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Editorial on the Research Topic

Editorial: Unleashing Innovation on Precision Public Health–Highlights From the MCBIOS

and MAQC 2021 Joint Conference

This Research Topic is a product of the 17th annual conference of the Midsouth Computational
Biology and Bioinformatics Society (MCBIOS), which has a broad membership of scientists and
trainees with research interests in genomics, medicine, drug discovery and therapeutics. The topic
includes a total of eight papers, four of which appear in Frontiers in Artificial Intelligence (including
three original research articles and one review), three in Frontiers in Big Data (including one
original research article, one Technology and Code article, and one brief research report), and one
in Frontiers in Genetics Computational Genomics (Data Report). The papers can be categorized into
two general themes of genomics and machine learning applications, as described below.

GENOMICS

Genomic data are generated in a complicatedmulti-step process that can impact the reproducibility
of the results. In addition, many methods and software tools are available to analyze genomic
data, which often yield different results from the same data. To address these challenges, Ma et al.
developed a software infrastructure called NPARS (NGS post-pipeline accuracy and reproducibility
system) that encapsulates genomic datasets in a portable database container, which can then
be analyzed by well-established open-source application programming interfaces (APIs). They
demonstrated the usefulness of NPARS in improving accuracy and reproducibility of different
analysis methods on large and complex genomic data sets. In addition, the infrastructure provides
a more convenient means to collaborate between groups.

Wang et al. enhanced the loci2path software for performing eQTL enrichment to identify
enriched tissue specific pathways. The improved version includes additional pathways from PID,
Reactome, and WikiPathways. The study uses over 13 million eQTLS from the Genotype Tissue
Expression (GTEx) resource for 49 tissue types. Biological pathways that are likely to be involved
in ten critical traits such as Alzheimer’s disease, schizophrenia, and non-small cell lung cancer were
identified. The software was shown to be valuable at uncovering new biological mechanisms of
important traits.
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Quintanillla et al. developed a comprehensive database for
genes and variants specifically related to Acute Respiratory
Distress Syndrome (ARDS). The ARDS-DB framework provides
gene and variant information and associated metadata derived
from primary level curation of experimentally verified studies.
The advantage of a dedicated gene database for deeper analysis
of ARDS is that it provides the user with a centralized location to
retrieve pertinent information. ARDS DB is freely available via
an open-source repository and represents a major step toward
filling a gap in computational resources for bench biologists
and clinicians.

MACHINE LEARNING APPLICATIONS

Scientific data are growing and expanding at an overwhelming
pace, making it challenging for scientists to organize, analyze
and extract value from the vast amount of data. There is an
urgent need for efficient and reliable methods and tools to
mine signatures out of large datasets. Using an unsupervised
machine learning approach, Nguyen et al. developed a software
tool called SEAS (Statistical Enrichment Analysis of Samples) for
mining biological sample information from genomic data. SEAS
is available as a standalone or web version with a user-friendly
graphical user interface. It can extract metadata and analyze
numerical and categorical data to compute sample similarities
and to cluster samples (e.g., patients). The authors demonstrated
the utility of SEAS on publicly available data sets from The
Cancer Genome Atlas (TCGA).

Li et al. present the development and implementation of
DeepCarc, which uses a deep learning framework to predict
carcinogenicity of small molecules. DeepCarc was developed
using data in the National Center for Toxicological Research liver
cancer database (NCTRlcdb) and tested against data inDrugBank
and Tox21. DeepCarcmodel outperformed fivemachine learning
classifiers, two state-of-the-art ensemble methods, and four
molecule-based deep learning models. The DeepCarc model is
designed to be an alternative method to test carcinogenicity and
to alleviate the time-consuming and labor-intensive process of
evaluating carcinogenic potency in experimental animal systems.
DeepCarc is freely available for use and can be accessed via the
following link: (https://github.com/TingLi2016/DeepCarc).

Application ofmachine learning to histopathological images is
becoming common in both academic and commercial domains.
There is still a need to detect and classify different immune
cell types in the tumor immune microenvironment (TIME),
which play crucial roles in determining cancer progression,
metastasis, and response to treatment. Lee et al. provide a review
of published models and applications in the three different scales
of histopathology analyses: whole slide image (WSI)-level, region
of interest (ROI)-level, and cell-level. In addition they provide a
simplified framework for the development of a cell-type classifier
using weakly labeled datasets generated from immunolabeled
slides. The pros and cons for each method is highlighted and the
future direction for histopathological image analysis is discussed.

Automated analysis of drug labels for “indication and
usage” can be useful for clinical decision making, regulatory
management as well as drug repositioning. Bhatt et al. developed
a five-category Drug Indication Classification and Encyclopedia

(DICE) based on >7,000 sentences from FDA approved human
prescription drug labels. In addition, they developed nine
different AI-based classifiers, including 4-word embeddings-
based Bidirectional long short-term memory (BiLSTM) models
and five transformer-based language models. The model
performance was comprehensively assessed based on a test set
and an independent validation set.

Adverse drug reactions (ADRs) such as drug-induced
liver injury (DILI) are described in three sections, “Adverse
Reactions”, “Warnings and Precautions” and “Boxed Warning”,
in FDA drug labeling documents. Because of the complexity
of the language and lack of standardization, Wu et al.
explored using deep learning based language modeling approach
to classify DILI from drug labels. A Bidirectional Encoder
Representations from Transformers (BERT) model was trained
for binary DILI classification of FDA-approved drug labeling
documents and was externally validated using EMA-approved
drug labeling documents.

Taken together, the papers selected for this Research Topic
provide examples of cutting-edge approaches for standardizing
analysis of large datasets and demonstrate the utility of applying
machine learning methods to extract valuable insights from such
data sources.
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Drug labeling contains an ‘INDICATIONS AND USAGE’ that provides vital information to
support clinical decision making and regulatory management. Effective extraction of drug
indication information from free-text based resources could facilitate drug repositioning
projects and help collect real-world evidence in support of secondary use of approved
medicines. To enable AI-powered language models for the extraction of drug indication
information, we used manual reading and curation to develop a Drug Indication
Classification and Encyclopedia (DICE) based on FDA approved human prescription
drug labeling. A DICE scheme with 7,231 sentences categorized into five classes
(indications, contradictions, side effects, usage instructions, and clinical observations)
was developed. To further elucidate the utility of the DICE, we developed nine different AI-
based classifiers for the prediction of indications based on the developed DICE to
comprehensively assess their performance. We found that the transformer-based
language models yielded an average MCC of 0.887, outperforming the word
embedding-based Bidirectional long short-term memory (BiLSTM) models (0.862) with
a 2.82% improvement on the test set. The best classifiers were also used to extract drug
indication information in DrugBank and achieved a high enrichment rate (>0.930) for this
task. We found that domain-specific training could provide more explainable models
without performance sacrifices and better generalization for external validation datasets.
Altogether, the proposed DICE could be a standard resource for the development and
evaluation of task-specific AI-powered, natural language processing (NLP) models.

Keywords: natural language processing, deep learning, artificial intelligence, transformers, drug indication

INTRODUCTION

Drug labeling contains an ‘INDICATIONS AND USAGE’ section that provides vital information to
support clinical decision making and regulatory management. The primary role of drug indications
is to enable health care practitioners to readily identify appropriate therapies for patients and support
clinical decision making (Sohn and Liu, 2014). The information on drug indication is part of the
required information in FDA approved drug labeling and guides the content and format of labeling
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of human prescription drugs and biological products [21 CFR
201.57(c) (2)]. Drug indications also provide guidance for
facilitating clinical knowledge management and play an
essential role in enabling the secondary use of electronic
medical records (EMRs) for clinical-based translational
research. Besides the primary drug indication approved for the
drug, information on off-label uses and repurposing
opportunities, or alternative uses of drugs, are common within
biomedical-related data resources such as scientific literature,
patents, public health forums, and pharmacological,
biomedical, or drug labeling databases (Salmasian et al., 2015;
Delavan et al., 2018). Furthermore, indication information
extraction is also a regulatory requirement for creating the
highlights section of the Physician Labeling Rule (PLR)
labeling, which provides concise information for public health
practitioners, patients and drug reviewers (https://www.fda.gov/
drugs/laws-acts-and-rules/prescription-drug-labeling-resources).
Thus, developing an effective approach to facilitate the mining
of drug indication information from free text-based resources
is an important task for biomedical natural language
processing (NLP).

Some attempts to extract drug indications from free text-based
documents have been undertaken, mainly based on the
combination of named entity recognition (NER) approaches
with conventional machine learning algorithms (Fung et al.,
2013; Khare et al., 2014; Khare et al., 2015). One example is a
two-step strategy for drug indication extraction proposed by
Khare et al. 2014. Here, disease terminology is extracted from
over 500 drug labels using a MetaMap tool with the Unified
Medical Language System (UMLS)-based disease lexicon as the
control vocabulary (Aronson, 2001). Then, a binary support
vector machine (SVM) classifier is implemented to distinguish
drug indication from other information such as adverse drug
reactions, yielding an 86.3% F1 measure (the measure of a
model’s accuracy) for the indication extraction task,
representing a 17% improvement over baseline approaches.
With advances in AI-powered NLP, new approaches have
been developed, which may provide additional performance
improvements in the task of drug indication extraction.
Artificial intelligence (AI)-powered language models such as
transformers have achieved greater improvement compared to
other approaches in various NLP tasks (Vaswani et al., 2017a;
Devlin et al., 2018). Several biomedical-based BERT models
(i.e., BioBERT, SciBERT, and clinicalBERT) have been
developed for domain-specific tasks such as biomedical named
entity recognition (NER) (Beltagy et al., 2019; Huang et al., 2019;
Lee et al., 2020). Disease entity recognition corpora, such as the
NCBI disease corpus, have become widely established sources for
developing AI-based NER approaches (Doğan et al., 2014).
However, the lack of large corpora for disease information
classification hampers AI-based NLP development, and efforts
to address this gap are urgently needed (Khare et al., 2015).

Based on guidance for industry on the ‘INDICATIONS AND
USAGE’ section of Labeling for Human Prescription Drug and
Biological Products, content should be concise but unambiguous.
The information in the ‘INDICATIONS AND USAGE’ section
should readily allow the identification of approved indication(s)

and reflect current scientific evidence. Furthermore, indication
terminology should be standardized, clinically relevant,
scientifically valid, and easily understandable. Also, this
information should be consistent within/across drug and
therapeutic classes to aid the indexing of indications in
electronic drug databases and medical information systems.
Drug indication information often comprises mixed
information such as age group, subpopulations, classifications
such as adjunctive or concomitant therapy, specific tests/
diagnoses, and other disease conditions or clinical
manifestations. Thus, drug labeling is a great resource for drug
indication classification, facilitating the development of AI-based
NLP models, and further improving drug indication information
extraction.

We developed a five-category Drug Indication Classification
and Encyclopedia (DICE) based on FDA approved human
prescription drug labeling to facilitate the development of AI-
based NLP approaches for enhanced drug indication extraction
from free text-based document resources. The DICE scheme
categorizes the >7,000 sentences in the ‘INDICATIONS AND
USAGE’ section into five classes, including indication,
contraindication, side effect, usage instruction, and clinical
observations. To verify the utility of DICE, we developed nine
different AI-based classifiers, including 4-word embeddings-
based Bidirectional long short-term memory (BiLSTM) models
and five transformer-based language models. The model
performances were comprehensively assessed based on a test
set and an independent validation set. Some critical questions
such as the benefit of domain-specific training for AI-based NLP
were also investigated. Furthermore, the model explainability was
discussed for real-world applications.

MATERIALS AND METHODS

Figure 1 illustrates the workflow of the study. The study consisted
of two components: DICE development, and AI-powered
indication classification model development based on DICE.

Drug Indication Classification and
Encyclopedia Development
To curate an indication classification corpus, we employed US
Food and Drug Administration (FDA)-approved drug labeling.
Drug labeling, also known as the package insert or prescribing
information, accompanies every FDA approved medicine as
required under the US Code of Federal Regulations (21 CFR
201.56). Drug labeling is submitted by the manufacturer and
approved by FDA and includes a rich source of information on
safe and effective drug usages. There are more than 80 sections
embedded in a drug labeling document (Fang et al., 2020).
Among the labeling sections, the INDICATIONS AND
USAGE section aims to enable health care practitioners to
readily identify appropriate therapies for patients by clearly
communicating the drug’s approved indication(s) (https://
www.fda.gov/media/114443/download). The ‘INDICATIONS
AND USAGE’ section mainly contains information such as
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“1) The disease, condition, or manifestation of the disease or
condition (e.g., symptoms) being treated, prevented, mitigated,
cured, or diagnosed;” and “2)When applicable, other information
necessary to describe the approved indication (e.g., descriptors of
the population to be treated, adjunctive or concomitant therapy,
or specific tests needed for patient selection).” Since the
‘INDICATIONS AND USAGE’ section contains such a variety
of information, it is imperative to develop an indication
classification corpus for automatic indication extraction.

Specifically, we extracted a list of FDA approved drug labels by
using a search query “human Rx” under labeling type in the
FDALabel databases (version 2.5, https://nctr-crs.fda.gov/

fdalabel/ui/search) (Mehta et al., 2020). Consequently, we
obtained queried results with summary information of human
prescription (Rx) drug labeling. To obtain ‘INDICATIONS AND
USAGE’ sections for a unique list of human prescription drug
labels, we implemented the following strategy: 1) collapse the
labeling with the same Unique Ingredient Identifier (UNII); 2)
select the labeling with latest effective time as the representative
one (i.e., XML file) for each collapsed labeling; 3) extract
‘INDICATIONS AND USAGE’ section from XML file based
on Logical Observation Identifiers Names and Codes (LOINC)
for Human Prescription Drug and Biological Product Labeling
(https://www.fda.gov/industry/structured-product-labeling-

FIGURE 1 | Workflow of the study.
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resources/section-headings-loinc). The LOINC code for
INDICATIONS AND USAGE section is “34067-9”
(Figure 1).

To manually annotate the information in the ‘INDICATIONS
AND USAGE’ sections into different categories, we developed a
five-class indication classification scheme (Figure 1). We split the
extracted ‘INDICATIONS ANDUSAGE’ sections into sentences.
Each of the 7,231 sentences were placed into one of five
categories, namely indication, contraindication, side effect,
usage instruction, and clinical observations. Assignments were
based on predefined keywords and a priori knowledge. Three
experienced, expert pharmacologists carried out the manual
annotations independently and a consensus assignment was
selected for indication information classification.

AI-Powered Indication Extraction Model
Development
For the purposes of indication extraction, the extracted 7,231
sentences assigned with the category ‘indication’ were considered
as positives, and sentences assigned to any of the other four
categories were considered negative. The 7,231 curated sentences
were divided into the training and test sets with an approximate
ratio of 80:20. Consequently, we obtained 5,785 sentences and
1,446 sentences for the training and test sets, respectively. Two
types of deep learning models were developed, including word
embedding-based BiLSTM models, and transformer-based
language models.

Preprocessing
We implemented the following procedure to preprocess the
sentences: 1) the sentences were tokenized; with stripping of
punctuation, digits, and words with less than two characters; 2)
stop word removal; and 3) lemmatization.

Word Embeddings
Word embedding is a set of language modeling and learning
techniques in NLP to map words or phrases from a vocabulary to
a numeric vector representation. In this study, we used two types
of word embeddings including Word2vec (Mikolov et al., 2013a;
Mikolov et al., 2013b) and Glove (Pennington et al., 2014).

Word2vec is a shallow neural network framework
(i.e., continuous bag-of-words (CBOW) and continuous skip-
gram) used to estimate continuous vector representations of
words from large text corpora (Mikolov et al., 2013a; Mikolov
et al., 2013b). The generated word embeddings position words
with common contexts close to one another. Word2vec has been
used widely in NLP tasks such as semantic relationship extraction
(Chen et al., 2018), text classification (Jang et al., 2019), and
sentiment analysis (Rezaeinia et al., 2019). In this study, we use
three pretrained domain-specific word2vec models, including
Word2vec with PubMed and PMC (i.e., Word2vecPubmed +
PMC), word2vec with PubMed, PMC, and Wikipedia
(i.e., Word2vecPubmed + PMC + Wikipedia), and word2vec
with FDA approved human prescription labeling
(Word2veclabeling). The Word2vecPubmed + PMC and
Word2vecPubmed + PMC + Wikipedia (200-dimension vector

models) were downloaded from https://bio.nlplab.org/(Moen
and Ananiadou, 2013). We developed the pre-trained
Word2veclabeling by using the human labeling documents
described above. The in-house implementation of word2vec
was consistent with the PubMed corpus; briefly, the
implementation used the skip-gram model with a window size
of 5, hierarchical SoftMax training, and a word subsampling
threshold of 0.001 to create 200-dimensional vectors. The
training was conducted using the Python Gensim package
(version 0.6.0).

We also employed another well-known word embedding
technique (i.e., GloVe 200-dimension vectors), which, when
applied to aggregated global word-word co-occurrence
statistics from a corpus, generate word vector representation
(Pennington et al., 2014). Specifically, the pretrained GloVe
model with 2 billion Twitter corpus was employed as the
general domain specific word embedding (i.e., GloVeTwitter);
this corpus can be downloaded from https://nlp.stanford.edu/
projects/glove/.

Bidirectional Long Short-Term Memory
To better understand the framework and theory behind the
BiLSTM, we provide a simple introduction on the Recurrent
Neural Network (RNN) and Long Short-Term Memory (LSTM).
An RNN is a set of artificial neural networks for sequential and
time-series data. Unlike conventional neural networks, RNNs
adopt recurrent hidden states to store previous inputs and
leverage sequential information of the previous inputs to
estimate the next element in the sequence. In theory, RNNs
are able to leverage previous sequential information for arbitrarily
long sequences. In practice, however, due to RNNs memory
limitations called “vanishing gradients”, the length of the
sequential information is limited to only a few steps back
(Hochreiter et al., 2001).

Hochereiter and Schimdhuber (Hochreiter and Schmidhuber,
1997) proposed the LSTMmodel, which is a gated RNN intended
to solve the “vanishing gradients” problem and greatly expand
RNNs applications for long sequence data (Gers et al., 1999). The
LSTM cell consists of four components (i.e., input gate, memory
cell, forget gate, and output gate) to remember information over a
longer period of time and thus enable reading, writing, and
deleting information from the cell’s memory. The forget gate
makes the decision of preserving/removing the existing
information, the input gate specifies the extent to which the
new information will be added into the memory, and the output
gate controls whether the existing value in the cell contributes to
the output (Siami-Namini et al., 2019). The deep-BiLSTMs are an
extension of the described LSTM model above, in which two
LSTMs are applied to the input sequence (i.e., forward layer) and
reverse of the input sequence (i.e., backward layer) (Schuster and
Paliwal, 1997). Applying the LSTM twice leads to the enhanced
learning of long-term dependencies and thus improves the
accuracy of the model.

Supplementary Figure S1 illustrates the proposed BiLSTM
model infrastructure for indication classification. The processed
sentences were vectorized by the different word embedding
techniques described above; the now vectorized sentences were
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then fed into bidirectional LSTM layers and a dense layer,
followed by a flattened layer and a dense layer. The output
layer is a probabilistic value of sentences belonging to the
indication information category. Specifically, we used a
learning rate of 0.001, Rectified Linear Units (ReLU)
activation, and an Adagrad Optimizer. The optimizer was
chosen due to its suitability for training on sparse data and its
ability to perform more informed gradient-based learning.

Transformer-Based Language Models
To further investigate the performance of advance AI-powered
NLP approaches on indication classification, we employed the
Bidirectional Encoder Representations from Transformers
(BERT) (Vaswani et al., 2017a; Devlin et al., 2018) and its
derivatives including a distilled version of BERT (DistilBERT)
(Sanh et al., 2019), A Lite BERT (ALBERT) (Lan et al., 2019), a
Robustly Optimized BERT Pretraining Approach (RoBERTa)
(Liu et al., 2019), and a pre-trained biomedical BERT
(BioBERT) (Lee et al., 2020).

BERT is a transformer that learns contextual bidirectional
representations from an unlabeled, large corpus of documents by
using two training strategies: Masked Language Model (MLM)
and Next Sentence Prediction (NSP) (Vaswani et al., 2017b;
Devlin et al., 2018). In the MLM, a randomly selected 15% of
words in a sequence are replaced with a [MASK] token, and the
model aims to estimate masked words, based on the context
provided by unmasked words. In the NSP, the model aims to
utilize the pairs of sentences as inputs and predict the sequence
order in the original documents. The BERT model has achieved
state-of-the-art performance on diverse sets of NLP tasks (e.g.,
text classification, named entity recognition) while requiring only
minimal task-specific architectural modification (i.e., fine-tuned
layers).

Two condensed BERT models, DistillBERT and ALBERT,
were proposed to overcome the obstacle of long training
times. DistilBERT uses a technique called distillation, which
approximates the BERT from the large neural network to a
smaller one. By learning from the distilled version of BERT,
DistilBERT retained about 97% performance while using only
half as many parameters as the original BERT (Sanh et al., 2019).
One of the key optimization functions used for posterior
approximation in DistilBERT is Kulback Leiber (K-L)
divergence to condense the network size while maintaining
performance. ALBERT is a light version of BERT, which
employs two techniques to reduce the parameters, including
Factorized Embedding Parametrization and Cross-layer
Parameter Sharing (Lan et al., 2019). Additionally, a self-
supervised objective is proposed for sentence order prediction
to further improve performance, addressing the suboptimal
performance of the NSP task from BERT.

RoBERTa is an updated version of BERT that improves the
pretrained optimization process (Liu et al., 2019). First of all,
RoBERTa uses a much larger set of training data (161 GB) for
pretraining to increase the model’s generalization ability.
Secondly, instead of the static masking pattern used in the
MLM model, RoBERTa introduced a dynamic masking
pattern to avoid same training mask for each training

instance. Also, the RoBERTa model developed training
objectives to enhance NSP model performance. Moreover,
RoBERTa trained on longer sequences than BERT to further
improve performance.

It was observed that generic pretrained transformer models
may not work very well in conjunction with specific domain data.
To fill this gap, BioBERT, a domain-specific BERT model, was
proposed by training the BERTbase model on large biomedical
corpus including PubMed abstracts and PMC full text (Lee et al.,
2020). The BioBERT model outperformed BERTbase on some
domain-specific tasks such as biomedical named entity
recognition (NER), and bio-Questions and answering with a
0.51–9.61% absolute improvement.

BERT-like models are designed as pre-trained deep
bidirectional representations from unlabeled text by jointly
conditioning on both left and right context in all layers. They
are then fine-tuned with an additional output layer to create
models for a wide range of tasks, such as question answering
and language inference, without substantial task-specific
architecture modifications. The fine-tuned base models of
transformers were used in this study for the binary
classification task for indication recognition. An important
difference is that these models used their native tokenizers,
which utilized sub-word tokenization (e.g., WordPiece) where
larger words may be broken down to map to token(s),
compared to the cruder tokenization implemented with the
simpler model.

Model Performance Evaluation
To train the model and measure model performance, we
employed area under the receiver operating characteristic
(ROC) curve analysis, which demonstrates the performance
of the classification model by plotting the true predictive rate
(TPR) against the false positive rate (FDR). We calculated
the area under the ROC curve (AUC) for each model described
above. We also used seven other performance metrics
including Matthews correlation coefficient (MCC), accuracy,
sensitivity, specificity, precision, negative predictive value
(NPV), and F1-score for further evaluation of model
performance by using the following confusion matrix and
formulas

MCC � TPpTN − FPpFN
��������������������������������������(TP + FP)p(TP + FN)p(TN + FP)p(TN + FN)√ (1)

accuracy � TP + TN
TP + TN + FN + FP

(2)

sensitivity � TP
TP + FN

(3)

specificity � TN
TN + FP

(4)

PPV � TP
TP + FP

(5)

NPV � TN
TN + FN

(6)

F1 � 2TP
2TP + FP + FN

(7)
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External Validation
To further investigate real-world applications of the developed
indication classification model, we applied the best-performing
models to indication descriptions in the DrugBank database. The
indication information in DrugBank is a relatively concise
description of the indication and usage of approved or
investigational drugs (Wishart et al., 2018). Specifically, the
DrugBank (version 5.1, downloaded on April 02, 2021) XML
file was downloaded via https://go.drugbank.com/releases/latest.
We developed an in-house script to extract the drug indication
information from DrugBank XML file. Consequently, a list of
3,976 indication descriptions in DrugBank were extracted to
further verify our developed model.

Visualization
To investigate the discrimination powers of different word
embeddings or sentence embeddings yielded from the
transformers models used in this study, we employed
t-distributed stochastic neighbor embedding (t-SNE) (Hinton
and Roweis, 2002). t-SNE is a non-linear dimension reduction
method. With t-SNE, the algorithm calculates the similarity in
both high dimensional space and low dimensional space. Next,
the similarity difference in both spaces is minimized using an
optimization method such as gradient descend.

Data and Code Availability
We developed a GitHub webpage (https://github.com/arjun-
bhatt/TransformersIndicationExtraction) to share the source
code and curated drug indication corpus. Specifically, all the
code script is developed under Python 3.6. The BiLSTM model is
based on tensorflow version 1.12.3. The transformers models were
based on Huggingface package version 3.02 and its backend is
tensorflow version 2.3.0 and PyTorch version 1.5.1. t-SNE was
implemented by using Python Scikit-learn package version 0.23.2.

RESULTS

Drug Indication Classification and
Encyclopedia
Figure 2A illustrates the distribution of 7,321 sentences in the
proposed drug indication classification scheme. To curate a high-
quality drug indication classification, three pharmacologists
manually read the sentences and assigned them into five
predefined categories including indication, non-indication
miscellaneous, contraindication, side effect, and usage
instruction. Based on consensus manual annotation results, the
7,231 sentences were categorized into 4,297 indication, 1,673
clinical observations, 701 contraindication, 492 usage
instructions, and 68 side effects (supplementary Table S1).

Figure 2B depicts the most frequent words in each indication
classification category using word clouds. For example, the top
five key words in the Indication category were “indicated”,
“treatment”, “patients”, “therapy”, and “disease”, respectively
(supplementary Table S2). To develop an indication
recognition classifier, we used the 4,297 indication as positives,
and 2,934 combined sentences from the other categories as
negatives, yielding a ratio between positives and negatives of
1.46. Then, we randomly split the 7,231 into a training set (80%)
and a test set (20%). Accordingly, the training set (i.e., 5,785
sentences) consisted of 3,452 positives and 2,333 negatives (P/N
ratio � 0.596), and the test set (i.e., 1,446 sentences) consisted of
845 positives and 601 negatives (P/N ratio � 0.584).

Word Embedding-Based Bidirectional Long
Short-Term Memory Models
To develop BiLSTM models for indication classification, we used
four types of word embeddings, including Word2vecPubmed +
PMC, Word2vecPubmed + PMC +Wikipedia, Word2veclabbeling,
and GloVeTwitter. To illustrate the potential benefit of domain-
specific embedding, we randomly selected four different domain-
specific words (i.e., aspirin, heart, azithromycin, and cancer) to get
their top ten most similar words (Figure 2). Figure 3 illustrates
the clusters of similar words based on the t-SNE analysis. The
Word2veclabbelin, Word2vecPubmed + PMC, and
Word2vecPubmed + PMC + Wikipedia models could cluster
similar words for the queried words more closely than
GloVeTwitter models, highlighting the benefit of domain-
specific word embedding for semantic relationship extraction
in biomedical applications. We found that the performance of
BiLSTM models with domain-specific word embeddings
(i.e., MCC � 0.878 for Word2vecPubmed + PMC + Wikipedia
>MCC � 0.864 forWord2vecPubmed + PMC >MCC � 0.857 for
Word2veclabbeling) was slightly better than that of the BiLSTM
model with general domain-based word embedding (MCC �
0.849 for GloVeTwitter). Furthermore, the other 7 performance
metrics including accuracies, AUCs, F-scores, sensitivity,
specificity, NPV and PPV of domain-specific embedding-based
LSTMs were consistently better than general domain embedding-
based BiLSTM, indicating domain-specific embedding-based
BiLSTMs could extract the indication-related information
more accurate (Table 1).

Transformers-Based Models Outperformed
the Word Embedding-Based Bidirectional
Long Short-Term Memory Model
To further explore the possibility of improving the binary
indication classification model performance, we implemented

Actual class

Indication (positive) Non-indication (negative)
Predicted class Indication (positive) True positive (TP) False positive (FP)

Non-indication (negative) False negative (FN) True negative (TN)
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five different fine-turned BERT-like transformer models,
including BERT, DistillBERT, ALBERT, RoBERTa, and
BioBERT (Table 1). First, all transformer-based models except

DistillBERT outperformed word embedding-based BiLSTMs.
Second, RoBERTa, BioBERT, and BERT yielded better
performance (MCC � 0.921, 0.917, and 0.899, respectively)

FIGURE 2 | (A) Distribution of sentences in the proposed DICE scheme; (B) word cloud of the sentences in each defined DICE category.
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than the condensed transformers including ALBERT and
DistilBERT (MCC � 0.877 for ALBERT and MCC � 0.820 for
DistilBERT). Third, domain-specific word embedding-based
BiLSTM (i.e., MCC � 0.878 for Word2vecPubmed + PMC +
Wikipedia) outperformed the condensed BERT models
(i.e., MCC � 0.820 for DistilBERT), highlighting the
improvement of model performance based on the large size of
the domain-specific corpus, even with the relatively shallow deep
learning model. Fourth, the performance of domain-specific

BERT (i.e., BioBERT) was comparable to that of RoBERTa,
which is trained on top of a large general corpus and with
more aggressive hyperparameters.

We further employed a t-SNE analysis to visualize the
contribution of hidden states of transformers on classification
performance (Figure 4). We observed the obvious margin for
discriminating positives from negatives based on the hidden layer
information of most of the transformer models. It is interesting
that the positives and negatives samples were closer for the

FIGURE 3 | t-SNE analysis of different word embedding models on the queried words.

TABLE 1 | Model performances of nine different AI-based models for indication classification on test set*.

Models MCC ACC AUC F-score Sensitivity Specificity NPV PPV

Bidirectional long short-term memory (BiLSTM)
GloVe (twitter) 0.849 0.925 0.981 0.935 0.908 0.950 0.875 0.964
Word2vc (Drug Labeling) 0.857 0.929 0.977 0.940 0.916 0.950 0.883 0.965
Word2vec (PubMed+ PMC) 0.864 0.934 0.977 0.944 0.925 0.946 0.893 0.963
Word2vec (PubMed + PMC+ Wikipedia) 0.878 0.941 0.982 0.950 0.945 0.935 0.921 0.955

BERT and its derivates
DistilBERT 0.820 0.911 0.970 0.922 0.896 0.933 0.862 0.950
ALBERT 0.877 0.941 0.978 0.950 0.964 0.907 0.946 0.937
BERT 0.899 0.951 0.985 0.958 0.949 0.954 0.927 0.968
BioBERT 0.917 0.960 0.987 0.966 0.972 0.943 0.959 0.960
RoBERTa 0.921 0.962 0.987 0.968 0.962 0.962 0.945 0.974

*Positive predictive value (PPV) and negative predictive value (NPV).
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BioBERT model, which may be the reason for the unexpectedly
small contribution of domain-specific training for the test set.

Indication Information Extraction for
DrugBank Indication Notes
Working towards a real-world application, we applied the top
performance models to extract the indication-related sentences in
DrugBank indication description notes. The Drugbank indication
description notes are concise information for drug indications
without other information such as contraindications, side effects,
and specific population. We considered all drug indication notes
as positives. Therefore, we could calculate the enrichment rate
that measures the number of indication information sentences
correctly recognized by the developed models. The enrichment
rates were ranked as RoBERTa (0.952) > BioBERT (0.936) >
BERT (0.930), which is consistent with previous results based on
test sets (Figure 5). Based on the model performances of both the
test set and external validation set, BioBERT and RoBERTa could
provide more robust performance and better generalization
ability for different data resources.

DISCUSSION

Drug indications provide key medical information to support
clinical decision making and promote the appropriate use of
medicines. Furthermore, drug indication information is also
considered a fundamental resource to assist in the
standardization of medical coding and to potentially eliminate
medical errors (Fung et al., 2013). AI-powered NLP models have
successfully been applied to various biomedical-related tasks such
as biomedical entity recognition, text classification and

questioning and answering. However, a standard corpus for
domain-specific tasks is urgently needed to advance the
development of AI algorithms. In this study, we developed a
five-tier based Drug Indication Classification and Encyclopedia
(DICE) based on FDA approved drug labels with a consensus
manual curation strategy, to facilitate automatic indication
information extraction from free text with AI-powered NLP
approaches. To verify the utility of the proposed DICE, we
conducted a comprehensive comparison of nine deep learning-
based NLP models consisting of word embedding-based
BiLSTMs and BERT family models. Encouragingly, the top
models such as RoBERTa and BioBERT outperformed others

FIGURE 5 | Enrichment rate of fine-tuned transformers on Drugbank
indication notes.

FIGURE 4 | t-SNE analysis of average hidden states of transformers on test set.
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withMCCs greater than 0.910 and accuracy greater than 0.960 on
test sets, and enrichment rates greater than 0.930 on DrugBank
indication notes, demonstrating the great potential of the DICE
with AI for automatic indication information identification.

There have been a few attempts to curate the standard corpus
of drug indication information for NLP development. However,
the sample size is limited (e.g., ∼150 drug labels) (Khare et al.,
2015). Here, we used the entire list of FDA approved human
prescription drugs to develop the DICE with a five-tier
classification scheme. The DICE scheme took into account the
FDA guidance requirement for ‘INDICATION AND USAGE’
section drafting (https://www.fda.gov/regulatory-information/
search-fda-guidance-documents/indications-and-usage-section-
labeling-human-prescription-drug-and-biological-products-content-
and). The potential utility of DICE can be divided into two
aspects: 1) The DICE could serve as a standard biomedical
classification corpus for deep learning-based NLP algorithm
development; and 2) the DICE could also be utilized for
indication information extraction model development towards
real world applications such as off-label use and potential drug
repurposing opportunities derived from free-text resources (e.g.,
PubMed, EMR, patent, and social media).

The benefits of the domain-specific training on different
biomedical applications have been discussed elsewhere (Beltagy
et al., 2019; Huang et al., 2019; Lee et al., 2020). The domain-
specific word embedding-based BiLSTM yielded better prediction
performance than those built from general domain corpora.
Furthermore, the explainability of domain-specific word
embedding was superior as demonstrated by t-SNE analysis.
We did not observe any significant improvement of domain-
specific transformers (i.e., BioBERT) compared to the original
BERTbase and RoBERTabase on the test set, indicating the
performance of transformers may be task-specific and data specific.
Furthermore, further training of domain-specific transformers (e.g.,
BioBERT, SciBERT, and ClinicalBERT) on FDA approved drug
labeling data may be a potential direction to pursue even better
performance, however, it is out of scope of the current study.

Advances in AI in NLP and increased computational power
have allowed various transformer-based language models to be
developed and successfully used in different downstream tasks
(Devlin et al., 2018; Brown et al., 2020). As proof-of-concept of
the utility of the developed DICE, we selected the transformers
based on the BERT architecture. Other transformer-based models
such as Generative Pre-trained Transformer (GPT) 2/3 (Brown
et al., 2020), an autoregressive language model, have
demonstrated high performance in different NLP tasks,
especially in text generation and reading comprehension, which
may be worth further investigation for potential performance
improvements, even in the indication information classification
task. However, the balance between performance, computational
cost, and data size must be considered. Based on model results of
the test set and DrugBank data set, the condensed models such as
DistillBERT and ALBERT could also largely maintain the
prediction performance with a more economical usage of
computational resources.

The current version of DICE and associated AI-based
language models were based on the English language. Further

evaluation of other languages will be a great addition to expand
the utility of the developed DICE corpus. First, the proposed data
curation process of the DICE corpus is reproducible and could be
migrated to the documents in other languages. Accordingly, the
associated AI-based language models could be developed for drug
indication information extraction in other languages. Second,
tremendous efforts have been made to language translation
powered by AI in the biomedical domain (Liu et al., 2021).
For example, Liu et al. proposed a novel cross-lingual
biomedical entity linking model among ten typologically
diverse languages, which could translate the domain-specific
terminology between the languages. By combining the
developed biomedical entity linking model, the proposed
indication extraction models could be utilized in other
languages. However, further investigation and evaluation are
strongly recommended.

It is worthwhile to consider some additional studies to further
investigate the utility of DICE in different medical applications.
First, the model performance of different models was only
evaluated based on one test set. Considering the lack of
annotated data (i.e., ground truth) in the other resources,
we only employed DrugBank indication notes as positives
to verify the proposed models for a real-world application.
Some extra verifications are strongly recommended for
expanding the utility of the developed DICE and
accompanying models. Second, the developed DICE and
classification models could serve as the first step to extract
indication information. The other biomedical entity
recognition approaches (e.g., UMLS MetaMap (Aronson,
2001) or BioBERT (Lee et al., 2020)) could be applied to
extract disease-related terms for further applications. Third,
in the current study, the AI-based indication extraction models
are binary-based. Considering the unbalanced distribution of
the five defined categories (4,297 indication, 1,673 clinical
observations, 701 contraindication, 492 usage instructions,
and 68 side effects), we suggest further investigations on the
performance of the multi-class models. Lastly, while the
developed DICE is a five-tier indication classification
scheme, we only investigated its utility for automatic
indication information extraction through its usage as a
binary classifier. Evaluation for potential utility for testing
multiple-class model performance is suggested.

Automatic drug indication extraction is of great importance
for different biomedical applications. To fill this gap, we
developed the DICE to facilitate AI-based algorithm
development and verification. We hope our developed DICE
will be considered as a standard drug indication classification
corpus, providing the opportunity for other biomedical NLP
researchers to promote AI-powered indication extraction in
different real-world applications.
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Deep Learning of Histopathology
Images at the Single Cell Level
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The tumor immune microenvironment (TIME) encompasses many heterogeneous cell
types that engage in extensive crosstalk among the cancer, immune, and stromal
components. The spatial organization of these different cell types in TIME could be
used as biomarkers for predicting drug responses, prognosis and metastasis.
Recently, deep learning approaches have been widely used for digital histopathology
images for cancer diagnoses and prognoses. Furthermore, some recent approaches have
attempted to integrate spatial and molecular omics data to better characterize the TIME. In
this review we focus on machine learning-based digital histopathology image analysis
methods for characterizing tumor ecosystem. In this review, we will consider three different
scales of histopathological analyses that machine learning can operate within: whole slide
image (WSI)-level, region of interest (ROI)-level, and cell-level. We will systematically review
the various machine learning methods in these three scales with a focus on cell-level
analysis. We will provide a perspective of workflow on generating cell-level training data
sets using immunohistochemistry markers to “weakly-label” the cell types. Wewill describe
some common steps in the workflow of preparing the data, as well as some limitations of
this approach. Finally, we will discuss future opportunities of integrating molecular omics
data with digital histopathology images for characterizing tumor ecosystem.

Keywords: histopathology image analysis, deep learning, image data labeling, cell type classification, tumor immune
microenvironment, tumor heterogeneity

INTRODUCTION

In clinical settings, histopathology images are a critical source of primary data for pathologists to
perform cancer diagnostic. For some cancer types, clinicians may decide treatment strategies based on
histopathology images coupled with molecular assay data. With the widespread adoption of digital slide
scanners in both clinical and preclinical settings, it is becoming increasingly common to digitize histology
slides into high-resolutions images.Digital pathology,which is the process of digitizing histopathology images,
creates a new “treasure trove of image data” for machine learning (ML). Machine learning can be utilized for
various image analysis tasks that are routinely performed during histological analyses including detection,
segmentation, and classification. Some commercial image analysis software already incorporates machine
learning algorithms to assist researchers and clinicians in quantifying and segmenting histopathological
images. These tools have greatly reduced the laborious and tedious manual work in image analysis and can
reduce inter-observer variability in reaching diagnostic consensus (Tizhoosh et al., 2021).
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Machine Learning which focuses on methods to construct
computer programs that learn from data with respect to some
class of tasks and a performance measure, has been widely applied
in several challenging problems in bioinformatics due to the
algorithm’s ability to extract complex relationships from high-
dimensional data. Conventional machine learning methods (e.g.
random forest, support vector machines) were limited by their
ability to extract features from raw data, and in many cases, a
feature selection step is needed to reduce dimensionality of the
data. In addition, efforts have been invested in careful feature
engineering and domain knowledge to construct informative
features to train the model. However, some engineered
features are difficult to interpret biologically and have limited
utility in biomedical applications.

In early 2000, several breakthroughs including new types of
algorithms (e.g., deep learning), availability of large datasets (e.g.,
open access and large digitized images), and advancements in
computing power (e.g., graphical processing units) have
reenergized the machine learning developments and
applications in real-world problems (LeCun et al., 2015). Deep
Learning (DL) is a family of new machine learning models
composed of multiple processing layers that learn
representations of data with multiple levels of abstraction
without feature engineering. The ability of deep learning to
discover intricate structure in large data sets powered by a
backpropagation algorithm allows the machine to change its
internal parameters to compute a representation in each layer
from the previous layer. The “deep” in deep learning representing
the number of layers used in the model to deconvolute the feature
representation of the raw data. These methods have dramatically
improved the state-of-the-art in multiple domains ranging from
speech and text recognition to object detections in biomedical
applications (Esteva et al., 2017; Lee et al., 2018; McKinney et al.,
2020; Nagpal et al., 2020; Liu et al., 2021).

The field of cancer pathology is proving to be a supremely
suitable proving ground for the development of machine learning
models, in no small part due to the construction of publicly
available, curated whole slide image (WSI) datasets from
initiatives like the Cancer Genome Atlas (TCGA), Clinical
Proteomic Tumor Analysis Consortium (CPTAC), and the
Cancer Image Archive (TCIA) (Clark et al., 2013; Prior et al.,
2013). The datasets contained within these repositories often
include other related data, such as clinical characteristics, patient
outcomes, molecular analyses, and other imaging modalities, in
addition to theWSIs. These data can be utilized as target features,
such as predicted progression-free survival duration, or even
integrated into the machine learning model for higher
dimensional analysis. The numerous types of cancer collected
by these repositories allow researchers to focus their applications
as narrowly or broadly as they desire, from single subtypes (e.g.,
lung adenocarcinoma) to pan-cancer analyses.

However, the majority of machine learning applications in this
field rely on supervised learning methods based on clinical
parameters or pathologists’ annotations to generate training
datasets. Within supervised learning approaches, there exists
several distinct resolutions of annotation required to generate
a high-quality training dataset depending on the scale of the

analysis. The ultimate goal of machine learning applications for
histopathology is to generate clinically beneficial output, but this
may be achieved in a wide variety of ways. For example, both a
model designed to flag regions of concern for a pathologist to
review in detail and a tool that identifies cancer patients that are
likely to respond to immunotherapies by classification of immune
cell types are likely to improve clinical outcomes, but these two
models will require very different training datasets. In this review,
we will consider three different scales of histopathological
analyses that machine learning can operate within: WSI-level,
region of interest (ROI)-level, and cell-level.

Many reviews have been published in describing the methods
and applications of deep learning in pathological image analysis
[see (Janowczyk and Madabhushi 2016; Dimitriou et al., 2019;
Serag et al., 2019; Roohi et al., 2020; van der Laak et al., 2021)],
however, none of these publications discussed or reviewed on the
topic of training datasets preparation for ML/DL, which is the
most crucial step in developing a useful model in
histopathological image analysis. In addition, it is becoming
clear that the tumor immune microenvironment (TIME) plays
crucial role in determining cancer progression, metastasis, and
response to treatment. Therefore, it is important to detect and
classify the different immune cell types of the TIME in
histopathological images. However, it is impractical to
manually curate and annotate these individual cell types for
training the model. To address this knowledge gap, we will
discuss the basics of applying machine learning models for
histopathological analysis within a cancer pathology setting,
review currently published models and applications in the
three different scales of histopathology analyses, and provide a
simplified framework for the development of a cell-type classifier
using weakly labeled datasets generated from immunolabeled
slides. We aim for this review to be an approachable introduction
to histopathological applications of machine learning/deep
learning for clinicians, biologists, and data scientists, thereby
encouraging further development of this interdisciplinary field.

MACHINE LEARNING-BASED
HISTOPATHOLOGY IMAGE ANALYSIS AND
DATA GENERATION METHODS

Histopathology Image Data Preparation for
Training Machine Learning Models
Regardless of the feature scale of the ML analysis, it is also
important to understand how the input data is prepared.
Histopathology analysis is most commonly performed using
sections of tissue collected during biopsy or after surgical
resection. These tissues are typically preserved by formalin
fixation and paraffin embedding (FFPE) to preserve their
morphology, and subsequently sliced into thin sections on
glass slides for further processing. The tissue sections are
commonly subjected to chemical staining to highlight specific
tissue or cellular features, such as nuclei or proteins of interest.
Normal hematoxylin staining produces intense purple staining
the nuclei of cells while eosin is used to counterstain the
remaining cytoplasm of cells a vivid pink (Figure 1).
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Hematoxylin and eosin (H&E) staining is employed in nearly
every histological workup and is therefore the most common type
of histological image used as inputs for machine learning models.
Figure 2 shows the overview of the histopathology slide
preparation and machine learning model construction.

Training a machine learning model for image segmentation
requires a large amount of high-quality, labeled images as a
training dataset. Therefore, building an effective training
dataset requires a careful balancing of data quantity, data
quality, and cost. In comparison to many other fields that
utilize computer vision, the amount of publicly available
histopathology data suitable for training a machine learning
model is quite limited. As previously mentioned, there is a
growing number of datasets from consortia like TCGA, but
many published studies also rely on in-house datasets for
training and testing their machine learning models. This
scarcity of data is compounded by the need for trained experts
capable of producing accurate annotations that capture the
defining features of the model’s target classes. The difficulty of
these annotations in terms of both the rater’s expertise and the
effort required to create increases sharply between whole slide-
level, region-level, and cell-level analyses (Figure 1).
Constructing the best training dataset will require annotations
at the same level as the target outputs of the machine learning
model (i.e., cell-level analysis performs best with cell-level
annotation), but approaches like crowd-sourcing annotations
may work as an alternative to expert annotation by sacrificing
annotation quality for quantity (Amgad et al., 2019). For some
applications, lower resolution annotations, such as annotating a
region as a single class for training a cell-level classifier or labeling
of cell centroids, may also be used to generate “weakly-labeled”
annotations for model training. Alternatively, histology slides can
be immunolabeled to identify specific cells or features of interest
that can then be used to weakly label an adjacent, registered H&E

image, an approach we will discuss later in this review. While
these challenges may incline researchers to annotate at the lowest
usable resolution to expedite model training, it should be noted
that many analyses require the abstraction of higher resolution
classifications to a lower level to produce biologically meaningful
results (e.g., calculating the density of a cell type within a region
after classification of individual cells).

Despite the complexities of training dataset generation, the
number of applications and tools that utilize machine learning
models in cancer pathology has grown rapidly over the last few
years. This pace seems likely to continue and perhaps even
increase as more datasets are made publicly available through
cancer consortia and computational challenges like BreastPathQ
(Petrick et al., 2021) or CAMELYON (Litjens et al., 2018). In the
following three sections, we will cover published examples of
machine learning applications and discuss the strengths,
limitations, and considerations of each analysis scale level. We
also summarized the published examples in Table 1.

Image-Level Analysis Methods
One of the immediate applications of deep learning in cancer
research is to generate a cancer diagnosis from WSI analysis.
Zhang et al. (2019) developed an artificial intelligence system to
effectively automate WSI analysis to assist pathologists in cancer
diagnosis. The AI system consists of three main neural networks:
the scanner network (s-net), the diagnose network (d-net) and
the aggregator network (a-net). In brief, the s-net ingests the WSI
as inputs and automatically detects tumor regions in the images.
Convolutional neural networks (CNN) was used in the s-net to
manage tumor detection and cellular-level characterization. Once
the tumor regions were detected, it further segments into ROIs for
diagnostics. The d-net takes the ROI from s-net as inputs, and
further characterizes by extracting pathological features and
showing feature-aware network attention to explain the

FIGURE 1 | Slide-, Region-, and Cell-level analyses on tumor histopathology images and its characteristics.
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network for interpretations. The d-net is developed by using fully
connected recurrent neural networks (RNN). Finally, the a-net
integrates all the characterized features and provides the final
diagnosis. The a-net is implemented as a three-layer fully connected
neural network that takes the features and predict the final labels. The
authors also showed that their model could simultaneously generate

pathological reports from the d-net. The authors trained this method
using 913H&EWSI slides obtained from TCGA Bladder Cancer and
in-house slides. The authors showed that the prediction from the
model matches the diagnoses from 17 pathologists. This study shows
that machine learning/deep learning could be used to assist
pathologists in cancer diagnostic from WSI.

FIGURE 2 | An overview of histology slide preparation and machine learning model construction process.
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Cancer of unknown primary (CUP) represents a group of
cancers in which the primary anatomical site of tumor origin
cannot be determined. Unsurprisingly, CUP poses challenges to
determine the appropriate treatments and clinical care. To
address this challenge, Lu et al. (2021) developed a deep
learning-based algorithm known as Tumor Origin Assessment
via Deep Learning (TOAD), with the goal to predict the tissue of
origin of the primary tumor using routinely acquired histology
images. Histology slides from patients were automatically
segmented and divided into thousands of small image patches
and fed into a convolutional neural network (CNN) with fixed
pretrained parameters. The CNN serves as the encoder to extract
a compact, descriptive feature vector from each image patch.
TOAD uses an attention-based multiple-instance learning

algorithm to learn to rank all of the tissue regions in the WSI
using the feature vectors, and aggregates this information across
the whole slide based on their relative importance, and assigning
more weights to regions perceived to have high diagnostic value.
The authors also included patient’s gender as an additional
feature to further guide the classification of CUP. Based on
this multi-branched network architecture and the multi-task
learning objective, TOAD is able to predict both the tumor
origin and distinguish primary from metastatic tumors. The
authors trained TOAD on 22,833 WSIs spanning across 18
common origins of primary cancer, and tested TOAD on
6,499 WSIs with known primary tumor origins. TOAD
achieved a top-1 accuracy of 0.83 and a top-3 accuracy of
0.96. Further testing TOAD on external test set of 682 samples

TABLE 1 | Selected deep learning-based histopathology image analysis studies.

Publication Input
image
type

Training
annotations

Deep learning
architecture

Prediction output Other functions Training dataset
size

Level

Zhang et al.
(2019)

Tiled
images
from whole
slide (H&E)

Pathologist marking
tumor and normal
areas, input
description text

CNN Probability of being tumor at
Pixel level

Text query of
images using
pathological
terms

913 whole slides WSI

Attention module Attention area
RNN Text description

TOAD Lu et al.
(2021)

Whole slide Tumor of origin CNN Primary or metastatic 22,833 whole slides
from 18 cancer types
+6,499 test slides

WSI
Sex Tumor of origin
Primary or metastatic Attention module Attention areas

Kalra et al.
(2020)

Whole slide
(H&E,
frozen
section)

Primary diagnosis DenseNet Relevant images ranked by
similarity

Images features
extracted as
barcodes

29,120 whole slides
from 32 cancer types
(TCGA)

WSI

HE2RNA
Schmauch
et al. (2020)

Whole slide
images

RNA expression for
training

multilayer perceptron RNA expression Spatial mapping
of gene
expression

8,725 samples from
28 cancer types

WSI

Saltz et al.
(2018)

Whole slide
images
(H&E)

Pathologist marking
regions of
lymphocytes and
necrosis

CNN TIL maps (Computational
Staining)

5,455 images from
13 cancer types
(TCGA)

ROI

Le et al. (2020) Whole slide
images
(H&E)

Pathologist marking
tumor regions, TIL
annotations from Saltz
et al. study

34-layer ResNet, 16-
layer VGG, and
Inception v4

Tumor probability and TIL
probability heatmaps

Cancer detection:
393 breast cancer
images from SEER
and TCGA

ROI

Lymphocyte
detection: 1090
invasive breast
cancer from TCGA

Lockhart et al.
(2021)

Whole slide
images
(H&E)

Pathologist marking
normal vs. tumor
region (grade 1–4)

CNN(ResNet18) Normal lung tissue/airways In house images from
mouse models

ROI
Lung adenocarcinoma of
different grades (1–4)

ConvPath
Wang et al.
(2019)

Whole slide
images
(H&E)

Pathologist labeled
ROI (tumor, stroma,
lymphocytes)

CNN “spatial map” of tumor cells,
stromal cells and
lymphocytes (limited to lung
adenocarcinoma)

TCGA-LUAD(1337) ROI/
Cell
level

NLST(345)
Beijing(102)
SPORE(130)

CRImage
Failmezger
et al. (2020)

Whole slide
images
(H&E)

Single cell
annotations, OS,
omics data

Topological tumor
graphs (TTG),
unsupervised deep
learning framework (CNx)

Cell level classified and
mapped slices for further
analysis and hypothesis
generating

400 SKCM (TCGA) Cell
level
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showed that it achieved top-1 accuracy of 0.80 and a top-3
accuracy of 0.93. Finally, the authors tested TOAD on 317
cases of CUP, and found that their model predicted in
concordance for 61% of cases and a top-3 agreement of 82%.
The authors suggested that this model could be used to assist
pathologists to perform CUP assignment, as well as other difficult
cases of metastatic tumor assignment.

In another study, Kalra et al. (2020) developed a pan-cancer
diagnostic consensus through searching histopathology images
using machine learning (ML) approaches. The authors first
indexed ∼30,000 WSI of 32 cancer types from TCGA using
Yottixel, an image search engine previously developed by the
authors (Kalra et al., 2020b). To index the WSI, the authors
generated “bunch of barcodes” (BoB) index for each WSI instead
of small patches of images. Because the dimensional reduction
from patches of images to BoB, this indexing step accelerate the
retrieval process and overcome the computation and storage of
huge image files. The authors used DenseNet to extract the image
patch and convert into a vector, and the BoB essentially is the
binary form of the deep feature vector representations of each
image patch. The authors illustrated the application of this
machine learning approach on the TCGA WSI data, and
showed that their method could retrieve relevant images with
high accuracy (>90% on several cancer types). This study
demonstrates that an alternative approach to query WSI in a
database to retrieve relevant set of WSIs for potential cancer
diagnosis, and particularly useful for rare cancer types.

Region of Interest-Level Analysis Methods
In addition to classification and searching tasks at whole slide
level, deep learning approaches are also able to provide insights at
more granular level, or give more emphasis to particular regions
of interest (ROI) that are most informative. ROIs may be defined
as geographic regions (e.g., central, marginal areas), or areas that
are biologically divergent (e.g., tumor vs. stromal area, areas of
different tumor grades), or areas that are enriched for specific cell
types such as lymphocytes. A variety of ML tools have been
developed to identify and analyze these ROIs and can provide
unique insights into the biological differences between ROIs.

Spatial patterns of tumor-infiltrating lymphocytes (TILs) have
shown significant value to cancer diagnosis and prognosis,
however manually recognizing of those patterns requires
tremendous efforts. Aiming to reduce the manual efforts and
scale-up analysis capacity, Saltz et al. (2018) constructed a
pipeline that mapped TILs to 5,455 H&E stained images from
13 TCGA tumor types. Their pipeline comprises two CNN
modules (a lymphocyte-infiltrated classification CNN-
lymphocyte CNN-and a necrosis segmentation CNN), that
were trained on pathologist-annotated images of lymphocytes
and necrosis. The training process also involves pathologists’
feedback to improve performance. The CNNs combined outputs
were used to produce TIL probability map that was then subjected
to threshold adjustments to obtain the final TIL map. During
testing, this pipeline achieved 0.95 area under the receiver
operating characteristic curve (AUROC) which outperformed
VGG16 network (0.92). Moreover, the authors compared the
extracted TIL structure patterns with the molecular based

estimation (i.e., CIBERSORT) and found it achieved ∼0.45
correlation coefficient in best performed cancer types (e.g.,
BLCA, SKCM) and ∼0.1–0.2 correlation coefficient in worst
performed cancer types (e.g., UVM, PAAD).

Another group followed up the above-mentioned study and
modified the deep learning architecture to especially focus on
breast cancer cases. 198 high-resolution WSIs from the
Surveillance, Epidemiology, and End Results (SEER) dataset
and 195 annotated TCGA breast cancer WSIs were utilized for
the cancer detection task, and 1,090 breast cancerWSIs annotated
from Saltz study were used for TIL classification task. The authors
adapted and compared three different architectures including 16-
layer VGG (VGG16), the 34-layer ResNet (ResNet34), and the
Inception-v4 network using accuracy, F1 score, and AUC as
performance metrics. Overall, the ResNet34 was the best
performer in both cancer detection task and lymphocyte
detection task, even surpassing the Saltz study’s accuracy in
the case of breast cancer. Using their ResNet34 model, Le
et al. (2020) showed that their estimated TIL infiltration was a
significant survival predictor.

In addition to assessing lymphocyte infiltration, users are also
interested in evaluating tumor progression and heterogeneity
based on the distribution of cancer cells of different grades in
the whole slide. To this end, the Flores laboratory has developed a
deep learning system-Grading of Lung Adenocarcinoma with
Simultaneous Segmentation by an Artificial Intelligence (GLASS-
AI) (Lockhart et al., 2021), based on preclinical lung
adenocarcinoma models. A ResNet18-based CNN was trained
to classify and map the normal lung tissue, normal airways, and
the different grades (1–4) of lung adenocarcinoma in WSI of
mouse lungs. The modal not only achieved a micro-F1 score of
0.81 on a pixel-by-pixel basis, but also uncovered a high degree of
intratumor heterogeneity that was not reported by the
pathologists. We are currently utilizing this pipeline in
conjunction with spatial transcriptomic analysis and IHC to
conduct mechanism investigations to reveal new therapeutic
targets and prognostic markers.

Cell-Level Analysis Methods
Understanding the spatial organization of different cell types in
the tumor microenvironment (TME) provides information on
cancer progression, metastasis, and response to treatment.
Currently, this information could be provided by extensive
immunolabeling of specific cell types or performing spatial
transcriptomics, though this technology is still in its infancy.
To compensate this, researchers have been actively developed
innovative approaches to extract cell-level information from
images.

To provide a deeper understanding about the spatial
information of cells involved in stromal-immune interface,
Failmezger et al. (2020) developed CRImage, a computational
pathology pipeline used to classify cells in the H&E-stained
specimens into stromal, immune or cancer cells. The authors
performed the analysis on 400 melanoma specimens obtained
from TCGA. The authors compared the estimated proportions of
these cell types with independent measures of tumor purity,
estimation of lymphocyte density by expert raters, computed
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immune cell types and pathway analyses. Using a set of
independent single-cell annotations, the authors showed that
the classifier to achieve 84.9% balanced accuracy (81.9% recall,
90.9% precision). By comparing the gene expression profiles of
these samples, the authors demonstrated that samples with high
lymphocyte percentage were enriched for immune-related
pathways, validating the CRImage approach.

In another study, Wang et al. (2020) developed Histology-
based Digital-Staining (HDS), a deep learning-based
computation model, to segment the tumor, stroma,
lymphocyte, macrophage, karyorrhexis, and red blood cell
nuclei from standard H&E-stained pathology images. They
applied HDS in lung adenocarcinoma H&E images to classify
cell nuclei and extracted 48 cell spatial organization-related
features that characterize the TME. Based on these features,
they developed an accurate prognostic model that can predict
high-risk group in the National Lung Screening Trial dataset, and
further validated the model in the TCGA lung adenocarcinoma
dataset. More importantly, they showed that these image-derived
TME features significantly correlated with the gene expression of
biological pathways. For example, transcriptional activation of
both the T-cell receptor and programmed cell death protein 1
pathways positively correlated with the density of detected
lymphocytes in tumor tissues, while expression of the
extracellular matrix organization pathway positively correlated
with the density of stromal cells. Taken together, they
demonstrated that by applying HSD at cell-level analysis in
H&E images, spatial organization of different cell types could
be identified and associated with the gene expression of biological
pathways.

AN OVERVIEW OF GENERATING WEAKLY
CELL-LEVEL ANNOTATION USING IHC
STAINED IMAGES

IHC-Based Cell-Level Annotation
Building a dataset using image-level, or region-level annotation is
comparably easier than cell-level annotation. Unlike image-level
annotation, which is generally reduced to a simple classification
task, both region-level and cell-level annotation require the
addition of a segmentation step alongside classification.
Indeed, the principal difference between region- and cell-level
classification is a matter of scale, though this difference is several
orders of magnitude in size. Considering that a WSI can easily
contain several million cells, completely annotating enough
images to train the classifier is almost impossible even for
experts. The difficulty in producing cell-level annotations for
training data has compelled most groups to use region-level
analysis of WSIs to capture cell-level features, such as presence
of tumor infiltrating lymphocytes (Saltz et al., 2018). These analyses
use region-level annotation and consider that the cells in the
annotated region have the same cell types. These approaches
can still be informative but considering that tumor is very
heterogeneous, and there are multiple types of cells coexists
even in a small single region, labeling all the cells in the same
region will cause many mislabeled cell-level annotations.

As discussed in Histopathology Image Data Preparation for
Training Machine Learning Models of this review, H&E staining
is used frequently for basic examination of tissue and cell
morphology. Immunolabeling may also be performed to
obtain additional information from samples such as cells’
subtypes. For example, pan-cytokeratin staining (PCK) is
commonly used to stain for tumor cells, and some antibodies
such as CD3 (T-cell), CD8 (T-cell), and CD20 (B-cell) are used
for characterizing immune cells in the sample (Figure 3).
Conventional immunohistochemistry (IHC), multiplexed IHC
(mIHC), or multiplexed IF (mIF) images can be used for labeling
multiple cells in histopathology images. When preparing sections
from biopsies or resected tumors, slides will be prepared from a
series of adjacent sections. This allows pathologists to easily
compare regions of a H&E and adjacent immune-stained
slides. Even though the adjacent samples are still showing
similar spatial characteristics, they are not identical to the
other samples. To perform machine learning data analysis and
interpretation, it is critical to align these differently stained
histopathology images together. Most conventional image
analyses software can perform a reasonable job in aligning
these different slices of images and provide a final aligned
image to study tumor heterogeneity and tumor immune
microenvironment.

To train machine learning classifier for cell-level annotation,
images must first be annotated with individual cells’ boundaries
and the cells’ subtypes. As explained earlier, cell-level annotation
process requires a tremendous manual effort. To make this cell-
level annotation more approachable and scalable, we introduce a
semi-automated method of generating cell-level annotation using
adjacent IHC-stained images as the labeled dataset for machine
learning methods. In this example, we are using H&E tumor cell
images with multiple IHC stained images to generate a labeled
training dataset in Common Objects in Context (COCO) format
for Mask R-CNN (He et al., 2017). After training on this
automatically labeled training data, the machine learning
classifier can predict cell types in H&E image without further
IHC or IF stained images with high accuracy. In the following
sections we will provide an explanation of the steps required in
this approach, beginning with acquisition of the WSIs.

Digital Image Acquisition From Prepared
Slides
Once the histology slides have been prepared using H&E or IHC,
they must then be converted to a digital format for analysis by the
machine learning model. While such images can be taken using a
simple brightfield microscope, the quality and characteristics of
the images can vary considerably from one slide to the next.
Computer driven microscopes offer a better solution for
reproducible image acquisition and can even be used to
generate WSIs through stitching of image tiles. However,
unless carefully calibrated the resulting WSI may contain
significant stitching artifacts that can confuse a machine
learning classifier. Instead, it is highly advisable to use a
dedicated slide scanner, such as Leica’s Aperio platform, to
generate WSIs of stained slides. The H&E and mIHC images
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used in our example process were all captured on a Leica Aperio
AT2 digital whole slide scanner at 20x magnification. This
system produces a “.svs” file that contains an image of the
slide label, a macro image of the entire slide, and a multi-
resolution tiled “.tiff” of the WSI. The structure output files will
vary among different slide scanning systems, but most rely on
multi-resolution tiled TIFF files to store the WSI. For easier
image modification and processing, svs files need to be
converted to tiff or png formats.

While the example provided here relies on IHC stained slides,
immunofluorescent (IF) labeling can also be used to generate cell-
labeled slides. Most of the considerations described above for IHC
apply to these approaches, but IF can generally provide a higher
number of labels on a single slide. Systems like the Akoya Vectra
or the Leica Aperio Versa are capable of scanning whole slides
with up to 7-plex labeling. Spectral overlap of the fluorescent
reporters presents a unique challenge in multiplexed IF, which
was recently reviewed by Shakya et al. (2020). The plexity of both
IHC and IF can be increased by sequential staining/de-staining
for target proteins. Higher numbers of simultaneous labels (40+)
can be achieved by newer techniques such as the Akoya CODEX
or multiplexed ion beam imaging (MIBI) that use oligo- or metal-
isotope-labeled antibodies, though these techniques require
additional components or a specialized secondary ion mass
spectroscopy system, respectively. It is also possible to label
cells of interest by nucleic acid in situ hybridization (ISH).
ISH and its fluorescent counterpart (FISH) are generally more
laborious than immunolabeling and may not perform well on
older samples due to the more sensitive nature of nucleic acids

compared to proteins, but image acquisition is performed in the
same manner as IHC or IF.

Image Registration and Normalization
After WSI images are stained with different antibodies are
captured, a number of preprocessing steps should be followed
to ensure optimal performance of the machine learning classifier,
including stain normalization and slide registration. The
adherence to a defined protocol for H&E and IHC staining is
crucial to minimize the variability between batches of slides, but
some level of variability will still occur due to imperfections in
tissue sectioning or changes in tissue composition. Staining
variability can be compensated for after image acquisition by
normalization to a standard using several suggested methods
(Macenko et al., 2009; Khan et al., 2014; Bejnordi et al., 2016;
Alsubaie et al., 2017; Roy et al., 2018; Anghel et al., 2019). Stain
normalization is especially important when incorporating
external datasets due to potential differences in staining
protocols and image capture systems.

Depending on what sampling/staining method is used,
different steps of preprocessing are needed to generate aligned
or registered image dataset. Conventional IHC uses adjacent
slices of the samples for each staining, and they are not
identical. Also, during the sampling, placing, staining, and
processing, each section might be moved, rotated, mirrored, or
simply imperfectly placed onto the slide whichmay causes images
to be poorly registered (Wang et al., 2014). Since mIHC is stained
for the same identical sample for multiple times, the images are
comparably more aligned compared to conventional IHC

FIGURE 3 | Example of the IHC-stained histopathology images with different antibodies.
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datasets. However, during the staining-washing-placing steps in
each repetitive staining, the samples can be slightly displaced or
even washed off. Because of that, mIHC images may still not
perfectly align and should be registered as well. mIF datasets, in
contrast, does not require repetitive washing and staining steps
and should therefore be easier to register to adjacent slides.

Image registration is common step in image processing using
multiple images especially in biomedical image analysis such as
radiology. It is a process of overlaying two or more images from
different sources or different time of the same object to align
geometrically (Zitová and Flusser 2003). In radiology, this
method is used for overlaying images from different sensors,
different equipment, or different time (Fox et al., 2008; Tohka and
Toga, 2015). This image registration is sometimes done manually
using image viewer software when there are not many images, but
for multiple image files, automated methods can be used. ImageJ
(Rueden et al., 2017) and Fiji (Schindelin et al., 2012) have
multiple registration plug-ins such as “Feature Extraction
SIFT/MOPS”, or “TrakEM2”. MatLab also has several
applications including “Registration Estimator App” and
“Intensity-Based Automatic Image Registration”. SimpleITK
(Lowekamp et al., 2013) is an open-source image analysis
toolkit that supports multiple platform such as Python, R,
Java, C#, C++, and Ruby that provides powerful machine
learning-based registration options for image registration
process. In most of the automated methods, images are
aligned globally, which means at a smaller scale parts of the
images might be not very well aligned. In this case, additional
registration steps can be done after deciding ROIs or split the
samples in smaller patches.

Cell Boundary Detection and IHC Intensity
Level Acquisition
For the cell boundary information, many (semi-)automated cell
boundary recognition programs can be used. CellProfiler is one of
the most well-known histopathology image analysis program
(McQuin et al., 2018). CellProfiler supports multiple types of
histopathology images as input, and users can build their own
pre/post-processing pipeline of the image quantification. Using
CellProfiler, cell boundaries can be segmented by setting up some
simple parameters such as the typical diameters of the nuclei (or
cells), segmentation thresholding methods (e.g., Otsu, Minimum
Cross-entropy), smoothing thresholds etc.

No cell segmentation program is perfectly accurate, and
depending on the image dataset that are used for this process,
the parameters may need to be modified. For example, the cell
sizes in the images can vary depending on the zoom level of
images, the sampled tissue parts of the organs and species.
Finding good parameters to detect the cells with higher
accuracy is an important step. For example, the cell smoothing
threshold parameter is too high, multiple different cells can be
recognized in a single cell. However, if the threshold is too low, a
single cell is seldom recognized as multiple cells. These
parameters are required to be optimized based on the target
image dataset. This might be repetitive and time-consuming part
of the image processing, however, finding optimal parameters for

each input dataset are important for accurately finding the cell
boundaries from the image. When the cell boundaries are
detected, CellProfiler outputs the results in a mask image file.
This mask image file is showing the detected cells in different
colors, and the background as black.

CellProfiler also has the tools to measure staining intensities of
each recognized cells from multiple aligned IHC images. For
example, after CellProfiler detects cells boundaries in the main
input image (e.g., H&E), the staining intensities of the same
location are extracted from other IHC images (e.g., PCK, CD14).
The intensities in aligned IHC images are obtained in a table with
csv format. This table contains the x/y coordinates of the detected
cells, and their cell marker intensities obtained from different
IHC images. After semi-automated image processing steps, the
information of the detected cell boundaries and the IHC
intensities of the cells could be saved in mask image files and
a csv file, respectively.

Combine the CellProfiler Information and
Decide Cell Class Subtypes
The cell boundary information, and the intensities of each
markers in the cells are obtained as two different types of files
from the previous step. In this step, the intensity levels need to be
converted to cell class labels. Depending on a prior knowledge of
domain experts, the rule for cell class labeling can be made. For
example, a cell with a high intensity level in PCK stained image
will be labeled as a tumor cell. During this labeling rule
generation, some markers will require a threshold values to
divide positive and negative class cells. Many of the marker
values can be shown bimodal distribution in histograms. The
local minimum value in between the twomodes can be used as the
cutoff point for detecting positive/negative staining intensities
(usually this cutoff point resides between 0.3 and 0.5). Some of the
staining markers may not have bimodal distributions, but have
different distributions (e.g., unimodal or multi-modal). In these
cases, additional steps may require to establish a biologically-
informed decision process based on the advice of domain experts.
Following the application of the cell class decision rules, each cell
in the csv files will be mapped to a single class label (e.g., tumor
cell, immune cell, stromal cell).

Reformatting the Annotation Dataset Into
Common Objects in Context challenge
Format
After the cell subtypes are decided, the cell mask image (cell
boundary information) and the csv information (cell subtype
information) need to be combined and reformatted. The most
commonly used annotation file format is called COCO format,
which is used in Microsoft’s Common Objects in Context
challenge (COCO)1 (Lin, Maire et al., 2014). The COCO
dataset is one of the most popular object detection datasets
with multiple different objects’ images and their annotations.

1https://cocodataset.org
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The annotation file format contains image names, object
boundary locations, objects’ class name, and the objects’ class
label of all the detected objects. Most of the current machine
learning-based object detection methods2,3,4 are using COCO
format as the input of the annotation information, and there are
multiple publicly available tools for generating, loading and
modifying such as COCO API and FiftyOne.

Since the output of CellProfiler is not in COCO format but the
mask images, the files cannot be used directly by most of the
known image analysis methods. To convert the CellProfiler
outputs to COCO format JSON file, the following processing
steps are needed. First, the cell mask images must be converted
into the list of x/y coordinates that represents the boundary of
each cell. FiftyOne which is a Python open-source tool for image
dataset building supports the input of mask images and can
convert them into coordinates in the image. After the cells’
boundaries are mapped to cell subtype classes, this
information needs to be saved as COCO JSON format.

Through this step, the cell mask image and cell class
information are converted to a single JSON format that
includes cell boundary coordinates, cell classes, and the input
image file information.

Divide Images Into Patches/Train + Test
Dataset Generation
Now, the input images with cell-level annotation dataset are ready
for use. However, depending on the input image size, the images
need to be split into smaller patches or tiles. Most of the deep
learning-based image segmentation methods require GPUs with
high memory because of the amount of computations in the
complex neural network structure. Depending on the available
GPU memories of the machine, the size of the input images
needs to be modified. Most of the popular deep learning
methods take images from 128X128 pixels to 1024X1024 pixels,
depending on the parameter settings of the code or GPUmemory of
themachine.WSI images are several orders ofmagnitude larger than
an individual image patch, and evenmost of the ROI sections are still
bigger than this range. Splitting images is easily accomplished using
many of publicly available tools such as Pillow in Python; however,
COCO annotation file needs to be re-generated by calculating the
new coordinates of the cell boundaries in the split images. Since the
cells on the edge of the image are not easily segmented by machine
learning methods, it is recommended that the image splitting allows
some overlaps between the image patches.

Also, as it is common in machine learning and data science field,
before training the dataset with machine learning methods, the
dataset needs to be separated into training, testing, and sometimes
validating datasets. It is important that the training/testing data
separation needs to be done in WSI level, not patch level–which
means the patches from the same WSI must not co-exist in both
train/test dataset. Adjacent patches from the same WSI can be

overlapped, or shares many properties such as shapes, colors, and
patterns, which can cause a boosted accuracy scores in the test
dataset because the machine learning classifier already have seen
very similar (adjacent or overlapped) cells or tissues.

Training Machine Learning Classifier
Once the dataset is ready, it is time to train a machine learning
classifier. There are many machine learning classifiers5,6,7

designed for image segmentation and classification for the
COCO challenge, and by changing some parameter settings
most of them can be used for this histopathology cell subtype
segmentation task.

Deep learning-based machine learning classifiers usually
require a large amount of training dataset. If the training
dataset is not big enough, a “warm-start” method (pre-
training/fine tuning) is highly recommended. For the popular
machine learning models, there are pre-trained weights that are
trained with big datasets are publicly available. For example,
Wang et al. used a pre-trained Mask R-CNN model with COCO
dataset and public balloon image dataset, and fine-tuned with
their histopathology image dataset for cell segmentation task
(Wang et al., 2020). This fine-tuning method (pre-train with big
dataset/fine-tune with final dataset) is widely used to overcome
the limitation of the lack of training dataset, especially for deep
learning model training that requires big training dataset. For
Mask R-CNN method, several pretrained weights are publicly
available.8,9

As the goal of the tasks are not the same between balloon
detection and cell segmentation, many of the parameters in Mask
R-CNN codes needs to be updated to optimize the machine
learning classifier to detect cells more accurately before training
with the target dataset. For example, in histopathology images
there are almost certainly a higher number of the target objects
per image (e.g., nuclei or cells) than in other image sets.
Therefore, the maximum detection threshold needs to be
changed to higher number and the target sizes should be set
to smaller, respectively. Also, target objects are taking up much
more space in the histopathology images compared to other
segmentation tasks, so changing ROI positive ratio will be helpful.

For cell-type detection, class imbalance problem is a known
issue in the histopathology analysis. For example, in tumor
sample slides, most of the cells are tumors, but only a limited
number of cells are immune cells. As class imbalance is a well-
known problem in machine learning field, there are several
suggestions to solve this problem including over/under
sampling, using different cost/weight schema during the
training, (Almeida et al., 2014; Johnson and Khoshgoftaar
2019). If an insufficient number of images are included in the
training dataset, image augmentation can be employed to

2https://github.com/matterport/Mask_RCNN
3https://github.com/facebookresearch/Detectron
4https://github.com/endernewton/tf-faster-rcnn

5https://github.com/matterport/Mask_RCNN
6https://github.com/facebookresearch/Detectron
7https://github.com/endernewton/tf-faster-rcnn
8https://github.com/matterport/Mask_RCNN/releases/download/v2.0/mask_
rcnn_coco.h5
9https://github.com/matterport/Mask_RCNN/releases/download/v2.1/mask_
rcnn_balloon.h5
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synthetically increase the dataset size. Image augmentation
generates more images for training dataset by image alteration
(e.g., rotation, flip, blur, crop, pad, or adding noise) and is widely
used for deep learning methods (Shorten and Khoshgoftaar
2019). In the case of Mask R-CNN, an image augmentation
step is built into the pipeline.

In histopathology image method training, there are several
things to consider for getting good accuracy of cell segmentation
and subtype prediction. Since deep learning methods require very
high number of calculation and high memory during training the
classifier, it is almost impossible to train classifiers without high
performance hardware with GPUs and high memory. Depending
on the performance of the hardware and time limitations, the
training parameters (such as learning rates, epochs, the layers to
be fine-tuned, etc.) require tuning to optimize the performance.

Evaluation of the Results
After obtaining the prediction results in the test dataset, the
results need to be evaluated. To evaluate how accurately the
machine learning classifier can find cells’ boundaries and their
subtypes, the Intersection over Union (IoU) metric, also known
as Jaccard index can be used (Girshick 2015; Ren et al., 2015; He
et al., 2017). For each class of subtypes, the intersection of the
ground truth area and the predicted area (Rezatofighi et al., 2019).
Usually, IoU is calculated based on the bounding box of the
segmentation. When IoU is calculated in an image-level, it can be
calculated for each class and averaged to see the final image
segmentation accuracy for all the classes. This score is called
mean-IoU (mIoU). When IoU is used for binary decision of a

single object detection, if the IoU is higher than 0.5–0.7, it is
considered that the object is correctly detected.

IoU � #TP
#TP + #FP + #FN

� Area of Ground Truth∩Area of Predicted
Area of Ground Truth∪Area of Predicted

. (1)

Ultimately, validation and verification of the prediction by a
pathologist remains the gold-standard for histopathology image
analysis.

Visualization and Obtaining Biological
Insights
As prediction of the cell subtypes are performed on the image
patches, the predictions need to be stitched and rebuilt into the
original image. As the classifier predicts the cell boundaries and
subtypes, it is possible to overlap the predicted cell segments on
the original images with different colors depending on the class.
(Figure 4). This can give clinicians the information of tumor
heterogeneity or immune infiltration in the sample.

There are several methods to quantify the tumor heterogeneity
in the output image. Ripley’s K function (Ripley 1988) that is a
function of calculating spatial point pattern by finding number of
other points within a circle of radius, is used for several
histopathology image analysis (Mattfeldt et al., 2009; Yuan
et al., 2012; Carstens et al., 2017). The Shannon diversity
index (Shannon 1948) is also widely used for calculating the
diversity of molecules or distribution of species. Graf and

FIGURE 4 | An example of the deep learning-based cell subtype prediction results.
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Zavodszky suggested a method for calculating molecular entropy
and heterogeneity diversity metrics based on the Shannon
diversity index for quantifying tumor heterogeneity (Graf and
Zavodszky 2017). These methods can be calculated at the patch-
level or for image-level analysis using sliding window.

Pros and Cons of IHC-Based Weakly
Cell-Level Annotation
Using registered H&E and IHC slides can provide a good
alternative to cell-level manual annotations. This technique
allows for easy production of a large dataset of “weakly labeled”
images with a much better annotation resolution than single class
region annotation for cell-level machine learning classifiers.
Indeed, for applications with rare or non-contiguous
organization, such as identification of immune cell types within
tumours, region-level annotations are unlikely to produce a usable
training set. However, cell-level registration has its own limitations
on the accuracy of the resulting labels. In the simplest case, cell-
level registration with a single marker on each slide from typical
IHC, it may be necessary to register multiple slides of various
distances to a single H&E image. It stands to reason that the greater
the distance between the two registered slides, the less accurate the
registration will be. Multiplexed or sequential immunolabeling,
such as the mIHC approach used in our example, can mitigate this
loss of accuracy. If only a few labels are needed to construct the
training dataset it would be possible to generate a nearly perfect
cell-level registration by digitizing the H&E slide, de-staining, and
then re-staining using IHC (Hinton et al., 2019).

There are several other difficulties to consider while designing
the machine learning models. Cell-level histopathology analysis
can be prone to cell class imbalance problem, because some of the
specific types of cells might be very rare compared to the other
tumor or normal cells. There are several methods to handle class
imbalance in machine learning (Johnson and Khoshgoftaar 2019),
however, manually checking the distribution of the class labels are
recommended. Manual validation process is also recommended to
remove some low-quality images or images with noises. For
example, sometimes during the staining or washing step of the
sample preparation, some samples are missing, or air bubble can be
formed in the image. These noises can cause bias in the training
steps, and manual validation of images is recommended to remove
these low-quality samples.

FUTURE DIRECTION OF THE
HISTOPATHOLOGY IMAGE ANALYSIS AT
SINGLE-CELL LEVEL WITH DEEP
LEARNING

As shown in several publications, deep learning-based
histopathology analysis is becoming a useful tool for tumor
image data analysis. Most of the publication are focusing on
classification of the sample in image, region or cell level, however,
this deep learning-based histopathology techniques can be
expanded into more broad topics of research.

Machine learning-based image analysis can be used to predict
transcriptomics information from the image. Schmauch et al.
(2020) demonstrated a machine learning model trained with bulk
RNAseq data to predict spatial gene expression from H&E WSI
images. With the recent development of spatial transcriptomics
techniques such as LCM-seq or 10X Visium Spatial Gene
Expression, it is possible to obtain the gene expression of the small
region in the sample with the histopathology image together. These
spatial transcriptomics data with paired histopathology images can be
a great training dataset for gene expression prediction from
histopathology image of the sample. With this dataset of spatial
gene expression and images with deep learning methods make it
available to predict gene expression of the specific region from its
histopathology image. He et al. (2020) used spatial genomics dataset of
23 breast cancer patients to predict gene expression from the
histopathology of small regions. The results are promising though
limited because of the small size of the dataset. After collecting more
dataset from these spatial genomics datasets with images, the gene
expression prediction will certainly be improved. The scope of these
prediction will be eventually combined with single cell RNA-seq
dataset for cell-level prediction. Currently, the technical and cost
limitation of single cell technology, it is almost impossible to
generate enough dataset for cell-level annotations for deep learning
dataset, however, in the future after the limitation is removed, cell-level
expression prediction will be possible.

As histopathology images include a lot of information, and it
can be used for predicting further information. Histopathology
images may include rich information such as tumor grade, tumor
subtype, immune infiltration, and so on. This informationmay give
clinicians some idea for finding the personalized treatment for each
patient. As an example, Wang et al. (2020) predicted overall
survival of the patients of the samples using deep learning-method.

As explained earlier, small training dataset problem can be
mitigated by training machine learning models with a big dataset
that is similar to the target dataset followed by fine tuning with the
target dataset. For this purpose of pretraining deep learningmethods,
public dataset of histopathology images will be very helpful for
researchers who are having lack of training dataset issues. Komura
et al. introduced several WSI datasets that are publicly available
(Komura and Ishikawa 2018), and The Cancer Image Archive
(TCIA) is also a good place to find the similar image datasets to
pretrain the model. One major problem of these publicly available
image dataset is that the images are generated and processed in many
ways, which makes it harder for combining them to construct a big
training dataset. Some standardized steps of generating and pre-
processing image datasets will make the public image dataset more
valuable and easier to use for machine learning model training.

In conclusion, building a machine learning model for histology
image analysis requires a significant investment of time and effort
on both the computational and the biological side. A basic
understanding of the biological and data science principles that
underpin these methods is key to establishing a productive multi-
disciplinary team of researchers for this promising and rapidly
growing field. In addition, as the amount of WSIs and associated
molecular data becoming widely available to researchers, the
development and application of computational approaches will
becomemore robust and reproducible.We are optimistic that these
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computational approaches will play an important role to uncover
the insights contained in these histopathology image datasets.
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Statistical Enrichment Analysis of
Samples: A General-Purpose Tool to
Annotate Metadata Neighborhoods of
Biological Samples
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Unsupervised learning techniques, such as clustering and embedding, have been
increasingly popular to cluster biomedical samples from high-dimensional biomedical
data. Extracting clinical data or sample meta-data shared in common among biomedical
samples of a given biological condition remains a major challenge. Here, we describe a
powerful analytical method called Statistical Enrichment Analysis of Samples (SEAS) for
interpreting clustered or embedded sample data from omics studies. The method derives
its power by focusing on sample sets, i.e., groups of biological samples that were
constructed for various purposes, e.g., manual curation of samples sharing specific
characteristics or automated clusters generated by embedding sample omic profiles
frommulti-dimensional omics space. The samples in the sample set share common clinical
measurements, which we refer to as “clinotypes,” such as age group, gender, treatment
status, or survival days. We demonstrate how SEAS yields insights into biological data sets
using glioblastoma (GBM) samples. Notably, when analyzing the combined The Cancer
Genome Atlas (TCGA)—patient-derived xenograft (PDX) data, SEAS allows approximating
the different clinical outcomes of radiotherapy-treated PDX samples, which has not been
solved by other tools. The result shows that SEAS may support the clinical decision. The
SEAS tool is publicly available as a freely available software package at https://aimed-lab.
shinyapps.io/SEAS/.

Keywords: sample enrichment analysis, clinotype, SEAS, glioblastoma multiforme, patient-derived xenograft,
patient-derived xenograft

INTRODUCTION

Systematic software platforms to organize large metadata and clinical data [also called “clinotype”
(Nguyen et al., 2021)] is essential in biomedical research (Burgun and Bodenreider, 2008; Ohmann
and Kuchinke, 2009). These software platforms, such as (Ta et al., 2018; Kim et al., 2019; Hume et al.,
2020), have two key objectives. First, it allows the biomedical researcher to perform manual cohort
selection quickly. Here, the researcher inputs the filtering query and gets the data from all patients
meeting the filtering criteria. Second, it allows quick data exploration, including data visualization
and simple aggregated analysis. Here, the researcher may view the basic characteristic of the selected
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subcohort, find potential clinical bias, and adjust the filtering
criteria to obtain a better subcohort. Integrating Biology and the
Bedside (Murphy et al., 2010) is a typical example of a clinical
metadata software system. Some systems and techniques may
offer more in-depth and specific analysis. For example, Weng
et al. (2017) implemented a machine-learning based system to
estimate the patients’ cardiovascular risk from the routine
checkup records. Fang et al. (Fang et al., 2014) implemented a
visual analytic system to view patient’s geographical demographic
and disease comorbidities.

On the other hand, the state-of-the-art clinical data software
still has three limitations. First, the simple aggregated analysis has
not been well-developed for categorical clinical attributes.
Therefore, the researcher may not easily find whether a
specific categorical attribute is explicit for the selected cohort
compared to the whole population. Second, methods to quantify
and visualize patients’ similarities have not been implemented.
Therefore, the existing clinical software is likely ineffective in
clinical support scenarios such as “finding the clinical outcome
data about previous patients that are the most similar to the
under-treatment patients”. Third, the existing software does not
support patient clustering. Therefore, they may not automatically
recommend subcohort to the researcher. This feature could
provide new insights to biomedical research; for example, a
tool that quickly shows two clusters in a treatment-selected
cohort may enable a new hypothesis about the treatment
outcome.

This work introduces Statistical Enrichment Analysis of
Samples (https://aimed-lab.shinyapps.io/SEAS/), a software tool
with both online and standalone versions to tackle the above
limitations. SEAS graphical user interface is user-friendly, where
the user interacts by uploading datafile, primarily uses mouse
operations, and requires a very limited amount of typing.
Furthermore, SEAS implements methods to analyze numerical
and categorical data, compute patient similarity, and
automatically cluster the patients. For the demo, we use SEAS
to analyzing the glioblastoma multiforme (GBM) patients’
clinical metadata in The Cancer Genome Atlas Program

(TCGA) (Verhaak et al., 2010) and estimate the clinical
outcome of patient-derived xenograft (PDX) models data.

SEAS FUNCTIONS

Figure 1A summarizes a SEAS session. The required input is the
clinical metadata that is organized in one table. The user may
choose to let SEAS automatically compute and represent the
patients’ similarity in a 2D embedding space or optionally upload
another patients’ scatterplot. Here, each plot represents a patient,
and the distance among the plots should represent patients’
similarities. Then, the user may manually enter a subcohort,
automatically let SEAS select a subcohort, or semi-automatically
choose a subcohort. After selecting a subcohort, SEAS performs
clinical feature enrichment analysis (CFEA) and reports all
enriched features in the selected subcohort.

Automatically Compute Patients’ Similarity
and Embedding
In this step, the categorical clinical attributes are digitized as in
(Zaki et al., 2014). For example, if the categorical attribute X has
three discrete values: low, normal, and high, it can be decomposed
into three binary attributes: is_X_low, is_X_normal, is_X_high. If
a patient has a “high” categorical value for X, then the patient’s
digital representation is (0, 0, 1). On the other hand, the
numerical attributes are normalized using the z-score approach.

After digitizing the clinical attributes, SEAS applies the
embedding method (Figures 2–7) to represent the patients in
a 2D space. By default, SEAS uses the umap (McInnes et al., 2018)
algorithm. Alternatively, the user may also select tSNE (Hinton
and Roweis, 2002) for embedding. SEAS computes patients’
similarities using the 2D embedded coordinate.

Automatically Select a Subcohort
In SEAS, the user can manually define a subcohort by typing the
list of patient IDs (Figure 2). Besides, the user may use SEAS to

FIGURE 1 | Overview of data processing and analysis.
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FIGURE 2 | Screenshot showing that SEAS visualizes the TCGA-GBM patients using embedding, and the user manually selects the subcohort.

FIGURE 3 | SEAS identifies a subcohort by clustering the TCGA-GBM patients (green dots on the top-right of the embedding scatterplot).
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automatically select a subcohort in two ways. In the fully
automatic approach, SEAS applies clustering algorithms to
divide the patient data into multiple groups. Then, the user
selects a group as a subcohort. This approach is preferred
because the clustering results can provide the threshold to

discretize the numerical attributes into categorical attributes,
resulting in the next step. By default, SEAS uses the density-
based clustering algorithm (Ester et al., 1996, Figure 3). In
the semi-automatic approach (Figures 4, 6), the user selects a
patient ID, a radius of “similarity area” in the 2D embedding

FIGURE 4 | SEAS identifies a subcohort by a circle region around PDX JX14P_A datapoint.

FIGURE 5 | SEAS identifies enriched clinical features for the subcohort in Figure 4.
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space. All patients in the circle area are centered by the
selected patient ID, and the radius becomes the selected
subcohort.

Analyze Clinical Feature Enrichment
Besides implementing Wilcoxon-ranksum (Mann and Whitney,
1947) and test between the selected cohort and the whole

FIGURE 6 | SEAS identifies a subcohort by a circle region around PDX JX14P_RT_A datapoint.

FIGURE 7 | SEAS identifies enriched clinical features for the subcohort in Figure 6.
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population for numerical attributes, SEAS defines the CFEA that
can be applied for both numerical and categorical attributes.
Here, we denoted a patient population S and a set of all clinical
attributes C. Given any cohort s in S, the main question is which
attributes are representative or enriched in s. For a categorical
attribute, SEAS applies the hypergeometric test, which compares
the proportions of patients having the attribute between s and S.
This approach is well-known in gene set enrichment analysis
(Falcon and Gentleman, 2008). Here, the null hypothesis is the
proportion of patients having attribute C in s and S is the same.
This is analog to the null hypothesis in the Wilcoxon-ranksum
(Mann and Whitney, 1947) test, where the median of attribute C
in s and S is the same. To apply in numerical data, the numerical
attributes are discretized. For example, in our GBM case study,
“CDE_survival_time” (survival day), which is a numerical
attribute, is discretized into “Discrete_CDE_survival_time
<300 days” and “Discrete_CDE_survival_time ≥300 days.” As
mentioned in the previous section, clustering the patient and
using the cluster to determine the numerical thresholds is a good
approach. SEAS reports all enriched clinical attributes and their
p-values and the Bonferroni adjusted p-value (for false discovery
rate control) (Sedgwick, 2014), as in Figure 5.

Implementing the Software
The SEAS web version is built primarily by bs4Dash (https://
cran.r-project.org/web/packages/bs4Dash/index.html) and
R-shiny (https://shiny.rstudio.com/) packages. Both packages
run based on R and can be hosted inside well-known web
programming languages: HTML, CSS, and javascript. In
addition, the data processing and statistical methods are also
implemented in R.

Demo Using TCGA-GBM Dataset
We acquired and preprocessed TCGA-GBM dataset, which
consists of 389 patients, according to the pipeline in Jia et al.
(2018). The dataset had both the genetic and the clinical sections.
Among 108 clinical attributes, 22 categorical and seven numerical
ones were used to compute patient similarity and embedding
(Supplementary Data S1). Also, we used 45 GBM tumor-
samples hosted in patient-derived xenograft (PDX) models
(Willey et al., 2020). In these samples, the patients were
treated by radiation therapy (RT), but did not have clinical
information. Besides the automatic embedding using the
clinical data, we manually applied tSNE (Hinton and Roweis,
2002) on the combined TCGA-GBM and PDX genetic data as
another 2D representation. We checked the quality of the
embedding by the close positions of the PDX JX14P_A/
JX14P_B sample pair and the PDX JX14P_RT_A/JX14P_RT_B
sample pair. These pairs are replicates of the same patient tumor
JX14P (before radiation therapy) and JX14P_RT (after radiation
therapy—RT), as shown in Supplementary Figure S1.

In this case study, to estimate the clinical outcome of an
unknown PDX sample, we select a TCGA-GBM subcohort
surrounding the PDX sample (Figures 4, 6) and performed
SEAS in the selected TCGA subcohort. In Figures 4, 5, SEAS
shows no enriched clinical feature for sample PDX JX14P_A.
Here, the average survival time among the surrounding TCGA

patients was 339 days. In Figures 6, 7, feature
“Discrete_CDE_survival_time >300”, which means that the
patients who survive for more than 300 days, are enriched
among the TCGA samples surrounding the PDX JX14P_RT_A
sample. Here, the average survival time for these patients was
434 days. This result suggests radiation therapy may improve the
clinical condition of the JX14P patient. Thus, SEAS analysis
suggests two opposite clinical outcomes for GBM patients even
when being treated by the same therapy. The finding could be
helpful in further clinical decisions regarding the selected
patients.

Other Notes About Similarity Measures and
Embedding Options
Similarity Measures
In SEAS, we used the embedded coordinates to compute the
Euclidean distance between two patient datapoints

d(i, j) �
�������������������

(xi − xj)
2 + (yi − yj)

2
√

(1)

Here, i and j denotes two patients, d(i, j) denotes the distance
between i and j, (xi, yi) denotes the embedded coordinate for
patient i, and (xj, yj) denotes the embedded coordinate for
patient j. We did not use any other similarity measure because
we assume that the good embedding results already reflect the
patient-wise similarity. In case the user’s defined similarity could
not be reflected by SEAS, the user can manually enter the list of
similar patients to perform the enrichment analysis.

Embedding Options
By default, if the user does not supply the embedding input, SEAS
may use umap (McInnes et al., 2018) or tSNE (Hinton and
Roweis, 2002) to embed the patient from the clinical features. The
embedding algorithms, as in (Konopka, 2020), require a pairwise
distance or similarity matrix. At this release, SEAS supports the
Euclidean distance (default), cosine similarity, and Jaccard index.
Besides, the user is encouraged to supply an embedding file for
more in-depth analysis. For example, in our GBM case study, the
patient pairwise similarity and embedding are computed by the
gene expression data instead of the clinical feature. The PDX have
gene expression data but do not have clinical attributes; therefore,
they could not be embedded correctly with SEAS default option.
When the clinical data is insufficient to compute good embedding
results, we highly recommend the user to use other tools to
compute the embedding prior to using SEAS.

DISCUSSION AND CONCLUSION

To summarize, we developed the user-friendly and online version
of SEAS. The tool can provide new and significant insights into
clinical data research andmay support the clinical decision. In the
future, we expect to develop the add-on version of SEAS, which
can be integrated into I2B2 clinical data management system.

One limitation in this SEAS first release is that we have not
implemented techniques handling missing values in the patients’
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clinical data. To lower the impact of this limitation, we chose the
enrichment methods, such as the hypergeometric test, that do not
require a very large data size. In our GBM case study, the
population consists of 389 patients, which is a moderate size.
However, it is sufficient to perform the statistical test even if the
missing data rate for one clinical attribute is 10%. On the other
hand, we encourage the user to use the non-clinical data to embed
the patients; therefore, the missing clinical data may not impact
the quality of SEAS results. In fact, our GBM case study shows an
approach to infer unknown clinical attributes in PDX data by
SEAS analysis of TCGA-GBM data.
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NPARS—A Novel Approach to
Address Accuracy and Reproducibility
in Genomic Data Science
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Background: Accuracy and reproducibility are vital in science and presents a significant
challenge in the emerging discipline of data science, especially when the data are
scientifically complex and massive in size. Further complicating matters, in the field of
genomic-based science high-throughput sequencing technologies generate considerable
amounts of data that needs to be stored, manipulated, and analyzed using a plethora of
software tools. Researchers are rarely able to reproduce published genomic studies.

Results: Presented is a novel approach which facilitates accuracy and reproducibility for
large genomic research data sets. All data needed is loaded into a portable local database,
which serves as an interface for well-known software frameworks. These include python-
based Jupyter Notebooks and the use of RStudio projects and R markdown. All software
is encapsulated using Docker containers and managed by Git, simplifying software
configuration management.

Conclusion: Accuracy and reproducibility in science is of a paramount importance. For
the biomedical sciences, advances in high throughput technologies, molecular biology and
quantitative methods are providing unprecedented insights into disease mechanisms.
With these insights come the associated challenge of scientific data that is complex and
massive in size. This makes collaboration, verification, validation, and reproducibility of
findings difficult. To address these challenges the NGS post-pipeline accuracy and
reproducibility system (NPARS) was developed. NPARS is a robust software
infrastructure and methodology that can encapsulate data, code, and reporting for
large genomic studies. This paper demonstrates the successful use of NPARS on
large and complex genomic data sets across different computational platforms.

Keywords: genomics, data science, reproducibility, accuracy, analytic validity

INTRODUCTION

The intersection of data science, analytics, and precision medicine are now having an increasingly
important role in the formation and delivery of health care, especially in cancer where the treatment
regimens are complex and becoming more individualized (Ginsburg and Phillips, 2018). The
National Research Council defined precision medicine as the ability to guide health care toward
the most effective treatment for a given patient, improving quality and reducing the need for
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unnecessary diagnostic testing and therapies (National Research
Council, 2011). Our understanding of the genomic basis of
disease (cancer) is being transformed by the combination of
next generation sequencing (NGS) and state-of-the-art
computational data analysis, which are empowering the entry
of innovative molecular assays into the clinic, and further
enabling precision medicine (Berger and Mardis, 2018).
Precision medicine is data science driven (Ginsburg and
Phillips, 2018).

Data science is a nascent, cross-disciplinary field that can be
viewed as an amalgamation of classic disciplines. These include,
but are not limited to: statistics, applied mathematics, and
computer science, and importantly is focused on finding non-
obvious and useful patterns from large datasets (Kelleher and
Tierney, 2018). Data science seeks to find patterns and
discriminators in order to support actionable decision making
(Cao, 2017a; He and Lin, 2020). How can an insight be
actionable? Except for domain-specific factors, the predictive
power of an insight makes itself actionable (Dhar, 2013). A
central tenet in science that distinctly extends into data science
is accuracy, which is the quality or state of being correct or
precise. It is also defined as simply the ratio of correctly predicted
observations to the total observations, and is utilized to measure
predictive power.

Data science is enabling new and different understandings and
reshaping several traditional fields (e.g., microbiology and
microbiome, supply chain management, astronomy) into
heavily data-driven disciplines (Borne, 2010; Hazen et al.,
2014; Bolyen et al., 2019). The term “Data Science” is
becoming increasingly associated with data sets massive in
size, but there are additional challenges in this rapidly
evolving field. Some factors considered to contribute to the
challenges include: 1) data complexity, which refers to
complicated data circumstances and characteristics, including
the quality of data, largeness of scale, high dimensionality, and
extreme imbalance; 2) the development of effective algorithms
and, common task infrastructures and learning paradigms
needed to handle various aspects of data; 3) the appropriate
design of experiments; 4) proper translation mechanisms in order
to present and visualize analytical results; 5) domain complexities,
which refers to expert knowledge, hypotheses, meta-knowledge,
etc., in the particular subject matter field (Cao, 2017b).

There is a known reproducibility problem in science. This was
investigated and quantified by a survey conducted by the journal
Nature involving over 1,500 scientists (Baker, 2016). The survey
results reported that over 70% of researchers have tried and failed
to reproduce another scientist’s results and, more than half have
failed to reproduce their own experiments. The survey also
uncovered ambiguity concerning the exact definition of
reproducibility and, this definition may be different depending
on the scientific field.

In data science, reproducibility is generally defined as the
ability to re-compute data analytic results, with an observed
dataset and requisite information regarding the analysis tools
(Peng, 2015). Given reproducibility, independent researchers can
build up evidence for or in contradiction to a scientific hypothesis
(Peng, 2011; Aarts et al., 2015). Some studies have suggested a

large number of practical rules or methods for enhancing
reproducibility in research (Sandve et al., 2013; Rupprecht
et al., 2020). Nonetheless, in several fields, non-reproducibility
is still an obstacle towards the better understanding of datasets,
further blocking the path to new scientific discoveries (Mobley
et al., 2013; Iqbal et al., 2016; Goodman et al., 2018; Wen et al.,
2018). In addition, the current situation has forced us to face an
awkward truth, that is, while our ability to generate data has
grown dramatically, our ability to thoroughly understand data
outputs has not developed at the same rate (Peng, 2015). Only if
an analytical result is reproducible, can its accuracy be
determined. The accuracy itself is based on evaluating the
average performance of a series of analytical results from the
same dataset. Then can we say such an analytical result is valid
and has analytical validity. In other words, analytic validity can
tell us how well the predictive power of an insight can be.
Accuracy and reproducibility are cornerstones of analytical
validity.

As more realize the implications and challenges presented by
reproducibility in the field of biology, outstanding bioinformatics
tools have been developed for improving the situation. To
conquer the heterogeneities in bioinformatics tools, Bioconda
(Grüning et al., 2018a) integrates more than 3,000 Conda tools.
Docker based Dugong (Menegidio et al., 2018) automates the
installation of more than 3,500 bioinformatics tools. Pachyderm
(Novella et al., 2019) has been developed for managing
complicated analyses including multiple stages and multiple
tools. For specific studies, reproducible pipelines have been
introduced: PiGx (Wurmus et al., 2018) has been created for
reproducible genomics analysis, whereas, QIIME 2 (Bolyen et al.,
2019) has been released for reproducible, interactive, scalable, and
extensible microbiome data science. Finally, many researchers
have utilized the web-based platform Galaxy (Jalili et al., 2020) to
facilitate collaborative and reproducible (Grüning et al., 2018b)
biomedical analyses.

In genomic data science, to address reproducibility, improve
scientific accuracy, and enhance collaboration, we present a
robust software infrastructure and methodology that can
encapsulate data, code, and reporting for large genomic
studies. Our system is specifically focused on post-NGS
pipeline (downstream) analysis, since it is at this juncture
where collaborative endeavors arise focused on gleaning
biological insights into studies employing one or more large
and complex omics data sets. While the aforementioned tools
each offer some methods for tackling the collaborative and
reproducibility problems associated with pipeline software,
none offer all the features and flexibility in our area of
inquiry; post-pipeline (downstream) analysis collaboration and
reproducibility. As an example, Galaxy is able to provide
collaboration and reproducibility of downstream analyses,
however, its ability to execute arbitrary code via a
programming language of the researcher’s choice—if
possible—can be quite burdensome.

Our system is named NGS Post-pipeline Accuracy and
Reproducibility System (NPARS) and its core technologies are
graphically illustrated in Figure 1. NPARS is different from other
approaches. Specifically, it is the first to focus on the challenges
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associated with the accuracy, reproducibility, as well as, providing
a more convenient manner of collaboration with colleagues. This
is achieved by the ability of NPARS to encapsulate large and
complex genomic datasets into a portable database container,
which may then be analyzed by well-established APIs (Python/
Jupyter Notebook, R/Rmd). The infrastructure first loads all data
needed for subsequent analyses into a local lightweight (SQLite,
2021) database. The data is then captured within the database
along with salient metadata into a schema, which can then be
accessed via well-known open-source application programming
interfaces. These include the use of Jupyter Notebooks (Python)
(Kluyver et al., 2016; Python Software Foundation, 2021),
RProjects and RMarkdown (R) (Allaire et al., 2021; R-Project,
2021) with an aim to generate self-documenting source code, and
results in portable formats. All software may be managed using
Docker (Merkel, 2014) containers and Git (Git, 2021) (version
control), simplifying configuration management.

METHODS

Synthetic Data
Synthetic data was used in this study. All synthetic data was
derived from actual human tumor tissue data sets (e.g., FastQ

files). RNA-seq synthetic data was produced by RSEM (Li and
Dewey, 2011). DNA-based synthetic data was produced through
aggregation and averaging from a pool of human tumor samples.
All FastQ files were initially created from BCL files using
bcl2fastq2 v2.18.0.12 (bcl2fastq2 and bcl2fastq, 2021) and
when needed or indicated, adapter trimming was performed
during the conversion. FastQC v0.11.4 (FastQC, 2021) was
used to assess the quality of all FastQ files.

RNA Sequencing Pipeline
Transcriptome Reconstruction and Gene-Level Count
Qualification
STAR v2.5.3a (Dobin et al., 2013) was used to align each sample’s
paired-end reads to the Ensembl Homo Sapiens reference
genome build GRCh37.75, using STAR’s “2-pass” method.
Quality control and assessment of resulting BAM files was
performed using QualiMap v2.2.1 (García-Alcalde et al., 2012)
and STAR output metrics. Picard v2.0.1 (Picard, 2021) was used
to add read group information. The marking of duplicate reads
and sorting of aligned files was also performed using Sambamba
v0.6.5 (Tarasov et al., 2015).

Each sample’s BAM file was initially processed using StringTie
v1.3.3b (Pertea et al., 2015), along with Ensembl gene annotations
to guide transcriptome reconstruction with novel transcript

FIGURE 1 | Software technologies used for the NGS Post-pipeline Accuracy and Reproducibility System (NPARS) infrastructure creation. The six core
technologies used are shown. (A) Study results from a genomics pipeline or repository are extracted and prepared for insertion into a SQLite database. (B) SQLite stores
all genomic study outputs along with salient study metadata. (C) Git provides version control of the Dockerfiles (Docker image specification, i.e., analysis environment)
and analysis source code. (D) Docker wraps the development environmental information into a container, simplifying software configuration management and, the
initialization of a reproducible analysis environment. (E) RStudio, provides an integrated development environment for the R programming language and R Projects that
are utilized, which provide an efficient way to organize software development activities. (F)RMarkdown generates self-documenting analytical reports into HTML files. (G)
Jupyter Notebooks, are utilized as a development and visualization environment for Python-based projects and reports.
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discovery enabled. Each patient’s samples (i.e., study cohort)
transcriptome was merged using StringTie’s merge mode.
Finally, the cohort’s BAM files were processed using the newly
created merged transcriptome. The StringTie option to output
“Ballgown-ready” files was enabled.

Ballgown-ready files containing transcript coverage data was
“rolled-up” to the gene-level and the R v4.0.3 (R-Project, 2021)
library IsoformSwitchAnalyzeR v1.13.05 (Vitting-Seerup and
Sandelin, 2019) was used to disambiguate novel findings
from StringTie output. Unnormalized count data was
extracted from IsoformSwitchAnalyzeR and used for
downstream analysis.

RNA Expressed Mutation Calling and Gene Fusion
Detection
RNA variants were called using the Broad Institute’s GATK Best
Practices for RNA-seq variant calling (Calling Variants in
RNAseq, 2021). These steps include the following: STAR was
used to align reads to the Ensembl Homo Sapiens reference
genome (build GRCh37.75), using the recommended “2-pass”
approach. Duplicates were marked and the aligned reads sorted
with Sambamba. Next, the tool SplitNCigarReads [GATK v3.9
(McKenna et al., 2010; DePristo et al., 2011)] was used to split
reads into exon segments, clip reads which overhang intronic
regions, and assign a default MAPQ score of 60 to all reads.
Variants were called using the HaplotypeCaller tool (GATK).
Gene fusions were detected by passing FastQ files directory to
STAR-Fusion v1.4.0 (Haas et al., 2019).

DNA Sequencing Pipeline
Targeted Mutational Panel
FastQ files were submitted to the QIAGEN Data Analysis Center
(QIAGEN, 2021) in a tumor/normal configuration and processed
using the smCounter2 (Xu et al., 2018) pipeline. The
aforementioned pipeline generates aligned reads in BAM
format and variants detected in VCF format. Quality control
and assessment of resulting BAM files was performed using
QualiMap.

Low-Pass Whole Genome Copy Number Variation
Each sample’s FastQ paired-end files were aligned to the Ensembl
Homo Sapiens reference genome (build GRCh37.75) using BWA
v0.7.12 (Li and Durbin, 2009). Quality control and assessment of
BAM files was performed with QualiMap. BAM files were post-
processed to mark duplicates and sort aligned reads (Sambamba).
Copy number data was computational inferred using the R library
ichorCNA v0.2.0 (Adalsteinsson et al., 2017).

Post-pipeline Reproducible Data Science
Software Infrastructure
NPARS was implemented using the following software packages:
Python v2.7.5/3.7.1; Jupyter Notebooks v6.3.0; IPython v7.22.0
(Pérez and Granger, 2007); R v4.1.0; RStudio v1.4.1717 (RStudio,
2020); RMarkdown v.2.7; SQLite v3.35; Docker v20.10.3; and Git
v2.26.2 (Git, 2021).

RESULTS

NPARS Overview and Workflow
Figure 2 illustrates an overview and workflow for NPARS.
First, the data associated with the study of interest is identified.
This may be performed from either a central database/
repository or directly from pipeline output files as shown in
subfigure (A). Next, custom Python scripts are used to
perform extraction and transform operations on the pipeline
outputs and associated metadata (B). The result is to produce a
set of standardized/structured output files, i.e., well-formatted
comma-separated files (C). A Python script (D) imports the
structured output files into the local SQLite database
containing a well-defined schema to hold the data. The
SQLite database (E), is a light-weighted and easily
portable database, and is utilized to store the study’s data
and metadata in a well-organized manner. Well known and
regarded APIs (RProject and R-Markdown, Jupyter notebooks)
are utilized to interface (F) to the SQLite database for analysis
type activities.

Docker images are utilized to “spin-up” containers, which
contain installations of an analysis environment (G). For
example, a Docker image containing an R/RStudio
environment was created, which includes the necessary
libraries (e.g., RMarkdown, DESeq2, etc.) to perform
exploratory data analysis (EDA) and differential gene
expression on a given study of interest. Python utilizing
Jupyter Notebooks is another example analysis environment.
Other analysis environments can be easily “Dockerized”, or
encapsulate the analysis environment within a Docker image
in order to offer the desired functionality. NPARS can also be run
without Docker.

Docker image specifications are checked into a Git repository
in the Dockerfile format, to allow images to be easily shared and
to provide version control of the analysis environments and their
dependencies. This greatly aids the ultimate goal of NPARS,
which is reproducible output (H). Version controlled analysis
source code, can interface directly with a SQLite database via
well-defined, open-source interfaces provided by the software
framework of choice. For example, the R library RSQLite
(RSQLite, 2021) may be used to directly query the data to be
analyzed from the SQLite database. Finally, given the SQLite
database along with access to the Git repository containing the
Docker specification and source code, any collaborator may
generate a reproducible, complete analysis environment, as
well as, analysis results from self-documenting RMarkdown or
Jupyter Notebooks.

Database Schema
The SQLite database utilized by the NPARS is displayed in
Figure 3 and contains several groups of major tables. The
entity relationship model illustrates the metadata and
genomics study data within the context of the database
schema. The Study Meta Data table (subfigure A) provides an
essential repository of metadata, as well as means of central
connection to the other database tables via a combination of
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FIGURE 2 | NPARS Overview and Workflow. (A) Genomic pipeline output for a particular study of interest is identified. This output can be stored in a database(s)
and/or in output files. (B) A Python script extracts the identified study results and transforms them into well-defined structured output files. (C) The structured output files
contain all data and metadata to be imported into the SQLite database. (D) A Python script imports the structured output files into the local SQLite database, which
already has a well-defined schema to hold the data. (E) The SQLite database stores the scientific study data and metadata in a well-organized manner. (F) The only
interface between the user and the data, is through the particular SQLite API for that development environment. For example, R provides the RSQLite library that provides
access to the data. (G) Each analysis environment is an abstraction (container) within a Docker container and the source code for it is checked into Git. Self-documenting
coding technologies such as R/RMarkdown and Python/Jupyter Notebooks, are used to perform the desired analyses. (H) Reproducible reports/analyses are
generated, that are both portable and reproducible.

FIGURE 3 | Entity Relationship (ER) Model for the SQLite database utilized in NPARS. Metadata and genomics study data are shown within the context of the
database schema. (A) Study metadata table (“Study Meta Data”), provides a central repository of metadata, andmeans of connection to the rest of the tables via primary
and foreign keys. (B) DNA mutations table [“DNA Mutations (Panel)”] contains mutational data from a targeted DNA NGS panel. (C) Three tables store copy number
variation (CNV) data (“CNV Segmented”), where each CNV segment is a range of chromosome bases of similar copy number value. Each CNV segment is
associated with possibly many genes within it (“CNV Genes”), and with possibly many cytobands (“CNV Band”). (D) The four tables which hold RNA-based study data:
isoform count (“RNA Isoform Count”), gene fusions (“RNA Gene Fusion”), gene count (“RNA Gene Count”) and, expressed mutations (“RNA Expressed Mutations”).
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primary and secondary keys. The DNA Mutations table (B)
contains NGS mutational data from a targeted panel.

The remaining tables house six different types of genomic data
results. Tables that contain the copy number variation data derived
from DNA using an ultra-low-pass whole genome sequencing
approach are shown in purple (C). As part of the ultra-low-pass
approach, copy number data is segmented into chromosomal
regions of similar copy number status (CNV Segmented) and,
each segment/locus is annotated via one-to-many relationships
with associated genes, (CNV Genes) and, associated cytobands
(CNV Band). Genomic study results include a variety of RNA-
based results, which are shown in light blue (D). These include
isoform count data (RNA Isoform Count), gene fusion data (RNA
Gene Fusion), gene count data (RNA Gene Count) which is
essentially “rolled up” isoform count data and, expressed
mutations data (RNA Expressed Mutations).

Data Analyses
NPARS can generate a wide variety of plots and tables for the
purposes of EDA and/or other user-specific analyses, such as
finding differentially expressed genes (DEGs). Here we
disseminate some examples of reproducible analyses results that
were performed on the samples (a total of 21 different NGS
experiments yielding large and complex multi-omic datasets),
which were described in the Methods section. EDA is an
approach for analyzing datasets, summarizing, and showing
their main statistical properties in graphics or other data
visualization algorithms (Tukey, 1977). Supplementary Figure
S1, displays a few examples used in NPARS for RNA-seq data.
Subfigure A shows violin and box plots displaying the distribution
of read counts for the replicates of three classes of samples colored
blue, green andmaroon. In this example each sample class contains
three replicates. Next a principal component analysis plot (B) of
the samples begins to explore the data. The three tissue types used
in this study are circled and color coded. The two principal
components explain 72% of the variation. (C) A hierarchical
clustering analysis (HCA) with heatmap of mean normalized
counts, showing the top 20 most variable genes on the y-axis,
and the three tissue types along with their three replicates colored
and listed along the x-axis. It is known that tissue types T2 and T3
are biologically similar. Tissue type T1 is known to be biologically
different from T2 and T3, and this is reflected in the dendrogram.

In addition to traditional EDA plots, the R library RCircos
v.1.2.1 (Zhang et al., 2013) was used in NPARS to visualize
multiple NGS studies in a single plot (Supplementary Figure
S2). From the outermost ring inward this figure is composed of: i.
human chromosomal ideogram, ii.DNA panel mutations (tumor
vs. germline), iii. RNA expressed mutations from the full
transcriptome, iv. whole genome DNA copy number
variations (tumor vs. germline) colored according to the
legend symbols that denote amplification, normal, or deletion,
v. RNA gene expression (TPM) and, vi. RNA gene fusions.

Differential gene expression (DGE) analysis takes normalized
RNA-based read count data and performs a statistical analysis, to
find quantitative changes in expression levels between different
experimental groups. A DGE analysis report is generated by
NPARS, and an abbreviated example output is shown in

Supplementary Tables S1, 2. This information was produced
as part of a RSQLite query. The novel gene findings report
(Supplementary Table S1) is discussed. Subtable A shows
columns for the following: i. predicted novel gene (ID), ii.
locus, iii. gene name corresponding to the nearest annotated
gene iv. log2 fold change (case over control), v. p-value, and vi.
adjusted p-value. Subtable B displays: i. predicted novel gene
(ID), ii. Case sample mean normalized count (via replicates), iii.
Case sample standard deviation (replicates), iv. control sample
mean normalized count (replicates) and, v. control sample
standard deviation (replicates).

Supplementary Table S2 illustrates an abbreviated example
report for annotated gene findings. Subtable A shows columns for
the following: i. annotated gene (ID), ii. gene symbol, iii. locus, iv.
strand information, v. log2 fold change (case over control), vi.
p-value and, vii. adjusted p-value. SubtableB shows columns for the
following: i. annotated gene (ID), ii. Case sample mean normalized
count (via replicates), iii. Case sample standard deviation
(replicates), iv. control sample mean normalized count
(replicates) and, v. control sample standard deviation (replicates).

An example of an abbreviated copy number variation (CNV)
report derived from an ultra-low-pass whole genome (tumor/
germline) NGS approach and processed by the ichor package, was
generated by NPARS and is displayed in Supplementary Table
S3. The table is produced as part of a RSQLite query and shows
columns for the following: i. gene symbol, ii. annotated gene (ID)
per Ensembl, iii. Chromosome number, iv. Chromosomal
segment start position, v. chromosomal segment end position,
vi. median logR, where logR � log2 (T1/Germline), vii. subclone
status, meaning is the amplication or deletion event part of a
subclone per the ichor package viii. copy number, ix. copy
number type and, x. cytoband. This report shows a small
example of salient CNV findings from a small selection of genes.

A Python/Jupyter Notebook utilizing a library from scikit-
learn (Pedregosa et al., 2011) was used to generate the clustergram
plot in Supplementary Figure S3 by NPARS. This approach is
used as part of finding the optimal number of clusters for a
K-Means analysis. RNA-seq data normalized across three sample
types using DESeq2 were used in this example. The x-axis
displays the number of clusters (k) during an iteration of
k-means clustering analysis, and the y-axis displays the PCA
weighted mean of the clusters. Each point (red dot) represents the
center of a cluster and, the size of each point represents the
amount of information contained in each cluster. The thickness
of lines (blue) connecting points represent observations
potentially moving between clusters. In this example per the
clustergram plot the optimal number of clusters should be 2 or 3.

To further investigate the optimal number of clusters for
K-Means, silhouette coefficient plots (Zhou and Gao, 2014)
were performed using the Python/Jupyter Notebook code
employing scikit-learn and shown in Supplementary Figure
S4. Shown are a series of silhouette plots, which graphically
evaluate a variety k-means cluster configurations (2 through 7)
along with corresponding silhouette coefficients and threshold
value (dotted red vertical line). The value of a silhouette
coefficient (x-axis) ranges from -1 to 1, the higher the value
indicates greater cohesion within the cluster and greater
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separation between clusters. A negative value indicates a possible
improper cluster assignment and, a zero value indicates the object
assignment is between clusters. The higher the coefficient value,
the more separated and clearly identifiable is the particular
cluster. The thickness of each cluster silhouette (y-axis,
associated with the cluster label) indicates the cluster size. (A)
Silhouette analysis for k-means clustering on sample data with 2
clusters. (B) Silhouette analysis for k-means clustering on sample
data with 3 clusters. In this case the new cluster (cluster label 2)
has a zero coefficient value meaning it is not significant. (C)
Silhouette analysis for k-means clustering on sample data with 4
clusters. This plot shows cluster labels 2 and 3 are not significant.
(D) Silhouette analysis for k-means clustering on sample data
with 5 clusters. (E) Silhouette analysis for k-means clustering on
sample data with 6 clusters. (F) Silhouette analysis for k-means
clustering on sample data with 7 clusters. According to the plots,
the optimal cluster number should be 2. A confluence of evidence
based on this evaluation and the previous (clustergram) is
indicating the optimal k-means cluster value may be 2.
Datasets used to generate the plots are the same simulated
data which were used to generate the clustergram plot
(Supplementary Figure S3). A Jupyter/Python Notebook was
used to perform this analysis.

Based on the prior results from the clustergram and silhouette
coefficient plots, k-means was run twice, once with two clusters, and
then three clusters. Supplementary Figure S5 contains results
obtained from the Python/Jupyter Notebook code for this analysis,
with k-means and two clusters (A), and three clusters (B). The
same RNA-seq data processed by DESeq2 was used. The plot
shapes indicate the cluster membership labels: 0, 1, 2 and, the
colors represent the tissue types, T1 (Tissue 1, blue), T2 (Tissue 2,
orange), T3 (Tissue 3, green). A small red circle is used to highlight
the primary difference between the two plots, namely, a new cluster
is formed from T1. Analyzing plots A and B, it appears that two
clusters may more efficiently group the data versus three clusters
and, supports the results of the silhouette plots (Supplementary
Figure S4) and, is also in agreement with the clustergram plot
(Supplementary Figure S3).

DISCUSSION

The next evolution in oncology research and cancer care are being
driven by data science (Yu and Kibbe, 2021). So, it is of paramount
importance to address current accuracy and reproducibility issues.
In the field of genomic data science, accuracy and reproducibility
remains a considerable challenge due to the sheer size, complexity,
and dynamic nature plus relative inventiveness of the quantitative
biology approaches. The accuracy and reproducibility challenge
does not just block the path to new scientific discoveries, more
importantly, it may lead to a scenario where critical findings used
for medical decision making are found to be incorrect (Huang and
Gottardo, 2013). NPARS has been developed to meet the unmet
need of improving accuracy and reproducibility in genomic data
science. Currently, a limitation of our system is the requirement of
the user to put their data into a standardized format for import into
NPARS. These steps are not automated.

An accuracy and reproducibility test of NPARS was performed
by running the R/RMarkdown and Python Jupyter Notebook
code with the SQLite database on two different systems, 1)
Windows 10-based system and, 2) system utilizing the Ubuntu
Linux distribution. The results demonstrated the use of NPARS
on two different systems produced identical outputs and this is
summarized in Table 1. Here, the term “Passed” means the
observed and expected outputs were identical on the respective
systems. The R/RMarkdown outputs were first compared. The
RCircos graphic (Supplementary Figure S2), which summarizes
and integrates seven genomics studies into a single graphical plot
was visually inspected from the Windows and Linux systems and
found to be identical. Supplementary Tables S1A,B, 2A,B, 3
were also identical. All EDA graphics from Supplementary
Figure S2 were compared by visual inspection and found to
be identical. For the analyses performed by Python/Jupyter
Notebook, the clustergram (Supplementary Figure S3),
silhouette coefficient plots (Supplementary Figure S4) and
k-means graphics (Supplementary Figure S5) were
regenerated on each system, compared by close visual
inspection and found to be identical.

TABLE 1 | NPARS Accuracy and Reproducibility Testing Summary.

Analysis test System #1,
Windows 10

System #2, Linux/Ubuntu Comparative results (system
#1 vs. System

#2)

RCircos, Supplementary Figure S2 Passed Passed Identical
DESeq2 Novel Genes, Supplementary Table S1 Passed Passed Identical
DeSeq2 Annotated Genes, Supplementary Table S2 Passed Passed Identical
Copy Number Analysis, Supplementary Table S3 Passed Passed Identical
Violin Plots, Supplementary Figure S1 Passed Passed Identical
Box Plots, Supplementary Figure S1 Passed Passed Identical
PCA Plot, Supplementary Figure S1 Passed Passed Identical
HCA Plot, Supplementary Figure S1 Passed Passed Identical
Clustergram, Supplementary Figure S3 Passed Passed Identical
Silhouette Coefficient Plots, Supplementary Figure S4 Passed Passed Identical
K-means Plots, Supplementary Figure S5 Passed Passed Identical

The first column, “Analysis Test” lists the name of each test along with corresponding supplemental figure or table information. The columns “System #1, Windows-10” and “System #2,
Linux/Ubuntu” lists the results of each test run on these respective systems. The column titled “Comparative Results (System #1 vs. System #2) reports the comparative results outcome.
The term “Passed” means the observed and expected outputs were the same on the respective systems.
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The innovative and evolving landscape of oncology research
and cancer care are dependent on accurate, reproducible, and
robust data science. High-throughput instrumentation are
generating increasingly massive and complex genomic data sets,
and continue to create opportunities and challenges in the
dynamic field of genomic data science. This makes
collaboration, verification, validation, and reproducibility of
findings difficult. To address these challenges NPARS was
developed. NPARS is the first system to focus on NGS
downstream analysis accuracy, reproducibility, and enhancing
collaboration, by effectively capturing large and complex
genomic datasets into a portable database container and
exposing it to well-established APIs. In this paper we have
profiled and demonstrated NPARS, which is a robust software
infrastructure and methodology that can encapsulate both data,
code, and reporting for large genomic studies. This study
demonstrates the successful use of NPARS on large and
complex genomic data sets across different computational
platforms and begins to address the prevailing challenges of
accuracy and reproducibility in genomic data science.
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The collection of expression quantitative trait loci (eQTLs) is an important resource to study
complex traits through understandingwhere and how transcriptional regulations are controlled
by genetic variations in the non-coding regions of the genome. Previous studies have focused
on associating eQTLs with traits to identify the roles of trait-related eQTLs and their
corresponding target genes involved in trait determination. Since most genes function as a
part of pathways in a systematic manner, it is crucial to explore the pathways’ involvements in
complex traits to test potentially novel hypotheses and to reveal underlying mechanisms of
disease pathogenesis. In this study, we expanded and applied loci2path software to perform
large-scale eQTLs enrichment [i.e., eQTLs’ target genes (eGenes) enrichment] analysis at
pathway level to identify the tissue-specific enriched pathways within trait-related genomic
intervals. By utilizing 13,791,909 eQTLs cataloged in the Genotype-Tissue Expression (GTEx)
V8 data for 49 tissue types, 2,893 pathway sets reported from MSigDB, and query regions
derived from the Phenotype-Genotype Integrator (PheGenI) catalog, we identified intriguing
biological pathways that are likely to be involved in ten traits [Alzheimer’s disease (AD), body
mass index, Parkinson’s disease (PD), schizophrenia, amyotrophic lateral sclerosis, non-small
cell lung cancer (NSCLC), stroke, blood pressure, autism spectrum disorder, and myocardial
infarction]. Furthermore, we extracted the most significant pathways for AD, such as BioCarta
D4-GDI pathway and WikiPathways sulfation biotransformation reaction and viral acute
myocarditis pathways, to study specific genes within pathways. Our data presented new
hypotheses in AD pathogenesis supported by previous studies, like the increased level of
caspase-3 in the amygdala that cleaves GDP dissociation inhibitor and binds to beta-amyloid,
leading to increased apoptosis and neuronal loss. Our findings also revealed potential
pathogenesis mechanisms for PD, schizophrenia, NSCLC, blood pressure, autism
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spectrum disorder, and myocardial infarction, which were consistent with past studies. Our
results indicated that loci2path′s eQTLs enrichment test was valuable in unveiling novel
biological mechanisms of complex traits. The discovered mechanisms of disease
pathogenesis and traits require further in-depth analysis and experimental validation.

Keywords: eQTLs, gene pathway sets, gene set enrichment analyses, tissue-pathway association, complex traits

1 INTRODUCTION

Expression quantitative trait loci (eQTLs) have been one of the major
focuses in determining the genetic variants that affect gene expressions
locating in non-coding regions of the genome. eQTLs’ nature of
influencing expression levels of their target genes (eGenes) makes
them powerful at studying transcription regulation (Li et al., 2010).
The traditional usage of genomic physical proximity to connect
genetic loci with their corresponding eGenes has been proven
somewhat ineffective since it has been demonstrated that only
about 25% of eQTLs have their physically closest genes to be their
eGenes (Zhu et al., 2016; Xu et al., 2020). Further, eQTLs have become
an increasingly popular tool for researchers to identify specific genes
for diseases and traits.

Researchers often use eQTLs associations to link expression traits
to genotypes of genetic variants located in genomic intervals.
Multiple studies have been conducted on connecting eQTLs and
various traits including Alzheimer’s disease (AD) to determine the
roles trait-related eQTLs and their corresponding eGenes play in
pathogenesis (Hormozdiari et al., 2016; Zhao et al., 2019; Sieberts
et al., 2020). Though many interesting findings have been discussed,
the observed eQTLs patterns in cerebral and cerebellar brain regions
require further investigations with respect to their potential
functions, but so far, to our knowledge, no systematic in-depth
studies have been performed to explore the roles of such eQTLs in
etiologies of neurodegenerative diseases such as AD (Zhao et al.,
2019; Sieberts et al., 2020). Another common practice is to use
eQTLs mapping to link an expression trait to genetic variants in
certain genomic regions, which holds promise in elucidating gene
regulations and predicting gene networks associated with complex
phenotypes (Li et al., 2010). By using eQTLs mapping methods, we
can generate a comprehensive connection map of eQTLs and their
eGenes’ enriched pathways to help us develop a more thorough
understanding of eQTLs’ involvement in gene regulation, thus
providing insights in discovering hidden biological mechanisms
(Gilad et al., 2008). In addition, eQTLs studies can also help
reveal the architecture of gene regulation, which in combination
with results fromprevious genetic association studies of human traits
may help predict regulatory roles for genetic variants previously
associated with particular human phenotypes (Gilad et al., 2008).
Therefore, it is crucial to explore the associations between eQTLs and
genes at the pathway level in complex traits to develop a systematic
review of such associations and infer mechanisms of pathogenesis.

The objective of this study was to perform large-scale eQTLs
enrichment tests at the pathway level and determine the tissue-specific
enriched pathways for trait-related genomic intervals based on the
Bioconductor package loci2path (Xu et al., 2020). There are two key
advantages of using loci2path than other existingmethods: first, we do
not depend on physical proximity to provide a link between an eQTL

and its target gene, which could be unreliable; second, eQTLs enable us
to produce the regulatory annotation for specific tissue types (Xu et al.,
2020). For a specific genomic interval containing multiple eQTLs, if
eQTLs enrichment analysis indicates that their corresponding eGenes
are participating in the same biological pathway, this could imply a
potential relationship between that specific pathway and the genomic
interval of interest. The tissue-specific eQTLs sets also can
demonstrate in what specific tissues would such enrichment be
observed, which could help us generate new hypotheses on the
biological mechanisms of disease pathogenesis.

In this study, we used the computer program loci2path to perform
eQTLs enrichment analysis for genomic regions of ten traits [AD,
body mass index, Parkinson’s disease (PD), schizophrenia,
amyotrophic lateral sclerosis, non-small cell lung cancer (NSCLC),
stroke, blood pressure, autism spectrum disorder, and myocardial
infarction]. We have updated the loci2path to utilize the most current
data sets of query regions, eQTLs sets, and pathway sets. We used the
entire multi-tissue eQTLs data from the GTEx V8 data release that
contains 13,791,909 eQTLs with 32,958 unique eGenes for 49 tissue
types. In addition to BioCarta and Kyoto Encyclopedia of Genes and
Genomes (KEGG) pathway sets that were included in the original
loci2path (Xu et al., 2020), we have added pathway sets from three new
pathway databases, i.e., Pathway Interaction Database (PID),
Reactome, and WikiPathways to generate more comprehensive
results.

2 MATERIALS AND METHODS

2.1 Extension of the loci2path
In this study, we extended the Bioconductor package loci2path
(Xu et al., 2020) that runs on an R-based platform, and then
applied the extended loci2path to perform eQTLs enrichment
analyses at pathway level based on different pathway databases to
identify enriched pathways for genomic intervals of multiple
traits. The advantage of loci2path is that this computer
program uses eQTLs information to directly link to their
eGenes, rather than using genome proximity, because an
eQTL and its corresponding eGene are not always located
near each other. For each gene set, the loci2path will first
identify eGenes based on the eQTLs set in the given genomic
intervals and then evaluate the significance of these eGenes’
enrichment within a gene set. The eQTLs enrichment program
really refers to their corresponding eGenes’ enrichment because
multiple eQTLs could target the same eGenes due to linkage
disequilibrium. p-values calculated using Fisher’s exact test for an
eQTLs set could be computed for each pathway to evaluate the
enrichment significance, and those pathways with greater
enrichments were indicated by smaller p-values. The results
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were filtered with a p-value of 10−4, which was chosen after
multiple trials to balance the number of most significant tissue-
pathway combinations and specificity, and used to construct
heatmaps for further analysis. We have tried other p-values
and obtained similar outcomes.

2.2 Datasets
2.2.1 GTEx eQTLs
For this study, we used the full set of multi-tissue QTL data from
the GTEx V8 data release as the input data of eQTLs sets,
consisting of 49 tissue types (GTEx Consortium, 2020). The
data were downloaded from GTEx through this link: https://
storage.googleapis.com/gtex_analysis_v8/multi_tissue_qtl_data/
GTEx_Analysis_v8.metasoft.txt.gz. eQTLs sets for each tissue
were filtered with a p-value threshold of 10−4. Each gene’s
entrez ID and gene name were obtained by using the given
gene’s ensemble gene ID and the Bioconductor package biomaRt.

2.2.2 MSigDB Pathways
A total of 2,893 pathways from BioCarta, KEGG, PID, Reactome,
andWikiPathways gene sets were used in this study as the input data
of gene sets. The data were downloaded from the MSigDB website:
http://www.gsea-msigdb.org/gsea/msigdb/collections.jsp.

2.2.3 Phenotype-Genotype Integrator Query Regions
The list of known trait-associated variants was obtained from
National Center for Biotechnology Information (NCBI) via
PheGenI website: https://www.ncbi.nlm.nih.gov/gap/phegeni.
For a given genetic variant, the genomic region is defined as a
flanking 50 kb on each of left and right sides of that variant, which
spans 100 kb. Overlapped regions were merged. A total of 9,894
genomic intervals were used in this study, and the numbers of
genomic regions for each trait are demonstrated in Table 1.

3 RESULTS

3.1 Overview
The objectives of this study were to identify significantly enriched
pathways for eQTLs sets of specific tissues at trait-related genomic
intervals to generate potentially novel hypotheses of trait
determination. A workflow of the study is presented in Figure 1,

showing that the input data were query regions, and the internal
process involved usages of eQTLs sets and gene pathway sets, and the
output results were enriched pathways and the corresponding tissues
sorted by multiplicity-adjusted enrichment p-values. We used
loci2path to conduct eQTLs enrichment analyses by computing the
p-values of Fisher’s exact test adjusted by Benjamini & Hochberg
correction method (Benjamini & Hochberg, 1995), and then
converting such results into a heatmap. The heatmap was
displayed where each row represents a tissue type, and each
column represents a gene pathway. The strong significant
enrichments were indicated by red cells, and the weak insignificant
enrichments were indicated by blue cells. Other data including eQTLs
in pathways, eQTLs in tissues, and hit genes generated by loci2path
were used to construct tables. Various adjusted p-values of genes
through Fisher’s exact test were used as thresholds to filter out the
most significant pathway-tissue combinations for each trait. Specific
genes that pathways hit in the eQTLs sets were extracted for further
analysis. Additional heatmaps and result tables for traits can be found
in Supplementary Figures. The results of three of the ten traits,
i.e., body mass index, amyotrophic lateral sclerosis, and stroke were
not presented, because the outputs obtained from eQTLs enrichment
tests at the pathway level for these traits were insignificant, and no
further analyses could be performed on them.

3.2 Adding PID, Reactome, and
WikiPathways to loci2path
We have extended the loci2path (Xu et al., 2020) by adding gene
pathway sets of PID, Reactome, and WikiPathways to loci2path′s

TABLE 1 | The numbers of genomic intervals selected that contain known GWAS
variants for each of the ten complex traits.

Trait Number
of genomic intervals

Alzheimer’s Disease 319
Body Mass Index 2,052
Parkinson’s Disease 199
Schizophrenia 1,296
Amyotrophic Lateral Sclerosis 342
Non-Small Cell Lung Cancer 120
Stroke 939
Blood Pressure 3,123
Autism Spectrum Disorder 570
Myocardial Infarction 934

FIGURE 1 | A diagram depicting our study’s analysis pipeline, including
input data, internal processes, and output results.
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pathway collection. The data of pathway links and NCBI entrez
gene IDs were retrieved from the MSigDB website: http://www.
gsea-msigdb.org/gsea/msigdb/collections.jsp. The data were
separated into two text documents with one containing gene
links and the other containing the pathway’s gene entrez IDs
using a self-written R program (Supplementary Data Sheet S1).
The documents were added into the loci2path Bioconductor
package at loci2path-master/inst/extdata/geneSet, which could
be called by the loci2path-running program to match significant
eQTLs at the new gene pathway sets.

3.3 Alzheimer’s Disease
Currently, there are three major pathology divisions for AD:
protein accumulation, neuron loss, and reactive process
(Duyckaerts et al., 2009). Past studies have shown that the
extracellular accumulation and deposition of amyloid-beta
(Aβ) protein induce the appearance of senile plaques and

create an abnormal neuron environment, which causes
cognitive disabilities (Sadigh-Eteghad et al., 2015; Cheignon
et al., 2018). Such accumulation of Aβ not only enhances the
interaction between amyloid-forming protein and neuronal
membrane and increases membrane permeability through
hypothetical mechanisms like amyloid-forming protein’s
channel-like conductance, but also contributes to the increase
in the reactive oxygen species production and thus the disruption
of neuronal membrane integrity (Butterfield and Lashuel, 2010;
Cheignon et al., 2018).

Figure 2A demonstrated the eQTLs enrichment of AD-related
genomic intervals in the BioCarta pathway set. There was a
distinct significant enrichment of the D4-GDI pathway in the
brain amygdala (Figure 2A). Significant eQTLs enrichment
results from the amygdala tissue were extracted for further
analysis. The table has demonstrated that most pathways’ gene
hit in brain amygdala tissue was Rho GDP dissociation inhibitor

FIGURE 2 | Heatmap of Alzheimer’s disease’s eQTLs enrichment results in (A) BioCarta and (B) WikiPathways pathway sets, respectively.
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beta (ARHGDIB) gene (Table 2). The D4-GDI pathway had the
lowest p-value of genes, which was consistent with the data in
Figure 2A where the D4-GDI pathway was only enriched in
amygdala tissue (Table 2; Figure 2A). D4-GDI represents the
negative regulator of Ras-related Rho GTPases, and its removal is
crucial to induce apoptosis since Rho GTPases increase the
cytoskeletal and membrane modification related to apoptosis
(Coleman and Olson, 2002). As an enzyme that cleaves D4-
GDI, caspase-3 was found to be positively correlated with mild
cognitive deficiency in early AD pathology (Gastard et al., 2003).
Clinical research suggested that Aβ could sequester caspase-3 via
direct interaction and induce neuronal apoptosis via caspase-3
activation, thus strengthening AD development (Chang et al.,
2016). One possible hypothesis was that an increased level of
caspase-3 in the amygdala leads to increased apoptosis and
neuronal loss and thus contributes to the memory loss
symptom of AD.

Similarly, Figure 2B showed significant enrichment of sulfation
biotransformation reaction and viral acute myocarditis pathways in
brain cortex, IL2 and IL5 signaling pathways in brain cerebellum, and
development and heterogeneity of the innate lymphoid cell (ILC)
pathway in brain hippocampus for theWikiPathways set (Figure 2B).
The significant enrichment of viral acute myocarditis pathway in the
brain cortex suggested that the correlation observed between heart
failure and AD was due to not only the majority of patients’ age, but
also genetic factors (Figure 2B) (Li et al., 2006). Such findings were
consistent with a previous study where the viral myocarditis pathway
from other pathway sets was identified to be significantly associated
with AD (Liu et al., 2014). One population study also found a higher
than 80% risk of developing AD for patients with heart failures when
major confounders like vascular comorbidities were controlled (Qiu
et al., 2006). The significant enrichment in the sulfation
biotransformation reaction pathway could also be explained by
previous findings (Figure 2B). One research suggested an
increased frequency of reduced metabolism and impaired sulfation
of xenobiotics among AD patients (McFadden, 1996). A clinical study
showed that sulfated curcumin can bind to copper and iron ions that
are enriched in the brain cortex of AD patients and induce Aβ peptide
formation, thus indicating that impaired sulfation ability would
increase risk of AD (Baum and Ng, 2004). One possible
connection between acute viral myocarditis and AD is kynurenine
3-monooxygenase (KMO), which is a key regulatory enzyme in the

kynurenine metabolism pathway that converts kynurenine to 3-
hydroxykynurenine (Kubo et al., 2017). Studies have shown that
the absence of KMO increased the production of kynurenine pathway
metabolite, which lowered the synthesis of chemokine and thus
resulted in the decrease of mortality of viral acute myocarditis by
encephalomyocarditis virus in mice (Kubo et al., 2017). Interestingly,
another study pointed out that JM6, a KMO inhibitor, was found to be
able to prevent memory deficiency and synaptic loss in AD mouse
models through the increase of the neuroprotective kynurenine
metabolite kynurenic acid (Zwilling et al., 2011). Such interaction
may imply a hidden mechanism in AD’s pathogenesis that increases
KMO production and thus decreases levels of neuroprotective
kynurenine metabolite and enhances AD symptoms, which
explains AD’s connection to acute viral myocarditis.

3.4 Parkinson’s Disease
One key sign of PD is the accumulation of α-synuclein and the
formation of Lewy bodies in brainstem, limbic system, and cortical
areas (Alecu and Bennett, 2019). Pathological hallmarks also include
the loss of dopaminergic neurons from the substantia nigra and
Lewy bodies in surviving cells of affected brains, which leads to
reduced voluntary movements (Gegg et al., 2012).

As demonstrated in the Supplementary Figure S1A, the
enrichment of the KEGG sphingolipid metabolism pathway was
observed to be highly and uniquely significant in amygdala tissue,
which indicates a correlation between sphingolipid metabolism and
PD. This is consistent with previous studies since the metabolism of
sphingolipid glucosylceramide catalyzed by glucocerebrosidase
(GCase) was found to be deficient in PD patients (Gegg et al.,
2012). The deficiency of GCase that catalyzes sphingolipid
metabolism has reached up to 40% at amygdala for PD patients
compared to normal patients, which is likely to cause α-synuclein
accumulation as GCase mRNA level decreased in cells with
exogenous α-synuclein (Gegg et al., 2012). One possible
explanation for the decreasing GCase could be a mutation at
glucosylceramidase-beta gene that encodes this lysosomal enzyme.
Similarly, the lysosomal-associated membrane protein 2A and heat
shock cognate 70 from lysosome had significantly lower expression
levels in amygdala of brains with PD compared to brains with AD or
normal brains (Alvarez-Erviti et al., 2010). The chaperone-mediated
autophagy strongly depends on these two proteins, and the
downregulation of lysosomal-associated membrane protein 2A
has increased the mean half-life of α-synuclein from 46.5 to 65 h,
suggesting a direct link between this protein and PD (Alvarez-Erviti
et al., 2010). Since wild-type α-synuclein was mostly degraded by
chaperone-mediated autophagy, it is valid to hypothesize that
impaired lysosomal functions could initiate the accumulation of
α-synuclein and thus lead to PD.

3.5 Schizophrenia
As demonstrated, most significantly enriched pathways in all 49
tissues were immune-related pathways including allograft rejection,
graft vs. host disease, and antigen processing and presentation
pathways (Table 3). The significantly enriched KEGG allograft
rejection pathway in different tissues shared the major
histocompatibility complex, Class I, C (HLA-C) gene (Figure 3A;
Table 3). HLA-C has been shown to be strongly associated with

TABLE 2 | P-values Obtained from Fisher’s Exact Test of Significant eQTLs
Enrichment for Alzheimer’s Disease in BioCarta Pathway Set for Brain
Amygdala Tissue

Pathway Gene hit Genomic location Fisher’s
exact test p-valuea

D4-GDI ARHGDIB 12p12.3 0.020
Blymphocyte CR1 1q32.3 0.023
ARF POLR1A 2p11.2 0.028
Caspase ARHGDIB 12p12.3 0.037
TNFR1 ARHGDIB 12p12.3 0.048
FAS ARHGDIB 12p12.3 0.050
HIVNEF ARHGDIB 12p12.3 0.091

aFisher’s exact test p-value represents the adjusted p-value for genes in the pathway
using Fisher’s exact test that are adjusted by Benjamini & Hochberg correction method.
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schizophrenia by multiple past studies. HLA-C*01:02 was positively
associated with schizophrenia, while HLA-C*07:01 was negatively
associated with schizophrenia (Andreassen et al., 2015; Corvin,
2012). One study suggested that in the absence of glutamic acid
at the 74th position of the mature protein encoded by the major
histocompatibility complex, Class II, DR Beta 1(HLA-DRB1) gene,
the amino acid methionine at the 99th position of HLA-C may
contribute to individuals’ susceptibility to schizophrenia, in which
the glutamic acid inHLA-DRB1 has a protective function against the
disease (Seshasubramanian et al., 2020). Interestingly, HLA-DRB1
was hit by the majority of tissues enriched with the KEGG allograft
rejection pathway (Table 3). Similarly, the major histocompatibility
complex, Class II, DQ Beta 1 (HLA-DQB1) gene was also shared by
most tissues with such a pathway, a molecule that presents peptides
derived from extracellular proteins and is expressed in antigen
expression cells (Table 3). DQB1*05:01:01 was also positively
associated with schizophrenia and the predominant haplotype
in the schizophrenia population, while decreased frequency of
DQB1*02:01 was found among schizophrenia patients (Katrinli
et al., 2019; Seshasubramanian et al., 2020). No studies have been
conducted on specific mechanisms of HLA-C, HLA-DRB1, and
HLA-DQB1’s interventions in schizophrenia pathogenesis, but
their interaction is much likely to contribute to the disease.

In the PID pathway set, the FOXO pathway was significantly
enriched in the eQTLs set of thyroid tissue, which suggested a
potential correlation between the forehead box transcription

factor O family and schizophrenia at thyroid (Figure 3B). The
mRNA expression level of FOXO pathway genes including
FOXO1 and FOXO3A were significantly lower in patients with
acute schizophrenia (Gu et al., 2021).

3.6 Non-Small Cell Lung Cancer
The BioCarta IL1R pathway was shown to be significantly
enriched in the testis tissue for NSCLC (Supplementary
Figure S2). The IL1R pathway involves signal transduction
through interleukin-1. One study found that interleukin-17
(IL-17) was involved in angiogenesis in a variety of
inflammatory associated cancers, although it still remains
unclear how IL-17 contributes to the process (Pan et al.,
2015). It is also known that interleukin-37 (IL-37), a new
member of the interleukin-1 family, plays an
immunosuppressive role in a variety of inflammatory
disorders. A study recently found that IL-37 demonstrates a
protective role in cancer development possibly through tumor
angiogenesis and that it could serve as a promising therapeutic
target for NSCLC (Ge et al., 2016).

In Supplementary Figure S2, the PCG1A pathway was
enriched in the kidney. The PCG1A pathway involves the
regulation of peroxisome proliferator-activated receptor
gamma coactivator-1 alpha (PGC-1a), which is a tissue-
specific coactivator that enhances the activity of many nuclear
receptors and coordinates transcriptional programs

TABLE 3 | Adjusted p-values of the Ten Most Significant eQTLs for Schizophrenia from 49 tissues.

Tissue Pathway Gene hits Genomic locations Fisher’s
exact test
p-valuea

Breast Mammary Tissue KEGG allograft rejection CD80;HLA-E;HLA-G;HLA-C;HLA-DQB1;HLA-DRB5;HLA-
DOB;HLA-DQA2;HLA-DRB1;HLA-DQA1;HLA-DRA;HLA-B

3q13.33, 6p22.1,
6p21.33, 6p21.32

2.59E-12

KEGG graft versus host
disease

CD80;HLA-E;HLA-G;HLA-C;HLA-DQB1;HLA-DRB5;HLA-
DOB;HLA-DQA2;HLA-DRB1;HLA-DQA1;HLA-DRA;HLA-B

3q13.33, 6p22.1,
6p21.33, 6p21.32

1.05E-11

KEGG type I diabetes
mellitus

CD80;HLA-E;HLA-G;HLA-C;HLA-DQB1;HLA-DRB5;HLA-
DOB;HLA-DQA2;HLA-DRB1;HLA-DQA1;HLA-DRA;HLA-B

3q13.33, 6p22.1,
6p21.33, 6p21.32

1.99E-11

Esophagus
Gastroesphageal Junction

KEGG type I diabetes
mellitus

CD80;HLA-E;HLA-G;HLA-A;HLA-C;HLA-DQB1;HLA-DRB5;
HLA-DQA2;HLA-DMA;HLA-DRA;HLA-DRB1;HLA-DQA1;HLA-
B;LTA

3q13.33, 6p22.1,
6p21.33, 6p21.32

1.59E-14

KEGG allograft rejection CD80;HLA-E;HLA-G;HLA-A;HLA-C;HLA-DQB1;HLA-DRB5;
HLA-DQA2;HLA-DMA;HLA-DRA;HLA-DRB1;HLA-DQA1;
HLA-B

3q13.33, 6p22.1,
6p21.33, 6p21.32

6.37E-14

KEGG graft versus host
disease

CD80;HLA-E;HLA-G;HLA-A;HLA-C;HLA-DQB1;HLA-DRB5;
HLA-DQA2;HLA-DMA;HLA-DRA;HLA-DRB1;HLA-DQA1;
HLA-B

3q13.33, 6p22.1,
6p21.33, 6p21.32

3.00E-13

KEGG antigen processing
and presentation

CTSS;HLA-E;HLA-G;HLA-A;HLA-C;HLA-DQB1;HLA-DRB5;
HLA-DQA2;HLA-DMA;HLA-DRA;HLA-DRB1;HLA-DQA1;
TAP2;TAPBP;HLA-B;LTA

6p22.1, 6p21.33,
6p21.32, 1q21.3

2.52E-12

KEGG autoimmune thyroid
disease

CD80;HLA-E;HLA-G;HLA-A;HLA-C;HLA-DQB1;HLA-DRB5;
HLA-DQA2;HLA-DMA;HLA-DRA;HLA-DRB1;HLA-DQA1;
HLA-B

3q13.33, 6p22.1,
6p21.33, 6p21.32

9.45E-12

Muscle Skeletal KEGG allograft rejection CD80;HLA-E;HLA-C;HLA-G;HLA-DQB1;HLA-DRB5;HLA-
DMA;HLA-DRA; HLA-DQA2;HLA-DRB1;HLA-DQA1;HLA-A,
HLA-B

3q13.33, 6p22.1,
6p21.33, 6p21.32

5.14E-12

KEGG graft versus host
disease

CD80;HLA-E;HLA-C;HLA-G;HLA-DQB1;HLA-DRB5;HLA-
DMA;HLA-DRA; HLA-DQA2;HLA-DRB1;HLA-DQA1;HLA-A,
HLA-B

3q13.33, 6p22.1,
6p21.33, 6p21.32

2.37E-11

aFisher’s exact test p-value represents the adjusted p-value for genes in the pathway using Fisher’s exact test that are adjusted by Benjamini & Hochberg correction method.
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important for energy metabolism and homeostasis. In NSCLC
patients, there are a variety of cases where the cells show
therapeutic resistance. As a result, a plethora of studies

focus on drug resistance mechanisms, but not many have
focused on the metabolic flexibility of drug-resistant NSCLC.
In one study, it was found that during the development

FIGURE 3 | Heatmap of schizophrenia’s eQTLs enrichment results in (A) KEGG and (B) PID pathway sets.
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of resistance for tyrosine kinase inhibitors, NSCLC cells switched
from glycolysis to oxidative phosphorylation through increasing
activity of the mitochondria. Cells were treated with the MCT-1
inhibitor AZD3965 and there was a resulting significant decrease
in cell proliferation and motility in TK1-sensitive and TK-
resistant cells. A study recently found that IL-37 demonstrates
a protective role in cancer development possibly through tumor
angiogenesis and that it could serve as a promising therapeutic
target for NSCLC (Huang et al., 2020).

3.7 Blood Pressure
For blood pressure, the majority of the pathways most significantly
enriched in tissues were immune-related, and the atrial appendages
tissue contained the most pathways with the most significant
p-values (Table 4). The role of the immune system in the
pathogenesis of hypertension has been firmly established by
many laboratories. The KEGG viral myocarditis pathway and the
tissue heart atrial appendage had one of themost significant p-values
at 3.08E-14, the KEGG type I diabetes mellitus pathway was also
significantly enriched at the atrial appendage tissue (Table 4).

Myocarditis is a cardiac disease associated with inflammation
and injury of the myocardium. It results from various etiologies,
but coxsackievirus is considered the dominant etiological agent.
Infiltrating macrophages have been proven as a pivotal
pathological inflammatory cell subset in coxsackievirus
induced viral myocarditis, however, the mechanisms involving
initiation and promotion are still unknown (Zhang et al., 2017).

Type 1 diabetes is the autoimmune destruction of the insulin
producing beta-cells. High blood pressure is a common symptom
of diabetes because the high levels of glucose in the blood damage

the blood vessels and lead to hypertension. One study found that
the left atrium mechanical functions were impaired in patients
with type 1 diabetes (Acar et al., 2009).

3.8 Autism Spectrum Disorder
Few significant pathways were uniquely enriched in one or two
tissues for autism spectrum disorder as shown in Supplementary
Figures S3–S7. KEGG pathways of drug metabolism by
cytochrome p450 and metabolism of xenobiotics by
cytochrome p450 were found to be enriched in various tissues
and most significantly in the liver tissue (Supplementary Figure S4;
Table 5). Out of 29 most significant pathway-tissue combinations
passing the p-value threshold of 10−4, genes GSTM3 and GSTM5
were hit 24 times, followed by genes GSTM1, GSTP1, GSTM4, and
GSTM2 (Supplementary Table S1). The two most significantly
enriched pathways, Reactome phase II conjugation of compounds
and KEGGmetabolism of xenobiotics by cytochrome p45 pathways,
were in liver tissues, and they have both hit genes GSTM2, GSTM3,
GSTM4, and GSTM5, which encode for multiple proteins from the
glutathione S-transferase mu class (Table 5). The two pathways
cover proteins functioning in pharmacological inactivation of
chemicals and detoxification, and the mu class enzymes are
known for their functions in detoxification of electrophilic
compounds by conjugation with glutathione (Cheng et al., 2020).
Therefore, such highly significant adjusted p-values suggested a key
role glutathione S-transferase mu enzymes play in autism spectrum
disorder (Table 5). Studies have shown that when exposed to
chronic heavy metal and chemical xenobiotic pollution, patients
with autism spectrum disorder demonstrated significantly higher
total glutathione and oxidized glutathione in red blood cells (Faber

TABLE 4 | Adjusted p-values of Five Most Significant eQTLs for Blood Pressure in KEGG and WikiPathways Sets for Heart Atrial Appendage Tissue.

Pathway Gene hits Genomic locations Fisher’s
exact test
p-valuea

WikiPathways Ebola virus
pathway on host

MERTK;KPNA1;RFC1;ITGA2;HLA-G;HLA-A;HLA-C;HLA-
B;HLA-E;HLA-DOA;HLA-DRB5;HLA-DQB2;HLA-DMA;
HLA-DPA1;HLA-DRB1;HLA-DPB1;HLA-DQA2;HLA-F;
HLA-DQB1;HLA-DOB;HLA-DQA1;HLA-DRA;RAC1;SCIN;
CAV2;CAV1;CTSB;ITGB1;TPCN2;MFGE8;IQGAP1;NPC1;
VPS16

6p22.1, 6p21.33, 6p21.32, 2q13, 3q21.1, 4p14, 5q11.2,
7p22.1, 7p21.3, 7q31.2, 8p23.1, 10p11.22, 11q13.3,
15q26.1, 18q11.2, 20p13

3.64E-13

WikiPathways allograft
rejection

CASP9;CD55;CD86;CSCL8;PDGFRA;BHMT2;HLA-G;
HLA-A; HLA-C;HLA-B;C4A;HLA-E;MICA;HLA-DOA;HLA-
DRB5;HLA-DMA;HLA-DPA1;HLA-DRB1;HLA-DPB1; HLA-
DQA2;HLA-F;HLA-DQB1;HLA-DOB;C4B;HLA-DQA1;
HLA-DRA;LRRK2

6p22.1, 6p21.33, 6p21.32, 1p36.21, 1q32.2, 3q13.33,
4q12, 5q14.1, 12q12

1.03E-12

KEGG allograft rejection CD86;HLA-G;HLA-A;HLA-C;HLA-B;HLA-E;HLA-DOA;
HLA-DRB5;HLA-DMA;HLA-DPA1;HLA-DRB1;HLA-DPB1;
HLA-DQA2;HLA-F;HLA-DQB1;HLA-DOB;HLA-DQA1;
HLA-DRA

6p22.1, 6p21.33, 6p21.32, 3q13.33 1.03E-12

KEGG viral myocarditis CASP9;CD55;CD86;HLA-G;HLA-A;HLA-C;HLA-B;HLA-E;
HLA-DOA;HLA-DRB5;HLA-DMA;HLA-DPA1;HLA-DRB1;
HLA-DPB1;HLA-DQA2;HLA-F;HLA-DQB1;HLA-DOB;HLA-
DQA1;HLA-DRA;RAC1;CAV1;RAC3

6p22.1, 6p21.33, 6p21.32, 7p22.1, 7q31.2, 1p36.21,
1q32.2, 3q13.33, 17q25.3

5.70E-12

KEGG graft versus host
disease

CD86;HLA-G;HLA-A;HLA-C;HLA-B;HLA-E;HLA-DOA;
HLA-DRB5;HLA-DMA;HLA-DPA1;HLA-DRB1;HLA-DPB1;
HLA-DQA2;HLA-F;HLA-DQB1;HLA-DOB;HLA-DQA1;
HLA-DRA

6p22.1, 6p21.33, 6p21.32, 3q13.33 9.82E-12

aFisher’s exact test p-value represents the adjusted p-value for genes in the pathway using Fisher’s exact test that are adjusted by Benjamini & Hochberg correction method.
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et al., 2019). The study also believed that the elevated glutathione was
a compensatory mechanism to the exposure of a high xenobiotic
environment (Faber et al., 2019). However, such a mechanism could
not deal with oxidative stress as the reduced to oxidized glutathione
ratio was lower in autistic patients, which indicates a crucial role
glutathione plays in the xenobiotic detoxification among patients
with autism spectrum disorder (Faber et al., 2019; Bjørklund et al.,
2020).

3.9 Myocardial Infarction
Supplementary Figure S8 demonstrated the eQTLs enrichment
in BioCarta and Reactome pathway sets of myocardial infarction-
related genomic intervals. The AT1R pathway from the BioCarta
pathway set was significantly enriched in brain cortex tissue
(Supplementary Figure S8A), and the cell cycle pathway from
the Reactome pathway set was enriched in whole blood tissue
(Supplementary Figure S8B), respectively. RAC1 gene was hit by
the BioCarta AT1R pathway at the brain cortex tissue, and
PPP2R5A gene was hit by the Reactome cell cycle pathway at
the whole blood tissue (Table 6). In myocardial infarction, the
RAC1 protein in the brain cortex tissue paired with the BioCarta
AT1R pathway was enriched. The RAC1 protein belongs to the
RAS superfamily of small GTP-binding proteins. Members of this
superfamily appear to regulate a diverse array of cellular events,
including the control of cell growth, cytoskeletal reorganization,

and the activation of protein kinases. In terms of myocardial
infarction, the RAC1 protein serves as a small GTP-binding
protein that regulates NADPH oxidase. NADPH oxidase is a
reactive oxygen species (ROS) that contributes to heart failure,
such as myocardial infarction. Failing of the myocardium in
patients with dilated cardiomyopathy (DCM) and ischemic
cardiomyopathy (ICM) is characterized by an upregulation of
NADPH oxidase–mediated ROS release associated with increased
RAC1 activity (Maack et al., 2003).

Furthermore, the AT1R pathway is responsible for promoting
hypertension, G protein-dependent signaling, transactivation of
growth factor receptors, NADPH oxidase, and ROS signaling
explaining why the RAC1 gene was enriched by the AT1R
pathway (Kawai et al., 2017). In addition to the RAC1 gene,
the PPP2R5A gene in the tissue whole blood paired with the
Reactome cell cycle pathway was hit on. The PPP2R5A gene
stands for protein phosphatase 2 regulatory subunit B’alpha. The
gene serves as a subunit of the protein phosphatase 2A (PP2A)
holoenzyme, which plays an essential role in regulating a diverse
array of myocyte functions through dephosphorylation of target
molecules. Functioning as an important phosphatase, the PP2A
holoenzyme is critical for serving as a regulatory module within
the heart, such that dysregulation of PP2A function may
contribute to cardiac diseases. Alterations in PP2A activity are
associated with heart failure and arrhythmia (Lubbers and

TABLE 5 | Adjusted p-values of 10 Most Significant eQTLs for autism spectrum disorder from 49 tissues.

Tissue Pathway Gene hits Genomic locations Fisher’s
exact test
p-valuea

Adipose Visceral
Omentum

Reactome biological oxidations GSTM5;GSTM3;GSTM1;GSTM4;EPHX1;
NCOA1;ABHD14B;UGT2A1;SULT1E1;
SLC26A1;UGT2B7;UGT3A2;AIP;GSTP1;
CES1;CYB5B;ALDH3A1

1p13.3, 1q42.12, 2p23.3, 3p21.2, 4q13.3,
4p16.3, 3q13.2, 5p13.2, 11q13.2,
16q12.2, 16q22.1, 17p11.2

3.44E-06

Brain Anterior
cingulate cortex
BA24

WikiPathways photodynamic
therapyinduced NFE2L2 NRF2
survival signaling

GCLM;EPHX1;ABCC2;GSTP1;CES1;NQO1;
SRXN1

1q42.12, 11q13.2, 16q12.2, 1p22.1,
10q24.2, 16q22.1, 20p13

7.66E-06

Brain Caudate
basal ganglia

KEGG steroid hormone biosynthesis SRD5A3;UGT2A1;UGT2B4;UGT2B15;
SULT1E1;UGT2B28

4q13.3, 4q12, 4q13.2 1.62E-05

Colon Transverse KEGG metabolism of xenobiotics by
cytochrome p450

GSTM5;GSTM3;GSTM2;GSTM1;GSTM4;
EPHX1;UGT2B4;GSTP1;ALDH3A1

1p13.3, 1q42.12, 11q13.2, 17p11.2,
4q13.3

1.28E-05

Kidney Cortex Reactome biological oxidations GSTM5;GSTM3;GSTM4;GSTM2;NCOA1;
UGT2A1;UGT2B4;UGT2B15;SULT1E1;
UGT2B28;UGT3A2

1p13.3, 2p23.3, 4q13.3, 5p13.2, 4q13.2 1.23E-06

Liver Reactome phase II conjugation of
compounds

GSTM5;GSTM3;GSTM4;GSTM2;UGT2A1;
UGT2B4;UGT2B15;SULT1E1;UGT2B28;
UGT3A2

1p13.3, 4q13.3, 5p13.2, 4q13.2 1.73E-08

KEGG metabolism of xenobiotics by
cytochrome p450

GSTM5;GSTM3;GSTM4;GSTM2;UGT2A1;
UGT2B4;UGT2B15;UGT2B28

1p13.3, 4q13.3, 4q13.2 7.30E-08

KEGG metabolism of xenobiotics by
cytochrome p450

GSTM5;GSTM3;GSTM1;GSTM4;EPHX1;
UGT2A1;UGT2B7;ALDH3B2;GSTP1;
ALDH3A1

1p13.3, 1q42.12, 4q13.3, 3q13.2,
11q13.2, 17p11.2

3.71E-06

Lung KEGG pentose and glucuronate
interconversion

UGDH;UGT2B4;UGT2A1;DHDH 4q13.3, 4p14, 19q13.33 7.16E-06

Skin Not Sun
Exposed
Suprapubic

KEGG drug metabolism cytochrome
p450

GSTM5;GSTM3;GSTM4;GSTM2;UGT2A1;
UGT2B4;UGT2B15;UGT2B28

1p13.3, 4q13.3, 4q13.2 9.15E-08

aFisher’s exact test p-value represents the adjusted p-value for genes in the pathway using Fisher’s exact test that are adjusted by Benjamini & Hochberg correction method.
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Mohler, 2016). The varying types of myocardial infarction make it
difficult for researchers to pinpoint a cure. In recent years, scientists
have recognized multiple types of myocardial infarction with
different causes, yet the knowledge of its pathogenic mechanisms
is still poorly understood and greatly lacking (DeFilippis et al., 2019).
While the different causes of myocardial infarction can be difficult to
pinpoint, we can start by identifying the pathways, tissues, genes that
are related to the causes. The results have shown some genomic
mechanisms contributing to myocardial infarction, whether it be the
enrichment of the RAC1 protein leading to the regulation of
NADPH oxidase causing heart failure, or the altered regulation
in the PP2A gene leading to heart failure and arrhythmia.
The importance of these findings is two-fold: first, these results
could serve as a pipeline to benefit the scientific community through
reducing repeated work, and second, the discovered specific
pathway-tissue-gene results could help researchers to reveal
pathogenesis mechanisms in myocardial infarction in hopes to
lower its occurrence rates or raise the rates of survival.

4 DISCUSSION

We have extended the loci2path (Xu et al., 2020) by using the
latest multi-tissue eQTLs data set from GTEx V8 release and
adding PID, Reactome, and WikiPathways databases. The total
numbers of eQTLs for each of 49 tissues we used in this study are
shown in Supplementary Table S2. Our results of enrichment
analysis have suggested multiple novel biological hypotheses of
disease mechanisms for AD, PD, and schizophrenia. The
proposed mechanisms of the increase of caspase-3 level in
amygdala tissue and KMO production that may contribute to
AD’s memory loss symptoms by increasing apoptosis and
neuronal loss and decreasing kynurenine metabolite levels
were supported by multiple past studies. The impaired
lysosomal functions of GCase, lysosomal-associated membrane
protein 2A, and heat shock cognate 70 resulted frommutations in
genes corresponding to these proteins may cause α-synuclein
accumulation to begin and thus lead to PD. The interaction

TABLE 6 | Adjusted p-values of Five Most Significant eQTLs for Myocardial Infarction in BioCarta and Reactome Pathway Sets from 49 tissues.

Tissue Pathway Gene hits Genomic locations Fisher’s
exact test
p-valuea

Brain Cortex BioCarta AT1R
pathway

SHC1;AGT;RAC1;GNAQ;MAPK3 1q21.3, 1q42.2, 7p22.1, 9q21.2, 16p11.2 0.00378

BioCarta PYK2
pathway

SHC1;MAPK14;RAC1;GNAQ;MAPK3 1q21.3, 7p22.1, 9q21.2, 16p11.2, 6p21.31 0.00378

Brain Nucleus
accumbens basal
ganglia

Reactome
glutathione
conjugation

GSTM2;GSTM5;GSTM1;HPGDS;GGCT;GSTO1;
CNDP2

1p13.3, 4q22.3, 7p14.3, 10q25.1, 18q22.3 3.71E-05

Lung BioCarta ATRBRCA
pathway

RAD17;FANCE;FANCG;MRE11;FANCA 5q13.2, 6p21.31, 9p13.3, 11q21, 16q24.3 0.00950

Ovary BioCarta ATRBRCA
pathway

RAD17;FANCG;MRE11;FANCA 5q13.2, 9p13.3, 11q21, 16q24.3 0.00385

Testis Reactome signaling
by Rho GTPases

KDM1A;WASF2;YWHAQ;CENPC;RASGRF2;
IQGAP2;H2BC1;H3C6;H2BC3;H2AC4;H2BC4;
CENPQ;MAPK14;H3C12;RAC1;H2AZ2;
ARHGEF35;ARHGEF10;DLC1;RHOBTB1;CFL1;
KLC2;CTTN;RHOG;RHOJ;MAPK3;SKA1;
SPC24;SRC

1p36.12, 6q21, 2p25.1, 4q13.2, 7p22.1, 16p11.2,
6p21.31, 5q14.1, 5q13.3, 6p22.2, 6p12.3,
6p22.1, 7p13, 7q35, 8p23.3, 8p22, 10q21.2,
11q13.1, 11q13.2, 11q13.3, 11p15.4, 14q23.2,
18q21.1, 19p13.2, 20q11.23

8.38E-05

Whole Blood Reactome cell cycle PPP2R5A;AHCTF1;LPIN1;VRK2;MZT2A;ANAPC4;
CENPC;DHFR;H3C6;H4C3;H2BC5;CENPQ;
TUBB2B;TUBB2A;CDKN1A;H4C12;H2BC14;
POM121;MAD1L1;H2AZ2;POM121C;PRKAR2B;
MCM4;RAB2A;DCTN3;CDKN2B;CDKN2A;SMC2;
PPP2R2D;BANF1;RAB1B;MRE11;NUP98;
ANKLE2;PSMC6;PPP2R5E;MAPK3;SPC24;
CHMP4B;DSN1

16p11.2, 11q21, 4q13.2, 6p22.2, 6p12.3, 7p13,
19p13.2, 1q32.3, 1q44, 2p25.1, 2p16.1, 2q21.1,
4p15.2, 5q14.1, 6p25.2, 6p21.2, 6p22.1,
7q11.23, 7p22.3, 7q22.3, 8q11.21, 8q12.1,
9p13.3, 9p21.3, 9q31.1, 10q26.3, 11q13.1,
11q13.2, 11p15.4, 12q24.33, 14q22.1, 14q23.2,
20q11.22, 20q11.23

1.61E-07

Reactome Rho
GTPase effectors

WASF2;PPP2R5A;AHCTF1;CENPC;H3C6;H4C3;
H2BC5;CENPQ;TUBB2B;TUBB2A;H4C12;
H2BC14;MAD1L1;RAC1;H2AZ2;NCF1;CTTN;
RHOG;NUP98;PPP2R5E;MAPK3;SPC24;DSN1

6q21, 7p22.1, 16p11.2, 4q13.2, 6p22.2, 6p12.3,
7p13, 11q13.3, 11p15.4, 19p13.2, 1q32.3, 1q44,
6p25.2, 6p22.1, 7p22.3, 11p15.4, 14q23.2,
20q11.23, 7q11.23

3.08E-05

Reactome signaling
by Rho GTPases

WASF2;PPP2R5A;AHCTF1;CENPC;ARAP2;
H3C6;H4C3;H2BC5;CENPQ;TUBB2B;TUBB2A;
H4C12;H2BC14;MAD1L1;RAC1;H2AZ2;NCF1;
ARHGEF35;ARHGEF5;DLC1;CTTN;RHOG;
NUP98;PPP2R5E;MAPK3;SPC24;DSN1

6q21, 7p22.1, 16p11.2, 4q13.2, 6p22.2, 6p12.3,
7p13, 7q35, 8p22, 11q13.3, 11p15.4, 19p13.2,
1q32.3, 1q44, 6p25.2, 6p22.1, 7p22.3, 11p15.4,
14q23.2, 20q11.23, 7q11.23, 4p14, 7q35

8.11E-05

BioCarta MAPK
pathway

MAP3K6;SHC1;MAP3K7;RIPK1;MAPK13;RAC1;
MAP3K11;RPS6KA5;MAPK3

1p36.11, 7p22.1, 1q21.3, 16p11.2, 6q15, 6p25.2,
6p21.31, 11q13.1, 14q32.11

0.00499

aFisher’s exact test p-value represents the adjusted p-value for genes in the pathway using Fisher’s exact test that are adjusted by Benjamini & Hochberg correction method.
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among HLA-C, HLA-DRB1, and HLA-DQB1 is likely to take part
in schizophrenia’s pathogenesis as well.

Our study has extensively evaluated multiple gene pathways’
involvements in the ten traits and further investigated significant
genes in each pathway that were hit in the given genomic query
regions. The proposed hypotheses have opened new avenues to
explore the underlying molecular mechanisms and thus could
illuminate further investigations on these traits. We have also
found many interesting associations between eQTLs and gene
pathways at trait-associated variants of NSCLC, blood pressure,
autism spectrum disorder, and myocardial infarction which
provided valuable insights into our comprehensive
understandings of them. Furthermore, our study has confirmed
the advantages of using tissue-specific eQTLs enrichment analysis at
pathway level, because our findings based on loci2path software were
strongly supported by multiple previous studies (Xu et al., 2020).
This has indicated that using eQTLs catalogs to find links between
genomic loci and their corresponding eGenes is valid and should be
vastly applied in future studies involving gene sets and traits.

There were several limitations in our study. Due to the nature of
the statistical analysis, our findings from loci2path could not be
considered as providing direct understandings of biological
mechanisms underpinning these traits, and we were only able
to generate hypotheses for trait determination. These hypotheses
should be experimentally verified by conducting further in-depth
functional studies by molecular biology laboratories. In addition,
loci2path′s reliance on current eQTLs sets data from GTEx could
also lead to biased results since the eQTLs sets data from brain
tissues were significantly smaller than other tissues like
tibial nerves, leg skin without sun exposure, and thyroid. This
was caused by the limited sample sizes of brain tissues from GTEx,
which may result in missing important biological pathways in
brain tissues for neurodegenerative diseases due to inadequate
statistical power. The imbalance of eQTLs sizes of various tissues
could also bring false-positive results in tissues with more samples
and generate coincidental enrichment of certain pathways at
tissues not related to the traits. Therefore, results from loci2path
need to be treated with extra care, and only the most significant

tissue-pathway associations should be extracted for analysis with
sufficient past evidence. The software itself also has rooms
for improvement, like including new gene pathway sets
and adding annotations on pathways uniquely enriched in a tissue.

Future studies on neurodegenerative diseases specifically
should implement more data on brain tissues to increase the
accuracy of loci2path. Other neurodegenerative diseases like
bipolar disorder and attention deficit disorder could be added
for a systematic analysis on their patterns to find potential
patterns for commonality among this type of disease.
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Carcinogenicity testing plays an essential role in identifying carcinogens in environmental
chemistry and drug development. However, it is a time-consuming and label-intensive
process to evaluate the carcinogenic potency with conventional 2-years rodent animal
studies. Thus, there is an urgent need for alternative approaches to providing reliable and
robust assessments on carcinogenicity. In this study, we proposed a DeepCarc model to
predict carcinogenicity for small molecules using deep learning-based model-level
representations. The DeepCarc Model was developed using a data set of 692
compounds and evaluated on a test set containing 171 compounds in the National
Center for Toxicological Research liver cancer database (NCTRlcdb). As a result, the
proposed DeepCarc model yielded a Matthews correlation coefficient (MCC) of 0.432 for
the test set, outperforming four advanced deep learning (DL) powered quantitative
structure-activity relationship (QSAR) models with an average improvement rate of
37%. Furthermore, the DeepCarc model was also employed to screen the
carcinogenicity potential of the compounds from both DrugBank and Tox21.
Altogether, the proposed DeepCarc model could serve as an early detection tool
(https://github.com/TingLi2016/DeepCarc) for carcinogenicity assessment.

Keywords: carcinogenicity, deep learning, QSAR, non-animal models, NCTRlcdb

INTRODUCTION

It is crucial to assess the carcinogenic potency for chemicals, an important factor that triggers
regulatory actions for both new and existing chemicals. In 1995, the ICH′ Guideline on the Need for
Carcinogenicity studies of Pharmaceuticals was introduced and outlined the need, study design, and
interpretation for carcinogenicity studies. Essentially, since carcinogenicity studies are time-
consuming and resource-intensive, they should only be performed when human exposure
warrants the need for information from lifetime studies in animals to assess carcinogenic
potential (ICHS1A, 1995) (Guideline, 1996). Generally, the experimental approach requires a
long-term carcinogenicity study (104 weeks) in the rodent plus one other study that
supplements the main study (ICHS1B, 1997) (Guideline, 1998), which can be a second-long
term study or a shorter study (29 weeks) in a second species. This more concise study could use
a transgenic mouse bioassay or a model based on initiation-promotion (ICHS1B, 1997) (Guideline,
1998).
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Irrespective of the choices around carcinogenicity studies,
each of these studies, on average, requires ∼500 rodents and
costs around $1.1 m. Moreover, there is evidence of flawed
extrapolation for carcinogenicity. There have been many
endeavors to address this issue, such as developing
biomarkers for use in shorter-term studies as predictors of
outcome (Yamamoto et al., 1998; Venkatachalam et al., 2001;
Morton et al., 2002). However, these approaches still rely
heavily on experimental animals and do not address the 3Rs
(replacement, reduction, and refinement of animals in
toxicology testing). Programs such as Horizon 2020, The
Seventh Framework Programme 7 (FP7), Tox21, Horizon
2020 Precision Toxicology, and other public-private
partnerships (Vinken et al., 2021) have offered innovative
thinking on developing animal-free methodologies and offer
improved translation to humans. These new approach
methodologies combine in silico and in vitro approaches
such as read-across (Shah et al., 2016), toxicogenomics
(Yauk et al., 2020), and adverse outcome pathways (AOPs)
(Yang et al., 2020).

Several studies have investigated the prediction of
carcinogenic potency (Lee et al., 2003; Morales et al., 2006;
Tanabe et al., 2010; Caiment et al., 2014; Toropova and
Toropov, 2018). The use of the quantitative structure-
activity relationship (QSAR) model has become
increasingly important for risk assessment because it can
provide a fast and economic evaluation of the toxicity of a
molecule using only the chemical structure. Some of the
QSAR models were developed for carcinogenicity
assessment for particular chemical classes (i.e., aromatic
amines, food-relevant phytochemicals, polycyclic aromatic
hydrocarbon) (Franke et al., 2001; Benigni and Passerini,
2002; Franke et al., 2010; Glück et al., 2018; Li et al., 2019).
Although the predictions of these models can vary with
interpretation, the application of these models was limited
to specific domains. Models for non-congeneric chemicals
include various classes of chemicals, which are of great
interest for regulatory use (Fjodorova et al., 2010; Zhang
et al., 2016a; Zhang et al., 2017; Wang et al., 2020). For
example, Zhang et al. (2016b) built a naïve Bayes classifier on
1,042 compounds with rat carcinogenicity and yielded an
overall accuracy of 0.90 ± 0.008 and 0.68 ± 0.019 for the
training set and external test set, respectively. Zhang et al.
(2017) developed an ensemble XGBoost model using 1,003
compounds with rat carcinogenicity and reported an
accuracy of 0.7, sensitivity of 0.65, and specificity of 0.77
in external validation. Wang et al. (2020) constructed a novel
sparse data deep learning (DL) tool based on the 1003
compounds from Zhang’s study (Zhang et al., 2017) and
yielded an accuracy of 0.85, sensitivity of 0.82, and
specificity of 0.88. These models covered a wide range of
chemical classes. However, the annotation of carcinogenicity
was only based on the rat in these studies. Since the animal
carcinogenicity assessment was required to be conducted at
least on two rodent species, it would give a more robust
annotation by combining the carcinogenicity signal from
both rats and mice. Therefore, we used the National

Center for Toxicological Research liver cancer database
(NCTRlcdb) (Young et al., 2004), which compressed the
carcinogenicity information from both genders of rats
and mice.

Deep learning (DL) has been successfully applied to predict
complex endpoints, such as drug-induced liver injury (DILI)
(Hwang et al., 2020; Li et al., 2020; Semenova et al., 2020) and
cardiovascular toxicity (Wang et al., 2017; Maher et al., 2020;
Rashed-Al-Mahfuz et al., 2021; Zeleznik et al., 2021). We
proposed the DeepDILI model to incorporate model-level
representations produced by five different machine learning
algorithms into a neural network framework for DILI
prediction (Li et al., 2021). The proposed DeepDILI
outperformed the publicly available chemical-based DILI
prediction models developed from different machine learning
(ML) algorithms. However, the DeepDILI study only applied one
arbitrary strategy for base classifier selection. The more
sophisticated and automatic base classifier selection strategies
that should be implemented may further improve the DeepDILI
model architecture for other toxicity assessments.

In this paper, we proposed a DeepCarc model to predict
carcinogenicity for small molecules using DL based model-
level representations. The carcinogenicity annotation was
obtained from the NCTRlcdb, incorporating the
carcinogenicity signals from both rats and mice. In addition to
the previous arbitrary base classifier selection strategy, we also
explored a new strategy to select robust base classifiers based on
the training set and development set performance. The developed
DeepCarc model was comprehensively compared with the
optimized 5 ML classifiers, two state-of-the-art ensemble
classifiers, and four DL models. In addition, we also employed
the DeepCarc model in prioritizing chemicals for carcinogenic
potency in the DrugBank and Tox21 chemical databases.

MATERIALS AND METHODS

Data Preparation
To curate a list of compounds for DeepCarc model development,
we employed the NCTRlcdb with liver-specific carcinogenicity
(Young et al., 2004). The NCTRlcdb provided a single
carcinogenicity call per compound, summarizing multiple
records representing each gender, species, route of
administration, and organ-specific toxicity from the
Carcinogenic Potency Database (CPDB) (Gold et al., 1999).
Additionally, NCTRlcdb removed inorganic compounds,
mixtures, and organometallics from the CPDB to facilitate
QSAR model development. In total, NCTRlcdb contained 999
compounds with seven carcinogenicity categories. We excluded
compounds from four categories without clear carcinogenicity
information, including associated, probable, equivocal, and no
opinion. We only employed the compounds from the other three
categories, including cancer-liver, cancer-other and negative. The
compounds from cancer liver and cancer-other were considered
as carcinogens, while compounds from negative were classified as
non-carcinogens. More specifically, the non-carcinogens were the
compounds without carcinogenic potency observed during
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reasonably thorough, chronic long-term tests (Gold et al., 1991).
Duplicate compounds were removed by comparing their InChI
keys. The final data set consisted of 863 compounds, of which 561
were carcinogens and 302 were non-carcinogens
(Supplementary Table S1).

To assign the chemical structures uniformly and avoid
potential data bias, we applied the Kennard-Stone (KS)
(Kennard and Stone, 1969) algorithm to split the whole data
set (i.e., 863 compounds) into the training set, development set,
and test set. Consequently, the training set included 554
compounds (360 carcinogens/194 non-carcinogens), the
development set contained 138 compounds (90 carcinogens/48
non-carcinogens), and the test set consisted of 171 compounds
(111 carcinogens/60 non-carcinogens). The structure description
file (SDF) of compounds was downloaded from PubChem
(https://pubchem.ncbi.nlm.nih.gov/pc_fetch/pc_fetch.cgi) for
molecular descriptor calculation (Kim et al., 2021).

Chemical Representation
Three different types of descriptors were calculated for each
compound: Mol2vec (Jaeger et al., 2018), Mold2 (Hong et al.,
2008), and Molecular ACCess System (MACCS) (Durant et al.,
2002) structural keys.

Mol2vec is an unsupervised ML approach trained on a
corpus containing 19.9 million compounds to learn vector
representations of molecular substructures (Jaeger et al.,
2018). For chemical-related substructures, their vector
representations point to similar directions in the high
dimensional space. Compounds can be represented as
vectors that add up from the vectors of the individual
substructures. 300-dimensional vector representations were
constructed for all compounds.

Mold2 (https://www.fda.gov/science-research/bioinformatics-
tools/mold2) is a publicly available software for calculating
777 chemical-physical based 1D/2D descriptors from chemical
structure (Hong et al., 2008). The Mold2 software enables a rapid
calculation of these large and diverse descriptors. Compared with
commercial software packages (Hong et al., 2008), it requires low
computing resources to generate the Mold2 descriptors, which
contain a similar amount of information.

MACCS is a substructure of keys-based fingerprints encoded
as SMART patterns (Durant et al., 2002). Two versions are
available, one with 960 structural keys and the other with 166
structure keys. The shorter one is more popular as it can be
calculated by several software packages and includes most of the
chemical features for drug discovery and virtual screening. A
single binary bit value of the bit string indicates the presence or
absence of a substructure in the compound.

Two steps of descriptor preprocessing were applied to these
three chemical representations. First, we removed the descriptors
with zero variance. Secondly, we only kept one descriptor if two
descriptors had a pairwise correlation coefficient of more than
0.9. Consequently, 297 of 300 Mol2vec descriptors, 330 of 777
Mold2 descriptors, and 138 of 166 MACCS descriptors were kept
for model development (Supplementary Table S2).

Discrimination Ability of Chemical
Representations
To investigate whether the three chemical representations
have a discrimination ability to distinguish between
carcinogens and non-carcinogens, we calculated the
pairwise compound similarity within carcinogens and non-
carcinogens in training and development sets, respectively.
We applied the Tanimoto coefficient to calculate the degree of
similarity of any two compounds, as it is an appropriate
choice for similarity calculation (Willett, 2006; Bajusz
et al., 2015). All three chemical representations, Mol2vec,
Mold2, and MACCS, were used to calculate the similarity.
The Tanimoto coefficient SA,B of molecules A and B is
calculated by Eq. 1 for the continuous variables (e.g.,
Mol2vec and Mold2) and Eq. 2 for dichotomous variables
(e.g., MACCS).

SA,B � ∑n
j�1 XjAXjB

∑n
j�1 (XjA)

2 + ∑n
j�1 (XjB)

2 − ∑n
j�1 XjAXjB

(1)

SA,B � c

a + b − c
(2)

WhereXjA is the value of the j th feature inmolecule A,XjB is the
value of the j th feature in molecule B, a is the number of bits with
value 1 in molecule A, b is the number of bits with value 1 in
molecule B, and c is the number of bits with value 1 in both
molecule A and B.

DeepCarc Model Development
DeepCarc model employed the same model architecture as
DeepDILI (Li et al., 2021) by implementing a novel base
classifier selection strategy (Figure 1). The input of NN is the
probabilities output of the base classifiers (model-level
representation). We hypothesized that no single learning
algorithm could fit any modeling circumstance while
different algorithms may provide complementary
information. Therefore, the ensemble classifiers’
performance can improve to some extent.

Base Classifier Development
Base classifiers were developed from five algorithms,
including KNN, LR, SVM, RF, and XGBoost. The
description of these five algorithms is as previously
described (Cox, 1958; Cortes and Vapnik, 1995; Guo et al.,
2003; Svetnik et al., 2003; Chen and Guestrin, 2016; Li et al.,
2021). Comprehensive hyperparameter optimization was
conducted for every algorithm using a bootstrap
aggregating strategy (Breiman, 1996) (Supplementary
Table S3). Specifically, 100 base classifiers were developed
for each hyperparameter combination with randomly
selected compounds from the training set (80%) and then
validated on the development set. The best hyperparameter
combination was obtained when the 100 base classifiers
achieved the highest average Matthews correlation
coefficient (MCC).
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Two base classifier selection strategies were proposed, named
original strategy and supervised strategy:

1) The original strategy was the base classifier selection approach
used in the DeepDILI model. Specifically, 100 classifiers
generated by each of the five algorithms with the best
hyperparameters were rank-ordered based on MCC values.
Only the ones with their MCC in the range of 5–95%
percentile were chosen as optimized base classifiers for the
meta-classifier development.

2) In the supervised strategy, we developed 1,000 base classifiers for
each algorithm with the best hyperparameter combination from
the training set. For each algorithm, the performance of every base
classifier and the average performance of these 1,000 models was
evaluated on both the training set and development set. Only the
base classifiers with MCC values higher than the average MCC of
both the training set and the development set were selected as the
optimized base classifiers. Then, the optimized base classifiers
selected from the five algorithms were combined for the meta-
classifier development.

FIGURE 1 |Overall workflow for the DeepCarc model including: (1) Data preparation. 863 compounds were split into training (554 compounds), development (138
compounds), and test (171 compounds) sets based on the Kennard-stone algorithm. (2) Base classifiers development. Five algorithms were used to develop the base
classifiers from three different chemical representations, including Mol2vec, Mold2, and MACCS. Two base classifiers selection strategies were employed to select the
optimized classifiers for meta classifier development. (3) Meta classifier development. With three chemical representations and two selectionmethods, six groups of
base classifiers, including Mol2vec_supervised, Mol2vec_original, Mold2_supervised, were used Mold2_original, MACCS_supervised, and MACCS_original. The
probability prediction from selected base classifiers was used to train the neural network. (4) Model evaluation. The DeepCarc model was evaluated on the independent
test set.
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Meta-Classifier Development
The meta-classifier NN aims to find the underlying
relationship that transfers the optimized base classifiers’
information to target through linear or non-linear
mathematical expression. In this study, a three-layer NN
was developed as the meta-classifier for carcinogenicity
prediction. Specifically, the input of NN came from the
probabilities output of the optimized base classifiers
(model-level representation) on the development set,
which means a compound was represented by a vector of
probabilities output from the optimized base classifiers. The
hidden layer included 10 nodes with rectified linear unit
(Relu) activation, stochastic gradient descent optimization,
batch normalization, and a dropout of 0.5. The output layer
used the sigmoid function to project the hidden layer
information to probabilistic values of carcinogenicity
prediction. The meta-classifier method was employed to
develop six DeepCarc candidate models from the
combination of three chemical representations (Mol2vec,
Mold2, and MACCS) and two base classifiers selection
strategies (original and supervised). For example, the
candidate DeepCarc model of Mol2vec_original indicates
the base classifiers were developed with the chemical
representation of Mol2vec and filtered by the original base
classifier selection method.

DeepCarc Model Evaluation
The developed DeepCarc model performance was evaluated in
the test set, including 171 compounds (111 carcinogens/60 non-
carcinogens). The DeepCarc model was assessed by six
performance metrics, including MCC, F1, accuracy, balanced
accuracy (BA), sensitivity, and specificity, which were
calculated using the following equations.

MCC � TP pTN − FP pFN
������������������������������������������(TP + FP) p (TP + FN) p (TN + FP) p (TN + FN)√

(3)

F1 � 2TP
2TP + FP + FN

(4)

accuracy � TP + TN

TP + TN + FN + FP
(5)

BA � sensitivity + specificity

2
(6)

sensitivity � TP

TP + FN
(7)

specificity � TN

TN + FP
(8)

The TP, TN, FP, and FN denote true positive, true negative, false
positive, and false negative, respectively. In addition, the area
under the receiver operating characteristic (ROC) curve (AUC)
was also computed, where the ROC curve presents the
performance of the classification model by measuring the
relationship between true positive rate (TPR) against false
positive rate (FPR) (Fawcett, 2006).

To investigate whether the probabilistic values yielded by
DeepCarc could prioritize the compounds regarding

carcinogenetic potential, we employed the Chi-Square test in
different probabilistic thresholds (i.e., probabilistic value cut-off
values were from 0.1 to 0.9 with a step of 0.1). Meanwhile, we
calculated the positive predictive value (PPV) and negative
predictive value (NPV) to investigate the discrimination power
of probabilistic values for true positive and true negatives
carcinogens, as shown in the following formulas:

PPV � TP

TP + FP
(9)

NPV � TN

TN + FN
(10)

Comparative Analysis With Other Modeling
Approaches
To further evaluate the proposed DeepCarc model, we compared
DeepCarc with the optimized base classifiers developed from five
algorithms, including KNN, LR, SVM, RF, and XGBoost.
Furthermore, two ensemble methods, including the majority
voting and average probability methods, were employed to
justify the extra value of the proposed DeepCarc model over
the conventional ensemble approaches. In the majority voting
method, a consensus call of carcinogen/non-carcinogen was
derived by the majority calls of the optimized base classifiers.
In the average probability method, a new call was given to the
non-carcinogen if the average probability of the optimized base
classifiers was <0.5 and vice versa.

In addition, we compared the DeepCarc model against four
other molecular-based DL models, including Text
Convolutional neural network (CNN) from DeepChem (DC-
TEXTCNN) (Wu et al., 2018), Chemistry Chainer-Neural
Fingerprint (CH-NFP) (Duvenaud et al., 2015), Edge
Attention-based Multi-relational Graph Convolutional
Networks (EAGCNG) (Shang et al., 2018), and Convolutional
Neural Network Fingerprint (CNF) (Tetko et al., 2019). The DC-
TEXTCNN implemented the TEXTCNN based on chemical
information, where the TEXTCNN was constructed to classify
sentence tasks based on word representations. In the DC-
TEXTCNN, the Simplified Molecular Input Line Entry
System (SMILES) strings of molecules are the “sentence”
input with the characters of the string represented as vectors.
In the CH-NFP, the neural fingerprints are extracted from
graphs of molecules and forwarded to a multilayer perceptron
to make a classification prediction. The EAGCNG learns node
features and attention weights in a graph convolutional network,
where a molecular graph is represented by a real-valued
attention matrix instead of a binary adjacency matrix. The
CNF improves the molecule prediction by combining the
synergy effect between CNN and the multiplicity of SMILES,
which is used for feature extraction and data augmentation,
respectively. These four DL models were developed from the
Online Chemical Modeling Environment (OCHEM) website
(https://ochem.eu/home/show.do). We used our training set
and development set together to develop the models and then
evaluated them on the independent test set.
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DeepCarc for Screening Carcinogenicity
Potential of Compounds
The developed DeepCarc model was used as a screening tool for
carcinogenicity risk detection in two external datasets, including
DrugBank and Tox21. First, we collected 10,741 compounds from
DrugBank database version 5.1.7 (Wishart et al., 2018), including
approved and investigational drugs. After removing organometallics,
heavy molecules, and the overlap compounds with our NCTRlcdb
datasets, 9,814 investigated and approved drugs were kept
(Supplementary Table S4). The output of predicted probabilistic
values from the DeepCarc model was used to measure the
carcinogenicity concern quantitatively. Second, we collected 8,410
compounds from the U.S. Tox21 program https://tripod.nih.gov/
pub/tox21/, including food-additives, household cleaning products,
medicines, and environmental hazard chemicals. The selection
criteria of DrugBank were employed in the Tox21 dataset, and
7176 compounds were kept for screening by the DeepCarc model
(Supplementary Table S5). We used the output of predicted
probabilistic values from the DeepCarc model to quantitatively
measure the carcinogenicity concern.

Code Availability
All the models introduced above were developed with the open-
source Python (version 3.6.5). The Mol2vec descriptors were

generated from the source code https://github.com/samoturk/
mol2vec. The open-source cheminformatics toolkit RDKit37
(version: 2020.09.1) was employed to construct the MACCS
fingerprints. The Keras library version 2.0 with TensorFlow
version 1.14 as the backend was used to develop NN
classifiers. The scikit-learn package version 0.22 (Pedregosa
et al., 2011) was applied to develop models with these four
algorithms of KNN, LR, SVM, and RF. The open-source
XGBoost library implemented on Python (version 3.6.5) was
used to build all the XGBoost models. The scripts of all themodels
in this study are available at https://github.com/TingLi2016/
DeepCarc.

RESULTS

Discrimination Power of Chemical
Representations
To investigate the discrimination power of different chemical
representations, we calculated the pairwise compound similarity
(i.e., Tanimoto coefficients) among the compounds belonging to
carcinogens (i.e., 450 compounds in training and development
set) and non-carcinogens (i.e., 242 compounds in training and
development set) with each chemical representation, respectively

FIGURE 2 | The distribution of the pairwise Tanimoto coefficients calculated from Mol2vec, Mold2, and MACCS: The pink and green indicate that the pairwise
Tanimoto coefficients were calculated from the carcinogenic molecules and noncarcinogenic molecules, respectively.
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(Figure 2). Within each chemical representation (e.g., Mol2vec,
Mold2, or MACCS), we observed a similar distribution of
Tanimoto coefficients for carcinogens and non-carcinogens.
For example, the average and standard deviation of Tanimoto
coefficients were 0.479 ± 0.187 and 0.505 ± 0.182 for carcinogens
and non-carcinogens based on Mol2vec chemical representation.
Furthermore, the average and standard deviations of Tanimoto
coefficients derived from Mold2 were 0.356 ± 0.297 and 0.401 ±
0.292 for carcinogens and non-carcinogens, whereas for MACCS
they were 0.217 ± 0.143 and 0.214 ± 0.123. TheMol2vec tended to
generate higher Tanimoto coefficients than Mold2 or MACCS,
suggesting higher discrimination power of Mol2vec to cluster the
compounds from the same category (i.e., carcinogens and non-
carcinogens).

Mol2vec With Supervised Selection
Outperformed Other Combinations
To overcome the shortcoming of the base classifier selection
strategy, we proposed a supervised classifier selection strategy by
considering the performance from both training and
development sets (see Material and Methods). Figure 3
depicted the development set performance using the proposed
supervised base classifier selection strategy with the three
chemical representations. The developed DeepCarc based on
the Mol2vec with the proposed supervised base classifier
selection strategy yielded the best performance across all the
performancemetrics (e.g., MCC � 0.811), which wasmuch higher
than that of Mold2 (i.e., MCC � 0.503) and MACCS (i.e., MCC �
0.469). Furthermore, the performance metrics of the DeepCarc
model based on the proposed supervised base classifier selection
strategy with Mol2vec were also much higher than those of the
original strategy across all the performance metrics
(Supplementary Figure S1). For example, the DeepCarc
developed by the Mol2vec and supervised base classifier
selection strategy had an improved rate of 18.57% compared
to that of the original base classifier selection strategy (e.g.,

MCC � 0.684). Eventually, The DeepCarc model developed
based on Mol2vec with the proposed supervised base classifier
selection strategy consists of 296 RF, 285 LR, 277 KNN, 266
XGBoost, and 254 SVM which was considered as the optimized
model for the following analysis.

DeepCarc Effectively Augmented the
Performance of Selected Base Classifiers
To evaluate whether the DeepCarc model could benefit from
complementary information provided by different conventional
machine learning algorithms, we compared the optimized
DeepCarc model to the selected base classifiers developed from
5ML algorithms (Table 1). For each machine learning algorithm,
the average and standard deviation of the seven-performance
metrics of the selected base classifiers were calculated for the
development set and test set, respectively. The DeepCarc yielded
the highest values in all the performance metrics except sensitivity
(i.e., MCC � 0.811, accuracy � 0.913, AUC � 0.955, F1 score �
0.933, Balanced accuracy � 0.909, sensitivity � 0.922 and specificity
� 0.896) compared to the selected base classifiers. For example, the
DeepCarc made approximately an improvement of 77–127% of
MCC over the selected base classifiers in the development set.
Although the selected base classifiers achieved high sensitivities,
they yielded very imbalanced performance regarding sensitivity
(e.g., 0.991 ± 0.007 for RF) and specificity (0.212 ± 0.035 for RF).
The performance followed the same trend in the test set, where the
DeepCarc model achieved the highest value in MCC (0.432),
accuracy (0.754), AUC (0.776), F1 (0.828), BA (0.688), and
specificity (0.467). For instance, the DeepCarc made
approximately 127–184% improvement in MCC over the
selected base classifiers. Furthermore, the DeepCarc provided
the most balanced performance regarding sensitivity (0.910) and
specificity (0.467), whereas the selected base classifiers generated
extremely lower specificity. In other words, the selected base
classifiers tended to predict all the samples in the test set as
carcinogens.

FIGURE 3 | The performance of the developed DeepCarc models based on the proposed supervised base classifier selection strategy with the three chemical
representations: the three chemical representations included Mol2vec, Mold2, and MACCS. (A): Seven performance metrics; (B): Area under the ROC curve.
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DeepCarc Outperformed the
State-of-the-Art Ensemble Classifiers
The comparison between DeepCarc and two state-of-the-art
ensemble classifiers (i.e., majority voting and average
probability) was also conducted on the test set (Figure 4).
Consequently, the DeepCarc yielded better performance than
the other two ensemble classifiers onMCC, accuracy, F1, BA, and
specificity with an average improvement of 195.89, 13.55, 4.48,
31.17, and 698.29%, respectively. Themajority voting and average
probability generated the highest sensitivity (0.991 and 0.991,
respectively), but with extremely low specificity (0.050 and 0.067,

respectively), suggesting the proposed DeepCarc model could
effectively optimize and combine the base classifiers.

DeepCarc With Model-Level
Representation Outperformed Molecule
Representation-Based Deep Learning
Models
To confirm the model-level representation and the molecule-based
representation in carcinogenicity prediction, we compared the
DeepCarc model with four other publicly available DL models,
including DC-TEXTCNN, CH-NFP, EAGCNG, and CNF
(Table 2). The model performance of these four DL models
varied. Among these four deep learning models, DC-TEXTCNN
resulted in the highest performance in the MCC of 0.392, accuracy
of 0.735, F1 of 0.829, and sensitivity of 0.982. CH-NFP yielded the
highest AUC of 0.776 and BA of 0.639, while EAGCNG achieved
the highest specificity of 0.400. The imbalanced performance in
sensitivity and specificity were also observed in these four deep
learning models. DeepCarc outperformed these four deep learning
models onMCC, accuracy, AUC, BA, and specificity. For example,
DeepCarc improved 10–134% in MCC over the other four deep
learning models.

Predicted Probabilistic Values of the
DeepCarc Model for Prioritizing
Compounds on Their Carcinogenic Risk
To investigate the potential use of the DeepCarc model as the
screening tool for prioritizing the carcinogenic risk, we employed the
Chi-Square test to examine the correlation between carcinogen

TABLE 1 | The comparison between the base classifiers and DeepCarc performance on the development set and test set.

Data
set

Model MCC Accuracy AUC F1 BA Sensitivity Specificity

Development set DeepCarc 0.811 0.913 0.955 0.933 0.909 0.922 0.896
XGBoost 0.458 ± 0.027 0.758 ± 0.011 0.785 ± 0.02 0.842 ± 0.006 0.659 ± 0.016 0.986 ± 0.007 0.331 ± 0.034
LR 0.412 ± 0.024 0.746 ± 0.009 0.772 ± 0.012 0.830 ± 0.007 0.657 ± 0.016 0.95 ± 0.0260 0.364 ± 0.051
SVM 0.408 ± 0.026 0.737 ± 0.010 0.754 ± 0.021 0.831 ± 0.005 0.626 ± 0.016 0.991 ± 0.012 0.261 ± 0.040
KNN 0.372 ± 0.029 0.726 ± 0.009 0.694 ± 0.029 0.825 ± 0.005 0.612 ± 0.014 0.987 ± 0.010 0.236 ± 0.032
RF 0.357 ± 0.032 0.720 ± 0.011 0.805 ± 0.018 0.822 ± 0.006 0.601 ± 0.016 0.991 ± 0.007 0.212 ± 0.035

Test set DeepCarc 0.432 0.754 0.776 0.828 0.688 0.910 0.467
XGBoost 0.187 ± 0.039 0.672 ± 0.007 0.715 ± 0.022 0.797 ± 0.004 0.536 ± 0.010 0.991 ± 0.003 0.081 ± 0.021
LR 0.176 ± 0.033 0.670 ± 0.007 0.663 ± 0.017 0.794 ± 0.004 0.538 ± 0.011 0.981 ± 0.012 0.096 ± 0.028
SVM 0.152 ± 0.039 0.665 ± 0.007 0.733 ± 0.020 0.793 ± 0.004 0.529 ± 0.009 0.986 ± 0.008 0.071 ± 0.020
KNN 0.190 ± 0.037 0.672 ± 0.007 0.586 ± 0.031 0.797 ± 0.004 0.534 ± 0.009 0.993 ± 0.005 0.076 ± 0.019
RF 0.163 ± 0.039 0.665 ± 0.006 0.700 ± 0.027 0.794 ± 0.003 0.524 ± 0.008 0.997 ± 0.004 0.051 ± 0.015

FIGURE 4 | Ensemble models performance on the test set.

TABLE 2 | The model performance of DeepCarc and four advanced DNN models on the test set.

Models MCC Accuracy AUC F1 BA Sensitivity Specificity

DeepCarc 0.432 0.754 0.776 0.828 0.688 0.910 0.467
DC-TEXTCNN 0.392 0.735 0.719 0.829 0.627 0.982 0.271
CH-NFP 0.353 0.725 0.776 0.814 0.639 0.928 0.350
EAGCNG 0.328 0.713 0.682 0.800 0.641 0.883 0.400
CNF 0.185 0.673 0.636 0.796 0.541 0.982 0.100
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potential and predicted probabilistic values (Table 3). The p values
yielded from the Chi-Square test were all less than 0.05 in
probabilistic threshold from 0.2 to 0.9 with a step of 0.1,
showing the strong correlation between the predicted
probabilistic values of DeepCarc and the carcinogen risk.
Furthermore, with the threshold increased, the PPVs increased
from 0.663 to 0.887, meaning 88.7% compounds predicted with
probabilistic values greater or equal to 0.9 were carcinogens.
Meanwhile, the NPVs decreased as the threshold increased. The
NPV yielded the highest value of 0.941 with the classification
threshold value of 0.3 on the test set, indicating 94.1% of
compounds predicted with a probabilistic value less than 0.3
were non-carcinogens. Altogether, the predicted probabilistic
values of the DeepCarc model could be used as the indicators for
prioritizing compounds regarding their potential carcinogenic risk.

DeepCarc Is Employed to Screen DrugBank
and Tox21 Compounds
The DeepCarc was used as a screening tool for identifying the
carcinogenicity potential of the compounds from DrugBank
(Figure 5A). The predicted probabilistic values ranging from 0
to 1 were split into 10 intervals with a size of 0.1. Of 9,814
compounds, there were 7,410 (i.e., 7410/9814 � 75.50%), 916
(9.33%), 440 (4.48%), 290 (2.95%), 188 (1.92%) compounds with
their predicted probabilities belong to the intervals of (0, 0.1), (0.1,
0.2), (0.2, 0.3), (0.3, 0.4), and (0.4, 0.5), respectively, indicating low
carcinogenicity concern. In total, 570 compounds (5.81%) were
predicted with probabilistic values≥0.5, indicating compounds with
carcinogenicity risk. Of 570 compounds, there were 45 compounds
(0.46%) with the predicted probability ≥0.9, indicating high
carcinogenicity concern. The predicted probabilistic value of
each drug is included in Supplementary Table S4.

The DeepCarc further screened the carcinogenicity potential
of the compounds from the Tox21 (Figure 5B). Similarly, the

predicted probabilistic values were separated into 10 intervals. Of
the 7,176 compounds, there were 3731 (i.e., 3731/7176 � 51.99%),
787 (10.97%), 504 (7.02%), 442 (6.16%), 371 (5.17%) compounds
with their predicted probabilities belong to the intervals of (0,
0.1), (0.1, 0.2), (0.2, 0.3), (0.3, 0.4), and (0.4, 0.5), respectively,
indicating low carcinogenicity concern. The other 1341 (18.69%)
compounds were predicted with probabilistic values ≥0.5,
suggesting the compounds possessed carcinogenicity risk.
There were 113 (1.57%) compounds with the predicted
probabilistic value ≥0.9, suggesting high carcinogenicity
concern (Supplementary Table S5).

DISCUSSION

Effectively evaluating the carcinogenicity of compounds is essential to
improve the regulatory efficacy and promote public health.
Performing a standard toxicity assay with two rodents (rats and
mice) is expensive and time-consuming. Only a small proportion of
compounds have been tested on carcinogenicity. Therefore, there is
an urgent need for developing alternative methods to test
carcinogenicity quickly and cost-effectively. A lot of computational
models have been developed for prediction of carcinogenic potency.
Some of thesemodels can only be applied to specific chemical classes,
and some were developed based only on rat’s carcinogenicity assay
results.We developed a DeepCarcmodel to fill the gap by combining
model-level representation generated from five conventional ML
classifiers into a DL framework with Mol2vec descriptor and
supervised base classifier selection strategy. The proposed
DeepCarc model outperformed the optimized 5ML classifiers,
two state-of-the-art ensemble methods, and four molecule-based
deep learning models. The developed DeepCarc model is publicly
available through https://github.com/TingLi2016/DeepCarc.

The DeepCarc model was developed from the NCTRlcdb,
which includes 863 compounds, and the carcinogenicity

TABLE 3 | The relationship between predicted probabilistic values of DeepCarc and carcinogen risk.

Probabilistic
threshold

DeepCarc prediction Carcinogen p Value Positive predictive
value

Negative predictive
valuePositive Negative

0.1 Predicted positive 110 56 5.188E-2 0.663 0.800
Predicted negative 1 4

0.2 Predicted positive 110 52 1.074E-3 0.679 0.889
Predicted negative 1 8

0.3 Predicted positive 110 44 1.51E-07 0.714 0.941
Predicted negative 1 16

0.4 Predicted positive 108 40 5.22E-08 0.730 0.870
Predicted negative 3 20

0.5 Predicted positive 101 32 4.22E-08 0.759 0.737
Predicted negative 10 28

0.6 Predicted positive 89 29 2.74E-05 0.754 0.585
Predicted negative 22 31

0.7 Predicted positive 81 22 7.18E-06 0.786 0.559
Predicted negative 30 38

0.8 Predicted positive 68 14 2.44E-06 0.829 0.517
Predicted negative 43 46

0.9 Predicted positive 47 6 9.85E-06 0.887 0.458
Predicted negative 64 54
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classification was built based on the carcinogenicity results of
both rats and mice. The DeepCarc model was designed to predict
the general carcinogens, which are non-organ specific. We
investigated other reported machine learning-based prediction
models with the NCTRlcdb data set (Liu et al., 2011; Tung, 2013;
Tung, 2014; Beger et al., 2004). However, all the other reported
prediction models aim to discriminate liver-specific carcinogens
from others. Furthermore, samples used in these developed
models varied from each other. One of the significant
challenges of AI-based models towards real-world application
is explainability. Here, we employed the Uniform Manifold
Approximation and Projection (UMAP) to investigate the
driving force of the proposed supervised base classifier
selection strategy outperforming the original one (McInnes
et al., 2018) (Supplementary Figure S2). The UMAP is a
non-linear dimension reduction technique that captures the
local relationships within the groups and the global

relationships between different groups (Becht et al., 2019). We
found that the supervised selection method had better
discrimination power in distinguishing the carcinogens from
non-carcinogens than the original selection method.

The DeepCarc model was compared with the other four DL
carcinogenicity prediction models (DC-TEXTCNN, CH-NFP,
EAGCNG, and CNF) using the chemical representation as a
direct input. Different from the chemical descriptors used in the
DeepCarc development, we explored three other different types of
chemical representation, including SMILES strings (DC-
TEXTCNN, and CNF), molecular graphs (CH-NFP), and
molecular graphs with attention (EAGCNG). We also
evaluated the impact on carcinogenicity prediction by
enlarging the data set with the multiplicity of SMILES strings
in the CNFmodel. DeepCarc outperformed these four DLmodels
with the highest MCC of 0.432. The DC-TEXTCNN and CNF
with SMILES strings as input had the highest sensitivity but
lowest specificity. The CH-NFP and EAGCNG with the
molecular graph as input reached higher specificity than the
two DL models (DC-TEXTCNN and CNF) with SMILES string
as input. Enlarging the data set by the multiplicity of SMILES
string did not improve the performance in this carcinogenicity
prediction.

Considering a large proportion of compounds in DrugBank
and Tox21 without the carcinogenic test result, we employed the
DeepCarc model to assess the carcinogenicity risk for the
compounds from DrugBank and Tox21 to provide the
information for further prioritizing the compounds for
carcinogenicity assessment. We found that 1341 (1341/7176 �
18.69%) compounds were predicted with carcinogenicity risk in
Tox21, which is much larger than 570 (570/9814 � 5.81%) drugs
predicted with carcinogenicity risk in DrugBank. One of the
possible reasons is that Tox21 includes environmental chemicals
and household cleaning products, which are less likely to be
evaluated by the carcinogenicity bioassay. However, there is a
rigorous procedure to avoid carcinogens from getting marketed
in drug development. A drug is required to take the 2-years
carcinogenicity animal study if it will be used in treatment
continuously for 6 months or more or with some special
causes for concern, such as belonging to a class of the known
carcinogens, showing evidence of precancerous changes in the
chronic toxicity studies, and retaining in tissues for a long time
(Rang and Hill, 2013). We conducted a literature survey to collect
the compounds’ carcinogenic potential details with very high and
low probabilities. However, we found little information on the
carcinogenic testing results of these compounds. For example,
Osimertinib was predicted with the carcinogenic probability of
0.928 and a study reported that it induced autophagy and
apoptosis via reactive oxygen species generation in non-small
cell lung cancer cells (Tang et al., 2017).

To investigate the potential artifact yield in the data split
process, we randomly split the total 863 chemicals were into the
different training set, development set, and test data set for
10 times to develop DeepCarc models. The low specificity of
the test set compared to the development set is consistently
observed in every newly developed DeepCarc model
(Supplementary Figure S3). Identifying compounds with

FIGURE 5 | The probability distribution of the DeepCarc prediction of the
compounds from (A) DrugBank; (B) Tox21.
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potential carcinogenic risks is very costly, time-consuming, and
labor-intensive. A model with high sensitivity for detecting high
carcinogenic risk compounds could be beneficial to narrow down
a large number of compounds into a handled scale for further risk
assessment. Considering the relatively low specificity and high
sensitivity nature of the current DeepCarc model, we highly
recommended positioning the model on screening of
molecules in the early stage of development.

A low false-negative rate is one of the essential prerequisites to
warrant the practical application of the prediction model in
screening carcinogens. Therefore, we investigated the false-
positives cases in our proposed DeepCarc model. There were 10
of 111 carcinogens predicted as non-carcinogens in the test set. The
common structure analysis was employed for these 10 carcinogens.
However, we did not find any common substructure, indicating
only chemical information is insufficient to identify these
carcinogens. Therefore, we recommend applying alternative
approaches such as high-throughput in vitro toxicity assays (Li
et al., 2017; Chiu et al., 2018) to further screen the non-carcinogens
predicted by the DeepCarc to eliminate the false-negative cases in
the real-world application.

The development of animal-free models is a new trend of
modernized toxicity assessment. The 2-years bioassays in rats and
mice are impossible to assess the carcinogenic potential of every
compound efficiently and accurately. The DeepCarc model we
developed could help prioritize potential carcinogens in the early
stages of compounds development. Moreover, we hope our work
will attract more interest to further exploring advanced artificial
intelligence (AI) approaches for carcinogenic potency prediction.
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Background & Aims: The United States Food and Drug Administration (FDA) regulates a
broad range of consumer products, which account for about 25% of the United States
market. The FDA regulatory activities often involve producing and reading of a large
number of documents, which is time consuming and labor intensive. To support regulatory
science at FDA, we evaluated artificial intelligence (AI)-based natural language processing
(NLP) of regulatory documents for text classification and compared deep learning-based
models with a conventional keywords-based model.

Methods: FDA drug labeling documents were used as a representative regulatory data
source to classify drug-induced liver injury (DILI) risk by employing the state-of-the-art
language model BERT. The resulting NLP-DILI classification model was statistically
validated with both internal and external validation procedures and applied to the
labeling data from the European Medicines Agency (EMA) for cross-agency application.

Results: The NLP-DILI model developed using FDA labeling documents and evaluated by
cross-validations in this study showed remarkable performance in DILI classification with a
recall of 1 and a precision of 0.78. When cross-agency data were used to validate the
model, the performance remained comparable, demonstrating that the model was
portable across agencies. Results also suggested that the model was able to capture
the semantic meanings of sentences in drug labeling.

Conclusion: Deep learning-based NLP models performed well in DILI classification of
drug labeling documents and learned the meanings of complex text in drug labeling. This
proof-of-concept work demonstrated that using AI technologies to assist regulatory
activities is a promising approach to modernize and advance regulatory science.

Keywords: regulatory science, drug labeling, natural language processing, BERT, drug induced liver injury,
United States Food and Drug Administration, European medicines agency, named entity recognition

Edited by:
Ruchir Shah,

Sciome LLC, United States

Reviewed by:
Arpit Tandon,

Sciome LLC, United States
Adyasha Maharana,

University of North Carolina at Chapel
Hill, United States

*Correspondence:
Weida Tong

Weida.Tong@fda.hhs.gov
Minjun Chen

Minjun.Chen@fda.hhs.gov

Specialty section:
This article was submitted to
Medicine and Public Health,

a section of the journal
Frontiers in Artificial Intelligence

Received: 23 June 2021
Accepted: 17 November 2021
Published: 06 December 2021

Citation:
Wu Y, Liu Z, Wu L, Chen M and

Tong W (2021) BERT-Based Natural
Language Processing of Drug Labeling

Documents: A Case Study for
Classifying Drug-Induced Liver

Injury Risk.
Front. Artif. Intell. 4:729834.

doi: 10.3389/frai.2021.729834

Frontiers in Artificial Intelligence | www.frontiersin.org December 2021 | Volume 4 | Article 7298341

ORIGINAL RESEARCH
published: 06 December 2021
doi: 10.3389/frai.2021.729834

74

http://crossmark.crossref.org/dialog/?doi=10.3389/frai.2021.729834&domain=pdf&date_stamp=2021-12-06
https://www.frontiersin.org/articles/10.3389/frai.2021.729834/full
https://www.frontiersin.org/articles/10.3389/frai.2021.729834/full
https://www.frontiersin.org/articles/10.3389/frai.2021.729834/full
https://www.frontiersin.org/articles/10.3389/frai.2021.729834/full
https://www.frontiersin.org/articles/10.3389/frai.2021.729834/full
http://creativecommons.org/licenses/by/4.0/
mailto:Weida.Tong@fda.hhs.gov
mailto:Minjun.Chen@fda.hhs.gov
https://doi.org/10.3389/frai.2021.729834
https://www.frontiersin.org/journals/artificial-intelligence
www.frontiersin.org
https://www.frontiersin.org/journals/artificial-intelligence#articles
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org/journals/artificial-intelligence#editorial-board
https://doi.org/10.3389/frai.2021.729834


INTRODUCTION

The United States FDA regulates consumer products including
foods, medications and tobacco, which account for about 25% of
the United States market (US Food and Drug Administration,
2011a). The core responsibility of FDA is to ensure safe and
effective products, while at the same time promote innovation to
produce products of better quality (US Food and Drug
Administration, 2010). Therefore, FDA must be equipped with
the best available tools and methods to facilitate pre-market
evaluation and post-market surveillance, which requires a
strong field of regulatory science to develop standards and
approaches that assess FDA-regulated products with reliable
efficiency and consistency (US Food and Drug Administration,
2011a; Hamburg, 2011).

Currently, science and technology are rapidly evolving in the
field of healthcare, introducing more complexity to the
development and manufacture of new drugs, biologics and
medical devices. Artificial intelligence (AI), especially, is a fast-
growing area and has shown great potential in addressing the
unmet medical and public health needs (Yu et al., 2018; Basile
et al., 2019; Chan et al., 2019). A long-lasting challenge for FDA is
to efficiently retrieve needed information from a huge number of
documents received and regularly generated, such as approval
documents, guidance, policies and meeting minutes. A significant
amount of time must be spent onmanually reading and searching
information of interest, besides product evaluation and decision
making. AI-based natural language processing (NLP) is a
promising approach of speeding up this time-consuming and
labor-intensive process.

In this study, we applied AI-based NLP to classify drug
labeling documents as a proof-of-concept to demonstrate the
utility of AI for regulatory applications. Drug labeling provides
comprehensive summaries of medications as a reference for
healthcare professionals in making prescribing decisions
(Watson and Barash, 2009; McMahon and Preskorn, 2014). It
is also an essential resource for FDA reviewers during drug
evaluations, and the research community for
pharmacovigilance and drug repositioning (Chen et al., 2011,
2016; Hoffman et al., 2016; Fang et al., 2020). There are over
130,000 drug labeling documents in the repository, of which
47,000 are labeling for prescription drugs and biologics (Fang
et al., 2020). This represents large amounts of regulatory text data,
making manually assessing all drug labeling documents
prohibitory, if not impossible. Here, we developed an AI-based
approach to classify drug-induced liver injury (DILI) risk
indicated in drug labeling documents, which serves as a proxy
to test the applicability of AI in facilitating text classification from
regulatory documents.

Adverse drug reactions (ADRs) such as DILI are described in
three sections, “Adverse Reactions”, “Warnings and Precautions”
and “Boxed Warning”, in FDA drug labeling documents (US
Food and Drug Administration, 2006; US Food and Drug
Administration, 2011b). The “Warnings and Precautions”
section contains the most comprehensive and complicated
descriptions not limited to ADRs, but also includes other
related aspects such as warnings to patients for signs and

symptoms, clinical/laboratory monitoring plans and
contraindications, for which sentences containing DILI-related
terms do not necessarily suggest attributable DILI events (US
Food and Drug Administration, 2011b). In contrast, the “Boxed
Warning” section, specific to FDA labeling, contains concise
highlights of the most serious ADRs from the “Warnings and
Precautions” section (US Food and Drug Administration, 2011b),
while the “Adverse Reactions” section more or less lists all
possible ADRs (US Food and Drug Administration, 2006).
The current manual classification approach largely relies on
the use of pre-defined DILI terms to determine whether
sentences in the three labeling sections indicate DILI (Chen
et al., 2011; 2016). Considering that the terms used in the
drug labeling are not well normalized to the international
standards such as Medical Dictionary for Regulatory Activities
(MedDRA) and Systematized Nomenclature of Medicine
(SNOMED) and the complexity of language used for
describing ADRs, interpretation and judgement by experts
with relevant knowledge and experience are necessary. We
used an AI-based approach to address these issues in the
current study, as language models can capture the semantic
meanings of sentences in free text rather than simple string
matching (Radford et al., 2018). Specifically, the state-of-the-
art language model, Bidirectional Encoder Representations from
Transformers (BERT) (Devlin et al., 2019), was trained for binary
DILI classification of FDA-approved drug labeling documents
and was externally validated using EMA-approved drug labeling
documents. The deep learning-based model, hybrid deep
learning-based model and keywords-based model developed in
this study were compared for DILI risk classification on drug
labeling documents.

MATERIALS AND METHODS

Data Sources for Drug Labeling
FDA drug labeling documents were retrieved from DailyMed
(www.dailymed.nlm.nih.gov), a public database that contains up-
to-date drug labeling approved by the FDA. Meanwhile, since the
EMA issues standardized drug labeling for drugs approved
through a centralized procedure, we used UK-marketed drugs
as representatives of drugs authorized in Europe (European
Medicines Agency, 2009). EMA drug labeling documents were
collected from the EMC (www.medicines.org.uk), which
maintains the EMA-approved drug labeling for drugs licensed
in the United Kingdom.

Drug Selection Criteria
We selected prescription drugs based on three criteria, i) with a
single active ingredient, ii) either oral or injection use, and iii) in
the categories of NDA, ANDA or BLA, by querying the FDALabel
database (https://nctr-crs.fda.gov/fdalabel/ui/search) which
maintains over 130,000 drug labeling documents containing
critical information pertinent to the safe and effective use of
medications (Fang et al., 2020). Over-the-counter drugs were
removed because of their different labeling format and
requirements compared to prescription drugs. The DILIrank
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dataset provides the DILI risk annotation for 1,036 drugs
marketed in the United States as of 2010 (Chen et al., 2016).
We retrieved the most recent drug labeling documents for the
queried 750 representative prescription drugs from the DILIrank
dataset. Among these drugs, 540 were also licensed in the
United Kingdom market. The corresponding EMA drug
labeling documents were collected and assessed for DILI risk
using the same classification schema described in previously
studies (Chen et al., 2011).

Datasets
We focused our analysis on the “Warnings and Precautions”
section of FDA labeling documents, as the language for ADR
descriptions in this section has the highest complexity compared
with the other two sections (US Food and Drug Administration,
2011b). The corresponding section in the EMA labeling
documents is the “Special warnings and precautions for use”
section (EuropeanMedicines Agency, 2009). Texts were extracted

from either the “Warnings and Precautions” section (FDA) or the
“Special warnings and precautions for use” section (EMA),
followed by formatting clearing and sentence tokenization
(Figures 1B, 2).

For model training on FDA labeling documents, the
representative documents (N � 750) were stratified split into
80% training document dataset (N � 600) and 20% test document
dataset (N � 150). Unique sentences (N � 29,252) were extracted
from the training document dataset, among which DILI-positive
(N � 540) or DILI-negative sentences (N � 28,712) were
determined independently by two experts. All disagreements
were resolved by discussion. To generate data with more
balanced class labels, intermediate datasets were created to
facilitate filtering of context prior to sentence classification, via
Named Entity Recognition (NER). The unique sentences (N �
29,252) from training documents were annotated using the
Inside-Outside-Beginning (IOB) style. The annotated sentences
were randomly split into 80% training sentence dataset (N �

FIGURE 1 |Quorum flowchart describes the study design. (A) Drug labeling document classification models developed and compared in this study. (B) The study
design of model training and evaluation using FDA labeling documents and model validation using EMA labeling documents.
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23,041) and 20% development sentence dataset (N � 5,851) for
NERmodel training (Figure 1B). Sentences with tokens related to
a liver context, 540 DILI-positive and 1,313 DILI-negative, were
selected as liver-related sentences. To simplify the comparison
between models, human validated liver-related sentences from
the annotated sentences (N � 29,252) were used for developing
the sentence classification module. Test document dataset was
used to evaluated developed models, and cross-agency data,
i.e., EMA labeling documents for drugs not included in the
FDA training data, was used for external validation (Figure 1B).

Examples are given here to illustrate the datasets created for
model training. Dataset for context classification included liver-
related sentences such as “Hepatic toxicity including hepatic
failure resulting in transplantation or death have been
reported” and “Rozerem should not be used by patients with
severe hepatic impairment” and sentences irrelevant to liver
including “Treat all infections due to Group A beta-hemolytic
streptococci for at least 10 days”. The first two liver-related
sentences were used for developing sentence classification
models. The first sentence was considered as DILI-positive,
while the second sentence is for contraindication information
and thus considered as DILI-negative.

To further examine the portability of BERT-based models
across agencies, we also developed models using EMA labeling
documents as training data and validated the models using FDA
labeling documents (Supplementary Figure 1). EMA labeling
documents (N � 540) were stratified split into 80% training
document dataset (N � 431) and 20% test document dataset
(N � 109). Unique sentences (N � 14,915) were extracted from
the training document dataset, including 232 DILI-positive and
14,683 DILI-negative sentences. Similarly, intermediate datasets
were created to facilitate filtering of context prior to sentence

classification, via NER. The unique sentences (N � 29,252) from
training documents were annotated using the IOB style, and
randomly split into 80% training sentence dataset (N � 11,931)
and 20% development sentence dataset (N � 2,984) for NER
model training (Supplementary Figure 1). Sentences with tokens
related to a liver context, 232 DILI-positive and 927 DILI-
negative, were selected as liver-related sentences. Human
validated liver-related sentences from the annotated sentences
(N � 14,915) were used for developing the sentence classification
module. EMA test document dataset was used to evaluated
developed models, and FDA labeling documents for drugs not
included in the EMA training data, was used for external
validation.

Models for Document Classification
In this study, deep learning-based (BERT for DILI classification),
hybrid deep learning-based and keywords-based models were
developed for classifying drug labeling documents based on
whether they contain any sentence suggesting DILI risk
(Figure 1A).

The deep learning-based and hybrid deep learning-based
document classification models consisted of two working
modules, a context classification module and a BERT
sentence classification module (Figures 1A, 2). These two
models shared the same BERT sentence classification module
but differed in the context classification module. For each input
document, each sentence was passed into the two working
modules sequentially (Figure 2). The first step was to
determine whether the current sentence was related to the
liver topic at the context classification module. If not, this
sentence was DILI-negative. If yes, this sentence was then
passed to the BERT sentence classification module to

FIGURE 2 | Workflow for the training of sentence classification module and the development of final document classification model.
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determine whether it was DILI-positive or DILI-negative. After
evaluating all the sentences in the input document, an array of
predicted sentence labels was generated. If any DILI-positive
sentences were found in the input document, the document was
considered DILI-positive, otherwise as DILI-negative.

A keywords-based document classification model was also
developed as a comparison to the deep learning-based and hybrid
deep learning-based models (Figure 1A). Keywords for detecting
DILI risk in the drug labeling were collected from three previous
studies (Chen et al., 2011; Demner-Fushman et al., 2018; Suzuki
et al., 2015) (Supplementary Table 1). Chen et al. summarized a
list of DILI keywords for text-mining (via human reading) in the
drug labeling, while Suzuki et al. selected a list of MedDRA PT
terms for hepatocellular and cholestatic liver injury for text-
mining in the WHO VigiBase™. These two lists covered most
of the DILI terms, but the keywords commonly had multiple
imperfect matches in the drug labeling documents. Thus, these
keywords could not be used directly for computerized text-
mining in the drug labeling documents. Demner-Fushman
et al. normalized the ADR terms in 200 drug labeling
documents to MedDRA Preferred Terms (PTs). By using the
matching data in the Demner-Fushman et al. study, we generated
a keyword list that covers DILI (Chen et al., 2011), liver injury
(Suzuki et al., 2015) and hepatic ADRs (Demner-Fushman et al.,
2018) terms used in drug labeling. The FDA and EMA test
document sets were used to evaluate the performance of
keywords-based document classification.

Development of the Context Classification
Modules
Two types of context classification modules were created in this
study. The first one is a string pattern matching-based context
filter. The other one is an NER-based context classificationmodel.

For the hybrid deep learning-based model, general string
patterns were used to match sentences with any possible
relation to liver, including indications, contraindications,
ADRs, clinical monitoring, immune disorders, etc.
(Supplementary Table 2). Most DILI-negative sentences
irrelevant to liver were filtered out by applying such pre-
defined context, yielding relatively balanced sentence datasets
without losing any DILI-positive sentences (Table 1).

Meanwhile, a BERT-based NER model was developed as the
context classification module in the deep learning-based model.
The NERmodel was developed by using training sentence dataset
and evaluated on development sentence dataset at each epoch of
training. The hyperparameters used for model training are listed
in Supplementary Table 3. This BERT-based context

classification module was then evaluated by performing
context classification on sentences extracted from test
documents and cross-agency validation documents.

Development of the BERT-Based Sentence
Classification Module
The liver-related sentences selected from training sentence
dataset were used for developing a BERT (base, uncased)
model for binary DILI classification as the sentence
classification module, while the liver-related sentences selected
from development sentence dataset were used to evaluate the
performance of the BERT-based sentence classification module.
The hyperparameters used for model training are listed in
Supplementary Table 4. The sentence classification module
was evaluated using shuffled five-fold cross-validations on the
liver-related sentences for 100 times (Supplementary Figure 2).
In comparison to developing a context-dependent sentence
classification model, we also trained a sentence classification
model using imbalance sentence datasets extracted from
training documents. To address the dataset imbalance issue,
we applied an oversampling method, i.e., randomly sampling
based on class weights.

Permutation analysis was conducted to determine whether the
models developed in this study perform at chance (Chen et al.,
2013). Permutated datasets were generated by 100 times of
resampling the liver-related training and test sentence datasets
with randomly shuffled DILI classification labels (positive or
negative). The performance of the resulting 100 models was
compared with that from 100 repetitions of cross-validations
with random sampling (Supplementary Figure 2). A two-sided
t-test was used determine the statistical significance of the
difference between the accuracy scores obtained from
permutated data and original data.

Shapley Additive Explanations (SHAP) values (Lundberg and
Lee, 2017) were used to quantify the contribution of each token to
the prediction made by the model. Higher feature values (red)
push the model prediction towards DILI-positive, while lower
features (blue) values push the model prediction towards DILI-
negative.

Implementation
The embedding layer and 12-layer encoder from BERT were
adopted and connected with a dense layer for token or sentence
classification. The deep learning-based model combines NER
(token classification) and sentence classification modules. A
document is broken down into sentences s1, s2. . .si. All
sentences are passed into the NER module, where tokens

TABLE 1 | Sentence count with or without pre-defined liver-related context.

Without pre-defined context In context of liver (string-
filter)

In context of liver (BERT
for NER)

FDA EMA FDA EMA FDA EMA

DILI positive sentences 540 232 540 232 540 232
DILI negative sentences 28,712 14,915 961 764 1,313 927
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[t11, t12. . .t1j], [t21, t22. . .t2j]. . .[ti1, ti2. . .tij] are classified. If
none of the tokens is associated with “Liver” (with
(argmax(ti1) � y) | (argmax(ti2) � y) | . . . | (argmax(tij) � y)
being False for any sentence si in a given document, where y
equals the value of “Liver” tag.), then document label is
returned as 0 (DILI negative). Otherwise, all selected liver
related sentences are passed into sentence classification
module. Document label is returned as 0 if none of the
liver-related sentences is DILI positive ((∑i argmax(si) � 0),
else returned as 1 (DILI negative).

Evaluation Metrics
The NER-based context classification was evaluated at two levels.
Recall, precision, and f1-score were reported at token level.
Context classification at sentence level was evaluated by recall
and precision. The BERT-based binary sentence classification was
evaluated using accuracy, recall and precision. The test
documents were used to assess the performance of the deep
learning-based and hybrid deep learning-based models on
document classification. Matthews correlation coefficient

(MCC), recall and precision were used to evaluate the quality
of binary DILI classification predicted by the models.

RESULTS

Development of the Deep Learning-Based
Model for DILI Classification of Labeling
Documents
The developed deep learning-based model had a BERT-based NER
model as the context classification module and a BERT-based
sentence classification module (Figure 1A). FDA test documents
were used to evaluate the performance of the NER-based context
classification module in selecting liver-related sentences. At
token level, the context classification module showed excellent
performance in recognizing liver-related words, with an F1 score
of 0.98 ± 0.003, recall of 0.99 ± 0.002 and precision of 0.98 ± 0.008.
When evaluated at sentence level, it had great sensitivity (0.99) as it
was able to extract 431 of 435 liver-related sentences from the test
documents (Figure 3A). The precision was 0.83 (0.83 ± 0.001 from
cross-validations) due to that 88 false positives were generated.
Considering the large number of non-liver sentences (N � 8,763)
in the test documents, the context classification module performed
well in predicting non-liver sentences as the false positive rate was
1%. Further, the context classification module was externally
validated using EMA test documents. It detected 334 of
341 liver-related sentences while 79 false positives were predicted
from 6,115 non-liver sentences, which was comparable to the results
obtained using FDA test documents (Figure 3B).

The BERT-based sentence classification module is the same
from the hybrid deep learning-based model, which was developed
using liver-related sentences. This module showed an accuracy of
0.81 ± 0.02, recall of 0.82 ± 0.03 and precision of 0.82 ± 0.02. To
confirm that the sentence classification module did not perform
at chance, we conducted permutation tests. The sentence
classification models trained on the permutated FDA training
sentences exhibited a great decrease in average accuracy score, as
compared to that obtained from cross-validations (0.56 versus
0.81, p < 0.0001) (Supplementary Figure 2). These results
suggested that the observed accuracy scores of the sentence
classification models were unlikely to be obtained by chance.

The performance of the deep learning-based model regarding
document classification was evaluated using FDA test documents
and externally validated using EMA validation documents
(Figure 1B). The deep learning-based model also showed
excellent performance in DILI prediction on drug labeling
documents with an MCC of 0.84 (Table 2). It could detect all 40
of the DILI-positive documents in the FDA test set (Figure 4A and
Table 2). Eleven false positives were found from a total of 110 DILI-
negative documents, and thus the precision was 0.78. These results
were consistent with that from model validation using cross-agency
data (EMAvalidation documents), which had anMCCof 0.79, recall
of 1 and precision of 0.71 (Figure 4D and Table 2).

In comparison with models trained on liver-related sentences, we
also developed sentence classification models using all sentences
from the training documents, which were extremely imbalanced

FIGURE 3 | Evaluation and validation of the BERT NER models for
context classification. (A) Confusion matrix obtained from evaluation of the
BERT-based context classification module using the FDA test documents. (B)
Confusion matrix obtained from evaluation of the BERT-based context
classification module using the EMA validation documents.
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between DILI-positive and negative labels. We observed decreased
recall (0.75 ± 0.08) and precision (0.76 ± 0.04) as compared to
models developed using liver-related sentences. When oversampling
was conducted by randomly sampling according to class weights,
recall was increased to 0.80 ± 0.04 while precision dropped
significantly to 0.68 ± 0.04. None of these models outperformed
the deep learning-based model with NER-based intermediate
module at sentence level. When evaluated at document level, the
sentence classificationmodel trained on all sentences predictedmore
false negative FDA documents (N � 4), causing decreased recall
(0.90). Interestingly, precision (0.86) was higher than that obtained
from the deep learning-basedmodel, as less false positive documents
were obtained (N � 6). Similarly, decreased recall (0.89) and

increased precision (0.82) were observed when EMA documents
were used as external validation data. Higher recall is preferred for
the investigated topic in this study, i.e., ADR detection in drug
labeling documents, because false positive documents are much
easier to be detected during the phase of result interpretation or
model validation, as compared to false negative documents.

Development of the Hybrid Deep
Learning-Based Model for DILI
Classification of Labeling Documents
The developed hybrid deep learning-based model had a string
filter-based context classification module followed by a BERT-

TABLE 2 | Model evaluation and validation using cross-agency data.

Model evaluation using FDA test documents

Document classification models Matthews correlation coefficient Recall Precision
Deep learning-based model 0.84 1.00 0.78
Hybrid deep learning-based model 0.87 1.00 0.82
Keywords-based model 0.60 0.90 0.58

Model validation using cross-agency data (EMA test documents)

Document classification models Matthews correlation coefficient Recall Precision
Deep learning-based model 0.79 1.00 0.71
Hybrid deep learning-based model 0.84 1.00 0.77
Keywords-based model 0.61 0.96 0.55

FIGURE 4 | Evaluation and validation of the document classification models. (A) Confusion matrix obtained from evaluation of the AI model using FDA test
documents. (B) Confusion matrix obtained from evaluation of the hybrid deep learning-based model using FDA test documents. (C) Confusion matrix obtained from
evaluation of the keywords-basedmodel using FDA test documents. (D)Confusionmatrix obtained from evaluation of the AI model using EMA validation documents. (E)
Confusion matrix obtained from evaluation of the hybrid deep learning-based model using EMA validation documents. (F) Confusion matrix obtained from
evaluation of the keywords-based model using EMA validation documents.
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based sentence classification module (Figure 1A). After context
filtering of sentences from the “Warnings and Precautions” section
of FDA training documents, 1,501 unique liver-related sentences
were collected, of which 540 were DILI-positive while 961 were
DILI-negative (Table 1). This sentence dataset was used for training
the BERT-based sentence classification module. The developed
sentence classification module reached high performance
regarding DILI classification with accuracy scores of 0.81 ± 0.02
obtained from 100 repetitions of five-fold cross-validations.

The performance of this hybrid deep learning-based model
regarding document classification was evaluated using FDA test
documents and externally validated using EMA validation
documents (Figures 1B, 2). The hybrid deep learning-based
model achieved excellent performance in DILI prediction on
drug labeling documents with an MCC of 0.87 (Table 2). It had a
high recall of 1, as it could detect all 40 of the DILI-positive
documents in the FDA test set (Figure 4B and Table 2). Nine
false positives were found which resulted in a precision of 0.82.
These results were corroborated with that from model validation
using cross-agency data (EMA test documents). The hybrid deep
learning-based model had a consistent MCC of 0.84, recall of 1
and precision of 0.77 when predicting on the EMA validation
documents (Figure 4E and Table 2).

Interestingly, we observed subtle differences between the deep
learning-based and hybrid deep learning-based models in
prediction DILI risk. The hybrid deep learning-based model
was better at distinguishing liver injury statements in animal
studies from human liver injury statements. Also, hepatosplenic
T-cell lymphomas due to immunosuppressive treatment could
confuse the deep learning-based model rather than the hybrid
deep learning-based model. In contrast, the deep learning-based
model performed better in detecting term variants/abbreviations,
such as SGOT/AST for aspartate aminotransferase and SGPT/
ALT for alanine aminotransferase. Although limited in number,
the examples from the current data could provide some insight
for future research.

Comparison of the Deep Learning-Based
and Hybrid Deep Learning-Based Models
With the Keyword-Based Model for DILI
Classification of Labeling Documents
As a comparison to the deep learning-based and hybrid deep
learning-based models, a keyword matching-based approach was
also used to classify the FDA and EMA test documents. The
keyword-based classification on FDA test documents showed a
significantly lower MCC of 0.60, as compared to that from
predictions made by the deep learning-based (0.84) and hybrid
deep learning-based (0.87) models (Table 2). It produced a larger
number of false positives (N � 26), thus the precision (0.58) was
remarkably lower than the deep learning-based (0.78) and hybrid
deep learning-based (0.82) models (Figure 4C andTable 2). Most
of the false positives produced by keyword-based DILI
classification, but not by the deep learning-based and hybrid
deep learning-based models, were related to description of
contraindications or precautions to special populations (e.g.,
patients with hepatic impairment) and hypersensitivity

reactions (Supplementary Table 5). Also, four false negatives
were generated by the keywords-based document classification
model, but none by deep learning-based and hybrid deep
learning-based models. Corroborated with the DILI
classification results obtained from the FDA test documents,
the keywords-based DILI classification on the EMA validation
documents also showed poor performance in controlling the
number of false positives, which generated a low precision of
0.55 (Figure 4F and Table 2). TheMCCwas calculated to be 0.61.

DISCUSSION

In this study we used an AI-based NLP approach to classify drug
labeling documents according to the DILI risk suggested in the
text from the “Warnings and Precautions” section. The
motivation of this investigation was to address two questions
that are important to both regulatory application and drug safety
research, i) whether AI-based NLP tools can be used to classify a
drug’s DILI potential specified in the drug labeling documents,
and ii) whether an AI-based model developed using FDA labeling
documents was portable to the documents in other regulatory
agencies with comparable performance. Therefore, we developed
BERT-based deep learning models for DILI classification, which
were rigorously evaluated in this study.

Our results showed that both the deep learning-based model
and the hybrid deep learning-based model developed in this study
had outstanding performance in predicting DILI risk encoded in
the drug labeling documents, regardless of whether FDA labeling
documents or EMA labeling documents were used for model
training. This suggested that the deep learning-based models
could capture the semantic meanings of sentences in the drug
labeling documents, considering that the descriptions approved
by the two agencies have some degree of difference in terms of
language style and format. The contributions of word tokens to
model predictions were explored to examine whether the model
learned reasonable semantic meanings of the sentences in the
drug labeling. SHAP values were used to quantify the
contributions of each word token to the prediction made by
the model. In the representative DILI-positive sentences (Figures
5A,B), DILI-related words such as “hepatic failure”,
“hepatotoxicity” and “hepatitis” showed positive contributions
(red) and pushed the model prediction toward DILI-positive. In
contrast, the word “hepatitis” did not have positive contributions
when it was in the phrases “chronic hepatitis B” and “chronic
hepatitis C”. Collectively, these results suggested that the
developed NLP models could capture the semantic
relationships between words in a given sentence.

Notably, the deep learning-based NLPmodels developed using
FDA labeling documents could also be used by other agencies
such as EMA without a notable decrease in performance.
Furthermore, we also developed a deep learning-based model
and a hybrid deep learning-based model using EMA labeling
documents (Supplementary Figure 1). The models trained on
the EMA data showed comparable performance when evaluated
using EMA test documents and the FDA validation documents
(Supplementary Table 6), which confirmed the portability of the
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deep learning-based NLP models across agencies. This
demonstrated a promising potential of using AI technology to
facilitate regulatory activities including drug evaluation and
pharmacovigilance.

To best resemble our human reading-based approach and
allow for an interpretable classification, we chose a sentence
classification strategy over directly using whole documents as
input. Briefly, we wanted our final model to be able to select liver-
related sentences and determine whether they suggest DILI risk.
The determination of DILI risk of a document was not based on
quantitative measurement of the number of DILI-positive
sentences, but rather dependent on detection of at least one
DILI-positive sentence. In this regard, the document
classification model is sensitive to false positives. Both the
FDA and EMA models developed in this study had low false
positive rates (6–10%), suggesting that the models performed
well in controlling false positives. Furthermore, the sentence
classification strategy allowed us to easily track which
sentences in a document were the basis for the document
classification model to determine DILI potential. It also
provided information regarding what type of sentences were
ambiguous in DILI risk to the models. From a technical
perspective, the current BERT pre-trained model has an input
limit of 512 tokens. In order to process lengthy documents such
as the “Warnings and Precautions” section containing hundreds
to thousands of words, various solutions have been proposed,
including i) text truncation and ii) text splitting combined with
different pooling methods or Long Short-Term Memory
networks (Adhikari et al., 2019a, 2019b; Sun et al., 2020).
Such more complex model structures do not fit better the
classification criteria for this study and complicate the model
interpretation, as compared to a sentence classification-based
model structure. Therefore, we used a hierarchical model
structure to predict DILI risk on each individual sentence in a
given drug labeling document and output a document
classification label based on the combined sentence
classification results. Moreover, since not all sentences should
contribute to the DILI prediction, we used a context filter as a
gating mechanism to select liver-related sentence for DILI
prediction, which is similar to aspect-based sentiment analysis
(Sun et al., 2019; Xu et al., 2019; Choi et al., 2020). The framework
for creation of dataset and training of context classification
model can be extended to other topics, e.g., cardiotoxicity,
drug indication and drug-drug interactions. Outputs from
context-classification can also be used for information
retrieval pipelines.

Of note, sentence classification models trained on all sentences
with skewed distributions did not have dramatically decreased
performance than NER-sentence classification combined models.
We observed 7 and 6% drop in recall and precision respectively at
sentence level, and 10% decrease in recall but 8% increase in
precision at document level. However, addition of an NER-based
context classification module would be a better approach for the
following reasons. First, all the BERT-based models developed in
this study were designed to record sentences that were predicted
as DILI-positive for human justification. Since the number of
sentences suggesting adverse events is far less than that of
sentences carrying no information of adverse events, it is
much easier to find false positive documents as compared to
false negative documents. Also, the false positive sentences
collected from users could be used later for model
improvement by further training or re-training. Therefore,
higher recall is preferred. Second, inclusion of NER-based
context classification module enables context-specific sentence
classification, which is more flexible, especially in the case of
classifying sentences belong to multiple contexts. For example,
DILI can be associated with immune-mediated cutaneous ADRs
such as Drug Reaction with Eosinophilia and Systemic
symptoms, Stevens-Johnson syndrome and toxic epidermal
necrolysis (Andrade et al., 2019). Sentences containing
information across different contexts could be ambiguous to
multiclass sentence classification models for detecting different
types of ADRs. If binary sentence classification models were
developed for detecting each type of ADRs, large number of
negative samples would be used for model training repeatedly,
which is not an efficient design. Moreover, NER-based context
classification module is versatile and can provide additional
functionalities including facilitating information retrieval.

Previous efforts in data mining of drug labeling documents
primarily relied on the use of specific ADR terms (Chen et al.,
2011; Demner-Fushman et al., 2018; Wu et al., 2019).
International standards, MedDRA and SNOMED, have been
used for searching ADR terms in drug labeling (Demner-
Fushman et al., 2018; Wu et al., 2019). The ADR descriptions
in drug labeling often do not follow these standards, which
requires human effort in matching ADR terms in drug
labeling with standards. Annotation resources have been
reported to normalize the terms used in drug labeling
(Demner-Fushman et al., 2018). However, providing
annotations for such a large repository is not a trivial task. As
shown in Supplementary Table 3, many standard terms such as
MedDRA PTs have a number of matched terms in drug labeling.

FIGURE 5 | Representative sentences showing contributions of word tokens to model predictions. (A) DILI-positive sentence due to fatal hepatic failure. (B) DILI-
positive sentence due to hepatitis/hepatic failure. (C) DILI-negative sentence that provides indication information.
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For example, there have been at least 31 different terms in FDA
labeling for the MedDRA PT “Alanine aminotransferase
increased”, and 34 for “Blood bilirubin increased”. New
variations in ADR terms are likely to be introduced into drug
labeling in the future. Therefore, updating and maintaining such
annotations are labor intensive. The deep learning-based model
developed in the current study, with BERT-based NER and
sentence classification combined, outperformed the keywords-
based model by a large margin. Importantly, BERT-based models
are not only easy to implement and extend but can also be further
improved with better pretrained models in the future.

Furthermore, DILI classification of the labeling documents is a
more complicated task than keywords matching. In some cases, a
sentence containing hepatic ADR terms does not necessarily
suggest DILI. For example, a sentence containing the term
hepatitis could indicate antiviral treatment of hepatitis B
viruses. It could also be contraindication information
specifying that patients with hepatic deficiency due to hepatitis
should not take the drug. All these cases are present in the
complex descriptions from the “Warnings and Precautions”
section. Therefore, human interpretation has been necessary to
determine DILI-positive sentences in drug labeling documents
(Chen et al., 2011; 2016).

Over the past few years, transformers models have changed the
landscape of NLP (Wolf et al., 2020). The BERT model used in
this study enables bidirectional text learning by using masks
(Devlin et al., 2019). Notably, the multi-headed attention
architecture leverages the use of deep neural networks to
capture the relationships between words within a sentence and
across sentences (Vaswani et al., 2017; Devlin et al., 2019). These
two important features allow the BERT model to learn the
semantic meanings of a sentence or sentences effectively and
efficiently. Thus, we chose BERT as our first attempt to develop
AI-based NLP tools, which do not rely on keywords dictionaries
but rather learn the meaning of text and perform tasks close
to humans. Indeed, our results showed that model predictions
were driven by the DILI-related words such as hepatic
failure, hepatotoxicity and hepatitis in the representative
DILI positive sentences. For the representative DILI positive
sentences, model predictions were based on the detection of
DILI-negative information including chronic hepatitis B/C,
even though DILI-related words were also present in the
sentence.

Additionally, we acknowledge the following limitations of this
study. The dataset size is relatively small, especially for
document-level classification results. This is by large due to
that DILI is not a common adverse event, with an incidence
of approximately 20 cases per 100,000 persons annually (Garcia-
Cortes et al., 2020). There are limited number of drugs carrying
warnings for DILI. The developed pipeline was evaluated on just a
single topic, i.e., liver injury. Thus, it remains to be proven by
future research that this framework is indeed extensible to other

topics. The pre-trained BERT model was trained on corpuses
using general language. Drug labeling, however, uses many
domain-specific terms. Further in-domain training of the
BERT model might improve the model performance. Also, we
did not try other transformers models such as GPT-2 (Radford
et al., 2019) and XLNet (Yang et al., 2019) for comparison. The
main purpose of this work was to test the applicability of modern
language models on regulatory documents, rather than select
better models.

CONCLUSION

In the current study we demonstrated that AI-based NLP tools
performed well in DILI classification of drug labeling documents
from two different regulatory agencies, FDA and EMA. The deep
learning-based and hybrid deep learning-based models
outperformed the keywords-based models and were portable
from one agency to the other without a notable decrease in
performance. Our results suggest that AI models are able to learn
the meaning of text and handle NLP tasks with good accuracy.
This proof-of-concept work show that using AI technology to
facilitate regulatory activities is a promising approach to
modernize and advance regulatory science.
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INTRODUCTION

Acute respiratory distress syndrome (ARDS) is a syndrome of hypoxic respiratory failure
characterized by diffuse pulmonary infiltrates and accumulation of protein-rich pulmonary
edema that cause reduction in lung compliance alveolar collapse and ventilation-perfusion
mismatch (Katzenstein et al., 1976; Ware and Matthay, 2000; Rubenfeld et al., 2005; Matute-
Bello et al., 2008; Phua et al., 2009; Force et al., 2012). ARDS affects approximately 190,600
patients per year in the United States, with mortality up to 45% (Wellman et al., 2016). Despite
improvements in intensive care during the last fifteen years, ARDS is still the major cause of
mortality and morbidity in intensive care (Katzenstein et al., 1976; Ware and Matthay, 2000;
Matute-Bello et al., 2008; Force et al., 2012; Wellman et al., 2016). In fact, ARDS therapy has seen
limited progress since its initial description in 1967 and management is still largely supportive,
with no established therapies targeted at the primary disease processes (Ashbaugh et al., 1967).
Accordingly, there is a need for methods of early detection (Janz and Ware, 2013). There has
been recent recognition of the clinical and biological heterogeneity within ARDS (Dowdy et al.,
2006; Sweeney et al., 2018; Yehya et al., 2019) that reflects our incomplete understanding of the
biology of ARDS.

Acute Respiratory Distress Syndrome (ARDS) is an illness that typically develops in people who are
significantly ill or have serious injuries. Within a few hours, patients with ARDS will develop severe
shortness of breath, low blood pressure, and unusually rapid breathing (Mayo Clinic, 2020). ARDS is
characterized by fluid build-up that occurs in the alveoli of the lungs. The buildup of fluid prevents the
lungs from filling up with air which results in less oxygen reaching the bloodstream (Katzenstein et al.,
1976; Matute-Bello et al., 2008; Johns Hopkins Medicine, ). The lack of sufficient oxygen explains why
patients with ARDS are placed on supplemental oxygen for milder symptoms while severe cases are
placed in a mechanical ventilation system. ARDS is also a systemic inflammatory disease which
suggests that while it is typically found to affect the respiratory system, it tends to affect other organ
systems as well. The risk of death from ARDS increases with age and severity of illness while those that
survive may experience lasting damage to their lungs (Ashbaugh et al., 1967; Force et al., 2012). The
most common cause of ARDS is sepsis. Sepsis is characterized by a serious and widespread infection of
the bloodstream. Another common cause of ARDS is severe pneumonia. Amore recent cause of ARDS
are patients that develop a severe case of COVID-19. These types of cases where patients developARDS
can often be fatal, and those that do survive and recover from ARDS may have lasting pulmonary
scarring (Ware and Matthay, 2000; Rubenfeld et al., 2005; Johns Hopkins Medicine, ).

Additional contributions to the knowledge about inheritance of ARDS and/or pathogenesis will
be of great benefit in moving forward with successful clinical translation of new diagnostic,
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preventive, and therapeutic strategies (Vincent et al., 2006;
Constantin et al., 2010; Tejera et al., 2012; Chiumello and
Marino, 2017).

The NIH-NHLBI ARDS Network was a research network
formed to study treatment of Acute Respiratory Distress
Syndrome in 1994. The goal of the Network was to efficiently
test promising agents, devices, or management strategies to
improve the care of patients with ARDS. During its 20 years
of service, 5,527 patients were enrolled in 10 randomized
controlled trials and one observational study. Additional trials
informed best practices by suggesting no role for routine use of
corticosteroids, beta agonists, pulmonary artery catheterization,
or early full calorie enteral nutrition. The ARDS Network also
developed new outcome measures (ventilator free days) and
promoted innovative and efficient techniques (factorial designs
and coenrollment) to speed the discovery of new treatment
approaches for patients with ARDS (ARDS Network, ). This
network provided a robust amount of specimen for research
experiments and has enabled the research community access to
request these samples for secondary analysis.

NCBI GEO contains ∼222 ARDS patient samples from high
throughput sequencing experiments, some of which utilize
specimen derived as part of the ARDS network project. NCBI
GEO serves as a resource to support the deposition of datasets
from multiple sequencing platform options and accommodates a
variety of sample groupings and associated metadata (National
Center for Biotechnology Information, ). Another NCBI resource,
dbGAP, as of the time for this report contained 2 published
datasets from sequencing studies done in ARDS. Both GEO and
dbGAP do not provide a direct output file containing primary
level curated genes, gene functions, chromosomal tags, reference
paper id and associated variants from published ARDS studies.
The process of extraction of these types of gene lists from external
resources and the data parsing required for secondary analysis
and follow up computational work is often cumbersome and
requires sophisticated Bioinformatics approaches. Here we
present, ARDS DB, a comprehensive database for genes and
variants specifically related to ARDS. The ARDS DB framework
provides gene and variant information and associated metadata
derived from primary level curation of experimentally verified
studies. The caveat of a dedicated gene database for deeper
analysis of ARDS is that it provides the user with a centralized
location to retrieve pertinent information. ARDS DB is freely
available via an open-source repository and represents a major
step towards filling a gap in computational resources for bench
biologists and clinicians.

MATERIALS AND METHODS

The data extraction process for the development of version 1
ARDS DB began in June of 2020 and consisted of 2 phases
(Figure 1). The first phase consisted of retrieval of the related
information obtained from 222 samples deposited at NCBI GEO
with their associated papers published in Pubmed resource. Next,
during the second phase a relevance text mining algorithm was
employed via PubMed. The algorithm was based on the standard

PubMed Best Match sort using a weighted term frequency
algorithm. This approach calculates the frequency with which
terms, in this case, Acute Respiratory Distress Syndrome, appear
in PubMed records. Those frequencies are then applied in a
weighted fashion to return a ranked list of PubMed citations that
match the query terms.

An updated feature of the algorithm includes machine
learning to re-rank the top articles returned. This algorithm
combines over 150 signals that are helpful for finding best
matching results. Most of these signals are computed from the
number of matches between the search terms and the PubMed
record, while others are either specific to a record (e.g.,
publication type; publication year) or specific to a search (e.g.,
search length). The new ranking model was built on relevance
data obtained from anonymous PubMed search logs that were
aggregated over an extended period of time (pubmed reference).
The data was filtered by search term and species to include only
those results pertaining to humans. Of the 202 articles identified,
a manual curation process was employed to extract gene and/or
variant lists. A comprehensive literature review was built into the
process to compile gene lists. This search strategy was repeated
across all matching articles. The relevant files for each gene sets or
variants lists were extracted and further parsed using statistical
analysis.

Statistical assessments were performed for each of these
extracted lists using the R Bioconductor package (R Core
Team, 2017). The criteria applied for the statistical evaluation
was ≥1.5 fold change and p ≤ 0.05. Genes and variants found to be
statistically significant were included in the final criteria. For each
gene that was listed in the database, the corresponding PMID of
the research article was included. www.genecards.org was used to
obtain the official gene name as well as any other corresponding
alias name for the gene (GeneCards,). Both the gene name from
the published study and all other alias names for that gene were
included in the database. Using the official gene name, the
chromosome and position of the gene were also included as
part of the metadata assembled. The gene names were then
verified by direct import into “NCBI’s genome data viewer”
and conducting a search for the gene. A summary of each
gene’s function, as well as its chromosomal location and the
start and stop site on the chromosome were documented. DAVID
analysis was further employed to extract detailed gene description
(DAVID, ). For analysis within DAVID, the “Entrez_gene_ID”
option was selected as the identifier name. The gene lists
submitted were converted into official gene symbol as part of
the curation tasks.

The gene’s relation to ARDS patient outcomes is indicated in
the database as provided in the published study. The two
categories for patient outcomes included in ARDS DB are
increased susceptibility or mortality which was found to be
associated with the differentially expressed genes. Some genes
were reported to cause both increased susceptibility and
mortality, which are indicated within the ARDS DB. In
addition, the gene function in ARDS, pathogenesis related
information was included if pertinent to the primary research
article. Permanent digital object identifiers (DOIs) for the original
research articles are provided for each entry. The database was
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designed using a structured query language (SQL) architecture
and is publicly available via the Zenodo open source ecosystem.
https://zenodo.org/record/4033491#.YQN_cY5Khyw.

DATASET

ARDS-DB contains a total of 238 genes that were found to be
differentially expressed in ARDS patients. It contains the following
types of metadata: official gene symbol, as well as any alias names
that the gene could be associated with; NCBI gene ID, Chromosomal
location, start and stop sites, variant id where relevant, as well as its
corresponding location and type, which is listed in the database. The
reference and primary publication where each gene was found are
listed in the database, as well as a summary of the gene function.
Lastly, the association between the gene and patient outcomes is
provided where pertinent as well as a summary of the relatedness of
the gene to ARDS patients. The corresponding reference containing
this information is provided.

A major strength of ARDS DB is that it has been created through
a pipeline consisting of intensive manual curation efforts, combined
with machine learning algorithms. The synergy of these 2
approaches will ensure ease of continuous update as new data is
deposited. Another strength is that the resource conveys specificity
for ARDS and will help researchers looking for a centralized location
to search for genes and variants. The detailed information on
chromosomal location allows for ease of searching against any
novel variants being assessed as comparison. The gene function
information provided enables the user to learn quick facts about the
gene and its role in signaling processes. The inclusion of patient
outcomes provides clinicians quick reference information that will

be informative to place the gene or variant in context for further
consideration.

Currently the database is provided in a downloadable SQL
format, which requires the user to download and compile it
locally using a SQL-based interface. To address this, our future
plan is to migrate ARDS DB into a stand-alone web-based resource.
We would like to provide a web interface with easy access for bench
biologists and clinicians that will offer advanced search features as
well as data analysis and visualization all within the same ecosystem.
With the availability of ARDSDB, users will be able to categorize and
further understand the gene relationships involved in ARDS and the
associated variants from published studies. The availability of variant
locations will facilitate the direct comparison with novel variants or
unique cases of familial ARDS such as that reported recently (Toby
et al., 2020). An additional use for the database is to identify genes for
training set to help build machine learning (ML) models to elucidate
variations in ARDS patient outcomes. ML based assessments (such
as Clustering algorithms, Random forest algorithms) andmethods to
include specialized sequence data such as from RNA seq and
specialized sequencing technologies will be of particular focus.
Potential associations of whole genome data to more specific
patient cohorts for clinicians to better understand cases of
familial ARDS will be of importance in future work.

DATASET DESCRIPTION

The database is freely available in Zenodo and can be accessed through
the following link: https://zenodo.org/record/4033491#.YPnI5BNKhQI
or by searchingwithin Zenodo for the following title: Acute Respiratory
Distress Syndrome-Database of Genes (ARDS-DB). ARDS-DB is

FIGURE 1 | Diagram showing the workflow steps (data collection and primary curation) for the development of ARDS DB.
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accessible via user download and can be viewed using a SQL-based
interface such as MySQL (https://www.mysql.com/downloads/) or
SQL-lite browser (https://sqlitebrowser.org/).
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