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From the propagation of neural activity through synapses, to the integration of signals in the 
dendritic arbor, and the processes determining action potential generation, virtually all aspects of 
neural processing are plastic. This plasticity underlies the remarkable versatility and robustness 
of cortical circuits: it enables the brain to learn regularities in its sensory inputs, to remember 
the past, and to recover function after injury. 

While much of the research into learning and memory has focused on forms of Hebbian 
plasticity at excitatory synapses (LTD/LTP, STDP), several other plasticity mechanisms have 
been characterized experimentally, including the plasticity of inhibitory circuits (Kullmann, 
2012), synaptic scaling (Turrigiano, 2011) and intrinsic plasticity (Zhang and Linden, 2003). 
However, our current understanding of the computational roles of these plasticity mechanisms 
remains rudimentary at best. While traditionally they are assumed to serve a homeostatic purpose, 
counterbalancing the destabilizing effects of Hebbian learning, recent work suggests that they 
can have a profound impact on circuit function (Savin 2010, Vogels 2011, Keck 2012). Hence, 
theoretical investigation into the functional implications of these mechanisms may shed new 
light on the computational principles at work in neural circuits. 

This Research Topic of Frontiers in Computational Neuroscience aims to bring together recent 
advances in theoretical modeling of different plasticity mechanisms and of their contributions 
to circuit function. Topics of interest include the computational roles of plasticity of inhibitory 
circuitry, metaplasticity, synaptic scaling, intrinsic plasticity, plasticity within the dendritic arbor 
and in particular studies on the interplay between homeostatic and Hebbian plasticity, and their 
joint contribution to network function.
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More than 60 years later, Hebb’s prophecy “neurons that fire together wire together” (Hebb,
1949; Shatz, 1992) prevails as one of the cornerstones of modern neuroscience. Nonetheless, it is
becoming increasingly evident that there is more to neural plasticity than the strengthening of
synapses between co-active neurons. Experiments have revealed a plethora of synaptic and cellular
plasticity mechanisms acting simultaneously in neural circuits. How such diverse forms of plasticity
collectively give rise to neural computation remains poorly understood. The present Research Topic
approaches this question by bringing together recent advances in the modeling of different forms of
synaptic and neuronal plasticity. Taken together, these studies argue that the concerted interaction
of diverse forms of plasticity is critical for circuit formation and function.

A first insight from this Research Topic underscores the importance of the time scale of
homeostatic plasticity to avoid runaway dynamics of Hebbian plasticity. While known homeostatic
processes act slowly, on the timescale of hours to days, existing theoretical models invariably use
fast homeostasis. Yger and Gilson (2015) review a body of theoretical work arguing that rapid
forms of homeostatic control are in fact critical for stable learning and thus should also exist in
biological circuits. Following a similar line of thought, Chistiakova et al. (2015) review experimental
and theoretical literature which suggests that the role of rapid homeostasis could be filled by
heterosynaptic plasticity. Alternatively, other mechanisms can achieve a similar stabilizing effect,
as long as they are fast, for instance the rapid homeostatic sliding threshold in Guise et al. (2015).
These findings raise questions concerning the purpose of slow homeostasis and metaplasticity.
Since non-modulated plasticity leads to “interference” between memories when confronted with
rich environmental stimuli (Chrol-Cannon and Jin, 2015), it is tempting to hypothesize that certain
slow homeostatic mechanisms may correct for this (Yger and Gilson, 2015).

The second development reflected in this Research Topic concerns the interactions between
excitatory and inhibitory (E/I) plasticity. Multiple studies independently stress the importance of
such interactions for shaping circuit selectivity and decorrelating network activity during learning.
Kleberg et al. (2014) demonstrate how spike-timing-dependent plasticity at excitatory (eSTDP) and
inhibitory (iSTDP) synapses drives the formation of selective signaling pathways in feed-forward
networks. Together they ensure excitatory-inhibitory balance and sharpen neuronal responses to
salient inputs. Moreover, by systematically exploring different iSTDP windows, the authors show
that anti-symmetric plasticity, in which pre-post spike pairs lead to potentiation of an inhibitory
synapse, are most efficient at establishing pathway-specific balance. Zheng and Triesch (2014)
confirm the relevance of e/iSTDP for propagating information in a recurrent network. Their model
also highlights the importance of other forms of plasticity, in particular intrinsic plasticity and
structural plasticity for robust synfire-chain learning.

Beyond information propagation, Duarte and Morrison (2014) show that E/I plasticity
allows recurrent neural networks to form internal representations of the external world and
to perform non-linear computations with them. They find that the decorrelating action
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of inhibitory plasticity pushes the network away from states
with poor discriminability. These results are corroborated by
Srinivasa and Cho (2014), who show that such representations
can be efficiently picked up by downstream layers. Networks
shaped by both e- and iSTDP learn to discriminate between
neural activity patterns in a self-organized fashion, whereas
networks with only one form of plasticity perform worse.
Binas et al. (2014) show that the interplay of E/I plasticity
in recurrent neural networks can form robust winner-take-all
(WTA) circuits, important for solving a range of behaviorally
relevant tasks (e.g., categorization or decision making). Using
a novel mean-field theory for network dynamics and plasticity,
the authors characterize parameter regions in which stable WTA
circuits emerge autonomously through the interaction of E/I
plasticity.

While most work presented here focuses on long-term
plasticity, Esposito et al. (2015), study the interactions between
Hebbian and short-term plasticity (STP) at excitatory synapses.
The authors postulate a form of metaplasticity that adjusts
the properties of STP to minimize circuit error. This model
provides a normative interpretation for experimentally observed
variability in STP properties across neural circuits and its
close link to network connectivity motifs. While detailed error
computation as assumed here is biologically implausible, reward-
related information could be provided by neuromodulators
(in particular, dopamine), which are know to regulate circuit
dynamics and plasticity.

The functional importance of neuromodulation is explored
in two papers. First, Aswolinskiy and Pipa (2015) systematically
compare reward-dependent vs. supervised and unsupervised
learning across a broad range of tasks. They find that, when

combined with suitable homeostatic plasticity mechanisms,

reward-dependent synaptic plasticity can yield a performance
similar to abstract supervised learning. Second, Savin and
Triesch (2014) use a similar circuit model to study how
reward-dependent learning shapes random recurrent networks
into working memory circuits. They show that the interaction
between dopamine-modulated STDP and homeostatic plasticity
is sufficient to explain a broad range of experimental findings
regarding the coding properties of neurons in prefrontal circuits.
More generally, these results enforce the idea that reward-
dependent learning is critical for shifting the limited neural
resources toward the computations that matter most in terms of
behavioral outcomes.

Taken together, the contributions to this Research Topic
suggest that circuit-level function emerges from the complex,
but well-orchestrated interplay of different forms of neural
plasticity. To learn how neuronal circuits self-organize and
how computation emerges in the brain it is therefore vital to
focus on interacting forms of plasticity. This sets the scene for
exciting future research in both theoretical and experimental
neuroscience.
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Part of hippocampal and cortical plasticity is characterized by synaptic modifications

that depend on the joint activity of the pre- and post-synaptic neurons. To which extent

those changes are determined by the exact timing and the average firing rates is still

a matter of debate; this may vary from brain area to brain area, as well as across

neuron types. However, it has been robustly observed both in vitro and in vivo that

plasticity itself slowly adapts as a function of the dynamical context, a phenomena

commonly referred to as metaplasticity. An alternative concept considers the regulation

of groups of synapses with an objective at the neuronal level, for example, maintaining

a given average firing rate. In that case, the change in the strength of a particular

synapse of the group (e.g., due to Hebbian learning) affects others’ strengths, which

has been coined as heterosynaptic plasticity. Classically, Hebbian synaptic plasticity is

paired in neuron network models with such mechanisms in order to stabilize the activity

and/or the weight structure. Here, we present an oriented review that brings together

various concepts from heterosynaptic plasticity to metaplasticity, and show how they

interact with Hebbian-type learning. We focus on approaches that are nowadays used

to incorporate those mechanisms to state-of-the-art models of spiking plasticity inspired

by experimental observations in the hippocampus and cortex. Making the point that

metaplasticity is an ubiquitous mechanism acting on top of classical Hebbian learning

and promoting the stability of neural function over multiple timescales, we stress the

need for incorporating it as a key element in the framework of plasticity models. Bridging

theoretical and experimental results suggests a more functional role for metaplasticity

mechanisms than simply stabilizing neural activity.

Keywords: synaptic plasticity, metaplasticity, Hebbian learning, homeostasis, STDP

1. INTRODUCTION

The brain is made of billions of neurons able to efficiently process the huge flow of
information impinging continuously on sensory modalities, extracting relevant data, and
producing appropriately timed responses. Even during development (Corlew et al., 2007; Wang
et al., 2012) or when lesioned (Young et al., 2007; Beck and Yaari, 2008), the brain has the striking
capability to adapt in order to maintain the stability of neural functions. Importantly, this slow
adaptation, acting at a timescale of hours or days (Turrigiano and Nelson, 2000; Davis, 2006)
is performed in conjunction with fast changes often observed in the so called Hebbian learning
(Hebb, 1949). Understanding the mechanisms leading to the dynamical organization of neuronal
network via the fine interactions of those two competing processes is therefore a crucial step toward
analyzing the stability of the computations performed by cerebral activity.
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Following the seminal idea that neurons firing together should
wire together (Hebb, 1949), numerous experimental studies have
been conducted to unravel part of the links between plasticity
and neuronal activity. Nowadays, this so-called Hebbian form of
plasticity in the brain has been characterized experimentally in
many areas, involvingmultiple but still misunderstoodmolecular
pathways (see Abbott and Nelson, 2000; Caporale and Dan,
2008, for reviews). While it is commonly assumed that NMDA
receptors are the primary actors in long-term potentiation, or
LTP (Feldman, 2012), the biochemical pathways for long-term
depression (LTD) seem to differ in cortex and in hippocampus
(Wang et al., 2005; Bender et al., 2006; Nevian and Sakmann,
2006). In controlled in vitro experiments, it has also been shown
that LTP and LTD depend on the precise timing of pre- and post-
synaptic spikes (Markram et al., 1997; Bi and Poo, 1998), leading
to the concept of timing-LTP/LTD or spike-timing-dependent
plasticity (STDP).

By acting independently at each synapse without spatial
or temporal crosstalk among synapses, Hebbian learning is a
form of homosynaptic plasticity that is intrinsically unstable.
In point of fact, provided synapses are reinforced when both
the pre- and post-synaptic neurons are active, nothing prevents
the synapses from strengthening themselves boundlessly, which
causes the post-synaptic activity to explode (Rochester et al.,
1956; von derMalsburg, 1973;Miller, 1996).While this instability
can be avoided by artificially imposing hard boundaries onto
the synaptic weights, several learning models came with intrinsic
mechanisms regulating the synaptic efficacies (Bienenstock et al.,
1982; Oja, 1982) in order to solve this issue in a less fine-tuned
manner.

The present paper reviews such mechanisms that aim to
tame the positive feedback provided by Hebbian plasticity.
In the biology, some homeostatic mechanisms can be
viewed as independent from the Hebbian learning that they
counterbalance. For example, the sum of synaptic strengths may
be up or down regulated to maintain the average post-synaptic
firing rate; see Vitureira and Goda (2013) for a review of the
biophysics of such mechanisms. In contrast, other processes
directly modulate the learning rule itself as a function of the
dynamical context, which is referred to as metaplasticity. This
concept is the plasticity of the synaptic plasticity itself (Abraham
and Bear, 1996; Abraham, 2008), and it is tightly related to
the notion of homeostasis (O’Leary and Wyllie, 2011). To
ensure the overall stability of the neuronal system, a key role
for metaplasticity is to regulate the synaptic update rules in
terms of the past history of the activity at the whole neuronal
level. Many experiments have demonstrated metaplasticity using
distinct protocols (Abraham, 2008). Quite often, it also involves
some form of heterosynaptic plasticity, in the sense that the
local changes affecting a particular synapse onto a post-synaptic
neuron influence the plasticity for neighboring synapses.

The study of the dynamical implications of the interaction
between homeostatic mechanisms and Hebbian plasticity
requires the integration of experimental data in model
studies (Marder and Goaillard, 2006). From a modeler’s
point of view, interactions between Hebbian learning and its
regulating counterpart, either by homeostatic mechanisms or

by metaplasticity, is problematic. The principal reason being
that those two distinct forms of plasticity do not act on similar
timescales. Following experimental results, it is commonly
assumed that synaptic changes triggered by Hebbian plasticity
protocols are rather fast (Bliss and Lomo, 1973; Sjöström et al.,
2001, 2003; Wang et al., 2005), occurring in the timescale of
minutes or faster, while metaplasticity or homeostatic changes
are much slower (Abraham and Bear, 1996), in the order of days.
The present paper provides a theoretical framework to analyze
the interaction between Hebbian and homeostatic plasticities
at different timescales. In this way it gives an overarching view
of different methods used in the literature to solve the above-
mentioned instability issue of Hebbian plasticity. Maintaining
the stability only being one of the requirements for proper
behavior, we will discuss how homeostatic constraints can also be
used to adjust the function implemented by the neural circuits.

2. THE APPARENT ANTAGONISM
BETWEEN HEBBIAN AND HOMEOSTATIC
PLASTICITY

2.1. Two Divergent Goals
As it has already been observed (Turrigiano and Nelson, 2000;
Watt and Desai, 2010; Vitureira and Goda, 2013), Hebbian and
homeostatic plasticities are two apparently opposing processes,
which compete at the synaptic level to fulfill different goals.
Hebbian learning promotes strong or synchronous firing among
neurons, which is hypothesized to be a building block for
memory storage (Nabavi et al., 2014). In contrast, homeostatic
processes counterbalance such intense spiking activity to
maintain the global stability in neuronal networks (Turrigiano
and Nelson, 2000; Turrigiano, 2008; Pozo and Goda, 2010).
Several types of homeostatic processes have been observed at
the neuronal level in many brain areas, such as synaptic scaling
(Turrigiano et al., 1998) and intrinsic plasticity (Zhang and
Linden, 2003).

It has been long known that Hebbian plasticity alone is
intrinsically unstable (Rochester et al., 1956; von der Malsburg,
1973; Miller, 1996). The entrainment between synapses often
force all to grow boundlessly or to a maximal set value; in other
cases, they may all become silent. To circumvent these issues
of traditional rate-based Hebbian learning, weight normalization
can be introduced to prevent the runaway of synapses (Oja, 1982;
Miller, 1996). In the context of spiking activity, STDP has been
termed “temporally Hebbian” when it promotes synchronous
firing. Weight-dependent STDP update rules, which induces
more LTD than LTP for strong synapses, provide a fixed point
in the learning dynamics (van Rossum et al., 2000; Gütig
et al., 2003). Although this ensures some stability, it may
dramatically change the weight distribution from being bimodal
to being unimodal. In the case of a narrow unimodal weight
distribution, competition induced by STDP among synapses
is weakened between pathways with distinct characteristics
(e.g., rate, correlation), which is not functionally interesting.
For weight-dependent STDP, this trade-off compromise is only
fulfilled in a given parameter range. In recurrent networks
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especially, the synaptic specialization by competition may be
severely impaired without fine tuning (Morrison et al., 2007;
Gilson and Fukai, 2011).

2.2. Two Different Timescales
Most of the plasticity protocols performed in vitro are based
on either input stimulation at a high/low frequency leading to
LTP/LTD (Bliss and Lomo, 1973) or STDP-type pairings of pre-
post spikes (Markram et al., 1997; Bi and Poo, 1998; Sjöström
et al., 2001; Froemke and Dan, 2002; Wang et al., 2005). The
typical protocol used in cortical or hippocampal slices to elicit
STDP in vitro using spike pairs is represented in Figure 1A: a
spike is triggered at the pre-synaptic neuron and another at the
post-synaptic neuron with time difference δt = tpre − tpost.
This pairing is repeated approximately 60 times with frequency
fpairing = 1 Hz in order to see a robust change in the weight: it
has been shown that after an induction phase, the total weight
change evolves non-linearly up to a saturation plateau, at around
60–100 pairings (Froemke et al., 2006), which corresponds to the
number of protocol repetitions in most studies.

For modelers, this STDP protocol leads to the simplified view
of the time-difference window in Figure 1B, where a single pre
spike followed by a post spike will trigger LTP, whereas post
followed by pre causes LTD. This is clearly an over-simplification
of a much more complex phenomenon. Just to mention some
limitations of this simplified view, it has been shown that if the
frequency fpairing of the pairing is changed, the typical STDP
curve with LTP for δt < 0 and LTD for δt > 0 is dramatically
modified (Sjöström et al., 2001). Depression is only visible for low

frequency pairings, when pairings are performed with δt < 0 and
fpairing < 20Hz. For fpairing > 20Hz , however, synapses undergo
LTP irrespective of the sign for δt. Moreover, several in vitro
studies on cortical pyramidal neurons showed that the canonical
shape of the STDP curve for such pre-post pairings strongly
depends of the position of the synapse along the dendritic tree
(Froemke et al., 2005; Letzkus et al., 2006; Kampa et al., 2007),
as well as the post-synaptic voltage (Artola et al., 1990). Those
experimental findings led to the refinements of initial STDP
models based on the curve, in order to incorporate the observed
effects for triplets of spikes, spike bursts, clamping the post-
synaptic membrane potential and so on (Pfister and Gerstner,
2006; Clopath et al., 2010; El Boustani et al., 2012; Graupner and
Brunel, 2012; Yger and Harris, 2013).

Despite those efforts, there is a point that is almost never
considered: STDP changes are not instantaneous. In most
experiments, when plasticity protocols are performed, the
resulting weight is recorded up to 30 min later. The curve
in Figure 1B corresponds to the corresponding weight change
divided by the number of pairings. In models of classical (van
Rossum et al., 2000; Song and Abbott, 2001) and weight-
dependent (van Rossum et al., 2000; Gütig et al., 2003; Morrison
et al., 2007; Gilson and Fukai, 2011) STDP, its final value is
the results of additive instantaneous and independent weight
updates following each pairing. In fact, even elaborate models
consider the linear summation of weight updates, even when
contributions are restricted to neighboring spikes (Burkitt et al.,
2004). Only a few attempts have been done to change this
property that is convenient for theory, such as probabilistic

FIGURE 1 | Intrinsic timescale of Hebbian learning. (A) The classical STDP pairing protocols widely used in the literature. (B) Synaptic modification for one pair of

pre- and post-synaptic spikes, as a function of their relative timing. (C) Evolution as a function of time of a single synaptic weight, after an STDP protocol, for various

papers taken from the literature, both for LTP of LTD protocols [dash-dotted thin black line is the null-line for Sjöström et al. (2001)]. (D) Adapted from Keck et al.

(2013), Normalized mEPSC amplitude in a layer 5 cell in the mice visual cortex following a lesion in the retina. (E) Adapted from Huang et al. (1992), Prior synaptic

activity triggered during the red shaded area (LTP priming, red curve) reduces LTP in CA1 hippocampus compared to control without pre-activation (black curve). (F)

Adapted from Mockett et al. (2002), Low frequency stimulation (LFS, red shaded areas) influences non-linearly the amount of LTD in CA1 hippocampus: black curve,

(control with only one LFS), red curve (two consecutive LFS).
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models of STDP (Appleby and Elliott, 2005). By re-examining
the weight traces found in the STDP literature (Bi and Poo,
1998; Sjöström et al., 2001; Froemke and Dan, 2002; Froemke
et al., 2006) and reproduced in Figure 1C, it can be seen that the
weights actually evolve continuously in vitro. Therefore, plasticity
should better be seen as a phenomenon that is triggered by a
stimulation event and evolves toward a new equilibrium with a
time constant τHebb ≃ 10 min.

Now considering that Hebbian plasticity induces such
a transient synaptic change, the question arises about its
interaction with homeostatic plasticity. Those processes, either
intrinsic or synaptic, are assumed to be much slower. For
example synaptic scaling, one of the numerous mechanisms of
homeostasis, takes place in vitro with a time constant τhomeo of
the order of a day (Turrigiano and Nelson, 2000), and in vivo
during the 2–3 days after an abrupt change, as observed for
neurons in the visual cortex following visual deprivation (Hengen
et al., 2013; Keck et al., 2013). Figure 1D, adapted from Keck
et al. (2013), shows the amplitude of miniature EPSC in V1
neurons after a bilateral lesion in the adult retina: after an initial
period of about a day, amplitudes are scaled up to compensate
for the reduced inputs. Together, these results stress the fact
that Hebbian and homeostatic processes have distinct timescales.
Understanding the biological mechanisms responsible for those
changes at the molecular level is necessary to gain a better
insight on the interaction between them, especially in vivo where
synapses are constantly bombarded by spikes.

2.3. Primings as an Evidence for
Metaplasticity
Although on a first approximation it may appear that τhomeo ≫

τHebb, several experiments show that those two timescales may
be more interleaved. In hippocampal slices, it has been shown in
so-called priming experiments that the activation of a synapse
before its reactivation modulates the plasticity triggered later
at that particular synapse (see Figures 1E,F). In Figure 1E that
is adapted from Huang et al. (1992), weak tetanic priming
stimulations can reduce the amount of LTP obtained during a
strong subsequent tetanic stimulation; note that the effects last
more than 1 h. On the contrary, the LTD pathway seems to be
facilitated when the synapse is preactivated a few hours before
the plasticity protocol (Christie and Abraham, 1992; Wang, 1998;
Mockett et al., 2002). This is illustrated in Figure 1F, adapted
from Mockett et al. (2002), where the effect lasts at least 2 h.
Those primings experiments suggest the existence of long-lasting
regulation mechanisms, acting over large time constants, which
counteracts the effect of Hebbian learning. This modulation of
the Hebbian plasticity by preactivation of the synaptic pathway is
a direct application of the so-called metaplasticity (Abraham and
Bear, 1996), i.e., the plasticity of the learning rules themselves.

3. MATHEMATICAL FORMALISM

To formally study the interactions between Hebbian and
homeostatic plasticity, we use the following mathematical
formalism. We consider a Poisson neuron (Kempter et al., 1999)
with N synapses indexed by i, corresponding to the input firing

rates ri; for STDP examples, we also define the input cross-
covariances cij between neurons i and j. The equations for the
output firing rate rpost and pre-post covariances ci−post between
synapse i and the post-synaptic spike train in a feedforward
scenario are given by

rpost =
∑

1≤ j≤N

wj rj (1)

ci−post =
∑

1≤ j≤N

wj cij

In order to compare several learning rules in the context of
metaplasticity, we consider the following general equations for
the evolution of a given weight wi and a modulation parameter θ :

ẇi =
1

τHebb
8
(

wi, ri, rpost, ci−post, θ
)

θ̇ =
1

τhomeo

[

9(rpost)− θ
]

(2)

The motivation for these expressions is to model the two
timescales explicitly, as previously done for the BCM rule
(Bienenstock et al., 1982) and for a extension of the triplet STDP
rule (Zenke et al., 2013): τHebb and τhomeo are the two time
constants at which both Hebbian and homeostatic changes are
propagated onto the synapses. The Hebbian plasticity update is
embodied in 8, which also depends on rpre, cpre−post, etc. The
parameter θ is global for all synapses of a neuron and interacts
or modulates the corresponding weight updates. Typically, it is
used to implement a homeostatic mechanism, as we will see for
several models of synaptic plasticity that are commonly used
in the literature. The present framework could be extended to
incorporate other non-linearities in the firing mechanism (e.g.,
LIF neuron), adaptation or intrinsic plasticity.

3.1. Stability Analysis for the Mean-field
Dynamical System
Ignoring correlations and inhomogeneities across synapses, we
focus on the analysis of the mean weight w̄ =

∑

j wj/N > 0 with

mean input rate rpre. The rate Equation (1) simply becomes

rpost = w̄ rpre (3)

This allows for an easy comparison of the weight dynamics
based on polynomial expressions in w̄. Other neuron models
usually give more complex mapping between input and output
rate/correlations, but the common trend is that they are
monotonically increasing function of the weight w̄. This property
is the cause for the instability of Hebbian learning, as it increases
w̄ all the more as rpost is large. Therefore, we will review through
the example of the Poisson neuron how stabilizationmechanisms
interact with the Hebbian component.

In order to examine the stability of the mean-field dynamical
system (Equation 2) where wi is replaced by w̄, we consider its
Jacobian matrix.

(

1
τHebb

[

∂8
∂w + ∂8

∂rpost
rpre

]

1
τHebb

∂8
∂θ

1
τhomeo

∂9
∂rpost

rpre
−1

τhomeo

)

=

(

a b

c d

)

(4)
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For the top-left term in the Jacobian, we have used the following
equality for the feedforward architecture corresponding to

Equation (3):
∂rpost
∂w = rpre. The eigenvalues of the Jacobianmatrix

are given by

x± =
1

2
(T ±

√

T2 − 4D) (5)

where T = a+ d is the trace and D = ad− bc is the determinant.
To ensure stability for this 2-dimensional dynamical system,
these eigenvalues must be real negative. This requires that the
following relationships are satisfied.

T < 0 (6)

0 < 4D < T2

If, however, the discriminant is positive with the trace still
negative (T < 0 and T2 < 4D) the system exhibits damped
oscillations related to the imaginary eigenvalues. With purely
imaginary eigenvalues, we may obtain a limit cycle. Finally, when
D < 0 or T > 0, at least one eigenvalue is positive and can lead
to an explosion of the mean weight.

3.2. Competition between Input Pathways
Following Kempter et al. (1999); Gütig et al. (2003); Gilson
et al. (2009), we can use and rewrite Equation (1) to study the
competition between learning weights.

rpost = w1 r1 + w2 r2 (7)

Again ignoring correlations, we obtain the following 3-
dimensional learning system.

ẇ1 =
1

τHebb
8
(

w1, r1, rpost, θ
)

ẇ2 =
1

τHebb
8
(

w2, r2, rpost, θ
)

(8)

θ̇ =
1

τhomeo

[

9(rpost)− θ
]

Considering the equilibrium for the mean weight w̄ = (w1 +

w2)/2 to be satisfied, the competition between the two input
pathways can be studied for what is called “symmetry breaking,”
namely the divergence of w1 and w2. This relates to the following
differential equation for the weight difference 1w = w1 − w2,
which quantifies the tendency for splitting

1̇w =
1

τHebb

[

8
(

w1, r1, rpost, θ
)

− 8
(

w2, r2, rpost, θ
)]

(9)

≃
1

τHebb

∂8

∂w

(

w̄, r̄pre, rpost, θ
)

1w

+
1

τHebb

∂8

∂rpre

(

w̄, r̄pre, rpost, θ
)

1r

where r̄pre = (r1+ r2)/2 and 1r = r1− r2 is assumed to be small

here. The larger positive ∂8
∂w

(

w̄, r̄pre, rpost, θ
)

is, themore strongly
the weights w1 and w2 will move apart from each other.

3.3. Conditions for Joint Stability and
Competition for Hebbian Learning with
Synaptic Scaling
In general, the equations for stability and competition may turn
out to be quite complex, even for the mean-field dynamical
system. The ambition here is to describe the general trends for the
influence of τHebb and τhomeo on the behavior of the dynamical
learning system. To illustrate this, we examine the “simple”
case of an arbitrary Hebbian-type learning rule with additional
synaptic scaling. Inspired by experimental results (Turrigiano
and Nelson, 2000) and used in previous studies (van Rossum
et al., 2000; Yger and Harris, 2013; Zenke et al., 2013), synaptic
scaling is used as a homeostatic mechanism that increases or
decreases homogeneously the synaptic weights in order to reach
a given firing rate rtarget. In our generic formulation in Equation
(2), this is equivalent to including an additive scaling term Ŵ

in the expression of 8 in addition to the Hebbian contribution
H, while θ tracks the post-synaptic firing rate with a timescale
τhomeo.

8(w̄, rpre, rpost, θ) = H(w̄, rpre, rpost)+ Ŵ(w̄, θ) (10)

Ŵ(w̄, θ) = αw̄(rtarget − θ)

9(rpost) = rpost

For simplicity, we rewrite the Hebbian contribution using
Equation (3) in terms of w̄ only: H̃(w̄): = H(w̄, rpre, rpost). This
yields the following expression for the Jacobian in Equation (4):

(

H̃′(w̄)+α(rtarget−θ)

τHebb

−αw̄
τHebbrpre

τhomeo

−1
τhomeo

)

(11)

The equilibrium corresponds to the fixed point(s) where ˙̄w =

0 and θ̇ = 0, which implies that rpost = θ and H̃(w̄) =

−αw̄(rtarget − θ). The trace and determinant of the Jacobian
matrix are given by

T =
H̃′(w̄)− H̃(w̄)/w̄

τHebb
−

1

τhomeo
(12)

D =
−[H̃′(w̄)− H̃(w̄)/w̄]+ αrpost

τHebbτhomeo

As explained above, stability is ensured when the necessary
conditions T < 0 and 0 < 4D < T2 in Equation (6) are met.
These three conditions read.

H̃′(w̄) −
H̃(w̄)

w̄
<

τHebb

τhomeo
(13)

H̃′(w̄) −
H̃(w̄)

w̄
< αrpost (14)

αrpost <
1

4

{[

H̃′(w̄)−
H̃(w̄)

w̄

]

√

τhomeo

τHebb
+

√

τHebb

τhomeo

}2

(15)

The term H̃′(w̄)−H̃(w̄)/w̄ corresponds to the sub/super-linearity
of the effective weight update H̃ at the equilibrium w̄, including
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the effects of the neuron model. For the simplest Hebbian rule
H(w̄, rpre, rpost) = rpre rpost, H̃(w̄) = r2pre w̄ is linear and

we always have H̃(w̄) − H̃(w̄)/w̄ = 0. This implies that the
first two conditions Equations (13) and (14) are always true,
while the third condition Equation (15) reduces to αrpost <

τHebb/4τhomeo. For the synaptic scaling mechanism, α should be
chosen sufficiently large in order to keep the output rate rpost
close to its target rtarget. It follows that the third condition may be
violated depending on the details of the parameters, in particular
when τHebb ≪ τhomeo. This corresponds to non-real eigenvalues,
synonymous with oscillatory dynamics in the weights.

As a second example related to the BCM rule and triplet-
STDP as will be detailed later, when H̃ is a quadratic polynomial
in w̄ with positive second-order coefficient, we have H̃′(w̄) −
H̃(w̄)/w̄ > 0 for large weights. According to Equation (9),
a large positive value for H̃′(w̄) implies strong competition as
desired. However, the condition for the negativity of the trace in
Equation (13) implies that τhomeo should not be much larger than
τHebb, as shown previously (Zenke et al., 2013). Then, assuming
Hebbian learning to be relatively fast, Equations (14) and (15)
define a limited range for the choice of α, out of which divergence
or oscillations may occur. As a conclusion, those stability and
competition conditions oppose each other and make the fine
tuning of the parameters necessary.

4. THE FAMILY OF STDP LEARNING RULES

4.1. Need for Regulation with Classical
STDP
As a first example of learning rules, we consider the family
of STDP rules to illustrate the interplay between Hebbian
learning and synaptic scaling. We show that they fall into
the mathematical framework developed in Section 3. To start,
without any additional homeostatic regulation based on θ , we
recall that the convergence of the weight depends on the fixed
points of 8 only. The original version of STDP simply describes
the effect for pairs of input-output spikes using the well-known
temporal window in Figure 1B, which determines the weight
update as a function of spike-time difference. All contributions
are then summed over time to obtain the total weight update.
The net effect denoted by H here can be decomposed into two
terms, for the neuronal firing rates and covariances, respectively
(Kempter et al., 1999; Gilson et al., 2009). In our framework based
on the Poisson neuron (see Section 3), this gives the following
differential equation for the mean weight w̄

˙̄w =
1

τHebb
H(w̄, rpre, rpost, cpre−post) (16)

=
1

τHebb
(Arprerpost + Bcpre−post)

=
1

τHebb
(Ar2pre + Bcpre)w̄

where the typical area under the curve A < 0 corresponds to
more LTD than LTP for the rate contribution, while B > 0
describes LTP due to the temporal interaction for correlated

inputs. The last line is obtained using Equation (3), where the
mean weight update can be expressed as a linear function of
the weight from a macroscopic point of view. We obtain a first-
order polynomial similar to that for classical Hebbian learning,
where the coefficient depends on the input correlation. Two
behaviors can occur for this system: for sufficiently strong input
correlations cpre, the factor for w̄ becomes positive and the
fixed point unstable, so positive weights are potentiated in a
Hebbian fashion and diverge; otherwise weights are depressed
and converge to the fixed point w̄ = 0. For a pool of synapses,
competition is ensured provided ∂H

∂w = (Ar2pre+Bcpre)/τHebb > 0,
which occurs for sufficiently strong input correlation here. In that
case, the diverging learning dynamics can result in a bimodal
distribution when a positive upper bound is set (Kempter et al.,
1999; Song and Abbott, 2001).

To change the fixed-point structure and enforce stability, one
can add a penalty term on the weight update based on the current
value of the weight (Oja, 1982). A usual example found in the
literature uses a polynomial in w̄, which leads to the following
expression for 8.

˙̄w =
1

τHebb
(Ar2pre + Bcpre)w̄− αw̄n (17)

The key point here is that ẇ is a first-order polynomial in w
for classical STDP, so n ≥ 2 stabilizes the system (Tetzlaff
et al., 2011). Synaptic scaling maintains the synaptic competition
while preventing weights from taking too high values, at the
cost of not being able to control the post-synaptic firing rate,
and without having any relationship to the real homeostatic
timescale. Although that previous work studied in depth the
interaction of synaptic scaling with more complex Hebbian
learning rule, the temporal dynamics when the two processes are
not acting on the same timescale is still poorly understood.

4.2. Synaptic Scaling Mechanism Targeting
a Fixed Firing Rate Requires Fine Tuning
In order to target a fixed firing rate, weight normalization as
previously defined is not sufficient. One must add a constraint
enforcing the post-synaptic neuron to scale all its input weights
such that, on average, a desired firing rate is maintained.
Following previous studies (van Rossum et al., 2000; Yger and
Harris, 2013; Zenke et al., 2013), it can be implemented by the
term Ŵ as in Equation (10), which depends on the difference
between a running estimate of the post-synaptic firing rate and
a desired firing rate rtarget. The expression for 8 with the STDP
contribution H and 9 then read

8(w̄, rpost, cpre−post, θ) = H(w̄, rpost, cpre−post)

+ αw̄(rtarget − θ) (18)

9(rpost) = rpost

The constant α defines the strength of the homeostasis on the
mean weight w̄, while τhomeo determines the timescale of the
smoothing of the rpost estimate tracked by θ .

The analysis in Section 3 states that τHebb, τhomeo and α must
be chosen so as to avoid instability and trivial solutions where all

Frontiers in Computational Neuroscience | www.frontiersin.org November 2015 | Volume 9 | Article 138 11|

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive


Yger and Gilson Models of metaplasticity

weights become silent. As it has been shown for other learning
rules (Cooper et al., 2004; Zenke et al., 2013), the running
estimate θ of the post-synaptic firing rate have to be rather fast,
otherwise the system is subject to strong oscillations. To illustrate
the problem, suppose we have a neurons targeting rtarget = 1 Hz,
with rpre = 0.9 Hz, cpre = 0.1, A = −0.1 and B = 1 (see
Section 4.1). The value of α is varied between 0.01, 0.1, and 1.
As we can see on Figure 2A, the convergence to the fixed point
can be pretty fast if τHebb = τhomeo, and if α is strong enough
to counterbalanced the Hebbian force that depresses synapses
here; see panels with α ≥ 0.1, insets show the trajectory in the
phase space (w̄, θ) as function of time. However, we can see on
Figure 2B that when τhomeo ≫ τHebb, as it is found in vivo (Keck
et al., 2013), strong oscillations emerge for strong value α = 1.
There is a fine tuning required between those two competing
forces. To circumvent the problem, the use of a Proportional-
Integral (PI) controller was incorporated in some study (van
Rossum et al., 2000; Yger and Harris, 2013), but even when it
prevents some oscillations from occuring, it does not abolish
the requirement that τHebb and τhomeo should not be order of
magnitudes apart.

4.3. Similar Stability Issues Occur for
Weight-dependent and Triplet STDP
The analysis and the observations performed previously can be
extended to several STDP-like learning rules. For example, a
simple version of the weight-dependent STPD learning rule (van
Rossum et al., 2000; Morrison et al., 2007; Gilson and Fukai,
2011) with linearly increasing LTD as a function of the weight
and constant LTP gives

H(w̄, rpost, cpre−post) = (A+ + A−w̄)rprerpost

+Bcpre−post (19)

= (A+r
2
pre + Bcpre)w̄+ A−r

2
prew̄

2

Again Equation (3) was used to obtain the second-order
polynomial in w̄. In Figure 3B that depicts the convergence of
the system in a similar fashion to Figure 2 with typical values for
the parameters (A+ = 0.1, A− = −0.3, B = 1, cpre = 0.1), the
convergence is achieved if homeostatic coupling is weak (α =

0.1). However, large oscillations arise for strong coupling (α =

1) and when the ratio between the homeostatic and Hebbian
timescales is large.

Likewise, the triplet STDP model (Pfister and Gerstner, 2006)
corresponds to

H(w̄, rpost, cpre−post) = (A+rpost + A−)rprerpost

+Bcpre−post (20)

= (A−r
2
pre + Bcpre)w̄+ A+r

3
prew̄

2

where A+ > 0, A− < 0 for the LTP and LTD rate contributions,
respectively, as well as B > 0 for the correlation contribution.
Again, for standard values of the parameters A+ = 0.05,
A− = −0.2, B = 1, cpre = 0.1 (Pfister and Gerstner, 2006), we
see in Figure 3B the same qualitative behavior as with weight-
dependent STDP.

The similarity can be explained by the fact that both Equations
(19) and (20) are quadratic polynomials in w̄. The difference
between the two rules lies in the signs of the coefficients.
Nevertheless, we have for the scaling term Ŵ(w̄, θ) = αw̄(rtarget−
θ) ≃ αrtargetw̄− αrprew̄

2, where we have used θ ≃ rpost = rprew̄.
This means that, when Ŵ overpowers the STDP contribution
to enforce stability with a large α, the coefficient for w̄ in
8 is negative in both cases. It ensures stability, but generates
similar oscillations for large τhomeo. The intuitive explanation
is that large values for τhomeo cause the gradient to have
a strong horizontal component in the phase space (w̄, θ) of
Figure 3, which often implies oscillations around the fixed
point.

4.4. Trade-off between Stability and
Competition
While we analyzed the dynamical behavior of the learning
rules for the mean weight to assess their implications for
stability, we now examine the situation for two inputs in order
to study how competition can be affected by this interaction
between homeostatic and Hebbian learning. This yields an extra
differential equation as explained in 3.2. Figure 4 illustrates
the evolution of the weights w1 and w2, as well as θ , for
the three learning rules previously mentioned combined with
synaptic scaling, and show how competition can take place.
We consider two input pathways with the same input rates
r1/2, but different levels of correlation: c

1
pre = 0.1 and c2pre =

0.05. The homeostatic mechanism targets the fixed firing rate
rtarget = 2 Hz. As shown in Figures 4A,C, strong competition
is observed for both classical STDP and triplet STDP, leading
to w2 = 0 for the pathway with weaker correlation c2 < c1
(Kempter et al., 1999; van Rossum et al., 2000; Song and Abbott,
2001). For weight-dependent STDP, the competition is much
weaker in Figure 4B. Nevertheless, in all cases, increasing the
ratio τhomeo/τHebb introduces oscillations of the weights during
competition, exactly as previously observed for the mean weight
w̄. We also see that an increased strength for the homeostatic
force (α = 0.5 in the bottom row of Figure 4) does not
solve the stability issue when τhomeo ≫ τHebb, but causes larger
fluctuations.

5. METAPLASTIC LEARNING RULES

The previous section showed the common trend for STDP
learning rules paired with synaptic scaling targeting a desired
firing rate: a large time constant to estimate the post-
synaptic firing rate gives rise to instability or potentially
large oscillations in the weights. Now we examine a second
category of stabilizing mechanisms, where the homeostatic
mechanism is implemented directly in the metaplastic learning
rule; see Yeung et al. (2004) for an example for calcium-
based regulation. Metaplasticity is often used to enforce a
homeostatic behavior on the neural system and we will stick
to this function here. Without loss of generality, we ignore
correlations in the learning rules and focus on rate-based
rules.
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5.1. The Bienenstock-Cooper-Munro (BCM)
Learning Rule
In order to extend rules based on correlations of rates (Oja,
1982) and approach the problem of synaptic competition
via weight normalization, Bienenstock et al. (1982) designed
a model of synaptic plasticity that was able to reproduce
phenomenologically several observations made in vivo. Their so-
called BCM rule is a physical theory of learning in the visual
cortex; see Cooper and Bear (2012) for a review. The mechanism

consists in an efficient way to balance and regulate the amount of
plasticity according to past activity by means of a heterosynaptic
process.

Practically, a sliding threshold determines the boundary
between LTP above and LTD below, and evolves according to the
square of the postsynaptic firing rate (Bienenstock et al., 1982). In
our formalism, this can be taken care of by a temporal tracking
of r2post using θ as the threshold variable with τhomeo ≫ τHebb,

such that θ ≃ 〈r2post〉 with the angular brackets indicating the

FIGURE 2 | Interplay between Hebbian and homeostatic timescales for pairwise STDP. (A) Evolution of the weight w and the running estimate θ of the

post-synaptic firing rate as function of time, for τHebb = τhomeo = 10 min and various gain α for the heterosynaptic scaling. Insets shows the trajectory in the phase

space (w, θ ). (B) Same as (A) with a slower homeostatic scaling: τhomeo = 10 τHebb = 100 min.

FIGURE 3 | Interplay between Hebbian and homeostatic timescales for different learning rules and homeostatic forces. (A) Pairwise STDP with weight

dependent modification in Equation (19). Left column: convergence in the phase space (w, θ ) for a fast homeostatic force (τHebb = τhomeo = 10 min, upper row), or

for a slow homeostatic force (τhomeo = 10τHebb, lower row). Right column is the same, but with a stronger drive α = 1 for the homeostatic force. (B) Same as (A) for

the triplet learning rule (Pfister and Gerstner, 2006), see Equation (20).
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average over the randomness. The expression for 8 is a second-
order polynomial in rpost (Bienenstock et al., 1982), which finally
gives

8(w̄, rpost, θ) = rprerpost(rpost − θ)

9(rpost) = r2post

Here 8 has a similar form to that for the triplet rule in Equation
(20), but the boundary between potentiation and depression is
now given by θ .

It is known that the BCM formalism can be subject to
strong oscillations, when the timescales for the two differential
equations are too far apart (Cooper et al., 2004; Toyoizumi
et al., 2014). In Figure 5A, even when τHebb = τhomeo, weight
oscillations are present. Moreover, for a slightly larger ratio
τHebb/τhomeo, the oscillations can destroy the convergence of the
system when the weights hit the lower bound 0, as illustrated in
Figure 5B.

5.2. Modulation of STDP Depending on the
Post-synaptic Firing Rate
In order to stabilize the triplet STDP rule (Pfister and Gerstner,
2006) in recurrent networks, further studies (Clopath et al., 2010;

Zenke et al., 2013) scaled the amount of LTD in terms of a
smoothed average of the firing of the post-synaptic neuron. This
modulation of LTD actually brings the triplet STDP rule closer
to the BCM rule, by implementing a regulation of the threshold
between effective LTP and LTD. In our formalism, the rule used
by Zenke et al. (2013) can be implemented for rates as

8(w̄, rpost, θ) = rprerpost
(

A+rpost + A−θ2/rtarget)

9(rpost) = rpost

Note that the difference here compared to BCM is that θ

tracks rpost and not r2post, and the limit between depression and

potentiation is related to θ2. As in Equation (20), we haveA+ > 0
and A− < 0.

Figure 6 compares the evolution for this metaplastic triplet
STDP rule with classical STDP combined with synaptic scaling:
we can clearly see that the resulting dynamics is strongly affected
by the ratio between Hebbian and homeostatic time constants
in both cases. The trajectories of w and θ in the same phase
space as before show several types of instability, from weight
(and rate) explosion for slow tracking with large τhomeo (Zenke
et al., 2013) to oscillations when τhomeo = τHebb. As before, slow
tracking yields a gradient with a strong horizontal component,

FIGURE 4 | Competition for several plasticity rules with different timescales for Hebbian and homeostatic forces. (A) Pairwise STDP with

weight-independent update. Convergence of two synaptic weights w1/2 with different correlation inputs and the estimate of the post-synaptic firing rate, θ as function

of time, for a fast homeostatic force (τHebb = τhomeo = 10 min, top row), for a slow homeostatic force (τhomeo = 10τHebb, middle row), or for a slow and stronger

homeostatic force (α = 0.5). (B) Same as A for the weight-dependent STDP learning rule (van Rossum et al., 2000). (C) Same as (A) for triplet learning rule (Pfister and

Gerstner, 2006).
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hence oscillations. The limit cycle in the top panel of Figure 6B
only happens for some limited range of the parameters, but
this illustrates the severe instability issues even for the simple
dynamical system considered here.

5.3. Non-linearly Gated STDP Rules
Another direction of research (Senn et al., 2001; El Boustani
et al., 2012) introduced non-linearity in the effect of the Hebbian
term, by turning it on and off depending on the past pre-
and post-synaptic activity of the neuron. Taking a simplified
version with a similar mechanism for both LTP and LTD, we
consider

8(w̄, rpost, θ) = ‖rprerpost

− f+(θ)‖+ − ‖rprerpost − f−(θ)‖+ (21)

9(rpost) = rprerpost

where ‖x‖+ is a non linear function equal to x if x >

0 and 0 otherwise. Now 9 is such that θ embodies a
smoothed average of the pre-post correlations with the time
constant τhomeo. When instantaneous correlations are higher
than thresholds f±(θ), for potentiation or depression respectively,
plasticity effectively occurs. In the general case, f± could be
any non-linear functions, and do not even need to rely on the
same timescales (El Boustani et al., 2012). The simulations in
Figure 6C correspond the simple case where f±(θ) = a± =

±0.4 are constant. The problem with those non-linearities is
that it becomes hard to perform an mathematical analysis of
the equilibrium. As with other rules, we observe the same effect

of a large τhomeo on the gradient and the same qualitative
conclusion that slow tracking implies the slow convergence of the
system.

5.4. Toward More Complex Models
The stability problem arises because, at the equilibrium state, the
Hebbian and homeostatic mechanisms compete to balance each
other, but they do not act on the same timescale. As pointed out
recently (Toyoizumi et al., 2014), a solution can be found when
considering that both do not interact linearly, i.e., summing their
effects at the synapses, but rather work in amultiplicative manner
to determine the synaptic weight. To be more precise, the model
developed by Toyoizumi et al. (2014) can be integrated within our
framework modulo a slightly more generic formulation for the
equation in θ . The model states that w = ρH, where those two
quantities are governed by the following system of differential
equations.

ρ̇ =
1

τhebb

[

(ρmax − ρ)‖rprerpost − A+‖+

− (ρ − ρmin)‖A− − rprerpost‖+
]

Ḣ =
1

τhomeo
H
(

1− rpost
)

Even if the lower and upper weight bounds ρmin and ρmax depend
on H, the model can be written in a generalized version of
Equation (2), using ẇ = Hρ̇ + Ḣρ with simply θ = H.
The final expression resembles non-linearly gated plasticity with
an additional synaptic scaling, but involves further refinements
compared to Equation (21).

FIGURE 5 | Interplay between Hebbian and homeostatic timescales for the BCM learning rule. (A) Upper row: evolution of the weight and the running

estimate 9 of the post-synaptic firing rate as function of time, for τHebb = τhomeo = 10 min. Lower row: same but in the phase space (w, θ ). (B) Same as (A) with

τhomeo = 2τHebb.
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6. DISCUSSION AND PERSPECTIVES

In this paper, we have reviewed various homeostatic mechanisms
that are used in recent state-of-the-art plasticity models to
regulate Hebbian-type learning. We have focused on two main
categories of models: (1) homeostatic synaptic scaling as an
independent process that competes with the Hebbian force via an
additive term, and (2) metaplastic rules, for which the Hebbian
contribution is modulated in an homeostatic fashion. In both
cases, the regulation is performed via an estimate of the neural
activity (often the post-synaptic firing rate rpost) smoothed with
a timescale τhomeo, whereas the Hebbian update corresponds to
another timescale τHebb. We have shown for most models that,
when τhomeo ≫ τHebb, undesired behaviors such as oscillations
in the synaptic weights occur, in particular in the case where
the homeostatic force is strong. Moreover, competition and
stability correspond to conflicting constraints on the parameters,
which requires fine-tuning. There is thus a trade-off between the
strength of the homeostatic regulation that must compete with
the Hebbian drive without perturbing the convergence to a fixed
point for the weights. Stability in the weights at a macroscopic
level is necessary to ensure stability of the neural functions; note
that we have not considered noise in the dynamics of individual
weights here, but rather their mean for given pathways.

This constraint on the timescales τHebb and τhomeo is
problematic in regards of available experimental data, as many
of them point to slow homeostatic processes (Turrigiano et al.,
1998) in comparison with Hebbian processes for which typically
τHebb ≃ 10 min. Other models not considered here exhibit
similar behavior, for example a homeostatic regulation obtained
via intrinsic plasticity (see Zheng et al., 2013) for an example
based on spike-threshold adaptation. As a conclusion, the control
of the firing rate of the post-synaptic neuron should be taken
care of by a mechanisms at a fast timescale, say few minutes
at the maximum. Conversely, we point out that homeostatic
mechanisms operating on a much slower timescale should be

related to other functions than maintaining the neural activity in
a given range.

This claim is supported by several experimental and
theoretical findings. Spiking activity of neurons in vivo is known
to be sparse and highly irregular. Most V1 neurons display
Poissonnian or supra Poisson spike-count variability in response
to low dimensional stimuli such as bars and gratings (Dean,
1981). Even in vitro, they fire as Poisson sources, irregularly, with
a coefficient of variation for their inter-spike intervals close to 1
(Nawrot et al., 2008). The origin of this irregular activity observed
in the sub-threshold voltage and/or in spiking activity is linked
to synaptic activity (Paré et al., 1998; Destexhe and Paré, 1999),
and because it has been observed experimentally that excitatory
and inhibitory conductances are closely balanced (Froemke et al.,
2007; Okun and Lampl, 2008), such a fine balance has to be
maintained by the system (Renart et al., 2010). Therefore, there is
a crucial need for compensatory mechanisms that may interfere
or act in concert with Hebbian learning to not only keep the
neuron’s firing rate within a certain range, but also guarantee this
balance (Vogels et al., 2011), or the irregularity of the spiking
discharge (Pozzorini et al., 2013). Weight normalization has also
been studied in depth in the context of emergence of ocular
dominance in order to adjust the competition between synaptic
pathways, switching from winner-take-all to winner-share-all
behaviors for example (Miller, 1996).

We should discuss several limitations of our study related
to the proposed mathematical framework. We have focused on
very simple and canonical models of synaptic plasticity, ignoring
the fine morphological structure of the neurons. It was shown
that the shape of the temporal learning window represented in
Figure 1B depends on the synaptic position on the dendritic
tree (Letzkus et al., 2006; Kampa et al., 2007). More importantly,
homeostatic regulation or plasticity thresholds exhibit variability
and affect predominantly neighboring synapses in vivo (Harvey
and Svoboda, 2007). Therefore, we only address the temporal
crosstalk between Hebbian and homeostatic plasticity at the

FIGURE 6 | Convergence of metaplastic learning rules. (A) Convergence in the phase space (w, θ ) of a classical STDP plasticity, either for a fast homeostatic

time constant (τhomeo = τHebb, upper row) or for a slow one (τhomeo = 10 τHebb, lower row). (B) Same as (A) for a metaplastic learning rule combining the triplet

learning rule and scaling of the LTD term (Zenke et al., 2013). (C) Same as (A) for a non-linear metaplastic learning rule including thresholds (El Boustani et al., 2012).
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FIGURE 7 | Memory retention problem and timescales. (A) Illustration of metaplastic thresholds stabilizing the learning. Synapses are stable at in the ongoing

regime, then a “plasticity trace” builds up during presentation of new sensory inputs, but this will eventually be stopped by a sliding activation threshold, allowing the

synapse to adapt to those novel stimuli. (B) Illustration of the multiple timescales involved in plasticity, from the membrane time constant τm to the homeostatic one

τhomeo, ranging from ms to days.

largest scale and the question of defining the spatial extent
for heterosynaptic mechanisms remains open. Nevertheless, we
expect our conclusions to hold locally for groups of synapses that
can be isolated and experience homogeneous processes.

In the general dynamical system in Equations (2) considered
here, the timescales are explicitly defined via τHebb and τhomeo. In
more complex dynamical systems involving noise and attractors,
implicit time constants can emerge in a population of synapses
(Tetzlaff et al., 2013). Usually, they are slow time constants
though, and cannot be used for fast control of the rate, but
rather to implement long-lastingmemory patterns in the synaptic
weights. Another limitation of our conclusions is that we only
consider a feedforward model. To extend those to networks
with plastic recurrent connections, the mathematical formalism
should be modified to account for the case of synapses with the
same pre- and post-synaptic firing rates rpost = rpre = rrec, and
likewise the correlations cpre−post = crec. Those quantities follow
the consistency equations.

rrec =
rin

1− w
and crec =

cin

(1− w)2

A similar analysis can be done to predict the behavior of
learning rules and compare them. The difference compared to
the feedforward case is that rates and correlations contributions
to the weight updates are not of the same order. This
implies that oscillations or other instability effects induced by
spike synchrony are more likely to be amplified in recurrent
networks than those due to firing rates. It remains that
stability can be studied similarly via the Jacobian matrix. Note
also that noise in firing and learning dynamics, as well as
heterogeneity in neuron and network parameters, may help to
prevent “pathological” weight trajectories such as limit cycles,
as they smooth the dynamical landscape and degenerate too
stereotypical situations.

Beyond those technical details, the puzzling question with
plasticity is how synapses can store relevant information while
neurons are constantly bombarded by spiking activity in vivo.
This ongoing input stimulation is quite often considered to be
noise in models, which impairs stability of dynamical systems
over long time-scales. Although this issue has been addressed
theoretically for various models (Clopath et al., 2008; Billings
and van Rossum, 2009; Gilson and Fukai, 2011; Tetzlaff et al.,
2013; Zenke et al., 2013), it suggests that additional timescales
are necessary to properly combine short-term and long-term
properties such that the system learns fast and slowly forgets.
Figure 7A recapitulates several timescales involved in learning
and memory. In essence, for the neural system to retain
memories, synaptic plasticity should only be turned on by
metaplasticity when “new” incoming stimuli impinge neurons.
Once this novelty has been learnt, metaplasticity should stop
synaptic changes. Then a selection process should trim all newly
formed memories to keep only appropriate ones (Frey and
Morris, 1997). This is illustrated in Figure 7B, where several
interleaved timescales interact to bridge all mechanisms, from
the effective membrane time constant τm (order of ms) that
interacts with STDP to the homeostatic time constants τhomeo,
which can range from hours to days (Turrigiano et al., 1998;
Turrigiano and Nelson, 2004). Calcium signals can act as activity
buffers at a timescale τCa2+ (Artola et al., 1990; Shouval et al.,
2002; Yeung et al., 2004; Graupner and Brunel, 2012), whereas
reward signals or neuromodulation would affect plasticity at a
larger timescale τreward (Izhikevich, 2007), comparable to the one
observed for Hebbian changes (τHebbian). There is also evidence
for a control of intrinsic excitability, synaptic scaling at the post-
synaptic density, adaptation of the pre-synaptic neurotransmitter
release (Davis, 2006). As most models incorporate only a few of
those at a time, we stress the need for a better understanding of
the complex interactions that may arise when bringing together
those experimentally observed mechanisms.
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Homosynaptic Hebbian-type plasticity provides a cellular mechanism of learning and

refinement of connectivity during development in a variety of biological systems.

In this review we argue that a complimentary form of plasticity—heterosynaptic

plasticity—represents a necessary cellular component for homeostatic regulation of

synaptic weights and neuronal activity. The required properties of a homeostatic

mechanism which acutely constrains the runaway dynamics imposed by Hebbian

associative plasticity have been well-articulated by theoretical and modeling studies.

Such mechanism(s) should robustly support the stability of operation of neuronal

networks and synaptic competition, include changes at non-active synapses, and

operate on a similar time scale to Hebbian-type plasticity. The experimentally observed

properties of heterosynaptic plasticity have introduced it as a strong candidate to fulfill

this homeostatic role. Subsequent modeling studies which incorporate heterosynaptic

plasticity into model neurons with Hebbian synapses (utilizing an STDP learning rule) have

confirmed its ability to robustly provide stability and competition. In contrast, properties of

homeostatic synaptic scaling, which is triggered by extreme and long lasting (hours and

days) changes of neuronal activity, do not fit two crucial requirements for a hypothetical

homeostatic mechanism needed to provide stability of operation in the face of on-going

synaptic changes driven by Hebbian-type learning rules. Both the trigger and the time

scale of homeostatic synaptic scaling are fundamentally different from those of the

Hebbian-type plasticity. We conclude that heterosynaptic plasticity, which is triggered

by the same episodes of strong postsynaptic activity and operates on the same time

scale as Hebbian-type associative plasticity, is ideally suited to serve a homeostatic role

during on-going synaptic plasticity.

Keywords: synaptic plasticity, homosynaptic plasticity, STDP, Hebbian plasticity, homeostasis, heterosynaptic

plasticity, runaway dynamics

Introduction: Three Forms of Synaptic Plasticity

Normal operation of the brain requires the maintenance of balances across various neuronal and
synaptic features, and keeping key factors within their operating ranges. This is achieved by a
variety of homeostatic mechanisms operating at multiple nested levels, such as maintenance of
excitation/inhibition balance and total activity at the network level, or homeostasis of synaptic
weights at the single-cell level (van Vreeswijk and Sompolinsky, 1996; Haydon, 2001; Burrone
and Murthy, 2003; Turrigiano, 2011; Davis, 2013). Synaptic weights are subject to changes caused
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by a variety of mechanismsmediating multiple forms of plasticity
(Bliss and Collingridge, 1993; Abbott and Nelson, 2000; Malenka
and Bear, 2004; Sjostrom et al., 2007; Chistiakova and Volgushev,
2009; Feldman, 2009). In the present review we will consider
the relation between different forms of plasticity and synaptic
homeostasis. We ask: which forms of plasticity bring synaptic
weights out of balance and which formsmay serve to restore their
balance?

Themultitude of forms of synaptic plasticity can be segregated
into three broad types, distinguished by the differential activity
patterns required for their induction, distinct functions served
in learning systems, and diverse computational roles. The first,
homosynaptic plasticity, requires presynaptic activation of the
synapse for the induction. By definition, it occurs only at synapses
that were directly involved in activation of a cell during the
induction, for example during afferent tetanization or pairing
procedure (Figure 1A). This form of plasticity is also called input
specific, and, if the induction follows Hebbian-type learning
rules, associative (Bliss and Collingridge, 1993). For induction of
associative plasticity correlated activity of pre and postsynaptic
neurons is crucial. Associative plasticity underlies a multitude
of phenomena in the nervous system, ranging from refinement
of connectivity during development (“neurons that fire together
wire together”) to extraction of causal relations between events
in the environment in Pavlovian conditioning and other types
of associative learning as well as motor learning. The second
form, heterosynaptic plasticity, can be induced at synapses that
were not active during the induction of homosynaptic plasticity.
Thus, it is not limited to active synapses, but may also change
non-active synapses after episodes of strong postsynaptic activity.
As the majority of synapses onto a cell are not presynaptically
activated during a typical induction protocol, heterosynaptic
plasticity typically affects a larger population of synapses than
homosynaptic plasticity does. Heterosynaptic plasticity can be
induced at unstimulated synapses by typical induction protocols,
such as afferent tetanization or a pairing procedure (Figure 1A),
but also by purely postsynaptic protocols such as intracellular
tetanization: bursts of spikes evoked by depolarizing pulses
(Figure 1B). Homosynaptic and heterosynaptic plasticity have
complementary computational properties, making both forms
necessary for normal operation of neural systems with plastic
synapses (Chistiakova and Volgushev, 2009; Chen et al., 2013;
Chistiakova et al., 2014).

The third form of plasticity considered in this review is
homeostatic synaptic scaling, which is induced by prolonged
(hours/days) and dramatic changes of activity, and leads to
compensatory scaling of synaptic weights (Turrigiano et al., 1998,
recently reviewed in Burrone and Murthy, 2003; Turrigiano
and Nelson, 2004; Rich and Wenner, 2007; Rabinowitch and
Segev, 2008; Watt and Desai, 2010; Turrigiano, 2012). Prolonged
silencing of neurons by tetrodotoxin (TTX) leads to up-scaling
of synaptic weights, while prolonged elevation of activity leads to
down-scaling of the synapses (Figure 1C). Homeostatic synaptic
scaling is triggered by deviation of firing rate from a target
level (Turrigiano et al., 1998; van Rossum et al., 2000) and
can be considered as a mechanism of firing rate homeostasis.
Computationally, homeostatic synaptic scaling may have the

effect of a “delayed” normalization if changes of postsynaptic
firing were due to changes at a subset of inputs, or scale all
synapses proportionally if postsynaptic firing rates were changed
because of uniform silencing (or uniform up-regulation of
activity) at all inputs. Because homeostatic synaptic scaling is
triggered by overall activity level, irrespective of which specific
synapses contributed to the activation of a neuron, but changes
the weights of all synapses of a cell proportionally, it may include
changes of both homosynaptic (those which were active) and
heterosynaptic (those which were not active) inputs.

In this review we will consider: (i) Why do learning systems
need forms of plasticity, additional to homosynaptic plastic
changes governed by associative, Hebbian-type learning rules?
(ii) What are the requirements for these additional forms of
plasticity, outlined in theoretical and modeling studies? (iii)
Which biological candidate mechanisms express properties that
fulfill these requirements?

Homosynaptic Plasticity: Why It Cannot
Work Alone

Synaptic plasticity induced according to Hebbian-type rules
mediates the formation and refinement of connectivity patterns
in the nervous system during development, and underlies various
types of associative learning throughout life. However, for at
least two reasons, associative synaptic plasticity governed by
Hebbian-type rules cannot be the only type of plasticity in a
learning system. First, Hebbian-type learning rules impose an
intrinsic positive feedback on synaptic weight changes, thus
making the system prone to runaway dynamics of synaptic
weights and activity. Second, they introduce only a weak degree
of competition between synapses. Competition is indispensable
for building sensory representations during development, and is
instrumental in learning that involves differentiation.

The propensity for runaway dynamics in a system with
Hebbian-type synapses originates from the positive feedback
on synaptic weight changes intrinsic to this type of plasticity
rule. Potentiation, by making synapses stronger, increases the
chance that these synapses will contribute to the firing of a
neuron, and will be potentiated further. Similarly, depression of
synapses decreases the chance that these synapses will contribute
to the firing of a neuron, and thus decreases their chances
for subsequent potentiation, but increases the probability that
they undergo further depression. Indeed, neuron models with
Hebbian-type rules for synaptic plasticity expresses runaway
dynamics of synaptic weights. In a computational model of a
single neuron with symmetrical windows for potentiation and
depression within STDP rules, and receiving inputs from neurons
with Poisson-distributed spikes intervals, synaptic weights get
potentiated to the maximal value (Figure 2). In the same
model but with STDP rules biased toward depression, synapses
tend to be depressed, with the weights of many of them
declining to zero (Figure 3). As a result, with an unchanged
level of presynaptic activity the runaway of synaptic weights
causes runaway dynamics of postsynaptic spiking. Runaway
potentiation of synaptic weights to maximal values leads to
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FIGURE 1 | Multiple forms of plasticity at cortical synapses. (A)

Homosynaptic and heterosynaptic plasticity. Left: In CA1 region of the

hippocampus, LTP at Schaffer collateral inputs (red) induced by afferent

tetanization is accompanied by heterosynaptic LTD at commissural inputs to

basal dendrites (Lynch et al., 1977). Right: Mexican-hat profile of plasticity in

hippocampus (White et al., 1990) and amygdala (Royer and Paré, 2003). (B)

Heterosynaptic plasticity can be induced by purely postsynaptic protocol,

intracellular tetanization—bursts of spikes evoked by depolarizing pulses

without presynaptic stimulation in hippocampus (Kuhnt et al., 1994) and

neocortex (Volgushev et al., 1994, 1997). Question marks denote that

individual synapses may undergo LTP or LTD or do not change after the

same induction. (C) Homeostatic synaptic scaling: prolonged (hours/days)

changes of activity lead to compensatory up-scaling or down-scaling of

synaptic weights (Turrigiano et al., 1998).

overexcitability of neurons and excessive postsynaptic activity.
In the Figure 2 model, firing rate of the postsynaptic model
neuron increased from 1.8Hz during the first 10 s, to 6.3Hz
during the last 10 s of simulation. Runaway depression leads to a
decrease of postsynaptic activity, and eventually to the silencing
of neurons. In the example in Figure 3, the postsynaptic neuron
becomes essentially silent by the end of simulation despite a
three-fold increase of the firing rate of presynaptic neurons.
Both runaway potentiation and runaway depression scenarios
lead to the disturbance of input-output relations of neurons
(Chen et al., 2013), thus compromising computational abilities of
neuronal networks (Skorheim et al., 2014). Moreover, runaway
potentiation of synaptic weights and associated runaway activity
are energetically unsustainable and may lead to pathology. To
counteract runaway dynamics of synaptic weights and activity
imposed by Hebbian-type plasticity rules, additional plasticity
mechanisms are necessary. Such mechanisms would keep
synaptic weights and neuronal networks with plastic synapses
within their operational range, and thus maintain homeostasis
of synaptic weights and neuronal activity despite unbalancing
perturbations introduced by associative plasticity.

The idea of competition, which maintains that while
undergoing changes, synapses might compete for shared limited
resources such as available energy, molecules or plasticity factors,
is well-grounded from the biological perspective (e.g., Miller,
1996; Peters et al., 2004). Synaptic competition is absolutely
necessary for the development of sensory representations (Wiesel
and Hubel, 1963; Aitkin et al., 1970; Merzenich et al., 1975;
Thompson et al., 1983; Feldman, 2009), and is instrumental
in a broad class of learning tasks that involve discrimination
(Skorheim et al., 2014). However, Hebbian-type learning rules
introduce only a weak, if any, degree of competition (Miller,
1996), restricted to the synapses receiving distinct input patterns
(Zhang et al., 2011; see below for further discussion). Therefore,

to support intrinsic competition between synapses, a mechanism
for plastic changes outside of the Hebbian learning rule is
required.

To summarize, homosynaptic plasticity, while being a major
driving force for synaptic changes mediating associative learning,
imposes positive feedback on synaptic changes which creates
energetically and computationally unstable runaway dynamics. It
also does not provide the required degree of synaptic competition
known to be necessary for many types of learning. Modeling
studies show the need for additional mechanisms which could
constrain and balance Hebbian plasticity. Biological neuronal
systems do possess such mechanisms, as evidenced by stable
operation and diverse dynamics of synaptic changes over a broad
range of conditions. It has not been clear, however, which of the
multitude of proposed physiological mechanisms is/are able to
serve these roles.

Modeling Perspective

The Need for Homeostasis
The need for maintaining homeostasis of key variables of
neuronal operation, such as synaptic weights, the amount of
synaptic drive received by a neuron and neuronal activity, as
well as for strong synaptic competition in learning systems with
Hebbian-type rules has been appreciated since early theoretical
studies (von der Malsburg, 1973; Miller and MacKay, 1994;
Miller, 1996). To some extent, this can be achieved by careful
adjustment of STDP rules. With an appropriate negative bias
between the windows for potentiation and depression, STDP
can indeed lead to stabilization of the neurons’ mean firing
rate (Song et al., 2000; Kempter et al., 2001; Gütig et al., 2003;
Babadi and Abbott, 2010). For certain ranges of presynaptic firing
rates, fine-tuned STDP can also support synaptic competition, by
driving synaptic weights to the maximal value or to zero (e.g.,
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FIGURE 2 | Synaptic activity produced by weakly correlated inputs

leads to runaway dynamics of synaptic weights in a model with

symmetrical STDP mechanism. (A) A scheme of a model neuron and

STDP learning rule. The model neuron consisted of axosomatic and dendritic

compartments, receiving 100 synaptic inputs from 100 presynaptic neurons.

Each presynaptic neuron fired action potentials at ∼1Hz, with Poisson

distributed interspike intervals. In simulations shown in this figure, firing of

input neurons was mildly correlated (averaged cross-correlation

0.348+−0.05). The STDP learning rule had symmetrical potentiation and

depression windows (τ+ = τ
− = 20ms; a+ = a− = 10−3 mS/cm2 ). (B)

Membrane potential trace of the model neuron (top); changes of the weights

of 100 synapses (middle), color coded, with synapses sorted by their

synaptic weights at the beginning of experiment; and changes of the weights

of synapses #10 and #90 (bottom). In this model with symmetrical STDP

learning rule synaptic inputs expressed runaway dynamics, and all inputs

were potentiated to the maximum by the end of the simulation. (C)

Distributions of synaptic weights at the beginning (blue, at 20ms) and at the

end (red, at 100 s) of simulation experiment shown in (B). Note runaway

dynamics of synaptic weights leading to their saturation at the extreme value

(0.03 mS/cm2; red bar length is out of scale) and associated increase of the

firing rate of postsynaptic neuron from 1.8 to 6.3Hz. (Modified, with

permission from Chen et al., 2013).

Song et al., 2000; van Rossum et al., 2000; Gütig et al., 2003;
Morrison et al., 2008). In all of these scenarios, the steady state
distribution of synaptic weights depended on the fine-tuning of
model parameters, such as the firing rate, the overall balance
between excitatory and inhibitory inputs, and the fine details of
plasticity rules (e.g., temporal shift or temporal jitter of plasticity
windows, or weight-dependence of synaptic changes Song et al.,
2000; Gütig et al., 2003; Morrison et al., 2008; Babadi and Abbott,
2010).

A problem with this solution is that it works only for certain
combinations of internal features (STDP rules) and external
events, input activity pattern and correlations. For STDP rules, it
imposes strict requirements on the relative strength (amplitude
and duration) of potentiation and depression windows which
are compatible with the stable operation of a neuron (see
below, Figure 7A and related text). Experimental evidence,
however, has demonstrated an enormous heterogeneity in the

width and magnitude of STDP windows in different synapses,
cells, developmental stages, and conditions of neuromodulation
(Nishiyama et al., 2000; Sjöström et al., 2001; Zhou et al.,
2005; Haas et al., 2006; Feldman, 2009). Although depression-
biased STDP rules had been reported for some synapses, a
general requirement for a negative integral of STDP rules is not
compatible with the experimentally observed variety of learning
rules. Moreover, STDP rules adjusted to maintain stability in a
neuron subject to a certain pattern of external drive may still
lead to runaway dynamics when activity changes, for example if
the level of correlation of activity at a subset of the inputs were
increased (Gütig et al., 2003).

Positive feedback on synaptic changes can be counteracted by
weight-dependence of plastic changes—a mechanism suggested
theoretically (Oja, 1982) and confirmed experimentally (Bi and
Poo, 1998; van Rossum et al., 2000; Hardingham et al., 2007).
Weight dependence of plastic changes dictates that weaker
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FIGURE 3 | Synaptic activity produced by weakly correlated

inputs leads to runaway dynamics of synaptic weights in a

model with negatively biased STDP mechanism. (A) A scheme of

the model neuron and STDP learning rule. The STDP learning rule

with negative bias (τ+ = 5ms, a+ = 0. 5× 10−3 mS/cm2, τ
− =

40ms, a− = 1.5× 10−3 mS/cm2 ). (B) Membrane potential trace of

the model neuron (top) receiving input from presynaptic neurons firing

at an average rate of 1Hz during first 50 s of simulation, 2Hz during

50–100 s and 3Hz during 100–150 s, as indicated; changes of the

weights of 100 synapses (middle), color coded, with synapses sorted

by their synaptic weights at the beginning of experiment; and changes

of the weights of synapses #10, #50, and #90 (bottom). In this model

with negatively biased STDP learning rule synaptic inputs expressed

runaway dynamics toward the minimum value. (C) Distributions of

synaptic weights at the beginning (blue, at 20ms) and at the end

(red, at 150 s) of simulation experiment shown in (B). Note runaway

dynamics of synaptic weights leading to saturation at zero of about

40% of synapses, and associated dramatic decrease of postsynaptic

firing rate despite a 3-fold increase of presynaptic firing. (Modified, with

permission from Chen et al., 2013).

synapses can potentiate more, while stronger synapses express
less potentiation, and in the limit do not change or even
depress (Hardingham et al., 2007). Depending on the details
of implementation, weight dependence imposes bounds on
synaptic weights without preventing their saturation at extreme
values or grouping around the values over which an amplitude
increase turns into a decrease. Results of theoretical analyses and
computer simulations show that stability of the activity level of
model neurons can indeed be achieved by implementing weight-
dependence of plastic changes (van Rossum et al., 2000; Gütig
et al., 2003). Weight-dependence is often used in combination
with depression–biased STDP rules, which further improves the
stability of the system (Kempter et al., 2001; Gütig et al., 2003;
Morrison et al., 2008; Gilson and Fukai, 2011).

Normalization as Mechanism of Stability
A simple and robust method of stabilization of the synaptic
drive of neurons and of neuronal activity is normalization.

Normalization has been commonly used in modeling and
theoretical analyses of neurons and networks with plastic
synapses since early studies (von der Malsburg, 1973; Oja, 1982).
The concept of normalization is that following an induction
of plasticity in a subset of synapses on a cell, the weights of
all synapses on that cell are readjusted so that their sum (or
squared sum) remains constant. Normalization has typically
been implemented via multiplicative or subtractive methods.
In multiplicative normalization (von der Malsburg, 1973; Oja,
1982), each weight is multiplied by an amount necessary to
maintain the overall net weight (van Ooyen, 2001). In the
subtractive method, all synaptic weights are changed by a fixed
amount regardless of their weight: a decrease to compensate
for the effect of homosynaptic potentiation or an increase to
compensate for the effect of homosynaptic depression (Miller
and MacKay, 1994). Normalization, either multiplicative or
subtractive, robustly prevents runaway dynamics of activity,
because it maintains synaptic drive of a cell at a certain level.
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It does not, however, prevent runaway dynamics of individual
synaptic weights. Indeed training of models with normalization
typically leads to a bimodal distribution of synaptic weights, with
the weights of “winner” synapses bunched around the maximal
value and weights of other synapses gathered around zero (e.g.,
Song et al., 2000; van Rossum et al., 2000; Gütig et al., 2003;
Morrison et al., 2008).

Both methods of normalization introduce synaptic
competition (see below). The use of normalization for achieving
both stability of the activity level and synaptic competition has
been further elaborated in later studies (e.g., Kempter et al., 2001;
Elliott and Shadbolt, 2002; Wu and Yamaguchi, 2006; Finelli
et al., 2008).

Note that because normalization affects all synapses of the
neuron irrespective of their recent activity, it postulates the
existence of heterosynaptic plasticity—changes of synapses which
were not activated during plasticity induction.

Homeostatic Mechanism: The Trigger and the
Timescale
In most modeling studies homeostasis of total synaptic weight
and activity is achieved by normalization, implemented directly
into the learning rules which update synaptic weights in each
iteration. This introduces to the models, as an automatic
consequence of their design, two important features: first, the
trigger for plasticity also inevitably triggers the normalization,
and second, the normalization operates on the same time scale
as the plasticity rule. These two features may represent additional
characteristics required from a homeostatic mechanism in
systems with Hebbian-type learning rules.

The trigger for the homeostatic mechanism which protects
synaptic weights and neuronal activity from runaway in the
face of Hebbian plasticity is not unequivocally identified. The
operation of neurons and neuronal networks is regulated by
a multitude of homeostatic mechanisms operating at different
levels, with a number of parameters that are tracked and a
number of signals that could trigger homeostatic mechanisms.
At the single-neuron level, biologically plausible candidates that
regulate plasticity and constrain total synaptic weights could
range from changes of the level of activity-dependent calcium
influx (e.g., Yeung et al., 2004), to competition for limited
available energy, intracellular resources or neurotrophic factors
(e.g., Frey and Morris, 1997, 1998; Elliott and Shadbolt, 2002;
Fonseca et al., 2004). These processes are initiated by the same
signals which trigger synaptic plasticity (e.g., rise of intracellular
calcium), and therefore by design accompany synaptic plasticity
and operate on a similar time scale. At the network level, changes
of the firing rate of a neuron or a neuronal population can
be used as a trigger for homeostatic synaptic scaling (e.g., van
Rossum et al., 2000; Zenke et al., 2013). These possibilities are
not mutually exclusive, and some are inter-related, e.g., changes
of firing rate inevitably lead to changes of calcium influx in
the dendrites via voltage-gated calcium channels activated by
backpropagating spikes (Spruston et al., 1995; Golding et al.,
2002;Waters et al., 2003; Sjöström andHäusser, 2006). Because of
their relation to global variables such as concentration of calcium
in neurons or firing rate of neuronal populations, mechanisms of
homeostatic regulation of synaptic weights might be embedded

into a multi-level system of neuronal homeostasis and thus could
be triggered by signals from several different levels.

The time scale on which mechanism(s) of synaptic
homeostasis should operate is better understood. Results
from the studies in which normalization was implemented
as a separate mechanism with an individual time constant
converge at the conclusion that to effectively counteract runaway
dynamics imposed by associative plasticity this time constant
should be short. In one of the first models which implemented
homeostatic scaling of synaptic weights regulated by changes
of the postsynaptic firing rate, a relatively short time constant
of 100 s was used (van Rossum et al., 2000). This time scale is
comparable to the time scale of synaptic changes induced by
STDP or other Hebbian-type rules. Although in the model of
van Rossum et al. (2000) the homeostatic scaling was primarily
used to introduce synaptic competition, the same mechanism
by design stabilizes the activity level. In a theoretical analysis of
one-trial sequence learning of place-fields in the hippocampus,
Wu and Yamaguchi (2006) concluded that for learning processes
that occur within minutes, the physiological mechanism that
constrains synaptic weights must also operate rapidly. The
relation between the timescale of a homeostatic mechanism and
its ability to maintain the stability of a system with Hebbian-type
plastic synapses has been directly addressed in a recent study by
Zenke et al. (2013). The authors found that to achieve robust
stability of the system, Hebbian-type plastic synapses must be
complemented by a homeostatic mechanism operating on a
time scale of seconds to minutes, which is comparable to the
time scale of plasticity itself (Zenke et al., 2013). This conclusion
is compatible with a wealth of evidence from computational
studies. In fact, to the best of our knowledge, in all computer
models which used normalization or mechanisms inspired by
homeostatic synaptic scaling for the purpose of preventing
runaway dynamics and/or introducing synaptic competition,
these mechanisms were implemented on a fast time scale,
the same or comparable to the time scale of the Hebbian
plasticity.

The Need for Competition
Theoretical analyses have demonstrated that the establishment
and refinement of sensory representations during development
(Wiesel and Hubel, 1963; Aitkin et al., 1970; Merzenich et al.,
1975; Thompson et al., 1983; Feldman, 2009) requires strong
competition between projecting fibers. An increase of the weights
of synapses formed by some fibers takes place at the expense
of synapses formed by other fibers, which must decrease their
weights (von der Malsburg, 1973; Miller and MacKay, 1994;
van Ooyen, 2001). In the mature brain, synaptic competition
is instrumental, for example, in learning tasks that involve
discrimination (Skorheim et al., 2014). Competition between
synapses, for example for limited available resources, could also
be one of the natural ways in which the magnitude of possible
weight change is restricted, thus preventing excessive increases of
synaptic strengths. Early theoretical studies had already suggested
that competition may involve a broad range of physiologically-
restricted resources, such as receptor molecules, surface area,
energy resources or plasticity factors (von der Malsburg, 1973;
Oja, 1982).
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Homosynaptic plasticity can change synaptic weights in
both directions, and thus can introduce a certain degree of
competition. However, this competition is restricted to synapses
which are subject to specific patterns of presynaptic activation,
and is determined by presynaptic activity patterns which may
be independent of each other. For example, inputs expressing
high frequency activity will be potentiated, and those consistently
active at low frequencies will be depressed. In the framework
of STDP, synapses from presynaptic neurons that are repeatedly
active shortly before the postsynaptic spikes and thus fall into
potentiation window will be strengthened, while those repeatedly
active shortly after postsynaptic spikes, during the depression
window, will be weakened. Such scenarios, though possible in
theory, impose strict requirements on the patterns of input
activity and their relationship to the details of plasticity rules for
potentiation and depression. Moreover, in both cases, synaptic
changes are restricted to active synapses. Because bidirectional
changes rely on specific patterns of presynaptic activity, this
mechanism represents competition between external activation
patterns, but has no relation to biologically-plausible forms of
cell-intrinsic competition, such as competition between synapses
of the same cell for limited resources (e.g., Frey andMorris, 1997,
1998; Elliott and Shadbolt, 2002; Fonseca et al., 2004). This latter
point is important because models in which competition results
from implementing an underlying physiological mechanism
have stronger explanatory and predictive power than those
with competition imposed as a mathematical convenience (van
Ooyen, 2001; Elliott and Shadbolt, 2002). Therefore, ideally,
competition should be a consequence of the learning rule and not
require explicit additional rules (Gerstner and Kistler, 2002).

Normalization introduces competition that is not restricted
to activated synapses, because any change of synaptic weights
induced by associative plasticity at a group of active synapses is
accompanied by an opposite-direction change of the weights of
all other synapses. Multiplicative and subtractive normalization
introduce a different degree of competition between synapses,
and thus may lead to different final distributions of synaptic
weights and distinct functional connectivity (Miller andMacKay,
1994; Miller, 1996). For example, in a model of development
of the visual cortex, multiplicative normalization leads to the
development of receptive fields with a “graded” distribution of
the inputs, such that most of the inputs that expressed correlated
activity during the training period were represented. In contrast,
with subtractive normalization the final receptive fields were
restricted to a subset of inputs which expressed the strongest
correlation while other inputs to a cell, including those weakly
correlated, were eliminated (Miller and MacKay, 1994).

To summarize, theoretical analysis clearly shows the necessity
of mechanism(s) that (i) counteract positive feedback imposed
by Hebbian-type rules on synaptic weights and neuronal activity
and prevent their runaway dynamics, and (ii) introduce synaptic
competition. It has also identified the following features of
candidate mechanisms. First, such mechanisms should be able
to robustly support the stability of network operation under
a broad range of conditions, such as experimentally observed
variability in the details of plasticity rules, and diverse patterns of
activity. Second, it should prevent runaway dynamics of synaptic

weights, but also support synaptic competition. It is not clear if
both roles are related and served by a single mechanism, such
as the normalization, or mediated by diverse mechanisms. Third,
candidate mechanisms should include heterosynaptic plasticity,
because changes of synaptic weights at non-active synapses seem
to be necessary for achieving stable dynamics of model neurons
and networks with plastic synapses. Finally, it should operate on
a timescale comparable to the timescale of Hebbian-type synaptic
plasticity. This latter requirement would be automatically fulfilled
if homeostatic mechanism(s) in question and Hebbian-type
plasticity share the trigger and are mediated by overlapping
intracellular machinery.

Biological Candidate: Homeostatic
Synaptic Scaling

Experimental Phenomena
A form of plasticity which has received much attention as
a potential mechanism of stabilization of neuronal activity is
the phenomenon of homeostatic synaptic scaling (Turrigiano
et al., 1998; recently reviewed in Burrone and Murthy, 2003;
Turrigiano and Nelson, 2004; Rich and Wenner, 2007; Watt
and Desai, 2010; Turrigiano, 2012). Homeostatic synaptic scaling
is defined as compensatory up- or down- scaling of synaptic
weights triggered by prolonged dramatic changes of neuronal
activity, whereby synaptic weights adjust to counteract changes
of activity. Synaptic weights scale up after hours and days of
activity blockade by tetrodotoxin (TTX; Turrigiano et al., 1998)
or hyperpolarization of neurons caused by expression of inwardly
rectifying potassium channels (Burrone et al., 2002), and scale
down after prolonged increases of activity by blockade of
inhibition (Turrigiano et al., 1998). This scaling is multiplicative
and thus maintains the relative strength of existing synaptic
weights. Because homeostatic synaptic scaling is triggered by
changes of neuronal firing and acts to neutralize these changes,
it can be considered a mechanism of firing rate homeostasis.
Originally discovered in dissociated neuron cultures, scaling
has been also demonstrated in the whole brain after hours of
deafferentation (Becker et al., 2013; Keck et al., 2013; Vlachos
et al., 2013). Homeostatic synaptic scaling in the neocortex is
developmentally regulated, such that layer 4 neurons express
a transient ability to scale, and subsequently neurons from
layers 2/3 demonstrate the phenomena which persist through
adulthood (Turrigiano, 2012).

Although originally homeostatic scaling was described as a
global cell-wide process, later studies raised the possibility that
scaling could be quasi-local (at the spatial resolution of dendritic
branches) which could serve for localized normalization of
weights in a computationally useful way (Burrone et al., 2002;
Branco et al., 2008; Rabinowitch and Segev, 2008). Realistically
homeostatic scaling is not a unitary phenomenon, but involves
a multitude of synaptic mechanisms such as scaling of synaptic
weight at the postsynaptic site (Turrigiano et al., 1998) and
changes of release probability (Bacci et al., 2001; Murthy
et al., 2001; Thiagarajan et al., 2005). Homeostatic regulation
of synaptic drive may be also achieved with nonsynaptic
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mechanisms such as changes of the intrinsic excitability of
neurons (Zhang and Linden, 2003; Karmarkar and Buonomano,
2006). Possible triggers, in addition to originally suggested
changes of the postsynaptic firing rate, include changes in
transmitter release or activation of postsynaptic receptors, and
changes of calcium influx (Burrone andMurthy, 2003; Hou et al.,
2008; Fong et al., 2015). A common feature of the events which
activate homeostatic plasticity is their long duration, hours and
days, and extreme magnitude, such as complete blockade of
activity or elimination of sensory input after peripheral lesions,
or substantial increase of activity induced by a blockade of
inhibition. The activatedmechanisms are aimed to counteract the
effects of these changes on neuronal activity and push the firing
rate back to a set point.

Homeostatic synaptic scaling, operating alongside other
plasticity mechanisms, has an established role in the
compensatory plastic changes observed in the visual cortex
in response to dramatic distortions of normal development, such
as ocular dominance plasticity in experimental paradigms of
monocular deprivation (Desai et al., 2002; Watt and Desai, 2010;
Vitureira et al., 2012; Keck et al., 2013; Lambo and Turrigiano,
2013). It may also be involved inmaintaining activity level during
normal development, especially in periods of synaptogenesis
and pruning (Desai et al., 2002; Turrigiano, 2012). It has been
proposed to contribute to the maintainance of normal patterns
of sleep oscillations after thalamic lesions (Lemieux et al.,
2014). However, while synaptic scaling may be suited to adjust
long term and drastic alterations of activity, and supplement
other homeostatic mechanisms operating during development,
two features make it a poor candidate for serving the acute
constraining role necessary to combat runaway dynamics
imposed by Hebbian-type plasticity rules: the time scale and the
trigger for induction.

Timescale of Homeostatic Synaptic Scaling and
Runaway Dynamics
Homeostatic synaptic scaling operates on the timescale of hours
and days. The “rapid” scaling takes place after 4 h of complete
silencing of cultured neurons with TTX (Ibata et al., 2008). This
timescale is compatible with that of developmental processes,
such as the formation of sensory representations in norm and
pathology (Wiesel andHubel, 1963; Aitkin et al., 1970;Merzenich
et al., 1975; Thompson et al., 1983; Feldman, 2009), but it
is at least two orders of magnitude slower than the timescale
of associative plasticity, which changes synaptic weights within
minutes or even tens of seconds. Runaway dynamics of synaptic
weights and activity can be induced by Hebbian-type learning
rules within seconds or minutes (e.g., Chen et al., 2013; Zenke
et al., 2013). Mechanisms of homeostatic synaptic scaling will
be engaged and start affecting synaptic weights after a system
has been in a runaway state for hours, which prevents its
normal operation. Because of this fundamental difference of the
timescales, homeostatic synaptic scaling cannot mediate synaptic
competition or normalize synaptic weights during on-going
associative synaptic plasticity. For the same reason, it is also
not suitable for counteracting runaway dynamics induced by
associative plasticity. This inconsistency between time scales of

slow homeostatic scaling and fast associative learning has been
pointed out by Wu and Yamaguchi (2006) who concluded that
synaptic scaling does not seem to work for fast learning. A recent
theoretical study confirmed this conclusion, demonstrating that
for achieving robust stability of a system with Hebbian-type
plastic synapses, the mechanism that maintains homeostasis
and prevents runaway dynamics must operate on a time scale
comparable to the plasticity itself (Zenke et al., 2013).

Realism of Experimental Paradigm: Trigger for
Homeostatic Synaptic Scaling
One further concern regarding possible involvement of
homeostatic synaptic scaling in balancing synaptic changes
induced by Hebbian-type plasticity is the severity of changes
that are required to trigger the scaling. Typically, scaling-up is
induced by a complete silencing of activity for many hours by
TTX application (Turrigiano et al., 1998; Turrigiano, 2012). Such
dramatic and global changes of activity are neither likely, nor
compatible with normal operation of the brain. A recent study
demonstrated that 6 h after complete bilateral retinal lesions,
activity in the visual cortex is reduced to∼60% of pre-lesion level
(Keck et al., 2013). The authors did see evidence for homeostatic
synaptic scaling after the lesions, but noted that homeostatic
scaling alone could not explain the observed recovery of activity
in the deprived cortex (Keck et al., 2013). Note that even this
more “modest” intervention represents extreme pathology. In
contrast, Hebbian-type synaptic plasticity can be induced by far
more subtle events (e.g., see Chistiakova and Volgushev, 2009
for number of spikes in typical plasticity-induction protocols),
and activity changes that may result from associative synaptic
plasticity might be also far less dramatic.

In theory, the requirement for a dramatic and prolonged
change of activity for triggering the homeostatic synaptic scaling
and its very long time scale could be related issues: if the rate
of change is very low, it will take a long time until a change
becomes detectable. Indeed, in experiments on cultured neurons,
the amplitude of miniature EPSCs increased progressively during
TTX application (e.g., Turrigiano et al., 1998; Ibata et al., 2008).
Averaged rates of change in the amplitudes of miniature EPSCs
calculated from these experiments were at ∼2% increase per
hour during complete blockade of spiking with TTX, and∼0.6%
decrease per hour during bicuculline-induced increase of activity.
Note that thousands to tens of thousands of “extra” spikes were
generated during hours of elevated activity, or were missing
during hours of reduced activity. Existing experimental evidence
neither provides proof, nor allows us to exclude the possibility
that homeostatic synaptic scaling can indeed be triggered by
physiological-range changes of activity. It is clear, however,
that even if it is induced by physiologiocal changes of activity,
these changes are both too small and too slow to be able to
counteract tendency for runaway dynamics induced by Hebbian-
type learning.

Computational Properties of Homeostatic
Synaptic Scaling
Depending on the pattern of changes of the input, homeostatic
synaptic scaling may have diverse effects on the operation of
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neuronal networks: the per design homeostatic effect on activity,
a normalizing effect on synaptic weights and normalization-
related competition, but also a destabilizing effect on synaptic
weights and neuronal activity.

Normalization of synaptic weights by the mechanism of
homeostatic synaptic scaling can be understood as following.
Consider a simplistic situation in which postsynaptic firing of a
neuron is proportional to its total synaptic drive. Potentiation
of a portion of synapses would lead to a firing rate increase. To
counteract this increase, a mechanism of firing rate homeostasis
would scale down all synapses to restore the target firing rate,
and therefore also the total synaptic drive, thus performing
multiplicative normalization of synaptic weights. This effect
might be considered a “delayed normalization,” as the feedback
from a change in activity to synaptic scaling operates via the slow
loop of firing rate homeostasis. The time scale of this delayed
normalization is determined by the time scale of homeostatic
scaling. To attain in computer models normalization-derived
properties such as synaptic competition or prevention of
runaway dynamics of activity, the homeostatic scaling is often
implemented on a relatively short time scale of seconds or
minutes. However, these models might not reflect computational
properties of experimentally observed homeostatic synaptic
scaling, because reported timescale is at least two orders of
magnitude longer (hours and days). In fact, we are not aware of a
computational study in which homeostatic synaptic scaling with
experimentally-observed features, specifically the requirement of
at least 4 h of altered activity level to produce observable synaptic
changes, was shown to be effective in preventing runaway
dynamics or supporting synaptic competition during on-going
learning.

One further factor that limits the relevance of homeostatic
synaptic scaling for maintaining the normal operation of
neuronal networks is that this kind of plasticity is triggered by
lasting and drastic changes of overall activity, such as a persistent
increase or decrease of the firing rate. In biological neuronal
networks, the level of activity is subject to energy constraints and
is tightly controlled by diverse fast-scale mechanisms operating
at both the network and at the cellular levels. At the network
level, activity is controlled by inhibition, including recurrent
inhibition, which by design limits both the magnitude and
the duration of episodes of elevated activity. Strong recurrent
inhibition mitigates changes of activity level even when external
input changes dramatically, allowing neuronal networks operate
in a regime of dynamically balanced excitation and inhibition
(Wehr and Zador, 2003; Okun and Lampl, 2008; Ozeki et al.,
2009; Dorn et al., 2010; Sun et al., 2010). For example, complete
binocular retinal lesions which resulted in an extreme change
of the afferent input to the visual cortex, led to only a ∼40%
reduction of activity in visual cortex of the mouse (Keck et al.,
2013). Moreover, inhibitory plasticity can adjust the strength
of inhibition and maintain the excitatory/inhibitory balance in
neurons and neuronal networks (Vogels et al., 2011; Luz and
Shamir, 2012).

At the level of synapses, mechanisms regulating the input
strength on a fast time scale include short-term plasticity,
vesicle recycling and fast retrograde signaling. Episodes of strong

presynaptic activity lead to depletion of the ready-to-release pool
of vesicles, thus limiting release during the following seconds and
minutes, or setting a new, lower, steady state of release (Abbott
et al., 1997; Tsodyks andMarkram, 1997; Varela et al., 1997, 1999;
Markram et al., 1998; Sussillo et al., 2007; Costa et al., 2013).
Episodes of strong postsynaptic firing and depolarization lead to
activation of retrograde signaling that reduces transmitter release
(Pitler and Alger, 1992; Wilson and Nicoll, 2001; Freund et al.,
2003; Hashimotodani et al., 2007). Strong pre and postsynaptic
activity is associated with the release of adenosine and cyclic
adenosine-phosphates from neurons and glial cells and thus
the elevation of extracellular adenosine levels in a local area
where active synapses and neurons are located (Pascual et al.,
2005; Wall and Dale, 2008; Halassa et al., 2009; Lovatt et al.,
2012). Because adenosine has a suppressive effect on synaptic
transmission in the neocortex and hippocampus (e.g., Dunwiddie
and Haas, 1985; Scanziani et al., 1992; Thompson et al., 1992;
Kerr et al., 2013; Bannon et al., 2014; Zhang et al., 2015),
this would hinder further buildup of activity at this location.
These are just few examples of mechanisms which operate on
a substantially faster scale than homeostatic synaptic scaling
and which might effectively combat excessive lasting changes of
activity and restore activity level long before homeostatic synaptic
scaling is activated.

The long time scale of homeostatic synaptic scaling is
compatible with the time scale of developmental processes,
or compensatory processes during recovery from injury.
Homeostatic synaptic scaling may play a role in maintenance
of overall activity level during normal development, especially
in periods of synaptogenesis and pruning (Desai et al., 2002;
Turrigiano, 2012). It may also play a role in pathological
conditions, when the mechanisms which maintain the activity
level during normal operation, are impaired or overloaded and
cannot cope with drastic changes of activity caused by pathology.
Indeed, evidence for homeostatic synaptic scaling has been
reported in the visual cortex after binocular retinal lesions (Keck
et al., 2013) and in the dentate gyrus after denervation (Becker
et al., 2013; Vlachos et al., 2013). However, in pathological
conditions the “homeostatic” synaptic scaling may also have a
destabilizing effect on synaptic weights and neuronal activity.
For example, if activity is reduced temporarily (e.g., because
of a reversible injury to a peripheral sensory apparatus), the
up-scaling of synaptic weights could lead to over-excitability of
neurons when input firing recovers. Thus, because synaptic up-
scaling follows activity changes with a delay of several hours, it
may lead to an over-shoot of activity when the input is recovering.
Indeed, network models of pathological conditions, lesions or
deafferentation, show that homeostatic synaptic scaling helps
to recover normal activity patterns after small and moderate
deafferentation, but leads to post-traumatic seizures if the degree
of deafferentation is above a certain threshold (about 80%;
Houweling et al., 2005; Fröhlich et al., 2008; Volman et al.,
2011a,b). One of the contributing mechanisms here may be the
formation of new silent synapses during prolonged silencing of
activity, which leads to enhancement of LTP induction (Arendt
et al., 2013). If a similar process takes place after cortical damage,
potentiation of these new synapses after partial recovery of the
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activity will further amplify the increase of the overall synaptic
drive, which might facilitate the development of seizures or other
pathological activity patterns.

To summarize, homeostatic synaptic scaling represents a
set of mechanisms which are triggered by extreme and long
lasting (hours and days) changes of neuronal activity, and
serve to counteract firing rate changes by up- or down-scaling
synaptic weights. These mechanisms operate on time scales
which are orders of magnitude longer than the time scale at which
associative plasticity is induced. Therefore, they would not be
engaged or expressed until runaway dynamics had created an
unstable and saturated network, which generates dramatically
altered activity for hours. Thus, experimentally observed
properties of homeostatic synaptic scaling do not fit two crucial
requirements for a hypothetical mechanism which maintains
stability of operation and provides synaptic competition in
systems with Hebbian-type learning rules. Both the trigger and
the time scale of synaptic scaling are fundamentally different
from those of the Hebbian-type plasticity.

Biological Candidate: Heterosynaptic
Plasticity

Experimental Phenomena
Heterosynaptic plasticity refers to changes at synapses which
were not active during the induction of plasticity (Figure 1).
Heterosynaptic LTD accompanying the induction of LTP was
first described in the hippocampus shortly after the phenomenon
of LTP was discovered (Lynch et al., 1977). In CA1 pyramidal
neurons, induction of LTP of Schaffer collateral-commissural
synapses at apical dendrites was accompanied by LTD at inputs
to basal dendrites made by commissural fibers that were not
stimulated during the induction (Figure 1A, left). Vice versa,
induction of LTP at the basal dendrites was accompanied by LTD
at the apical dendrites. Heterosynaptic LTD accompanying the
induction of homosynaptic LTP clearly has potential for both
balancing plastic changes and supporting synaptic competition.

Spatial distribution of LTP and LTD studied in structures with
a regular organization of their inputs, such as the hippocampus or
amygdala, revealed a bi-phasic Mexican-hat type profile (White
et al., 1990; Royer and Paré, 2003). Induction of LTP at a set of
synapses was accompanied by a weaker heterosynaptic LTP at
nearby inputs, and heterosynaptic LTD at more distant inputs
(Figure 1A, right). A symmetrical profile of heterosynaptic
changes was observed around the site of LTD induction: weaker
LTD at close distances and LTP at more distant inputs (Royer and
Paré, 2003). Because the amount of potentiation and depression
in these profiles was balanced, this type of heterosynaptic
plasticity can provide a powerful local mechanism of both
normalization of synaptic weights and synaptic competition.

In the CA1 region of the hippocampus, pairing of one input
to a pyramidal neuron led to potentiation not only of that
stimulated synapse, but also of synapses formed by nearby fibers
on that neuron, and even on nearby neurons (Bonhoeffer et al.,
1989; Kossel et al., 1990; Schuman andMadison, 1994; Engert and
Bonhoeffer, 1997).

This evidence for heterosynaptic plasticity indicates that
presynaptic activation of the synapse is not a strict requirement
for plasticity induction. Indeed, long term plasticity can be
induced by purely postsynaptic protocols. In the hippocampus
and neocortex, photolysis of caged Ca2+ (Neveu and Zucker,
1996a,b; Yang et al., 1999) or postsynaptic spiking (Kuhnt et al.,
1994; Volgushev et al., 1994, 2000; Cummings et al., 1996;
Chistiakova and Volgushev, 2009; Lee et al., 2012) is sufficient
to induce plasticity.

Trigger for Heterosynaptic Plasticity
Heterosynaptic changes are triggered by acute rises of
intracellular Ca2+ concentration (Yang et al., 1999; Balaban
et al., 2004; Lee et al., 2012), thus sharing the trigger with
Hebbian-type plasticity (Lisman, 1989; Artola and Singer,
1993; Cummings et al., 1996). The required rises of [Ca2+] can
be produced by bursts of action potentials backpropagating
throughout the dendritic tree (Spruston et al., 1995; Staubli and
Ji, 1996; Larkum et al., 1999; Golding et al., 2002; Waters et al.,
2003; Lisman and Spruston, 2005; Sjöström and Häusser, 2006;
Remy and Spruston, 2007). Chelation of intracellular calcium
impairs induction of heterosynaptic plasticity (Lee et al., 2012).
In addition to the shared calcium dependence, intracellular
mechanisms of of homosynaptic and heterosynaptic plasticity
overlap, as indicated by at least partial occlusion between
homo- and hetero-synaptic plastic changes (Kuhnt et al., 1994;
Cummings et al., 1996; Neveu and Zucker, 1996a,b; Volgushev
et al., 1999; Yang et al., 1999). Thus, heterosynaptic plasticity is
induced by the same protocols, occurs at the same timescale,
and shares mechanisms with Hebbian-type plasticity (see below,
Figure 5 and related text for further discussion).

Properties of Heterosynaptic Plasticity
Heterosynaptic, long-term plastic changes can be induced
in hippocampal and neocortical neurons by intracellular
tetanization—bursts of spikes evoked by short depolarizing
pulses applied through the recording electrode (Figure 4A;
Kuhnt et al., 1994; Volgushev et al., 1994, 1997, 1999, 2000;
Chistiakova and Volgushev, 2009; Lee et al., 2012). The rationale
behind the intracellular tetanization protocol as a tool to
study heterosynaptic plasticity is the following. Each neuron
in the neocortex receives thousands of synaptic inputs, but
activation of only a fraction of these inputs, few dozens to
hundreds, is necessary to evoke spikes. Repetitive activation of
a fraction of inputs and repetitive firing of the postsynaptic
cell can, under certain conditions, induce synaptic plasticity.
During the induction, all synapses but for those of the activated
fraction will experience postsynaptic activity without activation
of their presynaptic fibers. This situation, postsynaptic activity
without presynaptic activation, is mimicked by the intracellular
tetanization (Figure 4A). Because none of the synaptic inputs
was stimulated during the intracellular tetanization, any changes
of synaptic transmission after the intracellular tetanization can
be considered heterosynaptic. It is important to note that
postsynaptic activity during intracellular tetanization (∼150
spikes) is both compatible with activity patterns observed in vivo,
for example during visual stimulation (e.g., Volgushev et al.,
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FIGURE 4 | Long-term synaptic plasticity induced by intracellular

tetanization. (A) A scheme of an intracellular tetanization experiment.

Bursts of short depolarizing pulses (5 pulses at 100Hz; 10 bursts at

1Hz, 3 trains of 10 bursts) were applied through the recording electrode

without presynaptic stimulation to induce bursts of action potentials.

Synaptic responses were recorded before and after the intracellular

tetanization. Because no inputs were stimulated during the induction,

plasticity at all synapses can be considered heterosynaptic. (B) Examples

of inputs that underwent potentiation (top), depression (middle), or did not

change (bottom) after intracellular tetanization in pyramidal neurons from

slices of rat visual cortex. Time courses of amplitudes of EPSPs evoked

by the first pulse in a paired-pulse paradigm. The timing of intracellular

tetanization is indicated by the arrows above each plot. Insets show

averaged responses to paired pulse stimuli before and after intracellular

tetanization, from color-coded time intervals. In this example, LTP and

LTD were induced simultaneously at two inputs to the same neuron (top

and middle). Note that input resistance of neurons measured by

responses to small hyperpolarizing pulses applied before synaptic stimuli

remained unchanged. (C) Correlation between changes of EPSP

amplitude after intracellular tetanization and initial paired-pulse ratio. Data

for N = 136 inputs to pyramidal neurons in slices of visual cortex (N = 60

inputs) and auditory cortex (N = 76 inputs). Green symbols (star, square,

and triangle) refer to the example inputs from (B). (Modified, with

permission, from Chen et al., 2013).

2003), and comparable to postsynaptic activity during typical
plasticity-induction protocols (see Chistiakova and Volgushev,
2009 for comparison of number of spikes in plasticity-induction
protocols).

Following intracellular tetanization, amplitudes of synaptic
responses could increase, decrease or not change (Figure 4B).
The amplitude changes occurred fast, on the same time scale
as homosynaptic changes. Moreover, intracellular tetanization
could simultaneously induce LTP and LTD in two independent
inputs onto one cell (Figure 4B top and middle). The direction
of plastic change of a synaptic input was correlated with the
initial paired-pulse ratio, a measure which is inversely related
to release probability (Figure 4C, Volgushev et al., 1997, 2000;
Lee et al., 2012; Chen et al., 2013). Inputs which initially had
a low release probability (high initial paired-pulse ratio) were
typically potentiated. Inputs that had a high release probability
(low initial paired-pulse ratio) were typically depressed or did not
change. Thus, the direction of heterosynaptic changes depends
on initial properties of a synapse, and is determined at each
synapse individually. Weight-dependence is one further similar
feature of heterosynaptic and homosynaptic plasticity: it has been
also reported for LTP and LTD induced by afferent tetanization
or by a pairing procedure in the hippocampus and neocortex

(van Rossum et al., 2000; Sjöström et al., 2001; Hardingham et al.,
2007).

The weight-dependence of heterosynaptic plasticity might
reflect history-dependent predispositions of synaptic inputs to
undergo potentiation or depression (Volgushev et al., 1997,
2000; Chistiakova and Volgushev, 2009). Weak synaptic inputs
with low release probability, such as those which underwent
depression in the past, are less susceptible to further depression
yet have a stronger predisposition for potentiation. Strong
synapses with a high release probability, such as those recently
potentiated, have a higher predisposition for depression. The
notion of the predisposition of synapses for plastic changes
is closely related to the ideas of a sliding threshold between
depression and potentiation in the BCM rule (Bienenstock et al.,
1982; Yeung et al., 2004) and metaplasticity – history-dependent
changes of the ability of synapses to undergo potentiation or
depression (Abraham and Bear, 1996; Clem et al., 2008).

Thus, heterosynaptic plasticity induced by strong postsynaptic
activity has properties which make it an ideal candidate
for counteracting runaway dynamics of synaptic weights and
mediating synaptic competition. Heterosynaptic plasticity, while
not requiring presynaptic activity at the synapse for the
induction, has the same trigger (rise of intracellular calcium),
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partially overlapping mechanisms of expression, and operates
on the same time scale as homosynaptic plasticity. Moreover,
heterosynaptic changes can be induced by the same protocols
which are typically used to induce homosynaptic plasticity.

Heterosynaptic Plasticity in Published Studies:
Meta-Analysis
This latter conclusion stays in apparent contradiction to the
wealth of publications reporting that amplitude of responses
in non-activated or control inputs did not change, and, more
generally, to the notion of input specificity of homosynaptic
plasticity. We suggest that this contradiction could be due to the
fact that heterosynaptic changes are bidirectional but balanced.
To test this conjecture, we re-analyzed results from eight papers
on STDP of excitatory inputs to layer 2/3 or layer 5 pyramidal
neurons in slices from somatosensory, visual or auditory areas
of rat neocortex (Feldman, 2000; Sjöström et al., 2001; Birtoli
and Ulrich, 2004; Watt et al., 2004; Letzkus et al., 2006; Nevian
and Sakmann, 2006; Hardingham et al., 2007; our data from
Chistiakova et al., 2014). In all of these papers clear cases of
homosynaptic LTP or LTD are presented. Figure 5 illustrates
the results of 36 experimental series from these papers, as
the averaged change of response amplitude (diamond symbol)
after the pairing or control procedure and the range covered
by ±2 SD. This range includes 95% of normally distributed
values, however because number of measurements contributing
to each experimental series was not high, typically between
N = 4 and N = 20, the actual measured values did not
necessary covered the whole ±2 SD range. Figure 5 illustrates
several important points. First, most “No change or unpaired”
groups (Figure 5, blue) and especially “AP bursts only” groups
(Figure 5, blue-gray-pink bars) have high variance, with the
ranges of response amplitude changes overlapping substantially
with the ranges of homosynaptic changes after LTP and LTD
protocols. This implies that “No change” and “AP bursts only”
groups must have contained individual cases of potentiation
and depression, which were heterosynaptic LTP and LTD in
experiments in which no presynaptic stimulation was applied.
Moreover, because the averages were not significantly different
from zero potentiation and depression were balanced. Second,
although on average LTP protocols increased and LTD protocols
decreased response amplitude (Figure 5, magenta and green),
the effects were highly variable, often including changes in the
opposite directions. Assuming continuous distributions of EPSP
amplitude changes over the mean ± 2 SD range, the LTP and
LTD protocols might have induced plastic changes of both signs.
In 8 out of 11 LTP groups the value of mean −2 SD is well
below zero, suggesting that some of the inputs were depressed.
In 5 out of 9 LTD groups mean +2 SD reaches well above
zero, suggesting that some inputs were potentiated. In most LTP
and LTD groups (17 out of 20) there should have been inputs
which did not change (Figure 5). This suggests that factors other
than timing, such as synaptic predispositions for plasticity, might
have contributed to the final effect of the plasticity-induction
protocol on response amplitude. This conjecture is supported
by the results of Hardingham et al. (2007), who found that the
same protocol could induce either potentiation or depression.

The direction of the EPSP amplitude change was correlated
with the release probability of the synapse before the plasticity
induction. This finding is corroborated by our results (Figure 4C,
modified from Chen et al., 2013). Finally, the range of EPSP
amplitude changes in unpaired inputs was typically smaller
than the range of amplitude changes induced by spike burst-
only protocols (Figure 5, d,e,h). This may reflect competition of
plastic synapses for limited resources. In this scenario, pairing
may facilitate access to resources for homosynaptic plasticity
at paired inputs via a mechanism of synaptic tagging (Frey
and Morris, 1997, 1998; Fonseca et al., 2004) or a similar
process, thus leaving fewer resources available for heterosynaptic
changes at unpaired inputs. Spikes-only protocols leave more
resources available for heterosynaptic changes, and thus induce
heterosynaptic plasticity of a larger amplitude. Note that this
latter point (larger variance after spike-burst only protocols as
compared to changes in un-paired inputs) is suggested by our
meta-analysis (Chistiakova et al., 2014), though limited number
of studies precludes statistical analysis. This question needs to be
tested in future work.

The above analysis demonstrates that both potentiation and
depression might have been induced in individual unpaired
inputs and also by spike bursts-only protocols (Figure 5).
However, when averaged across the inputs, EPSP amplitude
changes were not significant because of the balanced nature
of heterosynaptic plasticity. It is also important to note that
in papers specifically aimed at investigating heterosynaptic
plasticity, it was readily induced by regular pairing (Nishiyama
et al., 2000; Huang et al., 2008; Arami et al., 2013), afferent
tetanization (Cummings et al., 1996; Staubli and Ji, 1996;
Chevaleyre and Castillo, 2003; Royer and Paré, 2003; Bauer and
LeDoux, 2004; Pascual et al., 2005; Nugent et al., 2007; Wöhrl
et al., 2007), or purely postsynaptic protocols (e.g., Pockett et al.,
1990; Christofi et al., 1993; Volgushev et al., 1994, 1997, 1999,
2000; Cummings et al., 1996; Lee et al., 2012). This analysis
substantiates our conclusion that induction of homosynaptic
plasticity by a typical pairing procedure used in STDP studies
is accompanied by induction of heterosynaptic plasticity in
unpaired inputs.

To summarize, heterosynaptic plasticity induced by
intracellular tetanization expresses properties that are well
suited for serving as a robust mechanism of normalization of
synaptic weights: (i) it depresses strong and potentiates weak
synapses thus preventing runaway dynamics of synaptic weights,
(ii) it is induced at non-active synapses by the same protocols
which induce homosynaptic plasticity, providing for explicit
competition and (iii) it operates on the same time scale as
homosynaptic plasticity.

Modeling Heterosynaptic Plasticity

Heterosynaptic Plasticity Robustly Prevents
Runaway Dynamics
To test the hypothesis that heterosynaptic plasticity can prevent
runaway dynamics of synaptic weights and activity (Volgushev
et al., 2000; Chistiakova and Volgushev, 2009) we used a
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FIGURE 5 | Comparison of reported changes of response amplitude

at inputs that were active during the induction (homosynaptic,

input-specific) and those not active during the induction

(heterosynaptic). The plot shows results of 36 experimental series (bars)

from eight papers (groups of bars) on pairing-induced long-term plasticity

(STDP), in which the mean amplitude changes were reported together

with the SD (or SEM) and number of observations. Each bar shows an

average (diamond symbol) change of EPSP amplitude after pairing

procedure ±2 SD. This range includes 95% of normally distributed

values. Magenta: changes after LTP protocols (post after pre). Green:

changes after LTD protocols (pre after post). Blue: range of EPSP

amplitudes after protocols that did not lead to significant changes of the

averaged response (such as interval between pre and post spikes outside

plasticity windows). Gray: range of EPSP amplitudes after only

presynaptic stimulation without postsynaptic spikes. Black, bars from

cyan to pink (in d,e,h): range of EPSP amplitudes after bursts of

postsynaptic spikes only, without presynaptic stimulation. Data for

excitatory inputs to L2/3 or L5 pyramidal neurons from somatosensory,

visual or auditory cortex, from the following papers: Feldman (2000) (a);

Sjöström et al. (2001) (b); Watt et al. (2004) (c); Birtoli and Ulrich (2004)

(d); Nevian and Sakmann (2006) (e); Letzkus et al. (2006) (f); Hardingham

et al. (2007) (g); Chistiakova et al. (2014) (h). Results from Hardingham

et al. (2007) (g) present the LTP and LTD data selected by the direction

of the change. The third bar in this group shows LTP and LTD data

pooled together. Details of experimental protocols can be found in original

papers. (Modified, with permission, from Chistiakova et al., 2014).

neuron model with synaptic weight changes governed by STDP
rules and heterosynaptic plasticity with experimentally observed
properties (Chen et al., 2013). The model neuron received
inputs from 100 simulated presynaptic neurons, firing action
potentials with Poisson distributed interspike intervals. Activity
of presynaptic neurons was mildly correlated, with an averaged
cross-correlation between pairs of spike trains of 0.35 ± 0.05.
Averaged presynaptic firing at 1Hz led to the firing of the
postsynaptic model neuron at ∼1.8Hz. Synaptic weight changes
were governed either by STDP rules (STDP-only models) or
by STDP rules complemented with heterosynaptic plasticity
(STDP + heterosynaptic plasticity models). Heterosynaptic
plasticity was implemented according to experimental data
(Volgushev et al., 2000; Chistiakova and Volgushev, 2009; Lee
et al., 2012; Chen et al., 2013). It was triggered by increases
of intracellular calcium concentration above a threshold level,
and affected all synapses in a weight-dependent manner: the
probability of synaptic change, its direction, and its magnitude
depended on the initial weight. These dependences were
implemented using the Equations (1) and (2).

P = 3000× (Wsyn −Wmax/2)
2 + 0.1 (1)

where P is the probability of the synaptic change, Wsyn is the
current synaptic strength and Wmax = 0.03 mS/cm2 is the
maximal synaptic strength. According to Equation (1), P is equal
to 0.1 for synapses with intermediate strength, and P equals
to ∼0.775 for synapses with maximal or minimal strength. The

change of synaptic weight dWsyn was calculated according to
following equation:

dWsyn = (([1/(1+ exp((Wsyn − (0.5×Wmax))× 100))]− 0.5)

+ σ × 0.02)× 0.0001 (2)

In this equation, dWsyn indicates the change of synaptic strength
and σ is a random variable drawn from Gaussian distribution
with zero mean and standard deviation of 3. A detailed
description of the model, implementation of plasticity rules and
discussion of parameters can be found in the original publication
(Chen et al., 2013).

In the first example, STDP with symmetrical windows for
potentiation and depression was used (Figures 6A–C; same
STDP rules as in Figure 2). In the model with the STDP-
only learning rule, synaptic weights expressed clear runaway
dynamics and were saturated at the maximal value by the
end of a 100s simulation (Figures 2A,C, 6C). This led to
a profound increase of the postsynaptic firing rate despite
unchanged presynaptic firing (1Hz throughout the simulation).
The postsynaptic firing rate increased from ∼1.8Hz during
the first 10 s of simulation, to ∼6.3Hz during the last 10 s of
simulation. Implementing in the model heterosynaptic plasticity
with experimentally observed properties in addition to STDP-
rules effectively prevented runaway dynamics of synaptic weights
and activity. Synaptic weights in this model increased slightly, but
did not saturate. The new stable distribution of synaptic weights
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FIGURE 6 | Heterosynaptic plasticity prevents runaway dynamics

produced by positively and negatively biased STDP. (A,D) STDP

rules. STDP learning rule with symmetrical potentiation and depression

windows (A, τ
+ = τ

− = 20ms; a+ = a− = 10−3 mS/cm2 ), and with

negative bias (D, τ
+ = 5ms, a+ = 0.5× 10−3 mS/cm2, τ

− = 40ms,

a− = 1.5×10−3 mS/cm2 ). (B,E) Heterosynaptic plasticity prevents

runaway dynamics of synaptic weights. Same models as in Figures 2, 3

but with the mechanism for heterosynaptic plasticity as described in Chen

et al. (2013). Note that in both models, with symmetrical (B) and

negatively-biased (E) STDP rules, synaptic weights are not saturated, but

remain normally distributed within the operation rage. (C,F) For

comparison, distributions of synaptic weights in STDP only models from

Figures 2, 3, expressing runaway dynamics are shown. (Modified, with

permission, from Chen et al., 2013).

around the new mean value was completely located within the
operational range of synapses (Figure 6B). Firing rate of the
postsynaptic neuron slightly increased from∼1.8 to∼2.6Hz.

In the second example model, the STDP-rule was strongly
biased toward depression (Figure 6D, same STDP rule as
in Figure 3). In the STDP-only model, synaptic weights
expressed clear runaway dynamics toward the minimum value
(Figures 3A,C, 6F). The decreased synaptic weights were not
producing sufficient depolarization to maintain spiking of the
postsynaptic neuron, therefore averaged firing rate of presynaptic
neurons was increased to 2Hz and then to 3Hz (Figure 3A).
Even with the three-fold increase of presynaptic firing rate,
the postsynaptic neuron became silent. A portion of synaptic
weights was saturated at the minimum value (Figures 3C,
6F). Heterosynaptic plasticity effectively prevented the runaway
dynamics of synaptic weights toward zero and silencing of the
cell (Figure 6E). These results demonstrate that heterosynaptic
plasticity can prevent runaway of synaptic weights to either
extreme.

The stabilizing effect of heterosynaptic plasticity on synaptic
weights and activity is long-lasting and robust. Heterosynaptic
plasticity was able to keep synaptic weights and activity levels
within an operational range for models with different calcium
thresholds for plasticity induction, models subject to different
patterns of presynaptic activity, and over a broad range of
parameters of STDP learning rules. This latter point is illustrated

in Figure 7. To explore how changing the parameters of STDP
rules affects the stability of operation of the model neuron, we
systematically varied the amplitude and the time constant of
the potentiation window of STDP, while keeping the depression
window constant. The set of tested STDP rules covered a
range from those strongly dominated by depression, to those
with balanced potentiation and depression windows, as well as
those dominated by potentiation (see insets in Figure 7). As
an indicator of runaway dynamics we used the deviation from
normality (D’Agostino-Pearson’s K2-test) of synaptic weight
distribution after 100 s of simulation. Note that the shape of
the final distribution of synaptic weights is determined by a
multitude of factors operating at each synapse. These factors
include, but are not restricted to, initial synaptic weight, the set
of plasticity mechanisms operating at a synapse and the specifics
of these mechanisms, and the pattern of presynaptic activity
experienced by a synapse (see below, Figure 8). Experimentally
measured distributions of synaptic weights, usually asymmetrical
and close to log-normal (e.g., Song et al., 2005), might reflect
the broad variety of unique combinations of these factors at
individual synapses. Because in each simulation presented here
these factors were similar for all synapses, synaptic weights
converged to the same value. Convergence of synaptic weights
to a value within the operation range resulted in a normal
distribution, while convergence to one of the extremes resulted
in a distribution which deviated from normality. Therefore, we
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FIGURE 7 | STDP only model fails to prevent runaway dynamics

of synaptic weights in broad range of STDP rules (A).

Heterosynaptic plasticity makes a broad range of STDP parameters

compatible with stable operation of neurons (B). Each box in the grids

shows the D’Agostino-Pearson’s K2-test for normality of synaptic

weight distribution after 100 s of simulations with different STDP

potentiation windows, with a+ and τ
+ as indicated on the X and Y

axes. White square indicates symmetrical STDP learning rule. Synaptic

weight distributions with high K2-test values (>50) indicating deviation

from normality, typically contain most of the weights saturated at

maximal or minimal values. Note that in simulations with the STDP

only model (A), only few STDP rules, with strong bias toward

depression, did not lead to runaway dynamics. Most STDP rules,

including examples shown in the bottom, led to runaway dynamics of

synaptic weights. In contrast, the model with STDP and heterosynaptic

plasticity (B) did not express runaway dynamics over the whole range

of tested STDP rules, including those extremely unbalanced (insets,

bottom). (Modified, with permission, from Chen et al., 2013).

used a test of normality and deviation from normality of the
final distribution of synaptic weights as an indicator of runaway
dynamics.

The STDP-only model expressed non-saturating behavior
only with a limited sub-set of tested STDP rules, in which the
window for potentiation was smaller than the depression window
(Figure 7A, blue area of the matrix). As soon as the potentiation
window of the STDP rule was ∼75% of the depression window
or stronger, synaptic weights and postsynaptic firing invariably
expressed runaway dynamics (Figure 7A, orange/red area of the
matrix). In fact, the range of STDP windows compatible with
stable dynamics of synaptic weights was somewhat overestimated
in these experiments. In cases with a strongly dominating
window for depression, the synaptic drive was reduced below
the level necessary to evoke postsynaptic spiking before synaptic
weights were saturated. After the postsynaptic spiking had
ceased, synaptic weights did not change any more per STDP
design. Addition of heterosynaptic plasticity to the model
robustly prevented runaway dynamics over the whole range
of tested STDP parameters, from almost exclusively depressing
STDP rules, to those strongly dominated by potentiation
(Figure 7B). Joint action of STDP and heterosynaptic plasticity
led to the stable distribution of synaptic weights within their
operational range. The new equilibrium point of the synaptic
weight distribution depended on the relative strength of
potentiation and depression windows: in models equipped with
a stronger potentiation window of STDP the final distributions
of synaptic weights were shifted toward higher values. Notably,
heterosynaptic plasticity, by preventing runaway dynamics of
synaptic weights, also kept averaged firing rate around the
operating point (Chen et al., 2013).

Thus, heterosynaptic plasticity with experimentally observed
properties provides a robust stabilizing mechanism, which makes
possible the stable operation of neurons expressing a broad
range of STDP parameters. This is an important feature because
experimental evidence indeed shows wide variations of STDP
windows for potentiation and depression and of their relative
strength in neurons and synaptic connections of different types
(Abbott and Nelson, 2000; Nishiyama et al., 2000; Sjöström et al.,
2001; Froemke et al., 2005; Zhou et al., 2005; Haas et al., 2006;
Caporale and Dan, 2008; Feldman, 2009).

Heterosynaptic Plasticity Permits Segregation of
Inputs and Supports Competition
Despite its strong stabilizing effect, heterosynaptic plasticity does
not prevent segregation of the weights of synapses which have
diverse properties or are subject to diverse input patterns, and
supports synaptic competition. In the examples illustrated in
Figure 8, inputs to the model neuron were segregated into two
groups, one with a high and the other with a low correlation
of presynaptic firing. In the STDP-only model, inputs that were
strongly correlated were rapidly potentiated and saturated at
the maximum value, while the weights of weakly correlated
inputs changed little (Figures 8B,C). In the model with both
forms of plasticity, STDP and heterosynaptic, inputs from both
groups remained unsaturated. The groups of weakly and strongly
correlated inputs formed two clearly separate distributions, both
within the operational range of synaptic weights (Figures 8D,E;
Chen et al., 2013). Similarly, segregation of synaptic weights was
observed when the two groups of inputs differed by their average
firing frequency rather than by their correlation. Examples
from Figures 6, 8 illustrate that in the model with both forms
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FIGURE 8 | Segregation of synaptic weights of strongly vs. weakly

correlated inputs in STDP models with and without heterosynaptic

plasticity. (A) A model neuron received input from N = 100 presynaptic

neurons firing at average frequency of 1Hz. Spike trains of 66 presynaptic

neurons (inputs # 1–66) were weakly correlated (averaged cross-correlation

0.34+ 0.02), spike trains of 34 presynaptic neurons (inputs # 67–100) were

strongly correlated (averaged cross-correlation 0.61+ 0.05). Symmetrical

STDP rule was used in the simulations, with τ
+ = τ

− = 20ms; a+ = a− =

10−3 mS/cm2. (B,D) Dynamics of synaptic weights of weakly correlated

inputs (synapses # 1...66) and strongly correlated inputs (synapses #

67...100) in the model with STDP only (B) and the model with STDP and

heterosynaptic plasticity (D). (C,E) Distributions of synaptic weights at the

beginning (blue bars) and at the end (red) of simulations from (B,D),

respectively. Note runaway dynamics of synaptic weights and their saturation

at the highest value (0.03 mS/cm2 ) for the group of strongly correlated inputs

in STDP-only simulation. (Modified, with permission, from Chen et al., 2013).

of plasticity, STDP and heterosynaptic, the location of the
steady-state distribution of a group of synaptic weights depends
on the balance of several factors, such as the specifics of plasticity
rules at these synapses (Figure 6), the level of correlation of
presynaptic firing (Figure 8) or firing frequency.

The origin of synaptic competition arising from
heterosynaptic plasticity can be understood as following.
Heterosynaptic plasticity triggered by episodes of strong
postsynaptic activity pushes all synapses, including those
not recently activated, toward an equilibrium point. Because
heterosynaptic plasticity is triggered by the same episodes of
activity which induce homosynaptic changes, the induction of
homosynaptic potentiation or depression does not simply push
activated synapses toward the maximum or minimum, but also
pushes all non-active synapses toward a separate equilibrium
point. The existence of two different target weights for active
vs. inactive inputs creates a contrast of forces which drive
weight changes at active vs. non-active synapses. This facilitates
the segregation of weights of differentially active synapses
by plasticity-inducing episodes of postsynaptic activity. By
driving synaptic weights toward an equilibrium point within
the operating range, heterosynaptic plasticity also prevents
their saturation, and supports ongoing differentiation of the
weights of synapses which experience different activity. For
example, if an initially large number of synapses were active in
synchrony and were potentiated, but later on only a portion

of them remained consistently active, the background level
of competition provided by heterosynaptic plasticity would
be able to suppress the remaining synapses, thus allowing for
selection of only the relevant group—a process that may mediate
the differentiation stage of learning. In this scenario, synapses
compete for maintaining their weights at increased or decreased
values set by homosynaptic plasticity, but will be driven to the
heterosynaptic equilibrium point if other synapses, but not
themselves, are active.

Thus, heterosynaptic plasticity facilitates segregation and
competition between groups of synaptic inputs exhibiting diverse
properties, such as the frequency or correlation of presynaptic
firing, or details of plasticity rules. Moreover, it helps to preserve
the ability of a neuron with plastic synapses for further learning:
unsaturated synapses have a higher potential for further changes
than those potentiated to the maximum or depressed to zero by
STDP-only learning rules.

To summarize, heterosynaptic plasticity with experimentally
observed properties is a strong candidate mechanism for
counteracting the runaway dynamics which is imposed on
synaptic weights and activity by the positive feedback of Hebbian-
type learning rules. It robustly prevents runaway dynamics over
a broad range of activity patterns and details of Hebbian-
plasticity rules, such as the balance of STDP windows for
potentiation and depression. Heterosynaptic plasticity does not
prevent segregation of synaptic weights, and can support synaptic
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competition. Moreover, it shares the trigger, has overlapping
mechanisms and operates on the same time scale as Hebbian-type
plasticity. This combination of features makes heterosynaptic
plasticity an ideal candidate mechanism of homeostatic control
of synaptic weight changes.

Biological Candidates: Other Mechanisms
Counteracting Runaway

Several further mechanisms may contribute to counteracting
the tendency for runaway of synaptic weights and activity.
One is saturation of plasticity: in a series of potentiation-
inducing tetanizations, the magnitude of the response increase
after each subsequent tetanization is diminished until the
ability for further potentiation is eventually lost altogether
(Colino et al., 1992; Huang et al., 1992). Another mechanism
is weight-dependence of plasticity, whereby the magnitude of
potentiation is smaller at strong synapses which likely were
already potentiated, than at weak synapses, which did not
experience prior potentiation or were previously depressed
(van Rossum et al., 2000; Sjöström et al., 2001; Hardingham
et al., 2007). One further mechanism is a sliding calcium
threshold for potentiation and depression, whereby depending
on the history of recent activity and synaptic changes, the
thresholds for potentiation and depression or intracellular
calcium homeostasis change (Bienenstock et al., 1982; Yeung
et al., 2004). These notions and mechanisms contribute to the
concept of metaplasticity—history-dependent changes of the
ability of synapses to undergo further plastic changes (Abraham
and Bear, 1996; Clem et al., 2008). These mechanisms are
inherent to Hebbian-type plasticity rules, and thus are ideally
suited to shape the ability of synapses to change. By imposing
negative feedback on homosynaptic plastic changes, they clearly
can limit the runaway tendency, and thus decrease the instability
of a system with plastic synapses. A drawback of these
mechanisms, as of any mechanisms governing homosynaptic
plasticity, is that they require presynaptic activation and cannot
affect inactive synapses. This requirement limits the ability of
these mechanisms to serve as regulators of global, cell-wide
synaptic homeostasis.

A family of non-synaptic mechanisms regulating intrinsic
excitability of neurons is not restricted to activated synapses
and thus does not have this limitation. These mechanisms can
change the excitability of an activated dendritic branch or a
whole neuron, and thus affect all respective synapses (Bliss and
Lomo, 1973; Daoudal et al., 2002; Zhang and Linden, 2003; Frick
et al., 2004; Karmarkar and Buonomano, 2006; Fink and O’Dell,
2009; Sehgal et al., 2013). Excitability changes may counteract
synaptic changes, thus having a homeostatic effect (Zhang and
Linden, 2003; Karmarkar and Buonomano, 2006), or enhance
and amplify synaptic changes, thus having an anti-homeostatic
effect (Frick et al., 2004; Fink and O’Dell, 2009; see Sehgal et al.,
2013 for recent review).

Several mechanisms may counteract the development of
runaway activity, even in cases in which runaway potentiation
or depression of individual synaptic weights had not been
prevented. Short-term plasticity determines transient changes

in transmitter release occurring on the temporal scale from
milliseconds to several seconds (Zucker and Regehr, 2002),
and thus is an important factor shaping synaptic responses to
sequences of presynaptic spikes (Abbott et al., 1997; Markram
et al., 1998; Abbott and Regehr, 2004; Richardson et al., 2005;
Sussillo et al., 2007; Costa et al., 2013). Long-term plasticity
is partially expressed presynaptically and thus alters short-term
plasticity (e.g., Bekkers and Stevens, 1990; Markram and Tsodyks,
1996; Schulz, 1997; Volgushev et al., 1997), affects synaptic
responses to sequences of spikes, and the amplitude of steady-
state responses to repetitive presynaptic spikes (Markram and
Tsodyks, 1996). Because depletion of synaptic vesicles and short-
term depression of transmitter release are proportional to release
probability, increase of release probability in associationwith LTP
would lead to a stronger short-term depression, while a decrease
of release probability associated with LTD would lead to a
weaker short-term depression. As a result, changes of steady-state
synaptic responses (and thus of synaptic drive of the postsynaptic
neuron) resulting from sequences of presynaptic spikes will
be less pronounced than the potentiation or depression of
responses to single spikes. The magnitude of this attenuating
effect will strongly depend on the relative contribution of
presynaptic mechanisms to LTP/LTD expression, time constants
of short-term facilitation and depression in a synapse, and on
presynaptic firing rate. For example, let us assume that 50%
of LTP or LTD magnitude is expressed presynaptically as an
increase or a decrease of the release probability. In connections
with strong facilitation or strong depression (see Costa et al.,
2013, Table 1), the magnitude of LTP or LTD of steady-
state responses at ∼4Hz will then be ∼15% less than LTP
or LTD measured with single-pulses (calculated according to
Equations (5)–(7) in Costa et al., 2013). For connections with less
pronounced facilitation and depression (depression, facilitation
and facilitation-depression in Table 1 in Costa et al., 2013), and
lower presynaptic firing rates, the effect will be weaker, between
1 and 7%.

Further mechanisms limiting the level of postsynaptic activity
include negative feedback on transmitter release via fast
retrograde signaling (e.g., Pitler and Alger, 1992; Wilson and
Nicoll, 2001; Freund et al., 2003; Hashimotodani et al., 2007), or
activity-dependent changes of the extracellular level of adenosine
(Pascual et al., 2005; Wall and Dale, 2008; Halassa et al., 2009;
Lovatt et al., 2012), which has suppressive effect on synaptic
transmission in the neocortex and hippocampus (e.g., Dunwiddie
and Haas, 1985; Scanziani et al., 1992; Thompson et al., 1992;
Kerr et al., 2013; Bannon et al., 2014; Zhang et al., 2015).

Finally, tight control of activity in neurons and neuronal
networks is achieved by inhibition, including recurrent
inhibition. Strong recurrent inhibition by design limits changes
of activity level even during dramatic changes of external
input allowing neuronal networks to operate in a regime of
dynamically balanced excitation and inhibition (Wehr and
Zador, 2003; Okun and Lampl, 2008; Ozeki et al., 2009; Dorn
et al., 2010; Sun et al., 2010). Inhibitory plasticity can adjust the
strength of inhibition and maintain the excitatory/inhibitory
balance in neurons and neuronal networks (Vogels et al., 2011;
Luz and Shamir, 2012).
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These mechanisms, together with heterosynaptic plasticity,
might contribute to a multi-level system of homeostatic control
of synaptic changes and neuronal activity.

Summary and Conclusions

A long history of research supports the hypothesis that
homosynaptic plasticity provides a powerful cellular mechanism
of learning in a variety of biological systems. In this review we
argued that a complimentary form of plasticity—heterosynaptic
plasticity—represents a necessary cellular component for
homeostatic regulation of synaptic weights and neuronal activity.
The necessary properties of a homeostatic mechanism which
acutely constrains the runaway dynamics imposed by Hebbian
associative plasticity have been well-articulated by theoretical
and modeling studies. The experimentally observed properties of
heterosynaptic plasticity have introduced it as a strong candidate
to fulfill this homeostatic role, and subsequent modeling studies
which incorporate heterosynaptic plasticity into model neurons
with Hebbian-type learning synapses have confirmed its ability
to robustly provide stability and competition. In contrast,
properties of homeostatic synaptic scaling, which is triggered by
extreme and long lasting (hours and days) changes of neuronal
activity, do not fit two crucial requirements for a hypothetical
homeostatic mechanism needed to provide stability of operation
in the face of on-going associative synaptic changes. Both
the trigger and the time scale of homeostatic synaptic scaling
are fundamentally different from those of the Hebbian-type
plasticity.

Heterosynaptic plasticity, which operates on the same
time scale and is triggered by similar activity episodes as
homosynaptic plasticity, introduces a normalizing driving force
that counterbalances a tendency for runaway dynamics of
synaptic weights imposed by homosynaptic plasticity. As a
result the system maintains synapses within an operational
range, preserving the dynamic range for their changes. This
allows it to modify synapses in response to a new experience—
new learning. Segregation of synaptic weights and competition
between synapses are achieved by the differential driving forces

for the weight changes at active (homosynaptic) and inactive
(heterosynaptic) synapses. At strongly activated homosynaptic
sites, the associative driving force may be dominant, leading
to net potentiation or depression of these sub-populations of
synapses. Concurrently, the stabilizing effect of heterosynaptic
plasticity dominates at the vast number of synapses which
are inactive at that moment. As a consequence, every spike,
or burst of spikes, becomes a homeostatic signal to the
cell. Because homosynaptic and heterosynaptic changes are
induced by the same activity patterns, and take place on
the same time scale, the weight of a synapse is determined
by the balance of homosynaptic LTP, homosynaptic LTD,
and the normalizing force of heterosynaptic plasticity. This
allows networks to update the relative strength of inputs while
keeping synapses within their operational range, preserving
their abilities for further adjustments, and maintaining the
activity of neurons and networks in a stationary regime.
Importantly, heterosynaptic plasticity allows robust homeostasis

of synaptic weights and activity over a wide range of parameters:
details of STDP rules, Ca2+ thresholds, and frequencies and
correlations of presynaptic activity. Therefore, heterosynaptic
plasticity expresses all of the desired features of an intrinsic
homeostatic mechanism for stabilizing synaptic weight dynamics
after learning.

A state of the neural system, e.g., controlled by different
neuromodulators, may influence the relative balance of homo-
and hetero-synaptic plasticity promoting either associative
changes or synaptic homeostasis. Thus, hetero- and homo-
synaptic forms of plasticity interact, with their balance depending
on the state of the network, and therefore have to be studied in
combination as integrative components of the whole plasticity
system.
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Computational models of metaplasticity have usually focused on the modeling of single
synapses (Shouval et al., 2002). In this paper we study the effect of metaplasticity on
network behavior. Our guiding assumption is that the primary purpose of metaplasticity is
to regulate synaptic plasticity, by increasing it when input is low and decreasing it when
input is high. For our experiments we adopt a model of metaplasticity that demonstrably
has this effect for a single synapse; our primary interest is in how metaplasticity thus
defined affects network-level phenomena. We focus on a network-level phenomenon
called polychronicity, that has a potential role in representation and memory. A network
with polychronicity has the ability to produce non-synchronous but precisely timed
sequences of neural firing events that can arise from strongly connected groups of
neurons called polychronous neural groups (Izhikevich et al., 2004). Polychronous groups
(PNGs) develop readily when spiking networks are exposed to repeated spatio-temporal
stimuli under the influence of spike-timing-dependent plasticity (STDP), but are sensitive
to changes in synaptic weight distribution. We use a technique we have recently
developed called Response Fingerprinting to show that PNGs formed in the presence
of metaplasticity are significantly larger than those with no metaplasticity. A potential
mechanism for this enhancement is proposed that links an inherent property of integrator
type neurons called spike latency to an increase in the tolerance of PNG neurons to jitter
in their inputs.

Keywords: metaplasticity, STDP, spiking network, polychronous neural group, memory, spike latency, synaptic

weight, synaptic drive

1. INTRODUCTION
The term metaplasticity describes the ability of neurons to mod-
ulate their overall levels of synaptic plasticity as a function
of recent inputs. Models of LTP/LTD induction that include
a metaplastic mechanism have been around for some time,
with the Bienenstock, Cooper and Munro (BCM) learning rule
and its sliding modification threshold being a significant early
influence (Bienenstock et al., 1982). The BCM rule provides a
rate-dependent model of the tipping point between LTD and
LTP induction based on instantaneous neural firing rates. More
recently, Izhikevich and Desai (2003) have combined the BCM
rule with spike-timing-dependent plasticity (STDP), a learning
rule that takes the precise spike timing of pre- and post-synaptic
neurons into account. The addition of a BCM sliding modifi-
cation threshold to an STDP learning rule has also been used
to explain experimental data showing hetero-synaptic LTD of
untetanized inputs in a model of a hippocampal dentate gran-
ule cell (Benuskova and Abraham, 2007). The precise mechanism
behind metaplasticity is still an open question despite receiv-
ing much recent attention (for a review see Abraham, 2008).
Intensive research into the cellular processes behind metaplas-
ticity has uncovered multiple mechanisms that both cooperate
and compete, with the balance between the various mechanisms
varying between different brain regions.

Models based on BCM define a modification threshold for
LTP/LTD induction that is dynamically altered as a function
of previous post-synaptic spike activity. When spiking activity
increases, the modification threshold is also increased and it
therefore becomes harder to induce subsequent LTP and easier to
induce LTD. A decrease in spiking activity produces the opposite
effect, with LTP induction becoming easier and LTD induction
becoming more difficult. The BCM learning rule defines a single
modification threshold, while later versions have defined sepa-
rate thresholds for LTP and LTD (Ngezahayo et al., 2000). In
one example of a single threshold model (taken from Benuskova
and Abraham, 2007), the relationship between the modification
threshold and synaptic change is defined as follows:

ALTP(t) = ALTP(0)(1/θM(t))

ALTD(t) = ALTD(0)(θM(t)) (1)

where θM(t) is the current value of the modification thresh-
old, ALTP(0) and ALTD(0) are the baseline amplitudes of synap-
tic change, and ALTP(t) and ALTD(t) are the new amplitudes.
Typically, these models assume that the metaplastic modification
threshold is determined primarily by the post-synaptic firing rate
(e.g., Beňušková et al., 2001), although this assumption is still
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open to debate (Hulme et al., 2012). Shouval et al. (2002) suggest
that the modification threshold is more directly set by the levels
of intracellular Ca2+ while (Izhikevich and Desai, 2003) suggest
that synaptic size might also be an influence.

In a synapse whose learning is governed by a spike-timing-
dependent plasticity (STDP) rule, the direction and magnitude
of neural plasticity is determined not only by factors that govern
the level of synaptic input, but also by the precise timing of pre-
synaptic and post-synaptic spikes. Changes in synaptic plasticity
cannot therefore be predicted from either the post-synaptic fir-
ing rate or the total synaptic input alone (Izhikevich and Desai,
2003). In this scenario, the conditions under which the modifi-
cation threshold should be modified relate to the consistency of
these timings in the recent history of the synapse. We use the
term synaptic drive to describe these conditions: strongly corre-
lated spike trains with pre- before post-synaptic spike timings are
defined as producing a positive drive on synaptic plasticity, whilst
post- before pre-synaptic spike trains with identical firing rates
are defined as having a negative synaptic drive.

In the current paper we define a model of metaplasticity that
is determined by the direction and magnitude of synaptic drive,
and also by the size of each of the synaptic connections onto
the cell (Delorme et al., 2001; Guetig et al., 2003). The model
is therefore both spike-timing-dependent and reactive to synap-
tic weight extremes i.e., it resists synaptic pruning and opposes
synaptic weights that grow too large. We have chosen to define the
metaplastic modification threshold in this model as a cell-level
property that integrates the changes in plasticity that are occur-
ring at each synapse. The choice of a cell-level property, rather
than defining a modification threshold at each synapse, allows
the metaplasticity model to be integrated into a larger model of
network behavior and is supported by a recent finding that meta-
plastic effects can be seen in non-primed dendritic compartments
(Hulme et al., 2012). Previous computational models of metaplas-
ticity have typically focused on the modeling of single synapses,
although reports on the effect of metaplasticity at network-level
have recently started to appear (Clopath et al., 2010; Zenke et al.,
2013). Like any computational model of the synapse, the model
of metaplasticity we use in our experiments is motivated by a
mixture of mechanistic and computational considerations. Some
components in the model aim to account for specific empirically
identified biological mechanisms in the synapse. Other compo-
nents are included to implement a particular theoretical claim
about the function of metaplasticity—namely that it serves to reg-
ulate synaptic plasticity, by increasing it when input is low, and
decreasing it when it is high (see e.g., Hulme et al., 2012; Zenke
et al., 2013). In both cases, the model we use is heavily based
on existing models of synaptic plasticity, though it also includes
novel mechanistic and novel functional components.

The primary focus of our study is the impact of metaplasticity
on an empirically observed property of spiking neural networks
called polychronicity. Polychronous neural groups (or PNGs) are
connected groups of neurons that can be activated together
to produce polychronization, a non-synchronous but precisely
timed sequence of neural firing events (Izhikevich et al., 2004).
These stimulus-specific firing signatures form reproducible pat-
terns that are observable in the firing data generated by the

network. Polychronization requires that the connection weights
between PNG neurons be adapted to support a sequential chain of
neural firing (Martinez and Paugam-Moisy, 2009). With an STDP
learning rule, this adaptation occurs readily when spiking neural
networks are exposed to repeated spatio-temporal stimuli. The
STDP rule combined with repeated stimulation potentiates intra-
group connection weights and prunes non-contributing connec-
tions, leading to the preferential selection of stimulus-dependent
polychronous groups (Izhikevich et al., 2004).

Given that polychronous groups evolve via selective enhance-
ment of the connections between PNG neurons, it is often
assumed that the stability of adapted PNGs over an extended
period requires that these same connections be maintained.
However, polychronicity requires only that the combined input to
PNG neurons be sufficient to produce firing within a precise tem-
poral window. Theoretically therefore, PNG neurons can remain
stable within the group even if the weight value on some of their
afferent connections wanders randomly, so long as other input
connections evolve their weights to compensate. This proposed
independence of PNG stability from the weight values of spe-
cific synapses leaves the weights free to support other aspects of
the network dynamics such as competing or co-activating PNGs,
the maintenance of the balance between excitation and inhibition
(van Vreeswijk and Sompolinsky, 1996; Vogels et al., 2005), and
mixture states of synchronization and desynchronization in the
network firing activity (Lubenov and Siapas, 2008).

Evidence for polychronicity in biological networks has been
technically difficult to establish, although precise spatio-temporal
firing patterns observed in rat and monkey cortical neurons pro-
vide some supporting evidence (Villa et al., 1999; Shmiel et al.,
2006). However, in simulated networks the process of isolat-
ing structural PNGS or detecting PNG activation is straightfor-
ward (e.g., Izhikevich et al., 2004; Martinez and Paugam-Moisy,
2009). We use a recently developed technique called Response
Fingerprinting to test whether polychronicity both persists and
is stable within our model metaplastic regime (Guise et al., 2014).

A modified STDP rule that includes a metaplastic mecha-
nism is likely to have a significant effect on PNG formation
and may also be more biologically plausible than existing STDP
rules. Lazar et al. (2007) report improvements in both network
performance and stability using a combination of intrinsic plas-
ticity with STDP to produce a reduction in synaptic saturation.
A metaplastic modification to the STDP rule has the poten-
tial to maintain synaptic weights more centrally in the range
and may therefore produce a similar performance advantage.
However, the formation of polychronous groups has a signif-
icant effect on synaptic weights, resulting in a characteristic
bimodal weight distribution that opposes this predicted centraliz-
ing effect. Polychronizing pathways are very dependent on strong
connections that support convergent input to PNG neurons,
and therefore any network mechanism that affects the synaptic
weight distribution is predicted to have a significant effect on
PNG formation. Given the opposing effects of PNG formation
and metaplasticity on synaptic weight distributions, it is not clear
whether PNG formation will be supported in networks with the
new metaplastic mechanism, and if it is supported, what the effect
will be on PNG size.
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2. METHODS
2.1. METAPLASTICITY MODEL
2.1.1. Methodological preliminaries
As mentioned in the introduction, the model of metaplasticity
we implemented in our experiments was designed to accommo-
date a mixture of mechanistic and computational considerations.
The computational considerations are uppermost: we assume that
the key purpose of the metaplastic mechanism we are modeling
is to regulate synaptic plasticity, by limiting the range of weights
within any given synapse, forcing weights away from both their
upper and lower extremes. Accordingly, a key design goal for our
computational model is that it produces this effect. At the same
time, we want the model to make as much reference as possi-
ble to empirically identified mechanisms in the synapse, so that
the regulatory effect can be linked as much as possible to phys-
iological processes. On both counts our model draws heavily on
existing models of metaplasticity. A useful point of reference is the
model of metaplasticity of Zenke et al. (2013). Like our model,
this model implements an assumption that the main purpose
of metaplasticity is to regulate synaptic plasticity. However, our
model incorporates a slightly different set of mechanistic com-
ponents to achieve this effect. We will draw attention to these
differences as the model is introduced.

One difference to mention straight away is that our model
defines a metaplastic modification threshold that is a neuron-level
property: the theshold value for a given neuron is computed from
a weighted average of the threshold values of its afferent synapses.
The model is therefore best described in two sections: a synapse-
level model that weights the size of each synapse according to
the current direction and magnitude of synaptic change (synaptic
drive); and a neuron-level model that is computed as a weighted
sum of the individual synaptic values.

2.1.2. Synapse-level model
The metaplasticity model at the level of each individual synapse is
defined by a weighting function that computes a weighted value
for each synapse. The weighting function takes values represent-
ing the current synaptic weight and synaptic drive as arguments,
and returns a weighted value representing the resistance to synap-
tic weight change. The synaptic drive is dependent on both the
level of synaptic input and the precise timing of that input relative
to a back-propagating dentritic signal. In our simulated network,
we approximate the synaptic drive with a synaptic derivative, an
instantaneous measure of the direction and magnitude of change
at each synapse that is an explicit value from the original network
simulation code (Izhikevich, 2006b).

The desired weighting function needs to exert little influence
when synaptic weights are within bounds, but must step in with
increasing resistance as the weights approach the upper or lower
weight limits. One possibility, that we use throughout this paper,
is as follows:

f (di, wi) = rep(map(di))(wi−min) − rep(10−map(di))(max−wi) (2)

where:

p = precision

r = resistance

min = minimum soft limit

max = maximum soft limit

di = derivative of synapse i, di = lim�t→0
�wi
�t

wi = weight of synapse i

map(x) =

⎧

⎪

⎨

⎪

⎩

0 if 0.5(x + 10) < 0

10 if 0.5(x + 10) > 10

0.5(x + 10) if 0 ≤ 0.5(x + 10) ≤ 10

The map function maps the normal range of synaptic derivative
values (−10 to +10) into the range 0–10, and clips values out-
side of this normal range. The precision (p) and resistance (r)
parameters control the curvature and amplitude of the function.
The weight limits are determined by the parameters min and max
that specify uncapped soft limits rather than capped hard limits
on synaptic weights. Figure 1A shows the full picture for both
parameters (di and wi) over the weight range 0–10 and limiting
the range of the synaptic derivative to±10. Most combinations of
di and wi generate a weighting term that is close to zero, and the
resulting surface is therefore largely flat for these combinations.
However, the surface exponentially rises and falls in opposing
corners, producing maximum resistance to increases in synap-
tic weight when the synaptic drive is positive and the weight is
already large, and maximum resistance to decreases in synap-
tic weight when the synaptic drive is negative and the weight is
already small. However, the function generates little resistance to
large weights if the synaptic drive is negative, or to small weights
if the synaptic drive is positive, providing no impediment to
migration of synaptic weights away from the weight limits.

2.1.3. Neuron-level model
The modification threshold (θM) in this model is a neuron-level
property that determines the ease of subsequent synaptic change.
Unlike previous models, the modification threshold is dependent
on synaptic drive and therefore only indirectly dependent on the
post-synaptic spike rate or the total input. When synaptic drive
is strongly positive, θM increases, and subsequent LTP induction
becomes harder (and LTD induction becomes easier). A negative
synaptic drive produces the opposite effect by causing θM(t) to
decrease.

The modification threshold is computed as a range-limited
average of the weighting function output for each of the afferent
synaptic connections. The weighting function outputs represent
a weighted synaptic derivative for each synapse, and the aver-
age therefore represents the integrated synaptic drive across all
synaptic inputs. The weighting mechanism assumes that a global
metaplastic signal interacts with the local conditions (particularly
the synaptic size) at each synapse.

Given a weighting function f(di, wi), the modification thresh-
old is computed as follows:

θM(t) = tanh
(

I

∑n
i= 1 f (di, wi)

n

)

(3)

where:
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FIGURE 1 | Metaplasticity model for a single synapse showing the

weighting function and an example of some computed output

values. (A) A symmetrical weighting function based on Equation (2) with
parameters (r = 0.1, p = 0.05) (B) Data generated over 100 s from an
implementation of the neuron-level metaplasticity model with a single
synapse. The model consisted of two excitatory RS-type Izhikevich
neurons (Izhikevich, 2006a) with a single synaptic connection (delay =

1 ms; initial weight = 6.0 mV; max. synaptic weight = 15.0 mV). Both
neurons were directly stimulated with two evenly-spaced bursts of six
pulses at 5 Hz delivered every second, with each pre-synaptic pulse
leading the post-synaptic pulse by 5 ms (producing positive synaptic
drive). Weighting function parameter values (Equation 2) were (r = 0.1, p
= 0.05). SD, synaptic derivative; θM (t), metaplastic modification threshold;
SW, synaptic weight (mV).

I = inertia

n = number of synapses

f(di, wi) = a weighting function

The hyperbolic tangent limits the range of the modification
threshold to ±1, while the inertia parameter controls the rate of
change of θM i.e., the sensitivity of the modification threshold to
small changes in the average weighted synaptic derivative. Here
we are assuming a biophysical process that maps a wide input
range into a narrower response range such as in the proposed
power-law relationships between stimulus strength and perceived
intensity (MacKay, 1963).

Equations (2) and (3) are novel elements in a model of meta-
plasticity, in that they assume a generalized postsynaptic activity
function rather than the ‘spike counter’ assumed by existing mod-
els (see e.g., Benuskova and Abraham, 2007; Zenke et al., 2013).
However, this departure is justified in the light of recent evi-
dence that synaptic plasticity can be homeostatically regulated
by the cell-wide history of synaptic activity through a calcium-
dependent but action potential-independent mechanism (Hulme
et al., 2012).

Given the modification threshold, the amplitudes of synaptic
change in LTP and LTD can now be calculated as follows:

ALTP(t) = ALTP(0)− (ALTP(0)θM(t)
)

(4)

ALTD(t) = ALTD(0)+ (ALTD(0)θM(t)
)

(5)

The two equations in (4) are symmetrical by design: if θM(t)
is positive then the LTP amplitude (ALTP) decreases, and the
LTD amplitude (ALTD) increases by the same proportion. Unlike
the equation described by (Benuskova and Abraham, 2007) (see
Equation 1), the LTP and LTD amplitudes in Equation (4) are
modified in direct proportion to the modification threshold (θM)
and the current baseline amplitudes. In contrast, each of the
amplitudes of synaptic change in the equation of Benuskova and

Abraham (2007) differ in their relationship to the modification
threshold: ALTP is inversely proportional to θM , while ALTD is
directly proportional. If spike activity is low but consistent, the
equation of Benuskova and Abraham (2007) has the potential to
create a dramatic imbalance between ALTP and ALTD that allows
synaptic weight to increase without limit. Clopath et al. (2010)
and Zenke et al. (2013) introduced models in which only the
LTD amplitude is metaplastically modified and the LTP ampli-
tude stays constant. However, we do not have any neurobiological
evidence why only LTD would be subject to homeostatic control
and LTP not, therefore we assume that magnitudes of both are
metaplastically modified.

Metaplasticity models based on post-synaptic spike rate
restrict the modification threshold to positive values. However,
in the current model (based on synaptic drive) and in mod-
els based on post-synaptic membrane potential, both positive
and negative values are allowed (Ngezahayo et al., 2000). We
limit the range of the modification threshold to ±1 (above)
so that both the LTP and LTD amplitudes have the range 0–2
times the baseline amplitudes, and have default values of ALTP(0)
and ALTD(0) respectively. Although there is no explicit limit on
synaptic growth in Equation (4), the symmetry between the equa-
tions for LTP and LTD limits the degree of imbalance between
the two.

It is worth emphasizing that because the metaplastic mod-
ification threshold is calculated from an average of the val-
ues returned by the weighting function, the resistance to
synaptic weights that near the limits also applies only on aver-
age. Therefore, individual synapses are allowed to grow with-
out limit so long as the average across all synaptic inputs is
within the allowed weight range. Synaptic pruning can still
therefore occur, even if the value for weight limit resistance
in Equation (2) is large. Likewise, while individual synapses
are allowed to grow large, they will increasingly dominate the
weighted average as they grow, providing an implicit limit to their
growth.
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2.2. NETWORK SIMULATIONS
2.2.1. Networks
For network simulations we use a spiking neural network plat-
form we have developed called Spinula (Guise et al., 2013) that is
based on the reference implementation from Izhikevich (2006b).
Twenty different networks were generated for these experiments,
with each network composed of 1000 Izhikevich neurons (800
excitatory RS type and 200 inhibitory FS type). Within each net-
work each simulated neuron was connected to 100 randomly
selected post-synaptic neurons with the restriction that inhibitory
neurons were connected to excitatory neurons only. Inhibitory
connections were assigned a 1 ms conduction delay while excita-
tory connections were randomly assigned a delay in the range 1–
20 ms. Connection weights were initialized to the values+3.0 mV
(for excitatory weights) and −2.0 mV (for inhibitory weights).
Each network was then matured for 2 h by exposure to a 1 Hz
random input under the influence of a spike-timing-dependent
plasticity (STDP) rule. The STDP rule was temporally asymmet-
ric and with parameters as in (Izhikevich, 2006a) i.e., A+ = 0.1
and A− = 0.12. Random input was generated by an independent
Poisson process on each neuron.

2.2.2. Training
Networks were trained on a 5 Hz stimulus with a 1 Hz random
input for 180 s (internal simulation time). Guise et al. (2014)
have previously reported that PNG size reaches a plateau within
around 2 min with this training protocol. Each stimulus was com-
posed of forty firing events arranged in an ascending pattern (see
Figure 2 for an example of the Ascending pattern, and Guise et al.,
2014, for further details). Metaplasticity-related parameters were
r = 0.1; p = 0.5; inertia = 0.2; maximum synaptic weight =
10.0 mV (hard limit). Following training, synaptic weight dis-
tributions were generated from the saved synaptic weights for
each network. The number of neurons participating in PNG
activation was assessed by generating a Response Fingerprint for
each network.

2.2.3. Response fingerprinting
The effect of the metaplasticity model on large networks of
100,000 synapses was examined using a technique we have
recently developed called Response Fingerprinting (Guise et al.,
2014, for implementation details see Guise et al., 2013a). A
Response Fingerprint is a probabilistic representation of PNG
activation that describes the spatio-temporal pattern of firing
within a network in response to an input stimulus. It consists of a
set of time windows within which specified neurons are likely to
fire with empirically determined probabilities; information can
be combined across time windows using Bayesian techniques to
derive an aggregate estimate of the likelihood of the stimulus. The
effect of metaplasticity on the ability of a network to polychronise
was assessed by comparing the Response Fingerprints gener-
ated by the network with and without metaplasticity enabled.
Response Fingerprints were generated by profiling the firing event
data in the presence of a 1 Hz random background and identify-
ing peaks in the histograms using a final consistency threshold
of 0.75, a measure of the consistency of spiking within each peak
region.

2.2.4. Connection activation
The presentation at fixed intervals of a known stimulus (one on
which a network has been trained) produces a regular pattern of
firing reflecting the activation of a PNG. The network connec-
tions can be partitioned into those that are regularly activated
by the stimulus and those that are not, allowing an examina-
tion of the differential effect of metaplasticity on connections that
participate in PNG activation vs. non-participating connections.
The partitioning procedure involves attempting a fit for each of
the 100,000 connections in each network to firing data generated
from the network in response to the stimulus: for each connec-
tion and each pair of firing events in the firing data, we label
the connection as active if connection length ≤ time difference ≤
connection length+jitter, otherwise the connection is labeled non-
active i.e., if the time difference between firing events is longer

FIGURE 2 | Examples of stimuli and the stimulus response. (A) The
Ascending pattern as a 1 Hz or 4 Hz stimulus. (B) The response to a 4 Hz
stimulus. A network trained on the Ascending pattern was repeatedly
presented with the same pattern at 4 Hz with a 1 Hz random background. The
figure shows a randomly selected response frame between t = 2000 and

t = 2250 ms. The input pattern can also be seen as an ascending sequence
of firing events in the first 40 ms of the frame. The network responds to this
pattern with an avalanche-like burst of activity, that builds as the signal
arrives, and then terminates quite suddenly when activity in the pool of
inhibitory neurons reaches a critical threshold.
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than the connection length by some small amount then the pre-
synaptic spike was probably a contributor to the post-synaptic
firing event and can be considered to be a part of the PNG
activation. The allowed variation or jitter is typically set to 2 ms.

2.2.5. Input space response
The Input Space Response (ISR) of a neuron is produced by vary-
ing the firing times of each of the afferent neurons over a defined
range and recording which of the resulting spatio-temporal pat-
terns produces consistent firing of the post-synaptic neuron. This
input space of potential firing patterns has the same dimension as
the number of inputs to the target neuron, and the active input
space is the subset of the input space that produces firing of the
target. For example, neuron 4 in Figure 8 has three input neu-
rons. If the firing times of 1, 2 and 3 are systematically varied
over the range 1–20 ms (keeping connection delays fixed) then the
combination of all inputs produces a 20× 20× 20 cube of spatio-
temporal patterns, only some of which produce firing of neuron
4. With just three inputs the cube may conveniently be flattened
to two dimensions by taking the difference between each pair of
firing times i.e., (t1− t2) and (t2− t3), where (t1, t2, t3) are the
firing times of neurons 1, 2, and 3. Only two difference pairs are
required as the remaining difference (t1, t3) is constrained by the
other two. This 2D projection has the additional benefit of remov-
ing redundancies, as many of the patterns in the original cube are
just shifted versions of the same spatio-temporal pattern.

3. RESULTS
The intention of the metaplasticity model was to force the synap-
tic weight values away from the extremes and toward the middle
of the weight range. However, in networks with many afferent
connections we might expect this effect to be diluted by the
large number of synaptic inputs onto each neuron. Nevertheless,
the metaplasticity model attempts to maintain a central weight
for each synapse on average, and might therefore be expected to
increase the number of non-saturated weights in the network.
Significantly, this predicted effect opposes the bimodal weight dis-
tributions observed during PNG formation. It is unclear which
of these effects will be stronger, the PNG-formation effect that
moves synaptic weights toward the limits through STDP, or the
metaplasticity effect that moves weights toward the center of the
range.

3.1. OVERALL EFFECTS
3.1.1. Weight distributions
The results on twenty large networks of 100,000 synapses each
are shown in Figure 3. Metaplasticity was found to have a signif-
icant effect on the distribution of excitatory synaptic weights in
each network (inhibitory weights are non-plastic and are there-
fore not shown in Figure 3). For convenience, each of the eighty
thousand excitatory connections was categorized into just one
of three weight groups as follows: synaptic connections with
zero weight (pruned synapses); connections with the maximum

FIGURE 3 | The effect of metaplasticity on twenty large networks

showing the change in PNG size (A), or changes in synaptic weight

distributions (B–D) with metaplasticity either enabled or disabled.

The boxes in each box-and-whisker plot show the location of the middle
50% of the data, while whiskers show either the maximum (minimum)
value or 1.5 times the interquartile range (IQR). Outliers that are outside
1.5 times the IQR are shown as circles (Crawley, 2012). A. Change in the
average number of PNG neurons (PNG size). (B–D) Change in average
synaptic weight distributions. Each of the 80,000 excitatory connections
in each network was assigned to one of the following categories: Pruned

(synaptic weight of zero), Saturated (maximum synaptic weight), Other
(non-zero and non-saturated synaptic weight). Data: PNG Size = (means:
with metaplasticity = 493, no metaplasticity = 426) (paired t-test: t =
15.0106, p < 0.001 (2-tailed), d.f. = 19). Pruned = (means: with
metaplasticity ≈ 69400, no metaplasticity ≈ 71000) (paired t-test: t =
18.0874, p < 0.001 (2-tailed), d.f. = 19). Saturated = (means: with
metaplasticity ≈ 9300, no metaplasticity ≈ 8300) (paired t-test: t =
20.4666, p < 0.001 (2-tailed), d.f. = 19). Non-saturated = (means: with
metaplasticity ≈ 21300, no metaplasticity ≈ 20800) (paired t-test: t =
8.2596, p < 0.001 (2-tailed), d.f. = 19).
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synaptic weight (saturated synapses); and the remaining con-
nections that were neither pruned or saturated (non-saturated
connections). The overall effect of metaplasticity on these net-
works was a shift in the weight distribution toward larger weights
when metaplasticity is enabled.

Pruned synapses were particularly affected (see Figure 3B).
The number of pruned synapses dropped significantly when
metaplasticity was enabled relative to the number with meta-
plasticity disabled, producing an increase in the number of effec-
tive connections (i.e., those with non-zero weight). On average,
around 1500 additional connections were added to the net-
work when metaplasticity was enabled and these were distributed
between both saturated and non-saturated connections, affect-
ing the counts for these weight groups. The number of saturated
connections was therefore significantly increased with approx-
imately 1000 additional connections becoming saturated when
metaplasticity was enabled (see Figure 3C). There was also a sig-
nificant increase in the number of non-saturated connections
(Figure 3D): around 500 additional non-saturated connections
were observed with metaplasticity enabled, relative to a network
with no metaplasticity as originally predicted from the single
synapse model.

3.1.2. PNG Size
Of particular relevance to the focus of this paper, metaplastic-
ity also produced a significant increase in the average PNG size
across networks (see Figure 3A): the number of PNG neurons was
significantly higher with metaplasticity enabled than with meta-
plasticity disabled. There was also a significant increase in the
excitatory firing rate measured at the end of the training period

when networks were trained with metaplasticity enabled [t =
17.7123, p < 0.001 (2-tailed), d.f. = 19; mean (enabled) = 6.0;
mean (disabled)= 5.1] (results not shown).

3.2. EFFECTS ON PNG CONNECTIONS
Given the observed increase in PNG size when metaplasticity is
enabled, it is worth considering the differential effect of meta-
plasticity on the weight distributions of connections that do or
do not participate in PNG activation. This entails detecting those
connections that are regularly activated by the stimulus, allowing
the network connections to be partitioned into PNG connections
(i.e., those that participate in PNG activation) and non-PNG
connections (i.e., those that do not).

3.2.1. Weight distributions
The effect of metaplasticity on the proportion of PNG vs. non-
PNG connections in each of the weight groups of Figure 3 can
be seen in Figure 4. There is a significant interaction between
the metaplasticity status of the networks and the PNG partici-
pation of the connections for some but not all of these weight
groups. Saturated weights increase for PNG connections when
metaplasticity is enabled, but not for non-PNG connections. For
the non-saturated weight group both PNG and non-PNG con-
nections increase in numbers when metaplasticity is enabled, but
with no significant interaction for this weight group. Particularly
notable is that, despite the overall decrease in pruned weights
observable in Figure 4, the number of pruned weights in the PNG
group actually increases when metaplasticity is enabled. These
effects of metaplasticity are small, but given the strongly recur-
rent structure of these networks, they might still have important
consequences on the network dynamics.

FIGURE 4 | The effect of metaplasticity on the proportion of PNG vs.

non-PNG connections. Connections were assigned to three categories as in
Figure 3. In each weight category, connection numbers were counted for
each combination of PNG participation and metaplasticity status i.e.,
PNG/with metaplasticity, PNG/no metaplasticity, non-PNG/with
metaplasticity and non-PNG/no metaplasticity. Each of the four plotted values
in each graph represents the mean over twenty different networks with
metaplasticity enabled or twenty networks with metaplasticity disabled. The
vertical bars on each plotted value represent one standard deviation above
and below each plotted mean. However, for the Pruned data the activated vs.
non-activated values are too far apart to be seen clearly using this plotting
method. The Pruned data is therefore plotted as two boxplot graphs

representing the activated vs. non-activated values, with each boxplot
representing the mean and range for the same twenty networks with
metaplasticity either enabled or disabled. The interaction between PNG
participation and metaplasticity status is significant for the Saturated and
Pruned groups but not for the Non-saturated group. Data: Saturated =
(means: PNG/no metaplasticity 4595; PNG/with metaplasticity 5662;
non-PNG/no metaplasticity 3658; non-PNG/with metaplasticity 3601).
Non-Saturated = (means: PNG/no metaplasticity 294; PNG/with
metaplasticity 532; non-PNG/no metaplasticity 512; non-PNG/with
metaplasticity 781). Pruned = (means: PNG/no metaplasticity 1038;
PNG/with metaplasticity 1533; non-PNG/no metaplasticity 69903;
non-PNG/with metaplasticity 67891).
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3.2.2. PNG Size
The results in Section 3.1.2 show a significant increase in the
number of neurons involved in PNG activation when metaplas-
ticity is enabled. A technique for partitioning connections allows
an alternative view of PNG activation size in terms of the number
of participating connections. Figure 5 shows the effect of meta-
plasticity on PNG connection counts for each of the 20 indepen-
dent networks in Figure 3. Unsurprisingly, given the previously
observed increase in the number of PNG neurons, enabling meta-
plasticity produces a significant increase in the total number of
PNG connections in each network. Interestingly, most of this
increase comes from additional excitatory connections that are
recruited into the PNG activation when metaplasticity is enabled.

3.3. EFFECTS OF VARIATION IN THE METAPLASTICITY PARAMETERS
All of the effects reported above used the same values for the resis-
tance (r) and precision (p) metaplasticity parameters (r = 0.1
and p = 0.5). In this section we briefly discuss some experiments
with alternative parameter values. Figure 6 shows the effect of a
random selection of alternative values on the PNG size distribu-
tions. The size distribution with metaplasticity disabled is shown
on the left for comparison. These results allow a few preliminary
observations. Firstly, there is a strong interaction between the two
metaplasticity parameters: for instance setting r to very small val-
ues has the same effect as disabling metaplasticity, regardless of
the value of p. Secondly, metaplasticity certainly has a positive
effect on PNG size over a considerable range of values of r and
p, so the effects we observed are not due to fortuitous or carefully
tweaked settings of these parameter values.

3.4. A ROLE FOR SPIKE LATENCY?
A particularly interesting direction of research has been the inter-
action of metaplasticity with a rarely studied phenomenon called
spike latency that is an intrinsic property of the integrator type
neurons employed as excitatory cells in this study (Izhikevich,
2007). Spike latency is the delay in spike generation that occurs
when a neuron is stimulated at near threshold levels. A simple

FIGURE 5 | The effect of metaplasticity on the the number of PNG

connections. Left: Connection counts for excitatory PNG connections.
Middle: Connection counts for inhibitory PNG connections. Right: Total
connection counts. Data: Excitatory = (means: +meta ≈ 7730 −meta ≈
5930) (paired t-test: t = 27.5989, p < 0.001 (2-tailed), d.f. = 19) Inhibitory =
(means: +meta ≈ 6120 −meta ≈ 5730) (paired t-test: t = 7.2883,
p < 0.001 (2-tailed), d.f. = 19) Total = (means: +meta ≈ 13900 −meta ≈
11700) (paired t-test: t = 23.1757, p < 0.001 (2-tailed), d.f. = 19).

demonstration can be seen in Figures 7A,B. Figure 7A shows a
small network of four neurons in which neurons 1, 2, and 3 pro-
vide input to neuron 4. In Figure 7B we see the effect of varying
levels of stimulation on the firing time of neuron 4 as the con-
nection weights are incremented together in fixed-sized steps. If
the input level is barely superthreshold (at 17 mV), neuron 4
spikes at around 30 ms (including connection delays). However,
as the input level is increased the firing time of neuron 4 migrates
backwards until all three connection weights are saturated.

Spike latency can explain some unusual results in the dynamics
of connection weights. If a network such as the one in Figure 7A is
repeatedly stimulated with a firing pattern that is congruent with
the connection delays then the interaction of STDP with the con-
vergent impulses arriving on neuron 4 produces a strong positive
synaptic drive that causes the weights on all three connections to
increase to saturation and stay there. However, small changes in
the network parameters can produce the effect demonstrated in
Figure 7C in which the weight of Connection C first increases
and then decreases. This effect was engineered by decreasing the
initial weight on C and making the Connection C delay just a lit-
tle longer than the delays on A and B. In the first 5 s of training
the spike arrival time on C occurs before spiking of neuron 4, as
is also true of Connections A and B. However, as the combined
connection weights increase causing the firing time of neuron 4
to migrate backwards, the spike arrival time on C occurs after
neuron 4 firing, producing synaptic depression on C.

We hypothesize that spike latency is involved in the underlying
mechanism that supports the stability of polychronization, and
hence in the ability of PNGs to extend. In large networks with
recurrent connections, the effect of recurrent input and other
factors such as random firing influence the firing probabilities
of PNG neurons in response to subsequent activating stimuli,
resulting in complex and unpredictable dynamics. Nevertheless,
PNGs are able to exist and even extend, despite this input variabil-
ity that threatens their stability. The neurons in a polychronous
group are exposed to a wide range of spatio-temporal input pat-
terns that we refer to as an input space. Individual PNG neurons
fire in response to only some of these input patterns, and this
subset of the input space we term the active input space. Input pat-
terns of particular significance in the active input space are those
that result from polychronization in neighboring PNG neurons.
However, even these polychronising input patterns can occur with
considerable jitter in impulse arrival times due to the complex
dynamics of the network. It therefore seems to us that a mecha-
nism that expands the size of the active input space (i.e., the range
of patterns that produce neural firing) will increase the firing
probability of each PNG neuron in response to the current wave
of polychronization. Expansion of the active input space should
therefore increase the stability of polychronization, resulting in
extended polychronization and an increase in PNG size.

Spike latency allows the precise firing timing to be a function
of the level of afferent input, potentially allowing an increase in
the range of inputs that produce firing. Our current hypothesis
is that spike latency allows increased flexibility in the precise tim-
ing of neural firing, producing an expansion of the input space
for each PNG neuron. To see how this might work, consider the
network shown in Figure 8A. This potential polychronous group
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FIGURE 6 | Changes in the distribution of PNG sizes produced using

different values for the metaplasticity parameters r and p. Each
boxplot shows the mean and distribution of PNG sizes produced from
twenty different networks using the specified values for resistance and
precision. The two left-most plots are taken from Figure 3A: the first
shows the PNG sizes produced with metaplasticity disabled and the
second shows the PNG sizes produced with the original metaplasticity
parameters (r = 0.1; p = 0.5). The remaining five boxplots show the

effect of other parameter values on the PNG size distribution. The
significance of these effects are as follows: r = 0.0001 and p = 0.1: no
significance; r = 0.001 and p = 0.12 (mean = 456: paired t-test: t =
7.319, p < 0.001 (2-tailed), d.f. = 19); r = 0.1 and p = 0.05 (mean =
459: paired t-test: t = 7.0517, p < 0.001 (2-tailed), d.f. = 19); r = 0.5 and
p = 0.01: no significance; r = 100.0 and p = 0.5 (mean = 488: paired
t-test: t = 11.2943, p < 0.001 (2-tailed), d.f. = 19). The value of the
inertia parameter was 0.2 in all cases. ∗∗∗p < 0.001.

FIGURE 7 | The effect of spike latency. (A) The network topology: three
neurons providing input to a single output neuron. (B) Near threshold inputs
produce a delayed spiking response. The firing time of neuron 4 decreases as
the combined synaptic weights of each of the three inputs is increased.
Weights on connections A, B, and C were incremented together in steps of
1 mV in the range 17–30 mV. Connection delays were randomly chosen for

each experiment. (C) Spike latency explains the switch in synaptic drive that
is observed with some combinations of delays on connections A, B, and C.
Here a switch in synaptic drive on connection C during training produces an
initial increase in synaptic weight followed by a decrease. The training
stimulus involved repeatedly firing neurons 1, 2, and 3 together at 5 Hz.
Connection parameters (A, B, C): delays = 10; 10; 15; weights = 8.0; 8.0; 6.0;.

is composed of six neurons and is derived from the four neuron
network of Figure 7. Varying the firing times of the initial three
input neurons (1, 2, and 3) produces a wide range of spiking pat-
terns on neuron 4 that together define the input space. With three
inputs, this input space is a three dimensional cube that includes
the subset of patterns that produce firing of neuron 4.

Figure 8B shows the input space of neuron 4. For conve-
nience, the three-dimensional input space has been flattened to
two dimensions by taking the difference between each pair of fir-
ing times for the three input neurons. Nevertheless, the figure
represents the entire input space i.e., all possible spatio-temporal
patterns onto neuron 4 that can be generated if each input neu-
ron is allowed to independently vary its firing time in the range

0–20 ms. Each circle in Figure 8B represents a pattern, with filled
circles denoting those patterns that produce firing of neuron 4
(the active input space). The larger the proportion of the avail-
able input space that is consumed by the active input space, the
more flexible the neuron is to jitter in its spatio-temporal inputs.

We can also examine the active input space of neuron 6 rela-
tive to these same three input neurons (1, 2, and 3) as shown in
Figure 9. The active input space for neuron 6 determines the fir-
ing probability of neuron 6 under variable conditions, and hence
determines the ability of the potential PNG in Figure 9A to extend
beyond neuron 4. The left column of Figure 9 (Non-optimized)
shows changes in the input space as the phase is shifted through
each of four different delays on the 4–6 connection. Importantly,

Frontiers in Computational Neuroscience www.frontiersin.org February 2015 | Volume 9 | Article 9 | 51

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive


Guise et al. Enhanced polychronization

FIGURE 8 | The neural input space. (A) A potential polychronous group
consisting of six neurons. (B) The input space of neuron 4, showing the
patterns that produced firing of neuron 4 as filled circles and patterns that
failed to produce firing as unfilled circles. Neurons 1, 2, 3, and 4 have the
same topology as in Figure 7. The two axes represent the firing time
differences (t1− t2) and (t2− t3), where (t1, t2, t3) are the firing times of
neurons 1, 2, and 3. All connection weights are initially set to the maximum

synaptic weight of 10 mV. Neuron 4 therefore requires at least two
convergent inputs to reach firing threshold. The ability of each firing time
combination to produce firing of neuron 4 is tested over 400 trials in
fixed-sized 250 ms test frames. Consistent firing requires that neuron 4 fire in
at least 100 of the 400 test frames. When weights are saturated, just two of
the three inputs are required for firing of neuron 4, producing the arms in the
input space diagram.

the active input space for many of these phases can be expanded
by shifting the firing time of neuron 4 to a time that is congruent
with the 4–6 and 5–6 connection delays [right column of Figure 9
(Optimized)]. These shifts in neuron 4 firing time are produced
by changes in the connection weights of the three input neurons
(1, 2, and 3) and the effects of spike latency. For now we have
performed this optimization for each pattern in the input space
by trialing each of ten weight steps on the input neuron connec-
tions and selecting weights that produce firing of neuron 6 (if
any). An important research question, and one that has yet to be
resolved, is whether the interaction of any of the known biologi-
cally plausible mechanisms such as metaplasticity and STDP can
produce stability enhancement of polychronous groups through
a mechanism that optimizes the active input space of each PNG
neuron.

4. DISCUSSION
The BCM model famously introduced the idea of a sliding modi-
fication threshold in which the tipping point for LTP/LTD induc-
tion is determined by the average of recent spiking activity in
the post-synaptic cell. Many subsequent models of metaplastic-
ity have followed the BCM model in defining a spike-activity-
dependent modification threshold, although these models are
typically independent of synaptic size and are not able to prevent
synapses from becoming arbitrarily large. In the current study
we employ a model of metaplasticity in which the modification
threshold (θM(t)) is not spike-activity-dependent but is instead
set more directly from the current synaptic weight and the level of
a spike-timing-dependent variable, the synaptic drive. An imple-
mentation of this model was shown to have a significant effect
on the size of polychronous groups in large recurrent networks.
An understanding of the underlying mechanism for this enhance-
ment is likely to shed light on the principles of PNG formation
and perhaps therefore also on the processes of memory formation
and storage.

A spike-timing-dependent learning rule appears to be a signif-
icant contributor to synaptic plasticity in many parts of the brain.
As shown by (Izhikevich and Desai, 2003), BCM-like behavior
can be reproduced with an STDP learning rule using uncorre-
lated or weakly correlated firing of pre- and post-synaptic cells,
provided that the spike interaction model conforms to a vari-
ant of nearest-neighbor. Biologically realistic spiking patterns
are likely to have both weakly correlated and strongly corre-
lated components, with polychronous firing patterns providing
an important example of the latter. With strongly correlated spik-
ing patterns the direction and magnitude of synaptic plasticity
is no longer determined by the post-synaptic spike rate alone:
spike trains with pre- before post-synaptic spike timings pro-
duce an upwards or positive drive on synaptic plasticity, whilst
post- before pre-synaptic spike trains with identical firing rates
produce the opposite effect, a downwards or negative synaptic
drive.

As discussed in Section 2.1.2, our metaplastic mechanism was
found to maintain the weight of a single synapse within prede-
fined limits without reaching maximum capped values. However,
when translated into a large scale network composed of one
hundred thousand synapses this moderating influence was con-
siderably diluted and capping at the global weight limits was no
longer achieved. Nevertheless, our modeling results show that
metaplasticity has a small but significant effect on the distribu-
tion of synaptic weights in the network, producing an overall
shift toward larger weights. Networks with metaplasticity show a
decrease in the number of pruned synapses, and an increase in the
number of saturated and non-saturated synapses (Figure 3). This
trend toward stronger weights is particularly noticeable within
the PNG connection group where there is a significant preference
for saturated weights relative to the non-PNG connection group.
However, there is also a significant increase in pruned synapses
within this group, in contrast to the overall trend observed in
Figure 3.
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FIGURE 9 | Optimization of spike latency produces expansion of the

input space, potentially allowing a nascent PNG to extend. The
optimization involves systematically varying the weight on connection 1–4
over the range 0–10 mV in order to shift the firing time of neuron 4. Neuron 5
has a fixed 1 ms conduction delay and is fired at a fixed offset of 19 ms relative
to the current test frame. The input space of neuron 6 is shown, both with and
without optimization and at one of four different delays on the 4–6
connection. There is a phase shift in the input space of neuron 6 as delays
increase from 2 to 5 ms (left column). Optimization of neuron 4 spike latency
produces an expansion in the input space of neuron 6 (right column).

Other effects of metaplasticity include an increase in the
excitatory firing rate, and an increase in the number of PNG
connections. Much of the increase in the size of the PNG con-
nection group is due to an increase in participating excitatory
connections, although both excitatory and inhibitory connections
show an increase in participation with metaplasticity (Figure 5).
Perhaps the most interesting finding from the current study was
the sensitivity of PNG size to these small metaplasticity-induced
changes in network parameters. Small changes in weight distri-
butions produced a 16% increase in PNG size, suggesting that
factors that alter the network connectivity have a strong influence

on the stability of neural circuits based on polychronization. A
more refined version of the current metaplastic model with care-
fully tuned parameters might therefore substantially influence the
efficiency of polychronization.

Together these results suggest that neurons that participate in
polychronization prefer a smaller number of stronger afferent
connections relative to non-participating neurons. A high level
account of the effects of metaplasticity on PNG size might there-
fore be constructed by observing the overall match between the
effects of metaplasticity on the synaptic weight distribution (i.e.,
more saturated and non-saturated weights), and the preference of
PNG connections for saturated weights. However, a deeper expla-
nation is required that describes the underlying mechanism whilst
accounting for the pruning of PNG connection weights. To this
end we have explored a number of avenues such as the effect of
metaplasticity on the temporal firing precision, or on the evo-
lution of synaptic weights over time. The effect of spike latency
on the active input space of PNG neurons has been a particu-
larly interesting research direction. Initial results show that spike
latency allows increased flexibility in the precise timing of neu-
ral firing, and that expansion of the active input space for each
neuron can be achieved by optimization of spike latency. We spec-
ulate that a mechanism that optimizes the active input space of
each PNG neuron might produce stability enhancement of poly-
chronous groups through the interaction of metaplasticity with a
biologically plausible learning rule such as STDP.
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Synaptic plasticity is often explored as a form of unsupervised adaptation in cortical

microcircuits to learn the structure of complex sensory inputs and thereby improve

performance of classification and prediction. The question of whether the specific

structure of the input patterns is encoded in the structure of neural networks has been

largely neglected. Existing studies that have analyzed input-specific structural adaptation

have used simplified, synthetic inputs in contrast to complex and noisy patterns found

in real-world sensory data. In this work, input-specific structural changes are analyzed

for three empirically derived models of plasticity applied to three temporal sensory

classification tasks that include complex, real-world visual and auditory data. Two forms

of spike-timing dependent plasticity (STDP) and the Bienenstock-Cooper-Munro (BCM)

plasticity rule are used to adapt the recurrent network structure during the training

process before performance is tested on the pattern recognition tasks. It is shown that

synaptic adaptation is highly sensitive to specific classes of input pattern. However,

plasticity does not improve the performance on sensory pattern recognition tasks,

partly due to synaptic interference between consecutively presented input samples. The

changes in synaptic strength produced by one stimulus are reversed by the presentation

of another, thus largely preventing input-specific synaptic changes from being retained

in the structure of the network. To solve the problem of interference, we suggest that

models of plasticity be extended to restrict neural activity and synaptic modification to a

subset of the neural circuit, which is increasingly found to be the case in experimental

neuroscience.

Keywords: synaptic plasticity, spiking neural networks, recurrent neural networks, inference, pattern recognition

1. Introduction

Recurrent neural networks consisting of biologically based spiking neuron models have only
recently been applied to real-world learning tasks under a framework called reservoir computing
(Maass et al., 2002; Buonomano and Maass, 2009). The models of this framework use a recurrently
connected set of neurons driven by an input signal to create a non-linear, high-dimensional
temporal transformation of the input that is used by single layer perceptrons (Rosenblatt, 1958)
to produce desired outputs. This restricts the training algorithms to a linear regression task, while
still allowing the potential to work on temporal data in a non-linear fashion.

Given an initially generated static connectivity, reservoir computing is based on the principle of
random projections of the input signal in which the network structure is completely independent
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of the input patterns. In these models, the only features learned
by the trainable parameters of the perceptron readout are the
correlations between the randomly projected features and the
desired output signal.

We believe that learning in neural networks should go further
than supervised training based on error from the output. All
synapses should adapt to be able to encode the structure of the
input signal and ideally, should not rely on the presence of a
desired output signal from which to calculate an error with the
actual output. The neural activity generated by the input signal
should provide enough information for synapses to adapt and
encode properties of the signal in the network structure. By
applying unsupervised adaptation to the synapses in the form
of biologically derived plasticity rules (Bienenstock et al., 1982;
Bi and Poo, 1998; Wittenberg and Wang, 2006) it is hoped to
provide the means for the recurrently connected neurons of the
network to learn a structure that generates more effective features
than a completely random projection that is not specific to the
input data.

On a conceptual level, unsupervised learning is important in
the understanding of how synaptic adaptation occurs because
it is still unknown what the sources of supervised signals are
in the brain, if any exist. From early work on synaptic self-
organization (Hebb, 1949), the principle of learning has rested on
correlations in neural activity becoming associated together and
forming assemblies that activate simultaneously. These structures
are thought to encode invariances in the sensory input that are
key in developing the ability to recognize previously encountered
patterns.

In this work we will explore the impact of applying several
biologically derived plasticity mechanisms on three temporal
sensory discrimination tasks. Two forms of spike-timing
dependent plasticity (STDP) (Bi and Poo, 1998; Wittenberg and
Wang, 2006) will be tested, along with the Beinenstock-Cooper-
Munro (BCM) rule (Bienenstock et al., 1982). The sensory tasks
will include real-world speech and video data of human motion.
Synaptic plasticity will be applied in an unsupervised pre-training
phase, before the supervised regression of the perceptron readout
occurs. We will compare the impact that plasticity has on the
performance in these tasks and also analyze the specific structural
adaptation of the weight matrices between each of the classes
of input sample in each task. A method will be introduced
to evaluate the extent to which the synaptic changes encode
class-specific features in the network structure.

Interference between different samples is a well-established
phenomenon in sequentially trained learning models
(McCloskey and Cohen, 1989; Ratcliff, 1990; French, 1999).
When presented to a learning model, an input pattern will
cause specific changes to be made in the models parameters—in
the case of neural networks, the synapses. However, during
this encoding process, existing structure in the synaptic values
is interfered with. In this way, consecutive input patterns
disrupt previously learned features, sometimes completely. This
effect is known as forgetting. It is of direct concern to neural
networks trained on sensory recognition tasks that consist of
spatio-temporal patterns projected through a common neural
processing pathway. We will quantify the level of interference

between the synaptic parameters for each tested plasticity model
being applied to each type of sensory data.

Existing studies report that adapting neural circuits with
plasticity improves their performance on pattern recognition
tasks (Yin et al., 2012; Xue et al., 2013) but there is no analysis of
how the adaptation of synaptic parameters leads to this result. On
the other hand, work that does detailed analysis on the structural
adaptation of the network does so using synthetic input patterns
that are already linearly separable (Toutounji and Pipa, 2014) or
Poisson inputs projecting to single and recurrently connected
neurons (Gilson et al., 2010). For a review of work applying
plasticity models to improve the general properties of neural
networks, the reader is referred to Chrol-Cannon and Jin (2014a).

The experiments undertaken in this work will be performed
on a typical reservoir computing model with its recurrent
connections adapted with plasticity. Two main angles of analysis
are made; we determine the strength of input specific synaptic
adaptation and the extent to which consecutive inputs interfere
within the synapses. Both of these are achieved through analysis
of the change in weight matrix in response to each pattern.

2. Results

2.1. Training Recurrent Networks with Plasticity
Our training and analysis is performed on a typical liquid state
machine (LSM) model (Maass et al., 2002) that is trained to
correctly classify temporal input patterns of sensory signals.
Details of the models and simulations can be found in the
Section 4. Here we present an overview of the experimental
procedure.

An LSM consists of recurrently connected spiking neurons in
which transient activity of the neurons is driven by time-series
input sequentially exciting their membrane potential. In order
for an output to be produced from the network and used to train
a supervised readout, a snapshot must be taken of the transient
activity which we call the state vector. This vector is weighted and
summed to produce an output, the weights of which are trained
with linear regression.

In our experiments we adapt the recurrent connections with
synaptic plasticity before taking the state vectors used for pattern
recognition. We intend to change the synaptic weights from their
initial random structure, to values that are adapted to the general
statistics of the input signals. After this pre-training process, we
take the state vectors for each sample in the data set and use
it to train a set of readouts to recognize labeled patterns in the
data. Performance of pattern recognition is only a small aspect
of our analysis of synaptic adaptation through plasticity. The
analysis methodology described in the next subsection requires
the information of how each sample of input causes unique
adaptation of the synapses. Therefore, for convenience, when
collecting the liquid state vectors of a given sample from the
neural activity, we also compute the synaptic change during
the presentation of that sample and store the weight matrix
adaptation.

Figure 1 illustrates the three step process just described,
delineated into; a pre-training phase of synaptic plasticity, a
collection of the liquid state vectors and weight adaptation
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matrices, and a supervised training phase of linear readouts for
pattern recognition.

2.2. Description of Sensory Inputs
Complex sensory signals are projected through a common set
of nerve fibers to cortical regions that must learn to distinguish
between them based on differences in their spatial-temporal
features.

Three sensory recognition tasks are selected, among which
two of them consist of real audio and video signals of human
speech and motion. For all tasks, the neural network output is
trained to respond uniquely to each of the different types of input
sample and therefore be able to perform effective recognition
between them. Also, sample specific synaptic adaptations are
analyzed to determine if unique structure is learned within the
network due to synaptic plasticity.

The auditory task is to distinguish between nine different
speakers based on short utterances of the vowel /ae/. Each of
the 640 samples consists of a frequency “spectrogram” that
plots frequency intensity over a sequence of audio time frames.
Figure 2 plots an example sample from each of the nine speakers.

The visual task is to distinguish between six types of
human behavior; boxing, clapping, waving, walking, running
and jogging. The 2391 samples are video sequences of many
different subjects performing those six motions. There is a

simple pre-processing stage that converts the video data into
a sparse representation before being used as input to the
neural network. Extracted still frames and processed features are
plotted in Figure 3 for one subject performing each of the six
behaviors.

A synthetic data set is generated to model a low spatial
dimension but very high frequency temporal structure, in
contrast to the previous two sensory tasks. Three functions
generate time-varying single dimensional signals that the
network learns to distinguish between. A complete description
and method for generating the data is described in Jaeger (2007)
(Figure 4) illustrates part of this signal.

The auditory and visual tasks are described in Kudo
et al. (1999) and Schuldt et al. (2004), respectively, with data
availability also provided.

2.3. Analysis of Synaptic Adaptation
Synaptic weight adaptationmatrices form the basis of the analysis
in this work. Figure 5 depicts the process of these matrices being
collected and used for analysis of class-specific synaptic plasticity.
Firstly, synaptic plasticity is applied to the network to adapt
a baseline weight matrix that reflects the general statistics of
the input patterns in the data set. Secondly, each the weight
adaptation matrix is collected for each sample and these are
grouped by class and also into two sets based on the training and

FIGURE 1 | Three step process describing a reservoir computing

model extended by having the recurrent connections adapted with

unsupervised plasticity in a pre-training phase. Firstly, input samples I

are presented in random order while the resulting neural activity drives

synaptic adaptation under plasticity. Secondly, each input sample is

presented in sequence with the resulting neural activity decoded into a series

of state vectors S. Finally, the state vectors are used as the input to train a

set of perceptron readouts, one to recognize each class of sample, Cx.

FIGURE 2 | Vowel samples from the nine speakers in the speaker recognition task. The audio signals in the data set are pre-processed into 12 Mel-frequency

cepstrum coefficients (MFCC) features. Samples from each speaker have variable time duration in the number of audio frames they consist of.
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FIGURE 3 | Human motion samples for the six types of behavior in the

KTH visual discrimination task. This illustration consists of different

behaviors from a single person, while the whole data set contains 25

persons. Top row: Still frames from example video samples; boxing,

clapping, waving, walking, running and jogging. Bottom row: Features

extracted corresponding to the samples above, according to Equations (13)

and (14). Features are the raw time-series activity used as input to the neural

network.

FIGURE 4 | Plot of 500 of the 50,000 data samples generated according

to Jaeger’s tri-function system recognition time-series task (Jaeger,

2007).

testing data division. Finally, the Euclidean distance is calculated
between each weight matrix, with the average distance between
each set plotted in a type of “confusion matrix” in which a
low distance indicates high similarity between the adaptation of
synaptic parameters.

In the confusion matrix just described, if the diagonal values
are lower than the others it means that synaptic plasticity is
sensitive to the structural differences in input samples that are
labeled as different classes. The stronger the diagonal trend, the
more sensitive plasticity is to features of the input. It means
that plasticity learns to distinguish class labels, such as different
speakers or human actions, without ever being exposed to the
labels themselves a priori.

The weight adaptation matrices are also used to estimate the
amount of interference between different input samples within
the synaptic parameters. This is described further later in the
Results Section.

2.4. Learning Input-Specific Adaptations using
Plasticity
Wewish to test the hypothesis that synaptic plasticity is encoding
a distinct structure for input samples of different labels. For the
speech task, these labels consist of different speakers and for
the video recognition task the labels consist of different human
behaviors.

The data sets are divided evenly into two. Each subset is used
to train a recurrently connected network for 10,000 iterations,
selecting a sample at random on each iteration. The changes to
the weight matrix due to plasticity are recorded for each sample
presentation. This is then used to create a class-specific average
weight change for each of the class labels in both of the sample
subsets. Finally, we calculate the Euclidean distance between each
class in one set and each class in the other according to the
following formula:

Dist(CX
lab,C

Y
lab) =

N
∑

i= 1

|1Wi(C
X
lab)−1Wi(C

Y
lab)| (1)

Where Clab denote class labels, X and Y distinguish the separated
sets of samples, 1W is the change in weight matrix for a
presented sample, N is the number of synapses, and i the synapse
index.

This effectively produces a confusion matrix of similarity in
the synaptic weight change for different classes of input. Having
lower values on the descending diagonal means that there is
structural adaptation that is specific to the class of that column
compared with the similarity between structural adaptations of
two different classes.
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FIGURE 5 | Three step process describing the analysis of

input-specific synaptic adaptations. Firstly, the recurrent connections are

adapted under plasticity in the same way as in Figure 1. Secondly, each

input sample is presented and plasticity adapts the synapses. The change in

the weight matrix is stored for each sample and grouped by the input class

label, Cx and into two sets, train and test. Finally, the Euclidean distance

between the matrices in train and test is calculated and the average for each

class label is plotted in a confusion matrix.

FIGURE 6 | Class correlation of structural synaptic adaptation. Heat map

plots indicate the structure learned on each class for the three tasks under each

of the plasticity rules. Essentially, it is a confusion matrix of the geometric

distance between the weight matrix adaptation of each class of sample. The

training data for each task is divided into two sets. Class-average adaptation is

found for each set. There is then a distance calculated between each class of the

two sets. Lower values on the descending diagonal indicate higher correlation

within a class adaptation and therefore strong class-specific structure learned.

Figure 6 shows the “weight change confusion matrices”
described above, for each plasticity model applied to all sensory
tasks (nine experiments in total). All of the experiments show at
least some stronger similarity in the descending diagonals and
most are stark in this manner. It is certainly a strong enough
pattern to show that through themany iterations of training, each
of the plasticity models have become sensitive to the particular
structure of the sensory input signals so that each different class
of sample will give rise to changes in synaptic strength that

TABLE 1 | Classification error rates.

Static BCM STDP TP-STDP

Tri-func 0.153 0.157 0.204 0.138

KTH 0.283 0.3 0.333 0.383

Vowels 0.089 0.086 0.092 0.086

Values averaged over 10 trials with random seed based on system clock. SD did not

exceed 0.03 for all values. Bold values indicate lowest error rate.

are distinct from other classes compared with the similarity to
themselves. We re-iterate that the class labels were not used in
any way in the plasticity models themselves and so the differences
in the weight change arise from the input signals alone.

There are a few exceptions to the strong diagonal patterns
in Figure 6. This means that some classes are not effectively
distinguished from each other; speakers 8/9 with bi-phasic STDP,
behaviors 1/2 with BCM, behaviors 1/2/3, and 4/5/6 with tri-
phasic STDP. The latter confusion corresponds to the behaviors
of boxing/clapping/waving and walking/running/jogging. From
the similarity of those input features shown in the lower panes of
Figure 3, it is evident why this confusion might occur.

2.5. Classification Performance with Plasticity
Perhaps the ultimate goal of neural network methods when
applied to sensory tasks is the ability to accurately distinguish
different types of input sample by their patterns. We compare
the error rates achieved by our neural network on the three
sensory tasks, with and without the different forms of plasticity
used in this work. Table 1 lists the error rates achieved for each
of the learning tasks with the different plasticity rules active in
a pre-training phase in addition to a static network with fixed
internal synapses.

From the error rates in Table 1 it is evident that pre-training
the network with synaptic plasticity can make insignificant
improvements in lowering the error rate. However, the results
here indicate that it can have a greater negative impact than
a positive one. In the KTH human behavior data set, all three
plasticity models increase the error rate by between 1.7 and 10%.
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Conversely, the best improvement was found on the tri-function
signal recognition task with tri-phasic STDP at only 1.5%.

It is clear from the network output that pre-training with
synaptic plasticity is not a suitable method for this class of model,
This does not contradict the result that plastic synapses are
learning useful, input-specific structure. However, it does suggest
that the structure being learned is not effectively utilized in the
generation of a network output. We next investigate interference
between synaptic changes to determine if the structural learning
is retained in the network or if interference is a barrier for
effective application of synaptic plasticity.

2.6. Synaptic Interference
When a model adapts incrementally to sequentially presented
input, existing patterns that have been learned by the model
parameters are prone to be overwritten by learning new patterns.
This is known as interference. The work that has studied this
effect (McCloskey and Cohen, 1989; Ratcliff, 1990; French, 1999),
test the ability to recognize previously presented input after the
model has been trained on new ones in order to estimate how
much learning has been undone. When new training leaves the
model unable to recognize old patterns, it is said there has been
catastrophic interference and forgetting.

We introduce a method of measuring interference directly in
synaptic parameters instead of the model output. Our measure
is described in detail in the Section 4. Itotal directly quantifies all
synaptic changes that are overwritten.

The interference for each of our experiments is listed in
Table 2. In all but one of the experiments the interference level is
between 82 and 96%. Most of the learned structure for each class
of input is forgotten as consecutive samples overwrite each other’s
previous changes. Bi-phasic STDP applied to speaker recognition
has the lowest level of interference at 58%.

To further explore interference and visualize the impact of
plasticity, synaptic changes will be analyzed directly. Figure 7 is
an illustrative example in which a reduced network size of 35
neurons is used to improve visual clarity of the plotted patterns.
It is an example for the speaker recognition task with BCM
plasticity with similar figures for the other experiments given
in Supplementary Figures 1–8. It shows the adaptation of the
synaptic weight matrix produced by each speaker in the voice
recognition task. This is plotted against the activity level for each
neuron, S, and the readout weights,R, that are trained to generate
an output that is sensitive to that given speaker. Each of these sub
plots is the average response taken over all sample presentations
from that speaker. Thismakes a whole chain of effect visible: from

TABLE 2 | Synaptic interference.

BCM STDP TP-STDP

Tri-func 0.82 0.8 0.88

KTH 0.92 0.93 0.96

Vowels 0.96 0.58 0.9

Values averaged over 10 trials with random seed based on system clock. SD did not

exceed 0.07 for all values. Bold values indicate lowest interference.

the synaptic change of an internal network connection, to the
average neuron state for a given speaker, to the selective weights
of the readout for that speaker. For all to be working well in a
cohesive system, we expect that a positive weight change should
correspond with a neuron activation unique to the class which
would in turn improve the recognition ability of the readout to
identify that class.

The sections of the class weight matrix highlighted in green
in Figure 7, highlight an example where synaptic interference is
occurring between different types of pattern. Directly opposing
features in the weight matrix adaptations show the samples
negating each other’s changes. However, the same features are
also most distinctively class specific.

Any synapse can only change in two directions: positively or
negatively, which means that a single synapse can only adapt
to distinguish between two mutually exclusive kinds of input
pattern. If n synapses are considered in combination, then the
number of input patterns that can be discriminated becomes 2n

in ideal theoretical conditions. Figure 7 illustrates this principle
in practice with regards to the nine speaker recognition tasks.
The adapted synapses labeled (a) can clearly distinguish speaker
{#1} from speakers {#2, #3} but cannot distinguish {#2} from
{#3}. Similarly, the adapted synapses labeled (b) can distinguish
speakers {#1, #6, #8} from speakers {#3, #4, #9} but cannot
distinguish speakers within either of those sets. However, if the
synapses (a–d) are considered in combination, then all speakers
can be distinguished by synaptic plasticity changes alone.

Figure 7 also shows the weight changes are not correlated with
the neural activity or readout weights. For plasticity to improve
the accuracy of sensory discrimination, it would be expected that
synapses would strengthen for class specific neural activity and
weaken for common neural activity. This is not the case in our
results.

3. Discussion

3.1. Evolution of Synaptic Weights
Our main conclusions are drawn from the observation that the
synaptic plasticity models tested become sensitive to specific
class labels during a competitive process of synaptic interference
between input patterns. For our conclusions to be generally
applicable to recurrent neural circuits and liquid state machines
in particular, we must demonstrate that synaptic weights reach
some stability during pre-training and that the neural activity
dynamics are working in a balanced regime.

Figure 8 shows a series of plots taken at 1, 100, and 1000
input iterations that show the evolving distributions of synaptic
weights and inter-spike intervals (ISI) for each of the experiments
performed in this work.

In general, the plots show that between the first and
100th pattern, the synaptic weights are adapted significantly by
plasticity, with a corresponding—but more subtle—change in the
distribution of ISIs. While there is also some level of change
in weights between the 100th and 1000th iteration, the level is
far smaller, which indicates that the synapses are converging
on a common structure. However, it is important to note that
for simulations even up to 10,000 iterations there is always
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FIGURE 7 | The class-specific synaptic adaptation for the 9 class

speaker recognition task under BCM plasticity. The main heat maps in

each subplot show the adaptation of the weight matrix (synapses) after the

presentation of voice input data from each speaker. Blue values show a

reduction in synaptic strength and red values show an increase. Each N × N

weight matrix has pre-neurons on the x-axis and post-neurons on the y-axis.

The bar-chart, S, shows the average neuron activation for each class. The

bar-chart,R, shows the learned readout weights. Labeled synapses a–d

indicate key structural changes that are selective between different speakers.

Each label alone can distinguish between two sets of speaker. Taken all

together, the labeled synapses adapt specifically to each speaker in a unique

pattern, learning a distinct network structure for each one.

some low level of synaptic change. The plasticity models tested
never stabilize to a point in which there is no further synaptic
adaptation, even when we repeatedly present a single input
sample.

Each of the plasticity models drives the synaptic weights
to a different kind of distribution. STDP creates a bi-modal
distribution that drives most weights to the extremes: 0 and
10, with a few that are in a state of change leading up to each
boundary. It leads to a structure with more full strength synapses
than zeroed. TP-STDP and BCM plasticity leads to sparser
connectivity that drives most weights to zero. In particular,
TP-STDP only maintains a small number of weak connections
due to the narrow window of potentiation being surrounded
by depressive regions that suppress most connections. BCM
includes an implicit target level of post-synaptic activity that
encourages some synapses to take larger values but doesn’t drive
them to their maximum.

The distribution of ISIs give an indication of the dynamics
of the neural activity. The plots in Figure 8 show that a
balance between completely sparse and saturated activity is
maintained during the simulation. The shape of the ISI

distributions tend to stabilize between 100 and 1000 sample
presentations.

The above observations provide some evidence that the results
presented in this article are not simply an artifact of a particular
choice of model parameters but are observed for a normally
functioning liquid state machine.

3.2. Unsupervised Plasticity Learns Label
Specific Structure
Both STDP and BCM models adapt the synapses of a network
in distinctive patterns according to which type of sample
is being presented to the network. We can conclude that
presenting a training signal with the sample label is not
required for plasticity to learn specific information for complex
sensory inputs from different sources. This result holds for
the speech, visual and benchmark pattern recognition tasks.
To achieve this feat, we hypothesize that plasticity drives the
synaptic parameters to a structure that represents an average
between all input samples. Once converged, any further input
stimulus will drive the synaptic parameters in a unique direction
away from this average structure. On balance, scrambled
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FIGURE 8 | Plots of evolving synaptic weight (black, top) and ISI (blue, bottom) distributions given for each recognition task and each plasticity model.

The plots are snapshots of the parameter distributions after 1, 100, and 1000 input samples have been presented during pre-training.

presentation of random inputs keeps the network in this sensitive
state.

3.3. Uniformly Applied Plasticity Leads to
Synaptic Interference
We show synaptic plasticity spends most of its action counter-
acting previous changes and overwriting learned patterns. The
same patterns of synaptic adaptation that distinctly characterizes
each class of input are the same ones that reverse adaptations
made by other inputs.

Plasticity is applied uniformly to all synapses. All neurons in
a recurrent network produce activity when given input stimulus.
Combined, these factors mean that any input sample will cause
the same synapses to change. This leads to synaptic competition,
interference and ultimately, forgetting.

3.4. Local Plasticity Required to Overcome
Interference
To overcome the problem of interference, the mechanisms of
plasticity need to be restricted to adapt only a subset of the
synapses for any given input stimulus. There is much existing
research that supports this conclusion and a number of possible
mechanisms that can restrict the locality of plasticity.

It has been shown in vivo (using fMRI and neurological
experiment) that synaptic plasticity learns highly specific
adaptations early in the visual perceptual pathway (Karni
and Sagi, 1991; Schwartz et al., 2002). Simulated models of
sensory systems have demonstrated that sparsity of activity is
essential for sensitivity to input-specific features (Finelli et al.,
2008; Barranca et al., 2014). In fact, in a single-layer, non-
recurrent structure, STDP is shown to promote sparsity in

a model olfactory system (Finelli et al., 2008). Conversely,
in recurrent networks, STDP alone is unable to learn input
specific structure because it “over-associates” (Bourjaily and
Miller, 2011). Strengthened inhibition was used to overcome
this problem and combined with reinforcement learning to
produce selectivity in the output (Bourjaily and Miller, 2011). By
promoting sparsity, the lack of activity inmost of the network will
prevent activity-dependent models of plasticity in adapting those
connections.

Reward modulated plasticity has also been widely explored
in simulated (Gavornik et al., 2009; Darshan et al., 2014) and
biological experiment (Li et al., 2013; Lepousez et al., 2014).
Input-specific synaptic changes are shown to be strongest in the
presence of a reward signal (Gavornik et al., 2009; Lepousez
et al., 2014). Lasting memories (synaptic changes not subject
to interference), are also seen to rely on a process of re-
consolidation consisting of fear conditioning (Li et al., 2013). A
reinforcement signal based on either reward or fear conditioning
can be effectively used to restrict synaptic changes in a task
dependent context such as sensory pattern recognition.

Another way to restrict synaptic changes in a task dependent
way is to rely on a back-propagated error signal that has
well-established use in artificial neural networks. This might
be achieved in a biologically plausible way through axonal
propagation (Kempter et al., 2001) or top-down cortical
projections sending signals backwards through the sensory
pathways (Schäfer et al., 2007). Top-down neural function in
general is thought to be essential in determining structure in
neural networks (Sharpee, 2014), providing a context for any
adaptations. A molecular mechanism for the retro-axon signals
required for back-propagation is has been proposed (Harris,
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2008). However, in general these retro-axon signals are known
to be important for neural development but may be too slowly
acting to learn sensory input.

3.5. Learning Input Structure Does Not
Necessarily Improve Performance
Structural adaptation with plasticity in the pre-training phase,
while specific, may not be utilized by the output produced
by the network readout. This could be due to the following
reasons. Firstly, there is a disparity in the neural code. The
output from a recurrent spiking network model is currently
decoded as a rate code. In contrast, synaptic plasticity updates
structure in a way that depends on the precise temporal activity
of neural spikes. Secondly, information content is reduced.
While creating associations between co-activating neurons,
Hebbian forms of plasticity may also increase correlations and
reduce information and separation. These can determine the
computational capacity of a recurrent network model (Chrol-
Cannon and Jin, 2014b). Both discrepancies could be barriers
for the effective application of plasticity to improve pattern
recognition. Therefore, new frameworks of neural processing
should be based directly on the adapting synapses. This will lead
to functional models of neural computing that are not merely
improved by synaptic plasticity, but that rely on it as an integral
element.

This finding contrasts with some existing work that shows pre-
training with plasticity including STDP (Xue et al., 2013) and
BCM (Yin et al., 2012) can improve performance in a recurrent
spiking network. To address this discrepancy we note that pre-
training might improve the general computational properties
of recurrent networks without learning input-specific structure.
Furthermore, if this is the case, the likelihood of plasticity leading
to an improvement will largely depend on how well-tuned the
initial parameters of the network are before the pre-training
phase begins.

4. Materials and Methods

4.1. Simulation Procedure
The three step procedure depicted in Figure 1 for training an
LSM with plasticity is now described below in pseudocode.
Where relevant, some of the expressions within the pseudocode
refer to equations that can be found in subsequent subsections
where the models for neurons, connectivity, plasticity and pre-
processing of inputs can also be found.

Firstly, the following section of pseudocode illustrates the pre-
training process in which the recurrent synaptic connections are
adapted with plasticity. Input samples are selected at random
(scrambled) for a total number of preTrainIterations which is
10,000. For a single input sample, each of the time-series frames is
presented to the network in sequence by setting the input current
of the connected neurons to Win[x][c] · S[f ][x] · inputScale. The
inputScale is 20, which is based on the neuron membrane model
selected. The neural activity of the network is then simulated
for frameDuration which is 30 ms. Plasticity is calculated and
updated in between each frame of input in a sample. Neural
activity is reset for the next input sample.

// pre-train recurrent neurons with
plasticity

for each iteration I in preTrainIterations
select random sample S from trainingSamples
for each frame f in S

for each attribute x in f
for each connection c in Cin

c.input(Win[x][c] · S[f ][x] ·
inputScale)

for each timestep t in frameDuration
neurons.simulateActivity()

// Equations 2, 3, 4
synapses.applyPlasticity()

// Equations 8, 9, 10
neurons.resetActivity()

Secondly, we collect the reservoir states for each sample. The
simulation procedure is essentially the same as in pre-training
but iterates once for each sample in the dataset. Activity
feature vectors are stored in S.fv and weight matrix adaptation
in S.dw.

// collect neural activation state vectors
baseWeights.value ← synapses.value
for each sample S in trainingSamples

for each frame f in S
for each attribute x in f

for each connection c in Cin

c.input(Win[x][c] · S[f ][x] ·
inputScale)

for each timestep t in frameDuration
neurons.simulateActivity()

// Equations 2, 3, 4
synapses.applyPlasticity()

// Equations 8, 9, 10
S.fv ← neurons.filteredSpikes()

// Equation 5
S.dw ← synapses.value − baseWeights.value
neurons.resetActivity()
synapses.value ← baseWeights.value

Finally, for determining the pattern recognition performance of
the LSM, we train a set of readouts using least mean squares
regression. There is one readout to predict the presence of each
possible class of input. For a total of readoutTrainingIterations
that is set to 100,000, a randomly selected samples state vector fv
will be used to adapt the readout weights. The desired signal will
be set to 1 for the readout matching the sample class and 0 for the
others. For predicting class labels on the training and testing data,
the readout with the maximum value for a given fv is selected to
predict the class (winner takes all).

// train readouts with linear regression
for each iteration I in readoutTrainIterations

select random feature vector fv from
trainingSamples.fv

for each class readout R in nClass
if R.classLabel = fv.classLabel
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// boost readout for matching
class

R.output ← R.lms(fv, 1)
// Equations 6, 7

else
// suppress other readouts
R.output ← R.lms(fv, 0)

// Equations 6, 7
prediction P ← max(R.output)
if P.classLabel 6= fv.classLabel

errorSum ← errorSum + 1
errorCummulative ← errorSum ÷ I

4.2. Recurrent Network
The neural network model used in this work is illustrated in
Figure 9. Recurrently connected neurons, indicated by L are
stimulated by current I that is the sum total of injected current
from the input signal, Iinj and stimulating current from the
pre-synapses, Irec. The total current I perturbs the membrane
potential that is modeled with a simple model that matches
neuron spiking patterns observed in biology (Izhikevich, 2003).
This method for modeling the spiking activity of a neuron
is shown to reproduce most naturally occurring patterns of
activity (Izhikevich, 2004). The real-valued inputs are normalized
between 0 and 1, which are multiplied by a scaling factor of
20 before being injected as current into L. Input connections
number 0.2 · network size, projected randomly to the network
nodes. Weights are uniformly initialized at random between
0 and 1. The video data set used in this work consists of
significantly higher dimension inputs—768 features—than the
other data sets. Therefore, in this case each feature only projects
to one neuron, initially selected at random (a neuron can have
connections from multiple inputs). Also the synaptic weights are
scaled by 0.25.

The network activity dynamics are simulated for 30 ms for
each frame of data in a time-series input sample. This value is
chosen as it roughly approximates the actual millisecond delay
between digital audio and video data frames. Then, the resulting
spike trains produced by each of the neurons are passed through
a low-pass filter, f , to produce a real valued vector used to train
a linear readout with the iterative, stochastic gradient descent
method (each described in the next section).

FIGURE 9 | Depiction of the elements of our recurrent network model. I

is a multi-dimensional input signal, L nodes constitute the recurrent network,

the x vector is the neural activation state, f is the filtering of the spike trains

and y is the output after weight and sum.

In our experiments the network consists of 35 or 135 spiking
neurons (weight matrix plots consist of 35, performance trials
consist of 135) with the ratio of excitatory to inhibitory as
4:1. Neurons are connected with static synapses i.e., the delta
impulse (step) function. Connectivity is formed by having
N2 · C synapses that each have source and target neurons
drawn according to uniform random distribution, where N
is the number of neurons and C is 0.1, the probability of
a connection between any two neurons. Weights are drawn
from two Gaussian distributions; N (6, 0.5) for excitatory and
N (−5, 0.5) for inhibitory. When plasticity adapts the reservoir
weights, wmax is clamped at 10 and wmin at −10. All parameters
for excitatory and inhibitory neuron membranes are taken from
Izhikevich (2003). The equations for the membrane model are as
follows:

v′ = 0.04v2 + 5v+ 140− u+ I (2)

u′ = a(bv− u) (3)

With the spike firing condition:

if v > 30mV then

{

v← c

u← u+ d
(4)

Parameters for the above equations are; a = 0.2, b = 0.2,
c = −65, d = 8 for excitatory neurons and; a = 0.1, b = 0.2,
c = −65, d = 2 for inhibitory neurons.

4.3. Trained Readout
To generate a real-valued output from the discrete spiking
activity, the spike train from each neuron is convolved with
a decaying exponential according to Equation (5). The vector
of values produced is then weighted with the readout weight
matrix and summed to produce a single output value, shown in
Equation (6).

xi = f (S(t)) = max

(

T
∑

t= 1

exp

(

−S(t)

τ

)

)

(5)

y =

n
∑

i= 1

xi � wi (6)

The state vector for a neuron is denoted by xi, the filter function
is f () and the spike train is S(t). The maximum number of
time-steps in S(t) is T, in this case 50. The decay constant τ

is 6ms.
The maximum value is taken from the low-pass filtered values

in Equation (5) in order to detect the highest level of burst
activity in the given neuron. We take this approach under the
assumption that burst activity is more representative of spiking
neural computation than a sum total of the firing rate.

These output weights are updated according to the iterative,
stochastic gradient descent method: Least Mean Squares, given
in Equation (7).

wi ←− wi + µ(yd − yo)xi. (7)

Frontiers in Computational Neuroscience | www.frontiersin.org August 2015 | Volume 9 | Article 103 64|

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive


Chrol-Cannon and Jin Learning structure of sensory inputs

Here, yd is the desired output, yo is the actual output, xi is
the input taken from a neuron’s filtered state, and µ is a small
learning rate of 0.005. The weight from xi to the output is wi. For
the classification tasks of pattern recognition, yd takes the values
of 0 or 1 depending if the class corresponding to the readout is
the label of the current input sample.

4.4. Synaptic Plasticity Models
Three synaptic plasticity mechanisms are employed in this study,
each of them based on the Hebbian postulate (Hebb, 1949) of
“neurons that fire together, wire together.” Each mechanism is
outlined as follows:

4.4.1. BCM Plasticity
The BCM rule (Bienenstock et al., 1982) is a rate based Hebbian
rule that also regulates the post-neuron firing rate to a desired
level. It works on a temporal average of pre- and post-synaptic
activity. The BCM rule is given in Equation (8). The regulating
parameter is the dynamic threshold θM , which changes based
on the post-synaptic activity y in the following function: θM =

E[y], where E[·] denotes a temporal average. In our case, E[·]
is calculated as an exponential moving average of the post-
synaptic neurons membrane potential. The exponential decay
coefficient used for this is 0.935. As the membrane potential is
model-dependant, we normalize it between 0..1 in real-time by
continuously updating max and min variables of previous values.
There is also a uniform decay parameter ǫw set as 0.0001 that
slowly reduces connection strength and so provides a means for
weight decay, irrespective of the level of activity or correlation
between pre-synaptic inputs and post synaptic potential. A plot of
the BCM weight change is presented in Supplementary Figure 9.

1w = y(y− θM)x− ǫw (8)

4.4.2. Bi-phasic STDP
The STDP rule depends on the temporal correlation between
pre- and post-synaptic spikes. The synaptic weight change is
computed based on the delay between the firing times of the
pre- and post- neuron. This is described in a fixed “learning
window” in which the y-axis is the level of weight change and the
x-axis is the time delay between a pre- and post-synaptic spike
occurrence. The bi-phasic STDP rule consists of two decaying
exponential curves (Song et al., 2000), a positive one to potentiate
in-order spikes, and a negative one to depress out-of-order
spikes. This rule was derived from experimental work carried out
on populations of neurons in vitro (Markram et al., 1997; Bi and
Poo, 1998). Bi-phasic STDP is given in Equation (9).

1w(1t) =







A+ · exp
(

−1t
τ+

)

if t > 0

−A− · exp
(

1t
τ−

)

if t ≤ 0
(9)

A+ and A− are the learning rates for the potentiation and
depression, respectively.1t is the delay of the post-synaptic spike
occurring after the transmission of the pre-synaptic spike. τ+
and τ− control the rates of the exponential decrease in plasticity
across the learning window. For our experiments the learning
window is symmetric with A+ = A− = 0.15 and τ+ = τ− =

20 ms.

4.4.3. Tri-phasic STDP
A tri-phasic STDP learning window consists of a narrow
potentiating region for closely correlated activity but depressing
regions on either side: for recently uncorrelated activity, and
for correlated but late activity. This learning window has been
observed in vitro, most notably in the hippocampi, between areas
CA3 and CA1 (Wittenberg and Wang, 2006). The tri-phasic
STDP is given in Equation (10).

1w(1t) = A+ exp

(

−(1t − 15)2

200

)

− A− exp

(

−(1t − 15)2

2000

)

(10)

The learning rates are set as A+ = 0.25 and A− = 0.1. Both
STDP learning windows are plotted in Supplementary Figure 10.

4.5. Synaptic Interference Measure
We wish to quantify interference directly between synaptic
adaptations of plasticity. Our formulation of synaptic
interference is based on the synaptic changes from sequentially
presented samples. Synaptic adaptation for a given class of
sample is called 1Wt and average adaptation for all others are
1Wo. Interference must be calculated individually for each
class of sample, Iclasst , and averaged together to get the overall
interference, Itotal. The equations are as follows:

Iclasst =
1

N

N
∑

i= 1

[1Wti ·1Woi < 0][|1Wti| < |1Woi| · Cn]

(11)

Itotal =

Cn
∑

t= 1

Iclasst

Cn
(12)

Where I is interference, N is the number of synapses, Cn is
the number of competing sample classes and 1W is a vector
of synaptic changes. Subscript i denotes the parameter index,
subscript t denotes samples of a given class “this” and subscript o
denotes samples of all “other” classes.

In Equation (11), the first set of Iverson brackets returns 1 if
synaptic adaptation of a given class is of a different sign than that
of the average adaptation of other class samples. The second set of
Iverson Brackets returns 1 only if the magnitude of the synaptic
adaptation of a class is less than the average weight adaptation
of other classes multiplied by the total number. This leads to us
taking a conservative measure of synaptic interference where we
will only flag interference within a synapse for a class of pattern if
the weight change is in a different direction to the average as well
as being lower in magnitude than the total weight adaptation of
other inputs.

4.6. Synthetic Signal Data
A synthetic benchmark task is taken from a study performed with
Echo State Networks (Jaeger, 2007), a similar type of network
model to the one we employ, but using continuous rate-based
neurons instead. The task is to predict which of three signal
generating functions is currently active in producing a time-
varying input signal. To generate a sample of the signal at a
given time step, one of the three following function types is
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used; (1) A sine function of a randomly selected period, (2) A
chaotic iterated tent map, (3) A randomly chosen constant. The
generator is given some low probability, 0.05, of switching to
another function at each time-step. The full method of generating
the data is described in Jaeger (2007). A short window of the
generated signal is plotted in Figure 4.

4.7. Speaker Recognition Data
A speaker recognition task is a classification problem dealing with
mapping time-series audio input data to target speaker labels. We
use a data set taken from Kudo et al. (1999) which consists of
utterances of nine male Japanese speakers pronouncing the vowel
/ae/. The task is to correctly discriminate each speaker based on
the speech samples. Each sample is comprised of a sequence of
12 feature audio frames. The features of each frame are the LPC
cepstrum coefficients. The sample sequence ranges between 7 and
29 frames. The dataset is divided into training and testing sets
of 270 and 370 samples each, respectively. Note that unlike the
benchmark data used in this report, the samples are not in a
consecutive time-series, yet each sample consists of a time-series
sequence of audio frames.

4.8. Pre-processing of the Human Motion Data
A visual task is selected to test high dimensional spatial-temporal
input data. The KTH data set (Schuldt et al., 2004) consists
of 2391 video files of people performing one of six actions;
boxing, clapping, waving, walking and jogging. There are 25
different subjects and the samples cover a range of conditions
that are described in more detail in Schuldt et al. (2004). Each
video sample is taken at 25 frames per second and down
sampled to a resolution of 160 × 120 pixels. We process the raw
video sequences according to a formula shown in the following
equations:

M(t) = ‖[1(I1, I2), ...,1(IN− 1, IN)]‖ (13)

M(t, i) =

{

1 ifM(t, i) ≥ 0.2 ·max(M(·))

0 else
(14)

The final input matrixM is indexed by time-frames, t and spatial

samples i. Column vectors In are individual frames, re-shaped
into one dimension. Each sample contains up to a total of N
frames. In plain language, this process essentially further down
samples by a factor of 0.2 and calculates the difference between
pixels in consecutive frames, which are then used as the new input
features. Each frame is then re-shaped into a single dimensional
column vector then appended together to form an input matrix
in which each column is used as the neural network input at
consecutive time steps. Figure 3 shows frames extracted from an
example of each type on motion along with the corresponding
processed features.
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Spike-timing-dependent plasticity (STDP) has been well established between excitatory
neurons and several computational functions have been proposed in various neural
systems. Despite some recent efforts, however, there is a significant lack of functional
understanding of inhibitory STDP (iSTDP) and its interplay with excitatory STDP (eSTDP).
Here, we demonstrate by analytical and numerical methods that iSTDP contributes
crucially to the balance of excitatory and inhibitory weights for the selection of a
specific signaling pathway among other pathways in a feedforward circuit. This pathway
selection is based on the high sensitivity of STDP to correlations in spike times,
which complements a recent proposal for the role of iSTDP in firing-rate based
selection. Our model predicts that asymmetric anti-Hebbian iSTDP exceeds asymmetric
Hebbian iSTDP for supporting pathway-specific balance, which we show is useful for
propagating transient neuronal responses. Furthermore, we demonstrate how STDPs at
excitatory–excitatory, excitatory–inhibitory, and inhibitory–excitatory synapses cooperate
to improve the pathway selection. We propose that iSTDP is crucial for shaping the
network structure that achieves efficient processing of synchronous spikes.

Keywords: STDP, spike-timing, plasticity, inhibition, disynaptic, correlation, excitation–inhibition balance

1. INTRODUCTION
Activity-dependent plasticity of synaptic connections between
neurons is crucial for cortical circuit development and memory
(Böhme et al., 1993; Hensch et al., 1998). Spike-timing-dependent
plasticity (STDP) describes the change in synaptic weights where
long-term potentiation (LTP) and long-term depression (LTD)
depend on the precise timing of presynaptic and postsynaptic
action potentials. STDP has been observed for excitatory gluta-
matergic synapses in a great diversity of brain structures, such as
the hippocampus (Magee and Johnston, 1997; Bi and Poo, 1998;
Debanne et al., 1998), the cerebellum of the electric fish (Bell
et al., 1997), the neocortex (Markram et al., 1997; Sjöström et al.,
2001), and the optic nerve in Xenopus (Zhang et al., 1998). An
extensive body of theoretical work has uncovered many interest-
ing properties of excitatory STDP (eSTDP): it can select input
pathways based on their spike-time correlation (Kempter et al.,
1999; Song et al., 2000; Gjorgjieva et al., 2011), it can generate
a stable distribution of weights (van Rossum et al., 2000; Gütig
et al., 2003; Gilson and Fukai, 2011), it can perform selection of
phase-locking in population firing (Gerstner et al., 1996; Senn
and Buchs, 2003), it favors the emergence of functional neuronal
assemblies (Izhikevich et al., 2004; Clopath et al., 2010), it stabi-
lizes slow oscillations in recurrent networks (Kang et al., 2008)
and it allows for rewiring of connections in the developing visual
cortex (Song and Abbott, 2001; Senn and Buchs, 2003; Young
et al., 2007).

There is also evidence for STDP at inhibitory GABAergic
synapses, or iSTDP, (Woodin et al., 2003; Haas et al., 2006;

Kodangattil et al., 2013). However, our understanding of the
mechanistic implications of iSTDP remains limited, in spite of
the key role of inhibition in signal processing in the cortex (van
Vreeswijk and Sompolinsky, 1996; Anderson et al., 2000; Wehr
and Zador, 2003; Haider et al., 2006, 2013; Maffei et al., 2006;
Rudolph et al., 2007). Considering the abundance of inhibitory
interneurons, e.g., in the cortex (Markram et al., 2005), remark-
ably few types have been tested for the plastic properties of
their synapses. Theoretical knowledge of the dynamics and func-
tional implications of iSTDP is also rudimentary, although inter-
est in this direction has increased recently. Extending a simple
homeostatic control of firing rate, iSTDP can generate a bal-
ance between excitatory and inhibitory inputs onto a neuron
(Vogels et al., 2011). In addition, unspecific, but sufficiently
strong inhibition developed by iSTDP can enhance competi-
tion between excitatory synapses subject to eSTDP (Luz and
Shamir, 2012). Interestingly, neither experimental nor theoreti-
cal approaches provide a consensus for the shape of the iSTDP
learning window, in contrast to eSTDP for which the tempo-
rally Hebbian nature (LTP for pre-post pairing, LTD for post-
pre pairing) is observed and addressed in the vast majority of
cases.

The present paper aims to compare the effect of distinct
iSTDP window shapes on the structure of synaptic weights,
and endeavors to clarify the role of iSTDP in tuning neuronal
responses. Previous studies have shown the precise timing of
spikes to convey an important part of information about stim-
uli in sensory pathways (Riehle et al., 1997; Jackson et al., 2003;
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Maldonado et al., 2008; Kilavik et al., 2009; Putrino et al.,
2010). Moreover, neurons are sensitive to precise timings of
spikes (Rossant et al., 2011). In this context of neural tempo-
ral coding, we examined the transmission of temporally corre-
lated spikes in a feedforward circuit equipped with eSTDP and
iSTDP. Such neural architectures with joint feedforward excita-
tion and inhibition have been found in various brain structures
(Buzsaki, 1984; Davis et al., 1996). We incorporated in our model
an important property of the afferent inputs observed experi-
mentally in many feedforward neural architectures: inhibition is
delayed compared to excitation with a short time lag (Pouille
and Scanziani, 2001; Wilent and Contreras, 2004; Gabernet et al.,
2005; Silberberg and Markram, 2007; Tan et al., 2008; Stokes
and Isaacson, 2010), which allows for precise temporal gating
(Kremkow et al., 2010). We found that iSTDP with specifically
anti-Hebbian properties enforces a balanced structure in the
synaptic weights, which supports efficient processing of near-
coincident spikes.

2. RESULTS
We examined the joint development of excitatory and inhibitory
synapses subject to STDP in a feedforward circuit. We con-
sider two circuit architectures. First, for a single neuron with
direct excitatory and inhibitory inputs, we examine how the
shape of the iSTDP window affects the evolution of synap-
tic weights. Since there is no current consensus about a sin-
gle type of iSTDP (Woodin et al., 2003; Haas et al., 2006;
Kodangattil et al., 2013), this comparison allows us to link the
shape of iSTDP learning windows to their functional implica-
tions. Second, we examine the recruitment of interneurons in
a more realistic circuit with monosynaptic excitation and disy-
naptic inhibition. In both cases, we focus on how the emerging
weight structure tunes the propagation of spike volleys in the
circuit.

2.1. THEORETICAL PREDICTION OF WEIGHT SPECIALIZATION
DEPENDING ON iSTDP WINDOW

In order to study the weight dynamics for different iSTDP learn-
ing windows, we consider a simplified feedforward circuit (SFC)
that consists of a single postsynaptic Poisson neuron excited
by excitatory and inhibitory spike trains (Figure 1A). Following
experimental observations, excitatory and inhibitory inputs have
correlated spiking activity (Okun and Lampl, 2008). In addition,
inhibition arrives with a delay d (Okun and Lampl, 2008; Atallah
and Scanziani, 2009). The inhibitory delay mimics a disynaptic
pathway, as compared to monosynaptic excitation (Figure 1B).
The temporal correlations between spikes trains in Figure 1B are
governed by the time constant τin (Figure 1C). All Synapses are
plastic.

Excitatory weights are modified by a temporally Hebbian
eSTDP rule (Gilson and Fukai, 2011), corresponding to the
blue learning window in Figure 1D: a presynaptic spike pre-
ceding a postsynaptic spike leads to potentiation. The eSTDP
update includes log-STDP weight dependence, which pro-
duces a long-tailed distribution of weights (Gilson and Fukai,
2011). For every pair of a pre- and a postsynaptic spikes,
the weight we is modified by a quantity that depends

on the current value of we and the spike-time difference
�t = tpre − tpost:

�we = We(�t, we) =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

ηe exp

(

�t

τ e
LTP

)

aLTP exp

(

−CLTPwe

w0

)

for �t < 0,

ηe exp

(

− �t

τ e
LTD

)

aLTD exp

(

log (1+ we/w0CLTD)

log (1+ CLTD)

)

for �t > 0.

(1)

The time constants τ e
LTP = 17 ms τ e

LTD = 34 ms and coefficients
aLTP = 1 and aLTD = −0.5 determine the shape of the eSTDP
window. ηe is the learning rate. The log-style weight depen-
dence scales the LTD curve and ensures a stable fixed point
at w0 = 0.065 for uncorrelated inputs; CLTD = 5 enforces suffi-
ciently strong competition between the incoming weights onto
a given neuron. An exhaustive eSTDP parameter list is given in
Table 1.

For inhibitory synapses, we test three types of additive iSTDP
windows, shown in orange in Figure 1E:

• Hebbian (Haas et al., 2006; Luz and Shamir, 2012; Kodangattil
et al., 2013), with pre-post LTP;
• Anti-Hebbian, with post-pre LTP;
• Symmetric (Vogels et al., 2011), with which LTP occurs for pre-

post and post-pre spike pairings.

For every spike pair the inhibitory weight is updated with

�w i = W i(�t) =
⎧

⎨

⎩

ηip exp(− �t
τ i

post
) for �t > 0,

ηiq exp( �t
τ i

pre
) for �t < 0.

(2)

The right and left sides of the iSTDP window can be either LTP
or LTD depending on the sign of p and q, respectively. Table 2
lists the values of p and q for the three windows employed in the
theoretical model and in the simulations. For all iSTDP window
types, total LTP exceeds total LTD; for anti-Hebbian, Hebbian,
and symmetric (corrected), the difference LTP—LTD is set equal.
Additionally, τ i

pre = τ i
post for all iSTDP.

To stabilize iSTDP, each inhibitory weight is decreased by a
small amount α for every presynaptic spike (Vogels et al., 2011),
independently of the iSTDP contribution .

Wi → Wi − ηiα (3)

Our aim is to show the emergence of balance between exci-
tation and inhibition through eSTDP and iSTDP. By balance
we mean the simultaneous increase of excitatory and inhibitory
weights, or weight balance, as opposed to increase of excitatory
weights without increase of inhibitory weights. Balance known
as the cancelation of currents onto a neuron (e.g., Vogels et al.,
2011) can but need not follow from weight balance. Unless oth-
erwise stated, balance in this study means weight balance. Using
our analysis based on the Poisson neuron model (Materials and
Methods), we evaluate the expected change in mean synaptic
strengths for both sets of weights. The weight update is deter-
mined by the interplay of the iSTDP window, the input spike-time
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FIGURE 1 | Theoretical prediction of weight update for different types of

iSTDP windows. (A) Schematic representation of the SFC. The Poisson
neuron receives excitatory (light blue) and inhibitory (orange) inputs. All inputs
are correlated with equal strength and a delay d for inhibition. (B) Example of
the postsynaptic firing rate (black trace) in response to excitatory (light blue)
and inhibitory (orange) spikes. (C) Left: Temporal cross-correlogram for a pair
of similar input spike trains, excitatory or inhibitory. Lighter colors correspond
to larger correlation spread τin. Right, EPSP-IPSP shape including d . The
asterisk indicates the convolution. (D) eSTDP window. The left (right) part in

the window indicates the presynaptic spike occurring before (after) the
postsynaptic spike. (E) The three iSTDP learning windows: Hebbian,
anti-Hebbian, symmetric. The expected weight change is the double
convolution between the left and right figures in (C) and the window
functions in (E). (F) Expected mean weight changes by analysis of a Poisson
rate model for excitatory and inhibitory weights with simultaneous eSTDP
and iSTDP. The plots correspond to the three iSTDP windows in (E). Warm
colors represent inhibitory weights and cold colors excitatory weights.
Lighter colors correspond to lighter colors in (C), namely larger τin.

cross-correlograms and the postsynaptic response (EPSPs+IPSPs;
Figure 1C). All expected weight changes in Figure 1F (and in
subsequent sections, weights themselves) are shown after divi-
sion by the excitatory equilibrium weight w0, given in Table 1.
The influence of the inhibitory delay d on the expected change
in excitatory weights is weak—slight increase when d becomes
larger—and does not depend much on the iSTDP learning
window (Figure 1F, curves in cold colors). However, d affects

the evolution of inhibitory weights, as shown by the curves
in hot colors in Figure 1F. For Hebbian iSTDP, inhibitory
weights decrease with a stronger effect for larger delays (≥ 5 ms).
Conversely, anti-Hebbian iSTDP causes weights to increase.
Symmetric iSTDP leads to a potentiation that weakens for large
delays.

In all cases, larger values for the input correlation width τin

decrease the effect of both eSTDP and iSTDP (curves in lighter
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Table 1 | General STDP parameters.

STDP

parameters: SFC

Description Value

We, Wi eSTDP or iSTDP window

τe
pre, τe

post eSTDP window time
constants

34 ms, 17 ms

τi
pre, τi

post iSTDP window time
constants

30 ms

– Excitatory start-up weights random U [0,
w0 × 3]

– Inhibitory start-up weights 0

w0 Equilibrium weight for
eSTDP

0.065

ηe Excitatory learning rate w0 × 0.39

ηi Inhibitory learning rate 0.075

α inhibitory presynaptic
single-spike contribution

0.2

CLTD LTD scaling for eSTDP 5

CLTP LTP scaling for eSTDP 50

STDP PARAMETERS: FFC

w0 Equilibrium weight for
eSTDP onto output neuron

0.08

ηe Excitatory learning rate w0 × 0.78

ηi Inhibitory learning rate 0.02

– Excitatory start-up weights random U [0, 1]

– Excitatory-to-Inhibitory
start-up weights

random U [0, 1]

– Inhibitory start-up weights 1

τi
pre, τi

post iSTDP window time
constants

20 ms

w i
0 Equilibrium weight for

eSTDP onto interneurons
w0 × 2

– Excitatory start-up weights
onto interneurons

random U [0, 1]

Table listing all eSTDP and iSTDP parameters, with the exception of the iSTDP

window parameters (Table 2). The notation “random U [a, b]” denotes a random

distribution between a and b.

Table 2 | iSTDP window parameters.

iSTDP Hebbian anti-Hebbian Symmetric Symmetric

type (equal LTP/LTD)

p −1 1.5 1.5 0.25

q 1.5 −1 1.5 0.25

Table listing the different iSTDP windows. p and q indicate the amplitude of the

right and left side of the iSTDP window, respectively.

colors in Figure 1F). In fact, Hebbian and anti-Hebbian iSTDP
curves exhibit a delay for which the weight change is maximal.
That “best” delay increases when τin is large. Symmetric iSTDP is
less affected by τin.

In summary, the simultaneous strengthening of correlated
excitatory and inhibitory inputs (i.e., the emergence of balance)
should occur when iSTDP has an anti-Hebbian LTP component
in this simple circuit (anti-Hebbian and symmetric iSTDP), and

when inhibitory input spikes arrive after postsynaptic spikes with
a sufficiently large d (axonal delay in a feedforward inhibitory
circuit).

2.2. EMERGENCE OF A DETAILED BALANCE BETWEEN EXCITATORY
AND INHIBITORY WEIGHTS

Next, we verify our theoretical predictions for the SFC with simu-
lations using a LIF neuron (Materials and Methods: details of the
simulated SFC, Equations 8, 9). In contrast to Figure 1, the SFC
in Figure 2A includes a distractor pathway with random, uncor-
related inputs (Figure 2A, dark blue and red lines) besides the
correlated inputs (light blue and orange lines).

A typical example of synaptic weight evolution with anti-
Hebbian iSTDP is shown in Figure 2B1. The weights from ran-
dom inputs remain weak (dark blue and red traces), whereas the
weights from the correlated excitatory inputs (light blue traces)
and inhibitory inputs (orange traces) are strengthened, indicating
the development of within-pathway balance, or detailed balance
(Vogels and Abbott, 2009). In detailed balance, the excitatory and
inhibitory inputs to strong weights on a postsynaptic neuron have
correlated spike times (or spike rates, Vogels and Abbott, 2009).
In contrast, when excitation is balanced with inhibition from a
different signal pathway, excitation and inhibition are not neces-
sarily correlated, which we may call global balance. Both types of
balance will be evaluated in the sections below. The histograms of
the final weight distributions of this example show the develop-
ment of weight structure for excitation and inhibition. Excitatory
weights exhibit a long-tail distribution that follows from the log-
type weight dependence used for eSTDP (Gilson and Fukai, 2011)
(Figure 2B2: top). The distribution of inhibitory weights has a
long tail as well (Figure 2B2: bottom), but looks more bimodal
for smaller τin due to increased competition between the weights
(not shown).

As in our analytical approach, we compared the effect of dif-
ferent iSTDP windows on the inhibitory weights of an inhibitory–
excitatory pathway with correlated spike-times. The comparison
of the Hebbian, anti-Hebbian, and symmetric iSTDP windows
agrees with the theoretical predictions of expected drift in weights
in Figure 1F. Correlated inhibitory weights increase with both
symmetric (Figure 2D, black curves) and anti-Hebbian iSTDP
(magenta curves). Their final equilibrium value depends on d
(see also Figure 2C): short delays are preferred only by sym-
metric iSTDP (Figure 2D, black curves). Anti-Hebbian iSTDP
leads to a larger increase in inhibitory weights than symmet-
ric iSTDP for larger delays d, and small τin. We also test an
additional version of symmetric iSTDP: apart from the window
with the same maximal amplitude as Hebbian and anti-Hebbian
iSTDP (Figure 1E, bottom; Figure 2D, black curves), we apply a
symmetric rule with the same amount of LTP-LTD area (equal-
ized symmetric iSTDP; gray curves). Since this equalized window
only leads to very small changes, we conclude that the ampli-
tude of LTP is the crucial factor, not the overall LTP/LTD ratio.
Lastly, inhibitory weights vanish to zero with Hebbian iSTDP (red
curves). These findings confirm that the neuron first becomes
driven by the correlated excitatory inputs through eSTDP; then,
when excitatory inputs dictate postsynaptic firing times, corre-
lated inhibitory inputs follow up through iSTDP. The increase
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FIGURE 2 | Development of the synaptic structure induced by

simultaneous eSTDP and iSTDP (numerical simulation). (A) Schematic
representation of the Simplified Feedforward Circuit Model (SFC). One leaky
integrate-and-fire (LIF) neuron receives four different input groups, of which
half have temporal correlations with time constant τin (light blue and orange)
and half are random spike trains (dark blue and red). Spike-time correlations
arise from common variation of the firing rate. Inhibition arrives after
excitation with a delay d . (B1) Example of weight evolution over time of a
simulation using eSTDP and anti-Hebbian iSTDP. Excitatory weights (top),
inhibitory weights (bottom). The delay is d = 3 ms, and input temporal
precision τin = 2.12 ms. (B2) Histograms of the distribution of all weights at

the end of the anti-Hebbian iSTDP simulation shown in (B1). (C) Mean
inhibitory (top) and excitatory (bottom) weights from the correlated input
group after learning. Each pixel corresponds to the average of 10 simulations
with inhibitory delay d (x-axis) and input temporal resolution τin (y -axis). (D)

Mean inhibitory weight of the correlated inputs after learning with different
iSTDP windows: Anti-Hebbian (magenta), Hebbian (red), symmetric (black,
gray) for three values of τin. Each plot corresponds to a line in (C). (E) Final
excitatory and inhibitory weights of the correlated pathway for anti-Hebbian
(left) and symmetric (right) iSTDP, shown for all τin and d = 6 ms. One dot
represents the mean excitatory and mean inhibitory weight at the end of one
trial. Delays are pooled within the same color.

in inhibitory weight is determined by d, the timing of inhibitory
spikes to the excitatory spikes (and therefore to the output spikes),
together with the shape of the iSTDP window. Note that we set α

such that weights from background inputs remain weak.

The potentiation of excitatory and inhibitory weights with
both anti-Hebbian and symmetric iSTDP exhibits a balance
between correlated excitation and inhibition, as illustrated in
Figure 2E. Stronger excitatory weights induced by eSTDP are
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counterbalanced by stronger inhibition due to iSTDP. This
phenomenon depends on the input correlation precision τin

(smaller values in darker color), but not significantly on the
delay d. The matching is not linear and depends on the learning
window.

In summary, we find that simulations with the LIF neuron
confirm the theoretical results with the Poisson neuron. Detailed
balance in the weights from the correlated pathway can arise if
the iSTDP window is anti-Hebbian or symmetric, but not if it is
Hebbian.

2.3. SHARPENING THE NEURONAL RESPONSE IN THE SFC
While detailed balance between excitatory and inhibitory weights
can arise through anti-Hebbian or symmetric iSTDP (Figure 2),
anti-Hebbian iSTDP may increase inhibition to the point where
it will dominate over excitation for the postsynaptic neuron, as
shown in Figure 3A. This follows partly because we use additive
iSTDP, which strongly potentiates inhibitory weights (with our
choice of parameters). Whether inhibition dominates (Rudolph
et al., 2007) or not, the detailed balance weight specialization
underlies the tuning of the SFC function in propagating spike
volleys.

As τin governs the temporal width of input spike volleys, we
evaluate τout for the postsynaptic response (Figure 3B). To do
so, we detect volleys whose coincident spikes exceed a thresh-
old as “events.” We then build a peristimulus time histogram
(PSTH) of the postsynaptic spikes with respect to the input events
(Figure 3B: right). An example for the simulation in Figure 3B
with anti-Hebbian iSTDP is shown in Figures 3C1,C2 for two
values of d.

The PSTH obtained from the simulations with specific inhibi-
tion (leading to detailed balance; red curve) is compared to two
control conditions:

• the inhibitory weights are swapped to obtain unspecific inhibi-
tion (leading to global balance; green curve)
• the inhibitory inputs are omitted (black curve).

The three conditions are characterized by different mean fir-
ing rates. For τin = 2.12 in the SFC with anti-Hebbian iSTDP,
rout = 2.21 sp/s for specific inhibition, 2.23 sp/s for unspecific
inhibition, and 38.94 sp/s for excitation only.

The difference in response width τout between specific
inhibition and the unspecific inhibition control represents the
particular contribution of detailed balance on output response
sharpening. Likewise, removing the inhibitory inputs from the
circuit and taking the difference with the unspecific inhibition
control should reveal the response sharpening due to the general
presence of inhibition (global balance). To evaluate the relative
change of spiking probability induced by the input stimuli, we
normalize the PSTH with respect to the mean postsynaptic firing
rate (see Materials and Methods for details). This gives a sig-
nal/noise ratio (SNR) for the output spikes following an event
in this detection task. As can be seen in Figure 3C (right), both
the specific inhibition (red) and unspecific inhibition (green)
enhance the SNR. The postsynaptic response is even sharper
with the specific inhibition circuit for small delays (Figure 3C1,

detailed balance, red curve). This occurs when inhibition is timed
with excitation (arrow). For larger d as in Figure 3C2, 8 ms, this
sharpening vanishes, as inhibition cannot arrive sufficiently early
right after excitation. In that case, the performance is closer to
that with unspecific inhibition (global balance, green curves).
This sharpening is efficient for all τin = 0.71–5.66 ms, in the
range of the delay d, as illustrated in Figure 3D. Note that very
small delays d prevent a proper weight structure from develop-
ing with anti-Hebbian iSTDP, thus the sharpening of the response
fails (Figure 3D: top: red curve). The principle can be explained
by the presence of inhibition lowering the output firing rate,
which increases the SNR of the neuron’s response (Figure 3E:
top). Additionally, precisely timed inhibition coming right after
excitation further sharpens the response and improves the SNR
(Figure 3E: bottom). Figure 3F summarizes the performance of
the sharpening by the emerged detailed weight balance, as com-
pared to the global balance with unstructured inhibition or in the
absence of inhibition.

In our model, symmetric iSTDP performed similarly to anti-
Hebbian iSTDP (Figure 3G). A small difference is that global
inhibition contributed slightly more to the sharpening of the
response than the inhibition in detailed balance. The perfor-
mance is a bit better for anti-Hebbian iSTDP because the weights
grow stronger. Lastly, because the weight structure does not
develop with Hebbian iSTDP, no significant difference in τout is
observed (Figure 3H: left). Actually, the weights from the ran-
dom input group are not weakened to zero in the Hebbian
case (Supplementary Figure 1), so the unspecific inhibition con-
trol condition, in which weights between the two pathways
are swapped, leads to a slightly better performance (Figure 3H:
right).

We conclude that detailed balance, as achieved by anti-
Hebbian and symmetric iSTDP, in combination with Hebbian
eSTDP, can lead to the temporal restriction of a postsynap-
tic response to correlated input spikes. Brief delays in inhi-
bition prove most beneficial for this sharpening, though the
exact optimal delay is dependent on the input correlation
precision τin.

2.4. RECRUITMENT OF DISYNAPTIC INHIBITORY PATHWAY WITH
DELAY SELECTION

Finally, we explicitly model inhibitory interneurons in our circuit
in order to examine how they are recruited in a more realistic
architecture. In our FFC model in Figure 4A, two correlated input
pathways (dark and light blue) compete against each other. The
inhibitory inputs contain heterogeneous axonal delays. Here we
focus on anti-Hebbian iSTDP, which proved efficient in develop-
ing feedforward inhibition in the previous sections. All excitatory
synapses are subject to eSTDP as in Figure 2. In the example
simulation in Figure 4B, the excitatory weights onto the output
neuron (top) specialize to the dark blue group (“winning group”)
at the expense of the light blue group (“losing group”). Note
that in general, each group has 50% chance of winning because
we use sufficiently competitive eSTDP (Gilson and Fukai, 2011).
The inputs onto the interneurons specialize in a similar fashion,
as shown for two different examples in Figure 4B (middle and
bottom).
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FIGURE 3 | Sharpening of the postsynaptic response by timed

inhibition. (A) Neuronal state after learning. One second activity after
training for the simulation in Figure 2B: raster plot of the input
excitatory/inhibitory spikes (blue/red), excitatory/inhibitory conductance
(blue/magenta), and voltage (black). (B) Schematic indicating the construction
of the PSTH. Events are detected using the correlated excitatory inputs
(blue). Then, postsynaptic spikes that occur in a given window around the
event are counted (gray). Response efficiency is evaluated by the temporal
width of the PSTH τout. (C1) Effect of inhibition on the response of the
postsynaptic neuron to correlated events for τin = 2.12 ms and d = 3 ms.
Left: example of raw PSTH for postsynaptic spike count. Comparison of
detailed balance (red) with the control of global balance (green) and no
inhibition (black). The arrow indicates incoming specific inhibition. Right:

signal/noise ratio (SNR) obtained by normalizing the PSTHs. (C2) Same as in
(C1) but with d = 8 ms. (D) Response sharpening for different values of τin

and τout. The gray unit line represents instances where the output width and
the input width are equal. Top: d = 3 ms. Bottom: d = 8 ms. Legend
corresponds to (C). (E) schematic indicating the effect of detailed balance
and global balance on the response shape. (F) anti-Hebbian iSTDP learning
window and the contribution of detailed and global balance to the sharpening
of the response. The difference in τout is shown for varying d (x-axis) and the
input τin (y -axis). Left: difference in τout between detailed balance and global
balance. Warm colors indicate the response is sharper through detailed
balance compared to global balance. Right: difference in τout between global
balance and no inhibition. (G) Same as in (D) but for symmetric iSTDP. (H)

Same as in (D) but for Hebbian iSTDP, where no detailed balance emerged.
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FIGURE 4 | Selection of delays in a disynaptic pathway by iSTDP. (A)

Schematic representation of the full feedforward circuit model (FFC). The
postsynaptic neuron receives excitatory input from two correlated groups that
compete. Inhibition onto this neuron is provided via 50 fast-spiking
interneurons (orange circles). Each interneuron receives inputs from both
excitatory groups. The interneurons have axonal delays between 0 and 9 ms. All
synapses are plastic, with learning windows shown by the insets. (B) The
evolution of excitatory weights from the two input groups onto the output
neuron (top) and onto two of the 50 interneurons (middle, bottom) in one
example trial. Weights from group 1 (dark blue inputs) increase beyond those
from group 2 (light blue inputs). Here, group 1 is the “winning group.”
Interneuron 1 (23) receives more input from the dark (light) blue group. (C)

Example of weight evolution onto interneurons and the subsequent change in
inhibitory synaptic weights during the simulation (after 20, 300, 1000 s). Each

dot represents one of the 50 interneurons. The x-axis indicates the difference in
total weights between the two input groups onto the interneuron. The right
(left) part corresponds to interneurons specializing to the dark (light) blue input
group. The y -axis indicates the weight of the inhibitory synapse onto the
postsynaptic neuron. (D) Inhibitory weights after learning depend on the axonal
delays of interneurons (x-axis) and specialization of their input weights, in the
FFC with heterogeneous delays (top; each horizontal line represents an average
over 10 simulations), and in the FFC with homogeneous delays (bottom; each
square represents 10 simulations). (E) Schematic of the recruitment of
interneurons and the consequence on the inhibitory weights, leading to
detailed balance. (F) SNR of the response to correlated events in the FFC with
heterogeneous delays. Top: for τin = 2.12 ms. Bottom: for τin = 3.54 ms. (G)

Relationship between τin and τout for the FFC model: specific inhibition (red),
unspecific inhibition (green), and without inhibitory interneurons (black).
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After the specialization of excitatory synapses, inhibitory
synapses start to become potentiated. We find that the structure
in the inhibitory synapses develops only for interneurons that
specialize to the same group as the output neuron (Figure 4C:
right part of last panel; Figure 4D, top). This is a consequence
of the correlation between the spike trains fired by the interneu-
rons that specialize to the winning group, and the output neu-
ron spike train. Conversely, interneurons that specialize to the
losing group do not match their spike times to postsynaptic
spikes, and their weights remain weak (Figure 4C: left part of last
panel). Inhibitory and excitatory inputs onto the output neuron
become correlated, making detailed balance possible (Figure 4C,
last panel; Figures 4D,E). The use of homogeneous delays in the
FFC still achieves detailed balance (Figure 4D, bottom) though
the difference in inhibitory weight is smaller. This is because there
is no competition between winner-recruited neurons of differ-
ent delays (Figure 4D bottom, left), and loser-recruited neurons
can more easily adjust their firing times to postsynaptic firing if
they receive a small amount of input from the winning group
(Figure 4D bottom, right).

Importantly, LTP in the inhibitory weights depends on the
axonal delay of their interneurons, in a similar manner as the SFC
(Figure 4D: left; Figure 2C: top). For broader input spike vol-
leys with larger τin, short delays are not selected by anti-Hebbian
iSTDP. This ensures that inhibition will not cut off the output
response before sufficiently many inputs are integrated. Similarly,
late-arriving inhibition does not affect the sharpening of the
response, therefore there is no need for its weight to be increased
for this function. The adequately timed inhibition that follows
excitation results in a sharper response to correlated events in
the FFC (Figures 4F,G). The comparison with unspecific inhibi-
tion (global balance) for which inhibitory weights are swapped
with interneurons specialized to the losing group confirms that
precise timing between excitation and inhibition is important
for the response sharpening (red curves versus green curves in
Figures 4F,G). As in the SFC, the response to τin in the range of
1–5 ms benefits most from the detailed balance (Figure 4G).

To test the robustness of the FFC against noise, we modified the
FFC by adding random uncorrelated inputs into the interneurons
and the output neuron, and decreased the number of inputs from
the correlated pathways (Noisy Full Feedforward Circuit, Noisy
FFC; Supplementary Figure 2A). Detailed balance emerged as in
the FFC, inhibitory synapses showed delay-dependent potentia-
tion (Supplementary Figure 2B), and the response from the out-
put neuron was sharpened (Supplementary Figures 2C,D, red
curve). Detailed balance and the sharpening role of inhibition are
therefore robust against noise.

We conclude that in the more realistic FFC and Noisy FFC,
eSTDP determines the specialization of both the output neu-
rons and the interneurons, and anti-Hebbian iSTDP selects the
interneurons with intermediate delays, which leads to sharpening
of the response.

3. DISCUSSION
This study showed how eSTDP and iSTDP can jointly structure
synapses in feedforward neural circuits to control downstream fir-
ing. We found that the temporally anti-Hebbian (post-pre LTP)

component of iSTDP is crucial to achieve a balance between
excitatory and inhibitory weights given correlated inputs, and
assuming an inhibitory delay in the order of a few milliseconds.
Moreover, interneurons can be recruited by Hebbian eSTDP in a
self-organized fashion to develop inhibition through iSTDP onto
output neurons. By selecting adequate delays in this disynaptic
inhibition scheme, iSTDP sharpens the output firing response,
enhancing the propagation of spike volleys.

3.1. INPUT TIMING AND TYPES OF iSTDP LEARNING WINDOW
We investigated how the interplay between eSTDP and iSTDP
shapes the excitatory and inhibitory weight distributions. In our
model, correlations in inhibition follow correlations in excitation
by a delay of up to 10 ms (Figures 1, 2, and 4), which agrees with
experimental observations at the order of a few milliseconds in
the auditory (Wehr and Zador, 2003) and somatosensory cortices
(Gabernet et al., 2005). For such input signals, we found that both
anti-Hebbian and symmetric iSTDP windows generate a detailed
balance between excitatory and inhibitory weights (see SFC in
Figure 2). In contrast, Hebbian iSTDP leads to the weakening of
all synapses: Due to the inhibitory delay and the timescale of the
input correlations, a large portion of the inhibitory spikes fall into
the LTD part of the window.

There is, to our knowledge, currently no experimental evi-
dence of this kind of anti-Hebbian iSTDP. Some studies show
evidence of anti-Hebbian STDP in excitatory synapses in the elec-
tric fish (Han et al., 2000; Harvey-Girard et al., 2010), in the
dorsal cochlear nucleus (Tzounopoulos et al., 2004), and in cor-
ticostriatal synapses (Fino et al., 2009). Anti-Hebbian STDP has
also been the subject of theoretical studies (e.g., Roberts and Bell,
2000; Rumsey and Abbott, 2004, 2006; Carnell, 2009), but again
only in the context of excitatory synapses. Our study is the first
one to show a functional role for the anti-Hebbian LTP in iSTDP.
Anti-Hebbian LTP is also part of the symmetric iSTDP learning
rule that is the subject of a recent theoretical iSTDP study by
Vogels et al. (2011), showing the exact balancing of excitation
and inhibition. In our model, the output neuron is dominated
by strong inhibition after learning, meaning that the balance
between excitatory and inhibitory weights leads to a different fir-
ing regime than in their results (Vogels et al., 2011). This follows
because of our choice of inputs, which induces strong LTP via
iSTDP.

Vogels et al. (2011) showed that symmetric iSTDP can lead
inhibitory feedforward connections to detailed balance with fixed
excitation, by letting inhibition adapt to the firing rate of each
input pathway. We propose that iSTDP can ensure pathway-
specific balance between excitation and inhibition, even if firing
rates are constant and excitation is growing simultaneously with
eSTDP. Since symmetric iSTDP contains an anti-Hebbian ele-
ment (namely, post-pre LTP), detailed balance will follow as long
as there is a positive delay in the inhibitory input (e.g., Pouille and
Scanziani, 2001; Wehr and Zador, 2003). Our theoretical results
show that the expected increase in weights does not depend on
input firing rate. If, however, firing rates are unequal between
input groups, we still expect our current results to hold, as long as
spike pairing-based effects dominate those coming from the rate
differences.
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Our findings are in contrast with Hebbian iSTDP, which has
been found experimentally in the entorhinal cortex (Haas et al.,
2006) and in the ventral tegmental area (Kodangattil et al., 2013).
If sufficient inhibition from other sources is present, synapses
corresponding to uncorrelated inputs may be potentiated by
Hebbian iSTDP, leading to a “reversed detailed balance”; a sce-
nario in which inhibitory inputs from all but one pathway make
up for the excitatory input from the remaining pathway. Although
Hebbian iSTDP does not directly support detailed balance in the
weights in our model, Hebbian iSTDP may subserve alternative
functions in neural circuit processes. Recent theoretical work has
shown that Hebbian iSTDP leads to decorrelation of inhibition
with respect to excitation, which results in global balance and
increased sensitivity to excitatory correlations (Luz and Shamir,
2012). This follows because of the increased sensitivity to input
fluctuations when the neuron acts as a coincidence detector, in
contrast to the integrator regime (Hong et al., 2012). Another
study showed that Hebbian iSTDP also decorrelates spike pat-
terns through lateral connections (Savin et al., 2010). Though
these studies indicate that Hebbian iSTDP plays a part in creating
global balance, it does not lead to the detailed balance in our feed-
forward circuit. Alternatively, detailed balance by Hebbian iSTDP
may arise if inhibitory delays are negative, for instance when
somatic inhibitory inputs precede the excitatory dendritic spike.
Inhibitory weight increase will, however, be strongly bounded by
the fact that an early inhibitory spike may prevent a postsynap-
tic spike otherwise caused by late excitation, preventing weight
increase.

Another form of inhibitory plasticity, slightly different from
iSTDP considered here, is voltage-dependent iLTP (Maffei et al.,
2006), which leads to a potentiation in inhibitory synapses
when a presynaptic spike precedes a postsynaptic depolariza-
tion either without spikes (Maffei et al., 2006), or accompanied
by low-frequency spiking (Wang and Maffei, 2014). Modeling
approaches have shown that when iLTP is complemented by a
homeostatic form of LTD, it is capable of creating sparseness in
activation that supports stimulus-pair specificity in recipient neu-
rons (Bourjaily and Miller, 2011a,b). iLTP contains a competitive
effect for inhibitory synapses, meaning that the weakest synapses
will not manage to decrease post-synaptic firing, therefore miss-
ing out on LTP. If the postsynaptic spiking rate is low, as in our
study, we expect the inhibitory weight evolutions with iLTP to
behave similarly to Hebbian iSTDP without the LTD part. This
would not lead to detailed balance, because of the brief delay in
inhibition, but global balance might ensue when implemented in
a large network.

In view of the large diversity of inhibitory interneurons
(Markram et al., 2005), explaining the possible roles of iSTDP in
different circuits and interneurons is an important open question
that requires further work.

3.2. RECRUITMENT OF DISYNAPTIC INHIBITORY PATHWAY IN
FEEDFORWARD NETWORK

In our Full Feedforward Circuit model (FFC model), the
excitation–inhibition structure in synaptic weights arises from the
recruitment of interneurons: specialization due to eSTDP, fol-
lowed by the strengthening of inhibition onto output neurons
induced by iSTDP. Hebbian eSTDP provides a sufficient degree

of temporal correlation between the selected excitatory and
inhibitory pathways onto the output neuron. This correlation is
essential for anti-Hebbian iSTDP to select weights from adequate
interneurons, whose firing is correlated with the output neuron.

One could also imagine other combinations of eSTDP-iSTDP
for the interneurons in the FFC model. For example, if the
eSTDP onto the interneurons is anti-Hebbian, excitation and
inhibition onto the output neuron become anti-correlated. We
expect that Hebbian iSTDP for the inhibitory synapses from
the interneurons would be an interesting choice in this case,
to further reinforce the anticorrelation between excitation and
inhibition onto the output neuron.

3.3. CONTROL OF CORRELATED FIRING ACTIVITY
In the feedforward circuit, iSTDP enables the neuron to select
inhibition with an adequate delay (Figure 4D), which tempo-
rally controls the propagation of the volley of correlated spikes
without arriving too early to stop it entirely (Figure 3D: top;
Figures 3F,G). Moreover, the selected suitable delays depend on
the input temporal precision (τin): for temporally broader spike
volleys, larger delays are recruited (Figure 4D). In this sense, the
output firing is sharpened only after sufficiently many inputs
have been integrated, in agreement with experimental findings
(Gabernet et al., 2005).

It is worth noting that delayed inhibition compared to excita-
tion arises naturally because of the disynaptic pathway (axonal
delays of interneurons). For the inputs, we considered sharp
correlations at the scale of a few milliseconds, in line with the
timescale of input correlations for which neurons in a balanced
state are most sensitive, shown both experimentally in vitro and
theoretically by Rossant et al. (2011). Propagation of spike vol-
leys in networks also requires such fine temporal resolution
(Diesmann et al., 1999). Our results suggest that interneurons
can control the temporal spread of such spike volleys by adapting
an inhibitory cutoff. This function of iSTDP is complementary
to the homeostatic stabilization (Pouille et al., 2009) enforced by
iSTDP to control the average firing of neurons, as was demon-
strated recently (Vogels et al., 2011). In addition to restraining the
firing rate, iSTDP can control the temporal output by creating a
detailed balance in the synaptic weights, in which precisely timed
inhibition limits the output spikes to a narrow temporal window.
Thus, our finding is in accordance with previous studies that show
that inhibition limits the time for summation and integration of
EPSCs (Pouille and Scanziani, 2001; Gabernet et al., 2005). The
presence of inhibition improves frequency tuning in excitatory
neurons in auditory cortex (Wu et al., 2008). We showed that
sharpening of the response only takes place if the inhibitory delay
is sufficiently brief. Such short delays can limit the range of inten-
sity tuning in auditory neurons by reducing the EPSP amplitude,
controlling the response integration window (Wu et al., 2006).
Quick but delayed inhibition after excitation therefore allows only
inputs from high intensities to generate spikes in the downstream
neuron. The millisecond-range sharpening of the response by
inhibition, such as in our model, may therefore be useful for
tuning control of a neuron.

For certain delays and τin, the well-timed inhibition may
hyperpolarize the neuron so strongly that the responses exhibit
a rebound, after inhibition vanishes (Supplementary Figure 3).
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This is because the strong hyperpolarization brings the mem-
brane potential far from the excitatory reversal potential, tem-
porarily boosting subsequent excitatory inputs. We only found
rebound responses for anti-Hebbian-based iSTDP, for which
inhibitory weights grew strongest. Mechanisms to regulate
inhibitory strength within a medium range could prevent this
phenomenon, such as an ad hoc upper bound on inhibitory
weights or weight-dependent iSTDP.

Finally, we also showed that response sharpening was robust
to noise in the circuit, even when the correlated inputs were
decreased, meaning that our results can be extended to more
realistic circuit contexts with larger input numbers. iSTDP and
its resulting structure in weights may therefore be useful for the
propagation of transient activities in larger circuits, such as a
cortical column.

4. MATERIALS AND METHODS
Here we provide details about our analysis to predict the weight
changes induced by simultaneously occurring eSTDP and iSTDP
in the first section of Results. Then we describe the two neural
circuit architectures used in this study, namely the SFC and FFC.
Finally, we explain how the PSTHs of the postsynaptic and output
neurons are calculated.

4.1. THEORETICAL ANALYSIS OF THE WEIGHT EVOLUTION IN THE
SIMPLIFIED FEEDFORWARD CIRCUIT (SFC)

In our theoretical model, a postsynaptic Poisson neuron post
receives both excitatory and inhibitory inputs (Figure 1A). All
inputs share the same source of correlation, and inhibition is
delayed by d compared to excitation.

The firing rate ρpost evolves over time according to the presy-
naptic inputs:

ρpost(t) =
∑

k

we
k

[

εe ∗ Se
k

]

(t)−
∑

m

w i
m

[

εi ∗ Si
m

]

(t). (4)

The kth excitatory input spike train Se
k is modeled as a time series

of Dirac functions: Se
k(t) =∑s δ(t − tk

s ); likewise, Si
m is the mth

inhibitory spike train. Though ρpost may take on negative values
in theory, we assume it is positive on average, and do not con-
sider the case of no postsynaptic spiking. The EPSPs and IPSPs
are summed together to obtain ρpost; ∗ denotes the convolution of
functions. For each EPSP at synapse k, the time course of the post-
synaptic response for a single spike is described by the normalized
kernel functions εe rescaled by the weight we

k. For IPSP at synapse

m, the same holds with εi and w i
m. In Figure 1, we use a sim-

ple exponential decay that is identical for all excitatory synapses
with decay time τe = 3 ms; likewise τi = 5 ms for all inhibitory
synapses.

In order to evaluate the expected weight change, we calculate
the pre-post spike-time correlations for excitatory and inhibitory
inputs. We consider the situation when pre-post correlations are
dominated by the effect of input correlations. Actually, we use
spike-time covariances defined as (Gilson et al., 2010)

Ce,e
k,l (t,�t) = Cov[Se

k, Se
l ](t,�t) := 〈Se

l (t)Se
k(t +�t)〉

− 〈Sl
e(t)〉〈Sk

e(t +�t)〉. (5)

The angular brackets 〈· · · 〉 denote the ensemble average over the
randomness from the stochastic process. Considering spike trains
with constant average firing rates and fixed pair-wise correla-
tions, we can omit the dependence on t in Equation (5). For
the configuration described in Figure 1A, excitatory inputs are
homogeneously correlated between them, as well as inhibitory
inputs. However, the correlation between an excitatory and an
inhibitory inputs involves the delay d. Denoting by C0(�t) the
homogeneous covariance corresponding to Figure 1C, we have

Ce,e
k,l (�t) = C0(�t),

Ci,i
m,n(�t) = C0(�t), (6)

Ce,i
k,m(�t) = C0(�t − d).

All covariances are defined in a similar manner to Equation (5).
For the kth excitatory input, the covariance Cove

k,post is given by
the input covariance on which the postsynaptic response (EPSPs-
IPSPs) operates:

Ce
k,post(�t) := Cov[Se

k, Spost](t, �t), Spost ∝ ρpost
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=
∑
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n[C0 ∗ εi](�t − d).

The subsequent STDP weight update is given by the integral
value of the learning window We(u) with the pre-post covariance
Ce

k,post(− u), which yields:

�we
k = [Ce

k,post ∗We](0)

=
∑

l

we
l [C0 ∗ εe ∗We](0)−

∑

n

w i
n[C0 ∗ εi ∗We](d) (8)

Similarly, the pre-post covariance and the expected change for the
mth inhibitory weight is given by:

Ci
m,post(�t) =

∑

l

we
l [C0 ∗ εe](�t + d)−

∑

n

w i
n[C0 ∗ εi](�t),

�w i
m =

∑

l

we
l [C0 ∗ εe ∗Wi](− d) (9)

−
∑

n

w i
n[C0 ∗ εi ∗Wi](0)

These formulas are used to generate Figure 1F.

4.2. DETAILS OF THE SIMULATED SFC
In Figures 2, 3, the SFC consists of a single postsynaptic neuron
that receives a total of 200 excitatory and 50 inhibitory inputs.
Half of each set of inputs consist of weakly correlated spike trains,
whereas the remainder consists of random Poisson spike trains
(Figure 2A).
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We use a function in Brian Simulator to generate correlated
spike trains, which is based on the first method in Brette (2008).
The principle of this function is that a doubly stochastic pro-
cess (or Cox Process) with an average (spike) rate r, underlies
a group of inhomogeneous Poisson processes which have rates
that fluctuate around r. Final spike trains are derived from these
inhomogeneous Poisson processes, and will appear to be homo-
geneous, correlated spike trains with stationary rate r. These
correlated spike trains do not have Poisson statistics, because
their autocovariance is modulated by their correlation. In order
to have exponential cross-correlation functions (CCF) between
these spike trains, the function employs the Ornstein–Uhlenbeck
process. The time-constant of the exponential CCF is a param-
eter called τc in Brette (2008) and in Brian Simulator. We focus
on the standard deviation of the latencies in input spike volleys
(representing input stimuli), τin, where τin = τc

√
2. We apply

correlation strength c = 0.1 and CCF standard deviation τin in
the range of 0.71–5.66 ms. Correlated inhibition is delayed by
d ms. All inputs have the same firing rate rin = 5 sp/s.

The postsynaptic neuron is a conductance-based leaky
integrate-and-fire (LIF) model. Its membrane potential V obeys:

τm
dV

dt
= Eleak − V + ge(Ee − V)+ gi(Ei − V) (10)

With synaptic conductances ge and gi, that decay exponentially
with conductance trace parameters τe and τi:

τe
dge

dt
= −ge , τi

dgi

dt
= −gi (11)

For every excitatory spike from synapse k, ge is increased by we
k,

and for every inhibitory spike from synapse m, gi by wi
m. Intrinsic

time constants of the neuron are not considered. All simulations
are run with BRIAN, a python-based neural simulator (Goodman
and Brette, 2008). The simulations last 2500 s each. For plots with
error bars and color maps, 10 trials are repeated for the same sim-
ulation protocol with each set of values for d and τin. All SFC
variables and parameters are listed in Table 3.

4.3. DETAILS OF THE SIMULATED FFC
In Figure 4, the FFC model incorporates 50 inhibitory interneu-
rons which receive the same excitatory inputs as the output
neuron, and project inhibitory connections onto the latter. In
contrast to the SFC, two groups of correlated inputs compete
against each other (dark blue and light blue lines in Figure 4A).
The postsynaptic neuron receives 100 inputs from each group,
and each interneuron receives 10 excitatory synapses from each
group. The inputs are chosen so that the first interneuron receives
excitatory input from spike trains 1–10 from the dark blue group,
the second interneuron receives input from spike trains 2–11 from
the dark blue group, and so on. The same procedure is per-
formed for inputs from the light blue group. The 50 interneurons
only differ from the output neuron by a shorter membrane time
constant τ i

m = 5 ms. The interneurons are not connected to one
another and there is no external inhibition source. Each interneu-
ron makes a single inhibitory synapse onto the output neuron,

Table 3 | SFC and FFC variables and parameters.

Theoretical

SFC variables

Description Value

ρpost Postsynaptic neuron firing rate

se
k , se

l Presynaptic excitatory spiketrain k or 1

Si
m, Si

n Presynaptic inhibitory spiketrain m or n

εe Synaptic conductance decay function for
excitation

εi Synaptic conductance decay function for
inhibition

we
k , we

l Synaptic weight of excitatory input k or 1

wi
m, wi

n Synaptic weight of inhibitory input m or n

u Time between two spikes

τe Excitatory conductance decay constant 3 ms

τi Inhibitory conductance decay constant 5 ms

d Inhibitory delay 2–20 ms

τc Time constant for input spike
correlogram

0.5–4.0 ms

τin STD of the latency of the input spike
correlogram

τc ×
√

2

c Correlation 0.1

NUMERICAL EXTRA VARS: SFC and FFC

V Postsynaptic neuron membrane voltage

ge Excitatory synaptic conductance

gi Inhibitory synaptic conductance

NUMERICAL EXTRA PARAMS: SFC and FFC

rin Input firing rate 5 Hz

τm Membrane time constant 20 ms

τi Inhibitory conductance decay constant 20 ms

Eleak Leak Potential −70 mV

Ee Excitatory reversal potential 0 mV

Ei Inhibitory reversal potential −80 mV

– LIF spike threshold −50 mV

Table listing all SFC and FFC variables and parameters relating to inputs and

neuronal properties.

and axonal delays d are heterogeneous, ranging from 0 to 9 ms
(five interneurons for each d).

All synapses are plastic. The excitatory synapses onto both the
output neuron and the inhibitory interneurons are subject to the
same Hebbian eSTDP leaning window. The list of parameters
that vary from the SFC is shown in Table 2. The iSTDP window
time constants are lower (τ i

pre = τ i
post = 20 ms), excitatory and

inhibitory learning are slowed down (ηe = 0.0624, ηi = 0.02),
the eSTDP equilibrium value is higher (w0 = 0.08), and the value
of the start-up weights is changed (a random number between
0 and 1 for excitation, 1 for inhibition). Total simulation time is
1000 s.

To test the robustness against noise, we modify the FFC by
adding 400 excitatory random inputs onto the interneurons and
output neuron (Noisy FFC in Supplementary Figure 2A, green
inputs) and decrease the size of the correlated groups to 50 (dark
and light blue inputs). The number of interneurons is increased
to 120. Other parameters are unchanged (see Table 3 for all FFC
parameters).
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4.4. ANALYSIS OF THE TEMPORAL ACUITY OF THE POSTSYNAPTIC
RESPONSE

We evaluate how the iSTDP learning rule, via the resulting
weight distributions, shapes the postsynaptic response to corre-
lated input activity. To do so we run the SFC simulation with fixed
weights for 300 s.

Volleys of input spikes (“events”) are detected by binning the
spike times of the 100 correlated inputs in the SFC in bins with
width 0.5 ms, and counting the spikes in a sliding window of
duration τin. When the spike count exceeds a threshold, the time
of the event is set to the center of the sliding window. Events
in neighboring windows are discarded. The window spike count
threshold is determined for each τin such that the average num-
ber of events per second is as close as possible to rin without
exceeding it.

To evaluate the temporal acuity of the spikes fired in response
to such events, we count the postsynaptic spikes in bins of
0.5 ms. This yields a peri-stimulus time histogram (PSTHs)
around the time of the events, as shown in Figure 3B. We
then evaluate the temporal acuity of the response of the out-
put neuron to input stimuli by computing the sharpness of
the PSTH.

Not only the latencies of spikes following the event, but
also the excess of spikes compared to the baseline output fir-
ing rate contributes to the temporal acuity of the response. We
obtain the average firing rate during the entire 300 s simula-
tion, F0. The number of spikes in each bin of the PSTH is
then divided by F0, yielding the “normalized” PSTH as a devi-
ation from average activity. This deviation is also the signal to
noise ratio (SNR: Figures 3C1,C2). The temporal acuity of the
response input events is then evaluated through the standard
deviation of the normalized PSTH, τout. τout is computed over
the time window 0,+10 ms inside the PSTH (0 is the time of the
event).

To study how the emerged inhibitory weight structure affects
τout, we compare the outcome of simulations to two controls:

• “specific inhibition”: the weights are as in the numerical simu-
lation of the SFC;
• “unspecific inhibition control”: the inhibitory weights are

swapped between the two input groups, leading to equivalent
total inhibition, but abolishing the relation between the tempo-
ral structure of the spike trains and the strength of the weights
that depended on them through iSTDP;
• “excitation only control”: the inhibitory inputs are removed

completely, leaving only the excitatory inputs.

In the unspecific inhibition control for the SFC, we aim to destroy
the detailed weight structure that emerges, but preserve strong
feedforward inhibition. After swapping the inhibitory weights
between the correlated and random inputs, the weight strengths
are adjusted down to obtain a postsynaptic firing rate simi-
lar to the specific inhibition configuration. Weight corrections
are not performed for trials with mean weight smaller than 1.
Excitatory weights are unchanged in all three conditions. In the
FFC, the same three scenarios are applied. For specific inhibi-
tion, all weights are as obtained from the simulation. To obtain

the unspecific inhibition condition, excitatory weights onto the
interneurons are swapped between the winner and loser input
pathways. The result of this manipulation is that an interneu-
ron receiving strong inputs from the dark blue group and weak
inputs from the light blue group, changes to receiving weak inputs
from the dark blue group and strong inputs from the light blue
group. This procedure leads to qualitatively the same control as
in the SFC. Inhibitory weights are not adjusted further as in
the SFC. For the excitation only control, the interneurons are
omitted.
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53/abstract

Supplementary Figure 1 | Equilibrium weights of the random inhibitory

inputs in the SFC. Mean inhibitory weight for Hebbian iSTDP (red curve),

anti-Hebbian iSTDP (magenta curve), symmetric iSTDP (black curve), and

symmetric with equal total LTP (gray curve). Mean final weights are

shown for three τin.

Supplementary Figure 2 | Robustness of weight structure development

and response sharpening in the presence of noise. (A) Noisy full

feedforward circuit model with eSTDP and iSTDP. There are 120

interneurons instead of 50. The correlated input groups have decreased to

50 inputs each, and an additional 400 random inputs project onto the

output neuron. Each interneuron also receives 60 random inputs. For

eSTDP, w0 = 0.037. Other parameters are as in the FFC. (B)

Delay-dependent inhibitory weight strenghtening of interneurons recruited

by the winning group (top) and absence of inhibitory weight increase for

interneurons recruited by the losing group (bottom). (C) Effect of inhibition

on the response of the postsynaptic neuron in response to correlated

events for τin = 2.12 ms (left) and 3.54 ms (right). Comparison of the

signal/noise ratio(SNR) between specific inhibition (red), the control of

unspecific inhibition (green) and excitation only (black). (D) τin and τout

results for the Noisy FFC with specific inhibition (red), unspecific inhibition

(green), and with only excitation (black) for various τin.

Supplementary Figure 3 | Rebound of the neuronal spike probability after

the arrival of strong inhibition in the SFC. The rebound in spiking

probability is visible for specific inhibition (red curves). In the specific

inhibition case, a rebound response is observed (orange arrow). The red

arrow indicates the moment inhibition kicks in, in the specific inhibition

case. The rebound response is shown for τin = 0.71 ms, d = 5, and 6 ms.
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Biological neural networks are shaped by a large number of plasticity mechanisms
operating at different time scales. How these mechanisms work together to sculpt such
networks into effective information processing circuits is still poorly understood. Here
we study the spontaneous development of synfire chains in a self-organizing recurrent
neural network (SORN) model that combines a number of different plasticity mechanisms
including spike-timing-dependent plasticity, structural plasticity, as well as homeostatic
forms of plasticity. We find that the network develops an abundance of feed-forward
motifs giving rise to synfire chains. The chains develop into ring-like structures, which we
refer to as “synfire rings.” These rings emerge spontaneously in the SORN network and
allow for stable propagation of activity on a fast time scale. A single network can contain
multiple non-overlapping rings suppressing each other. On a slower time scale activity
switches from one synfire ring to another maintaining firing rate homeostasis. Overall, our
results show how the interaction of multiple plasticity mechanisms might give rise to the
robust formation of synfire chains in biological neural networks.

Keywords: synfire chain, recurrent neural network, network self-organization, spike-timing-dependent plasticity,

homeostatic plasticity, network motif

1. INTRODUCTION
Precise repetitions of neural activity patterns may serve as an
infrastructure for numerous neural functions including sensory
processing, motor control, and cognition. Synfire chains have
been proposed as a fundamental network structure of the nervous
system, which can guarantee a fixed level of network activity while
allowing to learn and reproduce complicated spatio-temporal fir-
ing patterns (Abeles, 1982). Precise neural firing patterns have
been found in many brain areas such as the songbird premotor
nucleus (Hahnloser et al., 2002) and motor cortex of behav-
ing monkeys (Prut et al., 1998; Shmiel et al., 2006). Studies
on isolated neocortical microcircuits have revealed that sponta-
neous activity, mediated by a combination of intrinsic and circuit
mechanisms, can be temporally precise in the absence of sensory
stimulation (Mao et al., 2001; Luczak et al., 2007).

There is great interest in understanding how cortical circuits
could acquire and maintain synfire-chain-like structures to give
rise to relevant computations. Spike timing-dependent plasticity
(STDP) has been proposed as a relevant mechanism in previ-
ous studies. Hertz and Prugel-Bennett (1996) tried to develop
a synfire chain in a random network by introducing a Hebbian
learning rule with one-step delay and n-winner-take-all dynam-
ics. Successful learning required that the same training stimulus
was shown to the system repeatedly. These stimuli, represented as
sequences of activation patterns, determined the network dynam-
ics which in turn determined the network connectivity due to
STDP and other learning rules. The external stimuli were crucial
for the synfire chain formation, because these stimuli generally
drove the firing sequence of groups of neurons. Along similar
lines, Levy et al. (2001) studied networks in the distributed

synchrony activity mode whose dynamics depended on an STDP
learning rule and external input. Doursat and Bienenstock (2006)
proposed an approach in which a set of seed neurons, a vari-
ant of spatiotemporal input, was also found essential for the
growth of synfire chains. Similarly, Jun and Jin (2007) inves-
tigated an approach that also adopted suprathreshold external
input. Hosaka et al. (2008) found that STDP provides a sub-
strate for igniting synfire chains by spatiotemporal input patterns.
Clopath et al. (2010) proposed a model of voltage-based STDP
with homeostasis behaving similar to a triplet STDP (Pfister and
Gerstner, 2006), which could develop variable connectivity pat-
terns. Bourjaily and Miller (2011) studied the incorporation of
structural plasticity with a rate-dependent (triplet) form STDP
(Pfister and Gerstner, 2006) and the effect on motifs and dis-
tribution of synaptic strengths. Kunkel et al. (2011) suggested
that biologically motivated plasticity mechanisms in the bal-
anced random network model might lead to the development
of feed-forward structures. Other recent approaches employed
both different variants of STDP rules and spatiotemporal pat-
terns of stimulation (Iglesias and Villa, 2008; Fiete et al., 2010;
Waddington et al., 2012).

Overall, these previous works seem to suggest that the devel-
opment of synfire chains requires either fine-tuning of model
parameters, strong topological constraints on network connectiv-
ity, or guidance from strong spatiotemporally patterned training
inputs. Here, we show that these limitations can be overcome in a
network which combines STDP with additional plasticity mech-
anisms. We show that synfire chains form spontaneously from
randomly initialized self-organizing recurrent networks (SORNs)
in the absence of any structured external inputs.
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Previous work has shown that SORNs with binary units can
learn interesting representations of temporal sequences of sen-
sory inputs (Lazar et al., 2009). Furthermore, we have shown
that SORNs reproduce experimental data on the statistics and
fluctuations of synaptic connection strengths in cortex and hip-
pocampus, offering a plausible explanation for the experimentally
observed approximately log-normal distribution of synaptic effi-
cacies (Zheng et al., 2013). The networks self-organize their
structure through a combination of STDP, homeostatic synaptic
scaling, structural plasticity, and intrinsic plasticity of neuronal
excitability. During network development, the topology adapts as
STDP eliminates synaptic connections while structural plasticity
adds new ones at a low rate. Meanwhile, the other plasticity mech-
anisms ensure that the network dynamics remains in a healthy
regime.

Here we study the formation of synfire chains in such net-
works. The networks are initialized with a sparse random connec-
tivity structure and go through dramatic changes in topology with
a strong tendency to develop feed-forward motifs. These motifs
eventually dominate sub-graph patterns as the network enters
into a stable phase where connectivity stays roughly constant.
Beyond a simple single feed-forward synfire chain structure, we
find multiple ring-shaped chains within one network. The sizes
of coactive pools of neurons are influenced by network parame-
ters such as the average firing rate of the excitatory neurons. These
results hold true over a wide range of parameters as long as the
network operates in a “healthy regime,” supporting the view that
synfire chains might be a robust consequence of network self-
organization driven by multiple plasticity mechanisms. Overall,
our model suggests that the combined action of multiple forms
of neuronal plasticity may play an important role in shaping and
maintaining cortical circuits and their dynamics, and stereotyped
connectivity patterns could arise from the interplay of different
plasticity mechanisms at the circuit level.

2. MATERIALS AND METHODS
The network model is identical to the one used by Zheng et al.
(2013). It is composed of NE excitatory and NI = 0.2× NE

inhibitory threshold neurons connected through weighted synap-
tic connections. Generally, Wij is the connection strength from
neuron j to neuron i. WEI denotes inhibitory to excitatory con-
nections, while WEE and WIE denote excitatory-to-excitatory and
excitatory-to-inhibitory connections, respectively. The WEE and
WEI are initialized as sparse random matrices with connection
probabilities of 0.1 and 0.2, respectively.

Connections between inhibitory neurons and self-connections
of excitatory neurons are not allowed. The WIE connections are
all-to-all and remain fixed at their random initial values which
are drawn from a uniform distribution and are then normalized
such that the sum of connections entering a neuron is one.

The binary vectors x(t) ∈ {0, 1}NE
and y(t) ∈ {0, 1}NI

denote
the activity of the excitatory and inhibitory neurons at time step
t, respectively. The network state at time step t + 1 is given by

xi(t + 1) = �

⎛

⎝

NE
∑

j= 1

WEE
ij (t)xj(t)−

NI
∑

k= 1

WEI
ik (t)yk(t)− TE

i (t)+ ξEi (t)

⎞

⎠ ,

(1)

yi(t + 1) = �

⎛

⎝

NE
∑

j= 1

WIE
ij xj(t)− TI

i + ξIi (t)

⎞

⎠ . (2)

The TE and TI represent threshold values for the excitatory and
inhibitory neurons, respectively. They are initially drawn from a
uniform distribution in the interval [0, TE

max] and [0, TI
max]. �( · )

is the Heaviside step function. ξEi and ξIi are white Gaussian noise
processes with μξ = 0 and σ 2

ξ ∈ [0.01, 0.05]. Here one time step
corresponds roughly to the duration of an STDP “window.”

The set of WEE synapses adapts via a simplified causal STDP
rule, as reported experimentally (Markram et al., 1997; Bi and
Poo, 1998),

�WEE
ij (t) = ηSTDP

(

xi(t)xj(t − 1)− xi(t − 1)xj(t)
)

. (3)

ηSTDP is the learning rate. Note that synaptic weights are elim-
inated if they would become negative due to this rule. To com-
pensate for the loss of synapses, a structural plasticity mechanism
adds new synaptic connections between excitatory cells at a small
rate. Specifically, with probability pc = 0.2 a new connection
(strength set to 0.001) is added between a randomly chosen pair of
unconnected excitatory cells. This models the constant generation
of new synaptic contacts observed in cortex and hippocampus
(Johansen-Berg, 2007; Yasumatsu et al., 2008).

The incoming excitatory connections to an excitatory neu-
ron are normalized at each time step such that their sum stays
constant (Bourne and Harris, 2011). This is achieved by scaling
the synapses multiplicatively (Turrigiano et al., 1998; Abbott and
Nelson, 2000):

WEE
ij (t)← WEE

ij (t)/
∑

j

WEE
ij (t) . (4)

A homeostatic (intrinsic) plasticity rule maintains a constant
average firing rate in every excitatory neuron,

TE
i (t + 1) = TE

i (t)+ ηIP
(

xi(t)−HIP
i

)

, (5)

where ηIP is the adaption rate and the target firing rates HIP
i

of individual neurons are drawn from a uniform distribution
in [μIP − σHIP, μIP + σHIP]. In terms of firing rate homeosta-
sis, there are very fast refractory mechanisms which prevent very
high firing rates, and there is somewhat slower spike rate adapta-
tion and very slow intrinsic plasticity as seen in some experiments
(Desai et al., 1999; Zhang and Linden, 2003). We chose a simple
homeostatic regulation of firing rate for our model that can oper-
ate relatively fast depending on the choice of the learning rate.

An inhibitory spike-timing dependent plasticity (iSTDP) rule
adjusts the weights from inhibitory to excitatory neurons that
balances the amount of excitatory and inhibitory drive that the
excitatory neurons receive as reported in recent studies (Haas
et al., 2006; Vogels et al., 2011, 2013),

�WEI
ij (t) = −ηinhibyj(t − 1) (1− xi(t)(1+ 1/μiSTDP)) , (6)

where ηinhib is the adaption rate, and μiSTDP is set to 0.1 for all the
simulations.
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Unless otherwise specified, the simulations are conducted
using the following parameters. ηIP = 0.01, TE

max = 1, TI
max =

0.5, μIP = 0.1, σHIP = 0, ηinhib = 0.001, σ 2
ξ = 0.01. Parameter

ηSTDP decreases monotonically as network size NE increases, and
ηSTDP = 0.004, 0.002 and 0.001 for NE ∈ [200, 400], [600, 800]
and [1000, 1200] respectively.

3. RESULTS
3.1. FEED-FORWARD MOTIFS DOMINATE SUBGRAPH PATTERNS
We simulate 10 networks, and initial weights of each network
are randomly selected from uniform, Gaussian, delta (all weights
identical), or exponential distributions. After weight initializa-
tion, each such network is examined on 10 different sets of
network evolution parameters, such as neuron number, learn-
ing rates, neuron firing rates, etc. The network connectivity
changes due to the action of the different plasticity mechanisms.
As observed in Zheng et al. (2013), the network goes through
different phases characterized by the number of excitatory-to-
excitatory connections present in the network. Eventually, it
enters a stable regime where connectivity stays roughly con-
stant. For such stabilized networks we use the Fanmod soft-
ware (Wernicke, 2005) and its computation of a p-value to
analyze network motifs involving 3 and 4 neurons. Here the
p-value of a motif is defined as the number of random net-
works in which it occurred more often than in the original
network, divided by the total number of random networks.
Therefore, p-values range from 0 to 1, and the smaller the p-
value, the more significant is the abundance of the motif. The
frequency of a motif occurring in 100 simulated SORN net-
works is compared to the mean frequency of the motif occurring
in 1000 random networks with identical connection probabil-
ity. We found the network motifs are organized into two dis-
tinct groups with p-value = 0 and p-value = 1. Figure 1 shows
the group of motifs always with p-value = 0, all of which
reveal a feed-forward structure consistent with a synfire-chain
topology.

3.2. EVOLUTION OF NETWORK CONNECTIVITY
The abundance of feed-forward network motifs among groups of
3 and 4 neurons during the stable phase of network evolution
already suggests that the network may be forming synfire-chain
like structures. To investigate this, we studied the evolution of
the network’s activity patterns and connectivity during its self-
organization. Figure 2 shows an example. In Figure 2A we plot
the activity of the first 50 neurons during short 500 time step
intervals taken at five different time points of the network’s
evolution. Excitatory neurons are sorted in all recorded net-
works according to their activity correlations in the last recorded
network (in the stable phase). Thus neurons that are highly
correlated during the stable phase are plotted in neighboring
rows. While the network initially exhibits quite irregular activ-
ity, it spontaneously forms highly structured activity patterns as
it develops (also see Figure S1 in the supplementary material,
which shows example cross-correlograms of different pairs of
neurons). In the particular case shown here, the network forms
two subsets of neurons which alternate in exhibiting phases of
high firing rates.

FIGURE 1 | Abundant network motifs observed in the stable regime.

Left column: Three neuron motifs. Right column: Four neuron motifs. All
detected motifs have a feed-forward structure compatible with a network
topology dominated by synfire-chains.

Figure 2B shows the evolution of firing correlations among
all excitatory neurons in the network. The network forms 8 dis-
tinct pools of neurons, with neurons of each pool exhibiting
highly synchronized firing. The excitatory weight matrix shown
in Figure 2C reveals that the network develops two independent
circular synfire chains, which we will refer to as synfire-rings. The
layers of synfire rings are identified automatically by applying a
threshold to the neurons’ activity correlations. Due to noise and
the interaction of multiple forms of plasticity, a neuron’s activity
maintains a certain degree of randomness, which leads to positive
but non-uniform correlations in each layer. As a result there are
some neurons with relatively weaker correlation in each layer in
most cases.

In the given example, the first synfire-ring comprises 3 smaller
pools of neurons (total of 43 neurons), the second synfire ring
comprises 5 larger pools of neurons (total of 157 neurons). The
two synfire-rings correspond to two transiently stable activity
patterns. As shown in Figure 2, activities of the first 43 and
remaining 7 neurons, which belong to different rings, are roughly
complementary. If one synfire ring becomes active, it tends to
activate the inhibitory neurons and thereby suppress activity
in the other synfire ring. After a while, however, the intrin-
sic plasticity mechanism will increase the firing thresholds of
neurons belonging to the active synfire-ring and decrease the
firing thresholds of the inactive synfire-ring. Over time, this
destabilizes the active synfire-ring and eventually leads to the sup-
pressed synfire-ring taking over. The strong competition between
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FIGURE 2 | Evolution of network dynamics and connectivity. (A) Spike
trains of a set of 50 neurons during different phases of network
development. (B) Activity correlations between all excitatory units.
(C) Excitatory connectivity. Gray value represents excitatory synaptic

strength as illustrated in the scale bar. From top to bottom, the five
rows show data starting from the 1st (initial phase), 20,000th (early
phase), 500,000th (intermediate phase), 1000,000th (late phase), and
4000,000th (final phase) time step, respectively.

the synfire rings is due to the widespread inhibition with each
inhibitory unit receiving input from all excitatory cells in the net-
work and projecting randomly to one fifth of the excitatory cells
(compare Methods).

3.3. INFLUENCE OF TARGET FIRING RATE ON SIZES OF NEURONAL
POOLS

We next investigate how the sizes of neuronal pools and their
connectivity depend on the target firing rates of the neurons in
a 200 excitatory neuron network with fixed initial connectivity.
The parameter HIP

i sets the target firing rate for the i-th excita-
tory neuron. These target firing rates are drawn from a uniform
distribution in [μIP − σHIP, μIP + σHIP].

We first fix σHIP = 0 and study the influence of the target fir-
ing rate μIP. As the target firing rate of the neurons increases, the
variability of the sizes of neuronal pools increases. Figure 3A plots
the average maximum and minimum pool sizes as a function of
μIP. For large μIP, the maximum layer size tends to get bigger and
the minimum layer size tends to be smaller. In addition, the vari-
ability of the maximum and especially the minimum layer sizes
tends to be largest for the biggest μIP. Figure 3B compares the

histograms of pool sizes for different μIP. The distribution is very
narrow for small μIP (green bars corresponding to μIP = 0.025)
and very broad for large μIP (red bars corresponding to μIP =
0.125). In all cases, the final distribution of synaptic strength is
lognormal-like which means some weights are way stronger than
others. This is shown in Figure 3C, which plots this distribution
for different μIP.

We next fix μIP = 0.1 and study the effect of the interval size
σHIP of the target firing rates. In a similar way, the diversity of pool
sizes grows as σHIP increases. This holds true for σHIP ≤ 0.06 as
shown in Figure 4A. However, as σHIP increases more and more
neurons are close to silent. The minimum target firing rate of
some excitatory neurons is as small as ∼0.02 when σHIP reaches
0.08. These neurons barely fire during the network evolution and
barely contribute to structuring the network. Therefore, the effec-
tive network size is reduced as σHIP is increased. This may explain
why the variability in pool sizes shrinks when σHIP grows to 0.08.
Figure 4B compares the distribution of pool sizes for different
values of σHIP. The greatest spread of the distribution is obtained
for an intermediate value of σHIP = 0.06. Figure 4C shows an
example of an excitatory weight matrix in the stable regime for
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FIGURE 3 | Influences of parameter μIP on the layer/pool size

(σHIP = 0). (A) Changes of maximum and minimum layer size as μIP

varies from 0.025 to 0.125. Error bars represent SD. (B) Histograms of

layer sizes. (C) Distributions of synaptic weight strengths in the stable
phase are all lognormal-like. Note that x-axis is log-scale and color index
is identical with (B).

FIGURE 4 | Influences of σHIP on the layer size (μIP = 0.1). (A) Changes of
maximum and minimum layer size as σHIP varies from 0 to 0.08. Error bar is
SD. (B) Distributions of pool size. (C) Typical example of network connectivity

in the stable phase for σHIP = 0.06. Black dots represent synapses whose
weights are bigger than 0.01. The network has developed into a single synfire
ring with 4 pools of neurons of sizes 44, 57, 53, 46.

σHIP = 0.06. The network has developed a single synfire ring with
4 pools of neurons whose sizes range from 44 to 57.

3.4. INFLUENCE OF NETWORK SIZE ON SYNFIRE RING STRUCTURE
We next study how the number of synfire rings and the num-
ber of neuronal pools or layers depends on the overall network
size. To this end, we simulate 40 networks with 200–800 excita-
tory neurons. As a first measure of network structure we define
the number of layers present in the network. Figure 5A plots this
number as a function of network size (red curve). Not surpris-
ingly, the number of neuronal pools increases as the network gets
bigger. As a second index of network structure we measure the
fraction of networks of a given size that develop multiple synfire
rings. As shown in Figure 5A (blue curve) this fraction increases
with network size. For networks of 800 neurons it already reaches
a value of 0.4 and the increase with network size seems to be faster

than linear for the range of sizes considered. Figure 5B shows a
typical example of the excitatory weight matrix in a network with
800 neurons and μIP = 0.1, σHIP = 0. This network has devel-
oped 4 synfire rings of different sizes. Note that the second one
from the top is very small. In Figure 5C it is easier to identify it.
The sizes of the pools are fairly consistent within a single synfire
ring (mean SD is 4.5) but can vary widely across synfire rings (SD
is 26.6). The biggest ring in Figure 5B has 12 pools, so if activ-
ity runs around in this circle, each neuron is activated only every
12th time step, which is less than intrinsic plasticity wants (com-
pare Methods). As shown in Figure 5C, the biggest ring is roughly
active all the time, and unlike the synfire rings in Figure 2, the
network could start multiple rings simultaneously. It is worth not-
ing that we achieve the synfire ring structure under a wide range
of parameters, excitatory neuron number being one of them.
We also run a few simulations with 1000 and 1200 excitatory

Frontiers in Computational Neuroscience www.frontiersin.org June 2014 | Volume 8 | Article 66 |87

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive


Zheng and Triesch Robust synfire chain development

neurons, which also develop synfire rings (see Figures S2, S3 in
supplementary material).

3.5. MECHANISMS OF SYNFIRE RING FORMATION
With all forms of plasticity present, the network will develop
synfire rings spontaneously and robustly over a large range of
parameters as long as the network operates in a healthy regime.
The results are fully in line with our previous work since we
use same network as Zheng et al. (2013), where we discuss in
detail the necessity of the different plasticity mechanisms for
the networks behavior. So how do these (circular) feed-forward
structures come about?

The formation of synfire-chains can be understood as a pro-
cess of network self-organization driven largely by the STDP rule.
Figure 6 illustrates the process. Consider as an example a strong
feed-forward chain from a unit a to a unit b and on to a unit
c. According to this structure, there is a high probability that
a, b, and c fire in three successive time steps. Standard STDP
rules, including the one we are using here, will strengthen the
connections in the feed-forward direction and weaken the reverse
connections such as the red synapse in Figure 6A. This is because
of the nature of the STDP rule, which potentiates “causal” firing

patterns (pre before post) and depresses “acausal” firing pat-
terns (post before pre). As shown in Figure 7A, the fraction of
bidirectional connections plummets during the first stage of net-
work evolution. Thus, a first relevant mechanism in synfire ring
formation is the removal of reciprocal connections.

A second mechanism in synfire ring formation is the establish-
ment of parallel pathways. Consider two units b1 and b2 which also
happen to be strongly innervated by a (see Figure 6B). Because
of this, they will tend to be synchronously active with unit b
and their activity will be reliably followed by activation of unit
c. Because of this correlation structure (b1 and b2 likely being
active in the time step before c) the weights from b1 and b2 onto
c, if present, will have a strong tendency to get potentiated. Thus,
STDP will potentiate the “missing” connections from b1 and b2

onto c establishing additional parallel pathways connecting a and
c. In order for STDP to be able to strengthen these connections,
they have to either be present from the beginning or become
added by the structural plasticity. With this mechanism oper-
ating not just at the level of b but at all levels of the network,
synfire-chains will develop (see Figure 6C). Due to the homeo-
static activity regulation, at each time step a certain fraction of
neurons in the network will tend to be active. This implicitly

FIGURE 5 | Influences of network size. (A) Changes of multi-ring probability
and layer number as network size varies from 200 to 800. Error bars are SD.
(B) Typical example of network connectivity with four synfire rings in the

stable phase of a 800 excitatory neuron network. Black dots represent
synapses whose weights are bigger than 0.01. (C) Spike trains of the
neurons in (B).

FIGURE 6 | Layered synfire chain structure formation. (A) Removal
of reciprocal connection. (B) Establishment of parallel pathways.
(C) Formed synfire chain. Red arrows represent spurious synapses

that are inconsistent with the developing synfire chain structure.
Black arrows represent synapses that conform to the synfire
route.
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regulates the range of layer sizes and limits the breadth of the
growing chain. Due to the synaptic scaling, every neuron in a layer
receives a certain amount of synaptic input. Moreover, since the
network has only a finite number of units and each unit tries to
maintain a certain average activity level such that activity cannot
die out, it is inevitable that such a chain eventually terminates or
connects back to itself thereby forming a synfire ring. A ring-like
structure has a competitive advantage against a terminating chain
during the formative stage of network development, because a
synfire ring will reactivate itself while a terminating chain cannot.

STDP alone can not depress existing synapses that are incom-
patible with the emerging synfire ring structure. For example,
connections within one layer of neurons or connections jumping
ahead beyond the immediate next layer (compare red synapses
in Figure 6B) remain unaltered under perfect synfire chain activ-
ity. However, the synaptic scaling mechanism gradually depresses
these connections to very small values as the other weights on
the synfire route are potentiated. Thus, another relevant mech-
anism in synfire ring formation is the competition among synaptic
weights onto the same target neuron.

The synaptic scaling mechanism we use does not remove any
such “spurious” synapses, however. This is achieved by STDP.
Due to intrinsic membrane noise of the neurons and fluctua-
tions of intrinsic excitability and inhibitory drive, the network’s
activity always maintains a random component—even in its sta-
ble phase (compare Figure 2A). As a consequence, neuron a
in Figure 6 could fire right after c, which would lead to the
removal of a sufficiently depressed spurious connection from a
to c. Such events occur only rarely but they suffice to eliminate
such spurious connections if they have already been depressed
by synaptic scaling. Thus, a final mechanism in synfire ring for-
mation is the removal of spurious connections due to random
activity fluctuations. To illustrate this effect, we manually added
new connections with rather strong weights of value 0.1 within
one layer and between one layer and the layer two steps ahead.
These manually added new connections are even stronger than
∼70% of the existing connections. Figures 7B,C show the fate of

these manually inserted connections that are inconsistent with the
dominant synfire-ring structure: within a few thousand time steps
their weights decrease to zero as a result of competition among
synapses and STDP driven by random activity fluctuations.

The precise outcome of the overall network self-organization
depends on the initial conditions (initial network structure and
connection weights) and the random activity fluctuations. Feed-
forward connections between synfire layers go through strong
competition during network evolution as a result of synaptic scal-
ing. Connections that start out strong or are added early have an
advantage in this competition and are less prone to removal due
to random activity fluctuations. Synapses added in later phases
of the network’s evolution are more fragile, which contributes
to the stability of already formed synfire rings. Figure 8 shows
examples of weight changes of new synapses that have been added
through structural plasticity during the network’s stable phase. In
Figure 8A we plot synaptic connections that are off any existing
synfire ring structure. These connections are removed compar-
atively quickly. Figure 8B illustrates the fate of newly added
synaptic connections that are congruent with an existing synfire
ring, i.e., they connect a neuron from one pool to a neuron in the
successor pool. Interestingly, even these connections tend to be
removed eventually. Due to synaptic scaling, they have to compete
with many other connections along the synfire ring, which limits
their growth and makes them prone to elimination due to ran-
dom activity fluctuations. It should be clarified that Figures 7B,C
(unlike Figure 7A) and Figure 8 all study the network in its stable
phase. That is the synfire chain is already formed, which is anal-
ogous to a prewired synfire chain. In all of these cases, the synfire
chain is indeed restored after our perturbation. Figures 7B,C, 8B
are similar, but they are different in terms of new synapse weight
and position definition.

It should be mentioned that the network becomes rather rigid
only after synfire chains have been formed. This is important to
maintain the stability of synfire chains. At the beginning of net-
work evolution, however, newer synapses are freely competing.
During the development from a randomly initialized network

FIGURE 7 | Illustration of two mechanisms contributing to synfire ring

formation. (A) Fraction of reciprocal connections as function of time for three
independent networks with (NE )2 as the denominator. (B) Synaptic weights of

connections within one layer as a function of time. (C) Synaptic weights of
connections from one layer to the second next layer as a function of time. The
connections in (B,C) were manually added approximately every 500 time steps.
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FIGURE 8 | Weights of synaptic connections that have been added

by structural plasticity during the stable phase as a function of

time. Colors represent different synapses. (A) Ten synapses added on

the synfire route. (B) Ten synapses that are not on the synfire route.
Note that in both cases some of the synapses are eliminated
immediately after birth.

to synfire chains, many new synapses are added and stabilized.
Besides that, newer synapses could also survive in synfire chains
when the network is driven by appropriate strong structured
external input (not shown).

As mentioned above, every plasticity mechanism is impor-
tant for the development of synfire structure. In simulations,
we did not observe the formation of synfire rings in networks
without synaptic normalization, structural plasticity or STDP
of the excitatory connections. Intrinsic plasticity and inhibitory
STDP both try to maintain a low average firing rate of exci-
tatory cells, and the formation of synfire structure relies on
the presence of both of them. If we switch off one of them,
the network suffers from big activity fluctuations from time
to time, which usually stop the formation of synfire structure
or lead to abnormal network structures exhibiting both extra-
large and single-neuron layers (Figure S4 in the supplementary
material).

4. DISCUSSION
Since their introduction by Abeles (1982), synfire-chains have
been the subject of intense experimental and theoretical investiga-
tion. Here we have studied the spontaneous formation of synfire-
chains in self-organizing recurrent neural networks (SORNs)
shaped by multiple plasticity mechanisms. These networks have
been shown to learn effective representations of time-varying
inputs (Lazar et al., 2009) and to reproduce data on the statis-
tics and fluctuations of synaptic connections strength in cortex
and hippocampus (Zheng et al., 2013). There is also some empir-
ical evidence for their ability to approximate Bayesian inference
(Lazar et al., 2011). Despite their simplicity in terms of using
binary threshold units operating in discrete time, they have been
a useful tool for studying the interaction of different forms of
plasticity at the network level. In the present study, we have com-
bined simple spike-timing-dependent plasticity (STDP) rules for

excitatory-to-excitatory and inhibitory-to-excitatory connections
with a synaptic normalization and firing rate homeostasis of exci-
tatory units. Furthermore, a structural plasticity rule created new
excitatory-to-excitatory connections at a low rate.

The initial connection probability of excitatory to excitatory
connections is set to 0.1, which falls in the biologically plausi-
ble range. In simulations, we couldn’t decrease this probability
further, otherwise the network decomposed into unconnected
smaller ones. In some cases, the structural plasticity may re-
connect these pieces, but not all the time. Generally, it is hard
to draw any conclusion from the simulations of such unhealthily
initialized networks. In the other extreme, we can increase initial
connection probability all the way to a fully connected network
and the network will still develop synfire rings.

We found that the STDP mechanism prunes bidirectional con-
nections between pairs of excitatory neurons, which is consistent
with previous modeling work (Abbott and Nelson, 2000). It is
interesting to note that there maybe layer-specific differences in
cortex in terms of the abundance of such bidirectional synaptic
connections with layer 5 showing many bidirectional connections
in one study (Song et al., 2005), but layer 4-2/3 showing very
few (Feldmeyer et al., 2002; Lefort et al., 2009). The pruning of
bidirectional connections goes hand in hand with the emergence
of feed-forward chains among pools of neurons. This forma-
tion of synfire-chains represents a phenomenon of network-self-
organization. Partial feed-forward structures between pools of
neurons have a tendency to become amplified due to STDP
while the homeostatic plasticity mechanisms induce competi-
tion among the developing feed-forward structures. These feed-
forward chains assume a ring-shaped topology, which we refer to
as synfire-rings. We observed that the number of synfire rings,
their lengths, and the sizes of their pools are influenced by the
distribution of firing rates. The development of “orderly” syn-
fire dynamics in these networks is consistent with previous results
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indicating a reduction of chaotic behavior in these networks (Eser
et al., 2014).

Previous modeling studies on the formation of synfire-chains
have used more realistic model neurons and synapses, but have
omitted some of the plasticity mechanisms incorporated into
the present model. As was shown previously (Zheng et al.,
2013), these mechanisms may be essential for explaining critical
aspects of cortical wiring such as the log-normal distribution of
excitatory-to-excitatory synaptic efficacies and the pattern of fluc-
tuations of synaptic efficacies. It is clear that a long-tailed, highly
skewed distribution of synaptic efficacies may strongly affect
synfire dynamics, since the simultaneous activation of only few
extremely strong synapses may suffice to elicit an action potential
in the postsynaptic neuron. In the present study, lognormal-like
statistics of excitatory synaptic connections develop robustly in
the network (see Figure 3C). To our knowledge, no previous
study has investigated synfire dynamics with lognormally dis-
tributed excitatory-to-excitatory efficacies. Our model does not
only demonstrate synfire dynamics with a biologically realis-
tic distribution of excitatory-to-excitatory synaptic efficacies, it
also shows how this distribution and synfire dynamics emerge
from fundamental plasticity mechanisms in the absence of any
structured input to the network.

Overall, we conclude that the combination of a number of
generic plasticity mechanisms is sufficient for the robust forma-
tion of synfire chains with synaptic connection statistics matching
biological data. Many aspects of our model could be made more
realistic. For instance, it will be important to go beyond networks
of binary threshold units operating in discrete time steps. We
would like to test if similar results can be obtained in more real-
istic networks of spiking neurons operating in continuous time.
Another limitation is that we have assumed identical one time
step conduction delays of all synaptic connections. Izhikevich
(2006) however found that conduction delays were important
for time-locked but not synchronous spiking activity, and man-
aged to generate many more synfire “braids” than the number
of neurons in the network. The consideration of heterogeneous
conduction delays in a more realistic version of our model is an
interesting topic for future work.
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The ability to acquire and maintain appropriate representations of time-varying, sequential
stimulus events is a fundamental feature of neocortical circuits and a necessary first
step toward more specialized information processing. The dynamical properties of
such representations depend on the current state of the circuit, which is determined
primarily by the ongoing, internally generated activity, setting the ground state from
which input-specific transformations emerge. Here, we begin by demonstrating that
timing-dependent synaptic plasticity mechanisms have an important role to play in
the active maintenance of an ongoing dynamics characterized by asynchronous and
irregular firing, closely resembling cortical activity in vivo. Incoming stimuli, acting as
perturbations of the local balance of excitation and inhibition, require fast adaptive
responses to prevent the development of unstable activity regimes, such as those
characterized by a high degree of population-wide synchrony. We establish a link between
such pathological network activity, which is circumvented by the action of plasticity,
and a reduced computational capacity. Additionally, we demonstrate that the action of
plasticity shapes and stabilizes the transient network states exhibited in the presence
of sequentially presented stimulus events, allowing the development of adequate and
discernible stimulus representations. The main feature responsible for the increased
discriminability of stimulus-driven population responses in plastic networks is shown to
be the decorrelating action of inhibitory plasticity and the consequent maintenance of
the asynchronous irregular dynamic regime both for ongoing activity and stimulus-driven
responses, whereas excitatory plasticity is shown to play only a marginal role.

Keywords: stimulus representation, synaptic plasticity, excitation/inhibition balance, transient dynamics,

asynchronous irregular states, online computation

1. INTRODUCTION
As we navigate the world, we are continuously exposed to
dynamic and highly complex streams of multimodal sensory
information, which we tend to perceive as a series of discrete
and coherently bounded sub-sequences (Schapiro et al., 2013).
While these perceptual events (Zacks and Tversky, 2001; Zacks
et al., 2007) are unfolding, active representations are maintained
and ought to be sufficiently discernible by the activity of the pro-
cessing networks, its attributes being encoded by the distributed
responses of specifically tuned neuronal populations that are
transiently associated into coherent ensembles (von der Malsburg
et al., 2010; Singer, 2013).

Neocortical circuits must therefore self-organize to dynam-
ically adopt relevant representations in a stimulus- and state-
dependent manner, while maintaining the necessary sensitivity to
allow global shifts in representational space when sudden event
transitions occur. The primary source of such sensitivity in stereo-
typically sparse recurrent networks, such as those encountered
in the neocortex, lies in the balance of excitation and inhibition

(Tsodyks and Sejnowski, 1995; van Vreeswijk and Sompolinsky,
1998; Haider et al., 2006). This endows the network with a sta-
ble, ongoing background activity, characterized by low-frequency,
asynchronous and irregular firing patterns, under stationary con-
ditions (Gerstein and Mandelbrot, 1964; Softky and Koch, 1993;
Destexhe et al., 2003; Stiefel et al., 2013). Such a dynamic state
provides the substrate for complex responses to external stimuli to
develop as a transient spatiotemporal succession of network states
(Mazor and Laurent, 2005; Rabinovich et al., 2008; Buonomano
and Maass, 2009). External stimuli act as perturbations of the sta-
ble ongoing activity, causing transient and variable disruptions of
local E/I balance, which necessarily influence the resulting net-
work states. Furthermore, most real world stimulus events occur
sequentially and not in isolation. Consequently, the quality of the
dynamic representations and characteristics of the resulting neu-
ral trajectories is highly related to the circuit’s ability to adaptively
remodel and refine its functional connectivity in an experience-
dependent manner so as to counteract the targeted disruptions
and acquire the relevant structure of the input stimuli.
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Although there is a great variety of biophysical mecha-
nisms involving activity-dependent modifications of various
components at different spatial and temporal scales, it is widely
acknowledged that the synapse is the primary locus of func-
tional adaptation in the cortex (Abbott and Nelson, 2000), with
synaptic modifications providing the basis of learning and mem-
ory and allowing purposeful computations to take place. While
constituting a diverse set, comprising operations over variable
dynamic ranges and involving a multitude of possible functional
roles, cortical synapses can be broadly categorized based on the
nature of source and target neurons they connect and the effect
they exert (excitatory or inhibitory). Understanding and explor-
ing the possible adaptation mechanisms involved in each of these
sub-classes and how they interact is important to understand the
nature of neural computation. It is reasonable to assume that the
required flexibility to support highly complex cognitive compu-
tations, relies on the effects of the combined action of multiple,
synergistic, plasticity mechanisms.

There is a large body of experimental evidence and theoreti-
cal investigations concerning adaptation at excitatory synapses. It
has long been experimentally observed that, in cortical pyramidal
neurons, the magnitude and direction of change in the strength
of a synapse is dependent on the relative timing of pre- and post-
synaptic spikes, when they occur within a critical coincidence
time window (Gustafsson et al., 1987; Markram et al., 1997; Bi
and Poo, 1998). The functional implications of this observation
for cortical processing and unsupervised, experience-dependent
adaptation have since been the subject of intense investigation
and have proven capable to account for several important com-
putational features of cortical processing (for reviews, see e.g.,
Dan and Poo, 2004, 2006; Sjöström and Gerstner, 2010; Markram
et al., 2012). However, despite this progress, attempts to endow
recurrent networks with the ability to learn the underlying struc-
ture of their inputs using excitatory spike timing dependent
plasticity have been largely unsuccessful (Kunkel et al., 2011).

In contrast, research on inhibitory synaptic plasticity is still
sparse and its computational role somewhat speculative. Given
the ubiquity of inhibition in the cortex (∼20% of all cortical
neurons are inhibitory, see Braitenberg and Schüz, 1998) and
its undeniable role in shaping and stabilizing network dynamics
and neuronal excitability, the possible functional implications of
dynamic inhibition are of great interest, particularly when inter-
acting with other forms of plasticity (see Kullmann et al., 2012;
Vogels et al., 2013 for an overview). Progress in this endeavor
is hindered by the complexity and diversity of inhibitory neu-
rons, making it technically challenging to obtain reproducible
experimental results and difficult to reconcile the available data.
Nevertheless, recent evidence shows that, in cortical networks,
GABAergic synapses targeting excitatory neurons are also sen-
sitive to temporally coincident pre- and post-synaptic spiking
(Holmgren and Zilberter, 2001; Woodin et al., 2003). To cap-
ture this phenomenon, Vogels et al. (2011) studied the com-
putational effects of a simplified, symmetric inhibitory STDP
rule in the establishment and robust maintenance of detailed
balance between excitation and inhibition, both in a feedfor-
ward and in a recurrent configuration, showing that it allows
the emergence of stimulus selectivity and memory. Apart from

these self-organized computational roles of inhibitory plasticity,
the mechanism implemented by Vogels et al. (2011) has the
interesting property of serving as a homeostatic mechanism. It
maintains the post-synaptic firing rate under control by dynam-
ically stabilizing the amount of inhibitory and excitatory drive
that the excitatory neurons receive, which is particularly relevant
in a situation where the excitatory drive is also dynamic, given
the possible interdependence between excitatory and inhibitory
synaptic plasticity (Wang and Maffei, 2014).

In this work, we consider the combined influence of timing-
dependent synaptic plasticity rules operating on different synapse
types and analyse its impact on the stability and diversity of global
network dynamics as well as their computational implications
for online processing of time-varying input streams. Following
the general framework of reservoir computing (Lukoševicius and
Jaeger, 2009), we explore the properties of information processing
based on robust transient dynamics and analyse the influence of
plasticity on the development and maintenance of dynamic stim-
ulus representations, while maintaining a stable global dynamics.
For that purpose, we implement numerical simulations of bio-
logically realistic networks of leaky integrate-and-fire neurons
which incorporate excitatory and inhibitory plasticity, combining
well characterized phenomenological models of synaptic plas-
ticity that take into account relevant physiological observations
(Morrison et al., 2008; Vogels et al., 2011).

We begin by demonstrating that the balancing effects of these
synaptic plasticity rules actively maintain an asynchronous irreg-
ular pattern of ongoing, background activity throughout the
network, over a much broader range of parameters, compared
with networks whose synapses are fixed and static. Furthermore,
we establish a relation between dynamical states characterized
by a regular, synchronous population firing pattern (which are
mostly abolished by the action of plasticity) and a decreased
capacity to process generic time-varying input streams, reinforc-
ing the claim that the modulatory actions of plasticity have an
important impact on computational performance.

Subsequently, we assess the features of population responses
to sequentially occurring stimulus events, modeled as sudden
spike bursts across variable numbers of afferent neurons pro-
viding a “wake-up” call (Sherman, 2001a) to stimulus-specific
sub-populations via targeted, brief disruptions of balance. This
stimulus is chosen primarily to be simple but disruptive rather
than to model a particular cortical input, however in the fol-
lowing we refer to this type of stimulus as thalamic due to a
similarity to the thalamic burst mode of firing (Ramcharan et al.,
2000; Sherman, 2001b; Bruno and Sakmann, 2006). We show
that the properties of ongoing, dynamic stimulus representations
are naturally bound to the stimulus features and the strength
of the disruption, but also to the characteristics of the ongoing
network activity, that sets the dimensionality of the embedding
space over which dynamic representations can unfold. By improv-
ing the stability of this ongoing activity and the robustness and
reproducibility of response transients, plasticity is shown to ben-
efit the quality of the representations, necessary for subsequent
processing by downstream cortical regions.

In the final section of the results, we attempt to disentan-
gle the roles played by the two analyzed plasticity rules in the
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development of adequate stimulus representations, concluding
that the quality of such representations is largely dependent on
the decorrelating actions of inhibitory STDP, which results in
the maintenance of AI-type activity across the network. The role
played by excitatory STDP only provides a marginal advantage
compared to static networks, which is an unexpected result lead-
ing us to draw some tentative conclusions and opening up a new
set of questions to be addressed in future studies.

2. MATERIALS AND METHODS
In this section, we describe the equations used to model neuronal
and synaptic dynamics, the characteristics of the input-dependent
tasks, as well as the methods used for numerical simulations and
data analysis. A summarized, tabular description of all the models
and model parameters used throughout this study is available in
the Supplementary Materials.

2.1. NETWORK
2.1.1. Neuron and synapse models
The networks we analyse are composed of N = 10000 leaky
integrate-and-fire neurons (of which NE = 0.8 N are excita-
tory and NI = 0.2 N inhibitory) with fixed voltage threshold
(Tuckwell, 1988) and conductance-based synapses (Koch, 2004),
which capture a broad range of intrinsic properties shared by
cortical neurons.

Synaptic interactions between the neurons are modeled as
transient conductance fluctuations, so the sub-threshold mem-
brane potential Vi of the i-th neuron (i = 1, . . . , Nα) belonging
to population α is given by:

Cm
dVi(t)

dt
= gleak (Vrest − Vi(t))+ IαE

i (t)+ IαI
i (t)+ IαX

i (t) (1)

where IαY
i is the sum of all synaptic currents generated by the

pre-synaptic neurons of neuron i in population Y . The total
synaptic input current onto neuron i is thus the sum of the indi-
vidual contributions of excitatory (glutamatergic, AMPA-type)
synapses (E), inhibitory (GABAergic) synapses (I), and pre-
synaptic sources from outside the network (X). The latter models
cortical background activity and is assumed, for simplicity, to be
non-selective and stochastic, with fixed rate νX. When applica-
ble, some neurons belonging to discrete sub-populations receive
additional, patterned external stimulation (see Section 2.4). The
synaptic current induced in a post-synaptic neuron i in popu-
lation α when a pre-synaptic neuron j in population β fires is
given by:

Iij(t) = gij(t)(Vβ − Vi(t)) (2)

where Vβ is the equilibrium/reversal potential of the correspond-
ing synapse. The time course of the synaptic conductance gij(t) is
modeled as an instantaneous rise triggered by each pre-synaptic
spike, followed by an exponential decay:

dgij(t)

dt
= − gij(t)

τβ

+ ḡβwij(t)
∑

tj

δ
(

t − tj − d
)

(3)

where δ(.) is the Dirac delta function, tj are the spike times of the
pre-synaptic neuron and d refers to the conduction delay, which

is set to be constant and equal for all synapses, with the value
of 1.5 ms.

The peak amplitude of the conductance transient, which deter-
mines the “strength” of the synapse, is the product of a constant
scaling factor ḡβ , whose value depends on the synapse type and
is used to set the scale of the synaptic conductance, and a dimen-
sionless variable wij, assumed to be dynamic in synapses subjected
to activity-dependent adaptation (see Section 2.2) and whose ini-
tial value is drawn from a Gaussian distribution with mean μβ

and standard deviation σβ , which we set to 1 and 0.25, respec-
tively, leading to narrowly distributed initial peak conductances
centered around ḡ for every synapse type. All synaptic events orig-
inating from outside the network are assumed to be excitatory,
with the same reversal potential, peak conductance and time con-
stant as recurrent excitatory synapses, i.e., VX = VE, ḡX = ḡE and
τX = τE.

Following Kumar et al. (2008b), we quantify the effective bal-
ance between excitation and inhibition as the approximate ratio
of total charges induced at rest:

g = 〈g
αI〉τI|Vrest − VI|
〈gαE〉τE|Vrest − VE| (4)

with 〈gαI〉 = μIḡI and 〈gαE〉 = μEḡE. Under these conditions,
and with all other synaptic parameters fixed and set as described
below in Section 2.3.1, we determine the initial value of g to be
0.29γ where γ is the ratio of absolute peak conductances.

The parameter values of the neurons are homogeneous across
neuron types and are kept fixed throughout. They were chosen
for their biological plausibility and consistency with the exper-
imental literature and previous modeling work (e.g., Compte
et al., 2000; Meffin et al., 2004; Kumar et al., 2008b; Vogels
et al., 2011; Yger et al., 2011). A complete description of the
parameters and their values can be found in the Supplementary
Materials.

2.1.2. Network architecture
All the network neurons are laid on the integer points of
a 2-dimensional 100× 100 regular grid lattice, with periodic
boundary conditions and are sparsely and randomly connected.
The probability of connection between a target neuron in pop-
ulation α and a source neuron in population β is set to 0.1 for
αβ ∈ {EE, EI, IE, II}, such that, on average, each neuron in the
network receives a total of KE = 0.1 · NE excitatory and KI =
0.1 · NI inhibitory, randomly chosen, synaptic inputs from the
local network, along with KX synaptic inputs from outside the
network. It is generally assumed that the number of background
synapses from external cortical sources, comprising patchy long-
range input from the same cortical area as well as input from
distant cortical areas (Braitenberg and Schüz, 1998; Kumar et al.,
2008a; Kremkow et al., 2010) lies in the same range as the num-
ber of local, recurrent excitatory connections, so we set KX = KE

(Brunel, 2000).
This network structure is relevant mostly for the purpose of

visualization when patterned stimuli are delivered to specific, spa-
tially clustered neuronal populations, given that no additional
spatial constraints are imposed on the connectivity structure.
Furthermore, in networks shaped by plasticity, the connectivity
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structure remains unaltered, i.e., plasticity modifies the strength
of existing connections only and does not create new synapses or
destroy existing ones.

2.2. SYNAPTIC PLASTICITY
In the following, we assume that synapses targeting inhibitory
neurons (II and IE) are static, whereas synapses targeting exci-
tatory neurons (EI and EE) are sensitive to pre- and post-synaptic
spike times. Although there is increasing evidence for the exis-
tence of timing-dependent adaptation mechanisms in synapses
within inhibitory populations (Lamsa et al., 2010) and from exci-
tatory to inhibitory neurons (Lu et al., 2007) (II, IE, respectively),
their precise mechanisms are highly dependent on the target neu-
ron type, which constitutes an added source of heterogeneity and
complexity. Furthermore, in most of our analysis, we assume
that the most relevant activity is that which can be propagated
to downstream regions, conveying the relevant information for
additional processing. For that reason, we focus our attention
on the dynamics of the excitatory population, given the known
locality of inhibitory connections.

In all experiments on networks incorporating plasticity,
synapses are continually plastic. For convenience, notation brevity
and consistency, plasticity modifications are not applied directly
to the synaptic “strength” (i.e., to the peak amplitude of the
conductance transient), but instead, to the dimensionless vari-
able wij which is subsequently rescaled by a constant factor (see
Equation 3).

Both types of plasticity used can be expressed in terms of
a synaptic trace variable defined for each neuron that is incre-
mented by 1 at each spike and decreases exponentially in between
spikes:

dxi(t)

dt
= − xi

τp
+

∑

ti

δ(t − ti) (5)

2.2.1. Excitatory STDP
We term the learning rule applied to the recurrent synapses
among the excitatory population excitatory spike-timing depen-
dent plasticity (eSTDP) and adopt the formalism proposed in van
Rossum et al. (2000):

	wEE =
{

λ exp (− |	t|/τp), if	t > 0

αepλwEE exp (− |	t|/τp), if 	t ≤ 0
(6)

where |	t| = t
f
i − t

f
j is the absolute difference between a specific

pair of spikes of pre-synaptic neuron j and post-synaptic neu-
ron i and τp is the time window for potentiation and depression,
which we set to be equal (τp = 20 ms, following experimental
data obtained by Bi and Poo, 1998). The parameter λ sets the
magnitude of individual modifications (i.e., the learning rate) and
αep determines the asymmetry between the amount of potentiat-
ing and depressing changes. The update rule can be re-written in
a differential form that depends on the synaptic trace variables:

dwij

dt
= αepλwEExi(t)δ(t − t

f
j )+ λxj(t)δ(t − t

f
i ) (7)

with all propagation delays considered to be dendritic, i.e., spike
times are taken at the synapse and no autapses are allowed. The
pre- and post-synaptic spikes are paired in an all-to-all scheme
(see Morrison et al., 2008).

This “hybrid” learning rule is additive for potentiation and
multiplicative for depression, thus incorporating some of the
most relevant experimental observations (Bi and Poo, 1998).
Importantly, it gives rise to unimodal weight distributions similar
to those observed experimentally in the presence of uncorre-
lated input, while retaining the ability to develop multimodal
distributions depending on the input correlation structure.

2.2.2. Inhibitory STDP
We apply the inhibitory spike-timing dependent plasticity
(iSTDP) proposed in Vogels et al. (2011) to the weights of
synapses between inhibitory and excitatory neurons. The general
premise is that pre- and post-synaptic firing that occurs within
the relevant coincidence time window (τp) should always lead to
synaptic potentiation, regardless of the temporal ordering of the
spike pair, whereas isolated pre-synaptic spikes lead to synaptic
depression.

This rule can be given in terms of the synaptic trace variables
(Equation 5) as:

dwij

dt
= η

(

xi(t)− αip
)

δ
(

t − t
f
j

)

+ ηxj(t)δ
(

t − t
f
i

)

(8)

where η is a constant learning rate. The parameter αip sets the
amount of synaptic depression upon a pre-synaptic spike and
has the value αip = 2ρ0τp, where ρ0 is a constant which serves
the homeostatic purpose of stabilizing the post-synaptic neuron’s
firing rate (for further details, see Vogels et al., 2011).

2.3. CONSTRAINING MODEL PARAMETERS
2.3.1. Initial synaptic strengths
Synaptic strengths are adjusted such that the ongoing, back-
ground network activity, prior to any patterned input stim-
ulation, mimics the statistics of cortical background activity:
inhibition dominated (i.e., ḡI/ḡE > 1), low rate (1–20 spikes/s),
irregular single neuron firing (CVISI � 1) and asynchronous pop-
ulation activity (low average pairwise correlations) (Brunel, 2000;
Destexhe et al., 2001; Meffin et al., 2004) (see Section 3.1 and
Figure 2).

For that purpose, we started by setting the constant back-
ground firing to a low rate of νX = 5 spikes/s and tuned ḡE and
ḡI to obtain the desired activity statistics. This resulted in ḡE =
1.8 nS for excitatory synapses, which leads to an EPSP amplitude
of around 1.46 mV at rest and ḡI = γ ḡE = 21.6 nS for inhibitory
synapses, leading to IPSP amplitudes of around −1.14 mV at
rest, where γ = 12 determines the absolute strength of inhibi-
tion relative to excitation. This parameter combination results
in self-consistent firing rates, whereby each neuron fires with a
rate approximately equal to the population rate and to the exter-
nal rate (νi = νnet = νX). It also provides a reasonable match
to experimental data: the ratio of IPSP to EPSP amplitudes at
rest is � 0.78 which lies within the range measured in the cor-
tex (Matsumura et al., 1996). Additionally, the mean coefficient
of variation of the single neurons’ interspike intervals (CVISI)
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is around 1.1 and their mean membrane potential approxi-
mately−62 mV (Destexhe et al., 2003).

2.3.2. Plasticity
We take a similar approach to tune the parameters of the plasticity
rules. We wish to obtain similar population dynamics in networks
whose synapses are subjected to adaptation and in networks
whose synapses are fixed, when driven by uncorrelated back-
ground input. To constrain the parameter ranges, we assume the
plasticity rules are independent and determine their parameters
individually.

In order to allow the effects of the two plasticity mechanisms to
balance, we set the rate of synaptic modifications to be the same
in each case, i.e., λ = η = 0.01. The only free parameter of iSTDP
left to tune is the target firing rate, ρ0. As mentioned by Vogels
et al. (2011), it is quite convenient to control the firing rate with
a single parameter, since we can tune the network to a desired
operating point by simply setting the desired rate. For consistency,
we set ρ0 = 5 spikes/s, to match the average population firing rate
displayed by a static network.

To determine the remaining free parameter of the eSTDP
rule, αep (the asymmetry parameter) we look at the equilibrium
dynamics of the weight update. We wish to obtain an equilib-
rium weight distribution whose mean is equal to the mean static
weight, i.e., 1.8 nS and an equilibrium firing rate close to the pop-
ulation rate in the static case. Note that, when iSTDP is present, a
specific firing rate can be readily achieved as described above. In
the absence of iSTDP, the desired features are achieved for a value
αep � 0.92 (data not shown).

2.4. INPUT STIMULI
A sequence of stimuli was delivered to specific sub-populations
(Figure 1C), in order to perturb the stable background activity.
We call these input stimuli “thalamic,” to differentiate them from
the unspecific, background stimulation, referred in Section 2.1.1,
however an accurate modeling of thalamic activity is not aimed
at in this study. Each stimulus was assigned an arbitrary abstract
label and subsequently converted into a set of spike trains,
according to the following process: a stimulus sequence (u =
σ1, σ2, . . . , σT) of a predefined length (T) was built by randomly
drawing σi from a set of k different stimuli Sj ∈ S, with 1 ≤ j ≤
k. Each successive σi was then converted into a k-dimensional
binary vector û, where ûn[j] = 1 if un = Sj, for n = 1, . . . , T.
This binary representation was also used as the target output to
train the readout units in a classification task (see Section 2.5.3.1).
From the resulting input streams (ûn), k independent signals were
generated, according to:

sk(t) = 1

σu

(

ûn[k] × δ(t − n	)
) ∗ g (9)

where σu determines the signal’s peak amplitude and 	 corre-
sponds to the period of the input sequence, i.e., the duration
of each stimulus presentation plus the inter-stimulus interval,
assuming regularity of input unit length. The function g is a
bi-exponential kernel:

g(s) = exp(− s/τr)− exp(− s/τd) (10)

with rise time τr = 50 ms and decay time τd = 150 ms (see
Figure 1A for a schematic depiction of this input generation
process). These independent signals were used to determine the
time-dependent firing rates of inhomogeneous Poisson processes,
in order to generate Naff input spike trains for each signal sk. The
peak amplitude of the signal thus corresponds to the peak fir-
ing rate of a spike burst. Finally, a constant value of 2 spikes/s
background activity along with a small amount of Gaussian white
noise was added to the signals sk(t). The resulting input structure
is depicted in Figure 1B.

For the experiments in Section 3.2, we use k = 3, randomly
drawn, independent stimulus classes. In total, T = 3300 stimulus
samples (comprising 1100 samples of each stimulus class) are pre-
sented to the networks. The first 300 samples and corresponding
network responses are considered to represent an initial “entrain-
ing” period and so are discarded from the analysis. The duration
of each stimulus presentation is fixed and set to 200 ms, followed
by a 100 ms-long inter-stimulus interval, resulting in a total ana-
lyzed simulation time of 900 s. A similar protocol is used in the
experiments in Section 3.3, the difference being that the value of k
is varied. In such cases we use 1100k stimulus samples and discard
the first 100k samples.

2.5. DATA ANALYSIS
2.5.1. Global network dynamics
In order to properly characterize and compare the dynamic net-
work states in different conditions, we need to adequately quan-
tify the population activity. This analysis focuses on 3 main prop-
erties, the average population firing rate, the degree of synchrony
and the degree of irregularity of network states.

2.5.1.1. Irregularity. The degree of irregularity of population
spiking activity is determined by the coefficient of variation of the
interspike intervals (ISI) of each neuron’s spike trains, averaged
across all neurons in the population:

CVISI =
〈

σ ISI
i

μISI
i

〉

(11)

where 〈.〉 denotes the average over all neurons, μISI
i and σ ISI

i
denote the mean and standard deviation of the ISIs of neuron i.
The CVISI provides a good measure of spike train variability over
time scales on the order of the mean ISI. An irregularly spiking
neuronal population will have CVISI close to 1 (a value of exactly
1 corresponds to Poissonian firing). CVISI values close to 0 indi-
cate a regular spiking pattern, whereas values much larger than 1
indicate a bursting firing profile.

2.5.1.2. Synchrony. The degree of synchrony is quantified by
the average pairwise correlation coefficient over 500 randomly
sampled, disjoint, neuronal pairs (see, e.g., Kumar et al., 2008b):

CCij =
〈

Cov(Ci, Cj)

Var(Ci)Var(Cj)

〉

(12)

where 〈.〉 denotes the average over all pairs, Ci and Cj rep-
resent the spike counts of neurons i and j, computed by
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A C

B

FIGURE 1 | Schematic representation of the input and network

structure used throughout this study. (A) Depiction of the stimulus
generation process, converting a symbolic stimulus sequence (u),
composed of k = 3 different, randomly ordered stimuli (S = A, B, C), into
the k-dimensional binary representation û, over the course of n = 10
sequence time steps. These are subsequently transformed into k

independent signals (sk , each corresponding to a specific color trace in
the bottom panel), with a period 	 and a peak amplitude σu . (B) Each
input signal sk (t) (white lines) determines the firing rate of Naff = 10
afferent neurons. (C) Each afferent neuron projects to a subset of
γu × NE excitatory neurons in the main network. The color of the
sub-populations indicates the corresponding input stream.

counting the spikes occurring within successive time bins of
width 1 ms.

2.5.1.3. AI score. To allow a simpler visualization of the regions
encompassing AI-type activity (see Section 3.1), we introduce an
additional metric that summarizes the main statistical descrip-
tors and provides a graded measure of the AIness of the spiking
activity, depicted in Figures 3E,J. This metric relies on some-
what arbitrary criteria, based on general assumptions, which we
establish as the percentage of neurons in the population that fire
with a rate ≤ 20 spikes/s and whose CVISI ∈ [0.8, 1.5], in con-
ditions where the average pairwise CC ≤ 0.05. Objectively, all
the parameter combinations that lie within this range reflect AI-
type activity, but may correspond to different sub-types of this
regime (Ostojic, 2014), with different computational properties.
The highest AI scores, in our analysis, reflect the “classical” states,
of homogeneous average firing rates.

2.5.2. Global computational power
We adopt the methods introduced in Maass et al. (2005),
Legenstein and Maass (2007) to evaluate the generic computa-
tional power of neuronal microcircuits, regardless of the pre-
cise nature of the circuit. The general premise underlying this
approach is that sufficiently different input streams should cause
different internal states and hence lead to different, linearly sepa-
rable outputs.

For this purpose, we can use a much simpler stimulus than
previously described in Section 2.4. Consider the microcircuit
C, generated with a specific set of parameters, and stimulated

by one of a set of T = 500 different input streams (fixed spike
patterns), each composed of 4 independent Poisson spike trains,
at a rate of 20 spikes/s and a duration of 200 ms. The temporal
evolution of the system in response to this input pattern is ana-
lyzed and stored in a response matrix, obtained by convolving
each neuron’s spike train with an exponential kernel, with 30 ms
time constant and temporal resolution equal to the simulation
time step, i.e., 0.1 ms (Section 2.6), in order to capture the effect
of each spike on the membrane properties of a readout neuron
receiving it. This response matrix is then sampled at time point
t0 = 200 ms, resulting in the N-dimensional vector xu(t0) which
contains all the neurons’ responses to input pattern u, or the cir-
cuit state (Maass et al., 2002). The procedure is then repeated for
all the spike templates, leading to the formation of the state matrix
X ∈ R

N×T . The rank r of the matrix X, calculated by singular
value decomposition, corresponds to the number of linearly inde-
pendent columns of X, i.e., the number of inputs that are mapped
into linearly independent circuit states, thus providing a quanti-
tative descriptor of computational performance, or kernel quality.
If r ≤ k, a linear readout should be able to separate r classes of
inputs (Maass et al., 2005; Legenstein and Maass, 2007).

2.5.3. Stimulus representation
To assess the quality of the input-state mappings, in relation to
the underlying dynamical states that the networks achieve under
different conditions, we use the following metrics:

2.5.3.1. Readout classification. The network responses to a stim-
ulus sequence of length T are assembled in a state matrix X ∈
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R
N×T , as described in Section 2.5.2, where each column rep-

resents the network state in response to one stimulus. These T
stimulus-response pairs are subsequently split into train and test
samples, with Ttr = 0.8T and Tte = 0.2T. A set of k linear read-
out units are then trained to classify which pattern was presented
to the network, using the binary signal û as the supervisory sig-
nal. We wish to map each N-dimensional state pattern (X(t))
to the corresponding input that triggered it (ût), by minimizing
the quadratic error E(Û, WoutX). The synaptic weights from the
main network to the readout units (Wout) are obtained by ridge
regression, i.e., by solving:

Wout = ÛXT(XXT + α2
I)−1 (13)

where Û is a k× Ttr matrix combining all the binary target pat-
terns, X is the N × Ttr state matrix, I is the identity matrix and
α is a regularization factor, given by the least squares norm and
optimized by 5-fold cross-validation on the training data. In prin-
ciple, any linear regression method would be applicable, but we
chose ridge regularization because of the penalty imposed on the
size of the coefficients. It is desirable that the average vector norm
of Wout be kept small so that the output accurately reflects fea-
tures of the state space, instead of relying on disproportionate
amplification of certain dimensions.

The obtained synaptic weights Wout are then used to classify
the state responses to the test sequence. Average classification per-
formance is obtained by applying winner-takes-all on the readout
output y(t) to determine the label assignments and subsequently
quantifying the fraction of correctly classified patterns. To obtain
a more fine-grained measurement, we also quantify the perfor-
mance in classifying each of the individual stimulus patterns
using the raw readout output and correlating it with the target
binary values, using point-biserial correlation coefficient, which is
a suitable statistic to estimate the relationship between a dichoto-
mous variable (target values) and a continuous variable (readout
output).

2.5.3.2. Dimensionality reduction and visualization.
Throughout this study, we apply various different methods
of dimensionality reduction, which we briefly outline below. It
is worth noting that, while for most depictions we chose one
particular method, the only criteria that justified this choice was
adequate visualization. In every case, several different methods
were applied and these results were only included and further
discussed if they were consistent across different methods.

These methods are applied to visualize the underlying spatial
arrangement of the network states in response to each stimulus
pattern (finding structure in the state matrix) and the unfold-
ing trajectory of network states within the time course of single
responses to a stimulus, both of which assuming the desirable
condition that the input-driven stimulus responses lie within dis-
tinct sub-spaces in the N-dimensional state space. In the first
case, the low-pass filtered population responses to each stimu-
lus are sampled at time t0 after stimulus onset (typically t0 =
200 ms, i.e., at the end of each stimulus presentation) and col-
lected in the state matrix X ∈ R

N×T , following the description
in the previous section (Section 2.5.3.1, Readout Classification).

The methods of dimensionality reduction are then applied to
X (N features and T samples). We tested several different algo-
rithms for this purpose, namely principal component analysis
(PCA), linear discriminant analysis (LDA), spectral embedding
and isomap embedding. The first two are based on finding
low-dimensional embeddings of the data points, using linear
projections of the variables that best explain the original, high-
dimensional data, either by identifying the directions in feature
space that capture most variance in the data (the top eigen-
vectors of the data covariance matrix or principal components)
or by identifying attributes that account for the most variance
between labeled classes (LDA is a supervised method). Spectral
and isomap embedding methods, on the other hand, are based
on non-linear projections of the data seeking low-dimensional
representations that maintain the relative distances (Euclidean
distances, in our case) between data points. Spectral embed-
ding (also known as Laplacian eigenmaps) constructs a weighted
graph representing the data, using an adjacency matrix based
on the pairwise distances between data points. The embedding
is subsequently obtained by partial eigenvalue (spectral) decom-
position of the graph Laplacian (see e.g., Ng et al., 2001; Belkin
and Niyogi, 2003 for a more thorough explanation). Isomap
embedding also relies on partial eigenvalue decomposition, but
applied to a matrix representing the shortest path lengths between
a data point and its nearest neighbors (Tenenbaum et al.,
2000).

In the second case, we want to reduce the dimensionality of
the data along the time course of single responses to a stimulus.
For that purpose, we analyse the full response matrix R, using the
low-pass filtered population responses, with R ∈ R

N ×D, where D
corresponds to the duration of the stimulus presentation divided
by the response time resolution (0.1 ms). We apply techniques
that have been previously used to analyse neural data, with a simi-
lar goal in mind, namely principal component analysis (PCA) and
locally linear embedding (LLE) (see Churchland et al., 2007 for an
overview).

2.5.3.3. Input/output correlations. To determine to which
degree the activity of each input-specific sub-population (see
Sections 2.1.2 and 2.4) becomes specialized to a particular input
pattern, we compute firing rate histograms of the output of each
population rα(t) over many sequential trials with each of the
input patterns and determine the time-averaged firing rate of
these responses r̄α . These histograms are then correlated with the
input signals (sk) to obtain the correlation coefficient of signal k
with population α:

Cα
k =
〈(sk(t)− s̄k)(rα(t)− r̄α)〉

σskσrα
(14)

This procedure allows us to determine the specialization of each
population and the impact that each input signal has on each
population.

2.6. NUMERICAL SIMULATIONS
All simulations were performed using the NEST simulating envi-
ronment (Gewaltig and Diesmann, 2007) with an integration
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resolution of 0.1 ms. Due to the large memory and computing
demands, simulations were carried out on large, parallel com-
puting clusters, using the parallelized kernel of NEST (Morrison
et al., 2005). All subsequent calculations and data analysis were
performed in Python, using the NumPy and SciPy libraries, as
well as the Scikit-learn toolbox (Pedregosa et al., 2011).

3. RESULTS
3.1. IMPACT OF PLASTICITY ON NETWORK DYNAMICS
Numerous in vivo recordings in awake, behaving animals have
revealed the prevalence of highly irregular and seemingly noisy
firing patterns in neocortical circuits (Softky and Koch, 1993;
Stiefel et al., 2013). Sub-threshold fluctuations of the neu-
rons’ membrane potentials lead to irregularly timed, low fre-
quency spiking (on the order of 1–20 spikes/s) (Gerstein and
Mandelbrot, 1964; Destexhe et al., 2003), whereas at the popu-
lation level, activity is characterized by a low degree of synchrony,
with small pairwise correlations between spike trains (Abeles,
1991; Vaadia and Aertsen, 1992; Shadlen and Newsome, 1994).
Collectively, these characteristic features of neural activity are
generally termed “Asynchronous Irregular” (AI) states and are
assumed to constitute the “ground state” of ongoing cortical
activity.

The mechanisms underlying this activity regime have been the
subject of intense investigation and are known to rely mainly
on the balance of excitation and inhibition. Analytical studies of
random recurrent networks of IF neurons with static current-
based synapses have shown that these systems can display a rich
set of behaviors, depending on the intensity of external stimula-
tion and the relative strength of excitation and inhibition (van
Vreeswijk and Sompolinsky, 1998; Brunel, 2000; Kumar et al.,
2008b). In the cortex, this relationship is highly dynamic and
the balance required needs to be actively maintained and tuned
to allow the network to operate in suitable regimes. Thus, the
activity regimes exhibited by networks with plastic synapses is of
particular interest. Recently, Vogels et al. (2011) investigated the
transition of a network with iSTDP from non-AI to AI regimes
in dependence on the learning rate of the inhibitory plastic-
ity and the strength of excitatory synapses. In this section, we
explore the impact of dynamic excitatory and inhibitory synapses
on the ongoing activity, by systematically varying the same con-
trol parameters investigated in earlier studies on static networks,
namely the external input rate νX and the inhibitory-excitatory
balance g, which can be set via the ratio of absolute peak con-
ductances γ as described in Section 2.1.1. In plastic networks g
evolves throughout the simulation as a result of synaptic changes
(see Supplementary Materials), so for ease of comparison with
the static case we consider the network activity as a function
of its initial value. Figure 2 shows the behavior of an example
network as described in Section 2.1, with parameters set accord-
ing to Section 2.3.1, leading to AI-type activity (Figure 2A). As
desired and akin to its biological counterpart, the single neu-
ron’s spiking activity is highly irregular, with membrane potential
hovering slightly below threshold (Figures 2B,F). Furthermore,
the excitatory and inhibitory synaptic currents impinging onto
this neuron are closely balanced (Figure 2C). This activity pat-
tern is consistently conserved across the population, leading

to the distributions observed in Figures 2D,E,G (these statisti-
cal descriptors were computed as described in Section 2.5.1).
The synapses are subjected to modifications due to the ongo-
ing activity and the stochastic input, leading to more narrowly
distributed synaptic weights compared to the initial condition
(Figure 2H). However, as the network maintains its AI-type activ-
ity during the evolution of synaptic strengths, the distributions of
the statistical measures shown in Figures 2B–F remain essentially
indistinguishable throughout the simulation period.

Our analysis in this section focuses on the most important
statistical descriptors of population activity and on the generic
computation capacity of the networks. In the first case, the mea-
sures are computed as described in Section 2.5.1 over a period
of 20 s following a long initial equilibration phase. The network
receives no specific input during this analysis, just the exter-
nal input rate described above. Here, results are obtained from
a single realization of each network configuration due to the
computational intensity of the parameter scan. In the second
case, the network receives independent Poissonian spike trains
(as described in Section 2.5.2). Results are averaged over 10
realizations of each network configuration.

The main results of our analysis over a broad parameter range
are depicted in Figure 3 for static (A–E) and plastic (F–J) net-
works. The presence of plasticity strongly influences network
activity. In accordance with the results presented in Kumar et al.
(2008b), the static networks exhibited the asynchronous irreg-
ular (AI), fast and slow synchronous regular (SRF, SRS) and
synchronous irregular (SI) regimes, but no asynchronous regu-
lar (AR) regimes were observed. In the plastic networks, only
SI and AI regimes are observed, indicating that plasticity abol-
ishes regular spiking activity except for a small region, where the
external stimulus is weakest (νX = 0.5 spikes/s). Static networks
with very weak inhibition (g < 1) have very high average firing
rates, whereas plastic networks have low firing rates for almost
all configurations. These results demonstrate that the presence of
balanced plasticity makes the existence of the low rate AI dynami-
cal state much more robust in comparison to static networks. The
smooth profiles of the measures indicates that a single realization
of the network configuration is sufficient to capture them.

We additionally measured the generic computation capacity
of these networks, i.e., their ability to separate similar time-
varying input streams in the form of fixed spike templates (see
Section 2.5.2). Our results reveal that all regimes of the static
network have a high generic computation capacity except SRF.
This is demonstrated by the low rank in Figure 3E for network
configurations in the SR regime identified in Figure 3D. In this
regime, the dominant excitation and consequent excessive fir-
ing hinders a proper stimulus separation. For all other regimes,
the rank is maximal, indicating that all the columns of the state
matrix are linearly separable, allowing a fine discrimination of
input stimuli. As plastic networks abolish the pathological SR
regimes, every configuration of parameters leads to maximally
separable circuit states (indicated by maximal ranks in Figure 3J),
thus the presence of plasticity also increases the robustness of
generic computation capacity in comparison to static networks.

Based on these results, we were able to select a suitable net-
work configuration for our investigation of the capacity of static

Frontiers in Computational Neuroscience www.frontiersin.org October 2014 | Volume 8 | Article 124 |100

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive


Duarte and Morrison Dynamics of sequential stimulus representations

A

B

C

D E

F

H

G

FIGURE 2 | Characteristics of ongoing activity in a network with

excitatory and inhibitory STDP. (A) Raster plot depicting the spiking
activity recorded in a subset of 500 randomly chosen excitatory neurons,
for a period of 10 s, following an initial equilibration phase of 50 s. (B)

Example of a randomly chosen single neuron’s membrane potential
during the same time interval. (C) Total excitatory (blue) and inhibitory
(red) synaptic currents into the neuron whose membrane dynamics is
shown above, during a time period of 2 s (highlighted in gray in B). The
gray line in the middle corresponds to the total current. (D–G)

Distributions of the most important descriptors of population activity,
namely coefficients of variation of the inter-spike intervals (D), average
firing rates (E), mean membrane potentials (F), and pair-wise correlation
coefficients (G, computed over 500 pairs). These distributions were
obtained from the activity of the entire population (not just the neurons
depicted in A), recorded over a period of 20 s. (H) Initial and final
synaptic weight distributions for excitatory (left) and inhibitory (right)
weights. Note that these distributions refer to the dimensionless variable
w and not the actual synaptic conductances (see Equation 3).

and plastic networks to extract information from structured input
(described in Section 2.4), which comprises the main focus of our
study. The selected configuration (marked with a star in all panels
of Figure 3) produces activity with a high AI-score for both types
of network. The parameters are νX = 5 spikes/s and g � 0.29γ ,
which for γ = 12 leads to g � 3.479 (see also Section 2.3.1).

3.2. STIMULUS DISCRIMINATION
The ongoing network dynamics, when perturbed by an exter-
nal stimulus pattern, performs a non-linear temporal expansion
of its input, projecting it in a high-dimensional state-space as
a complex, transient activity pattern (Rabinovich et al., 2008;
Lukoševicius and Jaeger, 2009; Maass, 2010). In the following,
we investigate whether balanced plasticity allows the network to
counteract the effects of stimulation on the local E/I balance
and develop stable stimulus representations, making the trajec-
tories of network states more robust and easier to decode while
maintaining suitable ongoing population activity.

3.2.1. Effective discrimination with different input features
To better understand the dynamics underlying stimulus represen-
tation, we first analyse the absolute difference between static and
plastic networks in terms of the performance obtained by readout

neurons trained to classify the responses (Figure 4A). To do so,
we use input sequences as described in Section 2.4, composed of
k = 3 randomly ordered and sequentially presented stimuli.

The results show that plastic networks are not invariably better
sources of classification information than static networks. When
the peak rate of the input burst signals is low (σu = 10 spikes/s),
the main differentiating factor is the number of afferent neurons
that synapse onto each input population. Both static and plastic
networks perform much better in the presence of a stronger input
(Naff ≥ 100) and when these input neurons connect to a larger
sub-population. All other input parameters lead to insufficient
discrimination, which is reflected in a readout classification per-
formance at chance level for both network types (see Figure 4A
and Supplementary Materials).

Increasing the input burst rate allows static networks to out-
perform plastic ones in conditions where the number of afferent
neurons is high (Naff = 500). Conversely, in conditions where
the number of afferents is very low (Naff = 5), the input is not
strong enough to create a discernible response and both net-
works perform at a level barely above chance. This performance
improves slightly as the number of receiving neurons increases.
For intermediate values of afferent neurons, both networks dis-
play significantly discriminative responses, with the difference
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FIGURE 3 | Dynamical network states in static and plastic networks.

(A–C) Main properties of static network dynamics as functions of the
control parameters νX (rate of external Poissonian drive) and g (effective
excitation/inhibition balance): average firing rates, irregularity, and
synchrony. (D) Schematic depiction of the different network states
observed in static networks. This figure was obtained by overlaying (B,C)

in the depicted range, which corresponds to the region where the most
significant state transitions occur. (E) AI-score expressed as the
percentage of neurons in the population that fire with a rate ≤20

spikes/s and whose CVISI ∈ [0.8, 1.5], in conditions where the average
pairwise CC ≤ 0.05 (see Section 2.5.1). The histograms show the
average results of the kernel quality analysis (Section 2.5.2, where Rank
refers to the number of linearly separable columns of the state matrix in
response to 500 different stimulus templates) along the two main axes
(highlighted by the white dashed lines) over 10 analyses per condition.
Note that the parameter combinations marked in (A–C) with a small star
correspond to the point where these two main axes intersect. (F–J) As
in (A–E) but for plastic networks.

favoring mainly plastic networks, particularly if the size of the
stimulated population is large (γu ≥ 0.1).

In the following sections, we carry out further analysis to
uncover the reasons why in some cases plasticity increases the
network performance and in other cases decreases it. In order
to do this, we isolate three input conditions which lead to differ-
ent comparative performances of the plastic and static networks.
In one configuration, marked by a gray star in Figure 4A and
examined in Section 3.2.2, plastic and static networks performed
flawlessly. In the configuration marked by a white star, there is
a clear and significant advantage of having plastic synapses. This
is examined Section 3.2.3. Finally, in the configuration marked
by a black star, plastic synapses confer a significant disadvantage,
which we analyse in Section 3.2.4.

3.2.2. Specialized population responses
We start by analysing the condition where both network types
exhibited a high capacity to discriminate the stimulus patterns
(configuration marked with a gray star in Figure 4A). Each input
signal consists of a relatively large number of afferent neu-
rons (Naff = 100), whose peak rate is at an intermediate value
(50 spikes/s) and whose target population is very concise, consist-
ing of only 80 excitatory neurons (0.01× NE). The stimulus rep-
resentations developed by both network types are highly specific,
allowing the readout to classify with near perfect accuracy and low
error (Figures 4B,C). Furthermore, the solutions found by the
regression algorithm are highly stable and accurately reflect the
population activity (low |Wout|, see Figure 4D) and each read-
out output yk is highly correlated with its corresponding target ûk

(Figure 4E).

A closer analysis of the network activity under these conditions
provides a straightforward justification for the high discrim-
inability of the responses. As can be seen in Figure 5A, upon
receiving each stimulus pattern, the responsive sub-populations
exhibit a clearly discernible activity that stands out from the back-
ground population, with a firing rate 30–40 spikes/s higher than
that of the background, unstimulated neurons. This is less obvi-
ous in plastic networks, because the inhibitory plasticity rapidly
counteracts the disruption of balance in the stimulated neurons,
bringing their activity back to the background level within the
time-course of a single stimulus presentation (Figure 5D). Due
to this effect, the plastic network maintains low rates and an AI-
score of 86%, whereas the static network decreases to 69% as a
result of increased synchrony (data not shown).

In both networks, the strongly localized activity leads to highly
specialized network responses whereby each sub-population’s
firing rates are highly correlated with that of their respective stim-
ulus (Figures 5B,E). However, the correlation values are much
lower in networks subjected to plasticity and so is the degree to
which the population responses are specialized in relation to the
background. The slightly degraded discriminability in plastic net-
works can also be seen by comparing the clustering of the circuit
states in response to each pattern. Plastic network states cluster in
well defined but less separated regions of state space than static
network states (Figures 5C,F).

In summary, under input conditions where the stimulus
has intermediate strength and the stimulated populations are
very small, networks can easily produce a specialized response
leading to accurate classification. The main effect of plasticity
lies in its ability to maintain globally low average firing rates
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FIGURE 4 | Classification performance of readout neurons trained on

the responses of static and plastic networks (Cs, Cp), obtained from

10 simulations per condition. (A) Absolute difference in classification
performance Cp − Cs as a function of peak input burst rate σu , number
of afferent neurons Naff and proportion of total excitatory population
receiving each input stimulus γu . The stars mark three conditions of
greater interest for further analysis, Cp 
 Cs (white star; σu = 100,
Naff = 10, γu = 0.3), Cs 
 Cp (black star; σu = 50, Naff = 500, γu = 0.3),
and Cs � Cp (gray star; σu = 50, Naff = 100, γu = 0.01). (B–E) Expanded
results on the highlighted conditions, namely classification performance
(B), mean absolute error of the readout output (C), vector norm of

obtained readout weights (D) and point-biserial correlation coefficients
between the readout output to each symbol (yk ) and the corresponding
binary target value (uk ) (E each group of 3 bars corresponds to one
network type (plastic or static), as highlighted by the background color).
(F) Comparison of synaptic weight distributions for different conditions
(from left to right): initial distributions, prior to any modification, control
condition corresponding to the absence of patterned stimulation (only
unspecific, background input (X )) and the three conditions of interest
highlighted in the (A–E). Note that the total range of values assumed by
the synaptic weights in each condition is not easily discernible, but
corresponds to the limits of the corresponding axes.

(approximately half of those displayed in the corresponding static
case) and to ensure the stability and maintenance of the AI state.

3.2.3. Plasticity stabilizes neural trajectories
Several of the conditions depicted in Figure 4A resulted in a
significant performance advantage for networks incorporating
activity-dependent adaptation. To better elucidate the mecha-
nisms underlying such advantage, we focus on the condition
where the difference is most evident (highlighted with a white

star in Figure 4) and analyse the dynamics of an individual net-
work’s responses to each stimulus pattern as they evolve along
specific paths through the network’s state space. It is worth not-
ing that under the present input conditions (i.e., σu = 100, Naff =
10, γu = 0.3), the responses are not discernible on the basis of
a localized increase in firing rate among the stimulated neu-
rons, which is reflected in the low degree of specialization of the
population responses (Figures 6F,L). Hence, to understand the
reasons underlying the performance difference, we must analyse
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FIGURE 5 | Characteristics of population activity that allow a stable

discrimination based on specialized population responses. The results
depicted in this figure correspond to the condition Cs � Cp (σu = 50,
Naff = 100, γu = 0.01, gray star in Figure 4), obtained at the final stages of
the stimulation period, i.e., after presenting the network with � 1000
samples of each stimulus. (A) Snapshot of population activity represented as
2-dimensional firing rate maps, in response to each stimulus pattern (A, B, C)
for a static network. The color of each point in the grid represents the

average firing rate of the neuron located in the corresponding position,
averaged over an interval spanning the stimulus duration plus the
inter-stimulus interval. (B) Correlations between the firing rates recorded in
each sub-population α = SA, SB, SC , Background of a static network in
response to each signal k, with each of the input signals sk , averaged over
100 stimulus-response pairs. (C) Projection of network state vectors xuk (t) in
response to each stimulus pattern uk (t) onto the space spanned by the first 3
PCs. (D–F) as in (A–C) but for a plastic network.

the high-dimensional response dynamics to each stimulus, in the
different network conditions.

Fully dissecting and understanding the dynamics of such
high-dimensional dynamical systems is widely recognized as an
extremely difficult, if not impossible task. We therefore resort
to reduced-dimension descriptions and average measures that
attempt to capture the essential phenomena as functions of a few
variables expressing the most meaningful relations in the data.
This has the advantage of allowing us to visualize the data and
thus make some inferences and hypotheses about the underlying
dynamics, but the disadvantage of providing a limited scope and
ability to test the generality of these hypotheses in relation to the
original state space.

The results depicted in Figure 6 reflect the activity of indi-
vidual networks recorded at different points in time during the
stimulation period. We will refer to these points as sequence time
steps or sts. For each analyzed time point, the spiking activity in
response to an individual stimulus is first low-pass filtered to cre-
ate a response matrix containing the circuit states throughout the
entire length of the response, until the onset of the subsequent
stimulus. The dimensionality of each of these response matrices
is then reduced by principal component analysis and their pro-
jections in the space spanned by the first three PCs analyzed.
The procedure is repeated until 10 responses to each individual
stimulus are obtained. We calculate the mean and variance of
these responses to determine the stereotypy or variability of the
transient activity patterns developed in response to the different
stimuli starting from different network conditions.

In the first few sequence time steps (starting from sts = 0),
the network responses already show a certain degree of stereotypy
and the trajectories progress through distinct, albeit overlapping,
regions of state space (Figure 6B). The average pairwise dis-
tances between trajectories show no specific pattern other than an
increasing trend (Figure 6A, bottom). A striking feature, which

we will come back to later, is the existence of a clear pattern in the
variance of the trajectories. These initial results are remarkably
similar among the different conditions (static and plastic net-
works) as well as among different random network instantiations,
reflecting the initially similar embedding state space, obtained by
tuning the ongoing, background activity dynamics. The trajecto-
ries are not exactly the same but tend to occupy similar regions of
space and display a very similar pattern of variances.

After being presented with a long sequence of stimuli, the
response patterns differ dramatically between the static and the
plastic conditions. These results are depicted in the bottom part
of Figure 6 (C–H, for static networks and I–N for plastic net-
works), and were obtained from sts = 2900. The trajectories of
network states observed in static networks are now highly vari-
able (with a variance about 4 times larger than in the initial
steps; Figure 6C, top) and the different stimulus responses clump
together, hampering an adequate discrimination (Figure 6D).
In contrast, the trajectories observed in plastic networks have
become more stereotypical, with a maximum variance approx-
imately half of that verified in the initial condition (Figure 6I,
top) and the responses become more “organized,” consistently
unfolding throughout specific paths (Figure 6J).

Furthermore, the dimensionality of the response dynamics is
also significantly different which has an obvious impact on their
linear separability. The dimensionality of the state-space can be
inferred by the amount of total variance explained by successive
dimensions obtained by PCA. Figure 6G shows that, in static net-
works, after sts = 1000, the first PC accounts for just under 50%
of the variance, compared to ∼25% at sts = 0, which stands in
clear contrast with the dynamics of plastic networks, where the
percentage of explained variance remains invariant along the full
stimulation time (Figure 6M). The low dimensionality and low
separability of the static network’s responses is further demon-
strated in the result displayed in Figure 6H, which was obtained
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FIGURE 6 | Emergent trajectories of network states in response to

each stimulus pattern in the initial stages of simulation (A,B) and

following the presentation of 2900 stimulus patterns (i.e., 870s of

simulation), for static (C–G) and plastic (I–N) networks. The colors
used to highlight the responses to different stimuli are consistent with
the previous figures (orange = A, blue = B, green = C). (B,D,J)

Succession of network states in response to each stimulus, projected
onto the space spanned by the first 3 PCs. Each trajectory reflects the
mean of 10 responses recorded in different simulation periods and
different conditions. (A,C,I) (top): Variance of each individual trajectory in

relation to the mean; (bottom): average pairwise Euclidean distance
between the depicted trajectories. (E,K) Snapshot of spiking activity of
1000 randomly selected excitatory neurons, recorded in the latest stages
of simulation, over a period of 5 s. The shaded areas correspond to
different stimuli. (F,L) Correlations between the firing rates of each
population α with each input signal sk , averaged over 100 stimulus
response pairs. (G,M) Amount of variance explained by the first 10 PCs
throughout different phases of simulation (referred to as sequence time
steps (sts)). (H,N) Representation of network states at the end of each
stimulus pattern obtained by spectral embedding.

by spectral decomposition of the matrix of Euclidean distances
between the state vectors (network states at t0 = 200 ms, see the
dimensionality reduction section of Section 2.5.3). This figure
depicts the existence of a low-dimensional manifold, where all the
states in response to the different input patterns lie.

Conversely, networks that have been shaped by plasticity learn
to explore the state space much more effectively, partly by virtue

of the maintenance of the AI-type dynamics (Figure 6K), which
supplies the network with a higher dimensional space over which
to develop its responses (Figures 6M,N), in contrast with the
static network where the activity tends to become more syn-
chronized (Figure 6E), thereby increasing the redundancy of the
individual neuron’s responses resulting in a consequent reduction
in dimensionality.
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The variance of the analyzed responses also shows, at this stage,
a clear periodic pattern where, at relatively constant intervals
(�70 ms), the 10 individual trajectories converge (see Figure 6I).
In the initial state (sts = 0), the variances already showed a
similar pattern, with a convergence point at t � 150 ms after
stimulus onset (Figure 6A). This is an interesting and somewhat
unexpected result. Since these points do not reflect any mean-
ingful property of the stimulus, they must reflect properties of
the response dynamics that the network develops. We hypothe-
size that these points represent spontaneously generated saddle
nodes that stabilize the dynamics along the unfolding trajectories,
improving robustness and reproducibility. As the different trajec-
tories approach these regions of state-space they are attracted to
these points (hence the observed reduction of variance) and, after
leaving these regions, the trajectories are repelled and allowed to
diverge until the next saddle node captures them.

An additional question that arises from these results is whether
the increased discriminability of the population responses in the
plastic networks can be accounted for by the macroscopic dynam-
ical state of the network (i.e., the ability to maintain a stable AI
activity pattern both for ongoing and stimulus-driven activity)
or whether the fine details of the learned synaptic connections
are strictly necessary. To address this question, we perform two
simple experiments, described in the following.

As discussed in Section 3.1, the effect of plasticity modifies the
effective balance g, leading to a final value that is much larger
than the initial one (see Supplementary Materials). Therefore, as
a result of learning, the network will be strongly dominated by
inhibition and placed in a dynamic regime where ongoing activ-
ity is more strongly of the AI type (see Figure 3). To determine
whether the macroscopic dynamical state is sufficient to account
for the network performance, we investigate a static network ini-
tialized with g � 12 (similar to the final value of g obtained in the
plastic network). The readout classification performance of this
strongly inhibitory network shows a considerable improvement
over the more weakly inhibitory network considered in this sec-
tion (Cs � 0.9667 as compared to Cs � 0.445), thus reducing the
performance difference from 0.54 to 0.02.

This result seems to support the first hypothesis, i.e., that the
increased discriminability is due solely to the network’s dynami-
cal state. However, a second experiment suggests that this view is
too simplistic. We analyse the classification performance obtained
if the learned synaptic weights are randomly shuffled, losing any
relevant structure. To do so, 3000 stimulus samples are presented
to the plastic network, after which its synaptic weights are frozen
and plasticity disabled. Subsequently, the recorded weights are
randomly shuffled among the existing synapses and the network
is exposed to a new sequence of 3000 stimulus samples. The
responses to this second set of stimuli is recorded and used to train
and test the readout’s classification performance (following the
same procedure described in Section 2.5.3). In this situation, the
classification performance drops to chance level (Cp � 0.33148).

Based on these results, we can conclude that the macroscopic
dynamical state of the network is critical to achieve a high stim-
ulus discrimination and consequent readout performance. For
that reason, a random network can achieve very high perfor-
mance if its initial state is placed in a strong AI regime. However,
if the network connectivity is not random, but pre-structured

by Hebbian learning in response to the training data, the fine
details of connectivity that arise from the learning process play
a key role in the maintenance of adequate stimulus representa-
tions; randomly re-organizing this connectivity structure results
in a drop in performance to chance level. So, in this situation, the
results do not rely exclusively on the global E/I balance (which is
maintained after shuffling), but also require the conservation of
the pre-learned weight structure. These phenomena are obviously
not independent as the learned connectivity structure emerges to
counteract the disruption of balance and to stabilize the activ-
ity in the AI regime. Randomly shuffling the synaptic weights
may result, for example, in a decreased inhibition toward certain
stimulated neurons, that consequently fire excessively and thus
destabilize the global network dynamics. Indeed, the activity in
the shuffled condition displays a higher amount of synchronous
population activity (data not shown).

3.2.4. Strong stimulation hinders representation
In some cases, the presence of plasticity reduced the network’s
ability to represent the input into distinct activity patterns, e.g.,
the configuration marked with a black star in Figure 4A. The con-
ditions that allow this to occur are characterized by intermediate
or high peak firing rate and high number of afferents, i.e., very
strong input. However, note that although the classification per-
formance is higher for the static network (Figure 4B), all other
metrics show the reverse effect. The absolute error of the readout
output is higher for static networks (Figure 4C) and the solutions
found by the regression algorithm for the output weights are quite
unstable, relying heavily on some state variables in detriment of
others (Figure 4D). This means that only a certain fraction of the
population effectively communicates the relevant information to
the readout. Even then, the output does not provide a good match
to the target binary values, a result that is further reinforced by
the point-biserial correlation between the readout output and the
target output, which is close to or below 0 (Figure 4E).

Examining the network activity in these conditions provides
an idea to the mechanisms underlying these results (Figure 7). In
plastic networks, the input is too strong and causes the inhibitory
synapses to become excessively strong to counteract the equally
excessive excitatory drive. The result is an almost completely
silenced excitatory population, where the only sparse spiking
activity appears as short-lived bursts in immediate response to
each input. On the other hand, static networks also develop an
unfavorable dynamic state, where most of the activity is punc-
tuated by synchronous, population-wide bursts. The stimulated
neurons are briefly and slightly decoupled from the burst, which
allows some separation of the responses. The readout algorithm
captures mostly the activity of the input populations and heavily
amplifies the weights from these neurons. This then leads to an
output sequence that, despite a correct label assignment (i.e., the
largest output values at each time step are assigned to the correct
symbol), consists of disproportionately large values, which justify
the large absolute error and the low correlations (Figures 4C–E).

3.3. DIFFERENTIAL EFFECTS OF PLASTICITY
The results presented so far show that the action of plastic-
ity modulates the network’s ongoing activity, endowing it with
the ability to maintain Asynchronous Irregular states over a
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A

B

FIGURE 7 | Snapshot of the activity recorded within each of the

stimulated sub-populations, during a period of 2 s, at the final

sequence time steps (sts = 2900 − 2907), for static (A) and plastic (B)

networks, in the condition where Cs >> Cp.

broader range of parameters and abolishing pathological states of
Synchronous Regular activity (which we demonstrate to result in
an impaired computational performance), when driven by a con-
stant, stochastic and unspecific input (Section 3.1). In addition, as
discussed in Section 3.2, if sequentially structured and topograph-
ically mapped input patterns are introduced, their interaction
with the ongoing activity and the manner in which they dis-
rupt local E/I balance (namely the strength and the spread of
the disruption) determines the ability of networks operating in
inhibition-dominated regimes to adopt adequate representations,
i.e., to utilize bounded stimulus-specific sub-spaces. Different
combinations of input features are shown to be able to cause
discernible (linearly separable) population responses, regardless
of the presence of adaptation. However, the characteristics of
the adopted responses demonstrate that the action of plasticity
is strictly necessary to maintain a suitable, “healthy” popula-
tion activity by avoiding the pathological Synchronous Regular
regimes toward which static networks are driven in the presence
of strong stimulation (Section 3.2.4).

In the previous experiments we did not consider how the two
different types of plasticity interact. We now turn our attention
to disentangling the roles of the different plasticity mechanisms
under study to determine whether the improvements observed in
the development of stimulus representations are the product of a
combined, synergistic action of these mechanisms, whether one
of them plays a dominant role or whether they even counteract
each other’s effects. As we demonstrate in Figure 4F (see also
Supplementary Materials), the steady-state weight distributions
in the different conditions (disregarding the pathological states
observed in the condition Cs 
 Cp Section 3.2.4) do not differ
noticeably from those developed in a control condition when no
patterned stimuli are delivered, and consequently are not infor-
mative about these differential effects of eSTDP and iSTDP. We
therefore adopt the configuration of input parameters that leads

A

B

FIGURE 8 | Differential impact of plasticity mechanisms on

classification performance. (A) Readout classification performances as a
function of sequence complexity (variable k), for networks with no (static),
one (eSTDP/iSTDP) or both (plastic) plasticity mechanisms. Depicted results
refer to a single realization per condition. (B) Performance in classifying 5
different stimuli in conditions in which the sequences are randomly ordered
or present a repeating pattern. Depicted are the means and standard
deviations over 10 simulations per condition (∗p < 0.005).

to the greatest performance of plastic networks with respect to
static networks (Cp 
 Cs, condition marked with a white star
in Figure 4: σu = 100, Naff = 10, γu = 0.3), and assess their per-
formance in situations where the network dynamics is shaped by
neither (Static), one (iSTDP/eSTDP) or both (Plastic) of the plas-
ticity mechanisms. We systematically vary the task difficulty by
building stimulus sequences with an increasing number of stimuli
(k) thus requiring a matching number of discernible network
responses in order to be discriminable.

The results of this analysis are depicted in Figure 8A. The most
striking result is the clear dominance of iSTDP, which is solely
responsible for most of the observed performance improvement
in relation to the static condition. Working alone, eSTDP is only
marginally advantageous in the less demanding task conditions
(k = 2, 3) and, as the task difficulty increases, its actions result in
no net improvements. In the extreme case, the presence of eSTDP
can even undermine the network’s representational abilities and
decrease the overall performance to a level barely above chance
(when k = 6). On the other hand, iSTDP alone accounts for the
majority of the observed results; the addition of eSTDP can even
decrease the readout performance (k = 5). In most cases, plastic
networks with both mechanisms active perform as well as iSTDP
alone or worse.

These results demonstrate that the main feature responsible
for the increased discriminability of stimulus-driven population
responses in plastic networks is the decorrelating action of iSTDP
and the consequent maintenance of the AI dynamic regime both
for ongoing activity and stimulus-driven responses. These find-
ings contradict our initial hypothesis that a synchronous burst
of activity impinging on particular groups of neurons would
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bind the neurons belonging to these clusters by introducing
correlations in their driven activities, and by so doing aid the dis-
crimination of network states. However, no such clusters formed
(see Supplementary Materials), due to the decorrelating action of
iSTDP which hinders the efficacy of correlation-driven eSTDP.

The Hebbian nature of eSTDP is well suited to uncover causal
relations in the input structure, which prompts the question of
whether it would have a more beneficial effect on discriminability
if the input contained clear causal relations rather than randomly
drawn stimuli (see Section 2.4). We therefore performed an addi-
tional test in which the sequences were composed of k = 5 stimuli
arranged in a fixed pattern, repeated throughout the entire stim-
ulation period. The results of this analysis (shown in Figure 8B)
demonstrate that, while eSTDP alone does not perform any bet-
ter on the repetitive pattern (when compared with the random
pattern), plastic networks with both eSTDP and iSTDP active per-
form somewhat better than iSTDP alone. So, even in the presence
of a clear causal structure in the input data, the effect of eSTDP
seems to be negligible which is an intriguing result. However, it
should be noted that, while these results raise some questions,
they are not fine-grained enough to allow us to draw broader
conclusions. We note, for example, that the inter-stimulus inter-
val (100 ms) used in these experiments is much longer than the
relevant time window for eSTDP modifications (20 ms), thus
diminishing its ability to learn the causal structure of the sequen-
tial input events. Further studies are strictly necessary to clarify
some of these results and address the issues they raise.

4. DISCUSSION
A primary function of neocortical circuits lies in their abil-
ity to dynamically adopt and sustain reliable representations
of sequentially occurring perceptual events in a self-organized
and experience-dependent manner (Brosch and Schreiner, 2000;
Zacks et al., 2007; Rabinovich et al., 2008; Buonomano and Maass,
2009). They need to maintain the necessary flexibility to ade-
quately respond to sudden transitions that may require a global
shift in representational space, while retaining a certain amount
of contextual information. These characteristics are necessary for
any further processing to occur (such as the dynamic evalua-
tion of sequential dependencies present in the input), however,
they entail an apparent contradiction between sensitivity and
robustness. It seems probable that this is resolved via functional
remodeling and adaptation, involving modifications at differ-
ent spatial and temporal scales mediated by a combination of
different synaptic and intrinsic mechanisms.

In this study, we have explored the relations between several
important organizational principles of functional neurodynam-
ics, involving distributed processing in inhibition dominated,
sparsely coupled recurrent networks, whose rich ongoing dynam-
ics supports the emergence of stimulus-specific spatiotem-
poral activity patterns. We have shown that the action of
dynamic excitatory and inhibitory synapses, modulated by spike
timing-dependent mechanisms, has a significant impact on the
robustness and active maintenance of an ongoing activity state
characterized by irregular firing that is asynchronous across the
network. In this asynchronous irregular regime, the network activ-
ity is considered to most closely resemble cortical spiking activity

in vivo (Vaadia and Aertsen, 1992; Softky and Koch, 1993; Shadlen
and Newsome, 1994; Brunel, 2000; Destexhe, 2009; Ostojic,
2014).

We have additionally established an objective relation between
the dynamic states of ongoing activity (characterized by
varying degrees of synchrony and regularity) and generic
online processing capacity, demonstrating that pathological
network-wide synchronization observed in the synchronous reg-
ular regime hinders the ability to properly map spatiotemporal
input streams into discernible activity states, a process necessary
for online computation on time-varying inputs. By abolishing
such dynamic regimes (see Figure 3), balanced plasticity increases
the robustness of generic computational capacity, thus expanding
the efficacy of these circuits as information processing devices.

The sequential interaction of spatiotemporal input patterns
with the ongoing network activity modifies the dynamics of
the stimulated neurons and, via waves of recurrent interactions,
also that of the global network on which they are embedded.
These modifications are highly heterogeneous, depending on the
nature and characteristics of the input stimulus. Experimental
evidence shows that increased thalamic input is related to a higher
degree of asynchronous activity in sensory cortices (Cohen and
Maunsell, 2009; Poulet et al., 2012; Tan et al., 2014), which
emphasizes the relevance of AI-type activity both as the ground
state (Shadlen and Newsome, 1994, 1998; Vogels et al., 2005) and
the active state of cortical activity, even though these two states
may be characterized by different statistical features (Ostojic,
2014). In order to ascertain how certain features of the stim-
ulus influence the network responses and modify the observed
dynamics, we have driven the networks with specific input stimu-
lus “events,” characterized by spike bursts of different amplitudes
(as depicted in Figure 1), mimicking the thalamic burst mode
of firing (Ramcharan et al., 2000; Sherman, 2001b; Bruno and
Sakmann, 2006). These events impinge on a variable number of
afferent neurons and target topographically arranged (Thivierge
and Marcus, 2007; Silver and Kastner, 2009) subsets of excitatory
neurons, thus momentarily disrupting the local E/I balance. The
objective was to assess the quality and characteristics of dynamic
stimulus representations developed by networks whose synapses
are endowed with plasticity, enabling them to counteract the local
disturbances, with networks whose synapses are fixed and static,
in relation to the strength and spatial distribution of the stimuli.

Our results demonstrate that, in input conditions where the
stimulus has intermediate strength but the stimulated popula-
tions are very small and spatially concise, the main effect of
plasticity lies in its ability to maintain globally low average firing
rates (approximately half of those displayed in the correspond-
ing static case) and to ensure the stability and maintenance of
the AI state (Figure 5). On the other hand, if the input is too
strong, comprising the activity of a large number of afferent
fibers, activity becomes highly pathological, even if plasticity is
present. Whereas plastic networks become largely silent due to
excessive inhibition that emerges to counteract the equally exces-
sive excitatory drive, static networks become highly synchronized
and fire in short population bursts (see Figure 7).

However, strong and highly focussed stimuli are probably
not representative of typical cortical input. We also considered
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scenarios where the stimulus was weaker and the receiving pop-
ulations were large and distributed enough to avoid a strong
localized response. In these situations, plasticity is shown to
be generally beneficial (although not universally so), by allow-
ing the network to efficiently explore a higher dimensional
state space, achieved via the maintenance of AI-type activity
(Figures 6K–N). The reduction in the dimensionality of the
dynamic state observed in static networks, on the other hand, is
a signature of an increasingly constrained and redundant dynam-
ical space, which is detrimental to an adequate stimulus repre-
sentation (Figures 6D–H). Plasticity is also shown to improve
robustness and stereotypy of the successions of network states
developed in response to each stimulus pattern (Figures 6I,J).
Such transient, but trial-to-trial reproducible sequences of neural
activity have been demonstrated experimentally in several sensory
systems (e.g., Brosch and Schreiner, 2000; Mazor and Laurent,
2005; Broome et al., 2006; Rabinovich et al., 2008) and play a
critical role in neural computation.

The pattern observed in the response trajectories demon-
strated the existence of regions of negligible variance along the
system’s response trajectories. We hypothesize these regions to
represent saddle nodes, i.e., metastable states, whose temporal
order and location is determined by the network’s self-organized
functional connectivity. This hypothesis is consistent with known
principles of neurodynamics (Rabinovich et al., 2006), namely
the formation of stable heteroclinic sequences (Rabinovich et al.,
2008; Rabinovich and Varona, 2011). The transformation of
incoming stimuli into the spatiotemporal activity of a neuronal
ensemble is represented as a heteroclinic sequence made up of
many saddle nodes, and heteroclinic orbits connecting them,
and whose specific architecture is stimulus-dependent and repro-
ducible. Plasticity increases the number of such points along
each stimulus representation—from Figure 6A (top) to Figure 6I
(top), the number of low variance points along the response
grows from one to three. This finding is interesting, as it sug-
gests that activity-dependent self-organization adjusts the net-
work dynamics in a manner that improves the resilience and
reproducibility of each response to a specific stimulus, while
maintaining an adequate underlying dynamics that keeps the
network sensitive to external modulations.

Obviously, caution is warranted in relation to this interpreta-
tion of the data—since we are discussing the dynamics observed
in a low-dimensional projection space, no definitive or abso-
lute conclusions may be drawn regarding the original state space.
However, the reproducibility of this pattern of results over a
range of different random network instantiations and differ-
ent initial conditions provides some support for the hypothesis.
Furthermore, the formation of this stable periodic pattern of
variance is only visible after a long training period. Analysing
intermediate time points shows a gradual transition, where the
number and frequency of low-variance regions varies among
stimulus responses (data not shown). Nevertheless, further analy-
sis is necessary to validate this argument. It would be interesting to
obtain a low-dimensional formulation of the network dynamics
under these conditions and carefully explore it to gain a bet-
ter insight into the underlying mechanisms. This could be done,
for instance, by eigenfunction expansion, which could provide a

reasonable approximate low-dimensional dynamical system that
would allow careful analytic treatment.

Additional expansions of the current work could involve the
use of different input stimuli, combinations of stimuli or the
inclusion of temporal dependencies between sequence elements.
Most of the input-dependent results we have analyzed (with the
exception of Section 3.3), although involving stimulus sequences,
are based solely on stimulus discrimination and representation
given that the stimuli are randomly ordered. Under the theory
of stable heteroclinic sequences, we would expect that plasticity
would allow the network to develop sequence representations,
where each element would be dynamically represented by its
own saddle node, and full sequence memory would be encoded
by a transient motion in state space along the paths speci-
fied by these metastable states. It would also be interesting to
investigate whether the capacity of the networks to maintain an
AI regime when perturbed would allow them to perform bal-
anced amplification of specific activity states, as has recently
been demonstrated for networks incorporating optimally tuned
inhibition (Hennequin et al., 2014).

In summary, the most relevant conclusion to draw from the
current results is that the quality of dynamical representations
adopted in response to sequential stimulus patterns is very much
dependent on the maintenance of the AI-type activity, which
not only provides a stable high-dimensional embedding manifold
(in the form of ongoing activity) from which stimulus-specific
responses arise, but also shapes the stability and robustness of
those responses, that must evolve through bounded trajectories
through the network’s state-space. In the present study, the ability
to maintain these regimes in the face of variable disruptions was
achieved by the decorrelating action of iSTDP, which accounts
for the results displayed in Figure 8A. As the precise difference
between spike times is not strictly required for this, it is reason-
able to assume that simpler synaptic or intrinsic mechanisms may
be equally capable of stabilizing the network’s dynamics allowing
it to support equally rich dynamical stimulus representations.

These results also raise important and intriguing questions.
Given the limited role played by eSTDP in our study, what is
its true functional relevance? Some argue that either the func-
tional relevance of eSTDP in the adult cortex has been overstated
(Lisman and Spruston, 2005, 2010) or that it must rely on more
complex intracellular mechanisms, that are not fully captured by
the current formulations (Shouval et al., 2010; Shulz and Jacob,
2010), which are largely based on in vitro recordings. We are
not in a position to provide definitive answers to address this
question, but given that properly representing stimulus events
as they unfold over time is a necessary first step toward more
complex computations, our demonstration that this ability does
not require eSTDP, but relies on the homeostatic process of reg-
ulating ongoing activity by active decorrelation, provides some
interesting material to this debate and opens up a new set of
questions.

Which mechanisms account for the brain’s ability to repre-
sent stimulus events occurring over variable time scales (most of
which much longer than those relevant for STDP modifications)
and discover causal relations between them? These are funda-
mental steps in most cognitive processes, and must rely on some
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degree of lasting functional modifications. These processes are
likely to rely on a complex interplay of various sub-processes, of
which eSTDP and iSTDP may be an integral part of. The press-
ing need to address this type of questions, spanning multiple
spatiotemporal descriptive scales reinforces the relevance of stud-
ies involving a synergistic combination of multiple adaptation
mechanisms.
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A spiking neural network model is described for learning to discriminate among spatial
patterns in an unsupervised manner. The network anatomy consists of source neurons
that are activated by external inputs, a reservoir that resembles a generic cortical layer
with an excitatory-inhibitory (EI) network and a sink layer of neurons for readout. Synaptic
plasticity in the form of STDP is imposed on all the excitatory and inhibitory synapses
at all times. While long-term excitatory STDP enables sparse and efficient learning of the
salient features in inputs, inhibitory STDP enables this learning to be stable by establishing
a balance between excitatory and inhibitory currents at each neuron in the network. The
synaptic weights between source and reservoir neurons form a basis set for the input
patterns. The neural trajectories generated in the reservoir due to input stimulation and
lateral connections between reservoir neurons can be readout by the sink layer neurons.
This activity is used for adaptation of synapses between reservoir and sink layer neurons.
A new measure called the discriminability index (DI) is introduced to compute if the
network can discriminate between old patterns already presented in an initial training
session. The DI is also used to compute if the network adapts to new patterns without
losing its ability to discriminate among old patterns. The final outcome is that the network
is able to correctly discriminate between all patterns—both old and new. This result holds
as long as inhibitory synapses employ STDP to continuously enable current balance in the
network. The results suggest a possible direction for future investigation into how spiking
neural networks could address the stability-plasticity question despite having continuous
synaptic plasticity.

Keywords: spiking, STDP, learning, pattern discrimination, stability-plasticity dilemma, reservoir computing,

balanced networks, basis sets

INTRODUCTION
A hallmark of biological systems is their ability to learn new
knowledge while also exhibiting stability in order to prevent
the forgetting of previous knowledge in a dynamically changing
world. The nervous system solves this challenging problem in an
unsupervised fashion and this problem has been referred to as the
stability-plasticity dilemma (Grossberg, 1980, 2012).

This problem is further compounded in its complexity by the
fact biological systems are open thermodynamic systems where
energy and matter constantly flow through them (Katchalsky and
Kedemo, 1962; Swenson and Turvey, 1991; Kello, 2013). This
flow produces variations within the nervous system where action
potentials are always generated by neurons such that synaptic
strengths are constantly being modulated (Freeman, 2001) to
adapt to a changing world, and network structures never stop
changing (Pascual-Leone et al., 2005) and all these changes can
happen at a variety of spatial and temporal scales.

In a well-known set of experiments by Freeman and Schneider
(1982), rabbits were surgically implanted with a rectangular array
of electrodes in the olfactory bulb. In one such experiment to test
serial conditioning, odor stimuli in the form of sawdust, acetyl
acetate, butyric acid and finally sawdust were presented serially

to the rabbits. The neural activity in the bulb electrodes changed
with each new odorant. On returning to the first odorant, the
sawdust, neural activity was very different from those recorded
on the first exposure. However, the rabbits exhibited repeatable
behaviors such as avoiding odors that were undesirable while
approaching toward other odors that were desirable. How is that
the neural activity (or internal representations) in the brain can be
so variable and yet the animal can produce stable and repeatable
behaviors?

Neural models based on the adaptive resonance theory
(Grossberg, 2012) attempt to answer these questions by using
firing rate code combined with Hebbian plasticity models. Rate
coding is based on the assumption that information is coded
coarsely in the number of spikes occurring in a given window
of time. The recently proposed reservoir-computing model (Maass
et al., 2002; Buonamano and Maass, 2009; Maass, 2010) predicts
that temporal integration of incoming information and generic
non-linear mixing of this information within a liquid or recur-
rent network of excitatory and inhibitory neurons are primary
computational functions of a cortical microcircuit. The state of
the network at any given time can be represented by a point
in high-dimensional space where each dimension corresponds
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to the activity level of a neuron. A temporal sequence of these
points forms a neural trajectory. The advantage of computing
with neural trajectories is that temporal information is implicitly
encoded in them and can be read out by downstream neurons.
This approach to computing has received experimental evidence
(Hahnloser et al., 2002; Nikolic et al., 2009; Crowe et al., 2010;
Long et al., 2010; Bernacchia et al., 2011; Klampfl et al., 2012).
These models are based on firing rates of neurons (Jaegar and
Haas, 2004; Sussillo and Abbott, 2009; Laje and Buonamano,
2013).

There is mounting evidence for temporal coding in the brain
(Rieke et al., 1996; Victor and Purpura, 1996; Van Rullen et al.,
2005; Dan and Poo, 2006; Tiesinga et al., 2008) where information
is coded in the precise timing of individual spikes from individ-
ual neurons. The adaptive resonance models also do not consider
spike frequency dependent short-term plasticity (Tsodyks and
Markram, 1997; Tsodyks et al., 1998) and spike timing depen-
dent long-term plasticity of excitatory and inhibitory synapses
(Markram et al., 1997, 2011; Bi and Poo, 1998; Woodin et al.,
2003; Vogels et al., 2011, 2013). Spiking versions of reservoir com-
puting models have shown learning of spatiotemporal patterns
(Maass et al., 2002; Maass, 2010) but the reservoir is not plastic in
these implementations.

A spiking neural network with spike-driven synaptic dynam-
ics compatible with STDP and short-term synaptic plasticity
and with supervisory signals was shown to learn and correctly
classify a large number of overlapping patterns (Brader et al.,
2007). This network did not consider inhibitory synaptic plas-
ticity dynamics and required plasticity to be turned off after
learning. In a previous model, the authors showed that a sim-
ilar supervisory signal driven spiking neural network learns
spatiomotor transformations (Srinivasa and Cho, 2012). It was
shown recently that incorporation of synaptic plasticity in the
excitatory synapse and network motifs within a spiking reser-
voir can result in the emergence of long-term memory in the
form of sequences of network states (Klampfl and Maass, 2013).
However, this model does not have synaptic plasticity in both
excitatory and inhibitory synapses. It also did not address the
relation of their network to the unsupervised discrimination of
patterns.

A spiking neural model with a reservoir type architecture
is presented that is composed of a source layer with neurons
that are activated by external inputs, a reservoir that resem-
bles a generic cortical layer with an excitatory-inhibitory (EI)
network and a sink layer of neurons for readouts. Synaptic plas-
ticity in the form of STDP is imposed on all the excitatory and
inhibitory synapses at all times. Using a novel discrimination
measure called pattern discriminability index (DI), the spiking
network is shown to be capable of discriminating between spatial
patterns of spiking inputs in an unsupervised manner (i.e., with-
out any explicit supervisory signals or labels) despite continuous
synaptic plasticity.

The DI can be viewed a generalization of the average Hamming
distance (Garcia-Sanchez and Huerta, 2004; Olypher et al., 2012)
between neuronal patterns based on relative firing rate distribu-
tions. It also has close links to information theoretic measures
(Borst and Theunissen, 1999) because it quantifies the amount

of information the output neurons carry about the input patterns
presented to the system during training.

MATERIALS AND METHODS
MODEL ARCHITECTURE
The spiking network model proposed in this paper consists of
three layers as shown in Figure 1A. The source layer contains
excitatory neurons that are stimulated by sources external to the
network and projected to reservoir neurons. These projections
were random and relatively sparse for the sake of simplicity. The
reservoir neurons were either excitatory or inhibitory, received
projections from source neurons and other reservoir neurons, and
projected to other reservoir neurons and neurons in the third
layer called the sink layer. The sink neurons received projections
from the reservoir neurons but did not project back to the net-
work. The sink neurons were composed of both excitatory and
inhibitory neurons.

In this paper, the source layer (layer 1 in Figure 1A) contains
K = 900 neurons (converted from a 30× 30 2-D array into a lin-
ear array), the reservoir (layer 2 in Figure 1A) contains N = 200
excitatory and 50 inhibitory neurons (in a 4:1 ratio between exci-
tatory and inhibitory neurons) and M = 8 excitatory neurons
sink layer (layer 3 in Figure 1A) that are recurrently connected
to inhibitory neurons in the sink layer. There are four types of
synapses depending on the pre- and post-synaptic neuron type at
each synapse: E→ E, E→ I, I→ E, and I→ I. The first two types
of synapses are excitatory in nature and obey E-STDP rule while
the last two types of synapses are inhibitory in nature and obey
the I-STDP rule for plasticity. The connectivity between the lay-
ers in the network is set randomly with probability cAB

ij where the
superscripts A and B reflect excitatory (E) or inhibitory (I) type
of neuron while subscripts i and j correspond to the sender and
receiver layers (Figure 1A). All synapses are plastic throughout
all simulations and synaptic connections are set randomly. The
spiking model simulations were performed using the HRLSim
(Minkovich et al., 2014) that is a multiple graphical processing
unit (GPU) based spiking simulator in C++.

NEURON MODEL
The leaky integrate and fire neuron (Vogels et al., 2005) is
used to model neuronal dynamics with a single compart-
ment and no somatic, dendritic or axonal specialization. In
response to multiple input currents coming from excitatory and
inhibitory presynaptic neurons in the sets Preex and Preinh, respec-
tively, the membrane potential V for post-synaptic neuron i is
determined by:

τm
dVi

dt
= (Vrest − Vi)+ (Eex − Vi)

∑

j∈ Preex

gex, ij

+(Einh − Vi)
∑

j∈ Preinh

ginh, ij (1)

When V reaches a threshold voltage VT , the neuron fires a spike
(Figure 1B), and V is reset to Vreset . The output information is
encoded into the timing of these spikes. This basic model provides
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FIGURE 1 | The complete model with (A) a three layered network

architecture with a source (layer 1), reservoir (layer 2), and sink (layer 3)

neurons. The source neurons receive inputs patterns in spike-encoded form.
These spikes are then projected to the excitatory neurons in the reservoir
layer that are recurrently connected to other neurons in the excitatory
population. The excitatory population of neurons is also connected to an
inhibitory population of neurons reciprocally. The inhibitory neurons are
recurrently connected to neurons within its population. The connectivity
between the various layers in the network are set as: cEE

12 = 20%,
cEE

22 = 40%, cEI
22 = 40%, cIE

22 = 50%, cII
22 = 50%, cEE

23 = 30%, cEI
33 = 100%,

and cIE
33 = 100% for all simulations. Here, cEI

22 = 40% means that the
connectivity between the E and I neurons in layer 2 is randomly connected at
40% of full connectivity between the two neuron populations. (B) The four
subplots summarizes the leaky integrate and fire process in a typical neuron
in our model. The first subplot shows input spikes from E (green) and I (red)
pre-synaptic neurons. The second subplot shows the conversion of these
spikes into currents that also includes the AMPA (green) and GABA (red)
kinetics. The third subplot shows the integration of membrane voltage trace
of the post-synaptic neuron based on the sum of the currents; and the last
subplot shows the spikes generated by the post-synaptic neuron when the
membrane voltage exceeds VT . (C) The E-STDP is an asymmetric function of
the timing difference (�t = tpre − tpost ) between the pre- and post-synaptic
spikes at neuron j and the corresponding change in synaptic conductance

�wj for E→ E and E→ I synapses. The four parameters (A+, A−, τ+, τ−)
control the shape of the function and thus the amount of potentiation and
depression. The I-STDP is a symmetric function of the timing difference �t
between the pre- and post-synaptic spikes at neuron j and the corresponding
change in synaptic conductance �zj for I→ E and I→ I synapses. The three
parameters (B+, B−, τ) control the shape of the function and thus the amount
of potentiation and depression. (D) Inhibitory STDP interacts with excitatory
STDP to favor balance among causal synaptic currents. Presynaptic and
post-synaptic spikes can be proximal causal or proximal anti-causal to varying
degrees. The dashed lines reflect an example of timing difference for which
proximal causality is assumed. (E) Presynaptic and post-synaptic spikes can
be distal causal or distal anti-causal to varying degrees. The dashed lines
reflect an example of timing difference for which distal causality is assumed.
The E-STDP and I-STDP combine to form four different interacting regimes:
Balance regime that occurs for the proximal causal case, where excitatory
and inhibitory conductance both increase; Accelerated Potentiation regime
that occurs for the distal causal case, where excitatory conductance
increases albeit by small amounts, while inhibitory conductance decreases
by small amounts; Decelerated Depression regime that occurs in distal
anti-causal case, where excitatory and inhibitory conductance both decrease
by small amounts; and Quiescent regime that occurs in proximal anti-causal
case, where excitatory conductance is strongly decreased and inhibitory
conductance is strongly increased.
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several control variables for the membrane voltage including con-
ductances gex (excitatory) and ginh (inhibitory), membrane time
constant τm, the constant reversal potential for excitatory (Eex),
and inhibitory (Einh) synaptic currents, and a fixed voltage thresh-
old for firing VT at which the neuron fires a spike. Synaptic inputs
to the neuron are modeled as conductance changes where a set
of excitatory or inhibitory presynaptic spike times, Sex or Sinh,
respectively, gives conductance dynamics:

dgex

dt
= − gex

τAMPA
+ w

∑

s∈ Sex

δ(t − s) (2)

dginh

dt
= − ginh

τGABA
+ z

∑

s∈Sinh

δ(t − s) (3)

Here the time constants τAMPA and τGABA approximate the aver-
age decay of AMPA and GABA currents respectively (Figure 1B).
The value of the excitatory and inhibitory synaptic conductance
w and z is controlled by STDP (Figure 1C). In all simulations,
τm = 20 ms, VT = −54 mV, Vrest = −74 mV, Vreset = −60 mV,
Eex = 0 mV, Einh = −80 mV, τAMPA = 40 ms, and τGABA = 50 ms.
All simulations used Euler integration with a time step of 1 ms
(Srinivasa and Jiang, 2013).

EXCITATORY STDP
The E-STDP function modulates the excitatory synaptic weight
w based on the timing difference (tpre–tpost), or �t, between
the spike times of pre- and post-synaptic neuron (Figure 1C).
The control parameters τ+= 20 ms and τ− = 20 ms determine
the temporal window over which STDP is active. The change in
synaptic weight is computed using the additive STDP rule as:

w = wold +�w (4)

where �w =
⎧

⎨

⎩

A+exp
�t
τ+ , �t < 0

−A−exp
−�t
τ− , �t ≥ 0

(5)

If wnew > gE
max, then wnew = gE

max. On the other hand if wnew <

0, then wnew = 0. The factors (A+, A−) correspond to the max
synaptic change possible for potentiation and depression respec-
tively at any given time step. The E-STDP parameters are set as:
A+ = 0.005 nS and gE

max = 0.3 nS. The factor β = |A−τ−|/|A+τ+|
which controls the relative amounts of depression to potentiation
during learning is set 1.05 that represents a slight bias toward
depression (Song et al., 2000). The initial excitatory synaptic
weight w was set by picking values randomly in the interval (0,
0.1 nS) for synapses in layers 1 and 2 and was set between (0,
0.2 nS) for synapses between layers 2 and 3.

INHIBITORY STDP
The I-STDP function modulates the inhibitory synaptic weight z
(Vogels et al., 2011, 2013; Srinivasa and Jiang, 2013) based on the
timing difference �t between the spike times of corresponding

pre- and post-synaptic neurons (Figure 1C). The synaptic weight
is computed as:

z = zold +�z (6)

The change �z is governed by the following equations:

�z =
⎧

⎨

⎩

B+ ∗ exp
(−|�t|

τ

)

, if |�t| ≤ τ

−B− ∗ exp
(−|�t|

τ

)

, if |�t| > τ
(7)

If znew < 0 then znew = 0. On the other hand, if znew > gI
max then

znew = gI
max. The I-STDP parameters are set as B+ = 0.0015 nS

and B− = 0.0003 nS, gI
max = 0.2 nS and τ = 10 ms. The initial

inhibitory synaptic weight set by picking values randomly in the
interval (0, 0.1 nS) for all synapses.

INTERPLAY BETWEEN E-STDP AND I-STDP FOR BALANCED CURRENTS
Excitatory and inhibitory long-term plasticity are both important,
as it is the interplay between these two effects that results in a net-
work with a balance between excitatory and inhibitory currents at
each neuron in the reservoir layer. The networks with such a cur-
rent balance are referred to as balanced networks (Vogels et al.,
2011; Srinivasa and Jiang, 2013). Networks without inhibitory
STDP fail to reach this state for any of a large set of possible
network parameters. Figure 1D shows a schematic description
of how these two STDP functions combine to create a balanced
network.

The inhibitory STDP function is symmetrical supporting an
increase in synaptic conductance, i.e., synaptic inhibition, for
closely timed pre- and post-synaptic spikes regardless of their
order. In contrast, the excitatory STDP function is anti-symmetric
and biased toward depressing action. Together, for each of these
two STDP functions along the �t = tpre − tpost timeline, there
are four qualitative regions: proximal causal and anti-causal
(Figure 1D), for those spikes that occur relatively close together,
and distal causal and anti-causal (Figure 1E), for those that occur
farther apart.

INPUT IMAGE ENCODING AND NOISE INJECTION
Each 2-D input image pattern is first converted into a 1-D vector
(Figure 2A). The 1-D input image vectors are then converted into
spike sequences by an encoding process as follows. The neurons
in the input layer are modeled using a Poisson process and each
neuron receives an input from one pixel in the image. If a pixel
is black in the input image, the neuron is assigned a mean firing
rate of f = 90 Hz and if it is white, 10% of the source layer neu-
rons with white pixels are assigned a mean firing rate of f = 10 Hz
to simulate noise in the image. The spike encoding process is gen-
erated based on Poisson statistics. Assuming a sampling rate of dt
and for a mean firing rate of f Hz for a given pixel, f spikes are
generated every 1/dt samples. Thus, the probability of spiking at
each time step for a given pixel firing at f Hz is f ∗dt. Spike trains
are generated for each pixel based on its probability of spiking at
each source layer neuron. An example result of this encoding pro-
cess for input patterns (Figure 2A) is shown in Figure 2B. In all
simulations, dt = 1 ms as mentioned earlier.
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FIGURE 2 | Spike input encoding at the source layer of the network.

(A) An input pattern in the form of 2-D array of pixels is presented to the
source neurons of the network that are linearly arranged. See Materials and
Methods section for details of spike encoding. (B) The spikes generated
during the presentation of the example in (A) for 500 ms duration is shown
here. The firing rate at any given time (the bottom subplot) is approximately
the same showing no undue bias introduced in the spikes that are fed to the
source neurons. The linear arrangement of the source neurons results in the
spike frequency plot (shown on the right) for the given input pattern

computed for a duration of 500 ms. (C) Input patterns of the training set
consists of P = 15 “flag” patterns where each pattern is a binary image array
of 30× 30 pixels. (D) An example sequence of input patterns after spike
encoding at the source neurons is shown here. The duration of the
presentation of each pattern varies and is chosen from an exponential
distribution with a mean of 30 ms. Red lines demarcate the shift from one
training pattern to another. The training patterns are selected from the set of
15 in a random order. The plot shows a total duration of 1800 ms with 10% of
the source neurons injected with noise throughput the sequence.

INPUT PATTERN PRESENTATION DURING TRAINING AND TESTING
The training process consists of presenting each input pattern in
the training set (Figure 2C) in a random order for a duration
drawn from an exponential distribution with a mean of 30 ms
(Figure 2D). The network is tested for discriminability at regu-
lar intervals (every 10 s) during which synaptic plasticity in the
network is turned off. Each input pattern is presented during the
testing process in a fixed sequence for d seconds each and the
discriminability index is then computed based on the generated
firing rate codes (as described below). The process of estimating
d is also provided below.

FIRING RATE CODE FOR READOUT NEURONS
The firing rate code for the readout neurons are evaluated only
during the testing phase during which each input pattern from
the training set is presented to the network for a duration of d
seconds for a total duration of d∗P seconds for P patterns. Each
pixel in the input image stimulates one neuron in the source layer
(Figure 3A). The source neurons are modeled as Poisson spike
sources as described above. For each test pattern p, the the firing

rates f
p
i of sink neuron i in layer 3 (Figure 3B) can be computed as

the total number of spikes emitted during a duration of d seconds.
The maximum firing rate f

p
max is then estimated from the firing

rates of all sink neurons for that test pattern p. The firing rate
vector Sp of length M for pattern p is composed of components
S

p
i for each sink layer neuron i can be computed as:

S
p
i =

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

2, if 0.9 ≤ f
p
i

f
p

aax
< 1.0

1, if 0.4 ≤ f
p
i

f
p
aax

< 0.9

0, if
f

p
i

f
p
aax

< 0.4

(8)

The vector Sp is referred to as the firing rate code and in this exam-
ple it is a tertiary firing rate code (i.e., C = 3) because each sink
neuron can have three possible states for a given input pattern p.
An example of this tertiary code for two different input patterns is
shown in Figure 3C. It is possible to use other coding levels such
as binary (C = 2) or quarternary (C = 4) codes. In this paper,
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FIGURE 3 | Spike output decoding at the output layer of the network.

(A) The output spike histogram is shown for neurons at the sink layer
(assumed to have 8 neurons in this example) for a given input pattern
presented at the source neurons and (B) this histogram is converted to
firing rate code Sp with three possible states for each neuron (black—0

gray—1 and white—2). The firing rate code for two different input patterns
results in two different codes as shown here. (C) The mean firing rate of
the output neurons during the experiment to determine the duration d
using the Fano Factor. (D) The variation of the Fano Factor as a function of
the duration d.

C = 3 is used as it offers the highest discriminability as explained
in the Results section.

ESTIMATING d FOR TESTING
The firing rate code S (above) and the estimation of discrim-
inability index (as explained below) depends upon the duration
d of each test pattern presentation. To estimate an appropriate
duration d, the Fano factor (Churchland et al., 2010; Eden and
Kramer, 2010) was computed from the spikes generated by the

readout neurons by assessing the relationship between variability
of the spike counts and duration d.

The Fano factor (FF) is defined as the ratio of sample variance
to sample mean of spike counts observed in a time window and
the quality of the estimator strongly depends on the length of the
window. The FF measures the noise-to-signal ratio and therefore
characterizes the neural variability over trials. For example, for a
Poisson process, the variance equals the mean spike count for any
length of the time window. If the FF has a minimum at some value
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of d, this can be an optimal value for d since the firing rate code
would be robust at that value (see e.g., Ratnam and Nelson, 2000;
Chacron et al., 2001).

The FF was computed for various durations d as follows. The
spikes for each test pattern presented for duration of a selected d
was first collected for each of the M readout neurons separately.
This was repeated for 100 trials to collect a set of M∗100 spike
count values. The mean and variance in the spike count was then
computed from these values. The ratio of the computed variance
to mean gives FF for the selected d and for the selected test pat-
tern. This process was repeated for all remaining P-1 test patterns
and the resulting average FF was used as the FF for a given dura-
tion d. Since the average firing rate of the sink layer neurons was
steady between 28 and 30 Hz (Figure 3C), the mean-matching
procedure for FF (Churchland et al., 2010) was not used. To esti-
mate the appropriate duration d, the FF was plotted as a function
of duration d (Figure 3D) for M = 8 and P = 15. The minimum
FF is ∼0.48 and occurs at d = 1.4 s. We set d = 1.4 s in all our
simulations.

DISCRIMINABILITY INDEX COMPUTATION
During the learning process, as input patterns are presented, a
firing rate code Sp can be computed at the sink layer for each
pattern p presented to the source layer as described above. The
ternary firing rate code changes as the network is presented with
more inputs. This implies that the ternary code cannot be directly
used for reliably separating one pattern from another. However,
after a few pattern presentations, the ability of the network to
discriminate between the patterns becomes stable and reliable.

To verify this, a discriminability index (DI) was computed as
follows. At regular intervals (once every 10 s) the network was
stopped to probe the state of the network. During this process,
the synaptic weights are frozen and each pattern is presented J
times for duration of d = 1.4 s each. For a given pattern p, the fir-
ing rate code Sp was computed for each of the J presentations of
p. A prototype firing rate code was selected for a given pattern p
as the code that is most repeating among the J codes generated.
If there are no repeats, one of the J codes as the prototype was
selected at random. This process is repeated for each pattern to
identify a prototype firing rate code for each input pattern. Using
the prototype firing rate codes, the inter-pattern distance (Dinter,)
was computed. Dinter is defined as the average pair-wise distance
between prototype readout codes computed from all possible
unique pairs of prototype readout codes generated by the network
for a given test set. To calculate Dinter , the distance d

pq
i between a

pair of S codes for two input patterns p and q and for each sink
neuron i was computed as:

d
pq
i =

{

0 if S
p
i = S

q
i

1 if S
p
i 	= S

q
i

(9)

The distance Dinter,i was then computed by using d
pq
i for every

pair of input patterns p and q for each sink neuron i across all test
patterns P as:

Dinter, i =
∑P− 1

k= 1

∑P
j= k+ 1

∑M
i= 1 d

kj
i

P∗(P − 1)/2
(10)

The maximum value of Dinter,i for a readout code can be esti-
mated as follows. Assuming a ternary readout code at the sink
layer (i.e., C = 3 and that P is odd, the maximum pairwise dis-
tance between the readout code at each sink layer neuron i is
obtained when the readout is equiprobable with “0” for one third
of P input patterns, “1” for another third of inputs and with “2”
for the remaining third. The theoretical maximum value of the
numerator Equation (10) can be computed as P∗P/3 and thus
Dmax

inter can be computed as 2P/(3∗(P − 1)). If P is even, Dmax
inter can

be similarly computed as 2(P + 1)/3∗P. Similarly, for a binary
code (e.g., C = 2) Dmax

inter can be computed to be (P + 1)/(2∗P)
when P is odd and 2P/(3∗(P − 1)) when P is even. Thus, Dmax

inter,i
can be computed for the general case when C is even as:

Dmax
inter,i =

{

P(C−1)
C(P−1)

if P is even
(P+1)(C−1)

CP if P is odd
(11)

Similarly Dmax
inter,i for the general case when C is odd can be

expressed as:

Dmax
inter,i =

{

P(C−1)
C(P−1)

if P is odd
(P+1)(C−1)

CP if P is even
(12)

The expression for the inter-pattern distance Dinter can be written
in terms of Dinter,i as:

Dinter =
M
∑

i=1

Dinter, i (13)

By substituting Dmax
inter,i from Equations (11) or (12) (depending

upon whether C are even or odd respectively) into Equation (13),
the theoretical maximum value of Dinter can be computed. For
example, if C is even, Dinter will be PM(C-1)/(C(P-1)) if P is odd
and (P+1)M(C-1)/CP is P is even. Thus, if M = 8, C = 2 and
P = 15, the theoretical maximum for Dinter will be 4.28. It should
also be noted that the theoretical maximum for Dinter grows lin-
early with M. The theoretical maximum for Dinter will serve as
the upper bound for a given set of parameters during learning.
This is because there is noise in the network that prevents an
equiprobable distribution of readout codes by the network.

An intra-pattern distance (Dintra,) was also computed by pre-
senting the same pattern J times for d seconds each. Dintra is
defined as the average pair-wise distance between readout codes
same as Equation (10) computed from all possible unique pairs of
readout codes generated by the network for the same input pat-
tern. This distance provides a measure of an average variation in
the response of readout neurons for the same input pattern. This
variation can be caused due to noise in the inputs. It should be
noted that J = 10 in all our simulations.

The discriminability index (DI) is then defined as a product
of two measures. The first is called separability, ε, that measures
the degree of separation of readout codes for a given test set. This
measure can be computed as:

ε = 1− Dintra

Dinter
(14)
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This measure is akin to computing the Fischer metric
(McLachlan, 2004). A small Dintra relative to Dinter implies that the
network can separate the inputs well. Separability is independent
of M.

The second measure is called the uniqueness, γ , that is defined
as the number of unique readout codes produced by the network
relative to maximum possible number of unique readout code.
This can be expressed as:

γ = #S

P
(15)

where #S refers to the total number of unique readout codes for a
given test set of size P. Uniqueness is dependent on M since high
dimensional readout codes generate more unique codes (Kanerva,
1988). The discriminability index (DI) is then computed as:

DI = ε ∗ γ (16)

High values of DI correspond to readout codes that are have a low
Dintra combined with high Dinter or high separability as well as a
high uniqueness. The maximum value of DI is 1.0 and its mini-
mum value is typically zero unless Dintra > Dinter . DI is dependent
on M since uniqueness is dependent on M (see Appendix for an
example calculation of DI).

SYNAPTIC DISTANCE COMPUTATION
In order to analyze for stability of learned codes, the synaptic dis-
tance was computed to track the synaptic changes between layers
of the network for excitatory synapses. Since the E-STDP plas-
ticity rule used in this paper is of the additive type, the resulting
distribution of synapses after learning is bimodal in nature (Song
et al., 2000). This bimodal distribution is due to competition that
occurs among synapses at each neuron. The synapses that cause
the post-synaptic neuron to fire more frequently will potentiate
to the maximum synaptic weight while the other uncorrelated
synapses will depress to a zero. To calculate the synaptic distance,
the synaptic weights wij are converted into a binary weight Wij

where Wij = 1 if (i.e., wij > 0.7∗gE
max) and Wij = 0 otherwise.

The synaptic distance φkl(t1, t2) between excitatory synapses from
layer k to layer l at time t1 with the same synapses at time t2 can
be expressed as:

φkl(t1, t2) =
∑#l

j= 1

∑#k
i= 1

∣

∣Wij (t2)−Wij(t1)
∣

∣

#k ∗ #l
(17)

where #k and #l correspond to the number of neurons in layer k
and l respectively and binary Wij(t) corresponds to the ith synapse
in the kth layer that is connected to the jth synapse in layer l at
time t. For example, #k = K for layer 1 and #l = N for layer
2 in the network. The synaptic distance is the total Hamming
distance between the binary weights at two different time steps
(t1, t2) where t2 > t1.

In addition to computing the synaptic distance, a shuffled
synaptic distance was computed as a control to compare the
synaptic weight changes during learning to those that could

arise from chance. This distance φ
shuffled
kl (t1, t2) between excita-

tory synapses from layer k to layer l at time t1 with the same

synapses at time t2 can be expressed as:

φ
shuffled
kl (t1, t2) =

∑#shuffles
k= 1

∑#l
j= 1

∑#k
i= 1

∣

∣

∣

∣

∣

W
shuffled
ij (t2)

−Wij(t1)

∣

∣

∣

∣

∣

#shuffles ∗ #k ∗ #l
(18)

where #shuffles is the total number of shuffles that W
shuffled
ij (t2)

undergoes at time t2. In all simulations, #shuffles = 10. By
combining the above two measures, a relative synaptic distance
measure φrel

kl (t1, t2) can be expressed as:

φrel
kl (t1, t2) =

∣

∣φ (t1, t2)− φshuffled(t1, t2)
∣

∣

φshuffled(t1, t2)
(19)

If φrel
kl (t1, t2) is closer to 1.0, then φkl(t1, t2)
 φ

shuffled
kl (t1, t2) and

that implies that the distance between the synaptic weights at time
t1 and t2 is very small compared to chance. This implies that the
learning has stabilized in the network.

RESULTS
An initial training set was constructed composed of P = 15 flag
patterns (Figure 2C). The patterns are presented in random order
for a duration selected from an exponential distribution with
a mean of 30 ms. Each pattern generates a Poisson spike train
(Figure 2D) at the source neurons (see Materials and Methods).
These spikes generated by each pattern in the input layer are
transmitted to the E reservoir neurons in the middle layer for
further processing.

BALANCE OF EXCITATION AND INHIBITION DURING LEARNING OF
RECEPTIVE FIELDS
As the patterns are presented, STDP in both excitatory (w)
and inhibitory (z) synapses helps to achieve a good balance of
excitation and inhibition currents in the network (Figure 4A).
The synaptic weights w strengthens and creates an imbalance in
synaptic currents due to inputs from the source neurons. At the
same time the synaptic weights z gets rapidly potentiated due
to I-STDP where inhibition increases irrespective of the order
of occurrence of pre- and post-synaptic spikes for small timing
differences between pre- and post-synaptic spikes. This results
in a rapid compensatory increase in inhibitory currents into the
neurons effectively preventing the neurons from exceeding VT

more often (Vogels et al., 2011; Srinivasa and Jiang, 2013). Thus,
the network is provided with very brief windows of opportu-
nity to learn. These small windows of opportunity correspond
to the transients in the balanced current (i.e., brief excursions of
net currents above zero as shown by the top plot of Figure 4A).
The excitation due to the input pattern is sufficient to overcome
inhibition momentarily before inhibition and its modulation
via inhibitory plasticity compensates for any discrepancy in the
current balance.

As the training patterns are presented under the balanced cur-
rent regime, synapses between the source layer neurons and each
E neurons of the reservoir in layer 2 collectively form recep-
tive fields (Song et al., 2000; Srinivasa and Jiang, 2013). This
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FIGURE 4 | Robust learning of receptive fields requires a balanced

current regime. (A) The sub-plot on top shows the total excitatory
(green), and inhibitory (red) currents in the reservoir with I-STDP turned on.
The net current (blue) is close to zero with several minor transients from
zero. The average firing rate of the network is 20 Hz. If the I-STDP is
turned off and with fixed inhibitory synaptic conductance, as shown in the
second sub-plot, the total excitatory current is much higher than the total
inhibitory current resulting in an unbalanced network with a very high
average firing rate of 120 Hz. It may be possible to find a suitable synaptic
conductance to achieve a balanced network but the use of I-STDP enables
a self-organized process for achieving the balance. (B) The synapses
between source neurons and the E neurons of the reservoir form a

bimodal distribution where most of the synapses are weak with a few
strong synapses. This process makes the connectivity between source and
reservoir sparse compared its initial connectivity of 40%. Each box shows
the synapses in a 30× 30 image format from the source neurons to each
of the 200 E neurons in the reservoir. The red dots within each box
correspond to synapses that are greater than 0.7∗gmax while the rest are
shown as green dots. Each box is a receptive field of an E neuron in the
reservoir and the set of all boxes forms a basis set for the training set.
(C) The receptive fields with I-STDP turned off are not well-defined as with
I-STDP being on. Many receptive fields are not formed at all while many
others are have features that do not reflect any structure found in the
input patterns.

is achieved by adjusting the strength of these synapses via E-
STDP. The red dots within a box (in Figure 4B) represent strong
synapses between source neurons and an E neuron in the reser-
voir after 1 h of training. This process of synaptic strengthening is
incremental and occurs using aggregates of input samples.

When the excitatory synapses alone obeyed the STDP rule and
the inhibitory synapses were fixed (i.e., z = const) the excitatory
and inhibitory currents are not balanced anymore (Figure 4A).
There were also many E neurons that had no strong synapses. The
strong synapses that emerge within each box (Figure 4B) appear
to have a vertical or horizontal stripe (or both) and resemble the
features of the input patterns in the training set. The learning
of the receptive fields is also influenced by recurrent connections
(i.e., E→ E, and I→ I) as well as mutual connections between the
E and I populations (i.e., E→ I, I→ E) within the reservoir. All
excitatory and inhibitory synapses within the reservoir are mod-
ified by E-STDP and I-STDP respectively. In order to assess the
effect of turning off I-STDP, the receptive fields were analyzed
after 1 h of training. Here the inhibitory weights z were randomly
initialized between 0 and 1 but fixed throughout the simulations.
The receptive fields did not have large variations in connectivity
compared to the case where I-STDP was on Figure 4C.

The connection strengths for synapses in the reservoir after
the presentation of the training set for duration of 1 h shows

that the synapses between any inhibitory pre-synaptic neuron and
either E or I post-synaptic neuron are mostly strong (Figure 5A)
and the synaptic strengths are distributed in a unimodal fash-
ion (Figure 5C). However, the E → E synapses between layer
1 and layer 2 are sparse with few strong synapses (∼5% of
all synapses). This discrepancy is primarily because E-STDP is
anti-symmetrical while I-STDP is symmetrical. In other words,
E-STDP is order dependent while I-STDP is not. Thus, I-STDP
can potentiate synapses for both proximal causal and anti-causal
spikes (Figure 1D). However, E-STDP will only potentiate the
synapses if the pre-synaptic spike is causal to the post-synaptic
spike. This implies that probability of potentiation is much higher
for inhibition compared to excitation thus resulting in a bimodal
distribution of synaptic strengths with many strong inhibitory
synapses.

The synapses between the E neurons in the reservoir and the
E neurons in the sink layer are also modified due to E-STDP
(Figure 5B). The E neurons in the sink layer serve as readout
neurons (Buonamano and Maass, 2009; Buzsáki, 2010). The dis-
tribution of synaptic strengths is unimodal (Figure 5C) unlike
other E → E synapses described above. This is because of the
following reason. Initially the strength of the synapses between
the reservoir and the readout neurons is small (i.e., between
0 and 0.2). The connectivity between them is also sparse (i.e.,
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FIGURE 5 | Synaptic states for the network after 1 h of training are

shown here. (A) The synaptic weights within the reservoir are shown here.
(B) The synapses between layer 2 and layer 3 are shown here. (C) The
distribution of synapses between the E neurons in layer 1 and layer 2 as well
as between E neurons within layer 2 is bimodal in nature. The distribution of

synapses between E and I neurons with other I neurons within layer 2 is
unimodal. The distribution for synapses between E neurons in layer 2 and E
neurons in the layer 3 is also unimodal (see text for details). It should be
noted that the weights in these plots are normalized with respect to gE

max and
gI

max as appropriate.

cEE
23 = 40%). Any given input at the source neurons causes a

sequence of spiking activity in the reservoir neurons that is sig-
naled to the readout neurons. This sequence of spiking activity
among the reservoir neurons is hereinafter referred to as a neural
trajectory.

Since the readout neurons are driven to fire by the reservoir
neurons and by no other means, the temporal causality for their
spiking is always from the reservoir neuron to the readout neu-
ron. This results in the strengthening of synapses allocated to a
readout unit (due to E-STDP). As the readout neurons fire in
response to neural trajectories in the reservoir, all the synapses
from the reservoir neurons to the readout neurons strengthen to
its max value resulting in a unimodal distribution (Figure 5C).
This is unlike the interaction between the source and reservoir
neurons or within reservoir neurons where the spiking activity is
driven by both feed-forward and lateral connections.

LEARNING TO DISCRIMINATE PATTERNS
In order to assess the pattern discrimination capability, the train-
ing set was presented to the network for a total of 3600 s (see
Materials and Methods). The firing rate of the readout neurons
was monitored after every 10 s of training to test the network’s
ability to discriminate the input patterns. At these time intervals,
plasticity was turned off and each input pattern was presented in
a random order for 5 s and the DI metric Equation (16) was com-
puted based on the activity of the readout neurons. The ternary
code from the readout codes was plotted for each input pattern
at regular intervals during the course of training (Figure 6A).
The readout code initially looks alike for all patterns since the
network has not really been exposed to all the patterns. As the net-
work is exposed to more training data, the readout codes begin to
show more variations. However, when the readout codes for an
input pattern at two different times are compared, they appear to
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FIGURE 6 | Firing rate codes and DI computation. (A) The firing rate codes
were extracted from the spiking activity of the readout neurons (assuming 8
readout neurons). These codes were compared between input patterns at
regular intervals during the training process. The inter-pattern readout codes
are constantly changing (compare top row of readout code corresponding to
input pattern #1) suggesting that the discrimination is very poor if readout
codes are compared in an absolute fashion. (B) A plot of separability and
uniqueness generated during the first hour of training with 15 input patterns
is shown here for the case with I-STDP turned on. The two metrics are
consistently high implying that the readout codes are highly separable as well

as very unique. (C) A plot of DI for the case when I-STDP is turned on (green)
compared to when it is turned off (red). This DI is computed by multiplying
the separability with uniqueness (see text for details). (D) The DI is plotted
against various number of readout neurons in the sink layer to assess the
minimum number of readout neurons required to achieve high discriminability
for two different sizes of training sets. While it is possible to achieve a
DI ∼0.8 for the 15 pattern case with only 5 readout neurons, higher number
of patterns require more readout neurons. Since the total number of input
patterns to be tested is 26 in this paper, a total of 8 readout neurons (or
M = 8) was assumed for all simulations.

change constantly throughout the duration of the training period.
This implies that a static template based discrimination algorithm
would not be appropriate here.

The separability and uniqueness were tracked during the first
hour of training (Figure 6B). Since the receptive fields form early
due to E-STDP in the balanced regime created by the regulatory
actions of I-STDP, good separability Equation (14) and unique-
ness Equation (15) occur early during the training process. The
DI Equation (16) thus rapidly rises to ∼0.8 (Figure 6C) imply-
ing very good discriminability. The DI is however highly unstable
and averages to ∼0.2 when I-STDP is turned off. This is because
the average firing rate of the network reaches 120 Hz (Figure 4A).
This high firing rate results in poorly formed receptive fields
(Figure 5B). This in turn results in very unstable separability and
low uniqueness (not shown). Thus, the discriminability is poor
and unstable (Figure 6C) when I-STDP is turned off.

The network size is potentially large enough to learn to dis-
criminate many more patterns than used in the training set.
However, the number of readout neurons was limited to the min-
imum required for obtaining good discriminability. To determine
the minimum number of readout neurons for the chosen size of
training set, the DI was averaged across 10 trials (Figure 6D) for
two different sizes of training set: one with 15 patterns and the
other with 26 patterns. While for the 16 pattern case, the DI rises
to a value close to 0.8 with just four readout neurons, the network
requires eight readout neurons to produce an average DI of∼0.8.

When DI is computed using codes other than the ternary code
(see Materials and Methods), it was worse (Figure 7A). This was
unexpected since the number of possible states for the readout
neuron should grow (i.e., 38 states for ternary code vs. 58 for
quinary code) with number of states in the code. The main reason
for this unexpected result is because Dintra also grew at a faster rate
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FIGURE 7 | The effect of various network parameters on DI is shown

here. (A) The coding level C for the readout code was varied to assess
its effects on DI assuming M = 8. A coding level C = 2 (red)
corresponds to just two states (On or Off) for the readout neurons while
tertiary (green), quaternary (blue), and quinary (purple) codes correspond
to 3–5 states respectively. C = 3 (green) produced the best average DI
score. (B) Increasing the number of readout neurons M affects the DI.
The worst average DI was for M = 4 while the best average DI was

close for M = 8, 16, and 32. M = 8 was chosen for reasons mentioned
in Figure 6. Here a ternary code (C = 3) is assumed. (C) The effect of
increasing the lateral connectivity within the reservoir neurons does
improve the DI metric but the degree of improvement starts to diminish
with connectivity beyond 40%. Here M = 8 and C = 3 is assumed.
(D) The effect of increasing the connectivity between E neurons from
layer 2 to layer 3 results in only a marginal improvement in DI values.
Here M = 8 and C = 3 is assumed.

with higher code values compared to Dinter that grew at a slower
rate with higher code. Thus, the separability reduces with higher
code thus reducing DI.

When the number of readout neurons M was increased, the
DI does change (Figure 7B). The effect of connectivity on DI
was studied by tracking E → E connections within the reser-
voir in layer 2 as well as between layer 2 and layer 3. Adding
more connections within the reservoir (i.e., cEE

22 ) improved DI
(Figure 7C). Similarly, on average, the DI improved when the
number of connections between layer 2 and layer 3 (i.e., cEE

23 )
is increased (Figure 7D). All simulations primarily used C = 3,
M = 8 and with cEE

22 = 40% and cEE
23 = 30%.

IMPORTANCE OF LEARNED CONNECTIVITY AND FIRING RATE CODE
FOR DISCRIMINATION
In order to assess the effect of learned connectivity due to STDP
on the discrimination ability of the network, a set of control
experiments were performed. During each testing step (at a sam-
pling interval of 10 s) the connectivity between three layers of
the network was shuffled in six different ways while maintain-
ing both the synaptic strengths and the total number of synaptic
connections intact compared to the network with learned con-
nectivity (or the original network). In the first case, shuffling was

performed between connections between the source layer and the
E neurons of the reservoir only. This was accomplished by ran-
domly assigning pre-synaptic neurons from the source layer to
post-synaptic E neurons in the reservoir that were different from
the learned connections. In the second case, the learned con-
nections between neurons within the reservoir (irrespective of
whether they were E or I neurons) were randomly shuffled. In
the third case, only the connections from I neurons in reservoir
to all other connections (irrespective of whether they were E or
I neurons) were randomly shuffled. In the fourth case, only the
connections from E neurons in reservoir to all other connections
(irrespective of whether they were E or I neurons) were randomly
shuffled. In the fifth case the connections between the E neurons
in the reservoir and the E neurons in the output layer were ran-
domly shuffled. In the final case, shuffling was performed between
all the layers—that is a mixture of shuffling performed for first
through fifth cases.

For each of these cases, the DI was computed (after every
10 s for a period of 1 h) by averaging the score after random
shuffling 10 times in each case. The DI was worse for the first
case compared to the original network (Figure 8A). In this case,
swapping the connections between the E neurons in the source
layer and the E neurons in the reservoir results in disturbing the
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FIGURE 8 | The DI was computed with shuffled network connectivity

to assess the importance of the learned connectivity for pattern

discrimination. (A) The results from the six control experiments (B: layer
1 → 2 synapses shuffled shown in red; C: layer 2 (E or I) to layer 2 (E or
I) shown in blue; D—layer 2 (I) to layer 2 (E or I) shown in cyan; E—layer
2 (E) to layer 2 (E or I) shown in brown; F—layer 2 (E) to layer 3 (E)
shown in magenta; G—all these connections shuffled simultaneously) are
compared against the original network with learned connectivity (A) shown
in green. The DI scores represent an average obtained after shuffling 10
times for each control experiment. The plot shows that altering the
connectivity by shuffling the connections between layer 1 to E neurons in
layer 2 affects discriminability severely while shuffling connections within
layer 2 does not (see text for more details). (B) A control experiment was
also performed to assess the importance of the specific locations of the

firing activity within the readout code. This was achieved by first randomly
shuffling the components of the readout code 10 different times. The DI
scores were then computed for each case and then averaged. The results
shows that the DI score is much lower (red trace) compared to the
original network (green trace) suggesting that the locations of the firing
activity within the readout code caused due to learning is also very
important. (C) The average firing rate of the network for the various
control experiments in (A) is shown here. (D) The average firing rate for
the control experiment in (B) is shown here. The two firing rates overlap
completely (red and green overlap completely). This is because there is no
change in the connections between layer 2 and layer 3 neurons after STDP
potentiates all of them over time early within the first hour. Furthermore,
all connections go to its max value (i.e., unimodal distribution). So,
swapping the outputs does not make a difference to the firing rates.

learned receptive fields. This implies that the learned receptive
fields between the source layer E neurons and the E neurons in
the reservoir are very important for pattern discrimination in this
network. However, interestingly, the learned connections between
the neurons in the reservoir (the second through fourth cases) or
the connections between E neurons in the reservoir and the E neu-
rons in layer 3 (the fifth case) did not have a major effect in the DI
scores.

For the second through fourth cases, the effect of shuffling
the connections within the reservoir did not affect the DI score
very much irrespective of whether the connections were from E
or I neurons. The lateral connectivity between I→ I or between
I → E neurons only serves to regulate the balance of currents.
Furthermore, all the synapses from I neurons are fully potentiated
(i.e., unimodal distribution as shown in Figure 5C). Similarly,
the most of the connections from E→ I neurons are also fully
potentiated (Figure 5C) while most of the E→ E connections are
weak (bimodal distribution as shown in Figure 5C). So swapping

connections between strong I connections (for the third case) or
between weak E→ E or between strong E→ I connections (for
the fourth case) does not seem to change the network perfor-
mance much as well. Since the second case is a combination of the
third and fourth cases, the result is similar. For the fifth case, the
connections between E neurons in the reservoir and the E neurons
in layer 3 become fully potentiated (Figure 5C). So, swapping
connections between strong E connections does not affect the DI
score. Since the sixth case includes the first case as a subset, the DI
score is severely affected much like in the first case.

The average firing rate of the network was initially most
affected for the third and sixth control experiments while the
first control experiment reduced the average firing rate of the
network (Figure 8C) relative to the original network. For the
third case, initially swapping the connections between I→ I or
between I→ E affects the current balance as the synapses have
not had the time to fully potentiate to its peak values. This in turn
can affect the firing rates by causing them to be high. However,
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as learning proceeds, the balance is restored due to I-STDP
causing these inhibitory synapses to become fully potentiated
(Figure 5C) and the firing rates fall as expected (Figure 8C).
Since the sixth case contains the third as a subset, it follows the
same trend as the third. For the first case, the firing rates fall
below the original network because swapping the connections
between the E neurons in the source layer and the E neurons
in the reservoir results in disturbing the learned receptive fields.
Thus, on average, the E neurons in the reservoir do not have good
matches with the input patterns because of the shuffling resulting
in lower average firing rates.

In order to assess the importance of location of the active
nodes in the firing rate code on the discrimination ability of the
network, another control experiment was performed. The fir-
ing rate code was shuffled by shifting the location of the active
nodes in the sink layer and this was repeated 10 times. Once every
10 s, the DI was computed with the shuffled firing rate code and
then averaged to produce a DI that was compared against the
DI generated by the original network. The shuffling of the active
nodes results in much lower DI compared to the original net-
work (Figure 8B). The firing rate of the network is unaltered by
shuffling (Figure 8D) because the connectivity from E neurons in
layer 2 to the E neurons in layer 3 has a unimodal distribution
(Figure 5C) with all synapses being fully potentiated and thus
being immune to the shuffling.

STABILITY OF LEARNING
The network was analyzed for stability of learning by studying the
change in DI as more inputs were presented after 1 h of training.

To test this, the duration of presentation of the inputs was dou-
bled from 1 to 2 h. During this time, the inputs were once again
sampled at random from the training set and presented for a
duration that was selected from an exponential distribution of
30 ms.

The readout codes for all patterns in the training set after 1 h
and after 2 h were compared. The ternary codes for each pattern
were compared and the codes do no match at all. This change
is partially explained by subtle changes in the receptive fields
(Figure 9A) compared to after 1 h (Figure 4A). The DI is very
stable and hovers around 0.8 (Figure 9B) throughout the extra
hour of training. To measure the change in synapses more pre-
cisely, the relative synaptic distance Equation (19) between layer
1 and layer 2 synapses after 1 and 2 h of training. This relative
distance φrel

12 (3600, t) was tracked once every 10 s from 1 to 2 h
(Figure 9C). The plot shows that the distance slowly changes dur-
ing the first hour and stabilizes to ∼0.6. This implies that the
synaptic weight changes in a more meaningful fashion compared
to changes due to pure chance. Furthermore, the rate of change
of the relative synaptic distance during the hour is slow and thus
implies a stable regime of synaptic adaptation.

The selectivity of the readout neurons to a subset of the reser-
voir neurons emerges from E-STDP based on pattern of firing in
the reservoir. Once the selectivity is established for the readout
neurons, it does not change very much during the second hour
of training. This is evident from the observation that the synap-
tic distance between the two layers does not change (Figure 5C)
and that all the synapses to readout neurons become fully poten-
tiated with a unimodal distribution of synaptic strengths. The

FIGURE 9 | The basis vectors and basis set learning after 2 h of training

on initial training data set. (A) The synapses between the source neurons
and each E neuron in the reservoir form receptive fields (similar to the ones
shown in Figure 4B) but slightly modified after 2 h of training compared to
after 1 h of training. (B) The DI is steady throughout the extra 1 h of training
hovering around 0.8. This implies that the learning has stabilized causing the

discriminability to be stable as well. (C) The relative synaptic distance
between E→E synapses from source layer neurons to the reservoir neurons
was compared to randomly shuffled synapses or synapses formed due to
chance. The slope of the distance trace slowly decreases suggesting stability
in learning while the final value of 0.6 suggests that the learning stabilizes the
network to a state that is far from chance (see text for further details).
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synaptic strengths between the reservoir neurons and the read-
out neurons are unimodal by the end of 1 h of training due to
E-STDP and continue to remain stable during the extra hour of
training. This is reflected in φrel

23 (3600, t) that is not defined since

the φ23(3600, t) = φ
shuffled
23 (3600, t) for all t after 3600 s. This is

because the synapses between the E neurons in the reservoir and
the E neurons in the sink layer do not change (Figure 5C) for rea-
sons explained earlier. This means that φrel

23 (3600, t) is not defined
for all t.

The lateral connectivity in the reservoir causes a state depen-
dent firing regime (Buonamano and Maass, 2009). To under-
stand this better for the proposed network, used a back-trace
approach was adopted as follows. The readout neurons that fired
with a maximum firing rate for a given input pattern were first
selected. The neurons back-trace to the reservoir from these
readout neurons were then identified. For example, the read-
out neurons #1 and #8 fired with a ternary code of 2 were first
selected. The synaptic connections between the reservoir neurons

are represented in the graph (Figure 10A after 1 h and Figure 10B
after 2 h). It should be noted that the strong connections between
the reservoir neurons only depict the anatomical or structural
aspect of the network. The resulting set of reservoir neurons
and their connections between each other and the two readout
units is referred to as a structural network. The strong connec-
tion between the E reservoir neurons are not necessarily unique to
the selected readout neurons since other readout neurons that are
active for other inputs may also be connected to some of the same
reservoir neurons found in the structural network. Similarly, the
readout neurons are not unique to the input pattern since the
code in the sink layer is distributed. This means that the same
readout neuron could fire as part of another readout code that
represents a different input pattern.

When the structural network is tracked temporally for the
duration of input presentation (i.e., for d = 1.4 s), the network
dynamics shows that a select subset of reservoir neurons fire in
a complex spatiotemporal sequence. A state transition graph can

FIGURE 10 | State-dependent computing in the network can be

observed by tracking activity within the reservoir layer. (A) The graph
showing the strength of the E→E synaptic connections between the
reservoir neurons that are connected to readout units #1 and #8 after 1 h
of training. These readout units are maximally active during the
presentation of pattern #5 for d = 1.4 s at the source neurons. The
normalized synaptic (obtained by dividing g by gmax ) strengths are
between 0 and 1. This set of network connections between reservoir
neurons is referred to as a structural network. (B) The structural network
for the same input pattern after 2 h of training is shown here. Synaptic
plasticity does alter the structural network as the learning progresses. (C)

The state transitions between the neurons in the graph are tracked and
plotted after 1 h of training to show the functional network in action
during the processing of input pattern #5. The functional network is
sparse compared to the structural network. The relative strengths of
transitions between reservoir neurons during the presentation of pattern
#5 for d = 1.4 s period can be assessed using the firing rates of the
reservoir neurons. The neurons #6, #28, #63, #75, #155, #157, and #177
all have higher relative firing rates than other reservoir neurons in the
graph. (D) The functional network after 2 h of training shows a functional
network has changed compared to the one after 1 h. Neurons #25, #31,
#145, and #150 are now the most active.
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be plotted from this firing sequence (Figure 10C). This graph is
referred to as the functional network that is very sparse when
compared to the structural network. After further training for
an additional hour, the functional network for the same pattern
changes (Figure 10D). Here the transition frequencies between
some of the neurons are somewhat reduced compared to the func-
tional network after 1 h. This implies that the network is able to
sharpen the neural trajectory further with training.

The state-transitions at the reservoir combined with stable
connections between the reservoir and output neurons means
that the ternary code at the readout neurons will change based
on these transitions in the reservoir. These changes in the neu-
ral trajectory cause the ternary code in the readout units to
be different even for identical inputs. This implies that repeat-
able readout neuron activity (in response to input patterns)
is not achievable in this network. However, the relative codes
between a pattern and the rest as computed by the DI are stable
(Figure 9B).

PLASTICITY TO NEW INPUTS AFTER INITIAL LEARNING
In order to study the capacity of the network to learn new inputs,
a second training set with new input patterns was added to the ini-
tial training data set (Figure 11A). The network that was trained
with the initial training data for 1 h was presented with the both
old and new inputs for an additional hour. The receptive fields
show slow adaptation to the new features while retaining features

from the old patterns as well (Figure 11B). For example, the
learned receptive for reservoir neuron #4 (fourth box from the
left on top row in Figure 11B) at the end of 2 h shows a diago-
nal set of synaptic connections that was absent after training the
network with the initial training set (Figure 4B). On the other
hand, the neuron #18 (third box from the right on the top row
in Figure 11B) remains very similar to the receptive field learned
after 1 h (Figure 4B).

The network was also studied for their ability to learn new pat-
terns when they were presented with only new patterns during
the second hour of training. This test was more stringent than
the first experiment above and provides a more precise picture
of the network’s ability to retain past information while learn-
ing new information. The changes in the receptive fields reflect
rapid re-learning with adaptations to features found in the new
inputs (Figure 11C) after 2 h of training compared to receptive
fields after training for 1 h with the initial training set (Figure 4B).
For example many of the receptive fields show diagonal and cir-
cular features. It is noteworthy that very few receptive fields now
reflect the initial training set.

The DI was computed for the above two cases of training.
When the network is presented with both old and new patterns
during the second hour of training, the DI was very stable relative
at∼0.8 when tested on all the 26 patterns after 2 h of training rel-
ative to the first hour of training (the green trace in Figure 11D).
This implies that the network is able to discriminate both the old

FIGURE 11 | New training set data set and resulting receptive fields

formed due to learning for two different training regimes. (A) The new
training data set is composed of 11 new patterns not in the original data set.
These patterns were added to the original data set and then used for training
the network to test the ability of the network to learn new information
without forgetting old information. (B) The new receptive fields formed by
training for an additional hour with both old and new data after initial training
on the original data set for an hour is shown here. The new receptive fields
show newly learned features that incorporate features such as a diagonal line
(for example, neuron #4 and #18). (C) The new receptive fields formed by
training for an additional hour with only new data after initial training on the

original data set for an hour is shown here. The new receptive fields change
dramatically from the original set (see Figure 4B) with mostly features that
reflect the new patterns and very little from the old patterns. (D) The DI was
compared for the two training regimes. The DI was retained at a high value of
0.8 (green trace) when the network was exposed to both old and new
patterns in the second hour of training. The network however was found to
have a lower DI value of 0.62 (red trace) on average suggesting forgetting of
old information. However, the interesting aspect is that DI decreases
gradually suggesting that the network does not loose the ability to
discriminate between old patterns or between old and new patterns abruptly
or “catastrophically” but in a more graceful manner.
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FIGURE 12 | The readout codes generated by the network for two

different training regimes shows the network is plastic to new inputs

while also being stable to old information. (A) The readout codes

generated for the network when trained on all the 26 patterns during the
second hour of training. The testing was performed with all the 26 patterns.

(Continued)
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FIGURE 12 | Continued

The readout code is washed out in the beginning for the new patterns
but slowly is assimilated by the network generating a rich readout code
for all the 26 patterns after 2 h. The resulting DI is stable (as shown in
Figure 11) suggesting robust discrimination. (B) The readout codes
generated for the network when trained on only on the 11 new patterns
during the second hour of training. The testing was performed with all
the 26 patterns. The readout code is washed out in the beginning for
the new patterns but the network rapidly learns the new features
suggesting the highly plastic nature of the network. The readout code
starts to wash out for the 15 old patterns after 2 h. The resulting DI is

still strong enough (as shown in Figure 11) suggesting slow forgetting
of old information. (C) The relative synaptic distance between E → E
synapses from source layer neurons to the reservoir neurons was
compared to randomly shuffled synapses or synapses formed due to
chance for the two training regimes are shown. The slope of the
relative distance trace slowly decreases (green trace) for the case where
the old and new patterns are presented suggesting stability in learning.
However, the slope changes more dramatically (red trace) for the case
when the network is trained only on the new patterns. The final value
of 0.5 (old + new) and 0.2 (for new only) suggests that the learning
stabilizes the network to a state that is different from pure chance.

and new patterns after 2 h of training. In comparison, when the
network was trained only with new patterns, the DI falls to a lower
value of ∼0.6 (the red trace in Figure 11D). This implies that the
network is not as discriminatory as in the first case implying that
the network forgets. However, the network does not exhibit catas-
trophic forgetting (French, 1994). Catastrophic forgetting occurs
when the network abruptly (i.e., in a few time steps) and com-
pletely (i.e., with very poor discrimination) forgets previously
learned patterns in exchange for learning new patterns. Since the
DI only degrades from ∼0.8 after 1 h to ∼0.6 after an additional
hour of training only with new patterns, the network does not
abruptly forget the old patterns. This graceful and slow degrada-
tion in DI shows that the network gradually forgets previously
learned information but not catastrophically.

The readout codes for the two cases provide some more insight
into the network performance. The network begins at the same
starting point (i.e., after training with 15 patterns for 1 h). The
readout codes are very different for the two cases after 2 h. When
the network is trained with both old and new patterns, the read-
out code for the 26 patterns appears with much more variations
(Figure 12A) compared to the case when trained only with new
patterns. In the latter case, the network appears to have more
washed out codes for the old patterns compared to the new pat-
terns (Figure 12B). This confirms that the network forgets the old
patterns in the second case compared to the first case. This is to
be expected to some extent because the network is plastic and is
expected to learn the new inputs as it experiences that more than
the old patterns. However, it is noteworthy that the network does
not exhibit catastrophic forgetting as discussed above. This shows
that the network is able to assimilate the old information along
with the new information to create a new readout codes such that
the resulting DI is sufficient for discrimination between all pat-
terns (old and new) at least for some time (in this case for about
an hour). Understanding how this could be extended is a subject
for future study.

The relative synaptic distance φrel
12 (3600, t) was tracked once

every 10 s from 1 to 2 h between the receptive fields for the two
cases of training. The distance changes slowly for the case when
the network is presented with old and new patterns (the green
trace in Figure 12C). In comparison, the weight changes are far
more drastic (the red trace in Figure 12C). Here the rate of change
is steep implying that the network undergoes sharp changes dur-
ing the early learning phase in the second hour but then stabilizes
to a non-zero value. This implies that the network undergoes
synaptic changes due to learning driven by STDP based on new

training data as opposed to changes due to pure chance. The
synapses between the E neurons in the reservoir and the E neurons
in the sink layer do not change (similar to Figure 5C) for reasons
explained earlier. This means that φrel

23 (3600, t) is not defined for
all t.

In order to understand how this occurs, the lateral connectiv-
ity of the graph was analyzed. A pattern from the new data set
was selected for analysis (Figure 13) and presented to the source
neurons for d = 1.4 s. Since the first hour of training is based on
the initial training set, the network was never exposed to this new
pattern before. The readout neurons (#4 and #8) that fired maxi-
mally for the new pattern was identified and its structural network
was identified at the 1 h mark (Figure 13A).

The structural network selected by these two neurons changes
between 1 and 2 h when the network is trained with both old
and new patterns (Figure 13B). When the functional network was
extracted after the first hour of training, the network dynamics
shows that many reservoir neurons are accessed in a complex spa-
tiotemporal sequence (Figure 13C). This is because the network
attempts to process the unknown input pattern using as many
receptive fields as possible. Once the network is trained for an
hour more with both old and new patterns, the network is able
to readout using a relatively sparse neural trajectory (compare
Figures 13C,D). This is because the basis set adapts to incorpo-
rate new features in the new input pattern data set during the
second hour of training. This modifies the functional network
due to changes in firing rates of some neurons in the graph (see
in Figures 12C,D) as well as changes in the functional network.
The functional network for the case when trained only on new
patterns in the second hour is similar to Figure 12D except that
the spatiotemporal trajectories in the network are biased toward
the new inputs as opposed to the network that is exposed to both
the old and new patterns.

DISCUSSION
The interaction between E-STDP and I-STDP enables spiking
neuronal networks to learn to discriminate patterns in a self-
organized fashion. A hallmark of self-organizing systems is a
composition of relatively “dumb” units connected together and
constrained by “interaction dominant dynamics” (Ihlen and
Vereijken, 2010). In the case of the simulated network presented
here, the connection strength between neurons is always altered
by synaptic plasticity, effectively changing the network topology.
The structure of the network is tuned so as to enable uncorre-
lated neurons that are randomly connected to become correlated
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FIGURE 13 | State-dependent computing in the reservoir layer is

affected by new training data. (A) The structural network connected to
readout units #4 and #8 after 1 h of training. These readout units that are
maximally active during the presentation of the new pattern #26 for
d = 1.4 s. (B) The structural network for the combined training data of old
and new input patterns after 2 h of training is shown here. Synaptic
plasticity alters the structural network as expected. (C) The transitions

between E → E neurons in the reservoir after 1 h of training This
functional network shows firing activity at many more neurons and this is
manifested by the novelty of the new pattern that the network has never
processed before. (D) This functional network after 2 h of training is
sparser compared to the one shown after 1 h since the network is able to
learn the new pattern by adapting its receptive fields and generating new
readout codes that are more discriminatory.

in a balanced way so as to produce meaningful network-level
behavior.

Balance in the network is at the level of excitatory and
inhibitory currents. These currents are observed to balance each
other, leaving the resultant current near zero. In the present
model, changing synaptic conductance via STDP for inhibitory
and excitatory synapses helps achieve this balance. There are
other models (Vogels et al., 2011; Srinivasa and Jiang, 2013)
that also have explored the effects of interaction between these
two types of STDP for memory formation and stability but
have not explored the question of unsupervised discrimination
of patterns.

In a recent model, the synaptic efficacy via shot-term plas-
ticity (Klampfl and Maass, 2013) was used to achieve stable and
balanced networks but that work also did not look into unsuper-
vised pattern learning. In other biologically plausible networks,
synaptic connections can be created or destroyed also known as
structural plasticity (Leuner and Gould, 2010). But without that
option, plasticity is left as the only possible mechanism for change
within the network.

Networks without I-STDP fail to reach a balanced state for any
of a large set of possible parameters. It is not only a practical

matter that inhibitory STDP is required, but there are deep
connections to self-organizing systems as well. Self-organization
is usually the result of two opposing effects. In the strong cases,
these opposing effects are some mutually-referring function of
each other (Nicolis and Prigogine, 1977; Witten and Sander,
1981). Here, excitatory and inhibitory STDP play these roles,
and together produce various forms of compensatory feedback
(Luz and Shamir, 2012). It should be noted that the obtained
results are based on one of many possible I-STDP functions
found in the brain (Vogels et al., 2013) and not all of them
will necessarily result in a current balance. A recent article
explored the distinct I-STDP window shapes in tuning neuronal
responses (Kleberg et al., 2014). The exact role of each shape of
I-STDP function on brain function remains to be explored in
the future.

This memory trace or neural trajectories in the reservoir evolve
both in space and time (Rabinovich et al., 2008; Buonamano
and Maass, 2009; Buzsáki, 2010). It is known that discriminat-
ing between several trajectories requires complex mechanisms
with many dedicated readers (Jortner et al., 2007; Masquelier
et al., 2009; Buzsáki, 2010). Our approach proposes an algo-
rithm for computing DI that can help discriminate between input
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patterns but this is still not a biologically plausible mechanism.
Using the DI metric to probe network dynamics shows that the
proposed network can discriminate between patterns that form
complex neural trajectories. Furthermore, this discrimination is
not susceptible to catastrophic forgetting.

It should be noted the order of presentation of the input pat-
terns to the network at the source neurons provides different
contexts and changes the state-dependent firing patterns in the
network. This causes the ternary code in the readout units for
identical inputs to be different. However, the relative firing rate
code as computed by the DI metric is invariant to the order of
input pattern presentation (not shown).

The DI measure derived in this work is related to information
theory. Information theory informs us about the amount of infor-
mation a neural response (by sink layer neurons) carries about
the stimulus (source layer neurons). In this theory, information is
quantified using entropy measures. The DI measure captures the
amount of information about the stimulus in the neural response
and is thus closely associated to mutual information (Borst and
Theunissen, 1999). In the DI measure, separability is closely
linked to entropy measures. For example, Dinter is associated to
noise entropy since it provides a measure of variability in neural
response to the same input stimulus while Dintra is associated to
response entropy as it measures variability in neural response to
all the stimulus types presented to the network. Uniqueness on
the other hand is directly linked to response entropy as it mea-
sures the variations in all possible neural responses to all possible
stimulus conditions. This could be a useful future direction for
further investigation.

The network design proposed in this paper for unsupervised
discrimination has two key features that enable fault-tolerant
properties in a manner similar to our previous work on self-
supervised learning of spatiomotor transformations (Srinivasa
and Cho, 2012). The first feature is the reduction of number of
spiking neurons from layer 1 to layer 2 (i.e., K > N). This allows

the network to compress the input features into an encoding con-
sisting of a smaller subset of neurons in layer 2. The absence
of spiking activity from some input neurons can still be toler-
ated due to inputs from neighboring input neurons within the
reservoir. The second is the recurrent STDP connections between
neurons within layer 2. With this feature, the spiking activity due
to neighboring neurons within layer 2 enables STDP to eventu-
ally strengthen synapses between the neurons that receive inputs
from layer 1 and weaken those that do not receive any inputs
from neurons in layer 1. This feature might provide robust-
ness against the complete loss of spiking activity within neurons
because recurrent connections within the reservoir might enable
neurons that do not receive any feed-forward input from layer 1
to still propagate spiking activity to layer 3. Thus, the network
could exhibit tolerance to complete loss of spiking activity in the
input neurons.

It may be possible to extend the proposed architecture for
unsupervised discrimination to learn using supervisory labels.
Two possible mechanisms are briefly explored here. In the first
case, each readout neuron in layer 3 can be stimulated by an
externally provided spike train that corresponds to a label for
the input pattern presented in layer 1 (Figure 14A). Here each
readout neuron uniquely codes for one label thus requiring
as many readout neurons as labels. This external input can be
considered as the top-down (TD) input while the spikes from the
reservoir neurons to the readout neurons can be considered as
bottom-up (BU) inputs.

When an external label is available, it can cause TD stimulation
of the appropriate readout neuron even if there are no BU inputs
since it is assumed that these TD inputs are provided via very
strong synapses (reflected by thick green arrows in Figure 14A).
The TD inputs increase the inhibition to the readout neurons thus
creating network dynamics in the readout akin to a winner take-
all network. It should be noted that the inhibitory neurons in layer
3 is constantly stimulated by weak external spiking inputs (think

FIGURE 14 | Two plausible neural mechanisms to enable supervised

learning by extending the network architecture presented here.

(A) The first possibility is to replace the sink layer architecture of the
original network with a new one as shown here. Here each label (thick
green arrow) corresponds to each pattern that is to be classified. Black

lines represent excitatory synapses while red ones correspond to
inhibitory inputs. Green arrows represent excitatory inputs from external
sources. (B) The second possibility assumes a readout code that is
more distributed (more than one thick green arrow—see text for more
details).
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arrow to the red circle in Figure 14A). When the readout neu-
rons are stimulated by both BU and TD inputs, the synapses from
the reservoir neurons to the readout neurons could be strength-
ened due to E-STDP. At a later time, if the label is removed, the
readout neurons can generate peak activity in the readout neu-
ron corresponding to the correct label. But as observed before,
the readout codes change slowly and constantly due to plasticity
in the reservoir. This can result in misclassification errors. These
errors can however be fixed by periodically providing the cor-
rect labels that can trigger STDP based learning to quickly correct
the mistakes by retuning the synapses from the reservoir to the
readout neurons.

In the second case, the readout neurons could represent a dis-
tributed code (Figure 14B). In this case, the joint spiking activity
of the entire population of readout neurons represents a label
for each input. This network can also be trained via labels at
the appropriate readout neurons as described above and the
learning process due to BU and TD stimulation of the read-
out neurons can cause the readout neurons to generate correct
answers even when the teaching labels are removed. This network
is however also susceptible to constant forgetting thus requir-
ing periodic stimulation by the external supervisory sources to
correct the mistakes made by the readout neurons in classifying
input patterns.

The functional network response of the network to inputs
via neural trajectories in the reservoir indicates the use of a dis-
tributed code with many reservoir neurons being activated during
the input presentation. Normally the relative firing rates between
reservoir neurons (i.e., the number of times a neurons fires rel-
ative to other neurons in the reservoir) is not high. However,
in some cases a single neuron in the reservoir may exhibit a
high relative firing rate. Thus, some neurons in the reservoir can
encode for the entire input in some cases while at the same time
require neural trajectories to encode other inputs. This flexibil-
ity is a hallmark of neural systems where single neurons (also
known as grandmother cells) are known to encode for objects
(Perrett et al., 1982; Rolls, 1984; Yamane et al., 1988; Quiroga
et al., 2005) while there are other concepts that require distributed
codes with complex neural trajectories (Rabinovich et al., 2008;
Buzsáki, 2010).

The most interesting aspect of our network is that it is able
to discriminate between old patterns already presented in an ini-
tial training session while also adapting to new patterns without
losing its ability to discriminate among old patterns. The learned
connectivity especially between the source layer neurons and the
E neurons in the reservoir appears to be critical for this capa-
bility as exemplified from the control experiments. The ternary
code appears to produce the highest DI metric compared to other
codes since the inter-pattern distance is the lowest for the ternary
code compared to the case with other codes. The network does
not exhibit catastrophic forgetting and is more robust if exposed
to old patterns occasionally during the learning of new patterns.
Incorporating the means to achieve a homeostatic balance due
to an interaction between inhibitory and excitatory STDP in all
these networks may well enable self-organized discrimination of
patterns while exhibiting the requisite dynamics to address the
stability vs. plasticity dilemma.
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APPENDIX
EXAMPLES FOR DI COMPUTATION
Let us assume that the coding level C = 3 for both the examples
below and further let us assume that there are two readout units
in the sink layer of the network. This allows us to visualize the
readout codes in 2-D for simplicity. This analysis however readily
extends to other coding levels.

Example 1: Assume that there two test patterns (P = 2) and
each of them is presented 10 times resulting in 10 readout codes
for each test pattern as follows: S1 = {(0, 1); (0, 1); (0, 1); (0, 1);
(1, 0); (1, 1); (1, 1); (0, 1); (0, 1); (0, 1); (0, 1)} and S2 = {(1,
0); (1, 0); (0, 0); (0, 0); (1, 0); (1, 0); (0, 0); (1, 0); (0, 0); (1, 0)}.
Since there are two patterns and C = 2, there are four possible
readout codes in general (Figure A1A). But based on S1 and S2,
the two readout codes cluster around (0, 1) for p = 1 and (1, 0)
for p = 2.

The various values for DI can be computed as follows.
Using Equation (10) and the readout code S1, Dientra,1 =
6∗4/(10∗9/2) = 24M/45 and Dintra,2 = 8∗2/(10∗9/2) =
16M/45; thus the average Dintra = 20M/45. Since the read-
out codes cluster around (0, 1) and (1, 0) for the two test
patterns, Dinter = 2M. Using these Dinter and Dintra, separabil-
ity can be computed as ε = 1− 10/45 = 35/45. Since there
are two unique codes for the two test patterns, uniqueness
γ = 1. Thus, the discriminability index for this example will
be DI = 35/45 = 0.78.

Example 2: Assume that there are four test patterns (P = 4)
and each of them is presented 10 times resulting in 10 readout
codes for each test pattern as follows: S1 = {(2, 1); (2, 1); (2, 1);
(2, 1); (2, 1); (1, 1); (1, 1); (2, 1); (2, 1); (2, 1); (2, 1)}, S2 = {(2, 1);
(2, 1); (2, 0); (2, 0); (2, 1); (2, 0); (2, 1); (2, 1); (2, 1); (2, 1)}, S3 =
{(1, 0); (1, 0); (0, 0); (0, 0); (1, 0); (1, 0); (0, 0); (1, 0); (0, 0); (1, 0)},
S4 = {(1, 0); (1, 0); (1, 1); (1, 0); (1, 0); (1, 1); (1, 0); (1, 0); (1, 1);
(1, 0)}. This scenario can be visualized using four possible read-
out codes in general (Figure A1B). Based on four readout codes,
they cluster around (2, 1) for p = 1, 2 and (1, 0) for p = 3, 4.

The various values for DI can be computed as follows. Using
Equation (10) and the readout code S1, Dintra,1 = 16M/45,

Dintra,2 = 21M/45, Dintra,3 = 24M/45, Dintra,4 = 21M/45.

Thus, the average Dintra can be computed as 41M/90. Since the
readout codes cluster around (0, 1) and (1, 0) for the four test pat-
terns, the Dinter = 2∗2∗M/(4∗3/2) = 2M/3. Using these Dinter

and Dintra, separability can be calculated as ε = 1− 41/60 =
19/60. Since there are only two unique codes for the four test
patterns, uniqueness γ = 1/2. Thus, DI for this example will be
DI = (19/60)∗(1/2) = 0.16. This is lower compared to Example
1 since the four patterns are less separable compared to the two
test pattern case and the readout codes are also not unique enough
compared to Example 1.

These examples illustrate the basics of how the DI is computed
and can be readily extended to deal with networks that have larger
M and are coded with different coding levels.

FIGURE A1 | The details of DI computation for two different

examples are shown here. (A) The readout code for the first
example uses M = 2 and C = 2 as visualized here. Each node
represents one of four possible states. There are a total of input

patterns (P = 2) for this example. (B) The readout code for the
second example uses M = 2 but C = 3 as visualized here. Each
node represents one of 9 possible states. There are a total of 4
input patterns (P = 4) for this example.
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Winner-Take-All (WTA) networks are recurrently connected populations of excitatory and
inhibitory neurons that represent promising candidate microcircuits for implementing
cortical computation. WTAs can perform powerful computations, ranging from
signal-restoration to state-dependent processing. However, such networks require
fine-tuned connectivity parameters to keep the network dynamics within stable operating
regimes. In this article, we show how such stability can emerge autonomously through an
interaction of biologically plausible plasticity mechanisms that operate simultaneously on
all excitatory and inhibitory synapses of the network. A weight-dependent plasticity rule
is derived from the triplet spike-timing dependent plasticity model, and its stabilization
properties in the mean-field case are analyzed using contraction theory. Our main result
provides simple constraints on the plasticity rule parameters, rather than on the weights
themselves, which guarantee stable WTA behavior. The plastic network we present is
able to adapt to changing input conditions, and to dynamically adjust its gain, therefore
exhibiting self-stabilization mechanisms that are crucial for maintaining stable operation in
large networks of interconnected subunits. We show how distributed neural assemblies
can adjust their parameters for stable WTA function autonomously while respecting
anatomical constraints on neural wiring.

Keywords: winner-take-all, competition, plasticity, self-organization, contraction theory, canonical microcircuits,

inhibitory plasticity

1. INTRODUCTION
Competition through shared inhibition is a powerful model of
neural computation (Maass, 2000; Douglas and Martin, 2007).
Competitive networks are typically composed of populations of
excitatory neurons driving a common set of inhibitory neurons,
which in turn provide global negative feedback to the excita-
tory neurons (Amari and Arbib, 1977; Douglas and Martin, 1991;
Hertz et al., 1991; Coultrip et al., 1992; Douglas et al., 1995;
Hahnloser et al., 2000; Maass, 2000; Rabinovich et al., 2000;
Yuille and Geiger, 2003; Rutishauser et al., 2011). Winner-take-
all (WTA) networks are one instance of this circuit motif, which
has been studied extensively. Neurophysiological and anatomical
studies have shown that WTA circuits model essential features
of cortical networks (Douglas et al., 1989; Mountcastle, 1997;
Binzegger et al., 2004; Douglas and Martin, 2004; Carandini
and Heeger, 2012). An individual WTA circuit can implement a
variety of non-linear operations such as signal restoration, ampli-
fication, filtering, or max-like winner selection, e.g., for decision
making (Hahnloser et al., 1999; Maass, 2000; Yuille and Geiger,
2003; Douglas and Martin, 2007). The circuit plays an essential
role in both early and recent models of unsupervised learning,
such as receptive field development (von der Malsburg, 1973;
Fukushima, 1980; Ben-Yishai et al., 1995), or map formation
(Willshaw and Von Der Malsburg, 1976; Amari, 1980; Kohonen,
1982; Song and Abbott, 2001). Multiple WTA instances can be

combined to implement more powerful computations that can-
not be achieved with a single instance, such as state dependent
processing (Rutishauser and Douglas, 2009; Neftci et al., 2013).
This modularity has given rise to the idea of WTA circuits rep-
resenting canonical microcircuits, which are repeated many times
throughout cortex and are modified slightly and combined in
different ways to implement different functions (Douglas and
Martin, 1991, 2004; Rutishauser et al., 2011).

In most models of WTA circuits the network connectivity is
given a priori. In turn, little is known about whether and how
such connectivity could emerge without precise pre-specification.
In this article we derive analytical constraints under which local
synaptic plasticity on all connections of the network tunes the
weights for WTA-type behavior. This is challenging as high-gain
WTA operation on the one hand, and stable network dynamics on
the other hand, impose diverging constraints on the connection
strengths (Rutishauser et al., 2011), which should not be violated
by the plasticity mechanism. Previous models like Jug et al. (2012)
or Bauer (2013) have shown empirically that functional WTA-like
behavior can arise from an interplay of plasticity on excitatory
synapses and homeostatic mechanisms. Here, we provide a math-
ematical explanation for this phenomenon, using a mean-field
based analysis, and derive conditions under which biologically
plausible plasticity rules applied to all connections of a network
of randomly connected inhibitory and excitatory units produce
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a functional WTA network with structured connectivity. Due to
plastic inhibitory synapses, convergence of the model does not
rely on constant, pre-defined inhibitory weights or other com-
mon assumptions for WTA models. We prove that the resulting
WTA circuits obey stability conditions imposed by contraction
analysis (Lohmiller and Slotine, 1998; Rutishauser et al., 2011).
This has important implications for the stability of larger net-
works composed of multiple interconnected WTA circuits, and
thus sheds light onto the mechanisms responsible for the emer-
gence of both local functional cortical microcircuits and larger
distributed coupled WTA networks.

This article is structured as follows: We first define the network
and plasticity models in sections 2.1 to 2.3. Our main analytical
results are given in sections 2.4 and 2.5, and illustrated with simu-
lation results in section 2.6. The results are discussed in section 3,
and detailed derivations of the analytical results can be found in
section 4.

2. RESULTS
2.1. NETWORK TOPOLOGY
In its simplest abstract form, a WTA circuit (Figure 1A) con-
sists of a number of excitatory units that project onto a common
inhibitory unit. This unit, in turn, provides recurrent inhibitory
feedback to all excitatory units. Given appropriate connection
strengths, such inhibition makes the excitatory units compete for
activation in the sense that the unit receiving the strongest input
signal will suppress the activation of all other units through the
inhibitory feedback loop, and “win” the competition.

We design a biologically plausible network by taking into
account that inhibitory feedback is local, i.e., it only affects cells
within a cortical volume that is small enough such that the rel-
atively short inhibitory axonal arbors can reach their targets. We
assume excitatory and inhibitory neurons in this volume to be
connected randomly (see Figure 1B). Furthermore, we assume
that there are a finite number of different input signals, each acti-
vating a subset of the excitatory cells in the volume. We construct
a mean-field model by grouping the excitatory neurons for each
driving input stimulus, summarizing the activity of each group
of cells by their average firing rate. This results in a simplified
population model of the network which—in the case of two dif-
ferent input signals—consists of two excitatory populations (one
for each input), and one inhibitory population (see Figure 1C).
We assume full recurrent connectivity between all populations.
This scheme can easily be extended toward more input groups. In
particular, if an excitatory group receives multiple inputs, it can
be modeled as a new class.

Since inhibitory axons are (typically) short-range, distant
populations can communicate only via excitatory projections.
We combine multiple local circuits of the form shown in
Figures 1B,C by introducing excitatory long-range connections
between them, as illustrated in Figure 1D. Specifically, we add
projections from the excitatory populations of one local group
to all excitatory and inhibitory populations of the other group. A
similar connectivity scheme for implementing distributed WTA
networks has been proposed by Rutishauser et al. (2012). Unlike
their model, our network does not require specific wiring, but
rather targets any potential cell in the other volume. We will

FIGURE 1 | Illustration of the network model. (A) Abstract
representation of a WTA circuit, where several excitatory units project onto
a common inhibitory unit, and receive global inhibitory feedback from that
unit. (B) Example volume of the generic cortical structure that is assumed,
consisting of (initially randomly connected) excitatory (pyramidal) cells and
inhibitory interneurons. The color of the cells indicates the input channel
they are connected to: some cells only receive input from the blue, others
from the orange source. It is assumed that the volume is sufficiently small,
such that all excitatory cells can be reached by the (short-ranged) axons of
the inhibitory cells. If the connection strengths are tuned appropriately, the
population receiving the stronger input signal will suppress the response of
the weaker population via the global inhibitory feedback. (C) shows the
mean field model of the same network that we construct by grouping
excitatory neurons by their input source. The three resulting excitatory and
interneuron populations are connected in an all-to-all fashion. (D,E) show
multiple, distant volumes which are connected via long-range excitatory
connections. Projections from one volume to another connect to all cells of
the target volume. In (E), the two subgroups are approximated by networks
of the type shown in (C), consisting of one inhibitory and several excitatory
populations. The black, solid arrows represent exemplary excitatory
connections from one population of one group to all populations of the
other group. Equivalent connections, indicated by dotted arrows, exist for
all of the excitatory populations.

show in section 2.4.4 that this is sufficient to achieve competition
between units of spatially distributed WTA circuits.

2.2. NETWORK DYNAMICS
The activation of a neural populations xi, which can be excitatory
or inhibitory, is described by

τiẋi(t) = −xi(t)+
⎡

⎣

∑

j

wijxj(t)+ Iext,i(t)− Ti

⎤

⎦

+
, (1)

where τi is the time constant of the population, wij is the weight
of the incoming connection from the jth population, Iext,i(t) is
an external input given to the population, and Ti is the activation
threshold. Furthermore, [v]+ := max (0, v) is a half-wave rectifi-
cation function, preventing the firing rates from taking negative
values. Assuming identical time constants for all populations, i.e.,
τi = τ for all i, the dynamics of the full system can be written as
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τ ẋ(t) = −x(t)+ [Wx(t)+ Iext(t)− T]+ , (2)

where x = (x1, . . . , xN ) are the firing rates of the respective pop-
ulations (excitatory and inhibitory), W is the connectivity matrix
(describing local excitatory, local inhibitory, and long-range exci-
tatory connections), Iext(t) is a vector of external inputs, and
T = (T1, . . . , TN ) are the activation thresholds of the popula-
tions. For the single local microcircuit shown in Figure 1C, for
example, W would be a 3-by-3 matrix with all entries wij non-
zero except for the inhibitory to inhibitory coupling. For two
coupled microcircuits as in Figure 1E, the connectivity matrix
consists of 4 blocks, with the diagonal blocks describing local
connectivity, and the off-diagonal blocks describing long-range
projections from excitatory units to the other circuit.

2.3. PLASTICITY MECHANISMS AND WEIGHT DYNAMICS
In our model, we assume that all connections wij in Equation (2)
are plastic, and are subject to the following weight update rule:

ẇ = τ 2
s xprexpost

(

xpost(wmax − w)− (�w + Awxpre)w
)

. (3)

Here, xpre and xpost are the pre- and postsynaptic firing rates,
respectively, wmax is the maximum possible weight value, and �w,
Aw, and τs are positive constants, which we set to values that are
compatible with experimental findings (see Table 1). The learning
rate is determined by τs, and �w and Aw determine the point at
which the rule switches between depression (LTD) and potentia-
tion (LTP). We will show that in a plastic network, global stability
and circuit function are determined exclusively by those plastic-
ity parameters. The plasticity rule is derived from the mean-field
approximation of the triplet STDP rule by Pfister and Gerstner
(2006), which we augment with a weight-dependent term, effec-
tively limiting the weight values to the interval [0, wmax]. A more
detailed derivation of the learning rule can be found in the
Methods (section 4.1). The parameters �w and Aw are set dif-
ferently for excitatory and inhibitory connections, leading to two
types of simultaneously active plasticity mechanisms and weight
dynamics, even though the same learning equation is used. We
set �w = �exc and Aw = Aexc for all excitatory connections, and
�w = �inh and Aw = Ainh for all inhibitory connections. In par-
ticular, we assume Ainh to take very low values and set Ainh = 0 in
our analysis, effectively eliminating any dependence of the fixed
point of inhibitory weights on the presynaptic rate. According to
fits of the parameters to experimental data (see Table 1), this is a
plausible assumption. For the sake of simplicity, we also assume

the maximum possible weight value wmax to be the same for
all excitatory and inhibitory connections. Figure 2 illustrates the
weight change as a function of the pre- and postsynaptic activity.

2.4. STABILITY ANALYSIS
The WTA circuit is assumed to function correctly if it converges
to a stable state that represents the outcome of the computation it
is supposed to perform. Conditions under which these networks
converge to their (single) attractor state exponentially fast were
previously derived by Rutishauser et al. (2011). Here, we extend
those results to plastic networks and express stability criteria in
terms of global learning rule parameters, rather than individual
weight values. We first describe criteria for the stabilization of the
network and learning rule dynamics, then derive from them con-
ditions on the learning rule parameters. Our analysis leads to very
simple sufficient conditions that ensure the desired stable WTA
behavior.

The dynamics of the network activation and the weights are
given by Equations (2) and (3), respectively. In the following, we
will denote them by f and g, so the full dynamics can be written
as a coupled dynamical system

ẋ = f (x, w), (4)

ẇ = g(x, w), (5)

where f corresponds to the right hand side of Equation (2), and
g combines the update rules for all weights (with different sets
of parameters for excitatory and inhibitory connections) in one
vector-valued function. We first restrict our analysis to the sim-
plest case of a single winning excitatory population and derive
conditions under which the plastic network converges to its fixed
point. Later, we extend our analysis to larger systems of multiple
coupled excitatory populations.

2.4.1. Analysis of single-node system
Let us first consider a simplified system, in which only one exci-
tatory population is active, e.g., because one population receives
much more external input than all others, and the inhibitory
feedback suppresses the other populations. As silent populations
neither contribute to the network dynamics nor to the weight
dynamics, they can be excluded from the analysis. We can there-
fore reduce the description of the system to a single excitatory
population xE, and an inhibitory population xI, together with the
connections wE→ E, wE→ I, and wI→ E between them.

Table 1 | Learning rule parameters A±
2

, and A±
3

from Pfister and Gerstner (2006).

Model A+
2

A+
3

A−
2 A−

3 � A τ2
s

All-to-all 5× 10−10 6.2× 10−3 7× 10−3 2.3× 10−4 18.19 0.06 1.3× 10−5

Nearest spike 8.8× 10−11 5.3× 10−2 6.6× 10−3 3.1× 10−3 6.24 2.09 3.6× 10−5

The values of �, A, and τs for the plasticity rule Equation (3) have been computed using Equations (14) to (16). The data corresponds to fits of the triplet Spike-

Timing Dependent Plasticity (STDP) model with all-to-all spike interactions (first row) and with nearest spike interactions (second row) to recordings from plasticity

experiments in rat visual cortex. Note that the time constants τx,y and τ± are not reproduced here. However, they all are of the order of hundreds of milliseconds

and can be found in Pfister and Gerstner (2006). In our simulations, we use parameters very similar to the “all-to-all” parameters for inhibitory connections, while

for excitatory connections we use ones that are close to the “nearest spike” parameters.
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For a given set of (fixed) weights wc, Rutishauser et al. (2011)
have shown by means of contraction theory (Lohmiller and
Slotine, 1998) that the system of network activations ẋ = f (x, wc)
converges to its fixed point x∗ exponentially fast if its generalized
Jacobian is negative definite. In our case, this condition reduces to

Re
(

wE→ E − 2+ (w2
E→ E − 4 wI→ E wE→ I

)1/2
)

< 0. (6)

If condition (6) is met, the system is called contracting and is
guaranteed to converge to its attractor state

x∗E = �Iext, (7)

x∗I = �wE→ IIext, (8)

exponentially fast for any constant input Iext, where the contrac-
tion rate is given by the left hand side of (6), divided by 2τ . Here,
� = (1− wE→ E + wE→ I wI→ E)−1 corresponds to the network
gain. A more detailed derivation of the fixed point can be found
in section 4.2. Note that we have set the activation threshold T
equal to zero and provide external input Iext to the excitatory pop-
ulation only. This simplifies the analysis but does not affect our
results qualitatively.

2.4.2. Decoupling of network and weight dynamics
In the following, we assume that the population dynamics is
contracting, i.e., that condition (6) is met, to show that the plas-
ticity dynamics Equation (5) drives the weights w to a state that
is consistent with this condition. Essentially, our analysis has to
be self-consistent with respect to the contraction of the activa-
tion dynamics. If we assume f and g to operate on very different
timescales, we can decouple the two systems given by Equations
(4) and (5). This is a valid assumption since neural (population)
dynamics vary on timescales of tens or hundreds of milliseconds

FIGURE 2 | Illustration of the learning rule. The weight change dw/dt is
plotted as a function of the post- and presynaptic firing rate for fixed pre- (left)
or postsynaptic (right) rates. The gray, dashed line shows the rule that we use
for inhibitory connections and whose threshold for LTP, in contrast to
excitatory connections, does not depend on the presynaptic rate. The black
line marks the transition between LTD and LTP. In this example, the
parameters of the learning rules were set to �exc = 6 Hz, �inh = 18 Hz,
Aexc = 2, wmax = 4, and the weight value was fixed at wmax/3 for excitatory
and wmax/2 for inhibitory connections.

(see Figure 5 for typical timescales of our system), while synap-
tic plasticity typically acts on timescales of seconds or minutes.
This means that from the point of view of the weight dynam-
ics g the population activation is at its fixed point x∗ almost all
the time, because it converges to that point exponentially fast. We
can thus model the activation dynamics as a quasi-static system,
and approximate the learning dynamics as a function of the fixed
point of the activation instead of the instantaneous activation.

g(x, w) ≈ g(x∗, w), (9)

The fixed point of this simplified system is found by setting
g(x∗, w) = 0, and according to Equation (3) is given by

w∗ = wmaxx∗post

�w + Awx∗pre + x∗post
. (10)

Combining this expression with Equations (7) and (8) leads
to a system of non-linear equations that can be solved for the
fixed point weights w∗E→ E, w∗E→ I, w∗I→ E, and activations x∗E, and
x∗I . These values solely depend on the learning rule parameters
�w, Aw, wmax, and the external (training) input Iext.

Figure 3 shows the fixed points of the weight dynamics as a
function of �exc, and the input strength Iext. Notably, w∗E→ E and
w∗E→ I lie on a fixed line in the wE→ E-wE→ I plane for all parame-
ters �w and Aw. As the weight values are bounded by 0 and wmax,
the weights converge to a finite value for Iext →∞. This is also
illustrated in Figure 4, which shows the final weight values as a
function of wmax, both for a finite training input and in the limit
Iext →∞.

Importantly, the function of a WTA circuit critically depends
on the strength of the recurrent connection wE→ E (Rutishauser
et al., 2011). If wE→ E > 1, the network operates in “hard” mode,
where only one unit can win at a time and the activation of all

FIGURE 3 | Illustration of the fixed point in weight space. The values of
the final weights (in units of wmax) are plotted as functions of the parameter
�exc and the training input strength Iext, where bigger circles correspond to
greater Iext. The left panel shows the wE→ I-wI→E plane, while the right
panel shows the wE→ I-wE→E plane. Interestingly, the fixed point in
wE→ I-wE→E space only gets shifted along a line for different values of
�exc and Iext. For Iext →∞ the weights converge to a limit point, as is
illustrated in Figure 4. For these plots, the parameters Aexc and �inh were
set to 2 and 18 Hz, respectively, and wmax was set to 4.
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other units is zero. On the other hand, if wE→ E is smaller than
1, the network implements “soft” competition, which means that
multiple units can be active at the same time. From Equation (27)
(Methods) it follows that wE→ E > 1 is possible only if wmax >

A+ 1. As we will show in the following section, this condition
is necessarily satisfied by learning rules that lead to stable WTA
circuits.

2.4.3. Parameter regimes for stable network function
We can now use the fixed points found in the previous section
to express the condition for contraction given by condition (6) in
terms of the learning rule parameters. In general, this new con-
dition does not assume an analytically simple form. However, we
can find simple sufficient conditions which still provide a good
approximation to the actual value (see Methods section 4.2 for
details). Specifically, as a key result of our analysis we derive the
following sufficient condition: Convergence to a point in weight
space that produces stable network dynamics is guaranteed if

Aexc + b < wmax < 2(1+ Aexc), (11)

where b is a parameter of the order 1, which is related to the mini-
mum activation xE (or the minimum non-zero input Iext) during
training for which this condition should hold. If the minimum
input Imin that the network will be trained on is known, then b can
be computed from the fixed point x∗E,min = x∗E (Iext = Imin), and
set to b = �exc/x∗E,min. This will guarantee contracting dynam-
ics for the full range of training inputs Iext ∈ [Imin,∞). In typical
scenarios, b can be set to a number of the order 1. This is due to
the fact that the network activation is roughly of the same order
as the input strength. Setting �exc to a value of similar order leads
to b = �exc/x∗E,min ≈ 1.

FIGURE 4 | Limit behavior of the fixed point of the weights for weak

and strong inputs. The final weight values (in units of wmax) are plotted as
a function of wmax, both for Iext = 15 Hz (solid lines) and in the limit of very
large inputs Iext →∞ (dashed lines). In the limit case, wE→E and wI→E

converge to expressions that are linear in wmax, while wE→ I increases
superlinearly. The learning rule parameters were set to �exc = 6 Hz,
�inh = 18 Hz, and Aexc = 2.

Note that condition (11) is independent of �exc and �inh. This
is due to a simplification that is based on the assumption Aexc +
b� 1, which can be made without loss of generality. If b and Aexc

are set to very low values, the full expressions given by 38 and
(39) (see Methods section 4.2) apply instead. Figure 5 shows the
the region defined by (11) for different b together with the exact

FIGURE 5 | Regions in learning rule parameter space that lead to

a stable, contracting network. All panels show the regions of
stability in wmax-Aexc space for different training input strengths.
Colored lines correspond to exact solutions, while black, dotted lines
correspond to the sufficient condition (11) for different values of b.
The top panels illustrate that relatively small values of b (e.g., 2)
roughly approximate the exact solution even for very small inputs
(e.g., Iext = 1 Hz; left), whereas b can be set to lower values (e.g.,
b = 0; right) if the input is larger. The gray-scale value represents the
convergence rate |λ| (in units of s−1) of the activation dynamics for
τ = 10 ms. The bottom panel shows in color the exact regions of
contraction for inputs Iext = 1, 10, 100 Hz and the approximation given
by condition (11) for b = 0, 1, 2. Some of the colored regions (and
dotted lines) correspond to the ones shown in the upper panels. It
can be seen that for higher input strengths the upper bound on
Aexc (or equivalently, the lower bound on wmax) quickly converges to
the b = 0 diagonal, which represents the asymptotic condition for
Iexc →∞. For these plots, the learning rule parameters were set to
�exc = 6 Hz and �inh = 18 Hz.
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condition for contraction, indicating that (11) is indeed sufficient
and that b can safely be set to a value around 1 in most cases.

2.4.4. Extension to multiple units
So far, we have only studied a small network that can be regarded
as a single subunit of a larger, distributed WTA system. However,
our results can be generalized to larger systems without much
effort. In our model, as illustrated in Figures 1D,E, different local-
ized WTA circuits can be coupled via excitatory projections. These
projections include excitatory-to-inhibitory connections, as well
as reciprocal connections between distant excitatory units. In
order to demonstrate the effects of this coupling, we consider
two localized subsystems, x = (xE, xI) and x′ = (x′E, x′I), consist-
ing of one excitatory and one inhibitory unit each. Furthermore,
we add projections from xE to x′E and x′I, as required by our
model. We denote by wE→ E′ the strength of the long-range
excitatory-to-excitatory connection, while we refer to the long-
range excitatory-to-inhibitory connection as wE→ I′ . Note that
for the sake of clarity we only consider the unidirectional case
x→ x′ here, while the symmetric case x↔ x′ can be dealt with
analogously.

We first look at the excitatory-to-inhibitory connections. If
only xE is active and x′E is silent, then xI and x′I are driven by
the same presynaptic population (xE), and wE→ I′ converges to
the same value as wE→ I. Thus, after convergence, both inhibitory
units are perfectly synchronized in their activation when xE is
active, and an equal amount of inhibition can be provided to xE

and x′E.
Besides synchronization of inhibition, proper WTA function-

ality also requires the recurrent excitation wE→ E′ (between the
excitatory populations of the different subunits) to converge
to sufficiently low values, such that different units compete
via the synchronized inhibition rather than exciting each other
through the excitatory links. As pointed out by Rutishauser et al.
(2012), the network is stable and functions correctly if the recur-
rent excitation between populations is lower than the recurrent
self-excitation, i.e., wE→ E′ < wE′ → E′ .

We now consider the case where xE and x′E receive an exter-
nal input Iext. Whenever x′E alone receives the input, there is
no interaction between the two subunits, and the recurrent self-
connection wE′ → E′ converges to the value that was found for
the simplified case of a single subunit (section 2.4.2). The same
is true for the connection wE→ E if xE alone receives the input.
However, in this case xE and x′E might also interact via the con-
nection wE→ E′ , which would then be subject to plasticity. As x
projects to x′, but not vice versa, we require xE > x′E if both xE

and x′E receive the same input Iext, because xE should suppress x′E
via the long-range competition mechanism. In terms of connec-
tion strengths, this means that w∗E→ I′ w

∗
I′ → E′ > w∗E→ E′ , i.e., the

inhibitory input to x′E that is due to xE must be greater than the
excitatory input x′E receives from xE. In the Methods (section 4.3),
we show that a sufficient condition for this to be the case is

wmax > A+ b+ 1, (12)

which alters our results from section 2.4.3 only slightly, effec-
tively shifting the lower bound on wmax by an offset of 1, as can

be seen by comparing conditions (11) and (12). On the other
hand, making use of the fact that x′E < xE, it can be shown that
wE→ E′ converges to a value smaller than wE′ → E′ (see Methods
section 4.3), as required by the stability condition mentioned
above.

2.5. GAIN CONTROL AND NORMALIZATION
In the previous section, we showed how synaptic plasticity can
be used to drive the connection strengths toward regimes which
guarantee stable network dynamics. Since the actual fixed point
values of the weights change with the training input, this mech-
anism can as well be used to tune certain functional properties
of the network. Here we focus on controlling the gain of the net-
work, i.e., the relationship between the strength of the strongest
input and the activation of the winning excitatory units within
the recurrent circuit, as a function of the training input.

In the case of a single active population, the gain is given by
� = xE/Iext = (1− w∗E→ E + w∗E→ I w∗I→ E)−1, as can be inferred
from Equation (7). Depending on the gain, the network can either
amplify (� > 1) or weaken (� < 1) the input signal.

Figure 6 shows how the gain varies as a function of the learning
rule parameters and the training input strength Iext. Low aver-
age input strengths cause the weights to converge to values that
lead to an increased gain, while higher training inputs lower the
gain. This can be regarded as a homeostatic mechanism, acting to
keep the network output within a preferred range. This provides
a mechanism for the network to adapt to a wide range of input
strengths, while still allowing stable WTA competition.

2.6. SIMULATION RESULTS
As a final step, we verify the analytical results in software sim-
ulations of a distributed, plastic WTA network, as illustrated in
Figures 1D,E. Note that here we consider the case where two
subgroups are coupled bidirectionally via excitatory long-range
projections, while in section 2.4.4, for the sake of clarity, we
focus on the unidirectional case. The desired functionality of

FIGURE 6 | Control of the network gain. The network gain is plotted for
different learning rule parameters �exc, Aexc as a function of the training
input strength Iext. �inh was set to 18 Hz and wmax was set to 4.
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the resulting network is global competition between the excita-
tory populations, i.e., the population that receives the strongest
input should suppress activation of the other populations, even
if the excitatory populations are not directly competing via the
same, local inhibitory population. We consider a network with
two groups, each consisting of two excitatory populations and one
inhibitory population (see Figure 1E). While the excitatory pop-
ulations are connected in an all-to-all manner, inhibitory pop-
ulations can only target the excitatory populations within their
local groups, but do not form long-range projection. Initially, all
connection weights (excitatory and inhibitory) are set to random
values between 0.3 and 1.8. Note that those values could poten-
tially violate the conditions for contraction defined in (6), but we
will show empirically that the plasticity mechanism can still drive
the weights toward stable regimes. As training input, we present
1000 constant patterns for 2 s each. In every step, four input values
in the ranges 5± 2 Hz, 10± 2 Hz, 15± 2 Hz, and 20± 2 Hz are
drawn from uniform distributions and applied to the four exci-
tatory units. The different input signals are randomly assigned to
the populations in every step, such that a randomly chosen popu-
lation receives the strongest input. Thereby, each population only
receives one of the four inputs.

Figure 7 shows the activation of the different populations
before and after learning. Before learning (left), the network does
not necessarily implement stable competition between the differ-
ent excitatory populations. Instead, it may end up in an oscillating
state or amplify the wrong winning unit. However, after training
(Figure 7, right), the network always converges to a stable state
representing the winner of the competition. Furthermore, it can

be seen that the inhibitory populations perfectly synchronize, as
described in section 2.4.4.

The change of weights is illustrated in Figure 8: Initially (top),
all weights were set to random values in the range [0.3, 1.8].
Since all populations receive the same average input, the weight
matrices should converge to symmetric states. For the specific
set of learning rule parameters we chose in this example, and
the specific input rates described above, wE→ E converges to a
value around 1, which means that the network is at the edge of
the transition between hard and soft WTA behavior. The weights
wE→ I, connecting excitatory to inhibitory units, converge to val-
ues around 2. Furthermore, the weights wI→ E, which connect
inhibitory to excitatory units all converge to very similar val-
ues (around 1.1), such that inhibition is synchronized across the
whole network. Note that not all connections between excitatory
populations have converged to the same value. This is because as
soon as the network is close to the hard WTA regime, some con-
nections cannot change anymore as only one excitatory unit is
active at a time, and the weight change is zero if either the pre- or
the post-synaptic unit is inactive.

3. DISCUSSION
We have shown how neural circuits of excitatory and inhibitory
neurons can self-organize to implement stable WTA competi-
tion. This is achieved through an interplay of excitatory and
inhibitory plasticity mechanisms operating on all synapses of the
network. As a key result, we provide analytical constraints on
the learning rule parameters, which guarantee emergence of the
desired network function.

FIGURE 7 | Simulated evolution of the plastic network. 1000 input
patterns were applied for 2 s each. Two local subsystems, consisting of two
excitatory units and one inhibitory unit each, are coupled via all-to-all
excitatory connections, while inhibitory feedback is provided only locally. The
first three rows show the populations of the first group, where the first two
rows correspond to the two excitatory populations, and the third row shows
the activation of the inhibitory population. The last three rows show the
activations of the second group. The left panel shows the first 20 s after
initialization (before learning), while the right panel shows the network
activity during the last 20 s (after learning). Solid blue and orange lines
correspond to the firing rate of the respective population, whereby the

highlighted segments (orange) mark the winner among the four excitatory
populations. The input given to the individual units is plotted as a dotted black
or solid magenta line, where the highlighted segments (magenta) correspond
to the strongest signal among the four. Thus, the network operates correctly
if magenta and orange lines are aligned (the one population that receives the
strongest input wins the competition), while misaligned lines (the population
receiving the strongest input does not win the competition) indicate incorrect
operation. Initially, the network frequently selects the wrong winning unit and
even starts oscillating for some input patterns (around 18 s). After training
(right), the network converges to a stable state with only the winning unit
active for different input patterns.
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FIGURE 8 | Evolution of the connectivity matrices. The top panels show
the (initially random) weight matrices, and the lower panels show the final
weight matrices after 2000 s of simulated training time. The left panel shows
the connections between excitatory populations. The panel in the middle
represents the connections from inhibitory to excitatory populations. Note
that some inhibitory connections are set to zero as inhibitory units can only
project to targets within their own local group, according to our model. The
right panel shows the connections from excitatory to inhibitory units. Here,
connections from the same source converge to the same value, leading to
perfect synchronization of the two inhibitory units. The (rounded) weight
values are displayed on top of the image.

Although constraints on the weights for stable competition in
recurrent excitatory-inhibitory circuits have been derived before
(Xie et al., 2002; Hahnloser et al., 2003; Rutishauser and Douglas,
2009; Rutishauser et al., 2012), it has remained unclear how
a network can self-tune its synaptic weights to comply with
these conditions. The presented model achieves this and pro-
vides important insights regarding the mechanisms responsible
for this self-tuning. Our results predict a relationship between
the maximum synaptic weight wmax in a circuit and the learn-
ing rule parameter Aexc, which controls the contribution of
the presynaptic rate to the shifting of the threshold between
potentiation and depression. Furthermore, our model predicts a
relationship between the network gain and the amount of excita-
tory input into the circuit during development or training (see
Figure 6), indicating that high gain (amplification) should be
expected for weak inputs, and low gain for strong inputs, which
is in accordance with common assumptions about homeostasic
mechanisms (Turrigiano, 2011).

From a developmental perspective, the self-configuration of
functional WTA circuits through plasticity has the advantage of
requiring a smaller number of parameters to be encoded geneti-
cally to obtain stable and functional network structures (Zubler
et al., 2013). With self-tuning mechanisms like the ones sug-
gested here, only the parameters for the two different types of
plasticity in excitatory and inhibitory synapses, rather than the

strengths of all synaptic connections, need to be specified, and
the network can adapt to the statistics of inputs it receives from
its environment and from other brain regions.

Besides guaranteeing stability, it is also desirable to control
functional properties of the circuit, such as its gain. Experimental
data suggests that cortical recurrent circuits often operate in a
high gain regime and with strong (larger than unity) recurrent
excitatory feedback (Douglas et al., 1995). The strength of this
feedback determines whether the WTA is “soft” (multiple excita-
tory units can be active at the same time) or “hard” (only one unit
can be active at a time, i.e., the network operates in a nonlinear
regime) (Rutishauser et al., 2011). Many interesting computa-
tions that can be realized with these types of networks rely on
the non-linearities introduced by such strong recurrent excita-
tion (e.g., Vapnik, 2000), therefore it is important that similar
conditions can be achieved with our model. In addition, various
forms of learning rely on balanced WTA competition (Masquelier
et al., 2009; Habenschuss et al., 2012; Nessler et al., 2013), which
requires an adaptation of the gain as the excitatory connections
into the circuit undergo plasticity. In our network, the resulting
network gain is a function of both the learning rule parameters
and the strength of the training input signals. As a consequence,
our system can switch between high and low gain, and hard
or soft WTA behavior simply by receiving input stimuli of dif-
ferent (average) strengths. Thus, different parts of the network
might develop into different functional modules, depending on
the inputs they receive.

Our model does not specifically address the question of how
the network structure, which leads to our results (essentially ran-
dom all-to-all connectivity) might develop in the first place. For
instance, if certain long-range connections between multiple sub-
circuits do not exist initially, they will never be established by
our model, and the units of the different subcircuits can never
compete. On the one hand, this might be a desired effect, e.g.,
to construct hierarchies or asymmetric structures for competi-
tion, in which some parts of the network are able to suppress
other parts, but not vice-versa. On the other hand, structural
plasticity could account for the creation of missing synaptic con-
nections, or the removal of ineffective connections if the desired
stable function cannot be achieved with the anatomical sub-
strate. There is increasing evidence for activity dependent synapse
formation and elimination in both juvenile and adult brains
(Butz et al., 2009), in particular a coordinated restructuring of
inhibitory and excitatory synapses for functional reorganization
(Chen and Nedivi, 2013). Another approach, recently investigated
in simulations by Bauer (2013), is to set up the right network
topology by developmental self-construction processes in a first
step, and the tune the network using synaptic plasticity in a
second step.

Our model is based on a weight-dependent variation of the
learning rule proposed by Pfister and Gerstner (2006), but this is
by no means the only learning rule capable of the self-calibration
effect we describe in this article. By changing its parametrization,
the rule can subsume a wide variety of commonly used Hebbian,
STDP-like, and homeostatic plasticity mechanisms. Indeed, fur-
ther experiments, which are not presented in this manuscript,
indicate that a whole class of learning rules with depression at
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low and potentiation at high postsynaptic firing rates would lead
to similar results. We chose the triplet rule to demonstrate our
findings as its parameters have been mapped to experiments,
and also because it can be written in an analytically tractable
form. We have assumed here a specific type of inhibitory plas-
ticity, which analytically is of the same form as the simultane-
ous excitatory plasticity, but uses different parameters. With the
parameters we chose for the inhibitory plasticity rule, we obtain
a form that is very similar to the one proposed by Vogels et al.
(2011). By introducing inhibitory plasticity it is no longer neces-
sary to make common but biologically unrealistic assumptions,
like pre-specified constant and uniform inhibitory connection
strengths (Oster et al., 2009), or more abstract forms of sum-
ming up the excitatory activity in the circuit (Jug et al., 2012;
Nessler et al., 2013), because inhibitory weights will automat-
ically converge toward stable regions. Inhibitory plasticity has
received more attention recently with the introduction of new
measurement techniques, and has revealed a great diversity of
plasticity mechanisms, in line with the diversity of inhibitory
cell types (Kullmann and Lamsa, 2011; Kullmann et al., 2012).
Our model involves only a single inhibitory population per local
sub-circuit, which interacts with all local excitatory units. Not
only is this a common assumption in most previous models,
and greatly simplifies the analysis, but also is in accordance with
anatomical and electrophysiological results of relatively unspe-
cific inhibitory activity in sensory cortical areas (Kerlin et al.,
2010; Bock et al., 2011). However, recent studies have shown more
complex interactions of different inhibitory cell types (Pfeffer
et al., 2013), making models based on diverse cell types with
different properties an intriguing target for future studies. The
assumption of a common inhibitory pool that connects to all exci-
tatory units is justified for local circuits, but violates anatomical
constraints on the length of inhibitory axons if interacting pop-
ulations are far apart (Binzegger et al., 2005). Our results easily
generalize to the case of distributed inhibition, by adapting the
model of Rutishauser et al. (2012) (see Figure 1E). Our contri-
bution is to provide the first learning theory for these types of
circuits.

Since our model is purely rate-based, a logical next step is
to investigate how it translates into the spiking neural network
domain. Establishing similar constraints on spike-based learn-
ing rules that enable stable WTA competition remains an open
problem for future research, although Chen et al. (2013) have
shown empirically that WTA behavior in a circuit with topo-
logically ordered input is possible under certain restrictions on
initial synapse strengths, and in the presence of STDP and short-
term plasticity. Spiking WTA circuits can potentially utilize the
richer temporal dynamics of spike trains in the sense that the
order of spikes and spike-spike correlations have an effect on the
connectivity.

Potential practical applications of our model, and future
spiking extensions, lie in neuromorphic VLSI circuits, which
have to deal with the problem of device mismatch (Indiveri
et al., 2011), and can thus not be precisely configured a pri-
ori. Our model could provide a means for the circuits to
self-tune and autonomously adapt to the peculiarities of the
hardware.

4. MATERIALS AND METHODS
4.1. DERIVATION OF THE PLASTICITY MECHANISM
The learning rule given by Equation (3) is based on the triplet
STDP rule by Pfister and Gerstner (2006). Since we are interested
in the rate dynamics, we use the mean-field approximation of this
rule, which is provided by the authors and leads to an expected
weight change of

ẇ = xprexpost
(

A+2 τ+ − A−2 τ− + A+3 τ+τyxpost

−A−3 τ−τxxpre
)

, (13)

where xpre, xpost are the pre- and postsynaptic activations and
A±2 , A±3 , τ±, τx,y are parameters that determine the amplitude of
weight changes in the triplet STDP model. All of the parameters
are assumed to be positive. Through a substitution of constants
given by

τ 2
s := A+3 τ+τy, (14)

�w :=
(

A−2 τ− − A+2 τ+
)

/τ 2
s , (15)

Aw := A−3 τ−τx/τ
2
s , (16)

the rule in Equation (13) can be written in the simpler form

ẇ = τ 2
s xprexpost

(

xpost − (�w + Awxpre)
)

, (17)

where �w is in units of a firing rate and Aw is a unitless constant.
The terms in parentheses on the right of Equation (17) can be
divided into a positive (LTP) part that depends on xpost, and a
negative (LTD) part that depends on xpre. In order to constrain
the range of weights, we add weight-dependent terms m+(w) and
m−(w) to the two parts of the rule, which yields

ẇ = τ 2
s xprexpost

(

xpostm+(w)− (�w + Awxpre)m−(w)
)

. (18)

Throughout this manuscript, we use a simple, linear weight
dependence m+ = wmax − w and m− = w, which effectively lim-
its the possible values of weights to the interval [0, wmax]. We
chose this form, which is described by a single parameter, for
reasons of analytical tractability and because it is consistent with
experimental findings (Gütig et al., 2003). In Pfister and Gerstner
(2006), values for the parameters τx,y, τ±, and A±2,3 of the rule
Equation (13) were determined from fits to experimental mea-
surements in pyramidal cells in visual cortex (see Table 1) and
hippocampal cultures (Bi and Poo, 1998, 2001; Sjöström et al.,
2001; Wang et al., 2005). We used these values to calculate plau-
sible values for �w, Aw, and τs using Equations (14) to (16). In
our simulations, we use parameters very similar to the exper-
imentally derived values in Table 1. Specifically, for inhibitory
connections we use parameters very similar to the ones found
from fits of experimental data to the triplet STDP model with
all-to-all spike interactions. On the other hand, we choose param-
eters for the excitatory plasticity rules which are close to fits of the
triplet STDP rule with nearest-neighbor spike interactions. The
parameters that were used in software simulations and to obtain
most of the numeric results are listed in Table 2. Note that for the
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Table 2 | Model parameters used in software simulation.

Parameter Value Description

�exc 6 Hz Learning rule parameter

�inh 18 Hz Learning rule parameter

Aexc 2 Learning rule parameter

wmax 4 Maximum weight value

τ2
s,exc 3.6 ms2 Exc. connection learning rate parameter

τ2
s,inh 1.3 ms2 Inh. connection learning rate parameter

τexc 5 ms Exc. population time constant

τinh 1 ms Inh. population time constant

weight-dependent rule in Equation (18) we have assumed that the
parameter �w influences only the LTD part. According to the def-
inition in Equation (15), this is the case if A−2 � A+2 , or �w ≈
A−2 τ−/τs, respectively. Otherwise �w contains both a potentiat-
ing (A+2 ) and a depressing (A−2 ) component, and Equation (18)
should be replaced with a more complex expression of the form
of Equation (13).

4.2. DERIVATION OF THE STABILITY CRITERIA
In section 2.4, we outlined how the fixed points and stability cri-
teria for the WTA system can be found. In this section, we provide
the detailed derivations that led to these results.

As described in section 2.4, we first consider a simplified sys-
tem of one excitatory and one inhibitory population, xE and xI,
which yield an activation vector x = (xE, xI)

T . They are cou-

pled recurrently through a weight matrix W =
[

wE→ E wI→ E

wE→ I 0

]

,

receive external inputs Iext(t) with weights μE and μI respectively,
and have thresholds TE, TI. Assuming that both units are active,
i.e., their total synaptic input is larger than their thresholds, their
dynamics are described by

τexcẋE = −xE + wE→ ExE − wI→ ExI + μEIext − TE, (19)

τinhẋI = −xI + wE→ IxE + μIIext − TI, (20)

where τexc, τinh are the population time constants. The fixed
points of the activations can be found by setting ẋE = ẋI = 0. If
we assume, for simplicity, that TE = TI = 0 this yields the fixed
points

x∗E = �Iext (μE − wI→ EμI) , (21)

x∗I = �Iext (wE→ IμE − (wE→ E − 1)μI) . (22)

where

� = (1− wE→ E + wE→ IwI→ E)−1 (23)

is the network gain. Furthermore, we can make the assump-
tion that μI = 0 and μE = 1, effectively disabling the external
input to the inhibitory population. This reduces Equations (21)
and (22) to

x∗E = �Iext, (24)

x∗I = �wE→ IIext. (25)

These simplifications do not change the results of our
analysis qualitatively and can be made without loss of
generality.

Approximating xpre and xpost by their fixed point activities
(as described in section 2.4), and setting ẇ = 0 in the learning
rule Equation (18), the fixed point of the weight dynamics (with
w > 0) takes the form

w∗ = wmaxx∗post

�w + Awx∗pre + x∗post
. (26)

Note that this fixed point in weight space always exists for any
given xpre and xpost, and is stable for the weight dependence
m+(w) = wmax − w; m−(w) = w that we chose in Equation (18).
In fact, this is true for all choices of the weight dependence satis-
fying ∂m+/∂w < 0 and ∂m−/∂w > 0, as can be shown by means
of a linear stability analysis.

We now derive the fixed points for the weights wE→ E, wE→ I,
and wI→ E of the simplified system. For wE→ E, Equation (26)
can be simplified by noting that x∗pre = x∗post = x∗E, leading to
an expression that depends on the activation of the excitatory
population x∗E:

w∗E→ E =
wmax

�exc/x∗E + Aexc + 1
. (27)

Similarly, we can compute the fixed point of wE→ I as a func-
tion of x∗E, noting that x∗post = x∗I = wE→ Ix∗E [see Equations (24)
and (25)]:

w∗E→ I = wmax −�exc/x∗ − Aexc. (28)

Finally, using the relationship x∗I = wE→ Ix∗E from Equations
(24) and (25), and the previously computed value of wE→ I

from Equation (28) with the fixed point equation for wI→ E, we
obtain

w∗I→ E =
wmax

�inh/x∗E − Ainh
(

�exc/x∗E + (Aexc − wmax)
)+ 1

.(29)

In the following, we set Ainh = 0, as described in section 2.3.
An exact solution for the activation x∗E at the fixed point of
the system is obtained by inserting w∗E→ E, w∗E→ I, and w∗I→ E
into Equation (24), and solving the resulting fixed-point prob-
lem x∗E = f (x∗E). This corresponds to finding the roots of the third
order polynomial

P(x) = a0 + a1x + a2x2 + a3x3 = 0 (30)

with coefficients
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a0 = �exc�inhIext, (31)

a1 = −�exc�inh +�excIext +�inhIext +�inhAexcIext

+�2
excwmax, (32)

a2 = −�exc −�inh −�inhAexc + Iext + AexcIext +�excwmax

+�inhwmax + 2�excAexcwmax −�excw2
max, (33)

a3 = −1− Aexc + wmax + Aexcwmax + A2
excwmax − w2

max

−Aexcw2
max. (34)

The activation of the excitatory population xE at the fixed point is
then given by the positive, real root of Equation (30).

The fixed point of the activation x∗E, and thus the fixed points
of the weights, are monotonic functions of the training input
strength Iext (see Figure 3, for example). In the following, we
investigate the behavior of the fixed point weight values for very
large and very small external inputs during training, respectively.
This helps us to find conditions on the learning rule param-
eters that lead to stable dynamics (of the network activation)
for any training input strength. We define a positive constant
b := �exc/x∗E, and plug it into Equations (27)–(29). This yields

w∗E→ E =
wmax

Aexc + b+ 1
, (35)

w∗E→ I = wmax − Aexc − b, (36)

w∗I→ E =
wmax�exc

b �inh +�exc
. (37)

Inserting Equations (35)–(37) into the condition for contrac-
tion of the activation dynamics given by (6), we can describe the
condition in terms of the learning rule parameters, and a new
constant �̃ := �exc/(�exc + b �inh):

1

(1+ Aexc + b)
< �̃ < 1, (38)

(Aexc + b)

(

1+ 1

�̃(1+ Aexc + b)2 − 1

)

< wmax

< 2(1+ Aexc + b),(39)

Assuming Aexc + b� 1 (note that we can always set Aexc to a
sufficiently large value), the conditions reduce to

0 < �̃ < 1, (40)

Aexc + b < wmax < 2(1+ Aexc + b), (41)

whereby the first condition can be dropped, since �̃ ∈ [0, 1]
always holds. The second condition still depends on b, and there-
fore on x∗E. We will illustrate how to eliminate this dependence
under very weak assumptions. First, in the limit of very large
inputs x∗E also takes very large values, leading to b→ 0 for Iext →
∞. In that case, condition (41) becomes independent of b and can
be written as

Aexc < wmax < 2(1+ Aexc). (42)

On the other hand, in the case of very small inputs we have to
include the effects of b, as b can in principle take very large values.
In typical scenarios the output of the network can be assumed
to be roughly of the order of its input. If �exc is chosen to be of
the same order, then b ≈ 1. For any finite b, we can express the
stability condition that is valid for all inputs as the intersection of
the conditions for large inputs, condition (42), with the one for
arbitrarily small inputs, condition (41), leading to

Aexc + b < wmax < 2(1+ Aexc). (43)

Note that this condition can be met for any finite b by choos-
ing sufficiently large Aexc and wmax. However, as discussed above,
choices of the parameter b of the order 1 should be sufficient for
typical scenarios, whereas higher values would guarantee stable
dynamics for very low input strengths (e.g., Iext 
 �exc). This is
illustrated in Figure 5, where the exact regions of stability as a
function of wmax and Aexc are shown for different training input
strengths, together with the sufficient conditions given by (43).
In practice, a good starting point for picking a value b for which
the stability conditions should hold is to determine the minimum
non-zero input Imin encountered during training for which this
condition should hold, and setting b = �exc/x∗E,min, where x∗E,min
is the fixed point activation for Iext = Imin.

4.3. EXTENSION TO MULTIPLE UNITS
In this section, we illustrate how multiple subunits, as analyzed in
the previous section, can be combined to larger WTA networks
with distributed inhibition. For the sake of simplicity, we only
consider the unidirectional case, where a subunit x = (xE, xI)
projects onto another subunit x′ = (x′E, x′I) via excitatory con-
nections wE→ E′ and wE→ I′ . The bidirectional case x↔ x′ can
be analyzed analogously. If xE and x′E receive the same input, the
response of x′E should be weaker, such that activation of xE causes
suppression of x′E rather than excitation. This means that

w∗E→ E′ < w∗E→ I′ w
∗
I′ → E′ (44)

must hold. We assume that both subsystems have been trained on
inputs of the same average strength, such that their local connec-
tions have converged to the same weights, i.e., w∗E′ → I′ = w∗E→ I
and w∗I′ → E′ = w∗I→ E. Furthermore, we assume that condition
(44) is true initially. This can be guaranteed by setting the ini-
tial value of wE→ E′ to a sufficiently small number. Our task then
is to show that condition (44) remains true for all time. The
values of w∗E′ → I′ and w∗I′ → E′ , or w∗E→ I and w∗I→ E respectively,
are described by Equations (36) and (37). On the other hand,
according to Equation (26), the value of w∗E→ E′ is given by

w∗E→ E′ =
wmaxx′∗E

�exc + Aexcx∗E + x′∗E
. (45)

Plugging all this into condition (44) and simplifying the expres-
sion, leads to the condition

wmax > Aexc + b+ x′E
AexcxE + x′E + �

, (46)
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which can be replaced by the sufficient condition

wmax > Aexc + b+ 1, (47)

that guarantees x∗E′ < x∗E if both excitatory populations receive
the same input. On the other hand, this result implies
w∗E→ E′ < w∗E′ → E′ , which is required for stable network dynamics
(Rutishauser et al., 2012), and can be verified by comparing the
respective fixed point equations

w∗E→ E′ = x′E/
(

�exc + AexcxE + x′E
)

, (48)

w∗E′ → E′ = x′E/
(

�exc + Aexcx′E + x′E
)

. (49)

4.4. SOFTWARE SIMULATION
Software simulations of our model were implemented using cus-
tom Python code based on the “NumPy” and “Dana” packages,
and run on a Linux workstation. Numerical integration of the
system dynamics was carried out using the forward Euler method
with a 1 ms timestep.
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The anatomical connectivity among neurons has been experimentally found to be
largely non-random across brain areas. This means that certain connectivity motifs
occur at a higher frequency than would be expected by chance. Of particular interest,
short-term synaptic plasticity properties were found to colocalize with specific motifs:
an over-expression of bidirectional motifs has been found in neuronal pairs where
short-term facilitation dominates synaptic transmission among the neurons, whereas
an over-expression of unidirectional motifs has been observed in neuronal pairs where
short-term depression dominates. In previous work we found that, given a network
with fixed short-term properties, the interaction between short- and long-term plasticity
of synaptic transmission is sufficient for the emergence of specific motifs. Here, we
introduce an error-driven learning mechanism for short-term plasticity that may explain how
such observed correspondences develop from randomly initialized dynamic synapses. By
allowing synapses to change their properties, neurons are able to adapt their own activity
depending on an error signal. This results in more rich dynamics and also, provided that the
learning mechanism is target-specific, leads to specialized groups of synapses projecting
onto functionally different targets, qualitatively replicating the experimental results of
Wang and collaborators.

Keywords: short-term plasticity, long-term plasticity, learning, rate code, motifs, target-specificity

1. INTRODUCTION
It is the current belief that experiences and memories are regis-
tered in long-term stable synaptic changes. Long-term plasticity,
and in particular Hebbian learning or Spike-Timing-Dependent-
Plasticity (STDP), is a form of unsupervised learning that cap-
tures correlations in the neuronal input. Hence, their involvement
in, for instance, the development of receptive fields (e.g., Song
et al., 2000; Clopath et al., 2010) or memory and associations is
long-standing knowledge. However, the variety of different long-
term plasticity rules (Markram et al., 2011), indicates that the
precise synaptic prescriptions of long-term plasticity mechanisms
remain unclear.

On the contrary, short-term plasticity (STP) is well-described
(Varela et al., 1997; Markram et al., 1998b; Le Be’ and Markram,
2006; Rinaldi et al., 2008; Testa-Silva et al., 2012; Costa et al., 2013;
Romani et al., 2013) in the context of specific models (Tsodyks
and Markram, 1997; Hennig, 2013; Rotman and Klyachko, 2013).
Its role in neuronal computation is assumed to be related to tem-
poral processing, see for instance (Natschläger et al., 2001) or
the work by Carvalho and Buonomano (2011), where STP is
demonstrated to enhance the discrimination ability of a single

neuron (i.e., a tempotron, see Gütig and Sompolinsky, 2006),
when presented with forward and reverse patterns. Synapses
with STP are also optimal estimators of presynaptic membrane
potentials (Pfister et al., 2010).

The investigation of the brain wiring diagram known as con-
nectomics has recently made spectacular progress and generated
excitement for its perspectives (Seung, 2009). Novel discover-
ies in molecular biology (Wickersham et al., 2007; Zhang et al.,
2007; Lichtman et al., 2008), neuroanatomical methods (Denk
and Horstmann, 2004; Chklovskii et al., 2010), electrophysiol-
ogy (Song et al., 2005; Hai et al., 2010; Perin et al., 2011), and
imaging (Friston, 2011; Minderer et al., 2012; Wedeen et al., 2012)
have pushed forward the technological limits for ultimate access
to neuronal connectivity. The comprehension of this level of
organization of the brain (Kandell et al., 2008) is pivotal to under-
standing the richness of its high-level cognitive, computational
and adaptive properties, as well as its dysfunctions.

At the microcircuit level (Binzegger and Douglas, 2004;
Grillner et al., 2005; Silberberg et al., 2005; Douglas and Martin,
2007a,b), the non-random features of cortical connectivity have
recently raised a lot of interest (Song et al., 2005; Perin et al.,
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2011). The occurrence of stereotypical connectivity motifs was
experimentally demonstrated and, in some cases, accompanied
by physiological information on neuronal and synaptic proper-
ties (Song et al., 2005; Wang et al., 2006; Silberberg and Markram,
2007; Perin et al., 2011), on activity-dependent short-term and
long-term plasticity (Buonomano and Merzenich, 1998) and
rewiring (Chklovskii et al., 2004; Le Be’ and Markram, 2006).
Recent experimental findings obtained in young ferret cortices
(Wang et al., 2006) indicate that short-term facilitation and
depression correlate to specific connectivity motifs: neurons con-
nected by synapses exhibiting short-term facilitation form pre-
dominantly reciprocal (bidirectional) motifs; neurons connected
by synapses exhibiting short-term depression form unidirectional
motifs. Interestingly, the same overexpression of connectivity
motifs has been observed in another brain area, i.e., the excitatory
microcircuitry of the olfactory bulb (Pignatelli, 2009).

Earlier work by Vasilaki and Giugliano (2012, 2014) attempted
to shed light on this correlation between STP and the observed
wiring diagram configuration. They demonstrate that all facilitat-
ing or all depressing networks, upon receiving the same wave-like
stimulation, give rise to the experimentally observed motifs: bidi-
rectional for facilitating synapses and unidirectional for depress-
ing synapses. This was explained both in the context of mean field
analysis and microscopic simulations as a frequency-dependent
effect. This is a simple consequence of the type of input (wave
like) and the choice of the STDP triplet rule (Pfister and Gerstner,
2006). Differently from the classical pair rule, the triplet rule dis-
plays a frequency-dependent behavior, which can explain some
experimental results (Sjöström et al., 2001): at low frequencies the
rule reveals the classic STDP and, given a wave-like input, it results
in unidirectional connectivity (Clopath et al., 2010; Vasilaki and
Giugliano, 2014). At high frequencies, however, it reveals “classic
Hebb” behavior: neurons that fire together, wire together. Hence,
the low firing network develops unidirectional connectivity, while
the high firing network develops bidirectional connectivity; for
details see (Vasilaki and Giugliano, 2014). However, the observed
synaptic development was not associated to any particular type of
learning, but was explored as the emerging structure upon receiv-
ing a wave like input: what the network learned per se in that
context was not clear.

With the present work we aim to complement and extend on
Vasilaki and Giugliano (2012, 2014). We define a learning model
for STP through which a population of neurons can modify its
synapses in order to adapt its own activity and then fulfill a
given time-varying task. The key idea comes from an optimiza-
tion perspective: neurons that are able to modify their synapses,
for instance making depressing synapses more and more depress-
ing or even turning them into facilitating ones, would allow for
much more flexibility and efficacy in signal transmission. A simi-
lar argument can be found in Markram et al. (1998a), whereas for
earlier but different mechanisms of STP optimization or learn-
ing we redirect to Natschläger et al. (2001) and Carvalho and
Buonomano (2011).

Then, we construct a typical inverted associative learning
problem (Asaad et al., 1998; Fusi et al., 2007; Vasilaki et al., 2009b)
where neurons have to learn to respond with high or low frequen-
cies, when presented with the same wave-like input signal. We use

this paradigm to show the potential of our model. In particular,
not only do we provide an explanation for the correspondence
motifs-synaptic properties within the context of learning both
STP and STDP (triplet rule) but we also qualitatively capture,
for instance, the heterogeneity in synaptic properties observed by
Wang et al. (2006).

Moreover, having defined the learning model as a target-
specific mechanism, we are able to obtain variability in the
short-term profile of synapses innervating functionally different
targets. Finally, we show that the learning model can be reduced to
a minimal model where only the time constant of recovery from
depression τrec needs to be learnt in order to obtain neurons firing
at high or low frequency. Comparing this finding with the results
from Carvalho and Buonomano (2011), we suggest that differ-
ent parameters of the model describing STP might be related to
different types of coding.

2. MATERIALS AND METHODS
2.1. SINGLE NEURON MODEL
Each neuron is modeled as in Carvalho and Buonomano (2011):
the sub-threshold dynamics of the electrical potential Vi of the
generic neuron i are described by the equation:

dVi

dt
= −gLVi +

N
∑

j= 1, j �= i

gij (Erev − Vi) , (1)

where Erev = 30 mV is the reversal potential and gL = 0.1 μS is
the leak conductance - both quantities are equal and fixed for
all neurons.

{

gij
}

i,j=1,...N is the matrix of conductances and the

generic element gij represents the conductance of the synapse
going from neuron j to neuron i. Upon arrival of a presynaptic
action potential elicited by neuron j, each of the conductances gij

with i = 1, . . . N, i �= j increases by a quantity wij, called effec-
tive synaptic efficacy, and decays exponentially back to zero with
a fixed time constant τg = 10 ms, equal for all synapses:

dgij

dt
= − gij

τg
+
∑

f

wij δ
(

t − t
f
j

)

, (2)

where t
f
j is the f -th spike emitted by neuron j. The effective

synaptic efficacy depends on both presynaptic and postsynaptic
factors:

wij = rijuijAij , (3)

where rij and uij are the presynaptic variables representing depres-
sion and facilitation in the STP model (see Subsection 2.2) and Aij

is the postsynaptic variable for the maximum synaptic strength
(or absolute efficacy), which represents the maximum synaptic
response (see Subsection 2.7). If Vi(t) ≥ 1 mV a spike is elicited
by neuron i and Vi(t + dt) is set to 0 for the next tref = 10 ms
(refractory period).

2.2. STP MODEL
Short-term synaptic plasticity is described at each synapse
through the evolution of two variables, rij and uij, representing
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the degree of depression and facilitation of the synapse connect-
ing neuron j to neuron i. The time course of rij and uij is given
by the following kinetic equations (Markram et al., 1998b; Maass
and Markram, 2002):

drij

dt
= 1− rij

τrecij

−
N
∑

j= 1, j �= i

∑

f

rij uij δ
(

t − t
f
j

)

(4)

duij

dt
= Uij − uij

τfacilij

+
N
∑

j= 1, j �= i

∑

f

Uij
(

1− uij
)

δ
(

t − t
f
j

)

. (5)

Uij, τrecij and τfacilij are the parameters of the model and they rep-
resent, respectively: fraction of resources used by the first action
potential, time constant of recovery from depression and time
constant of synaptic facilitation. A learning rule for STP has
to allow changes to (at least one of) these parameters. At each
synapse, the product of rij and uij determines the presynaptic
efficacy.

2.3. STDP MODEL
We use the triplet learning rule defined by Pfister and Gerstner
(2006) with hard bounds: maximum weights can only vary in the
interval [Amin, Amax]. In this model, each neuron has two presy-
naptic variables m1, m2 and two postsynaptic variables o1, o2. In
the absence of any activity, these variables exponentially decay
toward zero with different time constants:

τm1

dm1
i

dt
= −m1

i τm2

dm2
i

dt
= −m2

i

τo1

do1
i

dt
= −o1

i τo2

do2
i

dt
= −o2

i (6)

whereas when the neuron elicits a spike they increase by 1:

m1
i → m1

i + 1 m2
i → m2

i + 1 o1
i → o1

i + 1 o2
i → o2

i + 1 . (7)

Then, assuming that neuron i fires a spike, the STDP
implementation of the triplet rule can be written as follows:

{

�ASTDP
ji = −γ o1

j (t)
[

A−2 + A−3 m2
i (t − ε)

]

�ASTDP
ij = +γ m1

j (t)
[

A+2 + A+3 o2
i (t − ε)

] (8)

where γ is the learning rate, ε is an infinitesimal time constant to
ensure that the values of m2

i and o2
i used are the ones right before

the update due to the spike of neuron i, and Aij is the maximum
strength of the connection from j to i. Values of STDP ampli-
tudes are taken from Pfister and Gerstner (2006) and are listed
in Table 1.

In order to set Amin we note that if the maximum weights con-
necting the input neurons to a specific output neuron all collapse
to zero in the low firing rate regime, then, in the subsequent high
firing rate regime, inputs were not able to “wake up” this neu-
ron: it remained almost silent all the time. To avoid this, we set
Amin = 10−3. With such a small value we can still apply the sym-
metry measure (Esposito et al., 2014), which assumes Amin = 0,
see Subsection 2.9, to evaluate the symmetry of the network.

Table 1 | Parameters used in simulations.

Symbol Description Value

N Number of total neurons {40, 80}
Nin Number of input neurons {30, 60}
Nout Number of output neurons 10

Erev Reversal potential 30 mV

gL Decay constant of neuron potential 0.1 μ S

τg Decay constant of synaptic conductances 10 ms

Vthr Threshold potential for spike emission 1 mV

tref Refractory period 10 ms

νin Input firing rate 10 Hz

νtarg Output target firing rate {2, 20}Hz

τmin
facil Facilitation time constant - minimum value 1 ms

τmax
facil Facilitation time constant - maximum value 000 ms

τmin
rec Depression time constant - minimum value 100 ms

τmax
rec Depression time constant - maximum value 900 ms

Umin Synaptic utilization - minimum value 0.05

Umax Synaptic utilization - maximum value 0.95

η̄ Fixed learning rate for U, τrec , τfacil 0.1

A+2 Amplitude of maximum weights change - pair term
in Long-Term Potentiation

4.6×10−3

A+3 Amplitude of maximum weights change - triplet
term in Long-Term Potentiation

9.1×10−3

A−2 Amplitude of maximum weights change - pair term
in Long-Term Depression

3.0×10−3

A−3 Amplitude of maximum weights change - triplet
term in Long-Term Depression

7.5×10−9

τm1 Decay constant of presynaptic indicator m1 16.8 ms

τm2 Decay constant of presynaptic indicator m2 575 ms

τo1 Decay constant of postsynaptic indicator o1 33.7 ms

τo2 Decay constant of postsynaptic indicator o2 47 ms

Amin Lower bound for maximum synaptic weights 0.001

Amax Higher bound for maximum synaptic weights 1

γ Learning rate for STDP and for STP-dependent �w {1, 2}
dt Discretization time step 1 ms

STDP parameters are as in the nearest-spike triplet-model, described in Pfister

and Gerstner (2006).

2.4. LEARNING TASK
Neurons are divided into different populations, each of them is
required to fire at one of the two target firing rates: 30 Hz (high)
or 5 Hz (low). To allow the populations to reach their target rate,
both short- and long-term plasticity parameters are adapted via
error-driven learning (see Subsection 2.6) and, in addition, the
maximum synaptic strength is shaped by the STDP triplet rule
(see Subsection 2.3).

2.5. INPUT SIGNAL AND INPUT NEURONS
In all simulations, the input signal is delivered only to a subset of
neurons in the network, which we call input neurons Nin. Each of
these neurons receives a pulse-like stimulus with a fixed frequency
νin = 10 Hz, whose amplitude (2 mV) is chosen to always elicit an
action potential in the corresponding input neuron. The stimulus
delivery, however, is not synchronous across the input neurons,
but it follows a sequential protocol: neurons are stimulated one
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after another with a fixed time delay tdelay and in a fixed order. We

choose tdelay = (νin Nin)
−1 so that neurons that belong to input

cyclically receive a stimulus. To further explain this, one may
imagine labeling the neurons depending on the order they receive
the stimulus, and therefore on the firing order, then have the fir-
ing pattern N1, N2, N3, . . . , NNin , N1, N2, N3, . . . , NNin , N1, . . . ,
with each pair of adjacent spikes being separated by a time inter-
val of tdelay. We can think of the Nin neurons as if they are
organized in a ring and the stimulus as a cyclically traveling
wave across this ring. To include the effect of noise, a ran-
dom Gaussian variable with zero mean and standard deviation
equal to 0.1 tdelay is added to the firing times. The magnitude
of the standard deviation is such that there is no inversion in
the firing order. With this construction, the stimulus delivered
to input neurons can be thought as generated by an external
(not explicitly simulated) population of neurons where each
external neuron projects only onto one corresponding input
neuron.

Note that, by construction, in the absence of any other signal,
the firing pattern of the input neurons reflects that of the stim-
ulus. This means that the external signal implicitly fixes a level
of minimum activation for the Nin neurons: their firing rate can-
not be smaller than νin. Due to this constraint, the input neurons,
despite being free to change their parameters according to STP
learning rules (see Subsection 2.6), are not totally free to regulate
their firing activity, which may prevent them from effectively ful-
filling the task. The rest of the neurons, instead, are totally free
to adapt their activity and are called output neurons. For these
reasons, we read out the interesting quantities only from out-
put neurons (we refer to Results and to Figures 1A, 4A for more
details on the architecture).

2.6. ERROR-DRIVEN LEARNING RULE FOR STP
The task can be formulated as an optimization problem where
neurons regulate their own activity in order to minimize the
objective function defined as:

E =
(

νtarg − 〈ν〉
νlim

)2

, (9)

where νlim is the maximum allowed frequency due to the
refractory period (νlim = 1/tref ), νtarg is the target firing rate and
〈ν〉 is the mean firing rate across a single population. To calculate
firing rates of single neurons νi we use an exponential moving
average with time constant τν = 1 s:

τν

dνi

dt
= −νi + ν̂i (10)

where ν̂i is the current firing rate, which basically reflects if neu-
ron i has fired

(

ν̂i = 1 Hz
)

or not
(

ν̂i = 0 Hz
)

. The population
mean firing rate is therefore:

〈ν〉 = 1

Npop

Npop
∑

i= 1

νi (11)

with Npop being the size of the population.

By following a standard procedure, learning rules can be
derived from Equation (9) by applying the gradient descent
method (Hertz et al., 1991). Since the task is not based on single
neurons but it involves an entire population, we use a mean-field
approach for the derivation of the learning rules. Therefore, from
now on in this section, we switch from the above single neu-
ron notation to mean-field variables, by dropping the ij indices.
It is worth noting that in our formulation the target is achieved
not by directly acting on the firing rates, but by tuning the STP
parameters, which in turn affects the firing itself. Therefore, 〈ν〉 =
〈ν〉 (U, τrec, τfacil

)

and by using the chain rule we can formally
write the following update rule for each parameter p:

�p = −ηp
∂E

∂p
= −ηp

∂E

∂ 〈ν〉
∂ 〈ν〉
∂p
= 2ηp

νtarg − 〈ν〉
ν2

lim

∂ 〈ν〉
∂p

,

p = U, τrec, τfacil (12)

where ηp is the learning rate, which in principle could be different
for each parameter. The form of the function 〈ν〉 (U, τrec, τfacil

)

can be derived with a semi-heuristic procedure, following
(Vasilaki and Giugliano, 2014). Whenever possible, for the mean-
field variables we use the same symbols as in Vasilaki and
Giugliano (2014) for consistency. Thus, we introduce the mean-
field variables u, x, U , and A, respectively describing facilita-
tion, depression, synaptic utilization and maximum strength. We
assume a threshold-linear gain function between input mean
current h and output mean firing rate 〈ν〉 = a [(h− ϑ)]+, for
some constants a, ϑ . We can then write the dynamic mean-field
equations for a population of neurons recurrently connected by
short-term synapses as follows (Chow et al., 2005):

⎧

⎪

⎨

⎪

⎩

τ ḣ = −h+ Aux 〈ν〉 + Iext

ẋ = 1−x
τrec
− ux 〈ν〉

u̇ = U−u
τfacil
−+U (1− u) 〈ν〉

(13)

where Iext is the mean external current and τ is a decay-
ing constant. By imposing equilibrium conditions, ḣ = ẋ =
u̇ = 0, and combining the resulting equations, we can finally
write:

h = F (〈ν〉h) =
AU

(〈ν〉−1 + τfacil
)

〈ν〉−2 + 〈ν〉−1 Uτfacil + 〈ν〉−1 Uτrec + Uτfacilτrec

+ Iext (14)

Now we observe that by taking the limit h→∞ in F (〈ν〉h) we
obtain an upper bound for the maximum allowed firing rate
〈ν〉 ≤ A

τrec
+ Iext (for more details see Vasilaki and Giugliano,

2014). We can heuristically turn the above inequality into an
equality:

〈ν〉 = A

τrec
+ Iext (15)

so as by plugging Equation (15) into Equation (12) we can finally
obtain an explicit form for the learning rule. In particular, since
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FIGURE 1 | Single population scenario: network architecture and

activity, connectivity and STP parameters adaptation in the

output population with (U, τrec ) learning scheme (Part 1). (A)

Architecture. The learning network (green) is divided into an input
region (blue) and an output region (red ). Connections (black
arrows) are all-to-all and obey both Spike-Timing Dependent
Plasticity and rate-dependent Short-Term Plasticity. Input neurons
receive an external wave-like stimulus (blue dashed arrows). (B)

Mean firing rate of the output population. Shaded area represents
standard deviation, horizontal dotted gray lines show the two

target firing rates (high = 30 Hz, low = 5 Hz) and vertical black
arrows mark the onset of the four dynamic phases alternating
the target according to the sequence low-high-low-high. (C)

Symmetry measure applied on the connectivity of the output
population. In accordance to the target, connectivity switches
between unidirectionality (low values) and bidirectionality (high
values). (D,E) Mean values of the recovery time constant τrec and
synaptic utilization U for the synapses projecting onto the output
neurons. We observe depression (high values) at low firing rates
and facilitation (low values) at high firing rates.

only one of the three parameters appears in Equation (15), we
have a single rule for τrec only:

�τrec = −2ητrec

(

νtarg − 〈ν〉
) A

ν2
limτ 2

rec

(16)

Then, according to the above derivation, the only parameter
that needs to be learnt is τrec. Here we adopt the view (Tsodyks
and Markram, 1997; Markram et al., 1998b; Thomson, 2000;
Chow et al., 2005) that facilitation/depression corresponds to
small/large values of τrec and U as well. Therefore, assuming that
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they apparently play a similar role, we can heuristically take a sim-
ilar dependence of 〈ν〉 upon U : 〈ν〉 = A

U + Iext , which leads us to
a similar learning rule:

�U = −2ηU
(

νtarg − 〈ν〉
) A

ν2
limU2

(17)

With the same heuristic argument we can also write down a
relation involving τfacil. Indeed, it is well-know that facilita-
tion/depression corresponds to large/small values of τfacil, so we
can hypothesize a linear relation, also including the dependence
on the maximum strength for similarity with the other parame-
ters. Thus, 〈ν〉 ∝ Aτfacil + Iext , which gives the following learning
rule:

�τfacil = 2ητfacil

(

νtarg − 〈ν〉
) A

ν2
lim

(18)

Finally, based on the fact that A turns out to appear in Equation
(15), and supported by experimental results showing an inter-
action between STP and STDP (Markram et al., 1997; Sjöström
et al., 2003), we can also introduce a STP-dependent learning rule
for the maximum synaptic strength:

�ASTP = −ηA
∂E

∂A
= −ηA

∂E

∂ 〈ν〉
∂ 〈ν〉
∂A

= 2ηA
(

νtarg − 〈ν〉
) 1

ν2
limτrec

. (19)

This synaptic modification clearly does not substitute the tradi-
tional STDP, since the two rules come from different mechanisms.
Rather, we assume they both contribute to maximum weights
changes (see Subsection 2.7).

2.7. SINGLE NEURON LEARNING FRAMEWORK: COMBINING STDP
AND STP LEARNING MODELS

Equations (16–19) are mean field learning rules for the four
parameters τrec, U , τfacil, A. It is straightforward to turn them into
single neuron online learning rules. From now on, we return to
a single neuron notation. Similarly to STDP, we hypothesize that
modifications of STP are triggered by postsynaptic events: every
time neuron i elicits a spike, its current firing rate is updated as
well as the mean population firing rate. Neuron i can therefore
backwards regulate its incoming synapses, through the following
set of equations:

�τrecij = −2ητrecij

(

νtarg − 〈ν〉
) Aij

ν2
limτ 2

recij

(20)

�Uij = −2ηUij

(

νtarg − 〈ν〉
) Aij

ν2
limU2

ij

(21)

�τfacilij = 2ητfacilij

(

νtarg − 〈ν〉
) Aij

ν2
lim

(22)

�ASTP
ij = 2ηAij

(

νtarg − 〈ν〉
) 1

ν2
limτrecij

. (23)

The firing event of the neuron i also triggers STDP, according with
Equation (8). This contribution sums up with the above STP-
dependent change, so as the total modification of the maximum
synaptic strength is:

Aij −→ Aij +�Atot
ij , �Atot

ij = �ASTDP
ij +�ASTP

ij . (24)

Note that when we converted mean field population equations
into single neuron equations we kept the population mean firing
rate 〈ν〉, instead of turning it into the single rate νi. This is because
the task is defined at a population level. Learning rates of the three
STP parameters are chosen to be equal and error-dependent:

ηpij = η̄

(

1+ νtarg − 〈ν〉
νlim

)2

, p = U, τrec, τfacil, (25)

with η̄ = 0.1. The learning rate for maximum synaptic strength,
instead, is fixed in time and it is the same as the one used for STDP,
ηAij ≡ γ .

Now we have four single neuron rules for the STP learning
model, plus an equation for STDP and an equation for combin-
ing the different rules for the maximum synaptic strength. All
these six rules together, Equations (8, 20–24) form a complete
learning scheme for each neuron, which is implemented in our
simulations. These rules are now local, since their computation
takes place separately in each neuron, but receive a global signal
encoding for the task performance error.

2.8. INVESTIGATION OF DIFFERENT RULE COMBINATIONS
In the Results section we consider different learning mechanisms:
in addition to STDP, that is crucial for the formation of motifs
(Vasilaki and Giugliano, 2012, 2014), different combinations of
the four STP rules are taken into account while the remaining
parameters are kept fixed. At first we allow only two parameters to
change: (i) τrec, because Equation (15) implies that for high fre-
quencies this is the only critical parameter for adapting the firing
rate of the population, and (ii) U , since it was a key parameter
adopted in the work in Carvalho and Buonomano (2011). Then,
we introduce the STP-dependent rule on the maximum synaptic
strength, Equation (23), with the view to observe a more stable
learning process. Following this, we also include τfacil in the learn-
ing scheme for a full parameter adaptation (full model) and finally
we investigate the minimal number of parameters that needs to
be adapted (minimal model), based on Equation (15). Looking
for other parameter combinations might not be meaningful, as
Equation (15) indicates the key parameters that are involved in
changing the mean firing of the population.

2.9. CONNECTIVITY ANALYSIS
To reveal the type of connectivity in the output population, we
use a symmetry index defined as a measure of the symmetry of
the connectivity matrix W (Esposito et al., 2014):

s = 1− 2

N (N − 1)− 2M

N
∑

i= 1

N
∑

j= i+ 1

∣

∣Aij − Aji

∣

∣

Aij + Aji
. (26)
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Here M is the number of instances where both Aij and Aji are zero,
i.e., there is no connection between two neurons. Since in our
case connections are bounded in the interval

[

10−3, 1
]

, M = 0 all
the time. Equation (26) is able to capture the presence of global
non-random structures in a network, returning a value included
in [0, 1] . Values of s close to 1 reflect the presence of a global
bidirectional motif, whereas when s approaches 0, a unidirec-
tional motif is emerging. Note that, in order to apply the measure
Equation (26), we assume that the lower bound for connections
is 0. However, the choice of a small value such as 10−3 does not
affect the measure.

2.10. DATA SHARING
We provide the scripts that were used to construct the main
figures of the paper in the ModelDB database, accession num-
ber:169242.

3. RESULTS
3.1. SINGLE POPULATION WITH A TIME-VARYING TASK: A

CONTINUUM BETWEEN FACILITATION AND DEPRESSION
First, we apply our learning model to a specific task demonstrat-
ing how synapses can change their behavior driven by an external
feedback signal. The problem we study is simple: a population of
neurons is presented with a stimulus and is required to produce
a certain output as a response to that stimulus. Once the learning
has been successful, for the same input signal the desirable out-
put changes. In other words, neurons are trained to respond to
a change in the associative paradigm (inverted associative learn-
ing problem), that can be due to, for instance, changes in the
environmental conditions.

Let us give a concrete example of an inverted associative learn-
ing problem, taken from Asaad et al. (1998). In their work,
the authors trained monkeys to associate visual stimuli (pic-
tures) with delayed saccadic movements, left or right, with
associations being reversed from time to time. Monkeys had
to go beyond learning a single cue-response association: they
are required to learn to associate, on alternate blocks, two cue
objects with two different saccades. In other words, after hav-
ing learned the relation

{

object A, go right
}

, and
{

object B, go left
}

,
the associations were reversed such that now they needed to learn
{

object A, go left
}

and
{

object B, go right
}

.
Similar to the (Asaad et al., 1998) experiment, we assume a

binary problem, i.e., environmental conditions can change only
between two states, and we measure the neurons’ activity in terms
of firing rate. This means that neurons are initially asked to fire at
some rate and, after learning this task, they are asked to fire at a
different rate, while keeping the same input signal all the time.
Thus, the problem we defined is a simpler version of the monkey
experiment, with only a single input. In order to train the neurons
on the current associative paradigm, an external global signal is
required, that can be considered as an error signal (see Section
Methods 2.6 and 2.7).

3.1.1. Problem description and network architecture
We created a learning network of N = 40 conductance-based
integrate-and-fire neurons (see Section Methods 2.1) all to all
connected. Synaptic connections are modified by the STDP triplet
rule (Pfister and Gerstner, 2006) and STP is implemented by

using the Tsodyks and Markram model (TM model) described
in Markram et al. (1998b); Maass and Markram (2002).

Figure 1A shows the network architecture, composed by two
non-overlapping regions: a blue one with Nin = 30 neurons
receiving the input signal and a red one with Nout = 10 neurons
from which we read out the quantities of interest. Note that for
clarity, only a few neurons (black circles) and connections (black
arrows) are drawn. The network is therefore formed by two func-
tionally distinct populations, with the input population delivering
the stimulus to the output one. Recursive connections are present
within each population and across populations, and they are all
plastic, in the sense of both long-term and STP. We refer to this
architecture as a first or single population scenario.

The input neurons are stimulated one after the other, follow-
ing a sequential protocol, and approximately with the same rate,
νin = 10 Hz. The amplitude of the stimulus is such that input
neurons release a spike every time they receive an input (see
Section Methods 2.5). This external source can be thought as an
additional population of neurons, which we are not simulating
here, where each “external” neuron is connected only with a cor-
responding neuron in the input population by means of a fixed
feedforward connection (blue dashed arrows).

We hypothesize that the whole learning network (green region
in Figure 1A) is presented with a sequence of two tasks while
the stimulus pattern is kept fixed. The tasks are firing low (5 Hz)
and firing high (30 Hz) and the sequence is low-high-low-high.
Therefore, neurons have to repeatedly learn a new association
and forget the previous one in a dynamic context divided in four
phases of tph = 100 s. We refer to them as: low 1, high 1, low 2,
high 2. As discussed at the beginning of this section, this pic-
ture is inspired by a typical inverted associative learning problem:
considering the monkey experiment from Asaad et al. (1998) as
a metaphor, our scenario provides a simplified version, where
instead of having two different inputs, object A and object B, we
have a single input. Indeed, we can think we are presenting the
network with only object A and while doing this we switch the
target association between the two states go right and go left,
which correspond to our low and high firing rate targets. We call
the desirable context-dependent target rate, νtarg . As described
in Methods, the difference between νtarg and the current firing
rate of each population 〈ν〉 is the error signal that, according
which our rate-dependent STP causes synapses to adapt their
activity.

In all simulations, single neuron parameters
{

U, τrec, τfacil, w
}

ij are initially drawn from uniform distri-

butions (for i �= j), respectively in [0.05, 0.95], [100, 900] ms,
[1, 900] ms,

[

10−3, 1
]

. Synaptic variables are initialized at their
equilibrium values, i.e., rij = 1 and uij = Uij. All the simulations
in this subsection use γ = 1 for the high rate regime and γ = 2
for the low rate regime. Values of the parameters are listed in
Table 1.

3.1.2. Learning U and τrec

We initially studied the problem with a learning scheme involv-
ing U and τrec only, Equations (20, 21), so there is no additional
change in maximum synaptic strengths due to STP. Indeed, due
to Equation (15) and (Carvalho and Buonomano, 2011), we
wanted to test the hypothesis that U and τrec are the only crucial
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parameters that need to be learnt for adapting the firing rate of a
population. The results are displayed in Figures 1B–E, with verti-
cal black arrows marking the beginning of each of the four phases,
and in Figure 2.

Figure 1B shows the average firing rate of the Nout neurons,
with shaded area being the standard deviation. Target firing rates
are show with gray dotted lines. The adaptation to the new target is
fast, except during the low 2 phase, when we switch from high to
low rate, where an initial fast decrease of the firing rate is followed
by a much slower adaptation. Despite the fact that neurons do not
reach the target rate during this phase, we observe a monotoni-
cally decreasing activity which would eventually stabilize at 5 Hz
if we were allowing the simulation to run for longer. The reason
for this double slope adaptation will be further discussed now.

Figure 1C shows the evolution of the symmetry index (see
Section Methods 2.9). At the beginning, the value reflects the
randomness in the connections (the mean value of s for a net-
work with uniform random connections is indeed � 0.614, see
Esposito et al., 2014), whereas, as learning takes place, we observe
the development of unidirectional (low values of s) and bidirec-
tional (high values of s) motifs, depending on the set target. This
can also be formalized by applying the p-value hypothesis test
obtained by using mean and variance of s on a completely ran-
dom network with uniform distribution of connections (Esposito
et al., 2014). P-values are shown in Table 2. We, again, observe
rather slow dynamics during the low 2 phase that, within the
fixed simulation time, prevent the system from reaching a clear
connectivity configuration. However, the trend of s clearly shows
that the connectivity within the output population is approaching
unidirectionality.

Figures 1D,E depicts the time course of the recovery time con-
stant τrec and synaptic utilization U averaged across the output
neurons, with shaded area representing standard deviation. Both
parameters oscillate between high values, which correspond to
depressing behavior, and low values, that indicate facilitation.
Note that the dynamics of τrec and U is fast in all phases, the
third included. This is not surprising since STP is a fast process
and leads to fast adaptation of its parameters. As a result, neu-
rons’ response to a change in the target rate takes place in a short
time. However, during the low 2 phase, synaptic parameters sat-
urate before the neurons could fulfill the task, with STDP being
the only remaining mechanism through which the output popu-
lation can regulate its own activity. This results in a much slower
decrease toward the target rate for two reasons: (i) STDP by itself
acts on much longer time scales, (ii) switching from high to low
rate is the most challenging part of the entire sequence of tasks
due to the saturation of the maximum weights in the previous
high 1 phase, which slows down the process even further.

Figure 2 provides additional evidence of the alternation
between the two different synaptic behaviors. Plots are orga-
nized in five rows, with each row displaying information from
a different phase of the simulation. Panel A shows the initial
uniform condition, panel B the end of low 1 phase, etc. For each
stage, we draw the histograms of recovery time constant (Column
1) and synaptic utilization (Column 2). According to the nar-
row standard deviation observed in Figures 1D,E, distributions
peak around extreme values, reflecting two different, synaptic

behaviors. Column 3 in Figure 2, displaying the single synapse
traces obtained with a TM model, demonstrates the correspond-
ing behaviors: at the end of the phases where neurons are required
to fire low we observe a typical depressing response, whereas at
the end of the high rate regimes synapses show a typical facil-
itating trace. To generate the traces, we used a 5 Hz signal to
stimulate a synapse with a parameters given by the mean val-
ues obtained from the corresponding histograms. Note that the
synaptic trace for the initial condition, i.e., before learning shapes
the parameters, already shows depression, which explains why the
distributions of τrec and U at the end of the low 1 phase are much
broader than in the following phases.

Altogether, the four panels (B–E) in Figure 1 and the five pan-
els (A–E) in Figure 2 show that the properties and activity of
the output population oscillate between two states and that the
desirable structure is formed depending on the target rate. In
particular, we observe that neurons that fire at low frequency
turn their synaptic properties into depressing and the connections
formed are mostly unidirectional. On the other hand, when the
target rate is set at a high frequency, neurons develop facilitating
synapses and bidirectional connections.

3.1.3. STP-dependent modification of A enhances performance
Given the speed convergence issue in the low 1 phase, we intro-
duced an additional learning mechanism, i.e., the STP-dependent
rule for A, Equations (23, 24). Indeed, this mechanism provides
an additional way, besides the STDP, for regulating the long-term
plastic synapses. In all the other aspects, the model remains as
above.

Figure 3 shows simulation results, with panels A-D depicting
the same quantities as panels B-E in Figure 1 (symbols as before).
A direct panel-by-panel comparison shows that the results are
very similar, meaning that with this new learning configuration
the output population also learns to adapt its synaptic properties
in order to fulfill the current task, with subsequent motifs for-
mation. As expected, due to the additional leaning rule for A, the
dynamics are faster: in particular, during the low 1 phase, neurons
reach the target rate within the simulation time, and the value of
the symmetry measure is much lower than before, confirming the
formation of a unidirectional motif; compare with Figures 1C, 3B
and see Table 2. Note that the adaptation of the STP parameters
is also faster, as they depend on the current value of the maxi-
mum synaptic strength. Thus, the STP-dependent modification of
A improves the overall performance and introduces an interesting
link between STP and STDP.

3.2. TWO POPULATIONS WITH A DIFFERENT TASK: SYNAPTIC
DIFFERENTIATION

Now we consider a different scenario, which we refer to as the sec-
ond or double population scenario. The two tasks associated with
low and high targets are now simultaneously active and must be
learnt by different populations, interacting via lateral connections
and receiving the same stimulus source. Reasons are multiple: we
want to investigate if our model allows to contemporary encode
both associative paradigms, without the need of forgetting one of
the two. In addition, we want to study the possibility that target-
specific STP emerges as a consequence of the target-dependent
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FIGURE 2 | Single population scenario: STP parameters distribution

during adaptation with (U, τrec ) learning scheme (Part 2). Different
phases of the dynamics are represented. (A) Initial (uniformly random)
condition. (B) End of low 1 phase (target rate is 5 Hz). (C) End of high 1
phase (30 Hz). (D) End of low 2 phase (5 Hz). (E) End of high 2 phase (30
Hz). Columns 1, 2 Histograms of recovery time constant and synaptic

utilization of the synapses projecting onto the output neurons. Low values
indicates facilitation whereas high values suggest depression. Column 3
Single synapse traces obtained with the TM model by applying a 5 Hz
stimulus. Synaptic parameters used are mean values obtained from the
distributions drawn in (A,B). Synapses display a clear alternation between
depressing and facilitating behavior.
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Table 2 | Symmetry measure and p-value for the single population

scenario with {τrec, U} and {τrec, U, A} learning schemes.

Phase (τ rec , U) scheme (τ rec , U, w) scheme

s p-value s p-value

Low 1 (0-500 s) 0.36 1.82× 10−9 0.28 1.13× 10−15

High 1 (500-1000 s) 0.98 5.47× 10−19 0.99 8.73× 10−20

Low 2 (1000-1500 s) 0.59 6.47× 10−1 0.41 2.19× 10−6

High 2 (1500-2000 s) 0.88 1.50× 10−10 0.82 3.63× 10−7

Column 1: the four phases of dynamics with the corresponding simulation time.

Columns 2,3: symmetry measure and p-value for the adaptation of
{

τrec , U
}

.

Values are computed at end of each phase and by considering output neu-

rons only. Columns 4,5 same as columns 2 and 3 except for the adaptation

of
{

τrec , U, A
}

.

learning rules we chose for our model. In particular, we want to
test whether our model is able to reproduce existing experimen-
tal data, specifically that appearing in Table 1 from the paper by
Wang et al. (2006).

3.2.1. Network architecture
The new configuration is depicted in Figure 4A and it is obtained
by mirroring the structure of the first scenario and by adding
recursive connections between functionally homologous popu-
lations. This led to a network of N = 80 conductance-based
integrate-and-fire neurons, organized in two distinct branches of
40 neurons each, with the first branch required to fire at a high
rate (ν = 30 Hz) and the second branch at a low rate (ν = 5
Hz). Both targets remain fixed throughout the entire simula-
tion. Each branch is a replication of the architecture we used
previously, i.e., it is formed by an input and an output pop-
ulation recursively connected. Thus, the network is formed by
four functionally different populations: ℘ in

1 , ℘in
2 , ℘out

1 , ℘out
2 , with

obvious meaning of symbols. Input populations in both branches
receive the stimulus from the same source: a single wave-like
signal is delivered to the Ninput = 60 neurons with ν = 10 Hz,
stimulating one neuron per time (see Section Methods 2.5), first
the neurons in ℘in

1 and then the neurons in ℘in
2 . All connec-

tions are plastic following the STDP triplet rule and TM model
for STP.

Lateral connections are present between the inputs ℘in
1 , ℘in

2
and between the outputs ℘out

1 , ℘out
2 . To stress that they are

functionally different, we drew their initial values from a uniform
distribution in

[

10−3, 10−1
]

, but, during the evolution, synapses
are allowed to grow up to Amax = 1 as any other synapse.
Furthermore, cross connections between different output and
input populations, i.e., between ℘in

1 , ℘out
2 and between ℘out

1 , ℘in
2

are absent. The rest of the connections - within each population
and across populations belonging to the same branch - are
drawn from a uniform distribution in

[

10−3, 1
]

and they are
not allowed to exceed this interval during the simulation. STP
variables are initialized as in the single population scenario and
in all the simulations presented in this subsection we used γ = 2
as the learning rate.

3.2.2. Full model: adaptation of U , τrec , τfacil and A

We begin by studying the behavior of the full model: all four
parameters are modified by our rate-dependent STP, Equations
(20–24). Taking into account the modifications of all three STP
parameters allows us to make a direct comparison with (Wang
et al., 2006). Results are displayed in Figures 4B–C and in
Figure 5.

Figures 4B,C shows the time course of the mean firing rate
and symmetry index in both output populations, black lines for
℘out

1 and light gray lines for ℘out
2 . Shaded areas and dark gray

dotted lines represent standard deviation and target firing rates.
Both populations ℘out

1 , ℘out
2 approach the target rate while devel-

oping specific connectivity: as expected, a bidirectional motif
emerges in the population firing at the high rate whereas the
population firing at the low rate develops mostly unidirectional
connections.

Figures 5A–C shows the time evolution of the three param-
eters of the TM model: black lines and gray lines represent the
mean value of the synapses projecting from the two output popu-
lations ℘out

1

⋃

℘out
2 , respectively onto ℘out

1 and ℘out
2 . Shaded area

is the standard deviation. As expected from the previous sim-
ulation, we observe that the two populations develop different
synaptic types: high values of τfacil and low values of τrec and U ,
as observed in the population firing at the high rate, suggest a
facilitating behavior, whereas values as the one observed in ℘out

2 ,
characterize depressing synapses. Mean values at the end of the
simulation are reported in Table 3 rows 1,4. These results show
that our model develops target-specific STP and results in good
agreement with the data in Wang et al. (2006). Indeed, although
single values are not identical, the qualitative synaptic behavior is
represented: recalling the notation used in Wang et al. (2006), two
main types of synapses are present. The group projecting from
℘out

1

⋃

℘out
2 onto ℘out

1 can be mapped onto the type E1 and the
group projecting from ℘out

1

⋃

℘out
2 onto ℘out

2 that can be mapped
onto the type E2.

Following Wang et al. (2006), we can also refine our classifi-
cation, introducing a further distinction within each class. With
this purpose, we show in Figures 5D–F the distributions of τrec,
τfacil and U at the end of the simulation within the entire out-
put population ℘out

1

⋃

℘out
2 . For each histogram, data have been

divided into four groups, representing the four different subtypes:
℘out

2 to ℘out
2 with light gray, ℘out

1 to ℘out
2 with medium gray, ℘out

1
to ℘out

1 with dark gray, ℘out
2 to ℘out

1 with black. While the dis-
tinction between the two synaptic types mapping onto E1 and E2
is evident, the difference between two subtypes in the same type
cannot be easily seen. However, by looking at the mean values
of synaptic parameters in Table 3 rows 2, 3, 5, 6 and in partic-
ular the ratio τrec/τfacil in Table 3 column 5, the distinction into
four subtypes becomes more clear. As reported in column 7 of
Table 3, we can map the synaptic subtypes as follows: E1a corre-
sponds to the group ℘out

1 → ℘out
1 , E1b to ℘out

2 → ℘out
1 , E2a to

℘out
2 → ℘out

2 and E2b to ℘out
1 → ℘out

2 .
Finally, similarly to Figure 2, in Figures 5G–J we show single

synapse traces for each subtype. We observe that, except for the
last trace, different groups effectively show a distinctive response
to the same stimulus (12 Hz) and the traces reproduce the ones
of the corresponding subtypes in Wang et al. (2006).
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FIGURE 3 | Single population scenario: activity, connectivity and STP

parameter adaptation in the output population with (U, τrec , A) learning

scheme. (A) Mean firing rate of the output population. Shaded area
represents standard deviation, horizontal dotted gray lines show the two
target firing rates (high = 30 Hz, low = 5 Hz) and vertical black arrows mark
the onset of the four dynamic phases alternating the targets in the sequence
low-high-low-high. (B) Symmetry measure applied on the connectivity of the

output population. In accordance with the target rate, connectivity switches
between unidirectionality (low values) and bidirectionality (high values). (C,D)

Mean values of recovery time constant τrec and synaptic utilization U for the
synapses projecting onto the output neurons. We observe depression (high
values) at low firing rates and facilitation (low values) at high firing rates.
Compared to Figure 1, we observe an improvement in the overall
performance due to the inclusion of the STP-dependent modification of A.

Although in Figures 5D–F we present four different his-
tograms for each parameter, we can reason on the overall dis-
tribution within the entire output population ℘out

1

⋃

℘out
2 as the

sample size is the same in all histograms. We can therefore observe
that the distribution of τrec closely matches that in Wang et al.
(2006), whereas the distribution of U reproduces the peak at
around 0.25 but is less broad. On the other hand, the distribution
of τfacil is rather different, being totally shifted toward facilitating
values in our case. This may be due to the fact that U is much
more peaked around low values. We decided then to discard τfacil

from the learning scheme and run a simulation where only U ,
τrec and A are learnt, as we did for the single population scenario
in subsection 3.1.3. We observed that the behavior of the output
populations and all the results remain unchanged. We provide an
explanation for this in the Discussion.

3.2.3. A minimal model for rate-dependent STP: adaptation of τrec

and A

Finally, we study the minimal model: a model that suffices to
obtain the desired behaviors by adapting as few parameters as
possible. The choice of the parameters to be learnt is natu-
rally suggested by the form of the objective function Equation

(9): τrec and A. Interestingly, this minimal model preserves
two key features: (i) both a presynaptic parameter, τrec, and
a postsynaptic parameter, A, participate in learning, (ii) STP
and STDP are linked to each other through the STP-dependent
modification of A.

In Figure 6 we show the results of the minimal model: from
A to D, respectively: mean output firing rates, symmetry index,
τrec evolution and τrec distribution in the four groups of synapses.
By comparing these panels with the ones from the full model
simulation, we observe that output populations still efficiently
fulfill the task while developing the expected connectivity motifs.
Also, in Table 4 we report the mean values of τrec for the four
groups of synapses that we identified with the full model: there is
still a clear distinction between them. We can therefore conclude
that this minimal model is sufficient for qualitatively reproduc-
ing the main two types and also the subtypes of Wang et al.
(2006).

4. DISCUSSION
It is well-known that synapses are activity-dependent connections
through which neurons propagate information. STP is a mech-
anism that describes these phenomena in short time scales and

Frontiers in Computational Neuroscience www.frontiersin.org January 2015 | Volume 8 | Article 175 |159

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive


Esposito et al. Learning synaptic connections and variability

FIGURE 4 | Double population scenario: network architecture, activity

and connectivity of the output populations with full (U, τrec , τfacil , A)

learning scheme (Part 1). (A) Architecture. The previous network is
doubled so that there are now four populations: two input regions (blue)
and two output regions ℘out

1 , ℘out
2 (red ). The four populations are organized

in two branches, one required to fire at high rates (30 Hz) and the second
at low rates (5 Hz). Within each branch connections are all to all (black
arrows) whereas initially weak connections (gray arrows) are present
between the two output populations and between the two input
populations. Input neurons receive a wave-like stimulus from outside (blue
dashed arrows). All synapses obey both Spike-Timing Dependent Plasticity
and rate-dependent Short-Term Plasticity. (B) Mean firing rate of the output
populations, black line for ℘out

1 , and gray line for ℘out
2 . Shaded area

represents standard deviation and horizontal dotted gray lines show the
two target firing rates (30 Hz for ℘out

1 , 5 Hz for ℘out
2 ). (C) Symmetry

measure applied on the connectivity of the output population. Color legend
as in (B). Connectivity evolves differently in the two populations, leading to
a bidirectional motif in ℘out

1 and to a unidirectional motif in ℘out
2 .

introduces two typical synaptic behaviors: depression and facilita-
tion. Contrary to long-lasting modifications of maximum synap-
tic strengths, for example STDP, existing models of STP do not
rely on any learning mechanisms, apart from very few exceptions;
see for instance (Carvalho and Buonomano, 2011). Motivated by
their work, it is our belief that more efficient dynamics would
be possible if synapses were allowed to change their short-term
behavior by tuning their own parameters, depending on one or
more external controlling factors, for example, their current task.
Typically, one asks which is the firing regime for which a cer-
tain type of synapse performs better (Barak and Tsodyks, 2007),
whereas we are looking at the picture from a reverse perspec-
tive: we want to obtain some frequency regime, which is the most
efficient way to do it from a synaptic point of view? A similar con-
cept can be found in Natschläger et al. (2001), where the authors
trained a network with a temporal structured target signal, using
optimization techniques.

In our work, we developed a learning scheme for STP, and we
obtained, with a semi-rigorous argument, a learning rule for only
one of the three parameters of the TM model, τrec. Based on spe-
cific experimental results (Tsodyks and Markram, 1997; Markram

et al., 1998b; Thomson, 2000) and data fitting (Chow et al., 2005),
we used the conjecture that STP behavior of synapses has the
same functional dependence on U and τrec, which allowed us to
write a similar rule for the synaptic utilization U . Interestingly,
such learning rules depend on the maximum synaptic strength,
and they therefore: (i) provided a natural link between STP
and STDP and (ii) allowed us to derive an STP-dependent rule
for the maximum synaptic strength, to be added to the STDP
contribution.

The interaction between short- and long-term plasticity is
largely supported by experimental evidence (Markram et al.,
1997), although the exact mechanisms are still unknown. Some
results (Markram and Tsodyks, 1996; Sjöström et al., 2003,
2007) suggest that synapses become more/less depressing after
long-term potentiation/depression. Our rules incorporate this
behavior: long-term potentiation/depression always produces
larger/smaller changes in STP parameters. However, whether
these modifications bring more facilitation or depression crit-
ically depends on whether the population firing rate 〈ν〉 is
approaching the target rate νtarg from above or below. Consider,
for example, Equation (16): if νtarg − 〈ν〉 < 0, then long-term
potentiation will produce a stronger depression, thus reproduc-
ing the experimentally observed behavior. In our simulations, this
happens to the neurons that are firing at low frequencies. On the
other hand, if νtarg − 〈ν〉 > 0, then an increase in A will make
τrec even smaller, resulting in a less depressing synapse. In our
simulations, this happens to the neurons that are firing at high
frequencies. A similar argument can be formulated for the induc-
tion of long-term depression. We note that several mechanisms
have been identified to compete during synaptic transmission,
resulting in a more complex and less clear relationship between
STP and STDP (Sjöström et al., 2007).

In Sjöström et al. (2003, 2007) the authors link the interac-
tion between short- and long-term plasticity with the frequency
of firing: at high rates, synapses tend to become stronger and more
depressing, while at lower frequencies they tend to become weaker
and less depressing. Our derivation, instead, suggests the oppo-
site: if we rely on the hypothesis that large values of τrec lead to
depression and small values to facilitation (Chow et al., 2005),
according to Equation (15), facilitating synapses allow neurons
to reach higher frequencies. These findings, together with the
STDP triplet rule, from the basis of our work: they provide the
theoretical basis for the experimentally observed correspondence
between facilitation and bidirectionality, and between depression
and unidirectionality. The behavior expressed by Equation (15)
is experimentally and computationally based on previous work
that relates facilitation with high frequency and rate code, and
depression with low frequency and temporal code (Fuhrmann
et al., 2002; Blackman et al., 2013). This is because, for example,
a facilitating synapse may require several spikes to elicit an action
potential, meaning that only high frequency stimulation can gen-
erate postsynaptic spikes (Matveev and Wang, 2000; Klyachko and
Stevens, 2006).

We derived our rules by minimizing an error function that
is equal to zero when the target and actual firing rates are equal.
Alternatively, we could have defined a reward function opposite
to the error function in the sense that for zero error the reward
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FIGURE 5 | Double population scenario: STP parameters adaptation and

final distribution for the output populations with full (U, τrec , τfacil , A)

learning scheme (Part 1). (A–C) Mean values of recovery time constant τrec ,
facilitation time constant τfacil and synaptic utilization U. Black lines represent
mean values across the synapses projecting onto output population 1 from
both output populations, ℘out

1
⋃

℘out
2 → ℘out

1 , whereas gray lines describe the
synapses projecting onto output population 2 from both output populations,
℘out

1
⋃

℘out
2 → ℘out

2 . Shaded areas show standard deviation. We observe that
the two populations develop different synaptic types, facilitating for ℘out

1 and
depressing for ℘out

2 . (D–F) Corresponding histograms of the three synaptic

parameters at the end of the simulation. For each of them we show four
different groups of values, mapping qualitatively to the four subtypes identified
by Wang et al. (2006), see Table 3. Light gray: ℘out

2 → ℘out
2 (E2a). Medium gray:

℘out
1 → ℘out

2 (E2b). Dark gray: ℘out
1 → ℘out

1 (E1a). Black: ℘out
2 → ℘out

1 (E1b).
(G–J) Single synapse traces obtained with the TM model by using a 12 Hz
stimulus. Each panel represents a different subtype of synapses. (G)

℘out
2 → ℘out

2 . (H) ℘out
1 → ℘out

2 . (I) ℘out
1 → ℘out

1 . (J) ℘out
2 → ℘out

1 . Synaptic
parameters used are the mean values obtained from the distributions drawn in
(D–F). A comparison with (Wang et al., 2006) on the basis of the traces only
shows that we are able to identify three of the four subtypes.

function has its maximum value, and it is equal to zero for
large error. We could have then taken the gradient of the reward
function instead, bringing the derived rules into the framework of
policy gradient learning methods and reinterpreting the feedback

signal as a reward signal (Urbanczik and Senn, 2009; Vasilaki
et al., 2009a; Richmond et al., 2011). In biological systems,
dopamine is thought to act as reward signal (Schultz et al.,
1997; Fiorillo et al., 2003), and its role in the context of learning
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Table 3 | Types and subtypes of excitatory synapses between the two output populations in the full model {τrec, U, τfacil , A}.

Synaptic groups τ rec(ms) τ facil (ms) U τ rec/τ facil τ rec/τ facil as in Wang Wang’s subtypes

℘out
1

⋃

℘out
2 → ℘out

1 310± 11 733± 17 0.27± 0.01 0.42 0.38 E1

℘out
1 → ℘out

1 260± 5 833± 13 0.25± 0.01 0.31 0.34 E1a

℘out
2 → ℘out

1 356± 19 643± 27 0.29± 0.01 0.55 0.43 E1b

℘out
2

⋃

℘out
1 → ℘out

2 550± 14 440± 19 0.55± 0.02 1.25 39.47 E2

℘out
2 → ℘out

2 595± 16 436± 26 0.61± 0.02 1.36 76.88 E2a

℘out
1 → ℘out

2 510± 23 443± 28 0.50± 0.03 1.15 25.55 E2b

Column 1: synaptic groups. For instance ℘out
1

⋃

℘out
2 → ℘out

1 includes all synapses from both output populations, ℘out
1 and ℘out

2 , to the output population firing high,

℘out
1 . Columns 2,3,4: mean values of STP parameters τrec , τfacil , U. As in Wang et al. (2006), we provide the results in the form mean± s.m.e.. Column 5: ratio

between the two time constants, τrec/τfacil , in our simulation. Column 6: for a direct comparison, we provide the values of τrec/τfacil as in Wang et al. (2006). Column

7: mapping of our subtypes onto Wang’s subtypes.

FIGURE 6 | Double population scenario: learning in the output

populations with minimal (τrec , A) model. (A) Mean firing rate of the output
populations, black line for ℘out

1 and gray line for ℘out
2 . Shaded area represents

standard deviation and horizontal dotted gray lines show the two target firing
rates (30 Hz for ℘out

1 , 5 Hz for ℘out
2 ). (B) Symmetry measure applied on the

connectivity of the output population. Color legend as in (B). Connectivity
evolves differently in the two populations, leading to a bidirectional motif in
℘out

1 and to a unidirectional motif in ℘out
2 . (C) Mean value of recovery time

constant τrec . Black line: ℘out
1

⋃

℘out
2 → ℘out

1 . Gray line: ℘out
1

⋃

℘out
2 → ℘out

2 .
We observe that the two populations develop different type of synapses,
facilitating for ℘out

1 and depressing for ℘out
2 . (D) Corresponding histograms of

the recovery time constant at the end of the simulation. Light gray :
℘out

2 → ℘out
2 , medium gray : ℘out

1 → ℘out
2 , dark gray : ℘out

1 → ℘out
1 , black:

℘out
2 → ℘out

1 . The panels show that the achievement of the tasks and the
differentiation of the synapses is still possible with this minimal model.

associated with STDP, and more generally with Hebbian learning,
has been extensively studied (Tobler et al., 2005; Izhikevich, 2007;
Legenstein et al., 2008).

Each of the learning rules we proposed depends, however, on
the difference between the target and the actual firing rates, com-
puted at the population level. This implies the presence of: (i) a

Table 4 | Types and subtypes of excitatory synapses between the two

output populations in the minimal model (τrec , A).

Synaptic groups τ rec(ms)

℘out
1

⋃

℘out
2 → ℘out

1 300± 9

℘out
1 → ℘out

1 267± 6

℘out
2 → ℘out

1 327± 15

℘out
2

⋃

℘out
1 → ℘out

2 524± 16

℘out
1 → ℘out

2 486± 23

℘out
2 → ℘out

2 567± 22

Symbols are as in Table 3. Similar to Wang et al. (2006), we provide the results

in the form mean± s.m.e.

single feedback signal encoding the population activity, which is
processed outside the population and broadcasted to all neurons;
(ii) an external signal bringing information about the current
paradigm, i.e., the target firing rate. Similar to Urbanczik and
Senn (2009), we can assume that synapses receive both signals via
ambient neurotransmitter concentrations, leading to an on-line
plasticity rule.

We initially tested our learning scheme by implementing the
rules for τrec and U on a classical paradigm of inverting associ-
ations: keeping the stimulus fixed and varying the associations,
the network had to learn to first make choice A and then unlearn
it in favor of choice B. This led to a network able to periodi-
cally switch its behavior from depressing to facilitating and vice
versa, closely following the change in the association paradigm.
Throughout the simulation, the network formed motifs similar to
those experimentally observed in Wang et al. (2006) and Pignatelli
(2009), with facilitating synapses developing bidirectional motifs
and depressing synapses developing unidirectional motifs. The
desirable motifs were formed due to two factors: (i) the triplet
rule that governed long-term potentiation and (ii) the wave-like
input stimulus of the network. The form of the plasticity rule
guarantees that when neurons fire at high frequency, the synaptic
efficacy increases. Hence, synapses will grow up to their bounds,
leading to bidirectional connections. On the contrary, when neu-
rons fire at low frequencies, the synaptic efficacy decreases, yet the
wave-like input imposes unidirectional connectivity.
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We further extended this learning model by adding an STP-
motivated rule for the maximum synaptic strength, and we tested
it on the same invert association scenario. Results showed the
same behavior as before but with faster dynamics due to the joint
action of STP and STDP on the absolute efficacy.

In the second part of the paper, we extended our study. First,
we considered two populations that have to fire at different fre-
quencies (low, high). Then, we introduced a learning rule for the
facilitating time constant, in order to have a full learning model
involving all four parameters. The aim was twofold:

(i) Comparison of our results with experimental data in Wang
et al. (2006). Although the accuracy is not excellent, we were able
to qualitatively reproduce the basic differentiation in the ranges of
values of the STP parameters, reflecting the existence of four dif-
ferent synaptic subtypes. We believe that by further adapting the
model, in particular learning rates and target frequencies or by
considering other rule combinations, it is possible to obtain dif-
ferent parameter values (in principle an infinite combination of
them), and thus possibly reproduce the results of Wang and col-
laborators even better. However, we think this may not be critical
because, as a recent study (Costa et al., 2013) has pointed out, fit-
ting techniques generally used for deriving STP parameters from
experimental data may give unreliable results. Given this limita-
tion, we think it is important that our model accounts for a large
variety of parameter values in principle, and that in this specific
case of Wang et al. (2006) it is able to replicate the basic distinction
in the synaptic response.

(ii) Differentiation of synaptic types innervating two function-
ally different populations. The reason for this lies in the way we
constructed the learning model: what triggers the synaptic modi-
fication is the spike of the postsynaptic neuron. The firing rate of
the population to which this postsynaptic neuron belongs is the
information used to tune the values of STP parameters. In other
words, we implement a target-specific learning mechanism. This
choice is based on an optimization argument: the more direct and
efficient way for a neuron to influence its own activity through
synaptic changes is to modify incoming synapses rather than
outgoing synapses. A second scheme, a source-specific learning
mechanism modifying the outgoing synapses, would have prob-
ably led to the same results within closed microcircuits, but on a
much longer time scale.

Our target-specific learning mechanism is also supported by
experimental evidence (see Blackman et al., 2013 for a review).
Despite the fact that STP seems to be mainly a presynaptic mech-
anism, it has been shown that the target cells can also determine
the STP dynamics. All the studies we are aware of have established
such a target specificity only in the context of excitatory cells
innervating other excitatory cells on one hand and inhibitory cells
on the other, specially interneurons (Markram et al., 1998b; Reyes
et al., 1998; Buchanan et al., 2012). It would therefore be inter-
esting to appropriately modify the double population scenario
by incorporating a population of inhibitory neurons and com-
paring the results with existing data. In addition, some authors
(Blackman et al., 2013; Costa et al., 2013) suggested that a simi-
lar differentiation might exist within excitatory only populations.
Having target-specific STP for excitatory-excitatory connections
is still an open possibility that needs to be further explored. Here

we show from a theoretical point of view that such a differentia-
tion is possible between fundamentally similar (all excitatory) but
functionally different (encoding for different paradigms) targets.

The well-established existence of STP-target specificity pro-
vides us with a possible biological explanation for the learning
rules we derived. Indeed, this scenario requires that the postsy-
naptic neuron can regulate specifically its own presynaptic com-
partment only, by a retrograde signal that does not affect neigh-
boring cells. Thus, diffusive retrograde messengers, for example
endocannabinoids and nitric oxide, do not appear to be the most
suited agents, whereas synaptic adhesion molecules, for exam-
ple cadherins (Bozdagi et al., 2004) and neuroligins (Dean and
Dresbach, 2006), seem to be better candidates for playing this role.
These molecules are responsible for governing the presynaptic
transmitter release through many different presynaptic mecha-
nisms (Zucker and Regehr, 2002; Blatow et al., 2003; Deng et al.,
2011; Blackman et al., 2013).

We underline that the way we obtained the learning rules
is based in part on heuristic evaluation. According to Equation
(15), derived from a semi-rigorous argument, the key parameters
seems to be τrec and A. By also including U following Carvalho
and Buonomano (2011), we obtain a learning scheme involving
τrec, U and A only, which we used to study the double population
problem and evaluate the importance of τfacil. Results remain
essentially unchanged from the full model, suggesting that τfacil

does not play a critical role in the task we defined. This is not
surprising and the reason is that our rules link facilitation with a
high firing rate, and depression with a low firing rate. Indeed, even
with a small facilitation time constant (small τfacil), synapses are
still able to fire at a high rate, as long as the stimulating frequency
is high enough and recovery from depression is fast enough (low
τrec). Therefore, the time constant of recovery from depression
seems to be the only parameter regulating the firing frequency
of the neuron for high firing rates, exactly as it comes out from
the objective function (we recall that Equation 15 comes from
an inequality obtained in the limit of high frequency). With our
novel view of allowing synapses to modify their properties from
facilitating to depressing and vice versa, we therefore suggest that
τrec is the parameter that is mostly related to rate coding, whereas
U to temporal coding.

This conclusion is also supported by Carvalho and
Buonomano (2011). In this paper the authors described a
simple problem based on temporal synchrony between two
inputs that cannot be solved unless STP is learnt, together with
STDP. Besides the long-lasting change in A, they introduce a
temporal synaptic plasticity for U only and they showed that this
indeed solves the problem. Also, they reported that changing U
only was the most efficient way to solve the problem. Our work
supports the hypothesis that, when dealing with rate coding tasks,
the only necessary parameter that has to be learnt is τrec, whereas,
based on Carvalho and Buonomano (2011), when dealing with
temporal coding tasks, the only necessary parameter is U .

Another result pointing to a similar direction can be found
in Natschläger et al. (2001), where the authors use optimization
techniques, rather than explicit learning rules, to train a net-
work of neurons in order to transform a time-varying input into
a desired time-varying output. They show that to achieve good
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performance, one needs to change at least two parameters, either
A and τrec, or A and U . This confirms that learning must involve
at least one presynaptic and one postsynaptic parameter, and that
τfacil seems not to be relevant in these types of tasks.

We finally presented results from what we call the minimal
model, where only τrec and A were allowed to change, since both
their corresponding update rules come directly from the gradient
of the objective function we defined. Results confirmed our belief,
as we were still able to learn the tasks while obtaining results sim-
ilar to those from Wang and collaborators. It is in agreement with
our conjecture that when we tried to apply learning on U and A
only (results now shown here), the network failed to perform its
task because the population that was supposed to fire high sta-
bilized at a much lower frequency, i.e., ∼ 15 Hz. Therefore, an
alternative minimal model adapting U and A would be able to
successfully learn only targets of a lower firing regime. We believe
that specialization of parameters in the STP model depending on
tasks and signal encoding may be a key ingredient toward a better
understanding of synaptic and neuron functionality.
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RM-SORN: a reward-modulated
self-organizing recurrent neural
network
Witali Aswolinskiy *† and Gordon Pipa
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Neural plasticity plays an important role in learning and memory. Reward-modulation of

plasticity offers an explanation for the ability of the brain to adapt its neural activity to

achieve a rewarded goal. Here, we define a neural network model that learns through

the interaction of Intrinsic Plasticity (IP) and reward-modulated Spike-Timing-Dependent

Plasticity (STDP). IP enables the network to explore possible output sequences and

STDP, modulated by reward, reinforces the creation of the rewarded output sequences.

The model is tested on tasks for prediction, recall, non-linear computation, pattern

recognition, and sequence generation. It achieves performance comparable to networks

trained with supervised learning, while using simple, biologically motivated plasticity

rules, and rewarding strategies. The results confirm the importance of investigating the

interaction of several plasticity rules in the context of reward-modulated learning and

whether reward-modulated self-organization can explain the amazing capabilities of the

brain.

Keywords: reward-modulated STDP, intrinsic plasticity, recurrent neural networks, self-organization, plasticity,

hebbian learning

Introduction

The brain is a complex, self-organizing system, where a multitude of neural plasticity mecha-
nisms shape learning, and memory. These plasticity mechanisms are, in turn, shaped by neuro-
modulators, which are often part of a reward system (Pawlak et al., 2010). In vivo experiments
showed that rewarding behavior can change synapses and neurons selectively to achieve a rewarded
goal (Fetz, 1969; Ahissar et al., 1992; Sigala and Logothetis, 2002). Several models of reward-
modulated recurrent neural networks are able to partially replicate these experiments and solve
simple tasks (Izhikevich, 2007; Legenstein et al., 2008; Soltoggio and Steil, 2013; Hoerzer et al.,
2014). In these models, correct outputs are rewarded through the application of STDP or a heb-
bian learning rule, and noise is used to explore possible output sequences. Noise as a part of a
model, however, makes the model non-deterministic and introduces a random, transient com-
ponent that can counteract the learning of causal relations by STDP. Here, we propose an alter-
native to combine deterministic behavior and the ability to explore states for reward modulated
learning. For this, either deterministic chaos or other complex deterministic behavior may be
used. Here, we study complex behavior that is introduced by Intrinsic Plasticity (IP)—neuronal
plasticity associated with homeostasis (Turrigiano et al., 1998; Desai et al., 1999). We intro-
duce a simple binary neural network model, which learns through interaction of IP and reward-
modulated STDP. Exploration of the output state space is carried out through IP and not noise.
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The Reward-Modulated Self-Organizing Recurrent Network
(RM-SORN), model is based on SORN: Self-Organizing Recur-
rent Network (Lazar et al., 2009). SORN consists of a recur-
rent layer with binary thresholded neurons and a readout layer.
In the recurrent layer three plasticity mechanisms are applied:
IP, Synaptic Normalization (SN) and Spike-Timing-Dependent
Plasticity (STDP). The readout layer is trained with linear regres-
sion. The network is trained in two phases: in the first phase the
recurrent layer processes the input with ongoing plasticity. In the
second phase plasticity is disabled, the recurrent layer processes
the input again, and the neuron activations serve to train the
readout layer. Lazar showed, that all three plasticity mechanisms
are necessary to create an effective representation of the input in
the recurrent layer and that these representations allow SORN
to outperform randomly initialized non-plastic networks. STDP
forms the internal representations, IP activates silent neurons
and dampens neurons with too high activity, and SN decorrelates
neurons preventing seizure-like activity.

SORN was successfully applied to tasks for prediction (Lazar

et al., 2009), recall and non-linear computation (Toutounji and
Pipa, 2014) and artificial grammar learning (Duarte et al., 2014).

The main advantage of SORN is it’s simplicity and the bio-

logical plausibility of the plastic recurrent layer. The biologi-
cal plausibility is further underlined by the findings of Zheng

et al. (2013), who added two plasticity mechanisms to the recur-

rent layer: structural plasticity and inhibitive STDP. The authors
observed a log-normal weight distribution of the synaptic weights

in the recurrent layer matching experimental findings. Addition-
ally, the patterns of fluctuation of the weights were consistent
with the dynamics of dendritic spines found in rat hippocampus.

SORN offers the possibility to study plasticity mechanisms
similar to those in the brain in simple, manageable networks. The

FIGURE 1 | The Reward-Modulated Self-Organizing Recurrent Neural

Network (RM-SORN). Excitatory units are depicted as red, inhibitory units

as blue. The arrows symbolize directed connections between units.

Excitatory units are sparsely interconnected and excitatory and inhibitory

units are fully connected between each other. Only the excitatory units project

to the output layer. Input and output are sequences of predefined symbols.

biologically not plausible part of SORN is the linear regression
readout, which is replaced here by a plastic, non-recurrent,
reward-modulated neuron layer.

Materials and Methods

Both SORN and RM-SORN consist of a recurrent layer with
three plasticity mechanisms and a readout or output layer.
However, whereas in SORN the output is trained with linear
regression, in RM-SORN, the weights from the recurrent layer
to the output layer are plastic and adapted through reward-
modulated STDP. The model allows, but doesn’t prescribe, the
application of reward-modulated STDP to the recurrent layer.
In this paper, we test both versions, i.e., with and without
reward-modulated STDP in the recurrent network, and explain
for which conditions reward-modulated STDP applied to the
weights in the recurrent network improves the computational
performance.

Network Model
Figure 1 depicts the model structure. Both layers consist of
binary threshold neurons. The first layer is recurrent and con-
sists of NE excitatory and NI inhibitory neurons. The connec-
tivity between the excitatory neurons is sparse (5–10%) and full
between excitatory and inhibitory neurons. Self-connections are
not allowed. The ratio of excitatory to inhibitory neurons is 5:1.
The second layer is the output or readout layer with neurons that
are not interconnected. In tasks where the network has to gener-
ate sequences, a feedback connection from the output layer to the
recurrent layer is necessary. A random subset of the excitatory
units in the recurrent layer receives the input: for each symbol
of an input sequence, e.g., “1234,” a different subset of the units
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receives an input of 1 and the rest 0. The units are binary with 2

being the heaviside step function, applied independently to every
neuron:

xi(t + 1) = 2





NE
∑

j

w EE
ij xj(t)−

NI
∑

k

w EI
ik yk (t)

+ui (t) − TE
i (t)



 (1)

yi (t + 1) = 2





NE
∑

j

w IE
ij xj(t)− TI

i



 (2)

oi (t + 1) = a





NE
∑

j

wOE
ij xj(t)− TO

i (t)



 (3)

Neurons in the first layer are updated according to (1) and (2)
while neurons in the output layer are updated according to (3).
x and y represent the activity of the excitatory and inhibitory
neurons in the recurrent layer and o the activity of the output
neurons. a is the activation function for the output neurons.
With several output neurons, the activation function is winner-
takes-all (WTA), with one output neuron, the heaviside step
function 2 is used. wAB is the weight matrix with weights from
B-units to A-units, u is the input and TA is the threshold for
the A-units. (Hence, wOE are the weights from the recurrent to
the output layer and TO are the thresholds for the output neu-
rons). Initially, the weights are drawn from a normal distribu-
tion, but change through application of three plasticity rules: IP,
SN, and reward-modulated Spike-Timing-Dependent Plasticity
(rm-STDP).

Plasticity Rules
IP adapts the thresholds so that on average each neuron has the
firing rate µIP:

△TE
i (t)= ηIP(xi(t)−µIP) (4)

The threshold is increased when the unit was active and
decreased when the unit was inactive, leading to an asymptotic
fix point of the average firing rate µIP. Thereby, IP activates
neurons, which would be otherwise inactive and regulates down
neurons which fire too often, enforcing the given average fir-
ing rate. During the experiments, in the recurrent layer, µIP

was set to values between 0.05 and 0.25 depending on which
value performed best. In the output layer, µIP was set per neu-
ron to correspond to the expected occurrence probability of
the symbol represented by the neuron. ηIP is the learning rate
for IP.

STDP strengthens the connection from xj to xi when xj
was active before xi (xj “causes” xi) and weakens it, when
xj was active after xi. The main difference to SORN is
the modeling of the output layer as another plastic neu-
ron layer and the reward-modulation of STDP with the
modulationm:

△wEE
ij = mr∗ηSTDP

(

xj(t − 1)x
i
(t) − xj (t) xi(t − 1)

)

(5)

△wOE
ij = mo∗ηSTDP

(

xj (t − 1) o
i
(t)

)

(6)

ηSTDP is the learning rate for STDP. mr and mo are the modula-
tion factors for the recurrent and the output layer, respectively.
During the simulations, mr was either set to one (no modula-
tion) or to the same value as mo. mo is determined according
to a rewarding strategy, which is a function of the reward r.
Both modulation and reward can be positive, negative or zero.
Depending on the task, different modulation strategies can be
chosen formo.

After application of STDP the incoming weights to a neuron
are scaled to sum up to 1:

wij(t)=
wij(t)

∑

j wij(t)
→

∑

j

wij(t)= 1 (7)

The relative strength of the synapses remains the same.

Reward-Modulation Strategies
In tasks with known target values (which are all tasks except the
generation task), the reward was set to 1 for correct outputs, and
either 0 or −1 for wrong outputs, depending on which setting
led to the highest performance. Negative reward—punishment—
can lead to Anti-STDP. In the generation task, where the network
has to generate a sequence of symbols without input, the network
is rewarded if it produces a part of the target sequence, starting
from the beginning of the sequence. The reward is proportional
to the length of the correctly generated sequence part. For exam-
ple, let the network be rewarded for generation of the sequence
“1234.” If the network generates “1234,” it receives the full reward
of unit 1 at the time when it generates the last state “4.” Anal-
ogous, it receives the reward of ¾ for the sequence “x123,” 2/4
for the sequence “xx12” and only ¼ for “xxx1” (here “x” repre-
sents any symbol or state). An exception is made for “xx11”: this
combination is punished to prevent the generation of the trivial
sequence of repetitions of “1.” For any other sequence, no reward
is given.

The reward-modulation strategy (M) determines the modula-
tion factorm and therefore, whether STDP is applied, suppressed
or inversed. The network can be modulated either directly by (8)
or the modulation can be computed from the previous rewards.
Particularly interesting is here the hypothesis, that dopamine
neurons encode reward prediction errors. (9) defines a simple
estimate of the reward prediction error.

M0 : m(r, t) = r(t) (8)

Mk : m(r, k, t) = r(t)− r(t, k), k ∈ (1, 5, 10, 20) (9)

r is computed as the moving average of the previous k rewards.
With window size k = 1, the modulation factor is the current
reward minus the previous reward. The k-values were defined
ad-hoc and selected for each task independently with a param-
eter grid search. The selected strategies for the tasks and other
parameters are listed in the supplementary material.
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Training and Testing
The network is trained in two phases:

1. In tasks with training data, the network is reward-modulated,
while processing 20,000 steps of training data. In the genera-
tion task, the network output is fed back as input. Every 100
steps, the network is validated on 500 steps of validation data.
After 20,000 steps, 200 networks are evaluated and the net-
work with the best validation performance is chosen for the
next phase.

2. Step 1 is repeated while the plasticity in the first layer is shut
off, allowing to fine-tune the weights to the output layer.

After this composed training phase, the network is tested on
10,000 steps of test data or, in generation tasks, is used as a
generative model to generate the desired output for 10,000 steps.

The evaluation of the network at different plasticity times
is essential, since the performance of the networks fluctuates
strongly during reward-modulated plasticity.

During the simulations, the network size consisted of at
least 100 and at most 400 excitatory neurons. The number of
inhibitory neurons was always a fifth of the excitatory neurons,
as in the original SORN. From here on, the number of excita-
tory neurons will be referred to as the size of the network or
simply N.

Model Evaluation
The performance of the model was compared to SORN, static
(non-plastic) supervised trained networks and random networks.
In SORN networks, the 20,000 steps of training data were pro-
cessed by the plastic recurrent layer. After every 1000 steps,
the weights were frozen, the network processed the 20,000
steps of training data and the readout weights were trained on
the resulting network states. Thus, 20 intermediary networks
were created, with the first network being subjected to plastic-
ity for 1000 steps and the last network for 20,000 steps. The
network that performed best on 500 steps of validation data
was chosen for the performance evaluation on the test data.
Static networks were created by taking the best SORN net-
work, shuffling the weights 20 times and choosing the network
that performed best on the validation data. Random networks
were trained in the same manner as RM-SORN, but with the
reward-modulated STDP-weight updates randomly distributed
across all eligible weights at each step. The eligible weights
in the recurrent layer are the initially non-zero weights in
the sparse connectivity matrix. (Initially non-zero weights can
become zero through STDP). From the recurrent layer to the
output layer all weights are eligible. The performance difference
between the RM-SORN and “random” networks is the difference
between learning through reward-modulated STDP and lucky
guessing.

Notably, during training of a network, 200 RM-SORN, but
only 20 SORN and static-networks were evaluated. This discrep-
ancy is due to the high computational cost of the linear regression
in SORN and the fact, that SORN achieves in most tasks almost
perfect performance - more frequent evaluation is not necessary.
In the pattern recognition task, where RM-SORN was better, the
same number of networks (200) was evaluated to even the odds.

All results were averaged over ten data sets and ten net-
works per data set—the procedure described above was applied
to each of the 100 network/data set combinations. In the
motion generation task, which has no input, 100 networks were
evaluated.

Since the weights in RM-SORN are positive, a similar restric-
tion was imposed onto the supervised training—instead
of least squares, non-negative least squares method
(Lawson and Hanson, 1995) was used.

Task Descriptions
The model was evaluated on eight different tasks, including those
in Lazar et al. (2009) and Toutounji and Pipa (2014).

In the counting task (Lazar et al., 2009), the network receives
random alternations of two words “abbb...c” and “eddd...f ” with
n + 2 letters per word and n b’s or n d’s in a word. The goal is
to predict the next letter. In order to correctly predict the last
letter in the word, the network has to “count” the b’s and the
d’s. Thus, the first layer needs to learn separable representations
(linearly separable when using a simple linear readout, as we use
here) of the input conditions a, b1, b2,... bn, e, d1, d2,..., dn. In the
output layer, these representations must be mapped to the next
letter in the word: a→b, b1→b, b2→b ... bn− 1→b bn→c and
similar for e’s and d’s. Given the random alternation of words,
the first letter of a word is unpredictable and therefore excluded
from the performance measure. We use two kinds of perfor-
mance measures. Firstly, the overall performance that measures
the match of all letters of the entire sequence, with the excep-
tion of the excluded first letter of each word. Secondly, we mea-
sure the counting performance that is the accuracy of predicting
the last letter in a word. This performance reflects the capabil-
ity of the network to retain and use information from previous
inputs.

As a second task, we use motion prediction (motivated by
Lazar et al., 2009). In the motion prediction task, the network
receives random renewal sequences of the two words “123...n”
and “n....321.” These sequences can be interpreted as movement
of an object in one dimension from left to right and back, that
is sensed by a line array of sensors. Therefore, the task was
initially set up to mimic the learning of motion-specific visual
receptive fields (Lazar et al., 2009). Comparing the counting
task and the motion prediction task highlights their difference
in respect to subsequence learning of the individual words. For
the motion prediction task, all subsequences (e.g., 12, 23, 34, . . . )
of the word “123...n” can be learned independently. This is not
the case in the counting task, where, for example, the input
condition b3 (“abbb”) cannot be learned before b2 (“abb”) is
learned.

As a third task, we used the occluder task (Lazar et al., 2009),
that is a combination of the counting and motion task. With
n = 8, the input consists of random alternations of four words:
“12345678,” “87654321,” “19999998,” and “89999991.” As in the
motion prediction task, they can be interpreted as the movement
of an object sensed by a line of sensors. To model the occlu-
sion of part of the sensors, two additional words “19999998”
and “89999991” are used. Here, the symbol “9” represents the
lacking information about the object position when the object
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is occluded. Note that because the first letter occurs more than
once, the second letter in a word is unpredictable, and therefore
excluded from the performance measure.

As a fourth task, we measure the memory capacity (corre-
sponds to the RAND task in Toutounji and Pipa, 2014). Here,
the network receives a random sequence of symbols and has to
reproduce the symbol from n steps back. The number of symbols
used here is 6.

As a fifth task, we use the Markov-85 task (Toutounji and
Pipa, 2014). For this task, we generate an input sequence that
consists of symbols generated by a first order Markov chain. The
chain has six states: 1, 2, 3, 4, 5, 6. The transition probabilities for
1→2, 2→3, 3→4, 4→5, 5→6, and 6→1 are p = 0.85. All other
transition probabilities are p = 0.03. The goal of the task is either
to recall the inputs from n steps back or to predict the state n steps
in the future.

As a sixth task, we use the parity task (Toutounji and Pipa,
2014). Here, the network receives a series of binary values and
has to compute the parity for the current input and n - 1 previous
inputs. This task tests the capability of the network for non-linear
computation.

As a seventh task, we designed a sequence or motion

generation task, where the network has to generate either
“123...n” or “n....321.” This is the only task, where the net-
work receives no input. The number of symbols, and thus
input dimensions, is n, and the longer the sequence, the harder
the task. Similar to the motion prediction task, this task can
be interpreted as the movement of an object in one dimen-
sion. More generally, success in this task shows that the net-
work can generate an arbitrary symbol sequence with the same
symbol distribution as in the motion words. The reinforce-
ment of two words instead of one is more difficult, because
the same output symbol can be rewarded for two different
reasons.

The last task is a pattern recognition task, designed to high-
light the effect of reward-modulated changes of synaptic weights
in the recurrent network. Here, the network receives random
alternations of the four words “1234,” “4321,” “4213,” “2431” and
has to recognize the word “1234”: the output for every letter in
this word has to be 1, and for all others, 0. In this task only one
output neuron was used.

Results

The performance measures for the counting, occluder,
motion prediction and motion generation tasks are shown
in Figure 2. The results for the Markov-85, memory capac-
ity, parity, and pattern recognition tasks are shown in
Figure 3. In most tasks, RM-SORN achieves high accuracy,
and is only slightly worse than SORN. This is remarkable,
considering that RM-SORN learns in a self-organized man-
ner through interaction of plasticity mechanisms, while
SORN learns through a supervised, mathematically derived
algorithm.

Reward-modulation of the recurrent layer improved perfor-
mance only in the pattern recognition task: it allowed RM-
SORN to outperform SORN for small network sizes. In the other

tasks, reward-modulation of the recurrent layer didn’t improve
performance and was not applied during the experiments.

Prediction, Recall and Non-Linear Computation
In the counting task, RM-SORN achieves a high overall perfor-
mance (Figure 2A) in the range 95–100% and has a counting
performance (Figure 2B) in-between static and SORN networks.
Higher n increases the difficulty for the prediction of the last let-
ter, as the network needs to remember more of the past inputs,
but reduces the overall difficulty of predicting the other letters,
which are either b’s or d’s. A system that just produces “b” when
it sees “a” or “b” and “d,” when it sees “e” or “d” can achieve
a high accuracy without being able to count—this happens in
the random networks, which achieve, for example, 85% accuracy
for n = 20. The difference between static and SORN networks
is due to improvement of the representational capability of the
recurrent layer through unmodulated plasticity.

The performance of RM-SORN in the occluder task
(Figures 2C,D) is worse, due to the higher number of input con-
ditions, but the task can still be solved with high accuracy for
n ≤ 8 and good overall accuracy for n > 8.

In the motion prediction task (Figure 2E), high accuracy can
be achieved until very high n—the network can learn many dif-
ferent input condition mappings. Random networks achieve a
performance slightly above the chance level of 1/n for higher n.

Remarkable is the high accuracy of RM-SORN in the motion
generation task (Figure 2F), where the network never receives
any input. These results will be discussed in more detail in the
next section.

The performance in the memory capacity task (Figure 3A) is
similar for static, SORN and RM-SORN networks: high for low
n and low for higher n, hitting the chance level of 1/6 in the end.
Since the input is random, learning of effective representations
through STDP in the recurrent layer is not possible, and static
and SORN networks have similarly low network memory. RM-
SORN stays slightly behind static and SORN networks for higher
n, which was also observed in the other tasks.

The Markov-85 task (Figure 3B) offers a different picture—
static, SORN and RM-SORN networks feature high performance,
also for high negative n (recall—corresponds to positive n in the
memory capacity task). The structure in the input allows an effi-
cient representation in the recurrent layer and also a more effi-
cient mapping of the representations in the output layer. The
performance for prediction (positive n) is lower, since the max-
imal achievable performance declines exponentially with each
step, because of the stochastic nature of the input sequences.

The parity task (Figure 3C) offers a picture similar to the
memory capacity task, since its input is also unstructured.
Nevertheless, the high performance of RM-SORN for small
n demonstrates the capability of the model for non-linear
computation.

In conclusion, RM-SORN achieves high performance in all
tasks and is in most tasks in-between SORN and static networks.
For complex tasks (high n), the performance deteriorates more
than in SORN. A more detailed analysis of the motion genera-
tion and the pattern recognition task (Figure 3D) follows in the
next sections.
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FIGURE 2 | Performance comparison in the counting (A,B), occluder

(C,D), motion prediction (E), and motion generation task (F). Varied are

the task difficulty n and the network size N. Shown is the average

performance in percent over 10 data sets with 10 networks per data set. In

case of motion generation, which has no input, the average performance of

100 networks is shown. Error bars indicate standard deviation.

Pattern Recognition
In this task, RM-SORN achieved a higher performance than
SORN, especially for small network sizes. The results are
shown in Figure 3D. The best average performance of 97.48%
was achieved with a network with only 30 excitatory neu-
rons. Static and SORN networks of this size stay below the
90%-mark.

The reason for the better performance of RM-SORN is
the reward-modulation of the recurrent layer. In order to
recognize the target word, only the representations of parts
of the target word are necessary, and all other symbol
combinations can be ignored. SORN tries to create represen-
tations of all occurring symbol combinations and has there-
fore less memory for each individual combination. This leads
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FIGURE 3 | Performance comparison in the memory capacity (A),

Markov-85 (B), parity (C), and pattern recognition task (D). In the

pattern recognition task, the network size N was varied. In the other tasks,

the task difficulty n was varied with N = 100. Shown is the average

performance over 10 data sets with 10 networks per data set. Error bars

indicate standard deviation.

to a poor performance with small networks. RM-SORN, on
the other hand, is only rewarded if it recognizes the tar-
get word, and its recurrent layer is plastic only during
this time—it learns to represent parts of the target word
exclusively.

Figure 4 visualizes the selectivity of neurons in the recurrent
layer for static, SORN and RM-SORN networks with 30 neurons.
For all two-symbol input sequences that occurred during testing,
the probability of a neuron to spike was estimated by counting
the occurred spikes. In static and SORN networks, neurons have
no preferred input stimuli. The selectivity for partial sequences
“43” and “21” in SORN is slightly higher than in static networks,
because both occur in two patterns, while the other combina-
tions occur only in one. In RM-SORN, neurons mostly encode

the parts of the target word (“12,” “23,” “34”), which allows for
a simple and effective mapping to the output neuron and a high
performance.

The pattern recognition task is also the only task, where static
networks perform better then SORN networks. This is due to the
training procedure, as explained in section Model Evaluation: in
the pattern recognition task, static networks were created by shuf-
fling the SORN weights and taking the best out of 200 networks
(in other tasks, out of 20 because of the computational load).
While all intermediary evaluated SORN networks try to map
all input conditions equally, some static networks, by chance,
better represent the target word parts. Thus, the best static net-
work can achieve a better performance then the best SORN
network.
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FIGURE 4 | Neuron selectivity in the recurrent layer for the pattern recognition task with 30 neurons. Shown is the probability of a neuron to spike for each

possible two-symbol input sequence. For example, the 30th neuron in RM-SORN (C) is activated only by the sequence “12.” Static (A) and SORN (B) are less selective.

Motion Generation
The performance is computed as the percentage of symbols that
belong to a target word. Despite rewarding both words, for n > 4
the network learns to generate only one word. The performance
results are shown in Figure 2F. The performance of RM-SORN
is impressive, since, in contrast to SORN, which learns with
teacher-forcing (Jaeger, 2001), RM-SORN does not receive any
external teaching signal, except the reward, and is still capable of
generating the desired behavior.

Figure 5 visualizes the activity in the recurrent and out-
put layer during 100 steps of reward-modulated plasticity at
different time points during training. In the beginning, the
recurrent and output activity is almost constant and has no
resemblance to the target words “12345678” and “87654321.”

Then, reward-modulated STDP adapts the output weights,
and through feedback, changes the dynamics in the recurrent
layer. As can be seen from the output activity in Figure 4B,
the network generates alternately “123” and “876”—the begin-
nings of the target words. After an additional 5000 steps
of reward-modulation, the network settles on the generation
of “87654321”.

Exploration during Motion Generation
In the motion generation task, exploration in the out-
put layer corresponds to the production of different out-
put sequences. Figure 6 visualizes the extent of exploration
during 20,000 steps of training. Shown is the number
of unique output sequences of different lengths in the

Frontiers in Computational Neuroscience | www.frontiersin.org March 2015 | Volume 9 | Article 36 174|

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive


Aswolinskiy and Pipa RM-SORN

FIGURE 5 | Neural activity during reward-modulated learning in the

motion generation task with n = 8 and N = 100. The narrow tile

visualizes the spiking activity of the eight output neurons and the wide tile the

activity of the 100 neurons in the recurrent layer. Neuron i allocates the i-th

row of the tile. In the output layer the i-th neuron represents the i-th output

symbol. A diagonal in the output tile corresponds therefore either to

“1234568” or “87654321.” (A) shows the activity from steps 500 to 600, (B)

from 5000 to 5100 and (C) from 10,000 to 10,100.

previous 100 steps, which don’t contain any parts of the
target words. Exploration is highest during the first 10,000
steps. With time, the output sequences resemble more and
more the target words and only few, short, original output
sequences are produced. Notably, the exploration doesn’t stop
completely.

Reward-Modulation in the Recurrent Layer
The pattern recognition task was the only task in which
the reward-modulation of the recurrent layer improved the
performance. Punishment in the recurrent layer prevented
learning of unnecessary input conditions and allowed neu-
rons selective for the relevant input conditions to emerge.
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FIGURE 6 | Exploration during training in the Motion Generation Task. Shown is the number of unique output sequences produced during the previous 100

steps, which are not part of the target words. The stronger the color, the longer the unique sequence.

However, the pattern recognition task is the only task, where
only a part of the input sequences is relevant. In the
other tasks, all input conditions matter. Reward-modulation
of the recurrent layer (either suppression or inversion of
STDP for wrong outputs) worsened the performance. Enhance-
ment of the exploration of the recurrent layer state space
through reward-modulation of the recurrent layer was not
observed. The effect of reward-modulation in the recurrent
layer on the performance is visualized in the supplementary
material.

Effect of Synaptic Normalization of the Weights
to the Output Layer
In the recurrent layer, SN is applied to the weights between the
neurons, decorrelating them and preventing seizure-like activ-
ity (Lazar et al., 2009). In the output layer, SN is applied to
the weights from the recurrent to the output neurons. Since
in the output layer the neurons are not interconnected and
only one neuron is activated at a time (WTA), correlated activ-
ity is not possible. The performance comparison of RM-SORN
with and without SN, as shown in Figure 7, suggests another
effect. In the figure, only the performance results for the count-
ing, occluder, motion prediction and motion generation task
are shown—in the other tasks the performance differences are
negligible.

Depression of the weights from the recurrent to the out-
put layer happens either through punishment—Anti-STDP or
SN. The challenge in the counting task is to map the rep-
resentations of long, similar sequences to the corresponding
output neurons. When, through chance, such a representa-
tion is mapped correctly, STDP reinforces the weights from
the active neurons in the recurrent layer to the activated out-
put neuron. Then, SN scales the weights hereby reducing the
weights from the inactive recurrent neurons to the active out-
put neuron. Thus, SN introduces synaptic competition, that

leads to a stronger mapping of the representations of the long
sequences.

In the motion tasks the focus is not on long sequences but
on a high number of symbols. With increasing n, the number of
symbols increases and the number of neurons representing an
input decreases. Thus, less neurons represent an input condition
and more neurons not related to the input condition need to be
ignored and their outgoing weights depressed in order to map an
input condition correctly.

The occluder task is a combination of the counting and
motion task. Notably, without SN, a higher number of neurons
worsens the occluder overall and the motion task performance.
When there are more neurons in the recurrent layer, the output
neurons have more incoming weights and can be activated more
easily by the wrong input representations. In the other tasks the
length of sequences, the number of mappings and the number of
neurons is moderate—synaptic competition through SN does not
lead to an advantage.

Intrinsic Plasticity vs. Noise for Exploration
Exploration of possible output mappings or output sequences is
an essential part of reward-modulated learning. Most reward-
modulated models use noise for exploration. Noise, however, is
per definition transient and random—the rewarded behavior is
not guaranteed to appear again, even with the same input and
the same neuronal state. A correct model guess induced by noise
might even be derogatory. For example, in a prediction task, if
the correct target neuron is activated purely by chance, while
the input representation in the recurrent layer is “bad” (non-
distinctive for the input condition), through STDP, connections
with the “wrong” neurons (neurons which don’t represent input
conditions or represent other input conditions) are reinforced.
IP, on the other hand, is deterministic—the rewarded behavior
is reproducible, and when the output is correct, it is always due
to the neuronal structure and not to chance. It is therefore not
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FIGURE 7 | Comparison of RM-SORN with and without SN in the

counting (A,B), occluder (C,D), motion (E), and motion generation

task (F). Shown is the average performance for different task complexity

values n. In the motion generation task, the results are averaged over 100

networks, in the other tasks the results are averaged over 10 data sets with

10 networks per data set. Error bars indicate standard deviation.

surprising that the performance results confirm the superiority
of IP.

The performance comparison with noise was made by dis-
abling IP in the output layer and introducing bit-flip-noise
instead: at each step, with a given probability, the active output
neuron was set to zero and another randomly chosen output neu-
ron set to one. In order to compare IP and noise in their roles
as exploration drives, they have to be aligned, regarding the tar-
get average firing rate. Ensuring the target firing rate with noise
is not possible, but the thresholds of the output neurons can be
selected to match on average the thresholds found through IP.
Therefore, before the actual task, for each network, a preliminary

run with 20,000 steps with unmodulated plasticity was made and
the output thresholds averaged over the values of the last 1000
steps. Then, the network was reset to its initial state, but with the
threshold averages as the new threshold values.

During simulations without IP at different noise levels, the
highest performance results were obtained with noise prob-
abilities of 5, 15, and 100%. Figure 8 compares the perfor-
mance of RM-SORN with IP and RM-SORN without IP but
with noise at these levels. Overall, networks with IP achieve
a higher performance than networks without IP, but with
noise. Particularly motion generation would not be possi-
ble with noise as exploration drive. Noise achieves slightly
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FIGURE 8 | Comparison of RM-SORN with IP and without IP but

with noise at different noise levels in the counting (A,B), occluder

(C,D), motion prediction (E), motion generation (F), memory

capacity (G), Markov-85 (H), parity (I), and pattern recognition (J)

task. The noise probability is the probability of a randomly chosen

output neuron to be activated at each training step. In the pattern

recognition task, the network size N was varied. In the other tasks, the

task difficulty n was varied with N = 100. Shown are the averages over

10 data sets with 10 networks per data set. Error bars indicate

standard deviation.
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higher performance in the motion task for n > 24, and
roughly similar performance in the parity and pattern recog-
nition task, and also in the prediction part of the Markov-85
task.

These results demonstrate the power of IP as exploration
drive. Noise is a comparatively weak alternative.

Discussion

In this article, we introduced the RM-SORN, in which reward-
modulated STDP replaced supervised learning in the readout of
SORN and additionally, when applied to the recurrent layer in the
pattern recognition task, fitted the representation of the inputs to
the task goals. RM-SORN achieved high performance compara-
ble to that of supervised trained networks in all tasks. For com-
plex tasks (high n), the performance deteriorated more strongly
than in SORN, from which we can conclude that in RM-SORN,
similar representations in the recurrent layer cannot be differ-
entiated as well as in SORN. This is not surprising, considering
that supervisedmethods have an exact error signal, while reward-
modulated learning has only a general goodness signal and works
on a trial and error basis.

Reinforcement Learning and Reward-Modulation
RM-SORN and similar models are a form of reinforcement learn-
ing, where the state is defined by the network activation and
the action by the readout. The weights are adapted to maxi-
mize the reward. In a recent review of reinforcement learning in
cortical networks, Senn and Pfister (2014) generalize the weight
update rule to follow (10), with R being the reward and PI a
plasticity induction based on pre- and postsynaptic activity. The
hypothesis, that synaptic plasticity is driven by the covariance
between reward and neural activity was initially introduced by
Loewenstein and Seung (2006).

△w = R ∗ PI (10)

Senn and Pfister differentiate between policy gradient methods,
where the average policy induction<PI>= 0 and Temporal Dif-
ference (TD) methods, where the average reward <R> = 0. The
postulated purpose of these restrictions is to prevent systematic
weight drift. A simple alternative to <R> = 0 is to subtract the
average reward from the modulating factor as is done in RM-
SORN with the rewarding strategy Mk. A similar method was
used by Hoerzer et al. (2014).

TD learning with SORN was implemented by Franz (2010):
the readout was replaced with action neurons and the weights
modulated via the TD error. The network was able to learn
symbolical sequences. A more complex actor-critic network
was implemented by Frémaux et al. (2013) based on sim-
plified spike response model neurons and used to solve a
version of the cartpole task. Most recently, Dasgupta et al.
(2014) developed a model, consisting of a recurrent neural
network critic model representing the basal ganglia and a
feed-forward correlation-based learning model representing the
cerebellum. This combinatorial model was validated by let-
ting it control a robot to forage in an enclosed environment.

These increasingly complex, biologically motivated models of
reward-based reinforcement learning in neural networks are able
to solve complex tasks, but neglect other forms of synaptic
plasticity.

Reward-Modulated STDP Models and
Exploration
The core of RM-SORN is the interaction of IP and STDP: IP
explores possible output mappings or output sequences, and
STDP reinforces the rewarded ones. In contrast to most previous
models, noise for exploration is neither necessary nor desirable,
as IP is considerably superior to noise in most tasks and on the
same level in the rest.

Previous reward-modulated models, with one exception,
use only STDP or a hebbian rule, and noise for exploration.
Legenstein et al. (2008) performed an extensive analytical
and simulational analysis of reward-modulated STDP. Their
networks made from noisy, leaky integrate-and-fire neurons
solved several tasks: increasing the firing rate of a single neu-
ron, learning of spike times, spike pattern discrimination and
isolated digit recognition. One of their findings was that sponta-
neous activity is essential for reward-modulated learning in order
to explore which firing patterns are rewarded.

Shortly before Legenstein, in 2007, Izhikevich created a
model with spiking neurons, where the distal reward prob-
lem was solved through eligibility traces and reward-modulated
STDP (Izhikevich, 2007). He validated his model on three
simulations: reinforcement of a synapse between two excitatory
neurons, classical (Pavlovian) conditioning, and stimulus-
response-instrumental conditioning. During learning, sponta-
neous activity was achieved through random input, mimick-
ing noisy miniature PSPs. Izhikevich concluded that STDP is
insensitive to random firings during the waiting time for the
reward, and is only triggered by precise firing patterns in the
millisecond range, which are rare. He also argued that the pre-
cise timing of spikes is essential for reinforcement with STDP,
and that this effect could not be reproduced with firing rate
models. This statement was disproved by Soltoggio and Steil
(2013).

Soltoggio and Steil reproduced most of the experiments of
Izhikevich in a rate-based model, and they showed that clas-
sical and instrumental conditioning with delayed rewards can
be learned without precise spike timing. Their Rare Correlation
Model features a rate-based hebbian rule with a threshold that
allows only the upper 1% of all correlations to be applied. Noise
is added to the firing rate after the tanh-activation, to generate
spontaneous activity. Beside the tasks from Izhikevich, the model
was also successfully applied in robotics for classical and oper-
ant conditioning of the humanoid robot iCub (Soltoggio et al.,
2013).

Another rate-based model with reward-modulated hebbian
learning was created by Hoerzer et al. (2014). It consists of
a recurrent layer and a linear readout with a feedback con-
nection to the recurrent layer. In Hörzer’s model, the recur-
rent layer is chaotic with tanh-neurons, following Sussillo and
Abbott (2009), but instead of supervised learning, a reward-
modulated hebbian rule is used to train the readout. The
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model was successfully applied to several tasks, including
periodic pattern generation and non-linear analog computa-
tions on complex input signals. During learning, noise was
applied to the firing rates of neurons in the readout. The
authors point out that this exploration noise is the driving
force for learning, and that without it, no learning would take
place.

Other notable reward-modulated spiking neuron models
include Soltani and Wang (2010), where a connection between
reward-modulated plasticity and probabilistic inference was
observed and Bourjaily and Miller (2011), where reward-
modulated STDP combined with multiplicative synaptic scaling
was used to learn a XOR task.

The most recent model combines reward-modulated STDP
with eligibility traces, IP and synaptic scaling in a 2-layer net-
work with binary thresholded units (Savin and Triesch, 2014),
similar to the model in this article. The model was applied to two
working memory tasks: delayed response and delayed catego-
rization. During learning, task-dependent representations bene-
ficial for task performance emerged in the recurrent layer. The
neurons were noisy, but the noise did not play any special role in
learning.

The focus in these publications is on the hebbian or STDP
learning rule and tasks with delayed reward. The interaction
of several plasticity mechanisms and the role, that homeostatic
plasticity plays in reward-modulated learning was not investi-
gated. This article demonstrates that reward-modulated learning
can achieve performance comparable to that of supervised learn-
ing methods in tasks of different nature and complexity, and
that IP can serve as the exploratory drive during learning. This
is at first glance surprising, since IP is a homeostatic mecha-
nism. However, IP as implemented here ensures an average fir-
ing rate by lowering or raising the thresholds continuously and
these threshold-changes alter the neuronal activity and drive the
exploration.

Outlook
Supervised learning requires a precise error signal, which is prob-
ably not present in the brain. For reward-modulated learning,
only a general goodness signal is necessary. Additionally, it can
be applied to any network structure. In this article, only two-
layer networks were investigated, which in itself is biologically not
plausible. More complex network architectures, which present
a challenge for supervised training methods, may, in contrast,
unfold the capabilities of reward-modulated learning.

Another possible line of investigation is the effect and nature
of modulation via the reward-prediction error. In all tasks, except
the counting- and pattern prediction-task, modulation via the
reward-prediction error was better than modulation via the
reward directly. The difference in the task performances offers
a starting point for a more detailed investigation.

An interesting question is also, how exploration and exploita-
tion can be balanced. During reward-modulated plasticity the
exploration diminishes, but never stops completely, which made
it necessary to evaluate intermediate networks in order to get
the best performance (as described in sections Model Eval-
uation and Exploration during Motion Generation). From a

functional point of view, a mechanism that stops exploration,
when a sufficient performance level is achieved, is desirable.
The rewarding strategy seems to be a good place for such a
mechanism.

Supplementary Material

The Supplementary Material for this article can be found
online at: http://www.frontiersin.org/journal/10.3389/fncom.
2015.00036/abstract

Effect of reward-modulation of the recurrent layer on perfor-
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A wealth of experimental evidence suggests that working memory circuits preferentially
represent information that is behaviorally relevant. Still, we are missing a mechanistic
account of how these representations come about. Here we provide a simple explanation
for a range of experimental findings, in light of prefrontal circuits adapting to task
constraints by reward-dependent learning. In particular, we model a neural network shaped
by reward-modulated spike-timing dependent plasticity (r-STDP) and homeostatic plasticity
(intrinsic excitability and synaptic scaling). We show that the experimentally-observed
neural representations naturally emerge in an initially unstructured circuit as it learns to
solve several working memory tasks. These results point to a critical, and previously
unappreciated, role for reward-dependent learning in shaping prefrontal cortex activity.

Keywords: working memory, reward-dependent learning, STDP, intrinsic plasticity, synaptic scaling, prefrontal

cortex, delayed categorization

1. INTRODUCTION
Working memory is defined as the temporary storage of stimulus-
specific information during a delay period. This function has been
traditionally associated with circuits in prefrontal cortex (PFC).
Classic work in monkeys revealed that single neurons in this
region exhibit selective persistent activity during the delay period
(Miyashita, 1988; Goldman-Rakic, 1990) and its disruption (by
electrical stimulation, or due to distracters) leads to a decay in
performance (Funahashi et al., 1989). These early observations
have been interpreted as the circuit exhibiting attractor dynam-
ics, which enable a subset of the neurons to maintain high firing
throughout the delay after a brief stimulus presentation (Amit
and Brunel, 1997; Brunel and Wang, 2001). This view has been
revised in recent years, as it was shown that most neurons in
PFC change their firing rates during the delay (Miller et al., 1996;
Chafee and Goldman-Rakic, 1998; Pesaran et al., 2002; Rainer and
Miller, 2002; Barak et al., 2010), suggesting that working mem-
ory circuits rely on feedforward rather than attractor dynamics
(Goldman, 2009). Still, while experiments generally agree on
how information is represented in working memory circuits, i.e.,
using spatio-temporal patterns of neural activity, exactly what
information gets encoded is less clear.

An accumulation of data across different working memory
experiments paints an increasingly complex picture of the fea-
tures encoded in PFC. We find neurons may represent the
previous stimulus, the forthcoming action, or a more complex
function of the two (Durstewitz et al., 2000). When the task
requires a generalization across stimuli, neurons develop category
selectivity (Freedman et al., 2001). Moreover, there is a gradual
shift in these representations as the number of examples per class
increases, with animals switching from a stimulus-response asso-
ciation strategy to representing categorical distinctions directly
(Antzoulatos and Miller, 2011).

Things get even more complicated when animals need to
alternate between different tasks. While PFC neurons generally
represent the task to be performed (Asaad et al., 1998; Cromer
et al., 2010; Roy et al., 2010; Warden and Miller, 2010; Meyer
et al., 2011), they can differ significantly with respect to how the
information is distributed across the population in different tasks.
For instance, neurons can show task-specific changes in overall
firing rate, in time-dependent response profiles and in stimulus
and response selectivity (Asaad et al., 2000). In some situations,
the same neurons seem to participate in encoding features related
to different tasks (e.g., making different category distinctions,
Cromer et al., 2010), effectively multiplexing information across
contexts. In other situations, however, information is encoded in
different neurons for different contexts (Roy et al., 2010), and—
worse still—it is unclear when one or the other coding strategy
may be employed. Generally, we are missing a unifying account
for PFC representations during the delay period.

Here we hypothesize that reward-dependent learning under-
lies the variety in PFC representations in different working mem-
ory tasks. The data itself suggest that this may be the case: the most
striking feature of the above experiments is not the diversity of
neural responses, but the sheer number of neurons displaying an
effect. Regardless of the actual task the monkey has been trained
to carry out, a significant subset of the recorded neurons are
found to exhibit selectivity to the specifics of that particular task.
This is a strong indication that PFC neurons adapt their responses
to reflect current cognitive demands. Indeed, PFC representations
change significantly over the course of training (Rainer et al.,
1998b; Rainer and Miller, 2000; Baeg et al., 2003; Kennerley and
Wallis, 2009). Neural responses become increasingly sparse, the
tuning of the neurons narrows, and the representation becomes
more robust to input noise (Rainer and Miller, 2000). These
changes in neural representation parallel behavioral learning, and
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allow for a better decoding of stimuli and actions (Baeg et al.,
2003). Moreover, since the training-induced changes in neural
responses include changes in functional connectivity (Baeg et al.,
2007), it seems likely that associative learning within the cir-
cuit is responsible—at least in part—for the refinement of neural
representations with learning. The specific mechanisms involved
remain unclear, however.

We assume that learning in PFC is reward-dependent. This
hypothesis is consistent with the observation that dopamine,
a neuromodulator associated with reward prediction error
(Schultz, 1998), modulates synaptic plasticity in this circuit
(Otani et al., 2003). It also explains the dependence of neural rep-
resentations on the magnitude of the expected reward (Kennerley
and Wallis, 2009). However, the primary reason for our assump-
tion is computational. Working memory circuits are know to
operate under strict capacity constraints (Cowan, 2001), and a
circuit with limited resources cannot simply encode everything.
To perform well, it needs to represent the specific aspects of
the stimulus that matter for the task at hand (Duncan, 2001).
Hence, reward should modulate learning so as to shift represen-
tations toward task-relevant features. This points to a critical and
previously unrecognized role for reward-dependent plasticity in
shaping prefrontal representations.

Can reward-dependent learning alone explain the wide vari-
ety of experimental observations on PFC encoding? To address
this question, we studied the effects of reward-dependent learn-
ing on the encoding properties of neurons in a working memory
circuit. More specifically, we trained a generic recurrent neu-
ral network to solve tasks similar to those employed in working
memory experiments. We then investigated the neural represen-
tations emerging in the circuit and compared them to neural
data. We chose a simple abstract model for the network dynamics
in which the output of a neuron depends only on its instanta-
neous inputs. Learning was implemented by reward-dependent
spike timing dependent plasticity (rSTDP) (Izhikevich, 2007),
supplemented by homeostatic mechanisms that stabilized the net-
work dynamics during learning (Lazar et al., 2009). Importantly,
as individual neurons have no memory themselves, the storage
of information in this circuit relies exclusively on the recurrent
connectivity. While this simple model cannot capture the full
complexity of the temporal dynamics in PFC, it allows us to focus
specifically on the reward-dependent reorganization of recurrent
connections and its effects on circuit function.

We found that our model is able to capture key aspects of neu-
ronal dynamics during working memory tasks. Neurons in the
model develop specificity in space and time and, depending on
the task, they preferentially encode individual stimuli, actions, or
context information. In a simple delayed-response task, neurons
encode stimulus identity (Miller et al., 1996; Constantinidis and
Franowicz, 2001). In a delayed-categorization task, neurons learn
to preferentially encode category boundaries (Freedman et al.,
2001). Lastly, when learning several tasks at the same time, the
degree of neural specialization depends on the specifics of the
task, mirroring experimental data. When the task involves sev-
eral independent category schemes, neurons act as “multiplexers,”
coding for different things in different contexts (Cromer et al.,
2010); when the same stimuli need to be categorized differently

depending on behavioral context, the neurons segregate into dis-
tinct task-specific subpopulations (Roy et al., 2010). Furthermore,
reward-dependent learning is critical for these results. A similar
circuit trained by unsupervised learning shows a significant loss in
working memory performance, paired with poorer neural repre-
sentations. Taken together, our findings show reward-dependent
learning could be a central force in the organization of working
memory circuits.

2. MATERIALS AND METHODS
2.1. THE GENERAL TASK
The working memory tasks we investigated share a simple gen-
eral structure (Figure 1A): at the beginning of a trial one stimulus
(out of K) is briefly presented to the network. After a delay period
(either fixed for a block of trials or selected at random from
a given distribution) a “Go” cue is presented, after which the
reward is given according to the action selected by the model
(one out of M)—either +1 for a correct answer or −1, other-
wise. Different tasks correspond to different mappings between
stimuli and actions and each are described in detail in the cor-
responding Results section. To speed up learning, we adopt the
same strategy employed in training animals for experiments, i.e.,
we start with the minimum delay version of the task and progres-
sively increase the duration of the delay period during learning
(Klingberg, 2010).

2.2. NETWORK MODEL
An overview of the network is shown in Figure 1B. The recur-
rent network consists of N units (unless otherwise specified,
N = 250), 80% excitatory and 20% inhibitory, with sparse ran-
dom connectivity. Input units encoding different stimuli (and
possibly the context cue) activate small, non-overlapping sub-
sets within the recurrent layer, each consisting of Nin excita-
tory neurons Nin = 5; the activation of the input unit pro-
vides a suprathreshold current which forces the correspond-
ing subpopulation to be active for one time step. The out-
put layer receives inputs from all excitatory units within the
network and generates a decision response through a winner-
take-all (WTA) mechanism. This decision outcome determines
the received reward, which in turn modulates synaptic changes
through r-STDP. Reward-dependent learning affects both excita-
tory synapses within the recurrent network and those connecting
to the decision layer.

We chose a abstract model for the neural dynamics, whose
simplicity allows us to focus on the essential mechanisms required
for explaining the data. More specifically, we used linear thresh-
old units to model neurons within the network, i.e., each unit has
a binary output:

xi(t) = Ii(t) ≥ �i, (1)

with activation depending on the total current to the neuron Ii(t)
and the neuron’s spike threshold �i (this threshold also changes
over a slower time scale because of homeostatic mechanisms, see
below). The activity proceeds in discrete time steps, with syn-
chronous updates for all neurons. The input to a neuron is given
by:

Ii = wT
i · x+ ε, (2)
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FIGURE 1 | Schematic description of the model. (A) Delayed response
task: at the beginning of each trial, one of K stimuli is presented to the
network, requiring a stimulus-dependent action to be performed at the end of
the delay period. When the cue appears, an action is selected yielding a
corresponding reward. Initial trials have short delays, and we progressively
increase the delay period during learning. (B) The network of threshold linear
neurons receives localized, stimulus-specific inputs; the decision units

determine the action to be performed by winner-take-all (WTA). The
corresponding reward modulates plasticity events at synapses within the
recurrent network and to the decision units. (C) Reward-dependent STDP is
implemented using eligibility traces, with changes occurring only at the time
of reward (see main text for details); additionally, (D) the neuron threshold is
homeostatically regulated and the incoming synapses to each neuron are
normalized.

where column vectors w and x describe the synaptic weights and
the activity of all presynaptic neurons, respectively. The stochas-
tic term ε corresponds to an unspecific background input to
each unit, modeled as independent uniform random noise, ε ∈
[0, 0.1]. Importantly, since the model neuron has no memory
itself, working memory can develop in the model only through
the network dynamics. Hence, we can use the model to study
specifically reward-dependent plasticity and its effects on infor-
mation storage.

The connectivity matrix was initialized randomly at the begin-
ning of each experiment, with weights drawn from the uniform
distribution wij ∈ [0, 1], followed by a sum-to-one weight nor-
malization of incoming synapses. The connection probabilities
were pee = 0.1, pei = 0.25, pie = 0.4, pii = 0, with indices “e” and
“i” marking the excitatory and inhibitory populations, respec-
tively.

For the decision layer, the current to each neuron is computed
as before, with the WTA mechanism selecting the neuron with the
strongest input as the only active unit: Im = wT

i · x + ε, xm = 1 if
m = argmaxj Ij, and xm = 0, otherwise. Decision neurons were
allowed to fire during the delay period without any effect on
reward.

2.3. PLASTICITY MECHANISMS
2.3.1. Reward-dependent learning
We adapted a model for r-STDP from Izhikevich (2007)
(Figure 1C). As in the original, each synapse has an associated
eligibility trace eij:

deij

dt
= − eij

τe
+ xi(t) · xj(t − 1)− f · xi(t − 1) · xj(t) (3)

where xi and xj are the output of the pre- and post-synaptic neu-
ron, respectively, and f is a model parameter (f = 1 for synapses

in the recurrent layer, and f = 0.01 for synapses in the motor
layer).

The eligibility trace stores a history of potential weight changes
at the synapse, with an exponential decay, specified by the time
constant τe (τe = 2.5). The individual synaptic plasticity events
follow a simplified STDP window: potentiation occurs when
presynaptic activity is followed by a postsynaptic spike, while the
reverse pattern causes depression, with a width of 1 time step
(since that is the timescale of causal interactions in our network).
Additionally, weights are rectified such that wij ≥ 0 in order to
respect Dale’s law.

At the time of the reward synaptic weights change proportion-
ally to the eligibility trace eij and the reward signal r:

wij(t + 1) = wij(t)+ η · r(t) · eij(t), (4)

with learning rate η.
For simplicity, we used the absolute reward as the signal mod-

ulating synaptic modifications instead of the reward prediction
error (Schultz, 1998), as done in previous models (Izhikevich,
2007). Additionally, we assumed the reward to be either positive
or negative, as biological evidence from cortico-striatal synapses
suggests that dopamine can induce both potentiation or depres-
sion in response to tetanic stimulation, depending on its con-
centration relative to baseline (Reynolds and Wickens, 2002).
Specifically, at the time of the reward delivery r(t) = 1, if the
motor output was correct and r(t) = −1, otherwise; r(t) = 0 at
all other times.

To ensure that the system is given time to exploit the emerging
neural representation, we assumed that changes at synapses to the
decision layer occur faster than those in the recurrent network
(η = 10−5 for synapses in the recurrent layer and η = 10−4 for
those connecting to decision neurons). These changes in learning
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rate were paralleled for intrinsic plasticity to ensure that the
dynamics remain stable during learning (see below).

2.3.2. Homeostatic plasticity
A critical problem when optimizing recurrent networks is how to
stabilize the dynamics during learning (Turrigiano and Nelson,
2004; Lazar et al., 2009). Traditionally, working memory mod-
els with attractor dynamics circumvent this problem by keeping
weights fixed and fine-tuning a limit set of gain parameters
by hand (Brunel and Wang, 2001). Here, we use two distinct
homeostatic mechanisms to ensure stability (Figure 1D): synap-
tic scaling (Turrigiano et al., 1998) and homeostatic threshold
regulation (Zhang and Linden, 2003).

First, as synaptic scaling constrains the total drive received by
neurons by rescaling all weights in a multiplicative fashion, we
implemented this mechanism by an explicit weight normaliza-
tion, �jwij = 1. We chose this for simplicity, although a similar
outcome could in principle be achieved through a local weight-
dependent rule (Gerstner and Kistler, 2002). Second, intrinsic
plasticity was implemented by assuming that the threshold of
excitatory neurons adapts to maintain a certain mean average
firing rate, x0 ∈ (0, 1):

�� = λexc (x(t)− x0), (5)

where λexc is the time constant for the threshold adaptation
(x0 = 0.03 within the recurrent network and x0 = 0.25 in the
decision layer). As mentioned above, the timescale of plasticity
for the decision units is 10 times faster to match the more rapid
synaptic plasticity (λexc = 10−4 within the recurrent layer, and
λexc = 10−3 for the decision units).

We assumed a similar threshold regulation for controlling the
excitability of the inhibitory neurons. The specific form was sug-
gested by experimental evidence showing that the excitability of
inhibitory neurons is determined by the overall activity of neigh-
boring excitatory neurons, estimated via the release of diffusible
messengers, such as BDNF (Rutherford et al., 1998; Turrigiano
and Nelson, 2000). Specifically, we assume that the threshold of
inhibitory neurons changes as:

��inh = −λinh (〈xexc(t)〉 − x0), (6)

with 〈xexc(t)〉 denoting the population average of the activation
of all excitatory neurons at time t. This is a simplification of a
more realistic input-specific regulation of excitability chosen for
convenience, consistent with inhibitory neurons pooling activ-
ity across a large part of the circuit. As before, x0 is the desired
average firing rate of the excitatory neurons, and λinh is the learn-
ing rate (λinh = 10−5). Although this mechanism is not strictly
necessary for network stability, we find it improves memory per-
formance and ensures a fairer distribution of neuronal resources
across stimuli.

2.3.3. Other simulation parameters
All trials are assumed to have fixed duration Ttrial = 10 time steps,
with 2 · 104 trials per block. We repeat each experiment five times
to quantify effects different sources of variability, such as the
network initialization, internal noise, etc.

3. RESULTS
3.1. A DELAYED RESPONSE TASK
The most common experimental paradigm for exploring the cir-
cuits involved in working memory is the delayed response task,
where a simple stimulus-specific response needs to be deliv-
ered after a delay (Rainer et al., 1998a; Durstewitz et al., 2000).
Computational models of this function assume a circuit with dis-
tinct submodules for storing the initial stimulus (the working
memory component), comparing it to the sample and deciding
on the action (Engel and Wang, 2011). Here we focus on the
first component, and thus assume a one-to-one mapping between
stimuli and actions (M = K). Although we neglect the interme-
diate step, i.e., making same-or-different judgements, nonetheless
the model preserves the nature of the underlying computation.
Hence this simplification should not affect our results concerning
the representation within the working memory circuit.

We used two variants for the basic setup: a fixed-and a variable-
delay version (Figure 2, right). As its name suggests, the first
uses a fixed delay for all trials in a block. This version is useful
for estimating the memory capacity of the network, defined as
the longest delay for which performance is better than chance.
However, it could potentially lead to unrealistic delay-specific
representations. In the second setup, the delay for each trial is
selected uniformly at random between one and a maximum delay
Tmax time steps. This version seems closer to the true constraints
of the biological system, where information needs to be accessible
on demand whenever the the environmental conditions call for
it. Hence, we used the second version of the task to investigate the
emerging neural representations.

We found that the network performance is influenced by task
difficulty (Figure 2). As expected, it decreases with increasing
delay, due to the accumulation of noise. For intermediate delays,
the fixed-delay task yields slightly better results compared to
the variable-delay task, consistent with it being computationally
simpler. At longer delays however, the network exhibits a sharp
performance decay, which signals the network reaching its mem-
ory capacity. In the variable delay task, performance degrades
more gracefully, as shorter memory spans are still rewarded. In
both cases, we found that recall performance increases with net-
work size N, and decays with the number of distinct stimuli K and
that the incremental learning paradigm dramatically improves
network performance (not shown).

Importantly, performance is remarkably stable within a block
of trials despite the constant changes induced by the different
plasticity mechanisms, with the network reaching the final per-
formance after a small number of trials (on the order of 100
trials). The critical condition to achieve such good and stable
performance is a sparse representation within the recurrent layer
(enforced by intrinsic plasticity), combined with balanced rSTDP.
While not strictly necessary, synaptic scaling and inhibitory plas-
ticity improve performance; additionally we found it was benefi-
cial to reduce the LTD component for learning in the motor layer
(presumably because it limits the interference due to motor activ-
ity in the delay period). Overall, the interaction between different
plasticity mechanisms is needed for the circuit to maintain stable
function despite variable underlying neural “hardware.”

To examine the representation that emerges after learning, we
measured both the spatial and the temporal selectivity of neural
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FIGURE 2 | Circuit performance for a simple delayed response task.

Recall performance as a function of the number of trials for K = 4
stimuli. Vertical lines mark the time when the maximum delay is
incremented. Within a block the maximum delay is kept fixed, with two

variations: in the fixed delay task (blue) all trials have the same delay,
while in the variable delay task (red) the delay of each trial is drawn
independently from the uniform distribution [1, max]. Performance
estimated across 100 trial blocks.

responses. For the spatial component, we computed the aver-
age neural activation during the delay period for each stimulus
(Figure 3A, top). This simple measure reveals that most of the
neurons respond to one of the stimuli, while remaining relatively
silent for the others, as demonstrated in classic working mem-
ory experiments (Miyashita, 1988). To better quantify the effect,
we used a measure called the depth of selectivity (Rainer et al.,
1998b), defined as:

S = Ncond − �Ri
Rmax

Ncond − 1
, (7)

where Ri is the firing rate corresponding to stimulus i, Rmax =
max{Ri} and Ncond is the number of different behavioral states
considered, here the K stimuli. This measure takes the value zero
when the neural response is identical for all objects and can reach
the maximum of one when the neuron responds exclusively to
one of the stimuli. Note that we will use this measure more gen-
erally in the following sections, to also measure the specificity
to distinct actions or contexts. The depth of selectivity con-
firmed that most neurons exhibit stimulus-dependent activation
(Figure 3A, bottom).

Neural responses are structured also in the temporal domain,
reproducing at least qualitatively the temporal specificity in
experiments (Meyers et al., 2008). A post-stimulus time his-
togram (PSTH) of the network responses for a given stimulus
reveals that, although before learning the response is highly
variable (Figure 3B, top and Figure 3C, left), after learning neu-
ronal responses become highly reproducible (Figure 3B; note
that neuron indices were reordered as a result of sorting the
neuron by the time of the peak response). Moreover, neu-
rons respond at specific times relative to stimulus onset, point-
ing to a synfire chain-like representation (Aertsen et al., 1996;
Prut et al., 1998). Such temporal dynamics allow neurons to
remain stimulus specific, while maintaining a sparse activation
enforced thorough the homeostatic regulation of neural excitabil-
ity. Additionally, the network dynamics reflect the details of
the task (Figure 3C): the delay itself is encoded much better
during the fixed-delay version of the task. A low-dimensional
projection of the neural activity by principal component analy-
sis (PCA) reveals distinct vs. overlapping stimulus-specific clus-
ters in the fixed- and the variable delay task, respectively. This

reflects the intuition that the time since the stimulus presenta-
tion is important for the fixed delay task, whereas in the variable
delay version the motor layer just needs to linearly separate the
activity corresponding to different stimuli, irrespective of the
delay. The time-dependent encoding is also reflected in the con-
nectivity matrix, which becomes sparse and more feedforward
(Figure 3D). More generally, learning organizes the network in
largely non-overlapping feedforward chains, each starting from
one of the input sub-populations and with a total size deter-
mined by the number of inputs, the size of the network, and the
sparseness enforced through the homeostatic mechanisms (not
shown). In summary, in a simple delayed-response task, the net-
work uses distributed representations for encoding information
about the stimuli across time and space, in a way that makes
it easily accessible for decision circuits and is consistent with
experiments.

3.2. A DELAYED CATEGORIZATION TASK
Neurons in PFC can encode either the initial stimulus, or the
action to be taken in response to it (Brody et al., 2003). For the
simple delayed-response task above there is no difference between
the two, as actions simply signal stimulus identity. To investigate
under which conditions the circuit learns to represent preferen-
tially stimuli or actions, we used a delayed categorization task,
inspired by experiments in monkeys, in which arbitrary categories
are defined using morphed images (generated from e.g., cat and
dog prototypes), see Freedman et al. (2001).

To mimic this paradigm, we constructed an arbitrary map
between K = 8 stimuli and M = 2 decision outputs signaling
stimulus class. Here, category boundaries are defined exclusively
by the reward function (Freedman et al., 2001; Antzoulatos and
Miller, 2011), unlike some experiments in which category speci-
ficity may be—to some extent—stimulus driven (Meyers et al.,
2008). For illustration purposes, we define the mapping by stim-
ulus color (Figure 4A, right), though in the model the random
initialization of the connectivity makes any subdivision of non-
overlapping stimuli to be equivalent.

Our network is able to successfully learn the task (75% cor-
rect for a delay of five time steps). The neural representations for
this task show some novel characteristics compared to the sim-
ple delay task, which reflect the experimental data (Freedman
et al., 2001). While some of the neurons still respond selectively
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FIGURE 3 | (A) Neural selectivity in a simple delayed response task (Tmax = 5,
variable delay). Top: neural responses averaged across trials where one of four
stimuli (different colors) was presented, for a subset of 15 randomly selected
neurons. Bottom: selectivity of neural responses across the population for
one example experiment; estimated using activity in 1000 trials at the end of
learning. Note that the first 20 neurons receive direct inputs from the input
layer. (B) Comparison of the post-stimulus time histogram of neural
responses before and after learning for one example stimulus. Neuron indices

have been reordered based on the time of maximum firing relative to stimulus
onset. (C) A low-dimensional view of the population dynamics in response to
the same stimulus before learning (left) or after training using either the fixed
(right) or the variable delay (middle) paradigm. Individual points correspond to
the state of the network projected along the first three principal components;
color intensity marks the time since the stimulus presentation and different
points of the same color correspond to different trials. (D) The corresponding
weight matrix at the end of leaning.

FIGURE 4 | Neural selectivity in a delayed categorization task.

(A) Average responses to each stimulus in 10 randomly selected example
neurons. (B) Specificity of neural responses to one of the two categories
(red or blue); colors show preferred category for each neuron. Neural
selectivity was estimated using activity in 1000 trials at the end of learning.
Tmax = 5, variable delay.

to individual stimuli, a significant subpopulation responds now
to several stimuli, and often to those belonging to the same cat-
egory (Figure 4A). Using the depth of selectivity (with categories
rather than stimuli as behaviorally relevant variable) enables us
to quantify the category selectivity of neurons across the pop-
ulation (Figure 4B). Using this metric, we found that a signif-
icant fraction of the neurons (32% of excitatory neurons have

S ≥ 0.75) exhibit category selectivity, close to the 33% reported
in monkeys (Freedman et al., 2001). As in the previous exper-
iment, their representations are time-varying; at any time, only
a small fraction of neurons encode category information, with
information being passed between different small subsets of neu-
rons over the course of the trial, as shown in experiments (Meyers
et al., 2008). Overall, these results confirm our hypothesis that
the differences in neural selectivity in category- vs. stimulus-
specific delayed response tasks could emerge due to the task-
dependent reorganization of the circuit by reward-dependent
learning.

3.3. MULTIPLE CATEGORY BOUNDARIES
Up to now, we have looked at representations in a circuit that spe-
cializes on one specific memory task. While this scenario is useful
for describing a typical behavioral experiment in monkeys, in
real-life conditions the PFC needs to flexibly (and quickly) switch
across a variety of different tasks.

How exactly are multiple tasks represented in PFC circuits?
The answer should not come as a surprise: “it depends on the
tasks.” For tasks involving non-overlapping stimuli, in particular,
two independent categorization tasks (cats vs. dogs and sedans
vs. sports cars), the activity of many neurons reflects both cate-
gory distinctions. Thus, the neurons multitask different types of
information depending on the context (Cromer et al., 2010). In
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contrast, when the same stimuli need to be categorized differently
depending on behavioral context, the two category boundaries
are represented by largely non-overlapping neuronal populations
(Roy et al., 2010).

Can a difference in task constraints explain these conflicting
results? To answer this question, we constructed two versions
of the multi-class delayed categorization task, similar to those
used experimentally. First, to implement the multiple indepen-
dent categories task we used K = 8 stimuli and defined two
non-overlapping subsets, representing the animals and cars in
the original experiment. These subsets were each split in two
categories, corresponding to, e.g., the cats vs. dogs distinction,
see Figure 5A, with M = 4 actions, corresponding to the dif-
ferent category distinctions. As in the basic task, the cue signal
(now two inputs) was provided directly the decision layer; the
cue was active for one time step at the end of the delay period.
We found that the network was able to learn this task (average
performance 85% for a variable delay task, with maximum delay
Tmax = 5). To assess the emerging neural representations learned
for this task, we measured the average firing rate of the neurons in
response to different stimuli. We found that many of the neurons
responded strongly to several stimuli (Figure 5B). These stim-
uli often belonged to the same class (Figure 5B, e.g., for neurons
1, 3, 4, etc.), reproducing the category selectivity we have seen
previously, but often neural responses are strong also for stimuli
corresponding to different tasks (Figure 5B, e.g., the first neuron
responds to category 1 and 3). Measuring the category speci-
ficity of neurons for each of the two contexts revealed that most
neurons are strongly category selective (Figure 5C). Moreover,
33.5% of the neurons were sensitive to both category distinc-
tions (selectivity threshold 0.75, see Figure 5D). This suggests
that, indeed, when the tasks do not interfere with one another
the circuit should multiplex information across tasks for good
performance.

Second, to model the scenario involving overlapping category
boundaries, we assumed K = 8 input stimuli that are classified,
depending on the context, using two orthogonal category bound-
aries (Figure 6A, right). In this case, the context needs to be
provided at the beginning of the trial, together with the stimulus
(the context, i.e., which task needs to be performed in the current
trial, is encoded as two non-overlapping sub-populations of the
same size Nin, just as the stimuli). The decision layer consisted, as
before, of M = 4 neurons, one for each category, and trials from
both tasks were interleaved at random.

This version of the multiple categories experiment is signif-
icantly harder, as it requires storing information about both
stimuli and the current context (because of the two extra inputs,
we assumed the recurrent layer has a slightly increased firing
rate x0 = 0.05). Still, the network is able to perform significantly
above chance (approximatively 60%, for a variable delay with
Tmax = 3). In contrast to the task before, however, fewer neurons
develop category specificity (19.5% as opposed to 74.5%), most
represent single stimuli and several neurons encode the context
itself (Figure 6B), suggesting that the network converges to a
largely input-driven solution, in which information about stim-
uli and task is stored separately and combined only at the level
of the decision layer. Among the neurons that exhibit category
specificity, almost all are selective to only one of the category
boundaries (points with high selectivity cluster close to the two
axes, and more so if the neural responses are context modulated,
see Figure 6C), unlike the previous scenario. This observation
is reiterated when restricting the analysis to neurons that show
task specific encoding (Figure 6C, dark red). Thus, the net-
work organizes into separate task-specific subpopulations, as seen
experimentally (Roy et al., 2010).

Overall, we found that reward-dependent learning can account
for the differences in category representation across experi-
ments. Moreover, the emerging representations showed a strong

FIGURE 5 | Multitask categorization with non-overlapping domains.

(A) Given a context cue, the network needs to perform one of two
categorization tasks (“task 1” or “task 2”); there are eight stimuli in
total (colored squares), half of each are used in each task. (B) Average

stimulus-specific responses for 10 randomly selected neurons.
(C) Overlap of the category selectivity in “task 1” vs. “task 2.”
(D) Correlation of the category specificity across tasks; shaded regions
mark regions of high category selectivity.
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FIGURE 6 | Multitask categorization with overlapping domains. The
same eight stimuli need to be classified as belonging to class “blue” vs.
“green” in task 1 or as “red” vs. “yellow” in task 2. The task to be
performed in any given trial is determined by a context cue, provided as an
extra input (in this example to neurons 41–50) during the initial stimulus

presentation. (A) Overlap of the category specificity in the two tasks; color
signals the preferred category for individual neurons. (B) The selectivity of
the neuronal responses to the context; color marks the preferred context.
(C) Correlation in category selectivity across the population. Colored dots
correspond to neurons with high context selectivity (≥0.5).

task-dependent component, consistent with experimental obser-
vations (Asaad et al., 2000; Roy et al., 2010; Warden and
Miller, 2010). The general match between our model and exper-
iments is also quantitative, as shown in Figure 7 (note that the
asymmetry between tasks is a consequence of a small num-
ber of experiments). This is particularly remarkable given that
these results were obtained without any tuning of the model
parameters, beyond that required to obtain a good perfor-
mance in the simple delayed-response task. Taken together, our
results suggest task demands dramatically shape neuronal rep-
resentations in working-memory circuits via reward-dependent
learning.

3.4. THE IMPORTANCE OF REWARD-DEPENDENT LEARNING
To tease apart the contribution of different plasticity mechanisms
to the observed effects, we compared our model to a similarly
constructed network, in which weights within the recurrent layer
remain fixed, or alternatively are modified by STDP indepen-
dently of the obtained reward. In both cases, the readout to
the decision layer was learned by r-STDP, with all homeostatic
mechanisms in place.

We found that learning within the recurrent layer is critical for
good memory performance, and in particular that networks with
r-STDP are consistently better than those in which recurrent con-
nectivity is fixed (Figure 8A). For a simple delayed-response task
(K = 4 stimuli), reward modulation is not strictly necessary for
good performance and unsupervised learning alone can improve
neural representations (the performance in unsupervised learn-
ing is indistinguishable from that using reward-dependent learn-
ing; not shown), as reported elsewhere (Lazar et al., 2009). This
result is expected, since when each stimulus defines an action, it
is best to represent each input as distinctly as possible, something
which can be done by unsupervised learning. Indeed, the emerg-
ing representations are similar for the different learning scenarios
(stimulus-specific synfire chains; not shown), such that they can
be exploited for reward-dependent learning at the decision units.

Importantly, we found that simple unsupervised learning by
STDP is no longer sufficient once the task difficulty is increased,
by introducing more stimuli and more complex decision bound-
aries. Indeed, a very different picture emerges when comparing
reward dependent vs. unsupervised learning in a categorization
task (K = 8 stimuli randomly mapped into M = 2 categories).
In this case, we find that the performance of the two differs sig-
nificantly (Figure 8B). A possible reason for this difference is
that attempting to represent each different stimulus separately,
via unsupervised learning, exceeds the capacity of this partic-
ular network. Because if this, unsupervised learning results in
poorer performance in this task. Furthermore we found that the
outcome of unsupervised learning is less robust than that of
reward-dependent learning: error levels depend on the particu-
lar instantiation of the network, leading to increased across trial
variability (Figure 8B, shaded region in red vs. blue). This disso-
ciation is also apparent at the level of the neural representations.
After reward-independent learning, the percentage of category-
specific neurons is significantly lower to both our model and the
experimental data (20.5% instead of 32% for reward-dependent
learning and 33% in the data; see Figure 8C). Furthermore, the
network responses appear more noisy, suggesting that the number
of stimuli exceed the capacity of the network and the reward-
independent learning cannot learn a robust representations for
all stimuli. All in all, this suggests that for complex tasks, when
the pool of available resources is indeed a limiting factor, neu-
ronal representations need to shift toward task-relevant features
for good memory performance.

4. DISCUSSION
Prefrontal circuits are shaped by a variety of task-related vari-
ables. These representations are likely to form during extensive
training prior to experimental recordings, but the mechanisms
underlying this development are poorly understood. Here, we
have shown that representations similar to those reported exper-
imentally naturally emerge in an initially unstructured circuit
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FIGURE 7 | Summary of the results for different versions of

multitask categorization; comparison between model and

experiments. The category specificity at the end of learning was
measured for the two variants of the multiple-category task using
either overlapping or non-overlapping category boundaries. We restricted
the analysis to the subset of neurons that showed any task specificity
(defined as S ≥ Sspecific), as done for the experimental data analysis;
the proportion of these neurons that are selective to one or both of
the category boundaries was reported, averaging across five runs;
Tmax = 5 and Sspecific = 0.75 for the non-overlapping version and
Tmax = 3 and Sspecific = 0.5 for the overlapping categories discrimination,
reflecting the increase in task difficulty. Experimental data reproduced
from Cromer et al. (2010) for non-overlapping and from Roy et al.
(2010) for overlapping categories, respectively.

through reward-dependent learning. Moreover, we found that a
few generic mechanisms (rSTDP and homeostasis) are sufficient
to explain a range of puzzling (and seemingly complex) experi-
mental observations. Neurons in our model developed stimulus
and action specificity, both across neurons and in time, as seen
experimentally (Miller et al., 1996; Chafee and Goldman-Rakic,
1998; Rainer and Miller, 2002). The same model (with no further
parameter tuning) could also account for neural representations
during context-dependent tasks. For tasks involving multiple
independent category sets, individual neurons multiplexed infor-
mation across different contexts, matching experimental observa-
tions (Cromer et al., 2010); when the same stimuli mapped into
different actions depending on the context, neurons specialized
to represent single category distinctions, as in Roy et al. (2010).
To the best of our knowledge, our model is the first to provide an
unified account of these observations.

When comparing our model to a network using reward-
independent learning we found reward-dependent plasticity to
be critical for solving hard tasks, such as the categorization
of many stimuli. This finding is consistent with the notion
that reward-dependent learning should be particularly important
when resources are limited, either in terms of the amount of infor-
mation that can be stored (unsupervised learning can be used
to store four stimuli for the required time, but not eight), or in
terms of the computations allowed for retrieving it (the readout

is linear). In such scenarios, separately representing each stimu-
lus and then mapping the neural activity into the correct output
becomes unfeasible (because the resources may not suffice for
representing all stimuli individually or because reading out the
answer becomes too complicated). Instead, the circuit needs to
compute some parts of the map between stimuli and actions dur-
ing the delay, by clustering together stimuli which should yield the
same behavioral response. Given generally recognized resource
limitations in working memory circuits (Cowan, 2001), this find-
ing suggests that PFC needs to be malleable, with experience
shaping the sensitivity of neurons to reflect current behavior.

Here we chose a very simple model for the network dynam-
ics, known to have small memory capacity (Büsing et al., 2010),
because we wanted to focus on the recurrent circuitry and
its changes during learning. It should in principle be possible
to extend the memory capacity of the network closer to the
biologically-relevant range (order of seconds) by using larger
networks, a more realistic model of the neural dynamics and
including slow time-constants, e.g., NMDA receptors (Durstewitz
et al., 2000; Brunel and Wang, 2001) or short-term facilitation
(Mongillo et al., 2008). Nonetheless, as the restrictions enforced
by resource limitations are likely general, we expect the main
features of the representations emerging in the model to be pre-
served, at least qualitatively, in a detailed circuit. Thus, we predict
reward-dependent learning should play a general role in the
formation and task-specific tuning of working memory circuits.

From a developmental perspective, it is tempting to hypoth-
esize that reward-dependent learning may play a role in the
age-dependent improvement of working memory (estimated to
be approximately four-fold between the ages of 4 and 14) (Luciana
and Nelson, 1998), complementing other known factors such as
the maturation of the underlying cortical architecture, a better
representation of the inputs, the development of attention, or the
usage of memorization strategies such as rehearsal and chunking
(Gathercole, 1999). This suggestion is consistent with the known
dependence of PFC function on dopamine in early life (Diamond
and Baddeley, 1996). Furthermore, the same mechanisms may
account for training-induced improvements in working memory
in adults (Klingberg, 2010).

From a broader computational perspective, our work is also
relevant in the context of reservoir computing (Lukoševičius
and Jaeger, 2009). While this framework traditionally assumes
fixed recurrent connectivity, recent work has increasingly argued
for the importance of learning in shaping reservoir properties
(Schmidhuber et al., 2007; Haeusler et al., 2009; Lazar et al.,
2009). Previous work used general-purpose optimization through
unsupervised learning. Here, however, the network is shaped
directly by the task, which improves performance significantly
compared to static networks or networks shaped by reward-
independent learning. Thus, our model provides a stepping stone
toward general task-specific optimization of recurrent networks.

Time-dependent representations are preferred to traditional
attractor-based solutions (Amit and Brunel, 1997; Brunel and
Wang, 2001; Mongillo et al., 2008) in our model, consistent with
recent experimental observations (Miller et al., 1996; Chafee and
Goldman-Rakic, 1998; Pesaran et al., 2002; Rainer and Miller,
2002; Barak et al., 2010) and previous theoretical predictions
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FIGURE 8 | The importance of reward-dependent learning for shaping

circuit dynamics. (A) Performance comparison of networks shaped by
r-STDP (blue) vs. circuits where the recurrent connectivity is static
(green) in a simple delayed response task. (B) Performance comparison
of networks shaped by r-STDP (blue) vs. circuits where the recurrent
connectivity is shaped by reward-independent STDP (red) in a 2-class

categorization task; K = 8, fixed delay. For all conditions, the learning of
the decision output was reward-modulated. Dark colors mark averages
across five repetitions; light colors show the standard deviation around
this mean. (C) Neuronal selectivity to stimulus category when learning in
the recurrent circuit is reward independent; K = 8, fixed delay (compare
to Figure 3D).

(Goldman, 2009). This effect is a consequence of intrinsic plastic-
ity, which discourages neurons from remaining active for a long
time (Horn and Usher, 1989). Given that homeostasis plays a
critical role in stabilizing the circuit dynamics during learning
(Turrigiano and Nelson, 2004), the fact that the emerging rep-
resentation is time-varying is not really surprising. While our
model emphasizes the temporal component of this representa-
tion, it is likely that the patterns of activity seen experimentally
emerge through the interaction between feedforward and feed-
back dynamics, which would require a more detailed model of the
neural dynamics. Although the homeostatic mechanisms acting
in PFC circuits have yet to be characterized experimentally, it is
tempting to assume that the sparsification of activity and increase
in robustness observed experimentally after training (Rainer and
Miller, 2000) may be signatures of the interaction between heb-
bian and homeostatic plasticity as shown in our model. More
generally, similar mechanisms could play a role in developing
feedforward dynamics in other recurrent circuits (see also Levy
et al., 2001; Buonomano, 2005; Gilson et al., 2009; Fiete et al.,
2010), for instance in other areas known to exhibit delay period
responses, such as the perirhinal cortex, inferotemporal cortex,

or the hippocampus (Miller et al., 1993; Quintana and Fuster,
1999).

Our model combines both hebbian (r-STDP) and homeostatic
(intrinsic plasticity, synaptic scaling) forms of plasticity, lending
further support to the notion that the interaction between differ-
ent forms of plasticity is critical for circuit computation (Triesch,
2007; Lazar et al., 2009; Savin et al., 2010). In particular, our
results confirm the computational importance of intrinsic plastic-
ity and synaptic scaling in excitatory neurons (Savin et al., 2010;
Keck et al., 2012). To this, we add the role of inhibitory plastic-
ity, which we found improved both neural representations and
memory performance.

We view this model as a starting point for investigating
reward-dependent learning in working memory circuits, to which
many additions can be made. While the abstract network model
used here allowed us to focus on the essential mechanisms
underlying PFC coding, it would be important to investigate
reward-dependent learning in more realistic spiking neural net-
works. Furthermore, the model for different plasticity mecha-
nisms operating in the network could be refined as well. First,
reward-dependent learning could be improved by using recent
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extensions of r-STDP to spiking neuron populations (Urbanczik
and Senn, 2009). Second, the simplistic regulation of inhibi-
tion should be replaced by realistic inhibitory plasticity (Castillo
et al., 2011), which is expected to also aid network selectivity
(Vogels et al., 2011). Third, activity-dependent structural plas-
ticity could optimize the cortical connectivity to best encode
the task-specific information (Savin and Triesch, 2010; Bourjaily
and Miller, 2011), consistent with experimental observations that
working memory training alters circuit connectivity (Takeuchi
et al., 2010). Lastly, preliminary work, supported by recent
observations about the effects of neuromodulation on inhibitory
and homeostatic plasticity (Seamans et al., 2001; Di Pietro and
Seamans, 2011), suggests that the homeostatic plasticity mecha-
nisms themselves may be reward-dependent.
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