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Editorial on the Research Topic

Machine Learning Techniques on Gene Function Prediction Volume II

Predicting the function of genes is a critical problem in biology. The current generation rate of new
gene sequences is too fast to discover and validate them experimentally, emphasizing the importance
of machine learning. Machine learning techniques have advanced our understanding of gene
function, which have been widely employed to study amongst other things the interaction
among genes and proteins, diseases and differentiation. The power of a combination of machine
learning and biological analysis can be found in our first installment, Machine Learning Techniques
on Gene Function Prediction Volume I, especially in predicting gene and ncRNA function.

We believe it is not the end, so we planned the second special issue on this subject, Machine
Learning Techniques on Gene Function Prediction Volume II. In the first installment, we foundmost
authors paid attention to gene and ncRNA function prediction. This Research topic will further
explore the potential for machine learning applied to gene function prediction. Moreover, we would
also like to share some works on single-cell sequencing data analysis and related machine learning
methods. We are pleased to receive many submissions with the new sight of machine learning
techniques combined with gene function prediction. All of these papers were accepted for
publication with the assistance of professional referees. Twenty-four papers are finally selected
from all submissions after rigorous reviews.

There are seven papers describing protein function prediction or protein identification. Ma et al.
identified Soluble N-ethylmaleimide sensitive factor activating protein receptor (SNARE) proteins
based on iLearnPlus and solved the problem of data imbalance. Coincidentally, Zhang et al. proposed
a machine learning method to recognize SNARE proteins based on SVM and improved the
identification accuracy compared with existing methods. In addition, Wan et al. distinguished
immunoglobulins and non-immunoglobulins by FC* and GC* features, where immunoglobulins are
critical in disease regulation. To identify hormone-binding proteins (HBPs), which are important to
organisms’ growth, Guo et al. present a prediction model HBP_NB, combining with k-mer feature
representation, feature selection, and Naive Bayes. Furthermore, Gong et al. developed a machine
learning method to identify vesicular transport proteins. Besides protein recognition, there are still
two papers on protein function prediction. Li et al. presented a new multi-label classifier to explore
protein function by embedding multi-type features. Meanwhile, Chen et al. provided a computing
method that combined knowledge of the protein-protein interaction network and functional
characteristics to help predict human protein subcellular localization patterns and their potential
biological importance. Chien et al. paid attention to gene expression prediction in T- DNA mutants
through machine learning methods on rice functional gene research.
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With a wide range of mathematical statistics capabilities,
composable machine learning methods can help automate and
analyze complex relationships between genes and disease. Three
papers focused on this issue in general diseases, which contain
heart disease, Alzheimer’s disease, and androgenic alopecia.
Wang et al. predicted the occurrence of heart failure (HF)
events in hemodialysis (HD) patients by the extreme gradient
boosting method. To overcome the curse of dimensionality on
Alzheimer’s disease gene expression datasets, Wan et al. designed
a hybrid gene selection pipeline combined with deep learning
methods to improve the classification of this disease. Li et al.
focused on mental stress recognition of depression disorders in
patients with androgenic alopecia (AGA), and they analyzed the
effect of psychological interventions in the rehabilitation of AGA
patients by machine learning and fuzzy K-means clustering
method FAW-FS, which combined with metaheuristic, the
Filter and Wrapper algorithms. Li et al. created MIMRDA to
classify top-ranked miRNAs. The method incorporated miRNA
and mRNA expression profiles to predict associations between
miRNA and disease and identify key miRNAs and recommended
potential biomarkers as well. Two papers reviewed machine
learning and deep learning methods applied in disease-gene
related. Gong et al. discussed the research progress of
lncRNAs and reviewed disease-related lncRNA methods and
the relationships between lncRNAs and diseases. Fang et al.
reviewed machine learning and deep learning methods for
Ischemic Stroke disease.

Five papers focus on discussing the gene and cancer
relationship. Chen et al. provided a computing method based
on machine learning to predict anticancer peptides (ACPs),
which is very important for the discovery of new cancer
treatment drugs. Huo et al. employed dysregulated networks
(DNs) to analyze subtypes of breast cancer, they measured the
regulation strength between genes based on gene expression
values. Huang et al. explored the function of DEG between
lung cancer tissues and revealed the molecular driving
mechanism of lung cancer. Chen et al. concentrated on Lung
squamous cell carcinoma (LUSC) study, they screened key factors
that regulate the initiation and progression of this disease by a
metric learning analysis method. In addition, Han et al. reviewed
sparse representation methods’ applications in bioinformatics,
such as cancer molecules and gene expression profiles fields.

Another aspect is studying the interactions between gene and
protein, gene and gene, protein and protein. DNA-protein
interactions, such as gene expression and transcriptional
regulation, are tightly linked to DNA-binding proteins (DBP),
Jia et al. proposed a feature extraction method that fused multiple
PSSM features to predict DBP. To deepen the understanding of
the principle of protein interactions, Tang et al. proposed a new
hierarchical attention network structure HANPPIS predicting

protein-protein interaction sites. For the study of gene-gene
interactions (GGIs), most methods are based on assumptions
about GGIs forms. To improve statistical performance, Guo et al.
tested GGIs based on a maximal neighborhood coefficient
perspective in Genome-wide association studies, which
outperformed other baseline methods. Besides, Xu et al.
reviewed drug-target interaction and specific applications of
machine learning technique prediction methods. Notably, our
special issue showed a new sight on multi-omics data storage and
parallel processing. Mrozek et al. gave a large-scale and serverless
computational approach for improving the quality of NGS data
supporting big Multi- Omics data analyses.

To conclude, papers in this special issue have demonstrated
the power of machine learning techniques in a broad range of
gene function studies, especially in inferring the relationships
between genes and diseases. We highly expect such studies will
get great attention. Especially, more insightful results are
desirable for promoting the development and progress of
biology. Finally, we thank all efforts of the authors, reviewers,
and staff at the Frontiers in Genetics editorial office.
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Lei Xu1, Xiaoqing Ru2 and Rong Song1*
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Exploring drug–target interactions by biomedical experiments requires a lot of human,
financial, and material resources. To save time and cost to meet the needs of
the present generation, machine learning methods have been introduced into the
prediction of drug–target interactions. The large amount of available drug and target
data in existing databases, the evolving and innovative computer technologies, and
the inherent characteristics of various types of machine learning have made machine
learning techniques the mainstream method for drug–target interaction prediction
research. In this review, details of the specific applications of machine learning in drug–
target interaction prediction are summarized, the characteristics of each algorithm are
analyzed, and the issues that need to be further addressed and explored for future
research are discussed. The aim of this review is to provide a sound basis for the
construction of high-performance models.

Keywords: machine learning, drug–target interactions, data, features, task algorithms, drug development

INTRODUCTION

Tens of thousands of known diseases threatening human health, and new ones are being added
every year. They include emerging diseases (e.g., the currently prevalent COVID-19) and diseases
that have plagued the public for many years and have no cure so far (e.g., Parkinson’s disease and
Alzheimer’s disease) (Xu et al., 2018a, 2019). Rapidly and accurately discovering drugs that can
effectively treat diseases is very important for the development of society. Long cycle and high cost
are common phenomena in current drug development, but these fail to guarantee a high success
rate. Many steps are required from drug development to final marketing, including drug discovery,
preclinical and clinical trials, and marketing approval (Srivastava et al., 2019; Li Z. et al., 2020).
The overall success rate of drug discovery and preclinical studies, which are part of the laboratory
development phase, is approximately 0.05–0.1%, and less than 1% of the candidate compounds are
likely to have the expected effect and proceed to the clinical trial phase. Investigating drug–target
interactions is an important step in the drug discovery process and can improve the success rate
of new drug discovery (Chen et al., 2019; Huang et al., 2020; Zeng et al., 2020b). These not only
signal the need to expend significant resources to find and test candidate compounds one by one
during the drug development phase to confirm that they meet expectations, but also demonstrate
the importance of drug–target interaction prediction in the overall drug development process.
Supplementally, an obvious drawback of biomedical experiment is that it does not allow for rapidly
finding and solving problems, which can be detrimental to the treatment of emerging and highly
infectious diseases. Therefore, machine learning methods have been introduced into the prediction
of drug–target interactions.
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Machine learning, a computer technology for data analysis
designed to build predictive models using datasets, has become
an important means of modern biological research (Xu et al.,
2018b; Yang et al., 2018; Liu et al., 2019, 2020; Tang et al.,
2020; Zeng et al., 2020a). It has become a mainstream technique
for analyzing and solving problems involved in drug–target
interaction prediction studies (Cai et al., 2018; Stephenson et al.,
2019; Zeng et al., 2019; Fu et al., 2020; Wang J. et al., 2020).

THREE FACTORS

The existing data background, powerful toolkits, and current
status and requirements have promoted machine learning to
become the mainstream method of drug–target interaction
prediction.

(1) Existing databases. With the emergence of sequencing
technology, high-throughput technology and computer-aided
drug design method, a large number of proteins have been
sequenced and many compounds have been synthesized. On
the basis of existing related works and accumulated experience,
relevant data has been organized and various databases have
been constructed. Most of the data in these databases are
publicly available and free to download, which provides a good
data foundation for solving drug–target interaction prediction
problems by machine learning. Researchers can collect datasets
from databases that cover different information according to
their needs (Zheng et al., 2019, 2020). Some representative
databases are briefly described here.

UniProt database1: UniProt is supported by many institutions,
and is the most informative and comprehensive protein database
(Consortium, 2015). It consists of five sub-databases: Swiss-Prot,
TrEMBL, UniRef, UniParc, and Proteomes. Each sub-database
has its own unique function. For example, Swiss-Prot is a high-
quality, manually annotated, non-redundant database, in which
protein annotations are derived mainly from the literature or
E-value verification calculation analysis results. Proteomes is a
database that provides proteomic information for species with
fully sequenced genomes.

PubChem database2: PubChem is an open chemistry
database that collects information including chemical structures,
identifiers, physicochemical properties, and biological activities
of chemical molecules (Kim et al., 2016, 2021). It is the world’s
largest database with free access to chemical information, and
currently covers 109 million compounds. PubChem has become
an important chemical information resource for scientists,
students, and the public.

DrugBank database3: As a bioinformatics and
cheminformatics resource, DrugBank combines detailed
drug data (i.e., chemical, pharmacological, and pharmaceutical)
with comprehensive target information (i.e., sequence, structure,
and pathway) (Wishart et al., 2018). The latest DrugBank release
(version 5.1.8.) contains 14,443 drug molecules and 5,244 non-
redundant protein sequences associated with these drugs. The

1https://www.uniprot.org/
2https://pubchem.ncbi.nlm.nih.gov/
3https://go.drugbank.com/

database describes not only clinical information on drugs, namely
drug side effects and drug–drug interactions, but also contains
molecular-level data, such as chemical structures of drugs and
proteins targeted by drugs (Wishart et al., 2008). One significant
function of DrugBank is that it supports comprehensive and
complex searches, so it is used widely by the pharmaceutical
industry, medicinal chemists, pharmacists, physicians, students,
and the general public.

KEGG database4: KEGG was established in 1995 by the
Kanehisa Laboratories at the Bioinformatics Center, Kyoto
University, Japan, and is now one of the most commonly
used international bioinformatics databases (Kanehisa and Goto,
2000). KEGG is a database used to understand the high-level
functions and practicability of biological systems from molecular-
level information (Li H. et al., 2020; Wang et al., 2021a)
(especially large-scale molecular datasets generated by genome
sequencing and other high-throughput techniques), of which
the data information can be roughly classified into four major
categories: system information, genetic information, chemical
information, and medical information.

BindingDB database5: BindingDB is a publicly available, web-
accessible database for measuring binding affinity, focusing on
the interactions between proteins considered to be drug targets
and drug-like small molecules (Liu et al., 2007). BindingDB
currently contains 2,114,159 binding data between 8,202 protein
targets and 928,022 small molecules.

(2) Powerful toolkits and web servers. Bioinformatics and
cheminformatics are emerging interdisciplinary fields that use
computers to solve biological and chemical problems. Many
toolkits and web servers have been developed (Zuo et al., 2017;
Zou et al., 2019; Lin et al., 2020; Pang and Liu, 2020; Shao
et al., 2021), which can help to solve problems in drug–target
interaction prediction.

STITCH6: STITCH not only includes experimentally validated
drug–target interaction data, but also integrates predicted drug–
target relationships (Kuhn et al., 2007). This website can clearly
depict the protein–protein interactions, protein–compound
interactions, and the strength of the interactions.

SwissTargetPrediction7: SwissTargetPrediction can estimate
the most likely macromolecule to be targeted by a biologically
active small molecule and count the percentage of each target type
targeted by the small molecule (Gfeller et al., 2014).

RDkit8: RDkit is a powerful python toolkit for chemical
information, which has functions such as acquiring molecule
information from multiple formats, obtaining information about
atoms, bonds, and rings in molecules, generating molecular
descriptors and molecular fingerprints of compounds, and
calculating similarities of compound structures (Landrum, 2013).

OpenChem9: OpenChem is a pytorch-based deep learning
toolkit for computational chemistry and drug design,

4https://www.genome.jp/kegg/
5https://www.bindingdb.org/bind/index.jsp
6http://stitch.embl.de/
7http://www.swisstargetprediction.ch/
8https://www.rdkit.org/
9https://mariewelt.github.io/OpenChem/html/index.html
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which contains Feature2Label, Smiles2Label, Graph2Label,
SiameseModel, GenerativeRNN, and MolecularRNN
(Korshunova et al., 2021). Users can train predictive models for
classification, regression, and multi-task problems, and develop
generative models for generating novel molecules with optimized
properties. Its goal is to make deep learning an easy-to-use tool
for researchers in computational chemistry and drug design.

iFeature10: iFeature is a python toolkit that can compute
various structural and physicochemical property descriptors
from protein and peptide sequences. iFeature can compute and
extract comprehensive spectra for 18 major sequence coding
schemes, including 53 different types of feature descriptors. In
addition, iFeature integrates 12 different types of commonly
used feature clustering, selection, and dimensionality reduction
algorithms (Chen et al., 2018).

Pse-in-one11: Pse-in-one is a python toolkit that generates
all possible pseudo-components of DNA, RNA, and protein
sequences. It covers a total of 28 different patterns, 14 for DNA
sequences, 6 for RNA sequences, and 8 for protein sequences (Liu
et al., 2015, 2017). This toolkit is widely and increasingly used by
researchers to tackle various problems in computational biology,
and a more specific and detailed version BioSeq-Analysis (Liu,
2019) has recently been released.

(3) Current status and requirements. With the development
of high-throughput technologies, many compounds and proteins
have been mined. The human genome contains more than
20,000 genes, and approximately 80% of them can encode
one or more proteins. Only a small number of proteins
have been identified as pharmacologically active and are
targets for currently approved drugs. The pharmacological
functions of most proteins remain to be demonstrated. This
is also true for most compounds. For example, there are
currently 111 million compounds in the PubChem database,
but proteins that could interact with many of these compounds
are unknown. In addition, it is obvious that the traditional
approach of wet experiments is not feasible for some emerging,
highly infectious and destructive new pathogens, such as the
SARS, H7N9, Ebola, Mers, and COVID-19 viruses (Cheng
et al., 2021). Considering the huge amounts of available
data and large numbers of diseases that cause serious social
health risks, using computational chemistry-related theories
and computer simulation methods to computationally predict
drug–target interaction can effectively improve efficiency.
Machine learning-based methods have become effective ways
to compensate for the shortcomings of traditional biochemical
experimental methods.

APPLICATIONS

The current drug–target interaction prediction procedures are
shown in Figure 1. Existing studies on drug–target interaction
prediction have shown that using different calculation or
optimization methods in the steps of data set acquisition, feature

10https://ifeature.erc.monash.edu/
11http://bioinformatics.hitsz.edu.cn/Pse-in-One/

extraction and processing, and task algorithm selection can build
models with good performance.

(1) Dataset acquisition. Redundant data, unbalanced
categories, and unrepresentative samples can lead to long
experimental cycles, as well as inaccurate and biased experimental
results. Different data acquisition methods have been used to
avoid or reduce the impact of these problems on model
construction. For example, Wang et al. (2010) collected negative
examples by random selection to solve the data imbalance
problem. Wang et al. (2018) also used random selection to
extract negative examples, and this operation was performed
five times to reduce the impact of the unverified negative
samples. Pdti-EssB (Mahmud et al., 2020) used random under-
sampling and under-sampling clustering to address the data
imbalance problem.

Currently, most target molecules are proteins, of which four
protein families [kinases, G protein-coupled receptors (GPCRs),
ion channels, and nuclear receptors] account for 44% of the
target molecules, and 70% of the currently developed drugs are
targeted to these four protein families. Datasets established by
Yamanishi et al. (2008), which contain the interactions between
these four proteins and drugs,have been widely used (Öztürk
et al., 2018; Mahmud et al., 2020). The relevant data can
be downloaded from http://web.kuicr.kyoto-u.ac.jp/supp/yoshi/
drugtarget/. Most of the computational approaches based on
these datasets have focused on binary classification, that is, they
only explore whether a drug can interact with a particular protein.
To further accelerate process and reduce cost, drug–target affinity
has been explored in some studies. Drug–target affinity is a key
property that determines the strength of the interaction between
the small molecule drug and the target. The commonly used
datasets for predicting drug–target affinity are the Kinase (Davis
et al., 2011) and KIBA (Tang et al., 2014) datasets.

(2) Feature extraction and processing. Accurate and
comprehensive descriptions of the biological or chemical
functional information of drugs and targets in numerical
form play an important role in the construction of high-
performance models. Feature extraction of drugs and targets
can be performed from different perspectives (Cheng, 2019;
Zhao T. et al., 2020). For example, iGPCR-Drug (Xiao et al.,
2013) obtains drug features by discrete Fourier transform
of drug molecular fingerprints and extracts GPCR features
according to pseudo amino acid compositions. DrugE-Rank
(Yuan et al., 2016) represents drug features according to general
descriptors and extracts target features according to amino acid
composition, transformation, and distribution. TargetGDrug
(Hu J. et al., 2016) extracts drug features by applying wavelet
transform to drug molecular fingerprints and extracts GPCR
features according to evolutionary information. Ru et al. (2020)
extracted protein features using the distance-based top-n-gram
algorithm and obtained drug features according to general
descriptors. Chemical databases store information in a textual
representation and the simplified molecular input line entry
specification (SMILES) format is a common standard used in
many cheminformatics software. Each SMILES string encodes
structural information that can be used to predict complex
chemical properties, and a large number of machine learning

Frontiers in Genetics | www.frontiersin.org 3 June 2021 | Volume 12 | Article 6801179

https://ifeature.erc.monash.edu/
http://bioinformatics.hitsz.edu.cn/Pse-in-One/
http://web.kuicr.kyoto-u.ac.jp/supp/yoshi/drugtarget/
http://web.kuicr.kyoto-u.ac.jp/supp/yoshi/drugtarget/
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-12-680117 June 15, 2021 Time: 17:43 # 4

Xu et al. Machine Learning, Drug–Target Interaction

FIGURE 1 | Steps for predicting drug-target interactions. The two- and three-dimensional structure diagrams of the drug are from PubChem.

models can extract molecular features of compounds according
to SMILES strings. Recently, convolutional neural networks
(CNNs) and recurrent neural networks have been used for
molecular feature extraction. Hirohara et al. (2018) transformed
SMILES strings into two-dimensional matrices and used CNNs
to extract molecular features. Goh et al. (2017) applied natural
language processing to SMILES feature extraction and used
recurrent neural networks for molecular strings.

The presence of invalid or redundant features not only
reduces the accuracy of the experiment result but also lengthens
the experimental period. Low-dimensional and comprehensive
information feature sets are expected. Therefore, a variety of
methods for processing features have been applied to related
rearch (Zou et al., 2016a,b; Guo et al., 2020; Zhang G. et al.,
2020; Zhao X. et al., 2020). For example, to reduce the noise
between features, Li et al. (2017) used principal component
analysis (PCA) to reduce the dimensionality of drugs and targets
features. Tabei et al. (2012) combined 881 substructures of drugs
and 876 Pfam domain structures of targets by tensor product
to form feature vectors of drug–target pairs. MFDR (Hu P.-W.
et al., 2016) used autoencoders as the building blocks of a deep
network to reconstruct drug and protein features into a low-
dimensional new representation. DeepConv-DT (Lee et al., 2019)
used CNNs on raw protein sequences to capture local amino acid

residue information by convolving amino acid subsequences of
various lengths.

(3) Selection of task algorithms. Several task algorithms
have been used for drug–target interaction prediction, such as
classification algorithms, learning to rank algorithms, and deep
learning algorithms (Cheng et al., 2019; Lv et al., 2019; Tao et al.,
2020; Zhang Y. et al., 2020).

Most of the existing studies treat drug–target interaction
prediction as binary tasks, and different classification algorithms
have been applied. For example, Bleakley and Yamanishi (2009)
proposed a bipartite local model (BLM) based on a support vector
machine (SVM) kernel to predict drug–target relationships. LRF-
DTI (Shi et al., 2019) is a drug–target interaction prediction
method using Lasso for feature extraction and random forest for
classification. Yamanishi et al. (2010) used a distance learning
algorithm as a classifier. Pred-binding (Shar et al., 2016) extracted
molecular structure and protein sequence features, and used
support vector machines and random forests to classify whether
drugs and targets can be docked.

Drug–target interaction prediction can be regarded as a
ranking task. Exploring the strength of drug–target interactions
can shorten the drug development process and save expenses.
Zhang et al. (2015) applied six learning to rank algorithms
(Prank, RankNet, RankBoost, SVMRank, AdaRank, and ListNet)
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to virtual screening of drugs,their study showed that learning
to rank is an effective computational strategy, especially
because of its novel use in cross-target virtual screening and
heterogeneous data integration. DrugE-Rank (Yuan et al., 2016)
used protein amino acid composition, transformation and
distribution information, compound descriptor information, and
output information of six classifiers as features to be input into
the learning to ranking algorithm to improve the performance of
drug-target interaction prediction.

Neural networks have also been used to solve related problems
in the prediction of drug–target interactions. Prado-Prado et al.
(2011) used the entropy information of drug–protein complexes
and neural networks to predict drug–target affinity values.
DeepDTA (Öztürk et al., 2018) proposed a deep-learning based
model that used only sequence information of both targets and
drugs, One novel approach used in this work is the modeling
of protein sequences and compound 1D representations with
CNNs. GraphDTA (Nguyen et al., 2019) focused on the fact
that molecules are by nature formed by chemical bonding of
atoms, and used graph convolutional network to learn drug-
target binding affinity.

DISCUSSION

Under the background of the existing chemical and biological
computing theory, big data and rapid development of computer
technology, the use of machine learning for drug-target
interaction prediction does have many benefits, but there are still
some problems that need to be further explored.

(1) Data heterogeneity. Most of the existing studies are based
on publicly available data in databases that collect data with
different focuses, and each database has its own criteria for
judging the data. Drugs, targets, and related data from different
databases often have different terminological descriptions and
different organization structures, such inconsistencies make data
integration difficult.

(2) Effective representation of biological and chemical
features. Feature engineering is a key concern in building
machine learning models. There are often technical difficulties
in how to effectively extract key features and how to deal with
data with high dimensionality. Existing studies have shown that
the features of proteins and drugs can be extracted from a
variety of angles, and the combination of information from
these angles can achieve complementary effects. Most drug–
target interaction prediction studies only extract relatively one-
sided information, and do not comprehensively consider the
information from multiple perspectives. In addition, most studies
have focused on extracting drug molecule and protein features
separately, ignoring the potentially valid association that may
exist between drug and target. Moreover, the direct concatenation
of biologically unrelated features may lead to a decrease in
prediction accuracy.

(3) Characteristics of task algorithms. The classification,
ranking, or deep learning methods used in drug–target
interaction prediction all have their own characteristics. Different
computational approaches can be used to solve different

problems in drug–target interaction prediction, however, these
algorithms also have shortcomings. Classification is the simplest
and most understandable task. However, there is an obvious
and long-standing defect in this task that it is necessary to
collect negative samples. Most existing classification studies
take experimentally validated drug–target pairs with known
interactions as positive samples, and unvalidated or unknown
drug–target pairs as negative examples. Among these negative
examples, there may be positive samples that have not been
accurately validated, the performance of a model that is based on
such a dataset will be biased.

On the basis of the existence of one-to-many or many-to-
many relationships between queries and documents, learning
to rank can be used in multi-target drug discovery. Early drug
development followed the “one drug, one target” principle,
with the aim of finding high-affinity, high-selective drugs
for a specific receptor associated with a particular disease.
However, the number of complex diseases is increasing and
the proteins associated with these diseases are not limited
to one, therefore drug combinations are used to achieve the
optimal therapeutic effect. Clinical pharmacology studies have
shown that drug combinations greatly increase the incidence
of adverse drug reactions, but because of the lack of multi-
target drugs, such risks have to be taken. Multi-target drugs are
undoubtedly an important area for future research. Therefore,
using the characteristics of learning to rank to tackle the
multi-target problem of drugs deserves to be explored further.
Learning to rank was originally applied for information retrieval.
Its output is a relative score of correlation between queries
and documents (Cheng, 2020; Ru et al., 2021). This is not
sufficient for studies that require accurate prediction of drug–
target affinities.

The use of neural networks for predicting accurate drug–target
affinity values has shown great potential in this research area.
Neural networks can fuse drug and target features, which have
changed the current situation of simple concatenation or tensor
products of drug and target features. Deep learning contains
more neural network structures with multiple implicit layers
compared with traditional machine learning, which allows deep
learning to handle large datasets and identify complex patterns
from the learning process. But for the same reason, neural
networks require much more execution time than classification
or ranking algorithms. It will lead to overfitting when the drug
and target feature dimensions are high.

Although existing machine learning methods have opened a
new area in drug–target interaction prediction, they have not
achieved satisfactory results so far. Therefore, there is still a
need to develop new theoretical and computational methods for
drug–target interaction prediction.

CONCLUSION

Drug–target interaction prediction can help to screen out
unsuitable compounds and is an important step in the
development of new drugs. In this review, we describe the
importance of drug–target interaction prediction, analyze in
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detail the three main reasons why machine learning has become
a mainstream technique, summarize the specific applications of
machine learning methods in each step of building machine
learning models, analyze the shortcomings of existing research
methods, and discuss several aspects that can be further explored
(Wei et al., 2014, 2017a,b, 2018, 2019; Ding et al., 2017, 2019,
2020a,b; Jin Q. et al., 2019; Jin S. et al., 2019; Li J. et al., 2020;
Su et al., 2020; Wang H. et al., 2020; Zeng et al., 2020c,d; Zhai
et al., 2020; Wang et al., 2021b). This review provides meaningful
perspectives for future drug–target interaction prediction studies,
especially the application of learning to rank to deal with multi-
target drug problems.
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Anticancer peptides (ACPs) have provided a promising perspective for cancer treatment,
and the prediction of ACPs is very important for the discovery of new cancer
treatment drugs. It is time consuming and expensive to use experimental methods to
identify ACPs, so computational methods for ACP identification are urgently needed.
There have been many effective computational methods, especially machine learning-
based methods, proposed for such predictions. Most of the current machine learning
methods try to find suitable features or design effective feature learning techniques
to accurately represent ACPs. However, the performance of these methods can be
further improved for cases with insufficient numbers of samples. In this article, we
propose an ACP prediction model called ACP-DA (Data Augmentation), which uses
data augmentation for insufficient samples to improve the prediction performance. In
our method, to better exploit the information of peptide sequences, peptide sequences
are represented by integrating binary profile features and AAindex features, and then
the samples in the training set are augmented in the feature space. After data
augmentation, the samples are used to train the machine learning model, which
is used to predict ACPs. The performance of ACP-DA exceeds that of existing
methods, and ACP-DA achieves better performance in the prediction of ACPs
compared with a method without data augmentation. The proposed method is available
at http://github.com/chenxgscuec/ACPDA.

Keywords: anticancer peptide prediction, data augmentation, feature representation, multilayer perception,
machine learning

INTRODUCTION

With the increase in population age, cancer has become one of the most threatening diseases for
humans (Bray et al., 2018; Zhang et al., 2020). The complexity and heterogeneity of cancer make
it difficult to treat. Traditional clinical methods such as surgery, radiotherapy, and chemotherapy
can be used to treat cancer, but the side effects of these methods are very obvious and can cause
great discomfort for patients (Doja et al., 2020). Although traditional anticancer drugs are effective,
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their shortcomings, such as gastrointestinal damage (Mitchell,
2006), are also notable and can easily cause multidrug tumor
resistance (Holohan et al., 2013; Wijdeven et al., 2016). In view
of these problems, it is urgent to find and design novel cancer
treatments and anticancer agents to fight cancer. In recent years,
due to their high specificity, low production cost, and low
toxicity profile, peptides have emerged as alternative anticancer
agents (Otvos, 2008).

Anticancer peptides (ACPs), a class of naturally occurring
important defense substances, provide a new direction for
research involving novel anticancer drugs. ACPs are usually short
peptides with a length of 10–50 amino acids. Since ACPs only
interact with the anionic cell membrane components of cancer
cells, they exhibit extensive cytotoxicity against a variety of cancer
cells but not normal cells (Barras and Widmann, 2011; Boohaker
et al., 2012). There are currently many peptide-based therapies
being evaluated for their efficacy in treating tumors. However,
only a few peptides can be used for clinical treatment. Therefore,
the discovery of new ACPs is of great significance to the successful
clinical application of these peptides. An increasing number of
ACPs from protein sequences have been identified and verified
by experiments (Tyagi et al., 2013), but it is time consuming
and expensive to use experimental methods to identify ACPs.
Therefore, computational methods for ACP identification are
urgently needed.

There are many computational methods in the field of
bioinformatics, that are used to solve different kinds of
bioinformatics problems (Zou et al., 2018; Zou, 2019; Deng
et al., 2020; Huang et al., 2020). There are many computational
methods, especially machine learning-based methods, for the
identification of ACPs. Anti-CP was the first computational
tool based on a support vector machine (SVM), which used
sequence-based features and binary profiles (Tyagi et al., 2013).
Hajisharifi et al. (2014) considered Chou’s pseudo amino acid
composition (PseAAC) and local alignment kernel for the
prediction of ACPs (Amanat et al., 2020; Hasan et al., 2020;
Naseer et al., 2020). Chen et al. (2016) developed a method
based on the optimization of g-gap dipeptide components. Li
and Wang (2016) selected the amino acid composition, average
chemical shifts, and reduced amino acid composition to represent
ACPs. Wei et al. (2018) developed a feature representation
learning model with a two-step feature selection technique to
improve the prediction of ACPs. Xu et al. (2018) proposed
using 400-dimensional features with g-gap dipeptide features
for ACPs. Boopathi et al. (2019) applied a two-step method to
obtain optimal feature vectors, which were used as inputs for
a SVM. Ge et al. (2019) proposed a generalized chaos game
representation (CGR) for ACP identification. Ge et al. (2020)
used different features and multiple classifiers and the classifier
outputs were used as inputs for a SVM, which was used to
identify ACPs. Yu et al. (2020) explored three different deep-
learning architectures and found that recurrent neural networks
are superior to other architectures. Zhao et al. (2020) used a deep
belief network to encode the sequences and chemical features of
ACPs and applied random relevance vector machines to identify
ACPs. Yi et al., 2019 proposed a deep learning long short-
term memory (LSTM) neural network model called ACP-DL to

predict novel ACPs. Agrawal et al., 2020 used various features
and different machine learning classifiers on two datasets for the
prediction of ACPs.

However, the number of ACPs involved in the above methods
did not exceed 1000 cases, which is not a large number. The
performance of these methods could potentially be further
improved if additional ACPs are considered. In this article, we
use data augmentation to increase the number of samples in
the training set and further improve the performance of ACP
prediction methods based on machine learning. Specifically, we
propose an ACP prediction model with Data Augmentation,
named ACP-DA. In our method, binary profile features (BPFs)
and the features that describe the physicochemical properties
of amino acids are concatenated to represent peptides, and the
samples in the training set are augmented in the feature space.
The samples after data augmentation are used to train a machine
learning model, which is used for the prediction of ACPs.

The flowchart of ACP-DA is shown in Figure 1. There are
four major steps in our method. First, given peptide sequences as
the input, each sequence is preprocessed to equal length. Second,
the peptide sequences are represented by concatenating BPFs
and AAindex features selected based on minimum redundancy
maximum relevance (mRMR). Third, data augmentation is
performed in the feature space of samples in the training set.
Ultimately, the data-augmented samples are used to train a
multilayer perception (MLP) model, and the trained MLP model
assigns labels to the samples in the testing set. To evaluate the
performance of our method, we used five-fold cross-validation
to evaluate ACP-DA based on two benchmark datasets: ACP740
and ACP240. We discuss the performance of this method with
different parameters and evaluate the effect of data augmentation
based on different classifiers. The experimental results show that
data augmentation can help improve the prediction of ACPs
under the condition of using suitable classifiers, and our method
is suitable for ACP prediction.

MATERIALS AND METHODS

Datasets
A good dataset is very important for establishing a reliable ACP
prediction model. In recent years, several excellent datasets have
been established (Wei et al., 2018; Yi et al., 2019). We selected
two benchmark datasets, ACP740 and ACP240, which have more
samples (Yi et al., 2019) than others. The similarities between
the two datasets were as follow: ACPs verified in the experiment
were regarded as positive samples, and anti-microbial peptides
(AMPs) without anticancer function were regarded as negative
samples. CD-HIT was used to remove the peptide sequences
with a similarity of more than 90%. The difference was that
ACP740 was from Chen et al.’s and Wei et al.’s studies, while
ACP240 was from Yi et al.’s studies. There were 376 positive
samples and 364 negative samples in ACP740, and there were
129 positive samples and 111 negative samples in ACP240. There
were no overlapping data between ACP740 and ACP240, and
both are non-redundant datasets. These two datasets are available
at https://github.com/haichengyi/ACP-DL.
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FIGURE 1 | Flowchart of ACP-DA. Binary profile features (BPFs) and AAindex features after feature selection were concatenated to represent peptides, and the
samples in the training set were augmented in the feature space. The samples after data augmentation were used to train the multilayer perception (MLP) model,
which was used for the prediction of anticancer peptides (ACPs).

Prediction Framework
To identify potential ACPs, we propose an ACP prediction
model called ACP-DA. Figure 1 illustrates the framework of the
proposed method. First, we preprocess the peptide sequences to
equal length, and the length is selected to be LX amino acids so
that the next feature calculation can be performed. Second, the
AAindex in the iFeature Python package (Chen et al., 2018) is
used to calculate the physicochemical properties of the amino
acids in each sequence, and mRMR (Peng et al., 2005) is then used
for feature selection. BPFs and AAindex features after feature
selection for each peptide sequence are concatenated to represent
a peptide. Third, data augmentation is performed in the feature
space of samples in the training set for subsequent processing.
Finally, the data-augmented samples are used to train the MLP
model; the trained MLP model assigns labels to the samples in
the testing set. The following sections describe the steps in our
framework in detail.

Preprocessing
Since the AAindex in the iFeature Python package can only
encode peptides of the same length, we need to preprocess the
original peptide sequences to obtain peptides of the same lengths.
To obtain the best sequence length, we need to know the length
distribution of all samples. We performed statistical analyses of
the length of the peptides in the ACP740 and ACP240 datasets.
As shown in Figure 2, most of the peptides were less than 60

amino acids in length. To obtain peptides of the same length,
we processed each peptide as follows. For sequences less than LX
amino acids, each peptide was padded with “X” until LX amino
acids were reached. For sequences greater than LX amino acids,
the extra amino acids after LX were removed, and only the first
LX amino acids were reserved. LX can be selected as 40, 50, or 60.
We think the best length can be derived from the three numbers.

FIGURE 2 | Sequence length statistics for all peptides in the ACP740 and
ACP240 dataset.
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Representation of Peptides
The main objective of feature representation is to convert
peptides of different lengths into fixed-length feature vectors
(Zhang and Liu, 2019). The unprocessed peptide sequence P can
be represented as:

P = p1p2...pL

where p1 is the first residue of P and pL is the last residue of P. L
is the length of P. pi (1 ≤ i ≤ L) is an element of the standard
amino acid alphabet {A, C, D, E, F, G, H, I, K, L, M, N, P, Q, R,
S, T, V, W, Y}. After preprocessing, the peptide sequence can be
expressed as:

P = p1p2...pLX

Different feature representation methods describe different
properties of peptide sequences. If two features have
complementary characteristics, combining the two features
will help to improve the performance of the predictive model.
However, more features don’t necessarily lead to better
performance. Too many features may cause redundancy,
resulting in performance degradation. So, we tested three
feature representation methods and their concatenations: BPFs,
AAindex, and K-mer sparse matrix.

Binary Profile Features
There are 20 different amino acids in the standard amino acid
alphabet. In BPFs, each amino acid is encoded by a feature vector
composed of zeroes and ones. The first amino acid type A in the
above amino acid alphabet is encoded as f(A) = (1, 0, ..., 0),
the second amino acid type C is encoded as f(C) = (0, 1, ..., 0),
and so on. For each given peptide, the N-terminus of k amino
acids is encoded as the following feature vector:

FBPF = [f (p1),f (p2),..., f (pk)]

Experiments derived from ACP-DL (Yi et al., 2019) show that
the result is best when k is 7, which means that only the first 7
amino acids in each peptide sequence are encoded; therefore, the
dimension of FBPF is 20 × 7 = 140.

AAindex
The physicochemical properties of amino acids represent the
characteristics of biochemical reactions and have been widely
used in bioinformatics research. The AAindex is a database
of amino acid indices representing the physicochemical and
biochemical properties of amino acids (Kawashima et al., 2008).
We used the AAindex in the iFeature Python package to represent
peptides. The AAindex descriptor can only be used to encode
peptides of equal length (Tung and Ho, 2008). The preprocessing
steps in the previous section changed peptides of different lengths
to peptides of equal length for encoding based on the AAindex.
If LX in the above section is set to 40, the AAindex descriptor
calculated for a peptide of 40 amino acids will result in a
21,240-dimensional feature vector. The dimension of the features
is too large, which may cause dimension disaster. mRMR is
an excellent dimension reduction technology, and it has good
application properties in many scenarios. Therefore, we selected
the 50 most informative candidate features by using mRMR for
more efficiency.

K-mer Sparse Matrix
K-mer of peptides is composed of K amino acids. Suppose the
length of a peptide sequence is L, there will be 7K different
possible K-mer and an L− K + 1 step appearing in the
sequence. One peptide sequence is transformed to a 7K × (L−
K + 1) K-mer sparse matrix M, which is a low-rank matrix.
Singular value decomposition (SVD) is used to convert this
matrix into a 343-dimension feature vector.

A new feature vector is formed to represent peptides by
concatenating the above feature representations of each peptide.
If BPFs and AAindex are selected, the dimension of the new
feature vector is 140+ 50 = 190.

Data Augmentation
When using machine learning technology to solve scientific
problems, insufficient data (Han et al., 2020) or data imbalance
(Fu et al., 2020; Gao et al., 2020; Mahmud et al., 2021) issues
are common. Collecting more data can certainly solve these
problems, but sometimes it may be difficult to obtain more data
due to cost restrictions or other reasons. In such cases, data
augmentation can potentially be efficient. Data augmentation has
mainly historically been used in the field of computer vision
(Chaitanya et al., 2021; Wang et al., 2021), and novel samples
can be obtained by flipping, rotating, scaling, and cropping the
original samples in the methods of data augmentation. In the
field of bioinformatics, there will sometimes be data imbalances
(Zou et al., 2016; Wan et al., 2017; Meng et al., 2019). Data
augmentation can be used to solve data imbalance problems
(Chen et al., 2020). Here, we are facing the insufficient sample
problem, which can be solved by data augmentation. Four
oversampling techniques are used to generate new samples in
feature space to improve the performance of the RNA coding
potential prediction model (Chen et al., 2020). Noise adding
oversampling (NAO) is the best. We also use this technique to
generate new samples.

To improve the performance of the ACP prediction model,
we augmented the positive and negative samples in the
datasets, respectively. Data augmentation is achieved by adding
perturbation values to the original samples in the feature space
to generate pseudosamples. The features of a peptide include two
parts: BPFs and the AAindex. BPFs are binary codes composed
of 0 and 1, which are not suitable for adding perturbations. So,
we only add perturbations to the AAindex, and the BPFs remain
unchanged. A new sample Fnew is generated by the following
mathematical formula:

Fnew = Fi ∗ V ∗ a + Fi

where Fi is a random sample from the training samples of peptide
sequences and i = 1, ...,N. N is the total number of positive
(negative) samples. V is a 190-dimensional vector for generating
perturbations that corresponds to Fi. Because perturbations are
not added to BPFs, V is composed of two parts: one is a 140-
dimensional vector of zeros corresponding to BPFs, and the
other is a 50-dimensional random vector with values between
0 and 1 corresponding to AAindex. Thus, perturbations are
added to AAindex features, and BPFs are kept unchanged in the
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pseudosample set Fnew. a is the coefficient of the perturbation and
is set to 0.005 for the ACP740 dataset. We repeat the sampling
process N times to obtain N new samples.

Classifier
The MLP classifier is an artificial neural network composed of
an input layer, a hidden layer, and an output layer. The hidden
layer can be a single layer or multiple layers, and the layers
are fully connected. A back propagation (BP) algorithm is used
to train the MLP classifier (Rumelhart et al., 1986). Due to its
excellent classification performance, this classifier has been used
in many fields of bioinformatics, as noted in Auer et al. (2020).
For implementation, we used the scikit-learn Python package; the
hidden layer was composed of 6 sublayers, each with 100 neurons.
The L2 penalty (regularization term) parameter was 0.01, and
the other parameters were set to default values. We employed
the MLP classifier to train our predictive model. In this work,
we also tested other classifiers, including SVM (Fan et al., 2008),
random forest (RF) (Breiman, 2001), MLP, decision tree (DT),
and extremely randomized trees (ExtraTrees) (Geurts et al., 2006)
classifiers, to build prediction models based on the augmented
data in the training set. Among these classifiers, the MLP classifier
works best according to the experiments section.

Performance Evaluation
We used five-fold cross-validation to evaluate the performance
of ACP-DA. In the evaluation, five metrics were used in
the binary classification tasks. The five metrics were accuracy
(ACC), precision (PRE), sensitivity (SN), specificity (SP), and the
Matthews correlation coefficient (MCC), which were widely used
in bioinformatics (Zhang et al., 2019). These metrics are defined
as follows:

ACC =
TP + TN

TP + TN + FP + FN

PRE =
TP

TP + FP

SN =
TP

TP + FN

SP =
TN

TN + FP

MCC =
TP∗TN−FP∗TN

√
(TP + FN) ∗ (TP + FP) ∗ (TN + FP) ∗(TN + FN)

where TP stands for true positives and FN, TN, and FP stand
for false negatives, true negatives, and false positives, respectively.
MCC is a comprehensive performance evaluation metric.

RESULTS

In this section, we first discuss the effects of two important
parameters on the performance of our method and then compare

the performance of the model for different features. We also
analyze the effect of data augmentation in the case of using
different classifiers. Finally, we compare our method with
existing methods.

Parameter Discussion
Two parameters affect the performance of the model. One is
LX in the preprocessing step, which is the length of the peptide
sequence after preprocessing. LX can be set to 40, 50, or 60.
The other parameter is N, which is related to the number
of new positive (negative) samples in the data augmentation
step. Here, we use the training samples after data augmentation
to build the prediction model with 100, 200, or 300% of the
original positive (negative) sample number as new samples. Thus,
N may be set to 100, 200, or 300% of the original positive
(negative) sample number.

For the ACP740 and ACP240 datasets, the performance
of the prediction models established based on different
parameters is shown in Tables 1, 2. MCC is a comprehensive
performance evaluation metric, and larger MCC values mean
better performance. Therefore, we choose the best parameters
LX 40 and N 100% for ACP740 and LX 40 and N 300% for
ACP240 according to the maximum MCC value. The N value of
ACP240 is larger than that of ACP740, which means that more
pseudosamples are needed for ACP240 than ACP740 because
ACP240 has fewer samples than ACP740.

Comparisons With Different Features
Binary profile feature and k-mer sparse matrix have been proved
to be effective in ACP-DL (Yi et al., 2019), and AAindex has also
been mentioned in physicochemical property based therapeutic

TABLE 1 | Performance of ACP-DA with different parameters based on ACP740
(The best metrics are in bold).

LX N ACC (%) PRE (%) SE (%) SP (%) MCC (%)

40 100% 81.89 84.14 80.59 83.23 64.71

40 200% 82.02 83.46 80.89 83.26 64.56

40 300% 81.49 82.89 80.88 82.15 63.40

50 100% 80.41 83.35 79.02 81.88 62.59

50 200% 82.03 81.51 84.57 79.36 64.68

50 300% 80.27 77.23 86.98 73.35 61.17

60 100% 79.19 80.18 79.54 78.85 58.89

60 200% 78.37 77.72 81.67 75.01 57.21

60 300% 79.73 79.14 81.93 77.47 59.61

TABLE 2 | Performance of ACP-DA with different parameters based on ACP240
(The best metrics are in bold).

LX N ACC (%) PRE (%) SE (%) SP (%) MCC (%)

40 100% 85.42 83.43 92.28 77.59 71.57

40 200% 87.92 87.17 91.48 83.91 76.03

40 300% 88.33 90.11 88.37 88.30 76.68

50 100% 85.00 84.71 88.43 81.11 70.10

50 200% 83.75 84.80 86.12 81.10 68.10

50 300% 85.42 86.48 86.86 83.83 71.03

60 100% 86.25 84.35 92.28 79.37 72.97

60 200% 87.08 86.89 90.74 83.04 74.64

60 300% 87.92 85.70 93.78 81.11 76.26
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peptide predictor (PPTPP) (Zhang and Zou, 2020). BPF and
AAindex were introduced in the previous subsection. The k-mer
sparse matrix was proposed to represent protein sequences (You
et al., 2016), and later used in the representation of peptide
sequences (Yi et al., 2019). To obtain more effective features
or feature combinations, we use the MLP classifier to build
ACP prediction models and test the performance of each model
based on three features and their pairwise concatenations without
data augmentation.

The three features are BPFs, the AAindex, and the k-mer
sparse matrix (k-mer). The concatenations of the three features
are BPF+AAindex, BPF+ k-mer, AAindex+ k-mer and BPF+
AAindex + k-mer. The performance of the models for different
features and feature concatenations is shown in Figure 3. When
the three features are used alone, BPF and AAindex yield the
best performance. Among the four feature concatenations, BPF
+ AAindex yields the best performance for ACP240 and BPF +
AAindex + k-mer yields the best performance for ACP740. The
performance of BPF + AAindex + k-mer on ACP240 is even
worse than that of BPF alone. On the basis of comprehensive
consideration of various factors, we chose the concatenation of
BPF+ AAindex to represent the peptide sequence.

Classifier Discussion
After determining that the concatenation of BPF + AAindex
should be used to represent peptides, we need to consider
which classifier is the best in our method. We analyzed the
performance of the prediction model with data augmentation
on several different classifiers. We considered five different
classifiers, namely, SVM, RF, MLP, ExtraTrees, and DT classifiers,
to build the prediction models. Since MCC is a comprehensive
metric, we used it to evaluate the performance of the prediction
models. The performance of the models on ACP740 and ACP240
is shown in Figure 4.

As shown in Figure 4A, based on the ACP740 dataset,
for the prediction models built using the MLP, RF, SVM,
and ExtraTrees classifiers, data augmentation can improve the

FIGURE 3 | Comparison of prediction models using BPFs, the AAindex, the
k-mer sparse matrix (k-mer), and their concatenations based on ACP740 and
ACP240.

prediction performance according to the MCC value. However,
data augmentation will cause the performance to decrease for
the prediction model established based on the DT. As shown
in Figure 4B, for the ACP240 dataset, data augmentation can
improve the performance of the prediction models established
based on the MLP, SVM, and ExtraTrees classifiers and cause the
prediction performance of the models based on the RF and DT
classifiers to decrease. Therefore, when using the MLP, SVM, and
ExtraTrees classifiers, data augmentation is helpful for improving
the performance of the ACP prediction model. These results
show that the effectiveness of data augmentation is related to the
choice of classifier. RF and DT classifiers are not suitable for our
prediction model.

As deep learning technology has the advantages of strong
learning ability and good portability, it has outstanding
performance in various fields in recent years. Combined with the
MCC value of the two datasets, we chose the MLP classifier to
build the final predictive model.

Comparison With Existing Methods
To verify the effectiveness of our proposed method, we compared
our method ACP-DA with ACP-DL (Yi et al., 2019), AntiCP 2.0
(Agrawal et al., 2020), and DeepACP (Yu et al., 2020). The results
on ACP740 and ACP240 are shown in Figure 5.

Compared with ACP-DL, the advantage of our method lies
in the use of data augmentation. In addition, our method used
the AAindex feature instead of the k-mer sparse matrix in ACP-
DL. Our method with data augmentation outperforms ACP-
DL in most metrics, especially on the two metrics of most
importance MCC and ACC.

As shown in Figure 5A, the performance of our method on
ACP740 was better than that of ACP-DL and AntiCP2.0 and
worse than that of DeepACP according to the MCC value and
ACC value. Figure 5B shows that our method performed better
than other methods on ACP240. The number of samples on
ACP240 was less than that on ACP740. Our method performed
better on ACP240, which indicated that our method was more
suitable for the case of insufficient samples.

DISCUSSION

As a complex disease, cancer involves complex biological
processes. The complex mechanisms of cancer make it
difficult to trace the cause. Despite the emergence of various
cancer treatment strategies, most of the strategies have been
unsatisfactory. Due to its high specificity, high tissue penetration,
low production cost and other advantages, treatment based
on ACPs has become a potential cancer treatment method.
Most ACPs come from protein sequences. The development of
high-throughput sequencing technology has brought an increase
in the number of available proteins, and it is expected that
the number of ACPs will also increase. It is time-consuming
and expensive to use experimental methods to discover ACPs
from protein sequence data. Therefore, it is urgent to develop
computational methods to speed up the identification of ACPs.
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FIGURE 4 | Comparison of the prediction models with and without data augmentation based on (A) ACP740 and (B) ACP240.

FIGURE 5 | Comparison of ACP-DA with existing methods on (A) ACP740 and (B) ACP240.

In this paper, an ACP prediction method called ACP-DA
is proposed. According to the results on the two datasets of
ACP740 and ACP240, our model has good overall performance.
Compared with existing methods, our method has a better effect
in identifying whether the peptide sequence is ACP, and its
accuracy may be attributed to the following reasons.

First, how to use effective feature representation methods
to characterize peptide sequences is a major challenge in
current prediction methods. To find an effective feature
or feature combination, we tested 3 feature representation
methods and their feature combinations: BPF, AAindex,
k-mer, BPF + AAindex, BPF + k-mer, AAindex + k-mer,
BPF + AAindex + k-mer. Experiments on the ACP740 and
ACP240 datasets show that BPF + AAindex obtains the best
performance, so we use BPF + AAindex to represent the
peptide sequences.

Second, we used data augmentation to increase the samples in
the training set for the insufficient samples. Data augmentation
is achieved by generating pseudosamples based on the original
samples. The specific method of generating pseudosamples is to
add disturbances in the feature space of the original sample. The
feature space of the sample is formed by the concatenation of BPF
and AAindex. BPF is a code composed of 0 and 1, which is not
suitable for adding disturbance, so, we only add disturbance on

AAindex to generate pseudosamples. The model is trained with
the augmented data to further improve the performance of the
prediction model.

Finally, various classifiers show good performance in many
classification tasks of bioinformatics. However, it is still unknown
whether our data augmentation method can improve the
performance of prediction models under various types of
classifiers. Therefore, we tested the effect of this method in the
case of using five different classifiers. The results show that data
augmentation is effective when using MLP, SVM, and ExtraTrees,
and data augmentation may not be effective when using RF
or DT. Therefore, we choose the MLP with the best overall
performance as the final classifier.

The main innovation of this article lies in the use
of data augmentation methods. From the experimental
results, the method is of great significance. When using
MLP, SVM, and ExtraTrees as classifiers, the use of data
augmentation can significantly improve the performance of the
prediction model. Moreover, a comparative analysis with other
methods shows that ACP-DA is better than other methods in
most cases.

In short, we provide a new idea for the identification of
ACPs, and hope that ACP-DA will play an important role in the
development of new anticancer drugs.
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CONCLUSION

In this work, we proposed a novel ACP prediction model
called ACP-DA. To establish an effective prediction model,
we concatenated BPFs and the AAindex to represent peptide
sequences. We performed data augmentation in the feature space
and used the augmented data to train the prediction model.
The experimental results show that the proposed method can
effectively distinguish ACPs and non-ACPs. Compared with the
method without data augmentation, ACP-DA achieves better
performance. ACP-DA will be a useful tool for the discovery of
novel potential ACPs.
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Various types of analyses performed over multi-omics data are driven today by

next-generation sequencing (NGS) techniques that produce large volumes of DNA/RNA

sequences. Although many tools allow for parallel processing of NGS data in a Big Data

distributed environment, they do not facilitate the improvement of the quality of NGS data

for a large scale in a simple declarative manner. Meanwhile, large sequencing projects

and routine DNA/RNA sequencing associated with molecular profiling of diseases for

personalized treatment require both good quality data and appropriate infrastructure

for efficient storing and processing of the data. To solve the problems, we adapt the

concept of Data Lake for storing and processing big NGS data. We also propose a

dedicated library that allows cleaning the DNA/RNA sequences obtained with single-read

and paired-end sequencing techniques. To accommodate the growth of NGS data, our

solution is largely scalable on the Cloud and may rapidly and flexibly adjust to the amount

of data that should be processed. Moreover, to simplify the utilization of the data cleaning

methods and implementation of other phases of data analysis workflows, our library

extends the declarative U-SQL query language providing a set of capabilities for data

extraction, processing, and storing. The results of our experiments prove that the whole

solution supports requirements for ample storage and highly parallel, scalable processing

that accompanies NGS-based multi-omics data analyses.

Keywords: next-generation sequencing, data quality, cloud computing, big data, data lake, OMICS data,

serverless, querying

1. INTRODUCTION

Several commercially available sequencing platforms on the market today allow thousands or even
millions of DNA/mRNA sequence fragments (sequence reads) to be obtained simultaneously. Raw
data obtained once the sequencing is complete include a set of many short genome sequence
reads that usually undergo several phases of data analysis. The NGS data pre-processing scheme
preceding a secondary data analysis should include sequence quality control and data processing
phase, covering the removal of low-quality sequences and bases, demultiplexing, removal of
adapters, primers, and contamination, error correction, and detection of enrichment biases. Each
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nucleotide in the DNA/mRNA read is accompanied by
information about the probability of its misidentification. This
probability directly determines the phred quality score, which is
given for the DNA sequence reads in FASTQ files. The quality
scoreQ for a base-call is a logarithmic measure depending on the
probability P of incorrect nucleotide identification (Ewing and
Green, 1998):

Q = −10× log10 P. (1)

High values of the quality score correspond to low probabilities
of misidentification errors, and conversely. Low-quality bases
are often located at the very beginning of the sequence. The
probability of misidentifying nucleotides also increases with the
position in the read. In addition, raw data may be contaminated
with fragments of the adapter sequences that do not belong to
the sequenced material. Therefore, the quality improvement of
NGS sequence reads is vital for further analysis of genomic data
analyses since the presence of poor quality or technical sequences
may degrade the results of the analyses.

At the same time, as a high-throughput technology, NGS
sequencing generates vast amounts of biomedical data. This
raises challenges of Big Data (Mrozek, 2014, 2018) not only due
to the volume of data generated, but also due to the velocity (i.e.,
speed) in which the data is produced in various projects, and
the variety of formats in which the data is delivered. These three
V characteristics (i.e., volume, velocity, variety), typical for Big
Data problems, largely influence the value that can be retrieved
from the data. The implementation of even small projects that
require data from the NGS sequencing of multiple genomes can
pose many problems related to the infrastructure necessary to
perform the task. The infrastructure must provide the needed
storage space and computing power to process large amounts of
information efficiently. Therefore, highly distributed and scalable
environments are recently used to solve the challenges of NGS Big
Data processing and NGS-based analyses performed at various
steps of analysis workflows, from primary to tertiary.

These environments rely on a broad Hadoop ecosystem and
its tools. For example, SeqPig (Schumacher et al., 2013) as a
dedicated library for distributed analysis and processing of large
NGS sequencing data on Hadoop clusters extends the processing
capabilities of Apache Pig and the Pig Latin scripting language.
Apart from processing files in FASTA and FASTQ formats,
the library enables the assessment of the quality of sequences.
Several Hadoop-based solutions were proposed for the secondary
NGS data analysis steps, including initial alignment of short
reads to a reference genome with BigBWA tool (implementing
the Burrows-Wheeler Aligner (Abuín et al., 2015), tag SNPs
selection (Hung et al., 2015), and construction of phylogenetic
trees based on ultra-large DNA sequences (Zou, 2016; Zou
et al., 2016). Within the tertiary analysis of NGS data, the
GenoMetric Query Language (GMQL) (Masseroli et al., 2015,
2018) simplifies the variant analysis in genomic data stored
in Hadoop Distributed File System (HDFS) with a declarative
query language, distributed processing, and integration of
heterogeneous biomedical data sources (Masseroli et al., 2016).
Furthermore, Wiewiórka et al. (2019) proposed a library for

scalable depth of coverage calculations over genomic data on
Apache Spark. These solutions prove that distributed processing
can solve the problems of voluminous and quickly produced data.

On the other hand, the variety of data, which next to the
volume is one of the challenges affecting the NGS data obtained
in several formats after particular phases of data production,
processing, and analysis, causes the need for efficient and scalable
data storage. Big Data lakes that allow storing the data before
and after data analyses in the native formats facilitate gathering
all the data in one place. However, processing the data must
be accompanied by specific steps of data extraction. We first
introduced the Extract, Process, and Store (EPS) process in
Małysiak-Mrozek et al. (2018) for processing biomedical data
with the use of fuzzy techniques. It clearly exposed the extraction
and storing phases that can also be parallelized while processing
big data in a distributed manner.

We adopt this idea in the NGS data processing performed in
this paper to improve processing performance for large amounts
of NGS data while at the same time reducing the operational
overhead by taking advantage of the serverless nature of the Data
Lake Analytics service. However, we also show limitations of the
used data lake platform and the EPS while processing NGS data.

1.1. Related Works
The growing body of research shows that the quality of NGS
data is important for future NGS-based multi-omics data
analyses. There are many approaches and tools dedicated to
processing and cleaning the DNA/RNA sequences obtained
with single and paired-end sequencing techniques in the
literature. First of them, Trimmomatic, introduced by Bolger
et al. (2014), is a tool dedicated to trimming and filtering
next-generation sequencing reads, supporting both single and
paired-end reads. For trimming, it offers two algorithms, one
called “simple,” which tries to find an approximate match
between provided adapter sequence and read, and the second,
called “palindrome mode,” which is dedicated to detecting
contaminants at the end of the reads. It also offers to filter
sequences based on Illumina quality score. According to
performance experiments presented in the paper, it is faster
than comparable tools such as AdapterRemoval, Reaper, or
Cutadapt. Schubert et al. (2016) propose AdapterRemoval v2,
an improvement to an AdapterRemoval introduced previously
in Lindgreen (2012). It is a tool that allows for the trimming of
adapter sequences from both single-end and paired-end FASTQ
reads. It takes advantage of a modified Needleman-Wunsch
algorithm (Needleman and Wunsch, 1970). Additionally, it also
allows for the merging of overlapping paired-ended reads into
consensus sequences. According to the performance experiments
presented in the paper, it offers performance comparable
to Trimmomatic. Another tool that takes advantage of the
Needleman-Wunsch algorithm has been introduced by Roehr
et al. (2017). The authors present FLEXBAR 3.0, an improvement
to previously introduced FLEXBAR (Dodt et al., 2012), which is a
sequence trimming software dedicated to processing NGS reads
and trimming barcode and adapter sequences. It supports five
trimming modes, LEFT, LEFT-TAIL, RIGHT, RIGHT-TAIL, and
ANY. In version 3.0, it introduced multi-threading and SIMD
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vectorization to improve performance over previous versions.
According to benchmarks presented by the authors, it offers
better trimming quality than Trimmomatic but takes two times
longer to process the same number of reads. Criscuolo and Brisse
(2013) introduced AlienTrimmer, a tool dedicated to the removal
of alien sequences such as primer, adapters, or barcode sequences
from raw next-generation sequencing data. The tool supports the
removal of such sequences from both 5′ and 3′ ends. It uses an
algorithm based on the k-mer decomposition of specified alien
sequences and then tries to find occurrences of such k-mers in
the sequence. The authors highlight that k-mer decomposition-
based algorithms, such as the one used in AlienTrimmer, are
prone to decreased accuracy in case of sequencing errors and
when handling short fragments of alien sequences. Another tool
dedicated to trimming adapters and low-quality bases in next-
generation sequencing data, Btrim, has been introduced by Kong
in Kong (2011). When performing adapter trimming, the tool
uses an algorithm that is based on a modified version of Myers’
bit-vector dynamic programming algorithm. When performing
trimming of bases with low quality, it switches to a moving
window algorithm that trims bases if the average quality score is
lower than the predefined threshold. It supports data in FASTQ
for both Sanger and Illumina reads. Smeds and Künstner (2011)
proposed ConDeTri, a content-dependent trimming solution
dedicated to processing and trimming Illumina reads. It supports
the removal of sequencing errors from the 3’ end as well as
the removal of reads with low-quality bases. The algorithm
allows keeping low-quality bases (below the threshold) if they
are surrounded by high-quality bases. Martin, in his work
(Martin, 2011), introduces Cutadapt, which is another tool
dedicated to removing adapter sequences from Illumina reads.
Cutadapt trims at most one adapter sequence in a single run
and does not offer other trimming capabilities. According to
the benchmarks presented in Schubert et al. (2016), it offers
slower performance than AdapterRemoval and Trimmomatic.
Unlike Cutadapt, PEAT (Paired-End Adapter Trimmer) (Li
et al., 2015) does not require providing adapter sequence but
instead detects adapter sequence by finding mutually reverse-
complement region between paired reads. It is also not capable
of processing barcode sequences on 5’ ends, does not take the
read quality scores into account, but for benchmarked datasets,
it offered much better performance in terms of speed than
tools such as AdapterRemoval and Trimmomatic. For trimming
paired-end NGS reads, Skewer (Jiang et al., 2014) adapter
trimmer offers better memory efficiency while being slower than
solutions like Trimmomatic and Btrim.

In addition to tools that are dedicated mostly to trimming
adapter sequences, there are also toolkits, like Kraken (Davis
et al., 2013), FASTX-Toolkit (Gordon, 2008), or ERNE
(Del Fabbro et al., 2013), that allow building advanced pipelines
for analyzing NGS data, where filtering and adapter trimming
is only one of the steps. In terms of the declarative nature
of the adapter trimming, Fuzzysplit, a flexible fuzzy search
library (Liu, 2019) provides a pattern language that can be used
to define adapter patterns that should be detected in target
sequences. However, it does not support any other matching
algorithms and does not consider quality scores from FASTQ

formats. It offers great flexibility at the cost of a steep learning
curve and the requirement to write custom templates for each
supported format.

In terms of addressing Big Data challenges, Expósito et al.
(2020) proposed SeQual for large-scale processing of NGS
reads on Apache Spark. It implements filtering, trimming, and
formatting procedures, operates on FASTQ and FASTA data
formats, and offers a user-friendly graphical user interface.
However, it requires access to the Spark computational cluster.

While there are also other local tools dedicated to trimming
NGS data, such as ea-utils (Aronesty, 2011, 2013), PRINSEQ
(Schmieder and Edwards, 2011), SeqPurge (Sturm et al., 2016),
PE-Trimmer (Liao et al., 2020), StreamingTrim (Bacci et al.,
2014), AfterQC (Chen et al., 2017), ClinQC (Pandey et al.,
2016), UrQT (Modolo and Lerat, 2015), pTrimmer (Zhang
et al., 2019), Fastq_clean (Zhang et al., 2014), they are often
designed as separate programs instead of libraries and only
one of them, Fuzzysplit, offers declarative interface, but has
limited functionality. They are often also not designed for
Big Data processing that takes advantage of Cloud Computing
technologies, except SeQual, which is built on top of the Apache
Spark framework. The downside of SeQual is that the underlying
Apache Spark cluster has to be provided and managed, which
adds operational complexity and requires knowledge about
managing the computing cluster itself.

1.2. Scope of the Work
It is worth noting that most of the works mentioned in
previous sections do not focus on improving the quality of
NGS data at a large scale. Moreover, only one of them provides
declarative querying capabilities for this purpose but with
limited NGS data quality improvement capabilities. Our solution
hybridizes different technological approaches, which finally leads
to possessing three fundamental properties—it is declarative,
addresses challenges of Big NGS Data, and is scalable on the
Cloud. Moreover, unlike SeQual, it does not require complex
management of the computational cluster.

To solve the problems of Big NGS Data, in this paper, we
present the scalable solution that utilizes the Data Lake ecosystem
and serverless computing on the Microsoft Azure platform,
enabling NGS data cleaning in the Cloud. Furthermore, we
show how we can use the Data Lake ecosystem to build an
environment for distributed storing and analyzing NGS data.
This will be demonstrated by implementing solutions designed
to control and improve the quality of reads from raw data. The
results of our experiments show that the storage method and
the degree of parallelism have the most significant impact on
the time necessary to pre-process the sequence in terms of their
quality improvement and thus on the costs of using the Cloud
platform incurred.

2. MATERIALS AND METHODS

The approach we propose for big NGS data cleaning assumes
storing the genomic data in NGS data lake in the Azure Data Lake
Store in Microsoft Azure cloud and performing serverless but
highly scalable processing of the data by formulating processing
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queries in the declarative U-SQL language. The data lake is the
place where data can be stored in its original format, including
structured, semi-structured, and unstructured data. This allows
applying the schema on read approach while processing the
same data for various purposes. In contrast to the schema on
write approach widely used in transactional systems, the schema
on read approach schematizes the data when it is needed.
Furthermore, the U-SQL language combines the declarative
nature of the SQL language with imperative capabilities of C#
programming language to process data in a scalable manner,
which fits the scenario of big NGS data processing. Finally,
serverless computing allows skipping the management of the
servers responsible for data processing and frees the user from
keeping the running servers all the time (which usually increases
costs). By applying the serverless approach, we rely on the
computing resources that are allocated by the cloud provider only
when we need to execute the processing jobs.

In our approach, we process big NGS data stored in NGS
Data Lake in three phases—Extract, Process, and Store (EPS)—
as it is shown in Figure 1. Particular phases of the EPS allow for
the following:

1. Extract—uses various extractors to extract appropriate data
stored in the data lake, read it, and load the data for further
processing,

2. Process—applies developed processors for NGS data to
perform a set of transformations on the extracted NGS data
set; these transformations cover the process of improving the
quality of data,

3. Store—uses various outputters to store the processed data back
in the NGS data lake.

2.1. NGS Data Extraction
Data extraction allows reading data from the specified files
in the data lake. General workflow for data extraction from
a single NGS data file is presented in Algorithm 1. Standard
files (e.g., in FASTQ format) are extracted as a whole (by a
single computational unit, called Allocation Unit or AU)—lines
8–12. Large files in the row-oriented format (see later in this
section) are additionally split into smaller chunks and extracted
in parallel. In both cases, for each DNA sequence read rj in
the file or chunk, the extractor E extracts the data appropriately
(depending on the format) and represents it in the row-oriented
format. The sequence read in a row-oriented format rTj is added

to the data chunk c∗ (a resultant rowset, line 5 and 10).
The symbol T (line 10) denotes transposition, and we use it

when the NGS data is extracted from FASTQ files, where each
DNA sequence read rj is represented by a quadruple:

rj =









d1
s
d2
q









, (2)

where d1 contains sequence identifier and an optional
description, s is a raw sequence, d2 is a separator line beginning
with a plus (+) sign with an optional description, q contains
encoded quality scores for base calls in the sequence s.

Algorithm 1: NGS data extraction for a single file located in
big NGS data lake.

Input :
f : a large file of NGS data to extract;
E : an extractor;

Output: c∗: a rowset with extracted data in a row-oriented
format

1 Extract(f , E)
2 if filetype = row-o then
3 C← SplitIntoChunks(f );
4 parallel foreach ci ⊂ C do

5 c∗← c∗ ∪ E(rj);
6 end

7 end

8 else

9 foreach rj ∈ f do

10 c∗← c∗ ∪ E(rj)
T ;

11 end

12 end

13 return c∗;

Files in the FASTQ format containmany of such reads and can
be represented as:

fFASTQ =









r1
r2
. . .

r|f |









, (3)

where |f | denotes the number of sequence reads in a file. The
extraction process is a function that temporary changes the
format of the data to the row-oriented one:
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. (4)

For the paired-end sequencing, we operate on two files with
forward (left) and reverse (right) sequence reads

f
f
FASTQ =
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. . .

r
f
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and f rFASTQ =









rr1
rr2
. . .

rr
|f |









, (5)

where r
f
j and rrj are corresponding forward (left) and reverse

(right) sequence reads. Therefore, the extraction process provides
an appropriate row-oriented representation for them that looks
as follows:

f
paired
ROW−O =
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f
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. (6)
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FIGURE 1 | Extraction, processing, and storing (EPS) over big NGS data lake.

If there are many files with independent genomic data to be
extracted or in case a large genomic data file is divided into
smaller files (e.g., intentionally), the extraction process can be
further parallelized on many Allocation Units (Algorithm 2, line
1). Each file fl in a collection of files F undergoes the same
extraction steps (line 2) as in Algorithm 1. This produces many
rowsets cl in the row-oriented format that are either independent
partitions of data for multiple genomic data files or are merged
in a single rowset, when operating on many smaller files for one
sequencing experiment (line 3). The collection of rowsets or a
merged rowset C is then returned for further processing in the
Process phase of the EPS (line 5).

Algorithm 2: Parallelization of NGS data extraction from
files located in big NGS data lake.

Input : F : a set of files to extract;
E : an extractor;

Output: C: a collection of rowsets (if processing many
independent files) or a merged rowset (if processing
many smaller files for one genomic experiment)
with extracted data in a row-oriented format.

1 parallel foreach f in
l
∈ F do

2 cl ← Extract(f in
l
, E);

3 C← C ∪ cl;

4 end

5 return C;

Reading data from files located in the NGS data lake is
implemented in the EXTRACT expression of the U-SQL
language. The EXTRACT expression consists of a list of attributes
extracted, a FROM clause followed by a file path, and a USING
clause followed by an instance of the extractor that defines how
the files should be read (like in Listing 1). The library that we

developed allows extraction from three file formats used to store
raw NGS data. With the library, we can read data from FASTQ
file format, dedicated to storing NGS raw data. Additionally, we
designed a dedicated row-oriented format for processing NGS
data on the Azure Data Lake platform, which improves the
performance of the processing. The new data format assumes that
all data related to one sequence is kept in a single row, in sections
separated by a delimiter, which is a vertical bar “|.” This format
was specially designed during the implementation of this work to
make the best use of the possibilities of the Data Lake services.
The layout of a single row that stores information describing
the corresponding reads (paired-end) in the row-oriented file is
shown below and implements the representation from formula 6.

<Description of read 1>|<Sequence 1>|<Optional descr.>|
<Quality values for read 1>|
<Description of read 2>|<Sequence 2>|<Optional descr.>|
<Quality values for read 2>|

Consequently, for the new row-oriented format, we also
implemented appropriate extractors that enable reading NGS
data stored in it. We also provided the ability to read data
from FASTA format files. However, files in this format do not
store information on the sequence reads quality. Therefore, no
mechanism for cleaning data stored in this format has been
implemented in the Process phase. Simple operations on FASTA
files can be performed using U-SQL expressions (shortening the
sequence to a specific length, removing short sequences, etc.).
In summary, the following extractors were prepared for reading
NGS data:

• FastaExtractor—for reading data from files in the
FASTA format.
• FastqExtractor—for reading data from files in the

FASTQ format. As an argument, the extractor takes a Boolean
value that indicates whether the identifier taken from the first
description line of a read should be written to a separate
column. By default this value is set to true.
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FIGURE 2 | Formats of data representation in particular phases of the EPS

process.

• FormattedFastaExtractor—for reading from files in a
row-oriented version of the FASTA format.
• FormattedFastqExtractor—for reading from files in a

row-oriented version of the FASTQ format.
• FormattedPairedEndExtractor—for reading data

from files in the row-oriented version of the FASTQ format,
in which data from paired-end sequencing related to a single
read are stored in one row of the file.

It is worth noting that although before extraction the data can
be stored in various formats, in the Process phase, the extracted
data is always represented in the row-oriented format (Figure 2).
This representation allows processing the data more efficiently
(see section 2.4 for details).

Examples of data reading with the use of the implemented
extractors are presented in Listing 1. U-SQL enables reading
data in parallel from multiple files located in a given location.
Information on sequence reads resulting from paired-end
sequencing is usually stored in two separate FASTQ files (like in
Listing 1, lines 3 and 8). In order to be able to process such data in
the successive steps, it is required to link the corresponding reads
from these two files (lines 11–16).

1 @SRR_1 = EXTRACT id int, name string, sequence
string,

2 optional string, quality string
3 FROM @forwardFilePath
4 USING new NGSQualityControl.Domain.Extractors.

FastqExtractor();
5

6 @SRR_2 = EXTRACT id int, name string, sequence
string,

7 optional string, quality string
8 FROM @reverseFilePath
9 USING new NGSQualityControl.Domain.Extractors.

FastqExtractor();
10

11 @SRR_1_2 = SELECT r1.name AS name_r1, r2.name
AS name_r2,

12 r1.sequence AS sequence_r1, r2.sequence AS
sequence_r2,

13 r1.optional AS optName_r1, r2.optional AS
optName_r2,

14 r1.quality AS qualScore_r1, r2.quality AS
qualScore_r2

15 FROM @SRR_1 AS r1 JOIN @SRR_2 AS r2
16 ON r1.id == r2.id;

Listing 1 | Reading data from two files and linking reads related to the same
sequence.

The Extraction process can be quite complex, and the invocation
of extractors according to the U-SQL syntax may cause troubles
for those users and NGS analysts who are not familiar with
programming. Therefore, to facilitate using the above-mentioned
solutions, we added wrapping functions that enable the same
functionality of reading NGS data. Examples of these functions
are presented in Listing 2.

1 // extracting from two FASTQ files, for the
paired-end sequencing

2 @SRR988072 = ExtractPairedEndSequences(
3 @"/SRR988072_Compressed/SRR988072_1.gz",
4 @"/SRR988072_Compressed/SRR988072_2.gz"
5 );
6

7 // extracting from a FASTQ file, for the single-
read sequencing

8 @SRR988072 = ExtractSingleEndSequences(
9 @"/SRR988075_FULL/SRR988075_2.fastq"
10 );

Listing 2 | Invocation of wrapping functions for extraction of data from FASTQ files
with data obtained with the paired-end and single-read sequencing techniques.

2.2. NGS Data Processing: Improving NGS
Data Quality
NGS data processing covers applying a set of transformations
for the rowset generated in the Extract phase. The phase
is parallelized for large rowsets c provided at the input
(Algorithm 3). First, the rowset c is divided into many data
chunks (line 2). Then, each data chunk ci is processed in parallel
on allocation units by applying cleaning transformations tk ∈ TR

for each row (sequence read in a row-oriented format) rj of the
data chunk ci. The cleaning covers single reads in the single-read
mode (lines 5–11) or forward (left) and reverse (right) reads in
the paired-end sequencing mode (lines 12–18). Results are stored
in the new rowset c∗i (lines 10 and 17). At the end, all new data
chunks are merged together into new rowset c∗ with cleaned data
(line 21, |C| is the number of data chunks the input rowset c was
divided into).

Improving NGS data quality is implemented in the U-SQL
and performed through a set of transformations implemented in
the Process phase of the EPS process. The set of transformations
is modeled based on the capabilities of the Trimmomatic tool
(Bolger et al., 2014). Trimmomatic works in two modes: single-
read and paired-end. We have implemented the following
commands for improving data quality in our tool:
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Algorithm 3: Processing a row-oriented data partition (a
rowset) from a single NGS data file (or a pair of files for the
paired-end sequencing).

Input :
c : a rowset with extracted sequence reads;
TR : a set of transformations;

Output: c∗ : a rowset of cleaned data;
1 Process(c, TR)
2 C← SplitIntoChunks(c);
3 parallel foreach ci ⊂ C do

4 foreach rj ∈ ci do
5 ifmode = single-read then
6 r∗j ← rj;

7 foreach tk ∈ TR do

8 r∗j ← tk(r
∗
j );

9 end

10 c∗i ← c∗i ∪ r
∗
j ;

11 end

12 else

13 (r
f ,∗
j , rr,∗j )←

(

r
f
j , r

r
j

)

;

14 foreach tk ∈ TR do

15 (r
f ,∗
j , rr,∗j )← tk

(

r
f ,∗
j , rr,∗j

)

;

16 end

17 c∗i ← c∗i ∪ (r
f ,∗
j , rr,∗j );

18 end

19 end

20 end

21 c∗ ←
|C|
⋃

i=1
c∗i ;

22 return c∗;

• ILLUMINACLIP—removes Illumina adapters from sequence
reads,
• SLIDINGWINDOW—removes nucleotides using the sliding

window method; starts scanning at the 5’ end and cuts off the
read when the average quality in the window falls below the
threshold value,
• MAXINFO—removes nucleotides with an adaptive method,

by balancing the read length and error level to maximize the
quality of each read,
• LEADING—removes nucleotides from the beginning of the

sequence as long as their quality is lower than the specified
threshold,
• TRAILING—removes nucleotides from the end of the

sequence as long as their quality is below the specified
threshold,
• CROP—reduces reads to a specified length,
• HEADCROP—deletes the specified number of nucleotides

from the beginning of the read,
• TAILCROP—deletes the specified number of nucleotides from

the end of the sequence,

• MINLEN—deletes the read if its length is shorter than the
specified value,
• AVGQUAL—deletes the sequence if the average quality of its

nucleotides is lower than the specified threshold.

NGS data transformations are performed by invoking
dedicated processors for the U-SQL queries that are used for
parallel processing in the Data Lake environment. We developed
two data processors that allow cleaning the NGS reads:

1. FastqPairedEndTrimmerProcessor (wrapped by
the ProcessPairedEnd processing function)—allows
processing sequence reads obtained as a result of the
paired-end sequencing.

2. FastqSingleEndTrimmerProcessor (wrapped by
the ProcessSingleEnd processing function)—allows
processing sequence reads obtained as a result of the
single-read sequencing.

An example of how to process the extracted rowset with
developed processors is shown in Listing 3. The processing
statement consumes the processed data set with extracted
sequence reads and quality information in the PROCESS clause
(lines 2 and 10) and generates a new rowset with cleaned NGS
sequence reads (lines 1 and 9). The rowset consists of information
specified in the PRODUCE clause (lines 3 and 11). Processing
is performed with the use of one of the two data processors
invoked in the USING clause. These processors accept several
arguments. The first one is the String value with a list of
cleaning commands (@command, lines 6 and 16). Commands are
issued in the order in which they are given. Command arguments
are given after the colon symbol “:.” It is recommended that
the removal of adapters from NGS reads be performed first.
The @illuminaAdaptors argument (defaults to null) is a
String value that takes the location to the file with adapters
to be removed from the input sequences. The last argument
takes the quality score coding (PHRED33—set by default, or
PHRED64). The @keepUnpaired argument of the Boolean
type (for the paired-end data processor) is used to set the flag
(false by default), forcing the storage of reads that, as a result
of cleaning, were deprived of the associated read stored in the
second (paired) file.

1 @SRRSingleEnd_result =
2 PROCESS @SRRSingleEnd //processed rowset
3 PRODUCE name string, sequence string,
4 optionalName string, qualityScore

string
5 USING new NGSQualityControl.Domain.

Processors.
6 FastqSingleEndTrimmerProcessor(@command,

@illuminaAdaptors,
7 (NGSQualityControl.Helper.Infrastructure.

QualityEncodingType)@qualityType);
8

9 @SRRPairedEnd_result =
10 PROCESS @SRRPairedEnd_1_2 //processed rowset
11 PRODUCE name_r1 string, name_r2 string,
12 sequence_r1 string, sequence_r2

string,
13 optionalName_r1 string,

optionalName_r2 string,
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14 qualityScore_r1 string,
qualityScore_r2 string

15 USING new NGSQualityControl.Domain.
Processors.

16 FastqPairedEndTrimmerProcessor(@command,
@keepUnpaired, @illuminaAdaptors, (
NGSQualityControl.Helper.Infrastructure.
QualityEncodingType)@qualityType);

Listing 3 | Cleaning NGS data with the developed processors in U-SQL.

As in the case of the extractors used for reading theNGS data, also
for the processing phase, we developed the wrapping functions
that simplify the use of prepared solutions. These functions and
an example of how to use them are presented in Listing 4.
They accept the rowset with extracted NGS data as a first
argument (lines 2 and 10) and a set of cleaning transformations
(commands) as a second argument (lines 3 and 11). The third
argument for the paired-end sequencing data processor tells it
what to do with the reads left unpaired after the cleaning (the
DEFAULT value means not to keep them, line 4).

1 @SRR988074_result = ProcessPairedEnd(
2 @SRR988074,
3 @"ILLUMINACLIP:2:30:10 TAILCROP:10 LEADING:20

TRAILING:20 SLIDINGWINDOW:4:20 MINLEN:30",
4 DEFAULT,
5 @Res_Lookup,
6 DEFAULT
7 );
8

9 @SRR988075_result = ProcessSingleEnd(
10 @SRR988075,
11 @"ILLUMINACLIP:2:30:10 TAILCROP:10 LEADING:20

TRAILING:20 MINLEN:30 SLIDINGWINDOW:4:20",
12 @Res_Lookup,
13 DEFAULT
14 );

Listing 4 | Wrapping functions for cleaning NGS data with the developed
processors in the Data Lake environment.

The last two arguments correspond to the location of the
dictionary of adapters to be removed (@Res_Lookup, lines 5
and 12) and the quality score encoding (lines 6 and 13, DEFAULT
means PHRED33). Both functions return cleaned rowsets of
NGS data.

2.3. NGS Data Storing
Storing data completes the EPS process for the NGS data. It is
performed according to Algorithm 4. The procedure accepts the
rowset c with the processed data, a dedicated outputter O, and
the name of the output file (or files, depending on the mode).
The rowset is split into several data chunks (line 2) that are
written into several parts of the file(s). The offset is determined
by the data chunk ci (lines 6 and 9–10). The degree of parallelism
depends on the size of data written, the used outputter, and the
maximum number of AUs specified by the user while executing
the job. Custom outputters (storage processors) may, however,
serialize this part of the EPS (see Table 1). Each read rj in
the rowset is stored appropriately depending on the destination
format specified (e.g., it is transposed again to be represented

in the FASTQ format, unless we use the row-oriented format to
store the data in the output files).

Algorithm 4: Storing a processed rowset of NGS data to
output files with a dedicated outputter O.

Input :
c : a rowset with processed sequence reads;
O : a dedicated outputter; fout|fout1, fout2 : output

files(s);
Output: fout|fout1, fout2 : output files(s) with cleaned data;

1 Store(c, O, fout|fout1, fout2)
2 C← SplitIntoChunks(c);
3 parallel foreach ci ⊂ C do

4 foreach rj ∈ ci do
5 ifmode = single-read then
6 fout[ci + j]← O(rj);
7 end

8 else

9 fout1[ci + j]← O(r
f
j );

10 fout2[ci + j]← O(rrj );

11 end

12 end

13 end

The Store phase implemented in U-SQL covers saving the output
of processing scripts to a file in the Data Lake or a database. The
data is written to the file using one of the dedicated outputters
that we have developed for various formats that NGS data can be
stored in. Five different output interfaces have been prepared for
this purpose:

1. FastaOutputter—saves data to a file in the FASTA
format,

2. FastqOutputter (with the
SavePairedEndRowsetDecompressed and
the SaveSingleEnd-RowsetDecompressed
functions)—saves data to a file in the FASTQ format,

3. FastqGzipOutputter (with the
SavePairedEndRowsetCompressed and
the SaveSingleEnd RowsetCompressed
functions)—saves data to a compressed FASTQ file.

4. FormattedFastqOutputter (with the
SaveFormattedPairedEndRowsetDecompressed
and the
SaveFormattedSingleEndRowsetDecompressed
functions)—saves data to a file in the row-oriented version of
the FASTQ format; as an argument, it uses a Boolean value
that specifies whether the rowset being stored contains reads
resulting from paired-end sequencing or only reads from
single-read sequencing,

5. FormattedGzipFastqOutputter (with the
SaveFormattedPairedEndRowsetCompressed and
the SaveFormattedSingleEndRowsetCompressed
functions)—stores data to the compressed, row-oriented
version of the FASTQ format.
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An example of invoking the proposed outputters to store NGS
data after the quality improvement to a file in the Data Lake is
presented in Listing 5. The OUTPUT clause accepts the rowset
with the cleaned NGS data that will be stored (lines 1 and 5). The
NGS data will again be stored in the Data Lake in the destination
file specified in the TO clause either directly or by a string
variable (lines 2 ad 6). Finally, the data are persisted in the storage
space in a specific format by invoking a particular outputter
(lines 3 and 7).

1 OUTPUT @SRR // NGS rowset after processing to be
stored

2 TO @destination1 // path for the destination
file, where data should be stored

3 USING NGSQualityControl.Domain.Factories.
OutputtersFactory.GetFastqOutputter();

4

5 OUTPUT @SRR
6 TO @destination2
7 USING NGSQualityControl.Domain.Factories.

OutputtersFactory.GetGzipFastqOutputter();

Listing 5 | Sample invocations of the Store phase for two developed outputters
saving cleaned NGS data in the uncompressed and compressed FASTQ formats.

To unify the coding related to saving the processed NGS data
to a file in the Data Lake, for each of the outputters, we
also created wrappers that facilitate the use of implemented
mechanisms. Sample functions for storing paired-end NGS data
as decompressed and compressed files are presented in Listing 6.
As arguments, the wrapping functions take paths to the files to
which the NGS data from the NGS resultant rowset should be
saved (lines 3–4 and 10–11). The rowset with cleaned data is
given as the last argument (lines 6 ad 12).

1 SavePairedEndRowsetDecompressed(
2 //paths for the destination files, where data

should be stored
3 @forward_destination,
4 @reverse_destination,
5 //NGS rowset after processing to be stored
6 @SRR_Paired_End_Result
7 );
8

9 SavePairedEndRowsetCompressed(
10 @forward_destination,
11 @reverse_destination,
12 @SRR_Paired_End_Result
13 );

Listing 6 | Sample wrapping functions for storing paired-end NGS data after
processing and improving its quality.

2.4. Granularity of Parallelism
Parallel computations can be performed according to various
levels of granularity, including fine-grained, medium-grained,
and coarse-grained. The granularity defines the amount of
computational work performed within a single task. While
performing the quality control and NGS data cleaning in the
proposed Data Lake environment, we can apply two types
of parallelism:

• Coarse-grained parallelism—this granularity applies when
multiple, whole FASTA and FASTQ files are processed in
compressed and decompressed form.
• Medium-grain parallelism—this granularity applies when

multiple large NGS data from FASTA and FASTQ files are
divided into many (d) smaller files (e.g., 250 or 750 MB), or
when NGS data are stored as a whole in the row-oriented
format (then, the splitting is done automatically).

Both levels of granularity are presented symbolically in Figure 3.
In our solution, the granularity of parallelism depends on the
format and sizes of processed data files. In the most typical
scenario, when whole NGS data files are uploaded to the data lake
in the FASTQ format, coarse-grained parallelism will occur. The
coarse-grained parallelism relies here on processing individual
NGS data files by Allocation Units (AUs) responsible for data
processing-related computations. Figure 3 shows only three AUs
in action, but there can be many more. This level of granularity
is applied due to the large sizes and non-standard format of
the NGS data files from the viewpoint of processing data in
Big Data environments. Each sequence read entity is composed
of four successive rows. This requires dedicated extractors and
outputters to extract the data before and store the data after
processing. Unlike those used for standard row-oriented data,
these are not standard extractors and outputters, where each
row constitutes an independent entity. The efficiency of such an
approach is lower due to longer idle times resulting from uneven
sizes of processed data files.

The average idle time for the coarse-grained parallelism Tidle
C

can be calculated as follows:

T̄idle
C =

1

n− 1

n−1
∑

i=1

(Tmax − TAUi ), (7)

where Tmax is the longest processing time registered (usually the
execution time noted when processing the largest NGS data file),
which is equivalent to the execution time of the whole parallel
processing, TAUi is the processing time of the i-th NGS data file
(another than the largest one) by another AU (other than the one
that processes the longest), n is the number of AUs in use.

Splitting FASTQ data into multiple data chunks d causes
changing the granularity of parallelism from coarse-grained to
medium-grained and usually increases overall efficiency. This
should be visible, especially if the sizes of processed data files
differ much. This increase in efficiency is possible due to shorter
idle times for AUs that have nothing to process in the final
iteration of data processing (assuming that n < d, we have
to perform several processing iterations with the same AUs for
different data chunks).

The idle time for themedium-grained parallelismTidle is equal
to the idle time of any AU (Tidle

AUi
) processing a data chunk:

Tidle = Tidle
AUi

. (8)

The best performance can be achieved when the number of
allocated AUs is equal to the number of data chunks (n = d).
Theoretically, in such a case, the idle time Tidle = 0. The number
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FIGURE 3 | Granularity of parallelism applied in various storage scenarios: (left) NGS data processed as a whole by many Allocation Units (AUs), (right) processing

NGS data divided into chunks.

of allocated AUs can be even greater than the number of data
chunks (n > d), but it would unnecessarily increase the cost
of using the NGS data lake platform as some AUs would have
nothing to process (overallocation).

It is worth noting that medium-grained parallelism is
automatically applied when the NGS data is stored in a row-
oriented format. This is a non-standard format to keep the NGS
data in but, at the same time, a standard format for processing
data on Big Data platforms. This fact causes that, unlike in
previous cases, the medium-grained parallelism occurs in all
phases of the EPS process, including extraction and storing. And
this is the reason why we proposed a new format to store the NGS
sequence data.

Table 1 summarizes the granularity levels used for particular
storage formats in particular phases of the EPS process. When
processing row-oriented files, we operate on themedium-grained
level of parallelism in all phases of the EPS. For native formats
(FASTA and FASTQ), we usually operate on the coarse-grained
level of parallelism while extracting and storing the data. This
is because we use non-standard extractors. Medium-grained
parallelism is achievable in the Extract phase when we pre-
process the files and physically divide them into many smaller
files. This should speed up the Extract phase but requires an
additional preparation step.

3. EXPERIMENTAL RESULTS

The presented Data Lake-based approach was tested to verify the
quality of results and performance of the NGS data cleaning.

We performed tests in the highly parallel Azure Data Lake
environment and on local workstations. For the Data Lake
environment, we executed the EPS process on the varying
number of Allocation Units (AUs).

The purpose of the experiments was to find a way to store
NGS data in the Data Lake Store to make the most efficient use
of the Data Lake Analytics performing the EPS process, thereby
reducing the analysis time and, indirectly, the associated costs of
using the scalable platform. In the following sections, we will also
briefly present a comparison of the duration of data processing
in the cloud and on desktop computers. On the other hand, we
also checked the correctness of the obtained results. We checked
whether the NGS data processed and cleaned with the use of the
developed library are identical to those obtained as a result of
analogical processing performed on local workstations with the
Trimmomatic program.

During our tests on improving the quality of NGS data, we
executed the U-SQL script that looked like the one presented
in Listing 7 (executed scripts differed only with the paths to
data files extracted and stored as we worked with different data
sets). The presented U-SQL script extracts NGS data obtained
by means of the paired-end sequencing technique, stored in
two files. Then, it processes the files according to the cleaning
commands given. Finally, it saves the processed reads to two
uncompressed FASTQ files.

1 REFERENCE ASSEMBLY [NGSQualityControl.Helper];
2 REFERENCE ASSEMBLY [NGSQualityControl.Domain];
3
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Table 1 | Granularity levels of parallel computations used for particular storage formats in particular phases of the EPS process.

FASTA FASTQ Row-O

Extract Coarse- or Medium-grained Coarse- or Medium-grained Medium-grained

Process Medium-grained Medium-grained Medium-grained

Store Coarse-grained Coarse-grained Medium-grained

4 DECLARE @Res_Lookup string = @"/Adapters/TruSeq3
-PE.fa";

5 DEPLOY RESOURCE @Res_Lookup;
6

7 @SRR988074 = ExtractPairedEndSequences(
8 @"/SRR988074_FULL/SRR988074_1.fastq",
9 @"/SRR988074_FULL/SRR988074_2.fastq"
10 );
11

12 @SRR988074_result = ProcessPairedEnd(
13 @SRR988074,
14 @"ILLUMINACLIP:2:30:10 TAILCROP:10 LEADING:20

TRAILING:20 SLIDINGWINDOW:4:20 MINLEN:30",
15 DEFAULT,
16 @Res_Lookup,
17 DEFAULT
18 );
19

20 SavePairedEndRowsetDecompressed(
21 @"/Result/SRR988074_1.fastq",
22 @"/Result/SRR988074_2.fastq",
23 @SRR988074_result
24 );

Listing 7 | Sample U-SQL script used for parallel cleaning of NGS data in
performed experiments.

During our tests, we used the raw NGS data obtained from
the NGS sequencing of the Drosophila melanogaster with the
paired-end method. We tested our library on four NGS data sets
(each providing two FASTQ files containing the corresponding
sequence reads from the 3’ to 5’ end of the sequenced DNA
fragment). The data were collected from the Sequence Read
Archive database (Leinonen et al., 2010). The following NGS data
sets were used in our experiments:

• SRR988072 (two files, 4.95 GB each),
• SRR988073 (two files, 3.61 GB each),
• SRR988074 (two files, 5.2 GB each),
• and SRR988075 (two files, 11.7 GB each).

The total amount of data was about 50.1 GB for uncompressed
data. For the compressed data (gzip-based compression), the total
amount of data was ∼14.8 GB (SRR988072—1.48 and 1.30 GB,
SRR988073—1.08 and 951 MB, SRR988074—1.62 and 1.45 GB,
and SRR988075—3.63 and 3.33 GB). These files contained the
NGS data characterized by low quality and contamination with
Illumina adapters. For this reason, they were selected for our tests
related to NGS sequence cleaning.

3.1. Processing Multiple Genomes
One of the advantages of the Data Lake ecosystem is the
possibility of processing the NGS data of many genomes
simultaneously. In this section, we present the results of
performance experiments carried out for parallel processing of all

FIGURE 4 | Processing times of NGS data extracted from uncompressed files

and saved to eight uncompressed FASTQ files (two files for each of the

processed genomes) with 8 AUs for various storage formats: regular FASTQ,

multiple 250 MB FASTQ (M250-FASTQ), and row-oriented (Row-O).

FIGURE 5 | Processing times of NGS data extracted from compressed files

and saved to eight compressed FASTQ files (two files for each of the

processed genomes) with 8 AUs for various storage formats: regular FASTQ,

multiple 250 MB FASTQ (M250-FASTQ), and row-oriented (Row-O).

data sets (SRR988072, SRR988073, SRR988074, and SRR988075)
for various storage scenarios, file formats, and compression used.
Experiments were performed with 8 AUs. For this experiment,
the NGS sequence reads were stored in their native FASTQ
files and the row-oriented files. Additionally, we also divided
the NGS data into 250 MB FASTQ files to increase the level
of parallelism (manually apply the medium-grained parallelism)
and verify whether it affects the performance of the EPS process.
The 250 MB size of the files fits exactly one block of data, called
an extent, assigned to a single unit of parallelism—a vertex in the
execution graph.
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FIGURE 6 | Utilization of Allocation Units (computational units) over time while processing data from four uncompressed (A) and compressed (B) row-oriented files

with forward and reverse reads and saving to eight uncompressed (A) and compressed (B) FASTQ files (two files for each of the processed genomes) with 55 AUs (A)

and 68 AUs (B).

Figure 4 shows the execution time of the whole EPS process
performed for improving the quality of NGS data stored in the
three formats. The data were extracted from uncompressed data
files and stored again in uncompressed files after improving the
quality. As can be observed, processing the whole FASTQ files
takes the longest, while row-oriented files are processed almost
two times faster. The distribution of data to multiple FASTQ files
brings some improvement, but it is not huge.

Figure 5 shows the execution time of the whole EPS process
performed for improving the quality of NGS data stored in
the same three formats. However, in contrast to the previous
experiment, the data were extracted from compressed data files
and stored in compressed files after improving the quality. In
terms of storage format, conclusions are similar to those from
the previous experiment. However, we can observe that for
the compressed data, the use of the row-oriented format does

not bring such a huge improvement in the execution time.
Comparing the results of both experiments, we can also notice
that processing the compressed data takes more time, which is
caused by additional decompression and compression steps while
extracting and storing the data in the EPS process.

It is worth noting that in both cases of processing compressed
and uncompressed files, the row-oriented format turned out to
be highly scalable. When scaling out to many AUs for the same
collection of data, we could decrease the execution time to 227
s when processing uncompressed row-oriented files and to 329 s
when processing compressed row-oriented files for all data sets
and storing the cleaned NGS data to eight uncompressed and
compressed FASTQ files in both scenarios. Figure 6 shows the
utilization of Allocation Units over time while processing the
data. It can be observed that AUs are not evenly utilized during
the whole execution time. Especially in the final phases of the job
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execution, their utilization is low due to storing in FASTQ files,
for which we cannot rely on the medium-grained parallelism.

3.2. Performance Gain Over Local
Processing
In the next series of experiments, we compared the execution
time of the whole EPS process performed in the Data Lake
environment and on local workstations. The data processing time
on the local computers was checked using two machines with
different configurations. The first workstation had an Intel Core
2 Duo 3.6 GHz CPU, 3 GB DDR memory, and 320/7200/16 hard
disk drive. The second workstation had much better compute
capabilities. It was equipped with an Intel Core i7-4790K 4
GHz processor, 16 GB DDR3 memory, and the same type of
hard disk drive. For improving the quality of data, we used the
original Trimmomatic program. NGS data were processed to
achieve the best possible quality scores. The following commands
were used during the data processing phase for particular NGS
data sets (SRR988072, SRR988073, SRR988074, and SRR988075),
analogous to those used to perform data cleaning in the Data
Lake ecosystem:

>ILLUMINACLIP:TruSeq3-PE.fa:2:30:10 LEADING:20 TRAILING:20
SLIDINGWINDOW:4:20 MINLEN:30

>ILLUMINACLIP:TruSeq3-PE.fa:2:30:10 LEADING:20 TRAILING:20
SLIDINGWINDOW:4:20 MINLEN:30
>ILLUMINACLIP:TruSeq3-PE.fa:2:30:10 TAILCROP:10 LEADING:20
TRAILING:20 SLIDINGWINDOW :4:20 MINLEN:30
>ILLUMINACLIP:TruSeq3-PE.fa:2:30:10 TAILCROP:10 LEADING:20
TRAILING:20 SLIDINGWINDOW :4:20 MINLEN:30

Figure 7 shows processing times for NGS data extracted
from regular uncompressed FASTQ files and saved to eight
uncompressed FASTQ files (two files for each of the processed
genomes) for various implementations: on Data Lake with 8
AUs (DLA-8), workstation 1 (WS1), and workstation 2 (WS2).
This experiment shows a pessimistic case since whole FASTQ
files are processed at the coarse-grained level of parallelism. As
we can observe, the processing time was reduced more than
three times in the Data Lake environment. It is not linearly
proportional to the number of AUs in use (8 AUs), but differences
in sizes of processed FASTQ files and granularity of parallelism
do not allow for better performance gain (some AUs finish their
processing earlier and stay idle for some time, as it was presented
in Figure 3).

3.3. Quality Control
Our library was created to allow scalable processing and
improving the quality of NGS raw data stored in the Big NGS
Data Lake. At the same time, the library implements the set of
functionalities of the Trimmomatic application, an open-source
desktop program intended for this purpose. As a part of our
experiments, we also validated the effectiveness of our library
in terms of the quality of results. Tests were performed for all
genome sequences in our NGS Data Lake. In this section, we
show the validation results on the example of NGS data marked
with the SRR988074 identifier. To validate the effects of the
cleaning process performed on FASTQ files with our library
for data lake, we used the FastQC tool (Wingett and Andrews,
2018). Figure 8 shows the comparison of results generated by
the FastQC program presenting the assessment of the quality of

FIGURE 7 | Processing times of NGS data extracted from regular

uncompressed FASTQ files and saved to eight uncompressed FASTQ files

(two files for each of the processed genomes) for various implementations: on

Data Lake with 8 AUs (DLA-8), workstation 1 (WS1), and workstation 2 (WS2).

nucleotides in DNA sequence reads from two NGS files storing
data obtained with the paired-end sequencing technique. We
can observe that quality scores of the sequence reads before
the cleaning process drop below 20 (for the file with forward
reads SRR988074_1, Figure 8A). After the cleaning process, the
quality scores stay above 25 (Figure 8C), and even 30 for the file
containing reverse reads (SRR988074_2, Figure 8D). In the case
of both files, definite improvement is visible.

Since we implemented the same set of functionalities as in the
Trimmomatic, in terms of the quality improvement, the results
are the same as for the original desktop application.

4. DISCUSSION AND FUTURE
DIRECTIONS

Improving the quality of NGS data is one of the first steps
preceding the secondary analysis of DNA genome sequences and
further NGS-based analyses. Our work confirms that the steps
of the pre-processing can be performed on a large scale by (1)
collecting the massive volumes of NGS data in the NGS data
lake, (2) processing them in parallel within the EPS process, and
(3) scaling the computations in the Cloud. Our library becomes
then a handy element of the early stages of the secondary analysis
of NGS data.

Although, as we could see, processing some storage formats
(like the whole compressed FASTQ files) do not provide linearly
proportional performance gain and do not allow utilizing
both types of parallelism, we also found a way to parallelize
computations for other storage formats efficiently (e.g., whole
native, uncompressed FASTQ files) and take advantages of
the platform capabilities and the techniques we propose. Our
experiments showed that we could benefit from the coarse-
grained parallel processing when we process multiple genomes.
Medium-grained parallelism is advantageous mainly for row-
oriented files. However, our solution has limitations for handling
the whole FASTQfiles, for which themedium-grained parallelism
cannot be applied in all phases of the EPS process.
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FIGURE 8 | Evaluation of nucleotide sequence quality in the FASTQ files SRR999074_1 (A,C) and SRR999074_2 (B,D) before (A,B) and after (C,D) improving the

quality with the developed software.

Our experiments also showed that to take full advantage
of such data lake platforms, it is advisable to work with
data split into many smaller files or work with non-
standard formats for storing the NGS data, like the
row-oriented format presented in the paper. However, this
would require either additional data pre-processing (to
split the data) or changing the formats in which data are
provided for analysis. The row-oriented format is the best-
fitting one for all Big Data platforms and would give the
best performance.

Our library complements other solutions presented in
section 1 by providing a set of functionalities that are dedicated
to cleaning NGS data on a large scale in a highly scalable
environment, which was not available so far. In such a way,
it extends the data cleaning capabilities of the Trimmomatic
package toward large data sets. Like SeqPig and GMQL, the
functionality of our library is exposed through a declarative
language, but for a different purpose. Also, in our project,
we used the U-SQL language that combines capabilities of
the SQL language used for querying relational databases with
the C# programming language, which is highly extendable.
However, the limitation of the adopted Data Lake platform
is that it is tightly linked with the Azure cloud. Therefore,

unlike the SeqPig or SeQual, it is not portable to other cloud
platforms. On the other hand, our Data Lake library allows
improving the quality of NGS data obtained with the use of
single-read and paired-end sequencing techniques and stored in
various formats, which are also significant unique features of
our solution.

5. CONCLUDING REMARKS

Secondary and tertiary analyses performed by scientists working
in genomics and computational biology require high-quality
data and an infrastructure that provides appropriate space
to store large amounts of data generated as a result of
next-generation sequencing techniques at various stages of
the analysis. Data obtained from single genome sequencing
can reach up to several hundred gigabytes and may be of
various quality. The infrastructure used to analyze the NGS
data should also provide computing power to allow rapid
and scalable processing of gathered data. The hybridization of
tools that enable handling computations over big biomedical
data with extensive scaling capabilities of the Cloud proved
to be a reasonable solution. This work shows the successful
implementation of the early stage pre-processing techniques used
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in NGS data analysis pipelines in a distributed environment
of the Data Lake ecosystem hosted in the Microsoft Azure
cloud computing platform. Data Lake Store allows hosting
data in any format and without restrictions on the amount
of data stored. These characteristics make Data Lake a perfect
place for storing large amounts of data for further analysis.
In such a way, our solution addresses the volume and variety
challenges of processing Big NGS Data. The Data Lake
Analytics allows then for parallel processing of many genomes
simultaneously in a distributed environment, addressing the
velocity challenge. This would be difficult to achieve on, for
example, desktop computers due to the limited capabilities of
the processors or hard disk drives. Additionally, the use of
the Data Lake Analytics and serverless computing paradigm
reduces the maintenance overhead and removes the need to
maintain and scale underlying computing clusters manually.
Finally, procedures and functions for improving NGS data
quality embedded in declarative U-SQL queries simplify the
cleaning process that ultimately leads to the increase in the value
of obtained results.
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The objective was to explore the function of gene differential expressions between
lung cancer tissues and the interaction between the relevant encoded proteins,
thereby analyzing the important genes closely related to lung cancer. A total of 120
samples from the GEO database (including two groups, i.e., 60 lung cancer in situ
specimens and 60 normal specimens) were taken as the research objects, which were
submitted to the analysis of signaling pathway, biological function enrichment, and
protein interactions to reveal the molecular driving mechanism of lung cancer. Results:
A total of 875 differentially expressed genes were obtained, including 291 up-regulated
genes and 584 down-regulated genes. The up-regulated genes were mainly involved
in biological processes such as protein metabolism, protein hydrolysis, mitosis, and
cell division. Down-regulated genes were mainly involved in neutrophil chemotaxis,
inflammatory response, immune response, and angiogenesis. The protein expression of
high expression genes and low expression genes in patients were higher than those in
the control group. The protein corresponding to the high expression gene was highly
expressed in the patient group. Meanwhile, the proteins corresponding to the low
expression genes were also expressed in the patient group, which showed that although
the proteins corresponding to the low expression genes were low in the patients,
they were still the target genes related to lung cancer. In conclusion, the molecular
driving mechanism in lung cancer was mainly related to protein metabolism, proteolysis,
mitosis, and cell division. It was found that TOP2A, CCNB1, CCNA2, CDK1, and TTK
might be the critical target genes of lung cancer.

Keywords: gene target network analysis, lung cancer, molecular driving mechanism, nursing guidance, protein
interaction

INTRODUCTION

The incidence rate of lung cancer is one of the fastest growing malignant tumors (Masters et al.,
2017). Lung cancer is mainly divided into small cell lung cancer (SCLC) and non-small cell lung
cancer (NSCLC), of which NSCLC accounts for 80% of all lung cancer cases (Shi et al., 2017).
Currently, molecular-targeted drug therapy takes the molecules that block the high expression of

Frontiers in Genetics | www.frontiersin.org 1 September 2021 | Volume 12 | Article 72720140

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/journals/genetics#editorial-board
https://www.frontiersin.org/journals/genetics#editorial-board
https://doi.org/10.3389/fgene.2021.727201
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/fgene.2021.727201
http://crossmark.crossref.org/dialog/?doi=10.3389/fgene.2021.727201&domain=pdf&date_stamp=2021-09-20
https://www.frontiersin.org/articles/10.3389/fgene.2021.727201/full
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-12-727201 September 14, 2021 Time: 19:23 # 2

Huang et al. Gene Targets Network Analysis

cancer cell membrane or cells as the therapeutic target, reduces
the fragmentation effect on normal cells by blocking the growth,
infiltration, metastasis, and inducing apoptosis of normal cells,
and reduces the incidence of adverse drug reactions in patients
(Shen et al., 2018; Xu et al., 2018). In the absence of biopsy, the
blood samples of patients with lung cancer are the only source
of information for analyzing clinically relevant genetic changes,
including epidermal growth factor receptor (EGFR), Kirsten rat
sarcoma viral oncogene (KRAS), v-raf murine sarcoma viral
oncogene homolog B1 (BRAF), c-ros oncogene 1 (ROS1), and
anaplastic lymphoma kinase (ALK) (Allan-Blitz et al., 2018).
As new treatment options emerge, predictive detection of lung
cancer has become a research hot spot in medical field (Horimasu
et al., 2017). The diagnosis of lung cancer diseases mainly
includes the identification and classification of malignant tumors,
molecular tests, and immunohistochemical analysis. Complex
diagnostic analysis algorithms have evolved, requiring specific
drugs tailored to individual patients and considering the way to
make investigations and diagnostic strategies based on individual
tumors (Zhang et al., 2018). Some studies have reported that
KRAS mutations may be the targets for preventing and treating
KRAS mutant lung cancer and other tumor diseases (Krasnov
et al., 2017). Studies have shown that the molecular driving
mechanisms of lung cancer in different tumor stages are also
different, and NKTR may be the target of prevention and
treatment of lung cancer diseases (Zhou et al., 2017). Some
studies have used the CIBERSORT method to identify and
quantify the number of different cells in a tumor sample by
reference genes combined with machine learning. Such an
approach solves one of the major problems in determining cell
types to some extent by using the reference genes (Zins et al.,
2018). CIBERSORT is used to estimate the abundance of member
cell types in mixed cell population by using gene expression data.
It is a tool of bioinformatics analysis method and has important
application value in the field of molecular biology.

Bioinformatics uses computers to mine and analyze great
information in biological databases, focuses on gene and
proteomic analysis, and is widely used in the fields of
molecular genetics and genomics. In the field of tumor research,
bioinformatics combines suspicious tumor genes with known
biological data through the biological network analysis of tumor-
related pathways and biological processes, identifies tumor-
related functional categories, and excavates tumor networks.
It also predicts potential pathogenic proteins and plays an
important role in tumor pathogenesis, diagnosis, and treatment.
As the gene chip technology continuously develops, it has
become a hot topic how to process and analyze tremendous
data and find more effective information. At present, gene
chip technology is mainly used in the research of tumor-
related gene information, such as screening tumor-related
genes, measuring tumor mutation genes, studying tumor gene
expression profiles, and diagnosing tumor diseases. In this way,
it can explore the extent of influences of genetic, environmental,
and pharmaceutical factors for tumors on the expression of
related genes during the occurrence and development of tumors.

The rapid development of high-throughput technologies,
such as MeDip-seq, methylated microarrays, and RNA-seq, has

provided technical support for the identification of biomarkers
for a variety of diseases such as lung cancer, as well as
opportunities for the availability of publicly available data sets.
By selecting the gene expression dataset of lung cancer, this study
innovatively explores the network of lung cancer target genes
through gene expression analysis of different databases, thus
exploring the molecular driving mechanism of lung cancer and
providing reference for clinical molecular drug treatment and
nursing guidance of lung cancer.

MATERIALS AND METHODS

Data Resource and Processing
A total of 120 samples of lung cancer mRNA sample GSE19408
(including two groups: 60 lung cancer in situ specimens and
60 normal specimens) were selected from the GEO (Gene
Expression Omnibus) database, using open-source software
R3.4.2. for preprocessing the differential analysis of sample data.

First, download the sample, import the CEL (cool edit loop)
format file into the R program, use the limma package in the R
language to count the difference between the lung cancer gene
and the normal gene, and then follow the FDR (false discovery
rate) and FC (fold change, gene expression fold ratio) from which
differentially expressed genes were selected, and the comparison
between the two groups of genes must satisfy the requirements of
FDR < 0.01 and | log2 FC | ≥ 1.

Signal Pathway Analysis and Biological
Function Enrichment
Signaling pathway analysis and biological function enrichment
of the screened NSCLC differentially expressed genes were
performed using the Functional annotation chart tool under the
DAVID platform. First, the differentially expressed genes were
introduced into the DAVID list in the form of gene symbol,
and the humans were submitted to the task in the species type,
and the GO (Gene Ontology) analysis and the KEGG (Kyoto
Encyclopedia of Genes and Genomes) pathway were performed
on both the up-regulated and down-regulated genes (Wang et al.,
2020). After the results were obtained, the differentially expressed
genes with statistical significance (P ≤ 0.01) were selected.

Protein Interaction Analysis
Gene data can be applied to gene regulatory network analysis
to analyze the differential expression of genes for studying the
differential expression of their target genes and the processes
that constitute various organisms, such as organ formation,
embryo development, and disease pathogenesis. The network
of relationships is compared between cell types or states
and analyzed further, and specific molecular features and
functional blocks can be identified, which are the basis for
state transitions. In order to identify key target genes related to
lung cancer, this study established a protein interaction network
model to explore the regulatory relationship of differential
genes at the protein level. The differentially expressed genes
obtained by the DAVID platform were subjected to ID (Identity
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Document) conversion and input into the STRING 9.1 (the
Search Tool for the Retrieval of Interacting Genes) database
to establish a differentially expressed gene encoding protein-
protein between Interaction network diagram. Proteins at the
center of the protein-protein interaction network often play a
relatively important role in the development of the disease. The
selection criteria for PPI (Protein-protein interaction network)
analysis was combination score >0.4 (medium confidence).
Enter the PPI value into the visualization tool, that is, the
Cytoscape software, and use the analysis plug-in to calculate
the edge of the nodes in the network to get the number of
protein interactions (Degree). The analysis steps of Cytoscape
software are as follows: first, import the node attribute file,
file- >import- >table- >file(node.txt) (here is table instead
of network), and then set the format of simple network
diagram in style. Finally, export the file. The data can be
network file, table file, or picture file. The picture file includes
a variety of picture formats and PDF format, which can be
selected in the toolbar.

Western Blotting Detection
(1) Total protein extraction: Cells were taken out; the culture

medium was discarded, and the cells were washed with
PBS. Then, 70 µL of cell lysate was added to each well.
After 5 min, the cell suspension was transferred to an
Eppendorf (EP) tube (TIANGEN Biochemical Technology
(Beijing) Co., Ltd., China) and shaken once every 5 min
for a total of 6 times. The cell suspension was put
into a 4◦C centrifuge, centrifuged at 1,000 rpm/min for
15 min. The supernatant was taken for bicinchoninic
acid (BCA) protein quantitative determination, and the
standard curve was drawn.

(2) Preparation of stacking gel and separation gel: The reagents
(purchased from TIANGEN Biochemical Technology
(Beijing) Co., Ltd., China) were summarized in Table 1
below:

(3) Electrophoresis and image development: The glass plate
was cleaned thoroughly with distilled water and ethanol.
The glass plate was aligned and put in the clamp vertically
on the glue rack. The distilled water was added to the glass
plate to a suitable position. Then, the device was stood for
8 min to test whether the glass plate was leaking. A 10%
separation gel was prepared according to the formula in
Table 1. After mixing, 6 mL was added to the gap in
the middle of the glass plate with a pipette; then, 3 mL
of isopropanol was added slowly. Under 37◦C condition,
once a refraction line appeared between isopropanol and
the separation gel, the separation gel solidified. Afterward,
the isopropanol was poured out, and the device was
washed with distilled water three times for later use.
After the stacking gel was configured, 3 mL was added
to the glass plate, which should slowly enter the comb to
prevent bubbles.

After the concentrated gel was solidified, the glass plate and
the plastic replacement plate were sandwiched in the rack with
electrodes; then, the device was put into the electrophoresis tank,

TABLE 1 | Configuration of stacking gel and separation gel.

Ingredients Stacking gel 10% Separation gel

Double distilled water 2.6 × 103 3 × 103

30% polyacrylamide liquid 0.64 × 103 3 × 103

1.0 mol/L tromethamine (Tris, pH8.8) 2.3 × 103 2.3 × 103

10% sodium dodecyl sulfate (SDS) 0.03 × 103 0.1 × 103

10% ammonium persulfate 0.04 × 103 0.1 × 103

Tetramethylethylenediamine (TEMED) 0.004 × 103 0.004 × 103

and the comb was pulled out. Next, 30 µL of the expressed protein
supernatant was taken out, added with 10 µL of 5 × loading
buffer, mixed evenly, and boiled for 10 min at 100◦C.

Eventually, 40 µL of the sample was loaded on each well of
the electrophoresis gel. Under 80V voltage, the bromophenol
blue formed a straight line in the gel, and then the voltage was
changed to 120V. When the bromophenol blue ran to the lower
edge, the power supply was disconnected, and the membrane was
transferred. The membrane transfer process is as follows: soak the
glue in the transfer buffer for 10 min, cut six pieces of membrane
and filter paper according to the size of the glue, put the transfer
buffer for 10 min, place each layer in the order of sponge/3 layers
of filter paper/glue/membrane/3 layers of filter paper/sponge, and
drive away the bubbles with a test tube. Then put the transfer tank
into the ice bath, put the above interlayer, add transfer buffer, and
insert the electrode, 100V for 1 h.

After the membrane transfer was completed, the gel image
processing system (Unverbindlicher Verkaufspreis, Germany)
was used to analyze the target band’s molecular weight and net
optical density. The relative expression of target protein = target
band gray value OD/internal reference gray value OD.
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FIGURE 1 | Influences of patients’ clinical characteristics on their quality of life
(1: Stage I-II; 2: Stage III-IV; 3: Chemotherapy less than 3 times; 4:
Chemotherapy more than 3 times).
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TABLE 2 | The log2FC values of first 10 up-regulated genes and first 10
down-regulated genes with relatively large differences.

Oncogenes Names log2FC P value

Up-regulated genes COL10A1 3.9864 9.69e-32

COL11A1 3.7236 5.95e-22

CST1 2.9661 2.90e-23

CTHRC1 3.2530 9.06e-26

GREM1 2.8852 2.75e-15

HS6ST2 3.4452 7.12e-22

MMP1 3.0086 5.06e-13

MMP12 3.1327 1.54e-17

SPINK1 3.3138 1.06e-14

TOX3 2.8138 2.69e-20

Down-regulated genes AGER −3.8451 3.62e-35

CLDN18 −3.2612 9.98e-19

FCN3 −3.4334 1.01e-22

GKN2 −3.2586 3.43e-20

GPM6A −3.6053 2.97e-31

TMEM100 −3.5239 6.07e-21

SCGB1A1 −3.3605 4.04e-10

SFTPC −3.3127 3.23e-15

SOSTDC1 −3.3652 5.19e-19

WIF1 −3.7317 2.09e-17

RESULTS AND DISCUSSION

Influence of Patients’ Clinical
Characteristics on Their Quality of Life
Figure 1 presented the basic clinical characteristics of 60 patients.

Figure 1 suggested that patients in stage III-IV had more
severe symptoms, including nausea, vomiting, insomnia, and
peripheral neuropathy, than patients in stage I-II. Patients
who received more than three chemotherapies had more
severe nausea, vomiting, insomnia, and peripheral neuropathy
than those who received less than three chemotherapies. This
indicated that the more times the chemotherapy patients
had, the greater the side effects of the body were. How
to make cancer patients achieve the best therapeutic effect
within the minimum number of chemotherapy is not only

a difficult problem of anti-cancer treatment, but also a key
research direction.

Lung Cancer Differential Expression
Gene Analysis Results
A total of 875 differentially expressed genes, including 291 up-
regulated genes and 584 down-regulated genes, were obtained
with FDR ≤ 0.05 and log 2 FC ≥ 1 criteria. Among these genes,
the first 10 up-regulated genes and the first 10 down-regulated
genes were shown in Table 2 and Figure 2. The first 10 up-
regulated genes were, respectively COL10A1 (log2FC = 3.9864,
P ≤ 0.01), COL11A1 (log2FC = 3.7236, P ≤ 0.01), CST1
(log2FC = 2.9661, P ≤ 0.01), CTHRC1 (log2FC = 3.2530,
P ≤ 0.01), GREM1 (log2FC = 2.8852, P ≤ 0.01), HS6ST2
(log2FC = 3.4452, P ≤ 0.01), MMP1 (log2FC = 3.0086, P ≤ 0.01),
MMP12 (log2FC = 3.1327, P ≤ 0.01), SPINK1 (log2FC = 3.3138,
P ≤ 0.01), and TOX3 (log2FC = 2.8138, P ≤ 0.01), as
shown in Figure 2A. The first 10 down-regulated genes were,
respectively, AGER (log2FC = −3.8451, P ≤ 0.01), CLDN18
(log2FC = −3.2612, P ≤ 0.01), FCN3 (log2FC = −3.4334,
P ≤ 0.01), GKN2 (log2FC = −3.2586, P ≤ 0.01), GPM6A
(log2FC = −3.6053, P ≤ 0.01), TMEM100 (log2FC = −3.5239,
P ≤ 0.01), SCGB1A1 (log2FC = −3.3605, P ≤ 0.01), SFTPC
(log2FC = −3.3127, P ≤ 0.01), SOSTDC1 (log2FC = −3.3652,
P ≤ 0.01), and WIF1 (log2FC = −3.7317, P ≤ 0.01), as shown
in Figure 2B.

Up-Regulated Gene Signal Analysis
Network
The up-regulated gene COL11A1 was taken as an example;
the types of its signal transduction molecules were
counted (Figure 2).

According to Figure 3, the inhibitory conduction signals in
normal human tissues were lower than those in lung cancer
tissues. In comparison, the activating conduction signals in lung
cancer tissues were generally higher than those in normal tissues.
This suggested that COL11A1 was involved in the molecular
driving mechanism of lung cancer. Next, the types of transferred
molecules of COL11A1 were analyzed (Figure 4).

As shown in Figure 4, the types of metastatic molecules of
inhibitory COL11A1 in normal human tissues were lower than
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FIGURE 2 | The log2FC values of first 10 up-regulated genes and first 10 down-regulated genes that had relatively large differences (A) the first 10 up-regulated
genes; (B) the first 10 down-regulated genes.
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FIGURE 3 | COL11A1 upstream and downstream network signal
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cancer tissue).
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FIGURE 4 | Metastatic molecular types of COL11A1 in different tissues (1 and
3: normal human tissue; 2 and 4: lung cancer tissue).

those in lung cancer tissues. In contrast, the types of metastatic
molecules of activating COL11A1 in lung cancer tissues were
more than those in normal tissues. This showed that COL11A1
was very metastatic in lung cancer tissues.

Signal Pathway Analysis and Biological
Function Enrichment Results
The obtained 291 up-regulated genes and 584 down-regulated
genes were input into the DAVID platform for signal pathway
analysis and biological function enrichment. The results showed
that the differentially expressed genes were enriched in 435,
with statistically significant differences (P ≤ 0.01). The expressed
genes were enriched in 166, and the results of GO analysis
of the top ten up-regulated genes and the top ten down-
regulated genes were shown in Table 3 and Figure 5. Among

the up-regulated genes (see Figure 5A), BP contains 53 genes
with pathway IDs of GO.0030574, GO.0006508, GO.0030199,
and GO.0000281; CC contains pathway IDs of GO.0005615,
GO.0005576, GO. 203 genes of 0070062 and GO.0005581;
MF contains 23 genes with pathway IDs of GO.0004252 and
GO.0004556. Among the down-regulated genes (see Figure 5B),
BP contains 134 genes with pathway IDs of GO.0030593,
GO.0006954, GO.0006955, GO.0001525, and GO.0050729; CC
contains pathway IDs of GO.0005615, GO. 425 genes of 0005576,
GO.0005578 and GO.0005886; MF contains 23 genes with
pathway ID GO.0008201. For BP, the up-regulated genes mainly
occurred in the process of protein metabolism, proteolysis,
mitosis, and cell division. The down-regulated genes were
mainly reflected in neutrophilic granulocyte chemoattractant,
inflammatory reaction, immune response, and angiogenesis. In
the process. For CC, up-regulated genes were mainly enriched
in extracellular and collagen trimers and down-regulated genes
were mainly enriched outside the cell. For MF, the up-regulated
genes were mainly expressed in active serine endonuclease
and α-amylase, while the down-regulated genes did not show
significant enrichment.

The KEGG pathway analyzed the biological functions of genes
from the system level through abundant pathway information,
including many complex biological functions such as genetic
information transmission, metabolic pathways, and cellular
processes. From the annotation analysis of a single gene to
the annotation analysis of a gene set, it is judged whether
a group of genes appears on a functional node. The KEGG
pathway analysis identifies biological processes most relevant
to biological phenomena and greatly enhances the reliability
of the survey. The results of the KEGG pathway analysis of
differentially expressed up-regulated genes and differentially
expressed down-regulated genes were shown in Table 4. As
shown in Figure 6, the up-regulated genes include six genes (see
Figure 6A) with pathway ID 00500: AMY1A, AMY1B, AMY1C,
AMY2A, AMY2B, and PGM2L1; 11 genes of 04110: BUB1B,
CCNB1, CDC20, CDK1, CDKN2A, MAD2L1, MCM2, ORC6,
PTTG1, SFN, and TTK; 7 genes with pathway ID 04115: CCNB1,
CDK1, CDKN2A, IGFBP3, RRM2, SFN, and STEAP3 10 genes
with pathway ID: 04512: COL1A1, COL1A2, COL3A1, COL5A1,
COL5A2, COL11A1, COMP, HMMR, SPP1, and THBS2; 10
genes with pathway ID 04974: ACE2, COL1A1, COL1A2,
COL3A1, COL5A1, COL5A2, COL11A1, DPP4, KCNN4, and
KCNK5. Down-regulated genes include 16 genes (see Figure 6B)
with pathway ID 04062: ARRB1, CCL2, CCL4, CCL14, CCL21,
CCL23, CXCL3, CXCL12, CXCR2, CX3CL1, ELMO1, FGR,
GNG11, PLCB4, PPBP, and PREX1; pathway ID is 04514
Genes: CADM1, CDH5, CD274, CLDN5, CLDN18, CLDN22,
ESAM, ICAM1, ICAM2, PECAM1, PTPRM, and SELP; 13
genes with pathway ID 04668: CCL2, CXCL3, CX3CL1, EDN1,
FOS, ICAM1, IL1B, IL18R1, IL6, JUNB, MAP3K8, PTGS2,
and TNFAIP3; 7 genes with pathway ID 05143: ICAM1, IL1B,
IL6, HBA1, HBA2, HBB, and PLCB4; 14 genes with pathway
ID 05144: CCL2, CD36, CSF3, GYPC, HBA1, HBA2, HBB,
ICAM1, IL1B, IL6, KLRB1, PECAM1, SELE, and SELP. The up-
regulated genes were mainly enriched in cell cycle, extracellular
matrix receptor interaction, protein digestion and absorption,
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TABLE 3 | The GO analysis results of the first 10 up-regulated genes and first 10 down-regulated genes.

Oncogenes Gene GO classification Pathway ID Pathway description The quantity of genes P value

Up-regulated gene BP GO.0030574 Collagen catabolism 14 1.06e-10

BP GO.0006508 Proteolysis 26 8.45e-6

BP GO.0030199 Collagen fiber tissue 7 1.62e-6

BP GO.0000281 Mitosis and cell division 6 4.63e-5

CC GO.0005615 Extracellular 53 9.56e-11

CC GO.0005576 Extracellular 55 7.45e-9

CC GO.0070062 Extracellular 83 1.56e-7

CC GO.0005581 Collagen trimer 12 9.63e-7

MF GO.0004252 Active serine endonuclease activity 19 1.45e-8

MF GO.0004556 α-amylase 4 2.74e-7

Down-regulated gene BP GO.0030593 Neutrophilic granulocyte chemoattractant 19 1.07e-13

BP GO.0006954 Inflammatory response 38 3.14e-11

BP GO.0006955 Immunological reaction 37 1.01e-11

BP GO.0001525 Angiogenesis 26 9.45e-8

BP GO.0050729 Inflammatory reaction 14 4.06e-8

CC GO.0005615 Extracellular 106 9.88e-17

CC GO.0005576 Extracellular 108 1.04e-18

CC GO.0005578 Extracellular matrix 33 1.16e-13

CC GO.0005886 Cytoplasm membrane 178 6.05e-8

MF GO.0008201 Heparin binding 23 4.33e-8
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FIGURE 5 | The GO analysis results (A) the first 10 up-regulated genes; (B) the first 10 down-regulated genes.

p53 signaling pathway, starch and sucrose metabolism, and
down-regulated genes were mainly enriched in chemokine
signal transduction pathways, malaria, TNF (tumor necrosis
factor) signaling pathway, cell adhesion molecules, African
trypanosomiasis pathway.

PPI Analysis Results
A 292 nodes and 1,425 interaction networks were obtained
from 291 up-regulated genes, and 529 nodes and 1,624
interaction networks were obtained from 584 down-regulated
genes by analyzing the string tool. After processing with
visualization software, the significant module in the protein-
protein interaction relationship network in Figure 7 was
obtained, and the high expression in the center of the protein-
protein interaction network was selected from the protein-
protein interaction network. The gene (see Figure 7A), included
TOP2A (Degree = 62), CCNB1 (Degree = 57), CCNA2
(Degree = 54), CDK1 (Degree = 55), and TTK (Degree = 51),
all of which have larger mutual Acting relationship. A low-
expression gene at the center of the protein-protein interaction

network (see Figure 7B), including IL6 (Degree = 89), IL1B
(Degree = 60), CCL1 (Degree = 58), EDN1 (Degree = 53), and
FGF2 (Degree = 51) had a large interaction relationship. These
highly expressed genes and low expressed genes may be key target
genes related to lung cancer diseases.

Protein Expressions of High-Expressed
and Low-Expressed Genes
Protein expressions of the high-expressed genes CCNB1 and
TOP2A were illustrated in Figure 8 below:

Afterward, the expression of messenger RNA corresponding
to CCNB1 and TOP2A proteins was analyzed, and the results
were shown in Figure 9 below.

As shown in Figures 8, 9, CCNB1 and TOP2A proteins
corresponding to the messenger RNA expression level in normal
humans were around 10, while the CCNB1 and TOP2A protein
corresponding to the messenger RNA expression level in the
patient group both exceeded 35, indicating that CCNB1 and
TOP2A proteins were highly expressed in patients.
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TABLE 4 | The KEGG pathway analysis results of differently expressed up-regulated genes and differently expressed down-regulated genes.

Oncogenes Pathway ID Amount of
genes

Names Pathway description P value

Up-regulated genes 00500 6 AMY1A, AMY1B, AMY1C, AMY2A, AMY2B, PGM2L1 Starch and sucrose metabolism 2.34e-4

04110 11 BUB1B, CCNB1, CDC20, CDK1, CDKN2A, MAD2L1,
MCM2, ORC6, PTTG1, SFN, TTK

Cell cycle 1.06e-5

04115 7 CCNB1, CDK1, CDKN2A, IGFBP3, RRM2, SFN,
STEAP3

p53 signaling pathway 9.95e-4

04512 10 COL1A1, COL1A2, COL3A1, COL5A1, COL5A2,
COL11A1, COMP, HMMR, SPP1, THBS2

Extracellular matrix receptor
interaction

2.01e-5

04974 10 ACE2, COL1A1, COL1A2, COL3A1, COL5A1,
COL5A2, COL11A1, DPP4, KCNN4, KCNK5

Digestion and absorption of
protein

2.78e-6

Down-regulated genes 04062 16 ARRB1, CCL2, CCL4, CCL14, CCL21, CCL23,
CXCL3, CXCL12, CXCR2, CX3CL1, ELMO1, FGR,
GNG11, PLCB4, PPBP, PREX1

Chemokine signaling
transduction pathway

1.37e-5

04514 12 CADM1, CDH5, CD274, CLDN5, CLDN18, CLDN22,
ESAM, ICAM1, ICAM2, PECAM1, PTPRM, SELP

Cell adhesion molecule 1.46e-3

04668 13 CCL2, CXCL3, CX3CL1, EDN1, FOS, ICAM1, IL1B,
IL18R1, IL6, JUNB, MAP3K8, PTGS2, TNFAIP3

TNF signaling pathway 1.69e-6

05143 7 ICAM1, IL1B, IL6, HBA1, HBA2, HBB, PLCB4 African trypanosomiasis 1.54e-4

05144 14 CCL2, CD36, CSF3, GYPC, HBA1, HBA2, HBB,
ICAM1, IL1B, IL6, KLRB1, PECAM1, SELE, SELP

Malaria 1.01e-11
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FIGURE 6 | The KEGG pathway analysis results (A) showed the differently expressed up-regulated genes; (B) showed the differently expressed down-regulated
genes.
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FIGURE 7 | Significant modules in the protein-protein interaction network (A) showed the highly expressed genes; (B) showed the low expressed genes.

Protein expressions of the low-expressed genes IL6 and IL1B
were illustrated in Figure 10 below:

Then, the messenger RNA expression of IL6 and IL1B proteins
was analyzed (Figure 11).

As shown in Figures 10, 11, protein expressions of
the low-expressed genes IL6 and IL1B in patients were

low. The messenger RNA expressions corresponding to
IL6 and IL1B proteins in the control group were around
5, while they both exceeded 25 in the patient group.
This suggested that even though IL6 and IL1B proteins
were low-expressed in patients, they were still lung
cancer-related target genes.
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FIGURE 8 | Protein expressions of CCNB1 and TOP2A in lung cancer patients.
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FIGURE 9 | The expression of messenger RNA corresponding to CCNB1 and
TOP2A proteins in the control and experimental groups (1: CCNB1; 2:
TOP2A).

CONCLUSION

This study attempts to reveal the molecular driving mechanism
of lung cancer through signal pathway, biological function
enrichment, protein interaction analysis, and gene target network
analysis. A total of 875 differentially expressed genes were
obtained by analyzing the samples. These genes are mainly
involved in biological processes such as protein metabolism,
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FIGURE 11 | The messenger RNA expressions of IL6 and IL1B proteins in the
control and experimental groups (1: IL6; 2: IL1B).

protein hydrolysis, mitosis and cell division. TOP2A, CCNB1,
CCNA2, CDK1, and TTK may be the key target genes of lung
cancer. Exploring the changes of various genes and pathways
in the pathogenesis of lung cancer provides reference for the
molecular driving mechanism of lung cancer, and provide
theoretical basis for molecular-targeted drug therapy and clinical
nursing guidance of lung cancer. However, there are still some
shortcomings. The selection number of up-regulated and down-
regulated genes is limited, which cannot meet the huge molecular
network analysis. In the later stage, the screening amount

FIGURE 10 | Protein expressions of IL6 and IL1B in patients with lung cancer.
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of up-regulated and down-regulated genes will be increased.
The molecular driving mechanism of lung cancer was still
in the preliminary stage. In the subsequent research, TOP2A
with large interaction relations among the critical target genes
related to lung cancer obtained by screening would be screened
for drug resistance, providing assistance for the development
of its inhibitors.
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Given the limitation of technologies, the subcellular localizations of proteins are difficult to
identify. Predicting the subcellular localization and the intercellular distribution patterns of
proteins in accordance with their specific biological roles, including validated functions,
relationships with other proteins, and even their specific sequence characteristics, is
necessary. The computational prediction of protein subcellular localizations can be
performed on the basis of the sequence and the functional characteristics. In this
study, the protein–protein interaction network, functional annotation of proteins and a
group of direct proteins with known subcellular localization were used to construct models.
To build efficient models, several powerful machine learning algorithms, including two
feature selection methods, four classification algorithms, were employed. Some key
proteins and functional terms were discovered, which may provide important
contributions for determining protein subcellular locations. Furthermore, some
quantitative rules were established to identify the potential subcellular localizations of
proteins. As the first prediction model that uses direct protein annotation information
(i.e., functional features) and STRING-based protein–protein interaction network
(i.e., network features), our computational model can help promote the development of
predictive technologies on subcellular localizations and provide a new approach for
exploring the protein subcellular localization patterns and their potential biological
importance.

Keywords: protein subcellular location, protein-protein interaction network, GO enrichment, KEGG enrichment,
feature selection, classification algorithm

1 INTRODUCTION

Eukaryotic organisms, such as human beings, have complicated cell structures with delicate
functional membrane structures surrounded by effective compartments (Thul et al., 2017;
Tjondro et al., 2019). The complicated membrane structures in eukaryotic cells have generally
divided the intercellular space into the cytoplasm and the nucleus through the nuclear membrane
(Yeagle, 1989; Mangeat et al., 1999). Specific organelles, such as the mitochondria, have a specific and
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independent membrane system (Set et al., 2019). The major
components of these structures divide the intercellular space
into different isolated rooms for independent biological
reactions and interactions and restrict the intercellular
localizations of proteins (Thul et al., 2017). For instance, the
replication of DNA depends on various effective proteins and
enzymes. However, some proteins, such as DNA polymerase and
DNA ligase, are not synthesized in the nucleus, in which they
function (Ganai and Johansson, 2016). Some proteins play a
specific role in biological processes in the nucleus (Ganai and
Johansson, 2016). Therefore, the subcellular localization controls
the protein to some extent to act at the proper localization.

Given the limitation of technologies, the subcellular
localizations of proteins are difficult to identify. Therefore,
predicting the subcellular localization and the intercellular
distribution patterns of proteins in accordance with their
specific biological roles, including validated functions,
relationships with other proteins, and even their specific
sequence characteristics, is necessary. The computational
prediction of protein subcellular localizations can be
performed on the basis of the sequence and the functional
characteristics. Sequence characteristics-based methods can be
further divided into three kinds, namely, the N-terminal sorting
method, amino acid composition-based prediction, and
homology. The N-terminal sorting method is based on
subcellular localization prediction. In 2006, researchers from
Greece reported a subcellular localization predictor by using
the N-terminal signaling sequence of the protein, resulting in
a cross-validated accuracy of 87.1% in animals (Petsalaki et al.,
2006). The amino acid composition of proteins is easy to
determine and describe, but the models that use amino acid
composition do not have good prediction performance.
Therefore, amino acid compositions are generally used to
accompany other characteristics, such as N-terminal sorting
and homology. The homology considers another important
feature subgroups of sequence characteristics. Predictors, such
as the Proteome Analyst (Szafron et al., 2004) and the
PairProSVM (Mak et al., 2008), have been validated to have a
good performance for protein subcellular localization prediction.
Recently, some advanced computational methods, such as deep
learning, multiple kernel learning, etc. are adopted to learn
features derived from protein sequence and set up prediction
models (Wei et al., 2018; Ding et al., 2020).

Apart from the above sequence-based prediction methods,
predicting the subcellular localization of proteins by using the
functional annotation and correlations between proteins has
attracted attention due to the accomplishment of human
protein function annotation and the establishment of the
protein–protein interaction (PPI) network. However, the
extraction of protein functional features is quite difficult
compared with extracting protein sequencing features. With
the development of bioinformatics, the most widely used
approaches have been established on the annotation and
clustering of the gene ontology (GO) (Consortium, 2015) and
the Kyoto Encyclopedia of Genes and Genomes (KEGG)
pathways (Zhang and Wiemann, 2009). In these methods, the
GO and the KEGG pathway terms are applied to describe and

cluster proteins as optimal protein characteristics. GO has terms
on cellular components that describe the general subcellular
localization. Some predictors, such as the ProLoc-GO (Huang
et al., 2008), the ILoc-Virus (Xiao et al., 2011), and the Cell-PLoc
(Chou and Shen, 2008), combine the general description with the
sequence characteristics, thereby establishing a novel and
effective prediction method on subcellular localization.
However, the functional annotation of proteins remains
imperfect, and potentially new functions of proteins emerge.
Therefore, additional methods should be presented to
supplement current research.

In this study, the comprehensive PPI network provided by
STRING (Szklarczyk et al., 2016) and GO/KEGG pathway
annotations on proteins were employed to analyze the current
proteins with known subcellular localizations. Qualitative and
quantitative predictive models were established to identify the
potential subcellular localizations of proteins on the basis of
several machine learning algorithms, such as feature selection
methods, classification algorithms. In addition to models, we also
obtained some key proteins and functional terms that may
provide important contributions for determining protein
subcellular locations. As the first prediction model that used
direct protein annotation information (i.e., functional features)
and the STRING-based PPI network (i.e., network features), our
computational model can help promote the development of
predictive technologies on subcellular localizations and provide
a new approach for exploring the protein subcellular localization
patterns and their potential biological importance.

2 MATERIALS AND METHODS

2.1 Data
The data used in this study were extracted from the Swiss-Prot
(http://cn.expasy.org/, release 54.0) by searching the proteins
annotated with “subcellular location”. Initially, 53,427 protein
sequences were downloaded. Proteins with length shorter than 50
amino acids (e.g., protein fragments) and those with length longer

TABLE 1 | Number of proteins in each category.

Index Category Number of proteins

Class 1 Biological membrane 1,487
Class 2 Cell periphery 35
Class 3 Cytoplasm 506
Class 4 Cytoplasmic vesicle 70
Class 5 Endoplasmic reticulum 190
Class 6 Endosome 25
Class 7 Extracellular space or cell surface 649
Class 8 Flagellum or cilium 3
Class 9 Golgi apparatus 98
Class 10 Microtubule cytoskeleton 48
Class 11 Mitochondrion 345
Class 12 Nuclear periphery 33
Class 13 Nucleolus 112
Class 14 Nucleus 1,285
Class 15 Peroxisome 46
Class 16 Vacuole 54
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than 5,000 amino acids (e.g., protein complexes) were excluded.
Proteins containing unknown amino acid abbreviation, such as X,
were also excluded. Protein sequences with high degree of
similarity were also removed using the program CD-HIT (Li
and Godzik, 2006) and a cutoff value of 0.7. Finally, only human
proteins were studied. Thus, 4,986 protein sequences remained
after these exclusions and were classified into 16 categories
(Table 1).

2.2 Feature Representation
Good representation of proteins is very important to build
efficient models for identification of human protein subcellular
locations. In this study, each protein was represented by three
groups of features, where one group was derived from PPI
network, two groups were extracted from functional terms
(GO and KEGG pathway). Their descriptions are as follows.

2.2.1 Network Features Derived From PPI Network
The initial PPI network was downloaded from STRING (version
9.0) (Szklarczyk et al., 2011) (http://string.embl.de/), which
contained known and predicted protein interaction. The
interaction network considers proteins as its nodes and has an
edge between two proteins if they can interact with each other.
Furthermore, each edge was assigned a weight, which was defined
as the confidence score of the corresponding interaction. As such
score was obtained by considering several aspects of proteins, it
can widely measure the associations of proteins. Given a protein,
a feature vector was constructed, where each component
indicated a protein in the PPI network. Each component was
defined as the confidence score of the interaction between the
protein and the corresponding protein of such component. If
such interaction did not exist, the component was set to zero. For
an easy description, these features were called network features.
As there were 20,770 proteins in the PPI network, 20,770 network
features were generated for each protein.

2.2.2 Functional Features Derived From KEGG
Pathway
The immediate neighborhood method is usually used for
predicting the function of a query protein on the basis of the
other proteins with known functions (Sharan et al., 2007). A
query protein interacts with many neighboring proteins in the
STRING network (Szklarczyk et al., 2011). With these
neighboring proteins, we can assess the relationship between
the query protein and one KEGG pathway. Let the neighboring
proteins and the query protein constitute a protein set PS. For a
KEGG pathway, proteins in such pathway comprised another
protein set, denoted by KP. The relationship between the query
protein and the KEGG pathway, called KEGG enrichment score,
was defined as the −log10 of the hypergeometric test p value
(Carmona-Saez et al., 2007; Cai et al., 2010) on above-constructed
protein sets. All obtained enrichment scores on all KEGG
pathways were collected in a vector, comprising the functional
KEGG features of the protein. 297 KEGG pathways were
considered, inducing 297 functional KEGG features.

2.2.3 Functional Features Derived From GO
Similarly, the relationship between the query protein and one GO
term can be obtained. For a GO term, let GP be a protein set
consisting of proteins annotated by such GO term. The
relationship was defined as the −log10 of the hypergeometric
test p value (Cai et al., 2010; Li et al., 2012) on PS and GP. The
obtained value was called GO enrichment score. Likewise, GO
enrichment scores on all GO terms were collected in a vector,
constituting the functional GO features of the query protein.
20,681 GO terms were involved, generating 20,681 functional GO
features.

2.3 Boruta Feature Filtering
The Boruta feature filtering (Kursa and Rudnicki, 2010) can
screen features that are relevant to target sample labels on the
basis of the random forest (RF) in a wrapper manner. The
Boruta feature filtering iteratively identifies key features by
comparing the importance scores that correspond to the real
and the shuffled features. The Boruta approach has three
steps: 1) copying the training data and shuffling the feature
values for new shuffled data to be produced; 2) training the
RF classifier on the produced shuffled data and calculating
the importance score for each feature; and 3) evaluating the
importance score of each feature in the original training data
and removing the real features with remarkably lower
importance scores than the shuffled features. By executing
the above steps with a few iterations, Boruta approach selects
the relevant features.

This study adopted the Boruta program retrieved from https://
github.com/scikitlearn-contrib/boruta_py. For convenience, it
was performed with its default parameters.

2.4 Minimum Redundancy Maximum
Relevance
The mRMR (Peng et al., 2005) can select and rank informative
features in accordance with the following assumptions. On the
one hand, the mRMR selects features with minimum
redundancy among themselves. On the other hand, the
mRMR selects features with maximum relevance with class
labels. Therefore, the mRMR only selects the features that
satisfy minimum redundancy and maximum relevance
simultaneously by using mutual information. These features
are important in distinguishing the class labels for follow-up
classification modeling. In fact, two feature lists can be obtained
through the mRMR method. The MaxRel feature list ranks
features based on their relevance to class labels, whereas the
mRMR feature list sorts features by further considering the
redundancies among features. Evidently, from the mRMR
feature list, we can obtain a compact feature subspace for a
given classification algorithm. Thus, this study only adopted the
mRMR feature list.

The present study used the mRMR program downloaded from
http://home.penglab.com/proj/mRMR/. Likewise, default
parameters were adopted to execute such program.
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2.5 Incremental Feature Selection
IFS, an ordered feature selection approach (Liu and Setiono,
1998), can determine the best number of selected features in an
iteration manner. The IFS first constructs a series of feature
subsets from the ranked features supplied by a feature ranking
(e.g., mRMR feature list). For instance, the first feature subset
consists of the top 10 features, and the second feature subset
consists of the top 20 features, and so on. Next, the IFS trains a
model on the training samples, which consist of features from
each feature subset, based on a given classification algorithm.
Such classification model performance is evaluated by 10-fold
cross-validation (Kohavi, 1995). Finally, the model with the
highest performance is found out, which was called the
optimum model. The feature subset used in this model was
called the optimum feature subset.

2.6 Classification Algorithm
To execute the IFS method, one classification algorithm is necessary.
This study tried four classification algorithms: 1) RF (Breiman, 2001),
2) Support vector machine (SVM) (Cortes and Vapnik, 1995), 3)
k-nearest neighbor (kNN) (Cover and Hart, 1967), 4) Decision tree
(DT) (Swain and Hauska, 1977). These algorithms have been widely
used to tackle various biological problems (Jia et al., 2020; Zhou et al.,
2020; Chen et al., 2021; Pan et al., 2021; Yang and Chen, 2021; Zhang
et al., 2021a; Zhang et al., 2021b; c).

2.6.1 Random Forest
RF builds an assemble classification algorithm depending on
many tree classifiers. The predicted sample label/category of
RF is determined using multiple tree classifiers by an
aggregating vote. Notably, RF usually adopts the final
consensus results in accordance with the average of all
decision trees’ predictions, aiming to avoid overfitting and
improve the performance robustness of learned models
because a subtle difference among decision trees exists in RF.
To quickly implement RF, the tool “RandomForest” in Weka
(https://www.cs.waikato.ac.nz/ml/weka/) (Hall et al., 2009) was
employed. Default parameters were used.

2.6.2 Support Vector Machine
As a classification algorithm based on statistical learning theory,
the SVM can map samples to a given category. The SVM
transforms samples from a low-dimensional space to a high-
dimensional space by using a kernel function (e.g., Gaussian
kernel) and can divide samples of each label/category by
maximizing the data interval in high-dimensional space. The
SVM can further predict the test samples’ label/category in
accordance with the interval to which this new sample
belongs. In this study, we used the SVM optimized by the
sequence minimization optimization (SMO) (Platt, 1998a;
Platt, 1998b) algorithm. This type of SVM is implemented by
the tool “SMO” in the Weka (https://www.cs.waikato.ac.nz/ml/
weka/) (Hall et al., 2009).

2.6.3 k-Nearest Neighbor
The kNN builds a classification model by using a voting scheme
(Theilhaber et al., 2002; Zhang and Srihari, 2004; Yu et al., 2016).

In the sample space, the class labels of the kNNs of a given sample
were used to produce a predicted class label for a new sample. In
the learning of kNN classification model, the nearest neighbors
are selected from the training data, where k is a given parameter
that usually ranges from 1 to 10. Briefly, the kNN includes several
calculation steps: 1) calculating the distance between the test
sample and all the training samples in the feature space; 2)
ranking the training samples in accordance with their distance
with the test sample; 3) selecting the k training samples with least
distance to the test sample (i.e., kNNs); 4) determining the
distribution of class labels of the k nearest training samples;
and 5) using the class label with highest distribution frequency as
the predicted class label for the test sample. The tool “IBK” in
Weka (https://www.cs.waikato.ac.nz/ml/weka/) (Hall et al., 2009)
implements the kNN algorithm, which was directly employed in
this study.

2.6.4 Decision Tree
The DT can produce interpretative rules that easily explain
the classification and the regression models for wide
applications in many research fields. In brief, DT is a
nonparametric supervised learning method and uses a
white box model with the IF-TEHN format to provide
definite indications of individual features for classification
and regression. A common construction strategy of DT is
greedy algorithm, which achieves satisfactory performance
with reasonable computational cost. The corresponding pack
collected in Scikit-learn (https://scikit-learn.org/stable/)
(Pedregosa et al., 2011), which implements an optimized
version of the CART algorithm with the Gini index, was
used to build DT model in this study.

2.7 Synthetic Minority Oversampling
Technique
Table 1 shows that the analyzed data were unbalanced numbers
of samples with different labels (i.e., different classified
categories). Thus, the SMOTE (Chawla et al., 2002) was
applied. It can produce new samples for the minor sample
classes iteratively until the sample numbers of these minor
sample classes are equivalent to that of the major sample class.
The balanced data can improve the construction of the
classification models. In this study, we used the tool “SMOTE”
in the Weka (https://www.cs.waikato.ac.nz/ml/weka/) (Hall et al.,
2009), which implements SMOTE method. Samples generated by
SMOTE were not used in the methods of Boruta and mRMR
because these newly added samples may influence the results of
these two methods, which cannot fully reflect actual distribution
of subcellular locations of proteins.

2.8 Performance Evaluation
In this study, the Matthew correlation coefficients (MCC)
(Matthews, 1975) within 10-fold cross-validation (Kohavi,
1995) was used to evaluate the prediction performance of each
classification model. MCC is a commonly used measurement and
ranges between −1 and +1, achieving +1 when the classification
model has the best performance. The multiclass version of MCC
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is proposed by Gorodkin (Gorodkin, 2004). Our analyzed data
contained 16 categories, and MCC was calculated as follows:

MCC � cov(X,Y)
�����������������
cov(X,X)cov(Y, Y)√ (1)

where cov(·, ·) represents the covariance of two matrices, X is
a 0–1 matrix that indicates the predicted class of each sample,
and Y is a 0–1 matrix that represents the actual classes of all
samples.

Besides, the performance of each constructed model was also
evaluated by other measurements, including individual accuracy
on each category and overall accuracy.

3 RESULTS

In this study, we conducted a computational investigation on
identification of human protein subcellular locations. The entire
procedures are illustrated in Figure 1. Detailed results were
described in this section.

3.1 Results of Boruta and Minimum
Redundancy Maximum Relevance Methods
As described in Feature Representation, each protein was
represented by lots of network, functional KEGG and
functional GO features. The Boruta method was first applied
to analyze all features. Irrelevant features were discarded. 4,773
features remained, which are provided in Supplementary Table
S1. Among these features, 399 were network features, 151 were
functional KEGG features, and 4,223 were functional GO
features, which are shown in Figure 2A. Evidently, functional
GO features occupied most features (∼88%).

For these 4,773 features, the mRMR method followed to
analyze their importance. An mRMR feature list was
generated, as listed in Supplementary Table S1. We counted
ranks of features in each feature group and plotted a boxplot in
Figure 2B. It can be observed that network features received
many high ranks in the mRMR feature list although their quantity
was not most. This suggested that network features can provide
key contributions for determination of protein subcellular
locations.

FIGURE 1 | Entire procedures for constructing and evaluating protein subcellular location prediction models. Human proteins and their subcellular location
information are retrieved from Swiss-Prot. Each protein is represented by three feature groups: network features, functional KEGG features, and functional GO features.
All features are analyzed by Boruta and minimum redundancy maximum relevance one by one, resulting in an mRMR feature list. Such list is fed into the incremental
feature selection method, incorporating four classification algorithms, synthetic minority oversampling technique and 10-fold cross-validation, to build efficient
models, extract essential features and access quantitative rules.
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3.2 Results of IFS Method
Based on the mRMR feature list, the IFS method was executed.
477 feature subsets were constructed with step 10. On each
feature subset, a model was built based on each of the four
classification algorithms (RF, kNN, SVM, and DT). The model
was further evaluated by 10-fold cross-validation. The evaluation
results, including MCC, overall accuracy and individual
accuracies on 16 categories, for RF, kNN and SVM are listed
in Supplementary Table S2. For an easy observation, an IFS
curve was plotted for each classification algorithm, which is
shown in Figure 3. For kNN, the highest MCC was 0.802,
which was obtained by using top 3,000 features in the mRMR
feature list. Thus, we can construct an optimum kNNmodel with
these features. The overall accuracy of such model was 0.830

(Table 2). For RF, it produced the highest MCC of 0.823 when top
3,040 features were adopted, thereby building the optimum RF
model with these features. The overall accuracy of such model
was 0.852 (Table 2). As for SVM, the highest MCC was 0.854.
This performance was obtained by using top 4,760 features in the
list. Accordingly, an optimum SVM model was set up with these
features. Its overall accuracy was 0.879 (Table 2). Evidently, each
optimum model provided good performance with MCC higher
than 0.800, suggesting combination of network and functional
features can really capture the essential properties of proteins.

Although three optimum models were set up as mentioned
above, their efficiencies were not very high because lots of features
were used. To build models with high efficiency, we carefully
checked the performance of three classification algorithms on
different feature subsets. Other three models using much less
features were constructed, where the kNNmodel used the top 130
features, RF model adopted the top 150 features and SVM model
used the top 1,530 features (Figure 3). Although these models
adopted much less features, their performance was only a little
lower than those of the optimum models. This fact can be
concluded from Table 2 and Figure 4. Thus, these models can
be efficient tools for identification of protein subcellular locations.

For DT, we conducted the same IFS procedure. The IFS results
are provided in Supplementary Table S3, which induced a curve,
as shown in Figure 3. It can be observed that the highest MCC
was 0.662 when top 2,500 features were adopted. Accordingly, we

FIGURE 2 | Analysis of features selected by Boruta. (A) Distribution of features selected by Boruta on three feature groups; (B) Violin plot to show ranks of features
in three feature groups which are obtained by mRMR method.

FIGURE 3 | IFS with four classification algorithms onmRMR feature list of network and functional features. The highest MCC values obtained by four classifications
are 0.802, 0.823, 0.854, and 0.662, respectively. kNN, RF, and SVM can yield quite good performance when much less features are adopted.

TABLE 2 | Performance of key models for identification of human protein
subcellular locations.

Classification algorithm Number of features Overall accuracy MCC

k-nearest neighbor 3,000 0.830 0.802
130 0.805 0.772

Random forest 3,040 0.852 0.823
150 0.833 0.800

Support vector machine 4,760 0.879 0.854
1,530 0.833 0.800

Decision tree 2,500 0.716 0.662
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can set up an optimum DT model using these features. The
overall accuracy was 0.716, as listed in Table 2. Evidently, such
performance was much lower than that of the optimum kNN/RF/
SVM model. It was also lower than those of the models with
higher efficiency mentioned in the above paragraph. The
individual accuracies on 16 categories yielded by this DT
model were also obviously lower than those of other models,
as shown in Figure 4. However, the utility of DTmodel was not to
identify protein subcellular locations. Different from kNN, RF,
and SVM, which were complete black-box algorithms, the
classification procedures of DT were open. Thus, it can
provide much more biological insights than other three
classification algorithms.

3.3 Results of Quantitative Rules
The optimum DT model adopted the top 2,500 features in the
mRMR feature list. Accordingly, DT was executed on the
dataset containing all 4,986 proteins, thereby constructing a
big tree. From this tree, 760 quantitative rules were extracted,
which are provided in Supplementary Table S4. Each of 16
categories was assigned some rules. Figure 5 shows the
number of rules for each of 16 categories. Some categories
(e.g., Class 1: Biological membrane, Class 3: Cytoplasm)
received more than 100 rules, whereas there were only
three rules for Class 8: Flagellum or cilium. In
Quantitative Rules That Contribute to Subcellular
Localization Prediction, several rules would be analyzed.

FIGURE 4 | Box plot to show performance of some models on 16 categories. For three classification algorithms (kNN, RF, and SVM), models with much less
features can provide similar performance to the optimum models. Optimum DT model yields much lower performance.

FIGURE 5 | Number of quantitative rules for each of 16 categories.
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3.4 Comparison of the Classic Model
The pseudo-amino acid composition (PseAAC) (Chou, 2001) is a
classic protein encoding scheme and has been widely adopted to
build models for identification of protein subcellular locations
(Cai and Chou, 2003; Pan et al., 2003; Lin et al., 2008; Shi et al.,
2008; Liu et al., 2010). Here, we used such scheme to encode each
protein mentioned in Data and further build models for the
comparison of models proposed in this study.

Five physicochemical and biochemical properties of amino
acids were employed to generate features, including codon
diversity, electrostatic charge, molecular volume, polarity and
secondary structure. The weight factor was set to 0.15 and
Lambda parameter was set to 50. From each physicochemical
and biochemical property, 50 features were extracted. Thus, 250
(50✕5) features were obtained for each protein. Furthermore, 20
amino acid composition features were also employed.
Accordingly, each protein was represented by 270 (250 + 20)
features. These features were directly analyzed by mRMR
method, resulting in a feature list. Such list was fed into the
IFS method. Likewise, four classification algorithms: kNN, RF,
SVM, and DT, were also tried in the IFS method. For each
classification algorithm, MCC values obtained on all possible
feature subsets are illustrated in Figure 6. It can be observed that
the highest MCC values for four classification algorithms were
0.724, 0.764, 0.755, and 0.494, respectively, which are also listed in
Table 3. The corresponding ACC values are also listed in this
table. Compared with ACC and MCC values obtained by models
using network and functional features (Table 2), with the same
classification algorithm, our models were superior to models with

PseAAC features. It was suggested that network and functional
features were more efficient than PseAAC features for
identification of protein subcellular locations. These features
provided new directions for building more efficient protein
subcellular location prediction models.

4 DISCUSSION

A group of effective proteins that may directly contribute to the
identification and clustering of different subcellular localizations
is screened by using somemachine learning models. According to
recent publications, the top optimal features have already been
validated to contribute to the subcellular localization, validating
the efficacy and the accuracy of our predictions. The detailed
analyses and discussion can be seen below.

4.1 Features From Proteins That Contribute
to Subcellular Localization Prediction
The first feature protein is SUMO2 (ENSP00000405965).
According to recent publications, this protein is a member of
the small ubiquitin-like modifier family and contributes to
ubiquitin-mediated post-translational modification system by
acting as a signal for proteasomal degradation (Hecker et al.,
2006; Tammsalu et al., 2014). In 2013, a research on testis
functions confirmed that SUMO2 is specifically located in the
nucleus region of the cell and is mediated by retinoic acid (Zhu
et al., 2010). Therefore, this protein is a potential feature for
specific subcellular regions.

The following feature protein is NDUFS3
(ENSP00000263774). As a specific iron–sulfur protein
component of the mitochondrial NADH, this protein
participates in the electron transport in the mitochondrion
and contributes to energy-associated metabolisms in living
cells (Benit et al., 2004). This protein is located in the
mitochondrial and the nucleus regions (Vogel et al., 2007b;
Taurino et al., 2012). Specifically, most of this protein is

FIGURE 6 | IFS with four classification algorithms on mRMR feature list of PseAAC features. The highest MCC values obtained by four classification algorithms are
0.724, 0.764, 0.755, and 0.494, respectively.

TABLE 3 | Performance of the optimum models using PseAAC features.

Classification algorithm Number of features Overall accuracy MCC

k-nearest neighbor 143 0.757 0.724
Random forest 108 0.803 0.764
Support vector machine 259 0.794 0.755
Decision tree 16 0.559 0.494
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directly located and functions in the inner mitochondrion
membrane (Benit et al., 2004; Vogel et al., 2007a).

GRK3, the next predicted feature protein
(ENSP00000317578), acts as a beta-adrenergic receptor kinase,
contributes to the GPCR signaling pathway (Antony et al., 2009;
Kumari et al., 2016), and participates in the CCR5 pathway in
macrophages (Vroon et al., 2004; Balabanian et al., 2008). In
general cells, GRK3 does not have a specific localization pattern.
However, in macrophages, this protein merges with CXCR4 to
form specific complexes in the cellular membrane system
(Wang et al., 2001). Therefore, in these functional cells, our
candidate protein GRK3 has a specific spatial distribution
pattern and may contribute to the identification of the
biological membrane region, validating the efficacy and the
accuracy of our prediction.

BRIX1 (ENSP00000338862) is the specific regulator in the
biogenesis of the 60S ribosomal subunit and is predicted to
contribute to subcellular localization (Fromont-Racine et al.,
2003; Strunk and Karbstein, 2009). According to recent
publications, this protein is mostly located inside the nucleus
and regulates ribosome biosynthesis (Zieve and Penman, 1976;
Nguyen et al., 1998). According to the Human Protein Atlas
(HPA), this protein is identified in the cytoplasm, but most of the
protein is still located and functions in the nucleus, validating that
the specific subcellular localization subgrouping is dependent on
this protein (Pontén et al., 2008).

MDH2 (ENSP00000327070) contributes to the catalyzation of
the reversible oxidation of malate to oxaloacetate and is predicted
to help in the identification of a certain subcellular region (Pines
et al., 1997; Shi and Gibson, 2011). According to HPA (Pontén
et al., 2008), like NDUFS3, this protein is mostly identified in the
mitochondrion. Recent publications also confirm that this
protein can be identified in multiple intracellular organelles
but is actually enriched in the mitochondria system (Lo et al.,
2015) especially the mitochondria-associated ER membranes
(Guardia-Laguarta et al., 2014; Lo et al., 2015). Moreover, this
protein acts as a potential subcellular signature and corresponds
with our prediction.

The H3-3B (ENSP00000254810) in our prediction list is the
basic nuclear protein that contributes to the maintenance of the
chromosomal fiber in eukaryotes (Frey et al., 2014). Therefore,
this protein is definitely located in the nucleus region, thereby
indicating subcellular localization. Similar with BRIX1, the
protein NHP2 (ENSP00000274606) is a specific protein
required for ribosome biogenesis (Vulliamy et al., 2008;
Fumagalli et al., 2009) and telomere maintenance (Wong and
Collins, 2003; Vulliamy et al., 2008). Therefore, this protein is also
identified in the cytoplasm and the nucleus. This protein has
potential to act as a subcellular localization signature because
most of it is located in the nucleus (Pontén et al., 2008). Other
feature proteins, e.g., CYC1 (ENSP00000317159) (Chen et al.,
1994) and H2AZ2 (ENSP00000308405) (Eskandarian, 2013),
have specific distribution patterns inside the cell, cytoplasm,
and nucleus according to recent publications.

Overall, the feature proteins we analyzed have already been
validated to contribute to the subcellular localization, validating
the efficacy and the accuracy of our prediction. Thus, our newly

presented computational method may be an effective tool for the
prediction of subcellular localizations.

4.2 Features From Functions That
Contribute to Subcellular Localization
Prediction
The functional enrichment analysis is performed, and a group of
effective GO (Consortium, 2015) and KEGG terms (Kanehisa,
2002) is screened to describe the core biological functions related
to subcellular localization and further show the functional
distribution pattern of feature proteins.

The top four GO terms in our prediction list describe specific
subcellular localization or effective structures contributing to the
distinction of different subcellular localization. These terms
include GO:0070013 (describes the intracellular organelle
lumen), GO:0031975 (describes the specific envelope structures
in cells), GO:0031090 (describes the organelle membrane), and
GO:0005887 (describes the integral component of the plasma
membrane).

For example, the intracellular organelle lumen is a specific part
of effective organelles, such as mitochondrion, peroxisomes, and
Golgi apparatus (Lorenz et al., 2006a; Lorenz et al., 2006b;
Masyuk et al., 2006), distinguishing perticular subcellular
localization from the other ones. Therefore, GO:0070013 can
contribute to subcellular localization. For GO:0031975, the
envelope is a multilayered structure connected to the cell
membrane or other membrane systems (Peabody et al., 2016).
Therefore, this GO term is functionally correlated with the cell
membrane and with various organelles with membrane-like
mitochondrion and Golgi apparatus (Graham et al., 1991;
Finnegan et al., 2001; Peabody et al., 2016). Other subcellular
localization prediction algorithms also consider this term as a
specific parameter for classification (Peabody et al., 2016).
Similarly, GO:0031090 and GO:0005887 describe a part of the
membrane system in cells.

4.3 Quantitative Rules That Contribute to
Subcellular Localization Prediction
Apart from the qualitative analysis on specific GO or KEGG
terms, a group of quantitative rules are established for the
identification of different subcellular localizations. According
to recent publications, these rules contribute to subcellular
localization, thereby validating the efficacy and the accuracy of
our prediction. Here, 16 typical rules referring to 16 clusters are
chosen for detailed analyses.

The first rule is to identify the biological membrane subcellular
localization (Class 1). According to the quantitative rules, the first
parameter is GO:0031224. According to our prediction, the
proteins enriched in this cellular component positively
contribute to the biological membrane. Considering that GO:
0031224 describes the intrinsic component of membrane, this
GO term is the first parameter to identify the proteins associated
with the biological membrane, validating our prediction.
Similarly, GO:0005886 describes the plasma membrane and
may positively contribute to the identification of such
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subcellular localization. Some terms negatively participate in this
identification. For instance, the nuclear lumen described by GO:
0031981 located inside the nucleus is in our prediction list.

For the rules that contribute to the identification of cell
periphery subcellular localization (Class 2), GO:0031224 is in
this predictive parameter list. The specific GO term GO:0007043
highly enriches proteins associated with the identification of cell
periphery subcellular localization. According to the GO
annotation, this GO term describes the cell–cell junction
assembly, which definitely occurs in the periphery subcellular
regions (Setzer et al., 2004; Dawson et al., 2012), validating the
efficacy and the accuracy of our prediction.

The third rule focuses on the identification of cytoplasm (Class
3). Specifically, wound healing (GO:0042060) is identified as a
specific positive enrichment marker for this rule. The cytoplasm
plays an essential role for wound healing (Jeon and Jeon, 1975).
Therefore, the proteins that are located at the cytoplasm can be
identified by a specific biological process (Jeon and Jeon, 1975;
Gabbiani et al., 1978), such as wound healing.

Similar with that of the cytoplasm, a group of rules for the
identification of cytoplasmic vesicle (Class 4) are identified.
Among the rule parameters, the specific GO term GO:0070727
that describes the cellular macromolecule localization (Franklin
and Baltimore, 1962) is a key feature that contributes to the
identification of the cytoplasmic vesicle. According to recent
publications, the cytoplasmic vesicle is a major transporter of
macromolecules during synthesis and functioning (Franklin and
Baltimore, 1962). Therefore, this GO term is a distinctive
parameter for the sublocation of the cytoplasmic vesicle.

Furthermore, some specific rules are identified for endosome
(Class 6), extracellular space or cell surface (Class 7), and
flagellum or cilium (Class 8). Apart from some general GO
terms, such as GO:0031224, the GO:1902115 is a specific
parameter for the identification of endosome. Describing the
assembly of effective intracellular organelles, this GO term
contributes to the identification of endosome subcellular
localization due to the tight correlation between endosome
and organelle assembly (Kjeken et al., 2004; Kloer et al., 2010).
For the identification of the extracellular space or the cell surface,
apart from a series of GO terms like other predictive rules, the
specific protein SDAD1 is obtained for the prediction of
subcellular localization on the extracellular space or the cell
surface. According to recent publications, this protein is
located mostly inside the nucleus (Zeng et al., 2017) but not
outside or on the biomembrane system. As for flagellum or cilium
(Class 8), a specific parameter called GO:2000816 is positively
correlated with the identification of this subcellular localization.
This GO term describes the negative regulation of mitotic sister
chromatid separation. Considering that mitotic separation is one
of the major biological functions of the centriole–flagellum
system (Wilson, 1969; Bettencourt-Dias et al., 2005), this
parameter (biological process) is correlated with our predicted
subcellular localization to a certain extent and definitely
contributes to the identification of this cellular structure,
thereby validating our predictions.

In addition, specific organelles, such as endoplasmic reticulum
localization (Class 5), Golgi apparatus (Class 9), and

mitochondrion (Class 11), can be identified and located by
specific quantitative rules. The specific parameter GO:0005789
contributes to the localization of the endoplasmic reticulum. The
GO:0005789 describes the endoplasmic reticulum membrane,
validating the efficacy and the accuracy of our prediction. For
the localization of Golgi apparatus, the specific parameter
has00601 describing the glycosphingolipid biosynthesis is
identified. Considering that glycosphingolipid biosynthesis is a
typical biological process happening in the Golgi apparatus
(Burger et al., 1996; Butters et al., 2000), this function is
predicted as a quantitative parameter for the identification of
Golgi apparatus subcellular localization. The mitochondrion is
the next predicted subcellular localization with typical predictive
parameters (such as GO:0031975), and the envelope is analyzed
above (Peabody et al., 2016). This GO term is functionally
correlated with the mitochondrion (Graham et al., 1991;
Finnegan et al., 2001; Peabody et al., 2016), confirming our
prediction.

Furthermore, the cell nucleus-associated locations, such as
nuclear periphery (Class 12), nucleolus (Class 13), and nucleus
(Class 14), can be quantitatively identified by our rules. For class
11, nuclear periphery regions are identified. Apart from the
typical parameters, such as GO:0031981 and GO:0005654, the
typical protein ENSP00000345895 or NUP50 is identified.
According to recent publications, this protein is enriched in
the periphery regions of the nucleus (Hajeri et al., 2010;
Vaquerizas et al., 2010), thereby positively corresponding with
our prediction. For the nucleolus, the specific biological process
RNA surveillance (GO:0071025) is enriched in such rules as an
effective parameter. Considering that RNA surveillance does
occur in this region (Hernandez-Verdun et al., 2010), this GO
term is a functional predictive parameter, validating the efficacy
and the accuracy of our prediction. Similar with the nucleolus, the
nucleus has its specific “biomarkers” in these quantitative rules.
GO:0045596 describes the negative regulation of cell
differentiation and is positively enriched in these rules.
Considering that the physical plasticity of nucleus is quite
important for cell differentiation (Pajerowski et al., 2007), this
GO term is a positive parameter for subcellular localization,
validating the efficacy and the accuracy of our prediction.

Three effective subcellular regions, namely, microtubule
cytoskeleton (Class 10), peroxisome (Class 15), and vacuole
(Class 16) remain. For the identification of microtubule
cytoskeleton, the typical GO term GO:0044450 describes the
obsolete microtubule organizing center part and is functionally
and positively correlated with the microtubule system. Therefore,
the predicted quantitative rules may be effective for the
identification of the microtubule cytoskeleton’s subcellular
localization. Peroxisome identification requires the specific
quantitative parameter GO:0031903, which describes the
microbody membrane. According to recent publications,
peroxisomes are major functional components of the
microbody. Thus, this GO term is an effective parameter
(Fahimi, 1969; Tolbert and Essner, 1981). The last subcellular
localization is the vacuole. Similar with the peroxisomes’ rules, a
specific GO term describing only the vacuolar lumen, a part of the
vacuole, is identified, thereby validating our prediction.
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5 CONCLUSION

We identified a group of feature proteins that effectively
contributes to intracellular subcellular localization and
screened a series of qualitative functional enrichment patterns
(i.e., GO and KEGG terms), revealing the functional distribution
patterns of these proteins that contribute to subcellular
localization identification. Combining proteins and functional
annotations, a series of quantitative prediction rules was built for
further analysis. Several screened feature proteins, functional
annotation terms (i.e., GO or KEGG terms), and parameters
of quantitative rules have been validated by recent publications.
This study can provide a computational model for effective
subcellular localization prediction and lay a solid foundation
for further experimental research in such fields. The data as
well as the information of used programs and software are
available at https://github.com/chenlei1982/subc_prediction.
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Research on Mental Stress
Recognition of Depressive Disorders
in Patients With Androgenic Alopecia
Based onMachine Learning and Fuzzy
K-Means Clustering
Yulong Li1, Baojin Wu2, Xiujun Li3, Qin Zhou4, Xin Yang5 and Yufei Li 4*

1Department of Military Medical Psychology, Air Force Medical University, Xi’an, China, 2Department of Plastic Surgery, Huashan
Hospital, Fudan University, Shanghai, China, 3College of Education, Shanghai Normal University, Shanghai, China, 4Department
of Plastic Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China, 5Medical Cosmetic Center,
Department of Dermatology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China

Under the new trend of industry 4.0 software-defined network, the value of meta heuristic
algorithm was explored in the recognition of depression in patients with androgenic
alopecia (AGA), and there was an analysis on the effect of comprehensive
psychological interventions in the rehabilitation of AGA patients. Based on the meta
heuristic algorithm, the Filter andWrapper algorithmswere combined in this study to form a
new feature selection algorithm FAW-FS. Then, the classification accuracy of FAW-FS and
the ability to identify depression disorders were verified under different open data sets. 54
patients with AGA who went to the Medical Cosmetic Center of Tongji Hospital were
selected as the research objects and rolled into a control group (routine psychological
intervention) and an intervention group (routine + comprehensive psychological
interventions) according to different psychological intervention methods, with 27 cases
in each group. The differences of the self-rating anxiety scale (SAS), self-rating depression
scale (SDS), Hamilton depression scale (HAMD), and physical, psychological, social, and
substance function scores before and after intervention were compared between the two
groups of AGA patients, and the depression efficacy and compliance of the two groups
were analyzed after intervention. The results showed that the classification accuracy of
FAW-FS algorithm was the highest in logistic regression (LR), decision tree (DT), K-nearest
neighbor (KNN) algorithm, support vector machine (SVM) algorithm, and random forest
(RF) algorithm, which was 80.87, 79.24, 80.42, 83.07, and 81.45%, respectively. The LR
algorithm had the highest feature selection accuracy of 82.94%, and the classification
accuracy of depression disorder in RF algorithm was up to 73.01%. Besides, the SDS,
SAS, and HAMD scores of the intervention group were lower sharply than the scores of the
control group (p < 0.05). The physical function, psychological function, social function, and
substance function scores of the intervention groupwere higher markedly than those of the
control group (p < 0.05). In addition, the proportions of cured, markedly effective, total
effective, full compliance, and total compliance patients in the intervention group increased
obviously in contrast to the proportions of the control group (p < 0.05). Therefore, it
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indicated that the FAW-FS algorithm established in this study had significant advantages in
the recognition of depression in AGA patients, and comprehensive psychological
intervention had a positive effect in the rehabilitation of depression in AGA patients.

Keywords: meta heuristic algorithm, androgenetic alopecia, depressive disorder, psychological intervention,
machine learning and fuzzy K-means clustering

INTRODUCTION

Androgenetic alopecia (AGA) is a kind of hair loss skin disease
which is characterized by non-scarring and progressive hair
follicle miniaturization. It is a common clinical skin disease,
mainly characterized by shortening of hair follicle growth
period, terminal hair follicle miniaturization, and progressive
thinning of hair. The incidence of AGA was approximately
50% in white males over 40 years old and 32.2% in white
females over 20 years old (Lolli et al., 2017). Psychosocial
factors may aggravate or recur the condition of patients, and
patients with hair loss are more likely to suffer from various
physical and mental disorders such as anxiety and depression
than normal people (Starace et al., 2020). Studies have shown that
negative emotions such as anxiety and depression lead to a
decline in the ability to deal with challenges and solve
problems in patients with hair loss, which seriously affects
their quality of life (Tanaka et al., 2018). A large number of
investigation reports and meta-analysis prompts to inquire about
the cognitive evaluation, emotional expression, and response of
different patients to their diseases. Moreover, they have received
the necessary psychological interventions, so as to establish
scientific disease cognition and psychological behavioral
responses. Its own adjustment is employed to promote patient
adaptability and disease outcome, which is more significant than
treating the disease itself (Rajabi et al., 2018; Völker et al., 2020).

Big data based on Industry 4.0 has the characteristics of large
capacity, low signal-to-noise ratio, multiple types, high latitude,
and fast access speed. Therefore, there are obvious differences in
the methods of identification, analysis, and mining for industrial
big data (Lake, 2019). Electroencephalogram (EEG) plays an
important role in the diagnosis and recognition of depression.
Deep learning can learn useful EEG signals automatically from
the original data, to perform pattern recognition process,
especially suitable for brain electrical signal recognition task.
Many researchers will combine the deep learning algorithm
with EEG, to operate EEG with feature extraction, selection,
and classification, which can provide an auxiliary tool for the
clinical diagnosis of depression (Craik et al., 2019). What’s more,
meta heuristic algorithm is a combination of random algorithm
and local search algorithm, which is featured with self-
organization, self-adaptation, and self-learning. It has been
extensively applied in image recognition and classification
(Munoz et al., 2018), and it has been also adopted in the
recognition of depression (Phadikar et al., 2021). Eilbeigi et al.
(2018) , (Eilbeigi and Setarehdan, 2018) used meta-heuristic
algorithm to classify EEG data of patients with depression,
with the highest accuracy of 78.24%. However, most of the
current deep learning methods for depression recognition are

to manually extract multiple features and simply combine the
extracted features with traditional classification algorithms or
neural network models. This method is time-consuming and
laborious, so it is of great significance to explore an automatic
computer-aided method for depression diagnosis.

To sum up, AGA patients have different degrees of depressive
disorder. The meta heuristic algorithm has marked advantages in
image recognition classification, but its classification accuracy
needs to be further improved. In this study, a new depressive
disorder recognition algorithm based on the meta heuristic
algorithm was established and applied to AGA patients with
depression, thereby evaluating the rehabilitation value of
comprehensive psychological intervention for AGA patients,
which can provide a reference for the diagnosis and treatment
of AGA patients.

MATERIALS AND METHODS

Research Objects and Grouping
54 patients with AGA who were treated in the Medical Cosmetic
Center of Tongji Hospital from January 2020 to October 2020 were
selected as the research objects, and all agreed to receive treatment
in this hospital for a long time. Among them, there were 31 males
and 23 females. Besides, they were 18–60 years old, and the average
age was 39.15 ± 4.07 years. The criteria for inclusion were defined
to include patients who were older than or equaled to 18 years old,
and conformed to AGA diagnostic criteria. The criteria for
exclusion were defined to include patients who suffered from
hair loss caused by resting period, physiological and postpartum
hair loss, and other cause, had neuropsychiatric diseases, and were
accompanied with other serious systemic diseases. In addition, they
were grouped into the control group (n � 27) and the intervention
group (n � 27) based on the different ways of psychological
intervention. The process was approved by the ethics committee
of Tongji Hospital, and all the research objects included in this
study signed the informed consent forms.

Feature Selection Method Based on Meta
Heuristic Algorithm
The optimization mathematical model of meta heuristic
algorithm can be expressed as follows.

minf(x), s.t.gi(x) � 0, i � 1, 2, L, m; hj(x)≥ 0, j � 1, 2, L, n.

(1)

In the Eq. 1, x stands for the decision variable, representing the
p-dimensional vector, and its calculation method is
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x � x1, x2,/, xp
T ∈ Rp}{ . Besides, f(x) means the objective

function, gi(x) indicates the equality constraint function,
hj(x) represents the inequality constraint function, and s.t.
expresses the abbreviation of “subject to,” which means
“restricted to.”

The Filter algorithm in feature selection has a fast calculation
speed, and the Wrapper algorithm has a higher calculation
accuracy (Padfield et al., 2019). In this study, the Filter and
Wrapper algorithms were combined to form a new feature
selection algorithm, which was named FAW-FS. The two
algorithms of analysis of variance (ANOVA) and mutual
information were adopted to calculate the data to filter out the
feature subset, thereby obtaining the union as the new
feature space.

ANOVA (Peng et al., 2020) is a common special statistical
hypothesis testing model in data analysis. The total variance
(TV), total variance between groups (BGV), and variance within
groups (WGV) of ANOVA are expressed as the following
equations.

TV � ∑
i
∑

j
(Yij − Yi

−
)
2

(2)

BGV � ∑
i

ni(Yi

− − Yt

−
)
2

(3)

WGV � ∑
i
∑

j
(Yij − Yi

−
)
2

(4)

In the Eqs 2–4, i represents the group, and i � 1, 2,/, a; Yij

means the j-th eigenvalue in the i-th dimension feature; j stands
for the subscript of the observation value; Yt

−
expresses the mean

of all eigenvalues; ni represents the total number of the i-th
dimensional eigenvalues; Yi

−
indicates the mean of the i-th

dimensional eigenvalues.
The mean square between groups (MSG) and mean square

within groups (MSW) of ANOVA can be calculated as
follows.

MSG � BGV

k − 1
�
∑
i
ni(Yi

− − Yt

−
)
2

k − 1
(5)

MSW � WGV

N − k
�
∑i∑j(Yij − Yi

−
)
2

N − k
(6)

In the Eq. 5 and Eq. 6, k andN stand for the dimension of the
feature and the total number of eigenvalues, respectively.

Mutual information (MI) is mainly used to evaluate the joint
probability distribution and marginal probability distribution
between two variables (Wen et al., 2020). For discrete random
variables, MI is defined as the following.

I(X;Y) � ∑
y∈Y

∑
x∈X

p(x, y)log(
p(x, y)

p(x)p(y)) (7)

In the Eq. 7, p(x, y) represents the joint probability
distribution function between the two variables X and Y, p(x)
means the marginal probability distribution of X, and p(y) shows
the marginal probability distribution of Y.

For continuous random variables, MI can be defined as the
following.

I(X;Y) � ∫
Y
∫

X
p(x, y)log(

p(x, y)
p(x)p(y))dxdy (8)

In the Eq. 8, p(x, y) is the joint probability density function
between the two variables X and Y, p(x) is the marginal
probability density function of X, and p(y) is the marginal
probability density function of Y.

Search strategy is the core of Wrapper’s selection method. In
this study, the simulated annealing algorithm was introduced in
the optimization process to improve the convergence of the
Wrapper method and form a new genetic algorithm (GA).
The simulated annealing algorithm can be expressed as follows.

p �
⎧⎪⎪⎨
⎪⎪⎩

1, if e1 < e2

e
−
E(e1 − e2)

T , if e1 > e2
(9)

In the Eq. 9, T, p, E, e1, and e2 represent the temperature, the
substitution probability, the internal energy, the objective
function, and the objective function of the substitute object
in turn.

Fitness is an important index to evaluate individual
survivability in GA (Hasserjian, 2019). For the evaluation
function f(x), the fitness (Fit) function is F(x), so the Fit of
the individual x can be expressed as Fit � F[f(x)]. When the
largest problem is solved, the Fit can be expressed as shown in the
Eq. 10. What’s more, D means the minimum estimate of f(x).

Fit � F[f(x)] � {
f(x) −D, f(x)>D

0, f(x)≤D
(10)

After introducing the simulated annealing algorithm, GA is
improved and optimized. For the optimized GA, the parameters
should be set, including the number of iterations of the population,
the number of local search iterations, the initial size, the crossover
probability, the probability of mutation, and the temperature.
Multiple suitable individuals are used as the initial population,
and the fitness of individuals in the population is calculated. If the
termination condition is satisfied and the output optimal solution
satisfies the termination condition, the algorithm ends. For the
individuals that do not meet the termination conditions, crossover
operation is carried out for each pair of matching individuals in the
population according to the specified selection operator, and new
populations are generated according to the local search strategy.
Then, it is further verified whether the individuals meet the
termination conditions and enter the next cycle. The optimized
GA flow chart is shown in Figure 1.

Establishment of Depression Recognition
Method Based on Meta Heuristic Algorithm
During the EEG acquisition process, different types of noise will
have a certain impact on EEG. In this study, a band-pass filter is
used to filter the data, and the EEG data are removed by the
combination of Kalman filter and wavelet transform (Cabrera
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et al., 2018). The power spectrum entropy in nonlinear features is
mainly applied to evaluate the strength of brain activity (Mendez-
Balbuena et al., 2018). For the signal X(w), the kilometer density
is obtained after processing by the FAW-FS algorithm, and its
power spectrum entropy can be expressed in the Eq. 11.

Hw � −∑
n

i�o
px(wi)log2[px(wi)] (11)

Shannon entropy is employed to quantify EEG, and its
calculation method is presented in the Eq. 12.

Hx � −x log2(x) − (1 − x)log2(1 − x) (12)

The correlation dimension is mainly applied to describe the
irregularity of EEG, and its calculation method is shown in the
Eq. 13. In addition, lnC(r) stands for the correlation function.

C � lim
r→0

lnC(r)
ln r

(13)

Kolmogorov entropy describes the dynamic characteristics
and signal complexity of the signal. The larger the
Kolmogorov entropy, the more chaotic the dynamic
characteristics, and the more complex the signal (Mutanen
et al., 2018). The Kolmogorov calculation can be expressed in
the Eq. 14.

K � lim
T→0

lim
ε→0

lim
N→∞

1
NT

∑
N−1

n�0
(Kn+1 −Kn) (14)

C0 complexity is adopted to evaluate the degree of randomness
of EEG, which can be calculated in the Eq. 15. The greater the C0

complexity value, the stronger the randomness of the EEG
sequence.

C0 � ∑N
n�1|X(n) − Y(n)|2
∑N

n�1|X(n)|2 (15)

In the above equation, X(n) represents the original EEG
sequence, and Y(n) means the EEG sequence after Fourier
transform.

The collected EEG data are used for filtering and electro-
oculogram operation through the band-pass filter, Kalman filter,
and wavelet transform. Then, the current and nonlinear
characteristic EEG data are extracted, and finally, the FAW-FS
algorithm is employed to select the EEG features. The flow chart
of depression recognition based on meta heuristic algorithm is
shown in Figure 2 below.

For each feature vector set output from the feature vector input
module, it was first divided into a training set and a test set.
Samples of the training set were derived from the public data set,
with a sample size of 128. Each training set was divided into 1–5
of the 5 training subsets. Four training subsets out of the five
training subsets were used for training in the deep forest each
time, and the remaining one training subset was used as the
verification set to verify the sub-model of training. The above sub-
training process was repeated until every training subset in the
whole training process made a verification set. After each
verification of the trained sub-model, a set of feature vectors
with a size of 12 was eventually obtained.

Assessment Method for Classification
Accuracy of FAW-FS Algorithm
The data sets published in the public database (http://archive.
ics.uci.edu/ml/index.php) were compared with the FAW-FS
algorithm established in this study to verify the classification
accuracy of the FAW-FS algorithm. The information of the 7
public data sets selected in this study was displayed in
Table 1.

Accuracy was employed to evaluate the recognition results of
depression EEG signals, and its specific calculation method was
shown in the following equation.

Accuracy �
∣∣∣∣∣∣X : X ∈ Dt ∩ Y

−(X) � Y(X)
∣∣∣∣∣∣

|X : X ∈ Dt| (16)

In the Eq. 16,Dt stood for the test data, X was the test sample,
Y(X) represented the real classification result of the test sample,
and Y (X) indicated the classification result identified by the
classification model.

Psychological Intervention Methods for
Depression in Androgenic Alopecia Patients
The patients from both groups were given with paroxetine tablets
(20 mg/time.d) for 3 weeks of drug treatment. On the basis of
drug treatment, the control group was treated with routine
psychological interventions, including sports, interest
development, music listening, and social activities. The

FIGURE 1 | Flow chart of optimized GA.
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intervention group underwent the comprehensive psychological
nursing intervention on the basis of routine psychological
intervention. The content of comprehensive psychological
intervention mainly included the following. First, patients were
guided to make psychological adjustments with psychological
counseling, psychological care, and psychological support, so as
to reduce their depression and build confidence in treatment.
Second, the medical staff should explain the clinical
manifestations, treatment, and prognosis of AGA to patients,
thereby establishing a proactive cognitive model. Third, the
medical staff needed to help patients establish support from
family members and friends.

Psychological Intervention Observation
Indexes for AGA Patients
The conditions of patients from the two groups were scored
through the self-rating anxiety scale (SAS), self-rating
depression scale (SDS), and Hamilton depression scale
(HAMD) before and after treatment, respectively. SAS
consists of 20 items in 1 dimension, which is scored from 1

to 4 levels; 50–59 points is considered as mild anxiety, 60–69
points as moderate anxiety, and 70 or above points as severe
anxiety (Yue et al., 2020). There are also 20 items in 1
dimension of SDS, which are rated from 1 to 4 levels; 50–59
points is classified as mild depression, 60–69 points as
moderate depression, and more than 70 points as severe
depressions (Zou et al., 2016). The 1–4 levels were applied
in the scoring of HAMD, with a total score of more than 35
points classified as severe depression; a score of 20–34 points
indicates mild or moderate depression, and 8–20 points
indicates mild depression (Zhao et al., 2019).

The differences of SAS, SDS, and HAMD scores before and
after treatment were compared between the two groups. Besides,
the changes in the depressive symptoms, treatment compliance,
and quality of life of patients from the two groups were observed
before and after treatment. The efficacy of depressive symptoms
was evaluated by Jang et al. (2019). After treatment, the patient’s
HAMD score reduction rate was greater than 75%, which means
that the patient was cured; 50% < HAMD score reduction rate
≤75% indicated that the efficacy was markedly effective;
25% < HAMD score reduction rate ≤50% showed effectiveness;

FIGURE 2 | Flow chart of depression recognition based on meta heuristic algorithm.

TABLE 1 | Relevant information of the public data sets.

Data set Abbreviation Sample size Feature dimension Class

Breast Cancer Wisconsin Data Set BCW 569 30 2
Ionosphere Dataset ION 351 33 2
Cryotherapy CRY 90 7 2
SPECT Heart Data Set SPE 267 22 2
Glass Identification GI 241 9 2
Parkinson Multiple Sound Recording PMS 1040 26 2
Connectionist Bench Data Set CBD 208 60 2

Frontiers in Genetics | www.frontiersin.org November 2021 | Volume 12 | Article 7517915

Li et al. Patients With Androgenic Alopecia

66

https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


HAMD score reduction rate was less than 25%, meaning that the
efficacy was ineffective. In addition, the total effect included clinical
recovery, marked effect, and effectiveness.

The method of Kraepelien et al. (2019) was referred to assess
the compliance to the treatment of depression. Those who strictly
followed the doctor’s advice during treatment were complete
compliance; those who basically followed the doctor’s advice were
basic compliance; those who often did not follow the doctor’s
advice or interrupt the treatment were regarded as non-
compliance. Total compliance contained complete compliance
and basic compliance.

Referring to the method of Teles et al. (2018), the quality of life
of patients was evaluated before and after intervention for
depression, and GQOLI-74 was adopted to analyze the 4 sub-
items of the patient’s body, psychology, society, and substance.

Statistical Methods
The experimental data were processed by SPSS19.0 statistical
software, and the measurement data were expressed as mean ±
standard deviation (�x ± s). The count data were represented by
percentage (%), and the χ2 test was used. In addition, p < 0.05
indicated that the difference was statistically substantial.

RESULTS

Analysis of Classification Accuracy Based
on Meta Heuristic Logistic Regression
Algorithm
The classification accuracy of FAW-FS algorithm established in
this study was compared with Correlation Attribute Eval (CA),
Gain Ratio Attribute Eval (GR), Relief FAttribute Eval (RF),
simulated annealing (SA) algorithm, and GA in the feature
selection of logistic regression (Figure 3). In different public
data sets, the classification accuracy of different algorithms
changed in the same trend, while the classification accuracy of

the same algorithm in different data sets varied greatly. In 7
different data sets, the classification accuracy of the FAW-FS
algorithm was higher substantially than the accuracy of other
algorithms, and its classification accuracy was 54.72–98.45%, with
the mean classification accuracy of 80.87%.

There was a comparison on the classification accuracy of the 6
algorithms under the classification features of DT (Figure 4).
Among the 7 different data sets, all algorithms had the lowest
classification accuracy in the PMS data set. The classification
accuracy of FAW-FS algorithm rose obviously compared with
other algorithms. Moreover, its classification accuracy was in the
range of 43.28–98.81%, and the mean classification accuracy was
79.24%.

The classification accuracy of the 6 algorithms was compared
under the K-nearest neighbor algorithm (Figure 5). In the 7
different data sets, all algorithms had the highest classification
accuracy in the BCW data set. The classification accuracy of

FIGURE 3 | Comparison on the classification accuracy of different
algorithms under the logistic regression feature selection method. FIGURE 4 | Comparison on the classification accuracy of different

algorithms under the classification features of DT.

FIGURE 5 | Comparison on the classification accuracy of different
algorithms under the features of K-nearest neighbor algorithm.
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FAW-FS algorithm elevated obviously in contrast to the accuracy
of other algorithms. Its classification accuracy was distributed in
the range of 42.94–99.12%, and the mean classification accuracy
was 80.42%.

Figure 6 indicated that the classification accuracy of the 6
algorithms was compared under the features of SVM. In the 7
different data sets, the classification accuracy of the FAW-FS
algorithm was higher hugely than that of other algorithms, and its
classification accuracy was within 62.33–99.07%, with the mean
classification accuracy of 83.07%.

The classification accuracy of the six algorithms was
compared under the characteristics of RF, and the results
were presented in Figure 7. In the seven different data sets,
the classification accuracy of the FAW-FS algorithm was higher
greatly than the accuracy of other algorithms, and its
classification accuracy was 61.93–99.26%, with the mean
classification accuracy of 81.45%.

Analysis of Electroencephalogram
de-noising Results Based onMeta Heuristic
Algorithm
In this study, a combination of Kalman filter and wavelet
transform was used to preprocess EEG to remove electro-
oculogram noise before the FAW-FS algorithm was adopted to
extract and select EEG features, and the results were shown in
Figure 8. Before electro-oculogram noise was removed, EEG had
more electro-oculogram artifacts. After removing electro-
oculogram noise, a pure EEG was obtained.

During the processing of the EEG raw data (Figure 9A), the
EEG data were initially processed with a down-sampling
method of 1,000–250 Hz, so that the original signal was
separated from the noise and the original data was
enhanced (Figure 9B). A band-pass filter was applied to
filter the data to remove the EEG artifacts in the EEG data
(Figure 9C). Finally, the Kalman filter and wavelet transform
were combined to remove the electro-oculogram artifacts in
the EEG data, and the pure EEG data were obtained after
extraction by the FAW-FS algorithm established in this study
(Figure 9D).

Analysis on the Accuracy of
Electroencephalogram Feature Selection
Based on Meta Heuristic Algorithm
The accuracy of EEG feature selection of the FAW-FS
algorithm under different data sets was analyzed under the
resting state and five audio stimuli, as shown in Figure 10. It
was found that among the five classification algorithms, the LR
algorithm had the highest feature selection accuracy under the
five audio types, and its mean feature selection accuracy was
82.94%, followed by KNN (73.72%) and RF (70.09%). The
mean accuracy of feature selection for DT and SVM was 65.77
and 55.49%, respectively. The mean accuracy of feature
selection of SVM was the lowest among the 5 algorithms.
What’s more, 5 different algorithms all had the highest mean

FIGURE 6 | Comparison on the classification accuracy of different
algorithms under the feature of SVM.

FIGURE 7 | Analysis on accuracy based on meta heuristic algorithm
under the feature of RF.

FIGURE 8 | EEG before and after removing electro-oculogram noise.
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accuracy of feature selection on audio stimulus 1 in the 6 data
sets of resting state EEG and audio stimulation EEG, and the
lowest accuracy was on audio stimulus 3.

Analysis on the Accuracy of the
Classification Algorithm on the Test Set
There was an analysis on the EEG accuracy of the FAW-FS
algorithm under different data sets under the resting state and the
five audio stimuli (Figure 11). It revealed that among the five
classification algorithms, the RF algorithm had the highest
classification accuracy under the five audio types, with a mean
accuracy of 73.01%, followed by KNN (58.94%) and LR (52.76%).
In addition, the mean accuracy of DT and SVM were 40.18 and
42.55% in turn. The mean accuracy of feature selection of DT was
the lowest among the five algorithms. In the 6 data sets of resting
state EEG and audio stimulation EEG, 5 different algorithms had
the highest average accuracy on audio stimulation 1, and there
was the lowest mean accuracy on audio stimulation 4.

Comparison on Basic Data of Patients From
the Two Groups
The basic data of patients from the two groups were compared
and analyzed, and the results were displayed in Table 2. There
was no statistical difference in age, gender ratio, body mass index
(BMI), weight, height, and course of disease between the two
groups (p > 0.05).

FIGURE 9 | FAW-FS algorithm EEG de-noising results. [Note: (A): Original EEG image; (B): EEG image after down-sampling processing; (C): EEG image after
band-pass filter; (D): EEG image of FAW-FS algorithm feature extraction].

FIGURE 10 | Analysis on the accuracy of EEG feature selection under
different conditions.
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Electroencephalogram Changes in
Androgenic Alopecia Patients With
Depression Before and After Psychological
Intervention
The changes of EEG before and after psychological intervention in
AGA patients with depression were analyzed (Figure 12). Before
the intervention, the EEG power spectrum amplitude of AGA
patients showed a smoothly downward trend with the continuous
growth of the normalized frequency. The EEG power spectrum
amplitude was distributed in the range of −0.5026–59.8248 dB, and
the EEG mean power spectrum amplitude was 17.883 ± 8.190 dB.
After the intervention, the EEG power spectrum amplitude of AGA
patients rose first and then decreased with the continuous increase
of the normalized frequency. The EEG power spectrum amplitude
was distributed in the range of 21.0315–63.9881 dB, and the EEG
mean power spectrum amplitude was 34.854 ± 3.465 dB.

Comparison on Depression Improvement
Between the Two Groups of Patients Before
and After Psychological Intervention
The scores of SDS, SAS, and HAMD scales before and after
psychological intervention between the two groups were

compared (Figure 13). There was no marked difference in
SDS, SAS, and HAMD scale scores between the two groups of
patients before the intervention (p > 0.05). After the intervention,
the SDS and SAS scores of patients from the two groups were
lower steeply than those before the treatment, and the difference
was statistically obvious (p < 0.05). After the intervention, the
HAMD scale scores of patients from the two groups were
dramatically different from those before the treatment (p <
0.01). The SDS, SAS, and HAMD scores of the intervention
group reduced sharply in contrast to the scores of the control
group (p < 0.05).

There was a comparison on the quality of life scores of patients
from the control group and the intervention group before and
after psychological intervention (Figure 14). Before the
intervention, there was no significant difference in the physical
function, psychological function, social function, and substance
function between the two groups of patients (p > 0.05). After the
intervention, the physical function, mental function, social
function, and substance function of patients from the two
groups increased hugely compared with before the
intervention, with a statistically huge difference (p < 0.05).
The scores of physical function, mental function, social
function, and substance function of the intervention group
were higher markedly than the scores of the control group
(p < 0.05).

Comparison on the Depression Efficacy and
Compliance of Patients From the Two
Groups After Treatment
Figure 15 showed the statistical analysis on the improvement of
the efficacy of depression after treatment in patients from the
two groups. In the control group, there were 4 cured cases
(14.81%), 5 cases (18.52%) with marked effect, 7 effective cases
(25.93%), and 11 cases (40.74%) with no effect after the
intervention, and the total number of effective cases was 16
(59.26%). In the intervention group, 12 cases (44.44%) were
cured, 8 cases (29.63%) were markedly effective, 5 cases
(18.52%) were effective, and 2 cases (7.41%) were ineffective,
so the total number of effective cases was 25 (92.59%). The
proportion of cured, markedly effective, and total effective
patients in the intervention group was higher greatly than
the proportion of the control group (p < 0.05). After the
intervention, there were 4 cases (14.81%) with complete
compliance, 7 cases (25.93%) with basic compliance, and 16

FIGURE 11 | The accuracy analysis of the classification algorithm on the
test set.

TABLE 2 | Comparison on basic data of patients from the two groups.

Group Control
group (n = 27)

Intervention
group (n = 27)

t value or χ2

value
p Value

Age (years old) 40.12 ± 4.07 38.85 ± 5.03 0.554 0.121
Male [cases, (%)] 15 (55.56) 16 (59.26) 0.083 0.224
Female [case, (%)] 12 (44.44) 11 (40.74) 0.063 0.257
BMI (kg/m2) 24.92 ± 2.07 26.03 ± 2.59 0.134 0.717
Weight (kg) 59.09 ± 11.98 62.07 ± 9.98 0.094 0.392
Height (cm) 162.95 ± 5.43 163.77 ± 5.19 0.141 0.762
Course of disease (years) 2.09 ± 1.28 2.26 ± 1.33 0.196 0.824
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cases (59.26%) with no compliance in the control group, and
the total number of cases with compliance was 11 (40.74%). In
the intervention group, 15 patients (55.56%), 9 patients
(33.33%), and 3 patients (11.112%) were completely
compliant, basically compliant, and non-compliant, so there
were 24 cases with compliance (88.89%). The proportion of
patients with complete compliance and total compliance in the
intervention group elevated substantially compared with the

control group, and there was a significant difference between
the two (p < 0.01).

DISCUSSION

In this study, FAW-FS algorithm was established based on meta-
heuristic algorithm and applied to depression disorder

FIGURE 12 | EEG changes in AGA patients with depression before and after psychological intervention. [Note: (A): EEG of patients with AGA before psychological
intervention; (B): EEG of patients with AGA after psychological intervention].

FIGURE 13 | Comparison on SDS, SAS, and HAMD scale scores between the two groups of patients before and after psychological intervention.[Note: (A):
Comparison of SAS scale scores before and after psychological intervention between the two groups of patients; (B): Comparison of SDS scale scores before and after
psychological intervention between the two groups of patients; (C): Comparison of HAMD scale scores before and after psychological intervention between the two
groups of patients; * indicated p < 0.05 compared with before the intervention; ** meant p < 0.01 compared with before the intervention; # showed p < 0.05
compared with the control group].
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recognition. The classification accuracy of FAW-FS algorithm
was compared with CA, GR, RF, SA, and GA algorithms in deep
learning under different feature selection methods. CA, GR and
RF algorithms are all classic Filter feature selection methods, and
SA and GA algorithms are commonly used methods in Wrapper
feature selection methods (Becerra-Sánchez et al., 2020). The
results of this study showed that FAW-FS algorithm had the
highest classification accuracy in LR, DT, KNN, SVM, and RF,
which were 80.87, 79.24, 80.42, 83.07, and 81.45% respectively.

These results indicated that the classification accuracy of FAW-FS
established in this study was higher than that of the Filter feature
selection method and Wrapper feature selection method. The
reason was that the FAW-FS algorithm had the high accuracy of
Wrapper and simplicity of Filter calculation (Albasri et al., 2019),
and the two Filter feature selection algorithms through ANOVA
and mutual information were used to initially screen the original
data, forming a new feature space (Varsehi and Firoozabadi,
2021). In the calculation process, the local optimization method

FIGURE 14 | Comparison on the quality of life of patients from the two groups before and after psychological intervention.[Note: (A): Comparison of the physical
function of the two groups of patients before and after psychological intervention; (B): Comparison of the psychological function of the two groups of patients before and
after psychological intervention; (C): Comparison of the social function of the two groups of patients before and after psychological intervention; (D): Comparison of the
substance function of the two groups of patients before and after psychological intervention; * indicated p < 0.05 compared with before the intervention; # showed
that p < 0.05 in contrast to the control group].

FIGURE 15 | Comparison on the efficacy and compliance of depression after psychological intervention between the two groups.[Note: (A): Comparison on the
efficacy of depression after intervention between the two groups of patients; (B): Comparison of intervention compliance between the two groups of patients; * indicated
p < 0.05 compared with the control group; ** meant p < 0.01 compared with the control group].
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of individuals in the population and the simulated annealing
strategy were adopted to improve the premature convergence of
GA, and finally, the classification accuracy of the FAW-FS
algorithm was promoted. The results of this study suggested
that the LR algorithm had the highest feature selection accuracy
of 82.94% under five audio types. The five different algorithms all
had the highest average feature selection accuracy on audio
stimulus 1, and audio stimulus 3 had the lowest. In this study,
the EEG data on the three electrode positions Fp1, Fp2, and Fpz
were used to identify depression, and the highest recognition
accuracy was 73.01%. Mohammadi et al. (2020) (Mohammadi
and Moradi, 2021) used meta-heuristic algorithm to classify FP1,
FP2, and FPZ EEG data of patients with depression, and the
highest accuracy was 70.24%. Bachmann et al. (2018) also applied
Fp1, Fp2, and Fpz to classify depression, and the highest accuracy
was 71.29%. The classification accuracy of the FAW-FS algorithm
in this study was higher substantially than these studies, indicating
that the fusion feature selection algorithm FAW-FS had a certain
practicability and generalization, which could improve the
accuracy of depression recognition to a certain extent.

At present, a large number of research results disclose that
necessary psychological intervention for patients with AGA is of
great significance for disease control and treatment (Wang et al.,
2018). In this study, patients from the two groups were treated
with different psychological intervention methods to explore the
influence of comprehensive psychological intervention methods
on patients. The results showed that the scores of SDS, SAS, and
HAMD of patients from the two groups dropped hugely after
intervention compared with before treatment (p < 0.05). The
scores of SDS, SAS, and HAMD in the intervention group were
lower dramatically than the scores of the control group (p < 0.05).
The scores of physical function, psychological function, social
function, and substance function in patients from the
intervention group were higher remarkably than those of the
control group (p < 0.05). The proportion of cured, effective, and
total effective patients from the intervention group elevated
obviously compared with the control group (p < 0.05). The
proportion of patients with complete compliance and total
compliance in the intervention group was bigger substantially
than the proportion of the control group (p < 0.01). Therefore,
these results showed that comprehensive psychological
intervention was more helpful to the recovery of patients with
AGA, which was similar to the research findings of Gonzalez et al.
(2010).

CONCLUSION

In this study, a depression EEG signal recognition model FAW-
FS was established based on deep learning meta-heuristic
algorithm, which was applied to the recognition of

depression EEG signals in patients with AGA. A
comprehensive psychological intervention method was
adopted to intervene in patients with AGA. The results
showed that the FAW-FS algorithm based on deep learning
meta-heuristic algorithm could significantly improve the
accuracy of depression disorder recognition, and
comprehensive psychological intervention played a positive
role in the rehabilitation of depression disorder in patients
with AGA. However, there are still some shortcomings in this
study. In this study, the EEG data on FP1, FP2, and FPZ are
only classified, and the EEG characteristic data of Beta bands
related to depression recognition are not analyzed. The value
of FAW-FS algorithm in the classification of EEG
characteristic data in the sub-bands will be further explored
in the future work. In conclusion, the FAW-FS algorithm
established based on meta-heuristic algorithm in this study
can improve the accuracy of EEG signal recognition for
depression disorders, and comprehensive psychological
intervention plays a positive role in the rehabilitation of
depression disorders in patients with AGA, thereby
providing a reference basis for the diagnosis and treatment
of AGA patients.
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Alzheimer’s is a progressive, irreversible, neurodegenerative brain disease. Even with
prominent symptoms, it takes years to notice, decode, and reveal Alzheimer’s. However,
advancements in technologies, such as imaging techniques, help in early diagnosis. Still,
sometimes the results are inaccurate, which delays the treatment. Thus, the research in
recent times focused on identifying the molecular biomarkers that differentiate the
genotype and phenotype characteristics. However, the gene expression dataset’s
generated features are huge, 1,000 or even more than 10,000. To overcome such a
curse of dimensionality, feature selection techniques are introduced. We designed a gene
selection pipeline combining a filter, wrapper, and unsupervised method to select the
relevant genes. We combined the minimum Redundancy and maximum Relevance
(mRmR), Wrapper-based Particle Swarm Optimization (WPSO), and Auto encoder to
select the relevant features. We used the GSE5281 Alzheimer’s dataset from the Gene
Expression Omnibus We implemented an Improved Deep Belief Network (IDBN) with
simple stopping criteria after choosing the relevant genes. We used a Bayesian
Optimization technique to tune the hyperparameters in the Improved Deep Belief
Network. The tabulated results show that the proposed pipeline shows promising results.

Keywords: deep learning, Alzheimer’s disease, gene selection, gene expression, molecular bio-markers

INTRODUCTION

Dementia is a broad term for a group of disorders with abnormal changes in the brain. The common
forms of dementia interrupt the communication between the brain cells (Salat et al., 2001). When the
communication between the cells is disrupted, the cognitive abilities, such as memory loss, feelings,
thinking, and problem solving, behavior, and language proficiency of the individual will also be
disrupted (Jo et al., 2019). Some of the common types of dementia are Parkinson’s disease, Lewy body
dementia, Alzheimer’s disease (AD), Down’s syndrome, vascular dementia, dementia caused by
alcohol, and HIV. Among these, 60–70% is accounted for by AD (Lawrence and Sahakian, 1995).
Recently, there are increasing researches in the field of gerontology, a study of the physical aspects of
aging. One such neurological disorder that appears in the elderly is the AD. Our work in this paper
focuses on AD. AD is known to humankind for more than 100 years, yet the molecular mechanism
and pathogenesis is far from fully understood (Reitz et al., 2011).
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As commonly said, AD is a progressive, neurodegenerative
brain disease, which is irreversible. The term progressive
concerning AD means it gets worse over time because of
irreversible degeneration of neurons (neurodegenerative)
(Nussbaum and Ellis, 2003). In other words, the pathological
change of AD is a slowly accumulating process. AD affects the
hippocampus and cortex regions of the brain primarily. The
primary reason for developing AD symptoms is more than the
required accumulation of proteins around the brain cells (Wenk,
2003). The high levels of proteins make the communication
between brain cells tedious. The actual reason for the onset of
AD is still uncertain. Yet, few hypotheses were framed over the
years, such as the accumulation of Tau and amyloid proteins,
cholinergic, and genetics (Citron, 2010). Even with dominant
symptoms, the dysfunctions of AD take years to be noticed,
decoded, and revealed.

The early diagnosis starts with recognizing the mild cognitive
impairment (MCI), which has a high possibility of causing AD
(Liu et al., 2014). The onset of AD is commonly found around
65 years; however, early onset at a younger age is rare. Even after
thorough research, the cause and progression seem to be
uncertain (Huber et al., 2018). The proper diagnosis can be
made only after the autopsy, yet, with advanced technologies
in clinical screening, such as cerebrospinal fluid analysis, imaging
techniques have led to early AD diagnosis. These methods
provide inaccurate results, which delays the treatment at times
(Wang and Liu, 2019). The limitations in clinical screening have
led to the molecular data-based analysis. Identifying molecular
biomarkers offers promising results, as it establishes accurate
relationships between the phenotype and genotype symptoms.
The accurate and early diagnosis of ADwill help patients have the
awareness and indulge in preventive measures, for instance,
medications and changes in their lifestyle.

Although the molecular biomarkers offer better results than
the clinical screening, the environmental and genetic factors
should be taken into account. There are more than 1,000 even
10,000 features generated through transcripts, genes, proteins,
and their interaction with each other (Moradifard et al., 2018). It
is a considerable challenge to find the AD causing biomarkers
from such Big data. Thus, machine learning and Artificial
intelligence-based methods are focused on these days to meet
the challenges. There is another issue with the molecular
biomarkers; more than the volume, the dimensionality of the
dataset increases faster (Tanveer et al., 2020). Molecular data,
such as gene expression, are ultra-high dimensional datasets. The
dimensionality is achieving higher levels of thousands and
hundreds of thousands.

Meanwhile, the sample size did not witness the same amount
of growth. Such a situation is commonly known as the High
Dimensionality Low Sample Size (HDLSS) problem or “curse of
dimensionality”. The machine learning techniques widely used
are not suited for such cursed dimensional data (Lee and Lee,
2020). The inconsistent ratio between the number of features and
the number of samples will lead to overfitting, incompatible
algorithm, and extended computational time.

To solve the curse of dimensionality problem, feature selection
is proposed as a solution. In this study, we develop a gene

selection pipeline combining filter, wrapper, and unsupervised
method to select the relevant features in causing AD. Later, the
selected genes are passed through the Improved Deep Belief
Network (IDBN), which is implemented to classify the AD
and non-AD individuals. The selection of relevant features will
make the classification of AD and non-AD individuals accurate
and easy.

BACKGROUND AND MOTIVATION

Alzheimer’s Disease and Machine Learning
Algorithms
The most widely used technique in diagnosing AD is the clinical
screening methods, such as brain imaging. At times, the clinical
screening methods provide inaccurate results due to technical
errors, which eventually delays the treatment. Hence, the research
is gradually moving towards molecular data, for instance,
microarray data. In the process of finding out differentially
expressed genes, thousands of genes are captured and
monitored to evaluate the effects of a disease or a treatment
(Fung and Stoeckel, 2007). For detecting the expression of
hundreds and thousands of genes simultaneously, microarray
technology is used widely. In microarray, thousands of genes or
DNA sequences are printed in already defined positions. The
DNA microarray datasets have vast volumes of genes captured,
which might not be relevant to the undertaken domain
(treatment/disease) (Huang et al., 2018).

Considering the huge volume of features involved, machine
learning-based methods help greatly in classifying AD patients
from healthy individuals. Machine learning is a continuously
growing area of research, advantageous in many domains, mainly
in healthcare. Machine learning algorithms are trained on a set of
data, learn from the data, find out the patterns, and predict the
future possibilities without much human intervention (Orimaye
et al., 2017). It is a part of Artificial Intelligence, assists in data
analysis, and automates model building. There are three
categories of machine learning algorithm based on the dataset
used (Hutter et al., 2019): supervised learning, when the data are
structured and attributes are labeled; unsupervised learning,
when the data are unstructured and the attributes are
unlabeled; and semi-supervised/semi-unsupervised learning,
when the data are a combination of supervised and
unsupervised categories. Although machine learning
algorithms offer great assistance in finding patterns and
classification, it is not suitable when the ratio of sample to
feature is largely different. In that case, machine learning
algorithms will have an overfitting problem.

Related Works
Artificial Intelligent models have been widely deployed in
genetics research (Mahendran et al., 2020). Deep learning
approaches remove certain data pre-processing, which is
usually deployed in machine learning (Srinivasan et al., 2017;
Agarwal et al., 2018; Chakriswaran et al., 2019; Khan et al., 2021a;
Khan et al., 2021b; Khan et al., 2021c) (Sanchez-Riera et al., 2018;
Srinivasan et al., 2020; Afza et al., 2021; Ashwini et al., 2021;
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Attique Khan et al., 2021; Khan et al., 2021d; Mamdiwar et al.,
2021; Srinivasan et al., 2021). AD is a neurological disorder
identified through brain imaging, and there are many works
focused on classifying AD through brain images with the help of
machine learning or deep learning techniques. For instance,
Convolutional Neural Network (CNN) and LeNet architecture
is applied on the MRI data to classify AD (Sarraf and Tofighi,
2016a). There are many such works focused on classifying AD
through the brain images (Sarraf and Tofighi, 2016b; Farooq
et al., 2017; Ji et al., 2019; Ramzan et al., 2020; Tufail et al., 2020),
though the imaging data provide inaccurate results at times.
Thus, the focus recently is shifted to the molecular dataset
such as the Gene Expression and DNA Methylation data,
though the problem with such data is the dimensionality.
There is a huge number of features, yet very small sample size.

Therefore, the research is focused more on the gene selection
techniques to select the relevant features in classifying the AD.
For instance, Park et al. (Park et al., 2020) implemented machine
learning-based gene selection and a deep learning classifier
combining the gene expression and DNA Methylation
datasets. Also, the gene pair interaction-based research is done
to identify the biomarkers accurately to classify the AD (Chen
et al., 2019). Furthermore, there are approaches implemented to
detect the possible progression of a dementia to AD with the help
of machine learning techniques (Martínez-Ballesteros et al., 2017;
Miao et al., 2017). Also, the artificial intelligence approaches are
adopted in precision medicine to validate the drugs for AD.

Feature Selection
There are four mainly used feature selection techniques, Filter,
Wrapper, Hybrid, and Ensemble (Bashir et al., 2019). Filter-based
techniques are independent of the classifier model and
computationally efficient at times (Acharya et al., 2019). The
search for relevant features is isolated completely from the
classifier model. The features with the lowest relevance score
are eliminated. The filter methods are further classified into
univariate and multivariate filters, where univariate treats and
evaluates the features individually and multivariate evaluates the
feature dependencies. The wrapper methods are implemented as
a part of the classification model (Zhou et al., 2018). The feature
subsets selected are validated through training and testing
datasets. The features with maximum evaluation score are
selected for the final classification. The wrapper method’s
major drawbacks are as follows: it demands high
computational time, it is classifier dependent, and overfitting
(Mirzaei et al., 2018).

The ensemble methods simultaneously build different feature
subsets and combine the results using standard aggregate
methods, such as majority voting, sum rule, mean rule, and
weighted voting (Pes, 2019). The exponential growth of
technologies across all the domains created a data explosion,
which is continuously spreading at an unprecedented speed. The
previously mentioned feature selection methods are not suitably
designed for a dataset with HDLSS problem and unstable and not
robust with changing inputs. Thus, ensemble methods are
designed aiming to bring more robustness and stability to the
model (Neumann et al., 2017). The main goal of the ensemble

model is to attain a better trade-off between stability and
predictive performance. The ensemble methods are generally
grouped under homogeneous and heterogeneous methods. The
homogeneous algorithms use selection algorithm with the
varying dataset, for instance, boosting or bagging. The
homogeneous ensembles handle the stability issues better. The
heterogeneous ensembles implement different selection
algorithms with the same dataset. In both cases, the output
will be combined to a single feature set, which probably
provides an optimal solution (Pes, 2019). Apart from
homogeneous and heterogeneous methods, there is another
group called the hybrid, which uses different selection
algorithms with other datasets.

Though these three feature selection methods are needed,
there are various reasons that make them unreliable, unstable,
and sometimes ignore the algorithms’ stability. However, there is
a fourth method that is focused on much these days, the hybrid
method. To solve the issues with respect to filter and wrapper
methods, a hybridmethod is introduced. It combines two or more
feature selection techniques and produces a new method with
added benefits. In most cases, wrapper and filter methods are
made hybrid by combining their advantages (Hoque et al., 2018;
Kollias et al., 2018; Thavavel and Karthiyayini, 2018). This study
implemented a feature selection pipeline for selecting relevant
genes from the rawAlzheimer’s gene expression dataset. The filter
method is simple and ignores the feature dependencies most of
the time and also occasionally includes the redundant features.
Wrapper methods are at high risk of overfitting and are stuck in
the local optima. It is also computationally intensive. Ensemble
methods are better than filter and wrapper; however, on the
dataset with the High Dimensional and Low Sample Size
(HDLSS) issue, it does not perform well. Thus, we desired to
implement a feature selection method catering to the HDLSS
issue. Hybrid methods are flexible and robust upon high-
dimensional data. Also, they offer higher performance and
better computational complexity than the filter and wrapper
methods. The pipeline consists of a filter method, wrapper
method, and unsupervised gene selection method.

DATASET AND RESOURCES

For a better treatment of AD, the gene expressions are captured
preferentially during normal neurological aging (Lima et al., 2016;
Carpenter and Huang, 2018). The data captured during the
course of AD will improve the understanding of the
underlying pathogenesis of AD. This practice will help in the
early diagnosis and treatment of AD. The dataset (GSE5281)
(Liang et al., 2007) used in this study is from one of the widely
accessed data repository, Gene Expression Omnibus (GEO). The
dataset consists of information about AD and normal aged brain
with 161 samples and 54,675 features (gene expression). The gene
expressions are captured from six brain regions of Homo sapiens
using the LCM cells on the Affymetrix U133 plus 2.0 array with
approximately 55,000 transcripts. Among the 161 records, 74
controls and 87 are affected. We have used RStudio for
implementing the mentioned approaches in this study. To
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analyze the gene expression dataset, R has many beneficial
packages such as the Bio-conductor.

METHODOLOGY

We implemented a gene selection pipeline by combining a filter
(mRmR), wrapper (Wrapper-based PSO), and unsupervised
method (Autoencoder). The mRmR eliminates the genes with
maximum redundancy (high correlation among themselves) and
the selected genes are inputted to the Wrapper-based PSO, which
has k-means as the wrapper method and selects the relevant genes.
The selected genes are passed through an autoencoder for further
compression. The compressed genes are used for classifying the
AD and non-AD individuals using the IDBN. The process flow of
the proposed framework is shown in Figure 1.

Minimum Redundancy and Maximum
Relevance (mRmR)
mRmR is the most widely used practical statistical approach for
feature selection. It was proposed by Peng et al. (Ding and Peng,
2005) initially for classifying patterns. The mRmRmethod strives
to choose the feature subset that is highly relevant to the outcome
(target class) and minimally redundant. In simple terms, the
features are highly similar to the outcome class (relevance) and
dissimilar among themselves (redundancy). The feature selection
process in mRmR is carried out by adding the features with the
highest feature importance to the feature list at each step (El
Akadi et al., 2011; Billah and Waheed, 2020).

The aim of mRmR in gene selection is to select a gene subset,
Gs, with {Xm} features that are highly correlated with the target
class T (output class). The mRmR involves three steps, finding the

relevance, finding the redundancy, and combining the two to get
the mRmR feature set.

Step 1. Maximum Relevance
The maximum relevance is calculated using the mean of

Mutual Information of all the features in Xm with target class
T. The Mutual Information between R and S random variables
can be calculated by

MI(R, S) � ∑
r∈ΩR

∑
s∈ΩS

p(r, s)log p(r, s)
p(r)p(s) (1)

Where.
R—response variable.
S—number of features.
ΩR and ΩS—sample spaces with respect to R and S,
p (r, s)—joint probability density, and
p ()—marginal density function.
The maximum relevance is given by

Relevance(Gs) � 1

|Gs| ∑
Xm∈Gs

MI(T,Xm) (2)

Where MI(T, Xm)—Mutual Information of feature Xm with
class T.

Step 2. Minimum Redundancy
The minimum redundancy is calculated with the formula

Redundancy(Gs) � 1

|Gs|2 ∑
Xi,Xj∈Gs

MI(Xi, Xj) (3)

Step 3. Combining the above two constraints

FIGURE 1 | Process flow diagram—proposed system.
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The maximum relevance and minimum redundancy are
combined to form the mRmR using the formula

max α[Relevance(Gs),Redundancy(Gs)] (4)

Where α � (Relevance (Gs) − Redundancy (Gs))

Particle Swarm Optimization (PSO)
PSO is a stochastic, metaheuristic algorithm inspired by the birds’
swarming behavior. From the birds’ flocking behavior, it is
understood that each individual is affected by the leader or the
global optima and the personal performance or the local optima

(Deepthi and Thampi, 2015). The PSO is an optimization
technique based on population proposed by Eberhart and
Kennedy (Kennedy and Eberhart, 1995), successfully applied
in many global search problems. It is considered in many
feature selection problems as it is easy to implement, and has
reasonable computational time, global search, and fewer
parameters.

In PSO, the population is initialized with particles, each having
its own position and velocity. The quality of the particles is
estimated at each iteration with the help of a fitness function.
Every particle in the search space will carry the present position

FIGURE 2 | Boxplot of gene expression data before transformation.

FIGURE 3 | Boxplot of gene expression data after transformation.
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FIGURE 4 | Heat map of differentially expressed genes.

FIGURE 5 | p-value and fold change plot.
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(xppos), present velocity (vpvel), and personal best (ypbest). After
every iteration, the velocity can be updated by

vpvel(new) � iwvpvel(old) + ac1r1(ypbest − xppos(old))
+ ac2r2(ŷgbest − xppos(old)) (5)

Where.
iw—inertia weight,
ac1 and ac2—acceleration constants,
r1 and r2—random numbers (range [0, 1]),
vpvel (old)—present best solution of the particle,
ypbest—personal best solution of the particle, and
ŷgbest—global best solution.
The new position of the particle can be determined by

xppos(new) � xppos + vpvel(new) (6)

The positions and the velocity of the particle are updated at
every iteration using the formulas given. The process is stopped
when certain minimized fitness function criteria are achieved or a
particular predefined iteration is reached. For position and
velocity updates, the particles use the knowledge of their own
and that of other neighboring particles. The final output
represents the optimal feature set. We implemented a
wrapper-based PSO with the k-means algorithm as the
wrapper method. This wrapper method will aid in overcoming
the problem of reaching local optima.

The fitness function for each subset is calculated using the
below equation,

Sum of Squared Error � ∑
k

x�1
∑
i∈Cx

d2(cx, i) (7)

Where.
k—number of clusters,
i—object in the cluster,
cx—cluster centroid, and
d—Euclidean distance.

Autoencoders
Autoencoder is an artificial neural network with feed-forward
processing. The autoencoder consists of input and output with
one ormore hidden layers, where the number of neurons (features)
in the input and output layer is the same (Chicco et al., 2014). The
autoencoder’s main aim is to reconstruct the inputs such that the
difference between the input and the output is minimized. The
learning in autoencoder is compressed and distributed (encoding)
(Ferri et al., 2021). The training of autoencoder involves three steps:

1. If “x” is the input and “x̂" is the output, the feed-forward
pass is done to estimate the values of all the nodes in the hidden
layers after applying the activation function. For an
autoencoder with a single hidden layer, the hidden unit
vector hu is given by

hu � afunc(We.x + biase) (8)

Where.
hu—hidden unit,
afunc—activation function.
We—parameter matrix (encoding),
x—input, and
biase—bias parameter vector (encoding).
2. Map the hidden representation into the space “x” with the

help of the decoding function. The decoding function is given by

x̂ � afunc(Wd.hu, +biasd) (9)

Where.
Wd—parameter matrix (decoding) and
biasd—bias parameter vector (decoding).
3. Calculate back propagation error using the formula

MSE(x, x̂) � ‖x − x̂‖22 � ‖x − (Wd.hu + biasd)‖22 (10)

Deep Belief Network
In Deep Belief Network (DBN), the Restricted BoltzmannMachines
are stacked together to form a network (An et al., 2020). RBMs are

TABLE 1 | Results analysis.

Feature selection
technique

Evaluation metrics SVM LDA NB MLP IDBN

PCA Sensitivity 86.61 81.28 83.50 89.35 94.68
Specificity 82.57 83.07 88.96 87.48 92.38
Accuracy 87.62 85.94 83.08 91.87 94.96
FMeasure 88.42 83.26 88.78 90.05 91.20

CBFS Sensitivity 78.65 76.27 75.58 80.26 85.46
Specificity 77.57 78.31 76.27 79.56 83.87
Accuracy 79.04 77.65 76.89 82.07 85.96
FMeasure 76.32 76.07 75.63 80.10 82.08

mRmR Sensitivity 83.61 82.51 80.51 85.40 89.36
Specificity 83.45 80.87 81.02 85.07 87.12
Accuracy 85.21 84.78 83.45 87.80 91.58
FMeasure 84.93 81.02 81.07 86.18 90.55

mRmR-WPSO-AE Sensitivity 92.43 88.71 85.64 91.51 94.54
Specificity 91.07 89.36 86.97 92.87 96.17
Accuracy 92.91 89.74 88.75 94.56 96.78
FMeasure 90.64 87.98 85.50 92.06 95.09
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energy-based generative models with two layers, visible and hidden.
Both the layers have nodes connected to each other (Mahendran
et al., 2020; Sureshkumar et al., 2020). The major components in
RBMs are bias, weight, and activation function (Le Roux and Bengio,
2008; Sekaran and Sudha, 2020). The output is produced after
processing with the activation function. We implemented an
IDBN with stopping criteria. We chose the hyperparameters
using the Bayesian Optimization technique. The Bayesian
approach for tuning the hyperparameter keeps past records
and verifies the probability to select the next set of parameters.
It takes informative decisions in choosing the parameters. The
final values for the hyperparameters in IDBN are as follows:
learning rate � 0.01, hidden layers � 9, number of nodes per
layer � 342, and dropout rate � 0.85. We used the Rectified

Linear Unit (RLu) as the activation function. To avoid the
overfitting problem, we introduced a stopping criteria strategy.
After every 40 epochs, the test accuracy of the last 10 epochs
will be compared and checked for convergence, and the
training accuracy will also be checked. If both the
conditions are satisfied, the learning is ended.

Evaluation Metrics
For evaluating the results of the proposed model, we have used
the standard evaluation metrics such as Accuracy, Sensitivity,
Specificity, and FMeasure.

• Accuracy: It is a simple ratio between the correctly classified
as AD and non-AD to the total number of samples.

FIGURE 6 | Performance analysis—PCA.

FIGURE 7 | Performance analysis—CBFS.
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• Sensitivity: It is a measure to identify correctly those
with AD.

• Specificity: It is a measure to identify correctly those
without AD.

• FMeasure: It is the weighted average of recall and precision
(the percentage of samples that are classified as AD positive
and are actually positive).

Pseudocode
mRmR—WPSO—AE

mRmR.
Input: Candidates (set of initial genes).

Step 1: for genes gi in candidates do.
Step 2: relevance � calculate the relevance score using Eq. 2;
Step 3: redundancy � 0;
Step 4: for genes gj in candidates do.
Step 5: redundancy � calculate the redundancy score

using Eq. 3;
Step 6: end for.
Step 7: mrmr_values [gi] � Eq. 4;
Step 8: end for.
Step 9: selected_genes � take (number_of_genes_required);
WPSO.
Step 10: Initialize x random gene subsets from the

selected_genes with y number of genes in each subset.

FIGURE 8 | Performance analysis—mRmR.

FIGURE 9 | Performance analysis—mRmR-WPSO-AE.
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Step 11: For every random subset x, initialize position and
velocity vectors.

Step 12: Cluster initial subset with K � k using k-means
clustering.

Step 13: Evaluate the fitness_value using Eq. 7
Step 14: Based on the fitness function, update the subset’s pbest

and pbestloc.
Step 15: repeat.
Step 16: if (fitness_value < pbest) then.
Step 17: update pbest and pbestloc;
Step 18: end if.
Step 19: Initialize gbest and gbestloc after finding the minimum

fitness_value in all the subsets.
Step 20: for j � 0 to swarm_size-1 do.
Step 21: Estimate velocity using Eq. 5;
Step 22: Update subset location using Eq. 6;
Step 23: end for.
Step 24: Set the fitness_value by computing the squared error

using the present location of the gene subset.
Step 25: until predefined number of iterations reached;
Output: Best subset of genes (gbestloc).
Autoencoder.
Input: gbestloc_matrix (GM) ∈ {0, 1}m×n, where m and n are

genes and features.
Step 26: Initialize hidden units (hu), where hu <m, and hidden

layers (d).
Step 27: Training:
Step 28: for each GMi (gene profile) of GM, where i ∈ [1, m].
Step 29: for each hidden layer d.
Step 30: compute hidden activation function using Eq. 8
Step 31: reconstruct the output using Eq. 9
Step 32: evaluate the error using Eq. 10
Step 33: update the weight by back propagating the error.
Step 34: Testing:
Step 35: for each GMi (gene profile) of GM, where i ∈ [1, m].
Step 36: autoencode GMi and produce. ĜMi

Step 37: set ĜMi as ith row of the output matrix. G̃M

RESULTS AND DISCUSSION

This study’s primary aim is to improve the classification accuracy
of the model in classifying Alzheimer patients by selecting the
most relevant feature subset. The dataset used in this study has
161 samples and 54,675 features. The raw gene expression level
data are highly skewed, as can be seen in the box plot shown in
Figure 2. Thus, we applied log2 transformation to make it
symmetrical. The results after applying the log2
transformation can be seen in the box plot shown in Figure 3.
We applied Z-score normalization on the transformed data to
make it comparable across all the platforms. Once the data are
normalized, the differentially expressed genes are identified with
fold change and p-value. The threshold used for fold change and
p-value is |FC| > 2 and p-value > 0.01. The heat map from
Figure 4 shows the levels of differentially expressed genes. The
plot from Figure 5 shows the p-value and fold change levels of the
differentially expressed genes. False represents the expression
levels that are below the threshold, and true represents the
expression levels that are above the threshold. The respective
genes are selected and carried forward for the next stage, which is
feature selection.

We designed a feature selection pipeline with mRmR, PSO,
and autoencoder. The mRmR selects the gene with maximum
relevance and minimum redundancy. Then, we applied a
wrapper-based PSO technique with k-means clustering as the
wrapper to further select the candidate genes. The candidate
genes selected are passed through an autoencoder to form the
latent representation of the provided input, compress the data
without much information loss, and then rebuild as output with
as low error as possible. The primary goal of passing the genes
through autoencoder is to make the data less sensitive to
variations in training. After selecting the relevant features

FIGURE 10 | Accuracy comparison of the implemented models.
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(CTD-3092A11.2, CHGB, JPX, MAFF, AC004951.6, APLNR,
MT1M, SST, PCYOX1L, PRO 1804, and SLC39A12), we
implemented an IDBN.

We used the leave-one-out cross-validation method to
evaluate the proposed model (Srinivasan et al., 2019). Leave-
one-out validation is used because the sample size is less than
the feature size. The metrics we used to evaluate the model are
Sensitivity, Specificity, Accuracy, and FMeasure. We compared
the results of the proposed feature selection pipeline with widely
used Principal Component Analysis (PCA), Correlation-based
Feature Selection (CBFS), and minimum Redundancy and
maximum Relevance (mRmR). We also implemented two
linear and two non-linear classifiers Support Vector Machine
(SVM), Linear Discriminant Analysis (LDA), Naïve Bayes (NB),
and Multi-Layer Perceptron (MLP), to compare the results with
the IDBN.

The results are tabulated in Table 1. The tabulated results
show that the proposed feature selection algorithm pipeline
(mRmR-WPSO-AE), along with IDBN, classifies Alzheimer’s
slightly better than the other implemented models. The linear
models SVM and LDA produce an accuracy of 92.91 and 89.74%
with the proposed gene selection pipeline, which is better than the
PCA’s 87.62% (SVM), 85.94% (LDA), CBFS’s 79.04% (SVM),
77.65% (LDA), andmRmR’s 85.21% (SVM), 84.78% (LDA). Also,
with the non-linear models, NB and MLP produce an accuracy of
88.75 and 94.56%, which is again better than the PCA’s 83.08%
(NB), 91.87% (MLP), CBFS’s 76.89% (NB), 82.07% (MLP), and
mRmR’s 83.45% (NB), 87.80% (MLP). SVM performs better
among the linear models than LDA along all the implemented
gene selection methods, and MLP performs better than NB in the
non-linear category. The combination of the proposed gene
selection pipeline (mRmR-WPSO-AE) and IDBN shows the
promising result with 96.78% accuracy in classifying
Alzheimer’s patients. From the plots shown in Figures 6–9, it
is clear that IDBN shows slightly better results than the other
implemented classification models. The plot from Figure 10
shows the Accuracy comparison of the implemented models.
The plot shows that the IDBN and mRmR-WPSO-AE have better
accuracy than the other models.

CONCLUSION AND FUTURE WORK

Alzheimer’s is a progressive degenerative brain disease in the
elderly. It is difficult to diagnose even with dominant symptoms.
The proper diagnoses are made only during an autopsy after the
death of the individual. Recent advances have made it easy to be
detected early, using clinical screening with technologies such as
brain imaging. Although brain imaging proves effective in most

cases, in some cases, the results are inaccurate. The inaccuracies
in the results make it difficult for early diagnoses and appropriate
treatment for the individual. Thus, the research now shifts to
molecular biomarker identification, which helps to differentiate
clearly between genotype and phenotype characteristics.

The molecular data-based research proves to be effective. Still,
it generates huge volumes of data consisting of transcripts,
transcriptomes, etc. It creates a “curse of dimensionality”
problem. Thus, machine learning-based feature selection
techniques are implemented to select only the relevant genes
affecting the target class (outcome). We implemented one such
gene selection method for choosing the relevant genes. We
designed a hybrid gene selection pipeline by combining
mRmR, WPSO, and AE. We compared the results with other
commonly used feature selection techniques, such as PCA, CBFS,
andmRmR.We compared the results by implementing two linear
(SVM and LDA) and two non-linear (NB and MLP) machine
learning classification algorithms. We also implemented the
IDBN with simple criteria to avoid overfitting. The results
show that the proposed pipeline and the IDBN perform
slightly better than the linear and non-linear models
implemented in this study. In the future, we would implement
the proposed pipeline on SNP and DNA Methylation dataset to
evaluate the model’s generalization.
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Proteins are the basic substances that undertake human life activities, and they often
perform their biological functions through interactions with other biological
macromolecules, such as cell transmission and signal transduction. Predicting the
interaction sites between proteins can deepen the understanding of the principle of
protein interactions, but traditional experimental methods are time-consuming and
labor-intensive. In this study, a new hierarchical attention network structure, named
HANPPIS, by adding six effective features of protein sequence, position-specific
scoring matrix (PSSM), secondary structure, pre-training vector, hydrophilic, and amino
acid position, is proposed to predict protein–protein interaction (PPI) sites. The experiment
proved that our model has obtained very effective results, which was better than the
existing advanced calculation methods. More importantly, we used the double-layer
attention mechanism to improve the interpretability of the model and to a certain
extent solved the problem of the “black box” of deep neural networks, which can be
used as a reference for location positioning on the biological level.

Keywords: protein–protein interaction, multilevel attention mechanism, feature fusion, deep learning, protein
features

INTRODUCTION

Proteins participate in various biological processes in organisms. They usually do not play a single
role but interact with other biological macromolecules to perform biological functions (Geng et al.,
2015). Protein–protein interactions (PPIs) refer to the process in which two or more protein
molecules form a protein complex through non-covalent bonds. Protein interactions play an
extremely important role in most biochemical functions (Bradford and Westhead, 2005; Nilofer
et al., 2020). The identification of protein interaction sites can help researchers understand how
proteins perform their biological functions (Ofran and Rost, 2003; Nilofer et al., 2020), and it can also
help design new antibacterial drugs (Gainza et al., 2020). Conventional biological experimental
methods, such as two-hybrid screening, affinity purification, and mass spectrometry, can be used to
identify protein interaction sites (Chung et al., 2007; Gainza et al., 2020). Biological experimental
methods have disadvantages of being expensive and time-consuming. Therefore, it is of great value
for biologists to develop accurate calculation methods to predict protein interaction sites.

In order to solve the problem concerning expenses, many non-biochemical experimental methods
have been developed (Li et al., 2021), and most of the calculation methods are based on machine
learning. Zhang and Kurgan (2019) evaluated a large number of functional features that could be
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used, such as position-specific scoring matrix (PSSM),
evolutionary conservation (ECO), and relative solvent
accessibility (RSA). In the protein interaction site prediction
methods designed by the predecessors, the high score
fragment pairs (HSP) as (Li et al., 2021) and the one-hot
(Yang et al., 2016; Wang et al., 2019) and amino acid-
embedding representations (Zeng et al., 2020) were used to
characterize protein sequences as model input features. Wang
et al. (2010) proposed a new method for predicting protein
interaction sites in hybrids by using the radial basis function
neural network (RBFNN) model. This method only used the
evolutionary conservation information of the protein and the
spatial sequence profile and has achieved good prediction results.

Zhou and Shan (2001) proposed a neural network-based
prediction method, taking the sequence distribution of
adjacent amino acids and solvent exposure as input. Ofran
and Rost (2006) proposed a neural network model for the
interaction sites identified from sequence (ISIS), which were
trained based on sequence contours and structural features
predicted by the sequence. Porollo and Meller (2007) proposed
a method named SPPIDER based on the support vector machine,
neural network, and linear discriminant analysis, which used 19
features extracted from the sequence. Mizuguchi and Mizuguchi
(2010) developed a predictor called PSIVER, which is a naive
Bayes classifier based on a position-specific scoring matrix
(PSSM), predicting relative solvent accessibility and kernel
density estimation. Dhole et al. (2014) proposed a logistic
regression classifier LORIS that uses L1 regularization. In
addition, Dhole et al. (2015) proposed a new artificial neural
network prediction method that used PSSM features, average
cumulative hydrophilicity, and predicted relative solvent
accessibility to train SPRINGS.

In these studies, a large number of features extracted from
protein sequences are used. The commonly used features include
evolutionary information and secondary structure (Murakami
and Mizuguchi, 2010). In addition to these commonly used
features, there are some other physical, chemical, biological,
and statistical features, such as the accessible surface area of
the protein, protein size, backbone flexibility, and sequence
specificity, which have been used for protein interaction site
prediction. However, existing methods tend to pay too much
attention to protein sequence information, ignoring the
characteristics of proteins at the biological level, and most
machine learning methods are inexplicable.

In order to solve the above problems, we propose a double-
layer attention mechanism prediction model based on graph
convolution that uses multidimensional features as input. The
main contributions are as follows:

1) For paying more attention to the features at the biological
level, we add six effective features of proteins as the input of
the model, which can dig out more potential information.

2) The use of the double-layer attention mechanism improves
the performance and interpretability of the model and solves
the “black box” problem of deep neural networks to a certain
extent.

METHODS

Data
In this experiment, we used three benchmark data sets, namely
Dset_186, Dset_72 (Murakami and Mizuguchi, 2010), and
Dset_164 (Geng et al., 2015). Dset_186 is constructed from
the Protein Data Ban (PDB) database, which is dedicated to
the three-dimensional structure of proteins and nucleic acids.
Dset_186 is composed of 186 protein sequences, and their
sequence homology is less than 25%, and through X-ray
crystallography, their resolution is found to be less than 3 Å.
The structure of Dset_72 and Dset_164 is the same as that of
Dset_186. Dset_72 contains 72 protein sequences, and Dset_164
consists of 164 protein sequences. Therefore, we have a total of
422 different protein sequences. In this study, if an amino acid
has an absolute solvent proximity less than 1Å2 before and after
binding with other proteins, then it is defined as the interaction
site; otherwise, it is defined as the non-reciprocal site of action.

Dset_186, Dset_72, and Dset_164 contain 1,923, 5,517 and
6,096 active sites and 16,217, 30,702 and 27,585 non-interactive
sites, respectively. Although the protein sequences in the three
data sets are not duplicated, the three data sets are from different
research groups. So, in order to ensure that the training set and
the test set have the same distribution, we integrated the three
datasets into a fusion data set. Next, we divided the fused data set
into a training set (approximately 80% of the randomly selected
protein sequences) and a test set (the remaining 20% of the
protein sequences). In the end, we obtained 350 protein
sequences in the training set and 70 protein sequences in the
test set. Among them, we deleted two protein sequences without
defined secondary structure of proteins (DSSP).

Feature Generation
Feature generation is a key step in the deep learning framework.
Excellent features can perfectly represent the various properties of
the protein, and features with insufficient expression ability will
reduce the accuracy of the deep learning model. In order to better
obtain the global features of the protein, we combined six effective
features of the protein amino acid encoding, sequence, and
structure as input vectors for training. These features include
protein sequence, PSSMmatrix, secondary structure, pre-training
vector, hydrophilicity, and amino acid location.

Amino Acid Encoding
One-hot encoding. One-hot encoding is one of the simplest but
very effective features, because the original protein sequence can
accurately represent each amino acid and its position. Most
proteins are composed of 20 different amino acids, so we use
20-dimensional one-hot codes to represent the types of various
amino acids in the protein.

Sequence Features
PSSM matrix. The evolutionary information in PSSM (Jeong
et al., 2011) has been proven to be effective for PPI site prediction.
We run the PSI-BLAST algorithm and search NCBI’s non-
redundant sequence database with three iterations and a
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threshold of 0.001 to generate the PSSM matrix. Each amino acid
in the protein sequence is encoded as a vector with 20 numbers,
which represents the probability of these 20 amino acids
appearing at that position.

Hydrophilic characteristics. The hydrophilic characteristics of
amino acids are determined through experiments, and this
characteristic determines the free energy of the transfer of
each amino acid. In detail, it is determined by the amount of
change in the free energy of amino acids when they move from
water to organic solvents. It can be measured by solubility in
water and organic solvents. It also contains energetic information
about protein interactions and is a very important feature in
protein.

Structure Features
Protein secondary structure. Secondary structure features are
often used in protein prediction. We use the DSSP program to
generate secondary structure information. It encodes the
structural information of amino acids and uses it to predict
protein interaction sites. In this article, we use eight types of
secondary structure states (G (3_10-helix), H (α-helix), I
(π-helix), B (isolated bridge), E (extended sheet), T (β-turn), S
(bend), and other states). Considering that some amino acids
have no secondary structure status in the DSSP file, we use a one-
hot vector of dimension 9 to encode them. The first eight
dimensions indicate the state of each amino acid, and the last
dimension indicates whether there is information about the state
of the related secondary structure.

Pre-training vector based on SeqVec. In this experiment, we
use the pre-training model, that is, SeqVec to obtain the pre-
training vector. SeqVec is a protein sequence pre-training model
trained using deep unsupervised learning (Villegas-Morcillo
et al., 2020). It is based on the model ELMo (Heinzinger et al.,
2019) and consists of a character-level convolutional neural
network (char-CNN) and two-layer bidirectional long short-
term memory (LSTM). The CNN embeds each amino acid in
a latent space, generates the corresponding feature vector, and
then uses LSTM to model the context of the surrounding amino
acids. The model adds two LSTM layers to provide the final
context-aware embedding. These embeddings indicate excellent
performance in protein classification tasks, such as inferring
protein secondary structure, structural category, disordered
regions, and cell location. At the level of each amino acid, the
predicted secondary structure and the regions with inherent
disorder are significantly better than one-hot encoding or the
method generated by Word2vec. The generation of protein
embedding representations is rapid, and it only takes 0.03 s for
SeqVec to generate the evolution information of the target
protein. We choose to use SeqVec to represent each amino
acid in the sequence as a feature vector with a dimension of
1,024 for subsequent training.

Residue location characteristics. The DeepPPISP model
proposed by Zeng et al. (2020) shows that the global
information of proteins helps predict protein interaction sites.
We use the position information of each residue as the input
feature because it provides global position information, and it can
also make up for the defect that the attention model cannot

capture in position information. The position of the residue in the
protein is between 1 and L (protein length). We divide the
position by the length of the protein so that a final value
between 0 and 1 is obtained and then use this value as the
residue position feature and input the model for training.

Model Structure
The hierarchical attention network (HAN) model (Yang et al.,
2016) uses a multilevel attention mechanism to classify
documents and has achieved good results. The HAN model
has two notable features: 1) a hierarchical thinking to
represent documents is used. The document is regarded as
composed of sentences, and the sentences are regarded as
composed of words and 2) the HAN model applies two
attention mechanisms, which are used in documents. At the
document level and sentence level, the attention weight of the
words is calculated to obtain the representation of the sentence,
and then the attention weight of the sentence is calculated to
obtain the representation of the document. The abovementioned
mechanism enables the HAN to give different sentences and
words at different degrees of importance.

Inspired by the HAN, we applied it to the task of predicting
PPI sites. The structure of our model is shown in Figure 1. First,
we use a sliding window to obtain protein sequence fragments
representing protein interaction sites and then divide the
fragments into smaller fragments through K-mers. Next, we
compare individual amino acids to words in the document.
K-mers are analogous to sentences in documents, and the
entire protein sequence fragment is analogous to documents.
Then, the hierarchical attention model is used for training and
prediction, and the final model is obtained. The model obtained
in this way can identify the contribution degree of a single amino
acid to K-mers and the contribution degree of K-mers to the
entire protein sequence fragment. By further analysis, we can
deduce which amino acids contribute to the target amino acid as
the binding site of protein interaction, what is the specific
contribution, and which amino acids may be invalid or can be
obtained.We could also know the important characteristics of the
amino acids that become the interaction sites of proteins.

In the model, we use a sliding window to integrate the features
of the neighboring amino acids. We divide the fixed-length
protein sequence into multiple fragments using K-mers and
then use the previously introduced method to vectorize the
amino acids in the fragments. After obtaining the vector
representation of all amino acids, we use the Bi-GRU to
encode each amino acid and then use the attention
mechanism to calculate the importance of each amino acid for
K-mers. Then, we obtain the vector of each K-mer after weighing
and summing. We use the same method to encode the K-mer
vector, obtain the vector representation of the protein sequence
through the attention layer, and finally use Softmax for
classification.

The features we use include the 20-dimensional one-hot
amino acid feature, the PSSM matrix feature with the same
dimension of 20, the 9-dimensional secondary structure
feature, the 1-dimensional hydrophilic feature, the 1-
dimensional amino acid position feature, and 1,024-
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dimensional pre-training vector feature. In order to prevent the
pre-training vector feature dimensionality from being too large
and affecting the other four features, we used a layer of

feedforward neural network to reduce its dimensionality,
reducing it to 50 dimensions, and then splicing the other five
features to finally get the 101-dimensional amino acid feature

FIGURE 1 | Structure of HANPPIS. It consists of three steps, including embedded representation, amino acid–level attention and K-mers–level attention. We obtain
vector representations of protein sequence fragments through multidimensional features. The vector representation of the protein fragment is the input to the first layer of
the attention mechanism, and then the vector representation of the protein sequence is obtained through the second layer of attention and finally input to the prediction
layer.

FIGURE 2 | Amino acid feature generation and expression. This figure illustrates the specific details of the amino acid signature generation. Among them, because
the pre-training vector feature dimension is too large, a layer of feedforward neural network is used to reduce the dimension to 50 dimensions. Then, the remaining five
features are spliced and finally the 101-dimensional amino acid feature vector as the input of the entire model is obtained.
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representation vector which is used as the input of the entire
model. The processing process is shown in Figure 2.

Model Training Settings
Our deep learning framework is implemented through Keras. The
loss function we use is the cross-entropy loss function, which is
defined as follows:

Loss � −1
n
∑[ylog(ypred) + (1 − y)log(1 − ypred)],

where n is the number of all training data, y is the real label, and
ypred is the predicted label.

Our model uses Adam as the optimizer and the following
formula to update the weights:

θt+1 � θt − α
		
v̂t

√ + ε
,

where θt+1 is the updated parameter, α is the learning rate, ε is the
constant added to maintain numerical stability, andm̂t and v̂t are
the first and second moments after deviation correction,
respectively.

In order to extract the contextual sequence features of amino
acids at protein interaction sites, we set the sliding window length
to 7 and the protein sequence length to 500. Protein sequences
longer than 500 will be truncated. For the deep learning model,
we set the training batch size to 3, the number of neurons in the
LSTM layer and the attention layer in the double-layer attention
are both set to 86, and the fully connected layer connected by the
pre-training vector has 50 neurons. The positive and negative
samples of the training set are not uniformly distributed, so we set
the sample weight at about 1:7, which allows the model to pay
more attention to the positive samples during training and
improve the performance of the model.

RESULTS AND DISCUSSIONS

Comparison With the Benchmark Method
To evaluate the performance of HANPPIS in predicting protein
interaction sites, we compared HANPPIS with seven competing
methods. These six competitive methods all use machine learning
or deep learning methods as model training. SPPIDER (Porollo
and Meller, 2007) uses an alternative machine learning
technology, which combines fingerprints with other sequence
and structural information to predict PPI sites. ISIS (Ofran and

Rost, 2006) uses a shallow neural network to combine predicted
structural features with evolutionary information to predict PPI
sites. RF_PPI was developed by Hou et al. (2017). This algorithm
uses various protein functions and characteristics and applies it to
the random forest algorithm to predict protein interaction sites.
PSIVER (Murakami and Mizuguchi, 2010) used sequence
features (PSSM matrix and predicted accessibility) and then
used a naive Bayes classifier to predict PPI sites. SPRINGS
(Dhole et al., 2015) used a shallow neural network algorithm
based on evolutionary information, average cumulative
hydrophilicity, and predictive relative solvent accessibility to
predict PPI sites. In addition, we used graph CNNs to predict
PPI sites (GCNPPIS) as a comparative experimental model. The
comparison results are shown in Table 1.

Table 1 shows the results of HANPPIS and other seven
competitive methods on the test set. It is not difficult to find
that most of the evaluation indicators measured by HANPPIS are
higher than other competitive methods. Although the accuracy
rate of HANPPIS is not the highest, other evaluation indicators
are higher than competitive methods. Since protein interaction
site prediction is an unbalanced learning issue, the ratio of
positive and negative data samples is about 1:5.5, so we pay
more attention to F1 in the evaluation indicators. Among all
existing methods, HANPPIS has the highest F1 value, surpassing
existing models.

Influence of Different Input Features
Obviously, different types of features (original protein sequence,
PSSM matrix, secondary structure, hydrophilicity, positional
features, pre-training vectors) play different roles in the model.
In order to evaluate the importance of each feature, we delete
each input feature of HANPPIS separately in the ablation
experiment. Specifically, we compared the performance of
different models that delete the original protein sequence,
that is, PSSM matrix, secondary structure features,
hydrophilic features, location features, and pre-training
vectors. In order to distinguish between different models, we
concluded the following definitions:

1) Model_Dpsf: Delete original protein sequence features
2) Model_Dpm: Delete the PSSM matrix
3) Model_Dssf: Delete secondary structure features
4) Model_Dhf: Delete hydrophilic features
5) Model_Dlf: Delete location features
6) Model_Dptv: Delete the pre-training vector

TABLE 1 | Model compares the experimental results on the test set.

Model Accuracy Precision Recall F1

SPPIDER 0.622 0.209 0.459 0.287
ISIS 0.694 0.211 0.362 0.267
RF_PPI 0.598 0.173 0.512 0.258
PSIVER 0.653 0.253 0.468 0.328
SPRINGS 0.631 0.248 0.598 0.350
GCNPPIS 0.623 0.233 0.395 0.293
HANPPIS 0.631 0.291 0.605 0.393

TABLE 2 | Results of ablation experiments.

Model Accuracy Precision Recall F1

Model_Dpsf 0.554 0.237 0.580 0.352
Model_Dpm 0.605 0.269 0.635 0.378
Model_Dssf 0.594 0.263 0.612 0.374
Model_Dhf 0.632 0.282 0.591 0.381
Model_Dlf 0.622 0.295 0.588 0.379
Model_Dptv 0.578 0.275 0.510 0.319
HANPPIS 0.631 0.291 0.605 0.393
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The results of the ablation experiment are shown in Table 2.
The results show that deleting the one-hot feature and the pre-
training vector feature has the greatest impact on the model. After
deletion, all indicators of the model are reduced at the same time,
and the F1 value is as low as 0.319. When deleting several other
features, the performance of the model also drops slightly. The
experimental results show that comprehensive consideration of
these features can obtain more comprehensive protein sequence
information, which is helpful to improve the performance of the
model and obtain better prediction results.

The Effect of Sliding Window Size
In addition to testing different feature inputs, we also studied the
impact of different sizes of sliding windows on the model.
Specifically, we use sliding windows of different lengths, that
is, 7, 9, 11, 13, and 15 to observe the performance of HANPPIS.
The results in Table3 show that the model has the highest F1
value when the length of the sliding window is 7.

The sliding window has less impact on model performance. It
may be because the task is to classify specific amino acids, and the
surrounding amino acids are only used as a context to assist. In
order to further verify our conjecture, we performed a visual

analysis of the attention weight, and the details can be seen in the
Interpretability of the model section.

Interpretability of the Model
In order to overcome the common “black box” problem of deep
learning and understand the role of contextual amino acids, we
randomly selected a sample, which is the 135th amino acid of the
protein 1Z0J_A in Dset186. The sample sequence is
“RDAKDYA”, and the target amino acid is “K”. We visualized
the attention distribution of K-mers–level and amino acid–level
to view the contribution of each amino acid or K-mers to protein
interaction sites. The experimental results are shown in Figure 3.

As shown in Figure 3, in the K-mers–level attention, it can be
seen that the central position of K-mers has the highest attention
ratio, and the surrounding K-mers attention weight is less than
half of the central position. In the amino acid–level attention, the
“K” in the center position also is assigned the highest attention
weight. This is consistent with the situation of the protein
interaction site task. Because the prediction is whether the
central amino acid is the binding site and the surrounding
amino acids exist as auxiliary information of the central amino
acid, the model’s attention to the center position will be larger,
and the proportion of the two sides will pay less attention.

It can be seen from Figure 3B that the attention weights of
amino acids “R” and “A” are both less than 0.05, which is
probably the reason why the sliding window does not have a
high degree of influence on the model because the farther away
from the center, the lower the weight of the amino acid.
Therefore, even if the sliding window is enlarged, it has little
effect on the amino acids in the central position.

In general, we verified that HANPPIS is suitable for
discovering important patterns in protein sequences, and the

TABLE 3 | Effect of the sliding window on the model.

Window size Accuracy Precision Recall F1

7 0.631 0.291 0.605 0.393
9 0.638 0.298 0.551 0.381
11 0.601 0.281 0.593 0.387
13 0.654 0.300 0.540 0.379
15 0.578 0.275 0.690 0.389

FIGURE 3 | Attention distribution. This figure shows the attention visualization result of one of the samples (from the 135th amino acid of protein 1Z0J_A in Dset186,
the sample sequence is “RDAKDYA” and the target amino acid is “K”). (A) shows the proportion of K-mers–level attention distribution and (B) shows the distribution of
amino acid–level attention. As shown in the figure, the center position has the highest proportion of attention, which is also consistent with the task of protein
interaction sites.
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attention mechanism can understand its relationship in context,
which greatly increases the interpretability of the model.

CONCLUSION

The accurate prediction of protein interaction sites can promote
the understanding of protein biological functions. In this article,
we propose a deep learning framework HANPPIS to predict
protein interaction sites at the amino acid level. The difference
between HANPPIS and other existing methods is that the model
uses hierarchical attention combined with neural networks to
predict protein interaction sites. HANPPIS captures global
sequence features through Bi-GRU, so that it can easily
simulate the relationship between the target amino acid and
the entire protein sequence. After Bi-GRU processing, the
attention layer is used to let the model assign higher weights
to the parts that need attention, and further follow-up results can
be obtained. The experiment was repeated twice to generate
attention weights for amino acids and K-mers and finally
classify and output them through Softmax. The results show
that HANPPIS basically surpasses the existing competitive
methods in the task of predicting protein interaction sites.
Sequence-based protein interaction site prediction is still a
challenging problem, and one of the reasons is that there are
no unique attributes in the sequence to directly analyze the
protein sequence. But in this study, we showed that
hierarchical attention can be used for protein interaction site
prediction, and more important parts of disordered protein
sequences can be found. The multiple experimental results
also demonstrated the crucial role of attention mechanism that
can increase the interpretability of the model and provided the
possibility and direction for further exploration of the mystery of
proteins.

But our method has some limitations, such as HANPPIS
requires the multidimensional features of the protein as
input. Obviously, these features may be missing in some
data sets. In addition, the samples for testing attention
visualization in the experiment are not enough. In future
studies, we would be committed to use fewer features to obtain
better performance and improve the interpretability of
the model.
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Prediction of Hormone-Binding
Proteins Based on K-mer Feature
Representation and Naive Bayes
Yuxin Guo1,2,3,4†, Liping Hou5†, Wen Zhu1,3,4* and Peng Wang1,3,4
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Education, Hainan Normal University, Ministry of Education, Haikou, China, 4School of Mathematics and Statistics, HainanNormal
University, Haikou, China, 5Beidahuang Industry Group General Hospital, Harbin, China

Hormone binding protein (HBP) is a soluble carrier protein that interacts selectively with
different types of hormones and has various effects on the body’s life activities. HBPs play
an important role in the growth process of organisms, but their specific role is still unclear.
Therefore, correctly identifying HBPs is the first step towards understanding and studying
their biological function. However, due to their high cost and long experimental period, it is
difficult for traditional biochemical experiments to correctly identify HBPs from an
increasing number of proteins, so the real characterization of HBPs has become a
challenging task for researchers. To measure the effectiveness of HBPs, an accurate
and reliable prediction model for their identification is desirable. In this paper, we construct
the predictionmodel HBP_NB. First, HBPs data were collected from the UniProt database,
and a dataset was established. Then, based on the established high-quality dataset, the
k-mer (K � 3) feature representation method was used to extract features. Second, the
feature selection algorithm was used to reduce the dimensionality of the extracted features
and select the appropriate optimal feature set. Finally, the selected features are input into
Naive Bayes to construct the prediction model, and themodel is evaluated by using 10-fold
cross-validation. The final results were 95.45% accuracy, 94.17% sensitivity and 96.73%
specificity. These results indicate that our model is feasible and effective.

Keywords: hormone binding protein, feature selection, protein classification, k-mer, naive Bayes model

INTRODUCTION

With the rapid development of society, people have higher and higher requirements for medical and
health care (Lin, 2020). Therefore, it is urgent to learn more about the structure and function of
proteins in order to explain more of the meaning of life and promote the development of biomedicine
and other fields (Wang et al., 2020a; Qu et al., 2021). However, there is a difficulty in the current
research, that is, how to use its sequence information to predict proteins effectively. Although
effective prediction of protein sequences can be made using physical, chemical and biological
experiments, these methods are costly and time consuming.

Hormone binding proteins (HBPs) are carrier proteins that bind specifically to targeted hormones
and were first identified in the plasma of pregnant mice, rabbits and humans (Mortezaeefar et al.,
2019; Niu et al., 2021a). They are involved in hormonal regulation in living organisms. HBPs not only
regulate the amount of hormones reaching the target cell to produce the desired effect (Wang et al.,
2018) but also regulate non-protein-binding or free-circulating active steroid hormones, which are
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thought to be the main gatekeepers of steroid effects. Sexual
HBPs, mainly produced in the liver, combine with sexual steroid
hormones to regulate their bioavailability. The incorrect
expression of HBPs, however, can cause various diseases (Tan
et al., 2019).

Therefore, understanding the function and regulatory
mechanism of HBPs has become very important. Accurately
identifying HBPs is the first step in studying their function.
Traditional HBPs identification methods involve wet
biochemical experiments, such as immunoprecipitation,
chromatography, or cross-linking (Sohm et al., 1998; Zhang
and Marchant, 1999; Einarsdóttir et al., 2014; Cheng et al.,
2016; Fang et al., 2019). These experimental methods are
time-consuming and expensive, and with the discovery of a
large number of protein sequences, it is difficult to determine
HBPs through biochemical experiments. Therefore, it is
necessary to establish an effective recognition model to
identify HBPs (Akbar et al., 2020). The description of the
characteristics of the protein sequence method contains a lot
of information, such as the chemical and physical properties of
amino acids, sequence characteristics, feature extraction
algorithm for classification algorithm which has great impact
on the design and the classification of results. Generally,
prediction techniques based on machine learning consist of
three steps: feature extraction, construction of predictors, and
performance evaluation (Liu, 2017; Wang et al., 2018; Zhang
et al., 2019). In 2018, Tang et al. (Hua et al., 2018). developed a
method based on support vector machines to identify HBPs,
which uses the optimal characteristic coding protein obtained by
using the optimized dipeptide composition. Subsequently, Basith
et al. developed the computational predictor iGHBP, which
combined the dipeptide composition and the value of the
amino acid index to obtain the optimal selection and predict
the construction model (Basith et al., 2018). In this paper, we
constructed a prediction model, HBP_NB, to correctly identify
HBPs. First, the k-mer (Liu et al., 2008; Christopher et al., 2013;
Liu et al., 2015a; Manavalan et al., 2019) method was used to
obtain the frequency characteristics of protein sequences, and
then the F-score value method was used to select the feature
subset. Finally, input the obtained features into Naive Bayes
(Gong and Tian, 2010; He et al., 2010; Gumus et al., 2014; Hu
et al., 2020; Hu et al., 2021a; Hu et al., 2021b) to construct the
prediction model.

MATERIALS AND METHODS

Main Process of the Article
Machine learning frameworks have been used to identify multiple
protein types, such as DNA binding proteins (Zeng et al., 2015;
Qu et al., 2017; Shen and Zou, 2020), RNA binding proteins (Xiao
et al., 2017; Lei et al., 2021), lncRNA interacting proteins (Zhang
et al., 2017; Liu, 2020), and drug targets (Yan et al., 2016; Wang
et al., 2020b; Wang et al., 2020c). Since the recognition of protein
sequences includes two important steps sequence feature
extraction and classifier selection the effective combination of
feature extraction algorithms and classifiers has also been

extensively studied (Zhang et al., 2016). In this paper, we
propose a predictive model for identifying hormone-binding
proteins based on Naïve Bayes.

HBPs prediction analysis was carried out through the
following five steps: 1) HBPs and non-HBPs were searched
and downloaded from UniProt, and the similarity threshold of
protein sequences was set by the CD-HIT program to construct a
high-quality dataset (Zou et al., 2020); 2) feature extraction of
protein sequences was performed using the k-mer feature coding
method; 3) the extracted features were selected to improve the
accuracy of classification; 4) different classification methods were
used to classify and predict the selected feature subset and select
the best classification methods; and 5) Performance evaluation.
Figure 1 shows the structural framework for identifying HBPs in
this paper. This section will introduce dataset establishment,
feature selection methods and classification methods in detail.

Dataset
It is necessary to collect sufficient correlation function data as the
basis of statistical model prediction. Therefore, it is first necessary
to construct an objective dataset to ensure the effectiveness and
robustness of the model. Therefore, we adopt the benchmark
dataset constructed by Tang et al. (Tang et al., 2018). To build this
dataset, follow these steps. The first step was to search and collect
HBPs from UniProt (Bairoch et al., 2009; Schneider, 2012) and to
generate the original HBPs dataset by selecting the hormone
binding keywords in the molecular function items of the gene
body (Ashburner et al., 2000). Consequently, 357 HBPs with
manual annotation and review were selected. In the second step,
to avoid the high similarity of protein sequences affecting the
results, we used the CD-HIT (Li and Godzik, 2006; Fu et al., 2012)
program to set the truncation threshold to 0.6 to remove highly
similar HBPs sequences. In the third step, when the protein
sequence in the dataset contains unknown residues (such as “X,”
“Z,” and “B”), it will affect the model prediction results, so protein
sequences containing unknown residues need to be excluded.
After the above steps, a total of 122 HBPs were obtained, which
were regarded as positive data. As a control, 121 non-HBPs were
randomly selected from UniProt as negative data using a similar
selection strategy. The data of the model can be freely download
from https://github.com/GUOYUXINXIN/-. The benchmark
dataset can be expressed as:

D � Dp ∪ Dn (1)

Among them, subset Dpcontains 122 HBPs, and subset
Dncontains 121 non-HBPs.

Feature Extraction
Protein sequence is a string generated by the permutation and
combination of 20 English letters with different lengths.
Currently, general machine learning algorithms can only deal
with feature vectors, so when machine learning methods are used,
protein sequences need to be transformed into numerical vectors
representing the characteristics of protein sequences. As the first
step in building a biological sequence analysis model, feature
extraction is an important part of correctly predicting protein
sequences, an efficient feature extraction method can obtain a
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high performance classification model. The extracted features
should not only retain the protein sequence information to the
maximum extent, but also have a greater correlation with protein
classification. Given a protein sequence, express it as:

P � R1R2R3/RL (2)

where Pstands for protein sequence, Rirepresents theithamino
acid residue of proteinP(i � 1, 2,/, L).

K-Mer
K-mer (Liu et al., 2015b; Niu et al., 2021b) is the most basic method
of expressing protein sequences as digital vectors (Liu et al., 2016),
in which k-mer frequency coding refers to the occurrence
frequency of all possible nucleotide sequences with k length in a
given sequence (Liu et al., 2015c; Bin et al., 2017). The k-mer
feature extraction algorithm is used to convert the protein sequence
into a vector with a fixed length, which is used as the input vector of
themachine learning classifier. For example, setting k to 2 produces
a 400-dimensional vector (AA,AC,AD,/, AY, YA,YC,/, YY).
To avoid the problem of overfitting, we generally setk< 4 because
whenk> 4 , more dimensions will be generated, resulting in
dimension disaster (Wei et al., 2019). Therefore, we set k to 3
so that the input protein sequence could be converted into a vector
with 8,000 dimensions of fixed length.

Distance-Based Residual
DR (Liu et al., 2014) is a feature expression method based on
protein sequences that uses the distance between residue pairs to

represent the feature vector of the protein. The feature vector is
expressed by calculating the number of occurrences of residual
pairs within a certain distance threshold. The feature vector
dimension obtained by the DR feature extraction method is
20 + 20 × 20 × dMAXdimensions, where in 20 in
20 + 20 × 20 × dMAXrepresents the types of amino acids that
make up the protein; dMAXis a distance threshold that can be
set manually, which represents the maximum distance between
pairs of amino acid residues.

Profile-Based Cross-Covariance
Since machine learning-based technologies such as random
forest (RF) and logistic regression (LR) require the input of
fixed-length vectors as input vectors for training, it is necessary
to convert protein sequences of different lengths into fixed
length vectors as input vector machine learning. Because
each residue in a protein has many physical and chemical
properties, protein sequences can be regarded as time series
with similar properties. Therefore, CC-PSSM (Dong et al., 2009)
is used in this article to convert protein sequences of different
lengths into fixed length vectors. PSSM algorithm is a common
algorithm in the field of bioinformatics, known as the “position-
specific scoring matrix,” which can store the evolutionary
information of protein sequences so that it can be used for
protein prediction. It is a matrix that calculates the percentage of
different residues at each position in a multi sequence
alignment, the matrix size is L × 20 (L for protein sequence
length). Among them, CC is a measure of correlation between

FIGURE 1 | Structure flow chart. The first step is to search and download HBPs and non-HBPs from the protein resource database and then use CD-HIT to
perform protein de-redundancy operations. The threshold is set to 60%. Finally, protein sequences containing unknown residues are removed to generate the final
protein dataset. The second step is to extract features of the protein, and the third step is to use different classification methods to classify the selected features.
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two different properties of amino acid residues and can be
calculated using the following equation:

CC(i1, i2, lag) � ∑
L−lag

j�1
(Si1,j − �Si1)(Si2,j+lag − �Si2)/(L − lag) (3)

wherei1, i2represents amino acids, and �Si1, �Si2 represents the
average score of i1, i2along the protein sequence. LAG is the
maximum lag, lag is an integer value from 1 to LAG, and the total
number of CC variables is 380 × LAG. In this paper, we set the
value ofLAG to 2 to obtain a 720(380 × 2)-dimensional vector.

Feature Selection
When the feature size is large, there may be irrelevant features or
inter-dependence between features, which will easily affect the
accuracy of the prediction results. In particular, the more feature
dimensions, the more likely it is to lead to “dimension disaster,”
model complexity and model generalization ability decline.
Therefore, removing irrelevant or redundant features through
feature selection can improve the accuracy of classification
performance and reduce the running time of the model (Polat
and Güneş, 2009; Quan et al., 2016; Zou et al., 2016; Guohua and
Jincheng, 2018;Wei et al., 2018; Riaz and Li, 2019; He et al., 2020).
In this paper, the F-score value is used to select the optimal
feature (Chen and Lin, 2008; Cheng et al., 2019; Wei et al., 2019),
which is a method to measure the distinguishing ability of
features between the two categories, and the most effective
feature selection can be achieved through this method.
Therefore, we can use (Eq. 4) to describe the contribution of
each feature and perform feature selection:

F(i) � s2b(i)
s2w(i)

(4)

whereF(i) is the score of theith feature of the F-score. Generally,
the larger the value of F(i) is, the stronger the ability to recognize
samples.s2w(i) is the intragroup variance, ands2b(i) is the
intergroup variance. Their calculation formula is as follows:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

s2b(i) �
ssb(i)
K − 1

s2w(i) �
ssw(i)
N − K

(5)

wheressb(i)is the sum of squares between groups; ssw(i)is the
sum of squares within the group; Kis the total number of classes;
andNis the total number of samples.

Classifier
In this paper, Naive Bayes, Random forests, logistic regression,
linear discriminant and other classification algorithms are used to
predict HBPs.

Naïve Bayes
The Naive Bayes method is a classification method based on
Bayes’ theorem and the assumption of the independence of
characteristic conditions. It is characterized by combining
prior probability and posterior probability and a very widely

used algorithm. The main idea of the naive Bayes classifier is to
solve the posterior probability P(Y|X) through joint probability
modeling and use Bayes’ theorem. Then, the category
corresponding to the largest posterior probability is used as
the predicted category. Suppose there is a sample dataset
D � {d1, d2,/, dn}, the feature dataset corresponding to the
sample dataset is X � {x1, x2,/, xd}, features are independent
and random, and the class variable is Y � {y1, y2,/ym}.
According to the Naive Bayes algorithm, the posterior
probability of the sample belonging to categoryycan be
expressed as:

P(Y|X) � P(Y)P(X|Y)
P(X) (6)

WhereP(Y)is the prior probability, Naive Bayes is based on the
independence of each feature. In the case of a given category, Eq.
6 can be further expressed as the following equation:

P(X
∣∣∣∣Y � y) � ∏

d

i�1
P(xi

∣∣∣∣Y � y) (7)

The posterior probability can be calculated from the above two
Eqs 6, 7:

P(Y|X) �
P(Y)∏

d

i�1
P(xi|Y)

P(X) (8)

Since the magnitude of P(X)is fixed, when comparing the
posterior probability, only the molecular part of the above
equation can be compared. Therefore, a naive Bayesian
calculation of sample data belonging to category yi can be
obtained:

P(yi

∣∣∣∣x1, x2,/, xd) �
P(yi) ∏

d

j�1
P(xj

∣∣∣∣yi)

∏
d

j�1
P(xj)

(9)

Random Forests
RF is a flexible, easy-to-use machine learning algorithm that
contains multiple decision trees. It is an optimized version of
bagging (Su et al., 2019; Zeng et al., 2020). The idea of bagging is to
vote on the results of multiple weak classifiers to combine them
into a strong classifier, thereby improving the prediction accuracy
of the model. In the training phase, RF uses the bootstrap sampling
method to collect multiple different subsets from the input training
dataset and then uses the different collected subsets to train the
internal decision tree. Then, in the prediction phase, RF votes for
the prediction results of multiple internal decision trees and then
outputs the prediction results. Its advantages are as follows: 1) it
can process high-dimensional data without feature selection; 2)
accuracy can be maintained even if many of the features are
missing; and 3) it has a fast training speed (Jiao et al., 2021).

Logistic Regression
As a classification model, LR can deal with the 0/1 classification
problem because of the nonlinear factor introduced by the
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sigmoid function. The image of the logical function is an S-shaped
curve with values between (0, 1). The farther away from 0 a
function is, the closer to 0 or 1 the value of the function will be.
Therefore, this feature can be used to solve the problem of binary
classification. The function formula is as follows:

g(z) � 1
1 + e−z

(10)

Among them, z � θTx � ∑n
i�0 θixi �θ0x0 + θ1x1 + θ2x2 +/+

θnxn; therefore, the predictive function of logistic regression can
be expressed as:

hθ(x) � g(θTx) � 1

1 + e−θTx
(11)

Linear Discriminant Analysis
LDA is a classical linear learning method, also known as “Fisher”
discriminant analysis in dichotomies. Unlike the perception
machine, the principle of LDA is dimension reduction. In
other words, given a set of training samples, the article tries to
sample projections to a straight line, keeping the points with the
same classification as close as possible and the classification of
different points as far apart as possible, i.e., maximizing and
minimizing the variance between variance. LDA can, therefore,
make use of sample points in the projection line (or projection
location) to determine the type of sample.

Performance Evaluation
In this article, we use the specificity (SP), sensitivity (SN),
accuracy (ACC) (Yang et al., 2021) and Matthews correlation
coefficient (MCC) to evaluate our proposed method (Snow et al.,
2005; Cheng et al., 2018), which can be expressed as:

1. Accuracy: ACC represents the probability that all positive
and negative samples will be correctly predicted.

ACC � TP + TN

TP + TN + FN + FP
(12)

2. Sensitivity: SN represents the probability that the actual
hormone-binding protein is predicted to be a hormone-binding
protein.

SN � TP

TP + FN
(13)

3. Specificity: SP represents the probability that a non-
hormone-binding protein is predicted to be a non-hormone-
binding protein.

SP � TN

TN + FP
(14)

4. MCC: MCC represents the reliability of the algorithm
results.

MCC � TP × TN − FP × FN
�������������������������������������(TP + FP)(TP + FN)(TN + FP)(TN + FN)√ (15)

5 Precision: Indicates howmany of the samples predicted to be
positive are true positive samples.

pre � TP

TP + FP
(16)

6. F1-Score: The F1 score is balanced by taking into account
both accuracy and recall, so that both are maximized at the same
time.

F1 − Socre � 2 × pre × recell

pre + recell
(17)

Where, the recall rate is: recell � TP
TP+FN

7. The ROC curve: Receiver operating characteristic curve (the
area under the curve is AUROC), X-axis is false positive rate
(FPR), Y-axis is true positive rate (TPR):

TPR � TP

TP + FN
(18)

FPR � FP

FP + TN
(19)

8. PRC: PRC takes precision rate as Y-axis and recall rate as
X-axis.

Where TPrefers to the model correctly predicting positive
category samples; FPrefers to the model incorrectly predicting
negative category samples as positive category; TN refers to the
model correctly predicting negative category samples; and
FNrefers to the model incorrectly predicting positive category
samples as negative category (Ding et al., 2020a; Ding et al.,
2020b).

In machine learning, a test set is needed to test the model
and describe its generalization ability. However, in practical
applications, due to the limited number of datasets, cross
validation is used as a test method. There are three types of
cross validation: K-fold cross validation, fold cross validation
and independent data verification. In this article, we use
K-fold cross-validation to test the constructed model.
K-fold cross-validation divides the training data into K
parts, of which (K-1) pieces of data are used to train the
model, and the remaining 1 piece of data is used to evaluate
the quality of the model. This process is cycled K times, and
the K evaluation results obtained are combined, such as
averaging or voting. The flow chart of K-fold cross
verification is shown in Figure 2.

RESULTS AND DISCUSSION

In machine learning, the predicted results of the model can be
tested through cross-validation. In this article, we use 10-fold
cross-validation to evaluate the built model.

Performance Comparison of Different
Feature Expression Methods
According to the feature extraction part, protein sequences are
transformed into feature vectors of different sizes through
different feature extraction methods. Therefore, in this study
we tested the performance of three feature extraction methods:
k-mer (K � 2), k-mer (K � 3), DR and CC-PSSM.
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First, use the F-score feature selection method to reduce the
dimensionality of the feature vectors obtained by different feature
extraction methods to 250 dimensions, then use the selected best
feature vector as the input vector of the naive Bayes algorithm and
perform 10-fold cross-validation, and finally draw forecast
results. The prediction results are shown in Table 1 (the
maximum value is in bold). As shown in Table 1, the k-mer
(k � 3) feature extraction algorithm used in this model performs
best in all indicators, among which the values of ACC, MCC, SP
and SN are, respectively, 95.45,91.36, 96.73, and 94.17%. These
results prove the validity of our model.

Comparison With Other Classifiers
To show the superiority of naive Bayes in HBPs recognition, we
can compare the HBPs recognition performance of different
classification algorithms based on the same feature subset (i.e.
250 optimal features). In this paper, we used the constructed
HBP_NB model to perform performance comparison with RF,
LDA, Logistic regression and other models under the condition of
10-fold cross-validation, and the comparison results are shown as
follows. Table 2 shows the specific values of different
classification models under SN, SP, ACC, MCC and other
indicators (the maximum values are in bold). As can be seen
from Table 2, HBP_NB prediction model achieved better results

than other classification algorithms in identifying hormone-
binding proteins, in which ACC, MCC, SN and SP were 95.45,
91.36, 94.17 and 96.73%, respectively. Figures 3, 4 respectively
show the boxplot diagram of different models, ROC and PRC
curves schematic diagram. These results show that our model has
good classification ability. Therefore, we construct the final model
based on naive Bayes. Where, the line in the middle of the box in
the boxplot is the median of the data, representing the average
level of the sample data; The top of the box represents the upper
quartile and the bottom quartile represents the lower quartile,
which means the box contains 50% of the data, so the width of the
box reflects, to some extent, how much the data fluctuates; at the
same time, the lines above and below the box represent the
maximum and minimum values of data. The ROC curve is a
curve that evaluates the effect of binary model on positive

FIGURE 2 | K-fold cross-validation diagram. Divide the data into K parts, where k-1 parts are used as the training dataset, and the remaining part is used as the test
set. The mean value of the results of the k groups is calculated as the performance index of the current k-fold cross-validation evaluation model.

TABLE 1 | Prediction results of different feature extraction algorithms based on the Bayesian classifier.

Feature extraction SN(%) SP(%) ACC(%) MCC(%) AUROC(%) PRC(%)

K-mer(k � 3) 94.17 96.73 95.45 91.36 95.17 96.55
K-mer(k � 2) 65.51 78.46 71.96 44.50 77.89 76.97
DR 83.46 37.12 60.39 25.64 66.35 75.99
CC-PSSM 64.10 80.13 72.09 45.29 78.24 80.27

TABLE 2 | Performance comparison of different classifiers under 10-fold cross
validation

Classifier SN(%) SP(%) ACC(%) MCC(%) AUROC(%) PRC(%)

NB 94.17 96.73 95.45 91.36 95.17 96.55
RF 77.95 87.57 82.71 66.26 89.45 91.19
LDA 72.24 70.13 71.20 43.08 94.53 95.32
LR 96.92 17.50 57.00 14.42 76.35 79.43
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FIGURE 3 | Boxplot diagram of different classification models, this figure shows the distribution of LDA, LR, RF and NB under SN, SP, accuracy, ACC, MCC, F1-
Score, AUROC and AUPRC successively from left to right and from top to bottom. At the same time, it can be seen from the figure that NB can achieve good results
under different indicators.

FIGURE 4 | As can be seen from the ROC curves and PRC curves of different classification models, the ROC curves of LDA, RF, LR and NB are 0.7635, 0.894 and
0.9453, respectively. The dotted line represents the ROC curve of a completely random classifier, and the ROC curve of a good classifier should be as far away from the
dotted line as possible, as close as possible to the upper left corner; The PRC curve values of LDA, RF, LR and NB were 0.7943, 0.9071, 0.9532 and 0.9655,
respectively, the closer the curve was to the upper right corner, the better the model classification ability was. Therefore, we constructed the final model based
on NB.
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category prediction. X-axis is false positive rate (FPR), Y-axis is
true positive rate (TPR), which indicates that the optimal
classifier with the best performance is located in the upper left
corner of the image (coordinate 0,1), and the area under its ROC
curve is AUROC, with an area value between 0,1. PRC takes
presion rate as Y-axis and recall rate as X-axis, and lines are
drawn according to changes in the value of probability threshold.
The ideal model would be at the point (1,1). The model with
excellent performance is as close to this point as possible.

Performance Comparison With the Existing
Optimal Algorithm
This section compares the model constructed in the article with
other existing methods, in which the results of HBPred (Hua
et al., 2018) and iGHBP (Basith et al., 2018) are directly obtained
from the literature. The comparison results are shown in Table 3
(the maximum value is in bold). As seen from Table 3, the
HBP_NB model constructed in this paper has the best
performance in all indicators, among which ACC, SP and SN
have reached maximum values of 95.45, 96.73 and 94.17%,
respectively. The effect is significantly better than that of the
other two methods, which also proves the effectiveness of the
HBP_NB model constructed in this paper.

CONCLUSION

As a carrier protein related to the regulation of hormones in the
circulatory system, HBPs can cause various diseases when they
are abnormally expressed. Therefore, it is very important to
understand their function and regulatory mechanism, and the
correct identification of HBPs is the first step in understanding
their biological process and is necessary to further study their
function. There is growing evidence that it is crucial to develop an
efficient computational model to identify hormone-binding
proteins. In this study, we used a reliable predictive model for
HBP_NB to identify HBPs. First, the model uses the k-mer
feature extraction method to extract the features of HBPs.
Then, to remove redundancy and noise and improve the
accuracy of model prediction, the F-score value is used to sort
the features and select the optimal features. Secondly, the reduced
feature set is input into naive Bayes classifier and the 10-fold cross

validation is used to judge the quality of the prediction model.
Finally, the accuracy, sensitivity and specificity of the HBP_NB
model reached 95.45, 94.17 and 96.73%, respectively, in 10-fold
cross validation. The feasibility and validity of our model are
illustrated.

However, there is room for improvement in our current
approach. Since the data set selected in this experiment is
small, we will collect more data for model training and
independent test set experiments in the future to improve the
model’s robustness and generalization ability. At the same time,
we will further learn more effective feature representation
methods and classification algorithms to gain an in-depth
understanding of machine learning and establish a more stable
model. In addition, we also hope that our work can help scholars
to study hormone binding proteins, to promote research on
hormone-binding protein drugs.
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KK-DBP: A Multi-Feature Fusion
Method for DNA-Binding Protein
Identification Based on Random
Forest
Yuran Jia1, Shan Huang2* and Tianjiao Zhang1*

1College of Information and Computer Engineering, Northeast Forestry University, Harbin, China, 2Department of Neurology, The
Second Affiliated Hospital of Harbin Medical University, Harbin, China

DNA-binding protein (DBP) is a protein with a special DNA binding domain that is
associated with many important molecular biological mechanisms. Rapid development
of computational methods has made it possible to predict DBP on a large scale; however,
existing methods do not fully integrate DBP-related features, resulting in rough prediction
results. In this article, we develop a DNA-binding protein identification method called KK-
DBP. To improve prediction accuracy, we propose a feature extraction method that fuses
multiple PSSM features. The experimental results show a prediction accuracy on the
independent test dataset PDB186 of 81.22%, which is the highest of all existing methods.

Keywords: DNA-binding protein, position specificity score matrix, random forest, feature extraction, multi-feature
fusion

INTRODUCTION

Proteins are spatially structured substances formed by the complex folding of amino acids into
polypeptide chains through dehydration and condensation. Proteins are the material basis of life
and they are required for every vital activity. Given the vast number of proteins and their roles,
protein classification has always been central to the study of proteomics. DNA-binding proteins
(DBP) are a very specific class of proteins whose specific binding to DNA guarantees the
accuracy of biological processes and whose nonspecific binding to DNA guarantees the high
efficiency of biological processes (Gao et al., 2008). DNA-protein interactions, such as gene
expression and transcriptional regulation, occur ubiquitously throughout the biological
activities of living bodies (Liu et al., 2019; Shen and Zou, 2020; Xu et al., 2021a). All of
these interactions are tightly linked to DBP, where the fraction of DNA-binding proteins in
eukaryotic genes is approximately 6–7%.

The role of DBP in biological activities has gained a lot of attention in recent years, as various large
genome projects and research on DBP identification have rapidly progressed. However, identifying
DBP using traditional biochemical analyses is inefficient and expensive (Li and Li, 2012; Xu et al.,
2021b). In recent years, machine learning methods have been widely used in the field of
bioinformatics (Jiang et al., 2013; Geete and Pandey, 2020; Tao et al., 2020; Wang et al., 2021a;
Long et al., 2021). Using machine learning methods for DNA-binding protein identification can
enable rapid and accurate prediction of DBP from a large number of proteins, while drastically
reducing prediction costs (Fu et al., 2018). Because the number of proteins is large and promiscuous,
overcoming every classification prediction problem with one method is difficult, if not impossible
(Wang et al., 2021b). Therefore, wemust continue to propose effective methods for high-quality DBP
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prediction and identification in order to understand the
significance of more vital activities and to promote further
progress within the bioinformatics field.

Feature extraction methods can be broadly classified into two
categories: those based on structural information and those based on
sequence information (Kim et al., 2004;Meng and Kurgan, 2016; Qu
et al., 2019; Ao et al., 2021a; Lv et al., 2021a; Liu et al., 2021; Tang
et al., 2021; Wu and Yu, 2021); (Stawiski et al., 2003) proposed a
model based on protein structure that utilises a neural network
approach incorporating information like residue and hydrogen bond
potential. Liu et al. (Liu et al., 2014) developed amodel called IDNA-
prot|dis, based on the pseudo amino acid composition (PseAAC) of
protein sequence information. iDNAPro-PseAAC (Liu et al., 2015),
which uses a similar feature extraction method, adopts a prediction
model based on a support vector machine to predict DBP. IDNA-
prot (Lin et al., 2011) was constructed based on physicochemical
properties and random forest (RF) classification. In addition, a
support vector machine model based on k-mer and
autocovariance transformation was proposed by Dong et al. (Liu
et al., 2016). Local-DPP (Wei et al., 2017a) used random forests
based on PSE-PSSM features to predict DBP.MK-FSVM-SVDD is a
multiple kernel SVM prediction tool based on the heuristic kernel
alignment developed byDing et al. (Zou et al., 2021) to identify DBP.
In addition, two models for predicting DBP were developed: DNA-
prot (Kumar et al., 2009) and DNAbinder (Kumar et al., 2007). Lu
et al. (Lu et al., 2020) developed a predictionmodel forDBP based on
support vector machines using Chou’s five-step rule.

Currently, a number of DNA-binding protein prediction
methods based on different strategies exist. Unfortunately, most
of these DBP prediction methods fail to extract features based on
evolutionary information, so their robustness and prediction
accuracy have much room for improvement. To address these
issues, more research is needed with regard to feature extraction
and the selection of classifiers (Zuo et al., 2017; Zheng et al., 2019).

In this paper, we propose a new DNA-binding protein
prediction method called KK-DBP. We first obtained the
position specificity score matrix (PSSM) of the protein
sequence for each sample used to train the model. PSSM
information was then used to extract three features of each
sample: PSSM-COMPOSITION (Zou et al., 2013), RPSSM
(Ding et al., 2014) and AADP-PSSM (Liu et al., 2010), which
were combined to form the initial feature set of each sample. The
final initial feature set of each sample reached 930 dimensions. To

avoid feature redundancy and improve prediction accuracy, KK-
DBP used the max relevance max distance (MRMD) (Zou et al.,
2016) feature ordering method to establish the optimal feature
subset for model training. Finally, a new DBP prediction model
was constructed using the random forest learning method. The
complete method framework is shown in Figure 1:

MATERIALS AND METHODS

Dataset
The dataset is one of the key factors determining the quality of the
predictive model and is the cornerstone of machine learning
algorithm learning, which directly affects the final effect of the
model, so dataset construction is meticulous and complex (Liang
et al., 2017; Su et al., 2021). Other researchers have proposed
many prediction models for DNA-binding proteins that have
been pertinent to objectively comparing existing data. In the
present study, we have used protein sequences from the PDB
database as our training dataset and test dataset. Table 1 shows
the contents of the dataset:

The training set PDB1075 contained 525 DNA-binding
proteins and 550 non-DNA-binding proteins, and the test set
PDB186 contained 93 DNA-binding proteins and 93 non-DNA-
binding proteins. The dataset construction rules are as follows:

S � S+ ∪ S− (1)

where S+ is the positive subset containing only DNA-binding
proteins, and S− is the negative subset containing only non-DNA-
binding proteins.

Feature Extraction
Feature extraction is very important to modeling sequence
classifications, which directly affect the accuracy of predictive
models (Zhang et al., 2020a; Lv et al., 2021b). Evolutionary

FIGURE 1 | Framework of KK-DBP. Step A: Construction of Position Specificity Score Matrices for protein sequences. Step B: Extraction of three features: AADP-
PSSM, PSSM-COMPOSITION, and RPSSM as the initial feature set for a single sample. Step C: Feature ranking and selection using the MRMD algorithm. Step D:
Identification of DBP using random forests.

TABLE 1 | benchmark datasets used in this paper.

Data set PDB1075 PDB186

Positive 525 93
Negative 550 93
Total 1075 186
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information is among the most important information we
have regarding protein function and genetics (Zuo et al.,
2014). Position specificity score matrices (PSSM) can
intuitively display protein evolutionary information. Thus,
the feature extraction method based on PSSM is widely used
in protein classification.

Position specificity Score Matrices
In 1997, Altschul et al. (Altschul et al., 1990) proposed the
BLAST algorithm. When given a protein sequence, BLAST can
represent the evolutionary information of a protein by aligning
it with data in a specific database and extracting a position
specific score matrix (PSSM). To improve the prediction
accuracy of proteins, our method predominantly utilises
protein evolution information to extract features. For the
training and test sets used in our method, the PSSM matrices
for each sequence were generated by three PSI-BLAST iterations
with an E-value of 0.001. The PSSM is a matrix of size L × 20,
where L is the length of the protein sequence and 20 is the
number of amino acids. Coordinates (i, j) in the position
specificity score matrix. (PSSM) represent the log score for
the amino acid at position i being replaced by the log score
of the amino acid at position j. When the coordinate value is
greater than 0, it indicates that during the alignment, there is as
large probability that the amino acid at the corresponding
position in the sequence is mutated to 20 native amino acids.
The higher the value is when the number is a negative integer,
the less prone it is to alteration. This numerical pattern indicates
the probability of the mutation of a residue in a given protein
sequences. Its matrix form behaves as follows:

PSSML×20 �
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

p1,1 p1,2 / p1,20

p2,1 p2,2 / p2,20

« « / «
pL,1 pL,2 / pL,20

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(2)

Reduced Position Specificity Score Matrices and
Position Specificity Score Matrices-Composition
PSSM-COMPOSITION is generated by adding the same amino
acid rows in the original PSSM matrix, dividing by the sequence
length and scaling to [-1,1]. For each protein sequence PSSM
matrix, a 400-dimensional vector feature{d1, d2, d3, ..., d400} is
generated.

Li et al. (Li et al., 2003) first proposed that 10 might be the
minimum number of residue types (letters) needed to construct a
reasonably folded model. Reduced PSSM (RPSSM) borrowed this
idea and simplified the original PSSM matrix with form L × 20 to
one with form L × 10.

a1a2 . . . aL is a protein in the dataset, ai is assumed to be
mutated to s, and pi,s represents the pseudo composition
component of amino acid ai. The pseudo composition of all
amino acids in protein a1a2 . . . aL is defined as:

Ds � 1
L
∑
L

i�1
⎛⎝pi,s − 1

L
∑
L

i�1
pi,s

⎞⎠
2

s � 1, 2, ...10; i � 1, 2, ..., L

(3)

The dipeptide composition was later incorporated into
the RPSSM method in order to overcome its inability to
extract full sequence information. Assuming that ai+1 is
replaced by ‘t’, the dipeptide pseudocomposition of aiai+1
is defined as:

xi,i+1 �
(pi,s + pi+1,t)

2

2
s, t � 1, 2, . . . 10; i � 1, 2, . . . , L − 1 (4)

where xi,i+1 represents the difference of pi,s and pi+1,t from their
mean values. Finally, because each protein sequence in the dataset
will consist of the pseudo composition of all of its dipeptides, we
can generate a 110-dimensional vector feature of RPSSM, defined
as follows:

Ds,t � 1
L − 1

∑
L−1

i�1
xi,i+1 � 1

L − 1
∑
L−1

i�1

(pi,s + pi+1,t)
2

2
s, t

� 1, 2, . . . 10 (5)

AADP-Position Specificity Score Matrices
A protein’s structure is closely related to its amino acid
composition. For every amino acid sequence in the dataset,
AADP-PSSM produces a vector with dimensions 20 + 400 �
420. AADP-PSSM is divided into two parts. The amino acid
composition is first extracted from its PSSM matrix: the average
value of the PSSM matrix column of length 20 is called AAC-
PSSM, where xi is the type of amino acid in the PSSMmatrix and
represents the average fraction of amino acid mutations during
evolution. It is defined as follows:

xj � 1
L
∑
L

i�1
pi,j (j � 1, 2, . . . , 20) (6)

The traditional dipeptide composition was later extended to
PSSM and represented with DPC-PSSM to avoid the loss of
information due to an X in the protein, which was defined as a
vector of 400 dimensions:

yi,j � 1
L − 1

∑
L−1

K�1
Pk,i × Pk+1,j (1≤ i, j≤ 20) (7)

Feature Selection
Feature redundancy or dimensionality disasters often occur
during feature extraction. Feature selection not only reduces
the risk of overfitting but also improves the model’s
generalization ability and computational efficiency (Guo et al.,
2020; Yang et al., 2021a; Ao et al., 2021b; Zhao et al., 2021). In the
present paper, we use the max relevance max distance (MRMD)
feature selection method to reduce the dimensions of the initial
feature set (He et al., 2020).

In MRMD, feature selection is based primarily on the
correlation between the subset and the target vector and the
redundancy of the subset. When measuring correlations,
MRMD used the Pearson correlation coefficient, which is
defined as:
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PCC( �X, �Y)

�
1

N−1∑
N
k�1(xk − 1

N∑N
k�1 xk)(yk − 1

N∑N
k�1 yk)

���������������������
1

N−1∑
N
k�1 (xk − 1

N∑N
k�1 xk)

2
√ ���������������������

1
N−1∑

N
k�1 (yk − 1

N∑N
k�1 yk)

2
√ (8)

where �X and �Y are two vectors, xk and yk are the kth elements in
�X and �Y, and N is the total sample number. The initial feature set
constructed using this method is F � {f1, f2, f3, . . . , f930}. The
maximum correlation value maxMRi between feature fi and
target class vector C is defined as:

maxMRi �
∣∣∣∣∣∣∣PCC(fi

→
, Ci

→
)
∣∣∣∣∣∣∣(1≤ i≤M) (9)

where M is the initial feature set dimension, fi
→

is the vector
composed of the ith feature of each instance, and Ci

→
is the vector

composed of the target category of each instance.
When evaluating the similarity between two vectors,

MRMD uses the distance functions Euclidean distance
(ED), cosine similarity (COS) and Tanimoto coefficient
(TC) to measure:

ED( �X, �Y) �

�����������

∑
N

k�1
(xk − yk)

2

√√

(10)

COS( �X, �Y) � ∑N
k�1 xkyk������

∑N
k�1 x

2
k

√
·

������
∑N

k�1 y
2
k

√ (11)

TC( �X, �Y) � ∑N
k�1 xkyk

∑N
k�1 x

2
k +∑N

k�1 y
2
k −∑N

k�1 xkyk

(12)

We use the mean of the three above as the maximum distance
maxMDi for feature i:

EDi � 1
M − 1

∑ED(fi

→
, fk

�→
)(1≤ k≤M,k ≠ i) (13)

COSi � 1
M − 1

∑COS(fi

→
, fk

�→
)(1≤ k≤M,k ≠ i) (14)

TCi � 1
M − 1

∑TC(fi

→
, fk

�→
) (1≤ k≤M, k ≠ i) (15)

maxMDi � 1
3
(EDi + COSi + TCi) (1≤ i≤M) (16)

The MRMD values of all the features are calculated with the
above two constraints. The PageRank algorithm is used to sort the
initial feature set from high importance. One feature is added to
the feature subset at a time and is used to train the model to
determine which subset is the best.

Classification Algorithm
Protein prediction is usually described as a binary classification
problem (Zhai et al., 2020; Zhang et al., 2021; Zulfiqar et al.,
2021). We selected the random forest learning method for
prediction modelling in the present study. Because the random
forest method randomly extracts features and samples during
construction of a decision tree set, it is more suitable to addressing
the problem of high feature dimensions. By using
RandomizedSearchCV and GridSearchCV for parameter

selection, the random forest model constructed finally includes
800 subtrees, in which each tree has no limit, and a single decision
tree is allowed to use all features. The maximum depth of each
decision tree is 50.

RESULTS

Measurements
We selected four different performance measures, accuracy
(ACC), specificity (SP), sensitivity (SN) and Matthew’s
correlation coefficient (MCC), to evaluate the methodology
used by this study to demonstrate the predictive ability of the
model used (Wei et al., 2014; Wei et al., 2017b; Manavalan et al.,
2019a; Manavalan et al., 2019b; Jin et al., 2019; Su et al., 2019; Li
et al., 2020a; Liu et al., 2020a; Ao et al., 2020; Li et al., 2020b;
Zhang et al., 2020b; Yu et al., 2020; Zhao et al., 2020; Wang et al.,
2021c; Zhu et al., 2021). The equations for determining these four
parameters are shown below:

ACC � TN + TP

TN + FP + FN + FP
× 100% (17)

MCC � TP × TN − FP × FN
�������������������������������������������(TP + FN) × (TN + FN) × (TP + FP) × (TN + FP)√

(18)

SN � TP

TP + FN
× 100% (19)

SP � TN

TN + FP
× 100% (20)

Where TP represents positive samples predicted to be positive by
the model, FP represents negative samples predicted to be
positive by the model, and TN represents negative samples
predicted to be negative by the model. FN represents positive
samples predicted to be negative by the model. Removing the
above four performance measures, the ROC curve will also be
used to assess the effect of our predictions.

Experimental Results and Analysis
Performance of Different Features on Training Set
PDB1075
A large amount of information on homologous proteins is
contained in evolutionarily informative features based on the
PSSM matrix. In our method, we selected the evolutionary
information-based features PSSM-COMPOSITION, RPSSM,
and AADP-PSSM for experimentation. To better show the
efficiency of prediction models under different combinations
of features, the receiver operating characteristic (ROC) curve
was used for analysis. The closer the curve is to the y-axis, the
better the classification results will be. The area under the
curve (AUC) is defined as the area under the ROC curve
enclosed by the coordinate axis. The closer the area is to 1, the
better the prediction model will be Random forests can
achieve better prediction performance when dealing with
high-dimensional features. In this section, we use random
forests with default hyperparameters on the training set
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pdb1075 for 10-fold cross validation of different feature
fusion schemes and find out the feature fusion method that
can maximize the area of AUC. As shown in Figure 2, the
prediction performance of RF was the best after fusing the
three features, and its AUC area reached 0.963. In addition, we
also tested the predictive performance of SVM and KNN
under different feature fusion schemes, and their optimal
feature fusion schemes had AUC areas of 0.828 and 0.790,
respectively. The ROC curve details of SVM and KNN are
given in Figure 1 and Figure 2 of supplementary material
respectively.

Performance After Feature Selection
For the 930-dimensional features of the initial vector set, we
ranked all features from high to low based on MRMD scores.
After obtaining the final feature ranking results, we took the first
feature as the feature subset and utilised random forest to check
the performance of the selected feature subset in 10-fold cross
validation on PDB1075. Subsequently, we added one feature in
the feature subset, one at a time, according to the feature sorting
order. Then we repeated the above process until all the features in
the initial feature set were included in the feature subset. Finally,
we determined the best predictive accuracy and the optimal
feature subset. The results are shown in Figure 3. The feature
subset achieves the best accuracy when it contains 267-
dimensional features, so the optimal feature subset we used for
training models is 267-dimension. The optimal feature subset
contains 98-dimensional AADP-PSSM features, 142-dimensional
PSSM-COMPOSITION features, and 27-dimensional RPSSM
features. The details of the optimal feature subset are given in
the supplementary materials. From the distribution of the
optimal feature subset, it can be found that the distribution
difference of amino acid pairs is the key to identify DBP from
massive proteins.

Performance of Different Classification Algorithms
To determine the prediction model with the best performance, we
put the best feature subset into four powerful classification
algorithms with default hyperparameters, KNN, SVM, RF and
naïve Bayes, and we used 10-fold cross validation to compare
performance. Experimental results show that the random forest
method demonstrates the best classification performance
(Figure 4).

We use ACC, Sn, SP, MCC and AUC to evaluate the
performance. As shown in Figure 4, the five indicators of
KNN are 78.6, 76.8, 80.1%, 0.571 and 0.785, respectively. The
ACC, Sn, SP, MCC and AUC of SVM were 81.6, 88.2, 75.4%,
0.641 and 0.812, respectively. The ACC, Sn, SP, MCC and AUC of

FIGURE 2 | ROC curves with different combinations of features on
PDB1075.

FIGURE 3 | Prediction accuracy curve of feature subset.
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Naïve Bayes were 73.3, 71.8, 74.7%, 0.465 and 0.789, respectively.
Finally, the performance of RF in the above evaluation indexes are
86.9, 89.6, 84.5%, 0.741 and 0.941, respectively. The experimental
results show that RF can yield better prediction results, which
proves that RF is the best classification algorithm for Establishing
DNA-binding protein prediction model.

Performance of DifferentMethods on Test Set PDB186
To evaluate the generalization ability of the prediction model
proposed in this paper, we tested the model independently using
dataset PDB186. Table 2 compares the performance of this study
to other prediction methods on the dataset PDB186.

From Table 2, we can see that on the independent test set
PDB186, the ACC, SN, SP of KK-DBP reach 81.2, 97.8 and 64.5%,
respectively. In terms of prediction accuracy, KK-DBP is higher
than other existing methods. Compared with the current method
with the highest accuracy Local-DPP, KK-DBP was improved by
2.2 and 5.3% on the ACC and SN, respectively. SP is slightly lower

than Local-DPP and IDNA-Prot. The results of independent
verification experiments confirm that KK-DBP has reliable
predictive performance and can recognize DBP from a large
number of unknown proteins more accurately than existing DBP
recognition methods.

DISCUSSION AND CONCLUSION

A large number of studies have shown that the classification of
DNA-binding proteins has important theoretical and practical
significance for future genomics and proteomics research. This
paper proposes a DNA-binding protein predictionmethod, called
KK-DBP, that is based on multi-feature fusion and improves the
feature extraction method in DNA-binding protein prediction.
This method uses PSSM features that contain dipeptide
composition information for multi-feature fusion to construct
the initial feature set, and it obtains the optimal feature subset for
modeling by the maximum correlation maximum distance
method. Finally, PDB186 was used as an independent test to
further evaluate the effectiveness of our method. On the
independent test set, the prediction accuracy, sensitivity and
specificity of the model reached 81.2, 97.8 and 64.5%,
respectively. KK-DBP surpasses existing methods in prediction
accuracy, confirming that our method can identify DBP more
accurately than existing methods.

Although our method improves the prediction accuracy of
DNA-binding proteins, we still do not know how to construct a
better feature extraction algorithm based on sequence and
structure information. Therefore, our future research direction
will be towards finding more distinguishable feature extraction
algorithms (Ding et al., 2016; Zeng et al., 2020a; Yang et al., 2021b;

FIGURE 4 | Performance of training set PDB1075 on different classifiers.

TABLE 2 | Performance of this method and other existing methods on PDB186.

Methods ACC (%) MCC SN (%) SP (%)

IDNA-Prot|dis 72.0 0.445 79.5 64.5
DBPPred 76.9 0.538 79.6 74.2
IDNA-Prot 67.2 0.344 67.7 66.7
DNA-Prot 61.8 0.240 69.9 53.8
DNAbinder 60.8 0.216 57.0 64.5
iDNAPro-PseAAC 71.5 0.442 82.8 60.2
Kmer1+ACC 71.0 0.431 82.8 59.1
Local-DPP 79.0 0.625 92.5 65.6
SVM-based method 75.3 0.560 96.8 53.8
KK-DBP 81.2 0.661 97.8 64.5

Frontiers in Genetics | www.frontiersin.org November 2021 | Volume 12 | Article 8111586

Jia et al. DBP Identification Algorithm

111

https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


Wang et al., 2021d; Jin et al., 2021) and more suitable classifiers
(Ding et al., 2019; Ding et al., 2020a; Ding et al., 2020b; Yang et al.,
2021c; Guo et al., 2021) and prediction models (Liu et al., 2020b;
Zeng et al., 2020b; Chen et al., 2021; Xu et al., 2021c; Song et al., 2021;
Xiong et al., 2021) to better recognise DNA-binding proteins.
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Long non-coding RNAs (lncRNAs) are usually located in the nucleus and cytoplasm of
cells. The transcripts of lncRNAs are >200 nucleotides in length and do not encode
proteins. Compared with small RNAs, lncRNAs have longer sequences, more complex
spatial structures, andmore diverse and complex mechanisms involved in the regulation of
gene expression. LncRNAs are widely involved in the biological processes of cells, and in
the occurrence and development of many human diseases. Many studies have shown that
lncRNAs can induce the occurrence of diseases, and some lncRNAs undergo specific
changes in tumor cells. Research into the roles of lncRNAs has covered the diagnosis of,
for example, cardiovascular, cerebrovascular, and central nervous system diseases. The
bioinformatics of lncRNAs has gradually become a research hotspot and has led to the
discovery of a large number of lncRNAs and associated biological functions, and lncRNA
databases and recognition models have been developed. In this review, the research
progress of lncRNAs is discussed, and lncRNA-related databases and the mechanisms
and modes of action of lncRNAs are described. In addition, disease-related lncRNA
methods and the relationships between lncRNAs and human lung adenocarcinoma, rectal
cancer, colon cancer, heart disease, and diabetes are discussed. Finally, the significance
and existing problems of lncRNA research are considered.

Keywords: lncRNA, database, mechanism of action, recognition methods, disease

INTRODUCTION

A long transcription product was discovered and identified by Okazaki in 2002 (Okazaki et al., 2003)
when sequencing a mouse cDNA library. The transcript was called long non-coding RNA (lncRNA).
LncRNAs are >200 nucleotides long and similar in structure to messenger RNAs, but they lack an
open reading frame. Mainly distributed in the nucleus and cytoplasm of cells, lncRNAs are the
transcription products of RNA polymerase II. LncRNAs have been classified based on the lengths of
the coded transcripts as lncRNA, long-intergenic non-coding RNA, very long-intergenic non-coding
RNA, macroRNA, and promoter-associated long RNA. They have also been classified according to
the position of the lncRNA in the genome relative to the target protein-coding gene as 1) antisense
lncRNA, which is partially or completely complementary to the transcription product on the
opposite strand; 2) enhancer lncRNA, which is produced from the enhancer region of a protein
coding gene; 3) bidirectional lncRNA, which shares the same promoter with protein-coding genes,
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but the transcription direction is opposite; 4) intronic lncRNA,
which is produced by introns of genes; and 5) large intergenic
non-coding RNA, which is independently transcribed from
sequences located between protein-coding genes (Figure 1).

Because non-coding RNAs (ncRNAs) do not encode proteins,
they were thought to have no biological function and were
regarded as “transcriptional noise” for a long time after they
were discovered. Although, research on short ncRNAs, including
microRNAs, short interfering RNAs, small nucleolar RNAs, and
Piwi-interacting RNAs, has flourished, lncRNAs have been
neglected because of their long sequences and limitations of
the research methods (Liu, 2021).

Initially, lncRNAs were considered to be the noise of genome
transcription and a by-product of polymerase II transcription.
However, after lncRNAs were found to have conserved secondary
structures, spliced forms, and subcellular localizations, it was
realized that they may be functional. Indeed, it is now recognized
that lncRNAs have functions that are essential for many
biological processes, including epigenetic regulation, cell signal
transduction, immune response, and cell proliferation and
differentiation (Heo et al., 2013; Zhao et al., 2021; Yang et al.,
2020; Hu et al., 2021; Hu et al., 20216222), and the abnormal
expression of lncRNAs can result in a variety of complex diseases.
Moreover, some lncRNAs can act as precursors of some
functional short ncRNAs to indirectly participate in the
regulation of target genes. LncRNAs regulate gene expression
to exert these functions, including cis-regulation and trans-
regulation.

According to data from the Encyclopedia of DNA Elements
(ENCODE) project (2015), approximately 15,941 lncRNA loci
have been identified in the human genome (Jalali et al., 2016). The
discovery and research of a large number of lncRNAs have greatly
promoted the development of RNA biology research. Analysis of
these lncRNAs showed that they had important regulatory
functions at the epigenetic, transcription, and post-
transcriptional levels (Mercer et al., 2009; Hu et al., 2020; Shen
et al., 2021). Until now, research on the relationship between
lncRNA and disease has been focused mainly on tumors;

however, a small number of differentially expressed lncRNAs
associated with obesity, diabetes, hypertension, and other diseases
have been found, but the mechanism of action is still unclear.
LncRNA research suffers from problems such as few available
resources, relatively independent research results, and lack of
systematicness (Losko et al., 2016). In-depth analysis of disease-
related lncRNAs will help in finding disease biomarkers and
provide insights into the diagnosis, treatment, prognosis, and
prevention of diseases (Tang et al., 2018; Sun et al., 2021). In this
review, bioinformatics approaches for the study of lncRNAs and
diseases are summarized, including mainly databases related to
lncRNAs, the mechanisms and modes of lncRNA action,
methods for identifying disease-related lncRNAs, and the
relationships between lncRNAs and human metabolic
syndrome, cancer, leukemia, heart disease, and
neurodegenerative diseases.

DATABASES RELATED TO LNCRNAS

A large number of biological datasets related to lncRNA have
been generated and many lncRNA-oriented databases have been
built to store, manage, and integrate comprehensive lncRNA
functional information, lncRNA structure and genome
mutations, lncRNA expression analysis data, and
lncRNA–disease associations. Here, the commonly used
lncRNA databases are briefly described.

1) ChIPBase (Zhou et al., 2016) provides comprehensive
identification and annotation of lncRNA expression profiles
and transcriptional regulation data. The lncRNA expression
profiles obtained by RNA sequencing and transcription factor
binding sites identified by ChIP-Seq (chromatin
immunoprecipitation followed by sequencing) are included
in this database (http://rna.sysu.edu.cn/chipbase3/index.php).

2) lncRNAdb (Quek et al., 2015) contains comprehensive
annotations of lncRNAs with biological functions,
including gene expression, functional evidence, disease-

FIGURE 1 | Cellular localization and classification of long non-coding RNAs (lncRNA). (A) Cellular distribution of lncRNAs. (B) Positions of lncRNAs in the genome
relative to the target protein-coding gene.
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related lncRNAs, pathogen-induced or derived lncRNAs, and
sequence information (http://www.lncrnadb.org/).

3) NRED (Dinger et al., 2009) provides the expression
information of thousands of lncRNAs of humans and mice
from microarray and in situ hybridization data, as well as
auxiliary information such as secondary structure evidence,
antisense relationships, evolutionary conservation, and
genome-related text links (http://jsm-research.imb.uq.edu.
au/nred/).

4) NONCODE (Fang et al., 2018) provides comprehensive
lncRNA annotations, including expression information and
functions predicted by the ncFANs software. NONCODE is
widely used for ncRNA research (http://www.noncode.org).

5) LncRNADisease (Bao et al., 2019) contains annotations of
disease-related lncRNAs reported in the literature. For the
lncRNAs, basic information such as name, chromosome
location, species, transcript number, and sequence is
provided. For the related diseases, name, literature, and
other information are given (http://www.rnanut.net/
lncrnadisease/).

6) lncRNASNP2 (Miao et al., 2017) provides resources of single
nucleotide polymorphisms (SNPs) in lncRNAs of humans and
mice. The database has the following browse and search
functions: the influence of SNPs in lncRNAs on their own
genes, the binding of microRNAs (miRNAs) in lncRNAs and
the influence of SNPs on binding, the mutation and
expression of lncRNAs in The Cancer Genome Atlas,
variations in lncRNAs in the COSMIC database (large
databases of cancer-related somatic mutation sites), and the
effect of mutations on lncRNAs (http://bioinfo.life.hust.edu.
cn/lncRNASNP#!/).

7) StarBase v2.0 (Li et al., 2013) can search for lncRNA based on
miRNA-lncRNA interaction, as well as competitive
endogenous RNA regulatory molecules and binding
proteins related to the specified lncRNAs (http://starbase.
sysu.edu.cn/index.php).

MECHANISMS ANDMODES OF ACTIONOF
LNCRNAS HEADINGS

Compared with small RNAs, lncRNAs are longer, have more
complex spatial structure, and more diverse and complex
mechanisms for expression regulation. LncRNAs are involved
in the regulation of development, differentiation, and
metabolism. LncRNAs can regulate gene expression at the
epigenetic (Mercer and Mattick, 2013), transcriptional
(Bonasio and Shiekhattar, 2014), and post-transcriptional
(Yoon et al., 2013) levels. They also participate in important
regulatory processes such as X chromosome silencing, genome
imprinting, chromatin modification, transcription activation and
inhibition, and nuclear transport. LncRNAs are also closely
related with the occurrence, development, and prevention of
human diseases. The mechanisms of lncRNA action
discovered so far include X chromosome inactivation and
genome imprinting, chromatin modification, cell cycle

regulation and apoptosis, mRNA decay, and protein
translation regulation (Zou et al., 2019).

The modes of lncRNA action are signal, decoy, guide, and
scaffold (Wang and Chang, 2011) as shown in Figure 2. The
molecular functions of lncRNAs can be explained based on
the mode of action. In the signal mode, lncRNAs participate
in gene imprinting processes. For example, the lncRNAs
Kcnq1ot1 and Xist both function in the signal mode. The
mode of action of Kcnq1ot1 and Xist are similar. Kcnq1ot1
binds to the chromosome and inhibits the expression of
Kcnq1 by recruiting H3K9- and H3K27-specific histone
methyltransferases and polycomb repressive complex 2
(PRC2) complexes. This function is hereditary (Pandey
et al., 2008). In cells with two X chromosomes, one of the
X chromosomes is suppressed. Xist regulates the process by
which the X chromosome is selectively suppressed and
maintains this phenotype to the next generation (Plath
et al., 2002).

In the decoy mode, lncRNAs bind to proteins that have
transcriptional regulatory functions (e.g., transcription factors
and chromosome folding proteins), thereby regulating the
transcriptional activation and inhibition of related genes by
controlling the activity of molecules and signal pathways.
LncRNA Gas5 functions in the decoy mode. It binds to the
DNA-binding domain of the glucocorticoid receptor through the
RNA motif to inhibit the physiological function of the receptor
(Kino et al., 2010). LncRNA can also be used as a molecular decoy
for miRNAs and splicing factors, inhibiting their functions.
MiRNAs can promote the formation of protein complexes,
hence playing an important role in gene regulation. LncRNA
PTENP1 can inhibit human tumors. In the decoy mode of action,
PTENP1 binds to a group of miRNAs that act on the PTEN 3′
untranslated region, thereby regulating the expression of PTEN
(Poliseno et al., 2010).

In the guide mode, lncRNAs bind to proteins to guide the
protein complex to a specific DNA sequence, thereby
regulating the transcription of downstream molecules. The
guiding can be either cis or trans. One cis-regulatory
mechanism of lncRNA involves the inactive center of the X
chromosome, which controls the silence of the maternal X
chromosome. A trans-regulatory mechanism included
reducing the expression of tumor-associated lncRNA
HOTAIR and decreasing cell invasiveness.

In the scaffold mode, lncRNAs simultaneously bind
multiple related transcription factors to provide a
platform for interaction. For example, lncRNA HOTAIR
splices and bridges between the PRC2 and LSD1
complexes. The 5′ end of HOTAIR combines with the
PRC2 complex (acting on H3 and H27 to methylate them)
to promote gene expression (Rinn et al., 2007), whereas the 3′
end of HOTAIR combines with LSD1 (acting on H3K4 to
demethylate it) to antagonize gene expression activation
(Tsai et al., 2010), thereby inducing the interaction
between the PRC2 and LSD1 complexes.
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METHODS TO IDENTIFY
DISEASE-RELATED LNCRNAS

LncRNAs by far outnumber protein-coding genes, and, unlike
protein-coding genes, lncRNAs are usually not conserved in
sequence fragments and secondary structures, which make
lncRNA functional prediction difficult. Two main approaches
have been used to identify disease-related lncRNAs, methods
based on biological experiments and methods based on
computational predictions. The former generally produces
more reliable results, but the cost is high and the efficiency is
low; the latter uses multi-source biological data, such as disease-
related genomes, transcriptomes, and proteomes, to predict
disease-related lncRNAs. Bioinformatics methods have been
applied to predict disease-related lncRNAs based on the
analysis of multi-source biological data (Cao et al., 2021).

Identification of Disease-Related lncRNA by
Biological Experiments
Large-scale biological experimental research is often limited by
ethical factors that govern the collection of experimental samples.
However, the influence of interference factors on the
experimental results can often be largely controlled, and
therefore the results are likely to be objective and highly
reliable. Two examples of lncRNA research using biological
experiments are briefly described.

Nakagawa et al. (Nakagawa et al., 2014) found that
approximately 50% of lncRNA Neat1 knockout mice with
abnormal ovulation did not become pregnant, and this
outcome seemed to be random. Subsequently, corpus luteum
dysfunction and the accompanying low progesterone were found
to contribute most to the decline in fertility. Unlike the weak

expression of Neat1 observed in most adult tissues, in the infertile
Neat1 knockout mice, Neat1 was highly expressed in the corpus
luteum and the formation of the corpus luteum was severely
impaired. These results indicated that Neat1 may be closely
related to the formation of the corpus luteum and some forms
of infertility in humans.

Zhang et al. (Zhang et al., 2018) screened and identified a new
type of lncRNA, HOXC-AS3, using publicly available gastric
cancer expression profile data and integrated bioinformatics
analysis. They found that the expression of HOXC-AS3 was
highly up-regulated in gastric cancer tissues and was related to
clinicopathological factors such as histological grade, depth of
tumor invasion, lymph node metastasis, and poor prognosis.
They performed chromatin immunoprecipitation assays to
explore the mechanisms involved in the high HOXC-AS3
expression, and found that HOXC-AS3 was partially activated
by H3K4me3 and H3K27ac in cells and tissues. Overexpression
and knockout of HOXC-AS3 were used to detect cell apoptosis
and proliferation. They found that overexpression of HOXC-AS3
promoted the proliferation of cancer cells, and knockout of
HOXC-AS3 induced apoptosis of cancer cells. To further
explore the mechanism of action of HOXC-AS3, the
transcription factor YBX1 was selected, and three independent
RNA pull-down mass spectrometry analyses were performed.
The results showed that HOXC-AS3 interacted with YBX1. This
result combined with the results of the immunoprecipitation
assays, confirmed that YBX1 was involved in HOXC-AS3-
mediated gene transcription regulation in gastric cancer.

Clearly, traditional biological experiments are not only time-
consuming but also expensive. Computational models are less
time-consuming and less expensive, therefore they have attracted
more and more attention as a solution that can predict lncRNA
functions on a large scale. Models can be used to predict the

FIGURE 2 | Modes of action long non-coding RNAs. (A) Signal, (B) Decoy, (C) Guide, and (D) Scaffold.
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possible functions of lncRNAs according to related priorities, and
the predictions can be verified experimentally. This process
effectively promotes the functional recognition of lncRNAs.

Identification of Disease-Related LncRNAs
by Computational Prediction
Because biological experiments are costly and time-consuming,
the use of bioinformatics calculations to predict disease-related
lncRNAs has become the mainstream. In recent years, many
lncRNA-disease association prediction (LDAP)models have been
proposed, including models based on biological networks, models
that do not rely on known lncRNA–disease associations, and
models based on machine learning algorithms. The three types of
LDAP models are briefly described.

LDAP Models Based on Biological Networks
These models integrate biological networks such as the disease
similarity network, lncRNA similarity network, and
lncRNA–disease association network to construct an LDAP
model. In 2014, Sun et al. (Sun et al., 2014) proposed an
LDAP model based on the functionally similar network of
lncRNAs and random walks with restart. In 2015, Chen et al.
(Weng et al., 2015) developed the KATZLDA prediction model
by fusing lncRNA–disease association, lncRNA expression
profile, lncRNA functional similarity, and disease semantic
similarity data. In 2017, Yu et al. (Yu et al., 2017) developed
the BRWLDA prediction model based on double random walks,
and Gu et al. (Gu et al., 2017) developed a GRWLDA prediction
model based on global network random walk. In 2018, Ping et al.
(Ping et al., 2019) proposed a prediction model based on the
known lncRNA–disease association network to infer potential
lncRNA–disease associations. In 2019, Fan et al. (Fan et al., 2019)
proposed an LDAP model based on multiple heterogeneous
information networks and random walks with restart. Xie
et al. (Xie et al., 2019) proposed an SFK-LDA prediction
model based on similarity nuclear fusion. In 2020, Zhou et al.
(Zhou et al., 2021) built a heterogeneous network by integrating
various associations between diseases and miRNAs, lncRNAs,
proteins, and drugs, and trained a LDAP model with the rotating
forest classifier, and Zhang et al. (Zhang et al., 2020) proposed an
LDAP model based on network feature similarity and gradient
boosting. In 2021, Liu et al. (Liu et al., 2021) proposed an LDAP
model based on the weighted graph regularized collaborative
matrix factorization.

LDAP Models That do not Rely on Known
LncRNA–Disease Associations
In these models, the expression and regulatory relationship
between disease-related genes or miRNAs and lncRNAs are
used to predict potential lncRNA–disease associations. In
2014, Liu et al. (Zhao et al., 2015) developed the first LDAP
model that did not rely on known lncRNA–disease
associations by integrating lncRNA expression profiles,
gene expression profiles, and disease-related gene data. In
2015, Chen et al. (Chen, 2015) developed an LDAP model
HGLDA based on hypergeometric distribution by

integrating miRNA–disease associations and
ncRNA–miRNA interactions. In 2016, Cheng et al. (Cheng
et al., 2016) proposed the IntNetLncSim computing
framework, which inferred the functional similarity of
lncRNAs and predicted new lncRNA–disease associations
by modeling the information flow in an integrated network
that contained lncRNA transcription and post-transcription
information. In 2017, Wang et al. (Wang et al., 2017) mapped
lncRNAs to their functional genomic context based on the
theory of competing endogenous RNAs to predict new
lncRNA–disease associations. Fu et al. (Fu et al., 2018)
proposed a matrix decomposition-based LDAP model
MFLDA, which decomposed the data matrix of
heterogeneous data sources into low-rank matrices
through matrix decomposition to explore and use their
internal and shared structure. In 2018, Ding et al. (Ding
et al., 2018) proposed an LDAP model based on a
lncRNA–disease–gene network that integrated
gene–disease and lncRNA–disease associations. In 2020,
Xiao et al. (Xiao et al., 2020) proposed an LDAP model
that used both direct and indirect features of
lncRNA–disease relationship pairs, and Tang et al.
proposed a hierarchical extended LDAP model based on a
Boolean matrix (Tang et al., 2020).

LDAP Models Based on Machine Learning Algorithms
These models integrate biological data and use various
machine learning algorithms to predict disease-related
lncRNAs. In 2013, Chen et al. (Chen and Yan, 2013)
developed a semi-supervised learning framework
LRLSLDA based on Laplace regularization least squares by
integrating lncRNA expression profiles and known
lncRNA–disease associations. In 2015, Liu et al. (Liu et al.,
2015) developed an LDAP model based on the naive Bayes
classifier to identify lncRNAs related to cancer by integrating
genome, regulatory factors, and transcriptome data. In 2017,
Lan et al. (Lan et al., 2017) proposed an LDAP model based
on support vector machines. In 2018, Yu et al. (Yu et al.,
2018) proposed the NBCLDA model based on the naive
Bayes classifier. In 2019, Guo et al. (Guo et al., 2019)
proposed two LDAP models, one based on rotating forest
and neural network and another based on a random forest
classifier. Sheng et al. (Sheng et al., 2021) proposed a series of
LDAP models based on convolutional neural networks,
including CNNLDA, as well as an attention multi-level
representation coding model based on convolution and
variance autoencoders. In 2020, Zeng et al. (Zeng et al.,
2020) proposed SDLDA, an LDAP model based on
singular value decomposition and deep learning. Fan et al.
(Fan et al., 2020) proposed IDSSIM, a calculation model of
lncRNA functional similarity based on improved disease
semantic similarity. Tan et al. (Tan et al., 2020) proposed
a multi-view consensus graph learning model to predict
lncRNA–disease association. Wei et al. (Wei et al., 2021)
proposed a convolutional neural network model fused with
multiple biological characteristics to predict lncRNA–disease
association.
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LNCRNAS AND RELATED DISEASES

LncRNAs induce the occurrence of disease by regulating disease-
related protein coding genes, thus leading to improper expression
of lncRNAs or altering the chromatin that contain disease-related
gene polymorphisms and non-coding regions. Therefore, the
expression of lncRNAs is important in the diagnosis,
occurrence, development, and treatment of diseases. In recent
years, the associations of lncRNAs with cancer, leukemia,
cardiovascular and cerebrovascular diseases, diabetes, and
other diseases have been a focus of study. Future clinical
applications of disease-related lncRNAs are very likely.

The roles of lncRNAs in cancer: Li et al. (Li et al., 2016) found
that up-regulation of lncRNAMALAT1 was related to tumor size
and lymph node metastasis, and to the shorter overall survival of
patients with lung adenocarcinoma. In vivo and in vitro
experiments showed that MALAT1 promoted
epithelial–mesenchymal transition and metastasis of lung
adenocarcinoma cells. Numerous lncRNAs have been found to
encode small proteins or micropeptides, some of which play roles
in diseases. Meng et al. (Meng et al., 2020) found that lncRNA
LOC90024 encodes a splicing regulatory small protein that
induces the formation of Sp4 transcription factor splice
variants, thereby promoting the occurrence and development
of advanced rectal cancer tumors. Zhu et al. (Zhu et al., 2020)
found that lncRNA LINC00266-1 encodes an RNA-binding
regulatory peptide that, when highly expressed in patients with
colon cancer, leads to a poor prognosis. The oncogenic peptide
encoded by LINC00266-1 exerts its carcinogenic function by
enhancing the recognition of N6-methyladenosine of RNA.

The roles of lncRNAs in leukemia: Garzon et al. (Garzon et al.,
2014) developed a prognostic scoring system to determine if
lncRNAs were associated with cytogenetically normal acute
myeloid leukemia (CN-AML) clinical features and recurrent
mutations in patients older than 60 years. First, 48 lncRNAs
most relevant to prognosis were identified. Then, patients with
CN-AML were divided into two groups, those with good
prognostic scores and those with poor prognostic scores, based
on the 48 lncRNAs. The prognostic scores were verified in an
independent matched group of patients with CN-AML who
received the same treatment. The comparative analysis showed
that the lncRNA expression profile was closely related to the
recurrent mutation and expression of AML, implying that some
of 48 lncRNAs may have a functional role in the development of
leukemia. These lncRNAs are good candidates as biomarkers for
the prognosis of AML.

The roles of lncRNAs in heart disease: Han et al. (Han et al.,
2014) developed a new lncRNA–chromatin mechanism to treat
heart failure. A lncRNA transcript Mhrt779 from myosin heavy
chain 7 loci was found to be specifically expressed in
cardiomyocytes and to gradually increase with the
development of embryos, especially after birth. Furthermore,
the Brg1–Hdac–Parp chromatin inhibitory complex was
activated by pathological stress and lncRNA Mhrt
transcription was inhibited in the heart, thereby protecting the
heart from hypertrophy and failure. These results show that there
is a conserved lncRNA mechanism in human cardiomyopathy,

and also establish a new paradigm for lncRNA–chromatin
interactions.

The roles of lncRNAs in neurodegenerative diseases:
Alzheimer’s disease is a progressively developing
neurodegenerative disease with insidious onset that is believed
to be caused by a large amount of amyloid β-protein (Aβ)
expression, which leads to pathological changes in patients. Aβ
is hydrolyzed from β-amyloid precursor protein, and excessive
Aβ deposition can cause degenerative diseases related to neurons.
BACE1 is a key enzyme in the production of Aβ. Faghihi et al.
(Faghihi and Wahlestedt, 2009) found that lncRNA BACE1-AS
(antisense transcript of BACE1) increased the stability of BACE1
mRNA through a mechanism that involved the formation of
RNA duplexes, and this in turn facilitated the accumulation of Aβ
in patients with Alzheimer’s disease.

The roles of lncRNAs in diabetes: LncRNAs in human
pancreatic β-cells exhibit dynamic regulation during
differentiation or when glucose concentrations change.
Akerman et al. (Akerman et al., 2017) studied the functions of
β-cell-specific lncRNAs and transcription factors using transcript
knockdown and co-expression network analysis strategies. They
found that lncRNAs and transcription factors acted
synergistically to regulate the specific transcription network of
β-cells. LncRNA PLUTO affected local three-dimensional
chromatin structure and transcription of PDX1, which
encodes a key β-cell transcription factor. PLUTO and PDX1
were both down-regulated in islets from donors with type 2
diabetes or impaired glucose tolerance. These results indicate the
role of lncRNAs in β-cell gene regulation and diabetes.

CHALLENGES AND RESEARCH
PROSPECTS

Compared with protein-coding sequences and small RNA
molecules, lncRNA-related research is insufficient and there
are many problems still to be solved. The major ones are
listed here.

1) No standardized naming of lncRNAs. Until now, lncRNAs
have been named according to their functions, structural
characteristics, or modes of action. Therefore, it is difficult
to understand their roles and functions from the name.

2) Unannotated and unbalanced lncRNA data. Compared
with other ncRNA databases, the annotation information
in lncRNA databases is insufficient, and disease-related
lncRNAs that are included in multi-source data have
problems such as serious imbalances of information.

3) Lack of lncRNA-specific technologies. Because of the
diverse types and functions of lncRNAs, more effective
methods are needed for systematically studying the
biological functions of lncRNAs and for identifying
disease-related lncRNAs. The process of combining
multi-data to predict disease-related lncRNAs has
problems, such as high-dimensional feature space, high
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noise, and redundant feature interference, that seriously
affect the accuracy of the predictions.

4) Research fields need to be expanded. Current research on
lncRNAs has focused mainly on tumors, nerves, and
development. However, the genetic characteristics of
cancer-related lncRNAs and the mechanism of action of
complex diseases are still unclear. More areas of disease
research related to lncRNAs need to be developed.

Despite these problems, lncRNA research has continuously
advanced the understanding of lncRNAs. lncRNAs not only exert
their biological functions in a variety of mechanisms in different
organisms, but their dysfunction can lead to the occurrence and
development of many diseases. Undoubtedly, new technologies
and new methods will be developed for use in lncRNA
bioinformatics research. Such developments will help to
further analyze the functions and regulation mechanisms of
lncRNAs, as well as the pathological mechanisms associate
with the development of diseases.

DISCUSSION

LncRNAs are closely related to cell cycle and differentiation,
aging and human diseases. Therefore, the research on their
functions and mechanisms is also constantly deepening. This
review summarized the following key points:1) according to the
four modes of action of lncRNA, the corresponding molecular
functions were described respectively. 2) The identification
methods of lncRNA related to diseases were summarized into
two parts: lncRNA identification research based on biological
experiments and computational prediction. 3) The relationship
between lncRNA and various human diseases was expounded.

Although the research technology of lncRNA is constantly
developing, there are still a number of limitations:1) The low
abundance of lncRNAs and lack of annotation information lead
to inaccurate positioning. 2) The data set of lncRNAs in the
database is not perfect. 3) The types of diseases associated with
lncRNA are limited. Therefore, in the future, researchers need to
continue to dig out the functional information of unknown
lncRNAs and develop new lncRNA recognition models, which
will help to enhance the scientific understanding of more human
diseases.
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Unexplained genetic variation that causes complex diseases is often induced by gene-
gene interactions (GGIs). Gene-based methods are one of the current statistical
methodologies for discovering GGIs in case-control genome-wide association studies
that are not only powerful statistically, but also interpretable biologically. However, most
approaches include assumptions about the form of GGIs, which results in poor statistical
performance. As a result, we propose gene-based testing based on the maximal
neighborhood coefficient (MNC) called gene-based gene-gene interaction through a
maximal neighborhood coefficient (GBMNC). MNC is a metric for capturing a wide
range of relationships between two random vectors with arbitrary, but not necessarily
equal, dimensions. We established a statistic that leverages the difference in MNC in case
and in control samples as an indication of the existence of GGIs, based on the assumption
that the joint distribution of two genes in cases and controls should not be substantially
different if there is no interaction between them. We then used a permutation-based
statistical test to evaluate this statistic and calculate a statistical p-value to represent the
significance of the interaction. Experimental results using both simulation and real data
showed that our approach outperformed earlier methods for detecting GGIs.

Keywords: genome-wide association studies, qualitative traits, gene-gene interactions, maximal neighborhood
coefficient, gene-based testing

1 INTRODUCTION

Genome-wide association studies (GWAS) has been used to investigate the associations between
genetic variants and complex disorders with great success. Researchers have discovered more than
71,000 unique single nucleotide polymorphisms (SNPs) associated to diseases throughout the last
decade (Hindorff et al., 2009; Zhang et al., 2016; Zeng et al., 2017; Guo et al., 2018; Buniello et al.,
2019; Loos, 2020; Li et al., 2021). Traditional GWAS, on the other hand, concentrated on the
independent, additive, and cumulative effects of individual SNPs on specific diseases. The majority of
associated SNPs are common genetic variants with small effects that only explain a portion of
complex disease heritability. Many genes, environmental variables, and interactions play a crucial
role in the underlying genetic architecture of complex diseases (Cordell, 2009; Moore et al., 2010;
Jiang et al., 2018; Liu et al., 2018; Liu et al., 2019a; Zhang et al., 2019; Chen et al., 2020; Luo et al., 2020;
Liu et al., 2021; Shao et al., 2021; Su et al., 2021;Wang et al., 2021). As a result, genetic interactions are
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thought to enlighten studies into “missing heritability” (Manolio
et al., 2009; Fang et al., 2019; Young, 2019; Tang et al., 2020; Song
et al., 2021) and give important knowledge for constructing
topologies for complex disease-related pathway.

Genetic interaction was originally explored at the SNP level,
named epistasis. Methods (Li et al., 2015a; Ritchie and Van Steen,
2018; Lyu et al., 2020) can be classified into three categories based on
their search strategy: exhaustive methods, searching methods, and
machine learning-basedmethods, such as statistics based on entropy
(Dong et al., 2008) and odds-ratios (Emily, 2012); MDR (Ritchie
et al., 2003), BEAM (Zhang and Liu, 2007), BOOST (Wan et al.,
2010), Epi-GTBN (Guo et al., 2019), GenEpi (Chang et al., 2020),
and some accelerate methods (Nobre et al., 2021). For example, a
logistic regression analysis revealed a significant interaction between
the genes ERAP1 (rs27524) and HLA-C (rs10484554) in psoriasis
(p � 6.95 × 10−6), indicating that ERAP1 SNP was effective only
in individuals who had at least one copy of the HLA-C SNP risk
allele (Képíró et al., 2021). The statistical weakness of high-order
or pairwise tests, which come from enormous multiple testing
corrections over all pairs of SNPs, is one of the general problems
of these marker-based approaches. Instead, we explored the
interaction of two genes in a single gene-based interaction
detection by treating SNPs inside a gene as a group.

The effectiveness of gene-based methods in GWAS marginal
association studies should be extended to the study of gene-gene
interaction (GGIs) (Emily, 2018; Emily et al., 2020). This strategy
offers a number of possible benefits. For starters, it often has
substantially fewer genes than SNPs, which dramatically
decreases the number of pairwise testing. To discover GGIs in
pair of 20,000 genes, for example, ∼ 2 × 108 tests are necessary.
However, for three million SNPs in a marker-based interaction,
more than 5 × 1012 tests are required. Second, gene-based
methods are more powerful statistically because a gene carries
more information than individual SNP and genes interact in a
variety of ways (Liu et al., 2010; Li et al., 2011; Jiang et al., 2017; Su
et al., 2019; Hu et al., 2020; Hu et al., 2021a; Hu et al., 2021b; Guo
et al., 2021). Furthermore, these methods can include biological
prior knowledge (e.g., information about known gene association
within protein-protein interactions (PPIs) or pathways) (Wei
et al., 2017a; Wei et al., 2017b; Wei et al., 2018; Liu et al., 2019b;
Wei et al., 2019; Zeng et al., 2019; Cai et al., 2020; Zhai et al., 2020;
Zhu et al., 2020). Finally, gene-based outcomes stand out for their
better interpretability and crucial biological consequences.

Many statistical and computational approaches for detecting
gene-based GGIs have been established. Peng et al.(Peng et al.,
2010) introduced the canonical correlation-based U statistic (CCU).
They calculated canonical correlation of two genes in both cases and
controls. They next used CCU to calculate the difference in
correlation, which revealed the presence of GGIs between the
two genes. However, this strategy only considered linear
correlation in the study. CCU was then expanded to Kernelized
CCU (KCCU) (Yuan et al., 2012; Larson et al., 2013), where the
kernel discovered a nonlinear relationship. Emily (Emily, 2016)
recently introduced AGGrGATOr, a method that combines
p-values of interaction tests at the marker-level to assess how a
pair of genes interacted, which was a strategy that Ma et al. (Ma
et al., 2013) previously utilized to discover interactions under

quantitative traits. GBIGM is a non-parametric entropy-based
approach suggested by Li et al. (Li et al., 2015b).

In this paper, we propose a new approach called gene-based,
gene-gene interaction through a maximal neighborhood coefficient
(GBMNC), which uses the maximal neighborhood coefficient
(MNC) (Cheng et al., 2020) to identify gene-gene interaction of
complex diseases at the gene-level in case-control studies. MNC
measures a wide variety of dependence with no bias toward
relationship types between two random vectors of arbitrary, but
not necessarily equal, dimensions; this is superior to Pearson’s
correlation, which only consider linear correlations. We
introduced a statistic that uses the difference of MIC in cases
and controls as an indicator of occurrence of GGIs, bases on the
assumption that the joint distribution of two genes should not be
significantly different in case and in control samples if there is no
interaction between them (i.e. independent) under complex diseases.
In simulation studies, our method exhibited an outstanding
performance in recognizing the underlying GGIs at the gene
level under a variety of conditions. Its application using real data
sets showed accurate identification of GGIs.

2 MATERIALS AND METHODS

The statistical procedure for GBMNC is described in depth in this
section. We give different parameter settings for simulation studies
to evaluate the power to identify GGIs and the ability to control
type-I error. Then, we adopted a real-world Rheumatoid Arthritis
data set from theWTCCC (WellcomeTrust case Control Consortium)
database to evaluate out method’s effectiveness in a real situation.

2.1 GBMNC
2.1.1 Preliminaries and Notation
Here, we take genes, a couple of SNPs, as the basic unit. Suppose
that we have n random samples:

(G1,i, G2,i) ∈ Rp+q, i � 1, 2, . . . , n (1)

where

G1,i � (g1,i,1, g1,i,2, . . . , g1,i,p), G2,i � (g2,i,1, g2,i,2, . . . , g2,i,q), i

� 1, 2, . . . , n

and G1 and G2 represent two genes each with p and q SNPs,
independently. In the case-control studies, yi ∈ {0, 1} is a
categorical label where 0 is a control subject and one is a case
subject. gk,i,j ∈ {0, 1, 2} represents the copy number of the minor
alleles of SNP j in gene k for sample i.

In this work, to investigate whether there is a statistical
interaction between two genes in a qualitative phenotype, we
designed a statistic based on the maximal neighborhood
coefficient to characterize the GGI intensity. We applied a
permutation strategy to estimate the distribution of the statistic.
Our approach was based on the intuition that, if there was no
interaction between two genes, then, if they were independent of
the case set, they should be independent of the control set; if they
were dependent on the case set, they should be dependent on the
control set as well, and the “strength” of such dependence should
be the same for the case and control sets. Pearson’s correlation
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coefficient measures the degree of dependence between two
random variables. However, it can only measure linear
dependency and not nonlinear dependency, and it is not very
convenient for random variables that take a value inRn. Therefore,
we proposed to measure dependency between random variables by
the maximal neighborhood coefficient (MNC) instead.

2.1.2 Maximal Neighborhood Coefficient
MNC is an associationmeasure that decipher the potential complex
associations from neighborhood insight. It assumes that if a
relationship exists between two variables, the samples of each
variable will appear to have a similar neighborhood tendency to
approximate that relationship, and MNC can find those common
neighborhood structures by exploring the possible neighborhoods
of each variable. By introducing a k-NN granule to reconstruct
samples, and a novel neighborhood mutual information (NMI) to
measure the certainty information of one variable from another
under a fixed (kx, ky) neighborhood combination,MNC enables us
to detect more complex associations.

Let S � {(x1, y1), . . . , (xn, yn)} ∈ R2 be a finite set that is
sampled from a joint distribution (X,Y), and SX �
{x1, . . . , xn} and SY � {y1, . . . , yn} represents samples from
marginal variables X and Y, respectively. Given a designated
neighborhood combination (kx, ky) (a pairwise positive integer),
Nkx

X (x) � {xj1, . . . , xjkx} designed as the kx-NN granule of x,
where the subscript sequence j1 < j2 < . . . < jkx is obtained by
d(x, xji) � ‖x − xji‖2. All samples of kx-NN granules form a
cover of SX, that is ∪ n

i�1N
kx
X (xi) � USX. At the same time,

there exists a cover for SY, ∪ n
i�1N

ky
Y (yi) � SY. The cover of

samples S under (kx, ky) is recorded as Ckx,ky. Let S|Ckx,ky

represents the distribution of S on the cover Ckx,ky, and different
neighborhood combinations produce different distributions.

MNC is defined based on the neighborhood characteristic
matrix (NM) of a sample set S. Given a finite data set S and a
neighborhood combination (kx, ky), the element of NM of S is:

NM(S)kx,ky �
NMI(S

∣∣∣∣∣
Ckx,ky

)

log n
max(kx,ky)

(2)

NMI(S|Ckx,ky
) denotes the neighborhood mutual information of

distribution S|Ckx,ky
. The neighborhood mutual information of

(xi, yi) is defined as follow:

NMICkx,ky
(xi, yi) � −log n

∣∣∣∣∣N
kx
X (xi) ∩ N

ky
Y (yi)

∣∣∣∣∣
kxky

(3)

Based on the equation above, the neighborhood mutual
information of (X,Y) is defined as:

NMICkx,ky
(X,Y) � −1

n
∑
n

i�1
log

n
∣∣∣∣∣N

kx
X (xi) ∩ N

ky
Y (yi)

∣∣∣∣∣
kxky

(4)

With the definition of NM(S) in Eq. 2, NMC is defined as:

NMC(S) � max
1≤kxky ≤NB(n)

{NM(S)kx,ky} (5)

where NB(n) is the search range, and 1≤ kxky ≤O(nα) for
some 0< α< 1. It also naturally extends to the case of two
random vectors with arbitrary, but not necessarily equal, dimensions.

MNC Satisfies the Following Properties

1) Symmertry: MNC(X,Y) � MNC(Y,X);
2) Comparability: MNC ∈ [0, 1], MNC � 0 denotes that two

variables are statistically independent; MNC � 1 implies a
strong association between two variables.

3) Generality:MNC captures comprehensive range relationships.
4) Equitability: MNC is robust to noisy relationships. It provides

similar scores to the equally noisy relationships of different types.

2.1.3 Illustration of the GBMNC Workflow
Assume there are n1 control samples and n2 case samples in a
case-control study for a pair of genes such that G1 has p SNPs
and G2 has q SNPs. LetMNCn(G1, G2) be the sample association
score between G1 and G2. First, we calculate theMNCC

n1
(G1, G2)

for control samples and MNCD
n2
(G1, G2) for case samples.

Second, we design a statistic ΔMNC � |MNCC
n1
(G1,G2)−MNCD

n2
(G1 ,G2)|

MNCD
n2
(G1 ,G2)

to measure the difference inMNC between cases and controls.
ΔMNC represents how different the two joint distributions
(GC

1 , G
C
2 ) and (GD

1 , G
D
2 ) are. The larger the ΔMNC, the higher

the probability that G1 and G2 interact.
To get a p-value, we needed to estimate the distribution of

ΔMNC0 under the null hypothesis. Here, we used a non-
parametric strategy based on permutation: we shuffled the label
y randomlym times, calculated ΔMNC using the same procedure
above, and used the resulting empirical distribution as an estimate
for the distribution of ΔMNC under the null hypothesis. Let the
result of thesem permutations be ΔMNC1, . . . ,ΔMNCm, then an
estimated p-value for the null hypothesis is

p �
∣∣∣∣{i: ΔMNCi ≥ΔMNC0}

∣∣∣∣
m

(6)

We summarized the process of GBMNC in the algorithm below
(Algorithm 1) and presented the overall workflow (Figure 1).

Algorithm 1. GBMNC

Data: Genotype G1, G2, Phenotype y, permutation times m
Result: significant p-value for interaction between G1, G2

1 Calculate MNCC
n1
(G1, G2) and MNCD

n2
(G1, G2) for both

(GC
1 , G

C
2 ) and (GD

1 , G
D
2 ) by Eq. 5;

2 Calculate the difference ΔMNC0 between MNCC
n1
(G1, G2)

and MNCD
n2
(G1, G2);

3 for i � 1 to m do
4 Randomly permute label y, and generate the new data set;
5 Repeat Steps 1 and 2;
6 end
7 Estimated p-value of ΔMNC0 is the number of ΔMNCi,
i � 1, . . . , m, which are larger than ΔMNC0, divided by m.

2.2 Simulation Study
To assess the performance of GBMNC to control type I error and
the power to detect GGIs, we compared GBMNC with KCCA
(Larson et al., 2013), GBIGM (Li et al., 2015b), and
AGGrEGATOr (Emily, 2016).

Frontiers in Genetics | www.frontiersin.org December 2021 | Volume 12 | Article 8012613

Guo et al. GBMNC for Gene-Gene Interaction

126

https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


2.2.1 Simulation With GAMETES
The goal of this simulation study was to evaluate the
performance of the GBMNC procedure to detect gene-gene
interaction. We set all simulated datasets to have 50 SNPs.
Among them, two SNPs were functional, and the remaining 48
SNPs were non-functional. The 50 SNPs formed five genes,
and each had 10 SNPs. The two functional SNPs were put into
the first and second genes. We chose the publicly available tool
GAMETES (Urbanowicz et al., 2012) to generate the simulated
genotype data. This tool was designed to generate pure and
strict epistasis models. Pure and strict epistasis models are the

most difficult disease-related patterns to identify. Such
associations can only be observed if all n-loci are included
in the disease model. This requirement makes these types of
models an attractive gold standard for simulation studies of
complex multi-locus effects.

Evaluation of Type-I error: The type-I error indicates the
ability of a method to reject the null hypothesis when it is true
(i.e., the false positive rate). We used GAMETES to generate the
custom disease model (Table 1) with one causal SNP pair. c
characterizes the baseline odds (i.e., the odds conditional on
genotype pair AABB). We ran the simulation 100 times with

FIGURE 1 | Illustration of the Gene-Based gene-gene interaction through a Maximal Neighborhood Coefficient (GBMNC) workflow for detection of gene-based,
gene-gene interaction.
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each sample size n ∈ {1k, 2k, 3k, 4k, 5k} and c � 1. The
significance level α was set to be 0.05.

Evaluation of power of the test: The power of a test indicates the
probability that the method rejects the null hypothesis correctly
when the alternative hypothesis is true. In this simulation study,
we generated 100 data sets for each parameter settings. The power
under each parameter setting was expressed by the frequency, and
the null hypothesis of the data set was rejected correctly at the
significance level of α � 0.05.

1) To assess the impact of heritability h, which measured the
intensity of correlation between genotype and phenotype,
we chose h ∈ {0.01, 0.025, 0.05, 0.1, 0.2} and two different
minor allele frequencies MAF ∈ {0.2, 0.4} with population
prevalence set to 0.2 and sample size set at 4,000. Under
each parameter combination, five models were generated so
that we had a total of 100 models that followed Hardy-
Weinberg proportions. For a specified genetic constrain
combination, the 10 models were sorted roughly by the
ascending customized odds ratio (COR) using GAMETES
and labeled M1 to M5. COR is a metric of detectability that
was calculated directly from the genetic model. The higher
it is, the easier it is to detect GGIs. GAMETES generated the
penetrance tables for these 100 models in the absence of the
main effect. One hundred replicated data sets were
generated from each model with balanced cases and
controls, which resulted in 5,000 data sets in total in this
scenario.

2) To evaluate the influence of sample size, we set heritability to
be 0.025, MAF ∈ {0.2,0.4} and prevalence to be 0.2 with a
sample size of 10,000. Then, 100 data sets were generated by
random sampling from this large dataset for each of the
sample sizes n ∈ {1k, 2k, 3k, 4k, 5k}. In this scenario, we had
1,000 datasets in total.

For GBMNC, KCCU, AGGrEGATOr, and GBIGM, if
the number of data sets with a significance level less than α
is m1, then the power can be calculated by the following
formula:

power � m1

100
(7)

GBIGM and AGGrEGATOr methods are nonparametric
methods, so no parameters need to be specific. We only set
the ratio of the trimmed jackknife to 0.05 (ω � 0.05)
for KCCU.

2.3 EXPERIMENTS USING RHEUMATOID
ARTHRITIS DATA

To evaluate GBMNC’s ability to process real GGIs in a qualitative
data set, we analyzed the susceptibility of a series of pairs of genes
in Rheumatoid Arthritis (RA). RA is a chronic autoimmune
disease that causes pannus development and cartilage and
bone loss in synovial joints. It leads to progressive bone
deterioration and interferes with bone repair. In this work, we
used the WTCCC (2007) data set, which includes genotype data
from the British population obtained by the Affymetrix
GeneGhip 500 k. Our dataset was pre-processed in the
following ways:

1) We used pathway hsa05323 from the KEGG pathway database
to validate the GGIs in the RA. The WTCCC data set’s
genotyping coordinates can be found in UCSC hg18/NCBI
Build36. This pathway contained 90genes. Many of the genes
belonged to the protein combinations MHCII and V-ATPase.
Because numerous GGIs happened on their own, we only
chose representative genes from each protein combination
and then remove the others. Finally, 48genes remained,
resulting in a total of C2

48 � 1128 pairs of genes to be analyzed.
2) We collected the detailed gene information from the NCBI

Build36 annotation file, and for each gene, we inserted a 10 kb
buffer region both downstream and upstream of the originally
defined gene location. For each gene, all SNPs within the area
were chosen.

3) According to the quality control of GWAS, samples that
included gender that did not match the chromosome X
heterozygote rates were removed. SNPs were also removed
if any of the following requirements were met: the missing rate
in the sample was ≥ 10%,MAFwas ≤ 0.05, or the frequency of
control violated Hardy-Weinberg equilibrium (p< 0.0001).
Finally, 385 SNPs remained in 4,966 samples, which included
2,993 control subjects and 1973 case subjects.

3 RESULTS AND DISCUSSION

The experimental environment for all the following results was a
workstation with an Intel Xeon CPU E5-2,620 v2 at 2.10GHz,
96 GB of DDR3, and python3.6.

3.1 Simulation Study
3.1.1 Evaluation of Type-I Error
For type-I error, we varied the sample size from 1,000 to 5,000.
Except for GBIGMwith n � 1, 000, all methods tested had a type-
I error comparable to a significance level α � 0.05 (Table 2),
which implied that these methods controlled for type-I error for
various sample sizes quite well.

3.1.2 Evaluation of the Power of GBMNC
Impact of heritability: To evaluate the statistical power of our
GBMNC and the other three methods, we used 10 heritability-
MAF combinations, with a population prevalence of 0.2, a sample
size of 4,000, and heritability that varied from 0.01 to 0.2

TABLE 1 | Table of odds for the no effect model without interaction between a pair
of SNPs.

AA Aa Aa

BB c c c

Bb c c c

bb c c c
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(Table 3). The bold in Table 3 shows the best-performed method
in each model under a given heritability-MAF combination.
Notice that a larger value indicates better performance. On

average, GBMNC was the best performing algorithm in this
comparison. It largely outperformed the other methods, but
not for all the data sets; it was inferior to AGGrEGATOr for
some data sets. However, its performance was remarkably
consistent, and it was the top performer for most data sets.
AGGrEGATOr achieved the same performance when MAF
was 0.2 and heritability was >0.05.

The power of all the methods was significantly affected by
heritability (i.e., the effect size of interaction) (Table 4). A larger
heritability led to better performance for all methods under a
specific MAF. When heritability varied from 0.01 to 0.025,
GBMNC almost doubled its power for a given sample size of
4,000 with MAF � 0.2. Other methods also show a steady
upward trend (Table 4). The power also depended on the
MAF of the interacting SNPs (e.g., for the cases of h � 0.01,
the power of GBMNC under model M1-M5 ranged between
0.13–0.89 for MAF � 0.2, but it ranged between 0.66–0.96 for
MAF � 0.4 (Table 3)). The average power was 0.564 for MAF
� 0.2, which was much lower than 0.818 for MAF � 0.4
(Table 4).

It is worth noting that under the same combination of
habitability and MAF, GBMNC was more stable under models
with different COR compared with AGGrEGATOr (Figure 2).
KCCU detected the interaction of some simulated disease
models in our study, and it had a similar performance
pattern with AGGrEGATOr. However, AGGrEGATOr was
much more powerful in most of the simulated scenarios.
GBIGM had little power to detecting pure gene-gene
interaction,. This result replicated Emily's (Emily, 2016)
result of the simulation.

Impact of sample size: The sample size of the data set had a
considerable effect on power. Let the sample size be
n ∈ {1k, 2k, 3k, 4k, 5k}, h � 0.025, and MAF ∈ {0.2, 0.4}
(Table 5). As the sample size increased, the power of all
methods increased almost monotonically under different MAF
settings. With all methods, a larger sample size corresponded to
better performance.

In conclusion, in simulated studies, our results showed that
GBMNC detected gene-gene interaction effectively, in which a

TABLE 2 | Type-I error for KCCU, GBIGM, AGGrEGATOr, and GBMNC when
varying the sample size from 1,000 to 5,000.

Methods Sample size

1,000 2, 000 3,000 4,000 5, 000

KCCU 0.02 0.02 0.01 0.05 0.07
GBIGM 0.13 0.06 0.07 0.07 0.07
AGGrEGATOr 0.05 0.06 0.07 0.04 0.02
GBMNC 0.02 0.05 0.07 0.05 0.05

TABLE 3 | The statistical power of simulation studies for GBMNC, AGGrEGATOr,
KCCU and GBIGM under 10 heritability-MAF combinations, with
h ∈ {0.01, 0.025, 0.05, 0.1,0.2} and MAF ∈ {0.2, 0.4}. Each heritability-MAF
combination has five models. Bold font indicates the method that performed best
under each model.

MAF Heritability Model M1 M2 M3 M4 M5

Method

0.2 0.01 GBMNC 0.13 0.40 0.68 0.72 0.89
AGGrEGATOr 0.12 0.12 0.89 0.89 1
KCCU 0.15 0.09 0.29 0.43 0.62
GBIGM 0.09 0.11 0.13 0.11 0.08

0.025 GBMNC 0.95 0.75 1 0.96 1
AGGrEGATOr 1 0.27 1 0.37 1
KCCU 0.58 0.09 0.74 0.24 0.8
GBIGM 0.08 0.07 0.11 0.13 0.2

0.05 GBMNC 0.68 0.83 0.94 1 1
AGGrEGATOr 0.09 0.59 0.89 1 1
KCCU 0.13 0.57 0.65 0.84 0.85
GBIGM 0.18 0.08 0.22 0.17 0.19

0.1 GBMNC 1 1 1 1 1
AGGrEGATOr 1 1 1 1 1
KCCU 0.81 0.93 0.9 0.86 0.91
GBIGM 0.15 0.14 0.23 0.16 0.16

0.2 GBMNC 1 1 1 1 1
AGGrEGATOr 1 1 1 1 1
KCCU 0.89 0.97 0.94 0.89 0.97
GBIGM 0.19 0.31 0.18 0.22 0.21

0.4 0.01 GBMNC 0.75 0.66 0.82 0.90 0.96
AGGrEGATOr 0.71 0.09 0.1 0.94 0.96
KCCU 0.34 0.05 0.08 0.77 0.29
GBIGM 0.09 0.08 0.1 0.11 0.07

0.025 GBMNC 1 0.73 0.85 0.93 0.80
AGGrEGATOr 0.99 0.56 0.12 0.91 0.26
KCCU 0.58 0.24 0.08 0.24 0.11
GBIGM 0.15 0.12 0.14 0.11 0.09

0.05 GBMNC 1 1 1 0.68 0.86
AGGrEGATOr 1 0.97 0.91 0.35 0.42
KCCU 0.86 0.9 0.95 0.41 0.37
GBIGM 0.11 0.12 0.09 0.08 0.10

0.1 GBMNC 1 1 1 0.63 1
AGGrEGATOr 0.98 1 0.96 0.27 1
KCCU 0.62 1 0.95 0.41 1
GBIGM 0.12 0.19 0.18 0.26 0.20

0.2 GBMNC 1 1 1 1 1
AGGrEGATOr 0.93 1 0.99 1 0.80
KCCU 0.28 1 0.83 1 0.76
GBIGM 0.19 0.25 0.31 0.13 0.26

TABLE 4 | Average power for GBMNC, AGGrEGATOr, KCCU, and GBIGM under
10 heritability-MAF combinations, with heritability
∈ {0.01, 0.025,0.05, 0.1, 0.2} and MAF. ∈ {0.2, 0.4}

MAF Method GBMNC AGGrE-GATOr KCCU GBIGM

Heritability

0.2 0.01 0.564 0.604 0.316 0.104
0.025 0.932 0.728 0.490 0.118
0.05 0.890 0.714 0.608 0.168
0.1 1 1 0.882 0.168
0.2 1 1 0.932 0.222

0.4 0.01 0.818 0.560 0.306 0.090
0.025 0.862 0.568 0.250 0.122
0.05 0.908 0.730 0.698 0.100
0.1 0.926 0.842 0.796 0.190
0.2 1 0.944 0.774 0.228
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pair of SNPs was a causal factor by the purely and strictly epistasis
model without main effect, which can only be observed if all 2-
loci are included in the disease model. Compared with other

methods, GBMNC identified a broad range of epistatic signals
accurately.

3.2 EXPERIMENTS USING RHEUMATOID
ARTHRITIS DATA

RA is a chronic autoimmune disease where HLA genes, TNF
family, and TRAF1 are important genetic risk factors in the
development. Each unique gene pair of the hsa05323 pathway
was evaluated in the RA study, which resulted in C2

48 � 1128
total pairs for 48 genes. With a significance level α � 0.01 and
multiple testing adjustment, for KCCU and GIGBM, we
obtained 159 and 134 significant GGIs, respectively. Among
them, 30 and 65 had p-values equal to 0; hence we were unable to
rank them in the order of significance. AGGrGETOr did not
show any significant results. Following Emily (Emily, 2016), and
after removing the multiple testing correction, AGGrGETOr
exhibited 17 significant GGIs, which we ranked by their

FIGURE 2 | Illustration of the distribution of power of each method in each heritability-MAF combination with h ∈ {0.01, 0.025, 0.05, 0.1, 0.2} and MAF ∈ {0.2, 0.4}.

TABLE 5 | The statistical power of simulation studies for GBMNC, AGGrEGATOr,
KCCU, and GBIGM under models with h � 0.025, MAF ∈ {0.2, 0.4}, and
sample sizes that varied from 1k to 5k.

MAF Method GBMNC AGGrEGATOr KCCU GBIGM

Sample size

0.2 1,000 0.67 0.15 0.11 0.2
2000 0.83 0.18 0.38 0.16
3,000 1 0.20 0.55 0.23
4,000 1 0.31 0.76 0.21
5,000 1 0.29 0.87 0.12

0.4 1,000 0.68 0.16 0.13 0
2000 0.97 0.20 0.11 0.04
3,000 1 0.35 0.2 0.11
4,000 1 0.54 0.37 0.11
5,000 1 0.65 0.58 0.05
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p-values. We chose the top 10 gene pairs obtained by GBMNC
and by AGGrGETOr to analyze, which comprised
approximately 1% of the total interactions (Table 6).

We found that some of our findings were supported by prior
research (Xiao et al., 2008; Klocke et al., 2016; Cen et al., 2019).
For instance, our method detected a significant interaction
between IL17 and TNFSF13B. Studies (Xiao et al., 2008)
show that both B cells and T cells formed aggregates in the
synovium of inflamed joints and mediated the pathogenesis of
RA, and B-cell-activating factor (BAFF, also named TNFSF13B,
BLys) played a vital role in B-cell survival and maturation. After
activation and expansion, CD4+ T cells developed into different
T helper cell subsets with different cytokine profiles and distinct
effector functions. In addition to Th1 and Th2 cells, Th17 cells
were a third T helper cell and produce IL-17. Th17 cells can
recruit and activate inflammatory cells and they have been
recognized as a primary cause of bone destruction and
inflammation in autoimmune diseases. BAFF promoted Th17
cell proliferation and expansion preferentially (Lai Kwan Lam
et al., 2008). IL-17 was a key cytokine for BAFF-mediated
proinflammatory effects during collagen-induced arthritis
pathogenesis. Only one pair of potential interactions between
CD80 and CTSL was captured by both methods within the top
10 GGIs. However, there is not yet direct evidence to show the
interaction between CD80 and CTSL.

4 CONCLUSION

The study of detecting GGIs is of great importance in
understanding the pathogenesis of complex human diseases. In
this paper, we proposed a gene-based GGI detection method
called GBMNC based on amaximal neighborhood coefficient and
a permutation strategy for case-control studies in GWAS. The
method not only benefited from the ability of a maximal
neighborhood coefficient, which considered the neighborhood
structure of each sample and captured a wide range of
associations, but also from the robustness of our permutation-
based hypothesis testing scheme.

We designed a statistic to capture the different intensities of
interaction between two genes in both cases and controls, then
transformed the problem of GGI detection into a form of
hypothesis testing; our null hypothesis was there was no
significant difference in the relationship between the two genes
in the disease data and the control data. This hypothesis did not
limit the form of interaction between genes, and it enhanced the
method’s ability to detect different types of interactions. We
demonstrated the effectiveness of our method through a
simulation study and retrospective analysis of rheumatoid
arthritis. Under a large range of settings, GBMNC
outperformed previous methods in the power to detect GGIs.
The statistical power of ourmethod increasedmonotonically with
the increase in the heritability and the MAF. The method was also
stable to sample size based on a test of false positive rates. MNC
did not restrict the dimension of two random vectors. Therefore,
it is possible to generalize the method for marker-based detection
of gene pairs that are identified as interactive. Investigating the
mechanism of gene-based interaction at the marker level might
point the way for further research. In summary, GBMNC is a
helpful addition to the current toolbox of statistical models to
elucidate GGIs in case-control studies.
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TABLE 6 | The calculated p-value for the 20 gene pairs using GBMNC and
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Gene1 Chr Gene2 Chr p-value

GBMNC AGGrEGATOr

TGF-β 2 1 CXCL8 4 0.0 1
CTLA4 2 GM-CSF 5 0.0 0.327
CD80 3 HLA-classII 6 0.0 0.37
GM-CSF 5 TRAP 19 0.0 0.01
TLR-4 9 FLT-1 13 0.0 0.069
IL-17 6 TNFSF13B 13 0.0 0.185
CXCL6 4 ICAM1 19 0.0 1
CD28 2 CXCL6 4 0.0 0.512
CTLA4 2 CXCL6 4 0.0 0.849
MMP-3 11 FLT-1 13 0.0 0.089
CD80 3 April 17 0.99 0.0007
CTSK 1 TNFSF13B 13 0.615 0.0008
JUN 1 IL-6 7 0.445 0.0019
CD80 3 CTSL 25 0.0 0.002
CXCL6 4 FLT-1 13 0.297 0.0021
CTLA4 2 FOS 37 0.727 0.0022
FLT-1 13 LFA-1 39 0.815 0.0033
CCL3 17 TRAP 19 0.564 0.0034
IL-18 11 TGF-β 3 14 0.693 0.004
IL-1 2 CXCL12 10 0.081 0.004
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Inspired by L1-norm minimization methods, such as basis pursuit, compressed sensing,
and Lasso feature selection, in recent years, sparse representation shows up as a novel
and potent data processing method and displays powerful superiority. Researchers have
not only extended the sparse representation of a signal to image presentation, but also
applied the sparsity of vectors to that of matrices. Moreover, sparse representation has
been applied to pattern recognition with good results. Because of its multiple advantages,
such as insensitivity to noise, strong robustness, less sensitivity to selected features, and
no “overfitting” phenomenon, the application of sparse representation in bioinformatics
should be studied further. This article reviews the development of sparse representation,
and explains its applications in bioinformatics, namely the use of low-rank representation
matrices to identify and study cancer molecules, low-rank sparse representations to
analyze and process gene expression profiles, and an introduction to related cancers and
gene expression profile database.

Keywords: sparse representation, gene expression profile, machine learning, low-rank representation, cancer

INTRODUCTION

In recent years, inspired by L1-norm minimization methods, such as basis pursuit (Donoho and
Huo, 2001), compressed sensing (Candes et al., 2004; Candes and Tao, 2005; Lustig et al., 2007), and
Lasso feature selection (Tibshirani, 1996), sparse representation shows up as a novel and potent data
processing method. Sparse representation has been applied to pattern recognition, for example, digit
recognition, speech recognition, and face recognition, and achieved good results. Hang and Wu
(2009) first introduced sparse representation to the analysis of tumor gene expression data. They
applied sparse representation to classify two multi-class tumor data, compared them with the
classification performance of a support vector machine (SVM), and concluded that sparse
representation was superior to SVM. Sparse representation was subsequently adopted for feature
selection and the classification of tumor gene expression data. Hang applied it to gene selection and
obtained sound classification results (Hang, 2009). Zheng et al. (Gan et al., 2013) proposed a sparse
representation classification method based on meta-samples. The method uses singular value
decomposition to extract the meta-samples of various training samples, and then uses the meta-
samples to linearly represent test samples and categorizes them based on representation coefficients.
The test samples compare the classification performance of this method with other classic methods
on multiple two-class and multi-class datasets. The experimental results demonstrated that this
method is superior to a classic SVM and other methods. These results testify the application potential
of sparse representation methods in tumor gene expression data analysis.
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The low-rank sparse representation model based on sparse
representation has also become a topic of great interest in fields
such as machine vision, machine learning, and image processing,
and has been applied successfully in video image processing,
target recognition, task learning, and recommendation systems
(Huang et al., 2017; Yu and Gao, 2019; Liu et al., 2020a; Yu et al.,
2020). In low-rank sparse representation theory, a noisy or
missing data matrix is decomposed into an accurate data
matrix and a singular/sparse data matrix, where the accurate
data matrix has low-rank characteristics, and the singular/sparse
data matrix contains data noise and singular data (Tang et al.,
2020). Wright et al. proposed a classification algorithm based on
sparse representation (Wright et al., 2009a) that successfully
applies sparse representation theory to face recognition.
Meanwhile, researchers have applied the sparsity of vectors to
that of matrices, and proposed low-rank matrix recovery theory
(Wright et al., 2009b; Emmanuel et al., 2009) andmatrix low-rank
representation (Liu et al., 2010). Low-rank representation has also
received extensive attention from researchers and has become
another important data representation method. It has
demonstrated great potential. Sparse representation has many
advantages, such as insensitivity to noise, strong robustness,
insensitivity to selected features, and no “overfitting”
phenomenon. Therefore, the application of sparse
representation in bioinformatics should be studied further.

In recent years, inspired by discriminant analysis, researchers
have combined discriminative ideas with sparse representation or
low-rank representation theory to extract discriminative
information from samples further to improve recognition
performance. Discriminant analysis is a multivariate statistical
analysis method that analyzes various characteristic values of
sample data, and then discriminates the category of the observed
sample. For example, Fisher Linear Discrimination (FLD). The
essence of the FLD is to project sample points into a low-
dimensional space so that, in the projected space, the distance
between sample points of the same category is small and the
distance between sample points of varying categories is large.

And because gene expression profile data research plays a vital
role in genetic engineering, protein design, new drug
development, etc., the use of machine learning methods
including deep learning to explore gene expression profile data
modeling methods has led to the biological fieldWide attention of
researchers. At the same time, the innovation of this article are; 1)
The low-rank representation (LRR) is modified, and a new type of
low-rank representation model is constructed by introducing
manifold regularization and class label restriction mechanism,
which is used for low-rank scoring of gene features and selecting
the optimal gene subset; 2) Introduce the idea of deep learning to
the low-rank sparse model, and propose a deep feature
representation method for gene expression profile data, and
realize the classification and clustering of gene data on this
basis; 3) Propose a feature selection mechanism for gene
expression profile data based on low-rank graphs; 4) Establish
a genetic feature correlation measurement criterion based on low-
rank representation coefficients, use this criterion to obtain a new
genetic feature selection method, and use Robust Principal
Component Analysis (RPCA) and Maximum Interval

Criterion (MMC) to build a two-step genetic feature selection
method.

DATABASE FOR THE APPLIED RESEARCH
OF SPARSE REPRESENTATION

As sparse representation and low-rank representation have been
widely applied to the analysis and research of cancer and gene
expression profiles in recent years, the databases of cancer and
gene expression profiles can be adopted, respectively, for the
research and application of sparse representation methods.
Tables 1, 2 show the specific database description.

APPLICATION OF SPARSE
REPRESENTATION IN BIOINFORMATICS

The development of bioinformatics is mainly divided into three
stages: gene stage, genomic stage, and post-genomic stage. The
first two stages mainly focus on the research of gene sequences
(Yu et al., 2019; Cai et al., 2020a; Fu et al., 2020; Wang et al., 2020;
Dao et al., 2021a; Dao et al., 2021b; Huang et al., 2021). In the
post-genome stage, bioinformatics has entered a new
development period, and its research focus has shifted from
the study of gene sequences to the study of gene functions
(Wang et al., 2013; Dong et al., 2020; Wang et al., 2021a; Lv
et al., 2021; Yu et al., 2021). It incorporates all aspects of the
process of acquiring, storing, processing, distributing, and
explaining biological information, and combines various tools
of applied mathematics, computer science, and biology to clarify
and understand biological significance in biological data.

Cancer Molecular Study Based on
Low-Rank Representation Learning
As a common malignant tumor, cancer is a common fatal disease
worldwide because of its complex pathogenic factors, high
treatment difficulty, and high risk of recurrence and
metastasis. In China, deaths from cancer are always high, and
it is a severe threat to the lives and health of Chinese people
(Silverberg and Lubera, 1998; Chen et al., 2020). How to prevent
and treat cancer effectively has become a topic of widespread
concern the world over. With the development of high-
throughput sequencing technology, scientists can observe the
gene expression of cancer cells at the single-cell level. Feature
mining methods for cancer molecules are divided into supervised
and unsupervised learning, as shown in Figure 1. The supervised
method generally includes two steps: 1) First obtain the cancer
classification information of the research sample through known
prior information or other models. For example, using marker
genes, clustering methods, or SNF algorithms. 2) Based on the
sample typing information obtained in the previous step, the
candidate molecular characteristics are screened out in the
training data set, and then these candidate molecular
characteristics are classified or survival analysis in the
validation data set to determine the final effective molecular
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characteristics. The methods often used in this step mainly
include difference hypothesis testing, support vector machine
algorithm, random forest and linear discriminant analysis.
Another type of unsupervised method does not require the
typing information of a given sample set. It is mainly based
on model assumptions and related data theories. At the same
time, the molecular features and samples in the data are grouped
to obtain a molecular set or module, and for the “liveness” value
of the sample in the new feature space, commonly used methods
include bi-clustering algorithm, matrix decomposition and
manifold learning. However, existing unsupervised methods
(Chen et al., 2020; Zou et al., 2020) fail to distinguish different
feature subspaces. Hence, they may produce errors, or even
invalid results, when applied to cancer molecular feature
mining. Thus, a low-rank representation learning algorithm

(Chen and Yanga, 2014) is presented based on the
presumption that the sample subspace exists, and samples in
the same subspace can represent each other, while those in
different subspaces cannot. The algorithm can accurately
identify a “clustered” structure or grouping information of
inherent samples in the heterogeneous data. The effectiveness
of this method has been widely recognized in image processing,
and it also provides new ideas and directions for establishing
accurate models for mining cancer molecular characteristics.
Therefore, a mathematical model based on low-rank
representation can be established by combining multiple
scales, including molecules, modules, functional networks, and
multi-omics molecular features. This model can be studied from
the three aspects described below, and a series of mathematical
models that are more in line with the heterogeneous structure of

TABLE 1 | Common cancer databases.

Database name Database introduction

GEO Edgar et al. (2008) The GEO database stores the records (series, samples, and platforms) provided by the original submitter and the sorted
data set, but not all the records provided by the original submitter have been assembled into a selected data set. And the
selected data sets form the basis of GEO’s advanced data display and analysis functions

TCGA Tomczak et al. (2015) The Cancer Genome Atlas (TCGA) is a publicly funded project aimed at cataloging and discovering major oncogenic
genome changes in order to create a comprehensive “atlas” of cancer genome maps. So far, TCGA researchers have
passed large-scale genome sequencing and synthesis Multidimensional analysis analyzed a large cohort of more than 30
human tumors

KEGG Rédei. (2012) The Kyoto Encyclopedia of Genes and Genomes (KEGG) is a knowledge base for analyzing gene function based on genetic
and molecular network systems. KEGG maintains the GENES database and the LIGAND database

COSMIC Forbes et al. (2011) COSMIC provides comprehensive information about somatic mutations in human cancers. Version v48 (July 2010)
describes more than 136,000 coding mutations in nearly 542,000 tumor samples; it aims to collect, manage, organize and
present cancer somatic mutations in the world. The information is provided free of charge in a variety of useful ways and can
be accessed at http://www.sanger.ac.uk/cosmic

UCSC Cancer Genomics Browser UCSC Cancer Genomics Browser is a set of web-based tools designed to integrate, visualize and analyze genomic and
clinical data. It consists of three main components: hgHeatmap, hgFeatureSorter and hgPathSorter, which can be browsed
at https://cancer.cse.ucsc.edu/. And because UCSC Cancer Genomics Browser is an extension of UCSC Genome
Browser; therefore, it inherits and integrates the rich human biology and genetics data set of Genome Browser to enhance
the interpretability of cancer genomics data

ArrayMapCancer ArrayMap provides preprocessed tumor genome chip data and CNAmaps. In the ArrayMap database, users can search for
samples they are interested in, and on this basis, analyze the CNA on the gene or genome fragment of interest

TABLE 2 | Commonly used gene expression profile database.

Name
database

The data source Database introduction

RNA-Seq Atlas Network-based RNA-Seq gene expression profile and
query tool library

This is the first open-access database that provides data mining tools and large-scale RNA-
Seq expression profiling. Its application will be multifaceted, because it will help to identify
tissue-specific genes and expression profiles, compare gene expression profiles between
different tissues, and systems biology methods that link tissue function to changes in gene
expression

GEO The National Center for Biotechnology Information (NCBI)
was established

The initial goal was to serve as a public repository for high-throughput gene expression data
mainly generated by microarray technology. In addition, the database also includes
comparative genome analysis, chromatin immunoprecipitation analysis describing genomic
protein interactions, non-coding RNA analysis, SNP genotyping, and genome methylation
status analysis

ArrayExpress Alvis Brazma from EBI et al It is a functional genomics database under the European Bioinformatics Association (EMBL-
EBI), which collects and organizes data from genomics experiments based on microarrays
and sequencing to support reproducible research. It is also one of the main knowledge bases
for functional genomics experiments based on microarray and high-throughput sequencing.
All data is provided in MAGE-TAB format
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data and the biological characteristics of the disease are proposed,
and a fair evaluation of the validity and practicability of the model
is provided using simulated cases and the application of real data,
and theoretical modeling and tools for analyzing multi-scale
molecular characteristics of cancer are provided. Figure 2
shows the method of applying a low-rank representation
matrix to mine the molecular characteristics of cancer.

1) A dimensionality reduction method is adopted to obtain the
characteristics of the molecular module specific to the cancer
subtype (Cheng et al., 2018; Tang et al., 2018; Yu et al., 2018;
Zhang et al., 2018; Jiang et al., 2019; Su et al., 2019; Liu et al.,
2020b; Su et al., 2020). It can address nonlinear sample
structure issues that the traditional dimensionality
reduction method cannot identify. This is because the
dimensionality reduction model fused with low-rank
representation learning can process highly heterogeneous

data, adaptively capture sample cluster structure and
subtype-specific module features, and improve the ability to
classify tumor subtypes and obtain reliable molecular
modules.

2) The fusion model with molecular function information was
used to analyze the characteristics of functional subnets.
Makes full use of the advantages of known functional
information in biological interpretability (Liu et al., 2019;
Cai et al., 2020b), deeply probes into functionally abnormal
biological pathways or molecular behaviors, obtains subtype-
specific functional subnets, and clarifies the molecular
mechanism of cancer from a functional level.

3) A fusion model with molecular function information analyzes
the features of functional subnets, makes full use of the
biological characteristics of the sample representation
relationship consistency of multi-omics data, further
explores synergistic or complementary molecular

FIGURE 1 | Method for mining cancer molecular features.

FIGURE 2 | Method for mining cancer molecular features using a low-rank representation matrix.
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characteristic information at the system level, and provides
new clue to enable the understanding of the cross-omics
pathogenic factors of cancers.

At the same time, medical imaging is also playing an
increasingly major role in helping doctors to conduct a precise
diagnosis of cancer. Even medical imaging cloud and remote
image center can be used for cloud reading, remote consultation,
health management, disease diagnosis, image archiving and
communication, etc. (Mehto and Mehra, 2016; Ma et al., 2020;
Meziane, 2020; Zhang et al., 2021). Therefore, how to protect
patients’ personal information in medical images, such as CT,
MRI, and other medical images, so that this personal information
and patients’ electronic medical records cannot be leaked has
constituted a key issue for the medical industry that needs to be
resolved urgently against the background of machine learning
cloud computing and big data. Using medical image digital
watermarking technology is an effective method to work out
this problem (Hong et al, 2016; Vairaprakash and Shenbagavalli,
2017; Shen et al., 2018; Yang et al., 2018; Zhou et al., 2020).
Compared with general digital watermarking technology, digital
watermarking technology used in medical images, theoretically,
should satisfy three characteristics: reliability, availability, and
confidentiality.

Common medical image digital watermarking algorithms are
divided into three categories: 1) a medical image watermarking
algorithm based on non-interest area RONI (Thanki et al., 2017),
which diminishes the watermark embedding capacity (Liu et al.,
2016b; Gangadhar et al., 2018) and demonstrates poor
robustness; 2) reversible digital watermarking; 3) classic
conventional digital watermarking algorithms used to process
medical images. However, these conventional watermarking
algorithms demonstrate poor resistance to geometric attacks;
hence, other models that can resist conventional attacks and

geometric attacks effectively are necessary. Thus, the design and
construction of a new medical image algorithm model based on
perceptual hashing technology and neural network technology
should be attempted to resolve the contradiction between the
robustness and invisibility of medical image digital watermarking.
Perceptual hashing mainly resolves the issue of conventional
attacks and the neural network mainly resolves geometric
attacks. The framework diagram is shown in Figure 3. The
model process roughly uses the output vector of the hash
algorithm as the input vector of the neural network, and
finally obtains the output result. Perceptual hashing is a type
of hashing algorithm, and its workflow has 7 main steps: 1)
Reduce the size, reduce the picture to 8 × 8 size, a total of 64
pixels; 2) Simplify the color, that is, convert the reduced image to
64-level grayscale; 3) Calculate DCT. DCT is to decompose the
frequency of the picture and gather it into a trapezoid shape.
Here, a 32 × 32 DCT transform is used; 4) Reduce the DCT and
keep the 8*8 matrix in the upper left corner, showing the lowest
frequency in the picture; 5) Calculate the average of all 64 values;
6) To further reduce the DCT, set a 64-bit hash value of 0 or 1
according to the 8 × 8 DCT matrix, set the value greater than or
equal to the average value of DCT to “1”, and set the value less
than the average value of DCT to “0”; 7) Calculate the hash value.
The neural network is a mathematical model or calculation model
that imitates the structure and function of a biological neural
network. It is calculated by connecting a large number of artificial
neurons, mainly including an input layer, a hidden layer and an
output layer.

The robustness and invisibility of digital watermark images
can be studied from the following perspectives:

1) Regarding anti-conventional attacks, research is based on the
extraction of perceptual hashing medical image features in the
transform domain. It is used to study the human visual

FIGURE 3 | Schematic diagram of the robustness feature acquisition of medical images based on perceptual hashing and a neural network.
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system, and by combining with perceptual hashing
technology, establishes a transform domain perception hash
algorithm model, and locates a vector that conforms to the
human visual characteristic and is robust against conventional
attacks.

2) Regarding anti-geometric attacks, the extraction of medical
image features based on perceptual hashing and a neural
network is studied. The Osirix DICOM image library and
existing medical images are adopted to construct a medical
image database that is attacked using nonlinear geometry.
Then, the neural network model is designed to train the 2D
and 3D medical images after nonlinear geometric attacks, and
find the robust feature vectors against nonlinear geometric
attacks, which are used as the features of designing robust
watermarking algorithms for medical images against
geometric attacks.

3) Research on methods for extracting robust perceptual hashing
sequences from medical images based on perceptual hashing
and neural networks.

4) Regarding research on how to embed large-capacity digital
watermarks in medical images, perpetual hashing sequence
feature vectors that counter conventional attacks and
geometric attacks are used to generate a secret key by
combining with the encrypted watermark to complete the
embedding and extraction of a large-capacity watermark.

Research on Gene Expression Profile Data
Based on Low-Rank Sparse Representation
The emergence of gene expression profile data helps the
understanding of the pathological process of cancer cells at the
molecular level. Tens of thousands of varying genes in tissue
samples can be detected by gene chips, and then the gene chip
expression profile data can be analyzed and processed. Thus,
tumors are classified so that patients can be treated effectively.
However, gene expression profiles are characterized by high
dimensionality, large noise, a small number of gene samples,
missing data, data redundancy, and an unbalanced distribution of
class samples. Thus, advanced data modeling methods must be
used to extract the classification characteristics of samples
effectively from tens of thousands of gene expression profiles.
With the rapid development of artificial intelligence and machine
learning in speech and machine vision in recent years, the use of
machine learning methods, including deep learning, to explore
gene expression profile data modeling methods is destined to be a
development trend in the future.

Presently, research on gene expression profiles mainly covers
the following: 1) the preprocessing of gene expression profile
data, 2) extraction of gene expression profile data features, 3)
selection of gene expression profile data features, and 4)
clustering and classification research of gene expression profile
data. Common gene feature selection methods are categorized
into three types: the filter method, wrapper method, and
embedded method (Bolón-Canedo et al., 2014). They can also
be based on low-rank scoring, low-rank representation
coefficient-based gene feature correlation measurement, and a
two-step method based on robust principal component analysis

(RPCA) (Partridge and Jabri, 2002) and the maximum margin
criterion (MMC) for feature selection. RPCA, low-rank
representation (Shu et al., 2017), and matrix completion (Cao
et al., 2011; Zeng et al., 2017; Liu et al., 2020c; Ran et al., 2020;
Zhao et al., 2020) are three main research areas for low-rank
sparse theory. As the name implies, sparse representation refers to
a linear combination of fewer basic signals to express most or all
of the original signal. Among them, these basic signals are called
atoms, which are selected from the over-complete dictionary; and
the over-complete dictionary is gathered from atoms whose
number exceeds the signal dimension. Therefore, it can be
seen that any signal has different sparse representations under
different atom groups. For example, a M ×N matrix is used to
represent the data set X, each row represents a sample, and each
column represents an attribute of the sample. Generally speaking,
the matrix is dense, that is, most elements are not 0. The meaning
of sparse representation is to find a coefficient matrix A(K ×N)
and a dictionary matrix B(M × K), so that B × A restores X as
much as possible, and A is as sparse as possible. A is the sparse
representation of X.

Low-rank sparse representation models have been applied in
many fields (Cheng et al., 2016; Chen et al., 2017; Zhang et al.,
2017; Brbic and Kopriva, 2018; Chen et al., 2018; Xie et al., 2018;
Yuanyuan et al., 2018; Zeng et al., 2018; Ding et al., 2019; Shen
et al., 2019; Zhang et al., 2019; Li et al., 2020; Wu and Yu, 2021),
which demonstrate high superiority, particularly in terms of
dimensionality reduction and subspace segmentation.
Considering existing analysis methods, introduce a low-rank
sparse representation model for gene expression profile data
analysis, several new methods for feature selection and feature
extraction of gene expression profile data based on low-rank
sparse representation models are explored, and they are applied
to gene expression profile clustering and classification. As shown
in Figure 4, this section mainly uses the following process to
study gene expression profile data based on low-rank sparse
representation analysis. In typical cases, the following three
specific research areas are mainly involved when studying gene
expression profile data.

1) Estimation of missing points in gene expression profile data.

In recent years, missing point estimation methods have
included the following: 1) list deletion method; 2) duplicate
value filling; 3) average value substitution method; and 4) the
use of statistical methods for estimation, such as K-nearest
neighbor (KNN) (Olga et al., 2001), singular value
decomposition, and local least squares.

2) Feature selection for gene expression profile data.

Feature selection is a major prerequisite for the classification
and clustering of gene expression profile data (Lu and Zhao, 2019;
Zou et al., 2020; Qi et al., 2021a; Zulfiqar et al., 2021). Three
common gene feature selection methods exist: the filter method,
wrapper method, and embedded method. And Low-rank scoring,
gene feature correlation measurement based on a low-rank
representation coefficient, and a two-step method based on
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RPCA and MMC can also be used to select features. To overcome
the shortcomings of traditional low-rank representation models,
feature selection introduces manifold regularization constraints
and class-label information constraints, sets up a manifold
regularized low-rank representation model and a class-label
constrained low-rank representation model, and solve the low-
rank representation coefficient matrix in the two models. On this
basis, two different low-rank graphs are set up, the low-rank
graphs are used to score each gene feature, and a set of optimal
gene feature subsets is selected according to the score.

3) Gene expression profile data feature extraction.

Common feature extraction methods can be divided into
linear and nonlinear transformations. Typical linear feature
extraction algorithms include sparse principal component
analysis (PCA) (Min et al., 2018; Islam et al., 2020),
independent component analysis (Moysés et al., 2017), and
LDA. Nonlinear transformation methods primarily include
neural networks, kernel methods (Qi et al., 2021b), manifold
learning (Shen et al., 2017), sparse representation (Min et al.,
2017), and matrix factorization methods (Wang et al., 2017; Yang
et al., 2017; Yang and Hu, 2017; McCall et al., 2019). With the
continuous development of machine learning and data mining,
new feature extraction methods continue to arise. For example,
PCA, FA, and ICA are three characteristic methods commonly
used in gene expression profile data mining.

Gene expression profile data analysis has attracted widespread
attention from scholars, and a series of gene expression profile
analysis methods have been proposed. Classic methods such as
PCA, LDA, KNN, decision-making tree method, ensemble
learning, SVM, extreme learning machine, neural network,
sparse representation, and gene bi-clustering method based on
qualitative/quantitative measurement have been widely applied to
the classification and clustering of gene expression profile data.
Meanwhile, these technologies can provide techniques and

comparisons for low-rank sparse representation methods. The
core of the low-rank sparse representation method is low-rank
sparse modeling theory. As an effective tool for large-scale data
analysis, this theory has made great progress in recent years.
Additionally, it has been widely used in subspace segmentation,
image processing and recognition, machine vision, system
modeling and control, and other large-scale data analysis.

CONCLUSION

Therefore, it has become an inevitable trend to apply low-rank
sparse representation models to study them. Low-rank sparse
representation models have been applied in multiple fields,
particularly in dimensionality reduction and subspace
segmentation. For example, in feature extraction, traditional
graph-based learning algorithm feature extraction methods are
constrained using a graph construction method, and the
effectiveness of the extracted feature vectors is reduced. By
contrast, low-rank graphs have better local and global data
description capabilities. A dimensionality reduction method
based on low-rank graphs is a more effective feature extraction
method. Moreover, with the advancement of biological
sequencing technology, scientists have been able to observe the
gene expression of cancer cells at the single-cell level, and
discovered that the heterogeneity of cancer tissue far exceeds
previous estimates. However, so far, low-rank sparse
representation models are rarely used for gene data analysis.
Therefore, this article introduces low-rank sparse representation
models for gene expression profile data analysis based on existing
analysis methods. Discuss new methods for feature selection and
feature extraction of gene expression profile data based on low-
rank sparse representation model, and use it for gene expression
profile clustering and classification.

At the same time, with the advancement of biological
sequencing technology, scientists have been able to observe the

FIGURE 4 | Research procedure for gene database analysis based on low-rank sparse representation.
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gene expression of cancer cells at the single-cell level, and found
that the heterogeneity of cancer tissues far exceeds previous
estimates. The observation samples of potential strongly
heterogeneous data are likely to be in multiple feature
subspaces. Each subspace is composed of the same set of
molecular features that represent the same cancer class
(subtype), and samples from different subspaces belong to
different cancer class (subtype). However, many unsupervised
methods proposed before cannot distinguish different feature
subspaces, so errors or even invalid results may occur when these
methods are used for cancer molecular feature mining. After
research, it is found that the low-rank representation learning
algorithm can accurately identify the inherent sample “cluster”
structure or grouping information in heterogeneous data. The
algorithm assumes that the sample subspace exists, and samples
in the same subspace can characterize each other. Samples in
different subspaces cannot characterize each other. Moreover, the
effectiveness of this algorithm has been widely recognized in the
field of image processing, and it also provides us with new ideas
and new directions for establishing accurate models for mining
cancer molecular characteristics.

PENDING ISSUES AND PROSPECTS

Gene expression profile data analysis has attracted widespread
attention from scholars at home and abroad. Not only have they
proposed a series of gene expression profile analysis methods, but
they also developed a variety of gene software based on gene
public databases, such as EASE network platform, pathway
analysis software Gen-MAPP2 and the development of the
domestically developed pathway analysis platform KOBAS, the
development of these software provides a basis for the subsequent
further research on gene expression profiles.

This article mainly uses low-rank sparse modeling theory to
analyze experimental data. As one of the effective tools for large-
scale data analysis, this theory has been widely used in different
aspects in recent years. For example, sparse representation has
been applied to the field of pattern recognition and has yielded
fruitful results. The low-rank sparse representation model based
on sparse representation has also become a research focus in
machine vision, machine learning, and image processing, and has
been applied successfully in video image processing, target
recognition, task learning, bioinformatics (Ding et al., 2020;
Hong et al., 2020; Hu et al., 2020; Lu et al., 2020; Hu et al.,
2021a; Hu et al., 2021b;Wang et al., 2021b), and recommendation
systems (Wei et al., 2014; Wei et al., 2017a; Wei et al., 2017b).
However, further attention should be paid to low-rank
representation learning. In specific applications, LRR generally
uses original data as a dictionary, which requires a sufficient
number of observed data samples, and only part of the data in the
dictionary can be damaged. In real-world scenarios, the
aforementioned assumptions may not be tenable; hence,
LatLRR can be considered, and a dictionary can be
constructed using observed and unobserved data.

At the same time, sparse representation also has important
clinical significance. For example, data released by the National

Cancer Center reveal that there are approximately 4.29 million
new cancer patients in China every year, which accounts for 20%
of new cases globally, and deaths have reached 2.81 million.
Approximately 10,000 patients are diagnosed with cancer in
China every day, that is, one patient every 7 min. Therefore,
the prevention and treatment of cancers are not optimistic. It is
expected that the incidence of cancers will continue to rise in the
next one or two decades. The high incidence of cancer cases has
resulted in severe challenges to domestic economic development
and residents’ healthy life. How to prevent and treat cancer
effectively has become a topic of great interest worldwide.
With the advancement of high-throughput technology,
biomedicine is rapidly stepping into the era of big data. Omics
data represented by gene expression profiles have demonstrated
particular leaps. The emergence of gene expression profile data
helps people to understand the pathological process of cancer
cells at the molecular level. Thousands of genes in tissue samples
can be detected by gene chips, and then the tumor can be
classified by analyzing and processing the gene chip expression
profile data so that patients can be treated effectively. However,
because of the characteristics of gene expression profile data,
there are still many problems in the research field. With the rapid
development of artificial intelligence and machine learning in the
field of speech and machine vision, in the next few years, artificial
intelligence and machine learning will play an increasingly
important role in genetic biology, genomic medicine and
precision medicine, especially deep learning. The rapid
development has attracted widespread attention from
researchers in the biomedical field, so it has become an
inevitable trend to use low-rank sparse representation models
to study them. An extensive application of sparse representation
in bioinformatics helps to address the problem that some
unsupervised algorithms cannot distinguish different feature
subspaces of cancer molecules. Moreover, it is expected that,
in the near future, it can provide technological references for the
prevention and treatment of critical illness, and the research and
development of new drugs.

However, sparse representation in bioinformatics still has
varying degrees of limitations. For example: 1) Constructing a
more flexible sparse representation model. In the existing sparse
representation model, there is an objective function and a
constraint function, the objective function is generally to
minimize the energy of the noise under the assumption that
the observation signal has a linear model form and contains
Gaussian white noise, constraint function generally refers to
sparse constraint term. On the one hand, this objective
function treats the sparse components equally; on the other
hand, it ignores the existence of other goals in different
applications, because if you look at it from the standpoint of
representation alone, it does not necessarily require the sparsest
solution to be unique or the sparsest solution is not themost ideal.
Therefore, it is necessary to construct a sparse representation
model with multiple targets and variable regular parameters to
meet the characteristics and needs of more application problems.
2) When determining the regular parameter λ and the parameter
k representing the degree of sparseness for the model, a manual
pre-determined method is generally used to assign values to the
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two hyperparameters. After determining its value, perform the
solution, and then compare the solution result with the target
demand. If it does not meet the requirements, then adjust the
parameters. This inevitably results in non-adaptability or non-
automation of the solution process, and also limits the application
of sparse representation methods in some fields that require a
high degree of automation. Therefore, it is necessary to study the
adaptive solution of sparse representation model, and construct
the functional relationship between hyperparameters and
observation signals and sparse vectors. 3) At present, the
application scope of sparse representation is mainly limited to
the field of natural signals. The application prospects in the field
of unnatural data signals are still unclear. According to the
characteristics of sparse representation in various fields, the
application types of sparse representation can be divided into
reconstruction based Applications and classification-based
applications. Reconstruction-based applications mainly include
image denoising, image signal reconstruction, audio signal
recovery, compressed sensing, SAR imaging, etc. The common
point of this category of applications is that the characteristics of
the target signal need to be obtained first, and the sparse vector is
constructed using the characteristics. The mathematical model in
the sparse representation theory is then used to solve the problem
to achieve the effect of reconstructing the original signal within
the allowable error range. Classification-based applications
mainly include face recognition, target tracking, text detection,
blind source separation, etc. Classification-based applications all
construct sparse feature vectors by extracting feature information
from objects. These feature vectors are strongly distinguishable
and can differentiate different types of signals, and then according
to the optimization method of sparse representation, determine
the distance between the target signal and these feature vectors,
and when a certain threshold is met, it is determined to belong to
the category to achieve the effect of pattern recognition and
classification. Therefore, sparse representation has some
limitations in the application of bioinformatics, which requires
further research and discussion by scholars.

At the same time, sparse representation provides a powerful
means in blind source separation technology, because blind
source separation technology is to solve the unknown input
and unknown transmission channel and output the known
signal processing technology. The sparse representation
technology reduces the complexity of the algorithm by
separating the estimation process of the mixing matrix and the
estimation process of the source signal, and improves the
accuracy of the source signal separation. Therefore, sparse
representation has become a popular method in the current
blind source separation problem.
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Using Machine Learning Approaches
to Predict Target Gene Expression in
Rice T-DNA Insertional Mutants
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Chung Hsing University, Taichung, Taiwan, 3Institute of Molecular Biology, National Chung Hsing University, Taichung, Taiwan,
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To change the expression of the flanking genes by inserting T-DNA into the genome is
commonly used in rice functional gene research. However, whether the expression of a
gene of interest is enhanced must be validated experimentally. Consequently, to improve
the efficiency of screening activated genes, we established a model to predict gene
expression in T-DNA mutants through machine learning methods. We gathered
experimental datasets consisting of gene expression data in T-DNA mutants and
captured the PROMOTER and MIDDLE sequences for encoding. In first-layer models,
support vector machine (SVM) models were constructed with nine features consisting of
information about biological function and local and global sequences. Feature encoding
based on the PROMOTER sequence was weighted by logistic regression. The second-
layer models integrated 16 first-layer models with minimum redundancy maximum
relevance (mRMR) feature selection and the LADTree algorithm, which were selected
from nine feature selectionmethods and 65 classifiedmethods, respectively. The accuracy
of the final two-layer machine learning model, referred to as TIMgo, was 99.3% based on
fivefold cross-validation, and 85.6% based on independent testing. We discovered that
the information within the local sequence had a greater contribution than the global
sequence with respect to classification. TIMgo had a good predictive ability for target
genes within 20 kb from the 35S enhancer. Based on the analysis of significant sequences,
the G-box regulatory sequence may also play an important role in the activation
mechanism of the 35S enhancer.

Keywords: rice, CaMV 35S enhancer, T-DNA activation tagging, gene expression, machine learning

1 INTRODUCTION

Rice is one of the most important models of monocotyledon plants for the analysis of plant gene
function. Rice is one of three major food crops throughout the world, and it is the staple food of more
than half of the world’s population. Rice production has doubled in the past 30 years, although the
supply of rice is expected to gradually become insufficient with the rapid increase in the world
population, climate change, and a shortage of water (Ray et al., 2013). It will not be easy to increase
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food production to the necessary levels. In 2004, the International
Rice Genome Sequencing Project (IRGSP) completed the
sequencing of the rice genome (IRGSP, 2005). The ultimate
goal of genome analysis is to realize the structure and function
of each gene within an organism. To further confirm the function
of and metabolic pathways related to each gene in rice, scientists
have focused their efforts on analyzing the rice genome and are
committed to promoting rice genome annotation to move rice
research into the post-genome era.

T-DNA insertion activation-tagging technology is widely used
in the analysis of the function of rice genes (Jeong et al., 2002;
Yang et al., 2013). This method results in the construction of four
tandem cauliflower mosaic virus (CaMV) 35S enhancers on a
T-DNA plasmid; when this T-DNA is inserted into the rice
genome, it activates genes that flank the T-DNA insertion site
(Hsing et al., 2007). The CaMV 35S enhancer can activate gene
expression in dicots and monocots and is widely used in T-DNA
transformation. Gene expression gradually increases with the
number of 35S enhancers on T-DNA, which led to the
incorporation of four tandem repeat CaMV 35S enhancers for
enhanced gene expression with this approach (Odell et al., 1985;
Fang et al., 1989; Kardailsky et al., 1999; Weigel et al., 2000;
Huang et al., 2001; Ichikawa et al., 2003). Agrobacterium-
mediated T-DNA transformation tends to insert one copy of
T-DNA, an average of 1.4 loci of T-DNA inserts in transgenic
plants (Jeon et al., 2000), reducing the complexity of rice gene
research. T-DNA inserted into the rice genome with a 35S
enhancer resulted in two states:

(1) Gene knockdown: when T-DNA is inserted into the coding
region or promoter of a gene, it is likely to destroy the structure of
the gene, resulting in reduced function or loss of function of
the gene.

(2) Activation tagging: T-DNA might enhance the activity of
genes that flank the T-DNA insertion site through the effect of the
35S enhancers.

Thus, we can make use of T-DNA insertion activation tagging
to study the association between genetic function and
morphological traits (Hsing et al., 2007). However, there has
been no basis for determining whether a target gene is activated
by the enhancer prior to experimental analyses. There has even
been a study indicating that the enhancer can activate genes that
are millions of base pairs away from the enhancer (Li et al., 2012).
Not all of the genes that flank the T-DNA insertion site are
expected to be activated by the 35S enhancer. In some T-DNA
mutants, the 35S enhancer does not activate the closer gene but
instead activates a gene that is farther away from the 35S enhancer
(Ren et al., 2004). Researchers thus cannot rely on the distance
between the enhancer and a particular gene to judge whether that
gene would be activated. They must instead determine the
activated genes experimentally to explore the related genetic
function and morphological traits. Therefore, it is a time-
consuming and laborious process to check for the expression
of a target gene.

Our team had developed a website platform, EAT-Rice (Liao
et al., 2019), for predicting the expression status of rice genes that
flank the T-DNA insertion site in activating mutants. In this
study, we used amachine learning approach to predict target gene

expression in rice T-DNA insertion mutants and improved the
efficiency of finding activated target genes. The system of EAT-
Rice applied the distance factor from T-DNA insertion site to
gene loci to weight feature encoding and used two kinds of
algorithms to build a two-layer model of machine learning.
Based on EAT-Rice with a modified sequence capturing
method, system architecture, and other additional features, we
built a more comprehensive system for target gene expression
prediction in T-DNA insertion mutants.

The datasets used in this study were experimentally validated.
We first characterized genes based on their activation by the 35S
enhancer; these genes were divided into activated genes and
nonactivated genes. The system we built refers to EAT-Rice.
We captured the DNA sequence of the promoter and the central
region of each activated gene from the start codon of the target
gene to the 35S enhancer and used nine features—CpG islands
(CGIs), Motif, Kmer, reverse complementary kmer (RevKmer),
DNP, TNP, DACC, TACC, and PseKNC—for encoding.
Moreover, we carried out a logistic regression to weight the
features of the first-layer model, depending on the probability
of gene activation and the distance from the enhancer to the gene
start codon. We then used LIBSVM (Chang and Lin, 2011) and
LADTree (Boros et al., 2011) algorithms to build a two-layer
model of machine learning. In the second layer, we used the
minimum redundancy maximum relevance (mRMR) (Peng et al.,
2005) method and incremental feature selection to determine the
most relevant features. This system is referred to as TIMgo.

The TIMgo performance was 99.3% based on fivefold cross-
validation and 85.6% based on independent testing. TIMgo had
>80% accuracy for target genes within 20 kb from the 35S
enhancer, but genes that were >20 kb away were still predicted
with >60% accuracy. We also discovered that the value of the k
parameter for Kmer, RevKmer, and PseKNC encoding within the
PROMOTER sequences was higher than that of MIDDLE
sequences. This suggested that for the analysis of longer
sequences, a greater number of features was needed to
improve the prediction performance. Finally, the G-box cis-
element has an important function in gene activation by the
35S enhancer based on the motif analysis, and among the G-box-
associated binding proteins, most are bZIP (basic region/leucine
zipper) transcription factors.

2 MATERIALS AND METHODS

2.1 Sources for T-DNA Mutant Data and
Datasets
The experimental data were collected from 11 rice T-DNA
mutants from Liang-Jwu Chen’s laboratory at NCHU and 316
mutants from Su-May Yu’s research team at Academia Sinica.
These data consisted of the T-DNA insertion point and
expression status of flanking genes [as detected by RT-PCR
(Ohan and Heikkila, 1993)]. The expression status of each
gene was characterized based on the following four categories:
activated gene (Ac), no significant effect (NE), non-detectable
(ND), and knockout (Ko). The data distribution for the
expression status of these genes is shown in Table 1.
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To maintain dataset quality and consistency, we removed the
30 ND genes from the dataset. The collected data included two Ko
genes, in which the T-DNA insertion point was located inside the
gene, thus disrupting the gene structure and most likely leading to
a loss of function. Because Ko genes were not a focus of this study,
we removed them from the dataset. We defined NE genes as
nonactivated (NAc) genes to differentiate them from the Ac
genes. Ultimately, data for 453 genes were collected in this study.

A training set was used to determine the performance of the
subsequent system. As the ratio of positive data (Ac genes) to
negative data (NAc genes) affects the performance of machine
learning (Akbani et al., 2004), this study used EAT-Rice with a 1:1
ratio to carry out the selection of the training dataset. We used
data from 300 genes in the training dataset, which was referred to
as D300. Data from the remaining 153 genes were used for
independent testing to evaluate system accuracy; this dataset
was referred to as D153 (Table 2).

2.2 Target Gene Sequence Retrieval
The analyzed genes provided from Liang-Jwu Chen’s laboratory and
Su-May Yu’s team were annotated according to the Rice Genome
Automated Annotation System (RiceGAAS) (Sakata et al., 2002) and
the MSU Rice Genome Annotation Project (TIGR) (Yuan et al., 2003;
Ouyang et al., 2007) rice gene annotation database. We hypothesized
that we could predict the expression status of a target gene by analyzing
the sequence of Ac and NAc genes. Thus, with reference to the EAT-
Rice construction process and the enhancer-related hypothesis
mechanisms (Singer et al., 2010; Singer et al., 2011), we extracted
nucleotide sequences for each gene from two regions: (1) a 1,500-bp
region upstream relative to the translation start site (TLS), referred to as
the PROMOTER region, and (2) a central region of 300 bp centered
between the TLS of the target gene and the 35S enhancer, referred to as
the MIDDLE region (Supplementary Figure S1).

2.3 Feature Encoding
In this study, we encoded information about nine features of the
sequences: five sequence information codes and four biological
functional codes. The sequence codes consisted of two local
sequence codes, two global sequence codes, and a code to reflect
both the local and global sequence information simultaneously. The
local sequence characteristics consisted of Kmer and RevKmer values,
whichwere coded by theDNAcomposition; such characteristics have
been successfully applied toward human gene regulatory sequence
prediction (Noble et al., 2005; Gupta et al., 2008) and enhancer
identification (Lee et al., 2011), among others. The two global
sequence codes, dinucleotide-based auto-cross covariance (DACC)
and trinucleotide-based auto-cross covariance (TACC), were coded
by calculating the sequence autocorrelation as global sequence
characteristics; this type of feature has been used to predict
sequence-based protein–protein interactions (Guo et al., 2008).
Another coding method, PseKNC, has been used to identify
promoters in prokaryotes (Lin et al., 2014) and incorporates the
information of contiguous local sequence order and the global
sequence order into the feature vector. The biological
characteristics included the presence of CGIs, regulatory cis-
elements (Motif), and conformational and physicochemical
properties of dinucleotide and trinucleotide sequences (DNP and
TNP, respectively). Each of these features is described in more
detail below.

2.3.1 CGIs
DNA methylation on CGIs reduces or silences gene expression
based on enhancer–promoter interactions (Antequera et al., 1990;
Volpe et al., 2002). For this analysis, we used the EMBOSS
Newcpgreport tools of EMBL-EBI to predict CGIs and
encoded their corresponding number, length, distance from
the TLS, CpG ratio, and OE (observed/expected) value,
resulting in the feature CGIs (Supplementary Equations S1–S5).

2.3.2 Regulatory Cis-Elements (Motif)
Considering that the rice transcription factor binding sites
(TFBSs) that have been confirmed may not be comprehensive
enough yet, we therefore incorporated other proven plant TFBSs.
Data for 2,087 motifs were collected from PLACE (Higo et al.,
1999) and the RegSite database (http://linux1.softberry.com/
berry.phtml?topic�regsitelist). The tool Find Individual Motif
Occurrences (FIMO) (Grant et al., 2011) in the MEME suite
was used to scan for regulatory sequences in the PROMOTER
region, and the scanning results were encoded by FIMO (Beer and

TABLE 1 | Data distribution of flanking analyzed genes in rice T-DNA mutants.

Data source Number
of mutant lines

Gene expression status Validated genesa

Ac NE ND Ko

NCHUb 11 26 22 17 0 65
Academia Sinicac 316 262 143 13 2 420
Total 327 288 165 30 2 485

Ac, activated gene; NE, nonactivated gene; ND, non-detectable gene; Ko, knockout gene.
aValidated genes indicate the target genes that were detected by RT-PCR.
bNCHU, experimental data were collected from Liang-Jwu Chen’s laboratory.
cAcademia Sinica, experimental data were collected by Su-May Yu’s research team.

TABLE 2 | Data distribution of the training dataset and independent-testing
dataset.

Data sources Training dataset
(D300)

Testing dataset
(D153)

Ac NAc Ac NAc

NCHU 20 20 6 2
Academia Sinica 130 130 132 13
Total 150 150 138 15
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Tavazoie, 2004; Yuan et al., 2007). These types of feature
encoding are referred to as follows.

Motif Number(i) � {
j, j ∈N

0, otherwise
, i ∈ {1, 2,/, 2087} (1)

Motif Conserve(i) � Mi alignment score in promoter
Motif Number(i) (2)

Motif Orientation(i) � pos in Motif Number(i)
Motif Number(i)

(3)

Motif Dis(i) �
∣∣∣∣geneTLS − Motif location site

∣∣∣∣
Motif Number(i)

(4)

The number of regulatory elementswas coded by the number (j) of
motifs found in the PROMOTER (Equation 1). The conservation
score was calculated by FIMO; we used the value from the summed
motif conserved scores divided by the number of motifs in the
sequence (Equation 2). As motifs can be located on both the
DNA coding strand (codons) and the template strand
(anticodons), the orientation characteristic was calculated to
determine the proportion of motifs on the coding strand. We thus
used the number of motifs on the coding strand (i.e., positive motifs,
pos) as the numerator, and the denominator is the number of all
motifs (Equation 3). The distance characteristic was determined
based on the distance (in base pairs) from each motif to the TLS,
whichwas summed for all motif sites within a given sequence, divided
by the number of motifs (Equation 4). In these equations, i indicates
the kinds ofmotifs,Mi indicates a specificmotif, and geneTLS refers to
the translation start site of a target gene.

2.3.3 Kmer and RevKmer
Kmer refers to the local sequence information and indicates a
subsequence containing k neighboring nucleic acids in a DNA
sequence. Using a coding strand as the template, the Kmer feature
will scan for the number of occurrences of the nucleic acid
subsequence in the template. For example, when k is 2, the
subsequence composition of a Kmer will be called a 2-mer,
which contains 16 subsequences (based on the four nucleotides
G, A, T, and C). In the case of the dinucleotide AA, if this
subsequence appeared twice in the DNA template, it would be
encoded as 2; if it was not present in the template, it would be
encoded as 0. In eukaryotes, the average length of TFBSs is 10 bp
(Stewart et al., 2012), which suggests that the number of k
neighboring nucleic acids in this study could be increased. We
encoded the sequence with 3- to 6-mer, 3- to 7-mer, 3- to 8-mer,
and 3- to 9-mer, which produced 5,440, 21,824, 87,360, and 349,504
different nucleotide compositions, respectively. The Kmer
encoding was carried out based on the number of occurrences
in the template sequence (Supplementary Equation S6).

RevKmer is a variant of kmer, in which the kmers are not expected
to be strand specific, so reverse complements are collapsed into a
single value. In this study, the RevKmer feature was encoded in the
same manner as Kmer and produced 2,760, 10,952, 43,848, and
174,920 nucleotide compositions for the 3- to 6-mer, 3- to 7-mer, 3-
to 8-mer, and 3- to 9-mer, respectively. RevKmer encoding was
carried out according to the number of occurrences in the template
sequence (Supplementary Equation S7).

2.3.4 Nucleotide Conformational and Physicochemical
Properties (DNP and TNP)
The nucleotide conformation and physicochemical properties
of dinucleotides and trinucleotides were also encoded.
DiProDB provides information about 125 properties of
dinucleotides, and these 125 properties were integrated into
15 characteristics through a statistical principal components
analysis (PCA) method (Friedel et al., 2009). The value of each
property is based on the dinucleotide as a unit, and each
property has 16 values corresponding to all possible
dinucleotide combinations. We used the property of the
dinucleotide to produce a training model with 240
dimensions; this feature is referred to as the DNP
(dinucleotide conformation and physicochemical properties)
(Supplementary Equation S8). PseKNC-General (the general
form of pseudo k-tuple nucleotide composition) is a tool that
provides the conformation and physicochemical properties of
oligonucleotides (Chen et al., 2015). In this study, 12
trinucleotide properties were used for coding. There were
64 combinations of trinucleotides, which generated a
training model with 768 dimensions based on the 12
trinucleotide properties; this feature is referred to as the
TNP (trinucleotide conformation and physicochemical
properties) (Supplementary Equation S9).

2.3.5 Autocorrelation (DACC and TACC)
Pse-in-One provides a pseudo-component mode reflecting the
correlation between two dinucleotides or trinucleotides within a
DNA sequence via their physicochemical properties (Liu et al.,
2015). In this study, we used dinucleotide-based auto-cross
covariance (DACC) and trinucleotide-based auto-cross
covariance (TACC) as provided by Pse-in-One for encoding
(Supplementary Equations S10–S12).

In this study, DACC was based on the 15 properties from
DiProDB, and the lag value was 4, generating a training model
with 900 dimensions. TACC used the 12 Pse-in-One built-in
properties, and the lag value was 4; it generated a training model
with 576 dimensions.

2.3.6 Pseudo k-Tuple Nucleotide Composition
Pseudo k-tuple nucleotide composition (PseKNC) is one of the
encoding modes supplied by Pse-in-One. It incorporates both
the contiguous local sequence order information (like Kmer
and RevKmer) and the global sequence order information (like
DACC and TACC) into the feature vector of the DNA
sequence.

D � R1R2R3R4R5R6/RL (5)

PseKNC(u) �
⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

fu

∑
4k

i�1
fi + w∑

λ

j�1
θj

, u ∈ {1, 2,/4k}

wθu−4k

∑
4k

i�1
fi + w∑

λ

j�1
θj

, u ∈ {4k+1, (4k+1 + 1),/, (4k+1 + λ)}

(6)

θj � 1
L − j − 1

∑
L−j−1

i�1

⎧⎨
⎩
1
μ
∑
u

v�1
[Pv(RiRi+1) − Pv(Ri+jRi+j+1)]

2⎫⎬
⎭, j ∈ {1, 2,/, λ}, λ< L (7)
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For a DNA sequence D with L nucleic acid residues, R1

represents the nucleic acid residue at the sequence position 1,
R2 the nucleic acid residue at position 2, and so on (Equation
5). PseKNC will calculate the occurrence frequency (f) of
dinucleotides in the DNA sequence and the correlation
between two oligonucleotides that are 1 to λ nucleotides
apart from each other. In Equation 6, fu is the occurrence
frequency of dinucleotides in the DNA sequence, which is
normalized to ∑4k

i�1fi � 1; w is the weight factor; θj represents
the correlation factor that reflects the sequence-order
correlation between all two dinucleotides that are j
nucleotides away from each other along a DNA sequence; µ
is the number of physicochemical indices; Pv(RiRi+1)
represents the numerical value of the dinucleotide located at
the ith position (RiRi+1) of the vth (v � 1, 2, . . ., μ)
physicochemical property (Equation 7). The feature
number of PseKNC will be λ multiplied by 4 to the power
k. In this study, the PseKNC feature was determined with a λ
value of 4, w is 0.2, and k is from 2 to 6.

2.4 Significant Sequence Fragment Analysis
Because there are numerous features in this first-layer model, the
complexity of the model is relatively high. To reduce the interference
of excessive noise, we used independent two-sample t-tests
(implemented in R) to select features from the high-dimension
models. We used the occurrence of specific oligonucleotides in the
Ac andNAc groups to generate the t-test (Supplementary Figure S2)
and retained the oligonucleotides with p < 0.05 to encode these
significant fragments.

2.5 Model Evaluation and Cross-Validation
We used a five-fold cross-validation method and independent-
testing data to evaluate the predictive performance of the
model. Our evaluation methods included accuracy (Acc),
sensitivity (Sn), specificity (Sp), and Matthews correlation
coefficient (MCC). Acc is used to estimate the prediction
accuracy of the global prediction capability, with values
closer to 100% indicating better overall predictive
performance of a model (Equation 8). Sn and Sp evaluate
the accuracy of the prediction of positive and negative data,
respectively (Equations 9 and 10). When the number of
positive and negative data differs, Acc is not a good
evaluation indicator. MCC is, however, suitable for
assessing a dataset in which there is an imbalance between
positive data and negative data (Equation 11). When the MCC
score is closer to 1, the prediction capability is better; a score
closer to −1 indicates a worse prediction capability.

Acc � TP + TN

TP + FP + TN + FN
(8)

Sn � TP

TP + FN
(9)

Sp � TN

TN + FP
(10)

MCC � (TP × TN) − (FN × FP)
�������������������������������������(TP + FN)(TN + FP)(TP + FP)(TN + FN)√ (11)

2.6 Framework of TIMgo
TIMgo is a two-layer machine learning model constructed for
predicting the effect of a 35S enhancer on the expression of the
target gene (Figure 1). The D453 was divided into a training dataset
(D300) and independent testing data (D153). The DNA sequences of
PROMOTER andMIDDLEwere retrieved for analysis betweenNAc
and Ac genes. In the first-layer module, the support vector machine
(SVM) models were constructed within nine feature-encoding
methods. And the significant sequences were analyzed by
Student’s t-test, and a model of logistic regression was used to
assist in training, which is based on the relationship between
distance from the 35S enhancer to the target gene and states of
gene expression. The features encoded from the PROMOTER region
were weighted by a logical regression model for probability of gene
activation. Then, we adopted feature selection by the LIBSVM built-
in tool in the partial SVMmodels. The prediction results of the first-
layer module were integrated into the second-layer model, and
mRMR (Peng et al., 2005) was used for feature selection and
building the LAD tree model. Finally, we evaluated the prediction
efficacy of TIMgo with the D153 independent-testing dataset.

3 RESULTS

3.1 Correlation Between Gene Activation
and Distance From the 35S Enhancer to
the TLS
The distance between the enhancer and a target gene cannot be
directly used to determine whether the target gene will be

FIGURE 1 | Flow chart of the TIMgo predictive system.
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activated, although it does have some relevance for determining
gene activation (Vandergeest and Hall, 1997; Jagannath et al.,
2001). A target gene is more likely to be activated if it is closer to
the enhancer (Marenduzzo et al., 2007). We characterized each of
the 453 genes in the entire dataset (D453) based on the distance
from the CaMV 35S enhancer on the inserted T-DNA to TLS and
calculated the ratio of Ac genes and NAc genes. We found a
negative correlation between this distance and gene activation.
Genes closer to the 35S enhancer had a greater probability of
activation (p < 0.001) (Supplementary Figure S3). The results
are the same as those indicated in a previous study (Liao et al.,
2019) (Figure 2, Supplementary Table S1).

Among the D453 dataset, there were 94 sets of duplicated data
which consist of multiple genes, and the PROMOTER sequences
corresponding to these genes were identical. Each of the
experimental data in this study represented the effect of a
single insertion event on its target gene. In the experimental
data collected in this study, when the same gene was detected for
multiple T-DNA insertion events, the PROMOTER sequences
from those genes were identical. For different T-DNA insert
events, the 35S enhancer may result in different states of
expression for the same target gene, which will lead to
contradictory results while building the machine learning
model. To distinguish between these PROMOTER sequences,
we used logistic regression to build a regression model of the
distance coefficient and the target gene activation probability
(Supplementary Equation S13). In this study, the values
calculated by logistic regression were used to weight the
promoter sequence feature, so that the same sequence could
be distinguished when quantified based on numerical values.

3.2 Comparison of Kmer and RevKmer
Combined With Motif
In the Kmer and RevKmer feature models, a t-test was used to
calculate the number of occurrences of specific sequence
fragments in Ac and NAc genes, respectively, from sequence

lengths (k) of three to nine nucleotides. The specific sequence
fragments with p < 0.05 were then used for encoding. These
fragments were combined as 3–6, 3–7, 3–8, and, 3–9
combinations for Kmer and RevKmer. The Motif feature was
used to carry out a similar analysis. The Kmer and RevKmer
features associated with the PROMOTER region were combined
with the Motif feature (Supplementary Table S2). The features
from Kmer, RevKmer, Kmer +Motif, and RevKmer + Motif were
used to build SVM models, and the best model was selected for
the second-layer model integration (Supplementary Table S3).

Before combining Motif with Kmer or RevKmer, the Acc
scores of the SVMmodels of Kmer and RevKmer were 55%–85%,
whereas the Acc scores of the Motif models were 52%–75%. After
combining Motif with Kmer or RevKmer, the Acc scores were
78%–86%, and the Acc consistently increased with the k value for
Kmer and RevKmer (Table 3).

3.3 First-Layer Model Evaluation
In the first-layer models, nine feature coding methods and two
types of sequences were used to construct 16 feature models
(Supplementary Table S4). The prediction ability of each feature
model was evaluated with fivefold cross-validation and
independent testing with the D153 data (Table 4). For the
Pse-in-One feature encoding, one gene sequence from the
training dataset (D300) did not conform to the encoding
requirements. Therefore, in the DACC, TACC, and PseKNC
models, this information was removed from the training data,
and the training dataset consisting of the remaining 299 genes
was referred to as D299. The PseKNC models used k values of
2–7, and eight models each were established for the PROMOTER
and MIDDLE sequences. A PseKNC model with k � 6 that was
selected among the PROMOTER models had an Acc of 75.3%
with fivefold cross-validation. The PseKNCmodel with k � 2 that
was selected among the MIDDLE models had an Acc of 59.5%
(Supplementary Table S5).

In the evaluation results of the first-layer featuremodels (Table 4),
the Kmer, RevKmer, Kmer +Motif, and RevKmer +Motif had the
best predictive performance based on the Kmer feature provided.
Their Acc values were 79.0%–88.3% with fivefold cross-validation.
With independent testing, their Acc values were 80.4%–84.3%, with
the exception of RevKmer, which had 67.3%. The PseKNC model
built using the PROMOTER sequence was slightly inferior to the
model built using Kmer-related features. The Acc and MCC values
for PseKNC were 75.3% and 52.9% with cross-validation,
respectively, and 56.2% for Acc and 16.5% for MCC with
independent testing. The DACC, TACC, DNP, CGIs, and TNP
constructed by the PROMOTER sequence and the PseKNC
constructed by the MIDDLE sequence had lower predictive
performance, with Acc values of 58.2%–69.9% and MCC values
of 16.4%–39.8%. Among these 16 models, CGIs and TNP
constructed using the MIDDLE sequence were the least accurate
in cross-validation, with an Acc of ∼47%. Their Acc values for
independent testing were 11.8% and 62.1%, respectively. In terms
of overall predictive performance, the PROMOTER sequence is thus
more important than the MIDDLE sequence, and Kmer, RevKmer,
Kmer +Motif, and RevKmer +Motif features have the highest
correlation with the activation of genes.

FIGURE 2 | Correlation between distance and gene activation. The data
were sorted by the distance between the 35S enhancer and the TLS, and the
ratio of Ac to NAc genes in each group was calculated. The x-axis is the
distance from the 35S enhancer to the TLS of a target gene; the y-axis is
the proportion of Ac and NAc genes in each group.
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3.4 Comprehensive Feature Selection in the
Second-Layer Model
The second-layer model integrated the prediction results from the
16 feature models in the first layer and obtained the ultimate
prediction result by machine learning. The features used in the
second-layer model of this study included predictive results and
positive and negative predictive confidence scores, generating 48
features. We used incremental feature selection and an SVM
model with cross-validation to carry out comprehensive feature
selection among these 48 features to pick out the best feature
combinations with nine feature selection methods. The top 33
features of the mRMR (Peng et al., 2005) were selected as the best
feature combination with the highest Acc and the fewest features
(Figure 3, Supplementary Table S6). Among the 33 selected
features, we knew that the encoding contributed for classification
is Kmer related, DACC was better than PseKNC and TACC, and
CGIs, TNP, and DNP are worse.

3.5 Second-Layer Model Evaluation
We assessed the best-suited machine learning algorithm for the
second-layer model through the WEKA (Holmes et al., 1994)
analysis platform. In this study, we used the 65 algorithms

provided by WEKA to establish the model separately and
evaluated the effectiveness of these models with cross-validation
(Supplementary Table S7). In this experiment, the LADTree
algorithm was used to construct the second-layer integration
model according to the above conditions. The Acc was 99.3%,
MCC was 98.7%, and Sn and Sp were 99.3%. In independent
testing, the model Acc reached 85.6%, MCC was 35.3%, Sn was
89.1%, and Sp was 53.3%. Among the testing data, there were only 15
negative data, such that each predictive result with these data would
lead to a substantial impact on the overall predictive effectiveness
assessment. Among these models built with multiple algorithms, Sp
values ranged from 46.7% to 73.3%, which corresponded to a
difference of only six correctly predicted negative data.

3.6 Correlation Between Predictive
Accuracy and Distance From the 35S
Enhancer to TLS
To analyze the relationship between distance and TIMgo prediction
accuracy, the training dataset and independent-testing dataset were
grouped according to the distance between the TLS and 35S enhancer
(Figure 4). In cross-validation, Acc was 99.3%, and predictions for

TABLE 3 | Data distribution of the training dataset and independent-testing dataset.

Feature ka Without motif With motif

Sp (%) Sn (%) Acc (%) MCC (%) AUC (%) Sp (%) Sn (%) Acc (%) MCC (%) AUC (%)

Kmer 6 72.7 66.0 69.3 38.8 79.0 79.3 77.3 78.3 56.7 88.1
7 86.7 73.3 80.0 60.5 89.1 83.3 78.7 81.0 62.1 89.7
8 75.3 35.3 55.3 11.6 65.3 83.3 84.7 84.0 68.0 93.6
9 84.7 85.3 85.0 70.0 93.2 86.7 85.3 86.0 72.0 93.7

RevKmer 6 71.3 60.7 66.0 32.2 72.7 78.0 77.3 77.7 55.3 85.7
7 84.7 76.0 80.3 60.9 87.9 79.3 77.3 78.3 56.7 88.1
8 77.3 32.7 55.0 11.2 64.9 84.0 80.0 82.0 64.1 91.5
9 74.7 88.0 81.3 63.2 90.6 84.0 84.7 84.3 68.7 92.9

ak refers to the maximum k value used in Kmer and RevKmer, with a range of 3-k nucleotides in length for each analysis.

TABLE 4 | Performance of the first-layer features with the SVM models.

Feature
encoding

Sequence Cross-validation Independent testing

Sp (%) Sn (%) Acc (%) MCC (%) AUC (%) Sp (%) Sn (%) Acc (%) MCC (%) AUC (%)

CGIs PROMOTER 71.3 48.7 60.0 20.5 58.5 53.3 40.6 41.8 −3.7 48.2
MIDDLE 77.3 18.0 47.7 −5.8 47.2 100.0 2.2 11.8 4.7 65.0

DNP PROMOTER 56.0 64.7 60.3 20.7 64.3 26.7 71.7 67.3 −1.1 45.1
MIDDLE 59.3 62.0 60.7 21.3 60.0 60.0 53.6 54.3 8.1 48.7

TNP PROMOTER 56.0 61.3 58.7 17.4 62.2 53.3 68.1 66.7 13.5 57.4
MIDDLE 64.7 30.0 47.3 −5.7 47.4 26.7 65.9 62.1 −4.7 45.0

Kmer + Motif PROMOTER 86.7 85.3 86.0 72.0 93.7 73.3 85.5 84.3 43.5 79.1
RevKmer + Motif PROMOTER 84.0 84.7 84.3 68.7 92.9 73.3 81.2 80.4 37.8 83.6
Kmer MIDDLE 92.0 84.7 88.3 76.9 94.2 66.7 86.2 84.3 40.1 86.4
RevKmer MIDDLE 85.3 72.7 79.0 58.5 88.2 53.3 68.8 67.3 14.0 66.5
DACC PROMOTER 67.1 72.7 69.9 39.8 78.6 46.7 59.4 58.2 3.7 54.6

MIDDLE 76.5 58.0 67.2 35.1 74.1 53.3 49.3 49.7 1.6 47.5
TACC PROMOTER 60.4 58.0 59.2 18.4 60.3 13.3 63.0 58.2 −14.8 41.6

MIDDLE 59.7 56.7 58.2 16.4 57.8 46.7 45.7 45.8 −4.6 45.1
PseKNC PROMOTER 89.9 60.7 75.3 52.9 84.5 73.3 54.3 56.2 16.5 59.1

MIDDLE 56.4 52.7 59.5 19.1 61.7 66.7 58.0 58.8 14.7 54.5
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only two genes were incorrect (Table 5); these two genes were
10–15 kb away from the 35S enhancer. In independent testing,
the prediction accuracy for genes within 20 kb from the 35S
enhancer was >84%. For genes located >20 kb from the 35S
enhancer, the prediction accuracy decreased with increasing
distance but still was >60% (Table 6).

4 DISCUSSION

4.1 Comparison of the Framework Between
TIMgo and EAT-Rice
In a previous study, the PROMOTER region for most genes
was defined as the upstream region from the transcription

start site (TSS) (Chang et al., 2008). For the EAT-Rice
analysis, however, as the collected gene data had
information about only the TLS, the PROMOTER region,
including the upstream sequence of the TSS, was based on a
1,000-bp region upstream of the TLS. The upstream sequence
of the TSS contains the 5′ untranslated region of the mRNA,
and sequences downstream of the TSS may also be involved
with transcription factor regulation of gene expression
(Heyndrickx et al., 2014). Given an average length of
500 bp for 5′ untranslated regions in rice and the 1,000 bp
upstream of the TSS as the condition, we used the 1,500-bp
sequence upstream of the TLS as the PROMOTER region in
this study.

For our prediction models, we retained the EAT-Rice CGIs
and DNP (dinucleotide conformation and physicochemical
properties encoding) and increased the TNP coding with the
DNP coding concept. We also used the Pse-in-One tool to
generate codes for DACC, TACC, and PseKNC. Given the
strand specificity of Kmer, we added RevKmer coding, and the
Motif coding of the PROMOTER region was combined with
Kmer and with RevKmer. The ranges of overall predictive
accuracy for Kmer + Motif and RevKmer + Motif models were
small, which indicated that Motif was complementary with
Kmer and RevKmer, and the combination of these two features
could improve the classification ability. Predictive accuracy
increased with the length of k for both Kmer and RevKmer,
because that Motif feature consisted of experimentally
validated regulatory sequences, but the number of proven
regulatory sequences in plants is limited, whereas Kmer and
RevKmer considered all the sequence combinations that
provided higher data integrity than Motif, so using longer
Kmer and RevKmer should lead to better prediction

FIGURE 3 | Accuracy trend in the second-layer feature selection.

FIGURE 4 | Accuracy trend of TIMgo for cross-validation and
independent testing of data within different distances. Train represents the
Acc from fivefold cross-validation with D299. Test represents the Acc from
independent testing with D153. The x-axis indicates each distance
interval, and the y-axis indicates the predictive accuracy.
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performance. Although Kmer and RevKmer had higher data
integrity than Motif, the complexity of the Kmer and RevKmer
data increased exponentially with the increase in sequence
length, resulting in processing time that was too lengthy.
Therefore, we used Kmer (and RevKmer) with limited k
length and retained Motif with longer sequences, to
preserve important regulatory sequence data and reduce the
computational complexity significantly.

4.2 Specific Regulatory Sequences Within
Genes Activated by the 35S Enhancer
To find out whether a specific regulatory sequence was related to
gene activation in the T-DNA insertion mutants, we analyzed the
2,087 motifs with a t-test. We found that there were 181 regulatory
sequences that had significant difference in their occurrence
frequency between Ac and NAc genes. Among these 181
regulatory sequences, 20 were G-box and G-box-related
sequences. The G-box contains a core region, CACGTG, and
flanking sequences that are composed of other nucleotides. The
G-box-binding protein has different binding preferences and
affinities according to the different flanking sequences in the
G-box. bZIP (basic region/leucine zipper) transcription factors
account for the majority of G-box-binding proteins.
Transcription regulation in plants is often affected by G-box
sequences, such as stress hormones (e.g., abscisic acid), seed
germination, protein storage, and light response (Marcotte et al.,
1989; Donald and Cashmore, 1990; Mason et al., 1993). Thus, the
G-box may have important biological significance in the regulation
of gene expression by the 35S enhancer and may affect whether the
35S enhancer will activate a target gene in rice.

4.3 Correlation Between Length of
Sequence and Nucleotide Length
Parameter
In the feature coding of TIMgo, the coding of Kmer, RevKmer,
and PseKNC can be adjusted based on the nucleotide length
parameter (k). We needed to find a suitable nucleotide length
parameter for encoding. For these three kinds of coding, the k

value selected for the PROMOTER region was greater than that
for the MIDDLE region. A higher value for k results in a higher
number of features being generated, which requires more
features to be improved to increase the predictive accuracy of
the PROMOTER region, relative to the MIDDLE region. Thus,
an excessive number of features would reduce the predictive
performance of the model. From the optimal k value for the
MIDDLE sequence, we could see that a higher number of
features did not necessarily make the classification better. By
comparing the optimal k value selected for the PROMOTER and
MIDDLE regions, we note that a longer sequence does seem to
require more features to make the classification better.
Moreover, among the local, global, and local + global
sequence characteristics used to build the TIMgo, the local
sequences had a greater contribution with respect to
identifying activation of the target genes (Table 4).

4.4 Performance Comparison of TIMgo and
EAT-Rice
To confirm that themodel constructed by the framework of TIMgo is
superior to that of EAT-Rice, the training dataset and testing dataset
used to develop EAT-Rice were used to build models in the TIMgo
framework and to evaluate TIMgo by comparing their predictive
performance. The training dataset used with EAT-Rice had data for
280 validated genes, and these 280 data points were separated into
two subsets (subset1 and subset2) with 180 validated genes (Liao,
et al., 2019). The independent-testing dataset used with EAT-Rice
had 48 validated genes. Two training datasets (subset1 and subset2)
were used to build training models within the framework of TIMgo,
and the predictive efficacy of EAT-Rice and TIMgo was evaluated
with an independent-testing dataset consisting of an additional 48
validated genes (Table 7). With the use of subset1 as the training
dataset and of the EAT-Rice system to establish themodel, the Acc in
the independent testing was 72.9%, the Acc for TIMgo was 79.2%,
and the Sp value of TIMgo was 12.8% higher than that of EAT-Rice.
With subset2 as the training dataset, theAccwith independent testing
was 77.1% for EAT-Rice and 77.6% for TIMgo. In the case of using
the same training dataset and testing dataset, the accuracy of the
TIMgo framework is better than that of EAT-Rice.

TABLE 5 | Performance of the LADTree model in the second-layer.

TP FP TN FN Sn (%) Sp (%) Acc (%) MCC (%)

Cross-validation 149 1 148 1 99.3 99.3 99.3 98.7
Independent testing 123 7 8 15 89.1 53.3 85.6 35.3

TABLE 6 | Predictive accuracy of TIMgo for different distance groups.

Distance from the 35S enhancer (kb)

Dataset 0–2 2–5 5–10 10–15 15–20 20–25 >25

Training set 100.0% 100.0% 100.0% 97.0% 100.0% 100.0% 100.0%
Testing set 89.0% 91.0% 84.0% 86.0% 93.0% 71.0% 60.0%
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5 CONCLUSION

In this study, we analyzed the DNA sequence and constructed
a two-layer model system using the machine learning method
to predict whether the 35S enhancer would affect the
expression of a target gene in T-DNA insertion mutants.
The first layer of the system was built with the
PROMOTER and MIDDLE sequences and was encoded
using nine features. We analyzed significant sequence
fragments in Motif, Kmer, and RevKmer and weighted the
PROMOTER based on a logistic regression analysis of the
distance between the 35S enhancer and the TLS of each gene.
Some of the first-layer SVM models were built with LIBSVM
feature selection. The second-layer model used the mRMR
feature selection tool to select the predicted values from the 16
models in the first layer, and these were integrated with the
LADTree algorithm as the second-layer model. The predictive
performance of TIMgo had Acc of 99.3% and 85.6% with
cross-validation and with independent testing, respectively.
TIMgo can more accurately predict the activation of genes
located within 20 kb of the 35S enhancer. We analyzed the
2,087 motifs and found that there was a significant difference
in the frequency of G-box sequences between Ac and NAc
genes, suggesting that the G-box may play an important role
in the activation mechanism of 35S enhancer genes. Our
model has improved the predictive ability of determining
target gene activation based on the CaMV 35S enhancer in
rice T-DNA insertion mutants.

DATA AVAILABILITY STATEMENT

The original contributions presented in the study are included in
the article/Supplementary Material, further inquiries can be
directed to the corresponding author.

AUTHOR CONTRIBUTIONS

C-HC and L-YH contributed to data collection, design of
experimental processes, and system architecture. J-JC drafted
the manuscript. S-FL and L-JC supported the experimental
data and data interpretation. C-CL and Y-WC conceived of
the study goal, supervised the study, and provided advice with
respect to the study direction. All authors read and approved the
manuscript.

FUNDING

This research was supported by (1) the Ministry of Science and
Technology, Taiwan, under grant number 110-2221-E-005-062-
MY3; (2) the Ministry of Science and Technology, Taiwan, under
grant number 110-2321-B-005-005; and (3) National Chung
Hsing University and Changhua Christian Hospital:
NCHU-CCH 11006.

ACKNOWLEDGMENTS

This work was supported in part by the Advanced Plant
Biotechnology Center from the Featured Areas Research
Center Program within the framework of the Higher
Education Sprout Project by the Ministry of Education (MOE)
in Taiwan.

SUPPLEMENTARY MATERIAL

The SupplementaryMaterial for this article can be found online at:
https://www.frontiersin.org/articles/10.3389/fgene.2021.798107/
full#supplementary-material

REFERENCES

Akbani, R., Kwek, S., and Japkowicz, N. (2004). Applying Support Vector Machines
to Imbalanced Datasets. Machine Learn. Ecml 2004, Proc. 3201, 39–50.
doi:10.1007/978-3-540-30115-8_7

Antequera, F., Boyes, J., and Bird, A. (1990). High Levels of De Novo Methylation
and Altered Chromatin Structure at CpG Islands in Cell Lines. Cell 62, 503–514.
doi:10.1016/0092-8674(90)90015-7

Beer, M. A., and Tavazoie, S. (2004). Predicting Gene Expression from Sequence.
Cell 117, 185–198. doi:10.1016/s0092-8674(04)00304-6

Boros, E., Crama, Y., Hammer, P. L., Ibaraki, T., Kogan, A., and Makino, K. (2011).
Logical Analysis of Data: Classification with Justification. Ann. Oper. Res. 188,
33–61. doi:10.1007/s10479-011-0916-1

Chang, C. C., and Lin, C. J. (2011). LIBSVM:A Library for Support VectorMachines.Acm
Trans. Intell. Syst. Techn. 2, 1–27. doi:10.1145/1961189.1961199

Chang, W.-C., Lee, T.-Y., Huang, H.-D., Huang, H.-Y., and Pan, R.-L. (2008).
PlantPAN: Plant Promoter Analysis Navigator, for Identifying Combinatorial
Cis-Regulatory Elements with Distance Constraint in Plant Gene Groups. BMC
Genomics 9, 561. doi:10.1186/1471-2164-9-561

Chen, W., Zhang, X., Brooker, J., Lin, H., Zhang, L., and Chou, K.-C. (2015).
PseKNC-General: a Cross-Platform Package for Generating Various Modes of
Pseudo Nucleotide Compositions. Bioinformatics 31, 119–120. doi:10.1093/
bioinformatics/btu602

Donald, R. G., and Cashmore, A. R. (1990). Mutation of Either G Box or I Box
Sequences Profoundly Affects Expression from the Arabidopsis rbcS-1A
Promoter. EMBO J. 9, 1717–1726. doi:10.1002/j.1460-
2075.1990.tb08295.x

TABLE 7 | Comparison of TIMgo and EAT-Rice with independent-testing evaluation.

System Subset1 Subset2

Sp (%) Sn (%) Acc (%) AUC (%) Sp (%) Sn (%) Acc (%) AUC (%)

EAT-Rice 59.1 84.6 72.9 79.4 59.1 92.3 77.1 83.2
TIMgo 72.7 84.6 79.2 87.4 78.3 76.7 77.6 84.4

Frontiers in Genetics | www.frontiersin.org December 2021 | Volume 12 | Article 79810710

Chien et al. Rice Target Gene Expression Prediction

155

https://www.frontiersin.org/articles/10.3389/fgene.2021.798107/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fgene.2021.798107/full#supplementary-material
https://doi.org/10.1007/978-3-540-30115-8_7
https://doi.org/10.1016/0092-8674(90)90015-7
https://doi.org/10.1016/s0092-8674(04)00304-6
https://doi.org/10.1007/s10479-011-0916-1
https://doi.org/10.1145/1961189.1961199
https://doi.org/10.1186/1471-2164-9-561
https://doi.org/10.1093/bioinformatics/btu602
https://doi.org/10.1093/bioinformatics/btu602
https://doi.org/10.1002/j.1460-2075.1990.tb08295.x
https://doi.org/10.1002/j.1460-2075.1990.tb08295.x
https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


Fang, R. X., Nagy, F., Sivasubramaniam, S., and Chua, N. H. (1989). Multiple Cis
Regulatory Elements for Maximal Expression of the Cauliflower Mosaic Virus
35S Promoter in Transgenic Plants. Plant Cell 1, 141–150. doi:10.1105/
tpc.1.1.141

Friedel, M., Nikolajewa, S., Sühnel, J., and Wilhelm, T. (2009). DiProDB: a
Database for Dinucleotide Properties. Nucleic Acids Res. 37, D37–D40.
doi:10.1093/nar/gkn597

Grant, C. E., Bailey, T. L., and Noble, W. S. (2011). FIMO: Scanning for
Occurrences of a Given Motif. Bioinformatics 27, 1017–1018. doi:10.1093/
bioinformatics/btr064

Guo, Y., Yu, L., Wen, Z., and Li, M. (2008). Using Support Vector Machine
Combined with Auto Covariance to Predict Protein-Protein Interactions
from Protein Sequences. Nucleic Acids Res. 36, 3025–3030. doi:10.1093/
nar/gkn159

Gupta, S., Dennis, J., Thurman, R. E., Kingston, R., Stamatoyannopoulos, J. A.,
and Noble, W. S. (2008). Predicting Human Nucleosome Occupancy from
Primary Sequence. Plos Comput. Biol. 4, e1000134. doi:10.1371/
journal.pcbi.1000134

Heyndrickx, K. S., de Velde, J. V., Wang, C., Weigel, D., and Vandepoele, K.
(2014). A Functional and Evolutionary Perspective on Transcription Factor
Binding in Arabidopsis thaliana. Plant Cell 26, 3894–3910. doi:10.1105/
tpc.114.130591

Higo, K., Ugawa, Y., Iwamoto, M., and Korenaga, T. (1999). Plant Cis-Acting
Regulatory DNA Elements (PLACE) Database: 1999. Nucleic Acids Res. 27,
297–300. doi:10.1093/nar/27.1.297

Holmes, G., Donkin, A., and Witten, I. H. (1994). “Weka: A Machine Learning
Workbench,” in Proceedings of ANZIIS ’94 - Australian New Zealnd Intelligent
Information Systems Conference, Brisbane, QLD, Australia, 29 Nov.-2 Dec.
1994 (IEEE), 357–361.

Hsing, Y.-I., Chern, C.-G., Fan, M.-J., Lu, P.-C., Chen, K.-T., Lo, S.-F., et al. (2007).
A rice Gene Activation/knockout Mutant Resource for High Throughput
Functional Genomics. Plant Mol. Biol. 63, 351–364. doi:10.1007/s11103-006-
9093-z

Huang, S., Cerny, R. E., Bhat, D. S., and Brown, S. M. (2001). Cloning of an
Arabidopsis Patatin-like Gene, STURDY, by Activation T-DNA Tagging.
Plant Physiol. 125, 573–584. doi:10.1104/pp.125.2.573

Ichikawa, T., Nakazawa, M., Kawashima, M., Muto, S., Gohda, K., Suzuki,
K., et al. (2003). Sequence Database of 1172 T-DNA Insertion Sites in
Arabidopsis Activation-Tagging Lines that Showed Phenotypes in T1
Generation. Plant J. 36, 421–429. doi:10.1046/j.1365-
313x.2003.01876.x

IRGSP (2005). TheMap-Based Sequence of the rice Genome.Nature 436, 793–800.
doi:10.1038/nature03895

Jagannath, A., Bandyopadhyay, P., Arumugam, N., Gupta, V., Burma, P. K., and
Pental, D. (2001). The Use of a Spacer DNA Fragment Insulates the Tissue-
specific Expression of a Cytotoxic Gene (Barnase) and Allows High-
Frequency Generation of Transgenic Male Sterile Lines in Brassica Juncea
L. Mol. Breed. 8, 11–23. doi:10.1023/a:1011916216191

Jeon, J.-S., Lee, S., Jung, K.-H., Jun, S.-H., Jeong, D.-H., Lee, J., et al. (2000). T-DNA
Insertional Mutagenesis for Functional Genomics in rice. Plant J. 22, 561–570.
doi:10.1046/j.1365-313x.2000.00767.x

Jeong, D.-H., An, S., Kang, H.-G., Moon, S., Han, J.-J., Park, S., et al. (2002). T-DNA
Insertional Mutagenesis for Activation Tagging in rice. Plant Physiol. 130,
1636–1644. doi:10.1104/pp.014357

Kardailsky, I., Shukla, V. K., Ahn, J. H., Dagenais, N., Christensen, S. K., Nguyen,
J. T., et al. (1999). Activation Tagging of the floral Inducer FT. Science 286,
1962–1965. doi:10.1126/science.286.5446.1962

Lee, D., Karchin, R., and Beer, M. A. (2011). Discriminative Prediction of Mammalian
Enhancers from DNA Sequence. Genome Res. 21, 2167–2180. doi:10.1101/
gr.121905.111

Li, G., Ruan, X., Auerbach, R. K., Sandhu, K. S., Zheng, M., Wang, P., et al.
(2012). Extensive Promoter-Centered Chromatin Interactions Provide a
Topological Basis for Transcription Regulation. Cell 148, 84–98.
doi:10.1016/j.cell.2011.12.014

Liao, C.-C., Chen, L.-J., Lo, S.-F., Chen, C.-W., and Chu, Y.-W. (2019). EAT-
Rice: A Predictive Model for Flanking Gene Expression of T-DNA
Insertion Activation-Tagged rice Mutants by Machine Learning

Approaches. Plos Comput. Biol. 15, e1006942. doi:10.1371/
journal.pcbi.1006942

Lin, H., Deng, E.-Z., Ding, H., Chen, W., and Chou, K.-C. (2014). iPro54-
PseKNC: a Sequence-Based Predictor for Identifying Sigma-54 Promoters
in Prokaryote with Pseudo K-Tuple Nucleotide Composition. Nucleic Acids
Res. 42, 12961–12972. doi:10.1093/nar/gku1019

Liu, B., Liu, F., Wang, X., Chen, J., Fang, L., and Chou, K.-C. (2015). Pse-in-One: a
Web Server for Generating Various Modes of Pseudo Components of DNA,
RNA, and Protein Sequences. Nucleic Acids Res. 43, W65–W71. doi:10.1093/
nar/gkv458

Marcotte, W. R., Jr., Russell, S. H., and Quatrano, R. S. (1989). Abscisic Acid-
Responsive Sequences from the Em Gene of Wheat. Plant Cell 1, 969–976.
doi:10.1105/tpc.1.10.969

Marenduzzo, D., Faro-Trindade, I., and Cook, P. R. (2007). What Are the
Molecular Ties that Maintain Genomic Loops? Trends Genet. 23, 126–133.
doi:10.1016/j.tig.2007.01.007

Mason, H. S., Dewald, D. B., and Mullet, J. E. (1993). Identification of a Methyl
Jasmonate-Responsive Domain in the Soybean vspB Promoter. Plant Cell 5,
241–251. doi:10.1105/tpc.5.3.241

Noble, W. S., Kuehn, S., Thurman, R., Yu, M., and Stamatoyannopoulos, J.
(2005). Predicting the In Vivo Signature of Human Gene Regulatory
Sequences. Bioinformatics 21 (Suppl. 1), i338–43. doi:10.1093/
bioinformatics/bti1047

Odell, J. T., Nagy, F., and Chua, N.-H. (1985). Identification of DNA Sequences
Required for Activity of the Cauliflower Mosaic Virus 35S Promoter. Nature
313, 810–812. doi:10.1038/313810a0

Ohan, N. W., and Heikkila, J. J. (1993). Reverse Transcription-Polymerase Chain
Reaction: an Overview of the Technique and its Applications. Biotechnol. Adv.
11, 13–29. doi:10.1016/0734-9750(93)90408-f

Ouyang, S., Zhu, W., Hamilton, J., Lin, H., Campbell, M., Childs, K., et al. (2007).
The TIGR Rice Genome Annotation Resource: Improvements and New
Features. Nucleic Acids Res. 35, D883–D887. doi:10.1093/nar/gkl976

Peng, H., Fuhui Long, F., and Ding, C. (2005). Feature Selection Based on Mutual
Information Criteria of max-dependency, max-relevance, and Min-
Redundancy. IEEE Trans. Pattern Anal. Machine Intell. 27, 1226–1238.
doi:10.1109/tpami.2005.159

Ray, D. K., Mueller, N. D., West, P. C., and Foley, J. A. (2013). Yield Trends Are
Insufficient to Double Global Crop Production by 2050. PLoS One 8, e66428.
doi:10.1371/journal.pone.0066428

Ren, S., Johnston, J. S., Shippen, D. E., and Mcknight, T. D. (2004).
TELOMERASE ACTIVATOR1 Induces Telomerase Activity and
Potentiates Responses to Auxin in Arabidopsis. Plant Cell 16,
2910–2922. doi:10.1105/tpc.104.025072

Sakata, K., Nagamura, Y., Numa, H., Antonio, B. A., Nagasaki, H., Idonuma,
A., et al. (2002). RiceGAAS: an Automated Annotation System and
Database for rice Genome Sequence. Nucleic Acids Res. 30, 98–102.
doi:10.1093/nar/30.1.98

Singer, S. D., Cox, K. D., and Liu, Z. (2010). Both the Constitutive Cauliflower
Mosaic Virus 35S and Tissue-specific AGAMOUS Enhancers Activate
Transcription Autonomously in Arabidopsis thaliana. Plant Mol. Biol. 74,
293–305. doi:10.1007/s11103-010-9673-9

Singer, S. D., Cox, K. D., and Liu, Z. (2011). Enhancer-promoter Interference and
its Prevention in Transgenic Plants. Plant Cel Rep 30, 723–731. doi:10.1007/
s00299-010-0977-7

Stewart, A. J., Hannenhalli, S., and Plotkin, J. B. (2012). Why Transcription Factor
Binding Sites Are Ten Nucleotides Long. Genetics 192, 973–985. doi:10.1534/
genetics.112.143370

van der Geest, A. H. M., and Hall, T. C. (1997). The Beta-Phaseolin 5’ Matrix
Attachment Region Acts as an Enhancer Facilitator. Plant Mol. Biol. 33,
553–557. doi:10.1023/a:1005765525436

Volpe, T. A., Kidner, C., Hall, I. M., Teng, G., Grewal, S. I. S., and Martienssen,
R. A. (2002). Regulation of Heterochromatic Silencing and Histone
H3 Lysine-9 Methylation by RNAi. Science 297, 1833–1837. doi:10.1126/
science.1074973

Weigel, D., Ahn, J. H., Bla´zquez, M. A., Borevitz, J. O., Christensen, S. K.,
Fankhauser, C., et al. (2000). Activation Tagging in Arabidopsis. Plant
Physiol. 122, 1003–1014. doi:10.1104/pp.122.4.1003

Frontiers in Genetics | www.frontiersin.org December 2021 | Volume 12 | Article 79810711

Chien et al. Rice Target Gene Expression Prediction

156

https://doi.org/10.1105/tpc.1.1.141
https://doi.org/10.1105/tpc.1.1.141
https://doi.org/10.1093/nar/gkn597
https://doi.org/10.1093/bioinformatics/btr064
https://doi.org/10.1093/bioinformatics/btr064
https://doi.org/10.1093/nar/gkn159
https://doi.org/10.1093/nar/gkn159
https://doi.org/10.1371/journal.pcbi.1000134
https://doi.org/10.1371/journal.pcbi.1000134
https://doi.org/10.1105/tpc.114.130591
https://doi.org/10.1105/tpc.114.130591
https://doi.org/10.1093/nar/27.1.297
https://doi.org/10.1007/s11103-006-9093-z
https://doi.org/10.1007/s11103-006-9093-z
https://doi.org/10.1104/pp.125.2.573
https://doi.org/10.1046/j.1365-313x.2003.01876.x
https://doi.org/10.1046/j.1365-313x.2003.01876.x
https://doi.org/10.1038/nature03895
https://doi.org/10.1023/a:1011916216191
https://doi.org/10.1046/j.1365-313x.2000.00767.x
https://doi.org/10.1104/pp.014357
https://doi.org/10.1126/science.286.5446.1962
https://doi.org/10.1101/gr.121905.111
https://doi.org/10.1101/gr.121905.111
https://doi.org/10.1016/j.cell.2011.12.014
https://doi.org/10.1371/journal.pcbi.1006942
https://doi.org/10.1371/journal.pcbi.1006942
https://doi.org/10.1093/nar/gku1019
https://doi.org/10.1093/nar/gkv458
https://doi.org/10.1093/nar/gkv458
https://doi.org/10.1105/tpc.1.10.969
https://doi.org/10.1016/j.tig.2007.01.007
https://doi.org/10.1105/tpc.5.3.241
https://doi.org/10.1093/bioinformatics/bti1047
https://doi.org/10.1093/bioinformatics/bti1047
https://doi.org/10.1038/313810a0
https://doi.org/10.1016/0734-9750(93)90408-f
https://doi.org/10.1093/nar/gkl976
https://doi.org/10.1109/tpami.2005.159
https://doi.org/10.1371/journal.pone.0066428
https://doi.org/10.1105/tpc.104.025072
https://doi.org/10.1093/nar/30.1.98
https://doi.org/10.1007/s11103-010-9673-9
https://doi.org/10.1007/s00299-010-0977-7
https://doi.org/10.1007/s00299-010-0977-7
https://doi.org/10.1534/genetics.112.143370
https://doi.org/10.1534/genetics.112.143370
https://doi.org/10.1023/a:1005765525436
https://doi.org/10.1126/science.1074973
https://doi.org/10.1126/science.1074973
https://doi.org/10.1104/pp.122.4.1003
https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


Yang, Y., Li, Y., and Wu, C. (2013). Genomic Resources for Functional Analyses of
the rice Genome. Curr. Opin. Plant Biol. 16, 157–163. doi:10.1016/
j.pbi.2013.03.010

Yuan, Q., Ouyang, S., Liu, J., Suh, B., Cheung, F., Sultana, R., et al. (2003). The
TIGR rice Genome Annotation Resource: Annotating the rice Genome and
Creating Resources for Plant Biologists. Nucleic Acids Res. 31, 229–233.
doi:10.1093/nar/gkg059

Yuan, Y., Guo, L., Shen, L., and Liu, J. S. (2007). PredictingGeneExpression fromSequence: a
Reexamination. Plos Comput. Biol. 3, e243. doi:10.1371/journal.pcbi.0030243

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations, or those of
the publisher, the editors, and the reviewers. Any product that may be evaluated in
this article, or claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Copyright © 2021 Chien, Huang, Lo, Chen, Liao, Chen and Chu. This is an open-
access article distributed under the terms of the Creative Commons Attribution
License (CC BY). The use, distribution or reproduction in other forums is permitted,
provided the original author(s) and the copyright owner(s) are credited and that the
original publication in this journal is cited, in accordance with accepted academic
practice. No use, distribution or reproduction is permitted which does not comply
with these terms.

Frontiers in Genetics | www.frontiersin.org December 2021 | Volume 12 | Article 79810712

Chien et al. Rice Target Gene Expression Prediction

157

https://doi.org/10.1016/j.pbi.2013.03.010
https://doi.org/10.1016/j.pbi.2013.03.010
https://doi.org/10.1093/nar/gkg059
https://doi.org/10.1371/journal.pcbi.0030243
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


SNAREs-SAP: SNARE Proteins
Identification With PSSM Profiles
Zixiao Zhang1*, Yue Gong1, Bo Gao2, Hongfei Li 1, Wentao Gao1, Yuming Zhao1* and
Benzhi Dong1*

1College of Information and Computer Engineering, Northeast Forestry University, Harbin, China, 2Department of Radiology, The
Second Affiliated Hospital, Harbin Medical University, Harbin, China

Soluble N-ethylmaleimide sensitive factor activating protein receptor (SNARE) proteins are
a large family of transmembrane proteins located in organelles and vesicles. The important
roles of SNARE proteins include initiating the vesicle fusion process and activating and
fusing proteins as they undergo exocytosis activity, and SNARE proteins are also vital for
the transport regulation of membrane proteins and non-regulatory vesicles. Therefore,
there is great significance in establishing a method to efficiently identify SNARE proteins.
However, the identification accuracy of the existing methods such as SNARE CNN is not
satisfied. In our study, we developed a method based on a support vector machine (SVM)
that can effectively recognize SNARE proteins. We used the position-specific scoring
matrix (PSSM) method to extract features of SNARE protein sequences, used the support
vector machine recursive elimination correlation bias reduction (SVM-RFE-CBR) algorithm
to rank the importance of features, and then screened out the optimal subset of feature
data based on the sorted results. We input the feature data into the model when building
the model, used 10-fold crossing validation for training, and tested model performance by
using an independent dataset. In independent tests, the ability of our method to identify
SNARE proteins achieved a sensitivity of 68%, specificity of 94%, accuracy of 92%, area
under the curve (AUC) of 84%, and Matthew’s correlation coefficient (MCC) of 0.48. The
results of the experiment show that the common evaluation indicators of our method are
excellent, indicating that our method performs better than other existing classification
methods in identifying SNARE proteins.

Keywords: SNARE proteins, position-specific scoring matrix, machine learning, support vector machine, SVM-
RFE-CBR

1 INTRODUCTION

N-ethylmaleimide sensitive factor (NSF) (Whiteheart et al., 2001) protein and soluble NSF
attachment proteins (SNAPS) (Whiteheart et al., 1993) are two essential factors for protein
transport between membranes (Hohl et al., 1998) (Hanson et al., 1997). They were first
discovered as essential proteins for protein transport from donor to receptor subcellular
structures during the processes of Golgi modification and secretion. The discovery of these two
proteins led to the discovery of multiple receptor proteins on transport vesicles and plasma
membranes and snap receptors, which are collectively called soluble N-ethylmaleimide-sensitive
factor activating protein receptor (SNARE) proteins (Ungar and Hughson, 2003; Zhao et al., 2019).
According to the SNARE theory, exocytosis and secretory processes are completed by precise
coordination between SNARE proteins. The specificity of membrane fusion is based on the specific
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binding of SNARE protein members. At the molecular level,
when the transport vesicle is close to the target membrane,
syntaxin1A/B on the target membrane receives a signal to
recognize, approach and combine with SNAP25, which is also
located on the target membrane. At the same time, VAMP2
(q-snare) on the transport vesicle also recognizes (Kweon et al.,
2003), draws close to and binds to form a 7S R-Q-SNARE
complex, which guides the attachment and fusion of the
transport vesicle and the target membrane, leading to the
secretion of substances in the transport vesicle into the new
subcellular structure or out of the cell through exocytosis,
completing the intracellular transport and extracellular
exocytosis and secretion processes.

The binding sites of SNARE proteins are specific, which is the
reason for the specificity and precision of exocytosis and secretion in
different organisms and organs (Fasshauer et al., 1998; Yin et al.,
2021). SNARE theory convincingly explains the key role of synapses
in the process of nerve impulse transmission at the molecular level
(Chen and Scheller, 2001). Its new insights in the fields of molecular
neurobiology and endocrinology have made research on SNARE
proteins a hot spot in the basic life sciences worldwide. Such
findings greatly enrich understanding of the regulation of
intracellular information transmission, substance transport and
exocytosis and secretion at the molecular level and improve
knowledge of the interaction between proteins and the plasma
membrane (Liu et al., 2019a; Wang et al., 2020a; Xu et al., 2021).

Due to the important roles of SNARE proteins in cell biology,
research on SNARE proteins is also developing, and a variety of
technologies are used to study SNARE proteins (Wang et al.,
2020b; Yin et al., 2020), including the establishment of a SNARE
protein database, the retrieval and classification of SNARE
proteins, bioinformatics technology that was used to predict
the role of SNARE proteins, and construction of a neural
network model to recognize SNARE proteins.

With the development of computational biology, the application
of machine learning to bioinformatics continues to be deep and
widespread (Jiang et al., 2013; Tao et al., 2020; Zhao et al., 2021).
Machine learning is complex and cross disciplinary across multiple
fields (Cheng, 2020). Machine learning obtains new knowledge
through learning from pre-existing knowledge and can
continuously advance itself based on large quantities of this pre-
existing knowledge and skills. Research onmachine learning includes
the study of computer algorithms, using data and previous techniques
to improve the performance of computer algorithms. Machine
learning also has significant implications for the development of
artificial intelligence, through which computers continuously
progress along a path of constant intelligence. A typical way to
predict proteins is to transform each protein sequence into a
numerical eigenvector used to represent the protein sequence,
training a classification model based on the eigenvectors of the
training samples and the labels. After feature construction, the
classifiers that make predictions about proteins include covariant
discriminant (CD) (Chou, 2000), support vector machine (SVM)
(Hua and Sun, 2001), K-nearest neighbor (KNN) (Shen and Chou,
2006), deep learning and ensemble classifiers (Shen and Chou, 2006).

In this study, based on SVM classifier (Liu et al., 2010), we
constructed a model to recognize SNARE proteins. We use

position-specific scoring matrix (PSSM) profiles of protein
sequences to extract features (Kumar et al., 2008), process the
feature data by the min-max normalization method, build a
model based on SVM, train the model with 10-fold cross
validation and measure the performance of the model on an
independent dataset.

2 MATERIALS AND METHODS

We developed a method to recognize SNARE proteins based on
PSSM (Chou and Shen, 2007; Liu et al., 2019b; Hong et al., 2020a;
Hong et al., 2020b) profiles and SVM. Method steps include data
collection, data processing, feature extraction, feature selection,
model training, and model performance evaluation. The overall
flow of our designed method is summarized in Figure 1, and each
section in the figure is described in detail in the following sections.
We carried out experiments through the above process,
constantly adjusted in our experiment, and finally constructed
an excellent method to identify SNARE proteins. The following is
a detailed description of the method.

2.1 Feature Extraction
It is very important to select good feature information for protein
recognition (Zuo et al., 2017; Zheng et al., 2019; Tang et al., 2020a;
Guo et al., 2020; Zhang et al., 2021). We chose the method based
on PSSM profiles to extract the feature information of protein
sequence data. We use the National Center for Biotechnology
Information basic local alignment search tool (NCBI-BLAST)
and select a non-redundant (NR) protein sequence database as a
comparison dataset. We use the prepared SNARE protein FASTA
sequence files to generate PSSM profiles. Each amino acid of the
original sequence in the PSSM profiles consists of a vector of 20
values. Then, we transform the original PSSM files into PSSM
profiles with 400 dimensions. Finally, 400-dimensional data are
extracted as the feature data of each protein sequence for the
experiment.

2.2 Data Processing
The feature data in the datasets are seriously unbalanced,
especially the ratio of positive samples to negative samples
in the independent dataset, which varies tremendously. The
model would exhibit the problem of poor generalization, and
the applicability would be low, so it is unable to effectively
identify SNARE proteins. Therefore, we need to choose the
appropriate method to deal with the data. In this study, the
data processing methods we chose included Z-score
standardization, min-max normalization and L2
regularization.

Normalization: Data can be changed to [0, one] ranges using
the normalization method. Normalization, as an effective way to
simplify calculation and scale down data values, can change the
absolute values of data in the dataset into a relationship of some
relative value. After normalization, the data can be calculated
conveniently and quickly. This is mainly for the convenience of
data processing, mapping the data to the range of 0–1, which will
be convenient and fast to use. The method is defined as:
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x* � x −min
max −min

, # (1)

The distribution of original data can be changed by
normalization, and then the weights of each feature dimension
can be balanced by varying the feature dimension, such as
converting the distribution of data from planar to circular.
Normalization can remove the influence of dimensionality on
the experimental results by reducing the difference in
dimensionality. After normalization, the data of different
variables can be compared. Although the maximum and
minimum values of the resulting data in the normalization
process are affected by outliers in the dataset, and the
resulting data are less robust, normalization does improve the
accuracy of iterations in the operational data process as well as the
efficiency of data convergence.

2.3 Feature Selection
Feature selection refers to sorting features by suitable techniques
and algorithms and filtering out the better characterized subset of
features based on the sorted results; this is a common technique in
bioinformatics (Cheng et al., 2018; Zhu et al., 2019; Zhao et al.,
2020a; Zhao et al., 2020b; Shao and Liu, 2021; Yu et al., 2021).
After feature selection, the optimal feature subset selected from
existing features is used to build the model, which can improve
the performance of the model. Feature selection is a very
important part of building models for pattern recognition and
is a high priority in data processing (Wei et al., 2018; Xue et al.,
2018; Li et al., 2020a; Yang et al., 2020a; Su et al., 2020; Wei et al.,
2020; Yu et al., 2020; Zhang et al., 2020; Zheng et al., 2020; Wang

et al., 2021a; Shang et al., 2021; Shao et al., 2021). Selecting the
effective features from the original feature dataset and removing
the redundant features can reduce the dimensionality of the
feature data, and using more effective feature data can
improve the performance of the model. Our original feature is
based on PSSM to extract 400 dimensional features. In these
original feature spaces, there will be irrelevant, noisy, and
redundant features. Suitable feature selection methods with
excellent performance are required for accurate screening of
redundant features. In our experiment, we finally chose the
SVM-RFE-CBR (Yan and Zhang, 2015) algorithm to screen
features after comparing multiple feature selection methods.
The algorithm ranks the importance of features and selects the
optimal subset of features based on the sorted results.

SVM-RFE-CBR is an improved algorithm based on support
vector machine recursive feature elimination (SVM-RFE), which
introduces the strategy of correlation deviation reduction (CBR)
into the process of feature elimination. SVM-RFE estimates
feature importance based on the coefficient of the SVM model,
and it is a powerful feature selection algorithm. There are linear
and nonlinear versions. The SVM-RFE-CBR method adds the
correlation reduction strategy (CBR) to the SVM-RFE algorithm
to reduce the potential deviation of the algorithm, and the result
of feature selection is improved by the integrated CBR strategy.
SVM-RFE uses the sequential backward selection algorithm in
SVM, which is based on the principle of maximum interval.
During the model training process, SVM-RFE sort features based
on the score of every feature, deletes the feature with the lowest
score, puts the remaining feature data into the next round of
training of the model, and finally outputs the feature sort result to

FIGURE 1 | Flow chart of SNARE proteins recognition based on PSSM profiles matrix and SVM.
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a table. The optimal feature subset can be selected according to
the results of sorting. SVM is an excellent machine learning
classification algorithm. The feature sort result derived from the
SVM model has better performance, and it is also more
convenient for subsequent experiments.

2.4 Support Vector Machine
SVM is currently a commonly used classifier in machine
learning that classifies data by supervised learning (Cheng
et al., 2019a; Cheng et al., 2019b). SVM is commonly used
in data dichotomization. In addition, SVM can classify
nonlinearly by using the kernel function (Ding et al., 2020a;
Liu et al., 2020a; Yang et al., 2020b). SVM was developed from
the generalized portrait algorithm in pattern recognition. The
basic idea of SVM is to construct a model that separates the
dataset accurately according to the geometric interval of the
hyperplane with the maximum separation of samples. SVM can
map the features of a dataset to points in space and draw a line
to distinguish these points effectively. SVM uses a hinge loss
function to computationally predict the presence of empirical
risk, and a regularization term is added to ensure its robustness
and correct rate. The process of SVM: Suppose the training set

is {(xi, yi)} N
i � 1

, xi ∈ RD,yi ∈ {+1, − 1}, xi is the ith sample, N is
the sample size, and D is the number of sample features. SVM
finding the optimal classification hyperplane.ω · x + b � 0 The
optimization problems that SVM needs to solve are:

min
1
2
||ω||2 + C∑

N

i�1εi.#

s.t. yi(ω · xi + b)≥ 1 − εi, i � 1, 2, /, N

εi ≥ 0, i � 1, 2, /, N

(2)

Transforming the original problem into the dual problem:

min
1
2
∑

N

i�1∑
N

j�1αiαjyiyj(xi · xj) −∑
N

i�1αi . (3)

s.t.∑
N

i�1yiαi � 0 .# (4)

0≤ αi ≤C, i � 1, 2, /, N αi is a Lagrangian

Finally, the solution of ω is:

ω � ∑
N

i�1αiyixi.# (5)

When we use SVM to solve nonlinear problems, we need to
choose the appropriate kernel function (Yang et al., 2021a) (Ding
et al., 2020b) and then map the data to the high-dimensional
space to solve the linearly inseparable problem of the data in the
original space.

In the experiment, the Python version of a library for support
vector machine (LIBSVM) was selected to build an SVM model
and identify SNARE proteins. The selection of different kernel
functions using LIBSVM as well as the settings of kernel
parameters are described as follows: The kernel function (Ding
et al., 2020c) of SVM includes the linear kernel function (LKF),
polynomial kernel function (PKF), radial basis function (RBF),
and sigmoid kernel function (SKF). Formulas corresponding to
four kernel functions are as follows:

Linear kernel function defined as:

K(xi, xj) � xTi xj.# (6)

Polynomial kernel function:

K(xi, xj) � (νxTi xj + r)
d
, ]> 0.# (7)

Radial basis functions:

K(xi, xj) � exp( − ν
∣∣∣∣
∣∣∣∣xi − xj

∣∣∣∣
∣∣∣∣
2
), ]> 0.# (8)

Sigmoid kernel function:

K(xi, xj) � tanh(νxTi + r).# (9)

ν, r, and d in formulas are parameters of kernel function.
Parameters are different in different kernel functions. ν in the

formula represents the parameter gamma in the kernel function,
the default of which is 1/K (K is the number of classes), and g is
used to set it in the LIBSVM.

r in the formula represents the parameter r in the kernel
function, the default of which is 0, and r is used to set it in the
LIBSVM. d in the formula represents the parameter d in the
kernel function; it is used to set the highest number of times in the
polynomial kernel function, and its default value is 3.

SVM is a very powerful model that allows the decision
boundary to be very complex and performs well on both low-
dimensional data and high-dimensional data. SVM has been
widely used in bioinformatics, binding protein prediction,
protein methylation site prediction and so on. We use the
LIBSVM of Scikit-learn library integration in Python to train
and build the model. In our experimental process, we optimize
the parameters according to the results and finally build the
model with the best performance.

3 RESULTS AND DISCUSSION

3.1 Dataset
Our research is devoted to constructing a method to recognize
SNARE proteins. To establish a model to effectively distinguish
SNARE proteins and non-SNARE proteins, we collected a
SNARE protein dataset and a non-SNARE protein dataset for
our prediction model. The dataset we use has been used by Le,
N.Q.K. and V.-N. Nguyen (Le and Nguyen, 2019) previously. The
data come from the UniProt database, which is the most
informative and resource-free protein database. We collect all
SNARE proteins from the UniProt database according to the
keyword SNARE. To avoid the homology of the SNARE protein
sequence data that we collect, we use BLAST to address the
redundancy of the SNARE protein sequence and eliminate the
redundant sequence. Finally, 682 SNARE protein sequences are
obtained as a positive sample dataset. At the same time, we select
vesicular transport proteins as negative samples to establish a
non-SNARE protein dataset. We divide the two datasets into a
cross-validation dataset and an independent test dataset, and the
size and details of the datasets are summarized in Table 1.
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Table 1 shows that SNARE proteins and non-SNARE proteins
correspond to two datasets: a training dataset and an independent
test dataset, both of which include positive samples and negative
samples. We use the cross-validation method to train the model
with the training dataset, evaluate the performance of the model
developed in this study, and optimize the model by adjusting the
parameters according to the results of the training dataset. The
independent test dataset is used to test and measure the predictive
ability of the prediction model we developed.

3.2 Performance Measurements
Our research aims to establish a model to predict whether an
amino acid sequence is a SNARE protein. Therefore, we need to
use universally acknowledged evaluation indicators to measure
the performance of the model. When training the model, we
choose 10-fold cross validation as the training model after various
considerations and take the average value of the crossing
validation results as the result of model training. We optimize
the parameters of SVM, select the best parameters to build the
model, and evaluate the performance of the model through an
independent test dataset to avoid systematic deviation in the
process of cross validation. This study adopts some standard
evaluation indicators that are widely used in bioinformatics
research (Shen et al., 2019a; Shen et al., 2019b; Ao et al., 2020;
Li et al., 2020b; Liu et al., 2020b; Tang et al., 2020b; Yin et al., 2020;
Chen et al., 2021). The standard evaluation indicators include
sensitivity (Sn), specificity (Sp), accuracy (Acc), area under the
curve (AUC), Mathew’s correlation coefficient (MCC), and
F-score (Zhai et al., 2020; Wang et al., 2021b; Yang et al.,
2021b). The calculation formulas are as follows (TP means
true positive values, FP means false positive values, TN means
true negative values, FN means false negative values):

Sensitivity � TP
TP + FN

, 0≤ Sn≤ 1.# (10)

Speccificity � TN
TN + FP

, 0≤ Sp≤ 1.# (11)

Accurarcy � TN + TP
TP + TN + FN + FP

, 0≤Acc≤ 1.# (12)

MCC � TP*TN − FP*FN
�����������������������������������(TP + FN)(TN + FN)(TP + FP)(TN + FP)√ , 0≤MCC≤ 1.#

(13)

F − score � 2*TP
2TP + FN + FP

, 0≤ F − score≤ 1.# (14)

In machine learning research, receiver operating characteristic
(ROC) curves are usually used to test the prediction performance
of the model. AUC is a floating-point number from 0 to one of
ROC. The AUC value can reflect the quality of the model. The

greater the value, the better the performance of the model. ROC
curves and AUCs are commonly used to compare the
performance of different models as machine learning
performance indicators, which is very reliable. MCC is often
used to measure imbalanced data sets, which is one of the most
important indicators to measure the performance of two kinds of
classification in machine learning. We use Python’s processing
library to process data.

3.3 Performance Comparison With Different
Feature Dimensions
We use the SVM-RFE-CBR algorithm to evaluate the original
400-dimensional feature data. We use MATLAB to implement
the SVM-REF-CBR algorithm to sort the features. When
sorting features, a performance comparison will be given.
The evaluation results are shown in Figure 2. From
Figure 2, it can be found that the ACC achieved highest
value, when the top 350-dimensional feature is used in the
experiment. Therefore, we choose 350-dimensional feature
data for the experiment.

We use the optimal 350-dimensional feature dataset after
sorting for the experiment. First, 350-dimensional feature data
are selected from the original feature training dataset and test
dataset files according to the index obtained by the SVM-RFE-
CBR algorithm. Then, the training dataset is 10-fold cross

TABLE 1 | Summary of SNARE protein and non-SNARE protein datasets.

Dataset SNARE Non-SANRE Total

Original dataset 682 2,583 3,265
Train dataset 644 2,234 2,878
Test dataset 38 349 387

FIGURE 2 | The results of dimension reduction by using SVM-RFE-CBR
algorithm.

TABLE 2 | Comparison of prediction results between SVM-RFE-CBR dimension
reduction and original dimension.

Feature-dimension Sn Sp Acc AUC MCC F-score

350 0.68 0.94 0.92 0.84 0.48 0.5
400 0.68 0.94 0.91 0.83 0.48 0.5

Comparison of prediction results between SVM-RFE-CBR dimension reduction and
original dimension. The bold values mean maximum value in the column.
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validated, and the model is optimized. After many experiments,
the optimal parameters of SVM are obtained. When we choose
the radial basis function, penalty coefficient (C) � “11”, gamma �
“0.1”, the model achieves the optimal performance. At the same
time, we also use the original 400-dimensional feature data for the
experiment and choose the optimal parameterization in the
experiment. The comparison of experimental results in
different dimensions is shown in Table 2.

The experimental results show that both Acc and MCC are
improved after feature dimensionality reduction, which
eliminates the redundant part of the original feature and
improves the performance of the model.

3.4 Comparison of Different Classifier
Performance on Dataset
With the development of computers, machine learning has
been widely used in bioinformatics (Tang et al., 2019; Wang

et al., 2020c; Fu et al., 2020; Cai et al., 2021; Wang et al., 2021c;
Jin et al., 2021), and there are many classification models,
including the linear classifier, SVM, naive byes, K-nearest
neighbor (KNN), decision tree (DT), and ensemble model
(random forest/GDBT, etc.). To obtain the most effective
classifier method to identify SNARE proteins, we use
various machine learning classifiers to construct a model of
SNARE protein recognition, including random forest, KNN
and naive Bayes.

We compare the experimental results of multiple machine
learning classifier training models with the performance
measurement results. The performance result of different
classifier shown in Table 3.

As we can observe from Table 3, the results of SVM on
training dataset are better than another classifier.

In particular, Sp � 0.970, Acc � 0.900. SVM shows higher
performance. Meanwhile, we compare the ROC curves of
different classifier method. The result shown in Figure 3. As
we can observe from Figure 3, The ROC curve of SVM is
obviously better than the other three classifiers.

3.5 Comparison of Different SNARE Protein
Identification Methods
We compare the experimental results of SNARE CNN with the
performance measurement results of our research method. The
independent test results of using different methods to identify
SNARE proteins are shown in Figure 4. Figure 4A shows the
result of performance compares between our classification

TABLE 3 | The result of performance compares between SVM and other
classification method.

Sn Sp Acc MCC

KNN 0.870 0.906 0.898 0.73
Random Forest 0.620 0.962 0.900 0.70
Naïve Bayes 0.853 0.595 0.624 0.28
SVM 0.650 0.970 0.900 0.70

The result of performances compares between SVM and other classification method.
The bold values mean maximum value in the column.

FIGURE 3 | ROC curves of different classifier methods.
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method and other classification method on training datasets.
Figure 4B shows the result of performance compares between our
classification method and other classification method on test
datasets.

The results show that our method gives good results in both
training and independent test datasets. To compare the
performance measurements of our method for identifying
SNARE proteins with other methods more accurately, we
compare the results of different methods on independent test
datasets.As we can observe from Figure 4B, the independent
test results of our method are better than SANRE CNN. Sn �
0.68, Sp � 0.940, Acc � 0.92 and MCC � 0.48, and all these
indicators reach the highest values using our method. As shown
above, ourmethod shows higher performance. These results clearly
demonstrate the superiority of our method over the existing
methods, especially when using an independent dataset test.
This means that our method can better recognize SNARE proteins.

4 DISCUSSION

Because of the importance of SNARE proteins and the vital
significance of SNARE proteins in vesicular transport, there is
an urgent need for classification methods to identify SNARE
proteins. Extracting meaningful features and selecting an
appropriate machine learning algorithm can greatly increase
the model performance of protein prediction. We propose a
method based on PSSM profiles to extract features and SVM
to construct a model to identify SNARE proteins. We normalize
the feature data and use the SVM-RFE-CBR algorithm to reduce
the dimensions of feature. Then, we use a 10-fold crossing
validation training model and use an independent dataset to

test the performance of the model (Li et al., 2017; Li et al., 2020c).
The accuracy, specificity, sensitivity, AUC, MCC and other
performance indicators of our method have excellent
experimental results. All results show that our model has
better performance than other machine learning methods and
advanced neural networks. Our method can effectively identify
SNARE proteins. Taken together, the method proposed in our
study is of great significance for the study of SNARE proteins and
may also contribute to the prediction of protein function. Future
works may include investigation of more kinds of proteins.
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VTP-Identifier: Vesicular Transport
Proteins Identification Based on PSSM
Profiles and XGBoost
Yue Gong1, Benzhi Dong1, Zixiao Zhang1, Yixiao Zhai1, Bo Gao2, Tianjiao Zhang1* and
Jingyu Zhang3*

1College of Information and Computer Engineering, Northeast Forestry University, Harbin, China, 2Department of Radiology, The
Second Affiliated Hospital, Harbin Medical University, Harbin, China, 3Department of Neurology, The Fourth Affiliated Hospital of
Harbin Medical University, Harbin, China

Vesicular transport proteins are related tomany human diseases, and they threaten human
health when they undergo pathological changes. Protein function prediction has been one
of the most in-depth topics in bioinformatics. In this work, we developed a useful tool to
identify vesicular transport proteins. Our strategy is to extract transition probability
composition, autocovariance transformation and other information from the position-
specific scoring matrix as feature vectors. EditedNearesNeighbours (ENN) is used to
address the imbalance of the data set, and the Max-Relevance-Max-Distance (MRMD)
algorithm is adopted to reduce the dimension of the feature vector. We used 5-fold cross-
validation and independent test sets to evaluate our model. On the test set, VTP-Identifier
presented a higher performance compared with GRU. The accuracy, Matthew’s
correlation coefficient (MCC) and area under the ROC curve (AUC) were 83.6%, 0.531
and 0.873, respectively.

Keywords: protein function prediction, vesicular transport proteins, machine learning, XGBoost, position-specific
scoring matrix

1 INTRODUCTION

Researchers have paid more attention to vesicular transport proteins in recent years. Vesicular
transport is that macromolecular substances or granular substances cannot pass through the cell
membrane, but transport across the cell membrane in another special way, that is, substances are
wrapped by the membrane, formed vesicular, fused with the membrane or broken in the process of
transport in and out of the cell. Vesicular transport proteins are contained in the cell membrane,
which can promote the activity of dominant molecules on the vesicle membrane. When
macromolecules and particles cannot cross the cell membrane, vesicular transport proteins take
on the task of transporting them. To date, many studies have confirmed that abnormal vesicular
transport proteins may cause a variety of human diseases (Zhang et al., 2019; Zeng et al., 2020a), such
as Hermansky-Pudlaksyndrome and chylomron retention disease (Cláudio et al., 2001; Suzuki et al.,
2006). As the relationship between vesicular transport proteins and related diseases is gradually
becoming clear, it is particularly important to deepen the study of vesicular transport proteins.

In view of the importance of vesicular transport proteins in eukaryotic cells, researchers in the
area of cell biology have been committed to developing experimental techniques that can identify
vesicular transport proteins and have achieved excellent results, such as morpholino knockdown
(Hager et al., 2010) and dissection (Orci et al., 1989). These techniques can accurately identify
vesicular transport proteins, but these technologies are often not very efficient and are expensive, so it
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is particularly necessary to find a time-saving and high accuracy
method to identify vesicular transport proteins.

In recent years, protein function prediction has been a hot
topic in the field of computational biology (Ding et al., 2020a; Fu
et al., 2020; Guo et al., 2020; Tao et al., 2020; Wang et al., 2020;
Zhai et al., 2020; Cai et al., 2021; Li et al., 2021; Yang, 2021).
With the continuous enrichment of protein data, the technology
of applying machine learning and data mining to protein
function prediction is gradually maturing (Liu et al., 2019;
Ding et al., 2020b; Ding et al., 2020c; Liu et al., 2020; Zhao
et al., 2021). For example, some researchers used machine
learning technology and created high accuracy models by
sequence analysis (Chou, 2009; Cui et al., 2019; Jin et al.,
2021; Shao et al., 2021), position-specific scoring matrix
(PSSM) (Jones, 1999), and to determine various
physicochemical and biochemical properties of amino acids
(Kawashima and Kanehisa, 2000; Zhang et al., 2021; Zulfiqar
et al., 2021). The above studies have shown that the use of
computer technology in protein identification is reliable. Deep
learning has attracted much attention, and researchers have
been trying to create new deep neural networks to solve protein-
related problems, such as the prediction of DNA-binding
proteins (Qu et al., 2017), human protein subcellular
localization (Wei et al., 2018a) and SNARE-CNN (Le and
Nguyen, 2019). An increasing number of models and
algorithms that can accurately identify proteins have been
developed. Therefore, we adopted a machine learning method
to obtain a model that can identify vesicular transport proteins.

In the previous study of Nguyen Quoc Khanh Le (Le et al.,
2019), the strategy that includes gated recurrent units and PSSM
was adopted, and the accuracy and Matthew’s correlation
coefficient (MCC) of the final model reached 82.3% and 0.52 in
the cross-validation set and 85.8% and 0.44 in the independent test
data set, which is an excellent result. Deep learning can often
achieve high accuracy, but thismethod will be time-consuming due
to training and has a high requirement for computer equipment.
Taking PSSM as input to the model for training will also increase
the training time, so we hope to find a more efficient and more
accurate method to identify vesicular transport proteins.

The method used in this paper extracts information such as
transition probability composition, autocovariance
transformation and other information from PSSM as a feature
vector. We adopted undersampling, oversampling and combined
sampling methods to reduce the imbalance of the data set. The
Max-Relevance-Max-Distance algorithm (Zou et al., 2016) was
used to sort features and reduce the number of features. In this
work, we selected XGBoost as the classifier and evaluated our
model with 5-fold cross-validation. Finally, we obtained a better
model than a previous study, which had high efficiency and
accurate identification of vesicular transport proteins.

2 MATERIALS AND METHODS

The flowchart of our work is shown in Figure 1, and each section
in the figure is described in detail in the following sections.

FIGURE 1 | Training flow chart of the prediction model of vesicular transport proteins.
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2.1 Benchmark Dataset
In this work, we used the dataset provided in Nguyen Quoc Khanh
Le’s study (Le et al., 2019) as the benchmark dataset. The numbers of
vesicular transport proteins and non-vesicular transport proteins
were 2,533 and 9,086, respectively, and we took vesicular transport
proteins as positive samples and non-vesicular transport proteins as
negative samples. We divided the data set into a training set and a
testing set, and the details are shown in Table 1.

2.2 Unbalanced Datasets Treatment
We used seven methods from an unbalanced-learning library
(Lemaître et al., 2017) to address the imbalance in the dataset. The
methods used for undersampling were RandomUnder,
ClusterCentroids, NearMiss and EditedNearesNeighbours
(ENN). The method used for over-sampling was SMOTE, a
total of 5,300 positive sample data have been generated. We
used default parameters for these methods. For the cleaning
undersampling techniques, ENN adjusted the ratio of positive
and negative samples to 1:2. The other four methods changed the
number of positive and negative samples to equal. The methods
used from the combined methods were SMOTEENN and
SMOTETomek. We adjusted the parameters of these two
methods and adjusted the proportion of positive and negative
samples to 1:1.

As the SMOTE, SMOTEENN and SMOTETomek methods
will generate new samples, the results of 5-fold cross-validation
processed by these methods are not accurate, so special cross-
validation should be performed when using these three methods.
K-fold cross-validation divides the training dataset into k
subdatasets; k-1 subdatasets are used to train the model, and
the rest are used for validation. Our method uses SMOTE and
other unbalanced data processing methods to train the k-1
subdataset and then uses the validation set to evaluate the model.

2.3 Feature Extraction
To date, a strategy that includes deep learning and PSSM profiles
has been frequently adopted to realize the identification of
unknown proteins and has achieved excellent results.
However, the strategy is slightly inefficient, so in this work, we
used other machine learning models and adopted RPSSM (Ding
et al., 2014), CSP-SegPseP-SegACP (Liang et al., 2015), AATP
(Zhang et al., 2012), DWT (Wang et al., 2017; Wang, 2019) and
SOMA (Liang and Zhang, 2017) to extract features from the
PSSM matrix and make a comparison. Among them, AATP and
CSP-SegPseP-SegACP have the highest MCC and AUC, so they
are selected as feature extraction methods.

2.3.1 Position-Specific Scoring Matrix
PSSM can reveal the evolutionary information of proteins (Jones,
1999). PSSM was mainly used to predict protein secondary

structure, now it has been widely used in the field of
bioinformatics. Previous studies have shown that it is reliable
to extract PSSM from protein sequences, and the evolutionary
information in PSSM has more research value than the sequence
itself (Kim and Park, 2004).

According to the definition of PSSM, we described PSSM by
the following formula:

PPSSM � ⎛⎜⎜⎝
P1,1 P1,2

Pi,1 Pi,2

PL,1 PL,2

L P1,j

L Pi,j

L PL,j

L P1,20

L Pi,20

L PL,20

⎞⎟⎟⎠

where Pi,j represents the score of the ith amino acid residue of the
protein sequence that mutates into amino acid type j during
evolution and L shows the length of the sequence. In this work, we
used PSI-BLAST to compare the sequence with NCBI’s
nonredundant (NR) database to obtain PSSM. Now, many
methods of extracting features from PSSM have been derived.
The methods used in this paper are introduced in the following
chapters.

2.3.2 AATP
AATP can be extracted from PSSM, which consists of two feature
vectors: amino acid composition (AAC) and transition
probability composition (TPC). AAC can be described by the
following:

AAC � (x1,x1, . . . , x20)
T

xj � (
1
L
)∑

L

i�1
Pi,j, j � 1, 2, 3, . . . , 20

where xj represents the probability that the amino acid residues
change into J-type amino acids during evolution.

TPC is a feature vector of 400 dimensions that is extracted
from the transition probability matrix (TPM) by:

TPC � (X1,1, . . . , X1,20, . . . , Xi,1, . . .Xi,20, . . . , X20,1, . . . , X20,20)

where

X � ⎛⎝∑
L−1

k�1
Pk,i × Pk+1,j⎞⎠/⎛⎝∑

20

j�1
∑
L−1

k�1
Pk+1,j × Pk,i

⎞⎠, 1≤ i, j≤ 20

The new feature vector AATP can be obtained by integrating
AAC and TPC, and each protein sequence can extract 20 + 400 �
420 features.

2.3.3 CSP-SegPseP-SegACP
CSP-SegPseP-SegACP consists of the following three parts:
Pseudo-position-specific scoring matrix (PsePSSM),
Autocovariance Transformation and Consensus Sequence
Based on PSSM.

2.3.3.1 PsePSSM
In this step, PSSM is processed twice. For the first time, PSSMwas
divided into two equal length segments L1, L2 by using a similar
procedure in (Yang and Chen, 2011). Then, two segments were
used to calculate segments. The equations are as follows:

TABLE 1 | Statistics of the dataset in this work.

Total Train Test

Vesicular 2,533 2,214 319
Non-vesicular 9,086 7,573 1,513
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αλj �

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1
L1

∑
L1

i�1
Pi,j, j � 1, 2, . . . , 20, λ � 0,

1
L1 − λ

∑
L1−λ

i�1
(Pi,j − Pi+λ,j)

2
, j � 1, 2, . . . , 20, λ � 1, 2, 3, 4,

βλj �

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

1
L − L1

∑
L

i�L1+1
Pi,j, j � 1, 2, . . . , 20, λ � 0,

1
L − L1 − λ

∑
L−λ

i�L1+1
(Pi,j − Pi+λ,j)

2
, j � 1, 2, . . . , 20, λ � 1, 2, 3, 4,

where αλj and βλj represent the correlation between amino acids
and λ is the contiguous distance of αλj and βλj along the protein
sequence of each fragment. The value range of λ is affected by
the number of PSSM segments and the length of the shortest
series, so λ can be taken to be 0, 1, 2, 3 and 4. Through the
above calculation, we can obtain a 200-dimensional feature
vector.

Next, the PSSM is divided into three segments L1, L2 and
L3; here, λ can be token to 0, 1 and 2. The equations are as
follows:

θλj �

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1
L1

∑
L1

i�1
Pi,j, j � 1, 2, . . . , 20, λ � 0,

1
L1 − λ

∑
L1−λ

i�1
∑
L1−λ

i�1
(Pi,j − Pi+λ,j)

2
, j � 1, 2, . . . , 20, λ � 1, 2

μλj �

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1
L1

∑
2L1

i�L1+1
Pi,j, j � 1, 2, . . . , 20, λ � 0,

1
L1 − λ

∑
2L1−λ

i�L1+1
(Pi,j − Pi+λ,j)

2
, j � 1, 2, . . . , 20, λ � 1, 2

]λj �

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1
L − 2L1

∑
L1

i�L1+1
Pi,j, j � 1, 2, . . . , 20, λ � 0,

1
L − 2L1 − λ

∑
L−λ

i�2L1+1
(Pi,j − Pi+λ,j)

2
, j � 1, 2, . . . , 20, λ � 1, 2

This time, 180-dimensional feature vectors are
obtained. Combined with the results of the previous stage,
a 380-dimensional feature vector can be extracted
from PSSM.

2.3.3.2 Autocovariance Transformation
In this step, the information contained in the sequence is further
extracted by calculating the autocovariance transformation.
Similar to the previous step, the PSSM is divided into two
segments and three segments, and then the ACT-PSSM feature
vector is obtained by the following equations when divided into
two segments:

AC1lgj � 1
L1 − lg

∑
L1−lg

i�1
(Pi,j − α0

j)(Pi+lg,j − α0
j), j � 1, 2, . . . , 20, lg

� 1, 2, 3, 4

AC2lgj � 1
L − L1 − lg

∑
L−lg

i�L1+1
(Pi,j − β0j)(Pi+lg,j − β0j), j � 1, 2, . . . , 20, lg

� 1, 2, 3, 4

AC1lgj � 1
L1 − lg

∑
L1−lg

i�1
(Pi,j − θ0j)(Pi+lg,j − θ0j), j � 1, 2, . . . , 20, lg

� 1, 2

AC2lgj � 1
L1 − lg

∑
2L1−lg

i�L1+1
(Pi,j − μ0j)(Pi+lg,j − μ0j), j � 1, 2, . . . , 20, lg

� 1, 2

FIGURE 2 | The values of the different unbalanced data processing methods on the training set.
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AC3lgj � 1
L − 2L1 − lg

∑
L−lg

i�2L1+1
(Pi,j − ]0j)(Pi+lg,j − ]0j), j

� 1, 2, . . . , 20, lg � 1, 2

where lg represents the differences between amino acid residues.
Finally, the 280-dimensional ACT-PSSM feature vector can be
obtained by the above equations.

2.3.3.3 Consensus Sequence Based on PSSM
This step adopts the method in (Patthy, 1987) and generates a
consensus sequence as follows:

X(i) � argmax{Pi,j: 1≤ j≤ 20}, 1≤ i≤ L

Next, we compute CSAAC, which shows 20 amino acid
composition features of the consensus sequence, and CSCM,
which represents 20 composition moment features for CS.
Through the combination of the above two feature vectors, we
obtain a 40-dimensional feature vector based on CS.

The 700-dimensional CSP-SegPseP-SegACP feature vector is
obtained by fusing the features obtained from the above
three steps.

2.4 Feature Selection
In this section, we adopted Max-Relevance-Max-Distance
algorithm (MRMD) (Zou et al., 2016) to reduce the dimension

of the feature vector, MRMD uses the Pearson correlation
coefficient to balance the correlation between the subfeature
set and the target class and uses various distance functions to
obtain the redundancy of each subfeature set. The subfeature set
selected by MRMD has low redundancy and strong correlation
with the target class.

2.5 Classification
We compared the performance of four different popular
classification methods which are the RF, SVM, KNN and
XGBoost to identified VTP. Due to six performance
evaluations on the training set, we chose XGBoost as our
classification method.

XGBoost (Chen and Guestrin, 2016) is a machine learning
method with an excellent classification effect and high efficiency
that has been widely used in recent years(Long et al., 2021; Yang
et al., 2021). It stands out frommany of the challenges of machine
learning and data mining. In this paper, XGBoost performed very
well, and it still obtained good results under the premise of high
training efficiency.

3 RESULTS

3.1 Assessment of Predictive Ability
In this work, our goal was to obtain a model to predict
whether the unknown type of protein sequence belongs to
vesicular transport proteins, so we took vesicular transport
proteins in the data set as positive samples and non-
vehicular transport proteins as negative samples. In each
section of our work, to evaluate our model, we used 5-fold
cross-validation several times and calculated the average
value as the final result. After obtaining the results of

TABLE 2 | Evaluation of model performance after processing unbalanced data
by ENN.

Acc Sens Spec Precision MCC AUC

ENN 0.85 0.701 0.919 0.811 0.659 0.908

FIGURE 3 | (A) Comparison of single feature extraction methods. (B) Comparison of combining feature extraction methods.
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cross-validation, we used a test data set to test our model and
make adjustments.

To evaluate our model comprehensively, we used several
methods, including accuracy (ACC), sensitivity (Sens),
specificity (Spec), precision, Matthew’s correlation
coefficient (MCC) and area under the ROC curve
(AUC) (Jiang et al., 2013; Wei et al., 2014; Wei et al.,
2017; Wei et al., 2018b; Su et al., 2019; Zeng et al., 2020b;
Hong et al., 2020; Su et al., 2020; Tang et al., 2020; Dao, 2021;
Shao and Liu, 2021; Wang, 2021). These methods are defined
as follows:

ACC � TP + TN

TP + FN + FP + TN

Sens � TP

TP + FN

Spec � TN

FP + TN

Precision � TP

TP + FP

MCC � TP × TN − FP × FN
�������������������������������������(TP + FP)(TP + FN)(TN + FP)(TN + FN)√

AUC � 1
2
(

TP

TP + FN
+ TN

TN + FP
)

where TP, FP, TN and FN represent true positives, false positives,
true negatives, and false negatives, respectively.

3.2 Comparison of the Different Unbalanced
Data Processing Methods
In the previous section, we selected CSP-SegPseP-SegACP and
AATP as the feature extraction methods. Next, we compared the
effects of different unbalanced processing methods on the model.

When the samples are in an unbalanced state, the model
trained by machine learning tends to be more inclined to a large
number of samples. (Fdez-Glez et al., 2018).

We used seven methods from an unbalanced-learning library
to address the imbalance in the data set. The methods are

RandomUnder, ClusterCentroids, NearMiss,
EditedNearesNeighbours (ENN), SMOTE, SMOTEENN and
SMOTETomek. The RandomUnder, ClusterCentroids and
NearMiss adjusted the number of positive and negative
samples to 2214:2214. The ENN adjusted the number of
positive and negative samples to 2214:4707. The SMOTE
adjusted the number of positive and negative samples to 7573:
7573. The SMOTEENN and SMOTETomek adjusted the number
of positive and negative samples to 5000:5000.

In this part of our work, we set the XGBoost parameter
scale_pos_weight � default to avoid XGBoost training being
more biased towards positive samples. Other parameters of
XGBoost are set as follows: learning_rate � 0.1, n_estimators
� 1,000, max_depth � 8, min_child_weight � 1, gamma � 0,
subsample � 0.8, colsample_bytree � 0.8, objective � “binary:
logistic”, nthread � 20. We found that the ENN method is the
best, and its ACC, MCC, AUC and so on are significantly higher
than those of the other methods. Therefore, ENN was selected as
the final unbalanced data processing method. The result on the
training set after using different imbalance processing algorithms
is shown in Figure 2.

When dealing with unbalanced data, we cannot precisely
control the proportion of positive and negative samples when
using ENN. The dataset was still slightly unbalanced, so we
continued to adjust the parameter scale_pos_weight of
XGBoost, which makes the classifier tend to have small
samples in the training process. Finally, we set
scale_pos_weight � 0.6. The performance of the model is
shown in Table 2.

3.3 Comparison of the Different Feature
Extraction Methods
In previous studies, the training model using PSSM as input can
effectively predict vesicular transport proteins, which indicates that
PSSM has important information to identify vesicular transport
proteins. In this paper, the methods of extracting features from
PSSM were used to further extract the key information in PSSM
and to improve the efficiency of the training model.

In this section, RPSSM, AATP, CSP-SegPseP-SegACP,
SOMA, and DWT were used to extract features from PSSM.
In addition to different feature extraction methods, other
experimental conditions are completely consistent. We
adopted XGBoost as the classifier, set the scale_pos_weight �
0.1 for the temporary method for dealing with unbalanced data
sets, and used cross validation to evaluate our model. The result
is shown in Figure 3A. By comparison, we found that RPSSM,
CSP-SegPseP-SegACP and AATP performed better.

TABLE 3 | The results of using different sorting methods in MRMD on the training set.

Dimension Acc Sens Spec Precision MCC AUC

Hits_a 681 0.852 0.711 0.919 0.805 0.653 0.907
TrustRank 992 0.857 0.709 0.927 0.818 0.658 0.907
PageRank 898 0.855 0.712 0.922 0.81 0.658 0.907
LeadeRank 738 0.854 0.712 0.921 0.809 0.656 0.908
Hits_h 791 0.855 0.713 0.921 0.813 0.66 0.908

TABLE 4 | Comparison of six performance evaluations on the training set.

Acc Sens Spec Precision MCC AUC

RF 0.823 0.582 0.936 0.81 0.574 0.886
SVM 0.843 0.72 0.9 0.773 0.633 0.896
KNN 0.822 0.732 0.865 0.72 0.595 0.879
XGBoost 0.855 0.713 0.921 0.813 0.66 0.908
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Next, we combined these three methods in pairs for comparison.
We found that the combination of CSP-SegPseP-SegACP and
AATP was the best method, through these two methods, we
extracted 1,120 dimension feature vectors. The result after using
the combination methods on the training set is shown in Figure 3B.

3.4 Feature Selection
After dealing with the imbalance of the data set, our model has
made significant progress. In this section, we reduced the
dimension of the feature vector by feature selection.

In the process of machine learning, the high dimensionality of
the input feature vector will have a huge impact on the model,
which will make the model too complex and reduce the
generalization. Therefore, when the dimension of the feature
vector is high, dimensionality reduction can improve the
learning ability of the machine learning model and reduce the
time required to train the model.

In this work, we adopted Max-Relevance-Max-Distance
algorithm (MRMD). By using AATP and CSP-SegPseP-SegACP

to extract features, and then combined the features and normalized
them by Z-score standardization. The dimension of the feature
vector is 1,120. In this work, we used the latest version ofMRMD to
improve our model. MRMD has five feature ranking methods:
Hits_a, Hits_h, TrustRank, PageRank and LeaderRank. TrustRank
and PageRank were originally used in web search system, MRMD
modified them and applied them to feature selection. LeaderRank
is derived from the basic PageRank algorithm. It adds a
background node to make two-way connection with all nodes.
Hits is similar to PageRank and is also applied to web search, the
difference is that the number of web pages processed by hits is
small, and it is related to queries. We used all five methods, and
then we chose Hits_h by comparing the results of cross-validation.
The results are shown in Table 3. Finally, through MRMD, we
changed the 1120-dimensional feature vector to 791 dimensions,
and the accuracy was also improved.

3.5 Performance on Different Methods
Through the above processing, we obtained a good
performance model. In this model, the parameters of
XGBoost are: learning_rate � 0.1, n_estimators � 1,000,
max_depth � 8, min_child_weight � 1, gamma � 0,
subsample � 0.8, colsample_bytree � 0.8, objective �
“binary:logistic”, nthread � 20, scale_pos_weight � 0.6.
Next, we compared the effect of our cross-validation set on
different methods. In this section, we applied the data

FIGURE 4 | ROC curve of vesicle transporters identified by different methods.

TABLE 5 | Performance comparison between our model and GRU.

Acc Sens Spec Precision MCC AUC

GRU 0.809 0.708 0.829 0.515 0.459 0.850
VTP-Identifier 0.836 0.757 0.852 0.517 0.531 0.873
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processed by the same feature extraction method, imbalance
processing method and feature selection method to different
machine learning models.

We used Random Forest, KNN and SVM for comparison. We
optimized the parameters of each classifier and set n_estimators �
100 in random forest, k � 10 in KNN, gamma � 0.5 and cost � 8 in
SVM. The results are shown in Table 4. We drew the ROC and
calculated the AUC, which are shown in Figure 4. Obviously,
XGBoost is the best choice. Compared with other methods,
XGBoost was also very efficient in the process of training the model.

Then, we used independent test sets to test themodel performance.
NguyenQuocKhanhLe usedGru neural network for deep learning in
his research, we used themodel provided byNguyenQuocKhanhLe’s
research result to classify vesicular transport proteins, and then
compared with our model. The results are shown in Table 5. The
PR curves of the two models are shown in Figure 5. Obviously, the
performance of our model is better.

4 DISCUSSION

In this paper, we provide a method to identify vesicular transport
proteins based on feature extraction from PSSM. In our dataset,

the number of vesicular transport proteins and non-vesicular
transport proteins are 2,533 and 9,086, and the number of
training sets are 2,214 and 7,573. We used ENN to address
the imbalance of the training data set, reduced the number of
non-vesicular transport proteins from 7,573 to 4,707. We used
AATP and CSP-SegPseP-SegACP to extract features from PSSM
and then obtained 1,120 dimensional feature vector. Next we used
MRMD to reduce the dimension of the feature vector and the
dimension is reduced to 791. Finally, we sent the processed data
to XGBoost and got a model to accurately identify vesicular
transport proteins. The experimental comparison shows that our
model is better than the previous research result. The accuracy of
our model on the test set is 83.6%, which exceeds the previous
research results obtained by Nguyen Quoc Khanh Le through
deep learning.
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FIGURE 5 | Comparison of PR curves between our model and GRU.
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Screening and Identification of
Survival-Associated Splicing Factors
in Lung Squamous Cell Carcinoma
Min Chen1†, Rui Zhu1†, Fangzhou Zhang2,3* and Liucun Zhu1*

1School of Life Sciences, Shanghai University, Shanghai, China, 2School of Materials Science and Engineering, Institute of
Materials, Shanghai University, Shanghai, China, 3Shaoxing Institute of Technology, Shanghai University, Shanghai, China

Lung squamous cell carcinoma (LUSC) is a disease with high morbidity and mortality.
Many studies have shown that aberrant alternative splicing (AS) can lead to tumorigenesis,
and splicing factors (SFs) serve as an important function during AS. In this research, we
propose an analysis method based on synergy to screen key factors that regulate the
initiation and progression of LUSC. We first screened alternative splicing events (ASEs)
associated with survival in LUSC patients by bivariate Cox regression analysis. Then an
association network consisting of OS-ASEs, SFs, and their targeting relationship was
constructed to identify key SFs. Finally, 10 key SFs were selected in terms of degree
centrality. The validation on TCGA and cross-platform GEO datasets showed that some
SFs were significantly differentially expressed in cancer and paracancer tissues, and some
of themwere associated with prognosis, indicating that our method is valid and accurate. It
is expected that our method would be applied to a wide range of research fields and
provide new insights in the future.

Keywords: lung squamous cell carcinoma, alternative splicing, splicing factor, bivariate cox regression, bipartite
graph

INTRODUCTION

Lung cancer is one of the most commonmalignant tumors, and about 85% of cases are non-small cell
lung cancer (NSCLC) (Wang et al., 2019). According to pathological classification, NSCLC can be
divided into lung squamous cell carcinoma (LUSC) and lung adenocarcinoma (LUAD) (Cheng et al.,
2019). Compared with LUAD, patients with LUSC have a poorer treatment outcome and prognosis
(Li et al., 2018). In recent years, targeted therapies for specific genes have greatly improved the living
conditions of patients with advanced LUAD. However, LUSC patients respond poorly to targeted
therapies due to the lack of driver mutations, and the specific molecular mechanisms of LUSC
pathogenesis and progression have not been systematically assessed. As a result, further exploration
of the molecular mechanisms underlying the development of LUSC is essential for the development
of more effective therapeutic regimens.

Alternative splicing (AS) is an important post-transcriptional regulatory mechanism. A single
gene can generate more than one mRNA transcript through AS, and each mRNA transcript encodes
a protein with a different structure and function (Baralle and Giudice, 2017). More than 95% of
human genes experience AS under normal physiological conditions. On the one hand, the AS process
regulates the tissue-specific and stage-specific expressions of specific genes during human
development (Xu et al., 2002; Pan et al., 2008) and is essential for normal biological processes,
such as hematopoiesis (Wong et al., 2018), brain development (Matsuda et al., 2019), and muscle
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function (Nakka et al., 2018). On the other hand, abnormal AS
triggers a series of tumor-related processes, including cell
proliferation (Xie et al., 2019), apoptosis (Tyson-Capper and
Gautrey, 2018), epithelial-mesenchymal transition (EMT)
(Pradella et al., 2017), and tumor invasion and metastasis
(Chen et al., 2017; Wang et al., 2017) in response to hypoxia
(Han et al., 2017), thereby promoting malignant cell
transformation and providing a survival advantage (Climente-
González et al., 2017; Moncada et al., 2020). The AS process is
regulated by splicing factors (SFs), and abnormal expression of
SFs is the main contributor to overall changes in alternative
splicing events (ASEs) in malignancies (David and Manley, 2010;
Dvinge et al., 2016; Su et al., 2018). Therefore, exploring abnormal
ASEs and SFs in malignant tumors may provide new insights into
the mechanisms of tumorigenesis and progression.

Recent studies have paid more attention to assessing the
clinical significance of ASEs and SFs in cancers and their
potential pathogenic pathways and regulatory networks. The
abnormal ASEs and SFs, which make network dysregulated,
have been shown to modulate malignant transformation of
cells and epithelial-mesenchymal transition (Sveen et al.,
2016). Several excellent studies have also discussed the role of
SFs in DNA damage (Shkreta and Chabot, 2015) or in
carcinogenesis and anticancer therapies (Miura et al., 2012;
Shkreta et al., 2013). However, SFs have the potential to
become molecular markers and therapeutic targets for
malignancies (Anczukow and Krainer, 2016; Yuan et al., 2017;
Park et al., 2019). Although there is an increasing systematic
analysis of AS signatures and the effect of SFs in colorectal cancer,
glioblastoma, breast cancer, and ovarian cancer (Dorman et al.,
2014; Suo et al., 2015; Zong et al., 2018), the analytical methods
for identifying tumor-associated SFs remain deficient. Only
univariate difference and survival analysis were performed in
these studies (Zhu et al., 2018; Hu et al., 2019; Zhao et al., 2020).
However, biological processes are complex and are mostly
regulated by multiple factors rather than a single factor. It is
indicated that, as a whole, some factors would have a high
correlation with the tumor process, but this would show a low
correlation when they are separated. Hence, we propose an
analysis method based on synergy to screen key factors that
regulate the initiation and progression of LUSC.We first screened
the ASEs associated with overall survival (OS-ASEs) from
combinations consisting of two ASEs using bivariate Cox
regression and AUROC. Then an association network
consisting of OS-ASEs, SFs, and their targeting relationship
was constructed to identify key SFs. This method can screen a
relatively complete set of OS-ASEs to a certain extent, thereby
improving the completeness for subsequent screening of key SFs
and providing new ideas for LUSC mechanism research.

MATERIALS AND METHODS

Data Collection and Preprocessing
Clinical information and expression levels of LUSC patients
(generated by RNA-seq) were collected from The Cancer
Genome Atlas (TCGA) database. Additionally, ASEs data were

retrieved from the TCGASpliceSeq database (Ryan et al., 2016).
In TCGASpliceSeq, the Percent Spliced In (PSI) values are
computed for each possible splice event in each gene. PSI is
the ratio of reads indicating the presence of a transcript element
versus the total reads covering the event. The cross-platform
validation set, including GSE157010, GSE3268, and GSE6044
(Supplementary Table S1), was downloaded from the NCBI-
GEO database (Barrett et al., 2013). SFs are protein factors
involved in the splicing process of pre-RNA. A total of 404
SFs were collected in this study (Wu et al., 2020), as shown in
Supplementary Table S2.

The TCGA database included 550 LUSC samples, 501 of
which were tumor samples. After removing 8 samples with no
clinical information, 493 tumor samples were retained for
subsequent analysis (Supplementary Table S3). The
TCGASpliceSeq database contained a total of 46,020 ASEs
for LUSC, of which 9424 ASEs were retained for subsequent
analysis by removing ASE containing “null” and then excluding
ASEs with variances less than 0.001 in all samples
(Supplementary Source Code S1) (Supplementary Source
Code S2). The distinguishable visualization UpSet plot,
generated by UpSetR (version 1.4.0) (Wang et al., 2021), was
used to quantitatively analyze the intersections among the seven
types of ASEs in LUSC. The expressions of 404 SFs were
extracted after being normalized by log2 (FPKM+1) (Bullard
et al., 2010). SFs with expression values of 0 in half of the
samples were excluded, and 398 SFs were finally retained for
subsequent analysis (Figure 1). The GSE157010 dataset
constitutes 235 LUSC tumor samples, each containing
clinical information. The GSE3268 dataset represents 5
tumor samples from LUSC patients and paired normal
samples. The GSE6044 dataset includes 5 normal samples
and 15 tumor samples. Ten of these 15 tumor patients have
not received platinum-based therapy, and the other five have.
Probe IDs for each GEO dataset were converted to Ensembl ID.
When multiple probes correspond to an Ensembl ID, only the
probe with the highest mean is retained. The batch correction
was performed to eliminate the batch effect of three datasets
using normalizeBetweenArrays function of limma (version
3.46.0).

Methods for Screening Alternative Splicing
Events Associated With Overall Survival
In order to investigate the prognostic value of ASEs in LUSC
patients, all bivariate ASEs combinations were first constructed.
Then Cox proportional risk hypothesis tests and bivariate Cox
proportional risk regressions were performed using the survival
package in R (Bradburn et al., 2003). The significance of the
independent variables in the regressions was tested using
likelihood ratio tests (Hazra and Gogtay, 2017). Additionally,
the area under the receiver operating characteristic curve
(AUROC) was used to show the sensitivity and specificity of
the bivariate combination model in predicting OS (Linden, 2006).
Values greater than 0.8 were considered excellent combinations.
The two indicators mentioned above, the p-value of the likelihood
ratio test and the AUROC, were used to screen OS-ASEs.
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Methods for Association Network
Construction and Analysis
Spearman correlation analysis was performed to explore the correlation
between the PSI values of OS-ASEs and the expression levels of SF
genes (Bishara and Hittner, 2012). The correlation networks
visualization was visualized by EVeen (Chen T. et al., 2021) with
SFs and the OS-ASEs as vertices and the Spearman significant
correlation between them as edges. It is assumed that the value of a
vertex in a network depends first on its position in the network. More
central vertex indicates a greater impact on the structure and function
of the network (Kitsak et al., 2010). The importance of a vertex in the
network is usually expressed by degree centrality, which is the number
of connected edges of the vertex in the network (Freeman, 1978).

Validation Methods for Alternative Splicing
Events and Splicing Factors Functions
In order to identify potential mechanisms ofOS-ASEs in LUSC, the
survival-related genes were analyzed by Gene Ontology (GO)
enrichment analysis and Kyoto Encyclopedia of Genes and
Genomes (KEGG) enrichment analysis, which were both done
byDAVID (Huang et al., 2009). The results of KEGG analysis were
presented by bubble plots generated by ggplot2 (version 3.3.5). The
results of GO analysis were visualized by a web tool Revigo, which
shows the cluster representatives in a two-dimensional space
derived by applying multidimensional scaling to a matrix of the
GO terms’ semantic similarities (Supek et al., 2011).

In order to validate the function of SFs, violin plots visualized
by ggplot2 (version 3.3.5) were used for verifying the difference
in the expression of SFs in tumor and normal tissues. The
paired-samples t test was used to test the significance of the
difference.

The Kaplan-Meier (KM), generated by survival (version 3.2-
11) and survminer (version 0.4.9), was applied to validate the
prognostic effect of SFs (Supplementary Source Code S3) (Dinse
and Lagakos, 1982). The log-rank test was used to test the
significance of differences in survival between high- and low-
risk patients (Mantel, 1966). The p-value < 0.05 was considered
statistically significant in this study.

RESULTS

Clinical Characteristics of the Lung
Squamous Cell Carcinoma Cohort
The current study included a total of 493 LUSC patients from the
TCGA database, and the characteristics and clinical information of
these patients are listed in Table 1. There were 365 men and 128
women among these patients. With a median age of 68 (ranging from
39 to 85 years old), the mean survival time of patients was 1,044 days
(ranging from 4 to 4,765 days). It is worth noting that the survival time
of patients is censored data. The patient mortality rate of 43% confirms
that LUSC is a tumor with a high mortality rate. The LUSC tumor
staging data show thatmost patients are in stages I or II. Stage I tumors
are usually small, without lymph nodes and distantmetastases, and can
be completely removed by surgery. In contrast, higher stagesmean that
the tumor is more progressive.

Overview of Alternative Splicing Events in
the Lung Squamous Cell Carcinoma Cohort
The TCGASpliceSeq database recorded seven types of ASEs,
including exon skipping (ES), mutually exclusive (ME) exons,
intron retention (RI), alternative promoter (AP), alternative

FIGURE 1 | Steps of data preprocessing. The solid line represents the preprocessing process. The light blue box represents the data to be processed. The gray
box represents the rejected data. The red box represents the last retained data. The numbers in brackets represent the data amount. (A) is the preprocessing process of
samples, (B) is the preprocessing process of SFs, and (C) is the preprocessing process of ASEs.
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terminator (AT), alternative donor (AD) site, and alternative
acceptor (AA) site (Figure 2A).

In this cohort, a total of 9424 ASEs were in 4246 genes, with
3876 ATs in 1817 genes, 2048 ESs in 1488 genes, 1761 APs in 791
genes, 656 RIs in 504 genes, 531 AAs in 468 genes, 515 ADs in 421
genes, and 37 MEs in 37 genes. Multiple ASEs can occur in a
single gene (Figure 2B).

Screening and Analysis of Alternative
Splicing Events Related to Survival
Due to the complexity of biological processes, synergistic
interactions between genes are more prevalent. To accurately
screen OS-ASEs, we employed the p-value of the likelihood ratio
test in bivariate Cox proportional risk regression and AUROC as
screening criteria (P< 0.05, AUROC> 0.8). Consequently, 1118
combinations of OS-ASEs were screened, including 953 non-
redundant ASEs.

A total of 953 OS-ASEs were detected in 489 genes. More
specifically, there were 689 ATs in 348 genes, 241 APs in 121
genes, 12 ESs in 12 genes, 10 RIs in 10 genes, and 1 AA in 1 gene.
Two splice types, AD and ME, were not included (Figure 3A).
Next, in order to understand the function of the genes
corresponding to OS-ASEs, KEGG analysis and GO analysis
were performed. KEGG analysis demonstrated that these genes
were enriched in histone-lysine N-methyltransferase activity,
protein tyrosine phosphatase activity, and DNA repair and
apoptosis pathways. These pathways are closely associated

with cancer progression (Östman et al., 2006; Wong, 2011;
Jeggo et al., 2016; Husmann and Gozani, 2019). A recent
study has shown that histone-lysine N-methyltransferase is a
key driver for the induction of LUSC (Figure 3B) (Yuan et al.,
2021). GO analysis revealed that these genes were enriched in
both the nucleus and cytoplasm and play a role in protein
binding, nucleic acid binding, and histone lysine
N-methyltransferase activity. These genes are involved in
important biological processes such as DNA repair,
peptidyltryosine dephosphorylation, and apoptosis (Figure 3C).

Construction and Analysis of the
Association Network Between Splicing
Factors and Alternative Splicing Events
Systems biology is the study of the composition and
interrelationships of the biological systems and is widely used
in the study of gene networks (Hood, 2003). For our association
network, identifying key vertices is an important way to find key
SFs (Zhao and Liu, 2019). The association network was formed
with 489 ASEs and 398 SFs as vertices and 9414 pairs of
significant correlations as edges (Figure 4). The degree
distribution is shown in Supplementary Figure S1. The
average degree of the top 10 vertices in this network is 69, and
the average degree of the remaining vertices is 22, indicating that
the top 10 SFs are associated with more ASEs and is important in
this network. Therefore, we consider these 10 SFs as key SFs.
(Table 2)

Validation of Splicing Factors
To verify the validity of the above approach, we analyzed the
expression patterns of the 10 SFs in the TCGA-LUSC dataset. It is
noticed that a significant difference exists in the expression of the
10 SFs between cancerous and paracancerous tissues (Figure 5).
Moreover, patients were divided into two groups according to the
expression of SFs, and the difference of survival time between
them was analyzed with KM curves. It is found that 5 of these 10
SFs are significantly associated with the prognosis of LUSC
patients. (Supplementary Figure S2).

In order to further assess the applicability of our approach,
three cross-platform datasets from the GEO dataset were
recruited. The GSE157010 dataset matches 9 SFs, 6 of which
exhibit prognostic function (Supplementary Figure S3). In the

TABLE 2 | Top 10 SFs for degree centrality.

Rank Ensembl Symbol

1 ENSG00000130332 LSM7
2 ENSG00000169976 SF3B5
3 ENSG00000163634 THOC7
4 ENSG00000051596 THOC3
5 ENSG00000108561 C1QBP
6 ENSG00000137168 PPIL1
7 ENSG00000079134 THOC1
8 ENSG00000139343 SNRPF
9 ENSG00000108883 EFTUD2
10 ENSG00000123154 WDR83

TABLE 1 | Clinical characteristics of 493 LUSC patients in the TCGA database.

Characteristics Groups No. of patients %

Sex Male 365 74
Female 128 26

Age at diagnosis Median 68
Range 39–85
<61 107 22
≥61 381 77
Unknown 5 1

Vital status Alive 268 54
Dead 211 43
Unknown 14 3

Stage I 241 48.88
II 158 32.05
III 83 16.84
IV 7 1.42
Unknown 4 0.81

T category T1 114 23
T2 286 58
T3 70 14
T4 23 5

N category N0 316 64
N1 127 26
N2 40 8
N3 5 1
NX 5 1

M category M0 405 82
M1 7 1
MX 77 16
Unknown 4 1
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GSE3268 and GSE6044 datasets, the matched SFs are
differentially expressed in normal and tumor samples
(Supplementary Figure S4). In the GSE6044 dataset, the
expression levels of SFs patients who received platinum-based
therapy are slightly decreased compared with that of patients who
did not, which is closer to the expression level in normal tissues
(Supplementary Figure S5).

DISCUSSION

In this research, bivariate Cox regression and the systems biology
approach were employed to detect OS-ASEs and SFs associated
with LUSC. The results showed that all 10 candidates (SFs) were
expressed at significantly higher levels in tumor samples than in
paracancerous tissues in both the TCGA-LUSC and GEO
datasets. Moreover, 7 of these SFs were associated with the
overall survival time in tumor patients in one or more
datasets. These results are consistent with the currently known
characteristics of tumor-associated genes (Givechian et al., 2018;
Qi et al., 2018). It is found that 3 of the 10 SFs are reported to be
connected with lung cancer, namely LSM7, C1QBP, and THOC1.
Specifically, LSM7 is a prognosis-related key gene and mediates
autophagy in LUSC, with significant expression differences
between tumor and normal tissues (Gatica et al., 2019; Li
et al., 2020); C1QBP is involved in various cellular processes,

including mRNA splicing, ribosome biosynthesis, protein
synthesis in mitochondria, apoptosis, transcriptional
regulation, and viral infection, and its expression correlated
with the prognosis of patients with lung, breast, and colon
tumors (Saha et al., 2019); THOC1 is down-regulated in lung
cancer cell lines SPC-A1 and NCI-H1975, and its overexpression
inhibits cell proliferation, induces G2/M cell cycle arrest, and
promotes cell apoptosis (Wan et al., 2014). THOC1 also inhibits
the proliferation of tumor cells in hepatocellular carcinoma and
prostate cancer (Liu et al., 2015; Cai et al., 2020). The above
evidence suggests that our method is reliable and accurate.

In addition, we identified 7 new SFs, 6 of which, including
SF3B5, THOC7, THOC3, SNRPF, EFTUD2, and WDR83, were
reported to be associated with other tumors. It has been suggested
that SF3B5 is a key prognostic factor in ovarian cancer (Ouyang
et al., 2021). Studies have shown a relationship between the
downregulation of THOC7 and the activation of tumorigenic
pathways in cervical cancer (Lando et al., 2013; Lando et al.,
2015). THOC3 is involved in the THO subcomplex and is
necessary for coupled mRNA transcriptional extension and
nuclear export, and its expression is significantly elevated in
glioma cells (Chen Z. et al., 2021). SNRPF is aberrantly
expressed in human glioma. In vitro experiments have
revealed that ubiquitin carboxy-terminal hydrolase isozyme L5
could inhibit human glioma cell migration and invasion by
downregulating SNRPF (Ge et al., 2017). EFTUD2 is markedly

FIGURE 2 | (A) Schematic representation of ASEs, including exon skipping (ES), intron retention (RI), alternative promoter (AP), alternative terminator (AT),
alternative donor (AD) site, alternative acceptor (AA) site, and mutually exclusive (ME) exon. (B) The number of genes with ASEs in LUSC, with 3876 ATs in 1817 genes,
2048 ESs in 1488 genes, 1761 APs in 791 genes, 656 RIs in 504 genes, 531 AAs in 468 genes, 515 ADs in 421 genes, and 37 MEs in 37 genes.
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overexpressed in hepatocellular carcinoma tissues. High
expression of EFTUD2 in hepatocellular carcinoma patients is
associated with clinical features and is pivotal in hepatocellular
carcinoma cell proliferation and cell cycle course (Lv et al., 2021).
As the NAT of WDR83, the protein-coding gene, deoxyhypusine
synthase, concordantly regulates the expressions of WDR83
mRNA and protein. Conversely, WDR83 also regulates

deoxyhypusine synthase by antisense pairing concordantly. As
a pair of protein-coding cis-sense/antisense transcripts, WDR83
and DHPS are upregulated simultaneously and correlate
positively in lung cancer. They drive the pathophysiology of
lung cancer by promoting cell proliferation (Su et al., 2012).
Furthermore, the remaining SF PPIL1, which has not been
directly reported in the literature to be associated with cancer,

FIGURE 3 | (A) Number of genes with OS-ASEs in LUSC, with 689 ATs in 348 genes, 241 APs in 121 genes, 12 ESs in 12 genes, 10 RIs in 10 genes, and 1 AA in 1
gene. (B) Pathway enrichment analysis of genes with OS-ASEs. Larger dots represent more genes enriched in the pathway and vice versa. A smaller p-value is
represented when the color of the dot is closer to blue, and a larger p-value is represented when the color of the dot is closer to red. (C) Functional enrichment analysis of
genes with OS-ASEs. The scatterplot shows the cluster representatives in a two-dimensional space derived by applying multidimensional scaling to a matrix of the
GO terms’ semantic similarities. The dot represents all GO items, and its size is related to the number of genes enriched in that GO term. The color of dots is related to the
p-value. A smaller p-value is represented when the color of the dot is closer to blue, and a larger p-value is represented when the color of the dot is closer to red.
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is a member of the peptidyl-prolyl isomerase procyclin family and
is frequently overexpressed in colon cancer cells (Chai et al.,
2021). In summary, it is reasonable to speculate that the 7 SFs
may play a role in the development of tumors, and the
relationship between these SFs and lung cancer warrants
further exploration in the future.

Our analysis method can be used not only to screen for key SFs
in LUSC but also to apply to a wider range of studies. From the
perspective of the study object, although our method is only

applied to LUSC data in this study, it is also applicable to other
tumor data. From the perspective of research objectives, our
method is not limited to screening SFs, but also can be used to
screen regulatory factors, such as transcription factors, miRNAs
or lncRNAs. For example, we can screen combinations of genes
that can accurately classify tumor samples by downscaling or
regression and then find key vertices by constructing a regulatory
network of miRNAs that can anchor key miRNAs associated with
tumors.

FIGURE 5 | The expression distribution of 10 SFs between cancerous and paraneoplastic tissues in the TCGA dataset. The horizontal axis represents the
expression of genes. The vertical axis shows the 10 key SFs.

FIGURE 4 | Network diagram of the top 10 SFs and OS-ASEs. The 10 large light blue dots represent 10 SFs, the small dots represent ASEs, and the edges
represent significant correlations between the two dots. Edges of different colors represent associations with different SFs.When an ASE is associated with multiple SFs,
the color of the edge is a superposition of the corresponding multiple colors. The correspondence between the factor and ASE is shown in Supplementary Table S3.
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In conclusion, our analytical approach with a wide range of
applications helps to obtain proper results and can provide
new directions and perspectives for the exploration of related
studies. In our study, although the specific functions and
mechanisms of the 10 key SFs need to be further
investigated, the available data and literature imply that
they play a critical role in LUSC. Seven of these new SFs
are also expected to be a new focus for future studies on SFs in
LUSC. Furthermore, our proposed method will provide ideas
and references for more studies. However, some limitations
remain in our study. Due to the complexity of calculating
multivariate combinations, we only calculated bivariate
combinations, but multifactor combinations were not
further explored. In subsequent studies, we will further
improve our methods and extend to more scientific
questions to provide novel focuses for future research.

CONCLUSION

Abnormal AS is widely considered a novel indicator of
carcinogenic processes, and SFs play a vital role in this
process. Consequently, our aim is to screen key SFs that
regulate carcinogenesis and progression. All combinations
consisting of two ASEs were first constructed and screened
using bivariate Cox regression and AUROC. Next, an
association network of OS-ASEs and SFs was constructed by
the Spearman correlation. Based on topological properties, we
screened the top 10 SFs in terms of degree centrality. Finally,
literature and data validation were performed on these 10 SFs.
The data validation showed that 10 SFs were all significantly
differentially expressed in both cancerous and paracancerous
tissues of LUSC patients. Moreover, 5 of these SFs showed
prognostic effects. It has been reported that 8 of these SFs are

closely associated with tumors. In addition, cross-platform
validations of GEO were carried out, and similar results were
obtained. These findings can serve as a reference for subsequent
experimental studies.
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Immunoglobulin Classification Based
on FC* and GC* Features
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China, 4Beidahuang Industry Group General Hospital, Harbin, China

Immunoglobulins have a pivotal role in disease regulation. Therefore, it is vital to accurately
identify immunoglobulins to develop new drugs and research related diseases. Compared
with utilizing high-dimension features to identify immunoglobulins, this research aimed to
examine a method to classify immunoglobulins and non-immunoglobulins using two
features, FC* and GC*. Classification of 228 samples (109 immunoglobulin samples
and 119 non-immunoglobulin samples) revealed that the overall accuracy was 80.7%
in 10-fold cross-validation using the J48 classifier implemented in Weka software. The FC*
feature identified in this study was found in the immunoglobulin subtype domain, which
demonstrated that this extracted feature could represent functional and structural
properties of immunoglobulins for forecasting.

Keywords: immunoglobulin classification, machine learning, key feature extraction, MRMD, autoprop

1 INTRODUCTION

Immunoglobulins, or antibodies, are a group of proteins secreted by B lymphocytes that recognize
invading antigens and bind to antigens with high affinity and specificity to neutralize toxic
substances. In general, antibodies are composed of two identical polypeptide chains, each with a
light chain and a heavy chain (Narciso et al., 2011). They can be divided functionally into variable (V)
domains, which bind to antigens, and constant (C) domains, which activate, complement, or bind to
Fc receptors (Schroeder and Cavacini, 2010). To predict the structure of immunoglobulins, (Lepore
et al., 2017) developed the PIGSPro Server, an updated version of the popular PIGS Server.

Immunoglobulins have a pivotal role in disease regulation. Therefore, human and nonhuman
polyclonal immunoglobulins have been used in therapeutics for many years. Five monoclonal
immunoglobulins ranked in the top 10 blockbuster biotherapeutics drugs (Norman et al., 2020).
Patients with primary immune deficiencies greatly benefit from the intravenous or subcutaneous
administration of human immunoglobulin preparations (Perez et al., 2017). The advanced
development of medicine is urged by its finite supply, which requires more identification of
valuable therapeutic immunoglobulins. However, biochemical experiments are time-consuming
with enzymes to fragment immunoglobulin molecules (Schroeder and Cavacini, 2010) or X-ray
crystallography to obtain accurate structures (Narciso et al., 2011).

Machine learning can identify desired proteins from a large number of sequences within a short
time to guide the experimental discovery process (Guo et al., 2020; Liu et al., 2020; Song G. et al.,
2021; Cheng et al., 2021; Deng et al., 2021; Dong et al., 2021; Guo et al., 2021; Tang et al., 2021; Yu
et al., 2021; Zhao et al., 2021). Over the past decades, researchers have developed many machine
learning–based techniques for protein sequence analysis (Zhai et al., 2020; Zeng et al., 2020; Chen
et al., 2021; Li et al., 2021). The bioinformatics approach of identifying immunoglobulins is to
convert protein sequences into numerical vectors to reveal the internal structures of proteins. The
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FIGURE 1 | Flowchart of identifying immunoglobulins.
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critical aspects of protein identification can be listed as follows:
feature extraction, feature selection, and machine learning.
Feature extraction methods include n-gram feature type:
amino acid composition (AAC), Dipeptides (Dip), Tripeptides,
where frequencies of n-length peptides are used as feature vectors
(Ding et al., 2011; Gautam et al., 2013; Diener et al., 2016;
Rahman et al., 2018; Liu et al., 2019; Lv et al., 2019; Fu et al.,
2020; Wang H. et al., 2021; Wang J. et al., 2021; Zhai et al., 2020;
Shao and Liu, 2021; Yang et al., 2021; Zhang et al., 2021). In
addition, pseudo–amino acid composition (PseAAC) is also a
widely adopted feature extraction method, including
physicochemical properties between residues (Hansen et al.,
2008; Sanders et al., 2011; Gautam et al., 2013; Chen et al.,
2016; Diener et al., 2016; Khan et al., 2020; Awais et al., 2021;
Naseer et al., 2021).

Many feature types and complex classification methods may
generate redundant information (Song B. et al., 2021). Therefore,
some studies began to eliminate redundant parts to improve the
predictive performance of classification models. This process is
also called feature selection. MRMD (Zou et al., 2016; Ao et al.,
2020; Li et al., 2020a; Li et al., 2020b; Meng et al., 2020) and
ANOVA (Anderson, 2001; Lv et al., 2019) are standard feature
selection methods. For optimal feature identification, (Feng et al.,
2021) uses the PCA and MCE methods to make the features
orthogonal and obtain the core feature set with the minimum 10-
dimensional attributes for PPR gene identification and realized
97.9% accuracy. (Li et al., 2020b) used a 19-dimensional feature
model to classify anticancer peptide sequences. (Ao et al., 2020)
used a 10-dimensional feature model to classify antioxidant
proteins and realized 90.44% accuracy. (Meng et al., 2020)
used a 6-dimensional feature model to classify cell wall lytic
enzymes.

However, very few tools have been developed for
immunoglobulin identification. (Tang et al., 2016) used the
pseudo amino acid composition (PseAAC) feature extraction
approach to realize over 96% prediction accuracy in their
pioneering work on immunoglobulin identification. (Gong
et al., 2021) used the CC–PSSM and monoTriKGap feature
extraction, MRMD feature selection, and single dimension
reduction methods to realize 92.1% immunoglobulin
identification accuracy by two-dimensional features. However,
the link between optimal features and functional structures of
immunoglobulins remains to be investigated.

To obtain a diverse feature set, this study integrated 188-D
physicochemical properties, auto-cross covariance (ACC)
information, and dipeptide compositions of reduced amino
acids. Dimensions were reduced using the max-relevance-
max-distance (MRMD) method and the single dimension
reduction method. The RF and J48 classifiers implemented in
Weka software were used to identify immunoglobulins. Finally,
two features can correctly predict immunoglobulins, FC* and
GC*. The entire modeling process is illustrated in Figure 1. The
FC* feature identified in this study was found in
immunoglobulin subtype domain IPR003599, which
demonstrated that this extracted feature could represent
functional and structural properties of immunoglobulins for
forecasting.

2 MATERIALS AND METHODS

2.1 Datasets
Data for this study were collected by (Tang et al., 2016), which
contain 228 samples (109 immunoglobulin samples and 119 non-
immunoglobulin samples) extracted from the Universal Protein
Resource (UniProt).

2.2 RAAC
Polypeptide chains fold to tertiary structures based on the
physicochemical properties of residues (Tang et al., 2016).
Analyzing the occurrence frequency of residue compositions
cannot visualize three-dimensional protein structures. The
reduced amino acid cluster (RAAC) method, replacing
protein sequences with less than 20 amino acid alphabets
based on a specific reducing scheme, can reduce sequence
complexity. With removing non-essential information,
functionally conserved regions will be displayed more
clearly. Recent work presented 3D protein structures of
ectonucleotide pyrophosphatase with a 1D view using the
RAAC method (Solis, 2015; Zheng et al., 2019).

There are many choices of reduced schemes, and different
decisions could produce distinctive protein classification results.
For example, the RAACBook web server provided 74 types of
reduced amino acid alphabets derived from over 1,000 published
articles in PubMed (Zheng et al., 2019). Bins within the scheme
are related to the chemical properties of amino acids. Dayhoff
classes (AGPST, DENQ, HKR, ILMV, FWY, and C) are most
used. Also, S and T are frequently together, and so are K and R, D,
and E (Susko and Roger, 2007).

We used the AutoProp (Feng et al., 2020) to screen out the
optimal reduced scheme of the immunoglobulin and non-
immunoglobulin sequences. GPHNDERQKAST, FY, VMIL, C,
and W (Figure 1 Step 1) were used. Under this reduced scheme,
the 20 amino acid alphabets were represented by five alphabets:
G, F, V, C, and W. For instance, any amino acid that is a G, P, H,
N, D, E, R, Q, K, A, S, or T is then treated as character G. For any
amino acid F and Y, it is then treated as character F, and so forth.

FIGURE 2 | Classification accuracy comparison between models with
different feature selection methods.
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2.3 Feature Extraction
A sequence can be represented by sequential form and discrete
form. Homolog sequences can be compared with the BLAST or
FASTA program benchmark datasets for traditional sequence
comparison methods. However, the similarity-based way is
unsuitable for distantly related sequences (Wei et al., 2014;
Chen et al., 2016; Jin et al., 2019; Manavalan et al., 2019;
Hong et al., 2020; Tang et al., 2020; Wang et al., 2020; Ding
et al., 2021a; Ding et al., 2021b; Huang et al., 2021; Shao et al.,
2021). By converting amino acid codes to a series of discrete
numerical vectors, the discrete form can overcome this drawback
and be used by machine learning for protein classification.
Sometimes, proteins can be classified according to fewer
features, while BLAST cannot.

Different numerical values of protein codes mean different
feature descriptors. Feature descriptors provided by AutoProp
include 188D, ACC, PseAAC, and another nine methods
(Figure 1 Step 1). Also, AutoProp provides combined features
between those methods. The built-in classifiers will then calculate
the accuracy percentage of each feature and decide the optimal
feature.

For our data, the optimal feature is the combined features of
RAAC and ACC. RAAC features also represent dipeptides of

reduced amino acid, like CV, C*V (λ-gap � 1), and C**V (λ-gap �
2). The following formula was used to calculate the values of those
features:

fu � nλu
∑nλu

,

where λ � 0,1,2, and nλu denotes the number of λ-gap dipeptides of
type u in a protein sequence.

ACC means the autocross covariance (ACC) transformation
and contains auto covariance (AC) and cross-covariance (CC)
and is introduced to transform protein sequences into fixed-
length vectors (Feng et al., 2020). With its ability to identify
sequence homologies, ACC has been successfully used for protein
family classification and protein interaction prediction (Dong
et al., 2009).

2.4 MRMD
The main disadvantage of the sequence word frequency
vector is that they are usually huge. Therefore, dimension
reduction, also called feature selection, is chosen for protein
classification. The MRMD method, which is the max-
relevance-max-distance–based dimensionality reduction
method, is more considered for relationships among
features and stability of feature selection. Cross-validation
and the ROC curve are usually used to evaluate classification
accuracy. The MRMDmethod can reduce feature dimensions
with few accuracy drops (Zou et al., 2016; He et al., 2020; Tao
et al., 2020).

2.5 Performance Measurement
We used three metrics to evaluate model performance. Indicators
include sensitivity (SE), specificity (SP), and Accuracy (Jiang
et al., 2013; Wang X. et al., 2021). Calculation methods are
described as follows:

SE � TP

TP + FN
,

FIGURE 3 | Scatter plot of GC* and FC* features.

FIGURE 4 | Motif discovered among immunoglobulin sequences using
the MEME tool; the height of the letter indicates its relative frequency at the
given position within the motif.
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SP � TN

TN + FP
,

Accuracy � TP + TN

TP + FN + TN +NP
,

where TN, TP, FN, and FP refer to the numbers of correctly
predicted non-immunoglobulin proteins, correctly predicted
immunoglobulin proteins, incorrectly predicted non-
immunoglobulin proteins, and incorrectly predicted
immunoglobulin proteins, respectively. Sensitivity (SE) is also
known as recall, and it measures the percentage that positive
samples can be expected correctly over all the samples. SP
indicators measure the probability of negative samples
classified as non-immunoglobulins, and Accuracy is used to
evaluate the overall performance of a prediction model.

3 RESULTS AND DISCUSSION

3.1 Classification Results Under Different
Features
Props returned 93D best features, and the frequency of dipeptides
(λ-gap � 0, 1, 2) is saved in features 1–75, followed by 18 ACC
features. The classification accuracy was 92.1% in the RF classifier
and 10-fold cross-validation using Weka software. The MRMD
method further reduced the dimension to 49D, and accuracy was
91.7% using the same classifier. It can be seen that MRMD

reduces nearly half of the feature dimension, but the accuracy
is only dropped by 0.4% (Figure 2). After continuous attempts to
reduce features, the optimal two features (GC* and FC*) are
finally obtained; the classification accuracy was 80.3% using the
J48 classifier in Weka.

3.2 2D Features Scatter Distribution
Figure 3 shows the scatter plot of GC* and FC* features. What
stands out in Figure 3 is that immunoglobulin and non-
immunoglobulin samples can be distinguished.
Immunoglobulins are scattered on the upper left with higher
FC* values, and non-immunoglobulins are found in the lower
right with higher GC* values. For 118 out of 119 non-
immunoglobulin samples, the FC* value is equal to or less
than 5. Among these, the FC* value of 49 samples is zero. The
GC* value for immunoglobulin samples is less than or equal to 12.

3.3 Interpretation of Feature FC*
We noticed 49 out of 119 non-immunoglobulin samples had an
FC* value of zero, whereas only four immunoglobulin samples
had an FC* value of zero. Usingmotif search website MEME Suite
5.4.1 (Bailey and Elkan, 1994; Bailey et al., 2009) and running 109
immunoglobulin sequences, results showed that 107 out of 109
immunoglobulin samples had a motif, “ISNVTREDAGTYTC”
(Figure 4). Based on the reduced scheme, Y was treated as F.

Immunoglobulin sequences were subjected to InterProScan
(Zdobnov and Apweiler 2001) to understand the motif structure

FIGURE 5 | Shared motif and its secondary structure (from PDB entry 3wyr) using InterproScan.
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better to map protein domains. Results showed that the finding
motif belonged to immunoglobulin subtype domain IPR003599.

Also, secondary structure predictions of the motif using JPred
(Drozdetskiy et al., 2015) predict that the shared motif comprises
alpha helices and beta sheets separated by disordered regions
(Figure 5).

4 CONCLUSION

The present research aimed to examine a method to classify
immunoglobulins and non-immunoglobulins using two features,
GC* and FC*. Classification of 228 samples (109 immunoglobulin
samples and 119 non-immunoglobulin samples) revealed that the
overall accuracy was 80.7% in the J48 classifier and 10-fold cross-
validationusingWeka software. The FC* feature identified in this study
was found in immunoglobulin subtype domain IPR003599, which
demonstrated that this extracted feature could represent functional and
structural properties of immunoglobulins for forecasting.
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Predicting Ischemic Stroke Outcome
Using Deep Learning Approaches
Gang Fang*, Zhennan Huang and Zhongrui Wang

Institute of Computing Science and Technology, Guangzhou University, Guangzhou, China

Predicting functional outcomes after an Ischemic Stroke (IS) is highly valuable for patients
and desirable for physicians. This facilitates physicians to set reasonable goals for patients
and cooperate with patients and relatives effectively, and furthermore to reach common
after-stroke care decisions for recovery and make exercise plans to facilitate rehabilitation.
The objective of this research is to apply three current Deep Learning (DL) approaches for
6-month IS outcome predictions, using the openly accessible International Stroke Trial
(IST) dataset. Furthermore, another objective of this research is to compare these DL
approaches with machine learning (ML) for performing in clinical prediction. After
comparing various ML methods (Deep Forest, Random Forest, Support Vector
Machine, etc.) with current DL frameworks (CNN, LSTM, Resnet), the results show
that DL doesn’t outperform ML significantly. DL methods and reporting used for
analyzing structured medical data should be developed and improved.

Keywords: machine learning, ischemic stroke, deep learning, IST, IS outcome

INTRODUCTION

Stroke is one of the leading causes of death and permanent disability in the last 20 years globally
(Global Burden of Disease Collaborative Network, 2018; World Health Organization, 2018). In
China, the number of patients diagnosed with stroke each year is approximately 2 million, and the
mortality rate is 11.48% (Chen et al., 2017). Stroke is mainly subtyped into ischemic (85%) and
hemorrhagic types (15%) (Caplan, 2016). IS occurs when a cerebral artery is blocked (Park, 2017).
Long-term physical disabilities after IS can create enormous mental and financial burdens for
families and society. Proper exercise and early rehabilitation definitely improve recovery of patients
and reduce disabilities (Veerbeek et al., 2011). Predicting a patient’s functional outcomes precisely
after a stroke will help physicians in managing an appropriate long-term plan for early rehabilitation.
In addition, it guides clinicians in setting realistic goals, provides accurate information to patients
and their caregivers, and facilitates the creation of an early discharge plan (Veerbeek et al., 2011).
Now, endovascular treatment (EVT) is widely used for IS. Accurate prediction of functional
outcomes and reperfusion may potentially improve stroke care, as it can guide selecting the
most beneficial treatment option for the individual patient: to perform or to refuse EVT.
Recently, clinical variables and radiological image biomarkers are utilized in studies on outcome
prediction strategies in ischemic stroke patients after EVT (Venema et al., 2017; Van Os, 2018). More
works have been devoted to predicting functional outcomes after stroke (Stinear, 2010; Meyer et al.,
2015; Lin et al., 2020). Several medical communities have created and developed scores and methods
that can predict the patient’s functional outcomes after a stroke effectively by only using data readily
collected at admission (Ntaios et al., 2012; Hilbert et al., 2019). The score statistically analyzes the
data and identifies the most relevant predictors from a set of covariates selected by domain experts.
The method uses deep learning to predict the functional outcome of patients with acute IS after EVT.

Edited by:
Quan Zou,

University of Electronic Science and
Technology of China, China

Reviewed by:
Yansen Su,

Anhui University, China
Cheng Zhang,

Peking University, China

*Correspondence:
Gang Fang

gangf@gzhu.edu.cn

Specialty section:
This article was submitted to

Computational Genomics,
a section of the journal
Frontiers in Genetics

Received: 02 December 2021
Accepted: 15 December 2021
Published: 24 January 2022

Citation:
Fang G, Huang Z and Wang Z (2022)
Predicting Ischemic Stroke Outcome
Using Deep Learning Approaches.

Front. Genet. 12:827522.
doi: 10.3389/fgene.2021.827522

Frontiers in Genetics | www.frontiersin.org January 2022 | Volume 12 | Article 8275221

METHODS
published: 24 January 2022

doi: 10.3389/fgene.2021.827522

195

http://crossmark.crossref.org/dialog/?doi=10.3389/fgene.2021.827522&domain=pdf&date_stamp=2022-01-24
https://www.frontiersin.org/articles/10.3389/fgene.2021.827522/full
https://www.frontiersin.org/articles/10.3389/fgene.2021.827522/full
http://creativecommons.org/licenses/by/4.0/
mailto:gangf@gzhu.edu.cn
https://doi.org/10.3389/fgene.2021.827522
https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/journals/genetics#editorial-board
https://doi.org/10.3389/fgene.2021.827522


Recently, machine learning methods have been ubiquitously used
to solve complex problems in many scientific fields, especially in
medical science. Medical diagnosis and prognosis prediction are
fulfilled in this way (Lin et al., 2018; Van Os, 2018; Debs et al.,
2020; Fang et al., 2020).

Recently, DL frameworks have attained great success in
various applications, particularly in image processing and
natural language processing (NLP) (Hinton et al., 2012;
Krizhenvsky et al., 2012), leading to the hot wave of DL
(Goodfellow et al., 2016). Though DL frameworks are
powerful, they have apparent deficiencies. For example, large
scale training data is always required for training, restricting the
direct application of DL to tasks with smaller scale data. It is well
known that DL is a supervised learning. But nowadays the data of
many real tasks are still not sufficiently and correctly labeled due
to the high cost of labeling. Because of this, DL frameworks
always perform inferiorly in tasks with poor quality data. DL
frameworks, especially modern deep neural networks, always
possess too many hyper-parameters, and careful tuning of
them directly can mainly influence the learning performance
of DL. Recently, it is used to diagnose and predict prognosis in the
clinical medical field (Ge et al., 2019; Hilbert et al., 2019; Debs
et al., 2020). But it is seldomly used to analyze structured clinical
medical data. In this paper, currently used DL frameworks are
tested to predict stroke outcomes. Furthermore, several ML
methods, especially Deep Forest (DF) (Zhou and Feng, 2019),
are used to analyze IST dataset and are compared with several DL
frameworks. The DF is proposed based on gcForest (multi-
Grained Cascade Forest), which is a novel ensemble method
of decision tree. This method generates a deep forest ensemble,
with a cascade structure which enables gcForest to do
representation learning (Zhou and Feng, 2019). Its
representational learning ability can be further enhanced by
multi-grained scanning when the inputs are with high
dimensionality, potentially enabling gcForest to be contextual
or structural aware (Zhou and Feng, 2019). In their experiments,
the training time cost of DF is smaller than that of DL; even so, DF
attains highly superior performance to DL. Herein, the DF and
other ML methods are compared with DL to analyze structured
clinical medical data. The results show that there are no evidences
of superior performance of DL over ML.

MATERIALS AND METHODS

Data
The data used in this paper is The International Stroke Trial (IST)
dataset. The IST, including the pilot phase between 1991 and
1993, was conducted between 1991 and 1996 and is a large,
prospective, randomized controlled trial, with 100% complete
baseline data and over 99% complete follow-up data. The
objective of the trial is to know whether early administration
of aspirin, heparin, both, or neither influenced the clinical course
and outcome of acute IS (Sandercock et al., 2011). The dataset
analyzed in this study is downloaded from the IST website.
Patients in this trial are identified only by an anonymous
code. They were treated more than 20 years ago, and many

have died. Hospitals are also identified by an anonymous code.
There are no identifying data such as name, address, or social
security numbers appearing. Patient age has been rounded to the
nearest whole number. Thus, usage of the dataset definitely can’t
present material risk to confidentiality of patients.

The following baseline data: time from onset to
randomization, gender, age, aspirin administration within
3 days prior to randomization, systolic blood pressure at
randomization, presence or absence of atrial fibrillation (AF),
level of consciousness, and neurological deficit, are all included in
the dataset. Neurological deficits are classified as one of the
Oxfordshire Community Stroke Project (OCSP) categories:
posterior circulation syndrome (POCS), partial anterior
circulation syndrome (PACS), total anterior circulation
syndrome (TACS), and lacunar syndrome (LACS). A total of
19,435 patients from 467 hospitals in 36 countries are
randomized within 48 h of symptoms onset, of whom 13,020
take a CT scan before randomization, 5,569 are first scanned after
randomization, and 846 were not scanned at all. Entries with
missing data are deleted, with 18,128 entries left. We exclude
patients who are not finally diagnosed as IS. The variable of 6-
month outcome is taken as a target. It is represented as 1-dead, 2-
dependent, 3-not recovered, 4-recovered, and 8 or 9-missing
status. The entries of 6-month outcome with missing status
are also deleted. Six-month outcome of 2-dependent and 3-not
recovered are merged as one category (not recovered) due to their
similarity, and then the target includes three categories (0-dead,
1-not recovered, 2-recovered). At last, 16,403 patients are left. The
data of these 16,403 patients finally diagnosed as IS are used to
predict the outcome of IS using ML and DL.

METHODS

This paper investigates the ability of some supervised ML
methods to predict IS outcomes. Classic ML methods such as
support vector machine (SVM) (Cristianini and Shawe-Taylor,
2000), random forest (RF) (Liaw and Wiener, 2002), and deep
forest (DF) (Zhou and Feng, 2019) are explored for comparison
to DL frameworks such as convolutional neural network (CNN)
(LeCun et al., 1998), long- and short-term memory network
(LSTM) (Hochreiter and Schmidhuber, 1997), and residual
neural network (Resnet) (He et al., 2016). Developing logistic
regression models is the usual approach to analyze the stroke
outcomes; however, an alternative of ML methods has been
proposed, particularly for large-scale and multi-institutional
data. The prominent advantage of ML is that it can easily
incorporate newly available data and improve prediction
performance (Hamed et al., 2014). Nowadays, DL frameworks
are prevalent and succeed in the field of image processing and
natural language processing (NLP). In this paper, classical ML
methods are compared to popular DL frameworks to exhibit their
respective performances.

The workflow of the study consists of three sections. Firstly,
features collected at the beginning of and on 14 days of
randomization in the refined IST dataset (including 16,403
patients) are used. Features, such as date and comments, are
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removed manually (features are definitely not related to IS
outcome). Six-month outcome is kept as the target feature in
the dataset. Features that overlap with 6-month outcome are
deleted manually. Then, 50 features are kept and used. These
features are utilized to predict long-term prognosis (6-month
outcome) of acute IS. Based on previous research (Fang et al.,
2020), feature selection carried out using recursive feature
elimination with cross-validation (RFECV) don’t eliminate
explicitly less important features in the whole IST dataset.
Thus, all initially chosen features are used to predict. Secondly,
a simple CNN framework which consists of three convolutional
layers and two fully connected layers is built, and the first
convolutional layer is one dimensional convolution. The used

LSTM framework is a two-layer LSTMwith just one direction and
added into a one-dimensional convolutional layer before it. The
last layer of the LSTM framework is a fully connected layer. The
Resnet lacking bottleneck blocks which consists of eight residual
blocks is also added into a one-dimensional convolutional layer as
the first layer. This manipulation allows these DL frameworks to
accept and process structured clinical medical data, such as IST.
ML methods (SVM, RF, Multinomial-Naïve-Bayes, AdaBoost,
and DF) are carried out immediately to compare with these DL
frameworks. The SVM classifier use linear kernel (with the
parameter max_iter = 10,000), and the other ML methods are
carried out with default parameters. To implement these methods
for this study, we use the libraries of scikit-learn 1.0.1 (Pedregosa

FIGURE 1 | Importance of features ranked by Shapiro-Wilk algorithm.
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et al., 2011) and PyTorch neural networks API (PyTorch., 2021).
Thirdly, all these methods are implemented for comparison in
predicting accuracy and other metrics.

RESULTS AND ANALYSIS

Because we only consider IS, 50 features are initially selected in the
data of all kept 16,403 patients. The feature of 6-month outcome
(OCCODE) is kept as target (including 3 categories: 0-dead, 1-not
recovered, 2-recovered). The other 49 features include CNTRYNUM,
HOSPNUM, SEX, AGE, DPLACE, FPLACE, RDELAY, RCONSC,

RATRIAL, RSLEEP, RASP3, RSBP, RXASP, RXHEP, DASP14,
DASPLT, RCT, RVISINF, DLH14, DMH14, neurological deficit
symptom (RDEF1, RDEF2, RDEF3 . . . . . . , etc.), STYPE,
ONDRUG, DCAA, DOAC, TD, etc. Readers can be referred to
Supplementary Materials for the detailed explanation of these
features. Shapiro-Wilk algorithm is used to rank the importance
of these features, and Pearson correlations between features are
analyzed too. Shapiro-Wilk algorithm is a normal distribution
assessing algorithm that regard the instances with respect to the
feature, which is improved by Royston to process large data (Shapiro
and Wilk, 1965; Royston, 1982). Except OCCODE, the other 49
features are ranked by the algorithm (Figures 1, 2).

FIGURE 2 | Pearson correlations between features in the dataset.
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The Shapiro-Wilk results show that DTHROMB (Thrombolysis)
and DCAREND (Carotid surgery) are the two least important
features. The reason for this is that these therapies were seldom
carried out in the 1990s. The Pearson analysis shows that high
correlations between features are not common in the dataset. The
highest correlated features are DASP14 (Aspirin given for 14 days or
till death or discharge) and RXASP (Trial aspirin allocated) which
are related to aspirin usage. The second highest correlated features
are RXHEP (Trial heparin allocated) and DMH14 (Medium dose
heparin given for 14 days or till death/discharge) which are related to
heparin usage. After this all these 49 features (except OCCODE) are
adopted to predict the outcome of IS using ML and DL.

Firstly, all selected 49 features of the IST dataset which consists of
16,403 patients are processed by DL frameworks. The dataset is
divided into training set including 12,302 patients and test set
including 4,101 patients randomly. When processed by CNN, 5
epochs of training are carried out and attain an accuracy of 0.826 in
test set. Other metrics including precision, recall, and f1-score are

also considered (Figure 3). When processed by LSTM, 5 epochs of
training are also carried out and attain an accuracy of 0.821 in test
set. Othermetrics are shown in Figure 4.When processed by Resnet,
5 epochs of training are carried out and attain an accuracy of 0.821 in
test set. Other metrics are shown in Figure 5. In this study, all DL
frameworks are trained with fewer epochs because more epochs of
training lead to overfitting.

After this, test sets including all 4,101 patients are processed by
ML approaches. First by DF, it attains an accuracy of 0.824 in test set.
Other metrics including precision, recall, and f1-score are also
considered (Figure 6). The performances of SVM and RF are
showed in Figures 7, 8. For performances of other ML methods,
readers can be referred to Supplementary Materials for more
details.

The results show that DL frameworks don’t outperform ML
methods in any aspects when predicting IS outcomes in IST dataset.
On the contrary, ML methods, especially DF, outperform DL in
predicting IS outcomes of recovered. It attains a higher precision,

FIGURE 3 | Performance of CNN after 5 epochs of training.

FIGURE 4 | Performance of LSTM after 5 epochs of training.

FIGURE 5 | Performance of Resnet after 5 epochs of training.

FIGURE 6 | Performance of DF.

FIGURE 7 | Performance of RF.

FIGURE 8 | Performance of SVM.
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recall, and f1-score in predicting the outcomes of recovered
(represented as 2, Figure 6). All methods, especially DL, don’t
work well in predicting the outcomes of recovered. The reason of
this lies in the heterogeneity of data in this category. In other words,
there aremore variables that can exert influence on the recovery of IS
patients.

Based on previous Shapiro-Wilk analysis, the less important
features whose Shapiro-Wilk ranking value is less than 0.1 are
eliminated. These features include DTHROMB (Thrombolysis),
DCAREND (Carotid surgery), DRSH (Recurrent stroke within
14 days, Haemorrhagic stroke), DPE (Other events within 14 days,
Pulmonary embolism), and DMAJNCH (Major non-cerebral
haemorrhage). Then 44 features are left for predicting the
outcomes of IS. The predicting performances of DL frameworks
are compared to MLmethods with these features. When processed
by CNN, after 20 epochs of training it attains an accuracy of 0.817
in test set. Other metrics including precision, recall, and f1-score
are also considered (Figure 9). After 20 epochs of training LSTM
attains an accuracy of 0.823 in test set. Other metrics are shown in
Figure 10. After 20 epochs of training Resnet attains an accuracy of
0.827 in test set. The accuracy doesn’t decrease because the
eliminated 5 features are less important and not related to the
6th outcome. Other metrics are shown in Figure 11.

Subsequently, test sets including all 4,101 patients with 44
features are processed by ML approaches. DF attains an accuracy
of 0.828 in the test set. Other metrics including precision, recall, and
f1-score are considered (Figure 12). The performances of SVM and
RF are shown in Figures 13, 14. For performances of other ML
methods, readers can be referred to Supplementary Materials
for more.

The results show that there is no decrease in predicting
performance using both ML and DL after eliminating the five
least important features. But compared to previous results, after
20 epochs of training Resnet attains a higher precision than before in

FIGURE 9 | Performance of CNN with 44 features after 20 epochs of
training.

FIGURE 10 | Performance of LSTM with 44 features after 20 epochs of
training.

FIGURE 11 | Performance of Resnet with 44 features after 20 epochs of
training.

FIGURE 12 | Performance of DF with 44 features.

FIGURE 13 | Performance of RF with 44 features.

FIGURE 14 | Performance of SVM with 44 features.
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predicting the outcomes of recoveredwith 44 features (represented as
2, Figure 11). Considering this observation, more epochs of training
are carried out to attempt to explain this. After 100 epochs of
training, the predicting accuracy of Resnet is 0.791 in test set. But it
gets higher recall and f1-score than before in predicting the outcomes
of recovered (Figure 15). After 500 epochs of training, the predicting
accuracy of Resnet is 0.794 in test set and the other two DL
frameworks overfit (accuracy of CNN and LSTM is 0.740 and
0.769 respectively). But there are no increases in recall and f1-
score when predicting the outcomes of recovered (represented as 2,
Supplementary Figure S1). After 100 epochs training of Resnet, the
overall predicting accuracy decreased. But macro and weighted
average f1-score increased (Figure 15) and are better than before
(Figures 3–5, Figures 9–11). Macro and weighted average f1-score
are an important index for performance of multi-classification tasks.
It is suggested that Resnet will work better when trained
appropriately, but it doesn’t outperform ML methods especially
DF significantly in this case (Figures 12, 15). When trained 500
epochs, it starts overfitting (Supplementary Figure S1). For more
information readers can be referred to Supplementary Materials.

DISCUSSION

In this study, classic ML algorithms and current DL frameworks are
adopted to predict the outcomes of IS in IST dataset. Both methods
attain considerable accuracy. The performances of ML and DL are
also compared. The results show that adapted DL frameworks don’t
outperform ML in predicting capability, although Resnet raised the
weighted average f1-score after trained by 100 epochs (Figure 15).
The main reason of this lies in that the used DL frameworks are
developed and employed for processing image and serial data. They
are seldom used in censored and structured medical clinical data. In
this study, three DL frameworks, CNN, LSTM, and Resnet, are
adapted to process this sort of data and predicting the outcomes of
IS. The structure of the adapted CNN is similar to LeNet-5 (LeCun
et al., 1998) with an added one-dimensional convolutional layer as
the first convolutional layer. The used LSTM and Resnet are also
added to a one-dimensional convolutional layer as the first layer. In
this way, these DL frameworks can admit and process tabulated data,
such as structured medical data. CNN attains the accuracy of 0.83
when trained with less epochs, but it gets less f1-score (Figure 3).
This suggested that it doesn’t work well in multiclassification task, so

does LSTM (Figure 4). After eliminating the 5 least important
features and after trained with more epochs (100 epochs), Resnet
gets a higher weighted average f1-score (Figure 15). The first reason
is that the left 44 features are more important to the outcomes of IS.
The second reason is that Resnet is a fairly complex DL framework.
It adopts residual shortcut connection to overcome degradation
problems. When trained appropriately Resnet can capture some
intrinsic qualities of the tabulated data and work better in a
multiclassification task. In this study, the used Resnet is similar
to Resnet18 which possesses fewer layers. Next, deeper Resnet
framework and more powerful computing workstations will be
adopted to study this issue.

To investigate the predicting capability of DL in the IST dataset,
the performances of classic ML algorithms are compared to them.
The results show that DL doesn’t surpass ML. Resnet raises f1-score
after 100 epochs training with the selected 44 features. After
eliminating the 5 least important features, the DF and RF raise
the f1-score a little and both attain the accuracy of 0.83 (Figures 12,
13). And moderate f1-scores are attained in previous training and
test (Figures 6, 7). This means the left 44 features are more
important and the 2ML classifiers are robust to be used in this
sort of data. The newly proposedDF is used to be compared withDL
frameworks. In our experiments, DF doesn’t achieve highly
competitive performance to deep neural networks, although the
training time cost of DF is smaller than that of deep learning. The
reason of this lies in that the used features were collected in the early
1990s. Some important features may be neglected, and this reduces
the predicting ability of ML and DL. Next, deeper DL frameworks
will be adopted to investigate the performance of them. Furthermore,
some new features and variables will be collected to enhance the
performance of the machine learning and deep learning approaches.
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MIMRDA: A Method Incorporating the
miRNA and mRNA Expression Profiles
for Predicting miRNA-Disease
Associations to Identify Key miRNAs
(microRNAs)
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Identifying cancer-related miRNAs (or microRNAs) that precisely target mRNAs is
important for diagnosis and treatment of cancer. Creating novel methods to identify
candidate miRNAs becomes an imminent Frontier of researches in the field. One major
obstacle lies in the integration of the state-of-the-art databases. Here, we introduce a novel
method, MIMRDA, which incorporates the miRNA and mRNA expression profiles for
predicting miRNA-disease associations to identify key miRNAs. As a proof-of-principle
study, we use the MIMRDA method to analyze TCGA datasets of 20 types (BLCA, BRCA,
CESE, CHOL, COAD, ESCA, HNSC, KICH, KIRC, KIRP, LIHC, LUAD, LUSC, PAAD,
PRAD, READ, SKCM, STAD, THCA and UCEC) of cancer, which identified hundreds of
top-ranked miRNAs. Some (as Category 1) of them are endorsed by public databases
including TCGA, miRTarBase, miR2Disease, HMDD, MISIM, ncDR and mTD; others (as
Category 2) are supported by literature evidences. miR-21 (representing Category 1) and
miR-1258 (representing Category 2) display the excellent characteristics of biomarkers in
multi-dimensional assessments focusing on the function similarity analysis, overall survival
analysis, and anti-cancer drugs’ sensitivity or resistance analysis. We compare the
performance of the MIMRDA method over the Limma and SPIA packages, and
estimate the accuracy of the MIMRDA method in classifying top-ranked miRNAs via
the Random Forest simulation test. Our results indicate the superiority and effectiveness of
the MIMRDA method, and recommend some top-ranked key miRNAs be potential
biomarkers that warrant experimental validations.

Keywords: MIMRDA prediction method, microRNA (or miRNA), miRNA-disease association, survival analysis, drug
resistance, drug sensitivity
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INTRODUCTION

Cancer-related microRNAs (miRNAs) targeting mRNAs affect
cell differentiation, proliferation, migration and apoptosis,
leading to initiation or prevention of cancer (Evan and
Vousden 2001; Bartel 2004; Esquela-Kerscher and Slack 2006).
Identifying cancer-related miRNAs to be biomarkers roots in the
promising diagnosis and treatment of cancer (Rupaimoole and
Slack, 2017; Chen et al., 2019; Zhao, Chen, and Yin 2019).
Methods and databases have been developed over decades,
including but not limited to miRGen (Megraw et al., 2007),
miR2Disease (Jiang, et al., 2009), MiRCancer (Xie et al., 2013),
HMDD (Li L. et al., 2014), HMDD 3.0 (Huang, et al., 2019),
miRWalk (Dweep and Gretz 2015), dbDEMC (Yang et al., 2017),
ncDR (Dai et al., 2017), mTD (Chen et al., 2017a), MISIM (Li
et al., 2019), miRbase (Kozomara et al., 2019), DBMDA (Zheng
et al., 2020) and miRTarBase (Huang et al., 2020). Creating novel
methods to identify candidate miRNAs has become an imminent
Frontier of researches in the field.

There are two approaches: the complex network-based
methods and the machine learning-based methods (Chen,
et al., 2019). The former approach relies on the complex
network that integrated miRNA similarity network, disease
similarity network and known miRNA-disease relationship
network to predict miRNA-disease connections (Jiang et al.,
2010). This family includes WBSMDA (Chen et al., 2016a),
RWRMDA (Chen et al., 2012), HGIMDA (Chen et al., 2016b)
and PBMDA (You et al., 2017). These methods constructed local
networks of the miRNA and disease similarity to infer global
networks; but the prediction with limited information is of poor
quality. The hypergeometric distribution or binomial distribution
was fundamentally assumed in most methods, similar to that of
the Limma package (Ritchie et al., 2015) and the SPIA package
(Tarca et al., 2009). The latter approach applies machine learning
(supervised or semi-supervised) techniques to predict miRNA-
disease connections. Some examples are the SVM classifier (Xu
et al., 2011), HDMP (Xuan et al., 2013), RLSMDA (Chen and Yan
2014), RBMMDA (Chen et al., 2015), MCMDA (Li C. et al., 2017)
and RKNNMDA (Chen et al., 2017b). These methods performed
better in some cases. Yet, the need for fine-tuning parameters
inevitably hinders applications in complex biological systems.

Three works pioneered a new direction through incorporating
the miRNA and mRNA expression profiles. One was to construct
a relationship network between miRNAs and their target mRNAs
(disease-genes) by utilizing the limited miRNA and mRNA
expression profiles (Xu et al., 2014). Another was to construct
a subnetwork between the disease similarity and the miRNA
similarity derived from multiple data-sources (Liu et al., 2017).
The third was to construct an mRNA-miRNA-lncRNA network
prognostic for triple-negative breast cancer (Huang et al., 2021).
However, problems remain challenging due to insufficient
relationships between miRNAs and mRNAs (disease-genes) in
databases.

The major gap in the field is how to integrate sophisticated
databases to identify key miRNAs associated with diseases. This
article introduces a novel method, MIMRDA, which incorporates
the miRNA and mRNA expression profiles for predicting

miRNA-disease associations to identify key miRNAs. As a
proof-of-principle study, we use the MIMRDA method to
analyze TCGA datasets of 20 types of cancer (comprising
10,449 samples), followed by functional cross-verification
through utilizing multiple sophisticated databases including
miR2Disease (Jiang, et al., 2009), HMDD 3.0 (Huang, et al.,
2019), ncDR (Dai et al., 2017), mTD (Chen et al., 2017a), MISIM
2.0 (Li et al., 2019) and miRTarBase (Huang et al., 2020). We
evaluate the superiority of the MIMRDA method to the Limma
and SPIA packages (Tarca et al., 2009; Ritchie et al., 2015). We
estimate the accuracy of the MIMRDAmethod in classifying top-
ranked miRNAs via the Random Forest simulation test. We
discuss some top-ranked key miRNAs with experimental
evidences drawn from literature, suggesting their potential to
be biomarkers for clinical applications.

MATERIALS AND METHODS

Design and Implementation of the MIMRDA
Method
The miRNA-disease association prediction method (MIMRDA)
incorporated the expression profiles of both miRNAs and
mRNAs to identify key miRNAs. The demo R code was freely
available at https://github.com/eshinesimida/MIMRDA. The
datasets from TCGA (https://portal.gdc.cancer.gov/) and
miRTarBase (Huang et al., 2020) were used as starting-points,
followed by multiple steps for predicting and verifying the key
miRNAs that were significantly related to at least one type of
cancer (Figure 1, top-box). Key miRNAs were predicted at the
significance level of global probability PG, for which the
Differentially Expressed miRNAs (DE_miRNAs) and their
target mRNAs (DE_mRNAs) were essentially measured
(Figure 1, bottom-box). The sequential procedures were
outlined below.

Firstly, we counted the total number of DE_mRNAs (N) that
were identified from a TCGA dataset by using the Limma package
(Ritchie et al., 2015) at the significance level of BH-adj. Pval
<0.01. Secondly, we estimated the probability PmiRNA based on
DE_miRNAs in the TCGA dataset by using the Limma package
(Ritchie et al., 2015) at the significance level of BH-adj. Pval
<0.01. Thirdly, we extracted the miRNAs and their target
mRNAs, whose associations had been experimentally pre-
validated in the miRTarBase database (Chou et al., 2018;
Huang et al., 2020), while counting the total number of
mRNAs (M) and the total number of DE_mRNAs (k), as well
as the number of DE_mRNAs (m) that were precisely targeted by
the ith miRNA (i being the current step in the iteration) from the
miRTarBase database. Fourthly, we estimated the probability
PNDE_miRNA with an over-representation analysis (ORA) via the
SPIA package (Tarca et al., 2009), assuming that the number of
DE_miRNAs (that precisely targeted DE_mRNAs) followed a
hypergeometric distribution with three parameters (N,M and k).
These parameters included the total number of DE_mRNAs (N)
observed in a given TCGA dataset, the total number of mRNAs
(M) plus the number of DE_mRNAs (k) observed in the
miRTarBase database, and the number of mRNAs (m) that
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FIGURE 1 | Workflow of the MIMRDA method. Multiple steps for predicting and verifying key miRNAs (top-box). Sequential procedures for calculating a global
probability PG value (bottom-box). The probability PmiRNA is estimated by using the Limma package for DE_miRNAs from a TCGA dataset. The probability PNDE_miRNA is
estimated with the formula, which incorporates the expression profiles of miRNAs and their target mRNAs from both TCGA dataset and miRTarBase database. The
global probabilityPG is adjusted by the Fisher’s product of PNDE_miRNA andPmiRNA. Symbols: Total number of DE_mRNAs (N) present in a given TCGAdataset; Total
number of mRNAs (M) and the number of DE_mRNAs (k), as well as the number of mRNAs (m) that are precisely targeted by the ith miRNA (i being the current step in the
iteration) present in the miRTarBase database. See the main text for details.
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were precisely targeted by the ith miRNA (i being the current step
in the iteration) observed in the miRTarBase database.
Statistically, the probability PNDE_miRNA value represented the
probability of observing the DE_miRNAs for a given number of
times or higher, just by chance. Finally, we generated the global
probability (PG) by adjusting the Fisher’s product of PNDE_miRNA

and PmiRNA. The global probability PG value was used not only to
rank DE_miRNAs, but also to choose a desired level of type I
error. Small PG values could occur by chance when multiple
testing were simultaneously performed. The FDR-adjusted PG
value was used for controlling the false discovery rate (FDR).

Case Studies: Evaluating the MIMRDA
Method
As a proof-of-principle study, we employed the MIMRDA
method to analyze TCGA datasets of 20 types of cancer,
comprising 10,499 samples (Table 1). The miRNAs and
mRNAs expression profiles along with clinical information
were downloaded at the TCGA data portal (https://portal.gdc.
cancer.gov/) (as of April 30, 2020). The Limma package (Ritchie
et al., 2015) was deployed to extract differentially expressed
mRNAs (DE_mRNAs) and miRNAs (DE_miRNAs),
respectively, from each dataset. The Benjamini–Hochberg
adjusted p-value (BH-adj.p-value) < 0.01 was used to select
significantly, differentially expressed entities (DE_mRNAs and
DE_miRNAs).

Cross-Verification of key miRNAs Against
the miRNA-Disease Association Databases
(miR2Disease and HMDD)
The miR2Disease database (http://www.miR2Disease.org) was
manually curated, containing miRNAs related to human diseases
(Jiang, et al., 2009). Each entry contained information about the

miRNA-disease association, including miRNA ID, disease name,
brief description of the relationship, miRNA expression pattern,
miRNA expression detection method, target genes that were
experimentally pre-verified in literature. This database currently
comprised 3,273 entries, involving 349 miRNAs related to 163
human diseases (as of April 30, 2021). The HMDD 3.0 database
(Huang, et al., 2019) currently contained 5,430 types of relationship
between 495 miRNAs and 383 diseases (as of April 30, 2021), which
was employed to infer the miRNA-disease associations. The
miRNA-disease pairs were downloaded (as of April 30, 2021) at
http://www.cuilab.cn/hmdd for analysis.

Cross-Verification of key miRNAs Against
the Function Similarity Database (MISIM)
The MISIM 2.0 database (http://www.lirmed.com/misim/) (Li
et al., 2019) integrated the co-expression similarity, GO
function similarity and disease similarity. It was applied to
manifest the functional similarity of miRNAs as a tool for
the miRNA function analysis (Wang et al., 2010). We
deployed the known miRNA-disease interactions to
evaluate the functional similarity of miRNAs because
miRNAs with similar functions should tentatively associate
with similar diseases (Chen D. et al., 2018; Che et al., 2019;
Zheng et al., 2020).

Cross-Verification of key miRNAs via the
Kaplan-Meier (KM) Survival Analysis Based
on TCGA Database
The Kaplan-Meier (KM) method (Saluja et al., 2019) was used to
evaluate the prognostic survival rate of key miRNAs. The median
values of miRNAs expression were calculated. miRNAs with
expression values higher than the median value were
considered to be highly expressed, and vice versa. The TCGA

TABLE 1 | Datasets of 20 types of cancer downloaded from TCGA.

Cancer Total Tumor Normal Details

BLCA 453 416 37 Bladder Urothelial Carcinoma
BRCA 1,282 1,120 162 Breast invasive carcinoma
CESE 317 309 8 Cervical squamous cell carcinoma
CHOL 71 51 20 Cholangiocarcinoma
COAD 570 477 93 Colon adenocarcinoma
ESCA 251 186 65 Esophageal carcinoma
HNSC 612 530 82 Head and Neck squamous cell carcinoma
KICH 190 113 71 Kidney Chromophobe
KIRC 985 543 442 Kidney renal clear cell carcinoma
KIRP 380 292 88 Kidney renal papillary cell carcinoma
LIHC 469 380 89 Liver hepatocellular carcinoma
LUAD 877 603 274 Lung adenocarcinoma
LUSC 765 511 254 Lung squamous cell carcinoma
PAAD 221 185 36 Pancreatic adenocarcinoma
PRAD 623 505 118 Prostate adenocarcinoma
READ 192 173 19 Rectum adenocarcinoma
SKCM 477 474 3 Skin Cutaneous Melanoma
STAD 544 443 101 Stomach adenocarcinoma
THCA 615 515 100 Thyroid carcinoma
UCEC 605 553 52 Uterine Corpus Endometrial Carcinoma
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database (with clinical information of patients) was employed to
screen the significantly, differentially expressed miRNAs
(DE_miRNAs) and determine whether such miRNAs were
related to the overall survival (OS). The hazard ratio (HR) and
p-value were estimated to evaluate the direct relationship between
miRNA and prognostic survival. A p-value < 0.05 was considered
statistically significant.

Cross-Verification of key miRNAs Against
the miRNA-Drug Association Databases
(ncDR and mTD)
An miRNA targeting mRNAs caused sensitivity or resistance to
anti-cancer drugs. We applied top-20 ranked miRNAs to search
against two databases, ncDR (Dai et al., 2017) and mTD (Chen
et al., 2017b), looking for candidate matches, thus predicted
possible resistance or sensitivity to anti-cancer drugs. These
two databases currently contained 5,661 and 3,669 miRNAs-
drugs interactions for all diseases (as of October 2021),
respectively, which provided information about the
dysfunctions of non-coding RNAs (ncRNAs), leading to
resistance or sensitivity to anti-cancer drugs.

Comparison on the Performance of the
MIMRDA Method Over Existing Methods
No similar methods was available for side-by-side comparisons.
We compared the number distribution of top-ranked miRNAs
identified by the MIMRDA method (PG), the Limma package
(PmiRNA) and the SPIA package (PNDE_miRNA), respectively, at the
significance level of adj. Pval <0.01 since the MIMRDA method
rooted in the usage of the Limma package (Ritchie et al., 2015)
and the SPIA package (Tarca et al., 2009) (see Figure 1). For
simplicity, we focused on comparing the number distribution of
top-100 ranked miRNAs obtained by these three methods from
each dataset of each type of cancer. The more the identified
disease-related miRNAs were flagged, the better the method
performed.

Evaluating the Performance of MIMRDA via
the Random Forest Simulation Test
To evaluate the accuracy of the MIMRDA method in
classifying top-ranked miRNAs, we employed a machine
learning method, i.e., the five-fold cross-validation Random
Forest (RF), for simulation test (Speiser et al., 2019). Samples
of each dataset from each type of cancer were divided (at a ratio
of 4:1) into the training and testing sets, respectively. The
five-fold cross-validation RF simulation generated a predicted
value. We obtained an AUC value by comparing the predicted
value with an actual value, and thus compared the MIMRDA
method top-ranked (top_5, top_10, top_15, top_20) miRNAs
with the randomly selected (random_5, random_10,
random_15, random_20) miRNAs, both after the RF
simulations. These processes were repeated 1,000 times in
order to get a set of AUC values. We then used the AUC-
based statistics analysis to evaluate the accuracy of the

MIMRDA method in classifying the top-ranked miRNAs.
The larger the AUC value was, the better the accuracy of
the method classified. The difference was considered
statistically significant at p-value < 0.001.

RESULTS

Identification of miRNAs and Their Target
mRNAs
The miRNAs and their target mRNAs were extracted from the
miRTarBase database (Huang et al., 2020) with the
experimentally pre-validated miRNA-target associations.
The number distribution of miRNAs and mRNAs,
respectively, indicates that the majority of miRNAs have
200–300 target mRNAs (Figure 2A), while the majority of
target mRNAs have 20–50 miRNAs (Figure 2B); Top-10
ranked miRNAs have more than 1,000 target mRNAs
(Figure 2C), while top-10 ranked target mRNAs have more
than 250 miRNAs (Figure 2D). These data suggest that such
diverse samples are appropriate for subsequent analysis.

Identification of the Differentially Expressed
miRNAs and mRNAs
We screened the differentially expressed miRNAs
(DE_miRNAs) and target mRNAs (DE_mRNAs) from each
dataset by using the Limma package (Ritchie et al., 2015) at the
significance level of BH-adj. Pval <0.01. The percentage
distribution of top-ranked (top-10, 20, 30, 40, 50) miRNAs
indicates that most miRNAs are significantly essential in
biology (Figure 3). Note that the percentage of top-ranked
miRNAs is a proportion of the top-ranked miRNAs out of the
total cancer-related miRNAs that were identified from the
given datasets of a cancer type. For instance, surveyed
against the HMDD database, we obtained the top-10 ranked
miRNAs from the BLCA datasets, of which only nine miRNAs
were identified to be truly associated with BLCA, thus yielding
a percentage of 90%. The percentage distribution of such top-
50 ranked miRNAs suggests an accuracy greater than 70% in
BLCA, BRCA, LIHC, LUAD, LUSC, PRAD and STAD
datasets, and an accuracy less than 40% in CHOL, KICH,
KIRP, PAAD, SKCM and THCA datasets. Similar surveys with
the top-10 ranked miRNAs suggest an accuracy greater than
60% in the majority of datasets. These data indicate the
effectiveness of the MIMRDA method in identifying key
miRNAs that were significantly, differentially expressed in
the datasets from 20 types of known cancer, suggesting that
they are closely related to the 20 types of known cancer (see
Table 1).

The Impacts of key miRNAs on Multiple
Types of Cancer
We extracted top-20 ranked miRNAs from each dataset and
searched them against the miRNA-disease association databases
(miR2Disease and HMDD) whose biological functions had been
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pre-verified clinically or experimentally. The results (Figure 4)
indicated that more than 50% of the top-20 ranked miRNAs were
related to 14 types of cancer (BLCA, BRCA, CESC, COAD, ESCA,
HNSC, LIHC, LUAD, LUSC, PRAD, STAD, THCA and UCEC),
despite that certain top-20 ranked miRNAs were not related to
any cancer type at all. We identified perfect matches (defined as
Category 1), including 1) 18 miRNAs were from BRCA, LIHC,
LUAD, LUSC and STAD; 2) 17, 16, 15, 14, 13, 12, 11, 11, 10
miRNAs separately were from BLCA, PRAD, UCEC, CESC,
COAD, THCA, ESCA, HNSC, READ; and 3) less than 10
miRNAs were from CHOL, KICH, KIRC, KIRP, PAAD and
SKCM. Strikingly, the MIMRDA method suggested that certain
top-20 ranked miRNAs (e.g., miR-1258 and miR-4686) were
related to cancer, but they were beyond (i.e., they were not
matched with) the current version of miR2Disease and
HMDD databases. We defined these candidate miRNAs as
Category 2, which warrant validations in future experiments.

Among the 198 miRNAs out of the top-20 ranked miRNAs
screened from the 20 types of cancer, 85 miRNAs were related to
multiple types of cancer whereas the rest 113 miRNAs were
related to one cancer type (Figure 4). Those key miRNAs related
to multiple types of cancer will be discussed (in Discussion) later
with accumulated experimental evidences drawn from literature.

Here, we highlight certain cases that were related to single type of
cancer. 1) Four (miR-148b, miR-185, miR-671 and miR-18a)
were related to BLCA, and ranked 5th, 7th, 9th and 14th,
respectively. 2) Five (miR-145, miR-125b01, miR-99a, miR-
6507 and miR-100) were related to BRCA, and ranked 8th,
15th, 16th, 17th and 20th, respectively. 3) One (miR-215) was
related to CESC, and ranked 6th. 4) Two (miR-218-1 and miR-
218-2) ranked 15th and 16th were related to CHOL. 5) Eight
(miR-74a, miR-6803, miR-6887, miR-6749, miR-542, miR-125a,
miR-6756 and miR-197) were related to COAD, and ranked 6th,
11th, 12th, 15th, 16th, 17th, 18th and 19th, respectively. 6) Three
(miR-30c-2, miR-30c-1 and miR-877) were related to ESCA, and
ranked 18th, 19th and 20th, respectively. 7) Four (miR-5089,
miR-4510, miR-503 and miR-195) were related to HNSC, and
ranked 3rd, 8th, 14th and 15th, respectively. 8) Seven (miR-135b,
miR-874, miR-130a, miR-124-2, miR-124-3, miR-3065 and miR-
22) were related to KICH, and ranked 4th, 6th, 8th, 12th, 17th,
18th and 19th, respectively. 9) Five (miR-2355, miR-584, miR-
362, miR-629 and miR-20) were related to KIRC, and ranked
11th, 13th, 14th, 17th and 20th, respectively. 10) Seven (miR-
216b, miR-4508, miR-891a, miR-489, miR-124-1, miR-377 and
miR-6863) were related to KIRP, and ranked 6th, 7th, 8th, 10th,
13th, 16th and 19th, respectively. 11) Two (miR-4686 and let-7c)

FIGURE 2 | The number distribution of miRNAs and their target mRNAs. (A) miRNAs (B) Target mRNAs (C) Top-10 ranked miRNAs. (D) Top-10 ranked target
mRNAs.
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were related to LIHC, and ranked 3rd and 9th, respectively. (xii)
Six (miR-7-1, let-7a-2, let-7a-1, let-7a-3, miR-4529 and miR-
310a) were related to LUAD, and ranked 8th, 12th, 14th, 15th,
18th and 19th, respectively. (xiii) Three (miR-205, miR-30d and
miR-944) were related to LUSC, and ranked 2nd, 3rd and 11th,
respectively. (xiv) Nine (miR-6788, miR-5196, miR-574, let-7d,
miR-346, miR-6726, miR-6849, miR-1224 and miR-766) were
related to READ, and ranked 2nd, 6th, 7th, 9th, 13th, 15th, 16th,
18th and 19th. (xv) One (miR-98) was related to STAD, and
ranked 13th. (xvi) Remarkably, no miRNAs was related to UCEC
at all. Taken together, these data suggest that the MIMRDA
method is effective in identifying key miRNAs from specific type
of cancer.

Verification of keymiRNAs via the Biological
Function Similarity Analysis
We applied MISIM 2.0 database to annotate the top-20 ranked
miRNAs from each dataset of the 20 types of cancer
(Figure 5). The findings revealed that the majority of top-
20 ranked miRNAs were annotated, including 19 in CHOL
and STAD; 18 in CESC, ESCA, KIRC, LUSC and PRAD; 17 in
BLCA, KICH, THCA and UCEC; 16 in KIRP, LIHC and
LUAD; 15 in BRCA and HNSC; and 14 in COAD and
READ. However, none of the top-20 ranked miRNAs was
annotated in PAAD and SKCM. Meanwhile, the function
similarity network of the top-20 ranked miRNAs indicated
that the majority of miRNAs were highly related to one
another in biological functions, as the red line represents
that the correlation coefficient is greater than 0.5
(Figure 5). For instance, the top-10 ranked miRNAs are

corresponding to the enriched biological functions (FDR
<0.05), which are mainly involved in cell cycle,
proliferation, inflammation, death and apoptosis
(Figure 5). And these functions have been experimentally
pre-verified to be closely associated with various types of
cancer (Evan and Vousden 2001; Taniguchi and Karin
2018). These results suggest that such key miRNAs possess
highly coupled linkages, which drive the essential biological
functions at the system-level, thereby enhancing their
potential of clinical applications.

Verification of key miRNAs via the
Kaplan-Meier (KM) Survival Analysis
The top-3 ranked miRNAs demonstrated drastic variations on
the survival of patients (Figure 6), which impacted the
prognostic survival of patients in BLCA, BRCA, CESC,
ESCA, HNSC, KICH, KIRC, KIRP, LIHC, LUAD, LUSC,
PAAD, READ, STAD, THCA and UCEC. Two categories
have strongly functioned in a positive or negative manner,
respectively. 1) with strong POSITIVE impacts: miR-21 (HR
= 0.43, log_rank p = 0.0063 in KIRP; HR = 0.62, log_rank p =
0.0048 in BLCA); miR-92a (HR = 0.58, log_rank p = 2e-04 in
BLCA); miR-148b (HR = 0.63, log_rank p = 0.0043 in BLCA);
miR-182 (HR = 0.51, log_rank p = 0.0021 in UCEC); miR-206
(HR = 0.47, log_rank p = 1.4e-06 in KICH); miR-490 (HR =
0.34, log_rank p = 3.6e-10 in LIHC); miR-934 (HR = 0.37,
log_rank p = 2.1e-11 in KIRC);miR-1258 (HR = 0.44, log_rank
p = 2.6e-06 in LIHC);miR-4686 (HR = 0.35, log_rank p = 7.8e-
10 in LIHC); andmiR-4709 (HR = 0.24, log_rank p = 0.0026 in
THCA). 2) with strong NEGATIVE impacts: miR-21 (HR =

FIGURE 3 | The percentage distribution of top-ranked miRNAs screened from the datasets of 20 types of cancer.
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1.63, log_rank p = 0.004 in BRCA; HR = 1.59, log_rank p =
0.0028 in LUAD); miR-92a (HR = 2.65, log_rank p = 0071 in
ESCA); miR-139 (HR = 1.80, log_rank p = 0.0021 in BRCA);

miR-200c (HR = 1.66, log_rank p = 0.0066 in KIRC); miR-221
(HR = 2.32, log_rank p = 3e-08 in KICH);miR-222 (HR = 2.09,
log_rank p = 1.4e-06 in KICH); miR-617 (HR = 2.27, log_rank

FIGURE 4 | Top-20 ranked miRNAs on the lists of priorities (squares in light red or red color) for 20 types of cancer when searched against the miR2Disease and
HMDD databases, respectively.
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p = 0.0018 in PADD); miR-3184 (HR = 2.27, log_rank p =
0.0018 in PADD); miR-3622a (HR = 1.82, log_rank p = 0.13 in
READ); miR-4678 (HR = 2.27, log_rank p = 0.0018 in PADD);

and miR-6788 (HR = 1.70, log_rank p = 0.18 in READ).
Remarkably, these key miRNAs have been pre-verified by
clinical information of patients in the TCGA database and

FIGURE 5 | Biological function similarity analysis of the top-20 ranked miRNAs.
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the miRNA-disease association databases (miR2Disease and
HMDD); some of them are in line with the accumulated
evidences drawn from literature as discussed (in Discussion)

later, which enhance their potential of clinical applications. To
our knowledge, most of them are uncovered for the first time,
thus deserving to be exploited through future experiments.

FIGURE 5 | (Continued).
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FIGURE 6 | The Kaplan-Meier survival analysis of top-3 ranked miRNAs extracted from the datasets of 20 types of cancer.
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FIGURE 6 | (Continued).
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Verification of key miRNAs via the Analysis
of Sensitivity or Resistance to Anti-Cancer
Drugs
We submitted the top-20 ranked miRNAs to ncDR and mTD,
respectively, searching for candidate matches. The results are
outlined (Figure 7) below. 1) 14, 9, 11, 7, 11, 7, 7, 9 miRNAs
impacted drug resistance or sensitivity in BRCA, COAD, LUAD,
LIHC, LUSC, PRAD, READ and STAD, respectively; 2) 5, 5, 3 and 3
miRNAs impacted drug sensitivity or resistance in BLCA, ESCA,
HNSC and PAAD, respectively; but 3) none of the miRNAs
impacted drug resistance or sensitivity in CESC, CHOL, KICH,

KIRC, SKCM, THCA and UCEC.We remind that a possible reason
for these fewermatches probably lies in that there are relatively fewer
records on these cases in the current version of two databases.

Our data suggest that the abnormal expression of key miRNAs
impacted the sensitivity or resistance to anti-cancer drugs; some
miRNAs promoted drug sensitivity whereas others increased drug
resistance (Figure 7).We highlighted certain cases as follows. 1) One
miRNA impacted a number of drugs, which produced different
sensitivity or resistance; and vice versa. It was reported that the
overexpression of miR-182 in breast cancer caused resistance to
Olaparib, Verapamil, Tamoxifen and Cisplatin, but increased
sensitivity to Doxorubicin (Kovalchuk et al., 2008). Here, we

FIGURE 7 | Sensitivity or resistance to anti-cancer drugs by the top-20 ranked miRNAs extracted from the TCGA datasets of 20 types of cancer.
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found more cases. All overexpressed miRNAs in bladder cancer
promoted resistance to Gemcitabine. Low expression of miR-129 in
colon cancer induced resistance to Oxaliplatin, but increased
sensitivity to 5-Fluorouracil. Overexpression of miR-193b in
esophageal cancer promoted resistance to 5-Fluorouracil, but
increased sensitivity to Cisplatin. Overexpression of miR-200c in
prostate cancer promoted sensitivity to Docetaxel, but increased
resistance to Cyclopamine and Paclitaxel. Overexpression of miR-7
in lung adenocarcinoma weakened resistance to 6 drugs.
Overexpression of miR-130, but low expression of miR-101,
promoted sensitivity; while low expression of miR-139, miR-133a,
miR-133b, but overexpression of miR-205, increased resistance to
Paciltaxel. Overexpression of most miRNAs in gastric cancer was
associated with drug sensitivity or resistance. Low expression ofmost

miRNAs in liver cancer was associated with sensitivity or resistance.
Low expression of miR-101 and miR-195 increased resistance to
Docetaxel, but overexpression of miR-21 promoted sensitivity to
Cisplatin in the cancer of head and neck. Low expression of miR-424
in pancreatic cancer promoted sensitivity to Gemcitabine, but
increased resistance to 5-Fluorouraci. 2) Strikingly, miR-21
appeared frequently in multiple datasets. Abnormal expression of
miR-21 impacted sensitivity or resistance to multiple drugs in
BRCA, BLCA, PRAD, LUAD, STAD, HNSC, LIHC and READ.
The mechanisms underlying these candidates remained elusive.
Collectively, these key miRNAs have complex impacts on the
above anti-cancer drugs, which not only illustrate their potential
roles in tumorigenesis, but also provide a new perspective for
precision medicine.

FIGURE 8 | The performance comparison of the MIMRDA method over other methods. (A) The number distribution of top-20 ranked cancer-related miRNAs. (B)
The survival analysis of miR-1258 in LIHC. (C) The survival analysis of miR-4686 in LIHC. (D) The performance comparison among the MIMRDAmethod (PG), the Limma
package (PmiRNA) and the SPIA package (PNDE_miRNA) based on the top-100 ranked miRNAs identified from the TCGA datasets of 20 types of cancer.
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Comparison on the Performance of the
MIMRDA Method Over Existing Methods
To illustrate the superiority of the MIMRDA method, we
compared the miRNAs that were identified by the
MIMRDA method, the Limma package (Ritchie et al., 2015)
and the SPIA package (Tarca et al., 2009), respectively. For
simplicity, we focused on the top-100 ranked miRNAs that
were extracted from each dataset of each type of cancer
(Figure 8). Note that since the classical approaches utilized
the known disease-related miRNAs to establish training sets to
prioritize miRNAs (Ritchie et al., 2015), it is impossible to use
those prioritization methods based on the expression values of
genes (or miRNAs), or an overall performance metrics. Hence,
we compared the number distribution of candidate miRNAs
(i.e., the known disease-related miRNAs). A method performs

better if more disease-related miRNAs are found. Obviously,
the MIMRDA method identified more miRNAs related to the
known types of cancer, which solidifies the superiority of the
MIMRDAmethod to the counterpart methods. Remarkably, as
representatives in the second category, who are not matched
with the aforementioned two databases, miR-1258 (Figure 8B)
and miR-4686 (Figure 8C) have shown perfect survival rates,
which warrant future experimental validations.

Evaluation on the Performance of the
MIMRDA Method via the Random Forest
Simulation Test
The five-fold cross-validation Random Forest simulation test (see
Materials and Methods) was applied to evaluate the accuracy of

FIGURE 9 | Evaluation on the performance of the MIMRDAmethod via the Random Forest simulation test. The top-ranked miRNAs identified by the MIMRDAmethod are
comparedwith the randomly selectedmiRNAs, both after the five-fold cross-validation Random Forest simulations. (A) Top_5 rankedmiRNAs vs random_5miRNAs. (B) Top_10
ranked miRNAs vs random_10 miRNAs. (C) Top_15 ranked miRNAs vs random_15 miRNAs. (D) Top_20 ranked miRNAs vs random_20 miRNAs. p-value < 0.001***.
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the MIMRDA method in classifying top-ranked miRNAs. The
results indicate that the MIMRDA method is significantly
(p-value < 0.001) better than the random selection in terms of
the overall AUC values (Figure 9), suggesting the effectiveness
and reliable ability of the MIMRDA method in classifying the
top-ranked miRNAs.

DISCUSSION

The proposed MIMRDA method identified hundreds of top-
ranked miRNAs from TCGA datasets of 20 types of cancer, and
recommended them warrant further validations. We employed
miR2Disease (Jiang, et al., 2009) and HMDD 3.0 (Huang, et al.,
2019) to infer the miRNA-disease associations based on the pre-
verified evidences. We deployed MISIM 2.0 (Li et al., 2019) to
infer the function similarity of key miRNAs based on the pre-
verified function similarities. We applied ncDR (Dai et al., 2017)
and mTD (Chen et al., 2017a) to infer the sensitivity or resistance
to anti-cancer drugs based on the pre-verified miRNAs-drug
associations. Such that our findings were cross-verified to one
another. We conclude that most of the top-ranked key miRNAs
are the cancer-related miRNAs deposited in miRTarBase (Huang
et al., 2020) and TCGA (https://portal.gdc.cancer.gov/) databases,
while some are supported by literature evidences. We highlight
some key miRNAs that are well supported by the accumulated
experimental evidences recaptured from literature, thus
highlighting their potential to be biomarkers, which should be
valuable to the community.

Firstly, the majority of top-ranked miRNAs (as Category 1,
e.g., miR-21) are endorsed by the pre-verified relationship of
miRNAs-cancer in the state-of-the-art databases (Figures 4–7),
suggesting that they are truly cancer-related miRNAs and have
high potentials to be biomarkers. Here are some examples
highlighted with the experimental evidences drawn from
literature. 1) miR-16 inhibited the proliferation and migration
of gastric cancer cells by targeting SALL4 (Jiang andWang 2018).
2)miR-21 was up-regulated in gastric cancer, and its dysfunction
had a critical role in gastric cancer growth and dissemination by
regulating PTEN and PDCD4, plus by modulating the pathways
involved in mediating cell growth, migration, invasion and
apoptosis (Li Y. et al., 2014). miR-21 and miR-155 promoted
the development of non-small cells by down-regulating SOCS1,
SOCS6 and PTEN (Xue et al., 2016). miR-21 significantly
reduced or increased epithelial-mesenchymal transition (Dai
et al., 2019). Overexpression of miR-21 in non-small cell lung
cancer up-regulated the expression of cyclin D1 and cyclin E1,
respectively (Dai et al., 2019). 3)miR-34a was overexpressed and
used as a potential target for thyroid cancer (Shabani et al., 2018).
4)miR-182 targeted CTTN in non-small cell carcinoma to inhibit
the formation of aggressive pseudopodia in lung cancer,
inhibiting the metastasis of lung cancer (Li et al., 2018). 5)
miR-192-5p was down-regulated in gastric cancer, as a
potential diagnostic target (Tavakolian et al., 2020). 6) miR-
210 promoted the development of lung cancer by targeting LOXL
since down-regulation of LOXL4 significantly inhibited the
proliferation, migration and invasion of lung cancer cells in

A549 and H1650 cell lines (Xie et al., 2019). 7) miR-335
exhibited a tumor suppressor effect by inhibiting Twsit1 in
colorectal cancer (Wang et al., 2017), whereas miR-3065-3p
promoted stemness and metastasis by targeting CRLF1 in
colorectal cancer (Li et al., 2021). 8) miR-490-5p was related
to tumor size, tumor metastasis stage and survival rate of HCC
patients because miR-490-5p inhibited HCC cell metastasis by
regulating E2F2 and ECT2 (Fang et al., 2018). Therefore, such
experimental evidences in literature are in line with our findings
of some top-ranked key miRNAs.

Secondly, some top-ranked key miRNAs (as Category 2, e.g.,
miR-1258) are not matched with the above databases, but they
were well supported by the experimental evidences drawn from
literature. For instance, among the top-20 ranked miRNAs, two
(miR-1258 and miR-4686) were not matched with miR2Disease
and HMDD, respectively, despite that the rest 18 related to LIHC
did match. However, we found that miR-1258 and miR-4686
were down-regulated in tumor samples when comparing 375
samples of liver cancer with 50 normal samples (data not shown).
We performed the KM survival analysis of miR-1258 and miR-
4686 (Figures 7B,C), respectively, based on the miRNA
expression profiles in 375 samples of primary liver cancer
alongside clinical information from TCGA database, and
found the significant (p-value < 0.001) survival. Our data
suggest that miR-1258 and miR-4686 are likely the potential
prognosis factors in LIHC. In fact, miR-1258 was reported
significantly down-regulated in liver cancer samples that
closely related to the poor survival of patients (Hu et al.,
2016), which is consistent with our data. Moreover, loss of
miR-1258 led to the initiation and development of liver cancer
by targeting CKS1B (Hu et al., 2016); while overexpression of
miR-1258 inhibited the growth, proliferation and tumorigenicity
of liver cancer cells by increasing G0/G1 cell cycle arrest and
promoting cell apoptosis (Hu et al., 2016); and miR-1258 exerted
anti-cancer function by targeting TMPRSS4 in thyroid cancer
(Wang and Cai 2020). Taken together, our findings coincide with
the experimental evidences drawn from literature, and suggest
that miR-1258 has the potential to be developed as an
independent prognosis factor in liver cancer.

Thirdly, some top-ranked key miRNAs are related to multiple
types of cancer, whereas others are related to a single type of
cancer (Figure 4). For instance, miR-16-1, miR-21, miR-93,
miR-141, miR-183 and miR-193b present in 7, 12, 8, 7, 7 and
8 types of cancer, respectively, thus impacting the carcinogenesis
of multiple types of cancer. Here are examples highlighted. 1)
miR-21 is related to 12 types of cancer (BLCA, BRCA, CESC,
CODA, HNSC, KIRC, KIRP, LIHC, LUAD, PRAD, READ and
STAD). In fact, miR-21 was experimentally verified to be highly
correlated with cancer initiation and metastasis (Liu H. et al.,
2018; Wang et al., 2019). 2)miR-93 is related to 8 types of cancer
(BLCA, CHOL, ESCA, KIRP, LIHC, PRAD, STAD and UCEC).
In fact, miR-93 was reported to be closely associated with lung
cancer (Li J.-Q. et al., 2017), prostate cancer (Liu J.-J. et al., 2018)
and liver cancer (Xu et al., 2018). 3)miR-183 is related to 7 types
of cancer (BLCA, BRCA, CESC, LUAD, LUSC, PRAD and
UCEC). In fact, the abnormal expression of miR-183 initiated
multiple types of cancer (Chen X. et al., 2018; Trinh et al., 2019; Li
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et al., 2020). 4) miR-193b is related to 8 types of cancer (BLCA,
CESC, CHOL, ESCA, HNSC, LIHC, LUAD and STAD). In fact,
miR-193b was reported to be closely associated with breast cancer
(Hulin et al., 2017), liver cancer (Yin et al., 2018) and gastric
cancer (Song et al., 2018). Besides, some top-ranked key miRNAs
were recaptured in details earlier (see Results) to be uniquely
related to a single type of cancer. Taken together, we conclude
that some top-ranked key miRNAs are either poly- or mono-
valence against multiple types or single type of cancer,
respectively.

Finally, the majority of top-ranked key miRNAs are positively
or negatively involved in the overall prognostic survival, in the
context of specific type of cancer (Figure 6). The mechanisms
underlying such survival rates remained elusive, but are partly
supported by the accumulated experimental evidences drawn
from literature. Here are examples highlighted. 1) Abnormal
expression of miR-16 inhibited cell apoptosis by regulating the
expression of RECK and SOX6, promoted cell growth and
ultimately led to the occurrence of esophageal cancer (Zhu
et al., 2014). 2) miR-21 regulated cell proliferation and
sensitivity to Adriamycin in bladder cancer cells (Tao et al.,
2011). Overexpression of miR-21 was highly correlated with
poor prognosis of breast cancer (Yan et al., 2008).
Overexpression of miR-21 in T24 cells promoted cell
proliferation and resistance to Adriamycin, and resulted in the
up-regulation of BLC2, which prevented the apoptosis of T24
cells induced by Adriamycin, favoring the carcinogenic effect of
miR-21 in bladder cell carcinoma (Tao et al., 2011). miR-21 and
PTEN expression had negative correlation in vivo in T24 cells
(Tao et al., 2011). Low expression ofmiR-21 was correlated with
poor prognosis of bladder cancer (Zhang et al., 2015).
Overexpression of miR-21 was highly related to the initiation
and development of cancer of head and neck (Arantes et al.,
2017). miR-21 promoted the proliferation and metastasis of
breast cancer cells by targeting LZTFL1 (Wang et al., 2019). 3)
miR-92a might be a target for the clinical diagnosis of bladder
cancer. Low expression of miR-92a was correlated with the poor
prognosis of bladder cancer (Motawi et al., 2016). miR-92a
inhibited the expression of tumor suppressor CDH1.
Overexpression of miR-92a restored the metastatic activity of
miR-92a, suggesting that miR-92a promoted the migration of
esophageal cancer cells by partly inhibiting CDH1. Patients with
up-regulated miR-92a were prone to lymph-node metastasis and
had a poor prognosis (Chen et al., 2011). 4)miR-139-3p exerted a
tumor suppressor effect in breast cancer by targeting RAB1A, and
might serve as a potential biomarker for prognosis of breast
cancer (Zhang et al., 2019). 5) Overexpression of miR-141 led to
the occurrence of cervical cancer (Gómez-Gómez et al., 2013). 6)
The serum miR-148b markers might have a clinical value in the
diagnosis of bladder cancer (Jiang et al., 2015). 7) miR-183 was
dysregulated in breast cancer, related to the expression of
estrogen receptor and HER2/neu receptor (Lowery et al.,
2010). 8) miR-193b/KRAS was expressed in a stage-dependent
manner; KRAS was regarded as a direct target of miR-193b; and
the upregulation of miR-193b increased the percentage of
apoptosis. miR-193b was a biomarker for the treatment of
esophageal cancer (Kang et al., 2019). 9) miR-196a and

miR-196b produced cell-specific responses to target genes and
downstream pathways, which significantly impacted the cell
proliferation, migration and invasion (Álvarez-Teijeiro et al.,
2017). Abnormal expression of miR-196b presented in the
initiation of head and neck cancer. miR-196b was a biomarker
for early diagnosis of head and neck cancer. 10) miR-200a was
down-regulated in cervical cancer (Bozgeyik et al., 2020). miR-
200c inhibited the metastasis and growth of cervical cancer cells
via targetingMAP4K4 (Mei et al., 2018).miR-200c controlled cell
cycle progression and cell growth by down-regulating the G1-S
regulator CDK2, and had anti-cancer impacts in ccRCC (Wang
et al., 2015). 11) miR-206 was one of the most critical tumor
suppressor miRNAs in ccRCC, which induced cell cycle arrest
and inhibited the proliferation of ccRCC cells via targeting CDK4,
CDK9 and CCND1 (Xiao et al., 2016). 12)miR-221 andmiR-222
discriminated the renal cell carcinoma subtypes and tumor cell
(Di Meo et al., 2018). 13) miR-934 was a diagnostic and
prognostic biomarker of clear renal cell carcinoma (Liang
et al., 2017). Taken together, we conclude that the candidacy
of certain key miRNAs identified in this study are supported by
experimental evidences recaptured from literature, which provide
informative cues for future validations to develop them to be
biomarkers ultimately used for the diagnosis and treatment of
multiple types of cancer.

We would like to mention possible limitations of our method.
We incorporated the mRNA and miRNA expression profiles
from the TCGA datasets to identify key miRNAs (microRNAs),
rather than utilized other kinds of ncRNAs datasets, such as
lncRNAs (Ou-Yang et al., 2019; Lan et al., 2020; Wu et al., 2021)
and circRNAs (Liu et al., 2021). Utilizing lncRNAs and circRNAs
will be another possible direction of identifying the cancer-related
ncRNAs by integrating complex network-based and machine
learning-based methods in the future work.

CONCLUSION

We introduced the MIMRDA method, which incorporated the
expression profiles of miRNAs and target mRNAs for predicting
the miRNA-disease association to identified key miRNAs
(microRNAs). As a proof-of-principle study, we deployed the
MIMRDA method to analyze 10,499 samples from TCGA
datasets of 20 types of cancer, and identified hundreds of key
miRNAs. Most of them were significantly related to at least one
type of cancer under study, which were supported by the pre-
verified miRNA-disease/drug association databases. We indicated
the superiority of the MIMRDA method to the Limma and SPIA
packages, and the accuracy of the method in classifying top-ranked
miRNAs. Our results recommended some top-ranked key
miRNAs be experimentally validated as biomarkers in the future.
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A SNARE Protein Identification
Method Based on iLearnPlus to
Efficiently Solve the Data Imbalance
Problem
Dong Ma, Zhihua Chen*, Zhanpeng He and Xueqin Huang

Institute of Computing Science and Technology, Guangzhou University, Guangdong, China

Machine learning has been widely used to solve complex problems in engineering
applications and scientific fields, and many machine learning-based methods have
achieved good results in different fields. SNAREs are key elements of membrane
fusion and required for the fusion process of stable intermediates. They are also
associated with the formation of some psychiatric disorders. This study processes the
original sequence data with the synthetic minority oversampling technique (SMOTE) to
solve the problem of data imbalance and produces the most suitable machine learning
model with the iLearnPlus platform for the identification of SNARE proteins. Ultimately, a
sensitivity of 66.67%, specificity of 93.63%, accuracy of 91.33%, and MCC of 0.528 were
obtained in the cross-validation dataset, and a sensitivity of 66.67%, specificity of 93.63%,
accuracy of 91.33%, and MCC of 0.528 were obtained in the independent dataset (the
adaptive skip dipeptide composition descriptor was used for feature extraction, and
LightGBM with proper parameters was used as the classifier). These results demonstrate
that this combination can perform well in the classification of SNARE proteins and is
superior to other methods.

Keywords: SNARE protein identification, ASDC features, SMOTE, data imbalance, machine learning

INTRODUCTION

Soluble N-ethylmaleimide-sensitive fusion protein attachment protein receptor (SNARE) proteins
are a small superfamily of proteins. They have an uncomplicated domain structure, and a feature of
them is the SNARE motif—an evolutionarily conserved heptanucleotide repeat consisting of 60–70
amino acids. (Jahn and Scheller, 2006) They can be divided into Q-SNAREs and R-SNAREs pursuant
to the structural characteristics of SNAREs. Functionally, SNAREs are most likely associated with
various aspects of membrane transport specificity, and they are a key element in membrane fusion
and are necessary for stable fusion intermediates. (Schoch et al., 2001) SNARE proteins are involved
in membrane vesicle transport, such as synaptic transmission between nerve cells (synaptic vesicle
transport) and plant disease resistance (disease resistance signaling). In addition, SNAREs are also
implicated in the formation of some mental disorders. (Wang et al., 2018)

It is relatively complex to explore the function of a particular protein in the field of biology, the
general prediction method is based on Protein-Protein-Interaction (PPI) (Hu et al., 2011; Zhai et al.,
2020; Sundar and Narmadha, 2021) and protein structure information (Kinjo and Nakamura, 2012;
Sharma and Srivastava, 2021). In the subsequent process, the specific function of detection through
the complex biological experiment needs to be clear, which greatly increases the difficulty and the
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resources required of the properties that determine protein
function, thus reducing the efficiency due to unavoidable time
consumption.

In recent years, with the development of machine learning,
many methods have achieved good results in various fields, such
as Nature Language Processing (NLP) and computer vision (Jin
et al., 2021). In addition, the classification task is one of the most
basic applications in machine learning, and relevant research is
has matured. (Ke et al., 2017) Nguyen Quoc Khanh Le, et al. (Le
et al., 2019) employed PSSM profiles and 2D CNN to identify
SNARE proteins. Su, Xin, et al. (Su et al., 2019) applied the
multiscale convolutional network to the identification of
antimicrobial peptides, so it is appropriate to apply machine
learning to protein classification tasks.

In this paper, multiple feature extraction algorithms are used
to extract different features, obtain the best performance
descriptor through performance comparison, and then
perform data enhancement processing on the extracted
features of this descriptor to address the problem of sample
imbalance in the data to a certain extent. Finally, the
processed feature data and raw data of the independent test
set were used to train the classifier to obtain the eventual model.

MATERIALS AND METHODS

The task of protein sequence classification models based on
machine learning generally includes five main steps: protein
sequence data collection, feature extraction and processing,
classifier construction and optimization, model performance
evaluation, and result visualization. (Liu et al., 2019; Guo
et al., 2020; Tao et al., 2020; Chen Z et al., 2021; Li et al.,
2021) The details of the first three steps determine whether
the classification performance is satisfactory, while the last two
steps are only a further explanation of the experimental results
and determined by objective evaluation indicators, so the
sequence classification task is mainly carried out using the first
three steps. Figure 1 illustrates the research flow of this paper.

Datasets
The research object of this paper are SNARE proteins, which
are generally downloaded from the UniProt database. As the
research object is a specific type of protein, less sequence data
can be obtained for a specific protein compared to other non-
specific types of common proteins, which leads to the final
dataset being easily unbalanced, i.e., the number of nonspecific
proteins in the dataset is greater than the number of specific
proteins. The dataset used in this study was from other similar
tasks. (Le and Nguyen, 2019) The number of SNARE proteins
in this dataset was only one-tenth that of non-SNARE
proteins, including 697 SNARE proteins as positive samples
and 7,378 vesicle transport proteins as negative samples.
During the experiment, 90% of them were extracted for the
training of the model, and the rest were used as independent
validation sets to evaluate the generalization ability of
the model.

Feature Extraction and Processing
Biological sequence data are generally stored in a FASTA file
format, and each sequence data is represented by the letter of the
nucleotide or amino acid constituting the molecule. As the
number of molecules composing the biological sequence is not
fixed, the length of the sequence is inconsistent. However,
traditional machine learning models can only deal with fixed-
dimension data in digital format, so it is necessary to encode
source sequence data into restricted-length digital data to meet
the input requirements of the model, which is the feature
extraction of sequential data. Descriptors are used in the first
step of biological sequence analysis. They extract various
biological sequence features from multiple perspectives, such
as amino acid composition, biochemical characteristics, and
residue composition, with different emphases and features.
Consequently, these algorithms may have different
performances for various sequence analysis tasks. Typically,
the most appropriate algorithm for a given task needs to be
obtained by testing various feature extraction algorithms on the
dataset and comparing the performance of each algorithm.

Treatment of Data Imbalance
As mentioned above, the number of positive samples in the
dataset used in this paper is only one 10th of the number of
negative samples, which will lead to unbalanced recognition of
positive and negative samples in training process and affect the
final classification results (Zou et al., 2016; Cheng et al., 2018;
Azad et al., 2019; Priya and Sivaraj, 2021; Shao et al., 2021). The
model trained with unbalanced data will be more inclined to fit
the negative instances with a large number, which will lead to the
degradation of the model’s classification performance for the
small number of positive samples. Since there are more negative
samples in the dataset than positive samples, if the source files are
directly used for training, the classifier will learn too many
negative samples, thus reduce the recognition ability of the
model for positive samples, but this is contrary to our main
purpose. Therefore, it is necessary to adopt some strategies to
alleviate the problem of sample imbalance. The relatively small
number of specific proteins in nature and the widespread sample
imbalance in the field of biological sequence classification had
also led to abundant research on the processing of unbalanced
data. (Chao et al., 2019; Kaur et al., 2019; Yang et al., 2020; Ao
et al., 2021a; Shao and Liu, 2021) The most common are
oversampling and downsampling. Oversampling is balanced by
adding redundant samples to a small number of positive samples,
and the strategy can improve the recognition ability of positive
samples to a certain extent, but it simply repeats positive
examples and overemphasizes existing positive examples,
which would urge the risk of overfitting positive examples. In
the downsamplingmethod, only a portion of the negative samples
is selected for lower sampling to reduce the number of negative
samples. However, this method can only improve the model’s
classification ability of positive samples to a certain extent.
Because a few of the counterexample data are discarded, their
influence in the overall sample is reduced, which may result in a
large deviation model, and greatly affect the overall performance.
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Considering the serious imbalance between positive and
negative samples in this dataset, only one unbalanced strategy
may not work well; it needs to be sampled up and down
simultaneously. This article uses a combination of sampling
partial negative samples and the synthetic minority
oversampling technique (SMOTE) to generate new positive
samples to address sample imbalance. (Chawla et al., 2002;
Riaz and Li, 2019; Zhang C H et al., 2020; Zhao et al., 2020)

SMOTE is an oversampling technique that balances the
quantity gap between two categories by finding the nearest
neighbor of certain data in a positive example and then using
the K-nearest neighbor algorithm to generate new positive
samples. For each sample x in the positive sample, calculate
the K positive samples xk {k � 1, 2, K} closest to x, and determine
the sampling ratio n according to the unbalanced proportion of
samples. For the k nearest neighbor samples of each sample x, n
samples are randomly selected, and the newly constructed sample
xnew can be obtained through the following formula:

xnew � x + rand(0, 1)p|x − xn| (1)

In the experiment, part of the negative sample is treated with
simple undersampling at first. SMOTE is used to generate positive
samples to ensure that the number of positive and negative
samples is consistent. Then, a balanced dataset of sample size
can be obtained, which will be used in subsequent model training
experiments.

RESULT AND DISCUSSION

Evaluation Indexes
To objectively evaluate the performance of various algorithms,
some convincing indicators of these algorithms need to be
compared after the experiment (Wei et al., 2017; Wei et al.,
2018; Wei et al., 2019; Wang et al., 2020; Ding et al., 2021; Shang
et al., 2021; Wu and Yu, 2021; Yang et al., 2021). Next, the
algorithm with the best performance is selected for subsequent
research according to these indices. Similarly, common metrics
are used to compare the performance of each algorithm. The four
values of TP, FP, TN, and FN (representing true positive, false-
positive, true negative, and false negative values, respectively) can
be obtained for the classifier test (Jiang et al., 2013; Cheng et al.,
2016; Xiao et al., 2019; Zhang L et al., 2020; Huang et al., 2020; Li
and Liu, 2020; Liu et al., 2020; Mo et al., 2020; Tang et al., 2020;
Han et al., 2021; Wang et al., 2021; Xu et al., 2021). Accuracy,
MCC, sensitivity, and specificity can then be calculated based on
these values.

Sensitivity � TP

TP + FN
(2)

Specificity � TN

TN + FP
(3)

Accuracy � TP + TN

TP + FP + TN + FN
(4)

FIGURE 1 | The research flow diagram of SNARE protein identification using a decision tree model.
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MCC � TP × TN − FP × FN
�������������������������������������(TP + FP)(TP + FN)(TN + FP)(TN + FN)√ (5)

Selection of the Descriptors
In this paper, the iLearnPlus platform (Chen Z et al., 2021) was
used to compare the performance of various extraction
algorithms: multiple descriptors were applied to obtain the
feature vectors of the source FASTA file, followed by training
and testing the obtained features using several classification
algorithms and analyzing the performance of different feature
extraction algorithms. To eliminate the influence of other
subjective factors, the area under the receiver operating
characteristic curve (AUROC) index was adopted to evaluate
the performance of the algorithm.

Accuracy and MCC are widely adopted to measure model
performance in classification problems. These two values can be
regulated by artificially setting thresholds so that the specific
performance of each algorithm cannot be truly reflected. The
AUROC index takes TPR [TP/(TP + FN)] and FPR[FP/(FP +
TN)] as the horizontal and vertical coordinates to obtain the area
under the curve. The larger the area is, the higher the coincidence
degree between the prediction label of the model and the source
label is. It is necessary to take the AUROC as the evaluation
standard so that the algorithm with the best overall performance
can be selected.

According to the experiment, several feature extraction
algorithms and classifiers with better performance can be
obtained. Some experimental results are shown in Table 1.

The experimental results show that the performance of
adaptive skip dipeptide composition (ASDC), CKSAAP, and
QSOrder feature extraction algorithms outperform other
algorithms. Among them, the optimal algorithm is the ASDC,

and the subsequent multiple numbers also use ASDC to extract
features.

ASDC is a feature extraction algorithm based on GDC (G-gap
dipeptide composition) algorithm. Dipeptide composition is the
fraction of any two adjacent residues as a dipeptide pair, and it
measures the correlation of any two adjacent residues in the
peptide sequence. GDC encapsulates the composition and local
order information of any two spacer residues in the peptide
sequence, it has a hyperparameter g to determine the gap between
two adjacent residues. And ASDC calculates all values of g and
accumulates them. For a given protein read R with L length, the
feature vector for ASDC is represented by:

ASDC � (fv1, fv2..., fv400) (6)

where fvi is calculated by

fvi �
∑
L−1

g�1
Og

i

∑
400

i�1
∑
L−1

g�1
Og

i

(7)

where g represents the g-gap (g � 1, 2, L-1) dipeptide and fvi is the
occurrence frequency of the ith (i� 1, 2, 400) adaptive skip dipeptide.
It is worth mentioning that if the cumulative term with g is removed
from Eq. 7, it becomes the formula for the GDC features.

Since there are approximately 8,000 samples in the dataset, the
400 dimension is relatively moderate. Another is that ASDC
considers the frequency of any two unconnected amino acids in
the whole protein and can capture all the information of
dipeptide composition. It also shows that the SNARE proteins
have a high correlation with their dipeptide composition. This
information may bring biological assistance to the final SNARE
protein recognition.

TABLE 1 | Feature dimensions of partial feature extraction algorithms and AUROC performance under multiple classifiers.

Feature dimension RandomForest (Breiman, 2001) LightGBM (Ke et al.,
2017)

XGBoost (Chen and
Guestrin, 2016)

ASDC (Wei et al., 2018) 400 0.8599 0.8829 0.8839
QSOrder (Chou, 2000) 44 0.8401 0.864 0.8604
DDE (Saravanan and Gautham, 2015) 400 0.824 0.8604 0.849
CKSAAP (Chen et al., 2007) 1,600 0.8337 0.8664 0.8588
AAC (Bhasin and Raghava, 2004) 20 0.8467 0.8514 0.8428

The meaning of the bold values is the feature extraction algorithm that performs best under a particular classification algorithm.

TABLE 2 | Model performance under different n values.

n Cross-validation Independent

Sens Spec Acc MCC Sens Spec Acc MCC

628 82.97 82.954 82.486 0.6522 94.2 60.84 63.69 0.3102
1,256 95.148 89.886 92.516 0.8523 73.91 76.56 76.33 0.3152
2,510 98.486 91.832 95.158 0.9055 76.81 86.34 85.5 0.4492
3,764 99.07 94.394 96.73 0.936 65.22 93.22 90.83 0.5071
5,019 99.302 94.682 96.99 0.941 62.32 94.04 91.33 0.5081
6,640 99.292 94.414 96.852 0.9384 59.42 94.99 91.95 0.5149
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However, the results also showed that several other algorithms
performed only slightly worse than ASDC, so it was considered
that features stitched together after using multiple feature
extraction algorithms could be used to train the model. After
experimental verification, when the feature data extracted by
algorithms such as ASDC and QSOrder were spliced together
and then used to train the model, it was found that instead of
improving the results, there was a slight decrease. In response to
this result, it is believed that the data dimensionality is too large,
and the resulting redundant data will not only have a positive
effect on the training of the model but also degrade the model
performance. Therefore, the spliced features were subsequently
selected again, and relevant experiments were conducted.
However, the model trained with these data still performed
poorly on the independent set. After comparing the feature
vectors extracted by the feature extraction algorithms used, it
was concluded that the main reason was that the feature values
obtained by each algorithm did not fall within the same range of
values. For example, the feature matrix extracted by the QSOrder
algorithm is a sparse matrix containing a large number of 0 or
very close to 0 values, and there are some negative numbers in the

DDE features, which when mixed together may affect the
direction of the model iteration and thus the final results.

Unbalanced Processing
In the step of dealing with the data imbalance problem, n negative
samples are first downsampled from the original dataset to ensure
that n is greater than the number of positive samples 628. Then,
the SMOTE algorithm is used to expand the number of positive
samples to n to build a balanced dataset. When n � 628, the
strategy is equivalent to complete downsampling, and when n �
6,640 (the total number of negative samples), the strategy is
equivalent to complete oversampling, so the value of n is in the
range (628, 6,640). After sampling the negative samples, all data
were tested with the same independent test set to determine their
generalization ability.

To analyze the effect of the number of down samples n on the
classification performance, several sets of parameters were set for
experiments in this paper, and the best performing n value was
selected based on the results. n values were set, and the related
performance is shown in Table 2. To partially eliminate the error
caused by the randomness of the data, no put-back sampling was

TABLE 3 | The performance of the three classifiers on the independent test set
(n � 2,510).

n = 2,510 Sensitivity (%) Specificity (%) Accuracy (%) MCC

RandomForest 63.77 90.92 88.6 0.444
LightGBM 76.81 86.31 85.5 0.4492
XGBoost 73.91 86.99 85.87 0.4412

The meaning of the bold values is the feature extraction algorithm that performs best
under a particular classification algorithm.

TABLE 4 | The performance of the three classifiers on the independent test set
(n � 5,019).

n = 5,019 Sensitivity (%) Specificity (%) Accuracy (%) MCC

RandomForest 46.38 95.66 91.45 0.435
LightGBM 60.87 95.39 92.44 0.5386
XGBoost 60.87 94.58 91.7 0.5132

The meaning of the bold values is the feature extraction algorithm that performs best
under a particular classification algorithm.

FIGURE 2 | The relationship between the number of leaves and model
performance.

FIGURE 3 | The relationship between the number of maxdepth and
model performance.

FIGURE 4 | The relationship between learning rate and model
performance.
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performed in downsampling, and the set of negative samples
sampled was denoted by S (n). Then, there was S(n)⊂S(m), where
n < m.

Parameter Optimization
In the recognition problem, it is also very important to select the
appropriate classifier. There are also multiple classifiers in the
field, each with a different focus, so their performance in a
particular task may be different. Therefore, to select a classifier
that best fits the task, we follow the same approach as in the
selection of the descriptors subsection, where different classifiers
are used to train and classify the same feature data, and the best
performing algorithm is selected for subsequent experiments.
After using three mainstream classifiers, the model performance
corresponding to the parameters of Part n is shown in Tables 3
and 4. It can be concluded that LightGBM with n � 5,019 is the
best performer and most in line with this task. LightGBM (Light
Gradient Boosting Machine) is a framework for implementing
the GBDT (Gradient Boosting Decision Tree) algorithm, which is
an iterative decision tree algorithm consisting of multiple
decision trees. LightGBM improves on the traditional GBDT
algorithm in many ways, such as using a Histogram-based
decision tree algorithm and using a leaf-wise strategy instead
of level-wise.

In this experiment, the number of leaf nodes, the maximum
depth of the tree and the learning rate of the LightGBM algorithm
were adjusted (Ao et al., 2021b). First, we compared the impact of
the number of leaf nodes of the tree on the performance of the
algorithm when the maximum depth of the tree was not limited.
The result is shown in Figure 2 (The MCC values in the figure
have been normalized with the other three indicators for plotting
purposes, and the following similar charts have been followed in
the same way). Through a series of comparative experiments, the
number of leaf nodes can be set to 31 while considering the
efficiency of the algorithm operation.

This is followed by choosing the depth of the tree given the
number of leaf nodes, as there is a maxdepth>2̂leaves-1
constraint, and the leaf value has been set to 31; the
maximum depth of the tree cannot be less than 5 (log2 (31 +
1). The result is shown in Figure 3. Similarly, the optimal
maxdepth can be chosen as 10.

Then, it is time to adjust the learning rate and compare the
impact of changes in the learning rate on performance, and the
results are shown in Figure 4. In the end, the optimal parameters
are leaves � 31, maxdepth � 10, and learning rate � 0.08.

Comparison With the Other Method
In comparison with 2D CNN, the data of this paper needed
to be modified because the data allocation differed. It used a

cross-validation set of 644 positive and 2,234 counterexamples
and an independent dataset of 38 positive and 349
counterexamples. Similar experiments were conducted using
this setup in this paper. In this sequence classification task, the
focus is on the classification performance of the SNARE protein,
which in the model performance evaluation is the size of the
specificity. The experimental results are shown in Table 5. It
can be found that all the metrics performed better except for
the specificity on the cross-validation set, which was
slightly weaker than 2D CNN, and the method had an
AUROC value of 0.9671 under the independent set, which
further proves that the algorithm in this paper has a high
generalization capability. The main reason for this result is
that the original paper used more positive samples for
training the model, with fewer positive examples remaining
to evaluate the applicability of the model. However, a set
partitioning ratio of 9:1 (cross validation dataset:
independent dataset) was applied in this experiment, and
although this may lead to some performance loss, the best
results obtained in the independent dataset were still good:
sensitivity of 66.67%, specificity of 93.63%, accuracy of
91.33%, and MCC of 0.528.

CONCLUSION

In this paper, we used the SMOTE algorithm with different
parameters to address the sample imbalance of the dataset.
The results show that this strategy can obtain a better result in
terms of managing sample imbalance. In this process, ASDC as
the feature extraction algorithm and LightGBM as the
classification algorithm by comparing the results of various
algorithms and descriptors. The combination obtained the best
performance, and compared to other advanced neural networks,
it achieved a significant improvement in all the typical
measurement indexes. Under the same experimental setup, the
method in this paper improves the accuracy by 5.64% in the
independent test set and 0.2239 in theMCCmetric relative to 2D-
CNN. For the future research, graph neural networks (Zeng et al.,
2020; Chen Y et al., 2021) and unsupervised learning (Xu et al.,
2019a; Xu et al., 2019b) can be considered for performance
improvement.
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Analysis of Breast Cancer Based on
the Dysregulated Network
Yanhao Huo1, Xianbin Li1, Peng Xu1,2, Zhenshen Bao1,2* and Wenbin Liu1*

1Institute of Computational Science and Technology, Guangzhou University, Guangzhou, China, 2School of Computer Science of
Information Technology, Qiannan Normal University for Nationalities, Duyun, China

Breast cancer is a heterogeneous disease, and its development is closely associated with
the underlying molecular regulatory network. In this paper, we propose a new way to
measure the regulation strength between genes based on their expression values, and
construct the dysregulated networks (DNs) for the four subtypes of breast cancer. Our
results show that the key dysregulated networks (KDNs) are significantly enriched in critical
breast cancer-related pathways and driver genes; closely related to drug targets; and have
significant differences in survival analysis. Moreover, the key dysregulated genes could
serve as potential driver genes, drug targets, and prognostic markers for each breast
cancer subtype. Therefore, the KDN is expected to be an effective and novel way to
understand the mechanisms of breast cancer.

Keywords: breast cancer, dysregulated network, cancer-related pathways, driver genes, drug targets, survival
analysis

INTRODUCTION

According to global cancer statistics in 2020, Breast cancer has become the most common cancer,
with 2.3 million new cases (Sung et al., 2021). As a heterogenetic malignancy, breast cancer can be
classified into four subtypes: Luminal A, Luminal B, Basal-like, and Her2-enriched (Cheang et al.,
2009; Inic et al., 2014). Although significant improvements have been achieved, a better
understanding of genetic changes will lead to better diagnosis and treatment of this disease
(Liang et al., 2021).

The genetic variation of driver genes has been considered as one of cancer’s most critical
intrinsic factors (Akhavan-Safar et al., 2021). Thus, many computational tools have been
developed to identify potential driver genes. For example, MaxDriver developed by Chen et al.
detect driver genes based on the maximum information flow in the heterogeneous network
(Chen et al., 2013). DawnRank can directly prioritize the driver genes at the individual patient
level (Hou and Jian, 2014). And Shi et al. proposed a network diffusion method to identify
driver genes (Shi et al., 2016). Among these tools, DriverNet is probably the most competitive
tool which considers both gene mutation and abnormal expressions of downstream genes
(Bashashati et al., 2012).

Differentially expressed genes (DEGs) analysis is used to identify potential biomarkers or
prognostic markers for breast cancer (Yang et al., 2019). Based on DEGs and the survival
analysis of hub genes in protein-protein interaction network (PPI), Wu et al. identified that
ESR1 and PGR may be potential prognostic markers of ER-positive breast cancer (Wu et al.,
2020). Huan et al. found that estradiol (E2) is a biomarker of breast cancer based on the analysis of
DEGs in the PPI network (Huan et al., 2014). Furthermore, Eskandari et al. constructed a gene
regulatory network by common DEGs to identify the key therapeutic targets for each subtype of
breast cancer (Eskandari and Motalebzadeh, 2019).
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In summary, previous works have started from the single and
independent abnormal expression of genes, but ignored the
importance of changes in the interactions between genes.
Actually, cancer occurs because of abnormal interactions
between genes that lead to their abnormal expressions (Peng
et al., 2012; Gao et al., 2013; Bao et al., 2016; Bao et al., 2020; Chai
et al., 2022). In this paper, we propose a new way to measure the
regulation strength between genes based on their relative
expression values. Then the dysregulated network (DN) can be
determined by the dysregulated interactions between normal and
disease samples. Results show that not only is the key
dysregulated network (KDN) enriched in many potential
breast cancer related-pathways and important driver genes,

but is also closely related to drug targets. Therefore, the
proposed KDN provides a new tool for elucidating the
underlying mechanism and potential drug repurposing for
breast cancer.

MATERIALS AND METHODS

Materials
Both the gene expression dataset and genomic aberration dataset are
downloaded from https://xenabrowser.net/datapages/. Gene
expression dataset includes Luminal A, Luminal B, Basal-like, and
HER2-enriched subtypes. Genomic aberration dataset includes gene-

TABLE 1 | The details of datasets and network.

Datasets Number of genes Number of samples Number of interactions

Gene expression (TCGA-BRCA) Normal — 34,127 99 —

Tumor Luminal A 225 —

Luminal B 123 —

Basal-like 97 —

HER2-enriched 57 —

Genomic aberrations — gene-level copy number alteration 24,776 1081 —

somatic mutation (SNP and INDEL) 40,543 792 —

Influence network — — 9728 — 146171

FIGURE 1 | Overview of the analysis workflow.
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level copy number alteration and somatic mutation (SNP and
INDEL). The somatic mutation dataset is a binary matrix
containing the gene-level non-silent mutation. The influence
network includes directed gene interactions from KEGG,
Reactome, Panther, CellMap, and NCI Pathway Interaction
Databases (Wu et al., 2010). The 29 targeted drugs are
downloaded from https://www.cancer.gov/about-cancer/treatment/
drugs/breast (National Cancer Institute), and their corresponding
targets are obtained from https://clue.io/repurposing-app. Table 1
presents the details of the datasets and network including the number
of genes, the number of samples, and the number of interactions.

METHODS

From the perspective of gene regulatory network, it is the
significantly abnormal interaction between genes that pushes
cells operating from normal state to disease state. Therefore,
analysis of dysregulation may help to reveal more biological
insights than traditional differentially expressed genes (DEGs).
Our motivation is that an upstream gene will have more influence
on its downstream genes if the expression of the former is larger
than that of the latter, and vice versa. Therefore, we define the
regulation strength of gene i to gene j as

rij � log
gi
gj

(1)

where gi and gj is the expression value of gene i and gene j
respectively. In this paper, we name the network composed of the
dysregulated interactions as the dysregulated network (DN).

Then, the average absolute difference of the dysregulated
strength dsij of gene i to gene j can be calculated as

dsij �
∣∣∣∣∣�r

D
ij − �rNij

∣∣∣∣∣ (2)
where �rDij and �rNij denote the average regulation strength in the
disease and normal state, respectively. Further, the dysregulation
score di of gene i is defined as the sum of the dysregulated
strength to all its downstream genes

di � ∑
ni

j�1
dsij (3)

where ni is the number of the direct downstream genes of gene i.
A higher di indicates that gene i regulate more downstream genes
with the higher dsij, otherwise, gene i regulate less downstream
genes with the lower dsij. Finally, based on the key genes and their
dysregulated interactions, the key dysregulated network (KDN) is
obtained.

Figure 1 shows an overview of the analysis workflow for this
study. First, we construct the DN based on gene expression data
and influence network. Then, we identify the KDN of each
subtype. Finally, we conduct pathway enrichment analysis,
driver genes analysis, drug targets enrichment analysis, and
survival analysis for the obtained KDN.

Identifying Driver Genes through DriverNet
Driver genes can be manifested through the outlying expression
of genes in influence network. So, Bashashati et al. (Bashashati
et al., 2012) developed a computational framework called
DriverNet to identify the potential driver genes effectively. In
DriverNet, a bipartite graph is constructed through genomic
aberrations matrix, outlier matrix, and influence network.
And, based on the bipartite graph, DriverNet could rank the
genes according to the number of events (outliers). Then, a set of
potential driver genes is obtained.

RESULTS AND DISCUSSION

The Dysregulated Network
For each subtype, the dysregulated interactions are determined
with p − value≤ 10E − 4 and ds≥ 2 by Limma package in R.
Table 2 presents the four dysregulated networks (DNs),
including the number of genes, the number of interactions, the
average degree, and the average betweenness of genes. Only about
50% of the genes and 20% of the interactions from the
background influence network constitute the DN. The average
degree (≈ 8) and betweenness (≈ 8000) indicate the DN is highly
interconnected.

Figure 2A shows the heatmap of the dysregulated
interactions in the four breast cancer subtypes. The
interactions are ordered according to their observed
frequency in subtypes. We color the interaction red when
the disease state has a higher average regulation strength of
interactions, and green otherwise. Black at the bottom
represents that the interactions are not significantly
dysregulated in the corresponding subtype. About 50% of
the dysregulated interactions are shared by the four
subtypes, and the overlapped interactions have the same
dysregulation pattern. The abnormal regulation in these
gene pairs may form the common mechanisms of the four
subtypes. On the other hand, about 10% of the dysregulated
interactions appear in only one subtype which may
characterize the different phenotypes of the four subtypes at
network level. Therefore, the corresponding DN may

TABLE 2 | Overview of the DNs.

Subtypes Number of genes Number of interactions Average degree Average betweenness

Luminal A 4971 18,771 7.28 6875
Luminal B 5847 26,853 9.29 8374
Basal-like 5573 23,307 8.36 8304
HER2-enriched 5679 24,483 8.62 8412
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contribute to the development of the four subtypes of breast
cancer.

As the regulation strength measures the dysregulated
interactions, it is natural to ask if the dysregulated
interactions are essentially caused by differentially expressed
genes (DEGs). To examine the impact of DEGs
(p − value≤ 10E − 4 and FC≥ 1.5) on the dysregulated
interactions (p − value≤ 10E − 4 and ds≥ 2), Figure 2B
shows the percentage of interactions with 0, 1, and 2 DEGs
in the background network (gray color). And the percentage of
dysregulated interactions in each group is shown with red
color. Obviously, most of the dysregulated interactions,
40%–65%, come from the group with just one DEG; only a
few come from the other groups. In sum, the DN only contains
about half of the DEGs. Given that gene i regulates gene j, their
interactions may not be significantly abnormal if their

expressions change in the same way, even if one or two of
them are DEGs. On the other hand, the interactions may be
significantly abnormal if their expressions change inversely,
even if both are not significantly differentially expressed.
Therefore, dysregulated interactions can reveal the
regulation abnormality of subtypes, which is hard for DEGs
to detect.

Figure 2C shows the scatter plot of the dysregulation score di
of gene i and its outdegree in the DN. First, the dysregulation
score is linearly proportional to the outdegree: genes with larger
outdegree tend to have larger dysregulation scores. These genes
may play important roles in the DN. Secondly, only a few genes
have extraordinarily large dysregulation scores. In order to
determine the key genes in the DN, we sort them in
descending order according to their dysregulation score. Then,
the dysregulation score is normalized by the total score of all

FIGURE 2 | The dysregulated network (DN) of breast cancer. (A) The heatmap of the dysregulated interactions in the four breast cancer subtypes. (B) The
percentage of interactions with 0, 1, and 2 DEGs (gray color) and dysregulated interactions (red color) in the background influence network. (C) The scatter plot of the
dysregulation score and out-degree of genes in the DN. (D) The relationship between the cumulative dysregulation score and the number of genes in the DN.
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genes and Figure 2D shows the curve of the accumulative
normalized dysregulation score, which is sorted by gene order.
This curve grows rapidly at first and then increases slowly as the
cumulative score reaches 60%. The genes contributing to the 60%
cumulative dysregulation score only include about 5% of genes in
the DN (306, 274, 189, and 267 genes for Luminal A, Luminal B,
Basal-like, and HER2-enriched subtypes respectively). In this
paper, we refer to the network of these key genes and their

dysregulated interactions as the key dysregulated
network (KDN).

Key Dysregulated Genes are Enriched in
Critical Breast Cancer-Related Pathways
To investigate the biological functions of the KDN, we conduct a
pathway enrichment analysis on key dysregulated genes with

TABLE 3 | Top 30 enrichment pathways of key genes and enrichment pathways of DEGs.

Pathway p-value

Top 30 enrichment pathways
of key genes

Luminal A Luminal B Basal-like HER2-enriched

Pathways in cancer 5.55E-40 4.90E-43 1.31E-35 4.20E-45
PI3K-Akt signaling pathway 1.05E-38 4.04E-34 8.13E-24 9.65E-41
Relaxin signaling pathway 1.33E-33 2.68E-31 7.43E-17 6.93E-31
Ras signaling pathway 4.66E-25 1.69E-32 6.26E-16 1.11E-27
Chemokine signaling pathway 4.28E-27 1.81E-19 2.28E-15 4.21E-21
Dopaminergic synapse 8.82E-26 3.41E-21 2.33E-14 7.04E-21
Focal adhesion 3.62E-20 1.07E-19 7.65E-14 2.66E-21
MAPK signaling pathway 9.99E-23 6.18E-26 9.58E-14 1.71E-24
Human cytomegalovirus infection 5.45E-20 1.14E-20 1.77E-13 3.04E-21
Human papillomavirus infection 5.06E-21 2.51E-17 4.80E-13 1.49E-18
Cholinergic synapse 3.94E-17 1.51E-13 1.32E-12 1.88E-16
Kaposi sarcoma-associated herpesvirus infection 2.30E-15 2.17E-19 2.12E-12 2.12E-14
Hepatitis B 5.04E-22 3.71E-20 2.79E-12 7.95E-20
cAMP signaling pathway 5.31E-18 4.87E-14 4.07E-12 3.65E-18
Circadian entrainment 7.08E-16 4.90E-12 3.27E-15 6.26E-14
Human T-cell leukemia virus 1 infection 3.46E-15 7.47E-14 5.72E-12 3.89E-16
Proteoglycans in cancer 9.06E-28 2.45E-22 9.00E-12 3.86E-17
Estrogen signaling pathway 1.45E-13 2.33E-12 7.87E-12 5.46E-16
Lipid and atherosclerosis 1.82E-15 5.79E-15 2.82E-11 1.17E-14
Thyroid hormone signaling pathway 2.68E-12 8.07E-15 5.89E-11 1.35E-12
IL-17 signaling pathway 1.59E-18 1.76E-14 6.83E-11 2.90E-14
Amphetamine addiction 9.51E-18 6.48E-12 6.34E-11 3.03E-15
Parathyroid hormone synthesis, secretion and action 5.32E-18 3.33E-11 5.24E-11 1.51E-19
AGE-RAGE signaling pathway in diabetic complications 8.22E-19 1.86E-19 2.35E-09 5.15E-18
Breast cancer 1.56E-16 1.50E-19 2.40E-09 3.57E-15
Human immunodeficiency virus 1 infection 4.08E-10 3.67E-15 7.31E-09 3.66E-13
Gastric cancer 1.55E-13 2.84E-17 2.44E-08 4.72E-14
Melanogenesis 1.48E-17 1.12E-10 2.77E-08 1.81E-12
Cocaine addiction 1.30E-12 5.58E-10 2.90E-08 7.37E-15
Rap1 signaling pathway 2.55E-20 6.69E-22 3.80E-08 1.64E-21
Growth hormone synthesis, secretion and action 5.34E-23 3.08E-18 3.81E-08 1.67E-22
Oocyte meiosis 7.24E-10 8.85E-08 1.64E-13 4.16E-10
Melanoma 1.99E-09 7.96E-14 2.66E-07 2.25E-11
Oxytocin signaling pathway 3.98E-13 3.26E-07 6.92E-10 5.36E-07
Osteoclast differentiation 1.09E-11 2.93E-17 8.64E-07 4.48E-11
Prolactin signaling pathway 3.78E-15 2.65E-15 1.95E-06 6.51E-14
Longevity regulating pathway 1.78E-20 8.69E-11 3.44E-06 1.13E-12
Morphine addiction 1.47E-08 4.55E-06 4.84E-10 1.32E-07
TNF signaling pathway 7.43E-23 9.76E-16 7.15E-06 1.93E-14
ErbB signaling pathway 2.21E-16 1.93E-14 1.62E-05 4.70E-12
Prion disease 1.29E-04 1.02E-11 4.29E-06 1.70E-14
Insulin resistance 7.64E-19 5.24E-13 1.16E-03 5.36E-09
Proteasome — 5.97E-13 1.41E-12 6.89E-17
Parkinson disease — 1.95E-05 8.59E-10 1.15E-09

Enrichment pathways of DEGs
Cell cycle 2.32E-02 2.25E-14 1.44E-24 6.49E-13
Progesterone-mediated oocyte maturation 5.08E-03 1.20E-04 1.76E-07 1.47E-04
Oocyte meiosis — 2.38E-07 3.89E-09 3.19E-06
Cellular senescence — 3.39E-02 3.94E-05 —

Human T-cell leukemia virus 1 infection — 5.87E-05 — —

Homologous recombination — — 3.03E-03 —
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p − value≤ 0.05. We also take the same analysis of the top 300
differentially expressed genes (DEGs) obtained by Limma
package. Table 3 lists the top 30 enriched pathways by key
genes and DEGs. Key genes are significantly enriched in many
well-known breast cancer-related pathways including Pathway in
cancer, Ras signaling pathways, MAPK signaling, Estrogen
signaling, Breast cancer, Prolactin signaling pathways, etc.
However, the top 300 ordinary DEGs are only enriched in
very few pathways which are not the critical ones in breast
cancer. This comparison suggests that the genes in the KDN
are more biologically related to breast cancer than DEGs.

Furthermore, we take an enrichment analysis of the top 20
genes in the KDN. Figure 3 shows the relation of the top 20 key
genes and their enriched pathways by p − value≤ 0.05. Green and
red colors denote driver genes and non-driver genes respectively.
Yellow and purple colors denote common cancer pathways and
breast cancer specific pathways. Surprisingly, even the top 20 key
genes are significantly enriched in some breast cancer specific
pathways. Among them, the breast cancer pathway contains four

subpathways and connects with many important signaling
pathways, such as MAPK pathway, PI3K-Akt pathway, Notch
signaling pathway, Wnt signaling pathway, P53 signaling
pathway, Cell cycle pathway, etc. For the Estrogen signaling
pathway, Tang et al. reported that Estrogen-triggered signaling
cascades play an important role in the initiation and development
of most human breast cancer (Song and Santen, 2006). In
addition, Kitajima et al. also reported that Estrogen and its
receptor can regulate the development and progression of
breast cancer in most cases (Shin-Ichi et al., 2010). For the
Prolactin signaling pathway, a 20-years prospective study has
shown that Prolactin can promote proliferation and cell motility
in later stage breast tumor development (Tworoger and
Hankinson, 2006; Tworoger et al., 2013). For the Human
papillomavirus infection pathway, HR-HPV DNA infection
exists in breast cancer tissue, thus closely related to the
occurrence and development of breast cancer (Wang et al.,
2009). And, these pathways have crosstalk with other common
cancer pathways (Chen and Wang, 2012; Sato, 2013). For

FIGURE 3 | The relation of the top 20 key genes and their enriched pathways.
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example, Pathways in cancer, Focal adhesion (Ocak et al., 2010;
Gari et al., 2016; Gu et al., 2018; Gong et al., 2019), Cell cycle,
FoxO signaling pathway (Mohd et al., 2017; Gong et al., 2020),
Choline metabolism in cancer, Oxytocin signaling pathway
(Cassoni et al., 1994; Pequeux, 2002; Wang et al., 2020), ErbB
signaling pathway (Liu et al., 2008; Aline et al., 2015), and JAK-
STAT signaling pathway (Hernández-Vargas et al., 2011; Wang
et al., 2018; Na and Balko, 2019).

Based on the biological functions, the driver genes
(Bashashati et al., 2012) in common top 20 key genes are
highly associated with breast cancer subtypes. As shown in
Figure 3, EGR1, EP300, FOS, JUN, FOXA1, PLK1, ESR1, and
E2F1 are the driver genes for corresponding subtype. As a
tumor-suppressor gene in breast cancer, overexpression of
EGR1 in breast tumor cells markedly reduces transformed
growth and tumorigenicity (Huang et al., 1997; Ronski et al.,
2010). EP300 is recruited by the estrogen receptor alpha, a
hormone inducible transcription factor, to mediate the mitogen
effect of the ovarian steroid estrogen, which is a strong risk
factor for breast cancer development (Wirtenberger et al., 2006).
The FOS family is one of the AP-1 transcription factors, which
regulated many proteins involved in breast cancer invasion
(Milde-Langosch et al., 2004). Activated JUN is
predominantly expressed at the invasive front in breast
cancer and is associated with proliferation and angiogenesis
(Vleugel et al., 2006). FOXA1 can influence the expression of a
large number of genes in breast cancer associated with metabolic

processes, regulation of signaling, and the cell cycle (Wolf et al.,
2005). PLK1 mediates estrogen receptor (ER)-regulated gene
transcription in human breast cancer cells. And PLK1-
coactivated genes include classical ER target genes such as
Ps2, Wisp2, and Serpina3 and are enriched in developmental
and tumor-suppressive functions (Wierer et al., 2013). ESR1
encodes estrogen receptor-α, which is a major biomarker in the
development of breast cancer (Yang et al., 2021). E2F1
expression is regulated by the estrogen receptor α (ERα) to
mediate tamoxifen resistance in ERα-positive breast cancer cells
(Montenegro and Cancer, 2014). And E2F1 can drive the
metastasis of breast cancer (Hollern et al., 2019).

Driver Genes are Enriched in the Key
Dysregulated Network
At the genomic level, driver genes are considered to be one of the
most important factors in cancer initiation and progression. The
driven mutations in the genome provoke abnormal function at
protein level and impact the expression of the downstream genes.
Therefore, driver genes, as an intrinsic driven regulation
mechanism, should also play a critical role in the obtained
DN. We apply DriverNet to identify driver genes, and it
identifies 205, 154, 249, and 147 driver genes for Luminal A,
Luminal B, Basal-like, and HER2-enriched subtypes respectively.
We find that about 90% of the determined driver genes are
observed in the dysregulation network.

FIGURE 4 | Driver gene analysis. (A) Venn diagrams of the key genes and driver genes. (B) The average number of events of key driver genes and other driver
genes. (C) KDN with driver genes in green color.
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As the key genes in DN constitute most of the dysregulation
consequences, we are interested in the driver genes in the KDN.
Figure 4A shows the Venn diagrams of the key genes and the
identified driver genes in the four subtypes. In the KDN, about
20–30% of the genes are driver genes. That is, the KDN is
enriched with a larger portion of driver genes. Furthermore,
Figure 4B shows the driver genes’ average number of events
as defined by DriverNet (Bashashati et al., 2012), whether they are
in the KDN or not. The former’s average number of events is
obviously higher than that of the latter, which demonstrates that
key driver genes explain more abnormal expressed genes in the
patient group than the latter.

In Figure 4C, green and red denote whether they are driver
genes; black and gray denote whether the interactions originate
from driver genes. The KDNs are highly connected in the central
part which include some driver genes and their downstream
genes, while the peripheral part is relatively sparsely connected
which includes only non-driver genes. Therefore, we may

hypothesize that these driver genes in the central part
constitute the core tumorigenesis genes. Their mutations are
the major causal factors to the corresponding subtypes. These
driver genes first exert their abnormal effects on their direct
downstream genes. And the downstream genes propagate the
abnormal signals to other peripheral genes. Finally, the
interactions between genes in the KDN contribute to the
initiation and development of different breast cancer subtypes.

Breast Cancer Drug Targets are Enriched in
the Key Dysregulated Network
From the perspective of the targeted therapy, the targets of drugs for
breast cancer should be closely related to the KDN. Figure 5A shows
the Venn graph of the targets of 29 breast cancer targeted drugs and
the key genes. Only a few targets, such as ESR1, ESR2, EGFR, ERBB2,
etc. are observed in the KDN. Table 4 lists these targets which are
targeted by 10 drugs. As most drugs’ number of targets ranges

FIGURE 5 |Drug target analysis. (A) The Venn graph of the targets of 29 breast cancer drugs and genes in the KDN. (B) The enrichment scores of 29 breast cancer
targeted drugs.

TABLE 4 | The drug targets in key genes.

Subtypes Drug targets

Luminal A ESR1, NR3C1, PRKCG, EGFR, PRKCA, ESR2, PRKCZ, PRKCB
Luminal B ESR1, NR3C1, PRKCG, EGFR, PRKCA, ESR2, PRKCZ
Basal-like ESR1, NR3C1, PRKCG, MAPT, PGR, BCL2, ERBB4
HER2-enriched ESR1, NR3C1, PRKCG, EGFR, PRKCA, ESR2, PRKCZ, ERBB2, MAPT, PGR, BCL2, CYP2A6

Frontiers in Genetics | www.frontiersin.org February 2022 | Volume 13 | Article 8560758

Huo et al. Dysregulated Network of Breast Cancer

238

https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


between 2 and 3, we use their first order neighboring genes to
determine the enrichment score. The enrichment score is defined
as the negative logarithm of the p-value of the hypergeometric test.
Figure 5B shows the enrichment scores of the 29 drugs. Drugs solely
for breast cancer are on the left, while those that can also treat other
cancers are on the right. Obviously, most of the drugs are significantly
enriched in the DN. In each DN, these enrichment scores are greater
than 2. This demonstrates that the targets of these 29 drugs are closely
related to the KDN.

To take a further look at the neighbors of targets not observed
in the KDN, we find that some neighbors are the targets of other
drugs in the KDN. For example, ESR1 and ESR2, targets of
Soltamox (Tamoxifen Citrate) and Faslodex (Fulvestrant), are
both neighbors of the other six drug targets, such as Nerlynx
(Neratinib Maleate), Tykerb (Lapatinib Ditosylate), Abraxane
(Paclitaxel), Cyclophosphamide, Megestrol Acetate, and
Taxotere (Docetaxel). ESR1 is also a neighbor of CYP19A,
which is the target of Arimidex (Anastrozole), Aromasin
(Exemestane), and Femara (Letrozole). That is, most drug
targets, even if not observed in the KDN, are closely
associated with it. Thus, we may hypothesize that the KDN
may serve as a critical level point for drugs to exert their effect
and to intervene in the abnormal state of the cellular system.

The Top Dysregulated Genes may Serve as
Potential Biomarkers for Survival Analysis
We apply KM-plotter to conduct the survival analysis of the top 10
dysregulated genes (http://kmplot.com/analysis/index.php?p=
service&cancer=breast). For Luminal A, Luminal B, Basal-like, and
HER2-enriched subtypes, 2277, 465, 846, and 315 samples are used
respectively.Figure 6 shows the results of the survival analysis with the
smallest log-rank p-value of gene for each subtype. All p-values are less
than 0.05. This indicates that these dysregulated genes can be used as
potential prognostic markers of breast cancer subtypes.

CONCLUSION

From the perspective of biological networks, cancer is a result of the
abnormal interactions between genes. In this paper, we propose a

simple way to measure the regulation strength of genes based on their
relative expression values. And thenwe construct the key dysregulated
network (KDN) for the four subtypes of breast cancer. Our results
show that the KDN is significantly enriched in critical breast cancer-
related pathways as well as driver genes; closely associated with drug
targets; and have significant differences in survival analysis. The key
dysregulated genes can also serve as potential driver genes, drug
targets, and prognosticmarkers for subtype identification. In addition,
our results indicate that the key dysregulation analysis is more
powerful than the traditional DEG analysis. Therefore, the KDN
can be applied to other cancer studies, such as the identification of
driver genes, drug repurposing, and so on.
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Clinical Prediction of Heart Failure in
Hemodialysis Patients: Based on the
Extreme Gradient Boosting Method
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Background: Heart failure (HF) is the main cause of mortality in hemodialysis (HD)
patients. However, it is still a challenge for the prediction of HF in HD patients.
Therefore, we aimed to establish and validate a prediction model to predict HF events
in HD patients.

Methods: A total of 355 maintenance HD patients from two hospitals were included in this
retrospective study. A total of 21 variables, including traditional demographic
characteristics, medical history, and blood biochemical indicators, were used. Two
classification models were established based on the extreme gradient boosting
(XGBoost) algorithm and traditional linear logistic regression. The performance of the
two models was evaluated based on calibration curves and area under the receiver
operating characteristic curves (AUCs). Feature importance and SHapley Additive
exPlanation (SHAP) were used to recognize risk factors from the variables. The
Kaplan–Meier curve of each risk factor was constructed and compared with the log-
rank test.

Results: Compared with the traditional linear logistic regression, the XGBoost model had
better performance in accuracy (78.5 vs. 74.8%), sensitivity (79.6 vs. 75.6%), specificity
(78.1 vs. 74.4%), and AUC (0.814 vs. 0.722). The feature importance and SHAP value of
XGBoost indicated that age, hypertension, platelet count (PLT), C-reactive protein (CRP),
and white blood cell count (WBC) were risk factors of HF. These results were further
confirmed by Kaplan–Meier curves.

Conclusions: The HF prediction model based on XGBoost had a satisfactory
performance in predicting HF events, which could prove to be a useful tool for the
early prediction of HF in HD.
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INTRODUCTION

Heart failure (HF) as a clinical syndrome is one of the main causes of
mortality (Ebong et al., 2014; Virani et al., 2021). More than
60million people are affected by HF worldwide, and the number
of HF patients is increasing every year (Groenewegen et al., 2020).
Compared with the general population, the prevalence of HF in
patients with chronic kidney disease (CKD) ismuch higher, especially
in patients with end-stage renal disease (ESRD) (Rangaswami and
McCullough, 2018; Rapa et al., 2019). Currently, hemodialysis (HD)
as a renal replacement therapy (RRT) is the main treatment of ESRD
(Akash et al., 2014). However, more than 40% of HD patients suffer
from HF, which increase the medical care, economic burden, and
mortality (House et al., 2019; Sun et al., 2019). Therefore,
identification, pre-estimation, and timely interventions can
improve the prognosis and prolong the survival time for the
population who show a high risk of HF (Abdo, 2017).

The causes of HF in HD patients are multifactorial (Wang and
Sanderson, 2011). Similar to the general population, traditional risk
factors such as aging, hypertension, diabetes mellitus (DM), and
atherosclerosis are associated with HF in HD patients (Liu et al.,
2014; Cozzolino et al., 2018). However, excess HF prevalence and
mortality in HD population are not fully accounted for by the
traditional risk factors (Schefold et al., 2016). Some researchers have
found that dialysis can increase the risk of HF events in ESRD
patients (Rangaswami andMcCullough, 2018; Samanta et al., 2019).
Evidence shows that the malnutrition–inflammation syndrome in
HD patients is associated with HF (Almeida et al., 2008; Chang et al.,
2020). In addition, changed hemodynamic and blood pressure by
HD can increase the risk of HF (Dorairajan et al., 2010). Several
traditional risk prediction models were proposed to predict the risk
of HF in population without HD (Ouwerkerk et al., 2014; Voors
et al., 2017). However, these linear models missed specific related
factors for HD people and oversimplified the complicated
relationships between factors, which may lead to a decrease in
performance and miss important risk factors (Mpanya et al., 2021).

Recent advances in extreme gradient boosting (XGBoost), a
new integrated machine learning algorithm, have provided a
robust method to identify the complex non-linear relationship
between multiple variables and outcomes (Kagiyama et al., 2019).
This algorithm has strong model generalization ability, fast
operating speed, and high model accuracy, which has been
applied in orthopedic auxiliary classification, prediction of
interaction, and analysis of hypertension-related symptoms to
improve accuracy in complex clinical decision-making (Chang
et al., 2019; Li and Zhang, 2020; Yu et al., 2020).

Therefore, we aimed to establish a prediction model that
integrated patient-specific information and non-traditional factors
of HF in HD patients based on XGBoost 1) to accurately predict HF
events and 2) to assess the risk of HF in patients with HD treatment.

MATERIALS AND METHODS

Study Population
This retrospective study analyzed the data of 410 ESRD patients
who underwent HD treatment in the HD centers of the Third

Affiliated Hospital of Southern Medical University and the Third
Affiliated Hospital of Sun Yat-sen University between January
2015 and September 2019. All the patients were older than
18 years and received HD treatment for at least 3 months.
Patients with the following conditions were excluded from this
study: 1) history of renal transplantation; 2) malignancy, acute
infection, hepatic, and pulmonary dysfunction; and 3) lack of data
on demographic characteristics, laboratory examinations, or
physical examination. This study was approved by the Ethics
Committee of the Third Affiliated Hospital of Southern Medical
University.

Data Collection
A total of 21 factors were collected at the start of HD therapy. The
basic information consisted of the patient’s gender, age, and
history of various diseases. After fasting overnight for at least
8 h, the patient’s venous blood samples were collected before
dialysis therapy. The laboratory indicators included C-reactive
protein (CRP), blood urea nitrogen (BUN), calcium (CA),
hemoglobin (HB), phosphorus (P), cholesterol (CHOL), serum
creatinine (CRE), lymphocyte (LYMPH), uric acid (UA), low-
density lipoprotein cholesterol (LDL-C), high-density lipoprotein
cholesterol (HDL-C), intact parathyroid hormone (IPTH), white
blood cell count (WBC), platelet count (PLT), and neutrophil
count (NEUT). All the abovementioned examinations were
conducted at the laboratory centers in the Third Affiliated
Hospital of Southern Medical University and the Third
Affiliated Hospital of Sun Yat-sen University.

Outcome and Follow-Up
The occurrence of HF events (fatal or not) after HDwas recorded.
The HF diagnosis was made based on Framingham criteria
(Groenewegen et al., 2020). Follow-up visits were performed
by the HD centers. Patients who developed HF after HD were
censored at the earliest date of a HF event. The HF events were
recorded up to May 1, 2020.

Statistical Analysis
All statistical analyses and model establishment were performed
using SPSS 26.0 for Windows and Python 3.7.6. All continuous
variables were described as mean ± standard deviation (SD), and
these variables were compared between groups by performing
t-tests. In addition, discrete variables were expressed in numbers
(n) and percentages (%), and the chi-square test was applied. All
results were considered to be statistically significant within a two-
sided test with p <0.05.

Two classification models were established based on XGBoost
and traditional linear logistic regression models. The multiple
logistic regression was selected using a stepwise method. In the
XGBoost model, all the characteristics of HD patients were
included. The data set was randomly divided into a training
set by 75% and a validation set by 25%. The performance of the
models was evaluated using calibration curves and area under the
receiver operating characteristic curves (AUCs). To evaluate the
influence of different variables on the results, the SHAP value of
important variables was calculated (Rodriguez-Perez and
Bajorath, 2020). A risk curve was constructed using the
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Kaplan–Meier analysis, and differences between groups were
compared by a log-rank test to further evaluate the
performance of our model and verify the risk factors selected
by the mode. To make our model be an easy-to-use tool, a
nomogram was developed based on the risk factors selected by
our model.

RESULTS

Demographic and Clinical Characteristics
of Study Population
According to the inclusion and exclusion criteria, a total of 353
patients were finally included in this study. The basic variables of
study population are shown in Table 1. Among these patients, 96
patients (73 males and 23 females) developed HF during the
follow-up duration and 257 patients (166 males and 91 females)
did not. In general, the average age of these patients was 54.92 ±
15.29, and the proportion of males was 67.71%. Compared with
patients without HF, those with HF were older and had a higher
ratio of hypertension and diabetes, and there was a significant
difference in gender. In terms of laboratory data, for patients in
the HF group, their WBC, NEUT, CRP, and TIBC levels were
significantly (p <0.05) higher than those of the other group. There
was no significant difference in other characteristics.

Logistic Regression Analysis
As presented in Table 2, the following factors were included in a
multivariate stepwise logistic regression model: HTN (OR: 3.786,
95% CI: 1.640–8.739, and p = 0.002), WBC (OR: 1.115, 95% CI:
1.026–1.212, and p = 0.011), CRP (OR: 1.020, 95% CI:

1.009–1.032, and p = 0.001), and age (OR: 1.026, 95% CI:
1.008–1.044, and p = 0.004). The receiver operating
characteristic (ROC) curve of the logistic regression model is
shown in Figure 1, and the performance of this model was
evaluated using the calibration curve, as shown in Figure 2.
The area under the curve (AUC) was 0.722 for the validation
group and 0.735 for the training group. In addition, accuracy,
sensitivity, and specificity of the model were 74.8, 75.6, and
74.4%, respectively, evaluated by the validation group.

Extreme Gradient Boosting Model
The ROC curve and the calibration curve of the XGBoost model
are presented in Figure 1 and Figure 2, respectively. It was found
that the accuracy, sensitivity, specificity, and AUC value were
78.5, 79.6, 78.1%, and 0.814, respectively, evaluated by the
validation cohort. The feature importance ranking which
represents the contribution of the corresponding feature to the
model prediction based on gain is shown in Figure 3. It was found
that HTN, age, CRP,WBC, and PLT were more important for the
prediction of HC than other features.

TABLE 1 | Clinical characteristics and laboratory parameters of patients in the HF group and the non-HF group.

Clinical characteristic and
laboratory parameter

All patients HF Non-HF p-value

Age (years) 56.05 (43.13–66.32) 63.1 (54.64–72.03) 52.0 (41.0–61.1) <0.001
Gender (male) (n, %) 239 (66.71) 73 (76.04) 166 (64.59) 0.041
HTN (n, %) 281 (79.60) 88 (91.67) 193 (75.10) <0.001
DM (n, %) 123 (34.84) 43 (44.79) 80 (31.13) 0.017
HB (g/L) 96.44 ± 21.01 97.71 ± 21.52 95.98 ± 20.96 0.423
NEUT (109/L) 4.39 (3.47–5.60) 4.86 (3.50–6.41) 4.26 (3.44–5.17) 0.005
WBC (109/L) 6.72 (5.36–8.03) 7.68 (6.07–9.00) 6.48 (5.20–7.69) <0.001
LYMPH (109/L) 1.19 (0.89–1.50) 1.18 (0.90–1.54) 1.20 (0.89–1.49) 0.854
IPTH (pg/ml) 343.40 (213.43–529.19) 322.50 (192.51–465.64) 356.45 (218.37–536.82) 0.128
UA(μmol/L) 494.88 ± 146.20 513.74 ± 154.06 487.81 ± 142.83 0.861
BUN (mmol/L) 23.07 (16.39–29.09) 23.27 (18.30–31.25) 22.85 (15.96–28.69) 0.299
CRE (μmol/L) 848.60 ± 391.62 812.26 ± 372.39 862.18 ± 398.40 0.329
CA (mmol/L) 2.17 (2.04–2.32) 2.14 (1.99–2.30) 2.19 (2.07–2.33) 0.103
P (mmol/L) 1.81 (1.44–2.25) 1.81 (1.51–2.20) 1.82 (1.44–2.26) 0.854
CHOL (mmol/L) 4.15 (3.62–4.89) 4.10 (3.57–4.97) 4.17 (3.65–4.87) 0.655
TG (mmol/L) 1.51 (1.17–1.92) 1.43 (1.11–1.90) 1.52 (1.20–1.93) 0.434
HDL-C (mmol/L) 0.97 (0.87–1.11) 0.99 (0.88–1.15) 0.96 (0.86–1.10) 0.572
LDL-C (mmol/L) 2.45 (2.00–2.96) 2.46 (2.00–3.15) 2.44 (1.99–2.94) 0.668
CRP (mg/L) 5.66 (2.65–13.65) 8.40 (4.05–16.35) 5.01 (2.12–13.00) <0.001
TIBC (mmol/L) 36.16 (33.73–39.55) 35.84 (33.48–38.09) 36.46 (33.95–40.00) 0.034
PLT (109/L) 201.00 (156.00–243.70) 210.00 (155.50–273.00) 198.72 (157.25–237.00) 0.177

CRP, C-reactive protein; BUN, blood urea nitrogen; CA, calcium; HB, hemoglobin; DM, diabetes mellitus; TG, triglycerides; P, phosphorus; CHOL, cholesterol; CRE, serum creatinine;
LYMPH, lymphocyte; UA, uric acid; LDL-C, low-density lipoprotein cholesterol; HDL-C, high-density lipoprotein cholesterol; IPTH, intact parathyroid hormone; WBC, white blood cell
count; NEUT, neutrophil count; PLT, platelet count; TIBC, total iron-binding capacity; HTN, hypertension.

TABLE 2 | Multivariate logistic regression model.

Variable B SE Wald p-value OR (95%CI)

HTN 1.331 0.427 9.733 0.002 3.786 (1.640–8.739)
WBC 0.109 0.043 6.532 0.011 1.115 (1.026–1.212)
CRP 0.020 0.006 11.730 0.001 1.020 (1.009–1.032)
AGE 0.025 0.009 8.113 0.004 1.026 (1.008–1.044)

HTN, hypertension; WBC, white blood cell count; CRP, C-reactive protein; OR, odds
ratio; CI, confidence interval.
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Interpretation of the Extreme Gradient
Boosting Model
The SHAP value quantifies the contribution of data to the outcome in
the XGBoost model; the size of the value reflects the influence of the
corresponding eigenvalue on the outcome, and the positive andnegative
values reflectwhether the results are promoted. Based on the established
XGBoost model, the SHAP values of the five relevant factors showed
how the feature affected the results, as shown in Figure 3.

Kaplan–Meier Analysis
The Kaplan–Meier analysis was used to confirm the effects of risk
factors on the incidence of HF. The risk factors were stratified by
the SHAP value when it was 0. As shown in Figure 4, the risk
curve revealed that considering the influence of different outcome
time, patients with high levels of WBC, CRP, PLT, old age, and
hypertension had a higher incidence of HF, and the effect of UA

was not obvious enough. The nomogram of the XGBoost model
was constructed, as shown in Figure 5.

DISCUSSION

In this retrospective study, we established and validated a clinical
prediction model to predict HF in HD patients based on the
XGBoost algorithm. The results indicated that our model could
effectively identify the individuals who suffer from HF using
routinely clinical parameters. Our result indicated that XGBoost
as a non-linear model had better performance than the logistic
model and showed stronger ability in identification of risk factors.

In recent years, machine learning has been widely used in risk
prediction and disease screening, which has obtained excellent
performance (Kwon et al., 2020; Meng et al., 2020; Cobb et al.,

FIGURE 1 | Receiver operating characteristic curves of two models for predicting objective response in the training cohort (A) and validation cohort (B). AUC, area
under the curve.

FIGURE 2 | Calibration curve demonstrating predictions from the model to the actual observed probability. (A) Training cohort and (B) validation cohort.
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2021; Koteluk et al., 2021; Kourou et al., 2021). Therefore, in this
research, XGBoost, an integrated machine learning algorithm, was
applied to identify the complex non-linear relationship between HF
and clinical variables, as well as to evaluate the importance of the
variables to the HF. Although traditional multivariable analysis
methods have been applied for the identification of HF in HD
patients (Gedfew et al., 2020; Bramania et al., 2021), to our
knowledge, this was the first machine learning model for the
prediction of HF. Our results showed that the performance of
the XGBoost model was better than the traditional logistic
regression model in prediction of HF. To make our XGBoost
model interpretable, the feature importance and SHAP value
were applied to evaluate the contribution of variables to HF.
Except four risk factors including age, hypertension, WBC, and
CRP found in the logistic regression model, a new risk factor, PLT,

was found in the XGBoostmodel. This showed the advantages of our
XGBoost mode, which could improve the accuracy of the
classification and the efficiency of identification.

In addition to HF response, the performance of our model was
evaluated by the Kaplan–Meier analysis. The differences between
the Kaplan–Meier curves of different risk levels indicated that the
risk factors selected by our XGBoost model were important
prognostic factors of HF. The results of Kaplan–Meier analysis
also showed that age more than 60, WBC more than 6.5 × 109,
CRP more than 15 mg/L, PLT more than 250 × 109, and
hypertension were independent risk factors which could
increase the probability of HF. Moreover, based on the five
risk factors selected by the XGBoost model and the
Kaplan–Meier analysis, the nomogram (Yao et al., 2019) was
designed to give an easy-to-use tool for the prediction of HF.

FIGURE 3 |Related factors of HF were ranked by feature gain. (A) showed the top ten gain features; age, HTN,WBC, PLT, and CRP had amore significant impact.
(B), (C), (D), (E), and (F) represented the SHAP value of HTN, age, PLT, WBC, and CRP in the XGBoost model. It reflected the influence of relevant factors on the results.
WBC, white blood cell count; HTN, hypertension; UA, uric acid; TG, triglycerides; BUN, blood urea nitrogen; HDL, high-density lipoprotein cholesterol; PLT, platelet
count; CRE, serum creatinine; CRP, C-reactive protein.
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In our study, the proportion of hypertension in HF patients
was significantly greater than that in the non-HF group, which is
consistent with a recent study (Bramania et al., 2021). The
analysis of characteristics showed that hypertension was a risk
factor for HF events, which is consistent with the results of a
recent study (Cozzolino et al., 2017). Patients with hypertension
already had a huge cardiovascular burden before dialysis (Van
Buren, 2016). There are pieces of evidence that dialysis treatment
can lead to abnormal fluctuations in blood pressure and affect
patient’s hemodynamics (Chou et al., 2018; Douvris et al., 2019).
The vascular intima is more damaged by the abnormal
fluctuations in the blood pressure, and HF is more likely to
occur (Buren and Inrig, 2012).

Age is an important risk factor of HF. In old age, the shape and
function of the vascular wall are changed due to oxidative stress,

cell aging, and inflammation (Ghebre et al., 2016). In addition,
with increasing age, body functions gradually decline,
physiological compensatory function decreases, chronic
diseases such as high blood pressure and diabetes occur
frequently, and symptoms such as anemia, malnutrition, and
chronic inflammation are prone to occur; these factors increase
the risk of HF events (McHugh and Gil, 2018; Groenewegen et al.,
2020). It has been reported that approximately 80% of HF
patients were more than 60 years old, and the prevalence
increased with age (Vigen et al., 2012). According to the
results of our study, the risk of HF continued to increase from
about 45 years old, which was consistent with the report from the
American Heart Association (Virani et al., 2021).

WBC and CRP are widely used to reflect the inflammatory
state in patients (Rienstra et al., 2012; Adamo et al., 2020).

FIGURE 4 | Risk curve of six factors based on the Kaplan–Meier analysis. (A), (B), (C), (D), (E), and (F) represented risk curves of age, hypertension, CRP, WBC,
PLT, and UA, respectively. WBC, white blood cell count; UA, uric acid; CRP, C-reactive protein; PLT, platelet count.
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Inflammation and HF are strongly interconnected, and higher
levels of inflammation markers indicated an increased mortality
and morbidity of HF in patients (Ekdahl et al., 2017). Some
studies have confirmed that inflammation markers are implicated
in the development of HF because the immune system leads to
deterioration of the structure and function of the cardiovascular
system by the inflammatory response (Van Linthout and
Tschope, 2017; Castillo et al., 2020). A study has demonstrated
that high levels of WBC are closely related to the incidence of HF
(Bekwelem et al., 2011). CRP is one of the recognized risk factors
for CVD events, and a meta-analysis has reported that CRP plays
an important role in the development of HF (Emerging Risk
Factors Collaboration et al., 2010). In this study, our result was
consistent with these previous findings. In addition, our results
showed that other serum biomarkers, such as an anomalous level
of PLT, were related to HF. Excessive PLT can promote
inflammation, negatively affect the left ventricular function,
and increase the risk of atherosclerosis; these diseases would
increase the probability of HF (Gary et al., 2013; Chen and Yang,
2020).

All these data required in this study can be easily obtained
through routine clinical examination, not limited by many
additional conditions, and can make full use of existing
resources. The XGBoost model showed a better prediction
effect by using higher indicators such as AUC, accuracy,
sensitivity, and atherosclerosis specificity. It can be a useful
tool for doctors to evaluate the HF risk of HD patients and

carry out personalized intervention in advance. However, there
are still some limitations to our study. We only focused on the
event of HF in HD population of China; it needs to be verified by
different populations and races. In addition, this study is a
retrospective examination which lacks longitudinal
observation. Therefore, in further research, a longitudinal data
analysis can help evaluate the changes in these risk factors over
time and further validate the results in our model.

In conclusion, we developed and validated a clinical prediction
model based on the XGBoost algorithm for HF in end-stage renal
disease patients. The model had an excellent predictive
performance and provided a useful tool for the early
prediction of HF in HD patients.
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In current biology, exploring the biological functions of proteins is important. Given the large
number of proteins in some organisms, exploring their functions one by one through
traditional experiments is impossible. Therefore, developing quick and reliable methods for
identifying protein functions is necessary. Considerable accumulation of protein
knowledge and recent developments on computer science provide an alternative way
to complete this task, that is, designing computational methods. Several efforts have been
made in this field. Most previous methods have adopted the protein sequence features or
directly used the linkage from a protein–protein interaction (PPI) network. In this study, we
proposed some novel multi-label classifiers, which adopted new embedding features to
represent proteins. These features were derived from functional domains and a PPI
network via word embedding and network embedding, respectively. The minimum
redundancy maximum relevance method was used to assess the features, generating
a feature list. Incremental feature selection, incorporating RAndom k-labELsets to
construct multi-label classifiers, used such list to construct two optimum classifiers,
corresponding to two key measurements: accuracy and exact match. These two
classifiers had good performance, and they were superior to classifiers that used
features extracted by traditional methods.

Keywords: mouse protein, multi-label classification, embedding features, rakel, feature selection

1 INTRODUCTION

Protein is a major component associated with the maintenance of normal physical functions in cells
(Milo, 2013). As the essential regulator and effector for almost all living creatures with cellular
structures, proteins participate in physical biological processes in two major approaches (Aebersold
and Mann, 2016). First, proteins contribute to the regulation of essential biological functions.
According to recent publications, proteins are associated with various biological processes, including
cell proliferation (Üretmen Kagıalı et al., 2017), enzyme-mediated metabolic processes (Davidi and
Milo, 2017), DNA replication (Mughal et al., 2019), cell signaling via ligand binding (Hotamisligil
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and Davis, 2016), and responses to internal or external
stimulations (Chivasa and Slabas, 2012), all of which are quite
complex and essential functions for living creatures. In addition,
proteins can construct basic cellular structures (Aebersold and
Mann, 2016), maintain the stability of cellular
microenvironment, and participate in the formation of
complex macrostructures of living creatures, such as hairs and
nails. Considering the significance of proteins for living creatures,
their biological functions and related detailed underlying
mechanisms have been widely studied as an irreplaceable field
in current biological studies.

Different kinds of proteins in humans are generated by 19823
predicted or confirmed protein-coding genes (Beck et al., 2011;
Milo, 2013). For mouse, as a widely used experimental model,
several proteins are translated from approximately 12300 specific
protein-coding genes and their isoforms (Church et al., 2009).
Therefore, considering the large number of proteins in humans
and mice, exploring protein functions by analyzing all candidate
proteins one by one through traditional experiments is
impossible. For the systematic study of protein functions,
computational methods and databases are introduced. Early in
2004, Ruepp et al. have already presented an effective and
simplified annotation scheme for systematic classification of
proteins (Ruepp et al., 2004). Using such annotation tools,
proteins can be clustered into 24 functional categories. The
final summary of these 24 categories is generated by balancing
manual operative convenience, categorial specificity, and
adaptability for further downstream analyses. Therefore,
annotating proteins with these 24 categories may be an
efficient and convenient way for the exploration of initial
protein function.

However, in the presence of clusters and related annotated
proteins, computational methods for classification may also be
necessary for further systematic protein function explorations. In
2011, Hu et al. proposed two computational methods, namely,
network-based and hybrid-property methods, to identify the
functions of mouse proteins among the aforementioned 24
categories (Hu et al., 2011). The final method integrated these
two methods in a way that the network-based method was
initially applied to make prediction; if this method cannot
provide predicted results, then the hybrid-property method
would make further prediction. In addition, Huang et al.
provided three computational methods for the prediction of
mouse protein functions based on the 24 candidate categories
(Huang et al., 2016). Considering the biochemical properties of
proteins and specific functioning approaches for most proteins
via protein–protein interactions (PPI), three methods were
presented for functional annotation/prediction: 1) sequence
similarity-based prediction, 2) weighted PPI-based prediction,
and 3) sequence recoding-based prediction using PseAAC (Shen
and Chou, 2008). The two above-mentioned studies all used
mouse proteins and their functional categories reported in the
Mouse Functional Genome Database (MfunGD, http://mips.gsf.
de/genre/proj/mfungd/) (Ruepp et al., 2006). However, the
above-mentioned methods were not absolute multi-label
classifiers as they can only provide the category sequence.
Moreover, determining predicted categories for a query

protein remains a problem. This study continued doing some
work in this field. Furthermore, Zhang et al. developed
I-TASSER/COFACTOR method for neXtProt project to
predict GO functions of proteins based on their structures and
interactions (Zhang et al., 2018; Zhang et al., 2019). NetGO
(https://issubmission.sjtu.edu.cn/ng2/) predicted protein
functions by integrating massive sequence, text, domain/family
and network information with Naïve GO term frequency,
BLAST-KNN, LR-3mer, LR-InterPro, LR-ProFET, Net-KNN,
LR-text and Seq-RNN (You et al., 2019; Yao et al., 2021).

This study also adopted mouse proteins and their function
annotations reported in MfunGD. For each protein, we extracted
features from two aspects. On the one hand, embedding features
derived from functional domains of proteins were extracted,
which can indicate the essential properties of proteins. The
functional domains were retrieved from the InterPro database
(Blum et al., 2021), and features were obtained by a natural
language processing method, Word2vec (Mikolov et al., 2013;
Church, 2017). On the other hand, other embedding features
were obtained from a PPI network, which contained the linkage
information to other proteins. We used the PPI network reported
in STRING (Szklarczyk et al., 2015), and Node2vec (Grover and
Leskovec, 2016) was applied to such network to obtain
embedding features. Embedding features were collected to
represent all mouse proteins. Afterward, a feature selection
procedure, including the minimum redundancy maximum
relevance (mRMR) method (Peng et al., 2005) and
incremental feature selection (IFS) (Liu and Setiono, 1998),
was designed to select essential embedding features. These
features were inputted to RAndom k-labELsets (RAKEL)
(Tsoumakas and Vlahavas, 2007) using a support vector
machine (SVM) (Cortes and Vapnik, 1995) or random forest
(RF) (Breiman, 2001) as the base classifier to construct the multi-
label classifiers. The comparison results indicated that our
classifiers were superior to classifiers using traditional protein
features.

2 METHODS AND MATERIALS

This study aimed to predict the functions of mouse proteins. First,
we usedWord2vec and Node2vec to obtain embeddings of mouse
proteins and identify the essential embedding features via the
mRMRmethod. Then, we applied RAKEL, incorporating SVM or
RF as the base classifier, to IFS to construct good multi-label
classifiers.

2.1 Dataset
The original mouse proteins and their functions were sourced
from a previous study (Hu et al., 2011), which were downloaded
from MfunGD (Ruepp et al., 2006). The functions of proteins
were determined by manual annotation of the literature and GO
annotation (Ashburner and Lewis, 2002; Camon et al., 2003).
After excluding proteins without functional domain or
interaction information, 9655 proteins were obtained. These
mouse proteins were further processed by CD-HIT (Fu et al.,
2012) with cutoff of 0.4. 6950 mouse proteins were kept. These
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proteins were classified into 24 functional categories, which are
listed in the second column of Table 1. In this table, the number
of proteins in each category is also provided (last column of
Table 1). The total number of proteins in all categories was 21584,
which was higher than the number of different proteins (6950),
indicating that several proteins were in more than one category.
Among 6950 proteins, 1299 proteins belonged to exact one
functional category, whereas others belonged to two or more
categories, and no proteins belonged to more than fifteen
categories. The distribution of 6950 proteins based on the
number of categories that they belonged to is shown in

Figure 1. Accordingly, assigning functional labels to mouse
proteins was a multi-label classification problem.

To fully evaluate the final classifiers, 6950 proteins were
divided into one training dataset and one test dataset, where
the training dataset contained 5560 (80%)mouse proteins and the
test dataset consisted of 1390 (20%) proteins. The distribution of
proteins in training and test datasets based on the number of
categories that they belonged to is shown in Figure 1. For
convenience, the training and test datasets were denoted as Str
and Ste, respectively. The number of proteins in Str and Ste for each
functional category is also listed in Table 1.

2.2 Feature Extraction
In this study, a novel feature representation scheme was
presented to encode each mouse protein. This scheme
extracted two types of embedding features. The first type of
features was derived from functional domains of proteins,
whereas the second one was obtained from a PPI network.

2.2.1 Features Derived From a Functional Domain
Using Word2vec
Functional domain is a type of information, which is widely used
to study various protein-related problems (Cai and Chou, 2005;
Xu et al., 2008; Chen et al., 2010; Zhou et al., 2017). One-hot is the
classic scheme to extract features from the functional domain. In
such scheme, each protein was encoded into a binary vector.
However, the model based on features obtained by this scheme
was quite sensitive to some domains. Here, we adopted natural
language processing to extract features. The functional domain

TABLE 1 | Number of proteins in each functional category.

Index Category Number of Proteins

Training dataset Test dataset Overall

1 METABOLISM 1152 280 1432
2 ENERGY 247 64 311
3 CELL CYCLE AND DNA PROCESSING 473 124 597
4 TRANSCRIPTION 906 229 1135
5 PROTEIN SYNTHESIS 213 45 258
6 PROTEIN FATE (folding, modification, destination) 983 234 1217
7 PROTEIN WITH BINDING FUNCTION OR COFACTOR REQUIREMENT (structural or catalytic) 3316 868 4184
8 REGULATION OF METABOLISM AND PROTEIN FUNCTION 414 102 516
9 CELLULAR TRANSPORT, TRANSPORT FACILITIES AND TRANSPORT ROUTES 915 227 1142
10 CELLULAR COMMUNICATION/SIGNAL TRANSDUCTION MECHANISM 1228 328 1556
11 CELL RESCUE, DEFENSE AND VIRULENCE 318 76 394
12 INTERACTION WITH THE ENVIRONMENT 501 138 639
13 SYSTEMIC INTERACTION WITH THE ENVIRONMENT 488 149 637
14 TRANSPOSABLE ELEMENTS, VIRAL AND PLASMID PROTEINS 3 1 4
15 CELL FATE 550 171 721
16 DEVELOPMENT (Systemic) 421 127 548
17 BIOGENESIS OF CELLULAR COMPONENTS 287 68 355
18 CELL TYPE DIFFERENTIATION 146 39 185
19 TISSUE DIFFERENTIATION 144 37 181
20 ORGAN DIFFERENTIATION 237 53 290
21 SUBCELLULAR LOCALIZATION 3920 947 4867
22 CELL TYPE LOCALIZATION 80 15 95
23 TISSUE LOCALIZATION 82 26 108
24 ORGAN LOCALIZATION 168 44 212

Sum number of proteins in all categories 17,192 4392 21,584
Number of different proteins 5560 1390 6950

FIGURE 1 | Distribution of training, test and overall samples based on
the number of categories that they belong to. Several samples belong to two
or more categories.
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information of all mouse proteins was retrieved from the InterPro
database (http://www.ebi.ac.uk/interpro/, October 2020) (Blum
et al., 2021). A total of 16,797 domains were involved. Eachmouse
protein was annotated by at least one domain. Domains were
regarded as words and proteins annotated by some domains as
sentences. Word2vec (Mikolov et al., 2013; Church, 2017) was
used to obtain embedding features of each domain. Its brief
description was shown as follows.

Word2vec was widely used to generate word embeddings in
natural language processing. It established the mapping of words
to part-of-speech relationships and converted words into fixed-
length real-valued vectors. The similarity of the words can be
measured and characterized by the similarity of vector space.
When using Word2vec, the word vector and sentence vector of
features must be calculated. The probability of feature wi of
sentence j in category n is defined as follows:

Pn,j(wi) � fn(wi)
∑n∈Nfn(wi) (1)

wherefn(wi) indicates the frequency of featurewi in the sentence
of category n. Then, the weight of feature wi can be normalized as
follows:

ωi �
exp(Pn,j(wi) + 1)

∑exp(Pn,j(wi) + 1)
(2)

The sentence vector of sentence j in category n is given as
follows:

Vn,j � 1
fj

∑
m

i�1ωiW(wi) (3)

where fj represents the frequency of features in sentence j, and
W(wi) indicates the word vector of feature wi. After calculating
word vector W(wi) and sentence vector Vn,j of feature wi, the
importance of feature wi in the sentence can be measured by the
distance between the word vector and the sentence vector of
feature wi by using the cosine distance:

dis(Vn,j, W(wi)) � cos(Vn,j, W(wi))

� Vn,j W(wi)∣∣∣∣Vn,j|p|W(wi)
∣∣∣∣

(4)

The feature, whose distance value was within the scale, can be
selected on the basis of the ratio of feature selection to achieve the
purpose of screening and distinguishing multiple categories.

This study used the Word2vec program reported in genism
(https://github.com/RaRe-Technologies/gensim). This program
was performed with its default parameters. As mentioned
previously, each domain was called as a word. Thus, by
applying the Word2vec program, a 256-D feature vector was
assigned to each domain. The feature vector of a mouse protein
was defined as the average vector of feature vectors of domains,
which was annotated on such protein. For convenience, such
features were called domain embedding features.

2.2.2 Features Derived From a Protein–Protein
Interaction Network Using Node2vec
The above-mentioned embedding features of proteins were
extracted from the essential properties of proteins. They
cannot reflect the relationship among proteins. Recently,
several network embedding algorithms, such as DeepWalk
(Perozzi et al., 2014), Node2vec (Grover and Leskovec, 2016),
and Mashup (Cho et al., 2016), have been proposed, which can
abstract linkages in one or more networks and obtain a feature
vector for each node. Features accessed in this way contained
quite different information from those derived from essential
properties of samples. The combination of these two types of
features may fully represent each sample. To date, several models
with features derived by network embedding algorithms have
been set up to investigate different biological problems (Luo et al.,
2017; Zhao et al., 2019; Zhou JP. et al., 2020; Pan et al., 2021a; Pan
et al., 2021b; Liu et al., 2021; Zhu et al., 2021; Yang and Chen,
2022). In this study, we selected Node2vec to extract embedding
features of pdsluroteins.

A network was necessary to execute Node2vec. Here, we used
the PPI network reported in STRING (version 10.0) (Szklarczyk
et al., 2015). The PPI information of mouse was first downloaded
from STRING. Each PPI contained two proteins, encoded by
Emsenbl IDs, and one confidence score. Such score was obtained
by investigating several aspects of proteins, such as close
neighborhood in genomes, gene fusion, occurrence across
different species, gene coexpression, literature description, etc.
Thus, it can widely assess the relationship among proteins.
Accordingly, the PPI network used proteins as nodes, and two
nodes were connected by an edge if and only if their
corresponding proteins can constitute a PPI that had a
confidence score larger than 0. Furthermore, we placed weight
on each edge, which was defined as the confidence score of the
corresponding edge. The PPI network contained 20684 nodes and
2849682 edges.

Node2vec was applied to the above-mentioned PPI network to
obtain embedding features of proteins. Node2vec can be deemed
as a network version of Word2vec. It produced several paths by
setting each node in the network as the starting point. Each path
was extended by considering the neighbors of the current end
point. After generating a predefined number of paths, the nodes
in each path were called as words, whereas each path was
considered as a sentence. A feature vector was obtained for
each node through Word2vec.

In this study, we used the Node2vec program downloaded
from https://snap.stanford.edu/node2vec/. For convenience,
default parameters were used. Such program was performed
on the mouse PPI network. The dimension was set to 500.
Finally, each mouse protein was represented by a 500-D
feature vector. Features derived from PPI network via
Word2vec were called network embedding features.

By combining the domain and network embedding features
derived from functional domains of proteins and a PPI network, a
756-D feature vector was obtained to represent each mouse
protein.
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2.3 Feature Selection
The embedding features obtained by Word2vec and Node2vec
were concatenated as the final representation of a protein. We
obtained a 756-D vector for each protein. Evidently, some
features may be important for assigning functional labels to
mouse protein, whereas others were not. Therefore, using a
feature selection procedure is necessary to screen out essential
features. As several proteins had two or more functional labels,
that is, they belonged to two or more functional categories, the
original dataset, in which samples were assigned to multiple
labels, was transformed into a new dataset in the following
manner. If one sample had multiple labels, then this sample
would be copied multiple times with different single labels. Then,
each sample in the new dataset had only one label.

2.3.1 Minimum Redundancy Maximum Relevance
All features were analyzed by the mRMR method (Peng et al.,
2005). Such method evaluated the importance of features by
assessing their relevance to class labels and redundancies to other
features. A feature list, known as the mRMR feature list, was
produced by the mRMR method. This list was produced by
selecting features one by one. Initially, the list was empty. A
feature with maximum relevance to class labels and minimum
redundancies to features already in the list was selected and
appended to the list. When all features were in the list, the
procedures stopped. Evidently, features with high ranks
implied that they had high relevance to class labels and low
redundancies to other features. Thus, some top features in such
list can comprise a compact feature space for a certain
classification algorithm.

The current study used the mRMR program downloaded from
http://penglab.janelia.org/proj/mRMR/. It was performed with its
default parameters.

2.3.2 Incremental Feature Selection
The mRMR method only generated a feature list. However,
selecting the features for constructing the model remained a
challenge. Here, IFS (Liu and Setiono, 1998) was used.

Given a feature list (e.g., mRMR feature list), IFS constructed
all possible feature subsets. Each subset included some top
features in the list. Of each feature subset, a classifier was set
up and assessed by a cross-validationmethod (Kohavi, 1995). The
feature subset with the best performance can be obtained.
Features in such subset were called optimum features, whereas
the classifier using these features was called the optimal classifier.

2.4 Multi-Label Classifier
As mentioned in Section 2.1, several proteins were in multiple
functional categories. A multi-label classifier should be
constructed to assign mouse proteins into functional
categories. In general, two schemes were used to construct
multi-label classifiers. The first one was problem
transformation. It converted the original multi-label
classification problem into some single-label classification
problems. The second one was algorithm adaption. It
extended specific single-label classifiers to deal with multi-label

classification problems. This study adopted the first one to
construct the multi-label classifier.

The powerful multi-label classification method, RAKEL
(Tsoumakas and Vlahavas, 2007), was used to construct the
multi-label classifier. Given a problem containing l labels
(l=24 in this study), denoted by L1, L2, . . . , Ll, RAKEL
randomly produced m label subsets that contained k labels,
where m and k were the main parameters of RAKEL. For each
label subset, the power set was generated, and the members of
this set were deemed as new labels. Based on the original labels
of one sample, a new label in the power set was assigned to
such sample. For example, suppose that the label subset
contained three labels, say L1, L2 and L3 and a sample had
three labels, say L1, L3 and L5. In this case, this sample was
assigned a new label {L1, L3}, which was a member of the
power set of the label subset. With such operation, each
sample had only one label. Accordingly, a single-label
classifier with a base classifier can be set up. RAKEL
integrated (m) such single-label classifiers as the final
multi-label classifier.

This study used “RAkEL” in Meka (http://waikato.github.io/
meka/) (Read et al., 2016). Such tool obtained by the RAKEL
method was used to construct multi-label classifiers. The
parameters m and k were all set to 10.

2.5 Base Classifiers
In this study, RAKEL was used to construct the multi-label
classifier. It needed a base classifier to construct multiple
single-label classifiers, which would be integrated into the final
multi-label classifier. Here, two classic base classifiers, namely,
SVM (Cortes and Vapnik, 1995) and RF (Breiman, 2001), were
used, which were widely applied in tackling many biological
problems (Kandaswamy et al., 2011; Nguyen et al., 2015; Chen
et al., 2017; Zhou JP. et al., 2020; Zhou J.-P. et al., 2020; Liang
et al., 2020; Liu et al., 2021; Onesime et al., 2021;Wang et al., 2021;
Zhu et al., 2021; Chen et al., 2022; Ding et al., 2022; Li et al., 2022;
Wu and Chen, 2022).

2.5.1 Support Vector Machine
SVM was a supervised learning method using statistical learning
theory. It can find an optimum hyperplane, which has a
maximum margin between the two types of samples, in the
N-dimensional space (N represented the number of features)
using a Kernel technology (such as a Gaussian kernel), which can
map data points to a given category for data classification
prediction. The generalization error gradually decreased as the
margin increased. A “one-to-one” strategy of SVM corresponded
to the binary problem. When the problem extended to multiple
classes, the strategy of SVM also changed to a “one-versus-the-
rest” strategy.

This study used tool “SMO” integrated in Meka, which
implemented a type of SVM. Moreover, this SVM was
optimized by Sequential Minimization Optimization (SMO)
algorithm (Platt, 1998). Default parameters were adopted. The
kernel was a polynomial function and the regularization
parameter C was set to 1.
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2.5.2 Random Forest
RF was a classic classifier used to process classification and regression
problems, which was a general machine learning algorithm widely
used in bioinformatics. It contained several decision tree classifiers,
and subtle differences can be observed among these decision trees. RF
determined its output class by aggregating votes produced by
different decision trees. Compared with the decision tree, RF can
avoid the overfitting problem and improve the performance.

Likewise, this study used the “RandomForest” tool integrated
in Meka, which implemented RF. For convenience, default
parameters were used, where the number of decision trees was
set to 100.

2.6 Performance Measurement
K-fold cross-validation (Kohavi, 1995) is a widely used method to
assess the performance of classifiers. In this method, samples are
randomly and equally divided into K partitions. One partition is
singled out as test dataset one by one, which is used to test the
performance of classifier based on rest partitions. Accordingly,
each sample is tested only once. The comparison of predicted
labels and true labels can lead to some measurements to indicate
the performance of classifiers. In this study, we selected 10-fold
cross-validation to test all multi-label classifiers.

After the 10-fold cross-validation, each sample was assigned
with one or more labels. Some measurements can be computed to

assess the predicted results. As a multi-label classifier, accuracy
and exact match were the widely used measurements (Zhou JP.
et al., 2020; Zhou J.-P. et al., 2020; Pan et al., 2021b; Chen et al.,
2021; Tang and Chen, 2022). They can be calculated using the
following equations:

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Accuracy � 1
n
∑
n

i�1
(
||Li ∩ L′

i||
||Li ∪ L′

i||
)

Exact match � 1
n
∑
n

i�1
Θ(Li, L

′
i)

(5)

where n stands for the number of samples; Li and L’i denote the set
consisting of true labels and predicted labels of the i-th sample,
respectively; Θ(Li, L’i) is defined as follows:

Θ(Li, L
′
i) � { 1, If L′

i is identical to Li

0, Otherwise.
(6)

Evidently, the higher the accuracy or exact match, the higher
the performance.

3 RESULTS AND DISCUSSION

In this study, some novel multi-label classifiers were proposed to
identify the functions of mouse proteins. The entire procedures

FIGURE 2 | Entire procedures to construct the multi-label classifiers for predicting functions of mouse proteins. Mouse proteins and their function annotations are
retrieved from MfunGD. These proteins are randomly divided into one training dataset and one test dataset. Embedding features were derived from protein functional
domains and protein–protein interaction network through Word2vec and Node2vec, respectively. A feature selection procedure is used to analyze embedding features,
and essential features are fed into RAKEL to construct the multi-label classifiers. Proteins in the test dataset are fed into these classifiers to further evaluate their
performance.
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are shown in Figure 2. In this section, we provided the detailed
results of all procedures and made some comparisons to elaborate
the unity of the classifier.

3.1 Results of the mRMR Method on
Training Dataset
Each protein in Str was represented by 756 embedding
features. These features were analyzed by the mRMR
method, resulting in a feature list, which is called the
mRMR feature list. This list is provided in Supplementary
Table S1.

3.2 Results of IFS on Training Dataset
Based on the mRMR feature list provided in Supplementary
Table S1, IFS was used to construct several feature subsets
and set up a multi-label classifier on each feature subset.
Each multi-label classifier was set up with RAKEL, and the
SVM or RF was selected as the base classifier. 10-fold cross-
validation was used to assess the performance of each
classifier. The predicted results were assessed by calculating
the accuracy and exact match, as mentioned in Section 2.6,
which are available in Supplementary Table S2. Some IFS
curves are plotted in Figure 3 to show the performance of
multi-label classifiers with different base classifiers and
feature subsets, where the X-axis represented the number
of features, and the Y-axis represented the accuracy or
exact match.

As shown in Figure 3A, when the base classifier was RF, the
highest accuracy was 0.542, which was produced by using the
top 702 features in the list. Thus, we can construct an
optimum multi-label classifier with these features and RF.
As for another base classifier SVM, the highest accuracy was
also 0.542, which was produced by using the top 746 features.
An optimum multi-label classifier with SVM can be built
using these features. Above two optimum classifiers provided
the same accuracy. However, the exact match of the classifier
with RF was 0.182 and that of the classifier with SVM was
0.179. Accordingly, the optimum multi-label classifier with
RF can be deemed to be superior to the optimum multi-label

classifier with SVM. When accuracy was used as the key
measurement, we can construct a multi-label classifier using
the top 702 features and RF. However, the efficiency of such
classifier was not very high because lots of features were
involved in such classifier. From Figure 3A, we can see that
the IFS curve of RF followed a sharp increasing trend when a
few features were used. It can quickly provide a quite high
accuracy using much less features than SVM. By carefully
checking accuracy listed in Supplementary Table S2 and
Figure 3A, we can find that when top 48 features were
adopted, the classifier with RF can yield the accuracy of
0.530, which was only a little lower than that of the
optimum classifier. Such classifier can be picked up as a
tool to predict functions of query mouse proteins.

For the exact match, two IFS curves corresponding to two
different base classifiers are plotted in Figure 3B, from which
we can see that the base classifier RF generated the highest
exact match of 0.186 when the top 690 features were
used, whereas SVM yielded the highest exact match of
0.179 when the top 445 features were used. Evidently, the
best multi-label classifier with RF was superior to the best
multi-label classifier with SVM when exact match was
regarded as the key measurement. Accordingly, we can
construct a multi-label classifier using the top 690 features
and RF. The same problem also existed for such classifier,
i.e., low efficiency. It can be observed from Figure 3B that the
IFS curve of RF was quite similar to that in Figure 3A. The
increasing trend was much sharper at the beginning of the
curve than that of IFS curve of SVM. This meant that RF can
provide a high exact match using a small number of features.
When top 53 features were used, the classifier with RF can
produce exact match of 0.170, which was a little lower than
that of the best multi-label classifier with RF. Accordingly,
such classifier can be an efficient tool to identify functions of
mouse proteins.

As previously mentioned, different keymeasurements can lead
to different multi-label classifiers. For different prediction
purposes, users can select the key measurement and use the
corresponding classifier. The performance of above-mentioned
classifiers is listed in Tables 2, 3.

FIGURE 3 | IFS curves on embedding features using different classification methods. (A) Accuracy is set to the Y-axis. (B) Exact match is set to the Y-axis.
RAKEL_RF/RAKEL_SVM indicates that RAKEL with RF/SVM as the base classifier is used to construct the multi-label classifiers.
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3.3 Distribution of Embedding Features
Used in Two Efficient Classifiers
Two efficient classifiers were constructed as mentioned above, which
can be efficient tools for identification of protein functions. 48 and 53
embedding features were involved in these two classifiers,
respectively. Their distributions on domain and network
embedding features are shown in Figure 4. For the classifier with
48 features, 13 were domain embedding features, whereas 35 were
network embedding features. As for that with 53 features, similar
results can be observed (14 for domain embedding features and 39 for

network embedding features). These results indicated that network
embedding features gave more contributions for constructing two
classifiers. However, domain embedding features were also
important. Their combination was one important reason why
these two classifiers yielded such good performance.

3.4 Performance of Classifiers on Test
Dataset
Based on accuracy and exact match, three multi-label classifiers
were built, respectively. These classifiers were further evaluated

TABLE 2 | Accuracy of the important multi-label classifiers with different features on training and test datasets.

Method Feature Number of Features Accuracy

Training dataset Test dataset

RAKEL_RF Embedding features 702 0.542 0.536
RAKEL_SVM Embedding features 746 0.542 0.537
RAKEL_RF Embedding features 48 0.530 0.530
RAKEL_RF Domain features 26 0.429 0.426
RAKEL_SVM Domain features 27 0.429 0.428
RAKEL_RF Linkage features 233 0.462 0.460
RAKEL_SVM Linkage features 234 0.432 0.424
RAKEL_RF Domain and linkage features 221 0.470 0.462
RAKEL_SVM Domain and linkage features 227 0.449 0.433

TABLE 3 | Exact match of the important multi-label classifiers with different features on training and test datasets.

Method Feature Number of Features Exact match

Training dataset Test dataset

RAKEL_RF Embedding features 690 0.186 0.171
RAKEL_SVM Embedding features 445 0.179 0.157
RAKEL_RF Embedding features 53 0.170 0.159
RAKEL_RF Domain features 25 0.077 0.078
RAKEL_SVM Domain features 29 0.075 0.077
RAKEL_RF Linkage features 158 0.130 0.123
RAKEL_SVM Linkage features 225 0.113 0.104
RAKEL_RF Domain and linkage features 201 0.135 0.130
RAKEL_SVM Domain and linkage features 215 0.132 0.111

FIGURE 4 | Distribution of embedding features used in two efficient classifiers. (A) Distribution of embedding features used in the classifier selected by accuracy.
(B) Distribution of embedding features used in the classifier selected by exact match.
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on Ste. Their performance is listed in Tables 2, 3. For the three
classifiers selected by accuracy, the optimum classifiers with RF or
SVM yielded the accuracies of 0.536 and 0.537 (Table 2),
respectively, which were slightly lower than those on Str. The
accuracy of the efficient classifier with RF produced the accuracy
of 0.530 (Table 2), same as that on Str. These results indicated that
the generalization of these classifiers was quite good. As for the
three classifiers selected by exact match, they provided exact
match values of 0.171, 0.157 and 0.159 (Table 3), respectively.
They were lower than those on Str. However, the decrease was in
an acceptable range. Thus, the generalization of these classifiers
was also satisfied.

3.5 Comparison With Other Classifiers
In this study, we adopted a novel set of features to represent each
mouse protein and constructed some multi-label classifiers to
predict their functions. This section adopted some classic features
to construct the classifiers and make some comparisons.

Two types of embedding features were used in this study. They
were derived from the protein functional domain and PPI
network. For the protein functional domain, the classic usage
of encoding proteins was the one-hot scheme. In detail, a protein

was encoded into a binary vector under such scheme. Each
domain was used as a dimension, and the component was set
to one if the protein had the corresponding domain annotation;
otherwise, the component was set to zero. Here, 16797 domains
were involved, inducing a 16797-D binary vector for each mouse
protein. For an easy description, these features were called as
domain features in this study. As for the PPI network, such
information can be directly used by selecting all linkages between
a protein and all proteins in the network and collecting them in a
vector to encode the protein. Accordingly, each mouse protein
was represented by a 20684-D vector, as 20684 proteins were
found in the PPI network. These features were called as linkage
features. Each mouse protein was represented by domain features
or linkage features or both of them, inducing three
representations of proteins. We investigated the performance
of classifiers on each protein representation.

As previously mentioned, proteins were represented by lots of
features in each representation. A feature selection procedure was
necessary. However, given the large number of features, we first
adopted Bortua (Kursa and Rudnicki, 2010; Zhang et al., 2021) to
exclude irrelevant features. 37 and 243 features were selected by
Bortua for domain and linkage feature representations,

FIGURE 5 | IFS curves on domain features using different classification methods. (A) Accuracy is set to the Y-axis. (B) Exact match is set to the Y-axis. RAKEL_RF/
RAKEL_SVM indicates that RAKEL with RF/SVM as the base classifier is used to construct the multi-label classifiers.

FIGURE 6 | IFS curves on linkage features using different classification methods. (A) Accuracy is set to the Y-axis (B) Exact match is set to the Y-axis. RAKEL_RF/
RAKEL_SVM indicates that RAKEL with RF/SVM as the base classifier is used to construct the multi-label classifiers.
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respectively. When domain and linkage features were combined
together to encode mouse proteins, 236 features were kept by
Bortua. Then, these remaining features were evaluated by the
mRMR method, resulting in an mRMR feature list for each
representation. IFS was used to construct optimum multi-label
classifiers for accuracy and exact match. We still used RAKEL to
construct the classifiers, and SVM or RF was selected as the
base classifier. The IFS results are provided in Supplementary
Tables S3-S5. Likewise, some IFS curves are plotted in
Figures 5–7.

The best accuracies for different base classifiers on Str are
listed in Table 2, in which those obtained by embedding
features are also provided. When the base classifier was RF,
the accuracies obtained by domain features, linkage features
and both of them were all lower than 0.5, which were much
lower than those of the classifiers on embedding features.
Furthermore, the base classifier (SVM) yielded similar results
(see Table 2). As for the exact match, the best values for
different base classifiers are listed in Table 3, in which those
obtained by embedding features are also listed. Evidently, the
exact match obtained by embedding features was also higher
than that obtained by domain features or linkage features or
both of them regardless of the base classifier used (RF or
SVM). The improvement was at least 3%. Furthermore, from
Tables 2, 3, the classifiers with embedding features also
yielded better performance on test dataset Ste than those
with domain features or linkage features or both of them.
All above results indicated that the novel features used in this
study were more efficient than the features produced by
traditional methods in predicting protein functions. In
addition, it can be observed from Tables 2, 3 that when
domain and linkage features were combined to represent
proteins, the classifiers were always better than those only
using domain features or linkage features. This fact indicated
that combination of the domain and network information of
proteins can improve the performance of classifiers. These
two types of information can complement each other in
predicting functions of proteins.

4 CONCLUSION

In this paper, we proposed some multi-label classifiers to predict
the functions of mouse proteins. These classifiers adopted novel
features, which were derived from protein functional domains
and the PPI network via word embedding and network
embedding, respectively. The performance of the classifiers
was better than those using features extracted by traditional
methods, thereby indicating that the novel features have
stronger discriminative power. Therefore, the newly proposed
classifiers can be used to predict protein functions, and such
novel features can be used to tackle other protein-related
problems.
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