Visual processing is thought to function in a coarse-to-fine manner. Low spatial frequencies (LSF), conveying coarse information, would be processed early to generate predictions. These LSF-based predictions would facilitate the further integration of high spatial frequencies (HSF), conveying fine details. The predictive role of LSF might be crucial in automatic face processing, where high performance could be explained by an accurate selection of clues in early processing. In the present study, we used a visual Mismatch Negativity (vMMN) paradigm by presenting an unfiltered face as standard stimulus, and the same face filtered in LSF or HSF as deviant, to investigate the predictive role of LSF vs. HSF during automatic face processing. If LSF are critical for predictions, we hypothesize that LSF deviants would elicit less prediction error (i.e., reduced mismatch responses) than HSF deviants. Results show that both LSF and HSF deviants elicited a mismatch response compared with their equivalent in an equiprobable sequence. However, in line with our hypothesis, LSF deviants evoke significantly reduced mismatch responses compared to HSF deviants, particularly at later stages. The difference in mismatch between HSF and LSF conditions involves posterior areas and right fusiform gyrus. Overall, our findings suggest a predictive role of LSF during automatic face processing and a critical involvement of HSF in the fusiform during the conscious detection of changes in faces.
Automatic detection of information changes in the visual environment is crucial for individual survival. Researchers use the oddball paradigm to study the brain’s response to frequently presented (standard) stimuli and occasionally presented (deviant) stimuli. The component that can be observed in the difference wave is called visual mismatch negativity (vMMN), which is obtained by subtracting event-related potentials (ERPs) evoked by the deviant from ERPs evoked by the standard. There are three hypotheses to explain the vMMN. The sensory fatigue (or refractoriness) hypothesis considers that weakened neural activity caused by repetition results in decreased ERPs of the standard. The memory trace hypothesis proposes that vMMN results from increased responses to the deviant. The predictive coding hypothesis attributes the difference to enhanced responses for deviants and suppression for standards. However, when distinguishing between these effects, previous researchers did not consider the effect of low-level features on the vMMN. In this experiment, we used face sequences composed of different emotions (e.g., neutral and fearful face) and presented an oddball sequence, a reverse oddball sequence, and an equiprobable sequence to participants. The deviant of the oddball sequence was subtracted from the standard of the oddball sequence, the reverse oddball sequence, and the same type of stimulus of the equiprobable sequence to get oddball-vMMN (vMMN1), reverse oddball-vMMN (vMMN2), and equiprobable-vMMN (vMMN3), respectively. The results showed no significant difference between vMMN2 and vMMN3 in 100–350 ms following stimulus onset, while the vMMN effect was significant, indicating that the probability of the standard did not affect vMMN, which supported the memory trace hypothesis. Additionally, the fearful-related vMMN were more negative than the neutral-related vMMN within the range of 100–150 ms, suggesting a negative bias. We analyzed the source location of different vMMNs. There was no significant difference in brain regions between different vMMNs. Time-frequency analysis showed that the deviant had stronger theta-band oscillatory than the standard (visual mismatch oscillatory responses, vMORs). However, there was no difference between vMORs2 and vMORs3, indicating that vMORs reflect an enhanced response to the deviant in terms of neural oscillation, supporting the memory trace hypothesis.
In this mini-review, we summarized the results of 12 visual mismatch negativity (vMMN) studies that attempted to use this component as a tool for investigating differences between non-clinical samples of participants as well as the possibility of automatic discrimination in the case of specific categories of visual stimuli. These studies investigated the effects of gender, the effects of long-term differences between the groups of participants (fitness, experience in different sports, and Internet addiction), and the effects of short-term states (mental fatigue and hypoxia), as well as the vMMN effect elicited by artworks as a special stimulus category.