notion of central node in the
motif, suppose it is N1. If N1 is central to the motifs M1, M3, M5,
M6, M8, M10, M12, and M13, both dendrite centers B2 and B3
belong to the connectivity area of axon A1, i.e., N3 ← N1 → N2

has to be included in the connectivity pattern. If N1 is central
to the motifs M4, M7, and M11, the situation is inverse, both
axon centers A2 and A3 have to belong to the connectivity area
of dendrite B1, i.e., N3 → N1 ← N2 has to be included in the
pattern. If N1 is central to the motifs M2 and M9, the neuron N1

is on the path fromN3 toN2, i.e.,N3→ N1→ N2 has to be part
of the pattern.

The definition of the central node for the three groups
of motifs is chosen to emphasize the similarities between the
connectivity patterns and to enable selection of the minimal set
of patterns. For example, the central node for M11 can be defined
the same way as for M1, but the adopted definition emphasizes
the similarity between M11 and M6. Following the definition
of the central node, all of the patterns are divided into three
sets, shown as three columns in Figure 3B. Column i contains
connectivity patterns where neuron Ni represents the central
node. Since all of the neurons in the network have the same
properties, the motif counts do not depend on the choice of the
central node. Therefore, for counting all the motifs that include
the neuron N1, it is sufficient to count the motifs where N1 is
central and multiply the obtained counts with a coefficient.

Motifs M1, M4, M8, and M13 have one possible pattern with
N1 as the central node, M2, M3, M5, M6, M7, M9, and M10 have
two, M11 and M12 have four, but only two should be considered
as the other two are repeated in columns two and three. If we
further analyze the pairs of patterns that appear in column one,
it is evident that one of them can be obtained from the other by

4To following calculation confirms that all patterns are included in the table. Each

pair of nodes forms one of the four types of connections (2 in one direction,

1 bidirectional, no connection), this gives 43 = 64 motifs and 54 of them are

connected motifs. In the table, some patterns repeat. Each motif M1, M4, and M8

corresponds to 3 different patterns. M2, M3, M5, M7, M10, and M12 correspond

to 6 patterns each. M6 and M11 correspond to 3 different patterns, M9 to 2, and

M13 to 1 pattern. This gives 54 patterns in total.
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FIGURE 3 | The schematic representation of all possible 3-node motifs.

(A) The standard representation of motifs (Milo et al., 2002). (B) All the

possible connectivity patterns between the three (fixed) nodes. Columns 1,2,3

in the table correspond to the nodes N1,N2,N3 being the central node in the

connectivity pattern. The complete list of 3-node connectivity patterns can be

reduced to the 10 representative patterns (highlighted in red), and only these

10 patterns are considered in computations of the expected motif counts.

switching the positions of N2 and N3. Therefore, it is sufficient
to consider only one of them, irrelevant which one is chosen
(here, we selected the first one). The reason is the following: in
order to create patterns from the first group the dendrite centers
B2 and B3 have to be inside the connectivity area of axon A1.
To compute all the motif counts, we have to consider every
possible position of B2 and B3 within Brmax (A1). Consequently,
both choices of coordinates B2 = (αa, ra), B3 = (αb, rb) and
B2 = (αb, rb),B2 = (αa, ra) are considered, as well as both
connectivity patterns that correspond to a certain motif. It can
also happen that B2= B3 or B2= B1 or B3= B1, but the number
of such examples is negligible, as shown in Supplementary
Material 2. To count all the occurrences of M2 and M9, we
put one dendrite center (B2 or B3) in the connectivity area of
axon A1, and one axon center (A3 or A2) in the connectivity
area of dendrite B1. Regardless of the neuron numeration, this
is sufficient to take into account every appearance of these two
motifs.

Next, consider motifs M1 and M4. One of them is obtained
from another by switching the orientation of all the connections.
This is equivalent to exchanging dendrites and axons, if motif
M1 requires B2 and B3 inside the connectivity area of A1,
then motif M4 requires A2 and A3 inside the connectivity area
of B1. Connectivity areas of dendrites and axons are equal,
which means that counts for M1 and M4 must be equal,
N (M1) = N (M4). The same holds for motifs M3 and M7,
and also for M6 and M11. Consequently, M4, M7, and M11
do not need to be considered separately. This completes the
search for the minimal set of patterns that are shown in red in
Figure 3B.

Once the counts for the 10 representative patterns are
computed, the final motif counts are obtained by multiplying
them with the following coefficients: 3 for M2, M3, M5, M7,

M10, and M12, 1.5 for M1, M4, M6, M8, and M11, 1 for M9,

0.5 for M13. The first set of motifs is multiplied by 3 in order
to take into account three possible choices of the central node.
There is no need to take into account two different patterns
for each central node because that is already accounted for by
considering all the possible coordinates of B2 and B3, as described
in a previous paragraph. Motifs M1, M4, M8 are multiplied by
3
2 , because each central node corresponds to only one pattern.
Consequently, the procedure that takes into account all possible
positions of B2 and B3 leads to counting every pattern twice.
Closer inspection of the patterns for M6, M10, and M11 shows
that each pattern in the table in Figure 3B repeats twice, e.g.,
for M6, pattern 1 for N1 as the central node is equal to pattern
2 for N2 as the central node. If we multiply the motif counts
for central node N1 by 3, in order to take into account other
choices of central nodes, we actually consider each pattern twice.
So the counts should be additionally divided by 2. Next, motifs
M9 and M13 are circular and any choice of the central node
gives the same pattern. So there is no need to multiply the counts
obtained for N1 by 3. In addition, M13 has only one pattern that
corresponds to N1 as the central node, so the count should be
additionally divided by 2.

2.3.8. The Expected Number of Motifs M1, M3, M5,

M6, M8, M10, M12, and M13
The expressions for the expected number of 3-node motifs are
obtained by combining Equations (14) with the procedure for
computing the expected number of 2-nodemotifs. Equations (14)
give probabilities for different types of connections fromN2 toN1

and N3, and also from N3 to N1 and N2. The probability for each
connectivity pattern from Figure 3 is obtained bymultiplying the
probability of the appropriate connection from N2 to N1 and N3

with the probability of the connection from N3 to N1 and N2.
These probabilities are defined for any pair of coordinates of B2
and B3. In order to form any of the listed motifs, B2 and B3 have
to be inside the connectivity area of A1, which defines the range
of their coordinates: in the coordinate system fixed to A1, the
angular coordinates α2 and α3 take all the possible values and
the radial coordinates r2 and r3 have to be smaller than rmax.
Similarly, as in the case of 2-node motifs we should integrate
the expressions for the probabilities of connectivity patterns over
all the possible coordinates for both B2 and B3, i.e., over two
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pairs of coordinates. This results in a quadruple integral, and the
coefficient in front of the integral is the square of the coefficient
obtained for the 2-node motifs.

The following expression (Equation 16) gives the expected
number of the representative connectivity patterns for the
motifs from this group. The total motif counts are obtained
by multiplying them with the coefficients given in the previous
section.

NMi =
1

4
ad

l4

∫
π

α2 =−π

∫ rmax

r2 = 0

∫
π

α3 =−π

∫ rmax

r3 = 0
ni(α2, r2, α3, r3)r2 r3 dr2 dr3 dα2 dα3 (16)

The expression NMi corresponds to the motif Mi, and depends
on the function ni(α2, r2, α3, r3):

n1(α2, r2, α3, r3) =
1

4π2
·
(
2π − κ1(α2, r2)− κ(α2, r2, α3, r3)+ λ(α2, r2, α3, r3)

)
·

·
(
2π − κ1(α3, r3)− κ(α3, r3, α2, r2)+ λ(α3, r3, α2, r2)

)
,

n3(α2, r2, α3, r3) =
1

4π2
·
(
κ1(α2, r2)− λ(α2, r2, α3, r3)

)
·

·
(
2π − κ1(α3, r3)− κ(α2, r2, α3, r3)+ λ(α3, r3, α2, r2)

)
,

n5(α2, r2α3, r3) =
1

4π2
·
(
κ(α2, r2, α3, r3)− λ(α2, r2, α3, r3)

)
·(

2π − κ(α3, r3, α2, r2)− κ1(α3, r3)+ λ(α3, r3, α2, r2)
)
,

n6(α2, r2α3, r3) =
1

4π2
· λ(α2, r2, α3, r3) ·

(
2π − κ1(α3, r3)− κ(α3, r3, α2, r2)+ λ(α3, r3, α2, r2)

)
,

n8(α2, r2α3, r3) =
1

4π2
·
(
κ1(α2, r2)− λ(α2, r2, α3, r3)

)
·
(
κ1(α3, r3)− λ(α3, r3, α2, r2)

)
,

n10(α2, r2α3, r3) =
1

4π2
·
(
κ1(α2, r2)− λ(α2, r2, α3, r3)

)
·
(
κ(α2, r2, α3, r3)− λ(α3, r3, α2, r2)

)
,

n12(α2, r2α3, r3) =
1

4π2
· λ(α2, r2, α3, r3) ·

(
κ1(α2, r2)− λ(α3, r3, α2, r2)

)
,

n13(α2, r2α3, r3) =
1

4π2
· λ(α2, r2, α3, r3) · λ(α3, r3, α2, r2).

From the definition of κ , κ1, and λ, all the functions
ni have discontinuities and therefore cannot be integrated
straightforwardly. The problem was solved by dividing the entire
domain of integration into sub-domains where the functions
are continuous. Then, the integration was performed for each
sub-domain and the total motif count is obtained by summing
up all of the obtained values. The details are presented in
Supplementary Material 2.

2.3.9. The Expected Number of Motifs M4, M7, M11
From the previous discussion, these values are equal to the
expected number of motifs M1, M3, and M6, respectively.

2.3.10. The Expected Number of Motifs M2 and M9

(Figure 2E)
The computations for motifs M2 and M9 require a four-step
procedure illustrated in Figure 2E. First, the axon center A3,
given by coordinates (αa3 , r

a
3), is chosen inside the connectivity

area of dendrite B1. Next, the dendrite center B2 with coordinates

(α2, r2) is chosen inside the connectivity area of A1, but outside
of the connectivity area of A3 (the dark green area in Figure 2E).
This results in the connectivity pattern N3 → N1 → N2, a
necessary condition for both motifs M2 and M9. In the third
step, the dendrite center B3(α3, r3) is chosen on the circle
C1(A3), but outside the connectivity area of A1, i.e., in the
domain D(B3) = C1(A3) \ Brmax (A1). This way, the bidirectional
connection between N1 and N3 is avoided. If C1(A3) entirely

belongs to the connectivity area of A1, motifs M2 and M9
are impossible. Therefore, an additional condition for the

coordinates of A3 is: ra3 > rmax − 1. In the final step, axon A2
is chosen on the circle C1(B2). Same as before, the intersection
between this circle and the connectivity areas of B1 and B3 defines
the probabilities to form motifs M2 and M9. These probabilities
are expressed using functions κ1, κ , and λ. Motif M2 emerges if
A2 falls outside of both connectivity areas, while M9 emerges
if A2 falls inside the connectivity area of B3, but outside the
one of B1.

The expected numbers of motifs M2 and M9 are computed
similarly as before. The probabilities of the representative
connectivity patterns are integrated for all possible positions of
A3 and B2. In addition, we have to take into account all the
positions of B3, which adds the fifth integral to the equations. The
easiest way to evaluate this innermost integral is by translating
the coordinate system from A1 to A3, to simplify expressions
for the coordinates of B3 in D(B3) = C1(A3) \ Brmax (A1). The
outer quadruple integral is evaluated in the coordinate system of
A1. The obtained expressions for the expected number of motif
counts are:
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NM2/M9 =
1

4
ad

l4

∫ ∫
(αa3 ,r

a
3)

∫ ∫
(α2,r2)

n2/9(α2, r2, α
a
3 , r

a
3) r2 r

a
3 dr2 dr

a
3 dα2 dα

a
3 , (17)

n2(α2, r2, α
a
3 , r

a
3) =

1

4π2

∫
D(B3)

(
2π − κ1(α2, r2) − κ(α3, r3(α3), α2, r2) + λ(α2, r2, α3, r3(α3))

)
dα3,

n9(α2, r2, α
a
3 , r

a
3) =

1

4π2

∫
D(B3)

(
κ(α3, r3(α3), α2, r2) − λ(α2, r2, α3, r3(α3))

)
dα3.

2.3.11. Clustering Coefficient (CC)
Clustering coefficient quantifies the density of connections in
the local neighborhood of each network node. The percent of
connected neighbors is estimated for each network node, and
the average over all nodes represents the clustering coefficient
(Watts and Strogatz, 1998; Boccaletti et al., 2006). A global
measure related to the clustering coefficient is transitivity (Watts
and Strogatz, 1998; Boccaletti et al., 2006) which estimates
the number of triangles among all the connected triplets in a
network. Here, we consider a simple case of identical neurons
(network nodes) uniformly distributed in a planar space without
boundaries. The clustering coefficient of the resulting network is
identical to the local clustering coefficient of each node. Similarly,
the global transitivity measure reduces to the measure evaluated
for a single node. We employ one possible extension of the
original clustering coefficient (for undirected networks) to the
case of directed networks (Boccaletti et al., 2006; Sporns, 2011;
Telesford et al., 2011; Mäki-Marttunen et al., 2013):

CCN1 =
1

4 · nneighbors(nneighbors − 1)

×
N∑
i= 2

i− 1∑
j= 2

(M1i +Mi1) · (M1j +Mj1) · (Mij +Mji). (18)

The expression holds for a network ofN nodes where each node
has nneighbors neighbors. The values Mij describe the presence or
absence of a connection between nodes i and j, Mij = 1 if a
connection from i to j exists andMij = 0 otherwise. This equation
can be re-written as a linear combination of motif counts. We
can group all pairs of neighbors of node N1 according to the
motif they form. The number of pairs in each group is equal
to the corresponding motif count. Each motif count should be
multiplied with the coefficient determined by the product from
the summation above. Clearly, if a motif has two unconnected
nodes (like M1 or M2) the coefficient is zero. For M5 and M9 the
coefficient is 1, for M6, M10, M11 it is 2, for M12 it is 4, and for
M13 it is 8. From the previous derivations, the expected motif
counts are given by the values 3NM5 for M5, 1.5NM6 for M6,
NM9 for M9, 3NM10 for M10, 1.5NM11 for M11, 3NM12 for M12,
0.5NM13 for M13. The number of neighbors can be expressed
using the expected 2-node motif counts, nneighbors = NM1−2 +
NM2−2, as the sum of unidirected and bidirected connections
that start or end in N1. The equation for the expected clustering
coefficient becomes

CCn = 3NM5 + 3NM6 +NM9 + 6NM10 + 3NM11

+ 12NM12 + 4NM13

CCd = 4(NM1−2 +NM2−2)(NM1−2 +NM2−2 − 1)

CC = CCn/CCd (19)

2.3.12. Path Length
The path length PLij from neuron Ni to neuron Nj is equal to the
minimal number of edges on a traversable path between them. If
the neurons are unconnected then PLi,j = ∞. If PLi,j = k > 1,
no direct connection between the two neurons exists. Instead,
the path from one of them to the other goes through k − 1
other neurons. We compute the harmonic path length (Watts
and Strogatz, 1998; Boccaletti et al., 2006; Mäki-Marttunen et al.,
2011), the harmonic mean over the shortest path lengths for
all the pairs of neurons in the network. In the population of
identical, randomly oriented and uniformly distributed neurons,
this coefficient becomes equal to the harmonic path length
computed for one fixed neuron, for example neuron N1, as
follows

PL−1 =
1

N − 1

N∑
i= 2

1

PL1,i
.

Instead of computing the harmonic mean we use an equivalent
expression for the expected harmonic path length

PL−1 =
+∞∑
k= 1

1

k
· P(PL = k). (20)

There, P(PL = k) is the probability that the shortest path fromN1

to some other node goes through k direct edges, i.e., through k−1
other nodes. For sufficiently large networks, the mean converges
toward the expected value, which should hold for the considered
model. In the derivations that follow, all the coordinates are
expressed in the coordinate system fixed to neuron N1, as it was
described before. In this coordinate system, the path length from
N1 to a specific neuron NX depends only on the radial but not on
the angular coordinate ofNX , so we can fix the angular coordinate
to αX = 0 and consider only the neurons along the coordinate
axis.

The probability of the shortest path length P(PL = k) is
computed using the following expression

P
(
PL = k

)
=

2π12
ad

l2N

∫
rX

(
P(PL ≤ k | rX)

− P(PL ≤ k− 1 | rX)
)
rX drX. (21)

where the integration is done over the radial coordinate rX .
The integrated function is the joint distribution of path length
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and radial coordinate. The joint distribution is expressed as
the product of the shortest path length distribution conditioned
on the radial coordinate and the probability that a dendrite
center has such radial coordinate. The probability of having
a radial coordinate rX is simply expressed as the number of
dendrite centers within a ring with the radius rX divided by
the total number of neurons N . The path length distribution
conditioned on the radial coordinate is expressed using another
conditional probability, P(PL ≤ k | rX). For the fixed
radial coordinate, this probability shows how likely is that
the shortest path length of the considered neuron does not
exceed k.

The last conditional probability is obtained from the following
analysis. Consider a neuron NX and fix its dendrite center to rX .
If it has the shortest path length at most k, then there must be one
other neuron that connects to NX , i.e., that has its axon center
within the connectivity area of the dendrite BX , and that has the
shortest path length no bigger than k− 1. Clearly, this is opposite
to the statement that every neuron either does not connect to NX

or has the shortest path length bigger than k−1. If we express this
formally, as probabilities of the described events, and consider all
neurons independent on each other we can write the conditional
probability as

P
(
PL ≤ k | rX

)
= 1− (1− ν(k− 1|rX))N−2. (22)

The last equation depends on the assisting function ν(k − 1|rX).
If we consider one particular neuron with the fixed coordinates,
the probability that it connects to NX and has the path length
at most equal to k − 1 is described by ν(k − 1|rX). Finally,
this function can be expressed as a function of the conditional
probability

ν(k−1 | rX) =
1
2
ad

2π l2N

∫
r

∫
α

P(PL ≤ k−1 | r) · κ(α, r, 0, rX) · r dr dα.

(23)

The expressions for the conditional probability and the ν-
function form a pair of iterative equations that should be
computed for all feasible values of k. The definition of
connectivity area gives the initial condition for these equations

P (PL ≤ 1 | rX) =
{
1 rX ≤ rmax

0 rX > rmax

The obtained expressions are different from the methodology
used for motif counts or clustering coefficient. The harmonic
path length represents a global measure of network structure
and consequently depends on the total number of neurons
in the population. The equations derived here are carefully
analyzed in Supplementary Material 3. Every step in the
presented procedure is illustrated. An equivalent model
is simulated and the results from the theoretical model
(from this section) and the simulated model are shown
alongside.

2.3.13. The Small-World Coefficient
The clustering coefficient and the shortest path length are
sufficient for the computation of the small-world coefficient.
We consider two different definitions. The classical definition
of the small-world coefficient (Watts and Strogatz, 1998) is the
following:

SWws =
CC/CCrandom

PL/PLrandom
.

Here, the clustering coefficient CC and the shortest path length
PL of the considered network are compared to those of a uniform
random network. In a small-world network, the clustering
coefficient should be relatively high, similarly to the situation
in lattice networks, while the path length should be short,
similarly to the case of uniform random networks. Therefore,
the SW coefficient should be close to one for the uniform
random networks and much bigger than one for the small-world
networks.

Additionally, we consider another definition from the
literature introduced in Telesford et al. (2011) that compares
a network with both, uniform random and locally coupled
networks

SWq =
PLrandom

PL
−

CC

CClocal
. (24)

For a network similar to the uniform random one, the first factor
PLrandom

PL should be close to one while the second factor CC
CClocal

becomes very small as uniform random networks have a much
smaller clustering coefficient than locally coupled networks.
Therefore, SWq is positive and close to one. For a network similar
to a locally coupled network, the first factor is small, as the PL of
such networks is much larger than in random networks, while
the second factor is close to one. The coefficient SWq is negative
and close to minus one. In case of small-world networks, both
the first and the second factor are close to one and SWq is close
to zero.

2.3.14. Locally Coupled Networks
The locally coupled networks are generated to correspond to
the extreme situation in our model, the overlapping axon and
dendrite centers (1ad = 0). The number of N nodes is
uniformly distributed in the two-dimensional space (of size L ×
L) with the density equal as before

(
i.e., equal 1

l2

)
. The two-

dimensional space is projected on a torus to avoid boundary
conditions. The number of nodes is sufficiently bigger than
the maximal considered node degree. A node is connected to
every other node inside its connectivity area, which gives the
node degree according to Equation (6). A network generated
this way has only bi-directional connections and can express
only motifs M2-1, M8, and M13, we call it “strictly locally
coupled network.” To increase variability in motif counts and
still maintain the properties of a locally coupled network, we
removed 10% randomly selected connections and established
them with the nearest neurons outside the connectivity area, we
refer to it as “locally coupled network with 10% of non-local
connections.”
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2.3.15. Uniform Random Networks
These networks are generated in a standard way. Each connection

is set with the probability p = ndegree
N

independently on other
connections. Clearly, the finite size of these networks raises
some issues. In the analyzed model networks, the total number
of nodes is explicitly considered only when computing path
length through the network. The network is considered virtually
infinite. There is no boundary conditions and each node has
an equal number of available neighbors. In the locally coupled
networks, as described above, a comparable model is provided
by choosing a large enough network and projecting it on a
torus. In uniform random networks, the problem is somewhat
more difficult because the network size determines probability
of connection, the parameter that affects all considered network
measures. In the results presented here, we fix the network size
and the probability of connection solely varies with the node
degree.

3. Results

The results of the model analysis are divided into two parts,
similarly to the model description. In the first part, the properties
of neurite morphology are related to the connectivity between
pairs of neurons. Quantitative measures such as the expected
number of synapses, the effective radius of the connectivity area,
and the node degree are derived as functions of the neurite model
parameters. In the second part, the concept derived in the first
step, the effective radius, is related to the typical measures used
to quantify connectivity in networks, motif counts, clustering
coefficient, path length, and small-world coefficient. This way
we divided the initial question, how the properties of neurite
morphology affect connectivity in large networks, into two easier
goals that better explain the role of different aspects of the model.

3.1. The Expected Number of Synapses
In this section, we show how the expected number of synapses
S depends on the neuron model parameters. We give the
general expression for this dependency in Methods Section by
Equation (4). The derivation of S̄ is given in Supplementary
Material 1. We consider the neurites with circular support,
i.e., with neurite segments distributed inside the circle of
radius Ra for axons and Rd for dendrites, and with one
of the two forms of distributions, uniform or truncated
Gaussian. The truncated Gaussians have equal variances along
the two dimensions and the zero cross-covariance, the cases
that simplify computations. Neurite distributions are described
by the parameter set M, which is an empty set for the
uniform distribution and contains normalized parameters M =
{σ, kσ } for the truncated Gaussians. The presented methodology
can be applied in more general situations, for neurites with
elliptic support and a general form of truncated Gaussian
distribution.

According to Equation (4), S̄ depends linearly on the number
of axon and dendrite segments,Na andNd, and also on the square
of the unit length D. It has a non-trivial dependency on the
axon-dendrite distance 1, on the average neurite size R, and on
their ratio, the normalized axon-dendrite distance ρ. In addition,

it depends on the asymmetry index η, the parameter that
quantifies asymmetry between the size of axons and dendrites.
This parameter takes values from the interval η ∈ [0, 1], for
η = 0 the dendrite and axon radii are the same (Ra = Rd), and for
η → 1 the axons are much bigger than dendrites (Ra >> Rd).
In the considered model, the axons are always bigger than the
dendrites. Finally, S̄ depends on the neurite density distributions
and the set of normalized parametersM.

3.1.1. The Expected Number of Synapses as a

Function of Axon-Dendrite Distance (Figures 4A–D)
We first show how S̄ depends on the axon-dendrite distance
and on the normalized axon-dendrite distance by fixing all the
other parameters. This way the expected number of synapses
becomes proportional to the function φ(ρ, η,M), consequently
called the distance-dependent expected number of synapses.
This is illustrated in the left column in Figures 4A–D. Different
panels correspond to different distributions of neurite segments,
which are indicated on each panel along with the distribution
parameters. The x-axis in Figures 4A–D shows the axon-
dendrite distance (1 ∈ [0,Ra + Rd]) and the normalized axon
dendrite distance (ρ ∈ [0, 1]). Four different cases in each panel
correspond to different values of the asymmetry index (values
for the asymmetry index and the color code are indicated in
Figure 4).

Figure 4A illustrates the expected number of synapses
obtained when both the axon and dendrite have uniform
distribution of neurite segments. In this case, the function is
determined solely by the overlap between neurites, i.e., by the
parameters that determine the overlap, the (normalized) axon-
dendrite distance and the average neurite size. For ρ ≤ η,
i.e., 1 ≤ Ra − Rd, the dendrite is entirely inside the axon
and the expected number of synapses is maximal. As the
axon-dendrite distance increases further, the overlap between
the two neurites decreases until it vanishes for ρ > 1, i.e.,
for1 > Ra + Rd.

Figures 4B–D show three typical results obtained for axons
and dendrites modeled as truncated Gaussians. When neurite
segments are evenly distributed across the neurite support, i.e.,
when the distribution variances are similar or larger than the
neurite radii, the size of the axon-dendrite overlap dominantly
determines the shape of distance-dependent expected number
of synapses. The resulting function, shown in Figure 4B, is
somewhat similar to the case obtained for the uniform density
distributions from Figure 4A. For ρ ≤ η the function slowly
decreases (unlike the case in Figure 4A where it is constant),
while for ρ > η it decreases faster until it becomes zero. If one
of the variances is similar to the average neurite size and the
other is much smaller, the expected number of synapses behaves
like an example in Figure 4C. The decrease from the maximal
to zero value is much faster than in the case of Figure 4B. The
presented example resembles a bell-shaped curve, but for some
other model parameters the decrease can be even faster and result
in a step function. The reason for this behavior is the following:
one of the neurites has a small distribution variance, which
means that the majority of neurite segments gets concentrated
around the center of the neurite field. In this case, the increase
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FIGURE 4 | Expected number of synapses. Left column:

Distance-dependent expected number of synapses [φ(ρ, η,M)] as a function

of the axon-dendrite distance (1), and consequently the normalized

axon-dendrite distance (ρ). When all the parameters but 1 are fixed this

function is equal to the expected number of synapses up to a multiplicative

constant. Right column: Size-dependent expected number of synapses

[ρ2φ(ρ, η,M)] as function of the average neurite radius R and the inverse of

the normalized axon-dendrite distance (1/ρ) which is proportional to the

average neurite radius. When all the parameters but the average neurite

radius are fixed this function describes the expected number of synapses up

to a multiplicative constant. The functions are shown for four values of the

asymmetry index (η), dark blue, η = 0.1; blue, η = 0.3; red, η = 0.6; yellow,

η = 0.8. (A,E) are obtained for the uniformly distributed axon and dendrite

segments. (B–D, F–H) show three typical examples obtained for the

truncated Gaussian distribution of neurite segments, and the normalized

parameters of the distribution are indicated on each panel.

in the distance between neurite centers decreases the distance-
dependent expected number of synapses much faster than in
the example in Figure 4B. When the neurite centers are close,
the majority of neurite segments can form synapses, which gives
maximal connectivity. For all axon-dendrite distances, when the
neurite with small variance stays inside the area of other neurite,
the number of synapses is high. But, when it approaches to the
edge of the other neurite the majority of its segments becomes
unavailable for creating synapses, so the expected number of
synapses quickly decreases. If both the axon and dendrite have
small variances, the expected number of synapses is a very narrow
bell-shaped curve, as shown in Figure 4D. Both neurites have
a majority of segments located around the neurite centers. As
soon as those centers move apart, the probability of connection
drops to almost zero. In this case, the neurite asymmetry index
does not affect the expected number of synapses as much as in
the other cases because narrow distributions effectively decrease
neurite radii.

3.1.2. The Expected Number of Synapses as a

Function of the Average Neurite Size (Figures 4E–H)
The relation between S and the average neurite size is examined
by fixing all the parameters except R. The dependency is

described by function ρ2φ(ρ, η,M), named the size-dependent
expected number of synapses, and illustrated in the right column
in Figures 4E–H. The x axis shows the inverse of the normalized
axon-dendrite distance on the interval 1

ρ
∈ [1,+∞) and the

average neurite radius on the interval R ∈
[
1

2 ,+∞
)
. The same

neurite distributions and the same values of the asymmetry index
are considered as in Figures 4A–D.

The size-dependent expected number of synapses is
determined by two opposing mechanisms. An increase in
the average neurite size leads to an increasing overlap between
the two neurites from zero

(
for R = 1

2

)
to the maximal overlap

containing the entire dendrite field
(
for R = 1

2η

)
. The increasing

overlap leads to the increasing expected number of synapses. At
the same time, the increase in the average neurite radius leads to
a decrease in the normalized axon-dendrite distance, the variable
that reflects the distribution of neurite segments. As the neurite
size increases, the fixed number of segments gets distributed
over a larger area, so that the probability of neurite segment per
unit area decreases. Eventually, this probability approaches zero
as the average neurite size becomes very big. Clearly, the smaller
probability of finding two neurite segments within the same
unit area decreases the expected number of potential synapses.
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FIGURE 5 | Top row: Additional analysis of the distance-dependent

expected number of synapses [φ(ρ, η,M)]. The point where ρ = η is marked

with a star. (A) Truncated Gaussian distribution of neurites with parameters

σ = 0.5 and kσ = 1 (repeated example from Figure 4B). (B) Truncated

Gaussian distribution of neurites with parameters σ = 10, kσ = 50 (repeated

example from Figure 4C). Bottom row: Maximal values of the

distance-dependent expected number of synapses, obtained for ρ = 0. (C)

shows the logarithm of the maximal values obtained for η = 0.1, ρ = 0 and a

wide range of values for σ and kσ . (D) illustrates the range of values for the

logarithm of the function maxima, i.e., the difference between log (φ) for

η = 0.8 and for η = 0.1. Bars on the right of the panels show the color code.

The values for σ and kσ are given on the y and x axis, respectively. The white

lines on the panels divide the parameter space (σ, kσ ) according to the shape

of the obtained function φ(ρ, η,M). The upper left area and the lower right

triangular area give functions between step-functions and bell-shaped

curves, as in (B). The upper right area gives narrow bell-shaped functions like

the ones from Figure 4D. The lower left area corresponds to functions

similar to the case of neurites with uniform distribution, shown in (A). The

dashed white line indicates a slow transition of the function shape between

the two areas.

For small values of the average neurite size, the first effect is
dominant and the expected number of synapses increases with
R. For the larger neurites the second effect dominates and the
expected number of synapses decreases with the increasing R.
The same arguments hold for all the neurite distributions that
we examined which is illustrated in Figures 4E–H.

3.1.3. Properties of the Distance-Dependent

Expected Number of Synapses (Figure 5)
Two additional aspects of the distance-dependent expected
number of synapses should be analyzed for the truncated
Gaussian neurites, its maximal value obtained when the axon and
dendrite centers overlap (ρ = 0) and the value obtained when the
axon and dendrite edges touch from the inside (ρ = η). When
the axon-dendrite overlap is maximal

(
for ρ ≤ η

)
, the expected

number of synapses slowly decreases as the distance between the
neurite centers increases, but when the overlap is smaller than
themaximum

(
for ρ > η

)
the decrease becomes faster. The point

of change is marked with a star in Figures 5A,B, which are the
repeated examples from Figures 4B,C. The neurites in Figure 5A
have more evenly distributed neurite segments so the size of
the axon-dendrite overlap has a bigger effect on the expected

number of synapses and the shape of the function φ(ρ, η,M).
For the truncated Gaussian neurites, the function φ(ρ, η,M)
is always invertible and the effective radius can be computed
(see Equation 5). The situation is different for neurites with the
uniform distribution of segments, where the point (ρ = η) marks
the transition from the constant to the monotonously decreasing
part of the function. The constant segment is not invertible,
therefore we consider only the monotonously decreasing part,
i.e., the function obtained for ρ > η.

Figures 5C,D illustrate the range of maximal values for
the distance-dependent expected number of synapses, obtained
when the two neurites overlap maximally. For the truncated
Gaussian neurites the maximal overlap is also given by the
following equation obtained for ρ = 0 (see Supplementary
Material 1):

φmax(η,M) = φ(0, η,M) =
k2
σ

1+ k2
σ

·
π

8σ 2

·
1− exp

(
− (1− η)2·(k2

σ
+ 1)

8σ 2

)
(
1− exp

(
− (1+ η)2k2

σ

2σ 2

))
·
(
1 − exp

(
− (1−η)2

2σ 2

)) .
(25)
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Figure 5C shows log(φmax) for the asymmetry index η = 0.1
and a wide range of values for σ and kσ , the logarithm is
used because the function varies a lot for the given range
of parameters. Figure 5D illustrates the range of values for
log(φmax) obtained for different asymmetry indices, i.e., it shows
the difference between log(φmax) obtained for η = 0.8 and for
η = 0.1. Blue areas in Figure 5D correspond to the cases when
the distance-dependent expected number of synapses decreases
with the increase of the asymmetry index. The white lines that
parcel the parameter space (kσ , σ ) mark the regions that give
different types of functions. The upper left region corresponds
to narrow dendrites, wider axons and the distance-dependent
expected number of synapses in the form that goes from a step-
functions to a bell-shaped function. The upper right region with
high amplitudes corresponds to narrow axons and dendrites that
give narrow bell-shaped expected number of synapses show in
Figure 4D. The lower left region marks the parameter space
that gives functions similar to those obtained for the uniformly
distributed neurites, examples are shown in Figure 4B and in
Figure 5A. The lower right triangular region corresponds to
narrow axons and wider dendrites and the expected number
of synapses in the form that goes from step-like to bell-shaped
functions. In this case, the function maximum depends a lot

on the asymmetry index, as indicated by the large values in
Figure 5D. As the asymmetry index increases the size of the
dendrite decreases compared to the axon size, the dendrite
segments become more concentrated in a small area around the
center which increases the probability of forming a synapse. The
example in Figure 4C and in Figure 5B is picked near the border
between the two regions, close to the dashed white line. The
dashed line indicates a gradual transition between the regions5.

3.2. Effective Radius and Node Degree (Figure 6)
The effective radius 1max is the maximal distance between an
axon-dendrite pair expected to connect with at least one synapse
and is given by Equation (5). In this section we analyze the
properties of the inverse distance-dependent expected number of
synapses

(
φ
−1) that maps the non-linear dependency between

the effective radius and the model parameters. Figure 6 shows

5Function φ(ρ, η,M) varies a lot with the model parameters. In order to ensure

an accurate numerical evaluation of the function it has to be scaled down with a

fixed coefficient before integration, then multiplied with the same coefficient after

integration. Very small values of σ and large kσ (very narrow Gaussians) might

cause numerical errors even after the scaling (in the form of glitches for some

values of ρ), which then requires additional scaling of the function. Anyway, such

narrow Gaussians likely correspond to unrealistic morphologies.

FIGURE 6 | Effective radius and node degree. Left column: The inverse

function of the distance-dependent expected number of synapses[
φ
−1 (z, η,M)

]
which maps the non-linear dependency between the effective

radius and the model parameters. The x axis shows the function argument

z = R2π
2NaNdD

2 which takes values from the interval [0, φmax]. Right column:

The node degree is a quadratic function of the effective radius in the

considered model. It depends on the square of the inverse

distance-dependent expected number of synapses,

ψ (z, η,M) =
[
φ
−1 (z, η,M)

]2
, which is shown in panels in the right column.

The x axis in these panels also shows the variable z on the interval [0, φmax].

The effective radius and the node degree are shown for the same model

parameters as the examples in Figures 4, 5. The asymmetry index takes the

values η ∈ {0.1,0.3,0.6,0.8}. The distribution of neurite segments is either

uniform or truncated Gaussian with parameters (σ = 0.5, kσ = 1),

(σ = 10, kσ = 50) or (σ = 0.50, kσ = 5).
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how this function depends on variable z that is related to several
model parameters as z = π

2NaNdD
2 · R2. The range of values for z

is determined from Equation (5) and is equal to

1 ≤ 1
zφ(ρ, η,M) ≤ 1

zφmax(η,M)

⇒ z ≤ φmax(η,M) = φ(0, η,M).

The inverse distance-dependent expected number of synapses,
and consequently the effective radius, exists on the interval z ∈
[0, φmax] for every distribution that we analyzed in this work.
Figure 6A shows the case with uniform distribution of neurite
segments where the function almost linearly decreases from

one
(
for z = 0

)
to η

(
for z = π

(1+η)2
)
. Figures 6B–D illustrate

examples with a truncated Gaussian distribution of neurite
segments (the same examples are shown in Figures 4, 5). In all
those examples the effective radius decreases with z, but with
non-linearities that are the most visible for z around zero and
around themaximum.When z increases the ratio

NaNd

R2
decreases.

This ratio is proportional to the average number of axon-dendrite

pairs of segments per unit area. A decrease of
NaNd

R2
decreases

the expected number of synapses everywhere, and further from
the neurite center the expected number of synapses can decrease
below one. Consequently the effective radius becomes smaller.

The node degree is a quadratic function of the effective radius
(see Equation 6) described by the function ψ(z, η,M), which is
the square of the inverse distance-dependent expected number of
synapses. This function is shown in Figures 6E–H for the same
examples as those in Figures 6A–D6.

3.3. Motif Distribution
Equation (12) for 2-node motifs and Equations (16, 17) for 3-
node motifs were numerically integrated using the Matlab built-
in function quad2d 7. The exception is the innermost integral in
Equation (17) which was computed using the simple trapezoid
method in order to increase the speed of computations. The
obtained results were additionally verified by simulating the
equivalent model in Matlab, then counting motifs from the
simulations.

3.3.1. The Expected Number of Motifs (Figure 7)
Figure 7A summarizes the expected motif counts for all 2-
node and 3-node motifs. Each column in the color-coded
matrix corresponds to one motif, while each row corresponds
to one value of the normalized effective radius (rmax) obtained
by dividing the effective radius (1max) with the axon-
dendrite distance in a neuron (1ad). We consider a wide
range of values for the normalized effective radius, rmax ∈
{0.1, 0.3, 0.5, 0.7, 1, 1.7, 2, 5, 10}. The schematic representation
of each motif is plotted at the top of the corresponding column.

6Function φ
−1(z, η,M) is computed using a simple method. The values of

φ(ρ, η,M) are computed on the interval [0, 1] with a resolution 0.001. For each

value z the closest value of φ(ρ), φ(ρ0), is found. Then φ−1(z) is computed

from the approximation φ(ρ) = φ(ρ0) + (φ−1(z) − ρ0) · φ(ρo)′ ⇒ φ
−1(z) =

ρ0 + φ(ρ)−φ(ρ0)
φ′(ρ0)

. The derivative is also estimated using the simple equation

φ
′(ρ + dρ) = φ(ρ+ dρ)−φ(ρs)

dρ
.

7Matlab version R2014a

The motifs that have identical expected counts are represented
by the same column (e.g., M1 and M4). Each motif count
is normalized with the total number of same-size motifs, i.e.,
M1-2 and M2-2 are divided with the total number of 2-node
motifs and motifs M1–M13 are divided with the total number
of 3-node motifs. Normalization removes parameters that act as
multiplicative constants in the expressions for motif counts, i.e.,

it removes the coefficient
1

2
ad

l2
for the 2-node motifs and

1
4
ad

l4
for

the 3-nodemotifs. The normalized expectedmotif counts depend
only on the normalized effective radius.

The first two columns in the color-coded matrix correspond
to the 2-node motifs. For the smaller values of the normalized
effective radius (rmax ≤ 2) most of the connections are
unidirectional, as indicated by the higher percent of motifs M2-
2 in the second column. For the two biggest values of the
normalized effective radius most of the connections become
bidirectional and the fraction of motif M1-2 increases over 50%.

The 3-node motifs are shown in columns 3–15, arranged
according to the increasing number of connections (in one
direction, i.e., a bidirectional coupling counts twice). For the
smallest values of rmax the motifs with two unidirectional
connections are dominant. As the parameter increases
the percent of the motifs with one bidirectional and one
unidirectional connection (M3 and M7) increases. The middle
range of values for the normalized effective radius (rmax between
1 and 2, encircled with the dashed white line in the figure) is
the most interesting as it gives the biggest variability of motif
counts. For these values, almost all of the motifs are present
in the network structure. For the biggest values of rmax, most
of the nodes form bidirectional connections and the motifs
with bidirectional couplings become dominant. It should be
noted that motifs M3 and M7 appear for all values of the
normalized effective radius but the smallest one. They contain
one bidirectional connection and one unidirectional connection
between the three-nodes and seem to be the most feasible
connectivity pattern for the considered type of network (with
uniformly distributed and randomly oriented neurons). On the
contrary, the cyclic pattern of motif M9 almost never appears in
these networks.

These conclusions are additionally illustrated in
Figures 7B–D, which show the motif percents for the three
representative values of the normalized effective radius.
Figure 7B shows the case for rmax = 0.3 when the motifs with a
small number of unidirectional connections (M2, M1, and M4)
dominate. Figure 7C illustrates the middle range of values for the
normalized effective radius (example: rmax = 1.7), which enables
the biggest variability of motifs. Figure 7D shows the case for
the biggest rmax when the motifs with bidirectional connections
dominate.

3.3.2. Comparison with the Uniform Random and the

Locally Coupled Networks (Figure 8)
For a comparison, motif counts are computed for the
uniform random and for the locally coupled networks
described in Methods Section. The networks are simulated
for N = 3600 nodes. Node degrees are computed according
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FIGURE 7 | The expected motif counts normalized with the total

number of the same-size motifs. (A) The expected motif counts obtained

for a wide range of values for the normalized effective radius

(rmax ∈ {0.1,0.3,0.5,0.7,1,1.7,2,5,10}). The color code on the right

shows the percentages of different motifs in the total number of the

same-size motifs. The left part of the panel (columns one and two)

corresponds to the 2-node motifs, while the right part of the panel illustrates

the 3-node motifs. The middle range of the values for rmax (encircled with the

dashed white line) results in the biggest variation of motifs. (B–D) These

panels additionally illustrate the three typical results shown in (A). (B) shows

the expected motif counts in networks with a small parameter rmax = 0.3,

where motifs with a few connections are pronounced. (C) shows the

example for rmax = 1.7, where all of the motifs, except M9, are present with

at least few percents in the total motif count. (D) illustrates an example with

the largest considered value for rmax = 10, where the motifs with

bidirectional connections dominate.

to Equation (6). The values of the normalized effective
radius are the same as those considered in Figure 7, i.e.,
rmax ∈ {0.1, 0.3, 0.5, 0.7, 1, 1.7, 2, 5, 10}. The axon-dendrite
distance in a neuron is fixed to 1ad = 1, and the parameter that
determines the neuron density is l ∈ {0.3, 0.5}. For l = 0.3,
the square of edge 1ad contains about 11 somata (a denser
network). For l = 0.5 that square contains 4 somata (a sparser
network). For each value of the node degree we generated a
uniform random network, strictly locally coupled network, and
a locally coupled network with 10% of non-local connections.
The construction of these networks is described in Methods
Section. Each connection in the uniform random network is
established with equal probability (that depends on the selected
node degree) and independently of other connections. In the
strictly locally coupled network, each node is connected to
all the nodes within its connectivity area, which results in all
bi-directional connections. The second example of the locally
connected network is similar to the first one, but 10% of all the

connections are removed and re-established with the closest
nodes outside of the connectivity area.

Figure 8 shows the comparison between our model and the
simulated uniform random and the locally coupled networks.
The color maps show t-scores computed using Matlab function
ttest.m. For a simulated network, we obtained motif counts for
every node (3600 values) and tested whether this sample has
a mean value statistically equal to the expected motif count
obtained from our model. The cases that pass the test are
marked with the crossed pink squares in the figure. Clearly, most
of the cases have significantly different motif counts than our
model. The positive t-scores indicate that our model gives more
motifs of a certain type than the simulated network, while the
negative scores indicate fewer motifs in our model compared
to the simulated network (t-scores obtained from Matlab are
multiplied with -1). Also, we set the values outside of the interval
[−500, 500] to ±500, to emphasize the values closer to zero.
In some cases, certain motifs do not appear in the simulated
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FIGURE 8 | Comparison of the results from Figure 7 with the motif

counts obtained from simulated uniform random and locally coupled

networks. The color maps show the t-scores for all motifs (shown on the x

axis) and all considered values of the normalized effective radius (shown on

the y axis). The comparison is done for two population densities, a denser

one (l = 0.3, left column) and a sparser one (l = 0.5, right column). A positive

t-score indicates a bigger expected number of motifs in our model than in

the simulated network, while a negative t-score indicates a smaller expected

number in our model than in the simulated network. All the values outside the

interval [−500,500] are set to ±500. The scores are shown as color maps in

the same format as Figure 7, while the color bar at the bottom explains the

color code. The crossed gray squares correspond to zero motif counts in the

simulated networks, i.e., both the mean value and the variance are zero. The

crossed pink squares are the cases when our model and the simulated

networks give statistically the same results (the t-test with 5% significance

level). (A,B) Comparison with the uniform random networks. (C,D)

Comparison with the strictly locally coupled networks. In these networks all

connections are bidirectional and only motifs M1-2, M8, and M13 are

possible. (E,F) Comparison with the locally coupled networks with 10%

non-local connections.

network. We marked them with gray crossed squares in the
figure. When our model gives zero expected number of motifs,
the case is marked with both gray and pink squares.

The color maps in Figure 8 are in the same format as in
Figure 7. The color bar at the bottom of the figure explains the
color code. The motif types are indicated on the x axis, and the
values of the normalized effective radius are indicated on the y
axis. The first row (Figures 8A,B) shows the comparison with
the uniform random networks, the second row (Figures 8C,D)
is the comparison with strictly locally coupled networks and the
third row (Figures 8E–F) is the comparison with locally coupled

networks with 10% non-local connections. The first column
corresponds to the denser population (l = 0.3), and the second
column to the sparser population (l = 0.5).

For almost all the cases shown in Figure 8, the number
of bidirectional motifs (M1-2) in our model is larger than in
the uniform random networks and smaller than in the locally
coupled networks, while the opposite holds for the unidirectional
motifs (M2-2). Similarly, the number of 3-node motifs with
two unidirectional connections (M1 and M2) is smaller in our
model than in the uniform random networks, and larger than in
the locally coupled networks. On the contrary, the motifs with
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solely bidirectional connections (M8 andM13) are almost always
more frequent than in the uniform random networks and less
frequent than in the locally coupled networks. The motifs with
three or four connections are in most cases more frequent in our
model than in both the uniform random and the locally coupled
networks. The exceptions are motifs M5 and M9 that become
less frequent than in uniform random networks for a sufficiently
big rmax. As the normalized effective radius increases, our model
forms more bidirectional connections and the motifs that require
three unidirectional connections becomes less likely (this is more
visible for M9, as it is anyway rare in our model). For even
higher values of the effective radius, motif M10, which is not very
frequent in our model, becomes underrepresented compared to
both types of networks.

For the expected node degree of approximately 25–35% (cases:
rmax = 5, l = 0.3 and rmax = 10, l = 0.5), our model contains
dense local connectivity with many bidirectional connections.
Eventually, most of the 3-node motifs become less frequent
than in the uniform random networks except the three highly
connected motifs, M8, M12, and M13. The motif M13 becomes
more represented than in the locally coupled networks with 10%
non-local connections, indicating very dense local connectivity
in our model for these values of model parameters. On the
contrary, motif M8 with two bidirectional connections is always
less frequent in our model than in the locally coupled networks.

The last set of model parameters, rmax = 10, l = 0.3, gives
very high connectivity, the probability of connection reaches

0.97 in the network with 3600 nodes. The obtained results are
not consistent with the rest of the analysis, as in this case
both simulated networks contain a high number of the most
connected motif M13, while many other motif types become
less frequent than in our model. We wanted to show this case
to illustrate the effect of the finite simulation size. Our model
allows analysis for any value of the model parameters, but in
the simulated networks, the model size determines the maximal
range of feasible parameters.

3.4. Clustering Coefficient, Path Length and
Small-world Coefficient (Figure 9)
Once the motif counts are obtained, the clustering coefficient
follows from Equation (19). For comparison, we also evaluated
the clustering coefficient for the uniform random and for the
locally coupled networks with 10% of non-local connections (see
Methods Section). The clustering coefficients are computed from
the motif counts. Motifs in random and locally coupled networks
are computed in a standard way, by counting the connectivity
patterns. Those counts are used in Equation (19) instead of NMi

values. The motifs are multiplied with the coefficients 1 for M5
and M9, 2 for M6, M10, and M11, 4 for M12, and 8 for M13
in the numerator of the equation in order to take into account
bidirectional connections in some of the motifs, the same way
as in the standard expression for the clustering coefficient
(Equation 18).

FIGURE 9 | The clustering coefficient (A,B), 10-based logarithm

of the harmonic path length (C,D), and two definitions of the

small-world coefficient (E,F). (E) shows the standard definition

(Watts and Strogatz, 1998) and (F) the alternative definition

introduced in Telesford et al. (2011). Uniform random and locally

coupled networks used for comparison are simulated for N = 4900

neurons and model parameters 1ad = 1, l = 0.3 (solid line) and

l = 0.5 (dashed line). Red line, our model; blue, uniform random

networks; turquoise, locally coupled networks with 10% of non-local

connections. The x axis shows the logarithm of 10 of the

normalized effective radius (rmax ), y axis gives the considered

network measures or their logarithms.
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The simulated random and locally coupled networks have
N = 3600 or N = 4900 nodes and model parameters 1ad = 1
and l ∈ {0.3, 0.5}. We consider only values from 0.3 to 10 for
the normalized effective radius. For rmax = 0.1 the obtained
networks are sparsely connected, possibly with many isolated
cells. This causes a bias in the computation of the clustering
coefficient and we omit these examples.

Figures 9A,B show the clustering coefficient for our model
(red line), and also for the uniform random (blue) and the locally
coupled network (turquoise) for two populations, a denser one
(for l = 0.3) and a sparser one (l = 0.5). For most of the
values of the normalized effective radius (rmax), the clustering
coefficient of our model is in between those of uniform random
and locally coupled networks. Only for the largest two values of
rmax in the sparser population the clustering coefficient becomes
bigger than the one in the locally coupled networks. For small
values of rmax, axon and dendrite centers are relatively far apart
and connect with different groups of cells. As rmax increases the
axon and dendrite centers approach each other and the cells
that connect to the axon become closer to those that connect
to the dendrite, which makes connections between them more
probable. This increases the number of motifs that contribute
to the clustering coefficient. The distance between the axon and
dendrite increases the effective area of the neighborhood, which
might be a reason for the cases with higher clustering coefficient
than in locally coupled networks. In the locally coupled networks,
the dendrite and axon centers are identical and the neighborhood
is defined by a single circle around that center. It should be
noted that (Rieubland et al., 2014) reports higher clustering
coefficient estimated from the experimental data than the one
computed from the simulated uniform random and locally
coupled networks. The example obtained for l = 0.3 and
rmax = 10 demonstrates that the cut-off effect present in smaller
networks (see Figure 8 obtained for N = 3600) disappears
when comparing our model with bigger simulated networks (for
N = 4900). An extensive comparison between our “infinite-
size” model and the finite size simulated networks is presented
in Supplementary Material 3.

The expected harmonic path length obtained using the
iterative (Equations 20–23) (see Methods) is shown in
Figures 9C,D. For all the considered model parameters the
harmonic path length is slightly bigger in our model than in
the uniform random network and smaller than in the locally
coupled network. The computations used in this study result
in somewhat smaller values for the harmonic path length than
those obtained when simulating the equivalent model. This
is a consequence of the finite simulation size (see the analysis
presented in Supplementary Material 3). Consequently, the
harmonic path length obtained from the numerical simulations
differs more from the harmonic path length in the uniform
random network, but is still smaller than the harmonic path
length in the locally coupled network.

Finally, we computed the small-world coefficients out of
clustering coefficients and path lengths. Two definitions of this
coefficient are computed, the standard Watts-Strogatz definition
(SWws, see Watts and Strogatz, 1998), shown in Figure 9E, and
an alternative definition SWq from Telesford et al. (2011), shown

in Figure 9F. The standard version compares our model to the
uniform random networks and should be large for small-world
networks. The alternative definition compares our model to
both, the uniform random and the locally coupled networks,
and should be around zero for the small-world networks. Both
considered populations (for l = 0.3 and l = 0.5) maximize SWws

for the normalized effective radius rmax = 0.7. The alternative
coefficient SWq is the closest to zero for rmax = 1.7 and rmax = 2,
although, for the denser population (l = 0.3) it stays above zero
for all the values of rmax. The parameter rmax in the interval [1, 2]
also maximizes the repertoire of possible motif counts, as shown
in Figure 7.

4. Discussion

We presented a two-level statistical model that examines
how properties of single neurons and neurites constraint
the connectivity in neuronal population. The connectivity is
quantified using the standard graph theoretic measures like
motif counts, clustering coefficient, harmonic path length, and
the two definitions of small-world coefficient. Neurites are
represented as neurite fields in accordance with the model
already addressed in the literature (Snider et al., 2010; Teeter
and Stevens, 2011; Cuntz, 2012; van Pelt and van Ooyen, 2013;
McAssey et al., 2014). Such model provides a low-resolution and
low-dimensional representation of neurites. The entire neuron
model has three components, the neurite field of the axon, the
neurite field of the dendrite, and the parameter that maps the
distance between the axon and dendrite centers. The population
of neurons is uniformly distributed in two-dimensional space
with the density of neurons defined by a model parameter. This
resembles the experiments with dissociated cortical cultures, and
is often used in theoretical studies. Finally, the synapse formation
rule is entirely based on the proximity of axons and dendrites
(Peters’ rule, Peters et al., 1991; Peters and Feldman, 1976),
and no activity-dependent synapse reorganization is considered.
Consequently, we consider only the potential connectivity as
defined in Stepanyants and Chklovskii (2005). The synapse
formation rule, as well as the population properties, are selected
to emphasize the role of neuron morphology and make a clear
link between the morphology and connectivity.

4.1. Summary of the Findings
We first introduced the notion of effective radius of neurites,
which is the maximal distance between an axon-dendrite pair
of two neurons expected to connect with at least one synapse.
The effective radius, the expected number of synapses, and
the expected node degree are expressed as functions of neurite
parameters. The expected number of synapses linearly depends
on the density of neurite distribution, but non-linearly on the
neurite size and the distance between the axon and dendrite
centers. We considered several choices of neurite distributions,
including the uniform distribution and several cases of the
truncated Gaussian distribution with different distribution
parameters. When both axon and dendrite are evenly distributed
within the distribution support the expected number of synapses
decreases almost linearly with the axon-dendrite distance. This
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has also been observed in the experimental studies (Rieubland
et al., 2014), and in the modeling studies that reproduce realistic
neuronal morphologies (Hill et al., 2012).

Next, we expressed the considered connectivity measures as
functions of the normalized effective radius, which is the effective
radius divided by the distance between axon and dendrite centers
of the same neuron. We derived the closed-form expressions for
the 2- and 3-node motifs. These motifs represent the minimal-
size networks with structured connectivity that can be studied
experimentally. The experimental study of path lengths requires
recording of a much bigger population of neurons, which can
easily become infeasible. The expectedmotif counts are expressed
in the form of multiple integrals that are evaluated numerically.
The obtained results vary significantly for different values of
the normalized effective radius. For most of the considered
values of the normalized effective radius, the unidirectional 2-
node motifs are more frequent than the bidirectional motifs.
This resembles the statistics of 2-node motifs in the uniform
random networks. For large values of the normalized effective
radius, the bidirectional motifs become dominant, similarly as
in the locally coupled networks. Additional comparison shows
that our model always expresses more bidirectional motifs that
the uniform random networks and less than the locally coupled
networks. The opposite holds for the unidirectional motifs.

The sparsely connected 3-node motifs (with 2 unidirectional
connections) are dominant for the small normalized effective
radius, which resembles the 3-node motif distribution in the
uniform random networks. For the large normalized effective
radius, the densely connected motifs (with two or three
bidirectional connections) become frequent, which is typical
for the locally coupled networks. For all considered values of
the normalized effective radius, our model exhibits less sparsely
connected motifs than the uniform random networks and more
than the locally coupled networks. The opposite holds for the
motif with themaximal connectivity (i.e., with three bidirectional
connections). In-between these extremes we can identify the
range of values for the normalized effective radius that maximizes
the variability in connection repertoires on the micro-scale. For
these values, almost all the motifs are present in the network,
which is not the case in the uniform random and the locally
coupled networks that favor certain motifs. The analysis of the
clustering coefficient, harmonic path length, and the small-world
coefficient shows that the same range of values results in the
small-world coefficient closest to the one of the small-world
networks. For the normalized effective radius between 1 and 2,
the clustering coefficient is close to the one of the locally coupled
networks, and the path length is somewhat longer than the one of
the uniform random networks.

4.2. Axons and Dendrites Modeled as Neurite
Fields
We adopted several approximations when choosing models for
the individual neurons and for the populations of neurons. In
what follows we will additionally motivate the adopted choices.
The coarse representation of neurites, reduced to the distribution
of neurite segments, neglects the fine details of the neurite
tree structure, including the non-random orientation of neurite

segments, the branching patterns, or any correlation in the
structure of neurite branches. Previous studies suggest that this
low-resolution neurite description still captures relevant dendrite
properties at the level of the whole neuron morphology (Snider
et al., 2010; Teeter and Stevens, 2011). In this work, we also
used density fields to represent axons, which better describes
the properties of neurons in cell cultures than in the three-
dimensional tissue. In the cortical tissue, the axons are elongated
and branched structures that cover large area compared to
dendrites. In most of the cases, just a single axonal branch
passes through the dendritic field (Braitenberg and Schüz, 1998).
The axon density field can be interpreted as uncertainty of the
position of individual axonal branches within the space covered
by the axon. This complies with our model, where the principal
axonal orientation is random, and the neurite field describes
the additional randomness of position of the axonal branches
with respect to the principal orientation. In the systems with
non-random principal orientation of axons, or in neurons for
which the correlation between the axonal branches cannot be
approximated a model that describes each branch might be more
suitable. For example, a neurite field description of dendrites can
be combined with axons modeled in NETMORPH (Koene et al.,
2009). Still, as long as both dendrites and axons cover a limited
space, the effective radius can be derived as well as the expressions
for the considered measures of network connectivity. Eventually,
the expression for the effective radius might have more complex
dependency on the neurite properties.

4.3. Potential Synapses Estimated from the
Neurite Fields
An important issue related to this modeling approach is
addressed in van Pelt and van Ooyen (2013). This study
systematically examines several aspects of connectivity, including
the number of synapses per neurite, the number of synapses
between pairs of neurons, and the connectivity per neuron.
Those aspects are evaluated for neurites with realistic branching
trees and also for neurites described by the neurite density
distribution. The paper finds agreement between realistic and
neurite field based descriptions of neurons when estimating the
expected number of synapses. But, the disagreement arises when
computing the expected number of synapses per connected axon-
dendrite pair. To overcome the problem, the authors proposed an
empirical mapping function between the connectivity obtained
from detailed simulated morphologies and the connectivity
computed using density fields obtained by averaging over
detailed simulated morphologies.

The model examined in our study derives the average
connectivity from neurite distributions, therefore might suffer
from the issues indicated in van Pelt and van Ooyen (2013).
We can adopt the same method to overcome the problem,
and apply an empirical mapping function to the Equation (5)
that defines the effective radius. On the right side of the first
inequality, instead of one there will be a constant dependent on
the empirical mapping function. This constant will be added to
the expression for the effective radius, but the rest of the analysis
will not be affected. Eventually, the optimal range of values for
the normalized effective radius might be shifted from the interval
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[1, 2]. Alternatively, the expected number of synapses can be
obtained from a more realistic model of neurites, e.g., from the
reconstructed cells from neuroimaging studies or from detailed
morphologies simulated using NETMORPH (Koene et al., 2009).
As long as the obtained function is at least piecewise invertible
the effective radius can be computed from it, and the results for
the expected motif counts and for the other considered measures
still apply.

4.4. Relation Between the Actual and the
Potential Number of Synapses
We derive all the network measures from the potential
connectivity, but potential connectivity does not fully explain the
actual connectivity. The obtained potential number of synapses
(Figure 4), the range of values and the functional form, is in
agreement with other studies that estimate the connectivity from
neuronal morphology (Hill et al., 2012; van Pelt and van Ooyen,
2013), but it cannot fully explain the actual synaptic connectivity
reported in Markram et al. (1997) and Fares and Stepanyants
(2009). Figure 4 indicates the adequate range of values for the
properly selected model parameters. The distance-dependent
expected number of synapses [φ(ρ, η,M)] is smaller than 3 for
the typical examples presented in Figure 4, with much bigger
values obtained only for the very narrow (and unrealistic) neurite
fields. To obtain the expected number of potential synapses,
it should be multiplied with a coefficient that depends on the
model parameters and is not greater than φmax. The obtained
expected number of synapses per connection reaches 10 synapses
or less. Although the range of values is (roughly) accurate
for the properly selected model parameters, the distribution
of synapse counts is not according to Fares and Stepanyants
(2009). This study demonstrates that the distribution of potential
synapses between a connected axon-dendrite pair has much
higher variance than the distribution of actual synapses. They
proposed a cooperative model of synapse formation, described by
a sigmoid function, that establishes actual synapses only between
axon-dendrite pairs with sufficient number of potential contacts,
while it rules out the pairs with few contacts. This correction
can be incorporated in our study, similarly to the mapping
function discussed in the previous paragraph, by applying the
proposed sigmoid function to the left side of the first inequality
in Equation (5).

Finally, corrections proposed in van Pelt and van Ooyen
(2013) and Fares and Stepanyants (2009) can be combined. First,
the empirical mapping function from van Pelt and van Ooyen
(2013) can be used to convert the synapse counts obtained
from the neurite fields to the values that would be obtained
by simulating detailed morphologies. Then, the cooperative rule
from Fares and Stepanyants (2009) can be used to convert the
number of potential synapses to the counts of actual synapses.
All these operations will somewhat alter the functional form of
Equation (5) and, consequently, the expression for the effective
radius and how it depends on the neurite parameters. Eventually,
an additional parameter might be introduced to describe the
connectivity area. The computation of the network measures can
then be done following the same method described in this study.

4.5. Alternative Potential Synapse Formation
Rules
We considered a simple potential synapse formation rule based
on the proximity criteria: axon and dendrite segments form
contacts if they find themselves on a distance smaller than the
average dendritic spine length. The only constraint is that a
dendritic segment cannot form potential synapses with more
than one segment of the same neighboring axon. Still it can
form potential synapses with the segments of other axons. A
more realistic rule would require that each dendritic segment
connects to at most one among all the proximal segments of
all the axons, this may better reflect the connectivity in cortical
tissue (Braitenberg and Schüz, 1998) and also reduce the total
number of potential synapses per neuron. In the current model,
the number of potential synapses is controlled by the choice
of model parameters (see Methods). An alternative potential
synapse formation rule would allow a wider range of model
parameters. Implementing the alternative rule would likely result
in a more complex relation between the effective radius and the
neurite parameters. Still, if we consider one particular dendrite,
all the axons that connect to it have to be on a finite distance from
it, and the effective radius is always finite. The alternative rule
would alter the criterion for connectivity: a neuron would not
connect to all the neurons inside of its connectivity area, but just
to some of them and according to some selection criteria derived
from the potential synapse formation rule.

Activity-dependent synaptic rearrangement is not considered
in this study, although it represents an important mechanism
in shaping the synaptic patterns. We focus on the most stable
aspects of neuronal connectivity, those governed by morphology
of neurite trees. As indicated in the literature (Stepanyants
et al., 2002), remodeling of neurite branches requires longer
time scale than formation or removal of the individual synapses.
The synaptic connectivity derived from neuromorphology can
be considered as an additional constrain in the process of the
activity-dependent synaptic rearrangement. It is reasonable to
expect that the networks with larger diversity of motif counts
retain larger variability of the connectivity also in the presence
of the activity-dependent synaptic changes.

4.6. Comparison with the Experimentally
Observed motif Counts
The presented study focuses on a statistical description of
neuronal connectivity and the constraints to connectivity
imposed by low-resolution properties of neuronal morphology.
The considered problem was solved analytically. We established
the functional dependencies between the considered connectivity
descriptors and the parameters that describe neuronal
morphology and the organization of neuronal population.
In order to solve the described problem, we had to approximate
several mechanisms that significantly influence the formation
and maintenance of synaptic contacts. Those include the details
of neurite structure, the realistic organization of neurons in the
cortical tissue (as we considered a model that corresponds to
organization in cell cultures), and most importantly the fine
tuning of connectivity patterns through synaptic plasticity.
Consequently, certain differences between the results obtained
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from our model and the corresponding experimental findings
are expected.

The studies in Markram et al. (1997), Song et al. (2005), and
Perin et al. (2011) examined the connectivity between cortical
layer 5 pyramidal neurons and reported over-representation of
bidirectional motifs compared to the uniform random networks.
The study in Rieubland et al. (2014) addressed the connectivity
between molecular layer interneurons in the cerebellum and
found no significant difference compared to the uniform random
networks. In Markram et al. (1997), 30% observed connections
were bidirectional and 70% unidirectional. This corresponds
to distribution of unidirectional and bidirectional connections
obtained in our model for the normalized effective radius
close to 1.7. Our results show that values of the normalized
effective radius smaller than 2 give less than 50% of bidirectional
connections, while the opposite holds for the normalized
effective radius larger than 2. For almost every choice of the
model parameter value, the number of bidirectional connections
exceeds the one of the uniform random networks, similarly as in
Song et al. (2005) and Perin et al. (2011). A recent study (Cossell
et al., 2015) examined the role of bidirectional connections in
sensory information processing. They found that neurons with
correlated responses to visual stimuli often connect with strong
bidirectional couplings, while the majority of neurons exhibits
weakly or uncorrelated responses to visual stimuli and connects
with unidirectional couplings.

Three studies (Song et al., 2005; Perin et al., 2011; Rieubland
et al., 2014) reported the distribution of 3-node motifs in cortical
neuronal networks. In Song et al. (2005), the authors defined
the optimal transitive connectivity rule stating that “if node
N1 connects to N2, and N2 connects to N3 (in any direction),
the probability that N1 connects to N3 significantly exceeds the
chance level.” Motifs M1, M5, M6, M9, M10, M11, M12, and
M13 have been found in the data more often than in the uniform
random networks. In addition, motif M3 was less frequent than
in the uniform random networks. The study in Perin et al. (2011)
confirms the same connectivity rule and finds motifs M1, M5,
M6, and M11 to be overrepresented in the data compared to
the locally coupled networks. In Rieubland et al. (2014), the
preference for transitive motifs is also confirmed, with motifs M1
and M5 being overrepresented compared to both the uniform
random and the locally coupled networks. Our model suggests
the optimal range of values for the normalized effective radius
that supports formation of the reported motifs (particularly, M5,
M6, M10–M13), i.e., the interval rmax ∈ [1, 2]. Outside of this
interval, some of thesemotifs become rare. Contrary to Song et al.
(2005), we rarely ever observe the loop-motif M9, the same motif
is also rare in the locally coupled networks. Motif M12 becomes
relatively frequent in our model for the sufficiently big values of
rmax. Although it is not reported in all experimental studies, it
also has transitive connectivity.We frequently observe motifs M3
andM7, more frequently than in both the locally coupled and the
uniform random networks. Such motifs can be formed between
three neurons if two of them fall inside the connectivity area of
the third one in such a way that one is close to the center of
the connectivity area and the other is close to its border. The
neuron close to the center of the connectivity area is likely to
form a bidirectional connection present in motifs M3 and M7.

The neuron close to the border of the connectivity area is likely
to form the remaining unidirectional connection.

Finally, it should be mentioned that our model cannot predict
missing connections and disconnectedmotifs, like those analyzed
in Rieubland et al. (2014), or the anti-clustering coefficient
emphasized in the same study. This is a consequence of the
definition of connectivity area and the fact that all dendrites
within the connectivity area of an axon synapse to that axon.
A different synapse formation rule, allowing that some of the
dendrites within the connectivity area remain disconnected
from the considered axon, like the alternative rule described
in a previous paragraph, would allow analysis of the missing
connections and the additional motifs discussed in the literature.

4.7. Limitations of the Experimental Studies
Connectivity measures obtained from experimental studies are
to some extent affected by the adopted experimental protocols.
A recent modeling study (Miner and Triesch, 2014) examined
the possible bias in the connectivity measures introduced by
sampling and finite size of the slices. Our model can also be used
to examine the effects of the finite size of the considered neuronal
population. The analytical results presented in our study are
derived for an infinite-size population of neurons. On contrary,
simulation of the equivalent model can only be done for the finite
number of neurons. Comparison between the analytical and the
simulated results illustrates the bias induced when estimating
the properties of a large neuronal circuit using a small sub-
population. In the following paragraph, we give two examples of
this issue.We illustrate a case where the finite network size affects
motifs computation. We carefully discuss how the reduction of
model size affects the path-length and the small-world coefficient
computations.

4.8. The Effects of the Finite Model Size
In most of the derivations presented in this study, the network
size is not explicitly considered, i.e., we treat the model as if it
were infinite. An exception is the path length, a global measure of
the network structure that has to depend on themodel size. In our
study, the information about model size is, however, introduced
only in the later steps of the path length computation. (In)finite
model size becomes an issue if we want to compare our model
to a simulated, therefore, a finite-size network. In Figure 8, we
compare the expected motif counts obtained from our model
to those obtained from the uniform random and the locally
coupled networks. The result shown for the biggest value of the
effective radius is biased due to the finite number of neurons
in the network. While our model does not suffer from this
effect, the two simulated networks do. The large effective radius
leads to a large number of neighbors, in the considered case
those neighbors represent 97% of all the network nodes. Clearly,
both the uniform random and the locally coupled networks
become densely connected, close to all-to-all connectivity, so
the results obtained in this case visibly deviate from all the
other examples.

In our model, the harmonic path length is computed using
the iterative equations derived in Methods Section. The obtained
harmonic path length is somewhat smaller than the result
computed by simulating the equivalent model. In Supplementary
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Material 3, we analyze steps in computation of the path length
and identify all the differences between the analytically solved
and the simulated model. We first compute all the intermediate
steps and probabilities defined by the iterative procedure.
Then, we calculate all those intermediate probabilities from the
simulated model and compare them to the results of the iterative
procedure. The finite size of the model imposes the maximal
distance between any pair of neurons. As we approach this
maximal distance, the intermediate probabilities computed from
simulations converge to zero. On contrary, the intermediate
probabilities obtained using the iterative method do not contain
the information about the model size, but instead describe an
infinite-size model. Next, we compute the distribution of path
lengths from the intermediate probabilities. This is possible
only if we cut-off the intermediate probabilities at the maximal
allowed distance between a pair of neurons in the model, and
therefore artificially introduce the model size. Consequently,
for the larger values of the effective radius the probabilities
obtained from the iterative equations drop faster than the same
probabilities obtained from the simulations. The harmonic path
length obtained from the iterative equations is somewhat smaller
than the result of simulations.

The connectivity measures most affected by model size
are the small-world coefficients. As the size of simulated
networks increases, the small-world coefficient computed using
the definition from Watts and Strogatz (1998) increases. At
the same time, the coefficient from Telesford et al. (2011)
decreases and becomes closer to zero. In both cases, larger
analyzed networks are more likely to be classified as small-world
networks. The impact of numerical methods, model size, and
number of simulation iterations is discussed in Supplementary
Material 3. It should also be noted that the two considered
definitions of the small-world coefficient lead to somewhat
different conclusions. While the coefficient from Telesford et al.
(2011) suggests that networks obtained for the effective radius
in the interval [1, 2] have the connectivity closest to the small-
world networks, the definition from Watts and Strogatz (1998)
points at smaller values of the effective radius, namely the interval
[0.7, 1]. The interval [1, 2] also maximizes the diversity in the
obtained expected motifs counts, so the results obtained using
the coefficient from Telesford et al. (2011) better agree with the
motifs analysis. At the other hand, this coefficient seems to be
more sensitive to themethodology used to compute the harmonic
path length, although both considered methods (our iterative
method and the numerical simulations) give qualitatively similar
results.

4.9. Related Modeling Studies
Two previous modeling studies, Herzog et al. (2007) and Voges
et al. (2010), use a similar neuron description to address the
same problem, i.e., how the coarse scale properties of neuronal
morphology shape the connectivity in large networks. They
examined a neuron model that reproduces patchy connections
observed in the cortex. Axons are modeled as Gaussian neurite
fields with the axon center displaced from the soma in order
to capture the long-distance connectivity in the considered
networks. A neuron is allowed to connect to other neurons close
to its soma and also to the neurons close to its displaced axon

field. The generated networks exhibit small-world properties
suggesting optimized wiring in the cortex. In our model, both
axons and dendrites are described by neurite fields, but axons
can connect only to the dendrites that are sufficiently close to
the axonal field. Our model is constructed to capture general
properties of neuronal morphology suggested by Snider et al.
(2010), while the studies in Herzog et al. (2007) and Voges
et al. (2010) focus on the specific types of pyramidal cells with
long patchy projections and the neuronal connectivity derived
from this property. In a recent study (McAssey et al., 2014), a
similar model that uses neurite density fields to represent axons
and dendrites is analyzed through simulations. The authors
carefully fitted the density fields using the reconstructed neuronal
morphologies fed to the simulator (Koene et al., 2009). They
demonstrated the realistic distribution of potential synapses
and the optimal properties of the obtained networks treated as
weighted graphs. The results suggest that these networks possess
properties similar to the small-world networks.

The model we considered in this study is very similar to
those described in Herzog et al. (2007), Voges et al. (2010), and
McAssey et al. (2014), but we opted for a different approach
to analyzing the model. Instead of simulating the model for
different parameter sets, we derived the analytical solution that
allows us to fully understand the significance of the individual
model parameters. We introduced the concepts of effective
radius and connectivity area. Through these concepts we
mapped the parameters of the individual neurons to a combined
parameter that further determines the network-level properties.
Additional work should be done to estimate this parameter from
the experimental data, an issue that will be a subject of our future
studies.

The two-level statistical model analyzed in this study can
be seen as a framework to connect single neuron properties
with the network-level organization. The main question is how
to reduce the number of parameters in the neuron model in
order to easier embed it to the network-level model. Ideally, the
single neuron model should include as much details as possible
that are then reduced using averaging and statistical description
into a lower-dimensional representation. The lower-dimensional
representation should provide a possibility to clearly tract the
most crucial aspects of the neuron model when embedded into
the network. We followed this methodology by introducing the
concept of effective radius. The adopted methodology provides
flexibility in selection of model components and allows easier
modification of the presented framework to include new aspects
of neurons and neuronal populations.
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After brain lesions caused by tumors or stroke, or after lasting loss of input
(deafferentation), inter- and intra-regional brain networks respond with complex changes
in topology. Not only areas directly affected by the lesion but also regions remote from
the lesion may alter their connectivity—a phenomenon known as diaschisis. Changes
in network topology after brain lesions can lead to cognitive decline and increasing
functional disability. However, the principles governing changes in network topology
are poorly understood. Here, we investigated whether homeostatic structural plasticity
can account for changes in network topology after deafferentation and brain lesions.
Homeostatic structural plasticity postulates that neurons aim to maintain a desired level
of electrical activity by deleting synapses when neuronal activity is too high and by
providing new synaptic contacts when activity is too low. Using our Model of Structural
Plasticity, we explored how local changes in connectivity induced by a focal loss of input
affected global network topology. In accordance with experimental and clinical data, we
found that after partial deafferentation, the network as a whole became more random,
although it maintained its small-world topology, while deafferentated neurons increased
their betweenness centrality as they rewired and returned to the homeostatic range of
activity. Furthermore, deafferentated neurons increased their global but decreased their
local efficiency and got longer tailed degree distributions, indicating the emergence of hub
neurons. Together, our results suggest that homeostatic structural plasticity may be an
important driving force for lesion-induced network reorganization and that the increase in
betweenness centrality of deafferentated areas may hold as a biomarker for brain repair.

Keywords: topology, deafferentation, focal retinal lesion, neuronal network model, structural plasticity,

homeostatic plasticity, stroke, epileptogenesis

1. INTRODUCTION
Repair of brain networks following lesions, stroke or neurode-
generation goes along with massive rewiring of connections.
Rewiring is brought about by synapse formation and dele-
tion, dendritic remodeling, and axonal sprouting, pruning and
re-routing (structural plasticity) (Butz et al., 2009b). Network
rewiring induced by lesions or neuronal loss contributes to
changes in network topology associated with tumors (Bartolomei
et al., 2006; Honey and Sporns, 2008), stroke (van Meer et al.,
2012; Yin et al., 2013), and neurodegenerative diseases, includ-
ing Alzheimer’s disease (Stam et al., 2009; Sanz-Arigita et al.,
2010) and multiple sclerosis (He et al., 2009; Tewarie et al., 2014).
Interestingly, in all these pathologies, brains become more ran-
domly connected or lose complexity of hierarchical structure
(Tewarie et al., 2014). Increasing randomness and decreasing
betweenness centrality (a topological measure for the importance
of neurons in a network) correlate with network degeneration and
decline in cognitive function (Bosma et al., 2009; Schoonheim
et al., 2013). An important aspect of network rewiring is diaschisis
(von Monakov, 1914; Andrews, 1991), the phenomenon that

brain regions not directly affected by the primary lesion but deaf-
ferentated by the lesion change their connectivity. Extending this
early concept of diaschisis, recent studies analysing neuroimaging
data (e.g., from stroke patients) using graph theoretical meth-
ods have revealed complex changes in global network topology
after brain lesions (Honey and Sporns, 2008; Alstott et al., 2009;
Carter et al., 2012; van Meer et al., 2012; Rehme and Grefkes,
2013). These studies showed that while brain networks as a whole
generally become more random following network rewiring, the
deafferentated areas themselves increase their betweenness cen-
trality (Wang et al., 2010)—an unexpected result because random
networks tend to have nodes with low betweenness central-
ity. Changes in topology after brain damage have mostly been
reported for inter-area connectivity (Wang et al., 2010), but both
global inter-area connectivity and local intra-area connectivity
rewire after lesions (Murphy and Corbett, 2009; Winship and
Murphy, 2009).

Topology changes in inter-area and intra-area connectivity are
poorly understood, partly because of a lack of understanding
of the principles governing structural plasticity. An elegant way

Frontiers in Neuroanatomy www.frontiersin.org October 2014 | Volume 8 | Article 115 |

NEUROANATOMY

197

http://www.frontiersin.org/Neuroanatomy/editorialboard
http://www.frontiersin.org/Neuroanatomy/editorialboard
http://www.frontiersin.org/Neuroanatomy/editorialboard
http://www.frontiersin.org/Neuroanatomy/about
http://www.frontiersin.org/Neuroanatomy
http://www.frontiersin.org/journal/10.3389/fnana.2014.00115/abstract
http://community.frontiersin.org/people/u/2401
http://community.frontiersin.org/people/u/40562
http://community.frontiersin.org/people/u/611
mailto:m.butz@fz-juelich.de
http://www.frontiersin.org/Neuroanatomy
http://www.frontiersin.org
http://www.frontiersin.org/Neuroanatomy/archive


Butz et al. Topology changes following deafferentation

to study structural plasticity after deafferentation is the experi-
mental paradigm of focal retinal lesions (Eysel et al., 1980; Keck
et al., 2008; Yamahachi et al., 2009). In this paradigm, the primary
lesion is made in the eye so that no damage of brain tissue over-
lays the massive cortical reorganization following deafferentation
(Darian-Smith and Gilbert, 1994; Keck et al., 2008; Yamahachi
et al., 2009; Keck et al., 2011; Marik et al., 2014). Compared
with the brain, the eye is also better accessible for lesioning, and
because of retinotopy, the retinal lesion leads to a well-defined
deafferentated lesion projection zone (LPZ) in the primary visual
cortex. Recently, we postulated that the need of neurons to main-
tain homeostasis of their average electrical activity may act as
a driving force for structural plasticity (Butz and van Ooyen,
2013) (see also van Ooyen and van Pelt, 1994; van Ooyen et al.,
1995; Butz et al., 2008, 2009a; Tetzlaff et al., 2010; van Ooyen,
2011). We developed a novel computational model, called Model
of Structural Plasticity (MSP) (Butz and van Ooyen, 2013; Butz
et al., 2014), in which neurons create new dendritic spines and
axonal boutons when neuronal activity is below a homeostatic
set-point, and delete spines and boutons when activity is above
the set-point. Synapses are formed by merging spines and bou-
tons. Using MSP, we showed (Butz and van Ooyen, 2013) that
homeostatic structural plasticity, without any additional forms
of Hebbian plasticity, can account for the changes observed in
the visual cortex after focal retinal lesions: an increased dendritic
spine turnover in the center of the LPZ (Keck et al., 2008), an
overshoot in axonal sprouting from the peri-LPZ into the LPZ
(Yamahachi et al., 2009), and a functional retinotopic remap-
ping (Giannikopoulos and Eysel, 2006; Keck et al., 2008). In
MSP, changes in topology arising from structural plasticity do not
require any goal-directed network process but emerge solely from
a local neuronal mechanism aimed at restoring neuronal firing
rates.

Here, we investigated how local changes in connectivity
brought about by homeostatic structural plasticity altered intra-
area connectivity. Currently, there are no experimental studies
available on intra-area topology changes after brain damage or
deafferentation, but we found remarkable similarities between
our model results and observed changes in inter-area connectiv-
ity especially after subcortical stroke. As a direct result of network
rewiring after focal deafferentation, the model network as a whole
first increased its small-worldness and then became more ran-
dom and consequently less small-world. At the same time that
the whole network became more random, the deafferentated neu-
rons themselves increased their betweenness centrality if network
repair was succesful. The increase in betweenness centrality may
therefore hold as a biomarker for brain repair after deafferenta-
tion. The decrease in small-worldness of the whole network was
associated with a decrease in local but an increase in global effi-
ciency of the deafferented neurons, with efficiency defined as the
average inverse of shortest paths between neurons. Our modeling
results strongly resemble experimental and clinical data show-
ing that during the course of post-stroke reorganization, inter-
regional networks become more random, while areas that lost
input as a consequence of the infarct increase their betweenness
centrality (Wang et al., 2010). Thus, our model of homeostatic
structural plasticity, even though at first interpretation a model

for intra-area reorganization, may provide valuable insights into
the mechanisms underlying inter-area topology changes during
brain repair.

2. MATERIALS AND METHODS
2.1. THE MODEL AT A GLANCE
Our Model of Structural Plasticity (MSP) (Butz and van Ooyen,
2013; Butz et al., 2014) represents synapses not merely as synaptic
weight factors but as composed of two complementary synap-
tic elements: an axonal element representing axonal boutons or
terminals, and a dendritic element representing any postsynaptic
specialization on the dendrite (e.g., a dendritic spine). Synaptic
elements develop independently of their matching element in an
activity-dependent manner. A neuron creates new synaptic ele-
ments when its level of electrical activity is below a homeostatic
set-point and decreases the number of elements when its activity
exceeds this set-point. In addition, neurons need a minimum level
of activity to form synaptic elements. Newly formed elements are
vacant and available for synapse formation. Vacant axonal and
dendritic elements can connect to form a new synapse. Synaptic
elements of adjacent neurons are more likely to connect than
those of more distant neurons. Vacant synaptic elements that are
not used for synapse formation decay spontaneously with a cer-
tain rate. Existing synapses can break up if an element bound in
a synapse is removed by the hosting neuron. The complemen-
tary synaptic element of the broken-up synapse becomes vacant
and available for synapse formation again, which enables struc-
tural rewiring of neuronal networks. The algorithm proceeds in
three steps. First, electrical activity is computed for every neuron.
Second, numbers of synaptic elements are updated depending
on the current average level of electrical activity of each neuron,
which may cause the breaking of synapses. Third, vacant synap-
tic elements are recombined to form new synapses. Changes in
electrical activity and number of synaptic elements proceed on
a continuous timescale, whereas the breaking and formation of
synapses take place at discrete time steps.

2.2. NEURON MODEL
The same network and neuron model was used as in Butz and van
Ooyen (2013), with nex = 320 excitatory and nin = 80 inhibitory
Izhikevich neurons (Izhikevich, 2003). Inhibitory neurons only
differ from excitatory ones in the sign of synaptic transmission.
Excitatory neurons were placed with some jitter on a 20 x 16
grid with a spatial distance between two grid points of 150 µm.
Inhibitory neurons were placed evenly between the excitatory
neurons. Electrical activity is modeled by two differential equa-
tions, one for the membrane potential v and one for a recovery
variable u enabling re-polarization after an action potential:

dv

dt
= k1v2 + k2v + k3 − u+ Isyn + Iext

du

dt
= a(bv − u) (1)

where v and u are in mV, t is in ms, k1 = 0.04 mV−1ms−1, k2 =
5 ms−1, and k3 = 140 mVms−1. Every time a neuron fires (v ≥
30 mV), v and u are reset:
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if v ≥ 30 mV, then

{
v← c
u← u+ d

(2)

where a = 0.1 ms−1, b = 0.2 ms−1, c = −65 mV, and d =
2 mVms−1. Synaptic input Isyn has a fixed strength of 1 mVms−1

for every synapse. Synaptic input arriving at the postsynaptic neu-
ron is low-pass filtered by an exponential filter function h(t) =
exp(− t

μ
) with decay constant μ = 5 ms. External input Iext is

permanently delivered as white noise with mean 5 mVms−1 and
standard deviation 1 mVms−1 according to Izhikevich (2003);
Butz and van Ooyen (2013).

Intracellular calcium concentration is used as a low-passed fil-
tered average of the firing frequency of each neuron (Butz and van
Ooyen, 2013). Every time a neuron fires, calcium concentration is
increased by β = 0.001 ms−1 and then decreases exponentially to
zero with decay time τCa = 10000 ms.

2.3. MODEL OF STRUCTURAL PLASTICITY
We used our model of structural plasticity (MSP), which is
described in detail in Butz and van Ooyen (2013); Butz et al.
(2014). The model proceeds in three steps: (1) updating elec-
trical activity, as described above; (2) updating the number of
synaptic elements and eventually the breaking of synapses if
synaptic elements were deleted; and (3) the formation of new
synapses.

2.3.1. Update of synaptic elements and breaking of synapses
We applied Gaussian growth curves (Figure 1) for the num-
ber Ai of axonal elements, the number Dex

i of excitatory den-

dritic elements and the number Din
i of inhibitory dendritic

elements:

dzi

dt
= ν

⎛
⎜⎜⎜⎝2 e

−
⎛
⎝
[
Ca2+]

i − ξz

ζz

⎞
⎠

2

−1

⎞
⎟⎟⎟⎠

ξz = ηz + ε

2

ζz = ηz − ε

2
√−ln(1/2)

(3)

where ν is the growth rate and ε is the homeostatic set-point,
at which dz/dt = 0. The variable z needs to be replaced by the
respective type of synaptic element A, Dex, or Din. If the calcium
concentration

[
Ca2+]

i (a measure for the average electrical activ-
ity of the neuron) is higher than ε, synaptic elements are removed;
if it is lower than that, synaptic elements are formed. However,
there is also a minimum calcium concentration required for the
formation of elements: ηA for axonal elements and ηD for den-
dritic elements. If the concentration is lower than ηA, axonal ele-
ments are removed; if it is lower than ηD, dendritic elements are
removed. The center and width of the Gaussian-shaped growth
curve are given by ξ and ζ , respectively.

2.3.1.1. Parameters of activity-dependent changes in synaptic
elements. For all types of elements, we chose ν = 10−4 ms−1.
As in Butz and van Ooyen (2013), we studied three cases with
different sets of growth curves (Figure 1): (1) ηA = 0.4, ηD = 0.1,
ε = 0.7; (2) ηA = ηD = 0.1, ε = 0.7; and (3) ηA = 0.1, ηD = 0.4,
ε = 0.7. The first case is referred to as the physiological case
because it best reproduces experimental findings on dendritic
spine and axonal bouton dynamics in the primary visual cor-
tex after focal retinal lesion (Butz and van Ooyen, 2013). The

FIGURE 1 | Depending on the neuronal growth curves for the change

dD/dt in number of dendritic elements and the change dA/dt in

number of axonal elements, network reorganization after lesions

leads to different network topologies. Changes in the number of
elements are dependent on the time-averaged neuronal electrical activity
as measured by the cell’s intracellular calcium concentration

[
Ca2+]. (A)

If the minimal activity for dendritic element formation is lower than that
for axonal element formation (ηD = 0.1, ηA = 0.4, respectively), networks
reorganize in a physiological manner, with axonal and dendritic element

dynamics (Butz and van Ooyen, 2013) resembling experimental
observations (Keck et al., 2008). (B) If dendritic and axonal elements can
already grow at low activity levels (ηD = ηA = 0.1), we obtain strongly
recurrently connected networks after a lesion. (C) If dendritic elements
need high levels of activity (ηD = 0.4, ηA = 0.1), no network repair takes
place, i.e., no restoration of activity levels. We replaced the homeostatic
set-point ε = 0.7 by a homeostatic range of 0.65 ≤ ε̄ ≤ 0.75, in which no
change in number of axonal or dendritic elements takes place. We chose
ν = 10−4 ms−1.
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other two cases are aberrant cases. The second case is called the
recurrent case because network repair is brought about by mas-
sive recurrent connections in the LPZ. The third case is called
the no-repair case because with this choice of growth parameters,
neurons are not able to restore their electrical activity back to the
homeostatic set-point.

Since with discrete synaptic elements there is no solution
where all neurons are exactly at the homeostatic set-point, neu-
rons will continue to rewire their connectivity at a low rate. To
stop network rewiring when neurons are close to the homeostatic
set-point ε, we replaced the set-point by a homeostatic range
ε̄ = [0.65..0.75]. In this range, neurons do not initiate activity-
dependent changes in number of synaptic elements; i.e., dz/dt =
0 if 0.65 ≤ [Ca2+] ≤ 0.75.

In addition to activity-dependent changes in synaptic ele-
ments, vacant synaptic elements decay spontaneously with a very
slow time constant of τvac = 10 updates in connectivity.

2.3.1.2. Breaking of synapses. Since network connectivity is
updated at discrete time steps but synaptic elements change con-
tinuously over time due to the activity-dependent growth rules,
it can happen that a neuron has more outgoing synapses than
axonal elements or more incoming synapses than dendritic ele-
ments at the time of the next update in network connectivity. In
that case, the neuron has to delete the surplus of synapses and to
update connectivity.

To update connectivity, the algorithm needs to select which
synapses are to be removed. All synapses have an equal chance of
being deleted. Note, however, that multiple synapses can co-exist
from neuron j to i and that the more synapses there are, the higher
the chance that a synapse between neuron j and i will be deleted.
The probability Pdel

i,j for synapse deletion between neuron j and i
is computed by the following master equation that captures four
different cases:

Pdel
i,j =

Wi,j∑
Wk,l

(4)

For deletion of incoming synapses, we need to distinguish
between excitatory and inhibitory synapses in Equation 4. For
deletion of incoming excitatory synapses of neuron i ∈ {In ∪ Ex},
we sum up Wk,l over all l ∈ {Ex}. For deletion of incoming
inhibitory synapses of neuron i ∈ {In ∪ Ex}, we sum up Wk,l

over all l ∈ {In}. For deletion of outgoing excitatory synapses of
excitatory presynaptic neuron j ∈ {Ex}, all synapses are consid-
ered to any postsynaptic neuron k ∈ {In ∪ Ex}. Thus, we sum up
Wk,l over all k ∈ {In ∪ Ex}. The same holds true for outgoing
inhibitory synapses with j ∈ {In}.

Sequentially, outgoing and incoming excitatory and inhibitory
synapses were selected for deletion. For every type of synapse,
the accumulated sum of Pdel

i,j (see description of Equation 4
for the range of i and j) gave a probability distribution from
which we drew the required number of synapses to be deleted.
The selected synapse was deleted by reducing the respective
entry Wi,j in the connectivity matrix by one. It can happen
that more than one synapse is selected for deletion from the
same connection j to i. In that case, the implementation of

the algorithm made sure that the number of synapses to be
deleted did not exceed Wi,j. Whenever a neuron deletes a synaptic
element that is bound in a synapse, the complementary synap-
tic element on the other neuron remains and becomes vacant
again.

2.3.2. Synapse formation
For synapse formation, the algorithm checked whether a neuron
gained vacant synaptic elements, i.e., whether the total number of
synaptic elements exceeded the number of bound synaptic ele-
ments of this type. Matching vacant synaptic elements (vacant
excitatory axonal elements Avac

j , j ∈ {Ex}, with vacant excita-

tory dendritic elements Dex,vac
i , and vacant inhibitory axonal

elements Avac
j , j ∈ {In}, with vacant inhibitory dendritic elements

Din,vac
i ) were randomly connected among each other with prob-

ability density function Pform. The probability P
form
i,j for forming

new synapses between neuron j and i depended on the number
of vacant synaptic elements they offered and on the Euclidean
distance between neuron j and i:

P
form
i,j =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

j ∈ {Ex} : Avac
j Dex,vac

i∑
ι∈{Ex} Avac

ι

∑
κ∈{Ex∪In} Dex,vac

κ
Kij

j ∈ {In} : Avac
j Din,vac

i∑
ι∈{In} Avac

ι

∑
κ∈{Ex∪In} Din,vac

κ

Kij

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

with i ∈ {Ex ∪ In}. (5)

where Ki,j is the Euclidean distance-dependent likelihood (kernel
function) that neuron j connects to neuron i at all, irrespective
of the number of vacant elements i and j offer. As in our pre-
vious work on MSP (Butz and van Ooyen, 2013; Butz et al.,
2014), we applied either a flat kernel Ki,j = 1 (creating ran-
dom networks) or a two-dimensional Gaussian kernel (creating
small-world networks):

Ki,j, i �= j = e
− (posxj − posxi)2 + (posyj − posyi)2

σ 2 (6)

with posxi the x-coordinate and posyi the y-coordinate of
postsynaptic neuron i, and posxj and posyj the coordinates
of presynaptic neuron j. The probability for autapse connec-
tions (i.e., a neuron connecting to itself) was set to zero
(Ki,j = 0 for i = j). For these simulations, we chose σ =
1× 150 µm, where 150 µm is the distance between two grid
points. Because K only depends on the Euclidean distance
between neurons and since neurons do not migrate, K remains
fixed.

For every update in connectivity, the minor number of vacant
excitatory and inhibitory axonal or dendritic elements deter-
mined how many new excitatory and inhibitory synapses, respec-
tively, could at most be formed (so-called potential synapses).
Thus, the number of excitatory and inhibitory potential synapses
equaled
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MPotSyn,ex = min

⎛
⎝ ∑

ι∈ {Ex}
Avac

ι ,
∑

κ ∈ {Ex∪In}
Dex,vac

κ

⎞
⎠

MPotSyn,in = min

⎛
⎝ ∑

ι∈ {In}
Avac

ι ,
∑

κ ∈ {Ex∪In}
Din,vac

κ

⎞
⎠ (7)

for every update in connectivity.
From this distribution, the algorithm chose at maximum

MPotSyn,ex excitatory and MPotSyn,in inhibitory connections at
which new synapses were created. The respective entries Wi,j in
the connectivity matrix were then increased by one. A connection
was chosen by drawing a random number from a uniform dis-

tribution and comparing it to the accumulated probabilities P
form
i,j

for all excitatory connections and all inhibitory connections of the
entire network. That connection was chosen that had the high-
est accumulated probability that the random number just did not
exceed. If, for this try, the random number exceeded all accumu-
lated probabilities, no synapse was formed. Hence, not necessarily
all of the potential synapses were formed.

Additionally, synapse formation needed to fulfill the condition
that the number W+i,j of newly formed synapses from neuron j
to i did not exceed the number of vacant synaptic elements that
neuron j and i offered:

W+i,j ≤
{

j ∈ {Ex} : min (Avac
j , Dex,vac

i )

j ∈ {In} : min (Avac
j , Din,vac

i )

}

with i ∈ {Ex ∪ In}. (8)

In every update, this condition was checked and synapse forma-
tion infringing this condition was rejected. Alternatively, update
of connectivity can also be implemented in a purely local fashion
(Butz and van Ooyen, 2013).

2.4. MODELING DEAFFERENTATION
We grew every model network from scratch, i.e., starting with zero
connectivity and zero synaptic elements. Networks were formed
by exactly the same growth rules that were effective after the
lesion. However, in order to grow networks from scratch, it was
necessary to use initially a higher level of external input. We
used Iext = 8 mVms−1 for the first 500 updates in connectivity
and then lowered it gradually down to 5 mVms−1 according to
Iext(T) = ((8− 5)/(1+ exp((T − 500)/200))+ 5) mVms−1. At
T = 8000, we removed the input of a circumscribed area, the
lesion projection zone (LPZ), by setting Iext,LPZ(T) = 0 (for
T ≥ 8000) permanently. The LPZ spans from x1 = 5× 150 µm
to x2 = 12× 150 µm and from y1 = 5× 150 µm to y2 = 12×
150 µm (cf. Figure 5) for all simulations and all cases (cf. Update
of synaptic elements and breaking of synapses). We refer to the
rest of the network with intact input as “intact zone.” Every
simulation is continued for another T = 12000 updates in con-
nectivity. As in our previous work (Butz and van Ooyen, 2013), we
matched 1000 updates in connectivity with 14 days post-lesion.
Thus, simulations predict the time course of network rewiring for
24 weeks after the lesion.

2.5. TOPOLOGY MEASUREMENTS
A neuronal network can be seen as a graph, with neurons as nodes
and synapses as edges or links between nodes. Since the presynap-
tic neuron always activates the postsynaptic neuron (and never
the other way round), we regard the graph as directed. In order to
describe changes in network topology after a focal loss of input,
we assessed the following graph theoretical measures at every
update in connectivity. To reduce the complexity of the assess-
ment, we considered only the topology of the excitatory synaptic
connections Wex,ex between the nex excitatory neurons. For the
graph theoretical assessments, the brain connectivity toolbox by
Rubinov and Sporns was used (Rubinov and Sporns, 2010).

2.5.1. Weighted characteristic path length
The characteristic path length L measures the average shortest
path from one (excitatory) neuron to any other (excitatory) neu-
ron in the network. Path length is defined as the number of
connections that needs to be traveled to go from one neuron
(possibly via intermediate neurons) to any other neuron:

L = 1

nex

nex∑
i

Li = 1

nex

nex∑
i

∑nex

j, j �= i dij

nex − 1
(9)

On top of this definition, a direct connection between two neu-
rons in a weighted network is considered “shorter” the stronger
the weight of the connection is. For our network model, we take
the number of synapses Wex,ex

i,j between two directly linked neu-
rons j and i, with i, j ∈ Ex, as the weight of the connection and the
inverse 1/Wex,ex

i,j as the length li,j of the connection. The shortest
path di,j is then the smallest sum of connection lengths that lead
from neuron j to i via any intermediate neurons. We calculated
the weighted characteristic path length according to Rubinov and
Sporns (2010). Additionally, in order to study the connectivity
between subnetworks, we used Equation 9 to compute the average
path lengths from neurons in the intact zone (with intact input)
to neurons in the LPZ (deprived of input) and vice versa.

2.5.2. Weighted clustering coefficient
The clustering coefficient is an indication for how strongly neu-
rons in a network are interconnected. It measures how many of
any two neurons j and h that are both connected to node i are also
connected to each other, relative to all neurons connected to i:

C = 1

nex

nex∑
i

Ci = 1

nex

nex∑
i

∑nex

j,h aijaihajh

ki(ki − 1)
(10)

where aij, aih, ajh ∈ {0, 1} (1 if a connection between the respec-
tive neurons exists and 0 if not) and ki is the number of neurons
that neuron i is connected to. For weighted directed networks,
the clustering coefficient can be computed according to the for-
malism by Fagiolo (2007). We computed the clustering coefficient
at every update in connectivity according to the implementation
by Rubinov and Sporns (2010). In addition to the averaged clus-
tering coefficient of the entire network, we also computed the
clustering coefficient averaged over either the LPZ neurons only
or over the intact zone neurons only.

Frontiers in Neuroanatomy www.frontiersin.org October 2014 | Volume 8 | Article 115 | 201

http://www.frontiersin.org/Neuroanatomy
http://www.frontiersin.org
http://www.frontiersin.org/Neuroanatomy/archive


Butz et al. Topology changes following deafferentation

2.5.3. Small-world parameter
To estimate the small-worldness of networks, we applied the
formalism by Humphries and Gurney (2008):

S = γ

λ
= C/Crand

L/Lrand
(11)

We replaced the clustering coefficient C and the characteristic
path length L by the version for weighted directed graphs as
described above. To obtain the normalized clustering coefficient
γ and the normalized characteristic path length λ, C and L were
divided by Crand and Lrand, respectively, taken from an Erdős-
Rényi random graph generated with the same number of neurons
and synapses as in the deafferentated networks at every update in
connectivity.

2.5.4. Betweenness centrality
Betweenness centrality measures the importance of neurons in
the network. Betweenness centrality of a neuron is calculated by
summing up the number of all shortest paths in the network that
go via this neuron and dividing it by the number of all other
shortest paths that do not pass this neuron. Global between-
ness centrality is the sum over the betweenness centrality of all
neurons:

BCglobal =
nex∑

i

∑
k �= i �= l

σkl(i)

σkl
(12)

where σkl is the total number of multiple shortest paths between
neuron k and neuron l, and σkl(i) is the number of shortest paths
that go via neuron i. Shortest paths are based on weighted exci-
tatory connections Wex,ex

i,j , and global betweenness centrality was
computed by the formalism for weighted directed networks by
Brandes (2001) as implemented by Rubinov and Sporns (2010).

2.5.5. Local efficiency
Local efficiency Eloc,i measures how well the neighbors of neuron
i, i.e., other neurons that directly form a synapse with i, are inter-
connected and is therefore related to the clustering coefficient. For
this, the average of the shortest path lengths djh(Gex

i ) between any
two excitatory neighboring neurons j and h of neuron i is com-
puted that uses only paths of the subgraph Gex

i consisting of all the
excitatory neighbors of i but not of i itself (Latora and Marchiori,
2001):

Eloc = 1

nex

nex∑
i

Eloc,i

= 1

nex

nex∑
i

∑nex

j,h, j,h �= i aijajh
[
djh(Gex

i )
]−1

ki(ki − 1)
(13)

where aij, ajh ∈ {0, 1} (1 if a connection between the respective
neurons exists and 0 if not) and ki is the number of neurons that
neuron i is connected to. We used the weighted, directed version
of local efficiency (Rubinov and Sporns, 2010).

2.5.6. Global efficiency
Global efficiency Eglob is related to the inverse of the characteristic
path length, but with the advantage that it can also be mean-
ingfully computed for unconnected graphs. Whereas the path
length between unconnected nodes is infinite (cf. Equation 9),
the inverse is zero and therefore adds neutrally to global efficiency
(Latora and Marchiori, 2001; Achard and Bullmore, 2007):

Eglob = 1

nex

nex∑
i

Eglob,i = 1

nex

nex∑
i

∑nex

j, j �= i d−1
ij

nex − 1
(14)

where Eglob,i is the efficiency of node i and nex is the number
of excitatory neurons. We used the version of this equation for
weighted, directed graphs (Rubinov and Sporns, 2010). Note that
local efficiency and clustering coefficient as well as global effi-
ciency and characteristic path length are closely related but not
identical measures. Local and global efficiency are frequently used
in clinical studies and are therefore presented here in addition to
clustering coefficient and characteristic path length.

3. RESULTS
3.1. PHYSIOLOGICAL NETWORK REWIRING
In our previous work (Butz and van Ooyen, 2013), we postu-
lated activity-dependent growth curves for axonal and dendritic
elements that gave rise to the same kind of network rewiring
as observed in primary visual cortex after focal retinal lesions.
With these growth curves (referred to as physiological growth
curves), in which axonal elements required higher levels of elec-
trical activity than dendritic elements to grow out (ηA = 0.4,
ηD = 0.1), the LPZ recovered from the outside to the inside and
the turnover of dendritic elements was surprisingly similar to
the experimental data on dendrtic spine turnover (Butz and van
Ooyen, 2013). In the present study, we investigated how network
topology changes in response to a focal loss of input, with neu-
rons rewiring their inputs (and outputs) locally in order to restore
a desired level of electrical activity. Our modeling results show
that networks employing physiological growth curves return to
a homeostatic range in electrical activity (Figure 2A) and, as a
result of compensatory rewiring, become more randomly con-
nected, as indicated by a lower value of the small-world parameter
S (Figure 2B) measured over the entire network. Although ran-
dom networks have no nodes of particular importance and hence
a low betweenness centrality, neurons in the LPZ have a higher
betweenness centrality after network rewiring than before the
lesion (Figure 2C).

The decrease in small-world parameter S is determined by
the course of the clustering coefficient γ and the characteristic
path length λ. While λ converges to one, γ decreases markedly
(Figure 3) and is thereby responsible for networks becoming
more random. The decrease in clustering is not immediate but
sets in between 6 and 8 weeks after the lesion. As will be shown
below, it takes some time until network reorganization has man-
aged to restore neuronal activities to their homeostatic range.
During this time period, there is a temporary drop in characteris-
tic path length below one, which contributes to a temporary rise
in S (Figure 2B). However, after about 16 weeks, λ reaches stable
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FIGURE 2 | Physiological case. Compensatory network rewiring renders
neuronal networks more random and increases their betweenness centrality.
(A) Average electrical activities, as measured by the mean calcium
concentration of the respective area, are restored to the homeostatic range
for neurons in the LPZ (red) and the intact zone (green). Neurons
corresponding to the LPZ in a non-lesioned network do not alter their calcium
concentration (control, black). (B) Networks become more random after

deafferentation, as indicated by a decrease in small-world parameter S (red)
measured over the entire network, whereas control networks show no
change in small-worldness (black). (C) At the same time, betweenness
centrality increases in the LPZ (red) but decreases in the intact zone (green).
Betweenness centrality of neurons corresponding to the LPZ in a
non-lesioned network remains stable (control, black). Means over five
simulations per scenario. Shadings of the curves indicate standard deviations.

FIGURE 3 | The increasing randomness of networks after deafferentation

is due to a marked decrease in clustering, as shown by a decrease in the

normalized clustering coefficient γ (A). The average of shortest paths, as

measured by the normalized characteristic path length λ (Equation 11), shows
only very little change in absolute terms (B). Means over five simulations per
scenario. Shadings of the curves indicate standard deviations.

values around one. From the same time on, S stabilizes at lower
levels than in control networks without lesions.

From our previous work on modeling cortical rewiring after
focal retinal lesions (Butz and van Ooyen, 2013), we know that
functional network repair can be brought about by an, also exper-
imentally observed, ingrowth of connections from the intact zone
to the LPZ (Darian-Smith and Gilbert, 1994; Yamahachi et al.,
2009). For physiological network repair to go along with func-
tional retinotopic remapping (as shown in mice Keck et al., 2008),
we found that it is important that the majority of new connections
impinging on deafferentated neurons originates from intact areas
and transmits electrical activity from the intact zone to the LPZ.
Here, we further investigate whether the changes in global topol-
ogy parameters express this ingrowth of connections. For this, we
first focus on the activity-dependent changes in synapse numbers
and connectivity between the intact zone and the LPZ. The first

6 weeks are dominated by a loss of synapses originating from the
LPZ (Figure 4A). This is a direct consequence of neuronal activi-
ties being low and calcium concentrations being below ηA = 0.4
(Figure 4B), which causes axonal elements to be removed. By
contrast, axonal elements from the intact zone form additional
synapses with the LPZ right from the onset of the lesion. Between
6 and 8 weeks after the lesion, most neurons in the LPZ have
reached calcium levels of 0.4 and start forming additional axonal
elements, connecting to targets in the LPZ as well as the intact
zone. The number of recurrent synapses from the LPZ to the LPZ
does thereby at no time exceeds the number of synapses from the
intact zone to the LPZ, as required for a functional remapping to
emerge.

The change in λ and γ as shown in Figure 3 is measured over
the entire network. We further want to understand whether the
course of γ and λ is caused by the changing connectivity between
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FIGURE 4 | In the physiological case, compensatory network rewiring

relies on the formation of new synapses from the intact zone to the LPZ.

(A) Synapse numbers from the intact zone to the LPZ increase (green), while
synapses numbers from the LPZ to the intact zone decrease (red). (B) All
neurons in the intact zone (green) and most neurons in the LPZ (red) return to
the homeostatic range following deafferentation. Neurons lose axonal and
dendritic elements if their calcium concentration is lower than 0.1 or higher

than 0.75 (dark gray background). Neurons form only dendritic elements if
their calcium concentration is greater than 0.1 but lower than 0.4 (gray), and
form both axonal and dendritic elements if their calcium concentration is
greater 0.4 but lower than 0.65 (light gray). The homeostatic range, in which
synaptic element numbers do not change, spans from 0.65 to 0.75. The
diagram helps to match changes in topology with the current level of

(Continued)
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FIGURE 4 | Continued

electrical activity. (C) The normalized average clustering coefficient γ of
neurons in the LPZ (including connections with the entire network)
decreases while neuronal activities are very low (<0.1) and increases
as soon as activities of LPZ neurons are greater than 0.1. The first
bump in clustering is brought about by ingrowing synapses from the
intact zone into the LPZ, whereas the second rise in clustering is
caused predominantly by new synapses within the LPZ, which are
formed when calcium concentrations of LPZ neurons exceed 0.4. The γ

of neurons in the intact zone (considering all their connections to any
neuron in the entire network) decreases continuously after a temporary

rise. (D) Average shortest paths from neurons in the intact zone to
neurons in the LPZ show a steady decrease (green), while average
path lengths from LPZ to intact zone neurons return to initial levels
after a tri-phasic increase and decrease. (E) The clustering coefficient
with no normalization (Equation 10) does not show a decrease for
intact zone neurons as the normalized clustering coefficient γ does. (F)

No differences were found between the characteristic path length and
the normalized characteristic path length λ. Green curve indicates
changes in clustering coefficient of intact zone neurons with the entire
network. Means over five simulations per scenario. Shadings of the
curves in (A,C–F) indicate standard deviations.

the intact zone and the LPZ. For this, we assessed γ and λ for
the set of LPZ and intact zone neurons separately. We can distin-
guish three phases in the time course of both parameters. These
phases arise from the interaction between the loss of connections
from the LPZ and the formation of new connections from the
intact zone. The initial phase lasts for the first 4 weeks after the
lesion and is dominated by a loss of connections from the LPZ.
This is reflected by a decrease in γ , especially of LPZ neurons but
to a lesser extent also of intact zone neurons (Figure 4C). At the
same time, λ of paths from the LPZ to the intact zone increases
(Figure 4D) due to the loss of connections from the LPZ to the
intact zone. Conversely, λ of paths from the intact zone to the LPZ
decreases because new connections are being formed originating
from the intact zone.

During the second phase, roughly between 4 and 8 week, we
see a temporal increase in γ of both the LPZ and the intact zone
neurons (Figure 4C). This increase essentially contributes to the
temporal increase in small-worldness of repairing networks as
shown in Figure 2B. During this phase, the decrease in number
of connections from the LPZ slows down, while new connec-
tions from the intact zone are still being formed. During this
second phase, especially λ for paths from the LPZ to the intact
zone shows a rapid decrease (Figure 4D). This rapid decrease is
brought about by a few new connections that are formed as soon
as LPZ neurons reach calcium levels of 0.4 (Figure 4B). This hap-
pens already slightly before the average number of synapses from
the LPZ to the intact zone increases significantly at about 6 weeks
after lesion.

A third phase can be distinguished from 8 weeks after the
lesion onwards, when LPZ neurons start forming outgoing con-
nections again. Especially the recurrent connections inside the
LPZ (Figure 4A) lead to an increase in γ of LPZ neurons
(Figure 4C), while neurons in the intact zone show a decrease
in γ after the temporary rise. However, γ of the LPZ neurons is
not strictly increasing over time; between 8 and 12 weeks after
the lesion, γ decreases a second time before it finally increases
toward a stable level. We can explain this fluctuation in γ by the
ongoing replacement of connections during this period. Only if
all neurons in the LPZ have reached calcium levels beyond 0.4,
and hence contribute to axonal element and (outgoing) synapse
formation, does the clustering coefficient strictly increase until
rewiring comes to a standstill. During the third phase, λ of paths
from intact zone to LPZ further decreases (Figure 4D). This fur-
ther decrease is brought about by additional connections inside
the LPZ, contributing to network repair and shortening paths to

neurons in the LPZ. The decrease in path lengths to the LPZ also
explains the increasing betweenness centrality of LPZ neurons,
since betweenness centrality by definition is a measure of how
many shortest paths go via certain nodes. As shown in Figure 4D,
λ of paths from the LPZ to the intact zone takes on values of a
randomized network.

Interestingly, the absolute clustering of neurons in the intact
zone shows very little change (Figure 4E), implicating that the
particular course of γ arises from changes in the number of
connections and their clustering in comparison with a random-
ized network. By contrast, the changes in clustering of the LPZ
(Figure 4E) as well as the characteristic path length for both the
LPZ and the intact zone (Figure 4F) show similar courses for the
non-normalized and normalized values. Therefore, we may con-
clude that networks become more random because of the increase
in number of connections, whereas the increase in betweenness
centrality (as a result of decreasing path lengths from the intact
zone to the LPZ) is a consequence of added specific projections
from the intact zone to the LPZ.

3.2. ABERRANT NETWORK REWIRING
Network repair does not in all cases lead to the formation of
synapses from the outside to the inside and a functional reor-
ganization of connectivity. In our previous study (Butz and van
Ooyen, 2013), we identified three different cases of network
rewiring depending on the relative values of the growth param-
eters ηA and ηD. For ηA > ηD, we observed network repair in line
with the exeperimental data (physiological case); for ηA = ηD =
0.1, we observed network repair brought about by massive recur-
rent connections (recurrent case); and for ηD > ηA, we observed
no network repair at all (no-repair case).

The network rewiring occurring in the last two cases are
referred to as aberrant network rewiring. Figure 5 depicts the
most evident differences in the layout of connections after com-
pensatory network rewiring between the physiological and the
recurrent case and shows the no-repair case for the sake of
completeness.

Whereas in the physiological case (Figure 5A) most of the
newly formed synapses from the intact zone terminate in the
LPZ, we do not see this ingrowing of new synapses in the recur-
rent case (Figure 5B) or in the no-repair case (Figure 5C). In the
recurrent case and the no-repair case, new synapses from any-
where in the intact zone predominantly connect to neurons in
the intact zone in the direct vicinity of the LPZ. In the pysi-
ological and the recurrent case, but not in the no-repair case,
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FIGURE 5 | The physiological case (A) is characterized by a pronounced

replacement of synapses, whereas the recurrent case (B) predominantly

adds new synapses and keeps pre-existing ones. The no-repair case (C)

does not form sufficient additional synapses to the LPZ. The figures show the
two-dimensional layout of the network, with excitatory neurons (red dots),
excitatory synaptic connections (red lines), inhibitory neurons (blue dots) and
inhibitory synaptic connections (blue lines). Black dots indicate deafferentated
neurons. The left column shows new synapses originating from anywhere in
the intact zone. Whereas the preferred target of new synapses in the
physiological case is the LPZ, only few new synapses from the intact zone to
the LPZ are formed in the recurrent case. Middle column shows that most of
the new synapses originating from the LPZ terminate in the LPZ in both the

physiological and the recurrent case. Insets in the middle column illustrate
the axonal projection pattern of an individual neuron in the LPZ. In the
physiological case, neurons at the border of the LPZ connect to neurons
more central in the LPZ, whereas in the recurrent case neurons have less
preferrence for particular targets. The right column shows that many
synapses originating from the LPZ are deleted in the physiological case but
not in the recurrent case. All measurements are based on the difference
between the number of synapses present before (T0 = 7950) and after the
lesion (T1 = 20000 updates in connectivity, corresponding to 24 weeks after
lesion), separately for excitatory and inhibitory synapses. Only excitatory
neurons and excitatory to excitatory connections were used in the
topological assessments.

LPZ neurons contribute to network repair by forming additional
synapses. However, there is an important difference between
the physiological and the recurrent case in where LPZ neurons
project to. LPZ neurons in the physiological case form new con-
nections to neurons in the LPZ and preferentially to those in
its center (inset Figure 5A), whereas LPZ neurons in the recur-
rent case also project to neurons in the intact zone and show
less projection preference (inset Figure 5B). A marked differ-
ence between the physiological and the recurrent case is seen in
the loss of synapses originating from the LPZ. Whereas many

synapses are lost in the physiological case, almost no synapses
originating from the LPZ are eliminated in the recurrent case.
Therefore, network repair in the recurrent case is brought about
by addition of new synapses, whereas in the physiological case
network repair goes along with a replacement of synapses. The
no-repair case shows a considerable loss of synapses originating
from the LPZ. Neurons in the LPZ are not able to raise their
activity beyond ηA (Figure 6C) and therefore lose axonal elements
and outgoing synapses as a direct consequence of the growth
rules.
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FIGURE 6 | An increasing randomness of the whole network in

association with an increasing betweenness centrality of LPZ neurons

after deafferentation emerges only in the physiological case. (A)

Whereas the no-repair case (black) shows an increase in small-world
parameter S and the recurrent case (blue) shows little change in S, the

physiological case shows a clear decrease in S (red). (B) The recurrent case
shows the strongest increase in betweenness centrality. (C) The average
calcium concentrations of the LPZ and intact zone return quickest to the
homeostatic range in the recurrent case. Means over five simulations per
scenario. Shadings of the curves indicate standard deviations.

Whereas physiological network repair goes along with increas-
ing randomness of network connectivity, as indicated by a
decrease in small-world parameter S, we do not see a consider-
able change in S in the recurrent case (Figure 6A). Interestingly,
in networks that lack repair after lesions, we even see an increase
in S. The strongest increase in betweenness centrality of neurons
in the LPZ is observed in the recurrent case (Figure 6B) and sets
in much earlier (after about 2 weeks) than in the physiological
case due to a mere addition of synapses rather than a replace-
ment of synapses. Betweenness centrality goes to zero (Figure 6B)
when neurons do not return to the homeostatic range in activ-
ity (Figure 6C). Given that in the recurrent case, neurons in the
LPZ restore their activity most quickly and completely and with
the strongest increase in betweenness centrality, we may conclude
that the increase in betweenness centrality is an indicator for the
success of network repair in terms of restoring neuronal activity.

Local and global efficiency are additional measures quantifying
changes in network topology (Equations 13 and 14). Global effi-
ciency indicates how efficiently information can travel through
the entire network; i.e., global efficiency is the averaged sum of
the inverse of the shortest paths between any two neurons in the
entire network. By contrast, local efficiency of neuron i measures
how efficiently information can be exchanged among neurons
that are connected to neuron i; i.e., local efficiency is the averaged
sum of the inverse of the shortest path between any two neurons
connected to neuron i (excluding neuron i itself). Especially in
sparsely connected networks, efficiency as a topology measure is
preferred over characteristic path length and clustering coefficient
because it can be meaningfully computed also for unconnected
neurons. In the physiological case, we observe a decrease in
local efficiency (Figure 7A) but an increase in global efficiency
(Figure 7C) relative to the efficiencies before the lesion. Both local
and global efficiency go through an initial phase in which they
decrease, reaching a minimum at about 6 weeks after the lesion.
The global efficiency recovers and finally even exceeds its initial
level, whereas the local efficiency recovers little and remains lower
than before the lesion. By contrast, in the recurrent case, both

local and global efficiency increase immediately after the lesion
and exceed by far their initial levels and the levels in the phys-
iological case. A drop in local and global efficiency is observed
when no network repair takes place. The intact zone does not
show a considerable change in either local or global efficiency
(Figures 7B,D). The ratio of local to global efficiency indicates
the relative amount of local clustered and global long-range con-
nectivity. The stronger increase in global than in local efficiency
in the physiological case reflects the increasing ramdomness (cf.
Figure 2B), whereas recurrent networks with a strong increase
in global and local efficiency become even more small-world (cf.
Figure 6A).

The stronger increase in local efficiency in the recurrent case
compared with the physiological case is brought about by the
massive formation of partly recurrent connections originating
from the LPZ. In fact, the number of recurrent synapses in the
LPZ exceeds by far the number of synapses from the intact zone
to the LPZ and from the LPZ to the intact zone (Figure 8A). The
high number of recurrent synapses leads to a strong increase in
clustering coefficient (Figure 8B). The clustering coefficient of
the LPZ after rewiring even exceeds that of the intact zone; the
latter does not change notably after the lesion. Remarkably, the
average shortest paths from the intact zone to the LPZ and those
from the LPZ to the intact zone strongly decrease simultaneously
(Figure 8C).

3.3. CHANGES IN DEGREE DISTRIBUTION RESULTING FROM
NETWORK REWIRING

The different types of network rewiring have a direct impact not
only on global network topology but also on the local degree dis-
tributions of neurons. Before the lesion, neurons of the intact
zone and the LPZ have the same in- and out-degree distribution,
in the physiological case (Figures 9A,B) as well as in the recurrent
case (Figures 10A,B). The distributions in the physiological case
are slightly more tailed than in the recurrent case. After the lesion
in the physiological case, the center of the in-degree distribu-
tion of the LPZ neurons shifts to the right (Figure 9C), indicating
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FIGURE 7 | Local and global efficiencies of LPZ neurons, but not of intact

zone neurons, change as a consequence of network rewiring. (A) The local
efficiency of neurons in the LPZ increases strongest after deafferentation in the
recurrent case. In the physiological case, local efficiency of LPZ neurons first
decreases and later increases but remains lower than its initial value. If

networks do not recover, local efficiency decreases and remains low. (C) Global
efficiency increases in the physiological case (after a transient decrease) and in
the recurrent case (without a transient decrease). The no-repair case shows a
decrease in global efficiency. No changes were observed in either local (B) or
global efficiency of neurons in the intact zone (D).

FIGURE 8 | The growth rules in the recurrent case, whereby axonal and

dendritic elements can already form at low neuronal activity, have a

considerable impact on network topology after the lesion. (A) A strong
increase in synapse numbers within the LPZ (black) is seen after the lesion.
(B) The surplus of recurrent synapses in the LPZ gives rise to an increasing
clustering coefficient of LPZ neurons (red) that even exceeds the clustering

of the intact zone (green). In computing the average clustering coefficients
over the excitatory neurons of the intact zone and the LPZ, we considered all
excitatory connections from the entire network. (C) Average path lengths
from neurons in the intact zone to neurons in the LPZ (green) and vice versa
(red) show a steady decrease after deafferentation. Means over five
simulations per scenario. Shadings of the curves indicate standard deviations.
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FIGURE 9 | Degree distributions of intact zone (green) and LPZ neurons

(red) before and after the lesion in the physiological case. In the bar
charts, the larger amount is always placed in the background and the minor
amount in the foreground. Before the lesion, the in-degree (A) and

out-degree distributions (B) are not tailed. After the lesion, the distributions
of in-degree (C) and out-degree (D) become more tailed. The diagram shows
data from one simulation at T = 7950 and T = 20000 updates in
connectivity, the latter corresponding to 24 weeks after lesion.

the presence of neurons with high in-degrees. The centers of the
out-degree distributions of LPZ and intact zone neurons do not
change, but the distributions as a whole become more fat-tailed
(Figure 9D). Thus, compensatory network rewiring generates
more hub-like neurons in the LPZ, but the majority of neurons
in the LPZ and the intact zone maintains its out-degree. In the
recurrent case, LPZ neurons shift the centers of their in- and out-
degree distributions completely to the right (Figure 10), but the
distributions do not become more fat-tailed. The in- and out-
degree distributions become markedly different from the ones
before the lesion and from the degree distributions of the intact
zone neurons. We may conclude that due to the massive recur-
rent connections, the LPZ neurons separate from the intact zone
in terms of degree distribution.

3.4. IMPACT OF INITIAL TOPOLOGY ON NETWORK REPAIR
Network repair is not dependent on a particular initial net-
work topology. The networks considered so far have a high
clustering and a low characteristic path length before the lesion
(small-world networks). However, even random networks with
low initial clustering and characteristic path length fully restore
their average electrical activity (in terms of calcium concentra-
tion) back to the homeostatic range, regardless of whether growth
rules of the physiological case (Figure 11A) or the recurrent
case (Figure 11D) are used. In random networks, the activity of
the LPZ does not decrease so strongly as in clustered networks,

because vacant axonal elements are available from anywhere in
the network and network repair is immediately effective. The
fastest restoration of electrical activity is seen for the recurrent
case with random networks (Figure 11D). In addition to the
availability of axonal elements from anywhere in the network, in
the recurrent case neurons with low activity also provide their
own vacant axonal elements, contributing to fast network repair.

Irrespective of growth rules and initial network topology,
restoration of firing rates is accompanied by an increase in
betweenness centrality (Figures 11B,E). For the physiological and
the recurrent case, betweenness centrality reaches higher abso-
lute values in small-world networks than in random networks.
However, the greatest increase in betweenness centrality is seen
for the recurrent case with random networks. Interestingly, for
all scenarios studied (Figures 11A,D), the strongest increase in
betweenness centrality is associated with the fastest restoration of
electrical activity. We conclude that the increase in betweenness
centrality is a generic effect of compensatory network rewiring
because it is independent of initial connectivity and strongly cor-
relates with effectiveness of network repair, in terms of speed and
completeness of restoring electrical activity. Moreover, the phys-
iological case with small-world networks is the only scenario in
which topology becomes more random (Figure 11C). In all other
scenarios (Figures 11C,F), we see only little change and initially
random networks become only slightly more structured (small
increase in S) after the lesion.
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FIGURE 10 | Degree distributions of intact zone (green) and LPZ neurons

(red) before and after the lesion in the recurrent case. In the bar charts,
the larger amount is always placed in the background and the minor amount
in the foreground. Before the lesion, the in-degree (A) and out-degree
distributions (B) are not tailed. After the lesion, the shapes of in-degree (C)

and out-degree (D) distributions do not change markedly, but the centers of
the in- and out-degree distributions of the LPZ neurons are shifted to the
right. The diagram shows data from one simulation at T = 7950 and
T = 20000 updates in connectivity, the latter corresponding to 24 weeks
after lesion.

4. DISCUSSION
We postulated that network repair after focal deafferentation
is brought about by a local neuronal mechanism that aims to
maintain homeostasis of neuronal electrical activity by adapting
the neuron’s number of input and output connections (home-
ostatic structural plasticity). In the model in which we studied
the implications of this mechanism for network topology after
deafferentation, we found that local changes in number of synap-
tic connections, as governed by homeostastic structural plasticity,
led to pronounced alterations in global network topology, espe-
cially in the connectivity between intact and deafferentated areas.
While local connections in the LPZ were massively eliminated,
new connections from the intact zone grew into the LPZ, helping
deafferentated neurons to restore their level of activity (see also
Butz and van Ooyen, 2013). This replacement of short- by long-
range connections lowered the clustering coefficient and reduced
the characteristic path length, making the network more random
than before the lesion. At the same time, neurons in the LPZ
enhanced their betweenness centrality. Furthermore, LPZ neu-
rons increased their global but decreased their local efficiency and
got longer tailed degree distributions, indicating the emergence of
hub neurons.

So far, only very few models have addressed dynamic changes
in network topology after brain lesions. Li et al. (2013) described
changes in topology merely phenomenologically and did not

include any neuronal mechanism such as the formation and
deletion of synapses. Others have applied neural mass models
with various rules of plasticity and assessed by graph theoreti-
cal methods the changes in inter-area connectivity in response to
lesions and degeneration (Rubinov et al., 2009; Stam et al., 2010;
de Haan et al., 2012). In contrast with these more abstract mod-
els, our neuronal network model is more detailed and strongly
inspired by the notion that neurons after a permanent loss of
input, e.g., after focal retinal lesions, aim to restore their firing
rates homeostatically by morphological adaptations such as the
replacement of dendritic spines and axonal boutons. Therefore,
we can derive predictions on how morphological alterations in
individual neurons rewire intra-area connectivity in response to
lesions or lasting loss of input. Insight into intra-cortical topology
changes after loss of input is particularly important because local
topographic features influence restoration of vision in humans
(Sabel et al., 2011, 2013; Gall et al., 2013).

As yet, there are no experimental studies on dynamic changes
in intra-area or inter-area network topology after focal retinal
lesions, the experimental paradigm our model is most closely
linked to (cf. Butz and van Ooyen, 2013). However, massive
rewiring of synaptic connections not only occurs after focal reti-
nal lesions in the visual cortex (Keck et al., 2008; Yamahachi et al.,
2009; Marik et al., 2014) but also accompanies functional recovery
after focal or subcortical stroke (Carmichael, 2003, 2006; Cramer,
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FIGURE 11 | The strong increase in betweenness centrality of LPZ

neurons during network repair in the physiological case (A–C) and

the recurrent case (D–F) is also obtained if the initial network

topology is random. (A) In the physiological case, random networks
(black) restore activity levels after the lesion in a comparable manner to
small-world networks (blue), but because levels do not drop as far as in
small-world networks, random networks restore activity earlier than
small-world networks. (B) The increase in betweennes centrality is
obtained for random as well as small-world network topologies. (C)

Random networks become slightly more structured after the lesion, as

indicated by a small increase in small-world parameter S. (D) In the
recurrent case, random networks restore activity levels after the lesion in
a comparable manner to small-world networks, but because levels do not
drop as far as in small-world networks, random networks restore activity
earlier than small-world networks. (E) Betweenness centrality markedly
increases in random networks, but to lower values than in small-world
networks. (F) A small increase in small-world parameter S is also seen
in the recurrent case with initial random topology. Means over five
simulations per scenario. Shadings of the curves indicate standard
deviations.

2008). The findings from our model provide useful predictions
also for focal or subcortical stroke, because the way a subcortical
stroke affects cortical motor networks is essentially a depriva-
tion of inputs from the lesioned subcortical to the intact cortical
motor areas. Indeed, brain regions deafferentated by stroke show
a restoration of electrical activity to normal levels in chronic
patients, as measured by fMRI, that go along with persistent
changes in inter-area topology (Sharma et al., 2009). We hypoth-
esize that the, as yet not investigated, lesion-induced topology
changes in intra-area connectivity may follow the same underly-
ing rules as the observed changes in inter-area connectivity after
focal stroke (Wang et al., 2010).

Lesion-induced structural plasticity does not always lead to
restoration of impaired functions, and miss-wiring of brain cir-
cuits after lesions may even give rise to post-traumatic epilepsy
(Topolnik et al., 2003). An additional interesting outcome of
our model is that homeostatic structural plasticity can over-
compensate a loss of input, resulting in pronounced oscillatory

network activity that may account for the emergence of post-
traumatic epilepsy (Butz and van Ooyen, 2013).

4.1. FROM MICRO- TO MACRO-SCOPIC
Remarkably, network reorganization in the model shows striking
similarities with intracortical network reorganization on a meso-
scopic scale [e.g., a retinotopic remapping with filling of the LPZ
from the outside to the inside (Butz and van Ooyen, 2013); meso-
scopic defined as in Liljenstroem, 2001] and may also account for
macroscopic network changes after, for example, focal, subcorti-
cal stroke. An impairment of motor function of the hand after
subcortical stroke coincides with a loss in effective connectivity of
inter-area cortical motor networks, especially between pre-motor
and primary motor cortices in the hemisphere ipsilateral to the
stroke site (Grefkes et al., 2008). Conversely, restoration of electri-
cal activity and functional recovery are associated with increasing
effective connectivity from prefrontal to motor cortices (Sharma
et al., 2009). The functional effects are thought to arise from a loss
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of local connections within the motor network and the formation
of additional long-range excitatory connections from prefrontal
to motor areas (Sharma et al., 2009). In our model, we also
observe the local removal of connections from the deafferentated
neurons in the LPZ and an ingrowth of more long-range connec-
tions from the intact zone into the LPZ. Note that in the model as
well as in the brain, the loss of local connections is not a mere
consequence of degeneration caused by the primary lesion but
a secondary effect due to network reorganization (Rehme et al.,
2011).

In stroke patients, even brain regions remote from the lesion
site change their topology (Carmichael, 2006). However, not the
entire brain changes its topology but only those regions directly
connected to the primary lesion site (Carmichael et al., 2001;
Dancause et al., 2005; Rehme and Grefkes, 2013). Provided that
connected brain regions become deafferentated by the primary
lesion site, homeostatic structural plasticity, as revealed by our
modeling study, may account for the observed changes in macro-
scopic topology after a lesion, i.e., an increased randomness of
network connectivity and an increased or decreased betweenness
centrality of particular regions (Wang et al., 2010; Shi et al., 2013).
Wang et al. (2010) reported an increase in betweenness central-
ity of brain regions that became deafferentated by a subcortical
stroke, namely the ipsilesional primary motor area and the con-
tralesional cerebellum. Note that the predominant cortico-ponto-
cerebellar fiber tract crosses in the brainstem to the contralateral
side, and a subcortical lesion will therefore deafferentiate the
contralesional cerebellum. By contrast, the contralesional pri-
mary motor cortex and the ipsilesional cerebellum decreased their
betweenness centrality. The latter two regions are not directly
affected by deafferentation but are still involved in reorganization,
since especially contralateral areas seem to support their homo-
topic regions by compensatory sprouting during stroke recovery
(Carter et al., 2010). An increase in betweenness centrality of deaf-
ferentated brain regions and a decrease in betweenness centrality
of brain regions supporting recovery perfectly match with our
model findings, so we hypothesize that the observed topological
changes in the brain of stroke patients may be accounted for by
homeostatic structural plasticity. Furthermore, in the model, the
increase in betweenness centrality has proven to be the strongest
indicator of network repair under different conditions. Therefore,
increasing betweenness centrality could be a biomarker for brain
repair after lesions such as stroke. In future work, we intend
to implement homeostatic structural plasticity in a large-scale
model of micro- and macroscopic connectivity containing mul-
tiple brain regions (Potjans and Diesmann, 2014).

4.2. TIME COURSE OF NETWORK REPAIR
The time course of changes in topology in our self-repairing net-
work model shows remarkable similarities with the time course of
topology changes during brain repair, especially in patients with
subcortical stroke. Subcortical stroke involves, apart from dam-
age to a circumscribed volume of brain tissue, a loss of input
to other brain regions, particularly those of the motor network.
The model predicts a pronounced increase in small-worldness
of the entire network during the initial phase of compensatory
network rewiring, before the network in the end becomes more

random. Indeed, brain networks after subcortical stroke increase
their small-world property in the subacute phase (about 1 week
post-infarct) (van Meer et al., 2012) and thereafter become con-
tinuously more random. As in our model, the change in small-
worldness of brain networks is brought about by a marked change
in clustering.

From our model we further predict that right after the lesion,
local as well as global efficiency drops markedly as a result of loss
of connections. The decrease in efficiency is in agreement with
changes in network topology observed after stroke (Honey and
Sporns, 2008; Alstott et al., 2009). In the model, local efficiency
remains always lower than before the lesion, but global efficiency
increases markedly and reaches values higher than before the
lesion. Strikingly, even in well-recovered stroke patients, brain
networks are found with low local but high global connectivity
(Rehme and Grefkes, 2013). However, brain network topology
with low local and high global efficiency may contribute to less
stable performance of sensorymotor skills (Rehme and Grefkes,
2013).

Interestingly, in the model we observe only small changes
in topology within the first 4 weeks. Network repair in stroke
patients is also not immediate. From monkey studies it is well
known that it takes about 7–14 days after stroke until axonal
sprouting occurs, and new connections are visible not before 28
days (Carmichael, 2003), with lesion-induced network rewiring
continuing for at least 3–6 months (Carmichael, 2006; Cramer,
2008). The time course of axonal sprouting in the experiment is
comparable to the time course of axonal element formation in our
model and also matches the physiological time course of struc-
tural plasticity in mice (Keck et al., 2008; Butz and van Ooyen,
2013). The model illustrates that network repair after deafferenta-
tion and stroke can be brought about by local, homeostatic
growth rules.

The time course of network repair is determined by the rela-
tion between the growth curve parameters ηA and ηD. If axonal
elements require more activity to form than dendritic elements
(i.e., ηA > ηD), networks will show a compensatory growth of
connections from the intact zone into the LPZ. However, if axonal
and dendritic elements grow at the same low level of activity,
deafferentated neurons will literally pull them selves by their own
bootstraps by forming massive recurrent connections to restore
activity to the homeostatic set-point (Butz and van Ooyen, 2013).
By contrast, the course of reorganization is not crucially depen-
dent on the particular choice of parameters for neuronal electrical
activity (Figure S1), as long as the network is able to reach a home-
ostatic equilibrium before the external input is removed. Other
parameters, such as the width of the kernel σ = 150 µm, have
been chosen in agreement with experimental findings (De Paola
et al., 2006). Likewise, the decay time of intracellular calcium
was chosen to be of the same order of magnitude as measured
experimentally (Hofer et al., 2011).

4.3. HOMEOSTATIC STRUCTURAL PLASTICITY vs. SYNAPTIC SCALING
The notion that neurons strive to restore their level of electrical
activity after loss of input is now widely accepted (Hengen et al.,
2013; Keck et al., 2013). Even in stroke, the need of neurons to
restore electrical activity to a homeostatic set-point may be an
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underlying principle of recovery (Avramescu et al., 2009). Today,
the predominantly discussed mechanism for maintaining home-
ostasis in electrical activity is synaptic scaling (Turrigiano and
Nelson, 1998). However, synaptic scaling restores activity within
48 h, yet network reorganization continues massively for several
months. Therefore, synaptic scaling cannot be the only mech-
anism involved in network reorganization after deafferentation
and stroke. Moreover, Hengen et al. (2013) showed that firing
rates in V1 after focal retinal lesions restore within the first 48 h
but drop again thereafter before they slowly rise again. This find-
ing is in line with previous reports on the extended time course
of network repair (up to 12 months) after focal retinal lesions and
the restoration of electrical activity from the outside to the inside
of the LPZ (Giannikopoulos and Eysel, 2006). In the first 48 h
after the lesion, homeostatic synaptic scaling may upregulate fir-
ing rates (Keck et al., 2013), but the continuing structural changes
in connectivity beyond 48 h may alter activity levels and may
bring neurons again outside their homeostatic range of activity.
Rewiring connectivity may provide a straightforward explanation
for the experimental observation that activity levels drop again
after 48 h (Hengen et al., 2013) and slowly recover over several
weeks (Giannikopoulos and Eysel, 2006; Hu et al., 2009, 2010).
In the model, the removal of connections is accounted for by
the minimal levels of activity needed for maintainance and for-
mation of axonal and dendritic synaptic elements (ηA and ηD,
respectively); required minimal levels of activity have not been
discussed in recent concepts of homeostatic plasticity (but see
van Ooyen et al., 1996). In our model as well as in visual cor-
tex after focal retinal lesions, activity slowly recovers over periods
of weeks and months (Giannikopoulos and Eysel, 2006; Butz and
van Ooyen, 2013). We hypothesize that the increase in firing rates
is due to the ingrowth of long-range connections from intact
regions, which may be guided by homeostatic structural plastic-
ity. Therefore, we postulate that homeostatic plasticity is more
than just synaptic scaling and needs to be extended to encompass
structural plasticity, including the reorganization of synaptic con-
nections. With the present model, we have provided growth rules
that can govern homeostatic structural plasticity and that can lead
to physiologically realistic network reorganization on a micro-
scopic, mesoscopic (Butz and van Ooyen, 2013), and macroscopic
level.

4.4. A POTENTIAL ROLE OF HOMEOSTATIC PLASTICITY IN
EPILEPTOGENESIS

Partial deafferentation, as caused by focal stroke for example,
can lead to epileptiform activity and seizures (Topolnik et al.,
2003; Avramescu and Timofeev, 2008). It has been discussed that
homeostatic synaptic plasticity may contribute to post-traumatic
epileptogenesis in chronically isolated cortex (Houweling et al.,
2005). Synaptic scaling (Turrigiano and Nelson, 1998), a well-
studied mechanism for homeostatic synaptic plasticity, is known
to generate epileptiform activity (Froehlich et al., 2008). However,
synaptic plasticity does not include the rewiring of networks
and acts on timescales of hours rather than weeks or months.
Although a previous modeling study (Houweling et al., 2005)
has suggested that anatomical network rewiring is not required
for epileptiform activity to occur, we argue that without network

rewiring an important aspect of lesion-induced plasticity is left
out. For example, models without structural plasticity cannot
account for the clinical observation that although spontaneous
seizures are most frequent within months after the lesion, they
can occur up to 5 years post-lesion (Temkin, 2001). Therefore,
we propose that synaptic scaling may account for spontaneous
seizures early after the lesion but that for the pathogenesis of post-
traumatic epilepsy months after the lesion, homeostatic structural
plasticity may be a more suitable explanation (see also van Oss
and van Ooyen, 1997).

In the model, a change in the value of just a single parameter,
namely the level of activity needed for axonal elements to form
(ηA), leads to massive recurrent connections, which, as we showed
in a previous study (Butz and van Ooyen, 2013), can generate
strongly synchronized activity patterns comparable to epilepti-
form activity. In an in vitro injury model of epilepsy, Srinivas
et al. (2007) showed that epileptogenesis goes along with a marked
increase in connectivity [also supported by findings on recurrent
mossy fiber sprouting in an organotypic cell culture model of hip-
pocampal epilepsy (Kharatishvili et al., 2007)] and that the shape
of the degree distribution of the neurons changes from power-
law to Gaussian. Interestingly, in the recurrent case of our model,
which generates epileptiform activity after network reorganiza-
tion, the degree distribution of LPZ neurons is much less tailed
than in the physiological case after network repair. Therefore, we
hypothesize that the way brain networks rewire after lesions deter-
mines whether or not patients develop post-traumatic epilepsy.
This notion is further supported by the finding that the shape of
the lesion can affect epileptogenesis (Volman et al., 2011), since it
is more likely that the shape of the lesion can influence epileptoge-
nesis with growth of new connections than with synaptic scaling.
Importantly, our model predicts that the sensitivity of axonal out-
growth to low levels of activity might be decisive for whether
recurrent connections with epileptiform activity, or physiological
network repair with normal activity patterns, emerge after brain
lesions. This insight may help find novel molecular targets for
pharmacological treatments to prevent post-traumatic epilepsy,
which are urgently needed as post-traumatic epilepsy is often
impervious to medical treatment (Herman, 2002; van Breemen
et al., 2007).

4.5. HOMEOSTATIC STRUCTURAL PLASTICITY AS AN ORGANIZING
PRINCIPLE FOR BRAIN REPAIR

Homeostatic structural plasticity is a new concept for network
reorganization, with large implications for understanding and
stimulating brain repair after lesions. Models of homeostatic
structural plasticity can help integrate recent clinical findings on
changing brain topology after a variety of pathologies, including
stroke, Alzheimer’s disease and multiple sclerosis. These models
can assist us in uncovering the mechanisms underlying func-
tional reorganization and in finding biomarkers for successful
brain repair, such as an increased betweenness centrality of brain
regions deprived of input from primary lesion sites. Most impor-
tantly, however, homeostatic structural plasticity puts functional
reorganization of brain networks into a different light. The pre-
dominant dogma of plasticity is still Hebbian plasticity, with its
“fire together, wire together” slogan (Hebb, 1949). With Hebbian
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plasticity, enforcing (synchronous) activity strengthens synapses.
By contrast, the homeostatic nature of structural plasticity implies
the need for a moderate level of activity, because the formation
of axonal and dendritic structures is maximal for activity levels
slightly below a desired set-point of electrical activity. We pos-
tulate that the brain has the highest plasticity for recovery when
neurons and brain regions, especially those supporting deaf-
ferentated regions in the recovery process, have not yet returned
to their homeostatic equilibrium. We might call this initial phase
a critical period for brain repair, in analogy to critical periods in
neural development. During network development, too, neurons
shape their connectivity until desired activity levels are reached
(Tetzlaff et al., 2010). As a consequence, in neurorehabilitation
treatment, not only stimulation by physical training or direct elec-
trical stimulation but also pauses in treatment may be important.
Stimulation may increase electrical activity beyond the homeo-
static set-point, inducing pruning of existing synaptic connec-
tions, whereas treatment pauses may lower activity and bring
activity levels into an optimal range for the formation of new
connections (Butz et al., 2009a). Moreover, network reorganiza-
tion does not always need to be functional; as our model suggests,
post-traumatic epilepsy could be the result of miss-wiring or
over-compensation. Treatments must therefore focus more on the
time course and current state of network repair. Lastly, large-
scale computer models, such as those developed in the context
of the human brain project (www.humanbrainproject.eu) will,
once structural plasticity has been incorporated, be valuable tools
in finding and testing treatment strategies for patients with brain
damage.
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Computational models of neural networks can be based on a variety of different
parameters. These parameters include, for example, the 3d shape of neuron layers,
the neurons’ spatial projection patterns, spiking dynamics and neurotransmitter systems.
While many well-developed approaches are available to model, for example, the spiking
dynamics, there is a lack of approaches for modeling the anatomical layout of neurons
and their projections. We present a new method, called Parametric Anatomical Modeling
(PAM), to fill this gap. PAM can be used to derive network connectivities and conduction
delays from anatomical data, such as the position and shape of the neuronal layers
and the dendritic and axonal projection patterns. Within the PAM framework, several
mapping techniques between layers can account for a large variety of connection
properties between pre- and post-synaptic neuron layers. PAM is implemented as a
Python tool and integrated in the 3d modeling software Blender. We demonstrate on a
3d model of the hippocampal formation how PAM can help reveal complex properties
of the synaptic connectivity and conduction delays, properties that might be relevant to
uncover the function of the hippocampus. Based on these analyses, two experimentally
testable predictions arose: (i) the number of neurons and the spread of connections
is heterogeneously distributed across the main anatomical axes, (ii) the distribution of
connection lengths in CA3-CA1 differ qualitatively from those between DG-CA3 and
CA3-CA3. Models created by PAM can also serve as an educational tool to visualize
the 3d connectivity of brain regions. The low-dimensional, but yet biologically plausible,
parameter space renders PAM suitable to analyse allometric and evolutionary factors in
networks and to model the complexity of real networks with comparatively little effort.

Keywords: 3d model, functional morphology, hippocampal formation, Blender, NEST, connection patterns,

conduction latencies, brain anatomy

INTRODUCTION
Computational simulations of neural networks have become an
important tool to untangle the relationship between the function
of a network and its structural properties. There are several lev-
els on which artificial neural network can capture properties of
the biological ideal. At the neuronal level, these are, for exam-
ple, the spiking dynamics (Dayan and Aboot, 2001), dendritic
morphology (London and Häusser, 2005; Cuntz et al., 2010), and
the rules underlying structural (Butz and van Ooyen, 2013) and
spike-timing dependent plasticity (Morrison et al., 2008). At the
network level, connections between neurons and their spatial dis-
tances are of particular importance. They can have an influence
on conduction delays, which in turn can be functionally impor-
tant (Carr and Konishi, 1988; Blumberg, 1989; Bartos et al., 2002;
Maex and De Schutter, 2003; Soleng et al., 2003; Gong and van
Leeuwen, 2007; Buzsáki, 2010; Hu et al., 2012).

Temporal dynamics of neural activity and plasticity rules
can be mathematically described with comparatively great accu-
racy and they can be efficiently translated into a programming

language. Several well-established tools, like Neuron (Hines and
Carnevale, 2001), GENESIS (Beeman, 2005), NEST (Eppler et al.,
2008), and Brian (Goodman and Brette, 2008) can be used for
this purpose. In order to integrate spatial properties into the
network, e.g., location dependent connections and conduction
latencies, specialized tools have been developed. For instance,
in Neuroconstruct (Gleeson et al., 2007), neurons with real-
istic morphologies or abstract probability distributions can be
imported or generated. They can be either manually placed in
space or distributed based on user-defined functions or across
simple geometric shapes (e.g., a cube). Recently, a new tool called
NeuralSyns (Sousa and Aguiar, 2014) was presented, which allows
the processing of up to 107 synapses and the real-time visu-
alization of spiking activity and connections. Neurons can be
placed in space and connected with each other using procedural
approaches. For simulations, in which the topographical arrange-
ment of neurons is of predominant importance, the topology
toolbox for NEST (Eppler et al., 2008) and Topographica (Bednar,
2009) provide helpful tools to set up 2d sheets of neurons
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and to connect them with each other using pre-defined kernel
functions.

These tools have proven to be of great value in models of local
regions in the brain and of connection principles that do not rely
on the anatomy of biological brain regions (Gouwens and Wilson,
2009; Rothman et al., 2009; Bednar, 2012; Azizi et al., 2013;
Helias et al., 2013; Mattioni and Le Novère, 2013; Stevens et al.,
2013). However, they barely support the integration of large-scale
anatomical properties obtained from histological and imaging
data or tracer studies. In fact, converting anatomical knowledge
to a formal description of connections and conduction laten-
cies between a large number of neurons poses to be a very hard
problem, as axonal and dendritic projections and the location
and orientation of neurons follow complex non-linear patterns.
This problem is, for example, very apparent in the hippocam-
pal formation. Besides global axes (such as anterior-posterior,
dorsal-ventral) along which the shape of the different layers of the
hippocampus can be described, projection patterns within these
layers (e.g., CA3, CA1) follow local axes (e.g., proximal-distal,
septal-temporal) (Andersen et al., 2006). The orientation of these
local axes, however, depends on the shape of the hippocampus
along the global axes (e.g., Figures 1C, 5C). Topological relations
between CA1 and entorhinal layers remain roughly preserved.

However, connection distances between those layers vary widely
as different parts of CA1 and entorhinal cortex have different non-
linear tracks and therefore varying distances to each other (Van
Strien et al., 2009).

This dependency between the shape, location and projection
pathways of neural layers on the one hand and connections and
path lengths on the other, can be basically found in the entire
brain. The visual pathways are a good example for topological
mapping between two distant layers that differ in their anatomical
shape (Rodieck, 1979). Cortical layers connect to their immediate
neighbors but also to more distant regions via long myelinated
axons forming the white matter (Passingham and Wise, 2012).

More and more detailed knowledge about biological neu-
ral networks becomes available through numerous indepen-
dent studies and large initiatives like the Human Brain Project
(Markram, 2012) or the data portal of the Allen Brain Atlas (Jones
et al., 2009). By contrast, currently available tools for creating 3d
neural networks do not provide the possibility to efficiently make
use of the vast amount of data that are publicly available.

With Parametric Anatomical Modeling (PAM), we propose a
technique and a Python implementation to close this gap. The
basic idea of PAM is to trace neural, synaptic and intermedi-
ate layers from anatomical data and relate those layers to each

FIGURE 1 | Illustration of basic concepts in PAM. (A) 2d layers define the
location of neurons, their projection directions and which neurons form
synapses. Probability functions for pre- and post-synaptic neurons are applied
on the surface of the synaptic layer to determine connections between the two
neuron groups. (B) A layer is defined as a 2d manifold (a deformed 2d surface) in
3d Euclidean space (upper part). Each point on the surface is therefore
described by x, y, and z coordinates. The relative positions on the flattened

surface can be described in uv-coordinates (lower part) which may correspond
to anatomical axes. This example depicts a rough sketch of CA1-3. (C) A
simplified example of the outlined idea for the visual pathway from the retina
(green surface) to the lateral geniculate nucleus (LGN, yellow) (proportions do
not match). Different mapping techniques (see chapter “Mapping”) allow a
location-dependent mapping of a neuron position in the pre-layer onto the
synaptic layer (red layer) of the left and right LGN, respectively.
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other. With a set of mapping techniques, complex relationships
between those layers can be defined to determine how axonal and
dendritic projections traverse through space and where synapses
are formed. A powerful feature of PAM is that spatial relations
between and within layers can be combined to derive connec-
tions and distances between neurons. Furthermore, two- and
three-dimensional experimental data (e.g., gene expression maps,
marked neurons) can be integrated in the model to describe neu-
ral density or functional properties of neurons. As a side effect,
neural networks created using PAM are of high educational value
as the depiction of neural layers created from anatomical data
along with the selective visualization of axons, dendrites and
synapses can be explored in 3d and clearly demonstrate how the
layers are wired.

In the following, we first introduce the principles that PAM is
built on and then an implementation of PAM in the 3d software
Blender. Subsequently, we apply PAM to build a model of the hip-
pocampal formation in the rat. Finally, we find that these models
can lead to new insights about brain structures and, potentially,
functions.

THE MODEL
THE BASIC CONCEPTS
The most important concept in PAM is the “layer” (Figure 1).
A layer is a two-dimensional grid-like structure that can be
deformed in 3d space to resemble any anatomical layer in the
brain. Layers are the structures that can be directly created from
anatomical data to denote, for instance, the location of pre- and
post-synaptic neurons, synaptic layers (SLs) and intermediate
layers that help to define the trajectories of axons and den-
drites. Using a simple set of mapping techniques (see below),
various relations between layers can be described in order to
create location-dependent trajectories of neurons in 3d space.
These trajectories are used to determine connections and dis-
tances between neurons which may affect the transmission delay.
As will become apparent in the following, when we use PAM
to implement a model of the hippocampal formation, complex
connection patterns between layers can be expressed easily.

Note, that the wiring of the network is defined solely on the
level of layers and not for single neurons. This approach cor-
responds to the notion that in real networks 3d patterns define
where in space precursor cells proliferate and in which directions
axon and dendrite cones grow. PAM uses these low-dimensional
but biological plausible categories to define the architecture of
neural networks. Groups of identical neurons are then distributed
over the layer with a given density. Their connections to other
neurons is a result of their relative location to other neurons
and their projection direction across intermediate and SLs. PAM
does not include a developmental component such as structural
development through gene regulatory networks or cell migration.
Instead, our approach rather aims to understand the functional
implications of the developed structure.

A network is defined by mappings between pre-synaptic
and a post-synaptic neural layer (green and yellow layer in
Figures 1A,C) on SL (red layer in Figures 1A,C). A layer can be
involved in an arbitrary number of mappings and the same layer
can be both the pre- and post-SL of a mapping to account for

recurrent connectivity. Thereby, projections of different neuron
groups located on the same layer to different regions in the net-
work can be described. The definition of relations between layers
is a general form that describes how dendrite and axons traverse
through layers until they form synapses. With these definitions,
the corresponding position on the intermediate and SL can be
computed for any point on a pre- or post-SL.

Connections between pre- and post-synaptic neurons are
determined by probability functions that define for any rela-
tive position on the SL its probability for generating synapses
(Figure 1A, red layer). Using probability functions reflects the
assumption that all neurons on a layer that belong to the same
neuron type have the same genetic code and emerged through
cell proliferation. The individual morphological structure of each
neuron is an instance of a general connectivity pattern that the
neuron encodes influenced by other factors, such as structural
and synaptic plasticity. The probability functions represent the
general connectivity pattern.

A special feature of layers in PAM is that any point on the
layer can be described by its xyz-coordinates in Euclidean space
and in surface-coordinates, commonly called uv-coordinates in
3d graphics. uv-coordinates are generated when the 3d mesh of a
layer is unfolded until all points of the layer are mapped onto a 2d
plane (Figure 1C). As we will see in the next chapters, this trans-
formation can be used to determine distances and connections on
the surface level. Moreover, it allows to describe anatomical prop-
erties either along the spatial axes (xyz) or along anatomical axes
(uv) which are not necessarily straight (like the proximal-distal
axis in the hippocampal formation).

MAPPING
A central feature of PAM is that through various mapping tech-
niques spatial relations on the surface of layers and spatial dis-
tances between layers can be combined to compute connections
and distances between neurons. The top row in Figure 2 depicts
the four types of mappings between two layers. In the following,
we explain each mapping in more detail and outline its use cases.

Topological mapping
When two layers have the same internal topology (e.g., identical
number and ordering of vertices and definition of quads and tri-
angles), for any point on the first layer its corresponding position
on the second layer can be directly computed. This mapping tech-
nique is useful whenever topological relations between neurons
should be preserved independent from the origin and target loca-
tion of axons and dendrites in space. The most obvious example
for this is the mapping between photoreceptor cells in the retina to
V1, where intermediate layers could be used to layout the realistic
trajectory of the fibers to the visual cortex. But also the mapping
of the dentate gyrus layer on a SL around CA3 in the hippocam-
pus could make use of topological similarities to constrain the
axonal projections along the septo-temporal axis.

Normal mapping
Any point p on a layer X is mapped on another layer Y by com-
puting the intersection between the line normal to X through the
point p and layer Y. If there is no intersection, there is no connec-
tion. This mapping technique can be used when the projection
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FIGURE 2 | List of mappings between layers and techniques to compute

distances. In order to create axonal and dendritic connections in 3d space,
neuron positions are mapped between layers. When the internal
mesh-structure between layers is identical, neurons can be directly mapped
using topological mapping. Otherwise, normal-, Euclidean-, and
random-based are available. The computation of connection length can
combine spatial relations between layers and within layers. On an interlayer,

connection length is computed based on the trajectory to the mapped neuron
on the next layer. On the synaptic layer, the pre- and post-synaptic trajectory
ends at the synapse. Euclidean mapping always computes the shortest
distance to the mapped neuron or synapse. Normal mapping computes the
distance based on the normal of the surface at the neuron position. Jump
mapping computes the smallest distance to the next layer. Techniques with
“UV” as affix add spatial distances along the current layer to the distance.

direction of neurons solely depends on the layer it is located in
(e.g., cortical layers). Furthermore, this mapping technique can
be helpful to selectively map subareas of a layer onto certain target
regions (e.g., connections from the lateral and medial entorhi-
nal cortex to different parts of the dentate gyrus, see exemplary
demonstration section).

Euclidean mapping
Euclidean mapping computes for a given point p on the first layer
the closest point on the next layer. Such a mapping can be useful,
when the relative position of neurons on the first layer and its
proximity to the target layer determine their entry direction on
the target layer. This can be helpful if the curvature of layers in

space do not allow a reliable mapping between layers based on
normal mapping.

Random mapping
The random mapping maps a point p on one layer to an arbi-
trary location on the next layer. This mapping is useful when the
projection kernels of neurons are well-defined while the axonal
or dendritic projections through space are randomly distributed
across brains.

Distance calculation
The connection distance between a pre- and a post-synaptic
neuron along the axon and dendrite is an important piece of
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information, for instance, when conduction latencies should be
part of the network simulation. PAM includes several methods to
measure the distance between a neuron and a synapse incorpo-
rating spatial distances on a layer and between layers (Figure 2).
UV-distances are needed when neurites grow along a certain layer
that is curved in 3d space. The projections of pyramidal cells in
CA3, for example, traverse the stratum oriens and stratum radia-
tum in CA3 and CA1, which has a strong effect on the overall
pathlength between pre- and post-synaptic neurons (Andersen
et al., 2006). A similar effect can also be found in the projections
of pyramidal cells in the cortical layers V and VI (Passingham and
Wise, 2012).

Euclidean distances between two layers correspond to connec-
tions along the shortest paths in space. These can be connections
through the whole nervous system, like thalamo-cortical con-
nections or sensory pathways but also more direct connections
between cortical layers.

Note that the distances computed by any of these meth-
ods represent estimates of the lower bounds since the convo-
luted morphology of real dendrites and axons may result in
longer pathways and therefore longer latencies between two
endpoints.

Electrophysiological studies have shown some variability in
the conduction latency per mm (Ferster and Lindström, 1983;
Swadlow, 1994; Soleng et al., 2003). The assumption in PAM is
that this variability emerges as a result of variability in the devel-
opment that may lead to, e.g., different neurite lengths, different
degrees of myelination, etc. To account for this variability, the
conversion from connection length to conduction latency in PAM
introduces a certain degree of variance based on experimental
data.

CONNECTIVITY KERNELS
Synaptic connections have to follow functional as well as anatom-
ical constraints. Synapses have a physical location in space and,
more often than not, pre-synaptic neurons connect preferen-
tially to post-synaptic neurons in certain locations (Passingham
and Wise, 2012). To model both the connectivity preference
and the spatial distribution of synaptic connections, we employ
the following method. Pre- and post-synaptic neurons are
assigned spatial locations in the SL in uv-coordinates, zpre and
zpost, respectively. This position is somewhat arbitrary and
becomes meaningful only together with the connectivity kernel
p (z|zneuron) that determines the probability of a neuron forming
synapses in location z (Figure 3). Roughly speaking, the kernel
models the reach of the dendritic tree or the axon, and the density
with which synapses are formed. An arbitrary number of param-
eters can be integrated in the kernels to further parameterize it. In
general, the shape of the kernel might depend on the position of
the neuron x, y, z and/or uv-coordinates and can be defined by the
user. PAM currently includes a few connectivity kernels, such as
a 2d-Gaussian distribution, or a 1d-Gaussian distribution along
a local anatomical axis. The user can easily add new kernel func-
tions (e.g., a power law distribution) by creating python module
in the kernel folder (see gaussian.py in the code for a template).

To make the problem of determining synaptic connections
more tractable, we assume that the probability of having a

FIGURE 3 | Two examples for connectivity kernels. Arbitrary connectivity
kernels can be defined to generate synapses between pre- and
post-synaptic neurons. Kernel functions are mapped onto the synaptic layer
and define the probability for a neuron to form synapses at a relative
position in the synaptic layer. Illustrated are two different kernel functions
(green shading) for two pre-synaptic neurons (green dots) and the potential
post-synaptic partners (yellow dots), which have their connectivity kernels
(not shown). The joint probability of pre- and post-synaptic kernels
determines if and where a synapse if formed.

synaptic connection is the product of the pre- and post-synaptic
connectivity kernels.

p
(
z|zpre, zpost

) = p
(
z|zpre

)
p
(
z|zpost

)
(1)

The task of finding synapses is equivalent to sampling from this
distribution, which is simple to implement.

The general form of the function also allows us to define con-
nectivity kernels in which the position of the neuron on the
surface influences the shape of the kernel. Thereby, anatomical
axes (e.g., the proximal-distal axes in the hippocampal formation)
can be integrated in the definition of the kernel (see Discussion
for more details).

However, in a network with realistic numbers of neurons and
synapses, the computation of synaptic connections can be very
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time consuming. If every potential connection between n pre-
synaptic and m post-synaptic neurons is evaluated at c spatial
locations, the computational effort scales as O(cnm), a large num-
ber even in a small rat brain. In some cases where modeling the
connectivity precisely is important, there might be no other alter-
native. If, on the other hand, the details are less important than
the gross features of the connectivity, we can use an approximate
sampling algorithm that provides a trade-off between mathemat-
ical accuracy and computational efficiency.

If synaptic connections are formed sparsely, we can save com-
putational time by systematically skipping partners that have a
very low connection probability. The specific algorithm is as
follows.

Step 1: The SL is divided into c bins (Figure 4), where c is cho-
sen appropriately depending on the number of neurons and
the size of the connectivity kernels.
Step 2: Each post-synaptic neuron is mapped onto the SL and
added to every bin zi in which the connectivity kernel exceeds a
certain threshold, i.e., p

(
zi|zpost

) ≥ p0 (see Section Methods).
The values p

(
zi|zpost

)
are stored with the neuron id in the bin

for later use.
Step 3: Each pre-synaptic neuron is mapped on the SL and we
sample as many times from its connectivity kernel p

(
z|zpre

)
as we need to generate synapses for this pre-synaptic neuron
(Figure 4B). Each sample yields a bin in the SL zj, in which the
pre-synaptic neuron forms a connection. This sampling can
be further sped up by skipping low-probability bins, for which
p
(
z|zpre

) ≤ p1.
Step 4: From each bin in the previous step, we determine the
post-synaptic neuron to connect by sampling from p

(
zpost|zj

)
.

These probabilities are related to the probabilities stored in
Step 2 through Bayes’ theorem

p
(
zpost|zj

) = p
(
zj|zpost

) p
(
zpost

)
p
(
zj
) (2)

Since p
(
zpost

)
is the same for every post-synaptic neuron

p
(
zpost|zj

) ∝ p
(
zj|zpost

)
.

The computational costs for this algorithm scales with the num-
ber of synapses s = αnm, which is significantly better than the
exact algorithm because for large networks α is generally a small
value.

METHODS
IMPLEMENTATION OF THE FRAMEWORK
PAM is a general approach to generate artificial neural networks
based on anatomical data. To apply this technique, tools are
needed to model and define the relationships between the layers.
Therefore, we developed the functionality for defining paramet-
ric anatomical models (PAMs) in the open source 3d software
Blender1. Using an existing 3d software for creating PAMs has
the advantage that most of the tools for creating 3d layers are
already implemented. Figure 5 lists some of the functions that are

1http://www.blender.org

FIGURE 4 | Illustration of the algorithm to accelerate the computation of

synapses and connections between neurons. (A) The synaptic layer is
divided into a raster of c bins. Each post-synaptic neuron is mapped on the
synaptic layer and assigned to each bin of the synaptic layer with its
probability for synapse-formation in this particular bin. (B) Each pre-synaptic
neuron is mapped on the synaptic layer. For the number of synapses, we want
to generate, bins are samples following the connectivity kernel of the
pre-synaptic side. (C) In each selected bin, a post-synaptic neuron is randomly
selected, incorporating the probabilities for the post-synaptic neurons.

of particular relevance for creating PAMs and that are generally
implemented in most 3d tools. Most importantly, duplication of
layers make it easy to map points between layers with arbitrary,
but identical, shapes (Figure 5F). Furthermore, important for
PAM is that 3d shapes can be unfolded to assign non-linear axes
to the object (Figure 5C). The development of neuroscientific
tools, such as Py3DN (Aguiar et al., 2013) and BrainBlend (Pyka
et al., 2009), and tools for other disciplines, such as BioBlender
(Andrei et al., 2012) and MORSE 2 as Blender add-ons, suggest
that Blender could become a unifying Python-based platform for
developing scientific tools.

2http://www.openrobots.org/wiki/morse/
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FIGURE 5 | Some functions of Blender that are important for PAMs.

(A) Various modeling techniques and non-distructive modifiers (like the
Mirror- or Subdivision-modifier) allow an efficient creation of 3d models
of anatomical regions. (B) Anatomical slices along with transparency
values can be displayed for easier 3d tracking of neural layers (here the
Hippocampus Brain Atlas). (C) 3d objects can be unwrapped on a 2d

plane to assign non-linear anatomical axes to them. (D) Textures can be
used to define the probability distribution of neurons or synapses along
xyz- or uv-axes. (E) Using the shrink-fatten operator, layers can be easily
generated from existing layers. (F) Duplicates of layers make it easy to
map locations of one layer on other layers, as their internal ordering of
vertices and edges is the same.

There were additional reasons for implementing PAM in the
Blender environment. Because of its strong support for Python
and its open application programming interface (API), Blender
can be used as an integrated development environment for cre-
ating new tools and amending existing tools such as NEST. PAM
for Blender consists of a set of add-ons and Python modules that
extend the functionality of Blender to generate and relate anatom-
ical layers to each other and to create neural networks for the
networks simulator NEST. These tools along with example files
and video tutorials are freely available 3. In the following, we give
a short introduction into the available tools by explaining the
workflow for creating PAMs.

Creating anatomical layers
First, layers need to be created that define the location for the
cell bodies of neurons and for their synapses. Depending on the

3http://cns.mrg1.rub.de/index.php/software (will be available upon accep-
tance of article).

brain region, intermediate layers might be included to describe
important landmarks for the trajectories of neurites. Since 2d and
3d images can be imported into Blender, atlas data or anatomi-
cal data, such as histological images or 3d data acquired through
computer tomography or magnetic resonance imaging, can be
used to support the modeling process. The depiction of metric
units within the modeling environment allows to model the 3d
structures with the correct scaling. All layers can be automatically
unfolded to make uv-coordinates for the layers available. This
part relies on Blender’s internal tools and requires some modeling
skills. However, once a brain region has been modeled as layers, it
can serve as a template for a variety of neural network models.

Setting neural parameters
The traced anatomical layers already allow first inferences. For
example, the user can obtain the surface area of the layers and
calculate the total number of neurons hosted by the layer, given
for example the neural density per mm2. For each neuron group
in a layer, the number of neurons that should be used in the
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simulation, can be defined. The PAM add-on for Blender pro-
vides a user interface for calculating the surface area, number of
neurons and for visualizing the connectivity kernels on the SL
(Figure 6). However, everything can also be set up using Python
scripts. The cell bodies of the neurons are usually homogenously
distributed over the surface. Additionally, using build-in func-
tions of Blender, 2d and 3d textures (like gene expression maps
or gene marker data) can be mapped on the surface of the layers
to determine the location-dependent density of neurons.

Creating mappings
Each layer can host several neuron types which in turn can
connect to several regions. Each mapping is defined by

• a set of layers (pre-, post- and synaptic layer; and optionally
intermediate layers)
• the neuron types which are connected

FIGURE 6 | PAM add-on for Blender. A user-interface for computing the
surface area, neuron numbers, and connection kernels for reconstructed
layers.

• the mapping between successive layers
• the way distances between successive layers should be

calculated
• the connectivity kernels for pre- and post-synaptic neurons
• the number of outgoing (or incoming) connections

Note, that a 3d-layer can have multiple roles in the definition of a
mapping. For example, it can be pre- and post-SL, and technically
even the SL at the same time. Therefore, recurrent connections
can be described using the same syntax as feedforward connec-
tions. We provide PAM modules for defining connections and
computing the mapping, the synapses between neurons and their
connection lengths. Furthermore, neurons and connections can
be visualized to obtain a qualitative impression of the setup and
to manually adjust the connectivity kernels. Several video tutori-
als and a wiki on the project website document how connections
in PAM can be defined to rebuild connectivity patterns of real
neural networks (http://cns.mrg1.rub.de/index.php/software).

Export connectivities and distances
Connections and distances between neurons can be exported
as CSV-file or as Python pickle-file for further processing
in an arbitrary environment. The generation of connections
and conduction delays is separated from the generation of
neural properties to allow users to work with the simula-
tion environment that meets their demands. After connec-
tions in Blender are defined on the level of layers using
PAM, connections and distances between neurons can be
computed based on given number of neurons and synapses
per layer and the projection kernels for axons and den-
drites. As a proof-of-concept, we implemented an importer
for the neural network simulator NEST to run neural net-
work simulations based on networks generated by PAM (see
Results).

IMPLEMENTATION OF THE HIPPOCAMPAL MODEL
In the following, we demonstrate how PAM can be used to model
connectivity patterns and distances between neurons based on
neuroanatomical data. Note that we make no claim that this
hippocampus model is complete. In our analyses, we focus on
the connections between DG and CA3, CA3 and CA3, and CA3
and CA1 to reveal that with PAM structurally important fea-
tures of the anatomy can be identified and incorporated in a
computational model.

The projection patterns of the connections between entorhi-
nal cortex and the hippocampal formation are also a very
good example to demonstrate the benefits of PAM (e.g., Figures
3–34 and 3–41 in Andersen et al., 2006) but we do not feel
confident enough in our understanding how axonal projec-
tions from the entorhinal cortex exactly enter the hippocam-
pal formation and how the axonal projections of CA1 and
subiculum project back in 3d space. Therefore, we limit our-
selves to modeling the topographic relations between entorhi-
nal cortex and the hippocampal formation in PAM. Getting
the spatial form of the axonal projections right can be
accomplished in the future by adding additional intermediate
layers.
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Data
The hippocampus [including dentate gyrus (DG), CA3, CA1 and
subiculum] and the entorhinal cortex (medial EC, lateral EC,
perirhinal cortex) were modeled based on publicly available data.
The neural layers were traced in alignment with the atlas data of
the Rat Hippocampus Atlas 4 (Kjonigsen et al., 2011) and the 3d
surface model 5 by Ropireddy et al. (2012). The neural layers of
the hippocampal formation were first traced slice by slice in coro-
nal sections. When three-dimensional shapes are modeled in this
way, regions between the slices can become very irregular due to
misalignment and deformation of the slices. Therefore, in a sec-
ond step the neural layers were recreated by placing vertices and
edges along the natural shape of the neural layers.

Subsequently, synaptic and intermediate layers were created
to define the connections. We based the model on the follow-
ing reference: for the overall picture (Andersen et al., 2006),
for more detailed information (Van Strien et al., 2009) and
the hippocampome-project 6. Additionally, the Allen Brain Atlas
(Jones et al., 2009), which contains a fully annotated atlas for the
mouse, was consulted to extrapolate data in cases where rat data
were not available to us.

Demonstration of the modeling advantages
In the following, we explain how previously hard to define con-
nectivity patterns can be generated with PAM based on anatomi-
cal data.

Connections from entorhinal cortex to DG. Neurons in the
superficial layers of the lateral and medial entorhinal cortex (LEC
and MEC) project to DG (and to CA3 and CA1). More specifi-
cally, the lateral and caudiomedial part of the LEC/MEC network
projects to the septal half of DG and two more rostral areas
project to the third and fourth quarter of the dentate gyrus in the
temporal half (Andersen et al., 2006). To mimic the grid like den-
sity of pyramidal cells in the entorhinal cortex (Ray et al., 2014), a
Voronoi-like procedural texture was generated to define the loca-
tion dependent density of neurons on this layer (Figure 5D). Of
course, textures generated from tracer studies could be used here
to generate this effect more accurately.

Intermediate layers were placed to sketch out the perforant
pathway. Three subareas of the entorhinal cortex connect to dif-
ferent parts of the dentate gyrus. Figure 7A shows the mapping
for the most caudal and lateral band to the septal portion of
DG. To construct the mapping, we took advantage of the dif-
ferent mapping techniques in PAM. The complex relationships
described in the following are also explained in a video (see
http://cns.mrg1.rub.de/index.php/software). First, we created a
layer (IL1) that served as a mask for the caudal lateral part of
LEC/MEC, which we wanted to map to the septal portion of
DG. Between LEC/MEC and IL1, we used normal mapping to
ensure that only those neurons located in the caudal lateral part

4http://cmbn-approd01.uio.no/zoomgen/hippocampus/home.do
5http://krasnow1.gmu.edu/cn3/hippocampus3d/
6http://www.hippocampome.org—the authors are aware, that this project is
still in alpha-stadium. Therefore, data were checked in the provided reference
material.

of LEC/MEC will project to the SL. In general, normal mapping
is a helpful tool to project only a subgroup of neurons on another
layer or to change the mesh structure of the layer. Additional
intermediate layers (IL2 and IL3) were added to define the geom-
etry of the perforant path. The mesh topology of IL2 and IL3
were identical to that of IL1, while their shapes were deformed
to match the connection pathways of the LEC/MEC neurons. The
mesh topology is used to define the relative position of the neu-
ron projections in each layer, and the shape of the layer defines
the position in 3d space. The mapping between layers IL1, IL2,
and IL3 was topological since they all had the same mesh topol-
ogy. From IL3, neuronal projections enter the SL using Euclidean
mapping. Topological mapping could not be used here, as SL is a
copy of the DG layer and, therefore, does not have the same mesh
topology as IL3. Instead, using Euclidean mapping, neuronal pro-
jections on IL3, which are distributed along the septo-temporal
axis, enter SL at the most posterior point of DG. From there, the
connectivity kernel defines that synapses for a particular neuron
can be generated along the whole proximo-distal axis of the SL
(see green area on SL in Figure 7A). Normal mapping is used
between SL and DG to include just the upper septal part of DG.

Note, that the spatial form of the axonal projections is only
roughly sketched out in this example. In a similar manner, projec-
tions from entorhinal cortex regions to different portions of CA3
and CA1 could be modeled, but are currently not included in this
model. Note, that the spatial form of the axonal projections is
only roughly sketched out in this example.

Intra-hippocampal connections. Granule cells in DG project to
pyramidal cells in CA3, which in turn have recurrent connec-
tions and projections to CA1 cells. While connections of CA3
neurons cover nearly the entire proximal-distal axis in the hip-
pocampal loop, their coverage along the septo-temporal axis is
restricted (Ropireddy and Ascoli, 2011). Using PAM, a SL was
placed between DG and CA3 (Figure 7B). As neural projec-
tions from DG should enter the SL on their shortest path and
traverse along the proximal-distal axis, Euclidean mapping was
used between DG and the SL. We also used Euclidean mapping
between the SL and CA3, as the SL also does not have the same
mesh topology as CA3 and we wanted to be sure that every CA3
neurons projects to the SL.

For the recurrent and forward projections of CA3, a SL
covering CA3 and CA1 was created with normal-based map-
ping (Figure 8A). Since the SL is very close to CA3 and CA1,
normal-based and Euclidean mapping yield very similar results,
in particular with large connection kernels on the SL.

Output projections. Pyramidal cells on the more proximal part of
CA1 project to more distal parts of the subiculum and vice versa
(Amaral et al., 1991). In PAM, this can easily be modeled by cre-
ating a copy of the CA1 layer, mirroring it in the caudal-rostral
axis and deforming it to a SL over the subiculum (Figure 8B). As
neural projections from CA1 are mapped via topological mapping
on the SL, the mesh layout of the SL is used to describe the pro-
jection targets of CA1 on subiculum. Since the meshes of the SL
and subiculum do not have the same topology, normal mapping
is used.
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FIGURE 7 | Mapping between entorhinal cortex and dentate gyrus

and between dentate gyrus and CA3. (A) Top: Placing of neural
layers (LEC/MEC, lateral/medial entorhinal cortex; DG, dentate gyrus),
synaptic (SL) and intermediate layers (IL1-3). Small dots indicate placing
of neurons based on texture information. Bottom: Conceptual view on
the connection between LEC/MEC and DG. Colors match the 3d
depiction of the top image. Using normal mapping, only a subset of

LEC/MEC neurons is mapped on the first intermediate layer (IL1).
Projections of those neurons pass IL2 and IL3 before they are mapped
on the synaptic layer SL via Euclidean mapping. Arrows indicate lateral
(L), medial (M), caudal (C), rostral (R), and dorsal (D) direction. (B) The
synaptic layer coats CA3. Neurons in Dentate Gyrus (DG) project
directly onto the synaptic layer where they can build synapses along
the entire proximal-distal axis.

CA1 and subiculum cells project back to the deep layers
of LEC and MEC roughly maintaining the topological order
of the cells along the septo-temporal and proximal-distal axis
(Amaral et al., 1991). In PAM, this can be achieved, for
instance, by normal-based mapping between the subiculum
layer and an intermediate layer, which contains more subdivi-
sions. Here, normal-based mapping is just used for a simple
1-to-1 mapping from one layer onto another with a differ-
ent internal organization. A copy of this layer is deformed to
match the SL close to the entorhinal cortex. Because of topo-
logically identical shapes, projections between the intermediate
layer and the SL can be directly determined. From the SL,
normal-based mapping provides the link to the entorhinal layer
(Figure 9).

Neuron and synapse numbers
In order to demonstrate that PAM can model anatomically rele-
vant features, we will compare patterns of connectivity matrices
and connection length distributions. To assess these data, it is not
crucial to include realistic numbers of neurons and synapses into
the model. However, the ratios of neuron numbers in different
regions in our model matches experimental estimates (Amaral
et al., 1990; West et al., 1991; Mulders et al., 1997; Cutsuridis et al.,
2010). The total number of neurons were scaled by a factor of
0.001 (Table 1). The number of synapses per post-synaptic neu-
ron are roughly based on experimental estimates but scaled up

to allow for spike-propagation in the hippocampal loop (see last
experiment).

RESULTS
QUALITATIVE VIEW ON THE MODEL
The Python implementation of PAM contains functions to visu-
alize connections, unconnected neurons and synapse locations.
Figure 10 shows the reconstructed neural layers of the hippocam-
pal model and some visualizations of the connections computed
by PAM using the intermediate layers described in the previous
chapter.

THE IMPORTANCE OF LAYER MORPHOLOGY AND DISTANCE
CALCULATIONS
A crucial question is whether two key features of PAM, the model-
ing of the 3d shape of neuronal layers and the realistic calculation
of connection distances, are important for the inferred connec-
tivity patterns and distances. For illustration, we compared the
connectivity and distance matrices describing DG-CA3, recurrent
CA3, and CA3-CA1 connections in two models of the hippocam-
pal formation. The reconstructed model incorporates the realistic
shapes of neuronal layers in the hippocampal formation and was
reconstructed in PAM from anatomical data (Figures 10, 11, left
3d model). This model is contrasted with a simple model that
approximates the gross anatomical shape of the hippocampal
formation as two half tubes (Figure 11, right 3d model). The
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FIGURE 8 | Connections from CA3 to CA3 and to CA1 and from CA1

to subiculum. (A) Using normal-based mapping, post-synaptic CA1 and
CA3 neurons (on the right in lower panel) are mapped on corresponding
regions of the synaptic layer. Pre-synaptic CA3 neurons project along the
entire proximal-distal axis of the synaptic layer, allowing connections with

CA3 and CA1 neuron. This mapping is generated in PAM in two
separate steps. (B) The synaptic layer (SL) is topologically identical to
CA1 but mirrored in the rostral-caudal axix (indicated by white dots).
Thereby, neurons in the proximal part of CA1 project to distal parts of
the subiculum and vice versa.

simple model represents what can be generated with previously
available tools such as, for example, NeuralSyns. In both models,
equal numbers of neurons were homogeneously distributed over
the layers and connected with equal numbers of synapses and the
same connectivity kernels were used.

Impact on connectivity matrices
We examined how the morphology of the neural layers affected
the connectivity between neurons. One way to visualize the con-
nectivity are the connectivity matrices between two layers, where
the neurons are sorted along the septo-temporal axis of the
hippocampus (Figure 11, scatter plots). Both models produce
connectivity matrices that are very sparse and locally restricted,
as evident in the concentration of connections around the diag-
onal. However, in the reconstructed model, the spread along the
diagonal of the connectivity matrix is wider than in the simple
model. To investigate this spread in more detail, we computed
the index differences between the pre-synaptic neurons and their
post-synaptic targets in four regions along the septo-temporal
axis (Figure 11, histograms). The index differences were calcu-
lated as the difference between the pre-synaptic index and the
post-synaptic index. The connectivity spread in the reconstructed
model is significantly wider than in the simple model for all
anatomical subdivisions. In addition, there is another marked dif-
ference between the simple model and the reconstructed model.
In the simple model, the distributions remain equal along the

septo-temporal axis whereas variations are recognizable in the
reconstructed model. For example, neurons in the most septal
part of DG project to wider areas in CA3 than DG neurons in
more temporal parts do (Figure 11, red vs. orange, yellow, or
green distribution). A similar patterns of septo-temporal hetero-
geneity is seen for recurrent CA3 and CA3-CA1 connections.

The reason for the wider connection spread in the recon-
structed model is indeed the anatomical shape of the neural
layers. For example, while in the simple model, the length of
CA3 at the proximal and distal part is equal, in the anatomical
hippocampus, CA3 is longer at the distal end than at its prox-
imal end. Since neurons are homogeneously distributed across
the proximal-distal axis, any segment of CA3 along the septo-
temporal axis must contain more neurons in the distal part than
in the proximal part (Figure 12). Furthermore, since neurons in
both models form the same number of connections, the projec-
tion of neurons must spread further along the septo-temporal
axis in the reconstructed model than in the simple model. The
other observation that the connectivity spread in the recon-
structed model depends on the septo-temporal location, can be
accounted for by a change in the proximal-distal asymmetry along
the septo-temporal axis.

Significance of distance computation technique
Next, we studied how the connection distance depends on
the morphology and the distance computation model in three
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FIGURE 9 | Connections from subiculum to entorhinal cortex. In the
mapping from subiculum to entorhinal cortex, the topology remains roughly
preserved (e.g., the proximal-distal axis of the subiculum maps on the
medial-lateral axis of the entorhinal cortex).

Table 1 | Number of neurons and connections in the hippocampal

formation used in this study.

From Neuron numbers Connectivity

EC II DG CA3 CA1 Sub

sEC 110 (110,000) 38 (3520)

DG 1200 (1,200,000) 15 (72)

CA3 250 (250,000) 60 (6000) 85 (5500)

CA1 390 (390,000) 15

Sub 285 (285,000)

dEC 330 (330,000)

The numbers are scaled based on anatomical studies in rats (Amaral et al., 1990;

West et al., 1991; Mulders et al., 1997; Cutsuridis et al., 2010). Estimated neu-

ron numbers are given in parenthesis. For the connectivity, the numbers in the

columns denote the number of incoming connections that one cells receives

from the regions listed in the left most column. The estimated number of incom-

ing connections as reported in the literature (if available) is given in brackets. For

example: each DG neuron in our model receives input from 38 sEC neurons. In

the rat DG, it is estimated, that each neuron receives input from 3520 of sEC

neurons (Cutsuridis et al., 2010).

different scenarios. In the first and second scenario, we used the
reconstructed model and computed distances between neurons,
respectively, based on the mapping techniques unique to PAM
and based on Euclidean distance, which was available in previ-
ous tools. In the third scenario, representing the conventional

FIGURE 10 | Visualization of the reconstructed model of the

hippocampus. (A) The 3d model includes DG (red), CA3 (dark blue),
CA1/CA2 (light blue), and subiculum (yellow). Furthermore, layer 6 of
entorhinal cortex and perirhinal cortex were reconstructed. Layers 1–5 of
these regions were added using Blender’s operation “scaling along
normals.” (B) Coronal and sagittal view on the hippocampus with clipping
plane that reveals the characteristic shape of the hippocampus. (C)

CA3-CA3 and CA3-CA1 connections along the septo-temporal axis. (D)

Axonal projections along the hippocampal loop. Starting in superficial
entorhinal cortex, projections to all post-synaptic neurons in DG are
depicted. From one post-synaptic neuron on DG, all projections to the next
layer are depicted, and so on, until deep entorhinal cortex is reached.

approach, we used Euclidean distance in the simple model.
Distance histograms were generated for DG-CA3, CA3-CA3, and
CA3-CA1 connections (Figure 13).

All pair-wise comparisons between distance distributions cre-
ated from PAMs and the other models using the Kolmogoroff–
Smirnoff test showed significant differences (p < 10−50). These
exceptionally low p-values are largely due to the large sample
size and belies the comparatively small differences in some of
the pairwise comparisons. However, for the CA3-CA1 connec-
tions, the distributions of distances are qualitatively different. The
advantage of layer-based distance calculation becomes the most
apparent for these connections as the axons of CA3 pyramidal
cells project along the proximal-distal axis of the cornu ammonis
regions rather than traversing directly to the CA1 target neurons
(Figure 13, bottom).

EFFECT OF SYNAPTIC DELAYS IN NEURAL NETWORK SIMULATIONS
As a proof-of-concept, we imported the calculated connectiv-
ity and distance matrix from the hippocampal loop [super-
ficial EC (sEC), DG, CA3, CA1, Sub, deep EC (dEC)] into
a NEST simulation (Gewaltig and Diesmann, 2007). Due to
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FIGURE 11 | The Morphology of the neuronal layer has a significant

impact on the connectivity between neurons. We compared the
reconstructed model based on PAM (top left) to a simple model based
on approximate layer morphology (top right). Results for the
reconstructed and simple model are shown on the left and right,
respectively. For the depiction of the connectivity matrices (scatter plots),
neurons in all layers were sorted along the septo-temporal axis. Black
dots in the connectivity matrices denote a connection between a

pre-synaptic neuron (rows) and a post-synaptic neuron (columns). For the
red, orange, yellow and green areas along the septo-temporal axis,
histograms of the index differences were computed from the connectivity
matrices (shown in the middle). Wider distributions indicate that the
projections of a neuron are more scattered along the septo-temporal axis.
Since neurons are homogeneously distributed in the layers, region sizes
along the septo-temporal axis must change on the proximal-distal axis
(see Figure 12 for further explanations).

the lack of detailed knowledge about the projections between
entorhinal and hippocampal areas, connection distances repre-
sent only a rough average between the minimal and maximal
spatial distances between neurons in the entorhinal cortex and
dentate gyrus, CA1 and subiculum. In analogy to our previ-
ous more abstract model (Pyka and Cheng, 2014), all neu-
rons were modeled as excitatory Izhikevich neurons (Izhikevich,
2003) (a = 0.02, b = 0.2, r1 = −65, r2 = 8) without STDP or
any other sort of adaptation. Connection weights were manu-
ally adjusted to match activity levels observed in experimental
studies (Leutgeb et al., 2004; Vazdarjanova and Guzowski, 2004;
Tashiro et al., 2007). The weights were sEC-DG: 9 mV, DG-
CA3: 5 mV, CA3-CA3: 4 mV, CA3-CA1: 5 mV, CA1-Sub: 4 mV,
CA1-dEC: 4 mV, Sub-dEC: 4 mV (see also Supplemental data:
hippocampus_nest/hippocampus.py).

To convert connection distances to conduction delays, the
connection distances calculated in PAM were multiplied by
4.36 ms/mm according to experimental measurements of con-
duction latencies in rats CA3 axons (Soleng et al., 2003). Since
variability and neuron-type-specific differences are not incor-
porated in our model, our results need to be confirmed once

more information about conduction latencies and neuron-types
becomes available.

We then simulated neural activity in this network by injecting
input currents created by Poisson noise into sEC for 10 ms with
50 mV. The currents are sufficient to drive spiking activity in sEC
(Figure 14). After some delay these spikes in sEC in turn drive
spiking activity in downstream CA3, and so on and so forth. The
spiking activity finally completes the tri-synaptic loop and reaches
the output layer, dEC, after around 120 ms (Figure 14), which is
somewhat similar to the period of the theta oscillations at about
6–12 Hz.

DISCUSSION
With PAM, we introduced a technique to use anatomical data
to build large scale artificial neural networks with realistic con-
nectivity and conduction delays. In PAM, neural networks are
represented by layers, which are related to each other with a
set of mapping techniques. The combination of different map-
ping types allows us to model complex neuronal projections, e.g.,
between entorhinal cortex and dentate gyrus. PAM offers the
unique capability to have local as well as global anatomical axes
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FIGURE 12 | Different surface areas between the proximal and distal

parts of CA3 due to 3d morphology of the layer. Due to the cone-like
shape of the CA3 layer (the same applies for CA1), the septo-temporal axis
on the proximal side is shorter than on the distal side. Given a
homogeneous distribution of neurons, the distal part hosts more neurons
than the proximal part.

influence the connectivity patterns. Furthermore, it can combine
distances between layers and within layers to calculate connection
distances between neurons.

FEATURES OF PAM AND PREDICTIONS
PAM is a very efficient approach to model large-scale network
structures with complex wiring patterns as it mimics an impor-
tant property of neural networks and biological structures in
general: it indirectly describes the neural network through a
lower-dimensional encoding. Spatial structures are defined for
the placement and mappings of neurons and projections, rather
than specifying the location and connectivity of each neuron. This
low-dimensional encoding has two practical advantages. First, for
the given complexity of real networks, the human effort it takes
to describe position and projection directions is comparatively
low. Second, the amount of data generated by the encoding is also
low given the complexity of networks that can be created with
PAM. Even though PAM does not include a model of the devel-
opmental process, it can be used efficiently to represent snapshots
of the neural network at certain developmental stages due to the
low-dimensional encoding. We believe that in combination with
other properties of networks, such as neural dynamics, plasticity,
and external inputs, PAM could be a valuable contribution toward

a complete description of nervous systems for computational
models.

We deliberately kept the computation of connections and con-
nection distances separate from the neural network simulator, so
that it is compatible with a wide range of simulation engines.
Therefore, researchers who already feel comfortable with the
simulator of their choice can add PAM to their workflow for
generating the neural network. The connection data generated
by PAM can be exported as CSV-files or as binaries using the
pickle-modul of Python, which can then be imported by many
other programs. An import-script for NEST is included in the
downloadable package of PAM.

Based on the reconstruction of the hippocampal formation
and computation of connection properties in PAM, we can
derive two predictions about the structural properties of the
hippocampus. First, the spread of connections is higher at the
most septal locations in the hippocampus than at the more
temporal locations (Figure 11). Second, conduction delays in
CA3-CA1 connection have a higher variability than CA3 recur-
rent or DG-CA3 connections (Figure 13). Both predictions can
be readily tested experimentally. Future modeling studies are
needed to analyse the functional consequence of these anatomical
properties.

Furthermore, we found in a preliminary simulation, that the
total synaptic delay in the hippocampal formation in the cur-
rent model is close to the period of the theta oscillation, which
dominates the local field potential in the hippocampal forma-
tion. While the precise relationship between synaptic delays and
theta oscillations needs to be ascertained in the future, we spec-
ulate at this point that there might be a correspondence between
these two parameters that could account for inter-species differ-
ences in theta frequencies. As the neuron distances and, hence,
the conductions delays, scale with the size of the hippocampus,
we predict a relationship between brain size and the frequency of
hippocampal theta, consistent with comparative studies of theta
oscillations across nine species (Blumberg, 1989). This allometric
relationship cannot be easily explained in models that gener-
ate theta oscillations within an isolated subregion (Crotty et al.,
2012). It has to be noted that several mechanisms have been
already proposed for theta and conceptually the theta frequency
does not need to match the traveling time of spikes in the hip-
pocampal loop (e.g., the frequency could be higher than suggested
by the loop). However, allometric measures might constrain the
range in which spike oscillations can be observed. This might be
in particular relevant when brain sizes differ by several orders of
magnitude.

MORPHOLOGY-BASED vs. KERNEL-BASED CONNECTIONS
For networks with spatial dependencies, it is common to use
either kernel-based or morpohology-based methods to com-
pute the connectivity and connection lengths between neurons.
Kernel-based methods use two- or three-dimensional mathemat-
ical functions to define the probability for a neuron to form
synapses as a function of the spatial distance to the soma of the
neuron. This method provides a fast and efficient way to connect
neurons with each other and is widely used in software packages
like Neuroconstruct (Gleeson et al., 2007), NeuralSyns (Sousa and
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FIGURE 13 | Connection distances depend significantly on layer

morphology and distance calculation model. The distributions of
connection distances for DG-CA3 (left), CA3-CA3 (middle), and
CA3-CA1 (right) connections are compared for three different

scenarios indicated at the lower part of the figure. The model was
either the reconstructed model or the simple model. The distance
calculations were either based on the PAM techniques or on the
Euclidean distance.

Aguiar, 2014), Topographica (Bednar, 2009), or NEST Topology
(Eppler et al., 2008).

On the other hand, increasing effort is invested into gener-
ating networks based on realistic morphologies (Halavi et al.,
2012). Tools to analyse morphologies, like the commerical soft-
ware Neurolucida or Py3DN (Sousa and Aguiar, 2014) provide
the data to generate artificial neurons with realistic morphology
(Ascoli et al., 2001; Eberhard et al., 2006; Cuntz et al., 2011) and to
generate networks, e.g., with NETMORPH (Koene et al., 2009) or
NeuGen (Eberhard et al., 2006). This line of research is primarily
motivated by the fact that the axonal and dendritic morphology
can have a functional influence on the dynamics of the neuron
(London and Häusser, 2005).

PAM combines kernel-based methods to determine synapses
on a SL with structural properties of brain regions, which deter-
mine the connection patterns and their lengths. However, differ-
ent types of branching morphologies of axonal and dendritic trees
are not incorporated in this model. The focus of PAM lies more
on an efficient translation of large-scale network morphologies

to more abstract network simulations, like NEST or Brian, in
contrast to GENESIS and NEURON. The unique contribution
of PAM here is that topological relations between distant layers,
properties along local and global anatomical axes, and anatomical
data about connection pathways and cell- and synapse-densities
can be modeled and converted into artificial neural networks.

However, these features do not necessarily exclude the incor-
poration of morphological data. In fact, we belief that approaches
for generating neuron morphologies (e.g., Koene et al., 2009;
Cuntz et al., 2011) could be amended by anatomical cues derived
from PAM to guide the growth of dendrites and axons along layers
specified in a 3d model. Thereby, a low-dimensional encoding for
neuron-morphologies and network-morphologies could be gen-
erated that would allow the study of neural networks on different
abstraction levels.

LIMITATIONS OF PAM AND FUTURE PLANS
Creating PAMs requires more effort as compared to setting up
more commonly used network simulations, because the 3d model
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FIGURE 14 | Neural activity propagation through the hippocampal

formation. Shown are the results of network simulations with spiking
neurons based on the reconstructed model and experimental evidence for
distance-based conduction latencies. Coordinated spiking-activity driven by
input currents to the superficial layer of entorhinal cortex propagation through
the hippocampal formation and reaches the output layer, the deep layer of the
entorhinal cortex, after about 120 ms. Note that EC-CA3 and EC-CA1
connections are currently not included in the model and would lead to
additional spiking in the output layer during the silent period before 110 ms.

has to be build from reconstructions of the anatomical data.
However, we think that this effort is justified since our results
show that the morphology of the neuronal layers and the map-
ping of connections have significant effects on connectivity and
conduction delays. In addition, once the 3d model has been built,
it can be used to generate an arbitrary number of network mod-
els for functional simulations due to the parametric nature of the
3d model in PAM. Parameters such as the number of neurons
and synapses will have to be adjusted depending on the scientific
question pursued and computational power available.

Currently, neurons and synapses are constrained to the neu-
ronal layer, the surface of a 2d manifold in 3d space. For future
versions, we plan to implement a parametric way to add a variable
offset to the locations of neurons and synapses in a biologi-
cally plausible manner. Furthermore, although connections and
distances can be calculated on the order of 105 neurons and
106 synapses in a reasonable amount of time, we have not yet
exploited all possibilities to increase the computational speed.
More work will be invested to allow the generation of networks
with realistic numbers of neurons and synapses.

POTENTIAL APPLICATIONS OF PAM
We hope that PAM will help close the current gap between the
computational models of neural networks, which tend to be
rather abstract (Cheng, 2013) and the anatomical data, which
is highly detailed. For a multitude of species, including humans,
high quality structural data of the central nervous system are con-
tinuously collected and refined (e.g., Jones et al., 2009; Markram,
2012). These data proved useful in studying, for example, network
properties (Soleng et al., 2003; Mason and Verwoerd, 2007; Van
Strien et al., 2009), functional correlates of structural properties
(Carr and Konishi, 1988; Lavenex and Amaral, 2000; Buzsáki and

Moser, 2013) or genotype-phenotype relationships (Lein et al.,
2007; Thompson et al., 2008). However, few neural network
models are generated from structural data, possibly because an
effective and powerful method to formally describe and translate
those data into neural models was missing so far.

An intriguing possibility that PAM offers is to study the pre-
cise functional effect of brain lesions. Since the network models
are derived from spatial anatomical data, any kind of local mod-
ification in the biological network can be reproduced in the
virtual network, and vice versa. For example, controlled or known
brain lesions can be simulated anatomically correctly in a vir-
tual network. Alternatively, insights about a virtual lesion in a
network simulation based on PAM can serve as prediction for
in vivo studies. For instance, there is an ongoing debate about the
functional differences between the septal and temporal part (or
dorsal and ventral part in primates) of the rodent hippocampus
(Thompson et al., 2008; Fanselow and Dong, 2010; Segal et al.,
2010). With detailed projection patterns between neural layers,
the septal and temporal part of the hippocampus can be ana-
lyzed separately in computational models generated by PAM. In
general, we think that computational and experimental studies of
neural networks could be more tightly integrated, if they shared a
common anatomical reference frame.

The anatomical reference frame provided by PAM might prove
useful in investigating the relationship between size and form of
a brain structure on the one side and its impact on connectiv-
ity patterns, conduction distances, self-organizing processes and
function on the other hand. This is in particular relevant to
understanding the emergence of certain networks from an evo-
lutionary point of view. For example, allometric factors can be
incorporated into the analysis of networks in scaled up versions
of brain structures recreated with PAM. By recreating homolo-
gous regions from different species, the functional influence of
the scale and the form of a network could be dissociated with the
help of computational models.

PAM could be used as a powerful educational and documen-
tation tool. The possibility to visually explore and manipulate the
reconstructed model of the hippocampus has helped us tremen-
dously to better understand the structure of the hippocampus and
the projection patterns of its neurons. In Blender, it is possible to
rotate the 3d model in all three directions, remove certain layers,
color layers, including making them partially transparent, and to
do many more things. In addition, the Python implementation
of PAM includes tools that can facilitate the understanding of the
synaptic connectivity patterns. It provides functions to visualize
connections and synapse locations. The description of anatomi-
cal layers and mappings between those layers as provided by PAM,
could serve to collect and document knowledge about neuron
locations, densities and axonal and dendritic projections.

CONCLUSION
We have proposed a new modeling technique, PAM, that can gen-
erate neural networks with connectivity patterns and connection
distances that are consistent with experimentally measured layer
morphologies and complex projection patterns. PAM can also
serve as a tool for collecting, systemizing, and visualizing anatom-
ical data. Using a common reference frame for anatomical data
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would greatly facilitates the transfer of such data and increase
their potential impact. It is therefore our hope that computational
and experimental neuroscientists alike will find PAM a useful tool
for their research.

INFORMATION SHARING STATEMENT
The Python implementation of PAM, reported in this article,
along with some example files of the hippocampal model and
the exported data for NEST can be found in the Supplemental
Materials. PAM is further under development. The most recent
version, a Wiki, and videos can be found at http://cns.mrg1.rub.

de/index.php/software. We invite the reader to examine the code
and contribute to the project.
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The action potential (AP), the fundamental signal of the nervous system, is carried
by two types of axons: unmyelinated and myelinated fibers. In the former the action
potential propagates continuously along the axon as established in large-diameter fibers.
In the latter axons the AP jumps along the nodes of Ranvier—discrete, anatomically
specialized regions which contain very high densities of sodium ion (Na+) channels.
Therefore, saltatory conduction is thought as the hallmark of myelinated axons, which
enables faster and more reliable propagation of signals than in unmyelinated axons of
same outer diameter. Recent molecular anatomy showed that in C-fibers, the very thin
(0.1 µm diameter) axons of the peripheral nervous system, Nav1.8 channels are clustered
together on lipid rafts that float in the cell membrane. This localized concentration of
Na+ channels resembles in structure the ion channel organization at the nodes of Ranvier,
yet it is currently unknown whether this translates into an equivalent phenomenon of
saltatory conduction or related-functional benefits and efficiencies. Therefore, we modeled
biophysically realistic unmyelinated axons with both conventional and lipid-raft based
organization of Na+ channels. We find that APs are reliably conducted in a micro-saltatory
fashion along lipid rafts. Comparing APs in unmyelinated fibers with and without lipid rafts
did not reveal any significant difference in either the metabolic cost or AP propagation
velocity. By investigating the efficiency of AP propagation over Nav1.8 channels, we find
however that the specific inactivation properties of these channels significantly increase
the metabolic cost of signaling in C-fibers.

Keywords: C-fiber, Nav1.8, Hodgkin-Huxley, action potential, axon, lipid raft, saltatory conduction

1. INTRODUCTION
Propagation of action potentials (AP) in axons relies on the con-
certed action of membrane-spanning selectively permeable ion
channels (Hodgkin and Huxley, 1952). Myelinated axons feature
a highly structured distribution of voltage-gated ion channels,
with a characteristic clustering of Na+ channels at the nodes
of Ranvier. Saltatory conduction (Huxley and Stämpfli, 1949;
Fitzhugh, 1962) in myelinated axons refers to the rapid propaga-
tion of the electrical waveform from each node to the next (the
AP seems to jump between nodes). This mode of conduction
allows faster (Rushton, 1951; Waxman and Bennett, 1972) and
more reliable (Kuriscak et al., 2002) propagation of signals than
unmyelinated axons. In contrast, only unmyelinated axons, which
are generally feature uniformly distributed ion channels (Black
et al., 1981), are found at diameters approaching the physical lim-
its to axon diameter (Waxman and Bennett, 1972) (d) at 0.1 µm
(Faisal et al., 2005), thus making the high connection densities of
mammalian cortex possible.

The number of ion channels on the surface of neurons’ mem-
brane is usually thought to be large enough to justify combining

the individual channel conductances into a continuous measure
of overall conductivity (Dayan and Abbott, 2001), as originally
done by Hodgkin and Huxley (1952). However in the case of thin
axons, the number of ion channels may be too small for these
approximations to be valid. Faisal and Laughlin (2007) showed
that in order to accurately model thin axons, the behavior of indi-
vidual ion channels needs to be taken into account. Channel noise
in very thin axons has a large effect, limiting the miniaturiza-
tion of fibers by imposing a lower diameter on axons at 0.1 µm
(Faisal et al., 2005). The conceptual transition from conductiv-
ity (per surface area) to density of channels, with each channel
having only two possible conductance value corresponding to its
open and closed states, involves investigating the effects of pos-
sible non-uniformities in the distribution of ion channels across
the membrane.

Based on observations from the neonatal rat optic nerve,
Waxman et al. (1989) hypothesized that action potentials could be
propagated along thin (d ≈ 0.2 µm) axons by “jumping” between
individual Na+ channels placed a few microns apart. This pos-
tulated mode of propagation would be the analog of saltatory
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conduction in myelinated axons (Huxley and Stämpfli, 1949)
and was termed micro-saltatory conduction. Faisal and Laughlin
(2007) showed that probabilistic gating of ion channels due
to thermodynamic fluctuations, or channel noise (reviewed by
White et al., 2000) makes micro-saltatory conduction between
individual Na+ channels impossible. This is because the very low
diameters required for individual Na+ channels to have a mea-
surable effect on the membrane potential make the axon overly
sensitive to stochastic opening of Na+ channels, resulting in an
excessive spontaneous AP rate.

In C-fibers, Pristerà et al. (2012) have recently discovered that
NaV1.8, the voltage-gated Na+ channels of these 0.1 µm diam-
eter unmyelinated axons (Sangameswaran et al., 1996; Baker,
2005), are packed tightly together on lipid rafts. Lipid rafts
are “dynamic, nanoscale, sterolsphingolipids enriched, ordered
assemblies of proteins and lipids” (Pike, 2006; Coskun and
Simons, 2010; Simons and Gerl, 2010). They play a role in
organizing the cell membrane, and act as hubs for functional
localization of proteins (Pristerà et al., 2012). They also inter-
vene in trafficking, clustering and electrophysiological prop-
erties of ion channels, and have an effect on cell excitabil-
ity (reviewed by Pristerá and Okuse, 2012). They are typically
0.1–0.3 µm long (Personal communication, Amber Finn and
Kenji Okuse, 2011), and placed ∼5–10 µm apart (Pristerà et al.,
2012). Disassociating lipid rafts and Nav1.8 channels in DRG neu-
rons is correlated with impaired neuronal excitability (Pristerà
et al., 2012).

C-fibers are very thin unmyelinated peripheral axons respon-
sible for transmitting nociceptive pain sensations (Lawson, 2002).
A variety of Na+ channels are found on the membrane of C-
fibers, including TTX-sensitive Nav1.6 (Black et al., 2002) and
Nav1.7 (Black et al., 2012) channels. Voltage clamp experiments
have shown that these TTX-sensitive channels are involved in
amplifying subthreshold depolarizations, and are active during
APs (Vasylyev and Waxman, 2012). The slow-activating, slow-
inactivating Nav1.8 channels play a crucial part in the generation
and propagation of APs in these fibers (Akopian et al., 1999;
Renganathan et al., 2001; Lai et al., 2003). As a result, these
TTX-resistant channels are of particular interest for treating neu-
ropathic pain symptoms (reviewed by Scholz and Woolf, 2002).
The clustering of Na+ channels on lipid rafts resembles the struc-
ture of nodes of Ranvier in myelinated fibers, and may permit
micro-saltatory conduction in those thin axons. Here, we inves-
tigate whether this mode of propagation is indeed possible, and
its potential benefits in terms of basic constraints faced by neural
fibers.

2. MATERIALS AND METHODS
We investigated the effects of the lipid-raft clustering of
Na+ channels on the function of neural fibers, using both deter-
ministic and stochastic simulations. In stochastic simulations,
the changes of conformations of ion channels were individually
modeled (Faisal, 2012). Simulations were based on biophysical
data from Baker (2005). Computations were carried out using
the Modigliani stochastic simulator (Faisal et al., 2002, 2005),
on a Linux PC using an Intel core i7 processor with the bino-
mial algorithm, chosen because it allows accurate simulations that

are less computationally intensive than the Gillespie algorithm
(Faisal, 2010). Membrane capacitance was set to 0.81 µF cm−2,
axial resistance to 70 � cm, and the membrane leak conductance
was 0.14 mS cm−2. Leak reversal potential, Na+ reversal poten-
tial and K+ reversal potentials were, in order, −61.14, 79.6, and
−85 mV.

Our C-fiber model axon contains only two types of
voltage gated ion channels. We use a model of TTX-
resistant Na+ channels (NaV1.8) based on physiological
data from Baker (2005). The instantaneous Na+ conduc-
tance in the model is given by gNa+ = ḡNa+ ×m3h where
ḡNa+ = 1.25 mS cm−2. m and h follow the classical Hodgkin and
Huxley (1952) dynamics, with rates αm = 3.83/(1+ exp((Vm +
2.58)/− 11.47)), βm = 6.894/(1+ exp((Vm + 61.2)/19.8)),
αh = 0.013536× exp(− (Vm + 105)/46.33) and βh =
0.61714/(1+ exp((Vm − 21.8)/− 11.998)). This transforms
into the 8-state Na+ channel model for stochastic simulations.

We also used the model for fast K+ channels given by
Baker (2005). The instantaneous K+ conductance in the model
is given by gK+ = ḡK+ × n4 where ḡK+ = 0.17 mS cm−2. and
and the kinetic rates for n are given by αn = 0.00798(Vm +
72.2)/(1− exp((− 72.2− Vm)/1.1)) and βn = 0.0142(− 55−
Vm)/(1− exp((Vm + 55)/10.5)). This transforms into a 5-state
channel for stochastic simulation (for details, see Faisal et al.,
2002),

We simulated both uniformly distributed channels and chan-
nels clustered on lipid rafts placed regularly along the 0.1 µm
diameter C-fiber axon (see Figure 1). For the uniformly dis-
tributed Na+ channels axon model, we use a single Na+ chan-
nel conductance of 20 pS, which translates into a density of
56.25 µm−2, and a single K+ channel conductance of 17 pS,
which translates into a density of 10 µm−2. Single channel con-
ductance values are putative (based on typical values for ion
channels). For the clustered Na+ channel model, we kept the den-
sity of K+ channels constant in the region between lipid rafts.
For comparisons between the axon with uniformly distributed
Na+ channels and the one with lipid rafts, the overall Na+ den-
sity was kept constant (900 µm−2 for 0.2 µm long rafts placed
3 µm apart). We also simulate different cluster configurations
(length, distance) based on previous work (Zeng and Tang, 2009)
although the results from those can not be directly compared to

FIGURE 1 | Schematic view of axonal models. (A) The null-hypothesis
axon. Both Na+ and K+ channels are uniformly diffused along the axon.
(B) Axon with Na+ channels clustered together on lipid rafts. We model this
axon by placing a compartment containing a high density of Na+ channels at
regular distances in between compartments containing only K+ channels.
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the uniform axon. On the lipid rafts there are no K+ channels.
For all lipid raft configurations i.e., all values of raft length l and
distance between rafts L, we simulated an axon long enough to
contain 100 lipid rafts. At each trial, we injected a small current
step twice. The first evoked AP was only used to ensure the ion
channels were properly initialized. We only used data from the
second AP of each trial.

The width of each AP is measured between the half-width
points. The metabolic cost of AP propagation is usually defined as
the amount of ATP molecules necessary to reverse the Na+ cur-
rent by Na+ -K+ -ATPase (Alle et al., 2009; Sengupta et al., 2010).
However, we chose to keep this measure in terms of Na+ charge
and not convert it into a measure in terms of the amount of ATP
molecules, because Na+ charge is given directly by the amount of
current crossing the membrane, and does not require additional
assumptions on how the Na+ charge is reversed.

3. RESULTS
Figure 2 illustrates the propagation of an action potential in a C-
fiber axon with uniformly distributed Na+ channels, using both
deterministic and stochastic simulations. In deterministic sim-
ulations, the AP waveform is kept constant while propagating
through the axon. The activation profile of Na+ channels, and
hence the Na+ current, is also the same at all points along the
axon, as we expect.

In stochastic simulations using discrete, stochastic ion chan-
nels, there is considerable variability in the Na+ current crossing
the axon, as shown by the profile of Na+ current Figure 2D. In
addition, the stochastic opening of each discrete channel has a
minimum current flow determined by the single channel con-
ductance, that is larger than the minimum conductance allowed
in the deterministic model. This is visible in the absence of blue
bands of low Na+ current in Figure 2D, although they are present
at the beginning and end of the AP in Figure 2C.

3.1. MICROSALTATORY CONDUCTION ALONG LIPID RAFTS
Clustering Na+ channels on putative lipid rafts still allows AP
conduction (Figure 3). In both deterministic (Figures 3A,C) and
stochastic (Figures 3B,D) simulations, the AP is sustained by
the Na+ current in lipid rafts alone. Plotting the profile of
the AP waveform (Figure 3E) shows bumps in the waveform,
corresponding to the placement of Na+ channel lipid rafts.

The height of the AP is only slightly lower outside of lipid rafts.
This is because L is much lower than the axon’s length constant
λ. Therefore, the membrane potential over the inter-raft region
is roughly constant, and equal to that over lipid rafts. Note that
in myelinated axons, the amplitude of APs over the internodal
regions is also not much lower than the amplitude in nodes of
Ranvier (Bakiri et al., 2011). This is also confirmed by our simu-
lations of a mammalian myelinated axon model (see Figure 3F),
based on data from McIntyre et al. (2002).

AP waveforms are slightly wider over lipid rafts in both deter-
ministic (Figure 3A) and stochastic (Figure 3B) simulations. This
effect is due to the reopening of Na+ channels in the repolariz-
ing phase of the AP (Figure 8). We investigated the influence of
the length (l) of rafts, and the distance between them (L) on the
shape of action potential. The results are plotted in Figure 4. Both
AP width and height seem affected by the size and placement of
lipid rafts. Longer rafts increase the width of APs almost linearly
(Figure 4A). The greater number of Na+ channels in longer lipid
rafts also pushes the peak of APs toward the Na+ reversal poten-
tial, increasing it from ∼55 to 75 mV (Figure 4B). Increasing
the distance between lipid rafts, on the other hand, shortens
the width of APs. With 0.2 µm long rafts 10 µm apart, the AP
width is halved compared to placing the rafts only 1 µm apart
(Figure 4C). The height of APs is also reduced by furthering lipid
rafts, this time in an almost linear fashion (Figure 4D) which is
expected since the change is no longer limited by the Na+ reversal
potential.

FIGURE 2 | Action potential propagation in a 0.1 µm diameter

C-fiber axon with uniformly distributed Na+ channels. (A) The
membrane potential and (C) Na+ current in a deterministic

simulation. (B) The membrane potential and (D) Na+ current in a
single trial of stochastic simulations. White areas signify no
current flow.
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FIGURE 3 | Microsaltatory conduction in a 0.1 µm diameter C-fiber axon

with clustered Na+ channels (l = 0.2 µm, L = 8 µm). (A) The membrane
potential and (C) Na+ current in a deterministic simulation. (B) The membrane
potential and (D) Na+ current in a single trial of stochastic simulations. In
(C,D) the lines of Na+ current are very fine due to the short length of lipid rafts.

(E) Profile of the AP waveform propagating in a C-fiber axon. The bumps in the
waveform correspond to the placement of lipid rafts. (F) Profile of the AP
waveform in a model of mammalian myelinated axon (using parameters from
McIntyre et al., 2002). The AP “jumps” between nodes of Ranvier, denoted
by ∗, but the amplitude is not heavily reduced over the internode.

Changes in the height and width of APs are expected because
of the changes in the overall Na+ channel density that is caused
by changes in the size or placement of lipid rafts, and not the
clustering of Na+ channels per se. We treat this question in
Section 3.5.

3.2. CHANGE IN SHAPES OF APs RESULTS IN LOWER METABOLIC
COSTS

The change in the shape of APs directly results into changes in
their metabolic cost (Figure 5). Shortening lipid rafts lowers the
amount of Na+ charge crossing the membrane and thus the cost
in ATP associated with pumping Na+ ions back out of the cell
(Figure 5A). Increasing the distance between rafts also reduces
the metabolic cost. The profile of the variation in metabolic cost
closely follows that of change in AP width, suggesting that width,

rather than height, determines the metabolic cost of firing APs
(Figures 4A,C, 5).

We can now compare the metabolic cost of APs in axons with
clustered Na+ channels to the cost in axons where Na+ chan-
nels are uniformly distributed (Figure 6). Experimental results
(Personal communication, Amber Finn) suggest l = 0.1–0.3 µm
long lipid rafts placed L ≈ 3 µm apart. The overall density of
Na+ channels is kept constant by assuming a density of 900 µm−2

in the lipid rafts. In our simulation, this does not result in
a significant change of metabolic cost. The metabolic cost for
propagating APs over axons with both clustered and uniformly
distributed Na+ channels is ∼13 fC µm−1 for the 0.1 µm diam-
eter axon in deterministic simulations. In stochastic simulations,
the opening of a channel means that a conductance equal to that
of the single channel is added to the membrane. This minimum
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FIGURE 4 | Action potential height and width as functions of channel

distributions. When varying the length of lipid rafts, the inter-raft distance
was set to 8 µm. While varying the inter-raft distance, the lipid raft length
was set to 0.2 µm. (A) Action potential width (measured at half-peak value)
in a model axon with clustered Na+ channels as a function of raft length.
(B) Action potential peak in a model axon with clustered Na+ channels as a
function of raft length. (C) Action potential width (measured at half-peak
value) in a model axon with clustered Na+ channels as a function of
distance between lipid rafts. (D) Action potential peak in a model axon with
clustered Na+ channels as a function of distance between rafts.

FIGURE 5 | Metabolic cost of action potentials as functions of lipid raft

configuration in a 0.1 µm diameter C-fiber axon. (A) Metabolic cost of
action potentials in a model axon with clustered Na+ channels for varying
lipid rafts sizes. Distance between rafts was set to 8 µm. (B) Metabolic
cost of action potentials in a model axon with clustered Na+ channels for
varying inter-raft distances. Lipid raft length was set to 0.2 µm.

current due to the discrete nature of ion channel conductance has
an impact on the metabolic cost of APs. Stochastic simulations
yield a median value of 16 fC µm−1 per AP in axon with clustered
or uniformly distributed channels.

Increasing L, and partially compensating by increasing the
density of Na+ channels in lipid rafts lowers the Na+ charge
crossing the membrane: 0.2 µm long rafts placed 8 µm apart
(Zeng and Tang, 2009) are more metabolically efficient than

FIGURE 6 | Metabolic cost of action potentials for different channel

distributions in a 0.1 µm diameter C-fiber axon. Data was obtained using
both deterministic (blue lines) and stochastic (boxes) simulations.
(A) l = 0.1 µm, L = 8 µm, optimal values given by Zeng and Tang (2009),
Na+ channel density 1800 µm−2, (B) l = 0.2 µm, L = 8 µm, Na+ channel
density 1800 µm−2, (C) l = 0.2 µm, L = 3 µm, Na+ channel density
900 µm−2, based on data on lipid raft placement given by Pristerà et al.
(2012) and personal communication with Amber Finn, (D) Uniform
distribution. On each box, the central mark is the median, the edges of the
box are the 25th and 75th percentiles, the whiskers extend to the most
extreme data points not considered outliers, and outliers are plotted
individually.

uniformly placed Na+ channels (∼11 fC cm−1 in deterministic
simulations). Shortening the lipid rafts to 0.1 µm reduces the
Na+ charge even further, while maintaining the axon’s capacity
to propagate APs.

3.3. PROPAGATION VELOCITY OVER CLUSTERED Na+ CHANNELS
Due to their very small diameter, it is extremely difficult to
obtain intracellular data from C-fibers, and therefore we can
only estimate the propagation velocity in these fibers using extra-
cellular recordings (Tigerholm et al., 2014). These estimations
can not be reliably linked to axonal diameter. C-fiber axons are
known for their very low conduction velocities. The conduc-
tion velocity is estimated to be 69cm s−1 for a 0.25 µm diameter
axon (Tigerholm et al., 2014).

Deterministic simulations yield a velocity of ∼11cm s−1 in
both the axon with uniformly distributed Na+ channels, and over
clustered Na+ channels (Figure 7). In stochastic simulations, we
obtained a comparable median value. However, as was the case
with the metabolic cost of APs, shortening lipid rafts or increas-
ing the distance between them resulted in a reduction of the AP
propagation velocity.

This difference can be attributed to the lowered inward ionic
current. In axons, membrane current not only depolarizes the
local membrane, but it also serves to drive the waveform of APs
forward. A lower membrane current will result in slower depolar-
ization of the membrane segment “ahead,” and thus in slower AP
propagation. Increasing L, and partially compensating by increas-
ing the density of Na+ channels as done in Section 3.2 reduces
the metabolic cost, and accordingly the propagation velocity of
APs. In the most extreme case we considered, with 0.2 µm long
lipid rafts placed 8 µm apart, the median propagation velocity
was ∼7cm s−1. In this axon, stochastically simulated APs fail to
propagate in 3 trials out of 20.
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FIGURE 7 | Propagation velocity of action potentials for different

channel distributions in a 0.1 µm diameter C-fiber axon. Data was
obtained using both deterministic (blue lines) and stochastic (boxes)
simulations. (A) l = 0.1 µm, L = 8 µm, optimal values given by Zeng and
Tang (2009), Na+ channel density 1800 µm−2, Note that in stochastic
simulations some APs failed to propagate. (B) l = 0.2 µm, L = 8 µm,
Na+ channel density 1800 µm−2, (C) l = 0.2 µm, L = 3 µm, Na+ channel
density 900 µm−2, based on data on lipid raft placement given by Pristerà
et al. (2012) and personal communication with Amber Finn. (D) Uniform
distribution. On each box, the central mark is the median, the edges of the
box are the 25th and 75th percentiles, the whiskers extend to the most
extreme data points not considered outliers, and outliers are plotted
individually.

3.4. IONIC MECHANISMS BEHIND THE REDUCTION OF METABOLIC
COST

In order to find the mechanism behind the reduction of
metabolic cost, we plotted the instantaneous Na+ current and
number of open Na+ channels over the course of an AP
(Figure 8). In the more metabolically efficient axons (green and
red lines and shades), APs are shorter (Figure 8A, red and green
curves) than in the axon with uniformly distributed Na+ chan-
nels, or the axon with 0.2 µm long lipid rafts placed 3 µm
apart.

The shortening of APs is due to a shorter period of Na+ cur-
rent activity (Figure 8B) in metabolically efficient axons. The
Na+ current seems to be relatively constant over the course
of the AP. However, plotting the number of open Na+ chan-
nels (Figure 8C) reveals that Na+ conductance reaches its peak
near the peak of the AP. In the repolarizing phase, the number
of open Na+ channels decreases markedly due to inactivation.
But approximately halfway through repolarization, Na+ channels
can open again. This late reopening causes the “bump” in the
repolarizing phase of the AP waveform. In the more metaboli-
cally efficient axons, the number of open Na+ channels decreases
faster, the reopening is less pronounced, and the end of Na+ cur-
rent is reached earlier. This explains the lower overall transfer of
Na+ charge in these axons.

We can also explain the lower metabolic cost of APs in stochas-
tic simulations compared to deterministic simulations of the same
axon (Figure 6). In stochastic simulations, there is more reacti-
vation of Na+ channels in the repolarizing phase as compared
with deterministic simulations (Figure 8C). This effect is due to
the “positive feedback” of Na+ channels. The random opening of
any Na+ channel prolongs the repolarizing phase, and makes the
opening of other Na+ channels more likely.

FIGURE 8 | Action potential and sodium current waveform in uniform

channel density axons (Blue, STD shaded light blue, deterministic

results in blue dotted line), in 0.2 µm long clusters placed 3 µm apart

(Black, STD shaded gray, deterministic results in black dotted line), in

0.2 µm long clusters placed 8 µm apart (Red, STD shaded light res,

deterministic results in red dotted line) and in 0.1 µm long clusters

placed 8 µm apart (Dotted green line) in a 0.1 µm diameter C-fiber

axon. (A) The action potential waveforms (B) Instantaneous Na+ current
and (C) open Na+ channels in a single compartment. Although there are
few Na+ channels open in the repolarizing phase of the AP, the larger
difference between Vm and ENa+ creates a Na+ current comparable to that
of the earlier stages.

3.5. THE OBSERVED EFFECTS IN RAFTS ARE CAUSED BY LOWER
Na+ CHANNEL DENSITY

The effect of clustering Na+ channels on the shape and metabolic
cost of APs could simply be due to lower overall Na+ channel den-
sities. In order to verify if the clustering of Na+ channels was in
fact the responsible for the reduced metabolic cost, we simulated
axons with uniformly distributed Na+ channels by varying the
density of said channels, and plotted the resulting metabolic cost
(Figure 9).

There is no noticeable difference between the metabolic cost of
APs in the axon with uniformly distributed Na+ channels and the
metabolic cost of APs propagating along an axon with Na+ chan-
nels clustered on lipid rafts if both axons have the same overall
Na+ channel density (Figure 9A). Equivalently, the propagation
velocity of APs is also the same in both types of axons, if the
Na+ channel density is kept constant (Figure 9B). Our results
show that the observed effect on the metabolic cost is due solely
to the reduced equivalent Na+ channel density. That is, reducing
the density of Na+ channels in the uniformly distributed channels
model produces the same short and metabolically efficient axons
than in the clustered model.

Using our data, we can estimate the efficiency of AP propaga-
tion in C-fiber axons. Here we define the efficiency as Na+ influx
needed to charge membrane capacitance to AP peak/Na+ influx
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FIGURE 9 | Metabolic cost and action potential velocity as a function

of Na+ channel density in a 0.1 µm diameter C-fiber axon. (A) Metabolic
cost and (B) action potential velocity as a function of Na+ channel density in
both axons with uniformly distributed Na+ channels (black) and axons with
clustered Na+ channels (red). Although the overall density of Na+ channels
clearly has an impact on both metabolic cost and velocity, there is no
detectable effect from clustering Na+ channels in lipid rafts.

FIGURE 10 | Efficiency of action potentials for different channel

distributions in a 0.1 µm diameter C-fiber axon. Data was obtained using
both deterministic (blue lines) and stochastic (boxes) simulations.
(A) l = 0.1 µm, L = 8 µm, optimal values given by Zeng and Tang (2009),
Na+ channel density 1800 µm−2, (B) l = 0.2 µm, L = 8 µm, Na+ channel
density 1800 µm−2, (C) l = 0.2 µm, L = 3 µm, Na+ channel density
900 µm−2, based on data on lipid raft placement given by Pristerà et al.
(2012) and personal communication with Amber Finn. (D) Uniform
distribution. On each box, the central mark is the median, the edges of the
box are the 25th and 75th percentiles, the whiskers extend to the most
extreme data points not considered outliers, and outliers are plotted
individually.

per AP. Na+ influx to charge membrane capacitance to AP peak
is given by dCm�V where �V is the AP amplitude. The effective
Na+ influx per AP can be estimated using our simulation data.
For the 0.1 µm diameter C-fiber axon, we have plotted the results
in Figure 10.

The axon with uniformly distributed ion channels is con-
suming almost 50 times the capacitive minimum current nec-
essary to charge its membrane to AP peak. The least inefficient
axon in this figure still is 20 times more expensive than the
theoretical minimum. To check if this inefficiency is specific
to the axon, we simulated a simple spherical membrane using
the same ion channel densities and physiological data than the
axon. We then compare the AP waveform in the spherical com-
partment and the axon in Figure 11. The AP in the axon is

FIGURE 11 | (A) Simulated and recorded action potentials and (B) sodium
current waveform in a uniform channel density axon (Black) and in a soma
(Red). The green curve in (A) is reproduced from Figure 6 in Baker (2005).
The recorded AP is elicited by a long period of current injection, and
therefore the membrane potential before the AP is not representative of
the true resting potential, reported to be -58 mV. The AP is wider and more
metabolically expensive in the axon.

wider than both the AP simulated in our spherical compart-
ment, and recorded APs from DRG cells (Baker, 2005). Note that
the recorded APs were elicited by a rather long current injec-
tion in the cell. In the soma, the effective Na+ current is ∼20
times the capacitive minimum current. This inefficiency factor
is much larger than even notably inefficient axons such as the
squid giant axon (Hodgkin, 1975; Vetter et al., 2001). This inef-
ficiency seems due to incomplete inactivation of Na+ channels.
Indeed, plotting the βh function used for Na+ channels in this
channels reveals a significantly delayed inactivation compared to
that used for Na+ channels in the squid giant axon, for instance
(Figure 12).

In order to confirm this, we simulated a spherical membrane
compartment using physiological data from the C-fiber axon
model, but with the same βh function as the squid giant axon
Na+ channels. The shape of the AP waveform and Na+ current in
this model is plotted in Figure 11. Action potentials in this model
are much shorter than with the original kinetics for Nav1.8, and
the total amount of Na+ current crossing the membrane is cor-
respondingly smaller. This results in a higher efficiency for the
revised kinetics model, the inefficiency factor (Effective Na+ cur-
rent over minimum Na+ current) being∼3, compared to∼17 for
the soma with original Nav1.8 kinetics. These calculations take
into account the difference in the amplitudes of APs between the
two models.

4. DISCUSSION
We find that microsaltatory conduction is possible in C-fiber
axons with Na+ channels attached to lipid rafts, i.e., action poten-
tials (APs) can propagate from one cluster of Na+ channels to
the next in thin C-fiber axons. We also show how late reactiva-
tion of Na+ channels affects the average shape of AP waveforms
and increases the metabolic cost of APs in thin axons. Reducing
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FIGURE 12 | Difference of inactivation kinetics between Nav1.2 (SGA)

and Nav1.8 (C-fiber) channels. Here we plot the βh function, as defined in
the m3h, or 8-state Na+ channel model. β1.8

h is much lower than β1.2
h over

the whole biophysically relevant range.

the density of Na+ channels in both axons with uniformly spaced
Na+ channels and axons with clustered Na+ channels results in
shorter and therefore more metabolically efficient APs.

Varying the length of lipid rafts (l) and the distance between
them (L) effects the shape of AP waveforms because of the associ-
ated changes in the Na+ channel density. Smaller rafts, as well
as rafts placed further apart from each other result in smaller
Na+ channel densitie and reduced AP width. This is due to
reduced reactivation of Na+ channels in the repolarizing phase of
the AP. Because in this phase the membrane potential is already
far from Na+ reversal potential (ENa+ ), a large current, compa-
rable to the current at the peak of the AP, crosses the membrane
through any randomly reactivated Na+ channel.

The reactivation of even a small number of channels main-
tains the membrane potential in a depolarized state longer. This
in turn opposes the repolarization of the membrane, leaving
more time for the possible opening of other channels. This
positive feedback effect makes APs slightly wider in stochas-
tic simulations, where the possible stochastic opening of chan-
nels is taken into account. The discretization of ion channel
conductances amplifies this effect, by increasing the minimum
conductance. Since the effect of the opening of each channel
is bigger in smaller axons (Faisal et al., 2005), reactivation of
Na+ channels results in slightly wider action potentials in thinner
axons.

Our simulations lead to two new findings regarding the
metabolic cost of propagating APs in C-fibers. First, incom-
plete inactivation of Nav1.8 channels, the primary voltage gated
Na+ channels in C-fibers, leads to a long lasting Na+ current.
This in turn creates very wide APs, which are metabolically
very expensive. The Na+ charge transfer necessary for one AP
in a spherical membrane using these Na+ channels is 17 times
more than the minimum charge transfer needed to depolarize

the membrane to AP peak. This value is higher than 4, previ-
ously obtained for squid giant axon channels (Hodgkin, 1975;
Attwell and Laughlin, 2001), and much higher than the very
metabolically efficient channel kinetics (Alle et al., 2009; Sengupta
et al., 2010). However, the latter kinetics are obtained in higher
temperatures and these comparisons should only be used as an
illustration.

Although incomplete inactivation has been shown to allow
fast spiking (Carter and Bean, 2009), it is not clear why slow
firing fibers such as C-fibers exhibit the same phenomena. C-
fibers are quiet in the absence of stimulation, and their firing rate
does not seem to exceed ∼2 Hz (Campero et al., 2004; Obreja
et al., 2010). Presumably, the very slow firing rates of these
high-threshold fibers reduce the impact of metabolic cost of sig-
naling in C-fibers. The very wide APs may have a functional role
by ensuring a strong post-synaptic response (Klein and Kandel,
1980; Augustine, 2001), and thus prioritize APs carried by C-
fibers. Another explanation may be that incomplete deactivation
plays a role in ensuring transmission of APs in noise-prone thin
fibers. Nav1.8 are not the only channels expressed on C-fibers
(Black et al., 2002, 2012; Vasylyev and Waxman, 2012) and there
is evidence for other channel types to be present uniformly along
these axons. It is possible that these channels allow for lower
Nav1.8 densities. The role of the Nav1.8 channels could then be
to ensure a wide action potential, and clustering them together
would lower the overall metabolic cost. More detailed simulations
are needed to test this hypothesis.

We also find that the cost of propagating APs in axons is sig-
nificantly higher than that of an AP in a spherical membrane
compartment. In our simulations, the cost of propagating action
potentials in axons is roughly three times the cost estimated at the
soma. The higher cost is associated with wider APs in the axon
than in the soma. Our simulations use the same Na+ channel
kinetics in the soma model and in the axon, and the broadening
effect can thus only be attributed to the spatial arrangement of the
membrane, as opposed to channels kinetics (Hallermann et al.,
2012 for instance, use different channel kinetics in their model
which leads to narrower APs in axons).

Lipid rafts play a role in organizing trafficking and localization
of proteins on the membrane and the clustering of Na+ channels
over lipid rafts may be beneficial in this context. Lipid rafts may
allow colocalization of ionic pumps and Na+ sensitive channels
with Nav1.8 channels, which may have some beneficial results on
the cell’s ionic homeostasis by placing ion pumps near the sources
of current.

Because there is no myelin sheath around C-fiber axons, the
membrane capacitance and leak conductance are too high for
Na+ clusters to be placed at distances on the order of the axon’s
length constant (λ ≈ 200 µm). In our simulations, the maximum
distance Lmax between lipid rafts which allowed action potential
propagation was ∼20 µm. The proximity of lipid rafts makes the
waveform of the action potential virtually unchanged, compared
to the waveform in an axon with uniformly distributed Na+ chan-
nels. This is in stark contrast with myelinated axons, where the
myelin sheath lowers the capacitance and leak conductance of
the membrane. As a result, nodes of Ranvier can be placed much
further apart.
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