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Editorial on the Research Topic

Editorial: Network resilience and robustness: Theory and applications

Network science opens up a new perspective for studying complex networks in social,

technological, biological, climate systems, and so on [1]. The structural robustness and

dynamic resilience of systems play a key role in risk reduction and damage mitigation [2,

3]. The dynamic resilience of a system is characterized by its ability to adjust its activities

to maintain its essential functions in the face of internal disturbances or changes in the

external environment. Network robustness refers to the ability of a network to maintain a

certain level of structural integrity and original functionality after an attack, and it is the

key to whether a compromised network can continue to function properly [4]. In real-

world scenarios, networks do not exist in isolation but are coupled together in different

ways, including dependent, multi-support, and inter-connected patterns. And, when a

coupled network suffers from structural instability or dynamic perturbations, the system

with different coupling patterns shows rich phase transition behaviors [5]. The dynamic

resilience of a system is characterized by its ability to adjust its activities to maintain its

essential functions in the face of internal disturbances or changes in the external

environment.

The main areas covered in the collection are the analysis of structural robustness,

dynamic elasticity and stability. In particular, the subject focuses on critical phenomena,

phase transitions, network dynamics, percolation behavior in network systems, and

network applications [6]. This Research Topic also investigates network-specific

percolation models, applications of network structure analysis, and applications of

network dynamics [7]. The twenty papers it contains do indeed do that. Hopefully,

the research papers among them spawn new work and the reviews are useful for those that

considers entering this field.

We describe the papers in the order in which they have been published.

The first paper (Guo et al.) according to percolation approach to network reliability is

applied to brain networks to study the resistance of the network to interference and
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associated failure modes. Different forms of interference are

applied to the brain network depending on the metrics

characterizing the network structure for percolation. The

results show that brain networks are mostly reliable to

random or k-core-based percolation, but become vulnerable to

degree-based percolation.

The second paper (Lin et al.) is based on the fact that alarm

management is essential for high-quality performance of

telecommunication systems. Building functional networks by

observing pairwise similarities between time series is an

effective way to filter and reduce alarm messages.

Paper three (Dongli et al.) reveals the functional

importance and resilience patterns of nematode neurons,

where the regulatory relationships between neurons and

their topology are effectively coupled. By using theoretical

approaches such as high-dimensional differential equations

and mean fields, they can be used to reveal the influence of

biological connectome.

Paper four (Fu et al.) compares four types of synthetic

networks by Element Elimination Method (EEM), Resource

Allocation method (RAM) and Structural Perturbation

Method (SPM). The results show that EEM has higher

reconstruction accuracy metrics on the four types of synthetic

networks compared to RA and SPM.

Paper five (Huang et al.) studies the resilience enhancement

of power systems with a high penetration of renewable energy

sources in emergencies. An optimal decision-making approach is

proposed to maximize the supply to critical loads and minimize

the risk of instability due to the stochastic nature of renewable

energy output power.

Paper six (Wu et al.) discusses the effect of intra-layer angular

correlation on robustness in terms of embedding interdependent

directed networks into hyperbolic spaces. They find that under

targeted attacks, robustness decreases with increasing intra-layer

angle correlation. Interdependent directed networks without

intra-layer angular correlation are always more robust than

networks with intra-layer angular correlation.

Paper seven (Du et al.) constructs an inter-provincial virtual

water delivery network by combining a multi-regional input-

output model and complex network theory, analyzes the overall

structural characteristics of the network model, and identifies the

structural role of each province. The results show that the

“external degree” and “external strength” of the capacity of

direct virtual water output have a significant positive impact

on water consumption.

Paper eight (Zou et al.) proposes a grid division method

considering generator nodes and network weights based on the

cluster discovery method in complex network theory. The

cascading failure survival capability of different types of

networks under different strategies is simulated and analyzed.

It is found that the proposed two attack strategies based on

subnet division are better than two traditional intentional attack

strategies.

Paper nine (Cai et al.) defines two robustness evaluation

indicators based on maximum network traffic: traffic capacity

robustness to evaluate the network’s ability to withstand an

attack, and traffic recovery robustness to evaluate the

network’s ability to rebuild the network after an attack and

simulates four networks to analyze their robustness.

Paper ten (Dong et al.) presents coupled network models

with different coupling modes developed from real scenarios in

recent years to study the robustness of the system. For coupled

networks with different coupling modes, the effect of coupling

modes on network robustness is described based on network

percolation theory.

Paper eleven (Wang et al.) emphasizes that financial crises

are rooted in the lack of system resilience and robustness, which

can cause severe economic and social losses. The different shapes

of the network reveal higher-order correlation patterns in the

financial system The proposed approach provides a new

perspective for detecting key signals and can be extended to

predict other crisis events in natural and social systems.

Paper twelve (Wang et al.) shows that most critical

infrastructure networks are frequently subject to vicious

attacks, which can lead to network failures. Game theory-

based defense strategies are developed to enhance the

robustness of networks. In the study, the purpose of

protecting infrastructure networks is achieved by allocating

limited resources to the targets for monitoring.

Paper thirteen (Song et al.) presents a new network

robustness metric for epidemics that combines three

characteristics: transmission speed, epidemic threshold, and

steady-state infection density. In both homogeneous and

heterogeneous networks, the network becomes more robust as

the average degree grows.

Paper fourteen (Song et al.) demonstrates that homogeneous

networks are more robust than heterogeneous networks at the

beginning of the epidemic, while heterogeneous networks

become more robust than homogeneous networks as the

epidemic progresses. In addition, the irregularity of degree

distribution reduces the network robustness of homogeneous

networks. In both homogeneous and heterogeneous networks,

the network becomes more robust as the average degree grows.

Paper fifteen (Zhan et al.) presents a framework for

evaluating the resilience of UAV swarms, which takes into

account the load balancing of UAV swarms subjected to

disturbances, and demonstrates that topology also has a very

important impact on the resilience of UAV swarms.

Paper sixteen (Cui et al.) discovers a framework for

classifying normal and abnormal brain activity through a

method for constructing multilayer aggregated functional

networks, and also provides a general method for constructing

more informative functional networks from multiple time

series data.

Paper seventeen (Gross and Barth) notes some commonly

overlooked complications in computing the size of giant
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components. Derive simple formulas to capture the impact of

common attack scenarios on arbitrary (configuration model)

networks.

Paper eighteen (Li et al.) presents an improved reputation

evaluation method by combining the structure of a two-sided

rater-subject network with rating information and introducing

penalty and reward factors. The results show that the method has

better performance than the original correlation-based approach

in the presence of spam attacks.

Paper nineteen (Liu and Li) derives closed-form form

formulas for the resistance distance and Kirchhoff exponent

in terms of the resistance distance and Kirchhoff exponent,

respectively, using simple connection diagrams and Laplacian

spectra in the general case.

Paper twenty (Sun and Yang) creates a connected graph G

with vertex set V(G) and finds that the resistance distance

between vertices in S (S⊂V(G)) can be given by the elements

in the inverse matrix of the auxiliary matrix of the Laplace matrix

of G [S] and deduces the reduction principle obtained in by

algebraic methods.
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The brain network is one specific type of critical infrastructure networks, which supports
the cognitive function of biological systems. With the importance of network reliability in
system design, evaluation, operation, and maintenance, we use the percolation methods
of network reliability on brain networks and study the network resistance to disturbances
and relevant failure modes. In this paper, we compare the brain networks of different
species, including cat, fly, human, mouse, and macaque. The differences in structural
features reflect the requirements for varying levels of functional specialization and
integration, which determine the reliability of brain networks. In the percolation
process, we apply different forms of disturbances to the brain networks based on
metrics that characterize the network structure. Our findings suggest that the brain
networks are mostly reliable against random or k-core-based percolation with their
structure design, yet becomes vulnerable under betweenness or degree-based
percolation. Our results might be useful to identify and distinguish brain connectivity
failures that have been shown to be related to brain disorders, as well as the reliability
design of other technological networks.

Keywords: Brain structural network, percolation, reliability, rich club, animal species

INTRODUCTION

Network reliability measures the ability of a network to perform prescribed functions against disturbance.
Whether it is a power grid, a transportation network, a brain network, or other functional networks, the
losses caused by network failures are huge. The northeast blackout of 2003 in North America, with an
estimated 50million people affected [1], was a large-scale power grid paralysis due to a line trip. And traffic
congestions due to network failure usually generate substantial costs every year, together with traffic
accidents and disasters [2]. Recent studies have demonstrated that the structural properties of the network
largely determine system reliability and resilience under various damage [3–5]. This is also true for brain
networks, which are the critical infrastructure for complex biological systems. Many brain disorders, such
as Alzheimer disease (AD), amyotrophic lateral sclerosis (ALS), and schizophrenia, etc., have been found
related to network connectivity alterations [6], causing physical or psychological pain to patients and their
families. Network reliability is of great significance to understand the design principle and failure
mechanism of these complex systems.

Accordingly, the network reliability of technological networks is mainly focused on, such as
transportation networks, communication networks, and power grids [7]. The study of network
reliability involves two-terminal [8], k-terminal [9, 10], and all-terminal [11, 12] network connectivity,
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which are defined as the probability that a subset of nodes are able to
communicate with each other, and measured as integrity for many
networks without distinguishing specific function. In addition,
dedicated evaluation methods of reliability are proposed to
address specific characteristics of the network. In the
transportation network, network reliability mainly considers road
destination reachability and commuter travel time. For example,
connectivity reliability (CR) refers to the probability of network nodes
staying connected, which is a static evaluation of the road network
structure [13]. Travel time reliability (TTR), or congestion delay index
(CDI), considers the probability of travel time from origin to a
destination within a specified interval. And capacity related reliability
(CRR)measures the probability that the traffic capacity can support a
certain level of traffic demand [14]. In communication networks, note
that CRR is also used in evaluating network reliability, with
heterogeneous link capacities [15], to sustain the transmission
requirements. Diameter-constrained reliability (DCR) is another
probability metric about the maximum delay requirements after
random failures, which limits the terminal set and path length
[16]. In power grids, indicators for measuring network reliability
proposed by the European Network of Transmission System
Operators for Electricity (ENTSOE) [3] include energy not
supplied (ENS), which is an estimation of the supply of energy
that final consumers cannot obtain due to incidents. Total loss of
power (TLP) is a measure of generation shortfall. And restoration
time (RT) refers to the time it takes for the system to recover from the
disturbance. The aforementioned research methods of network
reliability have similarity to some extent: based on probability
tools, they concern the state or efficiency of operative path
“connectivity.”

In this paper, we focus on the reliability of the brain network.
The anatomic connections between the cerebral cortex regions
form the structural network on which the neural activities unfold.
Functional networks are formed by the dynamical interaction of
neural activities among cortical areas [17]. At present, many
studies aim at the structural and functional characteristics of
brain networks [18], which establish anatomical or functional
correlations, calculate features with neurological significance, and
reveal the organization principles or operating rules of the brain
from the unique perspective of complex networks. The
organization of a structure and function network is
interdependent. The topology, synchronization, and other
dynamic properties of functional networks are strongly
influenced by small world and other structural connectivity
indicators. On the contrary, the dynamics can adjust the
structure network topology in a slower timescale [19]. The
coupling of the brain structure and functional network may
lead to cascading failure between the two networks, which can
be summarized by a universal model [20]. For example, in human
brain networks [6], densely connected modules are formed by
geometrically close neural elements, promoting the specific
function of the local area. And the formation of long-range
connections between these modules promotes the scheduling
and integration of global function. It is suggested that this
“modularity” or “integration” nature changes in the brain
connectome with neuropsychiatric disorder. Functional
separation refers to the processing of neurons between

functional related areas in a community. There are two kinds
of integration processes in the network, one is based on the
efficiency of global communication, the other is based on the
ability of network integration of distributed information [21]. For
example, AD patients appear to have modular reorganization in
the resting state networks [22], and patients with schizophrenia
appear to have reduced density of rich club connections [23],
which play a significant role in brain integrative processes, etc.
These studies reflect that fact that brain disorders are also strongly
related to network structural reliability.

Here, we introduce themethods of engineering network reliability
into brain network analysis and provide information on how the
structural features affect the reliability, aiming at the failure mode of
the brain network through the percolation method [24]. The
percolation theory [25, 26] is originally used for the diffusion of
forest fires or the distribution of oil and gas in porous stones. It has
successfully been applied to describe a large variety of natural systems,
such as the complex Earth system [27]. It is generalized for the shift of
the network state between connected and disconnected at a critical
point. We suppose that the critical state represents some inherent
properties of the brain network, including the vulnerability of the
brain network to varying degrees of external damage. Our study of
the percolation process guides us to locate the vulnerable point that
causes brain disorder, determine the stage of brain disease, and
identify possible common characteristics of different brain disease
manifestations.

STRUCTURE OF THE BRAIN NETWORK

To decompose the structure of the network intuitively, we show
community topology of structural brain networks of different
species in Figure 1, including fly, cat, mouse, macaque, and
human. This community structural feature is shared by all of
these brain networks. Comparatively, the cat and macaque
networks belong to small-scale networks (dozens of nodes,

FIGURE 1 | Community topology of brain structural networks for
different species, including cat, fly, human, mouse, and macaque. Among
them, the networks of cat, fly, mouse, and macaque are from the Network
Repository [28] http://networkrepository.com.
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hundreds of edges), the human network belongs to medium-scale
networks (hundreds of nodes, thousands of edges), and the fly
and mouse networks belong to large networks (∼tens of
thousands of edges). The number of network nodes and edges
is shown in Table 1. This may be due to the different anatomical
resolution of different species. Note that the mouse network is
densely connected, while the human network shows a clearer
modular pattern with a few connections between different
communities. These structural properties can determine the
reliability and failure mode of the brain network to some extent.

Next, we calculate the distributions of topological features to
compare different species networks, from micro and macro
perspectives (shown in Figure 2), as well as the meso

perspective (shown in Figure 3). Degree defines the number
of adjacent edges belonging to a given node from a micro
perspective. The degree ki of node i can be calculated
according to the adjacency matrix of the network (see Eq. 1).

ki � ∑
n

j�1
Aij (1)

As shown in Figure 2A, degree is normalized by N − 1 to
facilitate comparisons between species brain networks of different
scales, whereN is the number of nodes in the network. For degree
distribution, most nodes in fly, human, and macaque networks
have a low degree. For mouse and cat networks, degrees in the
mouse network are generally high. Betweenness centrality cB
measures the extent to which all-pairs shortest paths pass
through a given node i (see Eq. 2) from a macro perspective.

cB(i) � ∑
st

gst(i)
gst

(2)

where gst is the number of shortest paths between s, t and gst(i) is
the number of those path passing through node i. The
betweenness is normalized by N p (N − 1)/2, as shown in

FIGURE 2 | Distributions of topological features in different species brain networks. (A) Degree distribution normalized by N − 1. (B) Betweenness distribution
normalized by N p (N − 1)/2. (C) Closeness distribution normalized by 1/(N − 1). (D) Clustering coefficient distribution.

TABLE 1 | Overview of brain structure networks in different species.

Species Number of nodes Number of links

Cat 65 730
Fly 1781 9,016
Human 360 6,462
Mouse 91 582
Macaque 213 16,242

Frontiers in Physics | www.frontiersin.org July 2021 | Volume 9 | Article 6980773

Guo et al. Percolation Analysis of Brain Structural Network

10

https://www.frontiersin.org/journals/physics
www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


Figure 2B. It is suggested that the distributions of different
species networks seem to follow a scale free distribution, with
the mouse network showing certain deviation. The macaque
network has the largest betweenness due to its heterogeneous
structure, given its relatively small degree and a few large degree
nodes. And the betweenness of the mouse network is the smallest,
due to its dense connections. Closeness centrality is another
important topological metric from a macro perspective, which
is defined as the inverse of the average distance from a given node
to others (see Eq. 3).

ci � n − 1

∑n−1
j�1 dij

(3)

where dij is the shortest path length between i and j. The closeness
distributions of all species networks, normalized by 1/(N − 1), are
shown in Figure 2C. It is shown that the nodes in themouse network
have the highest closeness, and the lowest closeness is in the fly
network. The clustering coefficient measures the fraction of two
neighbors of a given node that are also connected (see Eq. 4).

Ci � 2Ei

ki(ki − 1) (4)

where node i has degree ki, and Ei are edges that actually exist
between those ki neighboring nodes. As shown in Figure 2D,
the distribution of the human network is symmetrical with
a characteristic value around 0.6. The macaque network has
the largest mean value compared with other distributions,
showing strong local connections. Therefore, the structural
properties of the network are not completely measured by a
single metric, and need comprehensive consideration from
different angles.

In the case of the meso perspective, we calculate the rich club
coefficient of these species networks with normalization to the
null model [29]. The rich club phenomenon, existing in scientific
collaboration networks and air transportation networks, is also
studied to understand global efficiency in both unweighted and
weighted structural brain networks of the human connectome
[30], while brain network comparison with other species are
rarely involved. Rich club coefficient Φ(k) (see Eq. 5), which
quantifies the proximity between nodes with high degrees, is
defined as the ratio of the actual number of edges between nodes
with degree > k to the total edges.

Φ(k) � 2E> k

N> k(N> k − 1) (5)

FIGURE 3 | Rich club coefficient, normalized by the null model. (A)Cat brain network. (B) Fly brain network. (C)Human brain network. (D)Macaque brain network.
(E) Mouse brain network.
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Considering that nodes with high degrees have higher
probability of interconnection with each other by definition,
we usually need a null model to obtain normalized rich club
coefficient ρran(k) (see Eq. 6) by comparing original rich club
coefficient Φ(k) with rich club coefficient Φran(k) of the random
network (null model) [23, 31].

ρran(k) �
Φ(k)
Φran(k) (6)

The null model is created by performing a link shuffle to
randomize the original network, keeping the same degree
distribution. ρran(k) greater than 1 reflects the rich club
phenomenon of a network. As shown in Figure 3, the rich club
phenomenon is significant in the human network (Figure 3C),
indicating that nodes with high degrees tend to connect with each
other, which may enable global functional communication and
integration of distributed brain regions. Our results suggest also
that brain networks of other species do not show significantly
similar routing principles of integration. It is found that cat and
fly networks display a very weak rich club effect (Figures 3A,B), and
rich club coefficients in macaque and mouse networks are almost
close to 1 (Figures 3D,E).We suppose that the human brain network,
compared to other species, has more complicated and diverse
functions with higher integration requirements, leading to a much
higher rich club coefficient. Meanwhile, the structural properties may

affect the reliability of the brain network, which will be discussed in
the next section. Actually, networks with rich clubs are usually more
vulnerable [32], because the removal of a few rich club members can
destroy the overall global connectivity. Here we focus on the
connectivity performance of the brain network under different
disturbances, through percolation analysis.

PERCOLATION ON THE BRAIN NETWORK

In this section, we perform different types of percolation analysis,
including degree-based percolation, betweenness-based
percolation, k-core-based percolation, and random percolation.
Percolation of different types may represent different external
disturbances [33]. We remove nodes from the network with a
fraction q according to the network structural features concerning
degree, betweenness, and k-core. When the removal fraction is
tuned increasingly from zero to unit, at a certain critical
probability qc, the state of the network shifts from connected
to disconnected, and this critical phenomenon is called
percolation. In the percolation case, we have no giant cluster
for q> qc and one giant cluster at least for q< qc. The critical
probability qc for networks with different topological properties
may be different, determined by the structure of the network. We
analyze the performance of networks during the percolation
process, to reveal how the brain networks of different species

FIGURE 4 | Percolation on species brain networks under four forms of disturbances. (A) Percolation based on betweenness. (B) Percolation based on degree. (C)
Percolation based on k-core. (D) Random percolation.
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respond to disturbance. When different external types of
disturbances are applied to the network, the reliability and
failure modes of the network could be uncovered.

The giant component G (size of the largest connected
component) of the network decreases with the removal
fraction in Figure 4. As the nodes are removed gradually with
a certain order, it will generate various damages to the original
network. Figure 4A is the betweenness-based percolation, we
remove nodes in descending order of betweenness. It is notable
that G, for the macaque brain network, drops comparatively fast
with a certain critical removed fraction around 0.1, which is
because the macaque network has the largest betweenness. When
approaching the critical point, we can observe a sharp decline in
the giant component, whichmay be accompanied by a substantial
or complete loss of network function. Other brain networks also
decrease quickly at their critical point, except for the mouse brain
network. For the strong robustness of the mouse network against
disturbances, where the giant component is decreasing almost
linearly, we can see from Figure 2A that the connections in the
mouse network are particular dense, meaning that the network is
highly connected globally. When one of the nodes is removed,
other nodes can still maintain connections, which constitutes the
high reliability of the mouse brain network. Figure 4B is the
degree-based percolation, we remove nodes in descending order
of degree. As the betweenness-based percolation, we can observe a
similar trend for different species. The cat brain network decreases
faster than the human brain network for degree-based percolation.

Next, we perform k-core-based percolation in Figure 4C.
k-core decomposition is a method to decompose and analyze
the hierarchy structure of the network [34]. When we remove
nodes with a degree less or equal to (k − 1) from the network, all
the remaining nodes with an updated degree larger or equal to k
in the remaining graph are called k-core. Nodes belonging to
k-core, yet not belonging to (k + 1)-core, are defined as k-shell. In
k-core-based percolation, we start with the smallest k-shell and
remove the nodes from the network at each step. Differing from
the above two percolation modes, the percolation based on k-core
shows a distinct failure mode. All species brain networks follow a
linear decrease pattern. This is due to the fact that a higher k-shell
of networks will not become disconnected when small layers are
removed.

In contrast to the above three percolation methods based on
the network structural features, we also perform random
percolation (Figure 4D). Without considering network
topology, we randomly remove a fraction of nodes from the
network at each step. Surprisingly, the change ofG in the network
during the random percolation process is almost uniform
throughout, where every decrement is similar for each removal
fraction. This is possibly because a few highly connected nodes in
each network behave like a backbone and maintain the whole
network.

CONCLUSION

We perform network reliability analysis on a brain network,
which is the critical infrastructure for biological intelligence.

Network reliability pursues the ability to meet the functional
requirements in a specific operating environment. Therefore, the
fragility of the network under disturbance is particularly
important, that a network with high-reliability has the ability
to offset the impact of disturbances and strives to maintain
connectivity. Here, we pay attention to the global and local
connectivity of the brain network, whose loss may cause
biological dysfunction as brain disorders. We analyze the brain
networks of different species, including cat, fly, human, mouse,
and macaque, and explore similarities and differences in
structural features and percolation patterns, which may reflect
the causality from varying levels of functional specialization and
integration.

While the properties of species brain networks are formed
during evolution, one of the core tasks is to ensure high reliability,
against various disturbances. High reliability of the network
suggests balance between global connectivity and local
connectivity. We find that brain networks are mostly reliable
against random or k-core-based percolation with their
structure design, yet they become vulnerable under
betweenness or degree-based percolation. Furthermore, our
study may be useful for building models for the inherent
reliability of the brain network, and help to discover the
operating rules and disease mechanisms that may exist during
the process of operation. Although for the brain or other
biological networks, it may be difficult to artificially revise the
wiring rules of the network, we hope that an identified relation
between the brain organization principles and external
disturbances can help guide the avoidance of brain disorders,
as reference for other technological networks.
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In this paper, we investigate the reconstruction of networks based on priori structure
information by the Element Elimination Method (EEM). We firstly generate four types of
synthetic networks as small-world networks, random networks, regular networks and
Apollonian networks. Then, we randomly delete a fraction of links in the original networks.
Finally, we employ EEM, the resource allocation (RA) and the structural perturbation
method (SPM) to reconstruct four types of synthetic networks with 90% priori structure
information. The experimental results show that, comparing with RA and SPM, EEM has
higher indices of reconstruction accuracy on four types of synthetic networks. We also
compare the reconstruction performance of EEM with RA and SPM on four empirical
networks. Higher reconstruction accuracy, measured by local indices of success rates,
could be achieved by EEM, which are improved by 64.11 and 47.81%, respectively.

Keywords: network reconstruction, element elimination method, priori structure information, time-series
information, evolutionary game

1 INTRODUCTION

Reconstructing a network based on priori structure information has attracted lots of attention for the
network science [1]. Prior information about the connectivity patterns or potential interactions of the
networks are accessible via public database [2, 3], high-throughput experiments [4], or data mining
of interaction knowledge [5–7]. A wide diversity of methods based on priori structure information
have been developed for the problem of network reconstruction [1, 8, 9]. Among various models, a
few reconstruction models would provide a reliable estimate of a network’s structure with priori
structure information. Link prediction is a typical method which uses accessible structure to estimate
the likelihood of existence of unobserved links or identifies spurious links in a network [10, 11]. The
unknown structure of a network is then reconstructed by link prediction. A few link prediction
models are validated in both synthetic networks and empirical networks, which are local similarity
indices [12–14], maximum likelihoodmethods [11, 15] andmethods based on predictability [16, 17].

The other method uses accessible structure information to reconstruct a class of networks with
evolutionary games [18, 19]. Such model, known as compressive sensing reconstruction model
(CSR), is initially proposed to solve the problems of global network reconstruction [20–22]. The CSR
method provides theoretical framework to dealing with networks purely from measured time-series
information. To reconstruct a network with N nodes, the CSR method reconstructs the adjacent
matrix column by column and each column is a vector withN elements [23, 24]. Contrary to the CSR
method, the adjacent matrix is reconstructed by the Element Elimination Method (EEM) in a similar
fashion, but the number of elements in different column might be Ni(Ni ≤ N, i � 1, 2, . . . , N) because
EEM initially eliminates coupling nodes based on priori structure information. Exploiting the natural
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sparsity of the vectors, the pioneering work has applied EEM to
achieve a successful reconstruction in scale-free networks with a
small fraction of hubs [25]. However, in many cases, examples of
real-world networks are not characterized by scale-free [26],
i.e., the collaboration network of film actors [27, 28], the
neural network of the worm Caenorhabditis elegans [26], the
power grid of the western United States [29, 30], and drug
trafficking network [31], et al. In addition, unique structure
could be observed in world airline networks [32, 33] and
Apollonian networks [34–36], which are characterized by
scale-free and also satisfies basic features of small-world. EEM
for reconstructing networks characterized by other features has
not been fully explored. We are interested in, to achieve a
successful reconstruction, the detailed amount of time-series
information required for EEM in spite of the priori structure
information. This motivates us to investigate the application of
EEM to other networks characterized by different features.

In this paper, we investigate the reconstruction of general
networks, which are characterized by four types of synthetic
networks as small-world networks, random networks, regular
networks and Apollonian networks. Typically, the reconstruction
accuracy of EEM is evaluated on four types of networks. We will
show the performance of EEM, characterized by low information
requirements and high reconstruction accuracy. Experiments on
four synthetic networks demonstrate that comparing with the
resource allocation (RA) [12] and the structural perturbation
method (SPM) [16], EEM can effectively enhance the
reconstruction accuracy. Further, three local indices of success
rates demonstrate that the reconstruction accuracy obtained by
EEM when reconstructing three separately local structure in a
network is close. In addition, experiments on four empirical
networks demonstrate that EEM outperforms RA and SPM.
Compared with RA and SPM, EEM has higher reconstruction
accuracy, measured by local indices of success rates, which are
improved by 64.11 and 47.81%, respectively.

2 METHODS AND MODELS

2.1 The Procedure of the Network
Reconstruction
Uncovering a network’s structure has many potential applications
so that we can assess the system’s resilience [37–39], understand
the dynamical mechanisms [40], identify significant nodes in a
network [41, 42], detect community structure [43], locate diffusion
sources Hu et al. [44, 45], and analyze the networks’ properties
[46–48]. In this paper, an Element EliminationMethod (EEM) [25]
is employed to reconstruct the structure of networks. We then give
the illustration of the procedures of employing EEM to reconstruct
synthetic networks: 1) Generate synthetic networks. 2) Extract
time-series information from observed data. 3) Reconstruct the
networks with EEM. Noting that the adjacent relationships
between nodes in the network are sparse and would not change
over time, we could explore the casual relationships between nodes’
time-series information. Consequently, we could uncover the
unknown link set EP of the networks by EEM based on priori
link set ET.

As illustrated in Figure 1, a procedure of network
reconstruction is presented. Supposing the relationships
between node 2 and other 5 nodes should be reconstructed,
and only one adjacent relationship (a blue line in Figure 1A) is
known. However, we are confused about which one is the original
network from vastly different networks with possible connective
relationships. Simultaneously, the network is evolving over the
time, and a few time-series information of nodes’ strategies and
payoffs could be obtained. We then build a model to bridge node
2’s strategies and its payoffs, as Figure 1B illustrated.
Consequently, we can use EEM to reconstruct the network’s
structure and obtain the adjacent relationships as shown in
Figure 1C.

2.2 Generation of Synthetic Network
In order to evaluate the reconstruction performance of EEM in
small-world networks and networks characterized by other
features, we generate four types of synthetic networks. Noting
that small-world network is a model of network that can be tuned
between random network and regular network [26], we also
consider the networks when their connection topology is
assumed to be completely regular or completely random.
Besides, the performance on the Apollonian networks by EEM
has seldom been evaluated. Then, we generate four types of
synthetic networks which are small-world networks, random
networks, regular networks and Apollonian networks. The
precedent findings indicate that the assortative coefficient has
a direct influence on the accuracy of network reconstruction [49].
Therefore, some statistical properties have to be tuned when the
networks are generated.

Supposing a network is composed ofN nodes and |E| links. To
minimize the influence from different network structure, we fix a
default mean assortative coefficient 〈r〉 for three types of
synthetic networks, excluding Apollonian networks. Given
wiring rules between nodes, we could generate vastly different
networks with the given number of nodes N. Initially, the
generated synthetic networks should have sufficient links that
the total number of links of the network should exceed the
number of links |E|. Then we randomly delete some of the
links so that the number of the residual links is equal to |E|.
In this way, the generated synthetic networks would haveN nodes
and |E| links. We select one network from the synthetic network
set whose mean assortative coefficient is close to the value of
default 〈r〉 (the absolute error is less than 10–3). The other types
of synthetic networks are generated by another wiring rules in a
similar way. Actually, synthetic networks generated whose
statistical properties are close to default value are limited. On
the other hand, the generation procedure of the regular network
and the Apollonian network results in merely one realization of
the synthetic networks. In this paper, each synthetic network has
performed only one realization for the experiments.

Due to privacy or confidentiality issues, the complete structure
of a network is not accessible. In addition, it is an impossible
mission for us to record nodes’ complete time-series information.
In spite of the difficulties, some priori information about the
adjacent relationships between a few nodes, and discrete records
of nodes’ time-series information might be available. Despite the
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limited information, the connective relationships between nodes
has a direct effect on the individual node, which contributes to
node’s attitude or selection in the next time. The dependence
from the network’s structure on nodes’ interactions provide
information for us to utilize the time-series information of
nodes to describe the adjacent relationships behind them [24, 50].

2.3 The Model of the Evolutionary Game
The main challenge lies in that the structure of the network is
inaccessible, also in that merely limited nodes’ time-series
information is available. Since the time-series information is
closely related to the connective relationships between nodes,
we can reconstruct the unknown structure from the limited time-
series information.

We use an evolutionary game model, the Prisoner Dilemma
Game (PDG) model, to describe the nodes’ dynamics [51–53]. In
each round of the game, the nodes usually weigh the benefits
against the risks and selects a strategy. Here, we use SYi(t) to
define the strategy of node i. We denote vector SYi(t) � (1,0)T to
represent a cooperation strategy, while we denote SYi(t) � (0,1)T

to represent a defection strategy. Here, T stands for ‘transpose’.
When node i and node j trigger a game, the payoff of node i is

dependent on both two nodes’ strategies and a uniform payoff
matrix P, which is defined as:

P � 1 0
b 0

( ) (1)

where b (1 < b < 2) is a parameter characterizing the volume of
payoff when node i select a defection strategy. In the t round,
node i would play with all its different neighbors with the same
strategy. When node i encounters a neighbor j, node i would gain
payoff from node j as:

Fij(t) � SYT
i (t) · P · SYj(t). (2)

In the same round, node i’s total payoffs Gi would be
calculated, and it is the sum of the payoffs from all node i’s
neighbors.

In a new round, node i would attempt to maximize its payoffs
by updating its strategy. According to Fermi rule [54], node i
randomly select a node j from its neighbors after t round. In t + 1
round, node i would then adopt node j’s strategy with the
probability

W(SYi(t + 1)←SYj(t)) � 1
1 + exp[(TGi(t) − TGj(t))/κ], (3)

where TGi(t) is node i’s cumulative payoffs from 1 to t round.
TGj(t) is similarly defined. Parameter κ characterizes node’s
rationality when it update strategies. Parameter κ � 0
corresponds to rational selection behavior of nodes.

Since game occurs among connected nodes, the information of
the adjacent relationships between nodes are hidden in their
dynamical records of strategies or payoffs in the game. Then we
can utilize the information to uncover a networks’ structure when
we collect the time-series information about the strategies and
payoffs of nodes. When we reconstruct a certain network, the
limited time-series information is usually presented in a random
sample of sufficient time-series information.

2.4 Element Elimination Method
Given limited time-series information of nodes, an EEM could be
applied to reconstruct a network based on priori structure
information. EEM is a variant of the CSR method, which utilizes
priori structure information to exclude the priori connective
relationships before reconstruction. Suppose that the relationships
between nodes in a certain network can be represented by an
adjacency matrix A with dimensions N × N, where N is the
number of nodes in the network. EEM decomposes the process of
reconstructing the entire network into many subnetwork recovery

FIGURE 1 | (Color Online) An illustration of reconstructing the hidden structure of a node based on priori structure information. (A)Original adjacent relationships of
a node. For a node 2 in red with two neighbors, node 3 and node 6 in purple, we can observe a priori relationship, represented with a blue line, between node 2 and node
3. (B) EEM. We establish vector G2 and matrix Φ2 in the reconstruction form G2 � Φ2 ·A2 from time-series information, where vector A2 captures the adjacent
relationships between node 2 and the other nodes. After subtracting time-series information determined by node 2 and priori neighbor, node 3, on the both sides of
the equation, the unknown connections of node 2 can be reconstructed by optimizing the solution of the following equationG2′ � Φ2′ · A2′ using EEM. (C) A reconstructed
adjacent matrix. The unknown neighbors of node 2 could be uncovered by EEM. The adjacent matrix is presented, in which golden blocks represent reconstructed link.
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problems, and the network structure, namely, the adjacencymatrixA,
is reconstructed column by column [55,56]. An adjacency vectorAi of
a node is used to describe the adjacent relationships between node i
(i � 1, 2, . . . , N) and the other N − 1 nodes in the network, which
contains no loop. The adjacency vector Ai �
(ai1, ai2, . . . , ai,i−1, ai,i+1, . . . , ai,N)T with element aij � 1 when
node i and node j are connected, and aij � 0 otherwise. Suppose
that Ni (Ni ≤ N − 1) nodes in the adjacency vector Ai have
undetermined relationships with node i. EEM is employed to find
out node i’s (i � 1, 2, . . . ,N) direct neighbors fromNi possible nodes,
namely a shorter adjacency vector Ai � (ai1′ , ai2′ , . . . , ai,Ni

′ )T of node i
(i � 1, 2, . . . , N).

The training set ET sheds light on the priori neighbor set ΓKi of
node i, which contains (N − Ni − 1) nodes. Then we could calculate
the sum of payoffsGΓKi

′ of node i obtained from the priori neighbors in
neighbor set ΓKi according to Eq. 2. Subtracting payoffs GΓKi

′ from Gi,
we obtain payoffs Gi′ of node i. The payoffs Gi′ implies the hidden
adjacent relationships between node i and Ni other nodes because
node i gains payoffs merely from its neighbors.

Most real-world networks are characterized by natural sparsity and
the adjacency vectorAi of node i is sparse, which refers to vectorAi has
only a few nonzero elements (i.e. aij � 1). Noting that the value of each
element in node i’s priori adjacency vector AΓKi

is 1, vector Ai′ would
still be sparse because the number of zero elements has not been
changed but the number of nonzero elements has decreased when we
remove the priori adjacency vectorAΓKi

from vectorAi. The sparsity of
Ai′ makes EEM applicable. Initially, the nodes’ strategies and payoffs
are recorded in discrete round t1, t2, . . . , tM. Since new payoffs are
obtained from the game between node i andNi nodes, we can build a
model as Eq. 4. The sparse vector Ai′ then can be reconstructed by
solving the following convex optimization problem [57, 58]:

min‖Ai′‖1
s. t. Gi′ � Φi′ · Ai′ ,

(4)

where ‖Ai′‖1 � ∑Ni
j�1|aij′ | is the L1 norm of vector Ai′ . The available

dynamical payoffs of node i can be expressed by
Gi′ � (Gi′(t1),Gi′(t2), . . . ,Gi′(tM))T . The payoffs of node i
obtained from the corresponding nodes in limited rounds can
be expressed by an M × Ni sensing matrix Φi′ (M ≪ Ni). In
particular, we write Φi′ �

Fi1(t1) Fi,2(t1) . . . Fi,Ni(t1)
Fi1(t2) Fi,2(t2) . . . Fi,Ni(t2)

« « . . . «
Fi1(tM) Fi,2(tM) . . . Fi,Ni(tM)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠.

The elements in matrix Φi′ could be calculated using the formula
shown in Eq. 2. According to Eq. 4, we could obtain adjacency vector
Ai′ � (ai1′ , ai2′ , . . . , aNi

′ )T by solving the convex optimization problem.
We could obtain the complete adjacency vector Ai �
(ai1, ai2, . . . , aiN )

T by combining the reconstructed vector Ai′ and
the priori neighbor set AΓKi

of node i. In a similar fashion, the
neighbor-connection vectors of all the other nodes can be obtained,
yielding the network’s adjacency matrix A � (A1, A2, . . . , AN).

3 EXPERIMENTAL RESULTS

3.1 Datasets
In order to understanding the performance of EEM in
reconstructing the synthetic networks, the experiments are
conducted in four types of networks. The basic statistical
properties of the synthetic networks are presented in Table 1.
N and |E| are the number of nodes and links. 〈k〉 is the mean
degree, 〈r〉 is the mean assortative coefficient, 〈C〉 is the mean
clustering coefficient, and 〈D〉 is the mean shortest distance.
Here, we use abbreviation WS, RM, RG and AP to represent
small-world networks, random networks, regular networks and
Apollonian networks, respectively.

We assume that the strategies and payoffs of each node in a certain
round t is one piece of time-series information. In the experiments, we
use M pieces of accessible time-series information obtained from
discrete round t1 to round tM to reconstruct different networks. In this
paper, we set N, namely the number of nodes in the network, as the
maximum value of M. Then we use an index of information
sufficiency η(η ≡ M/N) to represent the size of the time-series
information used in the network reconstruction. Intuitively, the
time-series information is sufficient when the pieces of the
accessible time-series information M � N, while the time-series
information is insufficient when 0 < M < N. Correspondingly, the
accessible time-series information is sufficient when the index of
information sufficiency η � 1 and the accessible time-series
information is insufficient when 0 < η < 1. The reconstruction
models are also applied to reconstruct networks with different
priori information of the structure, measured by a probability Ps(0
≤ Ps ≤ 1).

In addition, the performance of EEM is also evaluated in
reconstructing the empirical networks. Table 2 shows the basic
statistical properties of all four networks. These networks are
chosen because they are characterized by large clustering
coefficient and short distance.

3.2 Metrics
To test the EEM’s accuracy, the original existent link set, E, are
randomly divided into two parts: the priori set ET, and the probe

TABLE 1 | The statistical properties of four synthetic networks.

Networks N |E| 〈k〉 〈r〉 〈C〉 〈D〉

WS network 120 480 8 −0.05 0.50 3.38
RM network 120 480 8 −0.05 0.10 2.53
RG network 120 480 8 NAN 0.64 7.94
AP network 124 366 5.90 −0.27 0.81 2.57
WS network 250 1,000 8 −0.05 0.50 4.07
RM network 250 1,000 8 −0.05 0.10 Inf
RG network 250 1,000 8 NAN 0.64 16.06
AP network 367 1,095 5.97 −0.21 0.82 2.96

TABLE 2 | The statistical properties of four empirical networks.

Networks N |E| 〈k〉 〈r〉 〈C〉 〈D〉

FWMW [59] 97 1,446 29.81144 −0.1506 0.4683 1.6929
FWFW [59] 128 2075 32.4219 −0.1117 0.3346 1.7763
Jazz musicians [60] 198 2,742 27.6970 0.0202 0.6175 2.2530
C. elegans [26] 297 2,148 14.4646 −0.1632 0.2924 2.4553
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set EP. Clearly, E � ET ∪ EP and ET ∩ EP � ∅. In this paper, the
priori set always contains Ps of links, and the remaining 1 − Ps of
links constitute the probe set. We apply four standard indices to
quantify the reconstruction accuracy: the success rates of existent
links SR, the success rates of nonexistent links SN [24], precision
PRE [61, 62] and the area under the receiver operating
characteristic curve AUC [63] are applied. In addition, we
apply local indices of success rates in the experiments.

Both the success rates of existent links SR and the success rates
of nonexistent links SN estimate the similarity of the
reconstructed networks and the original networks. The success
rates of existent links SR denotes the ratio of the number of links
reconstructed by the reconstruction models to the number of real
existent links in the network. The success rates of nonexistent
links SN denotes the ratio of the number of nonexistent links
distinguished by the reconstruction models to the number of real
nonexistent links in the network. We obtain

SR � 1
N

∑
N

i�1

|Γio ∩ Γir|
|Γio| (5)

SN � 1
N ∑N

i�1 |�Γio∩ �Γir|
|�Γio| (6)

where Γio and Γir denote real neighbor set of node i and neighbor
set of node i reconstructed by the reconstruction models,
respectively. |·| denotes the number of elements in a set ·. Γio

̄

and Γir
̄

are the supplementary set of set Γio and Γir. Each node in
set Γio

̄
is not adjacent to node i. Correspondingly, each node in

reconstructed set Γir
̄

is not adjacent to node i. A successful
reconstruction is achieved when the success rates of existent links
SR (0 ≤ SR ≤ 1) and the success rates of nonexistent links SN(0 ≤
SN ≤ 1) are close to the value of 1.

Precision PRE is defined as the ratio of existent links
reconstructed by models to the number of the whole unknown
existent links. In our case, to calculate precision we need to rank
all the unknown links in decreasing order according to existent
possibilities computed by reconstruction models. Then we focus
on the top-L (here L � |EP|) links. If there are H links successfully
reconstructed, then

PRE � H
L

(7)

The area under the receiver operating characteristic curve
AUC evaluates the reconstruction models’ performance
according to the whole unknown link list. Provided the
existent possibility of all unknown links, AUC can be
interpreted as the probability that a randomly chosen
unknown existent link is given a higher existent possibility
than a randomly chosen nonexistent link. In the
implementation, the value of AUC is calculated with a
function perfcurve by Matlab.

Clearly, a higher value of the success rates of existent links SR,
the success rates of nonexistent links SN, precision PRE or the
area under the receiver operating characteristic curve AUCmeans
a higher reconstruction accuracy. We conduct 50 times
independent simulation for averaging the indices of
reconstruction accuracy as the mean success rates of existent

links 〈SR〉, the mean success rates of nonexistent links 〈SN〉, the
mean precision 〈PRE〉 and the mean area under the receiver
operating characteristic curve 〈AUC〉.

To understand the reconstruction performance of EEMwhen
reconstructing local structure of the network divide the
structure of each type of network into separately local
structure. Supposing that the roles of nodes in the network
are leaders, brokers and peripheral executors. We denote leaders
are nodes with small degrees and the number of leaders in each
type of network is 6. In addition, the subnetwork composed of
leaders is a connected subgraph. Then brokers are nodes
which are connected with leaders, and the residual nodes are
peripheral executors. The sets of leaders, brokers and peripheral
executors are not overlapped. We use letters L, B and P to
represent the adjacent relationships between leaders, the
adjacent relationships between leaders and brokers, and the
adjacent relationships among peripheral executors and brokers,
respectively. Then, we could obtain the success rates of existent
links of each local structure normalized by the number of real
existent links |Γio| of the network.

SRLr � 1
N

∑
N

i�1

|ΓLio∩ΓLir|
|Γio| (8)

SRBr � 1
N

∑
N

i�1

|ΓBio∩ΓBir|
|Γio| (9)

SRPr � 1
N

∑
N

i�1

|ΓPio∩ΓPir|
|Γio| (10)

The sum of three local success rates of existent links is equal
the global success rates of existent links.

SR � SRLr + SRBr + SRPr (11)

Correspondingly, the maximum of three local success rates of
existent links would be

SRLo � 1
N

∑
N

i�1

|ΓLio|
|Γio| (12)

SRBo � 1
N

∑
N

i�1

|ΓBio|
|Γio| (13)

SRPo � 1
N

∑
N

i�1

|ΓPio|
|Γio| (14)

when the original network is successfully reconstructed. To
quantify the success rates of three different local structure, we
define local indices of success rates as follows:

APPSRL � SRLr

SRLo
(15)

APPSRB � SRBr

SRBo
(16)

APPSRP � SRPr

SRPo
(17)

Similarly, a higher value of local index of success rates APPSRL,
APPSRB, or APPSRP means a higher reconstruction accuracy. We
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conduct 50 times independent simulation for averaging the
indices of success rates 〈APPSRL〉, 〈APPSRB〉 and 〈APPSRP〉.

3.3 Experimental Results on Synthetic and
Empirical Networks
In order to understand the performance of EEM, four types of
synthetic networks hosting a PDG dynamical process are
considered in our paper. Figure 2A depicts the index of
reconstruction accuracy for a synthetic small-world network,
measured by the mean success rates of existent links 〈SR〉,
based on 90% priori structure information. The mean success
rates of existent links 〈SR〉 increases monotonously when the
index of information sufficiency η is varying from 0.1 to 0.4.
Especially the mean reconstruction accuracy 〈SR〉 reaches the
maximum value of 1 when the index of information sufficiency η
� 0.4. The increment rate of the mean reconstruction accuracy
〈SR〉 is 9.97%. Then the mean reconstruction accuracy 〈SR〉
keeps the value of 1 when the index of information sufficiency η is
larger than 0.4. As shown in Figures 2B–H, the mean
reconstruction accuracy 〈SR〉 increases monotonously when
the index of information sufficiency η is less than 0.4. In
addition, the mean reconstruction accuracy 〈SR〉 reaches 1 for
the different types of synthetic networks when the index of
information sufficiency η exceeds 0.4.

Moreover, we compare the experimental results between EEM
and two link prediction models which are the resource allocation
(RA) and the structural perturbation method (SPM). Figures
2A–H show that when the index of information sufficiency η is
low (i.e., η � 0.1), the mean success rates of existent links 〈SR〉

obtained by EEM on small-world networks, random networks,
regular networks and Apollonian networks reaches 0.9093,
0.9085, 0.9021, 0.9361, 0.9823, 0.9897, 0.9402 and 0.9982,
respectively. Compared with RA and SPM, EEM’s mean
success rates of existent links 〈SR〉 are higher, which is
improved by at least 8.07 and 12.22% on the networks with
120–124 nodes, respectively. Compared with RA and SPM,
EEM’s mean success rates of existent links 〈SR〉 are higher,
which is improved by at least 17.53 and 22.81% on the
networks with 250–367 nodes, respectively. The experimental
results of Figure 2 indicate that EEM has a well tradeoff that
provides high quality reconstruction accuracy while requiring less
time-series information.

Intuitively, a network’s structure would be accurately
reconstructed when more priori information about the
structure of the network are presented. Figure 3 shows the
dependence of the values of 〈SR〉 on probability Ps, the priori
information of the structure, where we see that, in the cases of
lower index of information sufficiency η (η ≤ 0.4), 〈SR〉 increases
monotonously when the probability Ps increases. On the other
hand, the mean success rates of existent links 〈SR〉 approaches
the maximum value of 1 when the index of information
sufficiency η is larger than 0.4. In terms of the probability Ps,
the highest performance is achieved for the highest Ps. The
intuitive reason for the relatively superior performance with
the four synthetic networks lies in the sufficiency of the
available information of the networks’ structure.

In the following, we verify the performance of EEM in local
structure of the networks. We divide the structure of each type of
network into three separately local structure with subscript L, B, P

FIGURE 2 | (Color Online) The mean success rates of existent links 〈SR〉 of reconstructing four types of networks: (A) small-world network with 120 nodes, (B)
random network with 120 nodes, (C) regular network with 120 nodes, (D) Apollonian network with 124 nodes, (E) small-world network with 250 nodes, (F) random
network with 250 nodes, (G) regular network with 250 nodes, (H) Apollonian network with 367 nodes, hosting a PDG dynamical process. The lines with circle, triangle
and inverted triangle symbols are the mean success rates of existent links 〈SR〉 obtained by RA, SPM and EEM based on 90% priori structure information. The
mean reconstruction accuracy indices are achieved by averaging over 50 independent experimental results. For each experiment, measurements are randomly picked
from a time series of temporary evolution. The index of information sufficiency rate η indicates the amount of the available time-series information used in the
reconstruction. The payoff parameter for the PDG is b � 1.2.
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for them. Figure 4A depicts reconstruction success rate of a
small-world network, measured by the mean local index of
success rates 〈APPSRL〉, 〈APPSRB〉, and 〈APPSRP〉, based on
90% priori structure information.

As illustrated in the main graph in Figure 4A, the mean local
index of success rates 〈APPSRL〉 obtained by EEM is higher than
RA or SPM. Especially the mean local index of success rates

〈APPSRL〉 obtained by EEM reaches 96.41% when the index of
information sufficiency η � 0.1, while the mean local index of
success rates 〈APPSRL〉 obtained by RA and SPM are both
88.95%. The mean local index of success rates 〈APPSRB〉 and
〈APPSRP〉 obtained by EEM are 93.95 and 86.68% when the index
of information sufficiency η � 0.1, as shown in the subgraph
(α)-(β) in Figure 4A. Correspondingly, the mean local index of

FIGURE 3 | (Color Online) The mean success rates of existent links 〈SR〉 of reconstructing four types of networks: (A) small-world network with 120 nodes, (B)
random network with 120 nodes, (C) regular network with 120 nodes, (D) Apollonian network with 124 nodes, hosting a PDG dynamical process. The lines with different
symbols are the mean success rates of existent links 〈SR〉 obtained by EEM when the index of information sufficiency rate η catches different values. The mean
reconstruction accuracy indices are achieved by averaging over 50 independent experimental results. For each experiment, measurements are randomly picked
from a time series of temporary evolution. The priori information of the structure, measured by a probability Ps, indicates the amount of available priori information of the
structure used in the reconstruction. The payoff parameter for the PDG is b � 1.2.

FIGURE 4 | (Color Online) The mean local indices of success rates 〈APPSRL〉, 〈APPSRB〉, and 〈APPSRP〉 of reconstructing four types of networks: (A) small-world
network with 120 nodes, (B) random network with 120 nodes, (C) regular network with 120 nodes and (D) Apollonian network with 124 nodes, hosting a PDGdynamical
process. The lines with circle, triangle and inverted triangle symbols are the mean local indices of success rates 〈APPSRL〉, 〈APPSRB〉, and 〈APPSRP〉 obtained by RA,
SPM and EEM based on 90% priori structure information. The mean reconstruction accuracy indices are achieved by averaging over 50 independent experimental
results. For each experiment, measurements are randomly picked from a time series of temporary evolution. The index of information sufficiency rate η indicates the
amount of the available time-series information used in the reconstruction. The payoff parameter for the PDG is b � 1.2.
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success rates 〈APPSRB〉 and 〈APPSRP〉 obtained by RA are 62.67
and 79.51%, 〈APPSRB〉 and 〈APPSRP〉 obtained by SPM are 62.67
and 73.06%. The similar experimental results could also be found
in the cases of random network, regular network and Apollonian
network in Figures 4B–D, which indicate that EEM can achieve
higher reconstruction accuracy with low time-series information
than RA or SPM.

The underlying reason that EEM could obtain higher
reconstruction accuracy than RA or SPM might be twofold.
Firstly, EEM is applicable to reconstruct networks with sparse
connective relationships because Wang et al. developed a
paradigm [19, 24, 25] to address the network reconstruction
problems and Candès et al. provided the theoretical framework
for this paradigm [57, 58]. Both EEM and two link prediction
models utilize the identical priori structure information of the
network to obtain direct information of the unknown structure.
In addition, EEM bridges the relationships between the nodes’
payoffs and strategies by virtue of time-series information
because the payoffs can merely be obtained from each node’s
neighbors. Then EEM could extract indirect information of the
unknown structure from the above relationships which
strengthens the reliability of the experimental results. RA and
SPM could also extract valuable indirect information of the
unknown structure, but the valuable information still
originates from the priori structure information of the
network due to lack of a universal theoretical framework.

Secondly, both the reconstruction accuracy of the local
structure and the reconstruction accuracy of the global
structure obtained by EEM highly consist. As illustrated in
Figure 4, the absolute error between three mean local index of
success rates 〈APPSRL〉, 〈APPSRB〉 and 〈APPSRP〉 obtained by
EEM on each network is less than 0.1, which indicates that the
reconstruction accuracy on three separate local structure
obtained by EEM is almost the same. Consequently, the global
reconstruction accuracy and the local reconstruction accuracy
highly consist because the global reconstruction accuracy is the
linear combination of three mean local index of success rates
as: 〈SR〉 � SRLo · 〈APPSRL〉 + SRBo · 〈APPSRB〉 + SRPo · 〈APPSRP〉,
where SRLo, SRBo and SRPo are constant for each network. The high
reconstruction accuracy of three separately local structure
contribute to a high reconstruction accuracy of the global
structure. We also observe that the reconstruction accuracy on
three separate local structure obtained by RA or SPM fluctuates.
Especially in the reconstruction experiments on synthetic random
networks, the maximum absolute error between three mean local
index of success rates obtained by RA or SPM reaches 0.3837. The
experimental results indicate that the reconstruction accuracy
obtained by RA and SPM is largely dependent on the priori
structure information of the network. The reconstruction
accuracy of RA or SPM would be high when the local priori
structure is consistent with the global structure, and the
reconstruction accuracy would be low otherwise.

Finally, we test the results for four empirical networks. As
shown in Table 3, we reconstruct the network structure by EEM,
RA and SPM with 90% priori structure information. The
empirical results indicate that four indices of reconstruction
accuracy obtained by EEM are higher than RA and SPM for

four empirical networks when the index of information
sufficiency rate η � 0.1. Four indices of reconstruction
accuracy obtained by EEM are higher than RA and SPM.
Compared with RA, EEM’s reconstruction accuracy, measured
by the mean success rates of existent links 〈SR〉, which are
improved by 355.54, 456.38, 96.37 and 64.11%, corresponding
to FWMW, FWFW, Jazz musicians, Neural network of C. elegans.
Compared with SPM, EEM’s reconstruction accuracy, measured
by the mean success rates of existent links 〈SR〉, which are
improved by 355.54, 154.07, 47.81 and 69.38%,corresponding
to FWMW, FWFW, Jazz musicians, Neural network of C. elegans.
Empirical results indicate that the empirical networks
reconstructed by EEM are closer to the original networks than
those reconstructed by RA and SPM.

3.4 CONCLUSION

In summary, we have investigated the performance of EEM
for reconstructing synthetic networks, which are
characterized by four types of networks as small-world
networks, random networks, regular networks and
Apollonian networks, based on priori structure
information. The mean success rates of existent links 〈SR〉
obtained by EEM could achieve at least 0.9021 when the index
of information sufficiency η is 0.1. Compared with RA and
SPM, EEM has higher mean success rates of existent links
〈SR〉, which is improved by 8.07 and 12.22% on the networks
with 120–124 nodes, respectively. Compared with RA and
SPM, EEM has higher mean success rates of existent links
〈SR〉, which is improved by 17.53 and 22.81% on the
networks with 250–367 nodes, respectively. The
experimental results also indicate that separately local
structure in each type of network could be accurately
reconstructed by EEM. In addition, EEM’s reconstruction
accuracy is also evaluated on four empirical networks.
Compared with RA and SPM, EEM has higher mean

TABLE 3 | The value of four indices of reconstruction accuracy for four empirical
networks.

Network Accuracy RA SPM EEM

η = 0.1 η = 0.6

FWMW SR 0.1833 0.1833 0.8351 0.9996
SN 0.0016 0.0016 0.9577 0.9996
PRE 0 0.0003 0.5730 0.9989
AUC 0.6786 0.6968 0.8836 1

FWFW SR 0.1575 0.3450 0.8765 1
SN 0.9742 0.9712 0.9567 0.9999
PRE 0.0385 0.2043 0.6143 0.9999
AUC 0.4191 0.7816 0.9375 1

Jazz musicians SR 0.4488 0.5962 0.8813 1
SN 0.9902 0.9894 0.9723 0.9999
PRE 0.2291 0.3486 0.5544 0.9980
AUC 0.9151 0.9085 0.9807 1

C. elegans SR 0.4770 0.4621 0.7828 0.9998
SN 0.9927 0.9948 0.9965 0.9993
PRE 0.0512 0.0446 0.4834 0.9539
AUC 0.7817 0.7598 0.9243 0.9999
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success rates of existent links 〈SR〉, which is improved by
64.11 and 47.81%, respectively. The reason that EEM obtain
higher reconstruction accuracy than RA or SPM might lie in
that EEM could utilize time-series information to strengthen
the reliability of the experimental results and EEM’s
capability to reconstruct the local structure and the global
structure highly consist. The evaluation of EEM on both
synthetic networks and empirical networks suggest that
EEM is applicable for networks with sparsely connective
relationships and it has high reconstruction accuracy by
low information requirements.

Although the efficiency of EEM has been measured in
reconstructing network’s structure with both synthetic
networks and empirical networks, there are still a lot of
questions to be considered further. For example, the
results show that EEM can give remarkably higher
reconstruction accuracy on a network hosing a PDG
dynamical process, but the performance of EEM has not
been validated under another dynamical process. Although
EEM could also be extended to cases with large-scale network,
the computing time might increase exponentially. In
addition, EEM’s capability to identify spurious links has
not been explored. Noting that EEM can well capture the
adjacent relationships from limited information and thus give
more accurate reconstruction, such features make EEM
appealing to reconstructing general networks with
extremely low data requirement. Despite underlying
challenges, we will make attempt to continue our research
referring to the problems of network reconstruction.
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Similarity Analysis of Alarm
Sequences by a Shuffling Method
Yifan Lin1, Shengfeng Wang2*, Ye Wu3 and Jinghua Xiao1*

1School of Science, Beijing University of Posts and Telecommunications, Beijing, China, 2School of Information and
Communication Engineering, Beijing University of Posts and Telecommunications, Beijing, China, 3School of Journalism and
Communication, Beijing Normal University, Beijing, China

Modern telecommunication systems produce large amounts of alarm messages, and
alarm management is vital for telecommunication systems’ high-quality performance.
Building functional networks by observing the pair similarity between time series is a useful
way to filter and reduce alarm messages. Because of the coexistence of positive and
negative correlations among telecommunication devices, most of the similarity measures
have troubles in computing the complex correlations. In this paper, we propose an index of
measuring how much two-alarm series deviate from the uncorrelated situation to detect
the correlation of both sides. Synthetic sequences verify our method. Furthermore, we
apply our method to analyze telecommunication devices’ alarm correlation in a province of
China. Our index of pair similarities is capable of measuring other discrete event data.

Keywords: telecommunication alarm, similarity measure, alarm correlation network, event relationship network,
time series

INTRODUCTION

According to the Ministry of Industry and Information Technology of China, the total number of
mobile phone users reached 1.594 billion and more than 98 percent of administrative villages had
access to optical fiber and 4G in China at the end of 2020. Numerous base stations and other kinds of
equipment constitute huge telecommunication networks with complicated structures. These
telecommunication systems produce a large number of alarm messages every day, which pose a
challenge to faults management. In the course of the managing process, various telecommunication
devices may affect each other [1, 2]. To effectively manage the system, it is critical to develop
strategies for correlating alarm messages by the physical connections of network elements or
knowledge derived from alarm experiences.

To perform fault management under a large number of alarm messages, it is important to reduce
the number of alarm messages by correlating different devices’ messages. In telecommunication
networks, some expert systems are implemented to filter and correlate alarms. Italy [3], first uses
expert system rules to recognize alarm correlation patterns and instantiate network fault hypotheses,
and then applies a heuristic search to determine the best solution among the hypotheses. ALLINK™
Operations Coordinator fromNYNEX [4] uses an expert system to filter network alarms. Most of the
existing expert systems are for relating fault messages, and transferring the knowledge of human
experts into an automated system. Other related methodologies were proposed. The work in [5, 6] is
based on a formal language representation of the communication system. A. Bouloutas in [5] focuses
on identifying errors in a known protocol: it is not an alarm correlation as such. The problem
considered by A. Bouloutas and S. Calo in [6] is fault localization from alarms. It is a related although
different problem. Such researches do not consider the occurring time of alarms, and assume
knowledge of the network topology.

Edited by:
Gaogao Dong,

Jiangsu University, China

Reviewed by:
Jianguo Liu,

Shanghai University of Finance and
Economics, China

Xiao-Pu Han,
Hangzhou Normal University, China

André L. M. Vilela,
Universidade de Pernambuco, Brazil

*Correspondence:
Shengfeng Wang

sfwang@bupt.edu.cn
Jinghua Xiao

jhxiao@bupt.edu.cn

Specialty section:
This article was submitted to

Social Physics,
a section of the journal

Frontiers in Physics

Received: 26 May 2021
Accepted: 19 July 2021

Published: 09 September 2021

Citation:
Lin Y, Wang S, Wu Y and Xiao J (2021)
Similarity Analysis of Alarm Sequences

by a Shuffling Method.
Front. Phys. 9:714910.

doi: 10.3389/fphy.2021.714910

Frontiers in Physics | www.frontiersin.org September 2021 | Volume 9 | Article 7149101

ORIGINAL RESEARCH
published: 09 September 2021
doi: 10.3389/fphy.2021.714910

25

http://crossmark.crossref.org/dialog/?doi=10.3389/fphy.2021.714910&domain=pdf&date_stamp=2021-09-09
https://www.frontiersin.org/articles/10.3389/fphy.2021.714910/full
https://www.frontiersin.org/articles/10.3389/fphy.2021.714910/full
http://creativecommons.org/licenses/by/4.0/
mailto:sfwang@bupt.edu.cn
mailto:jhxiao@bupt.edu.cn
https://doi.org/10.3389/fphy.2021.714910
https://www.frontiersin.org/journals/physics
www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org/journals/physics#editorial-board
https://doi.org/10.3389/fphy.2021.714910


With the continuous development of telecommunication
systems, telecommunication networks are becoming more
complex, and features such as heterogeneous devices, network
structures, and technologies are coexisting and cooperating
within the system. This is a problem when domain-experts
build management systems for root cause analysis or event
relationship networks (ERNs). Data-driven fault management
may be helpful [7]. Perng [8] utilized the event history logs in
shorting the ERNs design process and perfecting the quality of
ERNs. Besides constructing the ERNs, one can build device-
device correlation networks from alarm logs. Particularly,
telecommunication devices are deployed over large
geographical area, and the device-to-device networks could be
useful in understanding the performance of the whole systems.
Based on the discrete alarm time of devices, device-to-device
networks can be constructed by correlating alarm series to form a
functional network. Functional structures are of great importance
in aiding understanding of the properties of various man-made
and natural networks [9, 10]. Differing from physical structures,
functional structures are generally built by observing the
similarity between time series. Depending on the application
scenario and the type of data, there are various way of
computing pair similarity. Euclidean Distance is the most
basic measure, when two sequences are of equal length. To
measure the similarity of unequal-length time series, Dynamic
Time Warping (DTW) [11] is useful, and is used in many
proposed optimizations [12–14]. If two time series have
similar morphology in most time periods but only have
certain differences in a very short time, Euclidean Distance
and DTW cannot accurately measure the similarity between
them, which can be solved by Longest Common Subsequence
(LCSS) [15]. However, the measures mentioned above only focus
on calculating how different the two series are, and ignore the
probability of them being such different. Furthermore, due to the
complexity of the system, recovering alarm messages sometimes
needs to check both positively and negatively correlated devices.
Most of the similarity measures may encounter troubles here.

To tackle the problem above we propose an index built on
measuring to what extent the two series deviate from the
corresponding shuffled series, to score the pair similarity. We then
construct synthetic series to verify the method. Furthermore, we
apply our method to analyze the alarm correlation of
telecommunication devices in a province of China. Although our
method focuses on the application of the telecommunication devices’
alarm series, it can also be applied to general discrete event data.

METHODS

The Definition of the Similarity Score
Between Alarm Sequences
This section defines an index to score the similarity.

Firstly, let Si be the time sequence representing the alarm
timing of ith device.

Si � {si1, s
i
2, /, sik, /, si|Si |}, (1)

where |Si| denotes the size of Si. Given two sequences SA, SB and
n � |SA∩SB| being the number of the same timestamps between
them, we calculate the possibility of two sequences still having n
same timestamps when they are randomly shuffled. In detail, let
|SA| � m1, |SB| � m2, and the total time duration is assumed to be
D seconds. This may be illustrated by comparing our method to a
textbook example in probability. In this model, D balls are
numbered and put in an opaque box. Person A first picked
out m1 balls randomly and put them back after recording their
numbers. Then, person B picked m2 balls out at random and
recorded the number too. The probability of n balls being picked
out twice can be expressed as

Pn � Cn
m1
Cm2−n
D−m1

Cm2
D

, 0≤ n≤min {m1, m2}, (2)

where Cm2
D is the number of possible combinations ofm2 balls that

person B can pick out from the box, and Cn
m1

and Cm2−n
D−m1

compute
the number of possible combinations in which B picks n balls in
common with m1 recorded balls and m2 − n from the D −m1

unrecorded balls respectively. It is obvious that
∑min{m1 , m2}

n�0 Pn � 1. Eq. 2 computes the probability of having n
timestamps in common between SA and SB when they are
randomly shuffled.

We define the similarity index in terms of Pn. According toPn’s
definition, its value would be no less than 0 and no more than 1. If
a small Pn, such as less than 0.05, appears, it means that a rare
event has occurred, which results from the appearance of a much
larger or smaller n compared to its expectation of two
uncorrelated sequences. When n is much larger than the
expectation, it shows that two devices send alarm messages
together more often than the random case, and vice versa. A
large n means that one devices alarm may be caused by an alarm
in the other, while a small nmay mean that one devices alarm is
caused by the normal function of the other. Both cases leads to the
conclusion that devices A and B are correlated. Because a large Pn
represents that the correlation between A and B has no difference
from the random case, we define the index which scores the
correlation of alarm sequences A and B as

cAB � 1 − Pn, (3)

which is symmetric, so that cAB � cBA.

Computational Processing
Large values of D, such as in several days of data, would make the
similarity computation very expensive. Therefore we separated
the total time duration into several windows with equal size and
computed the cij of two devices within each window respectively.
Then, the average value cij over each window is taken as the final
similarity score that describes the degree of correlation between
two devices.

Equation 2 is the probability mass function (pmf) of
hypergeometric distribution. When the total seconds D is a
large number, for instance, more than 10,000, it is hard to
calculate the value of Cm2

D because the factorial of D is too
large for computer to store as m2 increases. Here, when both
the value of m1 and m2 are more than 90, we use an
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approximation method proposed by Irving W. Burr [16], who
found the approximation relation between the hypergeometric
and Poisson distributions as

h(x;N , n, k) � p(x;
kn
N
){1 + (

1
2k

+ 1
2n

)[x − (x − nk
N
)

2

] + O(
1

k2
+ 1

n2)}

(4)

where h(x;N , n, k) denotes hypergeometric probability for x in n
given k in N and p(x; kn/N) denotes Poisson probability with
parameter kn/N . Thus, we use the adjustive factor below to
approximate the hypergeometric probability by the Poisson
probability when m1 and m2 are quite large.

The Verification of the Method
For verifying the validity of our method, we generated
synthetic alarm series whose correlation can be set manually. Let
SA � {sA1 , sA2 , /, sAk , /, sA|SA |} be the series of device A which
records 10,000 alarms within 58 days. Assuming that the
probability of device B reporting an alarm message when deviceA
reports is r, indicating the actual alarm correlation between two
devices. We also add nr random timestamps, which represent the
random alarming of device B itself or correlating with other devices,
into SB to see if the score calculated by the method changes as the
number of timestamps in SB changes. Figure 1A shows the tendency
of average similarity score with nr under different correlation levels in
10 experiments. In the figure, similarity score barely changes as nr
increases, which means the proposed method is robust when the
number of alarms changes. In addition, Figure 1A shows that the
method is capable of distinguishing different r levels as the linemoves
upwards when actual correlation r increases.

We also study the influence of window size on the similarity
scores. With random timestamps nr fixed at 1,000, we calculated
similarity scores at different r levels using the window size of 1 h,
6 h, 12 h and 24 h. In Figure 1B, when using window size of 24 h,
the similarity score will be close to 1 if r is more than 0.04. It
indicates that the method considers r being more than 0.04 as two
sequences being strongly related. However, when we reducing the
window size, the maximum value of the curve using the window
size of 1 h is only near 0.8, meaning that the method could even

distinguish r whose value is more than 0.2 which is not a small
value when considering correlation between two devices. When
analyzing real data, we can change the window size to make the
distribution of scores as scattered as possible so that we can rank
all the pairs of devices and find the most related ones.

EXPERIMENT

In this section, we use the method described above to analyze real
data of device alarms in telecommunication networks and
constructed a functional network that could help to locate
faults by scoring the probability of every two devices being
correlated when reporting alarm messages. Moreover, based
on the location of devices, we construct a city-to-city alarm
network (CCAN) and analyze its structure.

Data Description
The database is from a Chinese telecommunication company,
including the alarm messages of about 500,000 telecommunication
devices in a province of China from 26th August to 25th September
in 2015. In the following, we anonymize the name of the province
(named as G hereafter) and the related cities. Each message in the
database includes device ID, alarm title, type, location, and other
information.We pick out messages that recorded both device ID and
location. Figure 2 shows that the alarm number distribution of
508,636 devices follow a power law distribution. To obtain the main
correlation structure, we preprocess the database and take devices
that documented alarm messages between 600 and 50,000 times into
account. After that, 6,527 devices are considered into the following
analysis.

Result
Firstly, letting every device be the vertex, a fully connected
network is formed. Here, an edge is equivalent to a pair of
devices, and its weight equals the calculated similarity score.
Then, we remove edges whose similarity scores are smaller than a
threshold value, and the rest of the edges form the backbone of the
alarm correlation network. Secondly, we use every device’s

FIGURE 1 | (A) Average similarity scores at different correlation level. The sequences of device A and B are generated 10 times. The results showed in this figure are
the average of 10 experiments when the window size is 24. Similarity score barely changes as nr increases. The line moves upwards when actual correlation r increases.
(B) Average similarity scores at different window size. The results are also the average of 10 experiments but when adding 1,000 random alarm timestamps into SB. The
range that probability score varies with r widens as the window size decreases.
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located city to analyze the relationship between the alarm
numbers inside and outside the city and the network of cities.

After applying our method to the data, Figure 3A shows the
complementary cumulative distribution function (CCDF) of the
similarity scores. Each point shows the percentage of similarity
scores that are more than a value. In Figure 3A, when we take 0.8
as a threshold of removing edges, there was less than 10% of the
edges left in the network. In consideration of this, we use an
approximation of hypergeometric distribution and the remaining
term is of the same order as 0.0001, so choosing 0.999 as an upper
bound for the analysis will not impact computation accuracy.

We randomly chose eight pairs of devices whose similarity
scores are greater than 0.8 and shuffled their alarm times from the
last 31 days to see if our index separates correlated devices from
independent, uncorrelated ones. Figure 3B compares the scores
of original alarm sequences with those of the shuffled sequences
in 100 repetitions. The results show that the original scores are
completely separated from the boxplots of the shuffled sequences
scores, meaning that the device pairs left in the network are
statistically correlated.

In the following, we show the devices’ alarm correlation
network in G province, China. To compare the connection

strength inside and outside the cities, we normalize the
connection by relative connection density. For every city in G
province, the relative density inside the city is defined as

Rin
A � EA

|A| × |A| − 1
2

,
(5)

where EA represents the number of edges (ignoring the similarity
scores) and |A| is the number of devices inside the city. The
relative density outside the city is defined as

FIGURE 2 | (A) Probability density function (pdf) of alarm times with log-log coordinate. (B) Complementary cumulative distribution function (ccdf) of alarm times
with log-log coordinate. The data follows a straight line in log-log coordinates, which indicates that the alarm number obeys the power law distribution.

FIGURE 3 | (A) Complementary cumulative distribution function (ccdf) of
the similarity scores. Each point shows the percentage of scores that are more
than a certain value. When using a threshold that is no less than 0.8, more than
90% of the edges will be removed. (B) Boxplot of randomly shuffled
alarm sequences. For every chosen pair of devices, shuffle their sequence for
100 times and calculate the similarity scores of them. Red crosses symbolize
the original similarity score. The original scores are completely separated from
the shuffled sequences scores’ boxplots.

FIGURE 4 | Relative connection density and intercity alarm relevance
network (CCAN): (A) Percentage of relative density inside and outside cities
when using threshold 0.8. The inner relative density is painted blue and the
outer is painted orange. Each R is normalized by the maximum value
(0.1902) of inner relative density. (B) City-to-city network under threshold 0.8.
Different cities are symbolized by dots with different colors. The size of dots
represents the number of devices in every city. The width of edges is
proportional to the value of relative density between cities. (C) Percentage of
relative density inside and outside cities when using threshold 0.999. Each R is
normalized by the maximum value (0.0664) of inner relative density. (D) City-
to-city network under threshold 0.999. (A,C) show that when increasing the
threshold of removing edges, the structure between cities starts emerging (still
weaker than the connection inside cities). (B,D) show that cities lying in the
southeast of the province are connected more strongly than otherwhere.

Frontiers in Physics | www.frontiersin.org September 2021 | Volume 9 | Article 7149104

Lin et al. A Randomness-Based Similarity Analysis Method

28

https://www.frontiersin.org/journals/physics
www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


Rout
A � ∑

B∈F , B≠A
EAB

|A| ×∑
B∈F , B≠A

|B| (6)

where F is a set of all the cities in province G, the numerator
represents the number of edges between A and other cities, and the
denominator represents the number of edges if all the devices inside
city A are connected to all the devices inside other cities. We calculate
the relative densitiesR after removing thosewhose similarity scores are
less than 0.8, and present the percentage of the relative densities
outside and inside the city in Figure 4A. Most of the cities’ inner
relative densities are more than the outer ones, which is consistent
with our intuition. When increasing the threshold from 0.8 to 0.999,
some structure between cities emerges, as shown by Figure 4C.
Therefore, we draw the city-to-city network where the edges are
weighted by the relative density between two cities which is defined as

RAB � EAB

|A| × |B| (7)

where EAB is the number of edges between city A and B. The city-
to-city networks under threshold 0.8 and 0.999 are exhibited in
Figures 4B,D, where different cities are symbolized by colored
dots, the size of dots represents the number of devices inside the
city, and the width of the edges represents the relative densities
between two cities. Figure 4B shows that the CCAN is a fully
connected network. Devices from different cities connected more
strongly than expected. Although the cities that lie in the north of
G province, such as QH, RN and PC, have more devices than the
cities in the southeast side, their connections with other cities are
weaker than southeast cities. City NG and TF which are strongly
connected to almost all cities in the province seem to be the center
of the city-to-city network. However, when the threshold
increases to 0.999, the center of the city-to-city network moves
to the city PR whose device number is quite small when compared
with other cities and PR is only connected strongly to the cities
from the southeast. It seems that there are an alarm group
consists of cities from the southeast area of the province.

CONCLUSION

Modern telecommunication systems produce large amounts of
alarm messages. Correlating different alarm series in vital to
effectively manage these alarm messages and maintain the

performance of telecommunications networks. To measure
the complex spatiotemporal correlation between
telecommunication devices, we propose an index that uses
the deviation of two alarm series from the random case to
score the pair similarity in the device-to-device network. In
Figure 1, synthetic series verify the validity of our index, and
show that the similarity score can distinguish series pairs with
different correlation levels and is robust when alarm numbers
change. Moreover, the range that probability score vary with
correlation level can be widened by reducing window size when
calculating, as shown in Figure 1B. After verifying our method,
we used it to analyze the telecommunication alarm database of
devices in a Chinese province, and construct an alarm
correlation network. In Figure 4, the results show that for
most of the cities, the connection strength inside the cities is
higher than outside. However, the connections outside cities
are comparable with those inside cities. When increasing the
edge removal threshold, cities’ structures start to emerge
(though still weaker than the connections within cities). By
analyzing the CCAN, we find that cites lying in the southeast of
the province connect more strongly than elsewhere. Our
similarity score measures the pair similarity by deviating
from the random case and has a potential for more general
applications.
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A Power Dispatch Optimization
Method to Enhance the Resilience of
Renewable Energy Penetrated Power
Networks
Yuehui Huang1, Pai Li 1, Xi Zhang2*, Bingchun Mu2, Xuefei Mao2 and Zhen Li2

1China Electric Power Research Institute, Beijing, China, 2Beijing Institute of Technology, Beijing, China

With the wide deployment of renewable energies, future power grids become more
vulnerable to extreme environments. This paper investigates enhancing the resilience of
power systems with high penetrations of renewable energies under emergencies. The
resilience enhancement firstly is defined as maintaining as much electric energy to critical
loads in a fixed number of post-disaster periods by properly coordinating the available
resources. Then, an optimal decision-making method is proposed to maximize the power
supply of critical loads and to minimize the instability risks due to the randomness of the
output power of renewable energies. The power consumption of loads, charging/
discharging power of power storage plants, power generation of generators, and
spinning reserve ratios of the renewable energy at each period are taken as decision
variables. Constraints include spinning reserve, power flow constraints, and power
consumption/generation limits. The interior-point algorithm is used to solve the
formulated optimization problem. Numerical simulations verified the effectiveness and
superiority of the proposed optimization method in boosting grid resilience after disasters.
It is also found that a balance should be sought between decreasing stability risks and
increasing the power supply benefit in extreme environments.

Keywords: power network, resilience optimization, renewable energies, power dispatch, complex networks

1 INTRODUCTION

1.1 Backgrounds
Power networks are essential infrastructures that support almost all kinds of activities in modern
society. Their ability to maintain a reliable electricity supply to the consumers under various
emergencies is crucial to society’s day-to-day operations. Due to the broad geographical coverage and
exposure to wild and adverse environments, the power network is subject to various disturbances.
Extreme environments will seriously affect the normal operation of the power network, reducing the
network connectivity and functions. Damage to the network topology will lower the supply of load
and seriously endangering economic development and social stability [1]. Thus, increasing the power
grid resilience in face to extreme conditions has profound significance.

The study on network resilience has been an popular topic in the filed of complex networks since
the publication of [2–6]. Being a typical complex network, the power network’s resilience has also
attracted the interest of many scholars [7, 8]. The resilience of the power network refers to the ability
of the power grid to resist interference and restore power promptly under inclement weather such as
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typhoons, heavy rain/snow, and earthquakes, or artificial attacks
such as graphite bombs, high-altitude nuclear magnetic
explosions, and computer viruses [9, 10]. Reference [11]
comprehensively reviewed the evolution and current status of
the U.S. power network, and exploreed ways to improve the
resilience of the power network. Based on the understanding of
the resilience recovery process of the power network, Refs. [12,
13] proposed a simulation model for the power system and
addressed indexes to evaluate the network resilience. The
model considered a series of equipment failures and repair
events in the resilience process, in which the probability of
equipment failure was expressed as a function of weather
parameters, and the length of time from failure to repair of
the failed equipment was set to obey an exponential distribution.

Motivated by energy and environmental requirements, the
power network is entering a new era due to increasing
penetrations of renewable energies. Making full use of existing
available resources to achieve the maximum power supply
capacity (the maximum power system sufficiency) by power
dispatch and topology adjustments is an effective means to
improve the resilience of the power system, and it is beneficial
to alleviating the negative impact of extreme environments on
social stability [14]. However current research on power network
resilience fails to incorporate the increasing trend of the
proportion of new energy sources connected to the power
system and lacks sufficient control that considers the
intermittent output of new energy sources and the reduction
in the proportion of spinning reserve.

Differing from traditional power sources, the power outputs of
renewable power units are random and fluctuant, which are
determined by the weather. Renewable energy power units
connect to the grid via electronic equipment with zero inertia
and low tolerance. Though renewable energies bring huge
environmental and social benefits, they also bring challenges
to the safe operation of the power grid and the recovery of the
system after severe damage under inclement weather. First, under
inclement weather, the components and pieces of equipment of
the power system are likely to be physically damaged, and it takes
a long time to repair them or build new equipment [15]. Second,
the randomness and fluctuantions of renewable power units are
detrimental to maintaining the power balance in the power
system, which requires traditional generators to keep an
appropriate amount of reserve. In this case, higher amounts of
reserve from traditional generators will reduce the power
supplied to loads, while lower amounts of reserve from
traditional generators will increase the operation risk.

1.2 An Insight to Enhance the Grid
Resilience
When the power network is affected by inclement weather, its
load-supply capacity is reduced. Moreover, it is difficult to repair
electrical components that are physically damaged in the short
term after the impact of extreme conditions. Therefore, it is
practically feasible to boost the resilience of the damaged power
grid by making full use of the remaining available resources to
maximize the power supply benefit of the damaged power system,

which can help significantly alleviate the negative impact of
extreme environments on social stability.

Under inclement weather, it is hard for the power network to
satisfy the power supply requirements of all loads. Thus the power
consumption of each node should be reorganized by the dispatch
center to maximize the power supply benefit of the power
network. At the same time, during the special period of
insufficient power supply after disasters, the power supply
should also be prioritized to some certain consumers, e.g.,
government, hospitals, etc., should be higher than the power
supply priority of some factories. Therefore, the weighted sum of
the loads, which serves as the main part of the power supply
benefit, is the objective function of the optimization model
considered in this paper.

To maintain safety and stability, a certain amount of spinning
reserve needs to be reserved for the conventional generators to
cope with randomness and intermittent in the power network.
Under normal circumstances, there are two main sources of
randomness and volatility in power networks with high
penetrations of renewable energies: load and renewable energy
generators. Under inclement weather, the system only needs to
plan conventional generators to reserve a certain amount of
spinning reserve to balance the fluctuation of the renewable
energy generators if loads are controlled without randomness
and volatility. The total power generation of renewable energy
generators in the network and the spinning reserve ratio during
each period serve as the spinning reserve capacity of the system
for each period. Therefore, the amount of the spinning reserve
ratio of the network at each time will also affect the power supply
capacity of the system in extreme environments. For example, if
the spinning reserve ratio is too large, the power of the
conventional generators for load supply will be reduced, which
will affect the power supply benefit. In contrast, if the ratio is too
small, once the actual output of the renewable energy generators
is much smaller than the planned output, the planned load power
will not be supplied. As a result, the power network will even lose
balance, and a series of cascading failures will occur, which will
heavily deprive the power supply of the network in extreme
environments. Therefore, it is necessary to optimize the spinning
reserve ratio for each period. In addition, the spinning reserve
ratio of the system for each period is also an important factor that
needs to be considered for flexibility optimization.

Inspired by this, an optimization model is proposed to
enhance the resilience of the power network with high
penetrations of renewable energies. The main contributions
are as follows:

• The resilience of the power network with high penetrations
of renewable energies is studied. Specifically, the stochastic
properties of the renewable power units’ output are
considered.

• A new resilience metric for the power network is proposed
and defined as the amount of electric energy maintained to
critical loads within a fixed number of periods. Then an
optimization model aiming to maximize the power supply
of critical loads and minimize the instability risks is
proposed, and the power consumption of loads, power
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generation of generators, and spinning reserve ratios of the
renewable energy at each period are taking as decision
variables to coordinate the available resources properly;

• Two cases study based on the real power network are
implemented, showing that the proposed optimization
method can effectively boost grid resilience after disasters.

The remainder of this paper is organized as follows. The
detailed optimization model is formulated in Section 2; two
cases studied are carried out in Section 3 to verify the
proposed model, and Section 4 concludes this work.

2 MODEL FORMULATION

2.1 Disposal of the Uncertainty of
Renewable Energy Power
In this paper, the time duration of the resilience optimization
considered for the power system is a short time (a few hours) after
disasters, so the uncertainty of the renewable energy output in a
short time needs to be considered [16,17]. The current renewable
energy power generation mainly consists of wind power and
photovoltaic power generation. Wind power accounts for the
highest proportion (about 70%) of renewable energy power, and
the short-term forecast error models of wind power photovoltaic
power are similar. Thus the disposal of the uncertainty of
renewable energy power in this paper mainly refers to the
short-term forecast error model of wind power output for
simplicity.

As renewable energy power generation is affected by weather
and other factors, it is random and volatile and cannot be
accurately predicted. The forecast error of renewable energy
output is defined as:

~Pre(t) � Pre(t) + ΔPre(t), (1)

where ~Pre(t), Pre(t) and ΔPre(t) are the actual value, the forecasted
value, and the forecasted error of renewable energy power output,
respectively. The wind power output forecast errors basically
follows the Gaussian distribution according to the statistitics [18,
19]. In this paper, the short-term forscast errors of the reneable
energy follows the Gaussian distribution N(0, σ2re), whose
standard deviation is defined as:

σre(t) � K pPre(t) + REI/50, (2)

where K is the forecast error factor for renewable energy power,
which is always set as 0.2; REI is the total installed capacity of
renewable energy power supply.

2.2 Decision Variables
In the optimizationmodel, the decision variables are composed of
the following parts:

• The output of each conventional power generator node in
each period Pi(t)

• The power of each load node in each period Pl(t)
• The output of each renewable energy generator node in each
period Pre(t)

• The power of each power storage node in each period Psto(t)
• The spinning reserve ratio of the renewable energy in each
period r(t)

2.3 Objective Function
The objective of the power system resilience optimization studied
in this paper is to get the maximum power supply benefit by
supplying power to various loads according to their priority in the
short term under extreme environments without considering
the cost through the remaining generation resources. Apart
from the power supply to loads, the stability of the power
system also plays an important role in the evaluation of the
benefit. Therefore, due to the randomness of renewable energy
power generation, conventional generator nodes are required to
provide a certain amount of upward spinning reserve to deal with
the situation where the actual output of the renewable energy is
lower than the planned output to avoid causing the failure to
supply load as planned power and cascading failure caused by
power grid instability. In conclusion, the objective function of the
optimization problem is:

max F � ∑
m

t�1
(PL(t) − Q(t)) pΔt, (3)

where PL(t) is the weighted sum of the power of all load nodes of
the period t, Q(t) is the loss rate of the power supply benefit
caused by the insufficient actual output of renewable energy
power generator nodes and insufficient spinning reserve of the
period t, Δt is the duration of a period. The specific formula PL(t)
is defined as follows:

PL(t) � ∑
L

l�1
wlPl(t) (4)

where Pl(t) is the planned power of load l during the period t, wl is
the power supply weight factor of the load l. The larger the value,
the higher the power supply priority of the load under extreme
environments.

The analysis of Q(t), which is the loss rate of the power supply
benefit caused by the insufficient actual output of the renewable
energy and insufficient spinning reserve during the period t, is

FIGURE 1 | Probability density distribution of the total output of the
renewable energy during the period t.

Frontiers in Physics | www.frontiersin.org September 2021 | Volume 9 | Article 7436703

Huang et al. Enhance the Power Network Resilience

33

https://www.frontiersin.org/journals/physics
www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


shown in Figure 1. As shown in Figure 1, assuming that the
actual power of renewable energy during the period t obeys the

Gaussian distribution, the abscissa P
∑
t is the actual value of

the total output of the renewable energy during the period t, and

P
∑
f (t) is the average value, which is the forecasted output during

the period t; P
∑
pl,t is the planned total output of the renewable

energy power during the period t. The shaded part in the figure is
the range of renewable energy output that can be balanced by the
spinning reserve reserved by the system and Pd(t) is the minimum
value of the actual total output of the renewable energy allowed
by the spinning reserve. Therefore, when the renewable energy
output is less than Pd(t), the spinning reserve is insufficient,
resulting in the power supply to the load node not reaching the
expected amount. Under extreme environmental conditions,
failure to supply load as planned power is likely to cause
serious economic losses and even cause more serious
cascading failures. The specific formula Q(t) is:

Q(t) � Kloss p∫
Pd(t)

0
φ Pt

∑( ) Pd(t) − Pt
∑( )dPt

∑ (5)

whereKloss is the benefit loss factor. The larger the value, the more
serious the loss of the power supply benefit caused by insufficient
renewable energy output and insufficient spinning reserve.
φ(Pt∑) is the Gaussian distribution function of renewable
energy power. Pd(t) is the integral upper limit, which is the
minimum value of the actual total output of the renewable
energy allowed by the spinning reserve, and it can be
calculated by the formula as follow:

Pd(t) � (1 − r(t)) ∑
RE

re�1
Pre(t)⎛⎝ ⎞⎠, (6)

where Pre(t) is the planned output of the renewable energy
generator node re, and RE contains all the renewable energy
generator nodes.

In summary, the reaction of PL(t) and Q(t) in each period of
the objective function to the change of the spinning reserve ratio
in each period is the same. Still, the changes of the two variables have
opposite effects on the value of the objective function. Therefore, the
objective function of the optimization model in this paper will drive
the optimization algorithm to find a balance value in the
determination of the spinning reserve ratio in each period for
the system so that the system can maximize its power supply
capacity while maintaining a certain degree of reliability under
extreme environments to achieve the greatest power supply
benefit.

2.4 Constraints
Constraints include active power balance constraint (Eq. 7),
spinning reserve constraint (Eq. 8), power flow constraint of
lines (Eq. 9), output constraint of the conventional generator
nodes (Eq. 10), constraints of the output rate of change of the
conventional generator nodes (Eqs 11, 12), load power constraint
(Eq. 13), output constraint of renewable energy generator nodes
(Eq. 14), power constraints of energy storage nodes (Eq. 15), and
capacity constraints of power storage nodes (Eq. 16).

∑
N

i�1
Pi(t) + ∑

RE

re�1
Pre(t) + ∑

STO

sto�1
Psto(t) � ∑

L

l�1
Pl(t) (7)

∑
N

i�1
min(Pi,max − P(t), Pi,up pΔt)≥ r(t) p ∑

RE

re�1
Pre(t) (8)

−Lij,max ≤ Lij(t)≤ Lij,max (9)

Pi,min ≤ Pi(t)≤ Pi,max (10)

Pi(t + 1) − Pi(t)≤ΔPi, up (11)

Pi(t) − Pi(t + 1)≤ΔPi, down (12)

Pl,max ≤ Pl(t)≤ 0 (13)

0≤ Pre(t)≤ Pre, f (t) (14)

Pin
sto,max ≤ Psto(t)≤ Pout

sto,max (15)

0≤ ∑
t≤t1

t�1
Psto(t) · Δt ≤ Ssto,max, t1 ∈ T (16)

where Pi,max and Pi,min are the upper limit and lower limit of
output of conventional generator node i, respectively; Pi(t) is the
output of conventional generator node i during the period t; N
contains the conventional generator nodes in the system; ΔPi,up
and ΔPi,down are the maximum upward ramp rate and the
maximum downward ramp rate of conventional generator
node i, respectively; Pl,max is the maximum absorbed power of
load node i, which is a negative value; Pre,f(t) is the predicted
output of the renewable energy power generator node re of the
period t; Pin

sto,max and Pout
sto,max are respectively the maximum input

and output power of the power storage node sto; Ssto,max is the
maximum capacity of the power storage node sto; t is any period
in the entire research time range T.

The spinning reserve constraint is specifically the upward
spinning reserve constraint. The principle is that when the
actual output of the renewable energy unit cannot reach the
planned output, a certain amount of upward spinning reserve is
required to make up for the lack of renewable energy output.
Corresponding to downward rotation is upward rotation. To
obtain the maximum power supply benefit within a short term, its
planned output should be controlled below its forecasted output
to avoid potential safety hazards of the power grid caused by the
upward fluctuation of renewable energy output and the burden of
the downward spinning reserve. Therefore, the downward
spinning reserve is not taken into consideration in this paper.

3 CASES STUDY

Two kinds of cases are considered in this section to verify the
effectiveness of the proposed model. The details are shown in
follows.

3.1 Case 1 (Power System Without Power
Storage Plants)
The simulations in this paper are based on the IEEE 39-Bus Test
Case, as shown in Figure 2. Node 34, 35, 36, 37, 38 are selected as
wind power generator nodes. It is assumed that nodes whose
index are 23, 24, 31, 32, 33, 37, 38 are damaged due to extreme
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environments and are unavailable for the power dispatching
center.

The DC power flow model is adopted in the simulation to
improve the computational efficiency. The nodes in the system
model are divided into four types: conventional power generator
nodes, renewable energy generator nodes, load nodes, and power
storage nodes (in case 2). The main parameters of conventional
power generator nodes, load nodes, and power storage nodes are
shown in Supplementary Appendix Tables S2, S3, S4.

A set of forecasted values of the renewable energy output is
drawn up regarding the actual output data of the renewable
energy in a certain place. The time scale of the renewable energy
ultra-short-term forecast is 4-h and the time resolution is 15-min,
and the time range studied in this paper is 2-h (8-period) after the
disaster. The forecasted output values of renewable energy
generator nodes are shown in Supplementary Appendix
Table S4 in the appendix. The simulation is coded in Matlab
based on the functions provided by Matpower [20].

The benefit loss factor is set to 10, the load priority weight is set
to two levels of 1 and 10, and the standard deviation of the short-
term forecast error of renewable energy output is set to 0.2 times
the output of renewable energy generation. The results of the
optimization are as follows.

3.1.1 Results of Optimal Variables
The results of the spinning reserve ratio in each period and the
planned power of nodes are shown in Figure 3.

The relationship between the optimal spinning reserve ratio in
each period and the total output of renewable energy generator
nodes are shown in Figure 4.

Through analyzing the results of the optimization variables, it
can be seen that the optimal spinning reserve ratio in each period

has an inverse relationship with the renewable energy output
in that period. That is to say, the higher the renewable energy
output in a period, the smaller the optimal spinning reserve
ratio in that period. The reason is that when the renewable
energy output is high during the period, the same reserve ratio
means that more reserve capacity will be reserved by the
conventional generators. The excessive spinning reserve will
occupy the scarce conventional generation resources of the
post-disaster power system, resulting in a decline in the power
supply efficiency of the system. Therefore, the optimization
method in this paper can flexibly determine the spinning
reserve rate in each period when the output of renewable
energy fluctuates in different periods under extreme
environments to maximizes the power supply benefit. Besides,

FIGURE 2 | The power network used based on the IEEE 39-Bus system.

FIGURE 3 | Results of optimal variables.

FIGURE 4 | The relationship between the optimal ratio of renewable
energy reserve of each period and the forecast power and planned power of
the renewable energy.
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the results show that loads with high priority fluctuate less with
renewable energy output and have a high degree of satisfaction. In
contrast, loads with low priority fluctuate more with the output of
renewable energy and are almost zero when renewable energy
output is low.

Under extreme environments, renewable energy generator
nodes’ planned output is often lower than the forecast output
to maximize the power supply benefit. The reason is that the
topology of the post-disaster network is different from that of
normal conditions, and constraints such as power flow
constraint and active power balance constraint restrict the
power of each node, including renewable energy generator
nodes.

3.1.2 Improvement of Power Supply Benefit
The reserve ratio is set to a fixed value (between 5 and 10%) by the
traditional reserve configuration method [20]. The optimization
method in this paper is compared with the traditional reserve
configuration with a fixed ratio of 5%. And the power supply
benefits in each period of the two methods are shown in Figure 5
for comparison.

As for the total power supply benefit of 8 periods, the total
benefit of the optimization method is 6405.471 MWh, while
the total benefit of the traditional fixed-reserve-ratio method is
5961.039 MWh. Compared with the traditional method, the
method proposed in this paper has significantly improved
the power supply benefit by attaining a 7.45% increase in
the total power supply benefit. However, as for the power
supply benefit in some periods (such as periods 1 and 3), the
optimization method behaves worse than the fixed-reserve-
ratio method. The reason is that the objective function of the
optimization method is the total benefit of all periods, and
there are constraints of the output rate of change of the
conventional generator nodes (Eqs 11, 12). As a result, the
optimization method may try to obtain the optimal total
benefit by sacrificing the benefit of some period.

3.2 Case 2 (Power System With Power
Storage Plants)
To analyze the impact of power storage plants on the power supply
benefits for power networks with high penetrations of renewable
energies under extreme environments, this paper implements
another case study on a power network with power storage
plants. Based on the power network in case 1, power storage
nodes attached to renewable energy generator nodes are added to
the grid, and load nodes are not assumed to be destroyed by
disasters. The main parameters of nodes are the same as in case
1. The power network for case 2 is shown in Figure 6.

3.2.1 Results of Optimal Variables
This paper compares the power supply benefits of the two systems
and the input power of loads with different power supply
priorities in each period to analyze the influence of power
storage nodes. The results are shown in Table 1, Figures 7, 8.
The benefit loss factor is set to 10, the load priority weight is set to
two levels of 1 and 10, and the standard deviation of the ultra
short-term forecast error of the renewable energy output is set to
0.2 times the output of renewable energy generation. The
optimized results are as follows.

FIGURE 5 | Power supply benefits of the two methods in each period.

FIGURE 6 | The power network with power storage nodes based on the
IEEE 39-Bus system for case 2.

TABLE 1 | Power Supply Benefit of the two systems.

System Total power supply
benefit (MWh)

System with Power Storage 6877

System without Power Storage 7166
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From Table 1 and Figure 7, it can be concluded that from the
perspective of the power supply benefit in each period, the system
with power storage does not always perform better than the
original systemwithout power storage. The reason is that a part of
the generator nodes’ power in the system with power storage is
absorbed by power storage nodes in certain periods, so the power
supply benefits of these periods are often lower than the original
system without power storage. However, the total power supply
benefit of the power network with power storage increased by
4.2% than that of the original power system, showing the
advantages of adding power storage. Besides, it can be seen
from Figure 8 that the input power of high-priority loads in
the system with power storage is higher than that of the system
without power storage in most periods, while the input power of
low-priority loads is lower than that of the system without power

storage in most periods, indicating that loads with high power
supply priority in the system with power storage account for a
larger proportion of power supply. It can be concluded that the
power system with power storage nodes guarantees the
continuous power supply of critical loads at the expense of the
power supply of low-priority loads, improving the total power
supply benefit.

3.2.2 The Relationship Between the Output of
Renewable Energy Generator Nodes and the Power of
Storage Nodes in Each Period
To study the mechanism of how power storage plants improve
the power supply benefit of power network with high penetration
of renewable energies under extreme environments, this paper
analyses the relationship among the forecasted output of
renewable energy generator nodes, the planned output of
renewable energy generator nodes, and the power of power
storage nodes in the system with power storage nodes in each
period, as shown in Figure 9.

It can be concluded from Figure 9 that the power storage can
help regulate the fluctuant output of the renewable energy
generation, like “cutting the peak and filling the valley.” When
the output of the renewable energy generation is high, power
storage plants act as loads by absorbing electricity power, while
the output of the renewable energy generation is low, power
storage plants act as generators by releasing electricity power.
Unlike the power system under normal circumstances, the load is
considered controllable in extreme environments, so the load is
not volatile. The peak shaving effect of the power storage node in
the optimization model is based on the extreme environment
where the power supply is insufficient, and loads have a difference
in power supply priority. When the output of the renewable
energy generation is high, the power supply of the high-priority
load may be saturated. During this time, the power supply benefit
of supplying the remaining power to a low-priority load is poor.

FIGURE 7 | Power supply benefits in each period of the two systems.

FIGURE 8 | Input power of loads in each period of the two systems.

FIGURE 9 | Relationship between the output of renewable energy
generator nodes and the power of power storage nodes in each period.
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Thus the power storage plants store the electric power, which is
relatively sufficient. When the output of the renewable energy
generation is low, the power storage plants act as generators by
releasing power, which can help high-priority loads getting better
power supply when the power supply capacity is insufficient,
ensuring the continuous power supply of the critical load. As a
result, the power storage plants can help promote the short-term
power supply benefits after disasters.

4 CONCLUSION

The problem of optimizing the power supply to critical loads after
disasters considering the uncertainty of renewable energy output
for a power network is studied in this paper. The overall power
supply benefit of the power network with high penetrations of
renewable energies in several post-disaster periods is identified as
a resilience indicator of the power system with the consideration
of the priority of different loads and safety risks. An optimization
model for obtaining the total maximum power supply benefit is
established with the spinning reserve ratio in each period, and the
power of each node is taken as decision variables. The priority
difference of each load and the negative impact of the failure to
supply load as planned caused by the insufficient actual output of
the renewable energy and insufficient spinning reserve is
comprehensively considered in the objective function.
Simulations on the IEEE 39-Bus Test Case are performed to
verify the superior performance of the proposed method. The
results show that the optimization method can flexibly determine
the spinning reserve ratio and the power of each node in extreme
environments, and increase the total power supply by 7.45%.
Besides, another case studied is implemented to analyze the
impact of power storage plants on the power supply benefits
for power networks with high penetrations of renewable energies

in extreme environments. Results show that the system with
power storage guarantees the continuous power supply of critical
loads by sacrificing the power supply for low-priority loads and
improving the system’s total power supply benefit.
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The Robustness of Interdependent
Directed Networks With Intra-layer
Angular Correlations
Zongning Wu, Zengru Di and Ying Fan*

School of Systems Science, Beijing Normal University, Beijing, China

The robustness of interdependent networks is a frontier topic in current network science. A
line of studies has so far been investigated in the perspective of correlated structures on
robustness, such as degree correlations and geometric correlations in interdependent
networks, in-out degree correlations in interdependent directed networks, and so on.
Advances in network geometry point that hyperbolic properties are also hidden in directed
structures, but few studies link those features to the dynamical process in interdependent
directed networks. In this paper, we discuss the impact of intra-layer angular correlations
on robustness from the perspective of embedding interdependent directed networks into
hyperbolic space. We find that the robustness declines as increasing intra-layer angular
correlations under targeted attacks. Interdependent directed networks without intra-layer
angular correlations are always robust than those with intra-layer angular correlations.
Moreover, empirical networks also support our findings: the significant intra-layer angular
correlations are hidden in real interdependent directed networks and contribute to the
prediction of robustness. Our work sheds light that the impact of intra-layer angular
correlations should be attention, although in-out degree correlations play a positive role in
robustness. In particular, it provides an early warning indicator by which the system
decoded the intrinsic rules for designing efficient and robust interacting directed networks.

Keywords: robustness, interdependent directed networks, intra-layer geometric correlations, targeted attacks,
network embedded

1 INTRODUCTION

In the past few decades, increasing studies had proved that most real-world networks are multi-
layered by dependency connectivity to interact with one another, and such structures are of great
interest in the aspect of the robustness [1–6]. An emerging field is also called the robustness of
interdependent networks, interconnected networks, or interdependent networks. Indeed, cascading
failures of interdependent networks are possible to induce catastrophic consequences: the failure of a
node in one network leads to the collapse of the dependent nodes in other networks, which in turn
may cause further damage to the first network [7, 8]. Enhancing the understanding of the real-world
dynamical process thus needs to focus on the structure of interdependent networks, which is of
utmost importance for preventing crashes or for engineering more efficient and stalwart networked
systems [9, 10].

The study of the robustness for interdependent networks has been widely investigated in across-
layers and intra-layers features of topology structures, including the degree correlations [11, 19], the
coupling strength between layers [12], the community structure [13, 14], the historic dependency

Edited by:
Gaogao Dong,

Jiangsu University, China

Reviewed by:
Chengyi Xia,

Tianjin University of Technology, China
Hao Peng,

Zhejiang Normal University, China

*Correspondence:
Ying Fan

yfan@bnu.edu.cn

Specialty section:
This article was submitted to

Social Physics,
a section of the journal

Frontiers in Physics

Received: 09 August 2021
Accepted: 23 September 2021

Published: 13 October 2021

Citation:
Wu Z, Di Z and Fan Y (2021) The

Robustness of Interdependent
Directed Networks With Intra-layer

Angular Correlations.
Front. Phys. 9:755567.

doi: 10.3389/fphy.2021.755567

Frontiers in Physics | www.frontiersin.org October 2021 | Volume 9 | Article 7555671

ORIGINAL RESEARCH
published: 13 October 2021

doi: 10.3389/fphy.2021.755567

40

http://crossmark.crossref.org/dialog/?doi=10.3389/fphy.2021.755567&domain=pdf&date_stamp=2021-10-13
https://www.frontiersin.org/articles/10.3389/fphy.2021.755567/full
https://www.frontiersin.org/articles/10.3389/fphy.2021.755567/full
https://www.frontiersin.org/articles/10.3389/fphy.2021.755567/full
http://creativecommons.org/licenses/by/4.0/
mailto:yfan@bnu.edu.cn
https://doi.org/10.3389/fphy.2021.755567
https://www.frontiersin.org/journals/physics
www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org/journals/physics#editorial-board
https://doi.org/10.3389/fphy.2021.755567


[15], the degree heterogeneity [16], and so on. In particular, the
correlated structures affect the structural robustness in diverse
fashions: strong degree correlations across layers suppress
susceptibility to a social cascade process [17] and be robust
against targeted attacks [18]. For another branch of studies,
attentions have shifted to understanding the dynamical process
of interdependent networks by hidden geometric correlations
[19–21]. The geometric correlation contains two parts: one, the
radial correlation is equal to degree correlation, which has been
widely discussed on its contribution to systems robustness; and
two, the angular correlation is a novel statistical property.
Angular correlations across layers can produce the lower
outbreak threshold [21] and mitigate the breakdown of mutual
connectivity under targeted attacks [20].

Even though the robustness of interdependent networks has
received much research interest, few studies focus on
interdependent directed networks. Taking the real-world
scenes into consideration, network structures are generally
asymmetric, which may cause a more enriched phenomenon
in the critical behaviors of the robustness [22, 23]. For instance,
different measures characterize the feature of nodes in directed
systems: in-degrees, out-degrees, and their correlations (i.e., in-
out degree correlations). The robustness of many real-world
systems increases as the in-out degree correlations [22]. An
open question is whether other correlations indexes affect the
robustness of interdependent directed networks, even in the state
of the high in-out degree correlations, or not?

Inspired by those studies, we argue for a need to study the
robustness of interdependent directed networks in hyperbolic
space. Here, we expand the concept of geometric correlations [19]
to interdependent directed networks, defined as intra-layer geometric
correlations which are derived from directed structures. Specifically,
each layer of interdependent directed networks is represented by four
hidden geometric features in hyperbolic space: in-radius, out-radius,
in-angles, and out-angles [24]. To this end, intra-layer geometric
correlations include intra-layer radial correlations (i.e., equivalent to
in-out degree correlations) and intra-layer angular correlations. In this
study, wewill simulate and investigate the effects of intra-layer angular
correlations on the robustness of artificial interdependent directed
networks.Meanwhile, we analyze the intra-layer geometric correlation
and its contribution to robustness in real-world systems by mapping
interdependent directed networks into hyperbolic space.

This paper is structured as follows. Section 2 introduces the
basic knowledge, including hyperbolic embedding methods,
cascading failure model, and artificial geometric model for
interdependent directed networks. In section 3, we analyze the
influence of intra-layer angular correlations on robustness in both
artificial networks and real-world networks. Section 4 concludes
the paper finally.

2 MATERIALS AND METHODS

2.1 Interdependent Networks
Interdependent networks can be defined as a sequence of graphs:
G � {GA, GB. . .}. Usually, nodes in two or more monoplex
networks are adjacent to each other via edges that are called

dependency edges [1]. In our paper, interdependent directed
networks contain two layers in terms of a layer A and a layer
B, and each layer is a directed and unweighted scale-free network
with the size NA � NB �N, as shown in Figure 1. Thus, the degree
distributions of in-degree and out-degree are the power-law
distribution in interdependent directed networks, where cin
and cout are the power-law exponent of in-degree and out-
degree, respectively. In Mathematics, it is sufficient to provide
the adjacency matrix to formally characterize interdependent
directed networks. For each layer (e.g., network A), and an
asymmetric N × N matrix A whose generic entry aij � 1 if a
link from node i to j exists, otherwise aij � 0.

2.2 Cascading Failure Model
One may observe cascades in interdependent directed networks,
i.e., avalanches of failures triggered by the failure of one or more
nodes, as the nodes are removed gradually with a specific order K.
K is defined by K �max(kA, kB), where the degree of nodes in the
network A or B are set by kA � kA,in + kA,out or kB � kB,in + kB,out. In
practice, we begin removing a fraction 1 − p in network A and a
fraction 1 − p in network B, and removing all the links connected
to these removed nodes. For interdependent nodes across layers,
if node i fails to function due to being attacked or isolated, node i
also fails in another layer. We continue this process until no
further new failed nodes can occur.

To measure the robustness for interdependent directed
networks under targeted attacks, we compute its mutually
connected components (MCC) in each step of removing nodes
with fraction 1 − p. Each layer network fragments into MCC,
within which each pair of nodes can reach each other by a path [7,
20]. Some nodes in the MCC of the layer A network will play an
important function in the layer A network, but they may not exist
in the MCC of layer B. Thus, we define the MCC of
interdependent systems to be the average value of all layers. A
similar definition also applies to calculate the second maximum
connected component (2nd-MCC). By doing this, when the

FIGURE 1 | Illustration of interdependent directed networks. Directed
networks A and B are coupled by dependency links (dotted lines).
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reserved fraction p is tuned increasingly from zero to a unit, at a
certain critical fraction pc, the MCC of networks shifts from zero
to non-zero. When p < pc, the interdependent networks have no
MCC, and otherwise p > pc. The critical fraction pc thus reveals
the robustness of interdependent directed networks, i.e., the
smaller pc, the higher network robustness.

2.3 The Intra-layer Geometric Correlations
Intra-layer geometric correlations are composed of intra-layer
radial correlations and intra-layer angular correlations in a
certain layer, obtained by embedding interdependent directed
networks into hyperbolic space. Therefore, we introduce the
A-PSO (the asymmetric popularity and similarity
optimization) model to map each layer of interdependent
directed networks into hyperbolic space [24].

In this model, each node i is firstly split into two sets (ai in the set
a and bi in the set b), and a directed link goes from a node i to a node
j, which will be transformed a link between ai and bj. Then, each pair
of nodes ai and bj correspond to polar coordinates (θa,i and ra,i) and
(θb,i and rb,i), respectively. The radial coordinates can be calculated
by κ − rmapping: r � R − 2ln(κ/κmin), where hidden variable κ*,i(* ∈
{a, b}) is derived from ρ(κ*) � (c − 1)κ(c−1)min κ−c* , the minimum of
hidden variable κmin � �k(c* − 1)/(c* − 2), and θ is drawn from
uniform Probability Density Function (PDF). Finally, the directed
link is created by any integrable function f(χ) � (1 + χβ)−1 in
hyperbolic space, where hyperbolic distance χ � ra,i + rb,j + 2ln(dai,bj/
2), β is a model parameter.

In practice, we do not know the nodes’ coordinates by given
the adjacency matrix A of a layer. We are interested in the
conditional probability P(θ, κ|A) that the possibility of
assigning a coordinate to each node, giving our observed
network data. Following Bayes’ rule, we have

P({κ, θ}|aij)∝P(aij|{κ, θ})P({κ, θ}). (1)

where the posterior distribution P({κ, θ}|aij) is proportional to
two components: the likelihood P(aij|{κ, θ}) of the network data
aij, the prior probability P({κ, θ}) κ and θ are obtained by
following some constraints mentioned above, and we write
P({κ, θ}) � 1 if the constraint is satisfied and otherwise P({κ,
θ}) � 0. Thus, the likelihood can be calculated as followed:

P(aij|{κ, θ}) � ∏
1≤i≠j≤N

f(χ)aij[1 − f(χ)]1−aij , (2)

where hidden variables are solved by κi � ki − c/β and angular
coordinates are inferred by using the localized Metropolis-
Hastings (LMH) algorithm [25, 26].

To this end, we have the angular coordinate (θa; θb) and the
radial coordinates (ra; rb) in according with giving a directed
network layer. Then, we use mutual information to describe
intra-layer geometric correlations. Formally, the mutual
information about two random various X, Y is obtained by [27].

I(X;Y) � ∫
Y
∫

X
p(x, y)ln p(x, y)

p(x)p(y)( )dxdy, (3)

where p(x, y) is the joint probability density function of X, Y,
and p(x), p(y) are marginal PDF of X and Y. In this paper, the

intra-layer angular correlation of each layer is quantified by
the normalized mutual information NMIθ � I(θa; θb)/max
{I(θa; θa), I(θb; θb)}. Similarly, the intra-layer radial
correlation is defined as NMIr � I(ra; rb)/max{I(ra; ra), I(rb;
rb)}. The higher the NMI (NMI ∈ [0, 1]), the stronger are the
intra-layer geometric correlations.

2.4 Artificial Geometric Model
We simulate targeted attacks on artificial networks to investigate
the relationship between the robustness and intra-layer angular
correlations. The geometric multiplex model (GMM, Ref. [19]) is
applied to generate the artificial undirected interdependent
networks with across-layer geometric correlations. Inspired by
it, we use this framework to develop a single-layer directed
network with an intra-layer geometric correlation. The
difference between the GMM and our work is that we aim to
obtain the out-direction and the in-direction coordinates in a
specific correlation. In Figure 2, each directed layer is generated
according to the following steps:

Step 1. Determine the initial parameters: the network size N,
the exponent β of the connection probability, the power-law
exponent of out-degree ca, the power-law exponent of in-degree
cb, the average degree �k, the intra-layer radial correlation v ∈ [0,
1], and the intra-layer angular correlation g ∈ [0, 1].

Step 2. Determine the hyperbolic coordinates with a certain
correlation in each layer of interdependent directed networks.

First of all, each node is assigned in-direction hidden variables
κb, θb in the set b, as sampled from ρ(κb) � (cb − 1)κ(cb−1)b,min κ

−cb
b and

uniform PDF, respectively.
Secondly, the out-direction angular coordinates are chosen

from θa �mod[θb + 2πli/N, 2π], where li is an arc length of radius
R in a hyperbolic disc, which is satisfied by zero-mean truncated
Gaussian PDF, defined as fσ � 1/σϕ(l/σ)

Φ(N/2σ)−Φ(−N/2σ), σ � σ0(1/g − 1),
σ0 �min[100, N/4π]. ϕ(x) is normal distribution.Φ(x) is the PDF
of ϕ(x).

Thirdly, each node of out-direction radial coordinates ra
is assigned. Notice that ra is taken the place of the hidden
variables κa to implement the algorithm easily. Specifically,
the κa is derived from the copulas function
Cη(F(κa), F(κb)) � e−[−ln(F(κb))

η+(−ln(Fκa))η]1/η , where F(κa) �
1 − κ

(1−ca)
a κ

(ca−1)
a,min , F(κb) � 1 − κ

(1−cb)
b κ

(cb−1)
b,min , η � 1/(1 − v), the

minimum of hidden variable κa,min � �k(ca − 1)/(ca − 2) and
κb,min � �k(cb − 1)/(cb − 2). We then transform hidden
variables to radial coordinates ra � R − 2ln(κa/κa,min) and
rb � R − 2ln(κb/κb,min).

In particular, when g � 1 and v � 1, the coordinates of each
node is identical in the two directions (that is, θa � θb and κa � κb,
respectively), and a generated network degenerates into a
undirected network. To overcome this problem, we regard v �
0.99 and g � 0.99 as the full correlations (i.e., v � 1 and g � 1) in
this paper and make sure to generate a directed network.

Step 3. Determine the artificial networks. Links are created by
the connection probability, i.e., each node pair i, j is connected by
probabilities f(χij) � (1 + χβ)−1, χij � ΔθN�k

βsin(π/β)κiaκjb and Δθ � |π −

|π − |θia − θjb‖|. To do so, a layer of the artificial network has been
constructed. The steps 1–3 are repeated to generate another layer.
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FIGURE 2 | The flow diagram of construction teach layer of artificial interdependent networks. Yellow nodes and blue nodes are represented in-direction nodes and
out-direction nodes, respectively.

FIGURE 3 | Targeted attack in artificial networks. (A,B) Targeted attacks on different kinds of synthetic networks with N � 5,000. (C) The size of the 2nd-MCC as a
function of p for different sizes N. we set gA � gA � 1, rA � rA � 0 in the correlation case and gA � gA � 0, rA � rA � 0 in the non-correlation case. (D–F) Targeted attacks on
three kinds of synthetic networks with coupling strengths q. (G,H) Simulate targeted attack with different intra-layer angular correlations, and N � 500. The results are
averages over 100 realizations. (I) illustrates the relationship between parameter g and Pearson correlation coefficient in the artificial model.
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3 RESULTS

3.1 The Influence of Intra-layer Angular
Correlations on Robustness in Artificial
Networks
In this section, all artificial networks are double-layer directed
networks, where a pair of nodes across layers are interdependent.

The artificial geometricmodel is used to generate each layer which is a
heterogeneous directed network with the power-law exponent of out-
degree ca� 2.6, the power-law exponent of in-degree cb� 2.6, average
node degree �k � 6, and the parameter β � 3.5. The intra-layer angular
correlation and the intra-layer radial correlation are denoted by the
symbols ( gA, vA) in layer A and ( gB, vB) in layer B.

By doing this, three kinds of artificial networks have been
generated to simulate targeted attacks, as shown in Figures 3A,B.

FIGURE 4 | Illustration of the reshuffled counterpart of original networks. In the example, we exchanged the ids of nodes b1 and b4, thereby destroying the intra-
layer topological similarity.

FIGURE 5 | The relative size of the MCC against the remaining fraction p of nodes remaining in the system for real interdependent directed networks, including
genetic interactions networks (A), C.elegance neurons networks (B), world trade networks (C), and social networks (D). The orange line and the blue line represent the
results of real-world networks (Original) and their reshuffled counterparts (Reshuffled), respectively.
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Results reveal two geometric contributions to the robustness.
One, the value of pc in the orange line is larger than others, which
shows that intra-layer angular correlations increase the
vulnerability of interdependent directed networks. Notice that
our results are in contrast to the situation on across-layer
correlations between interdependent networks [20], which
reveals that intra-layer angular correlations are hidden factors
to understand complex systems. Two, such vulnerability will be
exacerbated by the increase in the number of layers. Additionally,
we also provide the behavior of cascading failures for the 2nd-
MCC in different size systems. The largest 2nd-MCC achieves its
extremum near the critical point, which is a way to estimate and
compare pc. Figure 3C illustrates the extreme value point pc for
interdependent directed networks with full angular correlations is
always significantly higher than the case of the non-angular
correlations. Multi-subsystem interaction and its hidden
geometric structure thus should be considered designing
network systems more robust. Additional, we analyze the
fraction of coupling strength q ∈ [0, 1], where q � 0 represents
that network systems become two single and independent
networks, and q � 1 represents the mapping relationship of
nodes between two layers is one to one. Figures 3D–F
illustrates that the results of Figure 3A can expand to general
cases (the inter-layer coupling of arbitrary proportions).
Figure 3F shows their percolation behaviors with the fraction
of remaining nodes p changing from 0 to 1 under intra-layer
angular correlations and different coupling strengths q. The
results show that decreasing coupling strength can mitigate the
vulnerability of interdependent directed networks with the intra-
layer angular correlation against targeted attacks.

To study this issue further, we examine the impact of different
angular correlations on robustness by several variations of artificial
networks, as shown in Figures 3G,H. As intra-layer angular
correlations decrease, the vulnerability of directed systems is
mitigated, irrespective of the effect of intra-layer radial correlations.
This means that, although the contribution of in-out degree
correlations is positive to robustness for interdependent directed
networks, intra-layer angular correlations play an essential factor in
undermining the robustness. Thus, intra-layer angular correlations
have an early-warming function when interdependent directed
networks face a sudden extreme attack. In addition, we also found
that such an increasing trend is not apparent in low-correlation
situations. To analyze the cause, we checked the relationship

between parameter g and the Pearson correlation between intra-
layer angular coordinates. Figure 3I suggests that the nonlinear
relationship induces the phenomenon mentioned above.

3.2 Linking Intra-layer Angular Correlations
to Robustness in Real Interdependent
Networks
The influence of intra-layer angular correlations on the robustness in
real-world interdependent networks is simulated in this subsection.
Empirical networks are all derived from open databases and describe
in detail, as followed. 1) C. elegans neural dataset describes the neural
interconnection via chemical synapses and gap junctions, which can
be obtained from the Wormatlas database [28]. The nodes are
neurons, and each layer corresponds to a different type of synaptic
connection. 2) International trade dataset considers different types of
trade relationships among countries, obtained from Ref. [29]. The
worldwide food import/export network is an economic network in
which layers represent products, nodes are countries, and edges at
each layer represent import/export relationships of a specific food
product among countries. Each layer is directed and weighted
networks with 214 nodes. 3) Arabidopsis interdependent Genetic
networks are obtained from the Biological General Repository for
Interaction Datasets (BioGRID, thebiogrid.org), a public database
that archives and disseminates genetic and protein interaction data
from humans and model organisms [30, 31]. Each layer is directed
and unweighted networks with 1,449 nodes after removing the
isolated nodes. 4) Social networks consist of 3 kinds of (Co-work,
Friendship, and Advice) between partners and associates of a
corporate law partnership [32, 33]. Each layer is directed and
unweighted networks.

Secondly, we construct reshuffled counterparts (so-called
reshuffled networks) from real-world networks (so-called
original networks). The reshuffled counterpart is a variant of
the original network to alter intra-layer geometric correlations.
Specifically, each layer (a directed network) is transformed into a
bipartite structure, as shown in Figure 4, and randomly
reshuffled nodes’ ID of the set b in a way. Notably,
interdependent nodes are also reshuffled in the same way in
other layers if nodes’ ID is reshuffled at a layer. Node b1 and node
b4 are also reshuffled in layer B, when node b1 and node b4 are
reshuffled in layer A, To this end, the reshuffled counterparts are
destroyed the intra-layer geometric correlation and preserved
across-layers geometric correlations.

Then, each layer for these networks can be embedded into a
hyperbolic space, where each layer is represented by a group of
angular coordinates (θa, θb) and a group of radial coordinates (ra,
rb). To validate the influence of intra-layer geometric correlations
on this real-world multiplex network, we implement targeted
attacks on the original networks and reshuffled networks for
empirical networks, respectively. Figure 5 displays that the pc of
original networks is smaller than their reshuffled counterparts
under targeted attacks. We also observe that theNMIθ,ori is always
larger than the NMIθ,re for different real-world networks, as
shown in Table 1. Linking those results, we find that the
larger the value pc, the stronger intra-layer angular
correlations. It is the reason why interdependent directed

TABLE 1 | The basic properties of empirical directed networks. NMIθ,ori and
NMIθ,re present the strength of the intra-layer angular correlation in original
networks and reshuffled networks, respectively.

Data set N Link NMIθ,ori NMIθ,re

Social networks, layerA (Advice) 71 892 0.859 0.846
Social networks, layerB (Co. − work) 71 1,104 0.865 0.813
World trade, layerA (Creamfresh) 214 962 0.808 0.704
World trade, layerB (Cheese) 214 1,195 0.838 0.754
C.elegance neurons, layerA (ElectrJ) 281 1,032 0.886 0.874
C.elegance neurons, layerB (PolySyn) 281 950 0.831 0.725
Genetic interactions, layerA (direct) 1,449 2,499 0.718 0.629
Genetic interactions, layerB (physical) 1,449 2,205 0.640 0.539
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networks are more robust after the reshuffle. Results also suggest
our arguments and highlight the importance of intra-layer
angular correlations.

4 CONCLUSION

The hidden geometric structures of real-world networks provide a
new perspective in revealing a relationship between topology and
dynamical processes. Here, we examine the importance of intra-
layer geometric correlations in understanding the robustness of
interdependent directed networks from the perspective of
hyperbolic embedding. For one thing, simulations are
performed targeted attacks on artificial networks with diverse
geometric correlations. Our main finding is that strong intra-
layer angular correlations can quickly shift the sizes of the
mutually connected components to fragmentation. The
robustness will decrease as the increase in intra-layer angular
correlations, even if in the case of in-out degree correlations.
Couple strength q impacts the robustness: robustness of
interdependent directed networks enhances as decrease of q.
For another, we have studied two-layered empirical directed
networks, validating that intra-layer geometric correlations
also induce the vulnerability of real-world systems. Our results
may help design a more robust network system and plan efficient
protection strategies. However, it is also the beginning of
clarifying the relationship between geometric structures and

the dynamical process in interdependent directed networks.
There are also some limitations in this work. For instance, the
contribution of geometric correlations and coupling patterns
across layers in the aspect of robustness has not yet been
discussed. Exploring the failure mechanism of one-to-one
correspondence nodes between layers may also offer new
insights into studying the robustness of multilayer networks.
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Resilience of NematodeConnectomes
Based on Network
Dimension-reduced Method
Duan Dongli 1*, Wu Xixi 1 and Si Shubin2

1School of Information and Control Engineering, Xi’an University of Architecture and Technology, Xi’an, China, 2School of
Mechanical Engineering, Northwestern Polytechnical University, Xi’an, China

The whole map of nematode connectomes provides important structural data for exploring
the behavioral mechanism of nematodes, but to further reveal the functional importance
and resilience pattern of nematode neurons, it is necessary to effectively couple the
regulatory relationship between neurons and their topology. Here, with a typical signal
excitation function we propose a model to capture the interacting relationship between the
neurons, because a differential equation depicts the activity of a neuron, n neurons mean
we need high-D differential equations to capture the neural network. With mean-field
theory, we decouple this N-dimension question into a one-dimension problem
mathematically. In our framework, we emphatically analyze the characteristics,
similarities and differences of the structure and dynamical behaviors of the neuronal
system for Caenorhabditis elegans and Pristionchus pacificus. The comparing results of
simulating method and theoretical approach show that the most important homologous
neurons between C.elegans and P.pacificus are I2 and NSM, which may lead to their
different behavior characteristics of predation and prey. At the same time, we expect that
the xeff index can be used to reveal the importance of neurons for the functional evolution
and degeneration of neural networks from a dynamic perspective. In the hermaphroditic
and male C.elegans, we test the control level of the intermediate neuron groups over the
output neuron groups and the single neuron. These results suggest that our theoretical
approach can be used to reveal the effects of bio-connectivity groups, potentially enabling
us to explore the interaction relationship of neural networks in humans and animals.

Keywords: resilience, mean-field theory, network dynamics, nematodes connectomes, neural networks

1 INTRODUCTION

Due to special physiological structure and easy modeling, nematode has become the primary model
to reveal the neurons structure and functional mechanism for humans and animals [1, 2]. After four
decades of exploration, nematodes are the first organisms, for which the wiring diagram of their
entire nervous system has been mapped at the cellular level [3, 4]. Even Witvliet et al reconstructed
full brain of eight isogenic Caenorhabditis elegans individuals across postnatal stages to investigate
how it changes with age [5]. This contributes to a more detailed and accurate understanding and
exploration of human and animal behavior at the neuronal level, as well as an analysis of the
functional importance of individual neurons at the systemic level. Therefore, we coupled the
structural information of the neuronal map of the nematode and the functional relationship
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between the neurons, predicted the functional involvement of
specific neurons or synapses in defined behavioral
responses [6, 7].

Resilience is system’s ability to retain its basic functionality
while errors, failures and environmental changes occur, which
universally presents in most dynamical systems [8]. Thanks to the
rapid development of network theory, the description of the
nonlinear dynamics that governs the interactions between the
neurons have been extracted. According to external disturbance
for neuron systems, deleting interneurons or synapses may
disconnect the networks, or make a great impact on the
individual behavior [9]. The methods to explore the
nematode’s resilience mainly can be divided into two
categories. 1) Biological experiments: such as the gene labeling
and the neuron ablation. They can track some specific synapses or
their function in detail. The labeling approach can capture the
directionality of synaptic connections, and its quantitative
analysis of synapse patterns display excellent concordance with
electronic micrograph reconstructions [10, 11]. However, this
approach takes a lot of energy and is not universal. 2) Theoretical
experiments: using different mathematical methods and
engineering mechanisms, which can abstractly study the
function of outstanding nodes in nematodes [12–16]. For
example, according to the theory of symmetry group, they
found that the symmetry of the neural network has directly
biological significance, and its correctness can be strictly
proved by using the mathematical form of symmetry group.
This form makes it possible to understand the importance of
the structure-function relationship [17]. In addition, Yan also
applied network control principles to the connectomes, which
reveals both neurons with known importance and neurons which
was previously unknown [18]. Within a network control
principle, they add input signal to control the output of
neurons by a linear framework. The results remain reliable
with a small amount of disturbance to the reference
connectors, but large disturbances are likely to cause distortion.

Here we construct a framework to explore the resilience of
nematode connectomes: we use the signal excitation model to
describe and solve quantitatively structure-function relationship
of the nematode, which combines the biological behavior with
dynamic behavior. The application of signal excitation mode is
key to revealing how different behaviors, which contributes to
understand the mapping from network structure to function [19].
Since the network contains a large number of neurons, each
activity of synapse node or neuron node can be seen as a solution
of the high-D differential equations. However, calculating the
stable state of the neural system could be difficult or almost
impossible, especially when the system is large-scale. With a
network dimension-reduction method, we can derive an effective
one-dimensional dynamic model which captures the system
function of the neural networks. Finally, we use a weighted
average activity xeff to measure the neural performance of the
whole nematodes. Meanwhile, we introduce a weighted average
connectivity βeff to express the structural strength of the
nematode neuron system.

With the application of our framework into the neuron
networks of P.pacificus and C.elegans, the differences between

the predator and prey behaviors of these two nematodes can be
clearly quantified at the neural network level, and the key neurons
leading to the differences in nematode behaviors can be easily
identified as well. Similarly, for hermaphroditic and male
C.elegans, we apply our approach to discuss the core control
of the intermediate neuron groups to output neuron groups. Core
control means that the interneurons have great influence over the
output neurons or all the neurons after neuronal perturbation.

Actually, our approach is a general mathematical framework,
which couples the complex structure of the system with the
nonlinear activation function, and enriches the research
methods for exploring the functional behaviors of nematode.
We can reveal the underlying principle of the neural network in
this way. In the future, our theoretical methods can be applied to
more specific linkage groups, to do targeted quantitative
research [20].

2 NEURAL MODEL AND NETWORK
DIMENSION-REDUCED METHOD

2.1 Neural Dynamics Model
There are nonlinear regulation relationships between each
synapse in neural networks. Taking hyperbolic tangent
excitation function as an example in this paper, we give a
neural network decoupling method with a general network
structure. For the stimulation relationships between the
trillions of neuron synapses in human brain or animals, it
would enable the individuals show a much more complex
nonlinear phenomenon of affine transformation. The
activation function can be used to describe the coupling
mechanism among synapses as

dxi

dt
� I − xi

R
+ J

2
∑
N

j�1
Aij(1 + tanh(n(xj − α))), (1)

Where, xi describes the activity of the neuron i, I is the basal
activity of the neurons, R is the inverse of the death rate, α is the
firing threshold, and J is the maximal interaction strength
between pair of neurons. The adjacency matrix A depicts the
topology of the neuron networks. The coefficient n governs the
steepness of the sigmoid function, analogously to the Hill
coefficient n in gene regulatory networks [18]. Actually, the
Eq. 1 is made up of two parts: I − xi

R describes the growth rate
of the neuron itself, J

2∑
N
j�1Aij(1 + tanh(n(xj − α))) describes the

positive excitation effect of its neighbor neurons on neuron i.

2.2 Network Dimension-Reduced Method
When the system of Eq. 1 tends to a relatively stable state, which
means that the activities of the N individuals in the network are
constant values, so the N-dimensional nonlinear rate equations
all equal to 0. However, calculating the stable state of the system
requires to solve the N-dimensional nonlinear rate equations
numerically or analytically, which could be very difficult, or
almost impossible especially when the system is large-scale.
We present a new dimensionality reduction to explore the
interactive relationship between neuronal connectomes for
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nematodes with mean-field approximation. This approximation
is exact in the limit where the node activities are uniformly
distributed.

2.2.1 Theoretical Framework for Network Resilience
Once we get the value of xi for the neuron i from the solutions of
Eq. 1, we can quantify the performance and the connectivity
strength of the neural networks with a weighted average metrics
on the network topology following the way in [21]. Defining an
operator for the degree sequence of A as

Γ(y) � 1uAy
1uA1

� 〈ynn〉 � 〈soutj yj〉
〈soutj 〉 . (2)

Here, yi is a variable of neuron i, and y is the weighted average
of all the neurons. soutj is the outdegree of neuron j. In contrast, sini
represents the indegree of neuron i. This operator is used to
calculate the weighted average y over all nearest neighbor nodes
of network A.

In order to simplify the N-dimension of Eq. 1 and
approximate it to 1D formalism, we use a mean field
hypothesis. Here we define I − xi

R as F(xi), define (1 +
tanh(n(xj − α))) as G(xi, xj). Using Γ(G(xi, x)) ≈ G(xi, Γ(x))
approximate Eq. 1, we get

dxi

dt
� I − xi

R
+ sini

J

2
(1 + tanh(n(Γ(x) − α))). (3)

For the states of all nodes in the system, Eq. 3 can be rewritten
by the Hadamard product as

dx
dt

� I − x
R
+ sin◦

J

2
(1 + tanh(n(Γ(x) − α))). (4)

Where we used the Hadamard product ◦, namely
a ◦ b � (a1b1, . . . , aNbN)T. Eq. 4 is an equation composed of
N dimensions. In order to reduce the dimensionality of this set of
equations, we apply Γ(x) � 1TAx

1TA1 to both sides of Eq. 4, namely

dΓ(x)
dt

� Γ I − x
R
+ sin ◦

J

2
(1 + tanh(n(Γ(x) − α)))( ). (5)

Using Γ(F(x)) ≈ F(Γ(x)) and Γ(G(x, Γ(x))) ≈ G(Γ(x), Γ(x)), we
get the equation

dΓ(x)
dt

� I − Γ(x)
R

+ Γ(sin) J
2
(1 + tanh(n(Γ(x) − α))). (6)

In the process of dimension reduction, we introduce two
variables to describe the state of the system, where xeff
measures the neural performance of the whole nematodes, βeff
expresses the structural strength of the nematode neuron system,

xeff � Γ(x) � 1TAx
1TA1

, (7)

βeff � Γ(sin) � 1TAsin

1TA1
� 〈soutsin〉

〈s〉 . (8)

Lastly, we have successfully decouple this N-dimension
question into a one-dimension problem mathematically. Bring
Eqs 7, 8 into Eq. 6, one gets

dxeff

dt
� I − xeff

R
+ J

2
βeff(1 + tanh(n(xeff − α))). (9)

Subsequently, when the system comes to a stable state, it is
obvious that dxeff

dt � 0. Hence, we can further get that

βeff(xeff ) � 2
J

xeff

R
− I( )

1
1 + tanh(n(xeff − α)). (10)

Equation 10 describes the theoretical relationship between the
topology of the neuron networks and its dynamical performance.
Actually, by Eq. 10 we have decoupled the complex system of Eq.
1 into a 1D problem.

2.2.2 Simulation Method
From Eq. 10, we can obtain the theoretical curves of xeff for βeff.
To verify the correctness of our dimension-reduced method for
the system resilience of xeff, we use the ODE45 function to solve
the neural dynamics of Eq. 1, which can ensure we get the
numerical results of xi. Then, with the steady state vector x
and Eq. 2, which can separate the system from the topology
parameter βeff and the behavior parameter xeff. The steps to
simulate the neural dynamics are following

1. use ODE45 function to solve Eq. 1. We can obtain the stable
vector x. In our study we set I � n � 2, R � α � J � 1. The setting of
this parameter we refer to [16]. Assuming the network has N
neurons, the solution of the steady state vector is x � [x1, x2, . . .,
xN]. It is easy to know that in the steady state vector, the value of
column i represents the steady state activity xi of neuron i.

2. compute the xeff and βeff from Eq. 9. For the vector x
obtained in step 1 and the network indegree sequence sin, we can
get the system topology parameter βeff and the behavior
parameter xeff with the operator Γ(y).

3. compare the simulation results with the theoretical
solutions. From the theoretical curve of Eq. 10, we test
whether the simulation values of βeff and xeff fall on the
theoretical curves. In our experiments, the simulation points
agree well with the theoretical curve, which shows the
feasibility of our approach.

2.3 Datasets for Neural Networks
In this study, we used two data sets: pharyngeal nervous systems
of C.elegans and P.pacifica [22], all neuronal connections of
hermaphrodite and male C.elegans [3]. The groundbreaking
work of Cook and Bumbarger et al. provides a wealth data of
neural networks, which can help explore the wiring problem from
the perspective of structure.We want to couple the information of
structure and dynamical function, so as to probe into the complex
wiring problem of nematode from the network function and
system resilience.

The connection matrix for pharyngeal nervous systems of
C.elegans and P.pacifica was derived from the data set used by
Bumbarger in his earlier work [22]. The matrix contains neuron
connections and weights. The data and its experiment are used
for homology comparison of two nematode in our study.

In fact, because of the complex wiring of the nematodes, their
neurons have a precise functional grouping: input neuron,
intermediate neuron, output neuron. So, for the dataset of
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hermaphrodite and male C.elegans, instead of focusing on the
function of a single node in the nematode network, we focus on
the influence of the intermediate neurons on the output neurons.

Connectome adjacency matrices of hermaphrodite and male
C.elegans are gap junction, which were provided by Steven
J. Cook [3]. Notably, they presented the complete wiring
diagram of an animal nervous system for the first time in
2019, including adult C.elegans of both sexes. It is an
important milestone in the field of neuron science. The data
corresponding to one connectome has the following information:
the node, the weight, neuron names in each group. e.g.,
InterNeurons contains all the neurons that belong to the
“InterNeurons” group, neuron names in each subgroup, e.g.,
InterNeurons_1 contains all the neurons that belong to the
“InterNeurons_1” subgroup of the “InterNeurons” group.

3 RESULTS

3.1 Resilience of C.elegans and P.pacificus
P.pacificus (Figure 1A) and C.elegans (Figure 1B) have highly
similar synaptic structures, but quite different functions in the
pharynx [23], we mainly explore the different connective
structure and function in pharyngeal neurons.

We measured the functional differences of the connective
structure for C.elegans and P.pacificus with xi. As shown in
Figure 1C, by exploring the impact of the 14 pharyngeal

homologous neurons, we found that the values of M1 for
P.pacificus and C.elegans show the greatest difference, which
means that M1 is the most functionally different synapse
between the two nematodes. M1 is a motor neuron, and their
structure centralities of M1 in C.elegans and P.pacificus are quite
similar [22]. Our framework can help identify the potential
critical neurons, which may be inconsistent with the
traditional structural comparison.

Then, with the framework we explored the differences of the
predation behavior for the two nematodes through the system
resilience index xeff. As shown in Figure 1D, first of all, the
activities of C.elegans and P.pacificus were in good agreement
with our predicted theoretical curves. Secondly, we were awared
that the xeff of the P.pacificus simulation point is much higher
than C.elegans. That is to say, the total activity of the P.pacificus is
much higher than C.elegans. Nematode feeding strategies differ
greatly [24, 25]. P.pacificus have a necromenic association with
scarab beetles [22]. Their dauer larvae rest on the insect and
resume development after the beetle’s death to feed on microbes
on the decaying carcass. P.pacificus can be easily cultured on
bacteria [26], however, which is also predatory on other
nematodes. In fact, the difference of predation strategy leads
to the difference of neuron function. For example, differential but
coordinated regulation of pm1 and pm3 in P.pacificus represents
motor output that is specific to predatory feeding and does not
exist in C.elegans [27, 28]. Actually, the key characteristic of
P.pacificus is that it takes predation behavior actively for a long

FIGURE 1 |Comparison of function and structure of synaptic connectivity inC.elegans and P.pacificus. (A)Neuron network for P.pacificus. (B)Neuron network for
C.elegans. (C) Activity of 14 homologous synapses between C.elegans and P.pacificus. (D) System performance of C.elegans and P.pacificus while the neurons are
disturbed. The red circles represent the system resilience of C.eleganswhile the homologous synapses are disturbed. The blue circles represent the system resilience of
P.pacificus. The darker the color, the greater the effect of the neuronal perturbation.
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time [29, 30], while the C.elegans, which is preyed on, just eats the
food around it. Thus, from the neural level, we can conclude that
the system resilience index xeff could be used to reveal the
essential differences of the predation behavior for the two
nematodes that C.elegans are prey, and P.pacificus is more
likely to be predators [31].

Thirdly, we tested 14 pharyngeal neurons, which showed that
NSM and I2 are the neuron with the greatest reduction compared
with the original simulation point in Figure 1D. It meant that
NSM and I2 are the two most important homologous neurons. I2
is an interneuron, which play the role of coordinating corpus and
tooth contractions during predation. I2 are more highly
connected in P.pacificus and may function as network hubs.
Although there are no more detailed studies showing the
important function of NSM neurons, the high impact of which
on the system resilience in our results is sufficient for further
attention of biological experiments. Compared with Bumbarger’s
earlier biological experiments [22], the difference is that they
concluded that I1 and I2 are the most important candidate
neurons from the view of the system structure, but we found
NSM and I2 are the two most important homologous neurons
while considering the synaptic structural and functional
characteristics simultaneously.

In addition, a phenomenon occurs in our experiment from
Figure 1D, after neuronal perturbation (node deleting) of a few
homozygous neurons, the xeff of P.pacificus decreased, but xeff of
C.elegans increased. M4 is one of these special neurons. With its
necromenic beetle association, P.pacificus has an intermediate
position between the microbivorous C.elegans and true parasites
[32, 33]. In other words, C.elegans are prey and P.pacificus is more
likely to be predators. As one of the important feeding neurons in
the pharynx, M4 is closely related to predation strategy. So we
made a bold guess that M4 may degenerate in P.pacificus, but
evolve in C.elegans. More details in the Discussion.

3.2 Quantitative Analysis of Control Model in
Hermaphrodite and Male C.elegans
From the point of dynamics, the three-layer classification of
neurons provides a good basis for the discussion of control.
Here we see sensory neurons as input neurons, muscle
neurons as output neurons, and other categories as
intermediate neurons. We explore the control of the
intermediate neurons over the output neurons.

At the beginning, we want to find a class of intermediate
neurons that have core control over input neurons. Then, we can
further get which of the intermediate neurons has the highest
level of control. The control level is described by xi. The
interneurons ultimately serve all the neurons in the system, so
we also explore the control of the intermediate neurons over all
the neurons. In our experiment, aiming at a group of output
neurons or all neurons, if a group of interneurons are removed,
we should firstly calculate the xi, the one changes greatest,
indicating that the interneurons have core control level over
the output neurons or all the neurons.

Originally, We found the intermediate neurons group with the
greatest control over the output neuron group. For

hermaphrodite C.elegans, there are two types of output
neurons: SexSpecificCells-Muscle and BodyWallMuscles. As
shown in Figure 2A, after perturbation of the OtherEndOrgan
intermediate neurons, the xi of the SexSpecificCells-Muscle have
dropped mostly, this is to say, the OtherEndOrgan intermediate
neurons have the maximum control level over the
SexSpecificCells-muscle output neurons. By contrast, after
perturbing of the intermediate neurons, the xi of the
BodyWallMuscles changes barely, which means that the
intermediate neurons have no control over the
BodyWallMuscles output neurons. Male C.elegans also has two
output neurons: SexSpecificCells-BodyWallMuscles and
SexSpecificCells-Muscle. As shown in Figure 2C, when
perturbing the Sex-OtherOrgan intermediate neurons, the xi of
the SexSpecificCells-BodyWallMuscles and the SexSpecificCells-
Muscle both decease sharply, so the sex-OtherOrgan
intermediate neurons have the maximum control over the
SexSpecificCells-BodyWallMuscles output neurons, and also
have the maximum control over the SexSpecificCells-Muscle
output neurons. The final result is shown in a three-layer
model, as shown in Figures 2B–D.

As shown in Figure 2A, in hermaphrodite C.elegans, no
matter removing which group of interneurons, the line at the
bottom of the Figure 2A is always stable, which means that the xi
of the BodyWallMuscles is steady. When removing the
OtherEndOrgan intermediate neurons, what stands out in our
results is the xi of whole neurons (green line) decreases mostly.
However, in Figure 2C, for the sexOtherorgan intermediate
neurons in male C.elegans, all line corresponding to the
sexOtherorgan drop sharply, which both have great effect on
the neural network and the output neurons. As a result, we
conclude that although these intermediate neurons have no direct
control over the output neurons, they still play an important role
in the overall functional mechanism of C.elegans. Hence, even
though there is no decrease in the activity of the output neurons
after the ablation experiment, the average activity of all neurons
decreases significantly. In other words, the control mechanism
over the output neurons and the whole neurons are not
congruent.

Ultimately, we try to identify the intermediate neurons group
with the greatest control level. We measure the neuron
disturbance by degree in the intermediate group with core
control, and calculate the effect of neuron control by the
change of the mean value of xi. In Figure 3, the neurons in
Y-coordinate are arranged in degrees. As can be seen from the
Figure 3A, in the case of male C.elegans’ sexOtherorgan
intermediate group of neurons, the value decreases mostly
after the removal of CEPshVR neurons. So CEPshVR has the
maximum control over the SBmuscle output neurons group. As
shown in Figure 3C, the value in male C.elegans’ sexOtherorgan
intermediate neurons decreases sharply with the disturbance of
Int neurons. Consequently, the Int neurons have the maximum
control over the Smuscle output neurons group. Similarly, as
shown in Figure 4A, in the case of hermaphrodite C.elegans’
OtherEndOrgan intermediate neurons, the HSNR neurons have
the maximum control over the sexspecificcells-muscle output
neurons group. Briefly, for most of the interneuron groups, the
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higher the degree, the bigger circle in Figures 3, 4, the greater the
controlling impact. To illustrate more clearly, we mark in Figures
3B,D, 4B, The gray area in the middle displays the specific
neurons of the interneuron group, where the neurons of the
core control level are marked in yellow.

4 DISCUSSION

In our framework, the coupling method of network structure and
dynamical interactions enables us to establish a dynamical model
of neuron networks to explore the system performance. To
quantitatively solve the high-dimension rate equations, we
provide a way in which multi-dimensional features between
neurons can be reduced into one-dimension equation. Our
approach can help the realization of the mapping from
structure to function, and the quantitative measurement from
function to control for neuron systems.

Excepting this, we noticed that xeff of the P.pacificus
simulation point is much higher than C.elegans. With its
necromenic beetle association, P.pacificus has an intermediate
position between the microbivorous C.elegans and true parasites
[34, 35]. The omnivorous feeder P.pacificus should have the most
complex metabolic pathways for nutrition and protection against
defense and prey, comparing with the microbivorous C.elegans

[36, 37]. So we infer that the essence of this phenomenon is the
distinction of predation behavior caused the difference of
synaptic connection, which changes the structure of nematode
network.

Furthermore, we hope that our research could be used to
illustrate evolution and degeneration of neuron: M4 most likely
degenerates in C.elegans, evolve in P.pacificus. Combining the
differences in the two nematode predation strategies, and the
functions of M4, our evidence is as follows: M4 are known to be
one of the major excitatory neurons in C.elegans, which is
required for posterior isthmus peristalsis [38–40], it meant
that M4 plays a crucial role in the act of eating or swallowing
in C.elegans. However, the ablation experiments made by
Edelman and Garry have shown that MC are the only neurons
required for rapid eating in P.pacificus. But the ablation of other
cholinergic pharyngeal neurons, such as M2S and M4, only
slightly reduced feeding rates [41, 42]. In addition,
Trojanowski’s previous results demonstrate that this robust
and evolutionarily adaptable network is highly degenerate at
both the neural and genetic levels, the same behavior can be
stimulated by multiple neurons and different types of receptors
[41]. Avery and Horvitz even found out, in the C.elegans gene
ced-3 Mutant, probably MSpaaaaap (the sister of M4), can
sometimes take over M4’s function. Using a laser microbeam
to kill cells, they found that one of the extra cells in ted-3 worms,

FIGURE 2 | Control analysis of neuron group in hermaphrodite and male C.elegans. (A) Line chart of the change of the average activity by neuronal perturbation of
the each interneurons group in hermaphroditic C.elegans. (pink as the input neuron, blue as the intermediate neuron, and yellow as the output neuron, same as below).
(B) Model of the interneurons group with core control in hermaphroditic C.elegans. The groups of interneurons with maximum control were marked with yellow color,
same as below. (C) Line chart of the change of the average activity by neuronal perturbation of the each interneurons group in male C.elegans. (D) Model of the
interneurons group with core control in male C.elegans.
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tentatively identified as MSpaaaaap, could become a functioning
M4 neuron about half of the time, although it rarely or never fully
replaced M4 [38]. Given the above, we can not be absolutely sure

that M4most likely degenerates in C.elegans, evolve in P.pacificus,
but we hope our theoretical framework can help explore the
function of neurons in the evolution and degeneration process.

FIGURE 3 | Control analysis of single neuron in male C.elegans. (A) Activity line chart of SBmuscle, after neuronal perturbation of the Sexotherorgan intermediate
neuronal group in the male C.elegans by degree. Degree refers to the degree of the node in this nematode network, we calculated degree and sorted them. The order is
shown in figure: The size of the green circle represents the size of degree, same as below. (B) Control model of SBmuscle by the Interneuron group of Sexotherorgan.
The neurons with maximum control are shown in yellow color, same as below. (C) Activity line chart of Smuscle, after neuronal perturbation of the Sexotherorgan
intermediate neuronal group in the male C.elegans by degree. (D) Control model of Smuscle by the Interneuron group of Sexotherorgan. (SensoryNeurons:Sen;
SexSpecificCells-SensoryNeuron:Sex-Sen; SexSpecificCells -InterNeurons:Sex-Inter; SexSpecificCells -OtherEndorgans: Sex- OtherEndOrgans. Same as the others).

FIGURE 4 |Model exploration of single neuron hermaphroditism in C.elegans.(A) Activity line chart of SexSpecficalCells-muscle, after neuronal perturbation of the
SexSpecficalCells-motor intermediate neuronal group in the hermaphroditism C.elegans by degree. (B) Control model of SexSpecficalCells-muscle by the Interneuron
group of SexSpecficalCells-motor.
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To illustrate the power of our framework, we analyzed the
control model of hermaphroditic and male C.elegans. Based on
the data of Cook et al [3], our experiment abstracted the neuron
connection group from the real network to the theory level by a
nonlinear dynamical model, and obtained a measurable control
index of the intermediate neurons to the output neurons. The
control between different functional groups need to take into
account both structural and functional characteristics. It means
that our framework may help design more targeted and accurate
biological ablation experiments. To understand vividly, we
mapped the control model of the three-layer neurons, which is
accurate to the individual neurons [43, 44].

In sum, our theoretical research perfects the exploration of
the functional structure of nematodes, and breaks the
limitation of analyzing the function and control ability from
the structure. Comparing with the linear control model to
predict motor neuron controllability, Yan et al. use network
control principles, we emphasize the growth rate of the node
itself and the influence of its neighbors on the node [18, 45]
Importantly, this is a more efficient way to quickly target
groups of neurons, even individual neurons or synapses that
have core controlling power. In this view, our theoretical
approach contributes to exploring the importance and the
evolution mechanism of the individual neurons, and proves
how to calculate the control level with the dynamics. These
observations are not limited to nematode, but are also
applicable to connectome model organism with complete
data and clear background. However, the real interactions
of nematode connection network are much more
complicated than our dynamical model [46, 47]. We use
this model for theoretical exploration, there may be some

difference between our parameter setting and the real
system. We need to refer to more biological experiments for
further parameter setting and to use more complex dynamical
equations or generative models to capture the interactions in
our next work.
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Water consumption has been one of the most important topics in the field of environment
and economy. Even though the driving factors of water consumption have been well
studied, it is still a daunting task to reveal the influence of the status of provinces in the
entire supply chain. By combining the multi-regional input-output (MRIO) model and
complex network theory, an inter-provincial virtual water transfer (VWT) network was
constructed to analyze the overall structural characteristics of the network model and
identify the structural roles of each province. The constructed inter-provincial VWT
network exhibited the characteristics of a small-world network, that is, virtual water
can be easily transferred from one province to another. Moreover, network analysis
revealed that provinces with different positions in the VWT network played discrepant
structural roles. Panel regression analysis was further used to quantify the impact of
provincial structural roles on their water consumption. The results showed that water
consumption in China largely depended on some structural role characteristics in the VWT
network. Out-degree and out-strength characterizing the ability of direct exporting virtual
water exerted significant positive influences, while in-closeness featuring the indirect virtual
water importing rate had a significant negative effect on water usage. This indicated that
adjusting the uneven provincial consumption structure, the direct production demand of
downstream provinces and the indirect production activities in the supply chain would help
reduce water consumption. Therefore, to come true the goal of water conservation in
China, it would be necessary to improve the trade structure between direct and indirect
exporters and importers in the entire supply chain.

Keywords: water consumption, virtual water transfer, complex network, multi-regional input-output model, panel
regression analysis

1 INTRODUCTION

The State of Food and Agriculture 2020 report released by Food and Agriculture Organization of the
United Nations pointed out that due to factors such as population growth, socio-economic
development and the world’s shortage of fresh water resources, 3.2 billion people worldwide are
facing water shortages, and about 1.2 billion people live in agricultural areas with extreme water
shortages [1]. In the past 100 years, global demand for water has increased by 6 times, and will
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continue to grow steadily at a rate of about 1% per year in the
future [2]. With water resources per capita only a quarter of the
world average, China has a serious water shortage, which will be
exacerbated by climate change and environmental pollution and
ecosystem damage [3, 4]. The scarcity of water resources has
become a serious challenge facing the sustainable development of
human society.

The concept of virtual water provides new idea for solving the
problem of water scarcity. Different from physical water, virtual
water contains the amount of water needed to produce goods and
services, which provides a more systematical perspective for
investigating related issues [5, 6]. It not only has further
increased understanding of trade and water management
issues, both locally, regionally and globally, but also has
provided positive implications to the successful and
sustainable development of water resources [7]. Compared
with trans-basin water transfer projects, virtual water strategy
has the characteristics of easier operation, more convenient and
lower cost [8].

In the existing literature, the evaluation, driving factors and
economic benefits of virtual water flow have attracted extensive
attention from researchers [9, 10]. For research methods, Input-
output model has been universally selected to calculate virtual
water flow [11, 12]. The input-output table uncovers the
relationship between production and consumption in all
economies, which provides an approach to track the flow of
virtual water in the economic system [13, 14]. Many previous
studies focused on the use of input-output (IO) analysis to
account for virtual water in a country or single region [15,
16]. Given the imbalance of regional production and
consumption structure in China, it is essential to reveal the
virtual water flow between provinces. Multi-regional input-
output (MRIO) model can be employed to system atically
explain the input-output relationship between different sectors
in different regions, so as to trace how the resource and
environment influenced by the consumption activities in one
region is transferred to a specific production sector in another
region through the cross-regional supply chain [4].MRIO model
has a comprehensive system boundary to avoid the defects of
incomplete supply chain, which has been universally chosen to
quantify the virtual water flow between regions [17, 18].

Based on the analysis of IO and MRIO, researchers have
revealed the factors affecting water consumption from different
perspectives. Some of these studies focus on the impact of virtual
water on water consumption [19–21]. For example, Wang et al.
found a significant correlation between virtual water imports and
water consumption [22]. In addition, the Logarithmic Mean
Divisional Index (LMDI) method can decompose all factors
without residuals, which is used to quantitatively analyze the
driving effect of variables on changes in water consumption
[23, 24]. Structural decomposition analysis (SDA) combined
with input-output analysis is used to reveal the economic
reasons for changes in water consumption, including
population, GDP per capita, water use intensity, technology,
and final demand [25, 26]. Liu et al. demonstrated that
increasing the export of virtual water in goods and services
greatly increases water consumption [26]. These works laid a

solid basic to analysis the effect of individual economic activities in
regional water consumption and provided valuable implications
for reducing regional water consumption.

In China, with the increasingly close inter-provincial trade, the
national economy has become an intricate giant system in which
each province plays its own unique role and interacts with each
other. The water consumption of a province is not only driven by
its own development needs, but also affected by other provinces.
Although, the economic scale of a province or sector may be
relatively small, it may become an important driver of water
consumption due to its pivotal position in the national economic
system. In other words, the actions to achieve the national water
saving goal should not be limited to a certain province, but the
national economic system should be regarded as a complete
supply chain. Therefore, it is necessary to identify the
structural role played by each province and evaluate its impact
on water consumption in China.

Emphasizing the system structure and analyzing the system
function from the structural perspective is the research idea of
complex network theory. Many researchers have found that the
function of a network depends on its structure, and the
performance of individuals largely depends on their status in
the network [27–30]. So far, complex network theory has been
universally applied in many scientific fields such as economics
[31], finance and trading [32], energy [33–35], climate [36–38].
The existing literature showed that complex network method has
significant advantages in identifying the structural roles of nodes
in both theoretical and realistic networks.

Different from previous researches on water consumption,
this paper designed a novel framework from a complex network
perspective. An inter-provincial virtual water transfer (VWT)
network model was built to analyze the overall structural
characteristics of China’s supply chain. By combining multi-
regional input-output analysis and complex network analysis,
the structural role of each province in the network was identified.
Finally, a panel regression model was used to quantify the
contribution of provincial structural effects on water
consumption.

2 DATA AND METHODOLOGY

2.1 Data
The multi-regional input-output (MRIO) model has been
universally chosen for revealing the virtual water flows
between regions [39]. In a MRIO framework, regions are
linked together by trade. The MRIO table used in this study
contains 30 provincial-level administrative regions, including 23
provinces, three autonomous regions and four municipalities at
the year 2007, 2010, 2012, and 2015. The MRIO data is obtained
from CEADs database1, published papers and books [40–42]. The
data on water consumption and population at the year 2007,
2010, 2012, and 2015 are taken from China Statistical Yearbook
[43–46] and China Urban-Rural Construction Statistical

1http://www.ceads.net.n/.
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Yearbook [47–50]. For the sake of brevity, we use particular codes
in figures to abbreviate the name of different provinces, which are
shown in Table A1 in the Appendix.

2.2 Estimation of Inter-Provincial Virtual
Water Flows
Multi-regional input-output table provides a useful approach that
can be used to reveal the virtual water flows among sectors or
regions [42]. As shown in Table 1, Chinese economic system
consists of N regions. The goods or services imported from
Region i to Region j can serve either as intermediate use
(denoted by xij) or final use (denoted by fij). Thus, the total
output in Region i, denoted by xi, is the sum of intermediate
inputs and the final demand, which is shown in Eq. 1.

xi � ∑
N

j�1
xij +∑

N

j�1
fij. (1)

The direct consumption coefficient aij reflects the required
quantity of imports from Region i per unit output in Region j,
which is expressed as:

aij � xij

xj
. (2)

By substituting Eq. 2 into Eq. 1, the matrix expression of the
basic form of MRIO model is obtained as following:

X � AX + F. (3)

It follows from Eq. 3 that

X � (I − A)−1F, (4)

where I is a N-by-N identity matrix. (I − A)−1 is Leontief
inverse matrix, which contains both direct and indirect
inputs required to meet one unit of final demand in monetary
value [51].

In multi-regional input-output analysis of China, the direct
water intensity coefficient WIi of province i is defined as:

WIi � Yi

xi
, (5)

where Yi and xi respectively represent the water consumption and
total output of province i. By multiplying the direct water
intensity coefficient by Leontief inverse matrix, the total virtual
water coefficient ε can be expressed as following:

ε � WI(I − A)−1. (6)

Combined with the total virtual water coefficient matrix and
the final demand matrix, the inter-provincial virtual water
transfer amount T can be calculated, which is expressed as:

T � εF. (7)

2.3 Inter-Provincial Virtual Water Transfer
Network
2.3.1 Network Construction
In this study, the nodes are provinces in China, and the edges are
the virtual water transfer relationships between the nodes. The
weight of an edge is the amount of virtual water transfer from one
province to another. In this way, a directed and weighted inter-
provincial virtual water transfer (VWT) network is constructed.
Centrality is a concept commonly used in complex network
analysis to express the degree to which a point is the center of
the entire network. In other words, the centrality of nodes reflects
their importance in the network. There are many indicators for
measuring centrality, including: strength centrality, closeness
centrality, betweenness centrality and so on.

2.3.2 The Overall Structural Characteristics
1) Network density

The network densityD, is defined as the ratio of the number of
edges that actually exist in the network to the number of all
possible edges. For a directed network, it can be calculated as
follows [36, 52]:

TABLE 1 | Multi-regional input-output table.

Intput
Output

Intermediate use Final demand Total
output

— Region
1

/ Region
j

/ Region
N

Region
1

/ Region
j

/ Region
N

Intermediate
input

Region
1

— — xij — — — — fij — — xi

. . .

Region i
. . .

Region
N

Value added vj
Total input xj

xij denotes the intermediate input from Region i to Region j, fij denotes the final demand of Region j derived from Region i, vj and xj respectively represent value added and the total input
(output) of Region j.
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D � E

N(N − 1), (8)

where E is the number of edges of the network,N is the number of
nodes. The network density represents the scale of inter-
provincial VWT in China. It not only reflects the influence of
the entire network on nodes, but also the mutual influence
between nodes. The greater the network density, the greater
the possibility that the network will affect the nodes, and the
closer the relationship between the nodes.

2) Average clustering coefficient

The clustering coefficient quantifies the degree to which the
neighboring nodes of a node gather together to form a cluster
(complete graph). It can be calculated by the ratio of the number
of edges that actually exist between the neighboring nodes of a
node and all the possible edges between the neighboring nodes.
The average clustering coefficient of a network is defined as the
average of the clustering coefficients of all nodes in the network,
which can be calculated as follows [53]:

C � 1
N

∑
N

i�1
ci, (9)

where ci � ei
ki(ki−1), ki is the degree of node i, and ei is the number of

actual edges between neighboring nodes of node i. The average
clustering coefficient reflects the concentration of inter-provincial
VWT network. A larger value indicates a closer connection
between nodes in the network.

3) Average shortest path length

The distance dij between nodes i and j is defined as the number
of edges on the shortest path connecting i and j. The average
shortest path length of a network, L, is the average of the distances
between all pairs of nodes in the network. In this paper, it reflects
the efficiency of inter-provincial virtual water transfer in China,
and can be calculated as [54]:

L � 1
N(N − 1) ∑

i ≠ j

dij, (10)

where N is the number of nodes in the network.

2.3.3 Role Characteristics
1) Degree centrality

The node degree is the number of edges connected to the node,
which is the most direct measure of the centrality of the node in
network analysis. The greater the degree of a node, the more
important the node is in the network. In a directed network, since
the edges have directions, the node degree includes in-degree and
out-degree. The in-degree of a node is the number of edges with
the node as the end point, and the out-degree of the node is the
number of edges with the point as the starting point. In this paper,
the in-degree Din

i and out-degree Dout
i of node i respectively

represent the number of import partners and export partners of
province i, which can be calculated as follows [52]:

Din
i � ∑

N

j�1,j≠i
Aji, (11)

Dout
i � ∑

N

j�1,j≠i
Aij, (12)

where N is the number of nodes in the inter-provincial VWT
network, Aij (Aji) is an element in the adjacency matrix of the
network. If there is an edge connecting from node i (j) to node j
(i), Aij (Aji) � 1, otherwise Aij (Aji) � 0.

2) Strength centrality

One of the centrality measures for a node is its strength. The
strength of one node represents the total weight of the edges
connected to the node. Since the network is directed, the strength
is classified into in-strength and out-strength. In-strength and
out-strength respectively reflect the total weight of all incoming
and outgoing edges of a node. Here, in-strength Sini and out-
strength Souti represent the total inflow and outflow of virtual
water of province i, respectively. They are calculated as
follows [55]:

Sini � ∑
N

j�1,j≠i
Wji, (13)

Souti � ∑
N

j�1,j≠i
Wij, (14)

where N is the number of nodes in the inter-provincial VWT
network,Wij (Wji) denotes the weight of the edge connecting i (j)
to j (i). The net virtual water (NVW) inflow of node i is denoted as
NVWi, NVWi � Sini − Souti . If NVWi > 0, node i is a NVW
importer, otherwise it is a NVW exporter [10].

3) Closeness centrality

Closeness centrality reflects how easy it is for a node to
access other nodes, and is defined by the inverse of the average
length of the shortest path connecting one node to all other
nodes in the network [52]. In a directed network, in-closeness
is used to measure how many steps are required at least if other
nodes want to access a given node, reflecting how easy it is for
other nodes to access the given node. The higher the in-
closeness of one node, the easier it is for other nodes to
access it. While out-closeness measures how many steps a
given node takes at least to access every other node. The greater
the out-closeness of one node, the easier it is for the node to
access other nodes. In this paper, in-closeness Cin

i and out-
closeness Cout

i respectively represent the transfer speed of
virtual water from the other provinces to one province or
from one province to the others. They are calculated as
following [56]:

Frontiers in Physics | www.frontiersin.org November 2021 | Volume 9 | Article 7694204

Du et al. Drivers of Water Consumption in China

60

https://www.frontiersin.org/journals/physics
www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


Cin
i � 1

N − 1
∑
N

j�1,j≠i
dji

⎡⎢⎢⎣ ⎤⎥⎥⎦
−1
, (15)

Cout
i � 1

N − 1
∑
N

j�1,j≠i
dij

⎡⎢⎢⎣ ⎤⎥⎥⎦
−1
, (16)

where N is the number of nodes in the inter-provincial VWT
network, dij (dji) represents the length of the shortest path from
node i (j) to node j (i).

2.4 Selection of Panel Regression Model
and Variables
In the inter-provincial VWT network, the roles of provinces on
water consumption are different and change over time. On the
one hand, due to regional heterogeneity, different provinces play
different roles. On the other hand, the role of provinces in the
network evolves dynamically over time. Therefore, the panel
regression model can be used to analyze the relationship
between the roles of provinces and water consumption in
China from the spatial and temporal dimensions:

Yit � α + β1itXit + β2itcontronlit + cit (i � 1, 2, . . . , N;
t � 1, 2, . . . , T), (17)

Xit, Yit and controlit separately represent the set of core
explanatory variables, explained variable and control variables.

β1it and β2it are the coefficients of explanatory variables and
control variables. cit is the residual.

1) Explained variable

This paper aims to use panel regression model to evaluate the
drivers of water consumption in China. The water consumption
of each province is selected as explained variable.

2) Core explanatory variables

Indicators reflecting the structural centrality of the inter-
provincial VWT network are chosen as core explanatory
variables, including: in-degree (Din), out-degree (Dout), in-
strength (Sin), out-strength (Sout), in-closeness (Cin) and out-
closeness (Cout).

3) Control variables

Control variables are used to eliminate some important
common factors affecting virtual water consumption in the
province. The increase in the urbanization rate and the
improvement of the water-saving system will drive the
reduction of water consumption. The final demand represents
the final use or consumption of the social total products by
consumers. If a province has a high consumption capacity, this
drive the province’s water use from production to consumption

FIGURE 1 | The distribution of the ratio of edge weight to total weights in the initial VWT network, arranged in ascending order from left to right. (A) 2007; (B) 2010;
(C) 2012; (D) 2015.
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to a certain extent. In addition, there are differences in production
technology in different provinces. Advanced technology can
promote the reduction of water consumption. Water intensity
reflects the difference in production technology, and thus can
effectively describe the difference in water consumption between
different provinces. Therefore, in this paper, urbanization rate
(U)2, final demand (F) and water intensity (WI) are selected as

control variables. In order to eliminate potential multicollinearity
between variables, each variable in the panel regression model is
estimated separately.

3 RESULTS

3.1 The Overall Structural Characteristics of
VWT Network
The initial inter-provincialVWT network based onMRIO table in
China is a fully connected network. In complex network theory, it
is difficult to reveal the essential characteristics for a fully
connected network [36]. To better understand the basic
structural characteristics of virtual water transfer flows
between provinces, it is essential to set a threshold to
eliminate the disturbance of edges with negligible weights.
Firstly, the edges in the initial VWT network from 2007 to
2015 are sorted by weight. Then, we find that at most 40% of
the edges have transferred more than 80% of the total virtual
water flow. The remaining more than 60% edges are very weak

FIGURE 2 | Inter-provincial virtual water transfer networks at 2007 (A), 2010 (B), 2012 (C), and 2015 (D). The clockwise bending direction of the curve represents
the virtual water flow direction. The width of the curve represents the amount of virtual water transfer. The color shades reflect the WSI values.

TABLE 2 | The overall structural characteristics of inter-provincial VWT network.

Year 2007 2010 2012 2015

Network density 0.369 0.397 0.402 0.444
Average shortest path length 1.639 1.673 1.662 1.540
Average clustering coefficient 0.595 0.631 0.660 0.669

2The urbanization rate is a measure of urbanization, the urbanization rate of a
province is defined as the ratio of the urban population to the total population of
the province.
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connections, which are relatively trivial for structural analysis.
Figure 1 shows the distribution of the ratio of edge weight to total
weights in the initial VWT network during the period 2007–2015,
arranged in ascending order from left to right. The yellow dashed
line represents the critical threshold for filtering out those
unimportant edges, which is set to guarantee the total weight
of the removed edges accounts for 20%. Thus, only those edges
that accounted for 80% of the total volume of the virtual water
transfer are retained in the final networks. The inter-provincial
VWT networks in 2007, 2010, 2012, and 2015 are shown in
Figure 2. During 2007–2015, virtual water flow played an
increasingly important role in water usage of China. The
virtual water flow was 233.6, 228.6, 239.2, and 251.6 billion
cubic meters for 2007, 2010, 2012, and 2015 respectively. In
other words, the virtual water flow has increased bymore than 7%
in the past few years. Figure 2A shows the virtual water in
Xinjiang, the largest exporting province at that time, was mainly
transferred to the Central region in 2007, then to the South Coast
region through the East Coast in 2010 (shown in Figure 2B) and
2012 (shown in Figure 2C). By 2015, Jiangsu has replaced
Xinjiang as the largest exporter, the virtual water in which
were mainly transported to the South Coast region (shown in
Figure 2D).

It can be found from Table 2 that the network structure has
characteristics of evolution with time. From 2007 to 2015, the
density of inter-provincial virtual water transfer networks showed
an increasing trend, indicating that network connections have
become closer. The growing network density reflected the
increasing frequency of virtual water transfer between
provinces, which was related to the rapid development of

inter-provincial trade in China. The average clustering
coefficient was roughly around 0.6, implying that the
probability of virtual water transfer between neighboring
provinces was relatively high. The average shortest path length
of the network experienced a slight fluctuation around 1.6, which
showed a quite fast transfer speed of virtual water between
provinces. The small average shortest path length indicated
that the virtual water in one province could flow either
directly or indirectly through at most one intermediate
province to the destination province. Large average clustering
coefficient and small average shortest path length made the inter-
provincial virtual water transfer network exhibit the
characteristics of a small world network, where most nodes
were non-adjacent and could reach every other node in
relative small steps [57].

3.2 Structural Roles of Provinces in the VWT
Network
The structural roles of each province in the inter-provincial VWT
network were identified with the aid of complex network analysis.
It is widely known that the node degree characterizes the position
of the node in a network. It can be seen from Figure 3 that several
provinces have sustained high out-degrees over these years, which
indicated that those provinces had many exporting partners. The
changes in the number of exporting partners differed greatly
among those provinces with high out-degrees. The number for
exporting partners has shown a slight upward trend for Jiangsu,
Anhui, Henan and Hunan provinces, while a slight decline for
Guangxi province. The changes in the number of exporting

FIGURE 3 | The distribution of in-degree and out-degree of each province in the inter-provincial VWT network.
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partners differed greatly among these provinces with high out-
degrees. The number for exporting partners has shown a slight
upward trend for Jiangsu, Anhui, Henan and Hunan
provinces, while a slight decline for Guangxi province.
Compared with the case of out-degree, provinces with
relatively high in-degree have many import partners. Over
these years, the number of importing partners has grown
slightly for Guangdong, Zhejiang and Henan provinces,
while declined slightly for Shanghai. In particular, Jiangsu
and Guangdong with both high in-degree and out-degree
values had a close virtual water transfer relationship with
other provinces, which was consistent with their economic
status in the entire supply chain of China.

Another important role character is the node strength. The
in-strength and out-strength of each province in the VWT
network were shown in Figure 4. Jiangsu, Xinjiang,
Guangdong, Anhui and Heilongjiang with high out-
strengths, were the main virtual water suppliers. On the
contrary, provinces including Jiangsu, Guangdong, Zhejiang,
Henan and Shanghai had high in-strengths and were the main
virtual water consumption markets. In addition, water stress
index (WSI) was employed to evaluate the scarcity of water
resources in a region. It is calculated by the ratio of water
withdrawn to available water. The range of WSI values is
between 0.01 and 1. A WSI of 0.5 is usually set as a
threshold of medium and high water stress [58, 59]. The
shade of the color on the map in Figure 2 represents the
WSI value of each province. Combined with the results in
Figures 2, 4, it can be found that the positions among these
provinces are different. In 2007, 2010, 2012, and 2015, Beijing,

Shanghai, Tianjin and Jiangsu are provinces with severe water
shortage due to extremely high WSI values. Beijing, Shanghai
and Tianjin are the main NVW importers. However, Jiangsu
was the main NVW exporter, ranking second in net exports.
Xinjiang, Heilongjiang, Guangxi, Anhui, Guangdong and
Zhejiang were rich in water resources. Especially in
Guangxi, Anhui, Guangdong and Zhejiang, WSI was lower
than 0.1. However, the situation between them was quite
different. Xinjiang, Heilongjiang, Guangxi, and Anhui were
the main NVW exporters during 2007–2015, while Guangdong
and Zhejiang were the main NVW importers, ranking the top
two in terms of net imports.

The closeness of a node accounts for the importance of the
node from another perspective. Figure 5 shows that the values
of in-closeness and out-closeness were relatively large,
indicating that the virtual water transfer speed was fast. In
particular, the out-closeness values of Jiangsu, Guangdong and
Xinjiang were all above 0.8, which imply that virtual water in
these provinces could flow to other provinces through relative
short paths. Moreover, the values of in-closeness and out-
closeness both showed a slight upward trend. This trend
demonstrated that changes in province would soon spread
to other provinces due to closer connections between
provinces.

3.3 Impact of Structural Roles of Provinces
on Water Consumption in China
The stability of a complex network depends largely on its
structure. Therefore, in the inter-provincial VWT network, the

FIGURE 4 | The distribution of in-strength and out-strength of each province in the inter-provincial VWT network.
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structural role of provinces has a significant impact on their water
consumption. To test this assumption, panel regression analysis
was applied to examine the impact of structural roles of provinces
on their water consumption. Here the fixed effects model was
selected as the panel regression model through Hausman test. In
this paper, water consumption is chosen as the explained variable,
Din, Dout, Sin, Sout, Cin and Cout are the core explanatory variables,
and urbanization rate, final demand and water intensity were the
control variables.

Table 3 lists the descriptive statistics of the variables
considered. Significant differences between some variables
can be found from this table. Before substituting into the
panel regression model, all variables need to be normalized to
eliminate the impact of different dimensions between

variables, so that equivalent comparisons can be
made between the effects of variables. The results of
unit root test and co-integration test showed that all
normalized variables were stable, and there was a co-
integration relationship between variables, as shown in
Tables 4, 5.

FIGURE 5 | The distribution of in-closeness and out-closeness of each province in the inter-provincial VWT network.

TABLE 3 | Descriptive statistics of the variables.

Variables Obs Mean SD Maximum Minimum

Core explanatory variables
Din 120 11.683 7.083 27 0
Dout 120 11.683 8.123 28 0
Sin 120 635305.9 572132.3 2736180 0
Sout 120 635305.9 637195.4 3083848 0
Cin 120 0.278 0.096 0.667 0
Cout 120 0.585 0.223 0.967 0
Control variables
U 120 0.530 0.138 0.893 0.282
WI 120 0.007769 0.009 0.068 0.00056
F 120 15314.23 128508.89 61608.54 804.63
Explained variable
Y 120 1996130 1413768.9 58901376 224856

TABLE 4 | Results of unit root test.

ADF PP

T-statistic p-value T-statistic p-value

Core explanatory variables
Din −4.12 0.001 −4.13 0.001
Dout −4.37 0.000 −4.29 0.001
Sin −4.27 0.008 −4.38 0.001
Sout −4.13 0.001 −3.83 0.003
Cin −7.04 0.000 −10.36 0.000
Cout −4.30 0.001 −7.44 0.000
Explained variables
U −7.81 0.000 −3.33 0.015
WI −11.86 0.000 −12.02 0.000
F −11.73 0.000 −14.14 0.000
Explained variable
Y −9.01 0.000 −12.44 0.000

TABLE 5 | Results of residual cointegration test.

Method Statistic Prob

ADF −8.636 0.000
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The correlation between variables was shown in Table 6. The
results showed that there was a strong correlation between some
variables. For instance, the correlation between in-degree and in-
strength was 0.906 and the significance level was less than 1%.
Thus, this paper constructed six panel regression models to
evaluate the influence of the structural characteristics of inter-
provincial VWT network on water consumption, and the other
two models were used to evaluate the influence of control
variables and all variables on water consumption. Table 7
showed the results of the panel regression model. Model 1
measured the impact of control variables on water
consumption. The results showed that both water intensity
and final demand had a significant positive impacts on water
consumption. Specifically, water intensity characterized by

technical effects was an important driving force for changes in
water consumption [42]. Technological progress and
improvement of technical efficiency have led to a reduction in
water intensity and greatly reduced water consumption. Final
demand was the continuous driving force of economic growth,
which in turn would drive water consumption. The level of
urbanization had a weak but significantly negative effect on
water consumption. The urbanization process accompanied by
industrial agglomeration and technological progress has
promoted the improvement of water use efficiency and the
reduction of water consumption [60]. In addition, the high
population density brought about by urbanization made
infrastructure sharing inevitable, which also contributed to the
reduction of water consumption to a certain extent.

TABLE 6 | The correlation of variables.

Variables Y Din Dout Sin Sout Cin Cout U WI F

Y 1 — — — — — — — — —

Din 0.347*** 1 — — — — — — — —

Dout 0.882*** 0.439*** 1 — — — — — — —

Sin 0.407*** 0.906*** 0.458*** 1 — — — — — —

Sout 0.911*** 0.351*** 0.894*** 0.376*** 1 — — — — —

Cin 0.026 0.381*** 0.060 0.266*** 0.029 1 — — — —

Cout 0.791*** 0.334*** 0.883*** 0.369*** 0.761*** −0.05 1 — — —

U −0.123 0.395*** −0.129 0.381*** −0.086 0.328*** −0.285*** 1 — —

WI 0.451*** −0.416*** 0.342*** −0.357*** 0.464*** −0.178** 0.343*** −0.369*** 1 —

F 0.529*** 0.774*** 0.470*** 0.824*** 0.407*** 0.251*** 0.388*** 0.305*** −0.386*** 1

Level of significance: * is 10%, ** is 5% and *** is 1%.

TABLE 7 | Results of the panel regressions.

Variable Model 1 Model 2 Model 3 Model 4

Coef t Coef t Coef t Coef T

U −0.225** −2.55 −0.223*** −2.5 −0.266*** −3.01 −0.231** −2.59
WI 0.256*** 3.98 0.257*** 2.99 0.247*** 2.96 0.260*** 3.03
F 0.221*** 4.23 0.212*** 3.82 0.208*** 4.16 0.208*** 3.87
Din

— — 0.007 0.38 — — — —

Dout
— — — — 0.049** 2.22 — —

Sin
— — — — — — 0.0216 0.72

Sout
— — — — — — — —

Cin
— — — — — — — —

Cout
— — — — — — — —

Const 0.289*** 7.26 0.287*** 7.14 0.286*** 7.37 0.288*** 7.23
Hausman test 1195.93*** — 1228.07*** — 529.57*** — 432.11*** —

Variable Model 5 Model 6 Model 7 Model 8

Coef t Coef t Coef t Coef t

U −0.281*** −3.31 −0.243*** −2.86 −0.250*** −2.81 −0.311*** −3.65
WI 0.229*** 2.84 0.344*** 3.94 0.270*** 3.17 0.327*** 3.83
F 0.185*** 3.78 0.255*** 5.07 0.223*** 4.43 0.200*** 3.68
Din

— — — — — — 0.023 0.69
Dout

— — — — — — 0.019 0.74
Sin

— — — — — — −0.003 −0.08
Sout 0.102*** 3.48 — — — — 0.082** 2.61
Cin

— — −0.025*** −2.92 — — −0.023*** −2.76
Cout

— — — — 0.036 1.62 0.022 0.85
Const 0.296*** 7.90 0.282*** 7.38 0.272*** 6.69 0.273*** 7.08
Hausman test 343.81*** — 79.25*** — 373.25*** — 3841.84*** —

Level of significance: * is 10%, ** is 5% and *** is 1%.
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In models 2–7, the effects of the six structural roles (in-degree,
out-degree, in-strength, out-strength, in-closeness and out-
closeness) of provinces on water consumption in China were
evaluated. The results of panel regression analysis showed that
out-degree and out-strength had a significant positive effect,
while in-closeness had a significant negative effect. In-degree,
in-strength and out-closeness had no significant impact on water
consumption. The impacts of out-degree indicated that the
provinces would consume more water if they had more
exporting partners. Similar situation occured when the impact
of out-strength was investigated. Provinces exporting more
virtual water tended to consume more water. The reason lies
in the products with plenty of virtual water embodied in,
produced by these provinces are not only to meet the needs of
the province, but also to be exported to downstream provinces.
This demonstrated that water consumption was mainly affected
by direct production demand from downstream provinces.
Therefore, by controlling the direct production demand from
downstream provinces, water consumption could be significantly
reduced. Conversely, the significant negative impact of in-closeness
indicated that the transferring speed of the virtual water played a key
role in water consumption. One province would consume less water
resource if products would be imported from other province in a
very short time. Thus, this province was often considered as a direct
or indirect downstream market for many provinces in the
production chain. In other words, if the production demand of a
downstream province would be quickly filled from the upstream
provinces, resulting in its less consumption of water resources. The
impact of in-closeness indicated that indirect production demand
would also significantly drive water consumption. In conclusion, the
reduction of water resources should be implemented in both direct
and indirect production activities.

4 DISCUSSION AND CONCLUSION

This paper aims to evaluate the impact of structural effects of
provinces in China on their water consumption. First, the
multi-regional input-output analysis and complex network
method were combined to construct the inter-provincial
virtual water transfer (VWT) network. Then the structural
characteristics of provinces in the VWT network model were
identified. Finally, panel regression analysis was applied to
evaluate the contribution of provinces’ structural effects to
their water consumption.

In the VWT network, virtual water establishes different paths
through inter-provincial transfer and flows to the final consumer.
The analysis of the inter-provincial VWT network can help
decision makers better understand the current virtual water
flow situation, the role of provinces and the flow path. First,
the results reveled the overall characteristics of the inter-
provincial VWT network. The network density has shown an
upward trend, reflecting the increasing frequency of virtual water
transfers between provinces. The high average clustering
coefficient indicated that there were many local clusters in the
VWT network. In addition, the path of virtual water flowing from
one province to another was relatively smooth. The analysis of the

average shortest path length showed that virtual water transfer
from one province to another only needed to pass through 1.6
provinces, which means that the provinces were quite close to
each other in the inter-provincial VWT network. The high
average clustering coefficient and small average shortest path
length showed that the VWT network had a small-world nature,
which meant that the virtual water in one province would soon be
transferred to the other.

Network analysis also showed that provinces have different
level of significance and played different roles in the inter-
provincial VWT network. The results showed that during the
period from 2007 to 2015 there was a obvious imbalance between
the import and export of the VWT network. Guangdong,
Zhejiang, Jiangsu, Shanghai and Henan with many importing
partners, were provinces with plenty of virtual water inflows.
Some provinces, such as Xinjiang, Jiangsu, Guangxi, Anhui
and Heilongjiang, not only had many exporting parters, but
also a large amount of virtual water outflow. Xinjiang,
Heilongjiang, Guangxi and Anhui were the main NVW
exporters, while Guangdong and Zhejiang with extremely
low WSI values (<0.1), were the main NVW importers. In
other words, Guangdong and Zhejiang with abundant water
resources have exacerbated water shortages in other provinces
by importing virtual water from them. The water scarce
situations differ greatly between Beijing, Shanghai, Tianjin
and Jiangsu, which had extremely high WSI values. Beijing,
Shanghai and Tianjin were the main NVW importers, while
Jiangsu was the main NVW exporter, ranking second in net
exports. That is to say, the water scarcity situation in Beijing,
Shanghai and Tianjin has been in alleviated through the net
import of virtual water, while the large net export of virtual
water in Jiangsu has further exacerbated the water shortage
situation. In addition, the results showed that changes in other
provinces could easily flow into Tianjin with high in-closeness,
while virtual water from Jiangsu, Xinjiang and Guangdong
with high out-closeness could easily be transferred to other
provinces.

Panel regression analysis showed that some structural effects
in the inter-provincial VWT network significantly determined
water consumption related to economic activities in the province.
Out-degree and out-strength played a significant positive effect,
while in-closeness played a significant negative effect. The
relationship between water consumption and the number of
trading partners, as well as the virtual water transfer volume,
showed that water consumption growed with the increase in the
number of export partners and the increase in export volume.
Therefore, adjusting the direct production demand and
consumption structure of downstream provinces would help
reduce water consumption in China. Further investigation on the
impact of in-closeness indicated that indirect production activities
would significantly affect water consumption. Therefore, the
reduction of water consumption in China should be based on the
direct and indirect relationship in the production process.

This paper focuses on the contribution of the structural roles
of provinces in the VWT network to their water consumption.
There are some shortcomings in the research. One limitation is
that although some important factors are considered as control
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variables, there are still some variables that are not included, such
as climate change, This is a gap that still exists in the existing
knowledge system. Studying the impact of the structural roles
of various sectors in the industrial chain on water
consumption can provide valuable information for
rationally reshaping the industrial structure and reducing
water consumption. Another limitation is that this paper
considers the impact of structural roles on water
consumption at the provincial level, not at the sectoral
level. This is a gap that still exists in the existing knowledge
system. Studying the impact of the structural roles of various
sectors in the industrial chain on water consumption can
provide valuable information for rationally reshaping the
industrial structure and reducing water consumption. All of
these will be improved in future work.
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APPENDIX

TABLE 1A | Provinces and their codes.

Province Code Province Code Province Code

Bejing BJ Zhejiang ZJ Hainan HI
Tianjin TJ Anhui AH Chongqing CQ
Shanxi SX Fujian FJ Sichuang SC
Hebei HE Jiangxi JX Guizhou GZ
Inner Mongolia NM Shandong SD Yunnan YN
Liaoning LN Henan HA Shannxi SN
Jilin JL Hubei HB Gansu GS
Helongjiang HL Hunan HN Qinghai QH
Shanghai SH Guangdong GD Ningxia NX
Jiangsu JS Guangxi GX Xinjiang XJ

Frontiers in Physics | www.frontiersin.org November 2021 | Volume 9 | Article 76942014

Du et al. Drivers of Water Consumption in China

70

https://www.frontiersin.org/journals/physics
www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


Network Robustness Analysis Based
on Maximum Flow
Meng Cai1*, Jiaqi Liu1 and Ying Cui2

1School of Humanities and Social Sciences, Xi’an Jiaotong University, Xi’an, China, 2School of Mechano-Electronic Engineering,
Xidian University, Xi’an, China

Network robustness is the ability of a network to maintain a certain level of structural
integrity and its original functions after being attacked, and it is the key to whether the
damaged network can continue to operate normally. We define two types of robustness
evaluation indicators based on network maximum flow: flow capacity robustness, which
assesses the ability of the network to resist attack, and flow recovery robustness, which
assesses the ability to rebuild the network after an attack on the network. To verify the
effectiveness of the robustness indicators proposed in this study, we simulate four typical
networks and analyze their robustness, and the results show that a high-density random
network is stronger than a low-density network in terms of connectivity and resilience; the
growth rate parameter of scale-free network does not have a significant impact on
robustness changes in most cases; the greater the average degree of a regular
network, the greater the robustness; the robustness of small-world network increases
with the increase in the average degree. In addition, there is a critical damage rate (when
the node damage rate is less than this critical value, the damaged nodes and edges can
almost be completely recovered) when examining flow recovery robustness, and the
critical damage rate is around 20%. Flow capacity robustness and flow recovery
robustness enrich the network structure indicator system and more comprehensively
describe the structural stability of real networks.

Keywords: network robustness, maximum flow, connectivity, resilience, critical damage rate

INTRODUCTION

Nowadays, the network exists in every aspect of human life, and our life is convenient and
complicated because of the network. Whether it is a technical network such as a computer
network or a social network such as an interpersonal relationship, it will inevitably be disturbed
or damaged, thus affecting the normal operation of the network, or worse, leading to the paralysis of
the network. In the case of interference or disruption, robustness becomes the key to whether the
network system can continue to operate normally. Specifically, network robustness describes the
ability of a network to maintain a certain level of structural integrity and original functionality after
nodes or edges experience random or deliberate attacks [1]. For example, robustness will be the
decisive factor when a cell encounters external environmental changes or internal genetic variations,
when an ecosystem encounters man-made disturbances and when a piece of computer software
encounters disk failures, network overloads, or deliberate attacks [2]. Therefore, the robustness of a
complex network has become an important topic of academic research due to the widespread
existence of the complex network and the important role it plays for nature and human society. The
early researchers of complex network robustness were Albert et al. [3], who pointed out that the
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scale-free network is more vulnerable under deliberate attack and
more robust when subjected to random attack; Holme et al. [4]
conducted an in-depth study on the robustness of the network as
reflected by the changes in various indicators under different
types of attack; Paul et al. [5] discussed how to effectively improve
network robustness; He C-Q et al. [6] summarized the changing
trend of robustness under different network topologies; Du W
and Cai M et al. [7] proposed connection robustness and recovery
robustness based on the connectivity and resilience of the
network and selected four types of complex networks,
including the random network and the scale-free network, for
extensive experiments, and it is concluded that the random
network is the best robust to deliberate attacks, and the node
resilience of the scale-free network is better than the edge; Lu P-L
et al. [8] explored the impact of the initial clustering coefficient on
robustness when attacked by different conditions for three
complex networks with the same degree distribution and
different clustering coefficients and showed that the larger the
initial clustering coefficient, the worse is the robustness of the
network.

In research studies of the complex network robustness, the
establishment of robustness evaluation indicators provides a
certain basis for it. To ensure that the evaluation indicators
can truly reflect the robustness of the complex network,
measurability, sensitivity, and objectivity are required.
Nowadays, robustness evaluation indicators generally include
the network global effect, average path length, connectivity,
relative size of the maximum connected subgraph,
betweenness, circle rate, clustering coefficient [9], k-core
structure [10, 11], core [12], and generalized k-cores [13, 14].
Among them, as the level of network damage caused by the attack
increases, the average shortest path becomes larger and then
smaller [9], and this trend of change is not a significant guide for
practical applications; the betweenness index takes into account
the changes of nodes and edges in the network but does not
consider changes in the network size and structure as a whole [9];
the clustering coefficient reflects the tightness of connections
between nodes in the network and is also an indicator of local
change in the network; considering the maximum connected
subgraph, the robustness of the complex network is defined as the
size of the maximum connected subgraph in the network after
randomly or deliberately removing a certain percentage of nodes
from the network [15]; in single networks, k-core is defined as a
maximal set of nodes that have at least k neighbors within the set
[16], and the generalized k-core (Gk-core) is a core structure,
which is obtained by implementing a k-leaf pruning procedure
that progressively removes nodes with degree less than k
alongside their nearest neighbors [14]. It can be seen that the
existing robustness evaluation indicators mostly consider local
changes in the network. No research has been carries out to
measure robustness from the perspective of network flow, a
metric that describes the global topology of the network, and
it can reflect the structural characteristics of network connections
comprehensively and break the limitations on network weights
and propagation methods [17]. In addition, the failure
mechanism of the nodes when the network is attacked is also
an important factor in network robustness analysis [1]. Most of

the existing studies have focused on the mechanism of system
failure, but in real life, except the occurrence of failure, it also
includes the repair of failure, which is the recovery of damaged
nodes or edges according to certain recovery mechanisms.
Therefore, it is necessary to consider the resilience after the
network is damaged in the construction of the network
robustness evaluation indicators.

In this study, we propose two types of network structural
robustness measurement indicators, namely, capacity robustness
based on maximum flow and recovery robustness based on
maximum flow, in terms of the ability of the network to resist
damage and the ability of the network structure to recover after
damage, respectively. We use non-global information to recover
deleted nodes and edges after the network is destroyed. In order
to verify the effectiveness of the robustness indicators proposed in
this study, we perform robustness experimental analysis on
several typical networks such as the BA scale-free network (a
scale-free network proposed by Barabasi and Albert), ER random
network (a random network proposed by Erdos and Renyi),
nearest neighbor coupled (NNC) regular network, and WS
small-world network (a small-world network proposed by
Watts and Strogatz) and finally explore the relationship
between network structure characteristics and network
structure robustness.

MATERIALS AND METHODS

Related Work
The complex network theory emerged in the 1960s and generally
refers to the network with some or all of the properties in self-
organization, self-similarity, attractor, small-world, and scale-free
[9]. The complex network is an abstract complex system whose
complexity is mainly reflected in the number of connected nodes
and its complex topological structure. It is often used to study the
structural properties, formation mechanisms, and evolution laws
of the real network. The network robustness and destruction
resistance are important parts of the current research on complex
networks.

Generally, when a network is attacked, depending on intensity
and extensity of error, the attacked nodes are impaired to become
non-functional nodes or partially functional nodes (nodes as
being a state that is functional but not at full power) [18], and
these lost functions will be shared by the coupling relationships of
neighboring nodes. This additional functional commitment puts
a lot of pressure on the normal operation of the neighboring
nodes and the entire network system, and in severe cases, it may
lead to failure of other nodes or a whole network crash. The ability
to maintain the function and property of the network that the
damaged network has is network robustness. Similar to
robustness, destruction resistance indicates the performance
changes when a network is under attack. The difference is that
the destruction resistance prefers the ability to maintain or
recover to an acceptable level when the network is damaged.

Existing correlational researches mostly focus on the
measurement of the robustness and destruction resistance of
the network, make structural optimizations to them, and
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further apply them in relevant practical areas: In an earlier study,
Albert et al. [3] compared the robustness of ER network and
scale-free (SF) network under deliberate and random attacks, and
the results showed that SF network is significantly more robust
than ER network during random attack, while the robustness of
SF network is much less weak under deliberate attack, and simply
deleting a small number of nodes with the largest degree may
cause the network to collapse completely. Cohen et al. proposed
the theoretical analytical conditions for network collapse under
random attack based on percolation theory and applied them to
the Internet and found high robustness of the Internet against
random attack [19]; then they analyzed the robustness of SF
network such as the Internet under deliberate attack through
theoretical calculations and numerical simulations and argued
that the Internet is highly sensitive and vulnerable to deliberate
attack [20]. Darren et al. [21] achieved the identification of road
segment importance using the road network robustness index
and considered the road network robustness index in terms of
topological attributes, capacity, and traffic flow characteristics of
the road segments in the network. Tan Y-J and Wu J et al. [22]
conducted research from the analysis and optimization of
destruction resistance, proposed the influence of network
aggregation and mixing on destruction resistance of network,
and combined with the actual network researches to analyze
optimization and control of destruction resistance, which
provided a direction for the study of destruction resistance
of complex network at that time. Du W and Cai M et al. [7]
proposed connectivity robustness and recovery robustness
based on the connectivity and recovery ability of the network
and simulated a certain scale of regular network, small-world
network, scale-free network, and random network for a large
number of experiments, and it is concluded that random
network has the best robustness against deliberate attack
compared with the other three networks and that the node
resilience of scale-free network is better than the edge resilience.
Based on the complex network theory, Lu S [23] selected an
aviation system as the research object modeled and analyzed the
aviation network using Pajck software, summarized the changes
of various parameters in the system, and proposed ideas to
improve the robustness of air cargo. Focusing on
interdependent networks, Dong G-G [24] et al. investigated
the case of interdependent networks by generalizing feedback
and non-feedback conditions, and specifically, they developed a
new mathematical framework and used percolation theory to
investigate numerically and analytically the percolation of
interdependent networks with partial multiple-to-multiple
dependency links. Shi H [25] proposed a shock resistance
assessment method based on complex network, using peak
ground acceleration as a reference to assess the destruction
resistance of complex network buildings in an earthquake
environment, and the assessment results were consistent with
reality, which helped the timely measurement of building shock
resistance. Dong G-G and Wang F et al. [26] developed two
types of coupled giant network theoretical research frameworks,
“deterministic coupled modes” and “coupled modes under
arbitrary distribution”, to study the resilient behavior of the
system, and concluded that there is indeed an optimum

coupling structure among the subnetworks, which makes the
entire system has the best connectivity and destruction
resistance. Mariani et al. [27] focused on one of the non-
random structure patterns in networks—nestedness, and
concentrated on their discussion on three main aspects: the
existing methodologies to nestedness in networks, the key
theoretical mechanisms to explain nestedness in ecological
and socioeconomic networks, and implications of the nested
topology of interactions for the stability and viability of a given
interacting systems. Wuellner et al. [28] analyzed the individual
structures of the seven largest U.S. passenger carriers and found
that networks with dense interconnectivity are extremely
resilient to both targeted removal of airports (nodes) and
random removal of flight paths (edges), and here, they
measured the interconnectivity of the network using the
k-core structure, which is a subgraph of the network
constructed by iteratively pruning all vertices with a degree
less than k. Shang Y-L [14] developed a mathematical
framework for understanding the robustness of networks
based on the number of nodes and edges in the Gk-core (a
generalization of the ordinary k-core decomposition) under two
general attacks with limited knowledge (min-n and max-n
attacks), and it was found that knowing one more node
(from n � 1 to n � 2) during attacks is most beneficial in
terms of changing the robustness of the Gk-core. Therefore,
research studies related to network robustness can help people
understand the mechanisms and rules of network system failure
or collapse and can identify better ways to prevent the failure of
real network systems and build more robust systems, making
real life more stable [29].

It can be seen that the research studies on network robustness pay
more attention tomeasurementmodels and indicator changes and are
devoted to the optimization of network destruction resistance and
defense capability, while the in-depth studies of network resilience
performance are not asmature as the research on network robustness.
Resilience is the ability of a system to recover from an unfavorable
state to a normal state (i.e., the initial state, or adjust itself to a new state
according to new demands or conditions), which reflects the system’s
adaptability and survivability [30]. Through the propagation and
diffusion effects of the network, the behavior and recoverability of
the nodes in the network can have a significant impact on the
resilience of the network community and the entire network; at
the same time, by adjusting the network structure and
characteristics, the overall local and node-level resilience of the
network will be optimized [31]. Thus, network resilience, although
a relatively new concept, is an important field of network research.

Bai Y-N et al. [32] stated that a coupled network can be recovered
only when the proportion of failed nodes in that network is less than
the resilience threshold. In recent years, some scholars have further
explored the influencing factors of network resilience performance
and concluded that the coupling strength of the coupled network [33],
the node recovery order of the dependent network [34], and the node
importance ranking of the fault network [35] all have impact on the
network resilience performance. Some scholars have optimized the
network recovery model based on the equal probability recovery
mechanism [36] and proposed a weighted probability recovery
mechanism [35]. However, we can find that existing studies on
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network resilience measurements mostly focus on different typical
networks and different network sizes, and network resilience is
analyzed by comparing the number of nodes after recovery of the
damaged network and the number of original network nodes,
ignoring the impact of the network structure on the overall
network function. The number of nodes, node-to-node
connections, change in the overall structural characteristics of the
network, and the magnitude of the change after recovery of the
damaged network are important elements in the study of network
resilience.

Definition of Structural Robustness
Indicators Based on Maximum Flow
Network Model and Related Definitions
For a given capacity-containing network denoted as
G � (V, E, c), where V � {v1, v2, . . . , vn} is the set of nodes, E �
{(vi, vj)| vi, vj ∈ V} is the set of edges, (vi, vj) is the outgoing arc
of node vi and is also the incoming arc of the node vj, c is the
capacity set of edges, and the set element c(vi, vj) represents the
capacity of the edge (vi, vj), when G is the directed network, set c
is symmetric, namely, c(vi, vj) � c(vj, vi), and when G is an
undirected network, set c is asymmetric. In the capacity
network G � (V, E, c), the flow from the source point vs to the
sink point vt is denoted as fst. Suppose fst meets the following
requirements (see Eqs 1, 2):

∑
j

f (vi, vj) −∑
j

f (vj, vi) �
⎧⎪⎨
⎪⎩

f st , vi � vs
0, vi ≠ vs, vt
−f st , vi � vt

, (1)

0≤ f (vi, vj)≤ c(vi, vj), ∀(vi, vj) ∈ E, (2)

then fst is one of the feasible flows of the capacity network G. If
this flow is the largest of all feasible flows, it is called the
maximum flow and is denoted as fmax [15]. (vi, vj) is the
edge of the directed network, and for the undirected network,
it is expressed as {vi, vj}.

Network Robustness Based on Maximum Flow
Complex network robustness refers to the ability of a network to
remain connected even under random or deliberate attack, and its
concept is widely used in various fields such as physics, sociology, and
transportation. In the presence of uncertainty and crisis, robustness
has become critical to whether the system can continue to operate.
The existing robustness indicators mainly consider whether the
network is connected or not and reflect the robustness of the
network after a disruption from the network structure, that is, it
only considers whether the nodes are connected or not but does not
measure whether the circulation between the nodes is damaged. The
network maximum flow considers not only whether the connections
of nodes exist but also how the transmission capacity of the already
existing nodes and connections, that is, it considers both the fact of
existence and the quality of existence of the nodes. Therefore, in view
of the maximum flow’s ability to characterize the connectivity of the
network structure, this study uses maximum flow as a basic index to
evaluate the robustness of the network and then proposes “capacity
robustness based on maximum flow” and “recovery robustness based

on maximum flow,” and the former reflects the ability of the network
structure itself to resist attacks, while the latter reflects the resilience of
the network after damage [7].

Capacity Robustness Based on Maximum Flow
Capacity robustness based on maximum flow (later referred to as
flow capacity robustness) is the ability of the remaining nodes in
the network to maintain circulation among themselves after
some nodes have been damaged by an attack. There are two
general ways to attack a network: one is a deliberate attack and
the other is a random attack. The former refers to a purposeful
and planned attack on the network such as prioritizing attacks
on the more important nodes or edges; the latter refers to a
network in which nodes or edges are attacked in a certain
proportion at random. In this study, two types of damage
strategies are used: deliberate attack and random attack.
Specifically, a deliberate attack is to select the top n% of
nodes with the largest degree to destroy, and a random
attack is to randomly select n% of nodes for damage, and
both strategies use one-time damage.

First, the network maximum flow matrix W is defined as the
matrix consisting of themaximum flow values between all pairs of
nodes in the network (see Eq. 3):

W �
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 cf max
(v1, v2)

cf max
(v2, v1) 0

. . . cf max
(v1, vN )

. . . cf max
(v2, vN )

« «
cf max

(vN , v1) cf max
(vN , v2)

1 «
. . . 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, (3)

where N is the size of the network G � (V, E, c); V �
{v1, v2, . . . , vN} is the set of nodes, cfmax(vi, vj) is the
maximum flow value between nodes vi and vj, and
cfmax(vi, vi) � 0. Note that the method applies not only to
directed network but also to the undirected network, and not
only to 0–1 network but also to the weighted network. The
difference in application to different networks lies in the
calculation of maximum flow. For example, in the undirected
network, cfmax(vi, vj) � cfmax(vj, vi); in the directed network,
cfmax(vi, vj) ≠ cfmax(vj, vi). Similarly, for 0–1 network and
weighted network, the corresponding maximum flow matrix is
calculated to bring in the method.

Then Vd is defined as the set of damaged nodes, Nd is the
number of nodes in Vd, p � n% is the node damage rate,
Nd � pN, Vs is the set of remaining nodes in the network
after destruction,Ns is the number of nodes in Vs, and V � Vd +
Vs means the set V is equal to the union of the set Vd and the set
Vs. Therefore, the damaged network satisfies Gp

s � (Vs, Es, cs),
where Es is the set of edges of the network Gp

s , and cs is the
capacity set of edges.

Based on the maximum flow matrix, Wc is defined as the
matrix after removing the nodes in the setVd from the maximum
flow matrix W at one time (see Eq. 4):

Wc �
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 cfmax
(vi, vi+1)

cf max
(vi+1, vi) 0

. . . cf max
(vi, vi+Ns−1)

. . . cf max
(vi+1, vi+Ns−1)

« «
cfmax

(vi+Ns−1, vi) cf max
(vi+Ns−1, vi+1)

1 «
. . . 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦,

(4)
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where cfmax ∈ W and node vi ∈ Vs.
Wp

c is defined as the maximum flow matrix recomputed from
the damaged network (see Eq. 5):

W*
c �

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 c*f max
(vi, vi+1)

c*f max
(vi+1, vi) 0

. . . c*f max
(vi, vi+Ns−1)

. . . c*f max
(vi+1, vi+Ns−1)

« «
c*f max

(vi+Ns−1, vi) c*f max
(vi+Ns−1, vi+1)

1 «
. . . 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

(5)

where cpfmax
∉ W, that is, cpfmax

is the maximum flow matrix
calculated from the network Gp

s ; node vi ∈ Vs. It is important
to state that the maximum flow takes into account not only the fact
that the nodes are connected to each other but also more
importantly, the quality of the transmission between the nodes.
That means the disruption or attack will lead to a reduction in the
quality of data transmission, even if the connectivity is intact.
Therefore, the recomputed maximum flow matrix, even if the
nodes are still connected to each other,may produce a change in the
quality of the traffic and thus affect the overall network
transmission capacity.

Finally, the flow capacity robustness C is defined as follows
(see Eq. 6):

C � ∑Wp
c

∑Wc

�

∑
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 c*f max
(vi, vi+1)

c*f max
(vi+1, vi) 0

. . . c*f max
(vi, vi+Ns−1)

. . . c*f max
(vi+1, vi+Ns−1)

« «
c*f max

(vi+Ns−1, vi) c*f max
(vi+Ns−1, vi+1)

1 «
. . . 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

∑
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 cf max
(vi, vi+1)

cf max
(vi+1, vi) 0

. . . cf max
(vi, vi+Ns−1)

. . . cfmax
(vi+1, vi+Ns−1)

« «
cf max

(vi+Ns−1, vi) cf max
(vi+Ns−1, vi+1)

1 «
. . . 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

� ∑vi ,vj∈Vs
c*f max

(vi, vj)
∑vi ,vj∈Vs

cf max
(vi, vj)

.

(6)

Recovery Robustness Based on Maximum Flow
In the real world, if it is difficult to obtain information about a specific
individual, the information can be recovered to some extent by asking
people who are related to the individual, and similar approaches have
been used to find keyman in terrorist groups through connections
between network nodes [37]. In this study, we recover the network
through non-global information and define recovery robustness based
on maximum flow (later referred to as flow recovery robustness), for
example, the ability to recover disappeared network structure
elements (broken nodes and edges) from information related to
unbroken nodes after some nodes in a network have been
attacked. Figure 1 visualizes the network structure of a network
after attack and recovery. Specifically, Figure 1A shows a network of
size 10with node setV � {0, 1, 2, 3, 4, 5, 6, 7, 8, 9} and edge setE.We
attack the network by removing the nodes and corresponding edges of
the node setVd � {2, 3, 4, 9} (red points and edges inFigure 1A), and
the damagednetwork is shown inFigure 1B. After that, the network is

FIGURE 1 | Damaged and recovery network structure. (A) Original
network, where the red nodes are the nodes to be removed; (B) network that
has not been recovered after attack; and (C) recovered network after attack.
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recovered by the information of the remaining nodes of the network,
where the set of recovered nodes Vr � {2, 4, 9} (in Figure 1C, the
recovered nodes and edges are represented by green notes and green
dashed lines, respectively) and the set of unrecovered nodesVu � {3}.
And, it can be seen that node 9 is a fully recovered node (i.e., both the
node and the corresponding edges are fully recovered) and nodes two
and four are not fully recovered nodes (that is, the node is recovered
and the corresponding edges are not fully recovered).

We define Gp
r � (Vr,Er, cr) as the recovered network based on

the damaged network Gp
s � (Vs,Es, cs), where Vr is the set of nodes

of the recovered network based on the information related to the
nodes in Vs,Nr is the number of nodes in the set Vr, Er is the set of
edges of the networkGp

r , and cr is the capacity set of edges; whenVu is
the set of unrecovered nodes, then V � Vr + Vu means the set V is
equal to the union of the set Vr and the set Vu.

Based on the maximum flow matrix,Wr is defined as the matrix
that removes the nodes in the setVu from the maximum flowmatrix
W at one time (see Eq. 7); that is, it retains the nodes in the recovered
network:

Wr �
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 cf max
(vi, vi+1)

cf max
(vi+1, vi) 0

. . . cf max
(vi, vi+Nr−1)

. . . cf max
(vi+1, vi+Nr−1)

« «
cf max

(vi+Nr−1, vi) cf max
(vi+Nr−1, vi+1)

1 «
. . . 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦,

(7)

where cfmax ∈ W and node vi ∈ Vr.
Wp

r is defined as the maximum flow matrix recomputed
according to the recovered network (see Eq. 8):

W*
r �

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 c*f max
(vi, vi+1)

c*f max
(vi+1, vi) 0

. . . c*f max
(vi, vi+Nr−1)

. . . c*f max
(vi+1, vi+Nr−1)

« «
c*f max

(vi+Nr−1, vi) c*f max
(vi+Nr−1, vi+1)

1 «
. . . 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

(8)

where cpfmax
∉ W; that is, cpfmax

is the maximum flow matrix
calculated from the network Gp

r ; node vi ∈ Vr.
Finally, the flow recovery robustness R is defined as follows

(see Eq. 9):

R � ∑Wp
r

∑Wr

�

∑
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 c*f max
(vi, vi+1)

c*f max
(vi+1, vi) 0

. . . c*f max
(vi, vi+Nr−1)

. . . c*f max
(vi+1, vi+Nr−1)

« «
c*f max

(vi+Nr−1, vi) c*f max
(vi+Nr−1, vi+1)

1 «
. . . 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

∑
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 cfmax
(vi, vi+1)

cf max
(vi+1, vi) 0

. . . cf max
(vi, vi+Nr−1)

. . . cf max
(vi+1, vi+Nr−1)

« «
cf max

(vi+Nr−1, vi) cf max
(vi+Nr−1, vi+1)

1 «
. . . 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

� ∑vi ,vj∈Vr
c*f max

(vi, vj)
∑vi ,vj∈Vr

cf max
(vi, vj)

.

(9)

In order to explore the relationship between the
aforementioned robustness indicators and the network
topology, this study analyzes and verifies them through
simulation experiments of typical networks.

RESULTS

Four Typical Network Structures
In general, network models can be divided into three
categories [38]: the first category is the random network;
the second category is the regular network; and the third
category is network structures between random and regular
networks, which have some characteristics of both regular
and random networks, including scale-free network and
small-world network. In this study, four types of typical
network, including regular network, random network,
scale-free network, and small-world network, will be
analyzed for structural robustness using the robustness
indicators based on maximum flow.

Regular Network
A regular network is the network structure obtained by
connecting nodes according to defined rules, and its
structure is symmetric. A nearest neighbor coupled
network and star network are two typical types of the
regular network. In this study, we use the nearest neighbor
coupled network (NNC) as the test network; that is, for a
given even value of k, the N nodes in the network are
connected to a ring, where each node is connected to only
k/2 neighboring nodes.

BA Scale-free Network
The concept of the scale-free network started with an article
by Barabasi and Albert published in IScienceJ in 1999 [39].
By studying the topology of the World Wide Web, they found
that the node degree distribution obeys a power law
distribution and proposed a classical model (BA model)
for constructing a scale-free network. The initial number
of nodes in the network is u0, and the growth rate is u.
Through growth and meritocratic connection, the
probability that a new node is connected to an already
existing node vi in the network is Πi � ki

∑j
kj
, and a scale-

free network of size N � t + u0 nodes and ut edges is formed
after time t. The node degree obeys the probability
distribution of p(k) � 2u2

k3 . Most nodes in a scale-free
network are connected to only a few nodes, while a small
number of nodes have an extremely large number of node
connections.

ER Random Network
The ER random network was proposed by Erdos and Renyi in
1960 [40], and it is one of the main reference models for
network research. The connections between network nodes of
a random network are random, given the network size N and
the total number of edges n, any two nodes, are connected at a
time with probability q � 2n

N(N−1) without repetition until the
total number of edges of the network reaches n, and an ER
random network is obtained. The degree values of most nodes
in the network are concentrated around a particular value, the
average degree k � q(N − 1), and the degrees of nodes obey
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the Poisson distribution P(k) � e−λλk
k! , where λ is the average

incidence of random events per unit time.

WS Small-World Network
A small-world network is a type of network with short mean path
lengths and high clustering coefficients. The first to propose a
method for constructing a small-world network were Watts and
Strogatz [41]. The specific construction algorithm is as follows:

1) Constructing a regular network encloses a nearest neighbor
coupled network containing N nodes to a ring, where each
node is connected to the k/2 nodes adjacent to its left and
right, wherek is an even number.

2) Random reconnection randomly reconnects each edge in a
regular network with probability p, that is, leaving one end of
the edge unchanged and connecting the other endpoint
randomly at a new location, but self-connections and
repeated connections should be excluded.

p � 0 corresponds to the nearest neighbor coupled network,
p � 1 corresponds to the ER random network, and 0<p< 1
corresponds to the WS small-world network, which is a
transitional network between the regular network and random
network, taking into account the characteristics of both.

Simulation Experiment and Discussion
The simulation experiments were all implemented using Python
3.8 programming. Our method is applicable to many types of
networks, such as the directed network, undirected network, 0–1
network, and weighted network, but in order to facilitate
comparison with other methods and to focus on reflecting the
impact of differences in the network structure on robustness, the
networks chosen for the experiments were all undirected and
unweighted 0–1 benchmark networks; that is, the same
maximum flow value between the same node pairs
cfmax(vi, vj) � cfmax(vj, vi). The size N of all four typical
networks was incremented from 50 to 550, with steps of 10
from 50 to 100 and 30 from 100 to 550. Specifically, the average
degree of the NNC regular network was incremented from 2 to 20
in steps of 2, and the average degree here is the average number of
neighboring nodes of each node; ER random network density
increased from 0.01 to 0.1 in steps of 0.01 and from 0.1 to 0.5 in
steps of 0.1, and it should be noted that the network density is
numerically equal to the probability of connection q between two
points; the growth rate of BA scale-free network increased from 2
to 20 in steps of 2, and the growth rate indicates the number of
edges added to the network per unit of time; the average degree of
the WS small-world network increased from 2 to 10 in steps of 2,
and the reconnection probability increased from 0.002 to 0.01 in
steps of 0.002 and then from 0.01 to 0.1 in steps of 0.01. It should
be noted that the experimental results are the statistical mean of
10 independent randomized experiments.

The attack strategies used in this study are random attack and
deliberate attack. The random attack randomly selects n% of the
nodes from the network nodes for damage, and the deliberate
attack selects the top n% of the nodes with the largest degree value
in the network for damage, where the damage rate n% is taken as

[1, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70%]. The
network recovery strategy used in the experiment is a non-global
information-based network recovery, that is, the network is
restored by adding points and edges to the network using the
information of neighboring nodes and edges of the remaining
nodes in the network after the damage. For ease of understanding,
we provide a brief explanation of attack and recovery strategies
based on real-life scenarios: a random attack in the definition can
be understood as natural disasters (such as earthquakes), which
occur independent of human factors and attack humans at
random; a deliberate attack can be understood as traffic jams,
road controls, and accidents caused by human factors, or in the
case of police arrest operation, the collapse of an entire criminal
organization by arresting the key figures. For a non-global
information recovery strategy, project onto the social
interactions, if it is difficult to obtain information about a
particular individual, a feasible approach is to recover
information about the individual to some extent by asking
people who are related to the individual, and a similar strategy
has been used to find key individuals in terrorist groups [37]. In
order to facilitate the comparison of network parameters and
network structures, we fixed the network size N, so this article
only analyzes the experimental results of the network size of 100.

Analysis of Experimental Results of Flow Capacity
Robustness
Figure 2 gives the changing situation of the flow capacity
robustness for BA scale-free network of size 100, where
Figure 2A and Figure 2B show the flow capacity robustness
under deliberate and random attacks with the change in the node
damage rate and growth rate, respectively, and Figure 2C shows
the difference in flow capacity robustness under two types of
attacks. From Figure 2A and Figure 2B, it can be seen that the
overall network flow shows a significant decreasing trend as the
node damage rate increases, regardless of whether it is a deliberate
attack or a random attack. Specifically, when the network is
deliberately attacked, the circulation capacity of the BA scale-free
network, which has a small network growth rate, decreases
rapidly when the nodes start to be damaged, showing the
“emergent” phenomenon. It shows that the network with a
small growth rate is more dependent on nodes with a larger
degree, and only a few nodes with a large degree are damaged
deliberately and can have a significant influence on the network,
while the increase in the network growth rate can improve the
flow capacity robustness. In contrast, for a BA scale-free network
under random attack, the network growth rate has little effect on
its flow capacity robustness, and there is almost a synchronous
trend under different growth rates. Figure 2C shows the change
in the difference between the flow capacity robustness under
random attack minus the flow capacity robustness under
deliberate attack (all similar differences below are for random
attack minus deliberate attack, referred to as the flow capacity
robustness difference). It can be seen that the flow capacity
robustness differences are all greater than 0, reflecting to some
extent that the robustness of the BA scale-free network against a
random attack is better than that of the network against a
deliberate attack. And the larger the growth rate of the

Frontiers in Physics | www.frontiersin.org December 2021 | Volume 9 | Article 7924107

Cai et al. Network Robustness Analysis

77

https://www.frontiersin.org/journals/physics
www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


FIGURE 2 | Changes in flow capacity robustness of the BA scale-free network. (A) Change in flow capacity robustness under different damage rates and increase
rates for BA scale-free network under deliberate attack; (B) change in flow capacity robustness under different damage rates and increase rates for BA scale-free
network under random attack; (C) change in the difference between the flow capacity robustness under random attack minus the flow capacity robustness under
deliberate attack.
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network, the smaller is the flow capacity robustness difference,
while the network with a larger growth rate has smoother flow
capacity robustness change as the node damage rate increases.

Figure 3 shows the results of the flow capacity robustness of
the ER random network with size 100. It can be seen that the flow
capacity robustness shows a decreasing trend with increasing
node damage rate under both attack strategies, and the change of
node damage rate brings an unstable change in network flow
when network density is small (around 0.1). In contrast, network
flow decreases smoothly at higher network densities. A deliberate
attack can cause the “emergent” phenomenon of the ER random
network with low network density when the node damage rate is
small, suggesting that the flow capacity robustness of the low-
density random network is more dependent on nodes with higher
degrees. From Figure 3C, it can be seen that the flow capacity
robustness difference is greater at smaller network densities
(around 0.1), indicating that a low-density random network is
not truly “random,” and therefore, the destructiveness of a
deliberate attack in a low-density ER random network is much
higher than that in a random attack. As network density
increases, the gap between the destructiveness of the two
attack strategies narrows significantly.

The flow capacity robustness results for an NNC regular
network of size 100 are shown in Figure 4. The results show
that the trend of network flows for deliberate and random attacks
is very similar, that is, the overall decreases with the increase in
the node damage rate, and an early “emergent” phenomenon of
the flow capacity robustness emerges earlier in the regular
network with a small average degree. Unlike the BA scale-free
network and ER random network, the “emergent” phenomenon
occurs in the NNC regular network under a random attack, that
is, it is most sensitive to the initially disrupted 10% of nodes, and
network flow decreases rapidly. This is also consistent with the
case that NNC regular network nodes’ degree is the same,
indicating that random and deliberate attacks have the same
effect on the regular network. The change in the flow capacity
robustness difference is also concentrated in a narrow range
([-0.025,0.025]), which indicates that the two attack strategies
do not differ much for the NNC regular network and confirms
that the same value of node degree of the regular network makes
the two attacks essentially indistinguishable.

Figure 5 shows the experimental results of the flow capacity
robustness for a WS small-world network of size 100, average
degree 10, and reconnection probability increasing from 0.002 to
0.1. With the increases in the node damage rate, the overall
network flow still shows a decreasing trend, but it can be seen that
the flow capacity robustness under random attack decreases more
regularly and smoothly, while the flow capacity robustness with a
small reconnection probability does not change significantly
during a deliberate attack (Figure 5A). From the results of the
change of the flow capacity robustness difference, the difference
at low reconnection probability and high damage rate is more
obvious, and the destructive effect of a deliberate attack is
significantly higher than that of a random attack.

The results of the flow capacity robustness experiments with a
size of 100, a fixed reconnection probability of 0.1, and a mean
degree increasing from 2 to 10 are shown in Figure 6. It can be

seen that under the two attack methods, the smaller the network
average, the earlier is the “emergent” phenomenon, and with the
damage intensity increases, the overall network flow still shows a
downtrend. The flow capacity robustness difference shows a large
variation with the node damage rate’s change at smaller average
degree; specifically, the change from a positive to negative flow
robustness difference is accompanied by the change from a small
to large node damage rate.

Based on the previous experiments, Figure 7 shows how the
flow capacity robustness indicator of several representative
network parameters changes with the increase in the node
damage rate, and the corresponding error bars are also shown
in the figure, which is the standard of the mean (standard error).

For a deliberate attack (Figure 7A), an “emergent”
phenomenon of a low-density ER random network is more
obvious, and almost no “emergent” phenomenon occurs for
higher network densities, with a smooth decrease in network
flow transmission capability. As for a BA scale-free network,
although the flow capacity robustness is not as good as that of the
high-density ER random network, it also shows a relatively stable
downtrend, and the network flow transmission capacity of a low
growth rate decreases faster than that of a high-growth network.
The network flow transmission capability of an NNC regular
network is similar to that of a BA scale-free network, and both
show a steady decline. For a WS small-world network, when the
network average degree is fixed, the smaller the reconnection
probability, the larger is the flow capacity robustness and the
more robust is the network. This also reflects small-world
network between theeregular network and random network,
where the higher the reconnection probability and the closer
to random network, the more fragile is the network; conversely,
the closer to the regular network, the more stable is the network.
When network reconnection probability is fixed, the larger the
average degree, the stronger is the network flow transmission
capability and the greater is the flow capacity robustness; on the
contrary, the weaker the network flow transmission capability
and the smaller the flow capacity robustness. It can be seen that
there are several small-scale rebounds in the network flow
capacity robustness, which is due to the fact that the nodes
with the same degree value are not unique and the order of
nodes of two adjacent attacks is much more likely different, that
is, the n + 1 th attack is not necessarily carried out on the basis of
the nth damaged node, which leads to a rebound of robustness in
a small range. It can be seen that the error bars in some results are
relatively obvious, which may be related to the network size and
the number of experiments repeated.

For random attack (Figure 7B), in the ER random network,
the low-density network appears “emergent” phenomenon faster,
and the trend of change is unstable. In contrast, the growth rate of
the BA scale-free network is not as sensitive to the random attack
as deliberate attack, and it can be seen that there is little difference
in the flow capacity robustness for growth rates of 6 and 16. NNC
regular network flow is steadily decreasing with an increasing
node damage rate, and the greater the average degree, the greater
is the flow capacity robustness, which is basically consistent with
the situation of the deliberate attack. The results of the WS small-
world network show that after fixing reconnection probability,
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FIGURE 3 | Changes in flow capacity robustness of the ER random network. (A) Change in flow capacity robustness under different damage rates and network
density for ER random network under deliberate attack; (B) change in flow capacity robustness under different damage rates and network density for the ER random
network under random attack; (C) change of the difference between the flow capacity robustness under random attack minus the flow capacity robustness under
deliberate attack.
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FIGURE 4 | Changes in flow capacity robustness of NNC regular network. (A) Change in flow capacity robustness under different damage rates and average
degree for the NNC regular network under deliberate attack; (B) change in flow capacity robustness under different damage rates and average degree for an NNC regular
network under random attack; (C) change in the difference between the flow capacity robustness under random attack minus the flow capacity robustness under
deliberate attack.
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FIGURE 5 | Changes in flow capacity robustness of the WS small-world network with 10 average degrees. (A) Change in flow capacity robustness under different
damage rates and reconnection probability for the WS small-world network with 10 average degrees under deliberate attack; (B) change in flow capacity robustness
under different damage rates and reconnection probability for the WS small-world network with 10 average degrees under random attack; (C) change in the difference
between the flow capacity robustness under random attack minus the flow capacity robustness under deliberate attack.
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FIGURE 6 | Changes in flow capacity robustness of the WS small-world network with 0.1 reconnection probability. (A) Change in flow capacity robustness under
different damage rates and average degree for the WS small-world network with 0.1 reconnection probability under deliberate attack; (B) change in flow capacity
robustness under different damage rates and average degree for the WS small-world network with 0.1 reconnection probability under random attack; (C) change in the
difference between the flow capacity robustness under random attack minus the flow capacity robustness under deliberate attack.
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the larger the average degree, the larger is the flow capacity
robustness; after fixing the average degree, the smaller the
reconnection probability, the faster the “emergent”
phenomenon appears.

Figure 7 shows how the flow capacity robustness indicator of
several representative network parameters changes with the
increase in the node damage rate under deliberate and
random attacks. Furthermore, we conducted experiments on

FIGURE 7 | (A) Flow capacity robustness of four typical networks under deliberate attack. (B) Flow capacity robustness of four typical networks under random
attack.
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the same network with classical robustness, and the results are
shown in Figure 8. Here, we chose the robustness based on the
maximum connected subgraph as the classical robustness
indicator, which is defined as follows:

M � Nm

N −Nd
, (10)

where N is the size of the initial network; Nd is the number of
nodes removed from the network; andNm is the number of nodes
in the maximum connected subgraph in the network when the
nodes are removed.

Figure 8A shows how the classical robustness indicator
changes under a deliberate attack. It can be seen that similar
to flow capacity robustness, the robustness of a small-density
ER random network (network density � 0.02) is relatively
poor, and as network density increases, the network robustness
increases. Compared with a small increase rate (increase rate �
6), a BA scale-free network is more robust at a large increase
rate (increase rate � 16). The robustness of the NNC regular
network is also stronger at a large average degree. The
reconnection probability of a WS small-world network has
little effect on network robustness, while the network average
degree has a more significant impact on robustness, with the
higher the average degree, the stronger is the robustness. For a
random attack (Figure 8B), the classical robustness indicator
shows a similar pattern of variation, that is, high network
density is stronger than low network density (ER random
network), high increase rate is stronger than low increase
rate (BA scale-free network), and high network average
degree is stronger than low network average degree (NNC
regular network, WS small-world network). Compared to the
results of flow capacity robustness (Figure 7), due to the
different standards of the indicators, the result curves of
robustness are not exactly the same, but the trend in
relative magnitude of network robustness is basically
consistent. This also demonstrates the reasonableness of our
method compared with the classical robustness indicator.
Figure 8 shows how the classical robustness indicator of
several representative network parameters changes with the
increase in the node damage rate under deliberate and random
attacks.

Analysis of Experimental Results of the Flow Recovery
Robustness
We still use two attack strategies, deliberate and random attacks,
and the node recovery strategy is based on the non-global
information: nodes vi and vj are adjacent nodes, after node vi
is removed, and if node vj is still in the remaining network Vs,
then node vi and edge {vi, vj} can be recovered by the information
of node vj. The pseudo-code for the node recovery strategy is
given as follows:

Program Network Recovery
Dim is Adjacent As Boolean
For vj in Vs
For vi in Vd
If is Adjacent (vi, vj) � True

add node vi to network G
add edge {vi, vj} to network G
End If
End For
End For
End Network Recovery

Figure 9 shows the flow recovery robustness indicator, and its
difference varies with the change in the node damage rate and
growth rate for the BA scale-free network of size 100. It can be
seen that the recovered network flow shows similar changes
with the increase in the node damage rate under both two attack
strategies; that is, when fewer nodes are damaged (damage rate
less than 20%), the network resilience is strong, and almost all of
the damaged nodes can be recovered. In this study, we call this
damage rate “critical damage rate” for the flow recovery
robustness, and the damaged network can be fully recovered
when the node damage rate is less than or equal to this critical
damage rate. As the number of damaged nodes increases, the
recovery ability of the network becomes weaker, and the
“emergent” phenomenon appears. At the same time, it can
be seen that when the number of attacked nodes reaches a large
value (the damage rate is around 70%), the network flow
recovered from a deliberate attack is less than that from a
random attack. The flow recovery robustness difference
increases with the increase in the node damage rate,
indicating that as the level of network damage increases, the
gap between the random attack and deliberate attack in the
recovery ability of the network after damage becomes more and
more significant.

Figure 10 shows the experimental results of the flow recovery
robustness of ER random network of size 100 under deliberate
and random attacks. The resilience of the network remains
strong when the node damage rate is small, and the damaged
nodes can be almost fully recovered. As the damage rate
increases, the recovered network flow attenuates. In
addition, when network density is small (less than 0.1), the
number of nodes that cannot be recovered from the initial
damage of the ER random network under deliberate attack
increases rapidly, that is, the “emergent” phenomenon occurs
at the early stage of attack. The flow recovery robustness
difference demonstrates the same condition: two attack
strategies have a significant difference in the impact of
network resilience, that is, a deliberate attack leads to an
“emergent” phenomenon in the early stage of damage, but
not in a random attack. As the network density increases, the
resilience of the ER random network is almost the same for
both attacks.

Figure 11 shows results of the flow recovery robustness for the
NNC regular network of size 100. When the network average
degree is small, unrecovered nodes increase rapidly at the
beginning of damage, showing an “emergent” phenomenon.
As a larger average degree, the nodes can recover completely
at the initial stage of damage and then the flow recovery
robustness begins to decrease smoothly. The flow recovery
robustness difference shows that the difference is large only
when a small average degree and low damage rate are present
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at the same time. In other cases, the difference converges to 0, that
is, the difference in the impact of the two attack strategies on the
network is not significant.

The experimental results of the WS small-world network with
fixed mean degree are shown in Figure 12, and we set a network
average degree to 10. As the attack level increases, the network

FIGURE 8 | (A) Classical robustness of four typical networks under deliberate attack. (B) Classical robustness of four typical networks under random attack.
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FIGURE 9 |Changes of flow recovery robustness of the BA scale-free network. (A) Change in flow recovery robustness under different damage rates and increase
rates for BA scale-free network under deliberate attack; (B) change in flow recovery robustness under different damage rates and increase rates for BA scale-free
network under random attack; (C) change in the difference between the flow recovery robustness under random attack minus the flow capacity robustness under
deliberate attack.
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FIGURE 10 | Changes in flow recovery robustness of ER random network. (A) Change in flow recovery robustness under different damage rates and network
density for ER random network under deliberate attack; (B) change in flow recovery robustness under different damage rates and network density for ER random
network under random attack; (C) change in the difference between the flow recovery robustness under random attack minus the flow capacity robustness under
deliberate attack.
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FIGURE 11 | Changes in flow recovery robustness of NNC regular network. (A) Change in flow recovery robustness under different damage rates and average
degree for NNC regular network under deliberate attack; (B) change in flow recovery robustness under different damage rates and average degree for NNC regular
network under random attack; (C) change in the difference between the flow recovery robustness under random attack minus the flow capacity robustness under
deliberate attack.
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FIGURE 12 | Changes of flow recovery robustness of WS small-world network with 10 average degrees. (A) Change in flow recovery robustness under different
damage rates and reconnection probability for the WS small-world network with 10 average degrees under deliberate attack; (B) change in flow recovery robustness
under different damage rates and reconnection probability for the WS small-world network with 10 average degrees under random attack; (C) change in the difference
between the flow recovery robustness under random attack minus the flow capacity robustness under deliberate attack.
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recovery flow goes from almost fully recoverable to significantly
reduced. We can also find that reconnection probability has
almost no effect on the network resilience, especially under
random attack. The flow recovery robustness difference also
varies with the change in the node damage rate, and there is
no significant pattern to follow in the effect of reconnection
probability on this difference.

Figure 13 shows the experimental results of a WS small-world
network with a fixed reconnection probability, which is fixed at
0.1. It can be seen that the resilience of a low–average degree
network decreases and is more prone to an “emergent”
phenomenon, and during a deliberate attack, as the network
average degree increases, the flow recovery robustness shows a
downtrend. It can be seen from Figure 13C that when the
network average degree is low, the changes of the flow
recovery robustness have their own patterns, and after the
average degree increases, the difference change shows a certain
pattern, that is, the change is more stable.

Next, Figure 14 shows the changes of the flow recovery
robustness indicator for the network with different parameters.
In case of a deliberate attack (Figure 14A), for ER random
networks, the low-density network is more unstable than the
high-density network in terms of network resilience. Specifically,
the flow recovery robustness of the low-density network shows a
rapid decline in the early stage, while the recovery ability of the
high-density network is almost 100% until the damage rate
reaches the critical value (20%), and the flow recovery
robustness decreases smoothly after exceeding the critical
damage rate. The BA scale-free network, on the other hand,
presents an almost coincident resilience with an ER random
network of higher density (network density � 0.3), and it can be
seen that the growth rate does not have much influence on the
flow recovery robustness of the BA scale-free network. The
recovery capability of the NNC regular network also shows a
steady decrease with the increase in damage rate, and there is no
critical damage rate in the NNC regular network, that is, the flow
recovery robustness decreases when the network is initially
damaged on a small scale (damage rate <20%), especially in
the NNC regular network with a small average degree. For theWS
small-world network, when the network average degree is fixed,
the higher the reconnection probability, the better is the
network’s resilience, and there is a corresponding critical
damage rate. Conversely, the smaller the reconnection
probability, the worse is the recovery capability and there is
no corresponding critical damage rate. When the reconnection
probability is fixed, the larger is the network average degree, the
higher is the flow recovery robustness.

During a random attack (Figure 14B), the ER random
network does not appear as an “emergent” phenomenon
similar to the rapid decrease in network recovery ability
during a deliberate attack and has a corresponding critical
damage rate, regardless of network density. The BA scale-free
network shows a steady decline after critical damage rate is
reached, and the growth rate does not have a significant
impact on recovery ability. Similarly, the NNC regular
network shows a trend of strong recovery ability in the early
stage and a steady decline in the later stage, and the greater the

average network degree, the greater is the flow recovery
robustness. For the WS small-world network, the overall trend
of the flow recovery robustness is more stable than for deliberate
attack, but still, after fixing the network average degree, the flow
recovery robustness increases as reconnection probability
increases, and the change in resilience is more stable for the
network with higher reconnection probability; after fixing
reconnection probability, the network average degree increases,
and the network’s resilience is enhanced, and the change of the
flow recovery robustness is smoother for the network with a
larger average degree. It can be seen that a small rebound in the
flow recovery robustness during random attack occurs. It is
normal for a small rebound to occur because the latter of two
adjacent attacks does not based on the previous one but randomly
damages a certain percentage of nodes again.

Figure 14 shows how the flow recovery robustness indicator of
several representative network parameters changes with the
increase in the node damage rate under deliberate and
random attacks. Finally, in order to verify the effectiveness of
the recovery strategy in this study, we make the difference
between the flow recovery robustness and the flow capacity
robustness, which is intended to consider the difference
between the network flows after network recovery and before
recovery. As can be seen from Figure 15, the flow recovery
robustness after recovery is greater than the flow capacity
robustness before recovery in varying levels for all four typical
networks, whether under a deliberate or random attack, which
reflects the effectiveness of the recovery strategy based on non-
global information.

DISCUSSION

In this study, we define two types of robustness evaluation
indicators based on network maximum flow: the flow capacity
robustness, which assesses the ability of the network to resist
attack, and the flow recovery robustness, which assesses the
ability to rebuild the network after an attack on the network.
In order to verify the effectiveness of the proposed robustness
evaluation indicators, this study conducts experimental analysis
on four typical networks, and the experimental results show that
after ER random network is attacked, the high-density network
outperforms the low-density network in terms of connectivity
and resilience; network growth rate of the BA scale-free network
does not have a significant effect on robustness changes in most
cases; robustness of the NNC regular network decreases steadily
as the node damage rate increases, and the greater the average
degree, the greater is the robustness; for the WS small-world
network, when we fix the network average degree, the larger the
reconnection probability, the better is the connectivity and
recovery ability of the network after attack, and when we fix
reconnection probability, the bigger the network average degree,
the greater is the robustness. When examining the flow recovery
robustness, we find that there is a critical damage rate (nodes and
edges that are damaged can be almost completely recovered when
the node damage rate is less than this critical value), and the
critical damage rate is located around 20%. In addition, the
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FIGURE 13 | Changes in flow recovery robustness of a WS small-world network with 0.1 reconnection probability. (A) Change in flow recovery robustness under
different damage rates and average degree for the WS small-world network with 0.1 reconnection probability under deliberate attack; (B) change in flow recovery
robustness under different damage rates and average degree for the WS small-world network with 0.1 reconnection probability under random attack; (C) change in the
difference between the flow recovery robustness under random attack minus the flow capacity robustness under deliberate attack.
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decline in robustness based on network maximum flow not only
appears an “emergent” phenomenon as the number of attacked
nodes increases but also presents a certain “emergent”
phenomenon with the change in network structure
parameters. Finally, this study also verifies the effectiveness of

our adopted non-global information-based recovery strategy for
attacked network through difference values between the flow
recovery robustness and the flow capacity robustness. The flow
capacity robustness and the flow recovery robustness based on
network maximum flow proposed in this study enrich the

FIGURE 14 | (A) Flow recovery robustness of four typical networks under deliberate attack. (B) Flow recovery robustness of four typical networks under random
attack.
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FIGURE 15 | Difference between the flow recovery robustness and the flow capacity robustness of four typical networks. (A, B), respectively, show the difference
between the flow recovery robustness and the flow capacity robustness in BA scale-free network under deliberate attack and random attack; (C, D), respectively, show
the difference between the flow recovery robustness and the flow capacity robustness in ER random network under deliberate attack and random attack; (E, F),
respectively, show the difference between the flow recovery robustness and the flow capacity robustness in the NNC regular network under deliberate attack and
random attack; (G, H), respectively, show the difference between the flow recovery robustness and the flow capacity robustness in the WS small-world network under
deliberate attack and random attack.
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network structure indicator system and more comprehensively
describe structural stability of real networks such as interpersonal
networks and Internet. The main work in this study focuses on
the design of two types of the robustness evaluation indicators based
on networkmaximum flow and the experimental characterization of
typical networks, and more in-depth theoretical analysis and
quantitative description are the main elements of the subsequent
study. Furthermore, we will try to extend our method from static
networks to dynamic networks. Methods that have been used to deal
with dynamic networks include exponential random graph models
[42], stochastic block models [43, 44], continuous latent space
models [44, 45], latent feature models [46, 47], and majority
dynamics [48]. We will extend our indicators to dynamic
networks by referring to existing methods.
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Computing Effective Mixed Strategies
for Protecting Targets in Large-Scale
Critical Infrastructure Networks
Zhen Wang, Mengting Jiang, Yu Yang, Lili Chen and Hong Ding*

School of Cyberspace, Hangzhou Dianzi University, Hangzhou, China

Most critical infrastructure networks often suffer malicious attacks, which may result in
network failures. Therefore, how to design more robust defense measures to minimize the
loss is a great challenge. In recent years, defense strategies for enhancing the robustness
of the networks are developed based on the game theory. However, the aforementioned
method cannot effectively solve the defending problem on large-scale networks with a full
strategy space. In this study, we achieve the purpose of protecting the infrastructure
networks by allocating limited resources to monitor the targets. Based on the existing two-
person zero-sum game model and the Double Oracle framework, we propose the EMSL
algorithm which is an approximation algorithm based on a greedy search to compute
effective mixed strategies for protecting large-scale networks. The improvement of our
approximation algorithm to other algorithms is discussed. Experimental results show that
our approximation algorithm can efficiently compute the mixed strategies on actual large-
scale networks with a full strategy space, and the mixed defense strategies bring the
highest utility to a defender on different networks when dealing with different attacks.

Keywords: network robustness, complex network, game theory, mixed strategies, defense

1 INTRODUCTION

In recent years, malicious activities against the critical infrastructures lead to new challenges to the
world’s security, which have inflicted enormous economic losses and threatened public safety. For
instance, in July 2019, a cyber attack on a Venezuelan hydroelectric power plant collapsed the water
grid in the capital and more than 10 states, plunging the entire country into darkness [1]. Very
recently, the largest oil pipeline company in the United States, Colonial Pipeline, was attacked by the
hacker organization DarkSide, which led the country to announce an emergency state [2]. Thus,
analyzing the robustness of the critical infrastructure networks against the malicious attacks and
accordingly improving the efficiency of defending the targets with limited resources remain major
problems.

Prior works have designed methods to protect the critical infrastructure networks against
malicious attacks, and we summarize them into three classes. The first class comes up with
adding nodes (e.g., adding additional base stations), adding edges (e.g., adding additional power
lines), or swapping edges (e.g., rewiring power lines) to enhance the network robustness [3–5]. But
these methods will change the network structure, while the structure of a network is a defining
characteristic that can identify its functionality and thus should remain unchanged. The second class
proposes resource-allocation methods to significantly reduce the time cost of allocating resources
and increase the probability of successful defending tasks, considering the cooperativity between
resources and tasks [6, 7], which will increase the complexity of the defending problem. The third
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class develops algorithms to monitor (e.g., closely monitor
substation) or immunize important nodes for protecting
networks, according to a range of network centrality measures
(e.g., degree centrality and betweenness centrality) [8–13].
However, all these existing centrality metrics do not consider
the protector’s combinatorial pure policy space. Though these
defending policies can protect the network against attacks to a
certain extent, we can consider mixing the pure strategies and
scheduling the defense resources dynamically to design more
protective defending strategies.

To address the problem of designing more robust measures for
defending the critical infrastructure networks, we can model the
urban infrastructure cybersecurity problem as a problem with
both defender and attacker participants. The infrastructure-based
confrontation between the attacker and the defender can be
modeled using game theory. However, most of the research
studies that compute the attack and defense strategies by
establishing different game models only consider a few typical
strategies to shrink the space of strategies, rather taking a large
strategy set into account [14–19]. Only one article is distinct; Li
et al. proposed the two-player zero-sum simultaneous-move
game model to solve the defending problem [20]. Their
algorithm enumerates all strategies for obtaining the Nash
equilibrium (ESE) on the network with 20 nodes and
computes mixed strategies for both players. Unfortunately,
their algorithm cannot solve the problem of computing the
global equilibrium in large-scale networks. So, the challenge is
how to compute effective strategies with the full strategy space of
both players growing exponentially with the increase of the
network size.

To solve the pervious challenge, based on the existing two-
person zero-sum model and settings, we propose our solution
containing four key contributions:

1) First, we extend the defending problem to a real large-scale
infrastructure network that is vulnerable.

2) Second, we propose the effective mixed strategies for large-
scale networks (EMSL) algorithm, which is based on greed
under the Double Oracle framework to obtain an effective
defense solution.

3) Third, we design mixed-integer linear programming (MILP)
to compute the best pure attack strategy for an attacker.

4) Finally, we conduct extensive experiments on two networks of
different sizes by comparing with other defense strategies
under different attacks. The experimental results show that
the mixed defense strategies obtained by our approximation
algorithm bring the highest utility to a defender on different
networks when dealing with different attacks.

2 INFRASTRUCTURE NETWORK
PROTECTING GAME

As in the pioneering work [14], we define the problem of protecting
targets in infrastructure networks as a single-round
defender–attacker zero-sum game. The defender chooses a subset
of nodes to protect, while the attacker chooses some nodes to attack

in the target network. Only the nodes chosen by the attacker,
meanwhile not protected by the defender, will be removed from
the network, and then the payoff function for both players is
determined by the remaining network. Both players are assumed
to have the complete information of the target network and full
knowledge about the opponent. Hence, they are fully aware of all the
strategies that the opponent may adopt, as well as the payoffs to each
other under each combination of strategies. Nevertheless, the game is
a simultaneous one, that is to say, the players do not know exactly
which nodes the opponent will choose when making their own
decisions.

2.1 Network
The infrastructure system can be easily abstracted as a target
network, which is formalized in terms of a simple undirected
graph G � (V, E). Each node v ∈ V represents an infrastructure,
where V is the set of nodes in the network. An edge eij � (vi, vj) ∈ E
denotes a directionless edge with vi and vj as endpoints, while E ⊆
V ×V denotes the set of edges.We defineN � |V| as the number of
nodes in the network.

The connectivity between nodes is the equivalence relation on
the node v ∈ V. Based on the equivalence relation, V can be
divided into several non-empty subsets V1, V2, . . ., Vn, and each
non-empty subset Vi determines a connected subgraph G(Vi).
Especially for a node v ∈ V, we denote the node’s connected
neighbors as follows:

V′ � u ∈ V \ v{ }| u, v( ) ∈ E, distance u, v( ) ≠ ∞, v ∈ V{ }, (1)

where distance(u, v) ≠∞ indicates that there always exists a path
from u to v. The connected subgraph (V′, E ∩ (V′

2 )) induced byV′
is denoted by G(V′). So, G(V1), G(V2), . . ., G(Vn) are defined as
the connected components ofG. LetG(Vmax) represent the largest
connected component (LCC) of G, where Vmax is defined as the
largest connected node subset of V.

Let ~V ⊆ V denote the subset of nodes in V and ~E ⊆ E denote
the set of edges where each edge in ~E is connected to at least one
node in ~V. The graph Ĝ � (V̂, Ê) obtained by removing all nodes
in ~V and all associated edges in ~E from G is expressed as follows:

Ĝ � G − ~V. (2)

2.2 Strategies
A pure defender strategy D � 〈dv〉 is an assignment of the RD
defending resources to RD vertices, that is, ∑v∈Vdv � RD, where dv
∈ {0, 1}. dv � 1 indicates the node v is protected by a defender and
will never be deleted. We define the set of nodes protected by the
defender as VD � {v ∈ V|dv � 1}, where |VD| � RD. The defender’s
strategy space is defined as D. So, a mixed attacker strategy x �
〈xD〉 is a probability distribution over pure strategies, with xD
representing the probability that the pure strategy D is played.

Meanwhile, the attacker can choose a subset of nodes VA ⊆ V
to plan an attack. A pure attacker strategy is defined as a vector
A � 〈av〉 ∈ A, where A represents the attacker’s strategy space
and ∑v∈Vav � RA indicates that the attacker’s resource number is
RA. If v ∈ VA, then av � 1; otherwise, av � 0. A mixed attacker
strategy y � 〈yA〉 is a probability distribution over pure strategies,
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with yA representing the probability that the pure strategy A is
played.

2.3 Utility
In our defender–attacker zero-sum game, given a defender’s
strategy D and an attacker’s strategy A, only when av � 1, and
dv � 0, the node vwill be deleted from the network by the attacker;
otherwise, the defender protects the targets successfully. If the
attacker succeeds, he will receive a payoff PA and the defender’s
payoff PD will be − PA; otherwise, both players will gain 0.

In many critical infrastructure systems, the targets are
networked and the functionality relies heavily on the
connectivity and topology structures. If the network
connectivity decreases during the node deletion, the
performance of the networks will degrade. The node number
of the largest connected component (NLCC) of the graphs is a
robust measure function which is widely used to evaluate the
network performance. Hence, we adopt NLCC to construct the
payoff functions. NLCC(G) is calculated by determining the
maximal connected node subset Vmax ⊆ V in G [21], and it
can be expressed as follows:

NLCC G( ) � |Vmax|. (3)

If the defender’s strategy D and the attacker’s strategy A select
sets of nodes differently, that is, VA ∩ VD ≠ VD, which means the
defender fails in protecting the targets and the attacker succeeds,
then the node subset ~V � VA − VA ∩ VD and its associated edge
set ~E will be deleted from the target network, and we define
V̂max ⊆ (V − ~V) as the largest connected node subset of the
residual graph Ĝ. NLCC(Ĝ) is computed by determining the
size of V̂max as follows:

NLCC Ĝ( ) � |V̂max|, (4)

where V̂max ⊆ (V − (VA − VA ∩ VD)) in Ĝ. Otherwise, if the
defender protects the network successfully, that is, VA ∩ VD �
VD � VA, which means that no node will be deleted from G, then
NLCC(Ĝ) � NLCC(G).

Hence, the payoff function of the attacker PA is defined as
follows:

PA � NLCC G( ) −NLCC Ĝ( )
NLCC G( ) ∈ 0, 1[ ] (5)

and the defender’s payoff function PD is given as follows:

PD � NLCC Ĝ( ) −NLCC G( )
NLCC G( ) ∈ −1, 0[ ], (6)

where NLCC can be replaced by any other measure functions that
meet the monotonicity assumption.

After the payoff functions of the players are obtained, we
define UD as the expected utility function of the defender. Given a
defender’s mixed strategy x and an attacker’s pure strategy A, the
expected defender utility UD(x, A) is given as follows:

UD x, A( ) � ∑
D∈D

1 − zD,A( )xDPD, (7)

where zD,A indicates whether the defender strategy D successfully
protects the targets that are attacked by A, that is, zD,A � 0 if D ∩
A � D or 1 otherwise.

The defender’s expected utility UD(D, y) of playing a pure
defense strategy D against the mixed attack strategy y is

UD D, y( ) � PD ∑
A∈A

1 − zD,A( )yA. (8)

When playing a mixed defense strategy x against the mixed
attack strategy y, the defender’s expected utility UD(x, y) is given
as follows:

UD x, y( ) � ∑
D∈D

xDUD D, y( ) � ∑
A∈A

yAUD x, A( ). (9)

Generally, based on the two-person zero-sum game, we note
UA � − UD.

2.4 Equilibrium
The Nash equilibrium of two-person zero-sum games is the
maximum equilibrium. The aim of the defender is to protect
the target nodes of the network to maximize their minimum
utility and minimize the attacker’s maximum utility. We use
linear programming to solve the zero-sum game. The defender’s
optimal mixed strategy x can be computed by solving the
following linear programming (LP):

max U (10)

s.t. U≤UD x, A( ),∀A ∈ A , (11)

∑
N

i�1
dv � RD, (12)

∑
D∈D

xD � 1, (13)

xD ≥ 0,∀D ∈ D. (14)

When the strategy spaces of both sides are small, the optimal
solution can be obtained by solving the programming Equations
10–14. However, as the network scale expands, the defender’s
strategy space D and the attacker’s strategy space A will grow
exponentially with the number of resources RD. At this time, it is
difficult to calculate the optimal solution in a short time by
mathematical programming, so it is necessary to design new
algorithms to get efficient strategies for both players.

3 APPROACH

In this section, we first give a brief introduction to the ESE
algorithm, which is very similar to the problem solved in this
study [20], and analyze the limitations of the algorithm. Then we
propose our EMSL algorithm and describe it in detail.

3.1 Limitation of ESE Algorithm
The ESE algorithm is adopted by Li et al., which solves the
attacker–defender game by computing the global equilibrium
with full strategy space on a small network [20]. First, they
enumerate all possible attack and defense strategies and
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calculate the payoffs of the players in each strategy to construct
the payoff matrix. Next, they start the two-person zero-sum game
by choosing nodes with the largest degrees to attack, satisfying the
resource constraint, and identify the defender’s best response to
the attacker’s strategy. Then they compute the best response pure
strategies over the payoff matrix for the players. Finally, the Nash
equilibrium is computed to calculate the players’ best mixed
response strategies over each pure strategy.

Unfortunately, the ESE algorithm can only be solved on the
network with 20 nodes. Since the strategy space is too large as the
network scale grows, it is very time-consuming to calculate the
payoffs in each strategy profile one by one. It is impossible to solve
the problem by enumerating all strategies to maximize the
benefits of both the attacker and the defender. So, the ESE
algorithm cannot be applied to real large-scale networks due
to its limited computing power.

We find that the interaction process of the players in the ESE
algorithm is similar to the Double Oracle (DO) framework. The
DO framework is a standard method for solving zero-sum games
with large strategy spaces.

However, there are two challenges to solving the INP game
under the DO framework: 1) We can only present the MILP for
computing the best response strategy of the attacker (in Section
4.2), and we solve it on the network with 20 nodes. The best attack
method is used as an attack method for comparison in the
experiments. But it is difficult to present the MILP for
computing the best response strategy of the defender because
of the weakness of high complexity. 2) Computing the MILP is
time-consuming, and it is difficult to solve it for an optimal
solution on large networks. We aim to find an efficient solution
for the INP problem, but not an optimal solution. The effective
solution can be obtained by designing an approximate algorithm
under the suboracles of DO framework. Hence, we propose the
effective mixed strategies for large-scale networks (EMSL)
algorithm for computing the improved solution.

3.2 EMSL Algorithm
To solve the INP problem, we propose our EMSL algorithm based
on greedy search under the DO framework. The DO framework
can efficiently solve the zero-sum games on real large networks.
For instance, Jain et al. proposed the SNARES algorithm to solve
the security scheduling problem on the Mumbai road network
with 9,503 nodes and 20,416 edges [22]. And Wang et al.
introduced the DO-TPD algorithm to compute an optimal
monitoring strategy for detecting terrorist plots on realistic-
sized problems, which contains about 100 such potential
terrorists in some 1,400 French nationals [23]. The DO
framework is formed from Defender Oracle and Attacker
Oracle. And both of the oracles contain Best Oracle and Better
Oracle. Best Oracle can compute the optimal solution by solving
the MILP, instead of enumerating all possible strategies, while
Better Oracle can improve the computing efficiency for an
approximate solution. Due to the challenges of solving Best
Oracle mentioned in Section 3.1, we design the EMSL
algorithm under Better Oracle (EMSL-Better-O). It is sketched
in Algorithm 1.

Algorithm 1. EMSL-Better-O overview (G, RD, RA).

Line 1 first initializes EMSL-Better-O by generating a small
strategy space 〈D′,A′〉 randomly. Then Equation 9 computes the
equilibrium with 〈D,A〉 replaced by 〈D′,A′〉 to solve the
restricted version of INP (CoreLP, Line 3). The restricted INP
can be solved efficiently because the strategy space 〈D′,A′〉 is
small. Obviously, the solution obtained is an equilibrium of the
restricted INP and does not form an equilibrium to the original
INP. So, both players want to improve their utilities with other
strategies out of 〈D′,A′〉. EMSL-Better-O allows them to do so
with Better Oracle (Lines 4–5 and Lines 6–7). Specifically, EMSL-
Better-O calls BetterO-D (Better Oracle for Defender) to search a
set of improving strategies for the defender (Lines 4–5). And in
the similar manner, EMSL-Better-O calls BetterO-A (Better
Oracle for Attacker) to find improving strategies for the
attacker (Lines 6–7). The process repeats until no improving
strategy can be found for both players (Line 8), when the final
solution obtained for the original INP is close to optimal.

The EMSL-Better-O algorithm of Defender Oracle (EMSL-
Better-OD) is presented in Algorithm 2. EMSL-Better-OD
generates a defender pure strategy DBetter. The core of each
iteration (Lines 5–8) is designed based on the greedy search.

Algorithm 2. EMSL-Better-OD (x, y).

EMSL-Better-OD repeatedly starts from an empty strategy
space DBetter and initializes a random pure strategy D ∈ D (Lines
1–2). Then in a greedy manner, it iteratively applies
GreedySearch(v, D, x) (Algorithm 3) for a new local optimal
strategy D′ that brings the maximum utility to the defender (Line
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6). Afterward, the strategy set D is updated systematically by D′
(Lines 7–8). The loop repeats until the termination conditions are
met: 1)UD (D, y) >UD (x, y); 2)D+ �∅; and 3)UD (D, y) −UD (x,
y) < ϵ, where ϵ is a pre-defined global variable to constrain the
total number of iterations. The defense strategy DBetter is
computed over the local optimal strategies (Lines 9–10).
Compared with enumerating all strategies to construct a
payoff matrix and calculating the global equilibrium, our
algorithm based on greedy search effectively improves the
computing power.

Algorithm 3. GreedySearch(v, D, x).

The goal of GreedySearch (v, D, x) is to find a pure defense
strategy that can improve the defender’s utility. It repeatedly
starts from an empty strategy D � ∅, and it consecutively tries to
add a best node v′ in the hope of improving the defender’s utility
UD (Line 4). If the node v′ satisfies UD (D ∪ {v′}, y) > UD (D, y),
then D ← D ∪ {v′} (Lines 5–6); otherwise, it tries to add a best
node v′ from the rest node set D\{v′} (Line 8). If UD (D\{v′}, y) >
UD (D, y), then D← D\{v′} (Line 9–10). Finally, it stops when |D|
� RD. Note that the utility function is a submodular set function,
which guarantees the approximate solution a (1 − 1

e)
approximation ratio to the optimal solution [24].

The time complexity of our approximate algorithm is O(N2),
and the spatial complexity is S(N2), where N is the size of the
networks. Our algorithm can be solved within a limited time
complexity.

4 EXPERIMENTAL RESULTS AND
ANALYSIS

We assess the performance of our approach through a number of
experiments. The algorithms proposed in this article are coded in
Visual Studio. Core-LP and MILP are solved by calling CPLEX.
All computations are performed on a machine with a 3.60 GHz
quad core CPU and 8.00 GB memory. The parameter ϵ in EMSL-
Better-OD (Algorithm 2) is set to be 0.05. The number of defense
resources RD is set to be 1

5*N (see Section 4.3.1), and the attack
resource number RA is set to be equal and variable from 0 to N.
We conduct experiments on two types of graphs withN1 � 20 and
N2 � 500.

In this section, the defense methods for comparison and the
attack methods for confrontation are introduced first. Then the
solution of the approximate algorithm on two different networks
is presented and analyzed.

4.1 Defense Methods for Comparison
It is essential to prove the effect of the defender’s mixed strategies
with other defense methods. The typical defense methods we used
for comparison are as follows:

1) ID Defense [25]: In the initial network, the degree of each
node is first calculated in the network, and then the vertex is
chosen in descending order from the highest vertex to defense.
After each attack, the network structure will change, and the
degree of each node may also change, but it will not be
recalculated. That is to say, the defending strategy uses the
initial degree distribution, so we call it the “ID Defense”
method.

2) IB Defense [25]: In the initial network, the betweenness of
each node is calculated first, and then the vertex is selected for
defense according to the descending order of betweenness.
Similarly, this defending strategy is also distributed according
to the initial mediation degree, so it is called the “IB Defense”
method.

3) RA Defense: In the initial network, nodes are randomly
selected for defense. In this article, we call it the “RA
Defense” method. It should be noted that although random
selection seems to be the most convenient way, some key
nodes may be selected, which makes the experimental results
accidental. In order to avoid the occurrence of the previous
situation, we will repeat the process of selecting nodes
randomly and calculating the results when carrying out RA
Defense. Finally, the average of all the results is calculated as
the final result.

4) DCM Defense [26]: In the initial network, nodes are defended
by the mixed strategies, where the marginal coverage
probability of each vertex is normalized degree centrality.
Given the marginal coverage probabilities, the mixed
strategies are generated using the comb sampling algorithm.

4.2 Attack Methods
Considering the actual situation that attackers may take many
kinds of attacks to achieve their goals, it is also important to verify
that the defender’s mixed strategy obtained by the approximate
algorithm is efficient due to different attacks. Many relative works
analyze the robustness of the critical infrastructure networks
against malicious attacks. The first class estimates the
robustness by removing nodes or edges based on the load
capacity [27–30]. The second class comes up with removing
some nodes or edges based on the degree distribution or
betweenness distribution of the networks [10, 28, 29, 25, 13,
31, 32]. The third class develops the method of the tabu search
into the network disintegration problem to identify the optimal
attack strategy is introduced [33].

So, based on the model and scenario of this study, the attack
methods we chose for confrontation are as follows:
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1) ID Attack: Attacking nodes based on the initial degree
distribution of the network.

2) IB Attack: Attacking nodes based on the initial betweenness
distribution of the network.

3) RA Attack: Attacking nodes randomly in the networks.
4) BEST-OA Attack: Attacking nodes with the best attack

strategy. We consider the worst case, that is, assuming that
the attacker always chooses the most destructive attack
method. So, we use mixed-integer linear programming
(MILP) to solve the best pure attack strategy for an
attacker, and it is called the “BEST-OA Attack” method.
The MILP is shown in the following equations:

max ∑
D∈D

NLCC G( ) −NLCC Ĝ( )
NLCC G( )

⎛⎝ ⎞⎠ · xD (15)

s.t. ∑
D∈D

xD � 1, xD ≥ 0,∀D ∈ D , (16)

∑
N

i�1
av � RA, av ∈ VA, av ∈ 0, 1{ }, (17)

∑
N

i�1
dv � RD, dv ∈ VD, dv ∈ 0, 1{ }, (18)

dv · av − dv < vDA
i < dv · av − dv + 2, (19)

vDA
i + vDA

j − 1≤ eDA
ij , vDA

i ∈ 0, 1{ }, eDA
ij ∈ 0, 1{ }, (20)

eDA
ij ≤ vDA

i , eDA
ij ≤ vDA

j , (21)

σDA
jk − σDA

ik ≥ eDA
ij − 1, σDA

ij ∈ 0, 1{ }, (22)

NLCC Ĝ( )≥ ∑
vi∈VD

σDA
ij , (23)

where vDA
i � 1 represents the node vi is still in Ĝ when it is

attacked by A under the protection of D; otherwise, vDA
i � 0.

eDA
ij � 1 represents the edge between nodes vi and vj is still in Ĝ

when it is attacked by A under the protection of D; otherwise,
eDA
ij � 0. σDA

ij � 1 represents nodes vi and vj are still in the same
connected subgraph when they are attacked by A under the
protection of D; otherwise, σDA

ij � 0. Specifically, σ ii � 1.
Equations 19–23 constrain the existence of connected
subgraphs after attack. The goal of defenders in best attack
oracle is to verify an optimal attack strategy over the entire
pure strategy space. Unfortunately, solving best attack oracle
turns out to be NP-hard, and the MILP only can be solved on
small networks [23].

4.3 Solution of the Approximation Algorithm
To verify the performance of the mixed defense strategies, we
solve the defender–attacker model by conducting experiments on
a small network with 20 nodes first, which is used by Li [20], and
then extend to the U.S. air transportation network with 500 nodes
[34]. At the same time, the evolution of robustness of networks is
analyzed under two topological changes.

4.3.1 Effectiveness of theMixed Defense Strategies on
Small Network
A small network topology structure with 20 nodes is shown in
Figure 1. The numbers of attack resources RA and defense
resources RD are set to be equal and variable from 0 to 20. To
validate the effectiveness of the mixed strategy in small networks,
we compare the results with those of some other typical defense
strategies under different attack methods. The typical defense
strategies for comparison here are ID Defense, IB Defense, RA
Defense, DCM Defense, and NO Defense which means RD � 0.
The curve of NO Defense is shown as a baseline. And the attack
strategies used in this section are ID Attack, IB Attack, RA Attack,
and BEST-OA Attack. These comparison defense strategies and
attack strategies have been introduced in the previous
subsections.

• Effectiveness Analysis
As shown in Figures 2A–D, what the curves represent are the
defender’s utility, while RD � 4 and RA is variable from 0 to 20
on a small network. The vertical axis represents the defender’s
utility, and the horizontal axis represents the number of attack
resources. A higher defender utility indicates a lower attacker
utility given the zero-sum assumption as well as better
performance of the mixed defense strategy. The results
show that with the increase of attack resources, the decline
rate of defender’s utility is the slowest under the protection of
the mixed defense strategy. And no matter in which attack
mode, the defender’s utility obtained by the mixed defense
strategy is higher than that obtained by other defense methods,
especially in the case of RA Attack. Although under IB Attack,
the results of IB defense, RA Defense, and mixed strategy
defense are close to each other, the mixed strategy is still
performing the best (Figure 2B). The results are sufficient
enough to indicate the effectiveness of our approximation
algorithm in small networks.

• Optimal defense resource number based on unit resource
efficiency

FIGURE 1 | Topology structure of a small network with 20 nodes [20].
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With the network growing, it is essential to define the optimal
defense resource number RD. We define the number of resources
per unit as 1 resource, adding one unit of resources per
experiment. Then we repeatedly calculate the increment of the
defender’s profit after adding the unit resource under different
defense and attack methods. Finally, we calculate the defender’s
average profit increment. The number of defense resources that
maximize the defender’s average profit increment is defined as the
optimal defense resources.

For example, Table 1 shows the benefits of the defender when
the BEST-OA Attack method confronts the ID Defense method,

FIGURE 2 | These are defender’s utility of the mixed defense strategy and other comparison defense methods under different attack methods while RA � 4 on small
network with |V| � 20. RD is variable from 0 to 20. (A) is the defender’s utility when playing ID Attack strategy with different defense strategies. (B) is the defender’s utility
when playing IB Attack strategy with different defense strategies. (C) is the defender’s utility when playing RA Attack strategy with different defense strategies. (D) is the
defender’s utility when playing BEST-AO Attack strategy with different defense strategies.

TABLE 1 | Utility of the defender when the BEST-OA Attack method confronts the ID Defense method.

RA|RD 0 1 2 3 4 5 6 7 8 9 10

0 1 1 1 1 1 1 1 1 1 1 1
1 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.9 0.9 0.9 0.9
2 0.45 0.65 0.65 0.65 0.75 0.75 0.75 0.8 0.8 0.8 0.8
3 0.35 0.55 0.55 0.55 0.65 0.65 0.7 0.75 0.75 0.75 0.75
4 0.35 0.45 0.45 0.5 0.6 0.6 0.65 0.7 0.7 0.7 0.7
5 0.2 0.4 0.4 0.45 0.55 0.55 0.6 0.65 0.65 0.65 0.65
6 0.2 0.3 0.3 0.4 0.5 0.5 0.55 0.6 0.6 0.6 0.6
7 0.1 0.25 0.25 0.35 0.45 0.45 0.5 0.55 0.55 0.55 0.55
8 0.1 0.15 0.2 0.3 0.4 0.4 0.45 0.5 0.5 0.5 0.5
9 0.1 0.1 0.15 0.25 0.35 0.35 0.4 0.45 0.45 0.45 0.5
10 0.05 0.1 0.1 0.2 0.3 0.3 0.35 0.4 0.4 0.45 0.5

TABLE 2 | Increment of the defender’s utility.

RA|RD 1 2 3 4 5 6 7 8 9 10

1 0 0 0 0 0 0 0 0 0 0
2 0 0 0 0 0 0 0.05 0 0 0
3 0.2 0 0 0.1 0 0 0.05 0 0 0
4 0.2 0 0 0.1 0 0.05 0.05 0 0 0
5 0.1 0 0.05 0.1 0 0.05 0.05 0 0 0
6 0.2 0 0.05 0.1 0 0.05 0.05 0 0 0
7 0.1 0 0.1 0.1 0 0.05 0.05 0 0 0
8 0.15 0 0.1 0.1 0 0.05 0.05 0 0 0
9 0.05 0.05 0.1 0.1 0 0.05 0.05 0 0 0
10 0 0.05 0.1 0.1 0 0.05 0.05 0 0 0.05
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whileRA andRD are from1 to 10.Table 2 shows the increment of the
defender’s profit after each increase of unit resources. And Table 3
shows the average value of the defender’s profit increment. We find
that when the number of resources is 4, the average increment of the
defender’s utility is the biggest. So, the optimal defense resource
number is 4, which is equivalent to 1

5 of the total node number on the
network with 20 nodes. Hence, when we expand the experiments
to a large network of 500 nodes, the corresponding optimal number
of defense resources is 100. It is convenient to find the optimal
defense resource number in large networks with the aforementioned
method, which also can reflect the significance of the experimental
results more clearly and intuitively.

4.3.2 Effectiveness of theMixed Defense Strategies on
Real Large-Scale Network
Then to evaluate the solution quality of the approximate
algorithm on large-scale networks, we conduct experiments on

the U.S. air transportation network with 500 nodes [34], and the
defense resource number is set to be RD � 100. We separately
analyze the results of the mixed defense strategy and the mixed
attack strategy to further test the performance of the mixed
defense strategy. The experimental results are shown in
Figures 3A–D and Figures 4A–F.

In Figures 3A–D, these graphs show the defender’s utility
when using the mixed defense strategy and other comparison
defense methods under different attack methods while RD � 100
on the real large-scale network. All the steps and comparison
defense strategies of the experiments in this subsection are the
same as in Subsection 4.3.1. The attack methods for
confrontation are changed to ID Attack, IB Attack, RA Attack,
and mixed strategy attack. Since the best attack strategy
computed by MILP can only be solved in small networks due
to its limited solving ability, we compute the mixed attack strategy
by solving the approximate algorithm. In particular, we find that

TABLE 3 | Average value of the defender’s utility increment.

RD 1 2 3 4 5 6 7 8 9 10

Average 0.0548 0.0262 0.0524 0.0690 0.0214 0.0429 0.0476 0.0238 0.0262 0.0286

FIGURE 3 | These are defender’s utility of the mixed defense strategy and other comparison defense methods under different attack methods while RD � 100 on
the air transportation network with |V| � 500. RA is variable from 0 to 500. (A) is the defender’s utility when playing ID Attack strategy with different defense strategies. (B)
is the defender’s utility when playing IB Attack strategy with different defense strategies. (C) is the defender’s utility when playing RA Attack strategy with different defense
strategies. (D) is the defender’s utility when playing Mixed Attack strategy with different defense strategies.
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under IB Attack, the curves of IB Defense and mixed strategy
defense are almost coincident (Figure 3B), which indicates that
IB Defense performs well in dealing with IB Attack and also
reflects that our approximation algorithm may fall into local
optimization. The final result of our approximate algorithm
depends in part on its initial solution. Anyway, in most cases,
the results can be better than those of other methods. These
figures obviously describe that under the mixed strategy defense,
the decline rate of defender’s utility is the slowest nomatter which

attack strategy is used, and the mixed defense strategy can still
work well under different attacks in large-scale networks.

Figures 4A–F show the defender’s utility when using the
mixed attack strategy and other comparison attack methods
confronting different defense strategies while RD � 100 on the
same real large-scale network. The comparison attack strategies
and defense strategies are all the same. The results clearly show
that no matter in which attack strategy, the mixed defense
strategy always brings the highest utility to the defender and

FIGURE 4 | These are defender’s utility of the mixed defense strategy and other comparison defense methods under different defense methods while RD � 100 on
the air transportation network with |V| � 500. RA is variable from 0 to 500. (A) is the defender’s utility when playing different attack strategies with no defense. (B) is the
defender’s utility when playing ID Defense strategy with different attack strategies. (C) is the defender’s utility when playing IB Defense strategy with different attack
strategies. (D) is the defender’s utility when playing RA Defense strategy with different attack strategies. (E) is the defender’s utility when playing Mixed DCM
strategy with different attack strategies. (F) is the defender’s utility when playing Mixed Defense strategy with different attack strategies.
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can make the defender’s utility decline the slowest in the shortest
time. Moreover, it is worth mentioning that the defender’s utility
obtained by the mixed attack strategy declines the fastest, which
also reflects the mixed defense strategy solved by the approximate
algorithm can effectively destroy the networks. In summary, these
results certainly reflect that the mixed defense strategy performs
well in large-scale networks and our approximate algorithm can
solve the problem efficiently when scaling up the networks.

5 CONCLUSION

It is a challenge to reasonably design effective defense strategies
with limited resources to protect large-scale critical
infrastructure networks against malicious attacks. In this
study, we first develop an efficient approximation algorithm
under the Double Oracle framework to speed up the calculation
for computing the mixed defense strategy based on heuristics
significantly with given resources. Then we extend the INP
problem to a real large-scale infrastructure network to test the
performance of the mixed defense strategy. Finally, we conduct
extensive experiments on two networks of different sizes by
comparing with other defense strategies under various attacks.
The experimental results show that our approximation

algorithm can ensure a robust enough solution to protect real
large-scale networks.
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A Briefing Survey on Advances of
Coupled Networks With Various
Patterns
Gaogao Dong1*, Dongli Duan2* and Yongxiang Xia3*

1School of Mathematical Science, Jiangsu University, Zhenjiang, China, 2School of Information and Control Engineering, Xi’an
University of Architecture and Technology, Xi’an, China, 3School of Communication Engineering, Hangzhou Dianzi University,
Hangzhou, China

In real-world scenarios, networks do not exist in isolation but coupled together in different
ways, including dependent, multi-support, and inter-connected patterns. And, when a
coupled network suffers from structural instability or dynamic perturbations, the system
with different coupling patterns shows rich phase transition behaviors. In this review, we
present coupled network models with different coupling patterns developed from real
scenarios in recent years for studying the system robustness. For the coupled networks
with different coupling patterns, based on the network percolation theory, this paper mainly
describes the influence of coupling patterns on network robustness. Moreover, for different
coupling patterns, we here show readers the research background, research context, and
the latest research results and applications. Furthermore, different approaches to improve
system robustness with various coupling patterns and future possible research directions
for coupled networks are explained and considered.

Keywords: complex network, robustness, resilience, coupled network, coupling pattern

1 INTRODUCTION

With the significant improvement of the ability of high-performance computer clusters, the in-depth
study of cloud storage and computing, internet of things application, and pervasive mobile internet,
the amount of data about people’s livelihood is increasing and available [1, 2]. These huge amounts of
data show network features of extensive distribution, multi-source heterogeneous, such as social
network, communication network, power network, energy network, financial network,
transportation network, trade network, ecological network and climate network, etc. [3–10].
And, there exists the complex coupling relationship among these real networks, such as spatial
relevance, economic connection, strategic linkage, and coexistence relationship [11, 12]. This makes
various network systems form a co-generation unit, coupled network [13–16]. Multi-layer network
as an important coupled network describes the relevance of real systems from the perspective of
coupling between networks [17]. In a multilayered system, each layer represents a separate network
system. These coupling links between different networks (layers) may have different functions to
each layer and can change the basic characteristics of the individual network and the robustness of
the entire coupling system. Coupled patterns with dependent and interconnected features in the real
scenarios can be described as interconnected networks, networks of networks, interdependent
networks, and so on.

Interdependent networks mean that failure of dependent nodes between coupled networks will
cause cascading failures between the networks. Buldyrev et al. [18] initially developed a theoretical
framework to understand the robustness of two interdependent networks. Based on this, Gao et al.
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[19] extended two dependent networks to basic coupling
dependent networks, Network of Networks (NON), to study
the system structural robustness. The coupling structure
between networks not only includes basic coupling modes like
tree, star, and chain but also has more complex generalized
topological structure [20–23]. They found that interdependent
networks are more vulnerable than isolated networks. With the
decreases in dependent coupling strength between networks, the
percolation transition changes from the first order to the second
order at the critical coupling strength [24]. And, for star-like
partially dependent networks, number of dependent networks
has an influence on the robustness of networks, but robustness of
a loop-like system is independent of the number of coupled
networks [25, 26]. Each node within the network is not only
connected to its own network nodes but also has coupled
relationship with nodes in other networks, and this allows
seemingly harmless interference to spread like ripples through
the coupled network, and ultimately lead to catastrophic
consequences [17, 27].

In addition to interdependence between networks, there often
exists interconnected coupling relationship in the real system.
Bagrow et al. showed that interconnected networks exhibit
surprising percolation properties like the decoupling of
interconnected network due to random failures before the
network collapses [28]. And interconnected nodes play a key
role in the interconnected networks, and failures of these nodes
will have a significant impact on network integrity such as
Alzheimer’s disease has a destructive effect on the connections
between systems [29, 30]. In the case of epidemics with a high
transmission rate, vaccination of interconnected nodes is more
effective in controlling the spread of diseases than vaccination of
high-degree nodes [31]. Otherwise, the density of interconnected
links also has a significant impact on the system robustness. For
example, the level of mobility between cities has been shown to
affect the epidemiological transition at the meta-population
level [32].

The research on dynamic networks has also attracted more
and more attention. For better understanding dynamical
characteristic of real networks such as web of sexual contacts,
the nervous system, power grid, and metabolism system, Holme
et al. proposed the concept of temporal network and defined that
the links only exist intermittently to describe the dynamic
changes of network structure over time [33]. Considerable
research has found that this intermittency has a profound
impact on dynamic resilience [34]. Recently, Gao et al.
proposed an analytical framework to identify the natural
control and state parameters of a multi-dimensional complex
system, thereby helping to derive effective one-dimensional
dynamical expression and accurately predict system resilience
behaviors [35]. Furthermore, Duan et al. found that dynamical
coupled network can accelerate the cascading process [36].

This makes us ask the following questions: Is the network
system with different coupling patterns safe and stable? How do
we prevent system failure? System structural robustness and
dynamical resilience play a crucial role in reducing risk and
mitigating damage [37–39]. The network structural robustness
relies on their network connectivity and can be defined that the

ability to retain their connectivity when a portion of their nodes
or edges are removed. And, system dynamical resilience
characterizes the ability of a system to adjust its activity to
maintain its basic functionality in the face of internal
disturbances or external environmental changes. In this
review, we will focus on recent studies in robustness of
coupled network with different coupling patterns to learn
more about the subject for more readers.

2 ONE-TO-ONE DEPENDENCY COUPLED
PATTERN

Based on dependency relationship between a power network and
an Internet network were implicated in an electrical blackout that
occurred in Italy, Buldyrev et al. proposed a fully interdependent
network model, in which the coupling pattern means one-to-one
interdependence of nodes within two networks [18]. When a
node in the network is under attack or disabled, the dependent
node within the other network will also fail, and cascading failure
occurs in the network system. They studied the percolation
behaviors in this system under random attack, which triggered
a surge of coupled network robustness. Their findings highlighted
that the giant component of the system shows a first-order abrupt
transition phenomenon with the increase of attack strength that is
different from continuous second-order phenomenon of single
network. And the results also implied that the broader degree
distribution makes the system more vulnerable by using the
percolation theory. Since not all nodes in the network are
dependent on each other in the real scenario, Parshani et al.
presented a partial dependent network model, that is, only partial
nodes are interdependent between two networks, as shown in
Figure 1A [24]. Based on the same failure mechanism with a fully
dependent network model, they found the phase transition
behavior of network changes from a first-order phase
transition to a second-order phase transition with the decrease
of coupling strength q between two networks.

Some important infrastructures in the real network have high
connection strength and are often considered as attack targets in
the network system. Huang and Dong et al. studied the
robustness of fully and partial interdependent networks under
targeted attacks based on nodes degree [40, 41]. The results show
that it is difficult to maintain the robustness of interdependent
network by protecting high degree nodes. Xia et al. studied the
robustness based on the dependencies in real power and
communication networks and revealed the maximum expected
payoff for an attacker is affected by the coupling pattern [42, 43].

In fact, more than two networks dependent on each other
depend on each other to form a real system. This makes multiple
interdependent network systems attract more attention.
Furthermore, Gao et al. generalized two dependent networks
to n networks (NON) with one-to-one dependency coupling
pattern, including some coupled structures like tree, star, and
loop which are shown in Figure 1B–D [25]. By developing
mathematical frameworks, they numerically and analytically
studied the robustness of the system. And, Duan et al. studied
the robustness of dependent network by considering dynamical
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behaviors of nodes within networks triggered by marginal
perturbations [36]. They proposed a more generalized
framework based on the dynamics of dependent networks and
studied the phase transition conditions of dependent networks
under various failure mechanisms. They found the analytical
expressions for the critical conditions of the first and second
phase transitions, and the first phase transition occurred in the
weakly dependent network. About directed dependency links, Liu
et al. developed a framework to study the system robustness by
comparing undirected dependency links. They also found that
effect of in-degree and out-degree correlations within the system
[44, 45]. Further studies on the impact of different attacks on the
one-to-one dependent networks, such as localized attacks [46,
47], overload failures [48], and k-core failure mechanisms [49],
have also yielded meaningful results. And different topologies
within the network such as group [50], similarity [51, 52],
correlation [53], and clustering [54–56] have significant
implications for real systems.

For this coupling pattern, one-to-one dependency links is the
primary factor leading to network cascading failure. These results
generally revealed when connection density within networks is
strengthened, and the proportion of dependent nodes within the
network is reduced, it can resist attacks to a large extent and
reduce the scale of cascading failure. Moreover, unlike the phase
transition behavior of a single network, the phase transition

behavior exhibited in the system is the first-order jump
behavior. This mutation-like behavior further expands the
vulnerability of network system and makes it less easy to
protect. And these results also gave us on how to design more
robust and resilient real networked systems.

3 COUPLED PATTERN WITH
MULTIPLE-SUPPORT RELATIONSHIP

The studies of the above dependent networks are restricted by the
condition that a functional node in a network depends on one and
only one node in the other networks. However, in the real
networks, the dependent relationship is often multiple support,
as shown in Figure 2 from Ref. [57]. For example, multiple
directed-support links exist between power stations and
communication base stations in power and communication
networks. Shao and Dong et al. proposed a coupled network
model with multiple support-dependency relationships [58, 59].
And for this case, functional nodes have at least one functional
support link from other networks and belong to the giant
component during the cascading failure process. Then they
also provided the analytical expressions on remaining size of
the giant component and critical threshold, where the size of the
giant component approaches zero. And for the different coupling

FIGURE 1 | (A) Schematic illustration of partial one-to-one dependency relationship, where only faction qij � qji � 7
10 of nodes dependent on each other between

sub-networks i and j, and red and black links denote inter-dependency and intra-connection links respectively. (B–D) Taking five sub-networks as an example,
schematic illustration of Network of Networks (NON) with basic dependent structures, star (B), tree (C), and loop (D). And a qij (i, j � 1, . . ., 5) fraction of nodes in network i
dependent on nodes within network j.
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structures, star, tree, and loop, Dong et al. developed a framework
and extended the case of two networks to n networks with
multiple support-dependence relationship [23]. And the
findings implied that as connectivity density within network
increases, the first-order transition region becomes smaller and
the second-order transition region becomes larger. Recently,
Zhou et al. proposed a two-layer coupled network model with
multiple support-relationship and assumed that functional nodes
belonging to giant component within own network have only
dependent m support-link that can be survived during a
cascading failure process [60]. They also studied the influence
on intra-layer and inter-layer degree correlation on network
robustness behaviors. The results suggest that such
correlations have a significant effect on continuous phase
transitions and a small effect on discontinuous phase
transitions. Very recently, Dong et al. developed a theoretical
framework to study the structural robustness of the coupled
network with multiple effective dependency links [57]. It is
defined that a functional node requires at least M support-
links from the other network to function. In the model, the
authors presented exact analytical expressions for the process of
cascading failures, the fraction of functional nodes in the stable
state, and provided a calculation method of the critical threshold.
The results indicated that the system will undergo an abrupt
phase transition behavior after initial failure.

Different from the one-to-one dependent network model, the
multiple dependent network model describes more realistic
dependency relationship in the real system. It can be observed
in the real systems, such as communication and grid systems
multiple-support each other [18]; social networks (e.g., Twitter)
are multiple coupled because they share the same participants
[61], and multi-modal transport networks are composed of
different traffic systems (e.g., buses, subways) sharing the same
location [62]. Similar to one-to-one interdependent network,
above studies found that the system occurs a first order phase
transition by defining failure mechanisms. And, the system needs

more internal connection density to avoid collapse when it
requires more effective support-links. These studies revealed
the robustness of multiple effective dependent networks, which
can help to better understand the cascading failure propagation
mechanism of the real system.

4 INTERCONNECTED NETWORK

From the above analysis, one can observe that the occurrence of
cascading failures largely relies on dependency relationship
between networks, such as blackouts in power grids, financial
crisis, etc. Since the existence of dependency attributes, small
perturbations in one network are amplified throughout the
dependent network system. However, the natural networks
(systems) are often coupled together in the way of
interconnected networks like brain and cellular networks are
comparatively stable and do not crash [63]. In this kind of
coupled network, the interaction between one network and
another leads to the necessary expansion of the complex
network paradigm, including different types of networks and
different types of interactions between them. Unlike the
dependency links, the links within and between interacting
networks have the same attributes that underpin inter-network
connectivity and maintain nodes functionality of the network
system [64].

Leicht et al. developed an analytical framework from
generating functions and studied the robustness of
interconnected networks assuming the similar connectivity
links exist within and between networks [13].

They found that when considering the interaction with other
networks, the threshold to measure network connectivity
becomes very small and the system becomes more robust.
Furthermore, Dong et al. proposed a partial interacting
network model, that means only part of nodes are
interconnected with other nodes in the network and all sub-

FIGURE 2 | Schematic illustration of cascading failure of two networks with multiple support relationship [57]. The curve links denote intra connectivity links within
networks A and B, and red (blue) dash links are multiple support links from network A (B) to B (A). Here we assume that the functional nodes not only belong to the giant
component within own network but also have at least M support links from other network. After suffering initial attacks, the system undergoes different stages of
cascading failures and reaches a steady stable state. During the cascading failure, the functional nodes belonging to the giant component only haveM support links
is the case of the Ref. [60], and M � 1 is the similar to the Ref. [58].
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networks coupled together in this way, as shown in Figure 3A
from [65]. They found that increasing the interlinks and
interconnected nodes can significantly increase the robustness
of the system. Additionally, the continuous phase transition that
occurs in a single network disappears, the divergence of the
continuous phase transition response function is eliminated,
and the system becomes more stable. And, for this kind of
network model, the results imply that both analytically and
numerically that influence of interlinks on the percolation
phase transition is similar to an external field in a
ferromagnetic-paramagnetic spin system. By defining the
critical exponents δ and c, these scaling indexes govern the
external field and these exponents are consistent with
Widom’s identity [65, 66]. Moreover, in the real-world
scenarios, tons of sub-networks interconnect with others to
form a more generalized network, modular interacting
network system, and any pair of sub-networks is randomly
selected and coupled each other, as shown in Figure 3B from
[26]. Furthermore, the results implied that there exists an optimal
coupling structure, where the system shows the most resilient
behavior to withstand failures.

For this case of coupling pattern, network failure behavior was
studied by considering functional nodes in the network belong to
the giant component of whole coupled networks. As a realistic
network model, the interacting network model shows potential
applications to epidemic and information spreading, link
prediction, and recommendation algorithms. In addition, this
interconnected network can also be applied to many different real
systems. For example, in the climate network, each isobaric layer
of the atmosphere is represented as a complex network, and

different isobaric networks are connected [67], the European air
transport multi-path network, in which each airline is a sub-
network, and public airports can be modeled as coupling nodes
[68], the epidemic spreads on interconnected social networks
[69]. Due to the same attributes within and between this kind of
coupled network, its phase transition behavior often occurs in a
second-order phase transition. When the proportion of
functional nodes belonging to the largest connected group in
the network approaches zero, the critical threshold of the network
can be determined. Basically, the research results of this coupled
network show that increasing the connection density of network
can significantly improve the system robustness.

5 DISCUSSION

In addition to the above coupling patterns, there is a mixed
coupling, and dependency links together with inter-connected
links between networks. In the model, researchers investigated
the case of both interdependent and interconnected links
coexistence, where two types of coupled links are randomly
connected between two networks. And, they found an
interesting phase transition phenomenon, hybrid transition,
where the size of giant component both shows abrupt and
continuous transition as attacking strength increases [70]. This
mixed coupling pattern has not only inter-network
interdependence but also includes inter-network connectivity
to describe the coupling pattern of real-world scenario [71].
With the development and popularization of the Internet of
Things, all things will be interconnected in the near future,

A B

FIGURE 3 | Schematic illustration of interacting network with different topological structures. (A) Every sub-network is coupled to all other sub-networks from inter-
connected coupling pattern in the Ref. [50]. And, different colors denote different topological structures of sub-networks. (B) Each sub-network has connections to other
specific sub-networks not all other sub-networks from [26]. Network A follows a power-law degree distribution. Sub-networks a and b within network A follow Poisson
sub-degree distribution. The links in network A follow the Poisson inter-degree distribution, as shown in sub-networks c.

Frontiers in Physics | www.frontiersin.org December 2021 | Volume 9 | Article 7952795

Dong et al. Advances in Robustness of Coupled Network

112

https://www.frontiersin.org/journals/physics
www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


where there exists the physical structure of interdependence, and
at the same time there exists the interconnected property.

6 CONCLUSION

Network robustness is becoming increasingly important as we enter
age of smart technologies, such as data analysis, SMART Grid, and
the Internet of Things (IOT), etc. Complex networks can realistically
reflect the coupled relationship in the real scenarios and also
permeate different disciplines at the same time, gradually
sublimates into an important research field, network science. The
research of coupled networks with various patterns is driven by the
development of current science and technology; at the same time, it
can simulate and guide the system, where we live, from amulti-high-
dimensional perspective. In this review, we briefly introduced the
advances in robustness of coupled network with various patterns.
The phase transition behaviors between networks, how to mitigate
failure, and possible future filed of coupled network are explained
and considered. In addition, coupled networks have found

important application and help us to deal with crises and hidden
dangers in the real systems.
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Study on Power Grid Partition and
Attack Strategies Based on Complex
Networks
Yanli Zou* and Haoqian Li

School of Electronic Engineering, Guangxi Normal University, Guilin, China

Based on the community discovery method in complex network theory, a power grid
partition method considering generator nodes and network weightings is proposed.
Firstly, the weighted network model of a power system is established, an improved
Fast-Newman hierarchical algorithm and a weighted modular Q function index are
introduced, and the partitioning algorithm process is practically improved combined
with the characteristics of the actual power grid. Then, the partition results of several
IEEE test systems with the improved algorithm and with the Fast-Newman algorithm are
compared to demonstrate its effectiveness and correctness. Subsequently, on the basis of
subnet partition, two kinds of network attack strategies are proposed. One is attacking the
maximum degree node of each subnet, and the other is attacking the maximum
betweenness node of each subnet. Meanwhile, considering the two traditional
intentional attack strategies, that is, attacking the maximum degree nodes or attacking
themaximum betweenness nodes of the whole network, the cascading fault survivability of
different types of networks under four attack strategies is simulated and analyzed. It was
found that the proposed two attack strategies based on subnet partition are better than the
two traditional intentional attack strategies.

Keywords: complex network, power grid, subnet partition, attack strategy, cascading failure

1 INTRODUCTION

With the construction of ultra-high voltage grids, smart grids, and clean energy-based energy
Internet, the gradual interconnection of large grids has taken shape and continues to develop and
improve on this basis. At the same time, as the scale of a power system expands, the reliability analysis
and calculation of the power system becomes more and more complex and difficult [1, 2]. In recent
years, researchers have tried to use the complex network theory to model and analyze the power grid
and made good progress [3, 4]. One of the most important properties of complex networks is
community structure, which refers to the close connection of nodes within a community and the
sparse connection among the communities [4]. The application of this property can provide
reference for power grid planning [5, 6].

In order to ensure the safe and stable operation andmanagement of regional power grids, it is very
important to carry out network planning in a reasonable and feasible way. In order to realize the
online monitoring of grid operation status and fast dispatch of decision-making, power workers
generally divide a grid into several sub-regions and manage each sub-region separately, which
effectively improves the processing speed and reduces the calculation amount [7]. Analysis of power
grid status and formulation of reasonable dispatching strategies are crucial to the management of a
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power grid. Usually, a network is divided based on the working
experience of the power workers or the administrative area where
the nodes are located [8], which obviously does not accurately
reflect the state correlation between the components of the grid
and cannot adapt to the changing operational state of the grid.
The literature [9] proposed the concept of modularity, then
modularity became the evaluation standard of community
division, and the optimization of modular Q-function became
the mainstream of research [10–14]. In [11], modularity Q was
used as an index to evaluate the partition results, but it could not
reflect the electrical and physical characteristics of a power grid,
so it could not evaluate the partition results of power grids well.
The literature [12] put forward the concept of power supply
modularity combined with power supply correlation strength and
improved the Fast-Newman algorithm to automatically identify
the community structure of a power grid. In [13], two different
types of genetic algorithms were improved and analyzed to solve
the problem of community detection in a power system. The
results show that genetic algorithm is a fast and effective method
to deal with community detection in a large-scale power grid. The
literature [15] proposed a new community division method based
on resistance distance and similarity, where the distance function
between nodes was defined by similarity, and the distance
between communities was calculated by the distance between
nodes. A power grid was divided into several communities
according to whether the nearest neighbor nodes were in the
same community.

At present, most of the community detection methods focus
on the unweighted networks whose edge denotes whether there is
a connection between nodes, regardless of the strength of the
connection. However, in the real world, a real network is always
complex, and the interaction strength between nodes is different.
The unweighted network is not enough to reflect the relationship
of objects in real life [16], so the study on weighted networks has a
practical significance. The literature [17] overcame the resolution
limitation of the traditional community detection method based
onmodularization by adding a weight term in the modularization
formula for the purpose of detecting community which is small
enough compared with the whole network. In [18], four weighted
network models were established by using power flow and line
impedance as the weights of edges, respectively. Then, the
examples were simulated with four different models to verify
the role of community structure in power grids. However, it was
not verified and analyzed in combination with the actual
application scenario of the power grid partition. The literature
[19] proposed the index of node similarity, which was used to
assign nodes with the greatest similarity to the same community.
However, the community detection method of the model is
mainly based on the pure topological structure of an
undirected and unweighted network, without considering the
function of a community. Therefore, it cannot fully reflect the
electrical characteristics of a power grid.

According to the management of a power grid, each
community should at least contain one generator node to
ensure the supply of power. Otherwise, it will not work
normally after isolation. In order to ensure the normal work
of each subnet after power grid partition, this paper proposes an

improved Fast-Newman algorithm based on the Fast-Newman
algorithm. This improved algorithm considers generators and the
weight of a network, overcoming the shortcomings of traditional
partition methods which only focus on topology or only focus on
electrical characteristics. Furthermore, it was noticed that
previous studies on network attack strategies mainly applied
random attack or deliberate attack to attack the node with the
largest degree value or the node with the largest betweenness in a
network. These attack strategies may not make full use of the
network structure information, look too simple, and lack effective
data mining in the early stage [20–22].Therefore, on the basis of
subnet partition, this paper proposes a new network attack
strategy. The cascading failure invulnerability of different types
of networks under several attack strategies is simulated and
compared with each other. It was found that the attack effect
of our attack strategy is better than that of traditional attack
strategies.

2 BASIC CONCEPTS

2.1 Community Structure
In nature and society, things with similar characteristics are often
more closely related to each other—for example, people in a tribe
have more frequent connections than those who are not members
of the tribe. A closely connected community means that
information or rumors spread faster among them than that in
a sparsely connected community, people with the same hobbies
are more likely to become friends, and so on. If things and their
relationships are represented as a network, then the regions (node
sets) whose nodes are closely connected in the network are called
communities. If there is a community in a network, it is said to
have a community structure. Community partition is equivalent
to grouping nodes in a network. Community structure is very
common in real networks. It is important to find the basic
community structure in a network, for a single community

FIGURE 1 | Diagram of community structure.
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behaves like a node of the network, which is beneficial to network
study. On the one hand, identifying these substructures in a
network can provide insights into how network functions and
topologies affect each other. On the other hand, communities
usually have attributes that are completely different from the
average attributes of the network. By only focusing on the average
properties, one will usually miss many important and interesting
functions within the network. Generally speaking, the nodes in a
community are densely connected, while connections among
communities are relatively sparse. Detecting communities in a
network can help us find the objects with the same function in the
system, study the relationship among different communities,
infer the missing attributes in the nodes, and make a
reasonable prediction of the undiscovered relationship between
nodes so as to better understand the underlying structure of the
network and the information contained in it. Community
discovery has been successfully applied in many areas of real
life, such as anti-terrorism detection, behavior prediction,
recommendation system, and so on [23, 24]. Community
detection in a network is one of the hotspots in modern
network science. Figure 1 is a graph of community structure,
where different communities are distinguished by different
colors. It can be seen that there are three communities in the
network, and the density of connections in each community is
relatively higher than that among communities. In other words,
community structure is a dense subgraph with distinct
boundaries in the network.

2.2 Weighted Power Grid Model
When modeling a power grid, the generators and load buses
are usually regarded as nodes, the lines between nodes are
regarded as edges, and double circuit or multi-circuit lines are
usually combined into one edge. The complex network theory
uses node set V, edge set E, and edge weight setW to describe a
complex network. For different types of networks and
different research purposes, the definition of weight is also
diversified, and the weighting method can usually be divided
into two categories: similarity weights and dissimilarity
weights. The similarity weight indicates the degree of
correlation between two nodes; the closer the relationship
between nodes, the larger the weight, and vice versa. The
dissimilarity weights have an opposite meaning; the smaller
the correlation between nodes, the greater the weight.
According to the needs of study, when analyzing a power
system, we use the above-mentioned two weighting methods
to model a power grid. This paper considers three types of
models of a power grid and carry out a comparative analysis of
detection community. The first one is an unweighted network
model, where the weight of each line is uniformly set to 1. The
second one is a weighted network model, where the line
reactance value Xij is taken as the weight of the edge,
which belongs to the dissimilarity weights. The third one is
a weighted network model where the line conductance value
Yij � 1/Xij is taken as the weight of the edge, which belongs to
similarity weight. The weight setting in the models is shown in
Eq. 1, where the data comes from Matpower 6.0 [25].

⎧⎪⎨
⎪⎩

Wij � 1
Wij � Xij

Wij � Yij

(1)

2.3 Q-Function Model Based on Weighted
Network
The literature [26] proposed the concept of modularity to
measure the rationality of subnet division of unweighted
networks. The literature [18] extended the definition of
modularity to weighted networks. The modularity Q function
under weighted networks is defined as follows:

Qw � ∑
s

(essw − (awss)
2) (2)

where essw � 1/2T∑
ij
wijδ(ci, s)δ(cj, s) is the proportion of the sum

of the weights of the edges connecting the internal nodes of the
community s to the total weights, ci denotes the subnet where
node i locates, awss � 1/2T∑

i
Tiδ(ci, s) is the proportion of the sum

of the weights of all the nodes in the community s to the total
weights, Ti is the weight of node i which equals to the sum of the
weights of the edges directly connected to node i, and T is the total
weights of all the edges of the network. Qw ∈ [0, 1], for random
network with equal weights; Qw � 0, values other than 0 indicate
deviations from randomness. The larger the proportion of the
sum of the weights of the edges connecting the internal nodes of
the communities to the total weights, the larger is Qw.

3 AN IMPROVED ALGORITHM OF POWER
GRID PARTITION BASED ON COMMUNITY
DISCOVERY
Combined with the physical and topological characteristics of a
power grid, the Fast-Newman aggregation algorithm [26] is
improved to ensure that each subnet includes at least one
generator node after division and to improve the accuracy of
subnet division. The steps of the improved algorithm proposed in
this paper are as follows:

1) According to the real network architecture, the weighted
network model of a power system is established, and
various data of nodes and edges in the power grid are
obtained from Matpower 6.0. The edge weights of the
network are defined according to Eq. 1.

2) Introduce the modularity Q function index, improve it
according to the edge weight, and define the modularity
function Qw of the power grid with the weighted model
according to Eq. 2.

3) Initialization—each generator node in the network is divided
as a subnet to form an initial subnet structure, without
considering the load nodes. The modularity Qw

0 of the
network is calculated according to Eq. 2.

4) Each node i in the network is incorporated into one of the
adjacent subnets and calculates the increment ΔQw of the
whole network modularity brought by each combination.
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Node i is eventually incorporated into the adjacent subnet that
makes the value of ΔQw maximum. ΔQw � Qw′ − Qw, where
Qw′ is calculated after the node i is joined into an adjacent
subnet, and Qw is calculated before the node i is joined.

5) The network obtained in step 4 is compressed, and each
subnet is condensed into a node. The sum of the weights
of the nodes in the original subnet is assigned to the
agglomerated new node, and all the connected edges
between the two subnets are agglomerated into one edge.
The weight of the agglomerated edges between the subnets is
the sum of the weights of all the connected edges in the
original subnets, so a new compressed network is obtained.

6) Repeat step 4 until the change of a belonging subnet of any
node cannot increase the ΔQw value,Qw value will not change,
and nodes will not be moved. Find out the partition result
corresponding to the maximum modularity value Qw in the
process of merging, which is the optimal subnet partition
result.

The above-mentioned algorithm can be summarized into two
stages. Steps 1–4 are to find the optimal solution of Q value based
on the existing network, and steps 5–6 are the subnet
combination of the division results obtained in the above-
mentioned steps to obtain the updated network. After all the
steps are completed, it is a round. Then, the algorithm will
automatically enter the next round until the Q value no longer
changes. Finally, the subnet division corresponding to the Q value
is the final subnet division result. The overall time complexity of
the algorithm is O(m(m +N)) , where m is the number of edges
and N is the number of nodes. Compared with the original
division method, the improved algorithm not only ensures
that each subnet after division has a generator to supply
power to the loads but also comprehensively considers the
topology and electrical characteristics of a power system,
making the division more realistic.

4 EXPERIMENTAL ANALYSIS

Based on the Fast-Newman agglomeration algorithm, this paper
proposes an improved power grid subnet division method which
considers generator nodes and weighted network models.
According to the three network weighting methods defined in
Eq. 1, IEEE14, IEEE30, IEEE39, IEEE118, and IEEE2383 standard
test networks are divided using our improved algorithm. The
modularity Q values with using the three weighting methods are
calculated and compared with the Fast-Newman algorithm.

Table 1 shows the data table of the modularity Q value of
each system under the four different cases, and Figure 2
shows the comparison histogram of the Q value of each network.

In the simulation, the weight refers to the weight of a
connected edge, and we define the four division methods as
follows: (1) Fast-Newman algorithm, (2) unweighted network
(with the weight being 1), (3) impedance weight, and (4)
admittance weight. The yellow dashed line in Figure 2 is the
trend line of the modularity Q value under the fourth division
method. It can be seen that, with the increase of network size, Q
values are improved in different degrees under the four division
methods, which indicates that this kind of algorithm is suitable
for the division of large and complex networks. The larger the Q
value is, the better the effect of subnet division is. Figure 2 shows
that the modularity function Q of different networks is maximum
under the fourth weighting method. Next, we mainly conduct a

TABLE 1 | Modularity Q value of each system under four different methods.

IEEE standard network Fast-Newman The weight is 1 The weight is impedance The weight is admittance

IEEE14 0.4037 0.4013 0.3774 0.4728
IEEE30 0.5434 0.4851 0.5260 0.5588
IEEE39 0.6212 0.6262 0.6584 0.6870
IEEE118 0.7123 0.7281 0.7370 0.8011
IEEE2383 0.8957 0.8937 0.9259 0.9837

FIGURE 2 | Comparison histogram of theQ value of each network in the
four different division methods.

FIGURE 3 | The community structure of IEEE14 network in two division
modes. (A) Fast-Newman. (B) Improved algorithm with admittance weight.
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comparative analysis and discussion on the division results of the
first and fourth types. The subnet division results are shown in
Figure 3, Figure 4, and Figure 5.

Figure 3, Figure 4, and Figure 5 show the community
structures of IEEE14, IEEE30, and IEEE39 standard networks
in the two division modes. We use different colors to distinguish
the divided subnets. The triangle symbol denotes the generator
node, and the circular symbol denotes the load node. The IEEE14
standard network is divided into three communities in the two
methods, the IEEE30 standard network is divided into four and
three communities in the two methods, and the IEEE39 standard
network is divided into seven communities in the two methods. It
was found that, in the IEEE14 standard network, at least one
generator is reserved in each subnet under the two division
results, while in the IEEE30 and IEEE39 networks, only the
fourth division method ensures that each divided subnet has
at least one generator. In the Fast-Newman division method, it
appears that there is no generator in one subnet of the IEEE30 and
IEEE39 networks (see the blue marker subnet in IEEE 30 and the
dark green marker subnet in IEEE 39), which is often defective in
an actual power system operation.

When a transmission line in a power grid is damaged or
removed, if the usual emergency control measures could not
prevent the propagation of the fault, we can take active splitting

measures to split the power grid into multiple “islands” according
to the result of the pre-division so as to prevent the large-scale
spread of the fault. After the splitting of a power grid, the key to
the normal operation of each sub-network is the generator. The
Fast-Newman aggregation algorithm cannot guarantee that every
subnet has at least one generator after dividing the power grid.
However, the improved Fast-Newman algorithm can do this
work. It takes generators into account in the initialization step
of the algorithm and to combine the electrical and topological
characteristics of the network so that it can find a more realistic
community division of the power grid. Since each subnet has one
or more generators, we can take a series of stability measures for
the subnets after grid splitting, such as boost or load shedding, to
control the propagation of cascading faults to the greatest extent.
In addition, considering both the division results and Q-values,
we can see that the division result of the admittance model is the
most reasonable and the community structure is themost obvious
in the four models, which indicates that the community structure
of the grids is prevalent and the weight of admittance has a
facilitating effect on the community division in the proposed
IEEE standard networks.

5 CASCADING FAILURE ATTACK
STRATEGY BASED ON SUBNET DIVISION

Network invulnerability refers to the ability of a system to
maintain its normal operation when some nodes or links in it
are damaged by random failure or deliberate destruction. The
stronger the network invulnerability, the better its robustness.
The study in the previous two sections shows that most of the
actual power grids have a community structure. Using this nature
of the power grids to do network partition can facilitate the
control andmanagement of the power grids. Furthermore, we can
apply the community-based attack strategy to the network
invulnerability research, which is rare in the network attack
strategy research. How to use network topology and functional
information to obtain the best attack effect at least cost remains to
be further studied.

In the study of cascading failures in a network, the most used
model is “capacity–load” model, and the most commonly used

FIGURE 4 | The community structure of IEEE30 network in two division
modes. (A) Fast-Newman. (B) Improved algorithm with admittance weight.

FIGURE 5 | The community structure of IEEE39 network in two division modes. (A) Fast-Newman. (B) Improved algorithm with admittance weight.
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attack strategies are random attack strategy, which attack random
chosen nodes, and deliberate attack strategy, which attack the
nodes with the largest degree value or the largest betweenness in a
network. However, the model and these attack strategies may not
make full use of the network structure and functional
information. This paper proposes a new attack strategy with
consideration of the community structure of a power grid. The
cascading fault of a power grid is simulated with applying the DC
power flow model [27], which can better reflect the electrical
characteristics of the power grid. With the DC power flow model,
the current loading of a transmission line is defined as the current
through it, and its capacity is 1 + α times of its initial value Iij(0).
Power loading of a node is defined as vipIoi, where Ioi is the sum
of currents flowing out of node i, and its capacity is 1 + β times of
its initial value. The capacity of each node is set to be large enough
to avoid tripping during a cascading failure process. We vary the
tolerance ratio of the transmission lines α while assessing the
robustness of a power grid.

Based on the previous subnet division, this section will study
degree-based and betweenness-based attack strategies,
respectively. Each attack strategy includes global attack and
community attack—for example, in the fourth division
method of Section 4, IEEE39 standard network is divided into
seven communities. Then, we will attack the nodes with the
largest degree or betweenness in each community at the same
time. Similarly, sorting the nodes in descending order of degree or
betweenness, attack the first seven nodes with the largest degree
or the largest betweenness value in the whole network, and
observe the network invulnerability effect under the four
attack strategies. The methods of attacking maximum degree
nodes in the whole network and attacking maximum betweenness
nodes in the whole network is called the MDA method and the
MBA method, respectively. The method of attacking the
maximum degree node of each subnet is called SMDA
method, and the method of attacking the maximum
betweenness node of each subnet is called SMBA method. In

particular, the external connection of the subnet is removed when
calculating the maximum degree node and the maximum
betweenness node of the subnet. The simulation experiments
on IEEE 39, IEEE 118, and IEEE 2383 standard test networks are
carried out, respectively. The number of attacked nodes in each
network is equal to the number of communities of that network.
The average remaining power percentage (APM) defined in [28]
is used to quantify the robustness of the power grid, where
APM � 1/M∑Pm/P, Pm is the maintained generation power
of the generators after cascade failure, and P is the generation
power of the generators before cascading failure. M is the number
of times the experiment was repeated. After the cascade failure
stops, the larger the APM, the better the robustness of the
network. The simulation results are shown in Figure 6 and
Figure 7.

Using the improved algorithm, IEEE 39, IEEE 118, and
IEEE2383 are divided into 7 subnets, 11 subnets, and 86
subnets, respectively, which equal to the attacked nodes in
each network. Figure 6 and Figure 7 show the network
robustness comparison of IEEE39, IEEE118, and IEEE2383
standard networks under different attack strategies.

It can be seen that, between the degree-based attack or the
betweenness-based attack, the attack effect of the attack strategy
based on the subnet partition method proposed in this paper
generally is better than that based on the global degree or
betweenness.

Figure 7A is the robustness comparison of the IEEE39
standard network under four attack strategies, and Figure 7B
is the robustness comparison of the IEEE2383 standard network
under the four attack strategies. In the four attack strategies, the
network shows a different invulnerability. The scale of cascading
failures is the smallest when the nodes with the largest
betweenness of the whole network were attacked, and the scale
of network cascade failures is the largest when the nodes with the
largest betweenness of the communities were attacked. The other
two attack effects from strong to weak are attacking the largest

FIGURE 6 | Robustness comparison of IEEE118 network under different attack strategies. (A) Attack strategy based on degree. (B) Attack strategy based on
betweenness.
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degree nodes in the communities and attacking the largest degree
nodes in the networks. To analyze the differences of attacked
nodes under four attack strategies, the n maximum degree nodes
in the network (n is the number of communities) are denoted as
set Na, and the n maximum degree nodes in each communities
are denoted as setNb, then fa � card(Na ∩ Nb)/card(Na) is the
ratio of the number of nodes that belong to Na ∩ Nb to the
number of nodes Na. In a similar way, the n largest betweenness
nodes in the network are denoted as set Nc, and the n largest
betweenness nodes in each communities are denoted as set Nd,
fb � card(Nc ∩ Nd)/card(Nc) is the ratio of the number of
nodes that belong to Nc ∩ Nd to the number of nodes Nc.
The calculated results of the three networks are shown in Table 2.

It can be seen from Table 2 that the value of fa is far greater
than that of fb in the three networks, which means that most of
the nodes with the largest degree in the community are the nodes
with the largest degree of the whole network. However, the nodes
with the largest betweenness in the communities usually are not
those nodes with the largest betweenness of the whole network.
Therefore, the attack effects of MBA and SMBA are the most
different.

6 CONCLUSION

Based on community discovery in complex network theory, this
paper proposes a power grid partitioning method considering
generator nodes and connection weight. Firstly, the weighted

network model of a power system is established. Then, the
improved Fast-Newman hierarchy algorithm and a weighted
modular Q function index are introduced, and the
improvement of the partition process is carried out according
to the characteristics of the actual power grid. Finally, the
improved algorithm is compared with Fast-Newman algorithm
to demonstrate its effectiveness and correctness. The sub-network
partition method proposed in this paper comprehensively
considers the electrical characteristics and topological
characteristics of a power system. It ensures that each sub-
network has at least one generator node after network
partition, which can provide power supply for the loads of the
sub-network after the breakdown of the power grid. It has a
certain guiding significance for power grid partition.

In addition, several cascading fault attack strategies are studied
based on the results of the subnet partition. The cascading fault
scales are compared in several IEEE standard test networks for
attacking those nodes with the largest degree or the largest
betweenness of each subnet and for attacking the same
number nodes with the largest degree or the largest
betweenness of the whole network. The study shows that the
attack strategy with attacking the largest betweenness node of
each subnet is the best one. It means that subnet partition has a
significant value on the identification of the key nodes of a power
grid. Attacking the maximum betweenness node of each subnet
has very serious attack consequences.

This paper only considers that each subnet contains generator
nodes when partitioning a power grid and does not consider the
power balance of power generation and power consumption in
each subnet. In further research, the power of generators and
loads can be taken into account when partitioning a power grid so
that the difference between power generation and power
consumption in each subnet is as small as possible. In this
way, when a subnet needs to be disconnected from the main
power grid for a serious fault, generator tripping and load
shedding can be minimized.

FIGURE 7 | Robustness comparison diagram of the network under four attack strategies. (A) IEEE 39. (B) IEEE2383.

TABLE 2 | The differences of attacked nodes under four attack strategies.

Network type fa (%) fb (%)

IEEE39 57 0
IEEE118 54.5 36.3
IEEE2383 45.3 16.3
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Spreading to Localized Targets in
Signed Social Networks
Jiaqi Song, Zhidan Feng and Xingqin Qi*

School of Mathematics and Statistics, Shandong University, Weihai, China

Inspired by lots of applications like viral marketing of products and transmitting information
in a network, ranking the spreading ability of nodes in the network has been widely studied.
At present, the above problem is mostly studied on unsigned networks which only contain
positive relationships (e.g., friend or trust) between users. In real-world networks, there
usually exist both positive relationships and negative relationships (e.g., foe or distrust)
between users. Based on this, we aim to find the influential spreaders in a signed network
which meet the requirement of real scene. Moreover, when the spreading only aims to
affect a specific group of nodes instead of all nodes, such as promoting cigarette, a new
problem called localized targets spreading problem was come up with. Localized targets
spreading problem has been studied on unsigned networks, but it is still open for signed
networks. Thus, in this paper, we propose a newmethod, called local influencematrix (LIM)
method, which aims to find the seed nodes set with maximum positive influence on a
specific group of targets but with minimum influence on the non-target nodes in signed
social networks. Simulation results show that our method performs well on real networks.

Keywords: influence diffusion, signed social networks, IC model, centrality, localized targets

1 INTRODUCTION

In recent years, a variety of attention has been paid to investigating the spreading ability of nodes in
complex networks. Effectively identifying influential nodes is of great significance in reality, for
instance, and helping to design appropriate marketing strategies. There are numerous studies having
been done on this issue and a series of methods have been proposed, such as degree centrality (DC)
[1], betweenness centrality (BC) [2] and k-shell decomposition (KS) [3] etc. In addition to these
famous methods, many researchers proposed other novel methods [4, 5]. Recently Guilbeault and
Centola derived a new measure called complex centrality (CC) [6] depending on a “complex” path
instead of a “simple path.”

In previous research, people often concentrate on finding the most influential nodes for the entire
network. However, in our daily life, there are some situations where we’d like to find the most
influential nodes for localized targets, i.e. aiming to infect not all the nodes but only a small number of
localized nodes. The problem of localized targets was firstly proposed by Sun et al. [7]. Actually, the
target spreading problem has many real applications. For example, in advertising based on online
social networks (e.g., Facebook and Twitter), cigarette advertisement should be promoted as much as
possible among adults and but should avoid being promoted among teenagers. However, some
traditional centrality methods can not meet this requirement. For example, when some information
needs to be passed to the target nodes in the yellow circle in Figure 1, most degree-related methods
are hard to achieve the goal. In Figure 1, the network’s maximum out-degree node is far away from
the target nodes. So if the information is passed from the node with maximum out-degree to the
targets, the seed node is very likely to lose its spreading ability during the propagation process. So the
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following problem comes up naturally: how to identify the most
influential nodes in a network which can activate the given
localized targets as often as possible while activating the non-
target nodes as little as possible?

The pioneer method proposed by Sun et al. [7] is suitable for
the unsigned networks, and their method only pays attention to
the first objective (i.e., activate the given localized targets as often
as possible), but ignores the second objective (i.e., avoid activating
the non-target nodes). On the other hand, in some online social
systems (e.g., Slashdot, Bitcoinalpha), users are allowed to mark
positive signs or negative signs on the relationships with others.
Compared with unsigned networks, the signed networks describe
the real social systems more accurately and reasonably. There are
also a few methods of identifying the influential nodes in a signed
network. But to our best knowledge, there is still not any study
attempting to identify the most influential nodes towards given
target nodes in a signed network. In this paper, we thus propose a
local influence matrix method (LIM) to solve this problem by
computing the local paths from target nodes to other nodes. After
applying this method on some generated networks and real
networks, we test its efficiency. We also compare it with some
traditional methods which are extended simply to deal with this
particular case, and verify this new method’s better performance.

2 MODELLING SIGNED SOCIAL
NETWORKS

In this paper, we model a signed social network as a directed,
weighted, and signed graph G(V, E, P, R), where V is the set of
nodes that correspond to users in the social network with |V| �N.
Let E be the set of edges, and the attitude (positive, negative, or
neutral) of each edge is stored at the matrix R with R(u, v) ∈ {1, 0,
−1}. Let P be a non-negative diffusion probability matrix, where
P(u, v) shows the diffusion probability from user u to user v. For
example, if P(u, v) is equal to 0.2, it means that the probability that
user u will successfully deliver message to user v is 0.2.

Here we use the example in Figure 2 to illustrate the signed
social networks. Figure 2A shows an example of a signed social
network which introduces the relationship between the three
users (Jerry, Tuffy, and Tom). Figure 2B demonstrates the graph
model of the signed social network of Figure 2A. Three nodes v,
u, and w are corresponding to user Jerry, Tuffy, and Tom
respectively. Note that the direction of edges in Figure 2A are
opposite to those in Figure 2B. The reason is as follows. For
instance, Jerry likes Tuffy in Figure 2B, so he’d like to be
influenced by Tuffy, in other words, if Tuffy likes some
products, Jerry is easily influenced by Tuffy and likes these
products. In Figure 2, Jerry likes Tuffy, so R(u, v) � + 1; Jerry
dislikes Tom, so R(u, v) � − 1; and there is no relationship
between Tom and Tuffy, so R(u, v) � 0. Figure 2B only shows the
signs on the edges but not the weights on the edges. In Figure 2B,
0.1 and 0.2 represent the weights of two edges. The probability of
v being successfully affected by u or w is 0.1 or 0.2.

The probability of information being accepted depends on the
matrix P. If P(v, u) is equal to 0.2, it means that u will accept the
information from vwith the probability of 0.2. And the attitude of
u towards information depends on matrix R. If u accepts v’s
information and R(v, u) is equal to 1, u will support v’s
information. On the contrary, if R(v, u) is equal to −1, u will
oppose v’s information. As a result, we define a matrix A � R*P
with its elementA(u, v) � R(u, v) · P(u, v), to consider the extent of
positive influence or negative influence. For example, in
Figure 2B, A(w, v) is −0.2.

Matrix P can be generated by three methods, which will be
discussed in Experiments Section.

3 THE LOCAL INFLUENCE MATRIX
METHOD

Usually the target nodes that need to be infected or activated are
localized, which means they are within a certain distance from
each other. To identify the most influential nodes in a signed

FIGURE 1 | Illustration of the problem of spreading towards localized targets in complex networks. The network is an artificial network (350 nodes and 1,129 links)
with two communities. The color (from dark red to white) of the nodes represents their respective degrees. Nodes in the yellow circle are the targets that need to be
activated. The maximum out-degree node whose color is darkest is marked.
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network which can positively activate the given localized targets as
often as possible while activating the non-target nodes as little as
possible, we present the following Local Influence Matrix method
(abbreviated as LIM). The basic idea is to compute all positive and
negative paths within k steps from V \ T to the target nodes T,
which shows the probability of a node in V \ T activating the node
in T, and we will use them later to measure the infecting ability of
the nodes in V \ T.

As mentioned above, let A be the N × N adjacency matrix of
the input signed network, where ai,j ∈ [−1, 1] means the
probability that node i infects j with the same (or different)
status if ai,j > 0 (or ai,j < 0). Note that (Ak)i,j means the probability
that node i infects j at k steps. The elements on the main diagonal
of the matrix Ak represent cycles (which means a node will be
activated twice in the same path and is not reasonable), we should
exclude them by setting themain diagonal to zero in each step. Let
�A
k be the new matrix, and define

Ak+1 � �A
k × A (1)

and then set the main diagonal of Ak+1 to zero again and repeat
the above process.

Then the infected probability matrix within k steps between
any pair of nodes of V can be calculated as:

S � ∑
k

l�0
�A
l+1
, (2)

Note that if k > 3, (Ak)i,j is relatively smaller, thus in the
following we restrict k � 3. Figure 3 gives a simple example to
explain the reason why the matrices’ diagonal elements are set to
zero. In Figure 3, there are two opposite arcs between node u and
v whose diffusion probability is 0.3 and 0.5 respectively. One way
that u infects v is by the arc (u, v) with a probability of 0.3 in
Figure 3B. If we do not let the diagonal elements of A2 become
zeros, then the following path u→ v→ u→ vwith a probability of
0.045 will be calculated in A3.

Then we divide the matrix S into the following two matrices SP
and SN.

SP u, v( ) � S u, v( ) S u, v( )> 0
0 S u, v( )≤ 0{ (3)

and

SN u, v( ) � 0 S u, v( )≥ 0
−S u, v( ) S u, v( )< 0{ (4)

SP(u, v) (or SN(u, v)) measures the possibility that node u
activates v positively (or negatively) if the original attitude/status

FIGURE 2 | An example of modeling a signed social network. (A) A signed social network (B) A directed, weighted, and signed graph

FIGURE 3 | Special situation in spreading process. (A) There are two opposite sides between node u and v. The probability of u successfully spreading information
to v is 0.3. And the probability from v to u is 0.5. (B) The probability from u to v is 0.3. (C) The probability from u to v to u is 0.15. (D) The probability of u to v passing
through u-v-u-v is 0.045.
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of u is positive. Recall that our problem is to identify the most
influential nodes in a signed network which can positively activate
the given localized targets as often as possible while activating the
non-target nodes as little as possible. At first, we would like to select
nodes which could positively activate target nodes as often as
possible and negatively activate target nodes as little as possible.
Meanwhile, it is better to minimize the impact on other non-target
nodes, whether it is positively influenced or negatively influenced.
The positive influence from non-target nodes to target nodes can be
expressed by SP · f, where f is a N × 1 vector in which the positions
corresponding to target nodes are 1, and 0 otherwise. Likewise, SN · f
shows the negative influence from non-target nodes to target nodes,
which is also a positive vector. In addition, SP · f′ and SN · f′
respectively represent the positive and negative influence from non-
target nodes to other non-target nodes where f′ is also aN × 1 vector
indicating non-target nodes position. To adjust the preference of
these three indicators, α, β and γ are introduced as the weights of
these three indicators.

Based on the above requirements, we proposed a formula to
measure the influence of nodes fromV \ T to target set T as follows:

SLIM � αSP − βSN( ) · f − γ SP + SN( ) · f′, (5)

The LIM process is illustrated with a toy network in Figure 4,
where α, β, and γ are set to be 1, 1, and 0 respectively. One can see

that the most highly ranked node by LIM is different from the
node with maximum out-degree.

4 EXPERIMENTS

4.1 Experimental Setup
4.1.1 Datasets
To validate the LIM method, we will apply it to two real signed
networks: Slashdot [8] and Bitcoinalpha [9, 10].

• Slashdot. This is a signed and directed network in which
users can rate each other as a friend or a foe. We use its
biggest subgraph with 10,966 users and 44,356
relationships.

• Bitcoinalpha. Bitcoinalpha used here is a directed, signed
network with 3,783 nodes and 24,186 links. Original data
has weight on each arc, but here we use its underlying graph
only and generate the weights by the following three models.

4.1.2 Diffusion Probability Generation
If one unweighted signed network is given, researchers [8, 11, 12]
usually use the following three models to generate the influence
probabilities on arcs.

FIGURE 4 | Illustrations of the local influence matrix (LIM) algorithm (α � 1, β � 1, γ � 0). The red nodes are target nodes and others are non-target nodes. (A) The
nodes with numbers are directly connected with target nodes. All irrelevant nodes and edges are marked in dashed lines. The numbers on the nodes can be calculated
by A · f. (B) The nodes with numbers can reach target nodes in exactly two steps. All possible paths with length two are considered and the numbers on nodes can be
calculated by �A

2 · f . (C) The nodes with numbers can reach target nodes in exactly three steps. All possible paths with length three are considered and the numbers
on nodes can be calculated by �A

3 · f . (D) The numbers on the nodes represent the LIM score when α � 1, β � 1, and γ � 0. The blue and orange nodes have maximum
LIM, out-degree values respectively.
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• Weighted Cascade (WC)model. In this model, P(u, v) for an
edge (u, v) is 1/d−(v), where d−(v) is the in-degree of v.

• TRIVALENCY model. On each edge (u, v), this model
randomly selects a value from 0.1, 0.01, and 0.001 as a
diffusion probability.

• Uniformly (UN) model. The diffusion probability of all the
edges are assigned the same value.Wewill test a relatively small
value of 0.03 and a relatively large value of 0.5, respectively.

4.1.3 Localized Targets’ Selection
Note that a localized target node set T should be given beforehand
when testing this new method LIM on a data set. We use the
following strategy to generate T. We first randomly pick up a
node v with a smaller coreness centrality [3], then add those
nodes within two steps from v into the target set. Note that in this
paper target nodes are not allowed as seed.

4.1.4 Independent Cascade With Sign Model
The standard Independent Cascade (IC) model [12] used
for unsigned networks is extended to the signed case in the
following, which is called IC-S Model. Each node v has three

states s(v) in IC-S model, including active positive, active negative,
and inactive. For a node u, active positive statusmeans that u is active
with positive attitude. A node u with inactive status means that u is
not active yet.

At time t, each newly activated node u (i.e., the node which is
activated at time t − 1) has only one chance to activate each of
its currently inactive neighbors w. If node w is activated by u, its
status s(w) is determined by the status of u and the relationship
between them, i. e, s(w) � R(u, w) × s(u). If s(w) > 0, then the status
of w is active positive, and active negative otherwise. If w is not
activated successfully by u, w can also be activated by its other
neighbors.

4.1.5 Comparison Methods
To show this new method’s performance, besides the random
selection method baseline, we also use the following methods to
compare with.

• Degree centrality. The degree of node i can be defined as k(i)
� ∑j∈G(|aij| + |aji|) where aij is the entry of matrix A
mentioned above.

FIGURE 5 | Result Comparisons between LIM method and some degree-based centrality methods when applying on (A) Slashdot network (B) Bitcoinalpha
network. The experiments are conducted on (A) Slashdot network (B) Bitcoinalpha network. Three diffusion probability methods are considered, i.e. WC model,
TRIVALENCY model, and UN model. For UN model, the probability value we set is 0.03. In each experiment, parameter k means that k seeds are selected to activate
other nodes, and λmeans the proportion of positively activated target nodes among all activated nodes. The targets we set are a center node with small coreness
and nodes within two steps from it. (A) On the Slashdot network, node 2,921 is the center node. (B) On the Bitcoinalpha network, the center node we set in targets is
node 7,062. Ranking methods include Degree (yellow triangles), Out-Degree (purple diamonds), Positive Out-Degree (pink triangles), Random (green circles), and LIM
(red circle) methods. The results in each figure are obtained by averaging over 2,000 independent realizations.
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• Out-Degree centrality. The out-degree of node i can be
defined as o(i) � ∑j∈G|aij|, where aij is also the entry of
matrixA. The out-degree of the node represents the number
of the out neighbors of the node, which reflects the direct
influence from this node to others.

• Positive Out-Degree centrality. The positive out-degree of
the node i is defined as o+(i) � ∑j∈Ga

+
ij. Here a

+
ij means that

edges whose aij > 0. The positive out-degree of the node
represents the direct positive influence from the node to others.

• Local Degree 1. Mathematically, the first type local degree
LD1 of node i is given by:

ld1
i �

∑
j∈Va+ij i ∈ Ω

0 i ∉ Ω
⎧⎨
⎩ (6)

where Ω is the node set within the distance l � 3 from the target
nodes.

• Local Degree 2. The second type local degree LD2 of node i
is given by:

ld2
i �

∑
j∈Ω

a+ij i ∈ Ω
0 i ∉ Ω

⎧⎨
⎩ (7)

Note that the two type local degree methods are used to rank
the node set Ω which are within the distance l � 3 from the target
nodes. The difference between them is that LD1 counts the our-
positive neighbor in the whole network while LD2 counts the out-
positive neighbor only in Ω.

4.2 Experiment Results
In this section, we present our experiment results of the positive
influence spreading performance of different methods on Slashdot
and Bitcoinalpha. We also define the positive influence spreading
performance as the proportion of the target nodes that are
positively infected to the total infected nodes under the IC-Smodel.

Figure 5A,B shows the performance of four comparison
methods (Random, Degree, Out-Degree, and Positive Out-
Degree) under three types of propagation probabilities model
(WC model, TRIVALENCY model, and UN model) on Slashdot
data set (or Bitcoinalpha data set). The size of seed nodes k is set
ranging from 50 to 300. For the UN model, we set the diffusion
probability to 0.03.When constructing the target setT, we treat node
2,921 whose coreness is 2 as the center, and take the nodes within
two steps from it as the target nodes. The top k nodes under the five
ranking methods are selected to be the seeds, whose infecting ability
are then tested by the IC-S model. After 2,000 iterations on the IC-S

FIGURE 6 |Result Comparisons between LIM and LD1 and LD2 when applying on (A) Slashdot data set (B)Bitcoinalpha data set. The experiments are conducted
on (A) Slashdot network (B) Bitcoinalpha network. Three diffusion probability methods are considered, i.e., WCmodel, TRIVALENCY model, and UNmodel. For the UN
model, the probability value we set is 0.03. In each experiment, parameter k means that k seeds are selected to activate other nodes. And λ means the proportion of
positively activated target nodes among all activated nodes. Rankingmethods include Local Degree 1 (yellow triangles), Local Degree 2 (green circles), and LIM (red
circle) methods. The results in each figure are obtained by averaging over 2,000 independent realizations.
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model, the average positive influence spreading performances can be
obtained. As shown in both Figure 5A,B, the LIM method
outperforms the other four methods as the size of the seed nodes
changes with all three types of different propagation probability.

The reason why the LIM method performs better at the
beginning is that the λ we calculate is a proportion, not the
number of nodes. Because of the difference of the size of seed
nodes, the number of the target nodes that are positively activated
and the number of the nodes finally activated are different. So even if
λ1 is bigger than λ2, the number of the target nodes that are positively
infected in experiment 1 may be smaller than that of experiment 2.
Besides, the experiments on Bitcoinalpha under TRIVALENCY
mode and UN model do not perform as well as in the WC
model. This is mainly because that there is a lot of overlap
between the nodes selected by LIM method and the nodes
selected by other methods. For example, if we select 150 nodes to
be seed nodes, more than 80 nodes are repeatedly selected by both
the LIMmethod andDegreemethod under either of the twomodels.

We also compare the method LIM with the two local degree
methods (LD1, LD2) on these two data sets under three types of

propagation probabilities model, see Figure 6A,B This also shows
that the LIM method performs well.

Furthermore, in order to validate the effects of the three
parameters α, β, and γ, we change each of these three
parameters separately and observe the changes in spreading
ability. During all three experiments, the parameter that needs
to be tested is changed while the other two parameters are kept as
1. Figure 7A shows the effect of α when applying on Slashdot
under the WCmodel, here 30 seeds are selected. θ1 represents the
proportion of positively activated target nodes among all
activated nodes. We can see that as the value of α increases, θ1
increases significantly and then stabilizes. The significant
increasing in θ1 shows that a bigger parameter α can help to
select those nodes which can positively activate targets as seeds.
Similarly, Figure 7B shows the effect of parameter β applying on
Slashdot under the UN model with the diffusion probability of
0.5, and 100 seeds are selected. θ2 represents the proportion of
negatively activated target nodes among all activated nodes. It can
be seen that θ2 has a slight downward trend but is not more
obvious, this is because in most real social networks, there are

FIGURE 7 | Results of parameter testing. The experiment is carried out on Slashdot. The first and third experiments use WCmodels and select 30 seeds, while the
second one is done under the UN model which set the diffusion probability to 0.5 and selects 100 seeds. The center node of the target nodes is set to node 2,921. (A)
Results of parameter α. θ1 means the proportion of positively activated target nodes among all activated nodes. Each point in this figure represents the θ1 value with a
different α value. (B) Results of parameter β. θ2 means the proportion of negatively activated target nodes among all activated nodes. Each point in this figure
represents the θ2 value with different β value. (C) Results of parameter γ. θ3 means the proportion of positively and negative activated non-target nodes among all
activated nodes. Each point in this figure represents the θ3 value with different γ value.

FIGURE 8 | Results of targets set transformation. The experiment is done on Bitcoinalpha. The experiment selects 150 seeds under three models. And the center
node of the targets is node 1 which has the highest coreness. Same as the above experiments, the LIM method compares with other 6 methods.

Frontiers in Physics | www.frontiersin.org January 2022 | Volume 9 | Article 8062597

Song et al. Localized Targets in Signed Networks

129

https://www.frontiersin.org/journals/physics
www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


more positive edges than negative edges. The downward trend in
Figure 7B sufficiently shows that the setting of a bigger parameter
β effectively prevent negatively activating target nodes. Figure 7C
shows the effect of parameter γ applying on Slashdot under WC
model, and 30 seeds are selected. θ3 represents the proportion of
positively and negative activated non-target nodes among all
activated nodes. The value of θ3 decreases from 0.9 to nearly
0.2 as γ increases, which shows that the setting of a bigger
parameter γ is also useful to prevent activating non-target nodes.

5 DISCUSSION

Identifying the influential spreaders is a very important problem
both in theory and in practice. Though a number of methods have
been proposed, most of them aim to infect most nodes across
entire networks. However, in some real systems which intend to
infect a small group of nodes, the traditional centrality methods
are found to be not accurate enough to find the influential nodes
to target. We extend this problem from unsigned networks to
signed networks, and thus propose a local influence matrix
method to rank the spreading ability of the nodes towards the
targets. The simulation results indicate that our method
outperforms the traditional centrality methods. Furthermore,
by adjusting the parameters we set, the new method is found
to be able to reduce the impact on non-target nodes.

Regarding the choice of the center node of the targets in the
experiments, we would like to choose a node with smaller
coreness. That is because the node with high coreness is more
closely connected with other nodes, which easily causes too many

targets to be selected. For example, there are 3,783 nodes on
Bitcoinalpha and more than 2,000 nodes are selected as targets, if
the node with highest coreness is chosen as center node. This is
inconsistent with the scenario for local targets we set in advance.
For example, if we choose node 1 of the Bitcoinalphain which has
the highest coreness as the center of the targets, the results
comparing the LIM method with the other 6 methods show
that the LIM method still performs better but not much better
than others, see Figure 8. This also shows that this new LIM
method will work better when the target is localized.
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Multilayer-Aggregation Functional
Network for Identifying Brain Fatigue
and Diseases
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Sciences, Shanghai, China

Recent years have witnessed increasing interest of applying network science
methodologies to analyze brain activity data. Owing to the noninvasiveness, low cost
and high sampling rate, electroencephalogram (EEG) recordings have been widely used as
a proxy for probing the internal states of human brains. Previous correlation-based
functional networks (CFN) mainly focused on the covariance or coherence between
readings from electrodes attached to different regions, largely overlooking local
temporal properties of these electrical activities. Here, we propose a method to
construct multilayer-aggregation functional network (MAFN) which is able to capture
both temporal and topological characteristics from EEG data. We extract features from
these MAFNs and incorporate them into each of 12 classification algorithms, aiming to
detect mental fatigue and two brain diseases, schizophrenia and epilepsy. The results
demonstrate that MAFNs consistently outperform CFN and dynamic version of CFN. In
comparison to functional networks based on weighted phase lag index (wPLI), MAFNs
also achieve higher or comparable accuracy in most classifiers. Moreover, the nodal
features of MAFNs allow us to identify the important positions of EEG electrodes for
different brain states or diseases. These findings together offer not only a framework for
classifying normal and abnormal brain activities but also a general method for constructing
more informative functional networks from multiple time series data.

Keywords: electroencephalogram, functional network, mental fatigue, schizophrenia, epilepsy

1 INTRODUCTION

Human brain is one of the most delicate and complex systems, responsible for maintaining the
internal regulation of human body and perception, and responding to external stimuli. To
understand the working mechanism of brain function and to detect brain states and diseases,
such as mental fatigue [1], epilepsy [2], sleep disorders [3], schizophrenia [4], depression [5] and
Alzheimer’s disease (AD) [6], several noninvasive technologies have been invented and widely used,
such as functional magnetic resonance imaging (fMRI) [7], electroencephalogram (EEG) [8],
computed tomography (CT) [9], and so on. Constructing functional networks from the brain
activities recorded with these technologies has attracted more and more attentions [10–12]. In
functional networks, nodes represent brain regions or voxels and edges are supposed to capture the
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functional interactions between different nodes. Increasing
evidence showed that functional networks change with
cognitive activities, emotion, and the development of brain
diseases and so on [13, 14]. Hence, functional networks can be
applied to reveal different brain states or to detect brain illnesses
whose neuropathology are not yet clear. For example, previous
studies have found that, among others, the modules of the brain’s
functional network become more isolated, and the connections
within the modules become stronger when people age [15].
Functional networks of patients with schizophrenia, compared
with healthy people, and exhibit abnormalities in multiple global
indicators (global clustering coefficient, small-world-ness,
etc.) [16].

Among the technologies mentioned above, EEG has the
advantages of high time resolution, and convenient data
collection and low cost. Hence, extracting information from
EEG recordings has been a very active field which aims to
understand intentions and emotions [17, 18], to diagnose
neuropsychiatric disorders (mental illness and brain diseases)
[5, 19, 20], and to develop new brain-computer interface (BCI)
technologies [21–23]. In these applications EEG based functional
networks have also been widely used. For example Ref. 24,
constructed functional networks of fatigued brains via source
localization of cortical activities in 26 predefined regions of
interest, and found that the characteristic path length
increased, offering support for the presence of a reshaped
global topology in cortical connectivity networks under fatigue
state Ref. 25; explored the emotion associated functional
networks among different subjects and extracted three
topological properties from these networks as classification
features. Their results showed that there are indeed common
connectivity patterns associated with different emotions, and also
demonstrated that topological features have considerable
advantages over conventional power spectral density Ref. 26;
constructed functional networks from EEG readings in resting
state and memory task state, and found that healthy people under
memory task state showed small-world characteristics in different
frequency bands Ref. 27; studied cortical functional networks of
subjects after sport-related mild traumatic brain injury (MTBI)
and found that MTBI induces an increase in short-distance
connectivity and a decrease in long-distance connectivity.

However, previously established EEG-based functional
networks mainly focused on the correlation or coherence
between different channels, i.e., building the connections
between the electrical activity of different brain regions [28,
29]. Such constructions can enable network science
methodologies to probe the interactions between regions, but
largely overlook intrinsic local temporal properties of EEG
signals. The fact prompts us to explore an important and
interesting question: How to map the readings of multiple
EEG channels into a functional network that can capture both
topological and temporal characteristics of these signals? Here, to
address this need, we propose an approach to construct MAFNs
from multiple time series. We first build an undirected network
from each time series by utilizing the idea originally from the
network science field [30, 31]. Such networks can reveal the
temporal regularities in each signal. We then aggregate these

networks into a weighted one based on the topological similarity
of different layers, which thus can also capture the connections
between different channels. To demonstrate the effectiveness of
our approach, we incorporate MAFNs with various supervised
and unsupervised classifiers and apply them to identify three
typical neuropsychiatric disorders including mental fatigue,
schizophrenia and epilepsy.

To demonstrate the effectiveness of our approach, we
incorporate MAFNs into 12 supervised and unsupervised
classifiers and apply them in three typical tasks, identifying
mental fatigue, diagnosing schizophrenia, and detecting
epilepsy. The results show that in comparison to correlation-
based functional networks (CFNs) and dynamic (sliding window)
version of CFNs (DCFNs), MAFNs exhibit significantly higher
accuracy. In addition, as the scalp-level network is affected by the
volume conduction problem (each channel receives information
from many brain sources), functional networks based on
weighted phase lag index (wPLI) [32] are also constructed for
comparison. MAFNs also achieve comparable performance, with
higher accuracy in 9 out of 12 classifiers.

The main contributions of the present work can be
summarized as follows.

(i) We establish a multilayer-aggregation approach for
constructing functional networks from multiple time
series, which is able to capture both temporal and
topological characteristics of these signals;

(ii) We incorporate the constructed functional networks into 12
classifiers and apply them in three typical EEG applications,
systematically demonstrating the effectiveness of our
approach;

(iii) The higher accuracy of MAFN in extracting temporal and
topological characteristics and identifying fatigue,
schizophrenia, and epilepsy from EEG data allow it to be
a potential method for understanding neural circuits
associated with behaviors and diagnosing the
neuropsychiatric disorders using EEG recordings.

The rest of the paper is structured as follows. Section 2
describes the construction approach of MAFN and the
classification framework based on such networks. Section 3
shows the comparison results between traditional methods
(CFN, DCFN, and wPLI) and MAFN in three EEG datasets
(fatigue, schizophrenia, and epilepsy). Discussion and
Conclusion are given in Section 4.

2 METHODS

This section includes three parts: construction of multilayer-
aggregation functional networks (MAFNs) feature extraction
and selection from MAFNs and MAFN-based classification
framework.

2.1 Construction of MAFNs
The effectiveness of functional networks in distinguishing brain
states is heavily dependent on construction methods, i.e., the
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more informative the more applicable. However, how to
reconstruct a scalp-level network or source connectivity
network able to represent the intrinsic connections between
regions from coarse-grained and usually noisy readings is a
nontrivial problem. According to the time series recordings,
researchers have proposed several functional connectivity
indexes to construct functional networks. Correlation-based
functional networks (CFNs) and dynamic (sliding-window)
version of CFN (DCFNs), as well as weighted phase lag index
(wPLI) succeeded in a wide range of applications, given the fact
that human brain is indeed composed of a few billion of
interconnected neurons. A weighted matrix is obtained
according to different functional connectivity indexes, and
then binarized to obtain an unweighted and undirected
network that represents the relationship between different
regions. At a coarse-grained level, the human cerebral cortex
can be roughly divided into several different regions, which are
actually dependent on each other, and function cooperatively
[33]. The dependence between regions is so strong that it can be
captured by nice correlations of the activities between regions. In
addition, brain activities also show temporal patterns, which
means that one region is activated following the other. Thus,
it is expected that construction of functional networks with better
informativeness should take into account not only topological but
also temporal properties. To satisfy this need, we propose a two-
phase approach to create the MAFNs from EEG readings.

Furthermore, according to different calculation indexes of each
stage, three kinds of are constructed, based on dynamic time
warping [34] (MAFN-dtw), symbolic mutual information [35,
36] (MAFN-smi), and hub depressed index [37] (MAFN-HDI)
respectively.

First, to reveal temporal regularities an idea from network
science (see [30, 31]) is adopted for building a network from a
single time series. As illustrated in Figure 1, we use a sliding
window to split all EEG time series (Figure 1B) into m sub-
sequences (Figure 1C), and then identify from these m sub-
sequences the representative sub-sequences (RSs) through the
idea similar to clustering: 1) Calculate the similarity
(measured by dynamic time warping (DTW) [34] or
symbolic mutual information (SMI) [35, 36]) between each
pair of sub-sequences, and for each sub-sequence we select its
k most similar (other) sub-sequences; 2) In the mk selected
sub-sequences, some are repeated. Hence we pick the top k
ones who occur most frequently. 3) In these k sub-sequences,
we identified n sub-sequences that are most dissimilar to each
other. Therefore, the cardinality of the final set of RSs equals
n. In this work we set n � 40. Through the procedure, the RSs
we identified are most dissimilar to each other, yet are most
similar to other original sub-sequences. That is, the RSs can
indeed considered as motifs occurring in EEG time series
(Figure 1D). Finally, we convert each single time series into a
symbol sequences by replacing each original sub-sequence

FIGURE 1 | Construction of an individual network layer for each channel. (A) EEG channel locations and its recorded time series. (B) Segmentation process of time
series. (C) Candidate set of sub-sequences. (D) The representative sub-sequences (RSs) set. (E) The process of replacement. (F) The individual network (layer) for one
channel.
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with its most similar RS (Figure 1E), which can be further
transformed to a network (Figure 1F). Each node represents a
RS, and two nodes are connected by a link if the two RSs in the
original time series are temporally proximal to each other.
Therefore, through the above procedure each channel is
represented by a network (or called layer hereafter).

Second, as illustrated in Figure 2, the individual layers of all
channels are merged into an MAFN by aggregation. Such an
aggregation process captures the dependence between different
channels (layers). Here we use Jaccard coefficient or Hub
Depressed Index (HDI) [37]) to calculate the local structural
similarity of node i between any pair of layers X and Y. For a node
i, let ki(X) represents the degree of i in layer X and Γi(X)
represents the neighbor node set of node i in layer X. Jaccard
coefficient and HDI between two layers are defined as

μiXY � Γi X( ) ∩ Γi Y( )| |
Γi X( ) ∪ Γi Y( )| | (1)

and

μiXY � Γi X( ) ∩ Γi Y( )| |
max ki X( ), ki Y( ){ } (2)

respectively. Then the global similarity between layer X and layer
Y is quantified by

SimXY � 1
n
∑
n

i�1
μiXY (3)

where n is the number of nodes (i.e., RSs).
So far, through the two steps above we obtain a weighted

network of these layers (Figure 2B), where the weight of a link
represents the similarity of two corresponding layers. We expect
that the similarity indicates the strength of dependence between
the two channels. Finally, we binarize the weighted network to a
(0, 1)-matrix (Figure 2C) that corresponds to a MAFN shown in
Figure 2D. Because the threshold of binarization affects the
number of links and also the topological properties of the
MAFN, as discussed in the next subsection we extract the
features of networks with different levels of sparsity, from 12
to 34% with step size 2%, and input all these features into each
classifier in our numerical experiments.

2.2 Feature Extraction From MAFNs
Network science offers several important metrics to
mathematically characterize the topology of networks [38–42].

FIGURE 2 | Aggregation of the layers of all channels. (A) The individual layers ofN channels and (B) an aggregated weighted network of these layers. (C) The binary
matrix for the MAFN in (D).
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The changes of these metrics can be used as indicators to
distinguish brain functional networks for different brain states
from various perspectives [43, 44]. The metrics roughly fall into
two categories—global and local. Global metrics capture the
connection patterns among nodes as a whole. For example,
the average path length reveals the dispersion of network
structure hence is related to information transmission
efficiency; Modularity quantifies the extent to which a network
can be divided into several densely connected communities. Local
metrics capture the surrounding connection patterns of a specific
node or link. For example, nodal degree is simply the number of a
node’s neighbors; Nodal clustering coefficient describes the
connnectedness among a node’s neighbors; Nodal betweenness
is useful for determining whether a specific link is a bottleneck for
network diffusion. In order to reflect the diversity of functional
network properties, here we employ 10 global and 5 local metrics,
as listed in Table 1.

It is worth noting that the values of these metrics depend on
the threshold used to binarize either the functional network has
been proposed or aggregated (weighted) networks in the second
phase of MAFN construction. Hence, we consider the metrics for
a wide range of network sparsity that is defined as the fraction of
existing links out of all possible links between nodes. Specifically,
for eachmetric xwe also calculate the area under the curve (AUC)
[16, 45] that represents the metric value as a function of network
sparsity, i.e.,

xAUC � ∑
q−1

i�1
x Si( ) + x Si−1( )[ ] p△S/2, (4)

where [S1, Sq] is the range of sparsity and △S is the interval for
discretizing the range.

In classification algorithms described in the next subsection,
we use all features for the metrics listed in Table 1. In fact, we
constructed functional networks with sparsity levels from 12 to
34% and calculated the network attributes of all these networks,
i.e., for each metric x all its features {x (S1 � 12%), x (S2 � 14%),
. . ., x (Sn � 34%), xAUC} are inputted into the classifier. Hence, the
number of total features is the sum of the local and the global

feature numbers. For instance, in the task of mental fatigue
identification where each subject has 62 EEG channels, the
total number of features is (62 × 5 + 10) × 13 � 4160.
Similarly, the total number of features for schizophrenia and
epilepsy data are 4,095 and 1,690 respectively. In order to perform
fair comparisons, the total number of features obtained from
correlation-based functional networks is equal to those above
respectively.

In addition, to increase the interpretability of the results and to
screen out the sensitive indicators of the network, we conduct a
difference analysis on the indicators of the functional network by
using supervised algorithms. Samples are given labels, and one
can obtain the statistically significant difference of each network
metric and the most differentiated binarization threshold through
inter-group statistics between healthy and abnormal samples. To
do so, we first use the Z-score method to standardize the metrics
and count the normalized mean value of each metric x under all
sparsity of one network to obtain the statistically significant
difference of each network metric. Then we perform t-tests of
the metrics at different network sparsity levels and calculate the
corresponding p-values, followed by choosing the sparsity which
results in the most statistically significant metrics (significance
level is set to p < 0.05) [46]. Such a way is able to point out the
sensitive indicators, as shown in Section 3, for understanding the
possible mechanisms underlying the brain illness. It is
noteworthy that such calculations is only for interpreting the
results, and in all comparison experiments we do not
intentionally choose metrics or sparsity levels.

2.3 Classification Framework Based on
MAFNs
After the MAFNs constructed from experimental EEG data and
the features extracted from MAFNs, we put these features
encoding both topological and temporal properties into
classifiers. In order to extensively compare the capability of
MAFNs to that of other methods, in the present study we
employ 6 supervised classifiers, including support vector
machine with radial basis kernel function (SVM-RBF), with
sigmoid kernel function (SVM-SIG), and with polynomial
kernel function (SVM-POL), multi-layer Perceptron (MLP),
decision tree C4.5 and dense graph propagation (DGP) [47],
as well as 6 unsupervised classifiers, including invariant
information clustering (IIC) [48], one class support vector
machine (OC-SVM) [49], support vector data description
(SVDD) [50], k-means, hierarchical clustering divisive analysis
(DIANA), density-based spatial clustering of applications with
noise (DBSCAN). To assess the performance of MAFNs in these
classifiers we use accuracy defined as (TP + TN)/(TP + TN + FN +
FP) where TP, TN, FP, and FN represent true positive, true
negative, false positive, and false negative, respectively.

In supervised classifiers, the data samples were divided into
training, validation and test sets with proportions of 50, 20, and
30%, respectively. For each classifier, all features of the functional
networks constructed from the training set are used to train the
model, and then 5-fold cross-validation is used to validate the
model, obtaining the best model parameters. Next, we test the

TABLE 1 | Features of functional networks.

Feature type Feature name Symbols

Global Global clustering coefficient C
Average path length L
Small-world-ness σ

Modularity Q
Global efficiency Eg
Rich-club-ness Rcl

Average degree 〈k〉
Link density ρ

Assortativity r
Average Nodal efficiency 〈E〉

Local Node degree ki
Nodal efficiency Ei
Nodal Betweenness Bi

Closeness centrality Cci

Nodal clustering coefficient Ci
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model and got the classification accuracy in the test dataset
(i.e., the remaining 30% of the original data). Finally, we
repeat the above two steps 50 times by randomly splitting the
samples into training, validation and test sets, and eventually
obtain the arithmetic mean of these classification accuracies
as ACC.

In contrast, unsupervised classifiers cluster the samples to
different groups according to some criteria and do not have a
training process. Take the k-means as an example. First, we
construct networks with sparsity levels of from 12 to 34% and
calculate the values of all the features of each network
respectively. Then we input the features of each network
sparsity into the k-means classifier. The k-means is repeated
for several times, and the smallest sum of squared errors (SSE) is
the final clustering result. A prediction label is assigned to each
sample. Finally, we use classification accuracy to measure the
clustering results (the comparison between the assigned labels
and the real labels of each sample was concluded by clustering).
Note that we calculate the classification results of functional
networks with different levels of sparsity, whose mean value
was set as ACC.

3 APPLICATIONS

In this section, we incorporate MAFNs with classification
algorithms and apply to three typical scenarios, demonstrating
the advantages and effectiveness of MAFNs compared with the
previous 3 methods. Moreover, we also show how to identify the
important electrodes and their locations for detecting mental
fatigue and schizophrenia.

3.1 Application in Mental Fatigue
Identification
Mental fatigue can cause difficulty in concentration and negative
emotions, which further reduce work efficiency, and even lead to
various accidents. Hence, identifying mental fatigue has attracted
considerable attention in the past decade. Here, we analyze a
dataset from 26 subjects with mental fatigue [21, 24]. Each subject
underwent a 20-min psychomotor vigilance test (PVT), a high-
signal-load way based on reaction time for evaluating the ability
to sustain attention and be alert to salient signals. To study the
effect of increased mental fatigue with working hours, the first
and last 5-min intervals were set as the least, and most fatigued
states, respectively. High-density continuous EEG recordings
were acquired from 62 Ag/AgCl scalp electrodes according to
the International 10–20 system (ASA-Lab, ANT B.V., and
Netherlands). The typical electrode positions are illustrated in
Figure 1A. Signals containing artifacts due to eye movements or
significant muscle activity during the recordings were removed
offline via an independent component analysis approach. The
final EEG signals were baseline adjusted and further digitally
band pass filtered in the range 0.5–40 Hz (fifth order
Butterworth). The artifact-free epochs of 500 ms duration EEG
segments (from 0 to 500 ms post-stimulus) were selected and
grouped for further analysis. Rhythmic patterns of activity in the

(8–10 Hz) range could be an appropriate physiological signal for
revealing the topological differences of cortical connectivity in
fatigue state as low alpha waves have specifically been implicated
with decreasing alertness. Here, we apply a graph theoretical
approach to analyze such changes in the lower alpha (8–10 Hz)
band of EEG data.

We construct three types of MAFNs (MAFNs-dtw, MAFNs-
smi, and MAFNs-HDI), using the method described in Section
2.1, for the first and last 5-min intervals respectively for each
subject. To perform comparisons, for each subject we also
construct three other corresponding types of functional
networks (CFNs, DCFNs, and wPLIs) simply by calculating
the correlations between all pairs of EEG time series and then
binarizing the correlation matrix into an undirected unweighted
functional network. We examine different values of binarizing
threshold (12–34%) to obtain functional networks with different
levels of sparsity. To distinguish the least andmost fatigued states,
we extract the features from the metrics listed in Table 1 of all
these sparse networks (i.e., each subject has 4160 features), and
then input these features into the classifiers described in Section
2.3. As exhibited in Figure 3, the MAFNs are more effective than
the corresponding CFN and DCFN in all 6 supervised and 6
unsupervised classifiers. Moreover, we observe that MAFN +
SVM-SIG obtains the highest accuracy in supervised learning and
wPLI + IIC outperforms other unsupervised algorithms.
Meanwhile, while wPLIs are more effective than correlation-
based functional networks, our MAFNs still achieve higher or
comparable accuracy in 9 out of 12 classifiers.

To increase the interpretability of the results we also want to
reveal the sensitive indicators of the network, i.e., to examine the
topological properties in each layer network for the least andmost
fatigued brain states. As shown in Figure 4A, we take F3 for
example which is attached to the frontal lobes of the cerebral
cortex. This region plays vital roles in memory, attention,
motivation, and also has the capacity to organize and plan
daily tasks. For all subjects, we count the normalized mean
value of each global metric Y under all sparsity of the F3
network. We find that there are indeed significant structural
differences between the F3 network layer of least and most
fatigued states. Specifically, compared with the least fatigued
subjects, the values of C, 〈k〉, ρ, and 〈E〉 are decreased in
most fatigued networks, while the values of the other 6 global
metrics are increased. Such decreases and increases are all
statistically significant (t-test, p-value < 0.05). To understand
the impact of network sparsity on classification framework
performance, we examine the statistical significance of network
metrics listed in Table 1 for different levels of sparsity. As shown
in Figure 4B, we find that sparsity indeed remarkably affects the
expressiveness of functional networks. The inter-group
comparison results reveal that there exists an optimal sparsity
level, i.e., an optimal binarizing threshold, for binarizing the
aggregated weighted network. Here, for distinguishing the least
and most fatigued subjects, the optimal sparsity is 26% at which
the differences of global metrics between the two groups are all
statistically significant (the gray area in Figure 4B).

Moreover, the features extracted from local metrics are
important for recognizing the contribution of each node in
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MAFN, i.e., identifying the most relevant electrode positions
for a specific task. To do so, we calculate the accuracy of the
proposed classification framework by using the local metrics
of only one node and descending sort the nodes according to
these ACC values. And then put the ranking labels (1–62) as
the x-axis. As shown in Figure 5A, we take the results of SVM-
RBF algorithm as an example, and obtain the accuracy rate for
each channel by using different network construction
methods respectively. The green line is the results of
MAFN-dtw + SVM-RBF, and the top1 node (electrode) is
F3 which is attached to the frontal lobes of the cerebral cortex.
Then we pick up the top 10 channels with the highest
accuracies of the methods and the results are shown in
Figure 5C. The process is repeated for other 5 types of
network construction method. We pick up the top 10
channels with the highest accuracies of 6 methods

respectively and find that the most important electrodes for
fatigue detection are mainly located in the frontal and the
central areas with the left electrodes more relevant than the
right ones. So, it is shown that although there are differences
between the results calculated from 6 network construction
methods (i.e., there are differences between the top 10 highest
classification accuracy channels of different methods), all 6
methods can clearly distinguish the importance of each node
of the network.

3.2 Application in Schizophrenia Diagnosis
Schizophrenia is a serious and chronic mental disorder with typical
positive symptoms such as delusions, hallucinations and negative
symptoms such as depressedmood, which affects about 1% of people
across the globe. One possible explanation for some of the symptoms
of schizophrenia is that one or more problems with the corollary

FIGURE 3 | Comparison between different methods of brain functional network construction in detecting mental fatigue with 6 supervised classifiers and 6
unsupervised classifiers. Comparison in (A) supervised and (B) unsupervised classifiers.
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discharge process in the nervous system make it difficult for patients
to distinguish between internally and externally generated stimuli.
Schizophrenia has made a big burden for patients and their family

which prompt us to find a quick and goodway for diagnosis and even
early warn of the emergence of schizophrenia. In the present studywe
use the dataset, which is already pre-processed, from patients with

FIGURE 4 | Statistically significant difference of metrics between fatigued and healthy groups. (A) Inter-group differences of global metrics in the individual layer of
F3 channel. (B) Statistical significance of the inter-group difference of global metrics as a function of network sparsity.

FIGURE 5 | Important channels and their locations for detecting fatigue status (A,C) and schizophrenia (B,D). The colored points in (C,D) represent the
corresponding positions.
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schizophrenia, and healthy controls in [51]. All subjects participate in
a simple button-pressing task in which subjects either 1) pressed a
button to immediately generated a tone, 2) passively listened to the
same tone, or 3) pressed a button without generating a tone to study
the corollary discharge in people with schizophrenia, and comparison
controls. And 61 channel EEG data were collected from 32 healthy
subjects and 49 patients with schizophrenia.

As described in Section 2, we construct 6 types of functional
networks for each subject and incorporate them into the 12
classifiers. The results are shown in Table 2. It is obvious that
the accuracy of classifiers involving MAFNs are consistently
higher than those involving CFNs and DCFNs, demonstrating
the advantage of MAFNs. The highest accuracy achieved by using
MAFNs is 92.4% (MAFN-dtw + SVM-POL). Since the wPLI
method can avoid the volume conductor effect, wPLIs are more
effective than the corresponding 5 other methods in 2 supervised
(SVM-SIG and MLP) classifiers, but MAFNs perform better in
other 10 classifiers.

Furthermore, similar to the approach discussed in Section 3.1,
we also reveal the optimal sparsity and the accuracy achieved by

using the features of individual channels. The results show that
when the sparsity is 30%, the global attribute of schizophrenia
networks has the largest difference between groups. Finally, as
exhibited in Figure 5D, we find that the most relevant electrodes
for schizophrenia diagnosis are localized in the frontal and
occipital regions.

3.3 Application in Epilepsy Detection
The third task we take to demonstrate the effectiveness of MAFNs is
detecting epilepsy. The dataset contains intracranial EEG recordings
obtained from patients with temporal lobe epilepsy undergoing
evaluation for epilepsic surgery [52]. The 1-s EEG clips labeled
“Ictal” for seizure data segments, or “Interictal” for non-seizure data
segments. In the present work, 100 “Ictal” and 100 “Interictal”
fragments of one subject were selected as experimental data. The
24 intracranial EEG recordings are from depth electrodes implanted
along the anterior-posterior axis of the hippocampus, and from
subdural electrode grids in various locations.

The results of classifiers involving MAFNs or other
functional networks are displayed in Table 3. The highest

TABLE 2 | Comparison results of MAFNs and other methods for schizophrenia diagnosis.

Networks DGP SVM-RBF SVM-SIG SVM-POL MLP C4.5

Supervised MAFN-dtw 87.6 89.6 90.2 92.4 89.5 81.8
MAFN-smi 86.8 87.9 89.7 90.9 88.2 81.6
MAFN-HDI 86.5 89.6 90.2 92.4 87.6 82.4
wPLI 87.5 89.6 91.2 91.2 91.2 82.1
CFN 85.3 86.9 83.2 82.2 85.4 76.0
DCFN 86.1 87.2 87.4 89.5 86.7 79.9

Networks IIC OC-SVM SVDD K-means DIANA DBSCAN

Unsupervised MAFN-dtw 81.7 76.5 70.3 73.9 74.6 72.5
MAFN-smi 80.7 73.3 70.3 72.6 73.5 72.3
MAFN-HDI 80.6 75.5 70.3 73.6 74.6 72.3
wPLI 80.6 75.7 70.3 73.9 73.8 72.3
CFN 72.1 70.8 69.2 70.2 71.4 69.1
DCFN 78.7 72.5 69.5 71.9 72.6 71.6

The best-performing methods were highlighted (bold).

TABLE 3 | Comparison results of MAFNs and other functional methods for epilepsy detection.

Networks DGP SVM-RBF SVM-SIG SVM-POL MLP C4.5

Supervised MAFN-dtw 92.8 94.6 95.4 92.6 92.3 84.4
MAFN-smi 89.6 90.9 92.7 92.9 93.2 83.2
MAFN-HDI 92.8 93.4 93.4 93.2 89.3 80.6
wPLI 92.5 93.3 93.3 94.1 89.2 79.9
CFN 83.4 85.6 84.3 80.4 85.9 74.3
DCFN 85.7 89.2 90.5 88.7 88.7 78.3

Networks IIC OC-SVM SVDD K-means DIANA DBSCAN

Unsupervised MAFN-dtw 73.3 77.5 73.7 72.8 70.3 71.7
MAFN-smi 73.7 75.4 74.3 74.6 72.3 74.6
MAFN-HDI 74.6 77.5 73.3 72.9 73.6 72.3
wPLI 73.6 76.3 72.3 72.9 72.8 72.6
CFN 72.4 70.4 69.7 70.1 69.4 71.3
DCFN 72.8 74.5 72.2 72.3 70.7 72.0

The best-performing methods were highlighted (bold).
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accuracy achieved by using MAFNs is 95.4% (MAFN-dtw +
SVM-SIG). Importantly, these results indicate again that,
MAFNs systematically outperform CFNs and DCFNs.
Except in SVM-POL and IIC classifiers, MAFNs perform
better than or comparably to wPLIs. Furthermore, we also
find the optimal sparsity and the accuracy by using the
features of individual channels. The results show that when
the sparsity is 32%, the global attribute of epilepsy networks
has the largest difference between groups.

4 DISCUSSION AND CONCLUSION

4.1 Discussion
Generally speaking, there are two types of brain networks,
structural, and functional [44, 53]. The former represents
chemical or electrical synapses between neurons, or fibers
connecting brain regions or voxels. In these networks the
connections are physical, meaning that they do not
significantly change in a short time interval. In contrast, the
later describes the functional interactions between neurons or
regions. Such interactions can be captured by correlation/
coherence or causation of activities of brain region pairs. Due
to the temporal nature of brain activity, functional connectivity
usually changes over time and exhibits different structural
properties in different brain states. Hence, construction
approach showing temporal and topological characteristics of
brain activity is not only crucial for distinguishing brain states but
also helpful for unveiling the systematic mechanism underlying
brain functions or dysfunctions.

In this work we demonstrate the advantages of MAFN in
identifying three abnormal brain states, it can also be applied to
understand our healthy or diseased brain, such as detecting driving-
induced fatigue, Alzheimer’s disease, depression, and different
emotions, etc. In addition, although we focus on MAFNs
constructed from EEG recordings, our approach is also applicable
to construct functional networks from other types of experimental
data, and such as fMRI and fNIRS. Importantly, while scalp-level
EEG data are used here, it would be interesting to extend the MAFN
method to source-level connectivity [54]. Unfortunately, source
reconstruction requires additional experiment data that all the
three datasets in the present study lack. Moreover, directed
networks (i.e., effective connectivity represents the direct or
indirect causal influences of one region on another) can be more
informative than undirected ones because link directionality might
reveal information flow between different brain regions [55].
Therefore, exploring source-level and directed MAFNs is worth
future pursuit.

5 CONCLUSION

In summary, we proposed a two-phase approach for constructing
scalp-level functional networks from multiple time series by
multilayer-aggregation, and incorporated such networks into a
classification framework for identifying brain states and diseases
based on EEG recordings. We tested the effectiveness and
robustness of the approach in three data sets (fatigue,
schizophrenia, and epilepsy) and the results showed that the
approach is consistently more advantageous than correlation-
based functional networks and also achieves comparable or
higher accuracy than phase lag index based networks in most
classifiers. With this approach we also revealed the important
electrode positions for detecting mental fatigue and diagnosing
schizophrenia.
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Models
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Spread velocity, epidemic threshold, and infection density at steady state are three non-
negligible features describing the spread of epidemics. Combining these three features
together, a new network robustnessmetric with respect to epidemics was proposed in this
paper. The real-time robustness of the network was defined and analyzed. By using the
susceptible–infected (SI) and susceptible–infected–susceptible (SIS) epidemic models, the
robustness of different networks was analyzed based on the proposed network
robustness metric. The simulation results showed that homogeneous networks
present stronger robustness than do heterogeneous networks at the early stage of the
epidemic, and the robustness of the heterogeneous networks becomes stronger than that
of the homogeneous ones with the progress of the epidemic. Moreover, the irregularity of
the degree distribution decreases the network robustness in homogeneous networks. The
network becomes more vulnerable as the average degree grows in both homogeneous
and heterogeneous networks.

Keywords: real-time robustness, epidemic spread, spread velocity, complex network, robustness metrics

INTRODUCTION

Nowadays, various dynamic phenomena exist in real networks, many of which are harmful and bring
great damage to real life. Especially, the threat of infectious diseases is growing increasingly due to the
increasing complexity of modern social networks in all facets of human endeavor [1–5]. For example,
as reported by the WHO on October 29, 2021, there have been more than 245 million confirmed
cases of coronavirus disease 2019 (COVID-19) globally, including almost 5 million deaths (https://
covid19.who.int/). Also, other fields like economy, politics, and culture have suffered extensive
damages during the outbreak of COVID-19. Since network structures show a great impact on the
propagation dynamics [6–9, 11], it is crucial to assess the robustness of different network structures
with respect to the spread.

Epidemic propagation models have been recently used to analyze network robustness against
virus attacks, and the robustness of different networks has been studied [10–14]. By modeling and
analyzing the epidemic propagation, the descriptive features of the propagation process are often
used to measure network robustness against the epidemic spread. For example, the epidemic
threshold and the final infection rate at the steady state have been used to measure the robustness of
the network against virus attacks individually or jointly [13]. The results of network robustness with
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respect to epidemics can help in understanding and further
improving network robustness against epidemics.

Although the existing measurements have been proven to be
effective for network robustness when it comes to the spread of
epidemics, some inherent challenges have been overlooked.
Firstly, the existing measurements have mainly focused on the
robustness of the network at the steady state. To our knowledge,
the real-time robustness of complex networks with respect to
epidemics has not been widely studied, i.e., the changes in the
network robustness over time in different network structures
have not been explored. Secondly, it is not accurate to measure
network robustness without considering the spread velocity,
which is an important factor in measuring the spread of
epidemics. Therefore, the robustness of the network against
epidemics can be comprehensively and accurately measured by
considering the spread velocity. Furthermore, the spread velocity
describes the changes in the propagation over time, which is very
suitable for measuring the real-time network robustness with
respect to epidemics [17].

In this paper, combining spread velocity, infection density at
steady state, and the epidemic threshold, a novel metric was
proposed to measure real-time robustness with respect to
epidemics in complex networks. Network robustness with
respect to the spread of the susceptible–infected (SI) [15] and
susceptible–infected–susceptible (SIS) models [16] was analyzed
based on the new metric, and some interesting results are
presented in our paper. Firstly, the results confirmed that the
irregularity of the degree distribution strengthens the network’s
vulnerability with respect to the epidemic in homogeneous
networks. However, the simulation results on the real-time
robustness of the different networks showed that the
robustness of the Barabási–Albert (BA) scale-free network [19]
is not always stronger than that of the Watts–Strogatz (WS)
network [20] at any time, which was different from the results of
existing studies. At the early stage of the epidemic, the BA
network is more fragile than the WS network. As the infection
rate worsens, the BA network becomes more robust than the WS
network. Moreover, the simulation results showed that the
network becomes more vulnerable to the epidemic as the
average degree grows in both homogeneous and heterogeneous
networks.

The rest of this paper is organized as follows. Related Work
presents the literature review and related works. In Network
Robustness With Respect to Epidemic Models, we analyze the
necessity of proposing the new metric to measure the network
robustness against diseases. In The Novel Metric to Quantify
Network Robustness, the novel metric to quantify the network
robustness with respect to the SI/SIS epidemic spread is proposed.
The simulation results in different networks are presented and
analyzed in Results, and the main conclusions and the direction
for future studies are summarized in Discussion.

RELATED WORK

Epidemics in social networks can be theoretically described using
biological epidemic models, through which the spread

mechanism of viruses can be described and analyzed. For
example, the SI and SIS epidemic models are often used to
model the spread of epidemics [13–17]. In the SI model, the
S-state nodes can pass to the infected state through contagion by
the infected ones, and the rate of an S-state node being infected by
a single infected neighbor is β. In the SIS model, the I-state node
recovered to the S state at the rate δ in the SIS model, and the ratio
between β and δ is denoted the effective infection rate τ. The time
evolution of the different states of the nodes can be described
using differential equations from which the relevant conclusions
of epidemics can be derived.

In the complex network theory, three important features
describing the epidemic spread were introduced into the
epidemic models. Firstly, the epidemic threshold τc, as a
function of the basic reproductive number R0, was used to
determine the outbreak of the epidemic [21]. When the
effective infection rate τ is higher than τc, i.e., R0 > 1, the
epidemic spreads in the population, but when the effective
infection rate τ is lower than τc, the epidemic dies out. With
the outbreak of the epidemic, the states of the nodes in the
network change with time, and the changing rate can be
measured by the spread velocity. When the network reaches a
stable state, the density of each state in the network becomes
stable, and the final infection rate at the steady state can be used to
measure the scale of the spread.

Therefore, the epidemic threshold, spread velocity, and the
final infection rate at the steady state can comprehensively
describe the propagation mechanism and can also be used as a
measure of network robustness with respect to epidemics. As one
of the most prominent features, the epidemic threshold is the first
and commonly used measure of network robustness with respect
to the epidemic spread [22, 23]. The larger the threshold, the
more difficult it is to spread the virus, i.e., the more robust a
network is against the virus attack [13]. Studies have found that
the threshold cannot fully measure network robustness. For
example, the Erdős–Rényi (ER) network [18] and the BA

FIGURE 1 | The susceptible–infected–susceptible (SIS) epidemic
spreading process in different networks, β � δ � 0.3. I(t) represents the
fraction of infected nodes at time t and V(t) the growth rate of infection at time t.
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network [19] have two opposing features—the epidemic
threshold and the steady-state infection rate—to measure their
robustness. In [13], a new measure incorporating the fraction of
infected nodes at the steady state and the epidemic threshold to
assess the robustness of the complex networks with respect to the
spread of epidemic has been proposed and proven to be effective
in modeling epidemics with different final infection densities.

NETWORK ROBUSTNESS WITH RESPECT
TO EPIDEMIC MODELS

In existing studies, the epidemic threshold and the steady-state
infection rate have been bound together to measure network
robustness against epidemics since it has been proven that the
results are inaccurate when only one feature is considered.
Besides the epidemic threshold and the steady-state infection
rate, the spread velocity is another widely discussed variable that
should not be ignored in the study of network robustness. For
example, Figure 1 shows the infection rate at the nodes at time t
due to the SIS epidemic spreading process in the WS and BA
networks, where the average degree of the two networks is the
same. We can differentiate between the propagation processes in
the two networks from the curve in Figure 1. Firstly, the final
infection density in the BA network (IBA) is smaller than that in
the WS network (IWS), i.e., IWS > IBA. Based solely on the
infection scale at the steady state, we can conclude that the
BA network is more robust than the WS network.

However, the performance of spread velocity is more
interesting than that of the final propagation scale. In our
simulation, we first described the spread velocity as the growth
of the infection rate, i.e., V(t) � I(t + 1) − I(t). As shown in
Figure 1, when t < 9, the spread velocity of the epidemic in the
WS network is slower than that of the BA network,
i.e., V(t)BA >V(t)WS. However, when t≥ 9, the spread velocity
of the epidemic in the WS network is faster than that of the BA

network, i.e., V(t)BA <V(t)WS. Especially, when the final
infection densities at the steady state are the same, such as in
the SI model shown in Figure 2, we can hardly conclude which
network shows stronger robustness based solely on the spread
velocity. Therefore, estimating the robustness of different
networks based solely on the spread velocity is different,
which is one of the reasons to study real-time network
robustness. In addition, since the spread velocity describes the
dynamics of the propagation process before attaining the steady
state, it is essential in measuring real-time network robustness.

Moreover, we also measured the moment at which the steady
state of the infection first arrives [T(i_max)] under different
infection rates β in the BA and WS networks. Figure 3 shows
that the T(i_max) in the WS network was larger than that in the
BA network under the same β, especially when β was very small.
Therefore, we can conclude that one single feature may fail to
comprehensively measure the robustness of the network.
Besides the epidemic threshold, the infection rate at the
steady state and the spread velocity are also very important
in measuring network robustness with respect to epidemics.
Therefore, we proposed a novel metric with multiple features to
quantify network robustness against the spread of the epidemic
in this paper.

NOVEL METRIC TO QUANTIFY NETWORK
ROBUSTNESS

We proposed a multi-indicator-based measurement to quantify
network robustness against the epidemic by combining the
epidemic threshold, the infection density at steady state, and
the spread velocity. Suppose that, in the SIS epidemic model, the
rate of a susceptible node being infected by a single infected
neighbor is β and the infected node recovered at the rate δ in the
SIS model. When δ � 0, the SIS model is transformed into the SI
model. In the SIS model, the effective recovery rate can be defined
as s � 1/τ � δ/β, s ∈ (0, λmax). The density of the infected nodes

FIGURE 2 | The susceptible–infected (SI) epidemic spreading process in
different networks, β � 0.3. I(t) represents the fraction of infected nodes at time
t and V(t) the growth rate of infection at time t.

FIGURE 3 | The time of reaching the steady states of the epidemic
spread under different infection rates in the Barabási–Albert (BA) and
Watts–Strogatz (WS) networks.
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at time t is described as i(t), and the steady state of the infection
under the effective infection rate τ can be written as i∞(τ).
Considering the infection at the steady state and the spread
velocity, we define iA(T) as the average infection rate of the
network after time T:

iA(T) � 1
T
∫

T

0
i(t)dts. (1)

The network robustness with respect to the epidemic spread
can be written as

RG � ∫
λmax

0
iA(s)ds. (2)

Equation 2 shows that the greater the value of RG, the more
fragile is the network, i.e., the weaker is its robustness.

The real-time robustness of network G can be written as

RG(T) � 1
T
∫

λmax

0

∫
0

T

i(t, s)dtds. (3)

Especially, when T → ∞,

iA(T) � 1
T
∫
0

T

i(t)dt � 1
T
⎛⎝∫

Ts

0

i(t)dt+ ∫
Ts

∞
i∞dt⎞⎠ ≈ i∞, (4)

where Ts represents the moment when the infection reaches a
steady state for the first time. Then, the network robustness can be
written as

RG � ∫
λ max

0
i∞(s)ds, (5)

which is the viral conductance proposed in Eq. 13.
Based on the SI and SIS epidemic models, we can further write

the robustness of the network with respect to the spread of the SI
and SIS epidemic models.

Case 1
The robustness of homogeneous networks with respect to the
spread of the SI model is shown. The state of each node in the SI
model is either infected or healthy, and the change in infected
individuals over time can be described as

di

dt
� β〈k〉i(1 − i). (6)

By separating the variables, Eq. 6 can be written as

di

i(1 − i) � β〈k〉dt, (7)

Integrating both sides of Eq. 7, we can obtain

ln
1 − i(t)
i(t) � −β〈k〉t + c. (8)

The density of the infected nodes at time t can be written as

i(t) � 1

1 + (1/i0 − 1)e−β〈k〉t
. (9)

The final infection density of the SI model is equal to 1,
i.e., i∞ � 1. Based on Eqs. 5 and 9, the robustness of the
homogeneous network G with respect to the spread of the SI
epidemic can be written as

RSI
G (T) �

1
T
∫

1

0
∫

T

0
i(t,β)dtdβ� 1

T
∫

1

0
∫

T

0

1

1+ (1/i0 −1)e
−β〈k〉t dtdβ

� 1
T
∫

1

0
∫

T

0

⎛⎝1−
(1/i0 −1)e

−β〈k〉t

1+(1/i0 −1)e
−β〈k〉t

⎞⎠dtdβ

(10)

RSI
G (T) �

1
T
∫

1

0
∫

T

0

⎛⎝1 −
(1/i0 − 1)e−β〈k〉t

1 + (1/i0 − 1)e−β〈k〉t
⎞⎠dtdβ

� 1
T
∫

1

0

⎛⎝∫
T

0
1dt − ∫

T

0

(1/i0 − 1)e−β〈k〉t

1 + (1/i0 − 1)e−β〈k〉t
dt⎞⎠dβ

� 1
T
∫

1

0
(t + 1

β〈k〉 ln(1 + (1/i0 − 1)e−β〈k〉t))
∣∣∣∣∣∣∣∣∣
t � T

t � 0
dβ

� 1
T
∫

1

0

⎛⎝T + 1
β〈k〉 ln

(1 + (1/i0 − 1)e−β〈k〉T)

1/i0
⎞⎠dβ

� 1 + 1
T
∫

1

0
(

1
β〈k〉 ln(i0 + (1 − i0)e−β〈k〉T))dβ.

(11)

Case 2
The robustness of homogeneous networks with respect to the spread
of the SIS model is calculated. Ignoring the degree of correlations in
the nodes of the homogeneous networks, the density of the infected
nodes at time t in the SIS epidemic model, i.e., i(t), satisfies

di

dt
� −δi + β〈k〉i(1 − i). (12)

Integrating both sides of Eq. 12,

∫
t

0
dt � ∫

i(t)

i0

1
−δi + β〈k〉i(1 − i)di, (13)

Then, Eq. 13 can be rewritten as

t � 1
β〈k〉 − δ

∫
i(t)

i0

1
i
di + β〈k〉

β〈k〉 − δ
∫

i(t)

i0

1
β〈k〉 − β〈k〉i − δ

di,

(14)

We can obtain

e(β〈k〉−δ)t � i(t)
β〈k〉 − β〈k〉i(t) − δ

/
i0

β〈k〉 − β〈k〉i0 − δ
, (15)

After a simple combination, Eq. 15 can be rewritten as

i(t)(β〈k〉 − β〈k〉i0 − δ) � i0e(β〈k〉−δ)t(β〈k〉 − β〈k〉i(t) − δ).
(16)
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The density of the infected nodes at time t can be written as

i(t) � (β〈k〉 − δ)i0e(β〈k〉−δ)t
β〈k〉 − β〈k〉i0 − δ + i0β〈k〉e(β〈k〉−δ)t

. (17)

Let Eq. 12 be equal to 0.We can obtain −δi + β〈k〉i(1 − i) � 0.
When τ � β

δ � β> τc, the infection density of the final stable
state is

i∞ � 1 − δ

β〈k〉 � 1 − 1
τ〈k〉. (18)

Based on Eqs. 5 and 17, the robustness of the homogeneous
network G with respect to the spread of the SIS epidemic can be
written as

RSIS
G (T) � 1

T
∫

λmax

0
∫

T

0
i(t, s)dtds

� 1
T
∫

λmax

0
∫

T

0

(
〈k〉
s

− 1)i0e(〈k〉
s −1)t

〈k〉
s

− 〈k〉
s

i0 − 1 + i0
〈k〉
s

e(〈k〉
s −1)t

dtds

(19)

Using simple operational processes, RSIS
G (T) can be

rewritten as

RSIS
G (T) � 1

T
∫

λmax

0
∫

T

0

(
〈k〉
s

− 1)i0e(〈k〉
s −1)t

〈k〉
s

− 〈k〉
s

i0 − 1 + i0
〈k〉
s

e(〈k〉
s −1)t

dtds

� ∫
λmax

0

s

T〈k〉∫
T

0

1
〈k〉
s

− 〈k〉
s

i0 − 1 + i0
〈k〉
s

e(〈k〉
s −1)t

d(
〈k〉
s

− 〈k〉
s

i0 − 1 + i0
〈k〉
s

e
(〈k〉

s −1)t)ds

� ∫
λmax

0

s

T〈k〉 ln(
〈k〉
s

− 〈k〉
s

i0 − 1 + i0
〈k〉
s

e
(〈k〉

s −1)t)
∣∣∣∣∣∣∣∣∣
t � T

t � 0
ds

� ∫
λmax

0

s

T〈k〉(ln(〈k〉 − 〈k〉i0 − s + i0〈k〉e
(〈k〉

s −1)T
) − ln(〈k〉 − s))ds.

(20)

RESULTS

Based on the new network robustness measurement we
proposed, Monte Carlo simulations were performed to
further explore the robustness of the different networks with
respect to the spread of the epidemic. It is generally known that
most of the real-world networks are characterized by a high
clustering effect, a short average path length, and power law
node degree distribution, i.e., small-world phenomenon and
scale-free property. Therefore, WS small-world networks, BA
scale-free networks, and several real-world networks were used
in our simulations. All the simulation results were averaged over
500 runs.

Firstly, the BA and WS networks, with the same average
degree, 〈k〉 � 6, were used in our simulation to study the
effect of degree distribution on the robustness of the
networks. Figure 4 shows the network robustness RSIS

G at
time T with respect to the spread of the SIS model. For
simplicity, the recovery rate δ was set as 1. The curves in

Figure 4 show that, when T < 15, RSIS
BA >RSIS

WS, i.e., the
robustness of the WS network is stronger than that of the
BA network. Due to the existence of a small fraction of hub
nodes, the epidemic in the BA network is more likely to break
out than that in the WS network. Therefore, at the early stage of
the epidemic, the BA network is more fragile than the WS
network because of the higher epidemic threshold and faster
spread velocity. However, when the infection rate becomes more
severe, the spread gradually slows down since most of the nodes
in the BA network are of a lower degree than that of the average,
and the infection scale in the WS network becomes larger than
that in the BA network. Therefore, when T≥ 15, theWS network
becomes more fragile than the BA network, i.e., RSIS

BA <RSIS
WS, as

shown in Figure 4.
Moreover, the simulations were carried out in a group of WS

small-world networks, where the irregularity/randomness of the
networks increases as the value of the rewiring rate p grows
following the generation algorithm of theWS network. Especially,
when p � 0, the network is a regular graph; when p � 1, the
network is completely random. Figure 5 shows that, as p grows,
RSIS
G becomes larger; that is, the network becomes more

vulnerable. Therefore, the irregularity/randomness of the
network weakens the robustness of the homogeneous
networks. In addition, compared with the robustness of the
BA network (red circle), the homogeneous networks were
more robust than the BA network at the early stage of the
epidemics (T< 8 in Figure 5). Also, after T> 15, the BA
network showed better robustness than the group of
homogeneous networks. The results further extend our
conclusion that, in the initial stage of propagation, the
homogeneous networks showed better robustness than the
heterogeneous networks. As the robustness gap grew smaller
with the spread of the epidemic, and finally, the heterogeneous
networks became more robust than the homogenous networks.

The above simulation results indicated that it is not
adequate to simply conclude which network is more robust

FIGURE 4 | The robustness of the Watts–Strogatz (WS) and
Barabási–Albert (BA) networks with respect to the
susceptible–infected–susceptible (SIS) epidemic model.
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with respect to the epidemic. The robustness of the network
changes with time, and the network does not always show a
strong/weak robustness at all stages of the epidemic. During
the early stage of the epidemic spread, the robustness of
homogeneous networks was stronger than that of the
heterogeneous networks. After the propagation reached the
steady state, heterogeneous networks showed better robustness
than the homogeneous networks.

To analyze the impact of the degree distribution on
network robustness with respect to the epidemic,
simulations were also carried out in the WS and BA
networks with different average degrees, 〈k〉, as shown in
Table 1 and Figure 6. Table 1 shows that, at the steady state
(T � 30), the network became more vulnerable to virus attacks
as the average degree of the network increases. The results
validated the BA network as having stronger robustness than
the WS network at the steady state.

Figure 6 shows the changes of network robustness as time T
increased in the WS and BA networks with different average
degrees, 〈k〉. The figure shows that the WS network exhibited
stronger robustness than did the BA network with the same
average degree at the early stage of the epidemic, and the
robustness of the BA network was stronger than that of the
WS network at the steady state.

We also applied the proposed metric to real-world
networks where the dynamics processes can be described
by epidemic models [24–27]. For example, the virus spread
in e-mail networks, the information transfer in neural
networks, and rumor diffusion in online social networks. In
this paper, three real-world networks were used to validate
our results on network models [28]: 1) e-mail network—the
network of e-mail interchanges between members of the
University Rovira i Virgili (Tarragona); 2) neural
network—the network representing the neural network of
Caenorhabditis elegans, which was compiled by D. Watts
and S. Strogatz; and 3) Facebook network—the complete

Facebook network data (from a single-time snapshot in
September 2005) of Caltech. Only intra-college links were
included. The basic topological properties of these three
networks are shown in Table 2. In order to study the
impact of degree distribution on the robustness of real-
world networks, new network models were created by
rewiring the links in the real-world networks. After
rewiring, the heterogeneity of the degree distribution of
nodes was reduced, while the numbers of nodes and links
remained unchanged, and the new created networks were
connected graphs.

Figure 7 shows the impact of degree distribution on the
robustness of real-world networks with respect to the spread
of the SIS epidemic. We can see that, at the early stage of the
epidemics, the robustness of the real-world networks (red
circles) was worse than that of the new created network
models (black circles). That is to say, the heterogeneity of
the degree distributions of nodes can reduce the network
robustness at the early stage of the epidemic. After the
propagation reached a steady state, the robustness of the
real-world networks (red circles) became stronger than that
of the new created network models (black circles). The
simulation results confirmed that homogeneous networks
present stronger robustness than do heterogeneous
networks at the early age of the epidemic, and the
robustness of the heterogeneous networks becomes stronger
than that of the homogeneous ones with the progress of the
epidemic. In addition, we can see from Figure 7 that the time
point when the robustness of the real networks was stronger
than that of the homogeneous networks was becoming earlier
with the increase of the average degree (as shown in Table 2,
the average degree was becoming larger from the e-mail
network to the Facebook network, i.e., from Figures 7A–C).

In summary, the simulation showed different results from
previous studies based on the new measures of network
robustness with respect to the spread of epidemic proposed
in this paper. Firstly, the robustness of the heterogeneous
networks was not always better than that of the
homogeneous networks. During the initial stage of
propagation, the homogeneous networks showed better
robustness than did the heterogeneous networks, and at the
steady state, the heterogeneous networks became more robust
than the homogenous networks. Furthermore, in both
homogeneous and heterogeneous networks, the networks
became more vulnerable as the average degree increased. In
homogeneous networks, the robustness of the networks with
respect to the spread of the virus decreased as p increased,
i.e., the irregularity in the networks increased the vulnerability

FIGURE 5 | The robustness of homogeneous networks at time T with
respect to the susceptible–infected–susceptible (SIS) epidemic spread.

TABLE 1 | The robustness of the Watts–Strogatz (WS) and Barabási–Albert (BA)
networks with different <k> values at the steady state (T � 30)

<k> = 4 <k> = 6 <k> = 8 <k> = 10

WS network 0.2981 0.3492 0.3716 0.3842
BA network 0.2274 0.2880 0.3209 0.3488

WS, Watts–Strogatz; BA, Barabási–Albert
(<k>) is the average degree of network.
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of the networks. The simulation results provided us with some
ideas to enhance the network robustness with respect to the
dynamic propagation processes. For example, at the beginning
of the epidemic, mass gathering was harmful to improve
network robustness, and after the epidemic entered a
relatively stable period, avoiding small-scale clustering
would help enhance the network robustness against
epidemic spread.

FIGURE 6 | The robustness of the Watts–Strogatz (WS) and Barabási–Albert (BA) networks with different <k> values at time T with respect to the
susceptible–infected–susceptible (SIS) epidemic spread. (A) <k> � 4. (B) <k> � 6. (C) <k> � 8. (D) <k> � 10.

TABLE 2 | The real-world networks studied and their basic properties

Networks N L <k> k_max

E-mail network 1,133 5,451 9.62 71
Neural network 297 2,148 14.47 134
Facebook network 762 16,651 43.70 248

N and L are the total numbers of nodes and links, respectively. <k> and k_max denote
the average and the maximum degree, respectively.

FIGURE 7 | The robustness of real-world networks at time T with respect to the susceptible–infected–susceptible (SIS) epidemic spread. (A) E-mail network. (B)
Neural network. (C) Facebook network.
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DISCUSSION

Considering the spread velocity, epidemic threshold, and the
infection density at steady state, a novel metric to quantify
network robustness with respect to epidemics was proposed in
this paper. The real-time network robustness and the robustness of
different networks were discussed. The simulation results showed
some interesting conclusions of the impact of network structure on
network robustness. The robustness of heterogeneous networks
was not always stronger than that of the homogeneous networks.
At the early stage of the epidemic, the homogeneous networks
showed stronger robustness than did the heterogeneous networks,
and at the steady state, the robustness of the heterogeneous
networks was stronger than that of the homogeneous networks.
In addition, the increase of irregularity and the average degree can
enhance the network robustness with respect to epidemics. Our
future work will explicitly focus on proposing a heuristic for
computing the robustness metric for general networks. In
addition, the metric proposed in our paper can be applied to
network optimization to maximize network robustness with
respect to different kinds of dynamic propagation processes.
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UAV Swarm Resilience Assessment
Considering Load Balancing
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UAV swarm are often subjected to random interference or malicious attacks during the
execution of their tasks, resulting in UAV failure or communication interruption. When the
UAV swarm is out of interference or the repair command is executed, the performance of
the UAV swarm will be restored to a certain extent. However, how to measure the changes
of UAV swarm’s performance during this process will be very important, and it is also
crucial to determine whether the UAVs can continue to perform its mission. Based on this
motivation, we propose a resilience assessment framework for UAV swarm considering
load balancing after UAV swarm suffer from disturbances. We analyze the effects of
different topologies and different parameters on the resilience of UAV swarm. The study
found that attack intensity is the most important factor affecting UAV swarm performance.
As the attack intensity increases, the performance of the UAV swarm decreases rapidly. At
the same time, topology also has a very important impact on UAV swarm resilience.

Keywords: resilience, networks, UAV swarm, load balancing, malicious attacks

INTRODUCTION

The extensive use of unmanned aerial vehicles (UAV) improves the convenience of mission
execution and reduces the cost of completing missions. Meanwhile, it allows the execution of
boring and dangerous tasks without causing unnecessary risks to humans [1]. With the increasing
maturity of UAVmanufacturing technology and the relative reduction of manufacturing costs, more
and more people are interested in using UAVs to perform various tasks. For example, power
maintenance, water and soil supervision, high-voltage tower fault line inspection, construction site
survey, forest patrol and fire prevention, environmental inspection, oil and gas pipeline inspection
and search and rescue, UAV express, traffic monitoring, etc. [2–4]. At this stage, one of the important
application trends of UAVs is UAV swarms (especially military) [5]. In the swarm, a lot of small
UAVs complete the set tasks through machine-machine coordination. Once individuals are
concerned, each UAV has its own mission and needs to coordinate with other UAVs.
Therefore, the local organizational structure is loose. Generally, the UAV swarm needs to be
affected by the environment (Threats) for perception, assessment, and response. All UAVs are
required to participate in this process. Therefore, the overall organizational structure is tight. In
summary, UAV swarms need to be highly resilience in terms of link connection, communication,
and recovery to realize the information exchange network [6]. Therefore, the UAV swarm be
regarded as an information exchange network (IE network) in this article. The IE network can be
represented by a graph. UAVs are nodes in the graph, and the information exchange links between
UAVs represent edges in the graph.

To date, a UAV swarm can consist of hundreds of UAVs. Although the scale of UAV swarms is
increasing, there are few studies on its resilience. At this stage, the research on UAV swarms is mainly
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focused on survivability [7]. The survivability is considered to be
that UAV swarms have different attack strengths and different
attack methods (malicious attacks, random failures). The ability
of the system to complete tasks normally is used to evaluate the
ability of UAV swarms to perform tasks after being attacked
(interference). Specifically, some research network survivability
indicators have been developed and used to measure the
performance of UAV systems, including natural connectivity
and maximum connected subgraphs. In the above research,
the damage of UAV nodes and link interference are
considered irreversible.

When UAV swarms are used to monitor military targets and
harsh environments, they will encounter unpredictable difficulties
in these dangerous environments, which often cause UAVnodes or
links to fail. Although sometimes failed nodes and links can be
repaired, themission fails due to the inability to assess the degree of
UAV recovery. Under this condition, historical fault data cannot
help people improve the performance of UAV swarms. In order to
improve the success rate of UAV swarm mission execution, in
traditional methods, it is necessary to improve the robustness of
UAV components to reduce the failure rate of nodes or increase
redundant nodes or links (as described in the previous section). It
will increase the cost of UAV swarms, which is undesirable. On the
contrary, the UAV swarm considers that the performance recovery
in the event of damage will be more executable. Resilience provides
new methods for engineering and system design, and characterizes
the ability of the system to resist the influence of uncertain factors
and the ability to recover afterwards. Therefore, it is of great
significance to introduce the resilience index into the
performance measurement of the UAV swarm.

However, there are few researches on the resilience of UAV
swarms. In the UAV swarm, when some UAV nodes fail due to
interference, the swarm often uses load balancing methods to
assign the tasks of the failed nodes to the normal nodes according
to established rules (the degree of the nodes is considered in the
article), which can improve the resilience and usability of UAV
swarms. However, when the node is overloaded, it will reduce the
efficiency of the normal node and affect the performance of the
UAV swarm. Therefore, it is important to analyze the impact of
load balancing on the resilience of UAV swarm. Based on the
above motivation, we propose a method for measuring the
resilience of UAV swarms considering load balancing, and
establish a UAV swarm performance model, give a UAV
swarm load distribution model, and the variation of UAV
swarm resiliency under different topologies and parameters is
analyzed. The research motivation of the article will be given in
the first section. In the second section, we continue to introduce
the current situation of resilience research. In the third section, we
establish the UAV swarm resiliency evaluation model, and
conducted a verification analysis in the fourth section. The
conclusion will be given in the fifth section.

RELATED WORKS

Resilience comes from the related fields of materials and
mechanics. Which refers to one thing to deform after being

affected by outside, and to return to its original shape when
the effect disappears [8]. Due to the ubiquity of the system, the
concept of resilience is widely used in different disciplines.
Although they own different definitions, the resilience system
is generally considered the ability to resist external influences and
recover quickly. Compared with similar concepts such as
invulnerability, robustness, reliability [9–12], the research
focuses more on the degree of change and recovery speed of
the system after being affected by outside.

When resilience proposed, it has attracted lots of attention. In
recent years, people consider the research on resilience one of the
hot topics in the scientific research field [13–15]. We have
gradually realized that various systems that humans rely on
are vulnerable to various disasters and exhibit vulnerabilities.
Once the system is affected, it will require a long recovery process,
and it may not even be able to recover to its original state. For
example, it is estimated that the virus COVID-19 has caused tens
of trillions of dollars in economic losses around the world [16],
and nuclear pollution caused by a leak at the nuclear power plant
in Fukushima, Japan, will continue for 30 years or more [17]. So
research on system resilience is particularly important. It is
necessary for scholars to carry out research on system
resilience design and effects. We hope that resilience research
can improve the ability of various systems to withstand
emergencies, so as to avoid secondary disasters. So research on
resilience has attracted extensive attention from researchers in
different fields, such as the resilience of transportation networks,
supply systems, and supply chains.

The infrastructure system is generally resilience [18, 19] in
transportation, more and more people concern the resilience of
roads. For transportation, resilience is defined as “the system’s
ability to maintain its proven service level or restore itself to that
service level within a specified time frame” [20–22]. Current
research on the resilience of transportation networks focuses on
the measurement of resilience. Some researchers use the
synonyms of robustness [23], redundancy [24], reliability or
fragility [25], and they also use total traffic delays, economic
losses, maximum post-disaster flow, and autonomous system
components measure the resilience of the transportation
network [26].

As an important infrastructure, the urban water supply
system plays an important role to improve the quality of life
and ensure the functions of economic activities. Unfortunately,
many natural disasters, such as earthquakes, tsunamis,
hurricanes, etc., affect urban water supply system, and then
affect our life, commerce and industry and other activities.
Research on resilience of water supply systems mainly
focuses on resilience evaluation and recovery strategy
simulation. In terms of resilience evaluation, energy and
graph theory are two commonly used methods. In a water
supply system, resilience can be regarded as the ratio of node
energy reserves to input energy from sources, storage tanks and
pumping stations [27]. This type of resilience index can basically
be regarded as a reliability substitute index, like entropy and
Robustness index [28–30]. Similarly, various graph metrics
(such as link density, average node degree, and swarming
coefficient) can be used to quantify network resilience [31, 32].
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In recent years, when environmental uncertainty continues to
rise, interruptions are unexpected situations that may have a
negative impact on enterprises at any time. Therefore, supply
chain resilience has been emphasized as an important capability
[33]. In the field of supply chain, supply chain resilience generally
refers to the ability of enterprises to be vigilant, quick to respond
and adapt to changes brought about by supply chain
interruptions. Scholars often quote “the supply chain can be
restored to its original state in time or reach a new More ideal
state system capabilities” to define resilience [34]. At this stage,
the definition of supply chain resilience has attracted more and
more scholars’ attention, and discussions have been conducted
from the perspective of capabilities, which mainly include
flexibility, responsiveness, and resilience. There are many
angles to analyze the resilience of the supply chain, mainly
including flexibility, redundancy, speed, visibility, time, space,
density, complexity, node importance, inventory level, number of
suppliers, cost, etc. [35, 36].

So, although the definition of resilience in different systems is
not uniform, overall resilience is used to measure the ability to
return to its original state or ideal state when it is disturbed.
Resilience systems can withstand unexpected disturbances and
recover quickly. Therefore, research on resilience can be found in
different disciplines (such as engineering, economics,
management, etc.), meanwhile more and more attention is
paid. And the existing research mostly focuses on the
resilience measurement and the design of resilience system. As
mentioned above, UAV swarm often suffer attacks and random
failures when performing tasks, which makes some UAV nodes
unable to transmit information. At this time, load balancing
strategies are often used to allocate tasks to complete the
established tasks [37–39]. When the function of the failed
node is restored, the task will be reloaded to restore the
swarm performance. In this process, the swarm performance
shows a resilience process of change.

If we consider resilience of the UAV swarm at the beginning of
the design, it can greatly improve the ability of the UAV swarm to
perform tasks, and enhance the ability of the UAV swarm to resist
the influence of uncertain factors, which is important for
expanding the application range of the UAV swarm significance.

MODEL

As mentioned earlier, UAV swarm are often subject to random
failures and malicious attacks during missions. There are many
reasons, mainly including the random failure of the UAV itself,
the influence of the natural environment (including natural
climate, mountains, forests, etc.), and man-made random
attacks; malicious attacks mainly come from the enemy’s
targeted Attacks generally refer to situations in which the
enemy obtains the UAV swarm topology, such as attacks
based on node degree centrality, or node betweenness
centrality, and so on.

When the UAV swarm is attacked, we assume κ as the attack
intensity to indicate the proportion of nodes in the UAV swarm
that are attacked, and κ ∈ [0, 1]. the number of nodes that are

attacked by the UAV swarm is |κpN|. After the UAV node is
attacked and fails, in order to realize the normal operation of the
function, it is necessary to replace the failed node with the
surrounding nodes, so that the UAV swarm can continue to
perform the task. At the same time, the system will take measures
and repair nodes with a certain probability.

Performance Model
In the UAV swarm, due to cost constraints and technical
factors, each UAV node has a fixed communication
capacity, that is, the amount of information that can be
transmitted per unit time is fixed. Assuming the capacity of
the UAV node vi is Ci, assuming the initial communication
load of the UAV node is Li, then there is a tolerance coefficient
η that satisfies the following conditions.

Ci � (1 + η)Li, i � 1, 2, . . . , N (1)

Among them,N is the number of UAV nodes, and the value Li
can be determined by node degree, betweenness centrality, etc.,
which can be expressed as [40]:

Li(0) � d(1+β)i (2)

Among them, di is the degree of the node vi. In order to adjust
the parameter, the value used for adjustment is in accordance
with the actual situation.

When the node of UAV swarm is attacked and fails, in order
to maintain the normal operation of the communication
network, the network of UAV swarm will distribute the load
of the failed node to its neighbor nodes. Considering that the
capacity of a node to accept load is proportional to the capacity
of the node, the node’s acceptance of new load is directly
proportional to the initial load. Suppose the set of adjacent
nodes vi of a node is Γi. Then the new load of the node vj is
shown as:

ΔLj(t + 1) � Lj(t)
∑
k∈Γi

Lk(t)Li(t) (3)

Among them, Li(t) is the load of the node vi at the moment t.
Load distribution requires time. Let the time required for load
distribution once be a discrete time. Therefore, the load change of
the node can be shown as:

Lj(t + 1) � Lj(t) + ΔLj(t + 1) (4)

Among them, ΔLj(t + 1) add load for the node vj at t + 1.
After the node load is redistributed, the load of some nodes
increases, which may cause overload. There are three states of the
node vi, namely normal, overload and failure. Define the node vi
information transmission capacity of the node at the moment t, as
shown below,

si(t) �
⎧⎪⎨
⎪⎩

normal Li(t)≤Ci

overload Ci < Li(t)
failure be attacked

(5)

Equation 5 gives the qualitative description of node state si(t).
For quantitative description, let
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li � Lj(t)
Ci

(6)

So, Eq. 5 can be rewritten as

si(t) �
⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1 li ≤ 1
1
li

1< li

0 be attacked

(7)

When the UAV swarm is attacked, the node-like in the UAV
swarm circulates in the three states of normal, overload and
failure. Initially, all UAV nodes are in normal working
condition. When the UAV node is attacked, the UAV node
will fail. When some nodes in the UAV swarm fail, load
distribution will be triggered, which will cause the overload
or overload failure of the neighbor nodes of the failed node.
However, when the failed node of the UAV is repaired, the UAV
swarm will return to its normal state. Overall, the performance
of the UAV swarm presents a reciprocating resilience process.
Therefore, the performance function of the UAV swarm at the
moment can be defined as:

y(t) � ∑Nt
i�1 si(t)

∑N
i�1si(0)

(8)

Among them, Nt is the number of UAVs in the swarm at the
moment t, si(0) is the performance state of the UAV nodes at the
initial time.

UAV Swarm Resilience
In Section 3.1, we show the measurement index of UAV swarm
communication performance. Performance indicators measure
the ability of the UAV swarm to perform tasks. In the paper, we
mainly consider the node load status and swarm load status.
When the UAV swarm needs to perform tasks cooperatively, it
can only be completed when sufficient information exchange.
Therefore, we show the research results of Trans et al. [41] to
establish the UAV swarm resilience index, which is calculated as
follows:

R � { σρ[δ + ζ + 1 − τ(ρ−δ)] if ρ − δ ≥ 0
σρ(δ + ζ) otherwise

(9)

Among them, σ is the total performance factor (Total
Performance Factor), which represents the performance that
the system can maintain in the relevant time period (mainly
the resilience change time period); δ is the absorption factor,
which represents the ability of the system to resist interference.
For example, when the system is designed for redundancy or anti-
interference design at the beginning of the design, the system has
a high interference absorption capacity; ρ is the recovery factor,
which indicates the degree to which the system can recover when
it is interfered or attacked; τ is the recovery time factor, which
represents the time factor from when the system receives
interference to when it recovers to a steady state. ζ is the
fluctuation factor, which represents the fluctuation that may
occur in the process of the system from the disturbance state

to the stable state. Therefore, the resilience process of the UAV
swarm is shown in Figure 1.

σ � ∑tfinal
t0

y(t)
yD(tfinal − t0), δ � ymin

yD
, ρ � yR

yD

τ � ts − t0
tfinal − t0

, ζ � 1
1 + exp[ − 0.25(SNRdB − 15)]

(10)

Among them, y(t) is defined by Eq. 8, yD represents the
initial performance of the UAV swarm. In the initial state, we
believe that each UAV node can work normally, so yD � 1. t0
is the initial time, tfinal is the stable time or the end time of the
UAV swarm performance. In the follow-up experiment, we let
tfinal � 100, that is, we only observe the changes in the
performance of the UAV swarm under 100-time steps.

CASE ANALYSIS

We focus on studying the resilience of UAV swarms when
considering load balancing. In the third section, we propose
the performance measurement index of UAV swarm when
load balancing is considered, combined with the resilience
index given in the literature [36], finally we realize the
resilience measurement of UAV swarm.

In this section, we will discuss and analyze the resilience
indicators given in the third section, focusing on the impact
of network structure, network parameters, and repair rates
on UAV swarm resilience. When designing the load
balancing model, we use the degree of nodes as an
indicator to measure the load capacity of UAVs in the
UAV swarm, so we use maximum attack (delete the largest
node in the current network) to simulate UAV swarms The
interference received.

Then, the load is distributed according to the load balancing
model proposed in Section 3, and the performance of the UAV
swarm after each attack is calculated. In the repair process, within
each discrete time t, the failed node restores its performance with
probability q, and uses the inverse load distribution in Chapter 3

FIGURE 1 | Resilience change of UAV swarm.
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to reload the network load, and finally realize the resilience
change process of the UAV swarm.

Analysis of Swarm Topology
In order to analyze the impact of different topologies on the
performance of UAV swarms, we used four networks, BA
network, ER random network, NW small world network and
RR random rule network. For comparative analysis, each network
has 100 fixed points and 200 edges. At the same time, in order to
eliminate the influence of random factors in the process of
generating the network, we generated a total of 200 networks
and used the average to measure the performance of the network.
Parameters of the four networks.

It can be seen from Figure 2 that when the network has the
same number of edges and nodes, the network topology has a
significant impact on network performance. In general, when the

four networks are attacked by the same intensity, the performance
of the BA network has the fastest decline, the other three
networks have a slower decline, and the RR network has the
best performance. In terms of attack methods, we give priority to
deleting the nodes with the largest degree in the current network,
and networks with uneven degree distribution will collapse first.
That is to say, there are Hub nodes in this type of network. When
these nodes are deleted, they will directly affect the network
structure, until the network collapses [42]. From the node
capacity model given in Chapter 3, we can see that nodes with
higher degrees are given more capacity by us, which intensifies

FIGURE 2 | Performance of UAV swarm under different attack intensities
and topological structures. The vertical axis represents the performance of the
UAV swarm, and the horizontal axis represents the logarithm of attack intensity.

FIGURE 3 | Recovery process of UAV swarm performance under
different topological structures. The ordinate is the performance of the UAV
swarm, and the abscissa is discrete time T. The repair probability is 0.1, that is,
at every discrete time t, the probability of damaged nodes being repaired
follows a uniform distribution in the interval of (0, 1).

FIGURE 4 | Performance of UAV swarm under four topological
structures. (A) BA network, (B) ER network, (C) NW network and (D) RR
network. Each network was attacked five times with varying intensity and
repaired continuously. The attack mode and repair procedure are
described in section 4.1.

Frontiers in Physics | www.frontiersin.org January 2022 | Volume 10 | Article 8213215

Zhang et al. UAV Resilience Assessment Load Balancing

156

https://www.frontiersin.org/journals/physics
www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


the heterogeneity between nodes. Therefore, under the research
framework of this article, the RR network has high robustness to
the maximum node degree attack.

In Figure 3, the performance change of the UAV swarm when
the load sharing reverse process is used for repair is given. The
figure shows that although the UAV nodes are all repaired, the
swarm performance has not been restored to the initial state.
Through research, it is found that the swarm deletes the largest
nodes in the network in turn, but the order of repairing nodes is
random. As a result, the UAV swarm load has non-uniformity,
which ultimately leads to the worst performance with BA network
characteristics.

UAV Swarm Resilience
In Section 4.1, when the maximum probability of attack and
repair is reached, we find that the graph topology has a certain
impact on the performance of the UAV swarm. In this section, we
will study the resilience of UAV swarms. When studying the
resilience of UAV swarms, we will use discrete time as the
benchmark and proceed in the order of normal operation-
attacked-state maintenance-repair-stability, where normal
operation time and state maintenance time are. As can be seen
from Figure 3, the four types of networks all show better

resilience. When the network is attacked, the load capacity of
the network continues to decline due to the priority deletion of
nodes with greater degrees. Through the load balancing algorithm
to redistribute the load of the failed node, the performance of the
four networks is not degraded very quickly. However, as the
number of failed nodes increases, the load of nodes that can work
normally increases, causing some nodes to exceed their own load
capacity and become overloaded, eventually reducing the
performance of normal nodes, or even failing.

Among the four networks, the BA network exhibits stronger
resilience than other networks. This shows that under malicious
attacks, BA networks are susceptible to interference, that is, small
disturbances will cause large fluctuations in the UAV swarm. For
each network, the attack intensity will also affect the changes in
network performance. That is, as the attack intensity continues to
increase, the performance fluctuations of the UAV swarm will
also increase.

The effect of different topologies on UAV swarm resilience is
shown in Figure 4, and for comparison purposes only the average
of 100 experiments is given. In Figure 5 the error of the UAV
swarm resilience variation for different topologies is given.
Overall, the resilience of the UAV swarm under each topology
shows a large fluctuation. Among them, the fluctuation of the

FIGURE 5 | Errors of UAV swarm resilience under different topologies. In the figure, the red pentagon is the mean of 100 experiments. The pink ribbon is the
standard deviation of 100 experiments. The data for each experiment are the blue hollow tilted squares.
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UAV swarm resilience is the smallest under the RR network
topology (as shown in Figure 5D), i.e., it presents a stronger
rigidity. In contrast, the NW network shows greater fluctuations,
especially in increasing with the intensity of the attack
(manifested in Figure 5C by the unevenness of the ribbon

width). It is found that the reason for this phenomenon is
related to the generation methods of the four networks. The
RR network has the strongest regularity of degree distribution, so
each generated network is highly similar and shows high
similarity under the same attack strategy. NW network first

FIGURE 6 | Influence of parameter β on the resilience of the four networks. To reflect the difference, β is set to 0.1, 0.35, and 0.60, respectively. In addition, the
remaining parameters η, and p are set to 0.1.

FIGURE 7 | Influence of parameter η on the resilience of the four networks. To reflect the difference, η is set to 0.1, 0.6, and 1.1, respectively. In addition, the
remaining parameters β, and p are set to 0.1.
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generates ring network and then connects randomly. When the
attack intensity is low, the network fluctuation is small. However,
when the attack intensity exceeds a limit (as shown in Figure 5C,
8 nodes are deleted), the network changes dramatically, resulting
in dramatic differences in UAV swarm performance. By
comparison, the regularity of BA network is weaker than RR
network and stronger than NW network. Therefore, the error
fluctuation of the BA network is between the two, i.e., the error
exists but the fluctuation is not obvious (shown in Figure 5C as a
more uniform color band). ER networks are more like a
combination of BA and RR networks, i.e., like BA networks
with large errors, and like NW networks with insignificant
thresholds.

Parameter Influence
In Section 4.1, we analyzed the impact of topology on the swarm
performance, and in Section 4.2, we analyze the impact of attack
intensity on the resilience of the swarm. In this section, we will
analyze the influence of four parameters on the resilience of the
swarm. The experimental results are shown in Figures 6–8.
During the experiment, for comparative analysis, we set the
attack intensity constant to 0.25.

The influence of the parameters on the performance of the four
types of networks is shown in Figure 6. We can find that the
parameters β affect more on the performance of the BA network,
and less on the other three networks. Especially, in Figure 6A,
when β is 0.1, 0.35, and 0.60, the performance of the network is
0.93321, 0.97831, and 0.99412, respectively, and the corresponding
network resilience is 0.359169, 0.42269, and 0.44504. Through
analysis, it is found that as β increases, the difference in node
capacity also increases significantly. After load balancing, more

nodes will be overloaded, which will affect the performance of the
swarm and cause the resilience of the swarm to fluctuate.

Figure 7 shows the impact of tolerance coefficient on network
resilience. In Eq. 1, we define the tolerance factor, which
characterizes the ability of an unmanned aerial vehicle to be
overloaded. Larger tolerance factor means that the node can
withstand more work without crashing, and vice versa. It can be
seen in Figure 7 that the tolerance factor can affect the
performance of the four networks, but there are significant
differences in the degree of impact. The tolerance factor has a
small impact on the performance of the BA network and a greater
impact on the RR network. Through the topology analysis of the
network, it is found that the degree distribution of the BA
network presents a power-law distribution, with greater
differences, while the degree distributions of the other three
networks are less different, especially the RR network.

The parameter η can affect much on the performance of the
BA network, and little on the other three networks. Especially, in
Figure 8A, when β � 0.1, 0.35, and 0.60, the performance of the
network is 0.93321, 0.97831, and 0.99412, respectively, and the
corresponding network resilience is 0.359169, 0.42269, and
0.44504. So, we find that when it increases, the difference in
node capacity also increases significantly. After load balancing,
more nodes will be overloaded, which will affect the performance
of the swarm and cause the resilience of the swarm to fluctuate.

CONCLUSION

UAV swarm have attracted more and more attention. In the
missions, the UAV itself or its communication is often subjected

FIGURE 8 | Influence of parameter q on the resilience of the four networks. To reflect the difference, q is set to 0.1, 0.6, and 1.1, respectively. In addition, the
remaining parameters β, and q are set to 0.1.
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to random interference or malicious attacks, which causes the
UAV to fail or to interrupt the communication. When the UAV
swarm is out of interference or the repair command is executed,
the performance of the UAV swarm will be restored to a certain
extent. However, how to measure the changes in UAV swarm’s
performance during this process is important, and it is also the
key to determining whether the UAV can continue to perform its
mission. Based on this motivation and considering the load
balancing process of the UAV swarm after interference, we
propose a UAV swarm resilience evaluation model that
considers load balancing. In this process, the UAV node
capacity model, load balancing model, overload failure model
and performance resilience model are established. Finally, the
resilience change process of the UAV swarm under different
topological structures and parameters is analyzed. In the test
process, following the characteristics of the model, we use degree
attacks to test the resilience of the network. We find that attack
intensity is the most important indicator that affects the
performance of UAVs. With the increase of attack intensity,
the performance of UAV swarm decreases rapidly, especially the
performance of UAV swarm with BA network structure. Under
different parameters, the performance of UAV swarm with a

scale-free characteristic topology also decreases rapidly, but
different parameters have different degrees of influence.
Therefore, when the UAV swarm is configured with the
capacity of the node degree and is attacked by the degree, the
performance of the UAV degrades the fastest and the resilience
changes the most.
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Financial crisis, rooted in a lack of system resilience and robustness, is a particular type
of critical transition that may cause grievous economic and social losses and should be
warned against as early as possible. Regarding the financial system as a time-varying
network, researchers have identified early warning signals from the changing dynamics
of network motifs. In addition, network motifs have many different morphologies that
unveil high-order correlation patterns of a financial system, whose synchronous
change represents the dramatic shift in the financial system’s functionality and may
indicate a financial crisis; however, it is less studied. This paper proposes motif
transition intensity as a novel method that quantifies the synchronous change of
network motifs in detail. Applying this method to stock networks, we developed three
early warning indicators. Empirically, we conducted a horse race to predict ten global
crises during 1991–2020. The results show evidence that the proposed indicators are
more efficient than the VIX and the other 39 network-based indicators. In a detailed
analysis, the proposed indicators send sensitive and comprehensible warning signals,
especially for the U.S. subprime mortgage crisis and the European sovereign debt
crisis. Furthermore, the proposed method provides a new perspective to detect critical
signals and may be extended to predict other crisis events in natural and social
systems.

Keywords: early warning signal, critical transition, financial crisis, volatility spillover, network motif

INTRODUCTION

Critical transition is a ubiquitous phenomenon in social-ecological fields [1, 2]. In financial markets,
critical transition appears as financial crises [3, 4]. Considering that the outbreak of financial crises
accompanies catastrophic system collapses and brings grievous economic and social losses,
developing a precise early warning indicator is of great significance [5, 6]. With the finding that
the interconnectedness of the financial system increased dramatically before financial crises,
researchers have focused on detecting early warning signals by analyzing the interactions in a
financial system [7–9]. Based on network theory, all system components can be linked by their
interactions to form a network; exploring global network topologies helps quantify their
interconnectedness to build early warning indicators [10]. Various studies of bank, guarantee,
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and stock networks have found empirical evidence that global
network topologies can reveal financial crises [11–14]. However, a
small portion of research has emphasized that more informative
signals may hide in tiny changes of local network topologies [15]
because networks in similar global topologies may differ
noticeably at a local level [16]. Inspired by this phenomenon,
we aim to propose a novel early warning indicator by analyzing
local network topologies.

Network motif is a local network topology regarded as
fundamental to a network [17, 18]. It shows intrinsic
correlations with network resilience and robustness and can
influence network functionality [16, 19]; thus is identified as a
determinant of critical transition [20]. Considering that a
financial crisis is rooted in a lack of system resilience and
robustness, analyzing the evolution of the financial network
motif deepens the understanding of financial stability and
helps predict financial crises [15, 21]. Empirical studies have
found that network motifs, in different morphologies, may
change abruptly ahead of financial crises [22, 23]. However, it

is difficult to robustly predict all financial crises by relying on one
network motif with a specific morphology. To tackle this
problem, simultaneously analyzing several network motifs in
different morphologies is helpful. As each morphology of
network motifs unveils a high-order correlation pattern of a
financial network [24], their synchronous change represents
the dramatic shift in the financial system’s functionality and
may indicate a financial crisis [25]. In recent studies, researchers
have found predictive signals by investigating network motifs
distributions [21] and flickering behaviors [25]. This finding
enlightens us to propose a better early warning indicator by
describing more network motifs’ synchronous change in more
detail.

According to the above idea, we propose motif transition
intensity (MTI) as a novel early warning indicator for financial
crises. It relies on directed triadic motifs (DTMs) that are node
triplets with 13 morphologies [26]. By investigating all node
triplets’ changing dynamics, MTI statistics show how many
node triplets change from one morphology to another at

FIGURE 1 | Flowchart of the main methodology. (A) The price data are divided into subsets using sliding windows. Four time-related windows are illustrated. (B)
The VSN of each window is established. Two different node triplets are illustrated, i.e., {Argentina, Mexico, Norway} marked in blue and {Greece, Ireland, Switzerland}
marked in green. Their motifs are identified and linked to the corresponding morphology in (C). (D) The statistics of motif transitions by analyzing the marginal change of
each node triplet.
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different evolution times (shown in Figure 1). The result is
defined as motif transition, capturing the change of DTMs in all
13 morphologies in more detail. When motif transition is
intense, the network motifs are changed synchronously,
which indicates the dramatic shift of a financial system’s
correlation pattern and provides early warning signals for
financial crises. Therefore, we quantify the intensity of motif
transitions to build the MTI indicator. Compared to other
methods, MTI has two advantages. 1) If the motif transition
is calculated under different evolution times with ultrashort
intervals, MTI can describe the marginal change of a financial
system to unveil the leading force of the financial system’s
integral evolution trend [27]. 2) From a bottom-up point of
view, a motif is built by node/edge, and many motifs may share
one node/edge, so a financial network can be considered
established by overlapping and splicing a mass of motifs [28].
Thus, a slight change in nodes/edges may result in intricate
and abundant changes in different motif morphologies.
With these two advantages, MTI could be considered a
sensitive signal amplifier to achieve more precise predictions
of financial crises.

This paper computes the MTI indicator based on the volatility
spillover network (VSN), which uncovers more financial crisis
information [29, 30]. Furthermore, we use the sliding window
method to explore the changing dynamics of DTMs of the VSN
[31, 32]. Moreover, to fully exhibit the performance of the
proposed method, three intensity measurements are used to
quantify the MTI indicator: quantity, density, and uniformity.
Empirically, we conducted a horse race of the MTI indicators and
39 other widely used network-based indicators to predict ten
influential global financial crises to demonstrate their efficiency.
Methodologically, our novel approach contributes to designing
more sensitive and reliable network-based early warning
indicators, which can serve as a component in hybrid data-
driven warning systems [33]. In term of applications, our
indicators can extend applications to other vital socioeconomic
crises, such as climate change, political conflicts, and pandemic
influenza [1].

This paper is organized as follows: Materials and Methods
describes the material and methods, Results and Discussion
discusses empirical results, and Conclusion concludes the
significant findings.

MATERIALS AND METHODS

Data
This paper focuses on the early warning of financial crises in the
global financial system. We use the closing price of 73 MSCI
country/region indices as proxies for country-level financial
markets and build a VSN to represent the global financial
system. Moreover, we choose the Chicago Board Options
Exchange Volatility Index (VIX) as a benchmark. All data are
accessed from the WIND database and span from 1990.12.19 to
2020.9.8 (7267 total trading days). In this period, we summarized
ten influential financial crises, as shown in Table 1.

Names and abbreviations of the indices are Argentina (ARG),
United Arab Emirates (United Arab Emirates), Oman (Oman),
Egypt, Arab Rep. (EGY), Ireland (IRL), Estonia (EST), Austria
(AUT), Australia (AUS), Pakistan (PAK), Bahrain (BHR), Brazil
(BRA), Bulgaria (BGR), Belgium (BEL), Poland (POL), Botswana
(BWA), Denmark (DNK), Germany (DEU), Russian Federation
(RUS), France (FRA), Philippines (PHL), Finland (FIN),
Colombia (COL), Kazakhstan (KAZ), Korea, Rep. (KOR),
Netherlands (NLD), Canada (CAN), Ghana (GHA), Czech
Republic (CZE), Qatar (QAT), Kuwait (KWT), Croatia (HRV),
Kenya (KEN), Lebanon (LBN), Lithuania (LTU), Romania
(ROU), Malaysia (MYS), Mauritius (MUS), United States
(USA), Peru (PER), Morocco (MAR), Mexico (MEX), South
Africa (ZAF), Nigeria (NGA), Norway (NOR), Portugal (PRT),
Japan (JPN), Sweden (SWE), Switzerland (CHE), Saudi Arabia
(SAU), Sri Lanka (LKA), Slovenia (SVN), Thailand (THA),
Trinidad and Tobago (TTO), Tunisia (TUN), Turkey (TUR),
Ukraine (UKR), Spain (ESP), Greece (GRC), Singapore (SGP),
New Zealand (NZL), Hungary (HUN), Jamaica (JAM), Israel
(ISR), Italy (ITA), India (IND), Indonesia (IDN),
United Kingdom (GBR), Jordan (JOR), Vietnam (VNM), Chile
(CHL), China (CHN), Taiwan, China (TWN), Hong Kong,
China (HKG).

Methodology
We propose five steps to quantify the motif transition intensity
and build novel early warning indicators. These steps are shown
in Figure 1 and listed below.

Step 1: Data preparations and the sliding window method.
This paper computes the return of each price time-series for

analysis and uses the sliding window method to analyze the
changing dynamics of the financial system. The sliding window
method divides the full price return data into time-related
subsets, as shown in Figure 1A. The length and ultrashort
intervals of the window are 240 and 1 trading day,
respectively. This helps us obtain 7028 data subsets, each of
which is used to build a financial network.

For the price return under each sliding window, each should
pass a stationary, normality, and ARCH effect test to provide
statistically rigorous results. Moreover, if a price return is 24 (10%
of the sliding window’s length) or more consecutive days of the
trading suspension, it will be abandoned due to possible high
noise.

TABLE 1 | Ten influential global financial crises from 1991 to 2020.

No. Event Period

1 Mexico financial crisis 1994.12–1995.03
2 Asia financial crisis 1997.08–1998.12
3 Russian default crisis 1997.10–1998.08
4 Brazil financial crisis 1999.01–1999.02
5 Argentina financial crisis 2001.07–2002.03
6 U.S. subprime mortgage crisis 2007.08–2008.12
7 Iceland’s international debt crisis 2008.10–2008.11
8 European sovereign debt crisis 2010.02–2010.11

2011.05–2012.03
9 US-China Trade dispute 2018.03–2018.11
10 The global outbreak of COVID-19 and the March 2020

stock market crash
2020.03–2020.03
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Step 2: Volatility spillover network establishment.
This paper builds a financial network based on investigating

volatility spillover correlations among all components in a
financial system. The volatility spillover correlation measures
the co-movement interactions of financial entities, which helps
capture risk contagion paths and is widely used in financial crisis
studies. Examining the volatility spillover correlation relies on
econometric models that provide more rigorous results to reveal
more financial crisis information than other causal inference
methods. Among them, the BEKK-GARCH model has the
advantages of less information loss and more flexibility.
Therefore, we adopt the bivariate BEKK-GARCH model of
order one and lay one to build financial networks.

We run the BEKK-GARCHmodel on the return of two financial
markets i and j under a slidingwindow s. As a result, if the upper off-
diagonal parameter in conditional residual or covariances matrices is
significant, it can be deemed that i’s volatility can spill over to j. After
investigating all markets, we link them according to their volatility
spillover correlations to build a directed network. This network is
defined as the volatility spillover network (VSN), denoted as VSNs,
which represents the global financial system and helps us analyze the
global financial crises. This process is shown in Figure 1B. It is worth
noting that the detailed methodology descriptions of Step 1 and Step
2 are in [34]. Moreover, the significance level of all tests in this study
is set as 0.05.

Step 3: Network motif identifications.
Ourwork focuses onDTMs, whose 13morphologies are defined as

M1,M2, . . . ,M13; for more detailed analysis,M14 is defined as the
structures that cannot form a DTM, i.e., an unconnected node triplet.
All 14 morphologies are shown in Figure 1C. A VSN ofN nodes has
up to C3

N triplets denoted as Vs
q(3) � {i, j, k} , q � 1, 2,/, C3

N ;
each triplet can correspond to only one motif morphology.
Mathematically, the matchup of every triplet and its motif
morphology can be recorded in a C3

N × 14 binary matrix denoted
as MMs. Specifically, each column represents a motif morphology;
each row represents a triplet with a one-hot value that indicates its
motif morphology. An example matrix is as follows.

Step 4: Motif transition statistics.
Motif transition describes the number of changed motif

morphologies of all node triplets between two time steps,
providing more detailed information on network motif
changes than the evolution of the network motif distribution.
As mentioned in Step 1, the step size of the sliding windows is
1 day, which is sufficiently short of describing a financial system’s
marginal change. For every two time-adjacent windows, the
motifs are identified and recorded in MMs and MMs−1. These

two matrices should have the same number of rows. If it is not
true, MMs or MMs−1 should be supplemented according to the
union of the node triplets in VSNs and VSNs−1.

Then, by operating matrix multiplication, motif transitions
can be captured by a 14 × 14 square matrix, defined as MTMs

(shown in Figure 1D) and computed as Eq. 2. In Eq. 2, each row
or column represents one morphology of the DTM. mts−1,sm,n
quantifies how many node triplets shift from motif m (in
window s − 1) to motif n (in window s). Our research focuses
only on the changed motifs; therefore, if m � n, mts−1,sm,m � 0.

MTMs � (MMs−1)TpMMs �
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 mts−1,s1,2 / mts−1,s1,14

mts−1,s2,1 0 / mts−1,s2,14

..

. ..
.

1 ..
.

mts−1,s14,1 mts−1,s14,2 / 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (2)

Step 5: Early warning indicator development.
Intuitively, if motif transitions are intense, more network

motifs are changed synchronously; this indicates the dramatic
shift of a financial system’s correlation pattern and provides early
warning signals for financial crises. Based on this idea, we propose
the motif transition intensity (MTI) indicator by using three
intensity measures on MTMs, i.e., quantity, diversity, and
uniformity. To distinguish, the three MTI indicators are
denoted as MT.S, MT.D, and MT.E.

First, MT.S measures the quantity of motif transition. It is a
simple indicator that quantifies the total number of the changed
motifs by summarizing all elements inMTMs, computed as Eq. 3.

MT.Ss � ∑
m

∑
n

mts−1,sm,n . (3)

Second, MT.D measures the diversity of motif transitions.
Specifically, MT. D quantifies how many network motif
morphologies are involved in the change of network motifs.
As mentioned in the Introduction, network motif
morphologies represent different financial correlation patterns,
and a higher MT.D indicates a significant change in a financial
system’s functionality and may indicate a financial crisis. In
MTMs, the change in motif morphologies is up to M
(M � 14p13) possibilities. Thus, we define the change rate of
motif morphologies as the diversity of motif transitions,

MT.Ds � ∑
m

∑
n

as−1,sm,n /M,as−1,sm,n � { 1, mts−1,sm,n > 0
0, mts−1,sm,n � 0

(4)

Third, MT.E measures the uniformity of the motif transition,
which is a comprehensive indicator that considers both the
quantity and diversity of the motif transition. Imagining a
situation where the motif transition involves many motif
morphologies with a similar quantity, all network motifs
change synchronously and indicate a financial crisis. MT.E
aims to measure whether the network motifs in all 14
morphologies are changed equally by using an entropy
measurement. In particular, we adopt the negative generalized
entropy index [35, 36] to quantify the uniformity of MTMs. It is
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denoted as MTM.Es and computed following Eq. 5, where the
preset parameter α is set as 0.5.

MTM.Es � − 1
Mα(α − 1) ∑m

∑
n

[(mt.rs−1,sm,n )
α − 1] (5)

In Eq. 5, to eliminate the influence of motifs’ prior distribution,
we scalemts−1,sm,n by dividing the total number of correlatedmotifs in
the sliding window s − 1, where mt.rs−1,sm,n � mts−1,sm,n /∑m�14

m�1 mts−1,sm,n .
In addition, considering that the uniformity of motif transition
may greatly vary at different times, we use a log operation to scale
MTM.Es. More importantly, we deduct the information of the
random motif transitions to highlight the uniqueness of motif
transitions’ uniformity. Specifically, we use null models1 to
generate random networks and compute their motif transition
uniformity, denoted asMTM.Es

RANDOM. Then, MT.E is calculated
by subtracting themean of pMTM.Es

RANDOM, wherep is set as 10,

MT.Es � log(MTM.Es) − 1
p
(∑

p

log(MTM.Es
RANDOM)). (6)

Early Warning Performance Evaluation
In our research, the global financial system is assumed to have
two actual states, i.e., crisis and safe, which could be labeled
according to the crisis events in Table 1. The proposed early
warning indicators predict a crisis state of the global financial
system if it exceeds a certain threshold; otherwise, they predict a
safe state. If the predicted states exactly meet the actual states,
the early warning indicator is regarded as good performance. To
judge quantitatively, we selected five criteria: area under the
receiver operating characteristic curve (AUC), accuracy (A),
coverage rate (CR), F1 score, and F2 score. Among them, A is
the ratio of the correct crisis predictions to the actual crisis
states; CR is the ratio of the correct crisis predictions to the
predicted crisis states; F1 and F2 are comprehensive
measurements of A and CR, where F1 emphasizes A and F2
emphasizes CR; AUC measures whether a randomly chosen
crisis state is risker than that of a safe state, which unveils the
early warning signal’s credibility. The descriptions and
formulations of the five metrics have been comprehensively
introduced in the related Ref. [37, 38].

RESULTS AND DISCUSSION

The Motif Transition Intensity Indicators
In Figure 2, we plot the three proposed MTI indicators and the
benchmark indicator VIX for comparisons. All four indicators
can successfully predict the financial crisis, yet our indicators
perform better in three aspects. First, our indicators could send
efficient warning signals for the U.S. subprime mortgage crisis

and the European sovereign debt crisis (the periods are marked in
red in Figure 2). Remarkably, the proposed indicators are at least
6 months ahead of VIX to the sent warning signals.

Second, our indicators are sensitive to early warning. Compared
to VIX, they reveal three additional impactive events, i.e., the
Crimea crisis, the United States withdrawal from the Trans-Pacific
Partnership, and the United Kingdom’s official launch of Brexit
negotiations (all periods are marked in blue in Figure 2). The
Crimea crisis shows deepening geographical and political conflict,
and the other two events demonstrate that the development pattern
of the global economy is reaching a tipping point [39]. They are
external financial system shocks whose influence is not secondary
to financial crises.

Third, our indicators send more comprehensible warning
signals than VIX. Mainly, MT.D persistently obtains high values
before and during financial crisis periods, similar to step signals. In
contrast, VIX obtains short-lived high values before financial crises,
such as pulse signals (the periods are marked in green in panel 4 of
Figure 2). Noticeably, step signals can indicate financial crises
without ambiguity compared to pulse signals.

In summary, the three proposed MTI indicators perform
more efficiently, sensitively, and comprehensibly than VIX.
That is especially true for MT.D. These results prove that the
changing dynamics of motif transition intensity can validly
capture the marginal change of the financial system to reveal
financial crises, which provides a new perspective to detect early
warning signals.

The Horse Race of Network-Based Early
Warning Indicators
To quantitatively analyze the early warning abilities of the three
proposed MTI indicators in detail, we conducted a horse race for
the ten financial crises during 1991–2020. We choose both
statistics-based indices and network topology-based indices as
comparative variables to make a comprehensive comparison. The
statistics-based indices includes VIX and the total variance of the
global financial system (denoted as TV, computed by the sum of
the variance and covariance of all indices’ return of each sliding
window). They are set as benchmarks of our study.

The network topology-based index includes 39 widely used
indices. Among these, six indices quantify the global features of the
VSN: edge number (EN), node number (NN), average distance (AD),
density (DEN), diameter (DIA), and assortativity (ASO). Seven indices
quantify the partial features of the VSN by averaging the network
centralities of each node: indegree (AID), outdegree (AOD), closeness
centrality (ACLO), betweenness centrality (ABTW), clustering
coefficient (ACLU), eigenvector centrality (AEGV), and PageRank
(APAG). The other 26 indices include the statistical quantity of the
13 motifs, denoted as M1-M13, and the z-score2 of the 13 motifs,
denoted as M1. Z-M13.Z. The descriptions and formulations of the

1The null model in this research is constructed by randomly reshuffling network
links, while keeping the node and edge numbers the same as in the original
networks. This could highlight the uniqueness of a network’s structure property by
comparing it to its corresponding null model.

2Network motif’s z-score is computed to quantify the significance of a motif by
comparing it to null models. It has been proven that the abrupt change of a
network’s z-score can help in early warning of the great financial crisis in 2008. In
addition, we construct 10 null models for each VSN to compute each network
motif’s z-score.
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indices have been comprehensively introduced in the related Ref.
[40–43].

We conducted two tests to investigate the early warning ability
of all indices. In Test 1, we use data from January 1, 1996 to
December 31, 2013 to make predictions. In Test 2, we use
complete sample data to make predictions of all the ten
influential financial crises. Considering that Test 1 involves an
important period that includes the most destructive financial
crises, e.g., the 1997 Asian financial crisis, the 2007 subprime
crisis, and the 2010 European sovereign debt crisis, a better early
warning indicator should have better performance in Test 1.
More importantly, a robust indicator should obtain similar
performance in both tests. As mentioned in Early Warning
Performance Evaluation, we selected five criteria to fully
express the early warning ability: area under the receiver
operating characteristic curve (AUC), accuracy (A), coverage
rate (CR), F1 score, and F2 score [37, 38]. We examine the
early warning ability with a lead time of 0–400 trading days for
each index and record the highest score and corresponding time
(denoted as AUC.t, A.t, CR.t, F1.t, and F2.t). To provide a more
intuitive presentation, we drew a color bubble chart to visualize
the results, as shown in Figure 3; the detailed results are in the
Supplementary Material.

When evaluating an early warning indicator, it is difficult
to strike a balance between A and CR. Our purpose is to
predict the influential financial crises that may result in

grievous economic and social losses if underreported, so we
think CR weighs higher than A and pay more attention to F2.
Moreover, it is well known that a better early warning
indicator should have a higher AUC. Therefore, we pay
more attention to AUC and F2. As shown in Figure 3, the
indices in the upper right corner of the plots perform better
than the others. In Test 1, MT.D, MT.E, and AOD have higher
AUC and F2 than other indicators. In addition, the lead times
of MT. D and MT.E are longer than AOD. This observation
indicates that our MTI indicators have better performance
than others. In Test 2, the performance of all early warning
indicators is changed more or less compared to Test 1. Among
them, M1-M13 had the highest AUC in Test 2 but had a
median AUC in Test 1. Considering that their performance is
quite different between Test 1 and Test 2, such quantity
measurements have less robustness. Moreover, their F2 and
CR are relatively low, reducing their efficiency in early
warning financial crises. Therefore, they are not the best
early warning indicators. For the other indicators, VIX had
the highest AUC, and TV had a higher CR. Among the
network-based indices, AOD, EN, and NN have
comparable AUCs with VIX; however, their CR is lower
than those of VIX and TV. In contrast, MT. D and MT.E
have close AUC with VIX and still have the highest F2. All
results prove that our MTI indicators perform better than the
benchmarks and other network-based indices.

FIGURE 2 | Time series of the three novel early warning indicators and the VIX index. Four panels in this figure show the evolution of the global financial system’s
status. The x-axis of all panels is aligned. The background of the ten influential financial crises is marked in gray.
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CONCLUSION

This study introduces motif transition intensity as a novel
network-based approach to provide an early warning against
financial crises. It provides a new perspective to detect early
warning signals by analyzing the microstructure and marginal

change of the volatility spillover network. We adopt three
intensity measures to develop three indicators: MT.S, MT.D,
MT.E. By conducting a horse race, the proposed indicators are
shown to have better early warning abilities than VIX and the
other 39 network-based indicators. More specifically, the
proposed indicators can provide efficient and comprehensible

FIGURE 3 | Visualization of the results of the horse race. We use AUC and F2 as the y- and x-axes and CR and A for auxiliary analysis. The drop lines highlight the
AUC and F2 of the two benchmarks. The labels of the three proposed MTI indicators (MT.S, MT.E, MT.D) are marked in green. (A) Test 1:1996.01.01-2013.12.31. (B)
Test 2:1991.11.27-2020.09.08.
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warning signals for influential global financial crises and even
impactive socioeconomic events, which serve as a component in
hybrid data-driven warning systems. Furthermore, the
application of the proposed indicators can be extended beyond
financial systems. Since crisis signals may embed in the time
series of many other vital socioeconomic areas, the applications
may reach climate and social systems, e.g., climate change,
political conflicts, and pandemic influenza.
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Characterizing the reputation of an evaluator is particularly significant for consumers to
obtain useful information from online rating systems. Furthermore, overcoming the
difficulties of spam attacks on a rating system and determining the reliability and
reputation of evaluators are important topics in the research. We have noticed that
most existing reputation evaluation methods rely only on using the evaluator’s rating
information and abnormal behaviour to establish a reputation system, which disregards the
systematic aspects of the rating systems, by including the structure of the evaluator-object
bipartite network and nonlinear effects. In this study, we propose an improved reputation
evaluation method by combining the structure of the evaluator-object bipartite network
with rating information and introducing penalty and reward factors. The proposed method
is empirically analyzed on a large-scale artificial data set and two real data sets. The results
have shown that this method has better performance than the original correlation-based
and IARR2 in the presence of spamming attacks. Our work contributes a new idea to build
reputation evaluation models in sparse bipartite rating networks.

Keywords: reputation evaluation, spam attack, online rating system, systematic factors, network structure

1 INTRODUCTION

The flourishing development of e-commerce has broad and far-reaching impacts on our daily
lives, leading consumers to increasingly rely on using the internet to obtain information about
products and services that help them decide how to consume [1–4]. However, with an
overwhelming amount of products and services available, potential users may overloaded
with information such as that from big data of the quality attributes, performance attributes,
and previous reviews [5, 6]. To solve the information overload of users, some e-commerce
platforms have implemented online rating systems to help users fuse information, where
evaluators are encouraged to present reasonable ratings for the objects [7]. These ratings are
representations of the inherent quality of objects and reflections of evaluators’ credibility. In
reality, current rating systems face many challenges. Unobjective ratings may be given simply
because some users are unacquainted with the relevant field or due to their poor judgments [8].
However, unreliable evaluators even deliberately give maximal/minimal ratings for various
psychosocial reasons [9–11]. These ubiquitous noises and distorted information purposefully
mislead evaluators’ choices and decisions and have a wicked effect on the reliability of the
online rating systems [12, 13]. Therefore, establishing a reliable and efficient reputation
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evaluation system is an extremely urgent task for an online
rating system, which has a huge impact not only against spam
attacks but also on the economy and society [14, 15].

In various evaluation systems, the reputation management of
evaluators contributes to social governance. For instance, as an
important platform for providing health services, online health
communities are favoured by both physicians and patients as
these communities establish an effective service channel between
them [16]. In the evaluation of research funding applications,
peer reviewers must distinguish the best applications from
relatively weaker ones to appropriately allocate funding. Only
peer reviewers with a good reputation can correctly guide the
highly competitive allocation of limited resources [17, 18].
Moreover, the online reputation system for job seekers helps
employers better understand job seekers and decide whether to
hire them [19]. Similar problems exist in other scenarios, e.g.,
recommendations, selection, and voting, in which the credibility
of the evaluators will affect the final result. One of the most
important ways to solve this problem is by building reputation-
evaluation systems [20–23].

Over the past decades, researchers have been increasingly
interested in modelling reputations on web-based rating
platforms [24, 25]. The earlier method of measuring the
reputation of online evaluators is the iterative refinement (IR)
algorithm designed by Laureti [26]. The correlation-based
ranking (CR) method proposed in [27] by Zhou et al. is the
most representative method, and it is robust against spam attacks.
Very recently, the IARR2 algorithm was proposed by introducing
two penalty factors to improve the CR method [28]. These
aforementioned methods are based on the assumption that
each rating given by the evaluators is the most objective
reflection of the quality of the objects. Another kind of
thinking is to consider the behavioural features of the
evaluators in bipartite networks. Gao et al. proposed group-
based ranking (GR) and iterative group-based ranking (IGR)
algorithms, which group evaluators according to their ratings [29,
30] and measure the evaluators’ reputation according to the sizes
of the corresponding groups [31]. Other scholars employed the
deviation-based ranking (DR) method to model evaluators’
reputation [32], and Sun et al. combined this method with GR
to construct the iterative optimization ranking (IOR) [33]. In
addition, there are some other methods, such as the Bayesian-
based method [7, 34] and others [35]. One can also read the
review literature on reputation systems [36] for further insight.

Nevertheless, most existing reputation evaluation algorithms
neglect the systematic aspects of the rating systems, especially the
structural information of the evaluator-object bipartite network
and nonlinear effects, both of which are core factors in complex
systems. Considering that these factors lead to some new ideas to
improve the classical CR method, in this paper, we introduce a
new reputation evaluation method by combining the CR method
with the clustering coefficient of evaluators in the evaluator-
object bipartite network. Meanwhile, we also believe that if an
evaluator has a relatively high reputation, he should receive some
rewards to enhance his reputation further, and vice versa.
Therefore, we construct a penalty reward function to update
the weight of the evaluator’s reputation. Extensive experiments

on artificial data and two well-known real-world datasets suggest
that the proposed method has higher accuracy and recall score of
spammer identification. Its overall performance exceeds that of
the classical CR method.

The remainder of this paper is organized as follows. The
proposed reputation-evaluation method is described in detail
in Section 2. Section 3 introduces the data and evaluation
metrics. The experimental study and results are discussed and
analysed in Section 4. Finally, conclusions are given in Section 5.

2 METHODS

We first briefly introduce some basic notations for online rating
systems, which can be naturally represented as a weighted
evaluator-object bipartite network. The set of evaluators is
denoted E, and the set of objects is denoted O. The numbers
of evaluators and objects are recorded as |E| and |O|, respectively.
We use Latin and Greek letters for evaluator-related and object-
related indices, respectively. The degree of evaluator i and object α
are indicated by ki and kα, respectively. The weight of the link in
the bipartite network is the rating given by evaluator i to object α,
denoted by riα, and riα ∈ (0, 1). The set Eα describes the evaluators
who rate object α, and the set Oi defines the objects rated by
evaluator i.

A reputation value Ri should be assigned to each evaluator i by
a reputation evaluation method. This value measures the
evaluator’s ability to reflect the intrinsic quality of the objects
or items accurately, known as credibility. Similarly, each object α
has a true quality that most objectively reflects its character.
However, in practice, it is extremely challenging for us to

FIGURE 1 | Presentation of the penalty reward function with different
parameters β.
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determine the intrinsic quality of an object, and we usually
estimate quality Qα with the weighted average of the ratings
that object α has obtained. It is shown as

Qα � ∑i∈Eα
Ririα

∑i∈Eα
Ri

, (1)

where the initial reputation of each evaluator is set as Ri = ki/|O|.
Second, the CR method defines that the reputation is

measured by the correlation between the rating vector from
the evaluator and the corresponding quality vectors of the
objects. We calculate the evaluator’s temporary reputation as

TRi � 1
ki
Σα∈Oi

riα − �ri
σri

( )
Qα − �Qα

σQα

( ), (2)

where σri and σQα are, respectively, the standard deviations of the
rating vector of evaluator i and the corresponding objects’ quality
vector, and �ri and �Qα are their mean values. TRi is reset to 0 if TRi
is less than 0 so that TRi is limited in the range [0,1].

Next, we expect to refine the evaluator’s reputation. In
principle, when an evaluator rates the objects that are also
familiar by the other evaluators, this evaluator is more likely
to have a high reputation due to the popularity of these objects. As
we mentioned in the introduction section, the clustering
coefficient in the bipartite graph network are employed to
refine the reputation of evaluators. Despite the one-mode
projection network providing the interaction between each
group member, it should be noted that substantial information
may disappear after projection [37]. This paper adopts the
concept of the clustering coefficient extended by Latapy et al.
[37], who first defines the clustering coefficient for pairs of nodes
cc (ei, ej). Mathematically, it reads

cc ei, ej( ) � |N ei( ) ∩ N ej( )|
|N ei( ) ∪ N ej( )|. (3)

Here, N (ei) denotes the objects evaluated by evaluator i, i.e., the
neighbours of node i, and |·| denotes the number of elements in
the set. Then, the clustering coefficient for one node is
expressed as

cc ei( ) � ∑ej∈N N ei( )( )cc ei, ej( )
|N N ei( )( )| (4)

We now refine the reputation of evaluators according to the
clustering coefficient of each evaluator. This modified method is
referred to as CRC, and can be expressed as follows:

TRi′ � cc ei( )
max cc ej( ){ }

⎛⎝ ⎞⎠
1
2

TRi. (5)

For evaluators with different reputation values, their
credibility is different, so we rescale their reputation by
nonlinear recovery. The penalty-reward function is used to
update evaluators’ reputation, which will allocate higher
reputation as a reward to evaluators with a high reputation. In

contrast, a penalty is given to further reduce the reputation of
evaluators with a low reputation. The function is

Ri �

0 if TRi′ � 0,

1 + 1
TRi′

− 1( )
β

⎡⎣ ⎤⎦
−1

if 0<TRi′< 1,

1 if TRi′ � 1.

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

(6)

This enhanced method is referred to as CRCN, and the function
image is shown in Figure 1. The CRCN method will degrade to
CRC when β = 1.

The evaluator reputation Ri and the quality of object Qα are
iteratively updated using eqs. (1) to (6) until the change of the
quality |Q − Q″| is less than the threshold value, and it is
calculated in Eq. 7. In the process of reputation updating, the
reputation of evaluators with higher clustering coefficient will be
more rewards through nonlinear recovery, and vice versa. The
effects of refining the reputation and estimating the quality are
gradually accumulated in each step of the recurring algorithm.

|Q − Q″| � 1
|O|Σα∈O Qα − Qα″( )2, (7)

where Q″ is the quality from the previous step, and the threshold
is set as 10–6.

Finally, we sort evaluators in ascending order according to
their reputation value, and the evaluators with L smallest
reputation values are identified as spammers.

3 DATA AND METRICS

3.1 Artificial Rating Data
To generate the artificial dataset, we generate a bipartite network
with 6,000 evaluators and 4,000 objects, i.e., |E| = 6,000 and |O| =
4,000. The network sparsity is set as η = 0.02, which means that
the total number of weighted links (ratings) is 0.02 ×|E‖O| = 4.8 ×
105. We employ the preferential attachment mechanism [38] to
choose a pair of evaluator and object and add a link between
them. At each time step t, the probabilities of selecting evaluator i
and object α are

pi t( ) � ki t( ) + 1

Σj∈E kj t( ) + 1( )

pα t( ) � kα t( ) + 1

Σβ∈O kβ t( ) + 1( )
,

where ki(t) and kα(t) are the degrees of evaluator i and object α at
time step t.

TABLE 1 |Basic statistical properties of the real datasets used in this paper, where
〈ku〉 and 〈ko〉 are the average degree of evaluators and objects.

Dataset |E| |O| 〈ke〉 〈ko〉 Sparsity

MovieLens 943 1,682 106 60 0.063
Netflix 4,960 17 237 295 85 0.017
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We suppose that the rating riα given by evaluator i to object α is
composed of the intrinsic quality of objectQα′ and the rating error
δiα. The objects’ qualities obey the uniform distribution U (0, 1),
and the evaluators’ rating errors are drawn from the normal
distribution N (0, δi). δi indicates the rating error of evaluator i,
and it is generated from a uniform distribution U (δmin, δmax). In
the simulation, we set δmin = 0.1 and δmax = 0.5. Accordingly, the
rating riα is defined as

riα � Qα′ + δiα. (8)
Both evaluators’ ratings and objects’ qualities are limited to the
range (0, 1).

3.2 Real Rating Data
We consider two commonly studied datasets in real online rating
systems—MovieLens and Netflix, which contain ratings for
movies provided by GroupLens (www.grouplens.org) and
Netflix Prize (www.netflixprize.com), respectively—to
investigate the effectiveness and accuracy of the proposed
methods. These two datasets are given by integer ratings
scaling from 1 to 5, with 1 being the worst and 5 being the
best. Herein, we sample a subset from the original datasets in
which each evaluator has at least 20 ratings. Table 1 presents
some basic statistical properties for these two datasets.

It is well known that ranking all evaluators and comparing
them with the ground truth is an effective way to measure the

performance of different evaluation algorithms. However, in
real systems, there are no ground-truth ranks for evaluators.
We manipulate the real dataset by randomly selecting some
evaluators and assigning them as artificial spammers to test the
proportion of these spammers detected by an evaluation
method. In the implementation, we randomly select ρ
fractions of evaluators and turn them into spammers by
replacing their original ratings with distorted ratings:
random integers in the set (1, 2, 3, 4, 5) for random
spammers or integer 1 or 5 for malicious spammers. Thus,
the number of spammers is d = ρ|E|. We also set ω = k/|O| as
the activity of spammers; here, k is the degree of each spammer
and is a tuneable parameter. If a spammer’s original degree ki ≥
k, then k ratings are randomly selected and replaced with
distorted ratings, and the unselected ki − ω|O| ratings are
ignored; if ki < k, we first replace all the spammer’s original
ratings and randomly select k − ki of his/her unrated ratings
and assign them with distorted ratings.

3.3 Evaluation Metrics
To evaluate the robustness and effectiveness of the reputation-
evaluation methods, we adopt four widely used metrics: Kendall’s
tau [39], AUC (the area under the ROC curve) [40], recall [41],
and ranking score [42].

Kendall’s tau (τ) measures the rank correlation between the
estimated quality of objects Q and their intrinsic quality Q′:

FIGURE 2 | Comparison of the robustness of the three algorithms. Panels (A) and (C) are the AUC and τ for different fractions p for random rating spamming, and
panels (B) and (D) show the same for malicious rating spamming. The results are averaged over ten independent realizations.
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τ � 2
|O| |O| − 1( )Σα<βsgn Qα − Qβ( ) Qα′ − Qβ′( )[ ], (9)

where (Qα − Qβ)(Qα′ − Qβ′)> 0 indicates concordance and
(Qα − Qβ)(Qα′ − Qβ′)< 0 indicates discordance. Higher τ
values indicate a more accurate measurement of object
quality, and τ ∈ [ − 1, 1].

AUC measures the accuracy of the reputation evaluation
methods. In artificial datasets, one can select a part of high-
quality objects as benchmark objects, and the remaining objects
are regarded as nonbenchmark objects. Here, we select 5% of the
highest-quality objects as the benchmark objects. Nevertheless, in
empirical datasets, as mentioned above, we randomly designate
some evaluators as spammers. When the reputation of all

FIGURE 3 | The recall score Rc of different methods varies with length L in MovieLens and Netflix. Panels (A) and (C) represent random spammers, and panels (B)
and (D) represent malicious spammers. The parameter ρ in both datasets is 0.05, and the parameter ω is 0.05 and 0.01 for MovieLens and Netflix, respectively. The
results are averaged over ten independent realizations.

TABLE 2 | AUC and RS values of different methods on two real datasets (A) with random spammers and (B) with malicious spammers. The parameters ω and ρ are the same
as those in Figure 3. The results are averaged over ten independent realizations. The most remarkable value in each row is emphasized in bold.

(a) Data set AUC RS

CR CRC CRCN IARR2 CR CRC CRCN IARR2

MovieLens 0.918 3 0.923 6 0.925 2 0.866 4 0.084 6 0.079 5 0.078 0 0.146 0
Netflix 0.932 9 0.938 3 0.940 0 0.923 9 0.067 5 0.062 4 0.060 8 0.080 1

(b) Data set AUC RS

CR CRC CRCN IARR2 CR CRC CRCN IARR2

MovieLens 0.912 7 0.921 3 0.925 3 0.865 4 0.090 8 0.083 9 0.080 6 0.143 6
Netflix 0.932 4 0.938 0 0.939 7 0.922 8 0.068 0 0.062 3 0.060 9 0.079 0
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evaluators is provided, the AUC value can essentially be
interpreted as the probability that the reputation of a
randomly chosen normal evaluator is higher than the
reputation of a randomly selected spammer. To calculate the
AUC values, we control N independent comparisons of the
reputations of a pair of normal evaluator and spammer and
record N′ as the number of times the spammer has a lower
reputation and N″ as the number of times the spammer has the
same reputation. Then, the value of AUC is defined as

AUC � N′ +N′′

N
. (10)

Therefore, the higher the AUC is, the more accurate the
evaluation method is. If the AUC value is 0.5, it indicates that
the method is randomly ranked for all evaluators.

The recall describes the proportion of spammers that can be
identified among L evaluators with the lowest reputation.
Mathematically, it can be defined as

FIGURE 4 | The AUC, Rc and RS values of different methods with different ρ in the random spammer case for (A-C) MovieLens and (D-F) Netflix datasets. The
parameter ω is 0.05 and 0.01 for MovieLens and Netflix, respectively. The results are averaged over 10 independent realizations.

FIGURE 5 | The relationship between the evaluators’ degree and the clustering coefficient in (A) MovieLens and (B) Netflix are presented by a violin plot. The
evaluators in each dataset are divided into ten bins according to their degrees. The extreme value and median are marked with short bars, and the probability density is
represented by shadows.
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Rc L( ) � d′ L( )
d

, (11)

where d′(L) is the number of detected spammers in the L lowest
ranking list, and the range of Rc is [0, 1]. A higher Rc indicates a
higher accuracy for reputation ranking.

The ranking score (RS) characterizes the effect of evaluation
methods by focusing more on the influence of ranking position.
Given the ranking of all evaluators, we measure the position of all
spammers in the evaluator ranking list. The ranking score is
obtained by averaging the rankings of all spammers, and the
specific formula is as follows:

RS � 1
d
Σi∈Es

li
|E|, (12)

where li indicates the rank of spammer i in the evaluator ranking
list, and Es denotes the set of spammers. Accordingly, RS has the
range [0, 1]. A good evaluation algorithm is expected to give the
spammer a higher rank, which causes a small ranking score. The
smaller the RS is, the higher the ranking accuracy, and vice versa.

4 RESULTS AND DISCUSSION

We analyse the performance of the two proposed algorithms for
the artificial dataset and two commonly studied empirical
datasets and compare them with the classical CR algorithm
and IARR2 algorithm.

4.1 Results From Artificial Rating Data
A well-performing evaluation algorithm should defend against
any distorted information. We first calculate the values of
Kendall’s tau τ and AUC on the generated artificial rating
data, including spammers, to investigate the robustness of the
proposed two methods and the original CR method in protecting
against different spammers. We suppose there are two types of
distorted ratings: random ratings and malicious ratings. Random
ratings mainly come from mischievous evaluators who provide
arbitrary and meaningless rating values, and malicious ratings
indicate that spammers always give maximum or minimum
allowable rating values to push the target object’s rating up
or down.

FIGURE 6 | The dependence of AUC and τ on the parameter β in CRCN method. Panels (A) and (B) show the AUC and τ values for different β with random-rating
spamming, and panels (C) and (D) show the same for push-rating spamming. The results are averaged over ten independent realizations.

Frontiers in Physics | www.frontiersin.org February 2022 | Volume 10 | Article 8394627

Li et al. Improving the Performance

177

https://www.frontiersin.org/journals/physics
www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


To create noisy information for the artificial datasets, we randomly
switch p fractions of the links with the distorted ratings The larger the
value of p is, the less true information there is in the dataset, while p= 1
means there is no true information. In the following analysis, we set
p∈ [0, 0.6].We report the effectiveness of the two proposed algorithms
and the CR method as the ratio of spammers increases. Figure 2
shows the dependence of AUC and τ on different values of p for
random ratings and malicious ratings. For both spammer cases, one
can easily observe that the AUC value and τ of the CRC method are
only slightly higher than those of the classical CR algorithm. However,
the CRCN method is significantly better than the CR method,
especially when the ratio of spammers is high. Thus, we conclude
that both of our proposed algorithms, CRC and CRCN, have more
advantages than the CR method.

We also investigated the effect of β on AUC and τ in the CRCN
method, and the results are shown in Appendix A. It is obvious
that the parameter β improves the effectiveness of the algorithm
since CRCN degenerates to the CRC method when β = 1.
Moreover, the difference in the AUC value between β = 2 and
β = 3 is negligible, but τ is optimal when β = 2, which implies that
the overall performance of the CRCN algorithm is better when β
= 2. In the following analysis, we adopt β = 2. Please seeAppendix
A for the dependence of AUC and τ on the parameter β.

4.2 Results From Real Rating Data
We naturally consider the performance of the proposed
algorithms on real datasets. The reputation values of all
evaluators in each dataset are calculated and sorted in

FIGURE 7 | The AUC, Rc and RS values of different methods with different ω and ρ in the random spammers for (A-F) MovieLens and (G-L) Netflix data sets,
respectively. Each row represents a different parameter ω: a-c (ω = 0.75); d-f (ω = 0.1); g-i (ω = 0.02); j-l (ω = 0.03). The results are averaged over 10 independent
realizations.
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ascending order to detect the proportion of the top L evaluators
who are spammers. At the same time, the CR and IARR2
methods are compared with the proposed CRC and CRCN
methods. We first turn 5% of evaluators in each real dataset to
two types of spammers to test the effectiveness of the evaluation
method, i.e., ρ = 5%. Figure 3 presents the recall score of
different methods calculated according to the length L of the
spammer list. Regardless of the type of spamming, the CRCN
method has a significant advantage over the CRmethod, and the
CRC method is essentially an improvement over the CR
method. In particular, this enhancement of CRCN is more
remarkable for both datasets in the case of malicious
spammers, which indicates that it is more challenging to
detect random spammers.

The AUC and RS values are reported in Table 2. One can
find that for both types of spammers, the AUC values of the
CRC and CRCN methods are higher than those of the CR
method for every dataset, which implies that the two methods
have more advantages in accuracy. However, it is worth
mentioning that the improvement of the CRC method over
the CR method is very considerable. Moreover, RS verifies the
effectiveness of CRC and CRCN from another aspect. The
smaller the RS is, the higher the ranking of spammers. As
shown in Table 2, we easily note that the RS of CRCN is the
smallest for both types of spammers in both datasets. From the
above analysis, we can find that the qualitative results of these
methods for both types of spammers are very similar, so we will
only consider the case of random spammers in the following
analysis.

Next, we will analyse whether the performance of the proposed
methods is still outstanding while varying ω and ρ; here, ω and ρ
are the ratio of objects rated by spammers and the ratio of
spammers, respectively. In the following, we set ρ ∈ [0.05, 0.2]
to test the robustness changing with the number of spammers in
the ground truth and set the length of the detected spam list to
twice the number of spammers, namely, L = 2d. The parameter ω
is selected according to the sparsity of the datasets, and ω of the
Netflix dataset is smaller than that of the MovieLens dataset since
the Netflix dataset is sparser. Figure 4 shows how the AUC, Rc,
and RS values change under different methods when there are
different proportions of spammers in the two datasets. Please see
Appendix B for more details of different ω. It is worth noting
that, as a whole, the performance of the CRCN method is better
than other methods, especially when ρ is small. Moreover, the Rc
values of all methods are positively correlated to the number of
spammers. In contrast, the RS value of the CRCN method is
always lower than that of the other methods, regardless of the
number of spammers. Therefore, we conclude that the
performance of the proposed CRCN method is stable and
accurate.

One of the motivations of the IARR2 method is that
evaluators should have a high reputation only when they
have a high degree. From Figure 4, we can find that the
performance of IARR2 method is not satisfactory compared
with other methods in the two data sets, especially in the
MovieLens data set. This fully demonstrates that the simple
structural information, such as degree, cannot make a reliable

correction to the original CR algorithm. It is indispensable to
discuss the relationship between the clustering coefficients of
evaluators and their degree in the bipartite network, as shown
in Figure 5. As the evaluators’ degrees are continuous and
with different scales, we take the log of the degrees for both
datasets and divide them into ten bins. It is not surprising
that, similar to the conclusions of many studies [43], there is
no relatively positive correlation between the evaluators’
degree and the clustering coefficient in the two real
datasets. To be sure, the introduction of the clustering
coefficient in the reputation evaluation process considers
the network association from systematic aspects, which
effectively improves the classical CR algorithm.

5 CONCLUSION

Building a sound reputation evaluation system for online
rating systems is a crucial issue that has great commercial
value in e-commerce systems and has guiding significance for
a wide range of systematic evaluations. In this paper, we
propose a robust reputation evaluation algorithm that
considers network association and nonlinear recovery from
the systematic aspects of rating systems by combining the
structural information of the evaluator-object bipartite
network and the penalty reward function with the original
correlation-based ranking method. More specifically, in the
iterations, we introduced the clustering coefficient of
evaluators in the bipartite network to refine their
reputations and then used the penalty-reward function to
strengthen the high-reputation evaluators further and
weaken the impact of low-reputation evaluators. Extensive
experiments on artificial data and two real-world datasets
show that the proposed CRC and CRCN methods have better
performance than the originally proposed CR and IARR2
algorithms. These two newly proposed methods outperform
the previous ones in evaluating evaluator reputation, and
their accuracy and recall scores are remarkably improved and
can effectively identify spammers.

The proposed CRCN method has a similar framework as the
previous IARR2 algorithm, but the newmethod focuses more on
the core system factors in complex systems, and the CRCN
method demonstrates its effectiveness and stability compared to
the unsatisfying performance of IARR2. The results show that
introducing the clustering coefficient as the most basic network
association feature and nonlinear recovery in the iterative
process can capture more profound evaluator behaviour
characteristics to improve the CR method. This novel
method has also been applied in related studies on the
nonlinear behaviors of the earth systems [44, 45]. In future
work, we can focus on more systematic factors to build a
reputation evaluation system, such as the interactions among
evaluators. We can also consider the impact of time on building
a reputation system because normal evaluators rarely generate a
large number of ratings in a short time, whereas spammers may
do so. Additionally, we should also pay attention to the
emotional language in the text comments of the evaluation
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system, which can provide more meaningful information to
individuals [46].
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APPENDIX A.

The dependence of parameter β in CRCN method. Here, we
show the effect of β on AUC and τ in the CRCN method.
We set the ratio of spammers to 0.6, and the results are
shown in Figure 6. As mentioned in the main, the
parameter β improves the effectiveness of the algorithm
since CRCN degenerates to the CRC method when β = 1.
Moreover, the difference in AUC value between β = 2 and β =
3 is negligible, but τ is optimal when β = 2, which implies that
the overall performance of the CRCN algorithm is better

when β = 2. Therefore, in the following analysis, we adopt β
= 2.

APPENDIX B.

We also compared the performance of the proposed method
with the classical CR method and the IARR2 method while
varying ω and ρ. The results are shown in Figure 7. We can find
that the performance of the CRCN method is better than other
methods.
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A Note on Resistance Distances of
Graphs
Wensheng Sun and Yujun Yang*

School of Mathematics and Information Sciences, Yantai University, Yantai, China

Let G be a connected graph with vertex set V(G). The resistance distance between any two
vertices u, v ∈ V(G) is the net effective resistance between them in the electric network
constructed fromG by replacing each edgewith a unit resistor. LetS⊂ V(G) be a set of vertices
such that all the vertices in S have the same neighborhood in G − S, and let G[S] be the
subgraph induced by S. In this note, by the {1}-inverse of the Laplacianmatrix ofG, formula for
resistance distances between vertices in S is obtained. It turns out that resistance distances
between vertices in S could be given in terms of elements in the inverse matrix of an auxiliary
matrix of the Laplacian matrix of G[S], which derives the reduction principle obtained in
[J. Phys. A: Math. Theor. 41 (2008) 445203] by algebraic method.

Keywords: resistance distance, Laplacian matrix, {1}-inverse, moore-penrose inverse, reduction principle

1 INTRODUCTION

The novel concept of resistance distance was introduced by Klein and Randić [8] in 1993. For a
connected graph G with vertex set V(G) = {1, 2, . . ., n}, the resistance distance between u, v ∈ V(G),
denoted by ΩG (u, v), is defined to be the effective resistance between u and v in the corresponding
electric network obtained fromG by replacing each edge with a unit resistor. Since resistance distance
is an intrinsic graph metric and an important component of circuit theory, with potential
applications in chemistry, it has been extensively studied in mathematics, physics, and
chemistry. For more information, we refer the readers to recent papers [2, 4, 6, 7, 10, 11, 15]
and references therein.

LetG be a connected graph of order n. For any set of verticesU ⊂V(G), we useG [U] to denote the
subgraph induced by U, and G − U to denote the subgraph obtained from G by removing all the
vertices inU as well as all the edges incident to vertices ofU. The adjacency matrix AG ofG is an n × n
matrix such that the (i, j)-th element of AG is equal to 1 if vertices i and j are adjacent and 0 otherwise.
The Laplacian matrix of G is LG = DG − AG, where DG is the diagonal matrix of vertex degrees of G.
Clearly, LG is real symmetric and singular.

LetM be an n ×m real matrix. Anm × n real matrix X is called a {1}-inverse ofM and denoted by
M(1), if X satisfies the following equation:

MXM � M.

IfM is singular, then it has infinite {1}-inverses. It is well known that resistance distances in a
connected graph G can be obtained from any {1}-inverse of LG (see [1]). So far, there are many
well-established results on this inverse. For example, in 2014, Bu et al [4] obtained the {1}-
inverse of the Laplacian matrix for a class of connected graphs, and investigated resistance
distances in subdivision-vertex join and subdivision-edge join of graphs. Then in 2015, an exact
expression for the {1}-inverse of the Laplacian matrix of connected graphs was obtained by Sun
et al. [13]. After that, Liu et al. [9] obtained the {1}-inverses for the Laplacian matrix of
subdivision-vertex and subdivision-edge coronae networks. Recently, Cao et al. [5] also

Edited by:
Yongxiang Xia,

Hangzhou Dianzi University, China

Reviewed by:
Jia-Bao Liu,

Anhui Jianzhu University, China
Audace A. V. Dossou-Olory,

Université d’Abomey-Calavi, Benin

*Correspondence:
Yujun Yang

yangyj@yahoo.com

Specialty section:
This article was submitted to

Social Physics,
a section of the journal

Frontiers in Physics

Received: 15 March 2022
Accepted: 31 March 2022
Published: 11 April 2022

Citation:
Sun W and Yang Y (2022) A Note on

Resistance Distances of Graphs.
Front. Phys. 10:896886.

doi: 10.3389/fphy.2022.896886

Frontiers in Physics | www.frontiersin.org April 2022 | Volume 10 | Article 8968861

BRIEF RESEARCH REPORT
published: 11 April 2022

doi: 10.3389/fphy.2022.896886

183

http://crossmark.crossref.org/dialog/?doi=10.3389/fphy.2022.896886&domain=pdf&date_stamp=2022-04-11
https://www.frontiersin.org/articles/10.3389/fphy.2022.896886/full
https://www.frontiersin.org/articles/10.3389/fphy.2022.896886/full
http://creativecommons.org/licenses/by/4.0/
mailto:yangyj@yahoo.com
https://doi.org/10.3389/fphy.2022.896886
https://www.frontiersin.org/journals/physics
www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org/journals/physics#editorial-board
https://doi.org/10.3389/fphy.2022.896886


characterised the {1}-inverses for the Laplacian of corona and
neighborhood corona networks. Sardar et al. [12] determined
resistance distances of some classes of rooted product graphs
via the Laplacian {1}-inverses method.

In this paper, some results on the {1}-inverses for Laplacian
matrices of graphs with given special properties are established.
As an application, for any given vertex set S ⊂ V(G) such that all
the vertices in S have the same neighborhood N in G − S, explicit
formula for resistance distances between vertices in S is obtained.
It turns out that resistance distances between vertices in S could
be given in terms of elements in the inverse matrix of an auxiliary
matrix of the Laplacian matrix of G[S], which derives the
reduction principle obtained in [J. Phys. A: Math. Theor. 41
(2008) 445203] by algebraic method.

2 PRELIMINARY RESULTS

In this section, we present some preliminary results. We first
introduce the concept of group inverse and Moore-Penrose
inverse of a matrix.

Definition 2.1. For a square matrix X, the group inverse of X,
denoted by X#, is the unique matrix H that satisfies matrix
equations:

XHX � X, HXH � H, XH � HX.

Definition 2.2. Let M be an n × m matrix. An m × n matrix X is
called theMoore-Penrose inverse ofM, if X satisfies the following
conditions:

MXM � M, XMX � X, MX( )H � MX, XM( )H
� XM.

where XH represents the conjugate transpose of the matrix X.
IfM is real symmetric, then there exists a uniqueM# andM# is

the symmetric {1}-inverse of M. In particular, M# is equal to the
Moore-Penrose inverse of M because M is symmetric [3].

Let (M)ij denote the (i, j)-entry of M. It is well known that
resistance distances in a connected graph G can be obtained from
any {1}-inverse of LG according to the following lemma.

Lemma 2.3. [3] Let G be a connected graph. Then for vertices i
and j,

ΩG i, j( ) � L 1( )
G( )

ii
+ L 1( )

G( )
jj
− L 1( )

G( )
ij
− L 1( )

G( )
ji

� L#G( )
ii
+ L#G( )

jj
− 2 L#G( )

ij
.

Let 0 and e be all-zero and all-one column vectors,
respectively. Let Jn×m be the n × m all-one matrix. The
following result is due to Sun et al. [13] which characterizes
the {1}-inverse of the Laplacian matrix.

Lemma 2.4. [13] Let LG � L1 L2
LT2 L3

[ ] be the Laplacian matrix of a

connected graph. If L1 is nonsingular, then X �

L−11 + L−11 L2S
#LT2L

−1
1 −L−11 L2S

#

−S#LT2L−11 S#
[ ] is a symmetric {1}-inverse of

LG, where S � L3 − LT2L
−1
1 L2.

In particular, if each column vector of LT2 is − e or 0, then X can
be further simplified. For convenience, in the rest of this section

(see Lemmas 2.5, 2.6, 2.7), we always assume that LG � L1 L2
LT2 L3

[ ],
with the property that L1 is nonsingular, and each column vector

of LT2 is − e or 0.

Lemma 2.5. [4] Let LG be defined as above. Then X � L−11 0

0 S#
[ ]

is a symmetric {1}-inverse of LG, where S � L3 − LT2L
−1
1 L2.

According to Lemma 2.4, we could get the following results.

Lemma 2.6. Let LG be defined as above. If each row of L1 sums to k,
then each column vector of −L−11 L2S# is proportional to the all-one
vector, where S � L3 − LT2L

−1
1 L2.

Proof. Suppose that the number of columns of L2 is n2 and let
L2 � [ r1 r2 . . . rn2 ] with ri being its i-th column vector, i = 1, 2,
. . ., n2. First we show that for any ri, all the elements of L−11 ri are
the same. If ri = 0, then the assertion holds since L1ri = 0.
Otherwise, ri = −e. Since L1 is nonsingular with each row sum
being k, it follows that each row of L−11 sums to 1

k. Thus
L−11 ri � L−11 (−e) � −1

k (e), which also implies that all the
elements of L−11 ri are the same. Hence, each column of −L−11 L2
is proportional to the all-one vector, that is, all the row vectors of
−L−11 L2 are the same. It thus follows that each column of
−L−11 L2S# is proportional to the all-one vector, i.e. all the
elements in any given column of −L−11 L2S# are the same. □

According to Lemma 2.6, we have the following result.

Lemma 2.7. Let LG be defined as above. If each row of L1 sums to k,
then there exists a real number ξ such that
L−11 L2S#LT2L

−1
1 � ξJn1×n1, where S � L3 − LT2L

−1
1 L2.

Proof. Let M1 � L−11 L2S#. According to the argument in the
proof of Lemma 2.6, all the row vectors in M1 are the same. On
the other hand, since L1 is real symmetric, it follows that

LT
2L

−1
1 � LT

2 L−1
1( )T � L−1

1 L2( )T.

Let M2 � LT2L
−1
1 . Then all the column vectors in M2 are the

same since all the row vectors in −L−11 L2 are the same. Thus, we
conclude that there exists a real number ξ such that

L−1
1 L2S

#LT
2L

−1
1 � M1M2 � ξJn1×n1.

This completes the proof. □

3 MAIN RESULTS

In this section, we consider resistance distances between vertices
in a specific subset S of V(G). Let S ⊂ V(G) such that all the
vertices in S have the same neighborhood N in G − S. In the
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following, we give explicit formula for resistance distances
between vertices in S. For simplicity, we use LS to denote the
Laplacian matrix of the subgraph induced by S. Suppose that the
cardinalities of S and N are n1 and k, respectively. Then the
Laplacian matrix of G can be written as follows.

LG � LS + kIn1 L2

LT
2 L3

[ ],

where In1 is the identity matrix of order n1.
Now we are ready to give formula for resistance distances

between vertices in S.

Theorem 3.1. Let S ⊂ V(G) such that all the vertices in S have the
same neighborhood N in G − S. Then for i, j ∈ S, we have

ΩG i, j( ) � L−1
1( )ii + L−1

1( )jj − 2 L−1
1( )ij.

where L1 � LS + kIn1.

Proof. Let L1 � LS + kIn1. Clearly, L1 is nonsingular, and each row
of L1 sums to k and each column vector of L2 is − e or 0. Then by
Lemma 2.7, there exists a real number ξ such that
L−11 L2S#LT2L

−1
1 � ξJn1×n1, where S � L3 − LT2L

−1
1 L2. Then by

Lemma 2.5, we can obtain the {1}-inverse of LG as follows.

X � L−1
1 + ξJn1×n1 −L−1

1 L2S
#

−S#LT
2L

−1
1 S#

[ ].

Thus, for vertices i, j ∈ S, by Lemma 2.3, we have

ΩG i, j( ) � X( )ii + X( )jj − X( )ij − X( )ji
� L−1

1 + ξJn1 × n1( )ii + L−1
1 + ξJn1 × n1( )jj − L−1

1 + ξJn1 × n1( )ij − L−1
1 + ξJn1 × n1( )ji

� L−1
1( )ii + ξ + L−1

1( )jj + ξ − L−1
1( )ij − ξ − L−1

1( )ji − ξ

� L−1
1( )ii + L−1

1( )jj − 2 L−1
1( )ij .

The proof is complete. □
Theorem 3.1indicates that, if S ⊂ V(G) satisfies that all the
vertices in S have the same neighborhood N in G − S, then
resistance distances between vertices in S depends only on the
subgraph G[S] and the cardinality of N. In other words, if we
use G* to denote the subgraph obtained from G[S ∪ N] by
deleting all the edges between vertices in N (see Figure 1), then
resistance distances between vertices in S depends only on G*.
In fact, for i, j ∈ S, ΩG(i, j) � ΩG*(i, j), as shown in the
following.

Theorem 3.2. Let S ⊂ V(G) such that all the vertices in S have the
same neighborhood N in G − S. Let G* the graph obtained from G
[S ∪N] by deleting all the edges between vertices in N. Then for i, j ∈
S, we have

ΩG* i, j( ) � L−1
1( )ii + L−1

1( )jj − 2 L−1
1( )ij.

where L1 � LS + kIn1.

Proof. According to the definition of G*, it is readily to see that
the Laplacian matrix of G* is

LG* � L1 −Jn1×k
−Jk×n1 kIk

[ ].

Since each column vector of −Jk×n1 is − e, by Lemma 2.5, we
can obtain the symmetric {1}-inverse of LG* as follows:

Y � L−1
1 0

0 S#
[ ],

where S � kIk − Jk×n1L
−1
1 Jn1×k. Hence by Lemma 2.3, we have

ΩG* i, j( ) � L−1
1( )ii + L−1

1( )jj − 2 L−1
1( )ij,

as required. □

Remark 1. Combining Theorems 3.1 and 3.2, we could conclude
that if S ⊂ V(G) satisfies that all the vertices in S have the same
neighborhood N in G − S, then resistance distances between
vertices in S can be computed as in the subgraph obtained from G
[S ∪N] by deleting all the edges between vertices inN. It should be
mentioned that this fact, known as the reduction principle, was
established in [14]. We confirm this result by algebraic method,
rather than electric networkmethod as used in [14]. Furthermore,
we also give an exact formula for resistance distances between
vertices in S. By Theorem 3.1, we are able to establish some
interesting properties.

Theorem 3.3. Let S ⊂ V(G) such that all the vertices in S have the
same neighborhood N in G − S. Then for i, j ∈ S and u ∈ G − S, we
have

ΩG i, u( ) −ΩG j, u( ) � L−1
1( )ii − L−1

1( )jj.

where L1 � LS + kIn1.

Proof. As given in the proof of Theorem 3.1, we know that the
{1}-inverse of LG is

X � L−1
1 + ξJn1×n1 −L−1

1 L2S
#

−S#LT
2L

−1
1 S#

[ ].

where ξ be a real number and S � L3 − LT2L
−1
1 L2. By Lemma 2.3,

we have

ΩG i, u( ) −ΩG j, u( ) � X( )ii + X( )uu − X( )iu − X( )ui
− X( )jj + X( )uu − X( )ju − X( )uj[ ].

FIGURE 1 | Illustration of graphs G and its subgraph G*.
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Note that L1 is nonsingular and every row sums to k and
each column vector of L2 is − e or a zero vector. So by Lemma
2.6, we know that each column of −L−11 L2S# is proportional to
all-one vector, which implies that (X)iu = (X)ju. Since X is real
symmetric, we also have (X)ui = (X)uj. It follows that

ΩG i, u( ) −ΩG j, u( ) � X( )ii + X( )uu − X( )jj − X( )uu
� L−1

1( )ii + ξ + L−1
1( )uu + ξ − L−1

1( )jj − ξ − L−1
1( )uu − ξ

� L−1
1( )ii − L−1

1( )jj.

This completes the proof. □
It is interesting to note from Theorem 3.2 that the difference

between ΩG (i, u) and ΩG (j, u) depends only on the subgraph G
[S] and the cardinality of N, no matter the chosen of u. Then we
have the following result.

Corollary 3.4. Let S ⊂ V(G) such that all the vertices in S have the
same neighborhood N in G − S. Then for i, j ∈ S and u, v ∈G − S, we
have

ΩG i, u( ) −ΩG j, u( ) � ΩG i, v( ) −ΩG j, v( ).
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Results on Resistance Distance and
Kirchhoff Index of Graphs With
Generalized Pockets
Qun Liu1* and Jiaqi Li 2

1School of Mathematics and Statistics, Hexi University, Zhangye, China, 2Institute of Intelligent Information, Hexi University,
Zhangye, China

F,Hv are considered simple connected graphs on n andm + 1 vertices, and v is a specified
vertex of Hv and u1, u2, . . . uk ∈ F. The graphG =G[F, u1, . . . , uk,Hv] is called a graph with k
pockets, obtained by taking one copy of F and k copies of Hv and then attaching the ith
copy of Hv to the vertex ui, i = 1, . . . , k, at the vertex v of Hv. In this article, the closed-form
formulas of the resistance distance and the Kirchhoff index of G = G[F, u1, . . . , uk, Hv] are
obtained in terms of the resistance distance and Kirchhoff index F and Hv.

Keywords: resistance distance, Kirchhoff index, generalized inverse, Schur complement, generalized pockets

1 INTRODUCTION

All graphs considered in this article are simple and undirected. The resistance distance between
vertices u and v ofG was defined by Klein and Randi�c [1] to be the effective resistance between nodes
u and v as computed with Ohm’s law when all the edges of G are considered to be unit resistors. The
Kirchhoff index Kf(G) was defined in Ref. 1 as Kf(G) = ∑u<vruv, where ruv(G) denotes the resistance
distance between u and v in G. Resistance distance are, in fact, intrinsic to the graph, with some nice
purely mathematical interpretations and other interpretations. The Kirchhoff index was introduced
in chemistry as a better alternative to other parameters used for discriminating different molecules
with similar shapes and structures [1]. The resistance distance and Kirchhoff index have attracted
extensive attention due to their wide applications in physics, chemistry, and other fields. Until now,
many results on the resistance distance and Kirchhoff index are obtained. The references in [2–5] can
be referred to know more. However, the resistance distance and Kirchhoff index of the graph is, in
general, a difficult thing from the computational point of view. The bigger the graph, the more
difficult it is to compute the resistance distance and Kirchhoff index; so a common strategy is to
consider a complex graph as a composite graph and to find relations between the resistance distance
and Kirchhoff index of the original graphs. Let G = (V(G), E(G)) be a graph with the vertex set V(G)
and edge set E(G). Let di be the degree of vertex i in G and DG = diag (d1, d2,/d|V(G)|) the diagonal
matrix with all vertex degrees of G as its diagonal entries. For graph G, let AG and BG denote the
adjacency matrix and vertex-edge incidence matrix of G, respectively. The matrix LG = DG − AG is
called the Laplacianmatrix ofG, whereDG is the diagonal matrix of vertex degrees ofG. We use μ1(G)
≥ u2(G) ≥/ ≥ μn(G) = 0 to denote the spectrum of LG. For other undefined notations and
terminology from graph theory, the readers may refer to Ref. 6 and the references therein [7–23]. The
computation of the resistance distance between two nodes in a resistor network is a classical problem
in electric theory and graph theory. For certain families of graphs, it is possible to identify a graph by
looking at the resistance distance and Kirchhoff index. More generally, this is not possible. In some
cases, the resistance distance and Kirchhoff index of a relatively larger graph can be described in
terms of the resistance distance and Kirchhoff index of some smaller (and simpler) graphs using
some simple graph operations. There are results that discuss the resistance distance and Kirchhoff
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index of graphs obtained using some operations on graphs,
such as join, graph products, corona, and many variants of
corona, such as edge corona and neighborhood corona. For
such operations, it is possible to describe the resistance
distance and Kirchhoff index of the resulting graph using
the resistance distance and Kirchhoff index of the
corresponding constituting graph; Refs. 14 and 15 can be
referred for reference. This article considers the resistance
distance and Kirchhoff index of the graph operations as
follows, obtained from Ref. 11.

Definition 1. [11]: Let F, Hv be connected graphs, v be a specified
vertex ofHv and u1, u2, . . . , uk ∈ F. LetG =G[F, u1, u2, . . . , uk,Hv]
be the graph obtained by taking one copy of F and k copies of Hv

and then attaching the ith copy ofHv to the vertex ui, i = 1, 2, . . . ,
k, at the vertex v of Hv(identify ui with the vertex v of the ith
copy). Then, the copies of the graph Hv that are attached to the
vertices ui, i = 1, 2, . . . , k are referred to as pockets, and G is
described as a graph with k pockets.

Barik [11] has described the Laplacian spectrum of G = G [F,
u1, u2, . . . , uk, Hv] using the Laplacian spectrum of F and Hv in a
particular case when deg(v) = m. Recently, Barik and Sahoo [12]
have described the Laplacian spectrum of more such graphs’
relaxing condition deg(v) = m. Let deg(v) = l, 1 ≤ l ≤ m. In this
case, we denoted G = G [F, u1, u2, . . . , uk, Hv] more precisely by
G = G [F, u1, u2, . . . , uk;Hv, l]. When k = n, we denoted simply by
G = G [F;Hv, l]. If deg(v) = l, 1 ≤ l ≤m, let N(v) = {v1, v2, . . . , vl} ⊂
V(Hv) be the neighborhood set of v in Hv. Let H1 be the subgraph
of Hv induced by the vertices in N(v) and H2 be the subgraph of
Hv induced by the vertices which are inV(Hv)\(N(v) ∪ {v}). When
Hv = H1 ∨ (H2 + {v}), we described the resistance distance and
Kirchhoff index ofG = G[F, u1, u2, . . . , uk,Hv]. The graphs F = C4

and H − v = C3 are considered. Taking l = 1, 2 and 3, we obtained
graphs G1 = G1 [F; Hv, 1], G2 = G2 [F; Hv, 2], and G3 = G3 [F; Hv,
3], respectively. Figure 1 is referred. In this case, we described the
resistance distance and Kirchhoff index of G = G [F; Hv, l] in
terms of the resistance distance and Kirchhoff index of F and Hv.
The results are contained in Section 3 of this article. Furthermore,
when F = F1 ∨ F2, F1 is the subgraph of F induced by the vertices
u1, u2, . . . , uk and F2 is the subgraph of F induced by the vertices
uk+1, uk+2, . . . , un. The considered three graphsG2,G3, andG4 are
shown in Figure 2, obtained from the two graphs F = K4 and Hv

such thatHv \{v} = K3. It is observed that F = K1 ∨ K3, G2, G3, and
G4 are graphs with 2, 3, and 4 pockets, respectively. Figure 2 can
be referred. In this case, we described the resistance distance and
Kirchhoff index of G[F, u1, u2, . . . , uk; Hv, l] in terms of the
resistance distance and Kirchhoff index of F andHv. These results
are contained in Section 4.

2 PRELIMINARIES

The {1}-inverse of M is a matrix X such that MXM = M. If M is
singular, then it has infinite {1}-inverse [16]. For a square matrix
M, the group inverse ofM, denoted byM#, is the unique matrix X
such that MXM = M, XMX = X, and MX = XM. It is known that
M# exists if and only if rank(M) = rank(M2) [16, 17]. IfM is really
symmetric, then M# exists, and M# is a symmetric {1}-inverse of
M. Actually,M# is equal to the Moore–Penrose inverse ofM since
M is symmetric [17].

It is known that the resistance distance in a connected graph G
can be obtained from any {1}- inverse of G [13]. We usedM(1) to
denote any {1}-inverse of a matrix M, and (M)uv denotes the (u,
v)-entry of M.

Lemma 2.1. [17]: Let G be a connected graph, then

ruv G( ) � L 1( )
G( )

uu
+ L 1( )

G( )
vv
− L 1( )

G( )
uv
− L 1( )

G( )
vu

� L#G( )
uu
+ L#G( )

vv
− 2 L#G( )

uv
.

Let 1n denote the column vector of dimension n with all the
entries equal to one. We often use 1 to denote all-ones column
vector if the dimension can be read from the context.

Lemma 2.2. [14]: For any graph, we have L#G1 � 0.

Lemma 2.3. [18]: Let

M � A B
C D

( )

be a nonsingular matrix. If A and D are nonsingular, then

M−1 � A−1 + A−1BS−1CA−1 −A−1BS−1

−S−1CA−1 S−1
( )

� A − BD−1C( )−1 −A−1BS−1

−S−1CA−1 S−1
( ),

where S = D − CA−1B.

FIGURE 1 | [F; Hv, l] for different l.

FIGURE 2 | Graphs having different numbers of pockets.
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Lemma 2.4. [15]: Let L be the Laplacianmatrix of a graph of order
n. For any a > 0, we have

L + aIn − a

n
Jn×n( )

#
� L + aI( )−1 − 1

an
Jn×n.

Lemma 2.5. [5]: Let G be a connected graph on n vertices, then

Kf G( ) � ntr L 1( )
G( ) − 1TL 1( )

G 1 � ntr L#G( ).

Lemma 2.6. [19]: Let

L � A B
BT D

( )

be the Laplacian matrix of a connected graph. If D is nonsingular,
then

X � H# −H#BD−1

−D−1BTH# D−1 +D−1BTH#BD−1( )

is a symmetric {1}-inverse of L, where H = A− BD−1BT.

3 THE RESISTANCE DISTANCE AND
KIRCHHOFF INDEX OF G [F; HV, L]

Let F be a connected graph with the vertex set {u1, u2, . . . , un}. Let
Hv be a connected graph onm + 1 vertices with a specified vertex
v and V(Hv) = {v1, v2, . . . , vm, v}. Let G = G[F; Hv, l]. It is noted
that G has n(m + 1) vertices. Let deg(v) = l, 1 ≤ l ≤m. With loss of
generality, it is assumed that N(v) = {v1, v2, . . . , vl}. Let H1 be the
subgraph ofHv induced by the vertices in {v1, v2, . . . , vl} andH2 be
the subgraph ofHv induced by the vertices {vl+1, vl+2, . . . , vm}. It is
supposed thatHv =H1 ∨ (H2 + {v}). In this section, we focused on
determining the resistance distance and Kirchhoff index of G[F;
Hv, l] in terms of the resistance distance and Kirchhoff index of F,
H1 and H2.

Theorem 3.1. Let G [F; Hv, l] be the graph, as described
previously. It is supposed that Hv = H1 ∨ (H2 + {v}). Let the
Laplacian spectrum of H1 and H2 be σ(H1) = (0 = μ1, μ2, . . . μl)
and σ(H2) = (0 = ]1, ]2, . . . ]m−l). Then, G [F; Hv, l] has the
resistance distance and Kirchhoff index as follows:

(i) For any i, j ∈ V(F), we obtained

rij G F;Hv, l[ ]( ) � L# F( )( )
ii
+ L# F( )( )

jj
− 2 L# F( )( )

ij
� rij F( ).

(ii) For any i ∈ V(F) and j ∈ V(H1), we obtained

rij G F;Hv, l[ ]( ) � L# F( )( )
ii
+ L H1( ) + m − l + 1( )Il − m − l

l
Jl×l( )

−1
⊗ In+[

1l ⊗ In( )L# F( ) 1Tl ⊗ In( )]
jj
− 2L# F( ) 1Tl ⊗ In( )ij.

(iii) For any i ∈ V(F) and j ∈ V(H2), we obtained

rij G F;Hv, l[ ]( ) � L# F( )( )
ii
+ L H2( ) + lIm−l − l

m − l + 1
J m−l( )× m−l( )( )

−1
⊗ In[ ]

jj

−2 L# F( )( )
ij
.

(iv) For any i ∈ V(H1) and j ∈ V(H2), we obtained

rij G F;Hv, l[ ]( ) � L H1( ) + m − l + 1( )Il − m − l

l
Jl×l( )

−1
⊗ In[ ]

ii

+

L H2( ) + lIm−l − l

m − l + 1
J m−l( )× m−l( )( )

−1
⊗ In]jj[

−2 (L H1( ) + m − l + 1( )Il − m − l

l
Jl×l)−1 ⊗ In[ ]

ij

.

(v) For any i ∈ V(H2) and j ∈ V(H1), we obtained

rij G F;Hv, l[ ]( ) � L H2( ) + lIm−l − l

m − l + 1
J m−l( )× m−l( )( )

−1
⊗ In[ ]

ii

+ L H1( ) + m − l + 1( )Il − m − l

l
Jl×l( )

−1
⊗ In]jj − 2[

L H2( ) + lIm−l − l

m − l + 1
J m−l( )× m−l( )( )

−1
⊗ In[ ]

ij

.

(vi) Let

Kf G F;Hv, l[ ]( ) � n m + 1( ) m + 1
n

Kf F( ) + n∑
l

i�2

1
μi H1( ) + m − l + 1( ) + n⎛⎝ ⎞⎠⎛⎝

+ n∑
m−l

i�2

1
]i H2( ) + l

+ nl

m − l + 1
⎛⎝ ⎞⎠⎞⎠ − m − l( )2m − l + 1

l
+ l2( ).

Proof: Let vij denote the jth vertex ofH in the ith copy of Hv in G,
for i = 1, 2, . . . , n; j = 1, 2, . . . , m, and let
Vj(Hv) � {v1j , v2j , . . . , vnj}. Then, V(F) ∪ (∪m

j�1Vj(Hv)) is a
partition of V(G). Using this partition, the Laplacian matrix of
G = G[F; Hv, l] can be expressed as

L G F;Hv, l[ ]( ) �
L F( ) + lIn −1Tl ⊗ In 0
−1l ⊗ In L H1( ) + m − l + 1( )Il( ) ⊗ In −Jl× m−l( ) ⊗ In

0 −J m−l( )×l ⊗ In L H2( ) + lIm−l( ) ⊗ In

⎛⎜⎜⎝ ⎞⎟⎟⎠.

We began with the computation of {1}-inverse of the Laplacian
matrix L(G) of G = G[F; Hv, l]. Let A = L(F) + lIn,

B � (−1Tl ⊗ In 0 ), BT � −1l ⊗ In
0

( ) and

D � L H1( ) + m − l + 1( )Il( ) ⊗ In −Jl× m−l( ) ⊗ In
−J m−l( )×l ⊗ In L H2( ) + lIm−l( ) ⊗ In

( ) .

First, we computed the D−1. By Lemma 2.3, we obtained

A1 − B1D
−1
1 C1 � L H1( ) + m − l + 1( )Il( ) ⊗ In − −Jl× m−l( ) ⊗ In( )

L H2( ) + lIm−l( )−1 ⊗ In( ) −J m−l( )×l ⊗ In( )
� L H1( ) + m − l + 1( )Il( ) ⊗ In − 1l 1

T
m−l L H2( )([

+lIm−l)−11m−l]1Tl ⊗ In

� L H1( ) + m − l + 1( )Il( ) ⊗ In − m − l

l
Jl×l ⊗ In

� L H1( ) + m − l + 1( )Il − m − l

l
Jl×l[ ] ⊗ In,

so

A1 − B1D
−1
1 C1( )−1 � L H1( )( + m − l + 1( )Il − m − l

l
Jl×l[ ]

−1
⊗ In .

Frontiers in Physics | www.frontiersin.org June 2022 | Volume 10 | Article 8727983

Liu and Li Resistance Distance with Generalized Pockets

189

https://www.frontiersin.org/journals/physics
www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


By Lemma 2.3, we obtained

S−1 � D1 − C1A
−1
1 B1( )−1

� L H2( ) + lIm−l( ) ⊗ In − −J m−l( )×l ⊗ In( ) L H1( ) + m − l + 1( )Il( )−1 ⊗ In( )[
−Jl× m−l( ) ⊗ In( )]−1

� L H2( ) + lIm−l( ) ⊗ In − J m−l( )×l L H1( ) + m − l + 1( )Il( )−1Jl× m−l( )( ) ⊗ In[ ]
−1

� L H2( ) + lIm−l − l

m − l + 1
J m−l( )× m−l( )( )

−1
⊗ In .

By Lemma 2.3, we obtained

−A−1
1 B1S

−1 � − L H1( ) + m − l + 1( )Il( )−1 ⊗ In[ ] −Jl× m−l( ) ⊗ In( )

L H2( ) + lIm−l − l

m − l + 1
J m−l( )× m−l( )[ ]

−1
⊗ In

� 1
m − l + 1

1l ⊗ In( )
m − l + 1

l
1Tm−l ⊗ In( )

� 1
l
Jl× m−l( ) ⊗ In.

Similarly, −S−1C1A
−1
1 � (−A−1

1 B1S−1)T � 1
l J(m−l)×l ⊗ In. So

D−1 �
P1

1
l
Jl× m−l( ) ⊗ In

1
l
J m−l( )×l ⊗ In Q1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠,

where P1 � [(L(H1) + (m − l + 1)Il − m−l
l Jl×l]−1 ⊗ In, Q1 �

[(L(H2) + lIm−l − l
m−l+1J(m−l)×(m−l))]−1 ⊗ In. Now, we

computed the {1}-inverse of G[F; Hv, l]. By Lemma 2.6, we
obtained

H � A − BD−1BT

� L F( ) + lIn − −1Tl ⊗ In 0( )
P1

1
l
Jl× m−l( ) ⊗ In

1
l
J m−l( )×l ⊗ In Q1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

−1l ⊗ In
0

( )

� L F( ) + lIn − 1Tl ⊗ In( ) L H1( ) + m − l + 1( )Il[
−m − l

l
Jl×l]

−1
⊗ In] 1l ⊗ In( )

� L F( ) + lIn − lIn � L F( ),

so H# = L#(F). According to Lemma 2.6, we calculated − H#BD−1

and − D−1BTH#.

−H#BD−1 � −L# F( ) −1Tl ⊗ In 0( )
P1

1
l
Jl× m−l( ) ⊗ In

1
l
J m−l( )×l ⊗ In Q1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

� L# F( ) 1Tl ⊗ In( ), L# F( ) 1Tm−l ⊗ In( )( )

and

−D−1BTH# � 1l ⊗ In( )L# F( )
1m−l ⊗ In( )L# F( )( ).

We are ready to compute the D−1BTH#BD−1.

D−1BTH#BD−1 � 1l ⊗ In( )L# F( )
1m−l ⊗ In( )L# F( )( ) 1Tl ⊗ In( ), 1Tm−l ⊗ In( )( )

� 1l ⊗ In( )L# F( ) 1Tl ⊗ In( ) 1l ⊗ In( )L# F( ) 1Tm−l ⊗ In( )
1m−l ⊗ In( )L# F( ) 1Tl ⊗ In( ) 1m−l ⊗ In( )L# F( ) 1Tm−l ⊗ In( )

( ).

Let P � [(L(H1) + (m − l + 1)Il − m−l
l Jl×l] ⊗ In, Q � (L(H2)+

lIm−l− l
m−l+1J(m−l)×(m−l))−1 ⊗ In, and M � 1

l Jl×(m−l) ⊗ In+
(1l ⊗ In)L#(F)(1Tm−l ⊗ In); then, based on Lemma 2.6, the
following matrix

N �
L# F( ) L# F( ) 1Tl ⊗ In( ) L# F( ) 1Tm−l ⊗ In( )

1l ⊗ In( )L# F( ) P1 M
1m−l ⊗ In( )L# F( ) MT Q1

⎛⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎠,

(1)
is a symmetric {1}-inverse of G[F; Hv, l], where P1 � P−1 +
(1l ⊗ In)L#(F)(1Tl ⊗ In) and Q1 � Q−1 + (1m−l ⊗ In) L#(F)
(1Tm−l ⊗ In). For any i, j ∈ V(F), by Lemma 2.1 and Eq. 1, we
obtained

rij G F;Hv, l[ ]( ) � L# F( )( )
ii
+ L# F( )( )

jj
− 2 L# F( )( )

ij
� rij F( ),

as stated in (i).
For any i ∈ V(F) and j ∈ V(H1), by Lemma 2.1 and Eq. 1, we
obtained

rij G F;Hv, l[ ]( ) � L# F( )( )
ii
+ L H1( ) + m − l + 1( )Il − m − l

l
Jl×l( )

−1
⊗ In+[

1l ⊗ In( )L# F( ) 1Tl ⊗ In( )]
jj
− 2L# F( ) 1Tl ⊗ In( )ij,

as stated in (ii).
For any i ∈ V(F) and j ∈ V(H2), by Lemma 2.1 and Eq. 1, we
obtained

rij G F;Hv, l[ ]( ) � L# F( )( )
ii
+ L H2( ) + lIm−l − l

m − l + 1
J m−l( )× m−l( )( )

−1
⊗ In[ ]

jj

−2 L# F( )( )
ij
,

as stated in (iii).
For any i ∈ V(H1) and j ∈ V(H2), by Lemma 2.1 and Eq. 1, we
obtained

rij G F;Hv, l[ ]( ) � L H1( ) + m − l + 1( )Il − m − l

l
Jl×l( )

−1
⊗ In]ii+[

L H2( ) + lIm−l − l

m − l + 1
J m−l( )× m−l( )( )

−1
⊗ In]jj[

−2 L H1( ) + m − l + 1( )Il − m − l

l
Jl×l( )

−1
⊗ In[ ]

ij

,

as stated in (iv).
For any i ∈ V(H2) and j ∈ V(H1), by Lemma 2.1 and Eq. 1, we
obtained

rij G F;Hv, l[ ]( ) � L H2( ) + lIm−l − l

m − l + 1
J m−l( )× m−l( )( )

−1
⊗ In]ii[

+ L H1( ) + m − l + 1( )Il − m − l

l
Jl×l( )

−1
⊗ In]jj − 2[

L H2( ) + lIm−l − l

m − l + 1
J m−l( )× m−l( )( )

−1
⊗ In[ ]

ij

,

as stated in (v). Now, we computed the Kirchhoff index of G[F;
Hv, l]. By Lemma 2.5, we obtained
Kf(G[F; Hv, l])

� n m + 1( )tr N( ) − 1TN1

� n m + 1( ) tr L# F( )( ) + tr L H1( ) + m − l + 1( )Il + m − l

l
Jl×l( )

−1
⊗ In)( )+([

+tr L H2( ) + lIm−l + l

m − l + 1
J m−l( )× m−l( )( )

−1
⊗ In( ))+

tr 1l ⊗ In( )L# F( ) 1Tl ⊗ In( )( ) + tr 1m−l ⊗ In( )L# F( ) 1Tm−l ⊗ In( )( )] − 1TN1.

It is noted that the eigenvalues of (L(H2) + lIm−l) are 0 + l,
]2(H2) + l, . . . , ]m−l(H2) + l and the eigenvalues of J(m−l)×(m−l) are
(m − l), 0(m−l−1). Then,
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tr L H2( ) + lIm−l − l

m − l + 1
J m−l( )( )

−1
⊗ In( )

� n∑
m−l

i�2

1
]i H2( ) + l

+ n m − l + 1( )
l

. (2)

Similarly,

tr L H1( ) + m − l + 1( )Il − m − l

l
Jl×l( )

−1
⊗ In)( )

� n∑
l

i�2

1
μi H1( ) + m − l + 1( ) + n.

It is easily obtained

tr 1l ⊗ In( )L# F( ) 1Tl ⊗ In( )( ) + tr 1m−l ⊗ In( )L# F( ) 1Tm−l ⊗ In( )( )

� tr Jl×l ⊗ L# F( )( ) + tr J m−l( )× m−l( ) ⊗ L# F( )( )

� ltr L# F( )( ) + m − l( )tr L# F( )( ) � mtr L# F( )( ). (3)
Let P � (L(H1) + (m − l + 1)Il − m−l

l Jl×l) ⊗ In, then

1TP−11 � 1Tl 1Tl / 1Tl( )

P−1 0 0 . . . 0
0 P−1 0 . . . 0
0 0 . . . . . . 0
0 0 0 . . . P−1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

1l
1l
/
1l

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠,

(4)
� l1Tl L H1( ) + m − l + 1( )Il − m − l

l
Jl×l( )

−1
1l � l2.

Let Q � (L(H2) + lIm−l − l
m−l+1J(m−l)×(m−l)) ⊗ In, then

1TQ−11 � 1Tm−l 1Tm−l / 1Tm−l( )

Q−1 0 0 . . . 0
0 Q−1 0 . . . 0
0 0 . . . . . . 0
0 0 0 . . . Q−1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

1m−l
1m−l
/
1m−l

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠, (5)

� m − l( )1Tm−l L H2( ) + lIm−l − l

m − l + 1
J m−l( )× m−l( )( )

−1
1m−l

� m − l( )2m − l + 1
l

.

1Tln 1l ⊗ In( )L# F( ) 1Tl ⊗ In( )1ln � 1Tn 1Tn / 1Tn( )

In
In
/
In

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠,

(6)

L# F( ) In In / In( )

1n
1n
/
1n

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

� n21Tn L
# F( )1n � 0.

Similarly, 1T((1l ⊗ In)L#(F)(1Tm−l ⊗ In)1 � 0, 1T((1m−l ⊗ In)
L#(F)(1Tl ⊗ In)1 � 0 and 1T((1m−l ⊗ In)L#(F)(1Tl ⊗ In)1 � 0

Plugging Eqs 2–6 and the aforementioned equations into Kf(G
[F; Hv, l]), we obtained the required result in (vi).

4 RESISTANCE DISTANCE AND
KIRCHHOFF INDEX OF G [F, U1, U2, . . . , UK;
HV, L]
In this section, we considered the case when F = F1 ∨ F2, where
F1 is the subgraph of F induced by the vertices u1, u2, . . . , uk
and F2 is the subgraph of F induced by the vertices uk+1, uk+2, . . . ,
un. In this case, we indicated the explicit formulae of
the resistance distance and Kirchhoff index of G = G[F, u1,
u2, . . . , uk; Hv, l] in terms of the resistance distance and
Kirchhoff index of G and Hv.

Theorem 4.1. Let G = G [F, u1, u2, . . . , uk; Hv, l] be the graph, as
described previously. Let σ(F1) = (0 = α1, α2, . . . αk), σ(F2) = (0 =
β1, β2, . . . βn−k), σ(H1) = (0 = μ1, μ2, . . . μl), and σ(H2) = (0 = ]1, ]2,
. . . ]m−l). Then, G has the resistance distance and Kirchhoff index
as follows:

(i) For any i, j ∈ V(F1), we obtained

rij G( ) � L F1( ) + n − k( )Ik( )−1 − n − k

k
( )

ii

+ L F1( ) + n − k( )Ik( )−1 − n − k

k
( )

jj

−2 L F1( ) + n − k( )Ik( )−1 − n − k

k
( )

ij

.

(ii) For any i, j ∈ V(F2), we obtained

rij G( ) � L F2( ) + kIn−k( )−1ii + L F2( ) + kIn−k( )−1jj
− 2 L F2( ) + kIn−k( )−1ij .

(iii) For any i, j ∈ V(H1), we obtained

rij G( ) � L H1( ) + m − l + 1( )Il − m − l

l
Jl×l( ) ⊗ Ik( )

ii

+ L H1( ) + m − l + 1( )Il − m − l

l
Jl×l( )⊗ Ik)jj

−2 L H1( ) + m − l + 1( )Il − m − l

l
Jl×l( )⊗ Ik)ij.

(iv) For any i, j ∈ V(H2), we obtained

rij G( ) � L H2( ) + lIm−l − l

m − l + 1
J m−l( )× m−l( )( )⊗ Ik)ii+

L H2( ) + lIm−l − l

m − l + 1
J m−l( )× m−l( )( )⊗ Ik)jj

−2 L H2( ) + lIm−l − l

m − l + 1
J m−l( )× m−l( )( )⊗ Ik)ij.

(v) For any i ∈ V(F) and j ∈ V(H1), we obtained
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rij G( ) � L# F( )( )
ii

+ L H1( ) + m − l + 1( )Il − m − l

l
Jl×l( )[ ]

−1
⊗ In

− 2 L# F( )( )
ij
.

(vi) For any i ∈ V(F) and j ∈ V(H2), we obtained

rij G( ) � L# F( )( )
ii
+ L H2( ) + lIm−l − l

m − l + 1
J m−l( )× m−l( )( )[ ]

−1
⊗ In

−2 L# F( )( )
ij
.

(vii) For any i ∈ V(H1) and j ∈ V(H2), we obtained

rij G( ) � L H1( ) + m − l + 1( )Il − m − l

l
Jl×l( )

−1
⊗ In[ ]

ii

+

L H2( ) + lIm−l − l

m − l + 1
J m−l( )× m−l( )( )

−1
⊗ In[ ]

jj

−2 L H1( ) + m − l + 1( )Il − m − l

l
Jl×l( )

−1
⊗ In[ ]

ij

.

(viii) For any i ∈ V(H2) and j ∈ V(H1), we obtained

rij G( ) � L H2( ) + lIm−l − l

m − l + 1
J m−l( )× m−l( )( )

−1
⊗ In[ ]

ii

+ L H1( ) + m − l + 1( )Il([

−m − l

l
jl×l)

−1
⊗ In]

jj

− 2 L H2( ) + lIm−l − l

m − l + 1
J m−l( )× m−l( )( )

−1
⊗ In[ ]

ij

.

(ix) Let

Kf G( ) � n +mk( ) 2∑
k

i�1

1
αi + n − k( ) −

1
n − k( )( ) +∑

n−k

i�1

1
βi + k

⎡⎣

+ k∑
l

i�2

1
μi + m − l + 1( ) + k⎛⎝ ⎞⎠ + k∑

m−l

i�2

1
]i + l

+ l 2m − 2l + 1( )
m − l + 1

⎛⎝ ⎞⎠

+k + k m − l( )
l

]

− l2 + m − l( ) m − l + 1( )
l

+ 2k m − l( )( ).

Proof: Let vij denote the jth vertex of H in the ith copy of Hv

in G, for i = 1, 2, . . . , k, j = 1, 2, . . . , m, and
let Vj(Hv) � {v1j , v2j , . . . , vkj}. Then, V(F1) ∪ V(F2) ∪
(∪m

j�1Vj(Hv)) is a partition of the vertex set of G = G[F, u1,
u2, . . . , uk; Hv, l]. Using this partition, the Laplacian matrix of G
can be expressed as

L G( ) �
L1 −Jk× n−k( ) −1Tl ⊗ Ik 0

−J n−k( )×k L2 0 0
−1l ⊗ Ik 0 L3 −Jl× m−l( ) ⊗ Ik

0 0 −J m−l( )×l ⊗ Ik L4

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ ,

where L1 = L(F1) + (n − k + l)Ik, L2 = L(F2) + kIn−k, L3 = (L(H1) +
(m − l + 1)Il) ⊗ Ik, and L4 = (L(H2) + lIm−l) ⊗ Ik. Let A = L1,

B � (−Jk×(n−k) −1Tl ⊗ Ik 0 ), BT �
−J(n−k)×k
−1l ⊗ Ik

0

⎛⎜⎝ ⎞⎟⎠, and

D �
L2 0 0
0 L3 −Jl× m−l( ) ⊗ Ik
0 −J m−l( )×l ⊗ Ik L4

⎛⎜⎝ ⎞⎟⎠ .

First, we computed

D−1
1 � L3 −Jl× m−l( ) ⊗ Ik

−J m−l( )×l ⊗ Ik L4
( )

−1
.

By Lemma 2.3, we obtained

A1 − B1D
−1
1 C1 � L H1( ) + m − l + 1( )Il( ) ⊗ Ik − −Jl× m−l( ) ⊗ Ik( )

L H2( ) + lIm−l( )−1 ⊗ Ik( ) −J m−l( )×l ⊗ Ik( )
� L H1( ) + m − l + 1( )Il( ) ⊗ Ik − 1l 1Tm−l L H2( ) + lIm−l( )−11m−l( )1Tl ⊗ Ik

� L H1( ) + m − l + 1( )Il( ) ⊗ Ik − m − l

l
Jl×l ⊗ Ik

� L H1( ) + m − l + 1( )Il − m − l

l
Jl×l[ ] ⊗ Ik,

so (A1 − B1D−1
1 C1)−1 � [(L(H1) + (m − l + 1)Il− m−l

l Jl×l]−1 ⊗ Ik.
By Lemma 2.3, we obtained

S−1 � D1 − C1A
−1
1 B1( )−1

� L H2( ) + lIm−l( ) ⊗ Ik − −J m−l( )×l ⊗ Ik( ) L H1( ) + m − l + 1( )Il( )−1 ⊗ Ik( )[
−Jl× m−l( ) ⊗ Ik( ]−1

� L H2( ) + lIm−l( ) ⊗ Ik − J m−l( )×l L H1( ) + m − l + 1( )Il( )−1Jl× m−l( )( ) ⊗ Ik[ ]
−1

� L H2( ) + lIm−l − l

m − l + 1
J m−l( )× m−l( )[ ]

−1
⊗ Ik .

By Lemma 2.3, we obtained

−A−1
1 B1S

−1 � − L H1( ) + m − l + 1( )Il( )−1 ⊗ Ik[ ] −Jl× m−l( ) ⊗ Ik( )

L H2( ) + lIm−l − l

m − l + 1
J m−l( )× m−l( )[ ]

−1
⊗ Ik

� 1
m − l + 1

1l ×
m − l + 1

l
1Tm−l ⊗ Ik

� 1
l
Jl× m−l( ) ⊗ Ik.

Similarly, −S−1C1A
−1
1 � (−A−1

1 B1S−1)T � 1
l J(m−l)×l ⊗ Ik. So

D−1
1 �

P1
1
l
Jl× m−l( ) ⊗ Ik

1
l
J m−l( )×l ⊗ Ik Q1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠,

where P1 � [(L(H1) + (m − l + 1)Il − m−l
l Jl×l]−1 ⊗ In, Q1 �

[(L(H2) + lIm−l − l
m−l+1J(m−l)×(m−l))]−1 ⊗ In. Now, we

computed the {1}-inverse of G[F, u1, u2, . . . , uk; Hv, l]. Let P �
[(L(H1) + (m − l + 1)Il − m−l

l Jl×l] ⊗ Ik and Q � [(L(H2)+
lIm−l − l

m−l+1J(m−l)×(m−l))] ⊗ Ik. By Lemma 2.6, we obtained

H � A − BD−1BT

� L F1( ) + n − k + l( )Ik − −Jk× n−k( ) −1Tl ⊗ Ik 0( )
L F2( ) + kIn−k( )−1 0 0

0 P−1 1
l
Jl× m−l( ) ⊗ Ik

0
1
l
J m−l( )×l ⊗ Ik Q−1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

−J n−k( )×k
−1l ⊗ Ik

0

⎛⎜⎝ ⎞⎟⎠

� L F1( ) + n − k + l( )Ik − n − k

k
Jk×k − lIk

� L F1( ) + n − k( )Ik − n − k

k
Jk×k,

so H# � (L(F1) + (n − k)Ik − n−k
k Jk×k)#. By Lemma 2.4, we

obtained H# � (L(F1) + (n − k)Ik)−1 − 1
k(n−k)Jk×k.
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According to Lemma 2.6, we calculated − H#BD−1 and −
D−1BTH#.

−H#BD−1 � −H# −Jk× n−k( ) −1Tl ⊗ Ik 0( )
L F2( ) + kIn−k( )−1 0 0

0 P−1 1
l
Jl× m−l( ) ⊗ Ik

0
1
l
J m−l( )×l ⊗ Ik Q−1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

� 1
k
H#Jk× n−k( ) H# 1Tl ⊗ Ik( ) H# 1Tm−l ⊗ Ik( )( )

and

−D−1BTH# �

1
k
J n−k( )×kH#

1l ⊗ Ik( )H#

1m−l ⊗ Ik( )H#

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

We are ready to compute the D−1BTH#BD−1.

D−1BTH#BD−1 �

1
k
J n−k( )×kH#

1l ⊗ Ik( )H#

1m−l ⊗ Ik( )H#

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
1
k
Jk× n−k( ) 1Tl ⊗ Ik( ) 1Tm−l ⊗ Ik( )( )

�

1

k2
JH#J

1
k
JH# 1Tl ⊗ Ik( )

1
k

1l ⊗ Ik( )H#Jk× n−k( ) 1l ⊗ Ik( )H# 1Tl ⊗ Ik( )

1
k

1m−l ⊗ Ik( )H#Jk× n−k( ) 1m−l ⊗ Ik( )H# 1Tl ⊗ Ik( )

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

1
k
JH# 1Tm−l ⊗ Ik( )

1l ⊗ Ik( )H# 1Tm−l ⊗ Ik( )

1m−l ⊗ Ik( )H# 1Tm−l ⊗ Ik( )

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

LetM � 1Tm−l ⊗ Ik andN � 1Tl ⊗ Ik. Based on Lemma 2.6, the
following matrix

T �

H# 1
k
H#J H#N H#M

1
k
JH# L F2( ) + kI( )−1 0 0

NTH# 0 P−1 +NTH#N NTH#M + 1
l
J ⊗ Ik

MTH# 0 MTH#N + 1
l
J ⊗ Ik Q−1 +MTH#M)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,(7)

is a symmetric {1}-inverse of G = G[F, u1, u2, . . . , uk;Hv, l], where
P � [(L(H1) + (m − l + 1)Il − m−l

l Jl×l] ⊗ Ik and Q � [(L(H2)+
lIm−l − l

m−l+1J(m−l)×(m−l))] ⊗ Ik.
For any i, j ∈ V(F1), by Lemma 2.1 and Eq. 7, we obtained

rij G( ) � L F1( ) + n − k( )Ik( )−1 − 1
k n − k( )( )

ii

+ L F1( ) + n − k( )Ik( )−1 − 1
k n − k( )( )

jj

−2 L F1( ) + n − k( )Ik( )−1 − 1
k n − k( )( )

ij

,

as stated in (i).
For any i, j ∈ V(F2), by Lemma 2.1 and Eq. 7, we obtained

rij G( ) � L F2( ) + kIn−k( )−1ii + L F2( ) + kIn−k( )−1jj
− 2 L F2( ) + kIn−k( )−1ij ,

as stated in (ii).
For any i, j ∈ V(H1), by Lemma 2.1 and Eq. 7, we obtained

rij G( ) � L H1( ) + m − l + 1( )Il − m − l

l
Jl×l( ) ⊗ Ik( )

−1

ii

+ L H1( ) + m − l + 1( )Il − m − l

l
Jl×l( )⊗ Ik)−1jj

−2 L H1( ) + m − l + 1( )Il − m − l

l
Jl×l( )⊗ Ik)−1ij ,

as stated in (iii).
For any i, j ∈ V(H2), by Lemma 2.1 and Eq. 7, we obtained

rij G( ) � L H2( ) + lIm−l − l

m − l + 1
J m−l( )× m−l( )( )⊗ Ik)−1ii

+ L H2( ) + lIm−l − l

m − l + 1
J m−l( )× m−l( )( )⊗ Ik)−1jj − 2 L H2( ) + lIm−l(

− l

m − l + 1
J m−l( )× m−l( ))⊗ Ik)−1ij ,

as stated in (iv).
For any i ∈ V(F) and j ∈ V(H1) by Lemma 2.1 and Eq. 7, we
obtained

rij G( ) � L# F( )( )
ii

+ L H1( ) + m − l + 1( )Il − m − l

l
Jl×l( )

−1
⊗ In[ ]

jj

− 2 L# F( )( )
ij
,

as stated in (v).
For any i ∈ V(F) and j ∈ V(H2), by Lemma 2.1 and Eq. 7, we
obtained

rij G( ) � L# F( )( )
ii
+ L H2( ) + lIm−l − l

m − l + 1
J m−l( )× m−l( )( )

−1
⊗ In[ ]

jj

−2 L# F( )( )
ij
,

as stated in (vi).
For any i ∈ V(H1) and j ∈ V(H2), by Lemma 2.1 and Eq. 7, we
obtained

rij G( ) � L H1( ) + m − l + 1( )Il − m − l

l
Jl×l( )

−1
⊗ In[ ]

ii

+ L H2( ) + lIm−l − l

m − l + 1
J m−l( )× m−l( )( )

−1
⊗ In[ ]

jj

−2 L H1( ) + m − l + 1( )Il − m − l

l
Jl×l( )

−1
⊗ In[ ]

ij

,

as stated in (vii).
For any i ∈ V(H2) and j ∈ V(H1), by Lemma 2.1 and Eq. 7, we
obtained

rij G( ) � L H2( ) + lIm−l − l

m − l + 1
J m−l( )× m−l( )( )

−1
⊗ In[ ]

ii

+ L H1( ) + m − l + 1( )Il − m − l

l
Jl×l( )

−1
⊗ In[ ]

jj

−2 L H2( ) + lIm−l − l

m − l + 1
J m−l( )× m−l( )( )

−1
⊗ In[ ]

ij

,
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as stated in (viii).
Now, we computed the Kirchhoff index of G[F, u1, u2, . . .
uk;Hv, l] as Kf(G[F, u1, u2, . . . , uk; Hv, l])

� n +mk( )tr T( ) − 1TT1

� n +mk( ) tr L F1( ) + n − k( )Ik( )−1 − 1
k n − k( )Jk×k( )(

+tr L F2( ) + kIn−k( )−1 + ktr L H1( ) + m − l + 1( )Il − m − l

l
Jl×l( )

−1

+ktr L H2( ) + lIm−l − l

m − l + 1
J m−l( )× m−l( )( )

−1

+1
l
tr Jl× m−l( ) ⊗ Ik( ) + 1

l
tr J m−l( )×l ⊗ Ik( )

+tr NTH#N( ) + tr MTH#M( )) − 1TT1.

It is noted that the eigenvalues of (L(F1) + (n − k)Ik) are α1 +
(n − k), α2 + (n − k), . . ., αk + (n − k). Then,

tr L F1( ) + n − k( )Ik( )−1 − 1
k n − k( )Jk×k( )

� ∑
k

i�1

1
αi + n − k( ) −

k

k n − k( ).

Similarly, tr((L(F2) + kIn−k)−1) � ∑n−k
i�1 1

βi+k. It is noted that the
eigenvalues of (L(H1) + (m − l + 1)Il are 0 + (m − l + 1), μ2(H1)
+ (m − l + 1), . . ., μl(H1) + (m − l + 1) and the eigenvalues of
J(m−l)×(m−l) are (m − l), 0(m−l−1). Then,

tr L H1( ) + m − l + 1( )Il + m − l

l
Jl×l)−1 ⊗ Ik( )

−1

� k∑
l

i�2

1
μi + m − l + 1( ) + k.

Similarly,

tr L H2( ) + lIm−l − l

m − l + 1
J m−l( )× m−l( )( ) ⊗ Ik( )

−1

� k∑
m−l

i�2

1
]i + l

+ kl 2m − 2l + 1( )
m − l + 1

.

It is easily obtained that tr(Jl×(m−l) ⊗ Ik) = lk, tr(J(m−l)×l ⊗ Ik) = (m −
l)k and tr(NTH#N) + tr(MTH#M) = tr(Jl×l⊗H#) + tr(J(m−l)×(m−l)⊗
H#) = ltr(H#) + (m − l)tr(H#) = mtr(H#). Since 1TkH

# � 1Tk [(L(F1) + (n − k)Ik)−1 − 1
k(n−k)Jk×k] � 1

n−k1
T
k − 1

k(n−k)1
T
k � 0, then

1TN1 � 1T L F2( ) + kIn−k( )−11 + 1TP−11 + 1TQ−11

+1TNTH#N1 + 1TNTH#M1+ 1TMTH#N1 + 1TMTH#M1

+ 1
l
1T Jl× m−l( ) ⊗ Ik( )1+ 1

l
1T J m−l( )×l ⊗ Ik( )1.

By the process of Theorem 4.1, we obtained

1TP−11 � l2, 1TQ−11 � m − l( )m − l + 1
l

.

1T NTH#N( )1 � 1Tlk 1l ⊗ Ik( )H# 1Tl ⊗ Ik( )1lk

� 1Tk 1Tk / 1Tk( )

Ik
Ik
/
Ik

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠H#

Ik Ik / Ik( )

1k
1k
/
1k

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ � k21TkH

#1k � 0.

Similarly, 1T(MTH#M)1 = 0, 1TNTH#M1 = 0, and 1TMTH#N1 = 0.

1T Jl× m−l( ) ⊗ Ik( )1 � 1Tk 1Tk / 1Tk( )

Ik Ik /Ik
Ik Ik /Ik
/ /
Ik Ik /Ik

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

1k
1k
/
1k

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ � lk m − l( ).

Similarly, 1T(J(m−l)×l ⊗ Ik) = lk(m − l). Applying the
aforementioned equations into Kf(G[F, u1, u2, . . ., uk;Hv, l]),
we obtained the required result in (ix).

DATA AVAILABILITY STATEMENT

The original contributions presented in the study are included in
the article/Supplementary Material, further inquiries can be
directed to the corresponding author.

AUTHOR CONTRIBUTIONS

All the authors listed have made a substantial, direct, and intellectual
contribution to the work and approved it for publication.

FUNDING

This work was supported by the National Natural Science
Foundation of China (no. 61963013), the Science and
Technology Plan of Gansu Province(18JR3RG206), and the
Research and Innovation Fund Project of President of Hexi
University(XZZD2018003).

REFERENCES

1. Klein DJ, RandićM. acutecResistance Distance. J Math Chem (1993) 12:81–95.
doi:10.1007/bf01164627

2. Huang S, Zhou J, Bu C. Some Results on Kirchhoff index and Degree-
Kirchhoff index. MATCH Commun Math Comput Chem (2016) 75:
207–22.

3. Cao J, Liu J, Wang S. Resistance Distances in corona and Neighborhood
corona Networks Based on Laplacian Generalized Inverse

Frontiers in Physics | www.frontiersin.org June 2022 | Volume 10 | Article 8727988

Liu and Li Resistance Distance with Generalized Pockets

194

https://doi.org/10.1007/bf01164627
https://www.frontiersin.org/journals/physics
www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


Approach. J Algebra Appl (2019) 18(3):1950053. doi:10.1142/
s0219498819500531

4. Liu J-B, Pan X-F, Yu L, Li D. Complete Characterization of Bicyclic Graphs
with Minimal Kirchhoff index. Discrete Appl Maths (2016) 200:95–107. doi:10.
1016/j.dam.2015.07.001

5. Sun L, Wang W, Zhou J, Bu C. Some Results on Resistance Distances and
Resistance Matrices. Linear and Multilinear Algebra (2015) 63(3):523–33.
doi:10.1080/03081087.2013.877011

6. Bapat RB. Graphs and Matrices. London/New Delhi: Springer/Hindustan
Book Agency (2010). Universitext.

7. Chen H, Zhang F. Resistance Distance and the Normalized Laplacian Spectrum.
Discrete Appl Maths (2007) 155:654–61. doi:10.1016/j.dam.2006.09.008

8. Xiao W, Gutman I. Resistance Distance and Laplacian Spectrum. Theor Chem
Acc Theor Comput Model (Theoretica Chim Acta) (2003) 110:284–9. doi:10.
1007/s00214-003-0460-4

9. Yang Y, Klein DJ. A Recursion Formula for Resistance Distances and its
Applications. Discrete Appl Maths (2013) 161:2702–15. doi:10.1016/j.dam.
2012.07.015

10. Yang Y, Klein DJ. Resistance Distance-Based Graph Invariants of Subdivisions
and Triangulations of Graphs. Discrete Appl Maths (2015) 181:260–74. doi:10.
1016/j.dam.2014.08.039

11. Barik S. On the Laplacian Spectra of Graphs with Pockets. Linear and
Multilinear Algebra (2008) 56:481–90. doi:10.1080/03081080600906463

12. Barik S, Sahoo G. Some Results on the Laplacian Spectra of Graphs with
Pockets. Electron Notes Discrete Maths (2017) 63:219–28. doi:10.1016/j.endm.
2017.11.017

13. Bapat RB, Gupta S. Resistance Distance inWheels and Fans. Indian J Pure Appl
Math (2010) 41:1–13. doi:10.1007/s13226-010-0004-2

14. Bu C, Yan B, Zhou X, Zhou J. Resistance Distance in Subdivision-Vertex Join
and Subdivision-Edge Join of Graphs. Linear Algebra its Appl (2014) 458:
454–62. doi:10.1016/j.laa.2014.06.018

15. Liu X, Zhou J, Bu C. Resistance Distance and Kirchhoff index of R-Vertex Join
and R-Edge Join of Two Graphs.Discrete Appl Maths (2015) 187:130–9. doi:10.
1016/j.dam.2015.02.021

16. Ben-Israel A, Greville TNE.Generalized Inverses: Theory and Applications. 2nd
ed. New York: Springer (2003).

17. Bu C, Sun L, Zhou J, Wei Y. A Note on Block Representations of the Group
Inverse of Laplacian Matrices. Electron J Linear Algebra (2012) 23:866–76.
doi:10.13001/1081-3810.1562

18. Zhang FZ. The Schur Complement and its Applications. New York: Springer-
Verlag (2005).

19. Liu Q. Some Results of Resistance Distance and Kirchhoff index of Vertex-
Edge corona for Graphs. Adv Mathematics(China) (2016) 45(2):176–83.

20. Liu J-B, Pan X-F, Hu F-T. The {1}-inverse of the Laplacian of Subdivision-
Vertex and Subdivision-Edge Coronae with Applications. Linear and
Multilinear Algebra (2017) 65:178–91. doi:10.1080/03081087.2016.1179249

21. Liu J-B, Cao J. The Resistance Distances of Electrical Networks Based on
Laplacian Generalized Inverse. Neurocomputing (2015) 167:306–13. doi:10.
1016/j.neucom.2015.04.065

22. Xie P, Zhang Z, Comellas F. On the Spectrum of the Normalized Laplacian of
Iterated Triangulations of Graphs. Appl Maths Comput (2016) 273:1123–9.
doi:10.1016/j.amc.2015.09.057

23. Xie P, Zhang Z, Comellas F. The Normalized Laplacian Spectrum of
Subdivisions of a Graph. Appl Maths Comput (2016) 286:250–6. doi:10.
1016/j.amc.2016.04.033

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations, or those of
the publisher, the editors, and the reviewers. Any product that may be evaluated in
this article, or claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Copyright © 2022 Liu and Li. This is an open-access article distributed under the
terms of the Creative Commons Attribution License (CC BY). The use, distribution
or reproduction in other forums is permitted, provided the original author(s) and the
copyright owner(s) are credited and that the original publication in this journal is
cited, in accordance with accepted academic practice. No use, distribution or
reproduction is permitted which does not comply with these terms.

Frontiers in Physics | www.frontiersin.org June 2022 | Volume 10 | Article 8727989

Liu and Li Resistance Distance with Generalized Pockets

195

https://doi.org/10.1142/s0219498819500531
https://doi.org/10.1142/s0219498819500531
https://doi.org/10.1016/j.dam.2015.07.001
https://doi.org/10.1016/j.dam.2015.07.001
https://doi.org/10.1080/03081087.2013.877011
https://doi.org/10.1016/j.dam.2006.09.008
https://doi.org/10.1007/s00214-003-0460-4
https://doi.org/10.1007/s00214-003-0460-4
https://doi.org/10.1016/j.dam.2012.07.015
https://doi.org/10.1016/j.dam.2012.07.015
https://doi.org/10.1016/j.dam.2014.08.039
https://doi.org/10.1016/j.dam.2014.08.039
https://doi.org/10.1080/03081080600906463
https://doi.org/10.1016/j.endm.2017.11.017
https://doi.org/10.1016/j.endm.2017.11.017
https://doi.org/10.1007/s13226-010-0004-2
https://doi.org/10.1016/j.laa.2014.06.018
https://doi.org/10.1016/j.dam.2015.02.021
https://doi.org/10.1016/j.dam.2015.02.021
https://doi.org/10.13001/1081-3810.1562
https://doi.org/10.1080/03081087.2016.1179249
https://doi.org/10.1016/j.neucom.2015.04.065
https://doi.org/10.1016/j.neucom.2015.04.065
https://doi.org/10.1016/j.amc.2015.09.057
https://doi.org/10.1016/j.amc.2016.04.033
https://doi.org/10.1016/j.amc.2016.04.033
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/physics
www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


Network Robustness Revisited
Thilo Gross1,2,3* and Laura Barth1,2,3

1Helmholtz Institute for Functional Marine Biodiversity (HIFMB), Oldenburg, Germany, 2Alfred-Wegener-Institute, Helmholtz
Centre for Marine and Polar Research, Bremerhaven, Germany, 3Institute for Chemistry and Biology of the Marine Environment
(ICBM), Carl-von-Ossietzky University, Oldenburg, Germany

The robustness of complex networks was one of the first phenomena studied after the
inception of network science. However, many contemporary presentations of this theory
do not go beyond the original papers. Here we revisit this topic with the aim of providing a
deep but didactic introduction. We pay attention to some complications in the
computation of giant component sizes that are commonly ignored. Following an
intuitive procedure, we derive simple formulas that capture the effect of common
attack scenarios on arbitrary (configuration model) networks. We hope that this easy
introduction will help new researchers discover this beautiful area of network science.

Keywords: generating functions, attacks on networks, giant component, complex networks, robustness

1 INTRODUCTION

In 2000 Albert, Jeong, and Barabási published a groundbreaking paper on the error and attack
tolerance of complex networks [1]. At the time of writing this paper has been cited nearly 104

times, and one of the paper’s take-home messages, the uncanny stability of scale-free networks, is
widely known beyond the academia. Today the study by Albert et al. is rightfully counted among
the founding papers of modern network science. Shortly thereafter, Newman, Strogatz, and
Watts published a mathematical theory on the size of connected components in networks with
arbitrary degree distribution [2]. Although some of these results were already known in
computer science [3], Newman et al.‘s rediscovery popularized them in physics by phrasing
them in a convenient and accessible way. Together with other landmark papers published
around the same time, these works further accelerated network science which at the time was
already rapidly gaining momentum.

Looking back from the present day, it is clear that several important lines of research directly
originated from these foundational papers. The mathematics of attacks on networks, has informed
work on the prevention of power cuts [4, 5], fragmentation of communication networks [6, 7],
cascading species loss in food webs [8], epidemics [9–11], financial crashes [12–14] and
misinformation [15]. Some important subsequent developments include the extension of the
theory to networks with degree correlations [16, 17], clustering [18, 19], and block structure
[20]. Moreover structural robustness has been extended to other types of attacks such as cascading
failures [21] and bootstrap percolation [22, 23] and also other classes of systems such multilayer [5,
24], higher order [25] and feature-enriched networks [26].

The broad variety of applications makes clear that the theory of network robustness is not the
study of an isolated phenomenon, but provides a powerful tool for thinking about network structure.
When such new tools are discovered in science they usually go through a phase of tempering where,
the underlying mathematics get formulated and subsequently reshaped until a canonical form
emerges. For network robustness an important step in this tempering process is the Review by Mark
Newman [27], which combines known results from graph theory with new approaches to formulate a
widely applicable mathematical theory of network robustness.
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Our goal here is not to argue that robustness is the most
important topic in network science. There are other topics which
were already going strong at the time, and some of them such as
network dynamics, and community structure may address a
wider range of applications. In fact, to a network scientist it
should be apparent that arguing about the relative importance of
field is largely meaningless as long as they remain densely
interlinked and thus form part of an emergent whole.

Over the past decades the theory of network robustness has
certainly grown into one of the main pillars of modern network
science. It is included in several influential reviews and textbooks
[28–31]. However, in current literature, the discussion of
robustness does not usually go deeper than Newman’s concise
presentation. Moreover, there seem to be several very useful
corollaries to basic results on robustness, which have not been
spelled out in the literature. Finally, while the hallmark robustness
of scale-free networks is widely known, the several caveats and
flip-sides to this result are known by experts but have received
much lesser attention.

It is our belief that under normal circumstances much more
tempering of the theory of network robustness would likely have
happened. However, at the time network science was moving
extremely fast and a small number of network scientists found
themselves suddenly in a position where they could suddenly
make a significant impact on a vast range of applications. In this
situation, it was more attractive to go forward to apply and extend
the theory rather than to try to rephrase its equations, provide
didactic examples, or ponder philosophical issues at its
foundations. While all of these things have still happened to
some extent, we believe that it is nevertheless valuable to revisit
those basic foundations.

The present paper is based on experience gathered while
teaching the mathematics of networks robustness over 12 years
to different audiences in different departments and on different
continents. The paper seeks to provide a retelling of the basic
theory that governs the structural robustness of simple networks
(configuration model graphs) against different forms of node and
link removal. We take the liberty to discuss certain issues at
greater length than comparative texts to provide a deep but
simple introduction. The presentation is mathematical but,
broken into simple steps. We further illustrate the theory by
worked examples, including a class of attack scenarios that is
exactly solvable with pen and paper. Along the way, we discover
some shortcuts and neat equations by which even complicated
scenarios can be quickly evaluated. Going beyond mathematics
we crystallize the main insights from the calculations into concise
take-home messages. We hope that new researchers entering this
field will find this introduction of a well-known topic helpful.

2 GENERATING FUNCTIONS

The exploration of networks builds heavily on the combinatorics
of probability distributions. When working with such
distributions, we often represent them in the form of sequences

pk � (p0, p1, p2, p3, ...). (1)

Sequences are intuitive objects, which store information
straight forwardly, but they do not come equipped with a lot
of powerful machinery. If we want to compute, say, the mean of a
distribution, we have to take the elements out of the sequence
one-by-one and then process them one-by-one [32]. By contrast,
continuous functions, are mathematical objects that come with a
lot of machinery attached; they can be evaluated at different
points, inverted, and concatenated. Most importantly, they can be
differentiated, enabling us to apply the powerful toolkit of
calculus.

The idea to use functions instead of sequences to store and
process distributions lead to the concept of generating functions.
An excellent introduction to generating functions can be found in
[32]. In this section, we provide a brief summary of their main
properties that are relevant in the context of attacks on networks.

A sequence can be converted into a function by interpreting it
as the sequence of coefficients arising from a Taylor expansion.
Applying the Taylor expansion backward turns a sequence pk into
the function

G(x) � p0 + p1x + p2x
2 + p3x

3 + ... � ∑
∞

k�0
pkx

k. (2)

This function is the so-called generating function of pk. Note
that the variable x does not have any physical meaning, it is
merely used as a prop that helps us encode the distribution.

In the following we omit writing the argument of generating
functions explicitly if it is just x, i.e. we will refer to the generating
function above just as G, instead of writing G(x).

For illustration we consider the probability distribution of a
(not necessarily fair) four-sided die (see Figure 1). We denote the
probability of rolling k on a single die roll as pk. Then the
generating function for the four-sided die is

G1d4 � p1x + p2x
2 + p3x

3 + p4x
4, (3)

where we borrowed the notation 1d4 for “1 four-sided die roll”
that is commonly used in roleplaying games.

FIGURE 1 | A four-sided die. In contrast to six-sided dice the outcome of
a roll is determined by the number of the face on the bottom. The configuration
shown in the picture corresponds to an outcome of 2.
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2.1 Distribution
From the generating function we can recover the distribution by a
Taylor expansion,

pk � 1
k!

d

dx
( )

k

G

∣∣∣∣∣∣∣∣∣x�0
. (4)

2.2 Norm
In many cases it is unnecessary to recover the sequence as many
properties of interest can be computed directly from the
generating function. One of these is the norm of pk, which we
can compute as

|pk| � G(1). (5)
For example, for our four-sided dice, we can confirm

G1d4(1) � p1 + p2 + p3 + p4. (6)

2.3 Mean
Let’s see what happens if we differentiate a generating function.
For example,

G1d4′ � p1 + 2p2x + 3p3x
2 + 4p4x

3 � ∑
∞

k�0
kpkx

k−1. (7)

The differentiation has put a factor k in front of each of the
terms. If we now evaluate this expression at x = 1 we arrive at

G1d4′ (1) � p1 + 2p2 + 3p3 + 4p4. (8)
which is the expectation value of the die roll. Also, for any other
distribution, we can compute the mean of the distribution as

〈k〉 � G′(1). (9)

2.4 Higher Moments
We can also compute higher moments of the distribution from
the generating function in a similar manner. Above, we saw that
we can use differentiation to put a prefactor k in front of the terms
of the sum in the generating function, however, this also lowered
the exponents on the x one count. We can ‘heal’ the exponents
after differentiation by multiplying x again, i.e.

x
dG

dx
� ∑

∞

k�0
kpkx

k. (10)

Repeating the differentiation and multiplication n times a
prefactor of kn can be constructed, which allows us to compute

〈kn〉 � ∑
∞

k�0
knpk � x

d

dx
( )

n

G

∣∣∣∣∣∣∣∣
x�1

. (11)

2.5 Adding Distributions
Suppose we are interested in the probability distribution of the
sum of two rolls of the four-sided die. We could work out the
probability for the individual outcomes. For example we can

arrive at a result of 4 by rolling a 2 on the first roll and a 2 on the
second roll (probability p2

2) or a 1 on the first and a 3 on the
second (p1p3) or vice versa (p3p1) which adds to up to a total
probability p2

2 + 2p1p3 for a result of 4.
The generating function for the sum of two four-sided die

rolls is

G2d4 � p1
2x2 + 2p1p2x

3 + (p2
2 + 2p1p3)x4 + (2p1p4 + 2p2p3)x5

+(p3
2 + 2p2p4)x6 + 2p3p4x

7 + p4
2x8.

(12)
Here the first term says that you can get a two by rolling two

ones, and so on.
Looking at the expression for G2d4 it is interesting to note that

the combinatorics of the terms is the same that we find in the
multiplication of polynomials. This points to a more efficient way
for finding G2d4:

G2d4 � p1x + p2x
2 + p3x

3 + p4x
4( )2 � G1d4( )2. (13)

So, we can find the generating function for the sum of two die
rolls simply as the square of the generating function of one die
roll. The same rule holds more generally: Even if we compute the
sum of random variables drawn from different distributions, then
the generating function for the sum is the product of the
generating functions for the parts.

2.6 Adding Constants to Distributions
Suppose we want to roll our four-sided die and then add 2 two to
the result. We can think of the number 2 as the result of a random
process that results in the outcome 2 with 100% probability. The
generating function for such a process is

G2 � x2. (14)
We can now use the rule for adding distributions to find the

generating function that describes the result of adding two to a
four-sided die roll,

G1d4+2 � G2G1d4 � x2G1d4. (15)
Generalizing from this result, we can say that when we add n to

the outcome of a random process, the generating function that
describes the sum is the generating function of the process
times xn.

2.7 Adding a Random Number of Random
Variables (Dice of Dice)
Picture a situation in a game where you find a random number of
bags, each containing a random number of gold pieces. The
player rolls one die to determine the number of bags, and then
one die for each bag to determine the gold in that particular bag.
The total amount of gold found can then be computed by
summing over the values from the individual bags. For
example, the player might roll a 2 on the first roll, showing
that they found 2 bags. Then they roll 1 and 3, finding a single
gold piece in the first bag and three in the second for a total
of four.
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To find the generating function that governs the amount of
gold, we could think as follows: With probability p1, we roll a 1 on
the first roll, so in this case, we find only one bag. Hence the
generating function for the outcome is identical to the generating
function of one bag (say, G1d4). With probability p2, we roll a 2 on
the first roll. Thus, we get two bags and, using the results above,
our earnings, in this case, are described by G2d4 � (G1d4)2.
Putting all four possible scenarios together, we find the
generating function for the total amount of gold

G(1d4)d4 � p1G1d4 + p2(G1d4)2 + p3(G1d4)3 + p4(G1d4)4, (16)
where the first term corresponds to the scenario where we get one
bag, the second corresponds to the scenario where we get two, etc.

Looking at the equation above, we note that it resembles a
polynomial of G1d4; we can write it as

G(1d4)d4 � G1d4(G1d4). (17)
Again, the same rule holds generally: Suppose we have a

random process p described by a generating function P, and
we want to sum over s outcomes of p together, where s is drawn
from a distribution with generating function S. The generating
function for the sum is then

G � S(P). (18)

3 EXISTENCE OF THE GIANT COMPONENT

Large sufficiently-random networks have two distinct phases. In
one of these, the network consists of isolated nodes and small
components, whereas in the other there is a giant component that
contains a finite fraction of all nodes, and hence has an infinite
size in the limit of large network size [33–35]. The central
question that we review in this paper is how the removal of
nodes and links affects the giant component.

3.1 Essential Distributions
An important starting point for our exploration of giant
components is the networks degree distribution, i.e. the
probability distribution that a randomly-picked node has k
links. We describe this distribution by the sequence pk and its
generating function

G � ∑
∞

k�0
pkx

k. (19)

the expectation value of the degree distribution is themean degree

z � ∑
∞

k�0
kpk � G′(1). (20)

A second distribution of interest is the excess degree
distribution qk. If we follow a random link in a random
direction, qk is the probability to arrive at a node that has k
links in addition to the one we are traveling on. Finding the excess
degree distribution is an example of many calculations in network
science that become easier when we think about it in terms of

endpoints of links. When we follow a random link (in a random
direction) we arrive at a random endpoint. The probability to find
k additional links on the node is the same as the probability that a
randomly-picked endpoint is on a node of degree k + 1. Hence we
can compute the excess degree distribution as

qk � Number of endpoints on nodes of degree k + 1
Number of all endpoints in the network

� N(k + 1)pk+1
Nz

� (k + 1)pk+1
z

. (21)

The generating function for this distribution is

Q � ∑
∞

k�0
qkx

k � ∑
∞

k�0

(k + 1)pk+1
z

xk � 1
z
∑
∞

k�0
kpkx

k−1 � G′
z
. (22)

The expectation value of the excess degree distribution is the
mean excess degree,

q � ∑
∞

k�0
kqk � Q′(1) � G″(1)

z
, (23)

i.e., the expected number of additional links we find when
arriving at a node at the end of a random link.

3.2 Existence of the Giant Component
In the following, we consider configuration model networks, that
is, networks that are formed by randomly connecting nodes of
prescribed degree [3, 36]. In such networks a giant component
exists if q > 1. A mathematical derivation of this result can be
found in [2]. The same result is already derived in principle [36],
but stated in a more complicated and less catchy form, as the
concept of excess degree had not been formulated. Here, we skip
this derivation of this formula, but, to gain intuition, consider the
following argument: if we walk on a network and find on average
more than one new link on every node that we visit, we can
continue exploring new links until we have seen a finite fraction
of the network.

Despite its intuitive nature, it is good to keep in mind that the
q > 1 condition does not hold in networks subjected to other
organizing principles. Thus it is easy to come up with specific
networks that have q = 100 but no giant component or a network
with q = 0.01 that has a giant component (see Supplementary
Appendix). Although such exceptional networks exist, the q > 1
condition provides a reasonable guide for many real-world
applications. In particular, the configuration model does not
have degree correlations or an abundance of short cycles and
under these conditions, the q > 1 condition holds.

3.3 Size of the Giant Component
One of the most subtle and intriguing calculations in network
science is determining the size of the giant component. The
canonical derivation of this equation starts with a self-consistency
statement.

A node is not part of the giant component if none of its
neighbors is part of the giant component.

Note that the statement is phrased in negative form; it is a
condition for being outside the giant component, rather than
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being inside it. One good reason for this formulation is that it
makes the equations more concise, as we’ll see below. An
unfortunate side effect is that it makes it easier to gloss over a
complication that occurs in the next steps.

To arrive at a useful mathematical equation, we need to
translate the self-consistency statement into a probabilistic form

The probability that a randomly picked node is not part
of the giant component is the same as the probability
that none of its neighbors is part of the giant
component.

We can now assign a symbol to ‘the probability that a node is
not part of the giant component’; say u. So, the first half of the
statement above says, u = . . .. But what about the second half? It is
tempting to jump to the conclusion that for a node of degree k, a
term of the form uk will appear. But, let’s not go so fast, we first
need to deal with some complications.

One problem is that the probabilities in the second half of our
statement are not independent probabilities. After all, if a node is
in the giant component, all of its neighbors must be in the giant
component as well. This is bad news because the common
mathematical rules for working with probabilities that we
often take for granted do not apply.

For example, if a and b are independent probabilities of events,
the probability that both events occur is ab, but this isn’t
necessarily true if the events are interdependent. But if event b
must occur if a occurs then, the probability that both occur is just
a. If we take the interdependence of probabilities into account,
our carefully crafted statement above just translates to u = u,
which would be useless.

The beauty of mathematical modeling is that by carefully
thinking about our definitions, we can often arrive at quantities

that work well with mathematics. In the present case, we can use a
little twist in the statement to make the probabilities independent:

The probability that a randomly picked node is not part
of the giant component is the same as the probability
that none of the neighbor’s neighbors nodes remain in
the giant component after we have removed all of the
random node’s links.

So now we pick a random node, make a list of all of it is
neighbors, remove all links from the node and then check
whether it is former neighbors are still part of the giant
component (Figure 2). Because the links to the randomly
picked node are broken by the time that we check giant
component membership, the probability that the former
neighbors are part of the giant component is now independent.

Having dealt with the issue of interdependence, we could go
straight to the solution. However, instead, let us first make an
intuitive, but naive attempt. This will lead to a wrong but
nevertheless interesting result.

As before, we read the first half of the statement above as u =
. . .. To deal with the second half of the statement, we define v as
the probability that a given neighbor is not part of the giant
component (after the links have been cut). Moreover, let’s assume
that the degree of our randomly picked node is the mean degree z
(for a first attempt, it is worth a try). Under these assumptions, we
can translate the statement above to

u � vz. [Naive attempt, first half] (24)
Now we have to ask, what is the probability that one of the

neighbors is not part of the giant component? If the neighbors
were completely random nodes, we could assume v ≈ u, but we
have reached these nodes by the following link.We can now apply
the same idea as before: The neighbor is not part of the giant
component if none of their neighbors is part of the giant
component (after cutting off their links), and hence

v � vq. [Naive attempt, second half] (25)
Note that the previous Eq. 24 links two different variables u

and v, which appear because a randomly-picked node is
statistically different from a randomly picked neighbor. By
contrast, the second equation Eq. 25 contains two references
to v because a random neighbor is statistically similar to a
neighbor’s neighbor. The second equation is closed, so we can
solve it for v and then use v to compute u. Using that the
proportion of nodes in the giant component is s = 1 − u, we
can summarize the solution as follows

s � 1 − vz

v � vq.
[Naive attempt, summary] (26)

This was a fund derivation, but unfortunately, the result is now
what we wanted from the second equation we can see that the
solutions are v = 0 or v = 1, whichmean s = 0 or s = 1, which seems
to say, all nodes are in the giant component or none. This can’t be
right. In addition, there is solution q = 1, which perhaps hints that
something is happening at q = 1, so perhaps not all is lost?

FIGURE 2 | Illustration of the hypothetical cutting of links to find a formula
for the giant component size. We pick a random node (red), then cut all of its
links. We can say that the probability that the randomly picked node is not in
the giant component before the cutting is the same as the probability that
none of the node’s former neighbors are part of the giant component after the
cutting. This statement gives us a self-consistency condition from which the
giant component size can be calculated. The cutting of links is essential, as it
enables us to treat giant component members of the former neighbors as
independent random variables.
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Thinking about the solutions again, we can see that s = 0 is a
direct consequence of the self-referential nature of our approach:
If we just declare every node to be not in the giant component, the
result is wrong but self-consistent. Hence it is good to keep in
mind that s = 0 can be a pathological solution that arises from the
peculiarities of the approach. The situation is worse for the
solution s = 1. This is clearly wrong as our network may well
contain some nodes of degree 0 which, certainly can’t be in the
giant component. Let’s understand why we arrive at this
erroneous result: In our reasoning, we assumed that every
node had the mean degree z. By making all nodes the same,
we have ended up at a result where all nodes join or leave the giant
component together.

We now understand that the key to a better result is to take
the heterogeneity between nodes into account. So instead of
assuming that all nodes have the mean degree z or q, let’s work
with the full degree distributions. Our randomly picked node
has degree k with probability pk, and, using the same
reasoning as above, the neighbors of a node of degree k are
not part of the giant component (after link-cutting) with
probability vk. So that a randomly picked node has degree k
and is not in the giant component is pkv

k. Similarly, the
probability that a randomly picked neighbor has
excess degree k and is not in the giant component is
qkv

k. Summing over all possibilities for k, we find the
equations

s � 1 −∑
k
pkv

k

v � ∑
k
qkv

k.
[Solution] (27)

Examining the form of the solution, we may notice that the
generating functions G and Q appear. Hence, we can write the
equations for the giant component size as

v � Q(v)
s � 1 − G(v). [Elegant form of solution] (28)

3.4 Degree Distribution Inside the Giant
Component
A final ingredient that is sometimes useful is the degree
distribution inside the giant component, i.e. the degree
distribution that we would find if all the nodes outside the
giant component were removed [3, 37]. We already know that
the probability that a randomly drawn node has degree k and is
not in the giant component is

pk
out � pkv

k. (29)
The probability that a node has degree k and is inside the giant

component, can be written as

pk
in � pk − pk

out � pk(1 − vk). (30)
This probability distribution gives us the probability that a

node is inside the giant component and has degree k, but what we
are interested in is the degree distribution of random nodes
picked from the giant component. We can find this by

dividing pk
in by the probability s that a randomly picked node

is in the giant component, which leads to

pk
gc � pk(1 − vk)

s
. (31)

We can use this result to write the generating function for the
degree distribution inside the giant component as

Ggc � ∑k pk(1 − vk)xk

s
� G(x) − G(vx)

1 − G(v) . (32)

4 ATTACKS AND DAMAGE IN NETWORKS

In the sections above, we established some useful mathematics for
estimating the size of the giant component in networks. We are
now ready to build a second layer of tools on top of these that
capture the effect of different types of attacks and damage in
networks.

4.1 Random Link Removal
We start by considering an attack that removes links from the
network at random. Before the attack, the network is described by
the degree distribution pk. Then links are removed at random,
such that after the attack, each link survives with probability c (to
remember this more easily, we can call this the cir-vival
probability).

We now ask, what is the degree distribution after the attack? If
we were to randomly pick a node from the network after the
attack, the probability to pick a node that had k links before the
attack is pk. Each of these links has a chance c to survive the attack.
We can also describe the survival in terms of a probability
distribution. A link that was one link before the attack is still
one link after the attack, with probability c, and it is zero links
with probability 1 − c. So the degree of a randomly-picked node,
after the attack, is computed as a sum over a random number of
random variables. This is exactly the sort of calculation that is
covered by the “dice of dice” rule from Section 2.

To apply the dice-of-dice rule, we need to describe the attack
by a generating function,

A � (1 − c)x0 + cx1 � 1 + (x − 1)c, (33)
which means 1 with probability c and 0 with probability 1 − c.
Using the dice-of-dice rule we can then write the degree
generating function after the attack as

Ga � G(A). (34)
This equation is a powerful tool, allowing us to derive some

results very quickly. For example, we can compute the mean
degree after the attack as

za � Ga′(1) � G′(A(1))A′(1) � cG′(1) � cz, (35)
where we used the normalization condition A (1) = 1. This “norm
reduction” step is a staple of generating function calculations and
is one of the reasons why these calculations are often enjoyable.
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Here, the result shows that removing a proportion of the links
reduces the mean degree by the same proportion, regardless of the
degree distribution.

Similarly, we can find the generating function of the excess
degree distribution after the attack Qa by substituting the attack
function A into Q,

Qa � Q(A). (36)
Using generating functions, we can prove this rule in a single

line,

Qa � Ga′
Ga′(1) �

G′(A)A′
G′(A(1))A′(1) �

G′(A)
G′(A(1)) � Q(A), (37)

where we used A′(x) = A′(1), a property of the attack function.
The mean excess degree after the attack is

qa � Qa′(1) � Q′(A(1))A′(1) � Q′(1)c � cq. (38)
This shows that, if we remove a proportion of the links at

random, then, also the mean excess degree is reduced by the same
proportion.We can use Eq. 38 to calculate the proportion of links
that need to be removed from a network to break the giant
component. Suppose we have a network with excess degree q
before the attack and qa = cqb after the attack. The attack will
break the giant component, if qa < 1, which requires c < 1/q.
Hence the proportion r of links we need to remove from the
network to break the giant component by random link removal is

r � 1 − c � 1 − 1
qb

� q − 1
q

. (39)

For example, in the early stages of the COVID-19 pandemic,
one infected person infected on average 3 other people. This
number is the mean excess degree of the network in which nodes
are infected people and links are contacts that have led to
infections. If we had managed to remove 2/3 of the links from
the transmission network through hygiene and social distancing,
it would have broken the giant component on where the virus was
spreading and stopped the pandemic in its tracks. Sadly, these
numbers are by now woefully outdated due to the evolution of
later variants, which are more transmissible.

The results we derived so far also permit a first glimpse at the
stability of heterogeneous networks. Networks that contain different
node degrees can have huge mean excess degrees q. Hence we can
already see that breaking the giant component in such networksmay
require the removal of a large proportion of the links. For example, if
a network has q = 20, removal of r = 95% of links is required to break
the giant component by random link removal.

To summarize the results from this section, we can say that the
network properties after random removal of a proportion r = 1 − c
of the links are

Na � N (40)
za � cz (41)
qa � cq (42)

Ga � G(A) (43)
Qa � Q(A), (44)

where A = cx + (1 − c).

4.2 Random Node Removal
Another type of attack on networks is the random removal of
nodes. To understand the effect of random node removal, it is
useful to imagine it as a two-step process (Figure 3). In the
first step, we remove just the nodes, which leaves behind the
broken stubs of links, by which these nodes were connected to
the rest of the network. In a second step, we prune these
broken links, what may reduce the degrees of the
surviving nodes.

If we remove nodes at random until only a proportion c of the
original nodes survives. Already the first step, the removal of the
affected nodes, reduces the size of the network. If we had N nodes
before the attack, then the number of nodes after the attack is

Nh � cN, (45)
where we used the label h to indicate that we are now considering
the state after the first step, i.e. halfway through the attack.

Let’s also consider what this first step does to nodes of degree
k. The number of nodes of degree k before the attack is

nk � Npk. (46)
Since the attack removes nodes at random, a proportion c of

the nodes of degree k also survive the first step of the attack, hence

nk
h � cnk � cNpk � Nhpk. (47)

We can use this result to compute the degree distribution, after
the first step of the attack,

pk
h � nkh

Nh
� pk. (48)

This shows that the first step of the attack, the random node
removal itself, does not change the degree distribution of the
surviving nodes.

We are not quite done yet, as we still have to clean up the
broken links left by the attack. This cleaning up is another
example of a calculation that gets easier when we think in
terms of endpoints. In the pruning step, a node will lose a
given link if the endpoint at the other end of the link was
removed in the attack. This means that an attack that removes
a certain proportion of all endpoints will remove the same
proportion of links from the surviving nodes. Moreover, if we
remove a proportion r of the nodes at random, we also remove a
proportion r of the endpoints in the system, which implies that in
the pruning step we remove a proportion r of the links of the
surviving nodes.

Expressed positively, we can say: if a proportion c of the nodes
survive, the surviving nodes will retain a proportion c of their
links. As the removal of the broken links is essentially random
link removal, the same rules as before apply. Thus the mean
degree and mean excess degree get reduced by a factor c.

In summary, random removal of a proportion r = 1 − c of the
nodes affects the network properties as follows:

Na � cN (49)
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za � cz (50)
qa � cq (51)

Ga � G(A) (52)
Qa � Q(A), (53)

where A = cx + (1 − c).
It is interesting to note that random node removal and random

link removal affect the network in very similar ways, which allows
us to multiply up the effects of different attacks.

For example, if we vaccinate half the population with a vaccine
that is 90% effective and then also avoid 1/3 of all contacts. We
reduce the network mean excess degree, consequently, the
remaining vulnerable network is 0.9 · 0.5 · (2/3) = 0.3 of its
original value. What would certainly, have broken the giant
component spread of the SARS-CoV-2 wild-type, but
insufficient to break the giant component spread for later
variants.

4.3 Targeted Node Removal
The previous section showed that heterogeneous networks,
characterized by high values of q, are hard to break by
random node removal because we need a proportion of r =
(q − 1)/q nodes to break the giant component.

Perhaps we can do better with targeted attacks? The low-
dimensional intuition of our daily experience suggests that we can
do perhaps much better by attacking naturally existing
bottlenecks in the network. A COVID-19 example of this
strategy is, for example, trying to stop the virus at national
borders; a strategy that has had mixed success.

When it comes to random networks, our real-world intuition
can be misleading: Unless we consider networks of low mean
degree, which are fragile in any case, bottlenecks arise only as a
result of the low-dimensional embedding of networks, for
example, due to geographical constraints [38]. The
configuration model networks considered here are genuinely
high-dimensional structures and thus generally lack strong
bottlenecks. While it is possible to fine-tune an attack to split
a strongly geographically embedded network, e.g. the road
network, trying to find a similarly optimized attack in a
random network is pointless.

Even in the absence of bottlenecks, we can still maximize the
impact of our attack by targeting highly-connected nodes. As in
the case of random node removal, we implement the attack in two
steps, where the first step removes only the directly affected nodes
but leaves the rest of the degree distribution unchanged. Then the
leftover stubs will be removed in a second step.

An important decision is how we encode the targeted removal
mathematically. Here, we define rk as the probability that a
randomly-picked node from the original network has degree k
and is subsequently removed in the attack. Most other papers
encode targeted attacks in terms of ρk, the removal risk of a node
of degree k which is related to rk via

ρk �
rk
pk
. (54)

While the definition of rk seems more complicated, we will see
below that it leads to particularly nice results.

In actual calculations, rk is quite intuitive as it follows the same
intuition as the degree distribution. Suppose, for example, the
degree distribution of our network was 0.5, 0.25, 0.25, such that
half the nodes were of degree zero. If we wanted to remove 60% of
the nodes of degree 2, then rk would be 0, 0, 0.15.

Having familiarized with the rk, let us now consider a degree
targeted attack on a general network. As this first step in our
calculation, we calculate some properties that quantify the effect
of the attack. For this purpose, it is convenient to define the
generating function of rk as

R � ∑
∞

k�0
rkx

k. (55)

In contrast to the generating functions used so far, the norm of
rk is not 1 but, the proportion of nodes removed in the attack, i.e.

r � 1 − c � ∑
∞

k�0
rk � R(1), (56)

where r and c are again the removed and surviving proportions of
the nodes.

A second important property is ~r the proportion of endpoints
that are removed directly in the first step of the attack Recall that

FIGURE 3 | Node removal in a two-step process. Understanding the effect of node removal becomes easier if we picture node removal as a two-step process.
Starting from an initial network (left, degrees: 1,2,2,3,4,4) the first step removes the target nodes (here a node of degree 2 and a node of degree 4), but the broken links
are kept in the network (center, node degrees 1,2,3,4). In the second step, the broken links are pruned (right, 0,1,1,2). In this example, the mean degree after the first step
is zh = (1 + 2 + 3 + 4)/4 = 2.5.
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G′(1) = z is the mean degree of the nodes in the network. Hence
NG′(1) is the number of all endpoints in the network.
Analogously, NR′(1) is the number of endpoints that are
removed in the first step of the attack. Hence we can compute
~r as the ratio

~r � R′(1)N
G′(1)N � R′(1)

z
. (57)

We can now also defined the proportion of surviving
endpoints after the first step

~c � 1 − ~r. (58)
Let’s also have a look at the second derivative of R. For the

degree generating G the quantity G′′(1)/z is the mean excess
degree q. So by analogy we may call

δ � R″(1)
z

, (59)

the removed excess degree by analogy.
We can now write the degree distribution after the first step

(removal of targeted nodes). It is helpful to first write the number
of nodes of degree k after the removal

nk
h � Npk −Nrk � N(pk − rk), (60)

where we have again used h to denote properties after the first
step of the attack. To find the degree distribution after the
removal, we have to divide by the remaining number of
nodes, which we can write as Nc. Hence,

pk
h � N(pk

b − rk)
cN

� pk − rk
c

. (61)

The corresponding generating function is

Gh � ∑
∞

k�0

pk − rk
c

xk � G − R

c
. (62)

Using this function, we compute the excess degree generating
function after the first step using the relationship Q = G′/G′(1),
which implies

Qh � Gh′
Gh′(1) �

G′ − R′
G′(1) − R′(1) �

G′ − R′
z~c

, (63)

where we used Eq. 57 to replace

G′(1) − R′(1) � z − z~r � z(1 − ~r) � z~c. (64)
Let’s turn to the second step of the attack and remove the

remaining stubs of the broken links. We proceed as in the
previous case and define the generating function for the
probability that a link remains intact

~A � ~cx + 1 − ~c, (65)
and then use the dice-of-dice rule to find the degree and excess

degree generating function after the attack

Ga � Gh( ~A) � G( ~A) − R( ~A)
c

Qa � Qh( ~A) � G′( ~A) − R′( ~A)
z~c

. (66)

At this point, we already have the generating functions that we
need for giant component calculations, but, for completeness,
let’s also compute the mean degree and mean excess degree after
the attack:

za � Ga′(1) �
~A′(1)
c

G′( ~A(1)) − R′ ~A(1)( ) � ~c

c
G′(1) − R′(1)( ) � z~c2

c
, (67)

qa � Qa′(1) �
~A′(1)
~c

G″(1) − R″(1)
z

� q − δ. (68)

The second of these equations justifies why we call δ the
removed excess degree. The simplicity of this equation is
surprising and probably hints at some deeper insights that
may yet be gained.

In summary, some network properties after a degree-targeted
attack described by the attack generating function R are

Na � cN (69)
za � z

~c2

c
(70)

qa � q − δ (71)
Ga � G( ~A) − R( ~A)

c
(72)

Qa � G′( ~A) − R′( ~A)
z~c

, (73)

where ~A � ~cx + (1 − ~c), ~c � 1 − R′(1)/z, c = 1 − R (1) and δ =
R′′(1)/z.

4.4 Viral Attacks
Another interesting class of attacks that we can treat with the
same mathematics are “viral” attacks that propagate across the
same network that they are attacking. Real-world examples
include computer viruses and certain infrastructure disruptions
such as traffic gridlock and cascading line failure in power grids,
but also viral advertising campaigns, etc. Even vaccinations could
be turned into viral attacks on an epidemic if we let recipients of
the vaccination nominate further recipients.

When dealing with viral attacks, one potential pitfall is to
confuse ourselves by thinking too much about the dynamic
nature of the attack. Network science has good methods for
dealing with dynamics, but in this paper, we aim to study attacks
from a purely structural angle. We will therefore consider the
state of the network after the attack has stopped spreading
because it can’t reach any more nodes.

If the attack can spread across every link in the network, it will
eventually reach every node in the entire component. It is more
interesting to consider an attack that can only spread across a
certain portion of the links, chosen randomly. For example, only
some roads may have enough traffic flowing along them to allow
gridlock to spread. In the following, we call such links that can
propagate the attack as conducting links.
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Now the attack will infect all nodes that it can reach by a path
of conducting links. In other words, the attack reaches the entire
component in a different version of the network where we count
only the conducting links. Because the non-conducting are now
ignored, the components in the network of conducting are
smaller than the components in our original network,
potentially allowing some nodes to escape the attack.

Considering a proportion w of the links as non-conducting
is analogous to a link removal attack on the viral attack. Hence
if the non-conducting links are distributed randomly, then we
can re-purpose our treatment of random link removal to study
how many nodes will be affected by the viral attack. For
example, we can see immediately that in a network with
mean excess degree q, there is a giant component in the
network of conducting links if (1 − w)q > 1. Otherwise, a
viral attack starting from one node can only spread to a very
small number of nodes.

From now on, we refer to the nodes and links that are part of
the giant component in the network of conducting links as the
giant conducting component.

Furthermore, we can use the results of the random-link-
removal attack to compute the number of nodes that are
affected by a viral attack. For this purpose, we need to
construct a pruning function corresponding to the removal of
the non-conducting proportion w of the links,

A � (1 − w)x + w, (74)

which then allows us to compute the giant conducting
component size by solving

vc � Q(A(vc)), (75)
sc � 1 − G(A(vc)). (76)

This component size is the proportion of nodes that are
removed if an attack starts in the giant conducting
component. It is also the probability that a randomly chosen
initial spreader will be part of the giant conducting component
and hence cause such a large cascade. Otherwise, the initial
spreader will be located in a small component of the
conducting network and, the attack will only affect a small
number of nodes.

A typical question that arises in the context of viral attacks is if
the giant component of the original network can survive a viral
attack of a given scale. Thinking about this question becomes
much easier if we start in the middle and consider a network in
which a certain proportion of links y is not in the giant conducting
component (Figure 4), either because they are not conducting, or
because they are conducting but part of a smaller component.

We start by constructing the attack generating function R in
analogy to our treatment of targeted attacks. If an attack starts in
the giant conducting component, it will reach every link except
the proportion y. Hence a node of degree k will not be affected by
the attack with probability yk. Conversely, nodes of degree k will
be affected by the attack with probability 1 − yk. Hence the

FIGURE 4 | Illustration of a viral attack. Before the attack (A) some proportion of the nodes and links is in the giant component (colored), whereas others are in small
components (grey). We consider a situation where only a small fraction of the links conduct the attack (dark red links, only marked in giant component). To assess the
impact of a viral attack (B), we remove all non-conducting links and compute the size of the giant conducting component (red nodes). After the attack (C) all nodes in the
giant conducting component and their links have been removed from the original network. The giant component in the remaining network is now smaller as some of
its nodes have been destroyed and others have become separated into small components.
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probability that a randomly picked node has degree k and is
affected by the attack is

rk � pk(1 − yk). (77)
Hence the generating function for the node removal is

R � ∑
∞

k�0
pk(1 − yk)xk � G − G(xy). (78)

We can now reuse some results from our treatment of degree-
targeted attacks. The proportion of nodes affected by the attack is

r � R(1) � 1 − G(y). (79)
The proportion of removed endpoints is

~r � R′(1)
z

� G′(1) − yG′(y)
z

� 1 − yG′(y)
z

, (80)

and the reduction in excess degree due to the attack is

δ � R″(1)
z

� q − y2G″(y)
z

. (81)

Hence, after the attack the proportion of remaining nodes is

c � 1 − r � G(y). (82)
The proportion of surviving endpoints is

~c � 1 − ~r � yG′(y)
z

, (83)

and the remaining excess degree of the network is

qa � q − δ � y2G″(y)
z

. (84)

We can now construct the pruning function

~A � ~cx + ~r. (85)
Using Eq. 66 we can write the generating functions after the

attack

Ga � G( ~A) − R( ~A)
c

� G( ~Ay)
G(y) (86)

Qa � G′( ~A) − R′( ~A)
z~c

� G′( ~Ay)
G′(y) , (87)

from which we can compute the giant component size in the
usual way.

So far, all of these results are expressed in terms of y. Let’s
explore how y (the proportion of links that are not in the giant
conducting component) is related to the more intuitive w (the
proportion of non-conducting links). We start by noting that
we have two ways to compute the number of nodes removed in
the attack on the giant conducting component. We can
compute it from our calculation of the giant conducting
component size in Eq. 76. Otherwise we can compute it via
Eq. 79 from the attack function R. Combining these two
equations we get,

G(A(vc)) � G(y), (88)
since G is a rising function, this implies

y � A(vc), (89)
which we can compute from w using Eqs 74 and 75.

In summary, after a viral attack that can spread across a
proportion 1 − w of the links in the network, will result in a large
outbreak with a probability of 1 − G(y), and if it does, will affect
the network as follows:

Na � G(y)N (90)
za � (yG′(y))2

zG(y) (91)

qa � y2G″(y)
z

(92)

Ga � G( ~Ay)
G(y) (93)

Qa � G′( ~Ay)
G′(y) , (94)

where y = A (vc), A = (1 − w)x + w, and vc is the solution of vc = Q
(A (vc)).

5 EXAMPLES AND GENERAL RESULTS

The results reviewed in the sections above provide us with a
powerful toolkit. We now illustrate this toolkit in a series of
examples.

5.1 Robustness to Random Attacks
Let us start with a three-regular graph, where every node has
exactly 3 links. This network is interesting because the property of
all networks that suffer random attacks on the three-regular
graph can be computed analytically, highlighting it as a great
example for teaching.

Since all nodes in this network have degree three, the degree
generating function before the attack is

G � x3, (95)
and the corresponding excess degree generating function is

Q � G′
z

� x2, (96)

which confirms that, if we follow a random link, we expect to
find exactly two additional links at the destination, as it should be.

Because the mean excess degree is only q = 2, we can break the
giant component already by removing half the links at random,
but let’s see what happens when we start removing nodes or links
at random. Using Eqs 34 and 36 we know that the generating
functions after the attack will be

Ga � G(A) � (cx + r)3, (97)
Qa � Q(A) � (cx + r)2. (98)
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To find the giant component size we use Eq. 28 and

v � Qa(v) � (cv + r)2. (99)
This is a quadratic polynomial and can be factorized straight

forwardly. Alternatively, we can guess that v = 1 will be a solution
and then factor v − 1 out by polynomial long division. Both ways
lead us to

v � (c − 1)2
c2

� r2

c2
, (100)

from which we can see in a different way that the v reaches 1
(and consequently the giant component breaks) when we have
removed half the links at random (i.e. r = c). Let’s focus instead on
finding the giant component size when it exists. Again following
Eq. 28 we compute

s � 1 − Ga(v) � 1 − (cv + r)3 � 1 − v(cv + r) � 1 − v(r + c)r/c
� 1 − vr/c � 1 − r3/c3.

(101)
This result shows that the regular graph is initially quite tough.

Before we start removing nodes or links, the giant component
contains all nodes. For a small attack, the reduction in giant
component size initially scales like r3 and hence removing a small
proportion of the nodes and/or links has almost no effect on the
size of the giant component in the remaining network. But, once a
significant proportion of nodes/links have been removed, the
impact on the giant component accelerates and quickly leads to
its destruction.

Let us compare these results from the regular graph with a
network where three-quarters of the nodes have degree 1 and one
quarter has degree 9. This network also has a mean degree z = 3,
but its mean excess degree is q = 6. The generating functions
before the attack are

G(x) � 3x + x9

4
, (102)

Q(x) � 1 + 3x8

4
. (103)

To find the size of the giant component before the attack, we
solve

v � 1
4
+ 3v8

4
. (104)

While we could solve this equation numerically, an insightful
shortcut is to note that the solution must be very close to v = 1/4.
Using this approximate solution, we can then compute the giant
component size as follows:

s � 1 − 3v + v9

4
� 1 − v

9 + (4v − 1)
12

( ), (105)

where we used v8 = (4v − 1)/3 to avoid the inaccuracy from raising
a numerical approximation to the 9th power. We can see that
the factor in the bracket is approximately 0 and hence s = 1 − 3v/4

= 1–3/16 = 0.8125, which is the correct result up to 4 digits of
accuracy.

The result shows that, in this heterogeneous network, the giant
component contains only about 81% of the nodes, even before the
attack. Conversely, we know that for a network with q = 6 removal
of 5/6 ≈ 83% of the network is necessary to break the giant
component.

To study the effect of the attack in more detail we have to solve

v � Qa(v) � Q(A(v)) � 1 + 3(cv + r)8
4

, (106)

which we now solve numerically. For teaching (or even a quick
implementation on a computer), it is interesting to note that
equations of this form can be quickly solved by iteration, i.e. we
interpret the equation as an iteration rule

vn+1 � Qa(v) � Q(A(v)) � 1 + 3(cvn + r)8
4

. (107)

Starting from an initial estimate, say v0 = 1/4, the iteration
converges in a few steps due to the high exponent. Once we have
obtained the value of v for a given value of r, we can compute the
corresponding giant component size as

s � 1 − G( ~A(v)), (108)
the result is shown in Figure 5. Although the figure confirms

that the giant component persists until 5/6 of the nodes or links
have been removed, it also shows that for moderate attacks, the
homogeneous topology has a giant component that is larger in
absolute terms and also initially less susceptible to attacks.

FIGURE 5 | Robustness of homogeneous and heterogeneous networks
to random damage. Plotted is the proportion of nodes in the giant component
versus removed links after the attack for a homogeneous (green, Eq. 101) and
heterogeneous (red, Eq. 108). The homogeneous networks resist small
attacks better whereas, the heterogeneous network survives a higher
proportion of removal (Random node removal is described by the same
curves, in this case, the proportion of the giant component refers to the
proportion of remaining nodes).
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This leads us to an important take-home message. We can say,
homogeneous networks are like glass: They are very hard when
hit lightly but, strong impacts shatter them. Heterogeneous
networks are like foam: Parts can be disconnected even
without an attack, and it is easy to tear bits off, but it is very
tedious to destroy the giant component in its entirety.

5.2 Targeted Attack on a Heterogeneous
Network
Let us now consider a targeted attack on the heterogeneous
network from the previous section. For a simple start, we
explore what happens when we remove half of the nodes of
degree 9, i.e. we are only removing 1/8 of the total number of
nodes in the network. In this case, the generating function for the
targeted attack is

R � 1
8
x9, (109)

and hence we can compute

r � R(1) � 1
8

s � 1 − r � 7
8
, (110)

~r � R′(1)
z

� 9
24

~s � 1 − ~r � 5
8
, (111)

δ � R″(1)
z

� 3. (112)

We can now use the formulas derived above to compute the
mean degree and the mean excess degree after the attack

za � z
~c2

c
� 75
56

qa � q − δ � 3. (113)

So, in this case, removing 1/8 of the nodes already halves the
excess degree. We can also ask what proportion p of the nodes we
need to remove if we only target nodes having initially degree 9.
We can consider the attack R = rx9. Since we need qa = 1 to break
the giant component and start with q = 6,

δ � 5 � R″(1)
z

� 24r. (114)

Hence, we can break the giant component by removing r = 5/
24 of the nodes, which is a little bit more than 20%.

We can also compute the size of the giant component after
a proportion r of the nodes is removed in an attack that
targets only the high degree nodes. Considering again R = rx9,
we first compute the proportion of surviving endpoints using
Eq. 57

~c � 1 − 9r
3
� 1 − 3r, (115)

and the pruning function

~A � (1 − 3r)x + 3r. (116)
Which allows us to write the self-consistency condition for v as

v � Qa(v) � G′( ~A(v)) − R′( ~A(v))
z~c

� 1 + 3 1 − 4r( )((1 − 3r)v + 3r)8
4(1 − 3r) , (117)

and the giant component size as

s � 1 − Ga(v) � 1 − G( ~A(v)) − R( ~A(v))
c

� 1 − 3 ~A(v) + (1 − 4r) ~A(v)9
4(1 − r) . (118)

This again can be solved by numerical iteration or
parametrically. A comparison between the effect of the
targeted and the random attack on the heterogeneous network
is shown in Figure 6. This illustrates the fragility of
heterogeneous networks to targeted attacks [4, 39]. By
contrast, the effect of a targeted attack on a homogeneous
network is the same as a random attack, as it contains only
nodes of the same degree.

5.3 Viral Attack on a Heterogeneous
Network
For our final example, we study a viral attack on the
heterogeneous example network. For illustration, we consider
the case where 80% of the links are non-conducting, i.e. w = 0.8.

Following Eq. 74, we can prune the none conducting links
from the network by the pruning function

A � 0.2x + 0.8, (119)

FIGURE 6 | Effect of different types of attacks on heterogeneous
networks. Shown is the giant component size of the heterogeneous example
network after a random attack (red, Eq. 108), a viral attack (green, Eq. 128)
and an optimal degree-targeted attack (blue, Eq. 118). Targeting the
nodes of highest degree destroys the giant component very quickly. The viral
attack is almost as efficient in destroying the network, while requiring much
less information on the node degrees.
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and hence the generating functions of the conducting
network are

Ga � G(A) � 3(0.2x + 0.8) + (0.2x + 0.8)9
4

(120)

Qa � Q(A) � 1 + 3(0.2x + 0.8)8
4

. (121)

We find the giant conducting component solving Eq. 75 by
iteration:

v � Qa(v), (122)
which yields v ≈ 0.735, and then compute the conducting
component size from Eq. 76,

sc � 1 − Ga(v) ≈ 0.136. (123)
This tells us that an attack that starts from a randomly-

selected node will lead to a large outbreak with a
13.6% probability, and if it does, it will remove 13.6% of
the nodes.

To explore the effect that the removal has on the remaining
network, we compute y using Eq. 89,

y � A(v) ≈ 0.947, (124)
so almost 95% of links are not in the giant conducting
component.

Now that we know y, we can use Eq. 83 to compute the
proportion of surviving endpoints after the attack,

~c � yG′(y)
z

� 3y + 9y9

12
≈ 0.697, (125)

and the proportion of removed endpoints,

~r � 1 − ~c ≈ 0.303. (126)
We can now construct our pruning function, ~A, for the viral

attack itself (Eq. 85) and then compute the giant component size
by first solving

v � Qa(v) � Q( ~A(v)), (127)
which yields v ≈ 0.252. And then computing the remaining giant
component size as

s � 1 − Ga(v) ≈ 0.640. (128)
In summary, we have studied an example where only 20% of

the links actually conduct the attack. With so few links, there is
only a 13% chance that it causes a significant outbreak. However,
while such an outbreak, if it occurs, removes only 13% of the
nodes, it preferentially hits the nodes of high degree and, as a
result, only 64% of the nodes in the surviving network remain in
the giant component.

Repeating the calculation for different values of w reveals that
the viral attack is an intermediate case between random and
optimal degree targeted attacks (Figure 6). In heterogeneous
networks, they are almost as damaging as the optimal degree
targeted attack while not requiring the attacker to know the
complete degree sequence of the network.

6 CONCLUSION AND DISCUSSION

In this paper, we revisited the well-known topic of attacks on
networks. We aimed to present this topic in a consistent and
didactic way and show that the effect of four types of attacks
(random removal of links, random removal of nodes, degree-
targeted removal of nodes, and viral attacks) can be summarized
in compact equations. In many cases these equations, can be
solved with pen and paper.

Our examples illustrate some important and widely-known
take-home messages about the robustness of networks. As these
are sometimes misconstrued in the wider literature, let us try to
restate these messages clearly:

• Networks with homogeneous degree distributions are like
glass, they are incredibly hard when attacked lightly, but
heavier attacks can shatter them easily.

• Networks with heterogeneous degree distributions are like
foam. Random attacks can quickly detach parts of the giant
component. However, shedding the weakest parts enables
the giant component to survive significant damage.

• Degree-targeted attacks are relatively pointless against
homogeneous networks as the variation in node degrees
is low.

• Degree-targeted attacks against heterogeneous networks are
devastating and can quickly destroy the giant component.

• Propagating/viral/cascading attacks that spread across the
network itself are almost as dangerous as degree targeted
attacks as they hit high-degree nodes with high probability.

We emphasize that these are only the most basic insights into
configuration-model type networks, and thus strictly hold only in
the absence of additional organizing principles such as strong
embedding in physical space or the presence of degree
correlations and short cycles. Several other papers have
extended the theory reviewed here to alleviate these
constraints. Notable results include the positive effect of
positive degree correlations, which can make the network
much more robust against targeted attacks [16, 17], and the
effect of clustering of short cycles, i.e., network clustering [18, 19].

For the class of random and degree-targeted attacks, we
showed that the effect of these attacks on the mean and mean
excess degree can be captured by very simple equations that can
be derived relatively straight-forwardly. Moreover, we pointed
out a case (the three-regular-graph) for which the giant
component size after all types of attacks can be computed
analytically in closed form. For other networks, numerical
solutions are needed, but they can be solved by quick
numerical iteration on a calculator, rather than requiring full-
scale numerics.

In this paper, we have often referred to the example of
vaccination campaigns, and hence a scenario where we want
the attack to succeed. However, many of the insights gained can
also be applied to make networks more robust against attacks.
Many of the conclusions that have been drawn have been
discussed abundantly in the literature. Instead of reiterating
these, let us point out some issues that have gained

Frontiers in Physics | www.frontiersin.org June 2022 | Volume 10 | Article 82356414

Gross and Barth Network Robustness Revisited

209

https://www.frontiersin.org/journals/physics
www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


comparatively less attention. While it is widely known that the
giant component in scale-free networks is highly robust, the
results from our examples show that more homogeneous
networks are robust in a different way: They resist weaker
attacks exceptionally well and are also much less susceptible to
targeted and viral attacks. It is interesting to reflect on the stability
of homogeneous networks against small-scale attacks and
damage in a business context. For private businesses,
catastrophic events that cause large-scale damage are often not
a primary concern, as government actors are expected to
intervene in the case of such an event. In comparison, small-
damage events typically arrive at a higher rate and will have to be
dealt with by the network operator on their own. In this light
operating, a very homogeneous network might be in the interest
of a business that operates it. However, for governments and the
general public optimizing networks in this way, may be
detrimental as it leads to low disaster resilience.

The example illustrates a deeper insight into the nature of
network robustness: By adjusting topological properties, we can
make networks more resilient against certain types of attacks and
damage (cf. [20]). However, unless we increase the overall
connectivity, this resilience is usually gained at the cost of
increasing vulnerabilities to other attacks. In the real world,
where increasing connectivity often comes at a steep price, we
can still optimize the robustness by shaping the network such that
it can optimally withstand the most likely types of damage.
However, care must be taken to make sure we also understand
the downsides of such optimization.

Perhaps a more important conclusion from the present work is
that the physics of attacks on networks is a rewarding field of study.
The authors greatly enjoyed revisiting the relevant calculations, and
the results highlighted here provide a flexible toolkit that, in our
opinion, still has large potential to be more widely used in a broad
range of fields. We hope that readers likewise find this review of the
foundations of network robustness helpful and will carry this topic
into university curricula and new fields of application.
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