Biologically active small molecules have increasingly been applied in plant biology to dissect and understand biological systems. This is evident from the frequent use of potent and selective inhibitors of enzymes or other biological processes such as transcription, translation, or protein degradation. In contrast to animal systems, which are nurtured from drug research, the systematic development of novel bioactive small molecules as research tools for plant systems is a largely underexplored research area. This is surprising since bioactive small molecules bear great potential for generating new, powerful tools for dissecting diverse biological processes. In particular, when small molecules are integrated into genetic strategies (thereby defining “chemical genetics”), they may help to circumvent inherent problems of classical (forward) genetics. There are now clear examples of important, fundamental discoveries originating from plant chemical genetics that demonstrate the power, but not yet fully exploited potential, of this experimental approach. These include the unraveling of molecular mechanisms and critical steps in hormone signaling, activation of defense reactions and dynamic intracellular processes.
The intention of this Research Topic of Frontiers in Plant Physiology is to summarize the current status of research at the interface between chemistry and biology and to identify future research challenges. The research topics will cover all aspects of plant chemical biology, including the identification of bioactive small molecules through screening processes from chemical libraries and natural sources, which rely on robust and quantitative high-throughput bioassays, the critical evaluation and characterization of the compound’s activity (selectivity) and, ultimately, the identification of its protein target(s) and mode-of-action, which is yet the biggest challenge of all. New methods and data mining tools for assessing the bioactivity profile of compounds, exploring the chemical space for structure–function relationships, and comprehensive chemical fingerprinting (metabolomics) may also be presented. In addition, there is a continuing need for diverse target-specific bioprobes that help profiling enzymatic activities or selectively label protein complexes or cellular compartments. To achieve these goals and to add suitable probes and methods to the experimental toolbox, plant biologists need to closely cooperate with synthetic chemists. We welcome original research articles, methods paper, reviews, mini-reviews, perspectives and opinions covering the breadth of current plant chemical biology.
Biologically active small molecules have increasingly been applied in plant biology to dissect and understand biological systems. This is evident from the frequent use of potent and selective inhibitors of enzymes or other biological processes such as transcription, translation, or protein degradation. In contrast to animal systems, which are nurtured from drug research, the systematic development of novel bioactive small molecules as research tools for plant systems is a largely underexplored research area. This is surprising since bioactive small molecules bear great potential for generating new, powerful tools for dissecting diverse biological processes. In particular, when small molecules are integrated into genetic strategies (thereby defining “chemical genetics”), they may help to circumvent inherent problems of classical (forward) genetics. There are now clear examples of important, fundamental discoveries originating from plant chemical genetics that demonstrate the power, but not yet fully exploited potential, of this experimental approach. These include the unraveling of molecular mechanisms and critical steps in hormone signaling, activation of defense reactions and dynamic intracellular processes.
The intention of this Research Topic of Frontiers in Plant Physiology is to summarize the current status of research at the interface between chemistry and biology and to identify future research challenges. The research topics will cover all aspects of plant chemical biology, including the identification of bioactive small molecules through screening processes from chemical libraries and natural sources, which rely on robust and quantitative high-throughput bioassays, the critical evaluation and characterization of the compound’s activity (selectivity) and, ultimately, the identification of its protein target(s) and mode-of-action, which is yet the biggest challenge of all. New methods and data mining tools for assessing the bioactivity profile of compounds, exploring the chemical space for structure–function relationships, and comprehensive chemical fingerprinting (metabolomics) may also be presented. In addition, there is a continuing need for diverse target-specific bioprobes that help profiling enzymatic activities or selectively label protein complexes or cellular compartments. To achieve these goals and to add suitable probes and methods to the experimental toolbox, plant biologists need to closely cooperate with synthetic chemists. We welcome original research articles, methods paper, reviews, mini-reviews, perspectives and opinions covering the breadth of current plant chemical biology.