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Editorial on the Research Topic

Democratizing data: Environmental data access and its future

Brief introduction to the Research Topic

Data democratization is the equal and interdependent responsibility of data

producers, consumers, and curators to make data discoverable, accessible, equitable,

and usable (Figure 1). The genesis of democratization stems from critical changes

in the supply and demand of data over the last decades. First, the supply of data,

particularly environmental data, has exploded, partly due to improvements in the

number and resolution of observational platforms and governmental entities and private

organizations embracing the philosophy of open public data declaring data as a public

good. Likewise, the increased demand for environmental data stems from the realization

that planet-scale problems require planet-scale analyses and an increased emphasis on

data-driven environmental decision-making (Tonn et al., 2000).

The global phenomenon of datafication (Mayer-Schönberger and Cukier, 2013)

has resulted in ever-increasing availability, demand, and use of environmental data at

unprecedented physical and social scales. Taylor (1997, p. 327) prophetically states,

“in the twenty-first century, the community—not the federal government—will be the

principal unit of solution to social and economic difficulties.” This shift has expanded

the collection and reach of environmental data to previously unforeseen data consumers

such as citizen scientists. However, even traditional consumers of environmental data,

science practitioners, face data challenges in this era of big data. Meeting the goals of data

as a public good and supporting science at local scales requires a new perspective on the

production, management, and curation of data. We refer to this new perspective as data

democratization—introducing democratic principles into all aspects of data processes

Frontiers inClimate 01 frontiersin.org
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(see Tilly, 2001 for a complete discussion of democratization).

The submissions in this Research Topic raise important

questions and provide practical examples for making data more

discoverable, accessible, equitable, and usable.

Demographics of participation

The nine articles on the Research Topic were submitted

by 43 authors representing 27 institutions or organizations.

The majority (58%) were submitted by authors affiliated with

educational institutions, with the remainder from commercial

(7%), governmental (21%), or non-profit (14%) entities.

The heterogeneous institutional affiliations suggest that

democratizing data presents challenges and opportunities for all

data producers.

Topics of the collection

Three broad themes emerged from the collection:

• Maintaining a user focus in all aspects of the data

lifecycle: Virapongse et al. challenge Earth scientists to be

introspective about the methods and processes they use

to produce more effective information products to help

place-based communities build resilience. Cantor et al.

FIGURE 1

Components of data democratization.

suggest that the decision-maker needs to be incorporated

directly into data systems design. Finally, Gärtner-Roer

et al. highlight the recent increased availability of glacier

data and the role a centralized user-focused repository and

standards organization can play.

• Making data usability a priority: Stern et al. describe

an open-source platform for extracting archival data and

creating analysis-ready, cloud-optimized data stores that

empower a broader community of scientists. Contributors

also highlighted the challenges of repurposing and making

existing data repositories more usable (Rossi et al.) and

unique usability challenges in 3D data (Paxton et al.).

• Ensuring data veracity and equity: In addition to the

traditional data veracity challenges in big environmental

data, ensuring veracity in time series (Sweeney) and

simulation data (Mullendore et al.) presented unique

challenges. Finally, Dosemagen and Williams state that

prioritizing environmental data as a public good is a

key to data usability, and usability is key to addressing

environmental justice issues.

Increased pressure from funding agencies that promote

or even mandate open data sharing has resulted in a new

perspective on data—an explicit focus on the user. Historically,
the data lifecycle supported the process of knowledge production,

collecting, and analyzing data for peer-reviewed journal

publications (Baker and Mayernik, 2020). A complementary
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data lifecycle, data production, “creates data intended for release

to a data repository that makes data accessible for reuse

by others” (p. 4). This user-focused perspective dramatically

impacts how data are documented, managed, and shared. Just

as a democratic system of government requires an informed

citizenry, democratized systems of data require informed

data users.

While big environmental data presents tremendous

opportunities, they also come with tremendous challenges.

For example, data’s sheer volume, variety, and velocity

can impede its usability. Contributors touched on many

aspects of the findability, accessibility, interoperability,

and reuse (FAIR) principles (Wilkinson et al., 2016),

providing the following insights that help reach the goals

of democratization:

• View data not as stand-alone datasets but as a system in and

of itself (Stern et al.).

• Design data systems to meet the data needs of decision-

makers (decision-driven data systems) rather than

requiring decision-makers to adapt to existing systems

(Cantor et al.).

• Include data users and producers in the design of data

access systems (Dosemagen and Williams).

• Strive for effective use of data (Virapongse et al.).

Data veracity is, arguably, the riskiest aspect of data

democratization. Issues of data quality and fitness for purpose

become more critical as data sharing and data use networks

grow beyond the data producer. Producers and curators

are responsible for summarizing and communicating data

quality issues and fitness for purpose in a form and tone

approachable by data users outside the subject domain

and the technical expertise of the data producers. This

approach is consistent with the trend in several academic

conferences and journals requesting a plain-language summary

of scientific research.

Beyond FAIR

How is data democratization different from the FAIR

principles? While the FAIR principles are an essential first

step to promoting the democratization of data, they are,

in our view, focused on the data provider. Boeckhout

et al. (2018, p. 931) argue that “even though the principles

create a powerful platform for furthering data sharing

and improving data stewardship, they do not address

the normative issues and challenges associated with

data sharing.” Strict check-listed adherence to the FAIR

principles is a necessary but insufficient first step. Data

democratization is a more holistic, comprehensive view of

a process to make data discoverable, accessible, equitable,

and usable.

Although not mentioned in our Research Topic, the CARE

principles are a seminal example of shifting the focus from data

providers to data consumers and moving beyond FAIR (Carroll

et al., 2021). Developed by and for indigenous communities,

these principles promote data ecosystems that provide collective

benefit, where the authority to control the data resides with the

data subjects and where there is a recognized responsibility to

engage respectfully with data subjects. In addition, the ethics of

the data subjects should inform data use.
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Evidence-based environmental management requires data that are sufficient, accessible,

useful and used. A mismatch between data, data systems, and data needs for decision

making can result in inefficient and inequitable capital investments, resource allocations,

environmental protection, hazard mitigation, and quality of life. In this paper, we examine

the relationship between data and decision making in environmental management, with

a focus on water management. We focus on the concept of decision-driven data

systems—data systems that incorporate an assessment of decision-makers’ data needs

into their design. The aim of the research was to examine the process of translating

data into effective decision making by engaging stakeholders in the development of a

water data system. Using California’s legislative mandate for state agencies to integrate

existing water and other environmental data as a case study, we developed and applied

a participatory approach to inform data-system design and identify unmet data needs.

Using workshops and focused stakeholder meetings, we developed 20 diverse use

cases to assess data sources, availability, characteristics, gaps, and other attributes

of data used for representative decisions. Federal and state agencies made up about

90% of the data sources, and could readily adapt to a federated data system, our

recommended model for the state. The remaining 10% of more-specialized data, central

to important decisions across multiple use cases, would require additional investment

or incentives to achieve data consistency, interoperability, and compatibility with a

federated system. Based on this assessment, we propose a typology of different types

of data limitations and gaps described by stakeholders. We also propose technical,

governance, and stakeholder engagement evaluation criteria to guide planning and

building environmental data systems. Data-system governance involving both producers

and users of data was seen as essential to achieving workable standards, stable
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funding, convenient data availability, resilience to institutional change, and long-term

buy-in by stakeholders. Our work provides a replicable lesson for using decision-maker

and stakeholder engagement to shape the design of an environmental data system, and

inform a technical design that addresses both user and producer needs.

Keywords: water management, data systems, stakeholder engagement, environmental decision making,

California

INTRODUCTION

Evidence-based environmental management requires data that
are sufficient, accessible, useful and used (California Department
of Water Resources, 2020). If data systems are to effectively

inform environmental decision making, then development
of such systems can be improved through assessment and

incorporation of decision-makers’ data needs. The concept of

data-driven decision making describes the practice of making
decisions based on analysis of data (Provost and Fawcett, 2013).

In this paper, we develop a related and equally important concept
of decision-driven data systems: data systems that are designed
based on an understanding of decision-makers’ data needs.
Development of such systems can be improved through first
assessing these needs and then incorporating this assessment into
system design and content prioritization.

We define “data systems” broadly as the assemblage of
hardware, software, people, and institutions that collect, organize,
archive, distribute, integrate, process, analyze, and synthesize
data and information. There are a growing number of efforts
that seek to advance earth and environmental data systems
through integration and collaboration in order to maximize
applicability to both research and decision making. For example,
National Science Foundation (NSF) has supported Hydroshare,
a collaborative environment for sharing hydrologic and critical-
zone data and models geared toward research users. In the
European Union, the INSPIRE Directive seeks to create a
spatial-data infrastructure to inform E.U. environmental policies,
and the Copernicus project focuses on meeting earth-science
data-user needs. Copernicus developers have created a use
case library demonstrating how data are applied to real-world
problem solving.

Water management presents an important case for
strengthening the relationship between environmental data
and decision making. Provisioning and use of adequate
information are central to effectively making investments in
water infrastructure, confirming environmental regulatory
compliance, managing risks and uncertainties, guiding
operations, evaluating and encouraging innovation, and
making rapid and effective decisions during droughts, floods,
or crisis events (Kiparsky et al., 2013; Escriva-Bou et al., 2016;
Larsen et al., 2016; Green Nylen et al., 2018a,b). Researchers
have worked to strengthen connections between data and
decision making related to water. For example, researchers have
assessed decision-makers’ demand for and use of forecasting data
for water resources management (Viel et al., 2016; Neumann
et al., 2018). Researchers and computational/data scientists are

advancing new approaches to quantify watershed behavior to
inform management decisions. Recent examples highlight the
promise of machine learning for advancing tractable watershed-
data processing, parameter estimation, sensor optimization,
early warning, groundwater-level prediction, and process
understanding (e.g., Ahmad et al., 2010; Oroza et al., 2016; Pau
et al., 2016; Mosavi et al., 2018; Schmidt et al., 2018; Müller
et al., 2019). Researchers are also developing watershed-centric
data tools that seek to improve integration of data management,
analysis, modeling and interpretation of diverse watershed
datasets (Varadharajan et al., 2019; Hubbard et al., 2020). These
examples indicate significant potential for new tools to aid in
the tractable translation of water data into information for
decision making.

The complexity of water systems means that managers must
integrate and analyze multiple types of data and information
(Kallis et al., 2006; Bakker, 2012; Vogel et al., 2015). Modern
information technology promises, in concept, to make such
multi-faceted integration possible, but providing data does not
in and of itself ensure that data can or will be used for more
effective and sustainable water management. Here, water data
refers to a broad suite of data and information used to inform
water-related research and decision making. Water data includes
both measured data and model-output data, and can be used
both to characterize systems and tomonitor conditions over time.
Our definition of water data goes beyond hydrologic data such as
streamflow, precipitation, and groundwater-level measurements
to include many related and relevant areas, such as land use,
ecological, and agricultural data. We primarily address public
data sources in this paper.

As a case study, we focus on California water, which
is one of the most complex and politically contentious
environmental management challenges in the world. California’s
water challenges require a wide range of data to solve problems
including managing drought and climate change, balancing
environmental and agricultural water demands, and meeting
water needs of endangered species and cities alike (Hanak,
2011). Yet despite California’s prominence in the technology
sphere, the state’s water data have not proven up for these
challenges (California Council on Science and Technology, 2014;
Escriva-Bou et al., 2016). California water data are diverse
and fragmented, and are produced, housed, and maintained
by multiple entities from disparate sectors. Recent legislation
has attempted to address this issue. California’s Open and
Transparent Water Data Act (Assembly Bill, or AB 1755),
passed in 2016 (Cal. Water Code §12,400 et seq.), requires
California state agencies to integrate existing water and other
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environmental data from local, state, and federal agencies for
the purpose of creating and maintaining a statewide integrated
water data platform. In this research, we developed a process to
systematically explore data needs for decision making to inform
the design of data systems, focusing on California.

The aim of this paper is to contribute a better understanding
of the practice of translating data into effective decision making
by engaging stakeholders in data system development. The
research has three main contributions. First, we develop the
concept of a decision-driven data system, and assess how it
might support improvements in informing management across
a wide range of environmental sectors. Second, we examine and
illustrate the concept’s application in the California case study
by defining attributes of a user-centered data and information
system through stakeholder engagement. Third, we identify
and characterize types of data limitations, and evaluate how a
decision-driven, user-defined data system can address the data
limitations experienced by users.

We first describe our methods, which involved working
with stakeholders in California water management to develop
and analyze a set of “use cases,” short descriptions of decision
making and the data needed to inform those decisions. We
then develop a typology of different types of data limitations
and gaps described by stakeholders, including gaps in data
availability, accessibility, interoperability, and resolution. We
propose technical, governance, and stakeholder engagement
evaluation criteria to guide planning and building environmental
data systems that account for these needs. By developing
and describing a method for engaging stakeholders in the
development of data systems, this article contributes to a better
understanding of a crucial but understudied aspect of the practice
of translating data into effective decision making, and offers
recommendations applicable to a broad range of environmental
and climate data and information systems.

METHODS

Leaders from the California Department of Water Resources
(DWR), the California Council on Science and Technology
(CCST) and researchers from University of California
collaborated on a process of engaging stakeholders and
evaluating data needs with the goal of ensuring that California’s
Open and Transparent Water Data Act results in an effective
data system that improves water management in practice1. Our
stakeholder engagement was centered around identification and
analysis of “use cases”—brief descriptions of decision making
associated with a specific outcome (such as balancing a basin
water budget or responding to a harmful algal bloom) and
the data needed to inform those decisions (fully described in

1In this article, we build on and extend a 2018 report published by the Center for

Law, Energy & the Environment at Berkeley Law, available at: https://doi.org/10.

15779/J28H01. The initial report was published as a white paper intended largely

for a California-based water policy and decision-maker audience. In this article,

we strive to speak to a broader scholarly audience by expanding the theoretical

framing, putting key ideas from the 2018 report into a more in-depth conversation

with scholarly literature, extending the generalizable observations, and more fully

developing and discussing the typology of data limitations.

Cantor et al., 2018). The idea of use cases was initially articulated
in the field of computer sciences, based on the concept of
developing data systems by starting with the end users’ goals in
mind in order to increase efficiency and efficacy (Alexander and
Maiden, 2005; Kulak and Guiney, 2012). We adapted the use case
approach from computer sciences to first systematically assess
the data needs of California’s water decision makers and other
data users, then evaluate whether existing data and data systems
met these needs, and finally to communicate these needs with
technical developers of data systems and applications.

Use Case Development
We developed our application of the use case concept in
collaboration with technical data system developers as well as
data users. To begin, we asked the interrelated questions of who
needs what data in what form to make what decisions (Kiparsky
and Bales, 2017). We created a template (Table 1) to guide
stakeholders in answering these questions in a systematic way,
centered around a particular decision or goal.

Using the template in Table 1, we identified and developed 20
use cases (see Cantor et al., 2018). The use cases were compiled
during three full-day-long facilitated workshops as well as
additional meetings with stakeholders. We defined “stakeholder”
broadly as including data producers and consumers with
an interest in the outcomes of California’s progress on

TABLE 1 | Use case template: Elements and definitions of a use case (adapted

from Cantor et al., 2018).

Use case

element

Definition

Objective The decision, goal or desired action. The objective describes

what the user is trying to accomplish. The objective is the goal or

desired action on the part of the system user. Decisions could

be investment and policy decisions (longer-term); programmatic

implementation (medium-term); regulatory compliance; or

operational decisions (short term).

Description The description provides important context and background

information that might help a reader understand the objective.

Participants The participants include the main actor(s) or decision maker(s).

Participants may also include other parties involved or affected

by the decision or objective (in this case, note the main

decision-maker).

Regulatory

context

Regulatory context deriving from specific statutes or regulations

and activities; legal operational constraints; specific

government-agency programs or those under development;

reporting requirements; and other regulated activities. It also

includes physical and fiscal boundaries, frequency of reporting

requirements and constraints.

Workflow The workflow describes a progression of steps and specific

actions taken by the participants in order to accomplish the

objective.

Data sources Data sources include existing data sources as well as gaps. This

section describes the data already in use, along with additional

sources that data users would like to see developed.

Data

characteristics

Data characteristics includes notes about the type, form, and

format of data that would be most useful for making decisions,

and anything peculiar about the data.
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water data, including academics, state and local agency
representatives, non-governmental-organization representatives,
community members, the private sector, and other water
management practitioners. Workshop participants were selected
through purposive sampling (Aarons et al., 2012; Ritchie et al.,
2013) based on their relevant experience with data use or
production related to the selected use cases.

The first two workshops, which produced eight use cases in
total, each included 60–80 attendees. The majority of attendees
worked with one of the state agencies named in California’s

Open and Transparent Water Data Act (AB 1755), so they
attended in the capacity of their agencies, which had a direct stake
in the process. Other attendees included academics, non-profit
organization representatives, and others who saw themselves as
having an interest in participating in water data system design
and development. Lunch and opportunities for networking were
provided as part of the workshops. Workshops began with
an overview of the concept of data for decision making and
the specific task of informing development of a data system.
Participants then formed smaller breakout groups of 10–20

TABLE 2 | Example of completed use case: Groundwater recharge project planning.

Use case element Use case: Planning a groundwater recharge project

Source Data for Water Decision Making Workshop 1, February 9, 2017

Objective To determine when, where, and how to recharge groundwater, with what water, in order to avoid declining groundwater levels through the

recharge of groundwater.

Description Under California’s Sustainable Groundwater Management Act (SGMA), Groundwater Sustainability Agencies (GSAs) must avoid undesirable

results including chronic lowering of groundwater levels. Managed Aquifer Recharge (MAR) is the use of, e.g., infiltration basins, green

infrastructure, aquifer storage, and recovery wells to actively increase the amount of water that enters an aquifer. MAR can offset reductions in

groundwater levels by increasing storage of water.

Participants • GSA

• Consultants

• Local land use planners

• State Water Resources Control Board and CA Department of Water Resources (interested in results of groundwater sustainability plan)

• GSA constituents

Regulatory context • Sustainable Groundwater Management Act

• Other regulatory contexts: for example, CEQA, NEPA, water rights issues, water quality issues

• Possible permits from SWRCB

Workflow Identify potential source(s), quantity, timing, and cost of water available for recharge. Examine options for recharge areas based on geology,

basin capacity, available land and land values, and water quality implications. Take into account basin characteristics such as subsurface

characteristics, soil types, topography, current and planned land use, and basin capacity.

Data sources • Water availability data: Water rights information, precipitation data, projected flows, projections/forecasts of water availability.

◦ DWRCalifornia Data Exchange Center datasets: “California StatewideWater Conditions” (includes precipitation, snowpack, runoff forecasts,

river runoff, and reservoir storage)

◦ Executive Update on Hydrologic Conditions in CA (03/31/2017; updated monthly)

◦ Annual Water Year Precipitation Summary

◦ Reservoir Water Storage, by hydrologic region

◦ USGS Current Water Data for California: Daily Streamflow Conditions

◦ NOAA Precipitation Frequency Data Server (PFDS)

◦ CA Water Board Electronic Water Rights Information Management System

• Basin characteristics data: Soil types, basin capacity, subsurface characteristics, assimilative capacity, models of basin characteristics,

evidence for natural recharge.

◦ DWR Groundwater Basin Maps and Descriptions (Bulletin 118)

◦ USGS Groundwater Modeling: California Groundwater Model Archive

◦ UC Davis California Soil Research Lab Soil Agricultural Groundwater Banking Index (SAGBI) suitability index for groundwater recharge

• Land use data: Available land, water quality concerns from past land use history, historical data on land use (requires both temporal and

spatial dimensions).

◦ DWR Land Use Survey data (available at county scale; available years vary)

◦ USDA National Agricultural Statistics Service “Cropscape” Cropland Data Layer

◦ USGS Global Land Cover Characteristics Data Base, Version 2.0

◦ CA Department of Conservation Farmland Mapping and Monitoring Program

• Data gaps:

◦ Water rights data may be incomplete or unavailable.

◦ Groundwater pumping data may not be readily available.

◦ Data on water demands for managed habitat, including state, federal and private wildlife refuges, hunting clubs, and incidental

habitat areas

Data characteristics

& further notes

To capture potential impacts of previous land uses (including contamination), land use data must include both historical and spatial

dimensions. Spatial analysis can help find areas of overlap between various characteristics. Groundwater models may be required to make

decisions in some cases, but not all. Existing groundwater models may be useful in some cases, but in other cases existing models may be

insufficient. Not all required data is digitized, which presents problems for those seeking to access and use data. Uncertainties in this case

include land use impacts on groundwater, as well as climate change and other uncertainties.
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participants to develop use cases on pre-identified topics. Each
group was given the use case template (Table 1) and had an
assigned facilitator and note taker from the project team. We
next identified and developed four additional use cases through a
series of more-targeted, facilitated meetings with smaller groups
of water data users and data producers with specific subject area
expertise (for example, employees at the California State Water
Resources Control Board involved in water rights), and worked
directly with a range of non-governmental organizations and
state agencies to identify and develop the remaining eight use
cases using the template. Finally, a third, larger workshop was
held toward the end of the use case process to present the initial
use cases and findings to ∼100 attendees, and to solicit their
feedback. The process thus evolved over time—from medium-
sized workshops with a variety of water data users, to targeted
meetings and one-on-one work to generate specific use cases, to
a more general forum to present initial results.

The use cases encompassed a diversity of topics relevant
to California water management, including groundwater
management, environmental restoration, wetland monitoring,
fishery management, urban and agricultural water management,
water rights and water availability, capital investment, and
drought contingency planning2. For example, some of the
specific use case topics included “Management of environmental
flows to protect salmon habitat,” “Groundwater basin water
budgets,” “Water shortage contingency planning vulnerability
assessment,” and “Decision support system for harmful algal
bloom response, communication, and mitigation.” To provide a
more detailed example, Table 2 shows a completed use case on
the topic of groundwater recharge project planning, and Table 3

summarizes the specific data sources listed by stakeholders for
this example use case.

While the sample of use cases does not comprehensively
represent the entire landscape of California water management
(for example, the cases covered many themes related to water
quality, habitat, and water allocation, but water treatment
utilities were largely unaddressed in the overall use case
portfolio), the cases represent the complexity and breadth of
water-management topics, and the selection of use cases was
deliberately aligned with broader goals for California water
(California Natural Resources Agency, 2016).

Analysis of Use Cases
We analyzed the collected use cases to identify patterns. We
compiled the data sources listed for each use case and coded
them according to thematic categories, including data topic
and data provider. At least two members of the research team
coded each data source and cross-checked their categorizations to
enhance reliability. An emergent coding scheme (Holton, 2007)
was used in order to capture the wide range of stakeholder-
generated themes that were included in the use cases. Use case
information was then cross checked and verified to remove errors
and redundancy. We then identified data gaps, which we defined
as data that were unavailable, inconsistently available, available

2A full, detailed compilation of all 20 use cases and the specific data sources

associated with each is available online at: https://doi.org/10.15779/J28H01.

TABLE 3 | Specific data sources for groundwater recharge use case.

Topic Description Data source description

Water Precipitation DWR CDEC 2017 WY Precipitation Summary

Water Hydrologic

conditions

DWR CDEC Executive Update on Hydrologic

Conditions in CA (03/31/2017; updated

monthly)

Water Reservoir

storage

DWR CDEC reservoir storage by hydrologic

region

Water Statewide water

conditions

DWR CDEC information on precipitation;

snowpack; runoff forecasts; river runoff; and

reservoir storage

Water Precipitation NOAA Precipitation Frequency Data Server

(PFDS)

Agriculture,

mapping

Farmland maps California Department of Conservation

Farmland Mapping and Monitoring Program

(county-level data)

Water,

mapping

Groundwater

basin maps

DWR Bulletin 118 basin boundaries

Land use Land use

surveys

DWR Land Use Survey data (available at

county scale; years vary)

Water Water rights SWRCB Electronic Water Rights Information

Management System (eWRIMs)

Water Groundwater

models

USGS Groundwater Modeling: California

Groundwater Model Archive

Water Groundwater

recharge

suitability

SAGBI (Soil Ag Groundwater Banking Index)

suitability index

Land use,

mapping

Land cover

maps

USGS Global Land Cover Characteristics Data

Base Version 2.0

Agriculture Agricultural land

use

USDA National Agricultural Statistics Service

Cropscape Cropland Data Layer

Water Streamflow USGS California streamflow data

Data gaps

Water Water rights Incomplete or inaccessible; not digitized

Water Groundwater

pumping

Incomplete or unavailable records

Water Water demands

for habitat

Data not readily available

only in formats that did not allow for interoperability, or that
contained gaps in measurement or analysis. Data gaps were
also coded and checked by multiple researchers for reliability.
Finally, qualitative comments and feedback were coded using
an emergent coding scheme, and were grouped according to
themes to better understand stakeholder perspectives (see Cantor
et al., 2018 for more detail). These classifications allowed us to
systematically examine the availability of data sources, origin of
data sources, the thematic topics covered, and gaps in data.

RESULTS

Data Types and Sources
Stakeholders used (or saw potential to use) water-related
data for a wide variety of decisions. Some use cases were
oriented toward directly answering a question, while other use
cases involved collecting and integrating data into models or
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decision support tools that in turn could be used to inform
a number of different decisions. Some use cases focused on
high-level investment and policy decisions, some on mid-
level programmatic implementation, and others on day-to-day
operational decisions, and regulatory compliance. Some cases
represented concrete, already-existing decision processes, while
others were more aspirational in describing desired goals.

Analysis of the use cases confirmed that water decision
makers require a wide diversity of data types. While this may
be no surprise to those versed in environmental management,
it is important to consider the implications for data-system
design. Water decision making requires a variety of data
related to various natural, built, and socioeconomic systems
in addition to data more traditionally associated with the
hydrologic cycle (including precipitation and streamflow, water
demand, groundwater, water quality, and water storage data)
(Table 4). As illustrated in Table 4, the heterogeneity of data
included in the use cases underscores the point that water data
systems need to incorporate not only data obviously related to
water (e.g., precipitation, streamflow), but also a wide range
of related data—from agricultural land use to population data
to climate-change projections—to fully support water-related
decisions. The diversity of data and their associated spatial
and temporal resolutions presents a challenge to data-system
designers seeking to prioritize accessibility and interoperability
for water decision making.

A relatively small number of state and federal public agencies
provided the bulk of the data: just six federal and state agencies
(including, at the federal level, the U.S. Geological Survey, the
U.S. Department of Agriculture, and the National Oceanic and
Atmospheric Administration, and at the California state level,
the Department of Water Resources, the State Water Resource
Control Board, and the Department of Fish and Wildlife)
provided∼two-thirds of the data sources mentioned by decision
makers. Federal and state agencies made up about 90% of the
data sources, while a variety of university, private, and non-
governmental sources together made up the remaining 10%.
Data systems seeking to integrate public data from the full
range of federal and state data providers contributing to water
management will need to rely upon common data standards
between public agencies to ensure interoperability—a large task
currently underway in California. At the same time, there was a
long list of more specialized data that were cited for specific use
in a single case. Water data users drew not only from public data
from state and federal agencies, but also from awide range of less-
frequently-used other sources that were still highly important in
certain decisions.

Data Limitations
Stakeholder input and use cases revealed significant limitations
in data and information availability (Figure 1). Some critical
data were not available at all (limitation type 1). For
example, data about groundwater extraction by individual water
users was not systematically collected. As another example,
data related to water demand by different interests such
as recreation, or socioeconomic data such as valuation by

TABLE 4 | Broad range of data needs and topics represented within data needed

for water decision making (adapted from Cantor et al., 2018).

Topic Examples of data needed

Water-related data needs & topics

Water

demand &

use

Water demand for different uses, water rights, water

transfers, water usage, conservation, conjunctive use, urban

water use, water deliveries, imports and diversions, pump

locations, per capita water use, consumptive use,

environmental use, domestic well data

Water supply Precipitation, hydrologic conditions, streamflow, hydrographs,

full natural flow, flow projections, snowpack, return flows, river

stages, annual or seasonal volume, water year type

Water storage Reservoir capacity, reservoir levels, reservoir surveys,

snowpack storage, flood storage capacity, groundwater

storage capacity

Water quality Water quality, temperature, Total Maximum Daily Loads

(TMDLs), water chemistry, sediments, contaminants, bacteria,

algal blooms, biological indicators

Groundwater Groundwater basin maps, elevation, models, pumping,

quality, recharge suitability, storage, groundwater-dependent

ecosystems, groundwater-surface water connectivity,

Groundwater Sustainability Agency boundaries, well

locations, well logs, aquifer storage capacity

Further data needs & topics beyond water-specific data

Agriculture Land use, crop types, evapotranspiration, pesticide use

Ecology Species counts, habitat attributes, biodiversity, invasive

species, wildlife population estimates, forest type, vegetation

classification, aquatic resources, wetland boundaries

Geology &

soils

Soil types, subsidence, geologic and hydrogeologic attributes

Infrastructure Service area boundaries, water utility boundaries, pumping

records, roads, water and energy use

Land use Aerial imagery, city and county land use, land cover, land-use

surveys, remote sensing data

Mapping &

modeling

Watershed boundaries, surface waterways, terrain models,

topographic surveys, elevation, county boundaries

Socioeconomic Population, demographics, cost-benefit analyses, water

pricing data, economic impact assessments, policy analyses

Weather and

climate

Temperature, seasonal forecasts, climate projections, drought

scenarios

different interests, pricing, or willingness to pay, was not
readily available.

Other data were inaccessible or hard to use (limitation type
2). For example, some datasets were only published as PDF files
or were not machine readable, and other data were password
protected, required a fee to access, or were otherwise inaccessible.
Other data had been transformed into maps or visualization
tools, but the underlying data were not readily available. In one
notable example, most information on California water rights
only existed in paper form in a vault in the state capitol, rather
than in an accessible digital database (although there have since
been efforts to digitize this information).

Other data had low interoperability (limitation type 3). For
example, stakeholders described datasets that were collected
for specific purposes and were therefore not intended for
interoperability. Multiple data producers had their own processes
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FIGURE 1 | Types of data limitations.

for data collection, storage, and documentation. The result
was that data and IT systems could not exchange information
with each other in standard ways allowing for comparison,
aggregation, and analysis.

Finally, some data were not gathered using standardized
approaches, or were not collected at useful time intervals or
consistent spatial resolutions (limitation type 4). For example,
data can be collected seasonally, monthly, or daily but this may
not line up with decision-making needs. As another specific
example, the California Department of Water Resources divides
California into different hydrologic regions, but these boundaries
did not exactly match USGS hydrologic boundaries, making it
difficult to integrate multiple data sets.

Limitations in accessibility, interoperability, and resolution
(types 2, 3, and 4) mean that some data sources can effectively
constitute data gaps even if data technically exist.

DISCUSSION

Scholarship from environmental science and management has
outlined guiding principles for how data can ideally guide
decision making (Cortner, 2000; Cash et al., 2003; Holmes and
Clark, 2008; Lemos and Rood, 2010). Data and information,
beyond providing a snapshot of the state of the environment,
should be useful, which refers to functionality and desirability
for decision makers, as well as usable, which refers to
how well data inform decision making processes in practice
(Lemos and Rood, 2010). Data and information must also
be salient (relevant to decision makers), credible (accurate
from a scientific perspective), and legitimate (produced in

a way that is perceived as respectful, unbiased, and fair)
(Cash et al., 2003).

In this paper, we apply these principles to the mechanisms
through which data are stored, published, accessed, and used.
Drawing from our stakeholder engagement and analysis, we
identified three categories of considerations for developing useful
and usable water data systems that are salient, credible, and
legitimate: (1) technical elements, including data interoperability,
spatiotemporal resolution, documentation and quality; (2)
governance, including funding and operating of systems across
institutions; and (3) stakeholder engagement. Here we discuss
each of these categories, then use them to inform criteria to
evaluate a water data system.

Technical Considerations
Most of the use cases in our analysis integrated multiple data
sources spanning a variety of thematic categories and sourced
from a range of different data providers. The extraordinary
heterogeneity of water data (Table 4) reflects howwater decisions
must often consider hydrologic, ecological, climate and other
natural-system phenomena (e.g., streamflow, groundwater levels,
species abundance, temperature, etc.) as well as characteristics
associated with human and built systems (e.g., land use, crop
types, built infrastructure, etc.). It also reflects institutional
realities: water data are produced, housed, and maintained by
multiple entities from disparate sectors.

Our analysis showed that there are significant limitations
in data availability (Figure 1), including non-existent data and
available but difficult-to-access data. Interoperability (limitation
type 3) presented a particularly significant problem, and based
on our analysis, it became evident that interoperability of
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multiple data sources from different providers is key to the
success of an environmental data system (Figure 1). The current
lack of uniform, accessible, interoperable, and ultimately usable
data hampers evidence-based water management in California
(Escriva-Bou et al., 2016). Datasets are produced for a variety
of primary purposes, and thus do not always share metadata or
data-quality standards. Given our finding that a relatively small
number of state and federal agencies provided a large fraction of
needed data, there is significant potential for interoperability to
improve by focusing on those agencies. Stakeholders also noted
challenges related to spatial and temporal resolution of data
collection (limitation type 4), which are related to interoperability
(Gibson et al., 2000).

To address the interoperability challenge, participants in our
project discussed the relative benefits of centralized vs. federated
data systems. A centralized system such as those used by
multiple federal agencies can readily implement uniform data
standards and respond to diverse user needs. Yet federated data
systems were preferred by many participants. Federated data
systems connect multiple independent data systems through
common standards, conventions, and protocols, while keeping
those independent systems autonomous (Busse et al., 1999;
Blodgett et al., 2016). Our research showed that data users
relied upon a wide range of data produced and distributed by a
variety of state and federal agencies and other data producers.
Given the reliance on a range of distributed data sources
from independent organizations, a federated data system may
have advantages. A successful interoperable federated system
requires clear standards for data quality, metadata, and technical
requirements. Standards do not have to be created from scratch:
for example, projects such as Hydroshare and the Environmental
Systems Science Data Infrastructure for a Virtual Ecosystem
(ESS-DIVE), a cyberinfrastructure system to integrate diverse
environmental datasets, have laid significant groundwork for
methods to define and store metadata (Peckham and Goodall,
2013; Agarwal et al., 2017; Varadharajan et al., 2019). Here, it
is worth highlighting the importance of clear standards, as data
managers across different agencies and organizations may believe
their standards are aligned but in practice, they may not be
aligned sufficiently to support an effective federated system.

Workshop participants emphasized the importance of
traceability, clear identification of sources, and documentation
of uncertainties, all of which contribute to an assessment
of data limitations (Figure 1). A data system drawing from
multiple sources requires clear protocols for data quality
assurance and documentation throughout all stages of the
data life cycle. Structuring data according to set standards can
facilitate integration between multiple data providers (Blodgett
et al., 2016). Georeferencing of data is also critical for many
water-related analyses. Archiving practices also require thought,
as they are important to prevent data losses. One solution
is the use of unique digital object identifiers (DOIs) for data
sets (Paskin, 2010; Wilkinson et al., 2016), which can address
traceability concerns by ensuring that data sets persist even if
websites are reorganized and can assist with versioning, quality
assistance/quality control, and referencing. For continually

updated datasets, making versioned DOI sets of data would be a
helpful best practice across agencies.

The range of use cases identified in this research also showed
that different data users need data in different formats. In some
cases, stakeholders and researchers preferred raw data which
they could analyze and translate themselves into information. In
other cases, stakeholders required quality-controlled data with
transformed formats that could be readily input into decision-
support systems, hydrologic models, workflows, visualization
software, water-budget calculation, or other analytical tools.

Governance Considerations
Open data are important for sustainable and inclusive
environmental management and water governance in particular
(De Stefano et al., 2012; Chini and Stillwell, 2020), and can help
make environmental governance more transparent, accountable,
and efficient (Blodgett et al., 2016; Mayton and Story, 2018).
Stakeholders in our research emphasized that developing
and maintaining an open and transparent water data system
requires not just making existing data more readily available,
but also requires thoughtful governance and sustainable
funding. Strategies for generating a sustainable funding source
and governance model for a water data system have been
proposed and adopted by the state of California. These involve
a consortium of state, NGO, and private-sector actors working
collaboratively (Huttner et al., 2018).

Participants in our stakeholder engagement noted that
resources are needed throughout the information pipeline: this
includes data system design, quality control, decision support
and analysis tools, archiving, user support and continued system
innovation. Building and maintaining a sustainable data system
will therefore require investment in addressing limitations in
data availability, accessibility, interoperability and resolution
(Figure 1). To maximize usability over time, long-term funding
models must be carefully thought out, with special consideration
given to openness of data systems. Again, a federated system
has benefits in this area: while a federated system with multiple
funding streams may be vulnerable to losing one or more data
streams, it also provides resilience by being distributed. It can
also incorporate incremental additions from legislative actions
that introduce new data sources or systems that meet new or
emerging needs.

In addition to funding, an effective data system relies upon
robust institutions to coordinate decision making and actions
around how the data system is structured and used (Huttner et al.,
2018). A framework that does not address institutional concerns
increases the risk of data system failure from lack of coordination,
underinvestment, or lack of trust and buy-in. Stakeholders noted
the importance of trust, confidence, and credibility within and
between institutions, which are widely recognized as important
in water resources management generally, but can be forgotten
when the focus is on the technical aspects of data systems
(Jackson, 2006).

Data systems benefit from participation of data providers
because their adherence to standards is important for
interoperability and their involvement in those standards is
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a way to facilitate that adherence. Governance mechanisms
such as mandates for incorporating standard metadata and
data-quality procedures could help ensure that agencies
participate in a federated system. The bulk of the data used
by stakeholders in our analysis came from public agencies.
Legislative and regulatory mandates could be a way to encourage
participation of these agencies. Still, a large handful of data
sources identified as useful or necessary came from a wide
variety of non-governmental stakeholders. Such smaller data
providers may require incentives to fully participate in a
system if adhering to protocols involves costs. For example,
“intervener funding” (financial support that helps stakeholders
to effectively participate in agency proceedings) could help
support engagement of non-governmental data producers
(Kiparsky et al., 2016). Another mechanism to encourage
participation could involve requiring that state-funded projects
make data interoperable and publicly available (similar to current
National Science Foundation requirements for data management
plans and data publication).

This raises a particular conundrum for environmental data
systems design: the distinction between public and non-
public data. While it may be possible (although far from
straightforward) to require openness and transparency of data
from federal, state, and local agencies, there remains a large
category of non-public data. Other sources of data include
nonprofit data sources, but also private data sources that
present additional complications with regards to openness and
transparency. It also may be more difficult to enact requirements
or incentives for interoperability with these non-public data
sources, meaning that they are likely to be more difficult to
integrate, even though they may provide valuable information.

Stakeholder Engagement
Ensuring that an environmental data system is sufficient,
accessible, useful and used (California Department of Water
Resources, 2020) hinges on meaningful, ongoing relationships
with data users. Successful stakeholder engagement requires
many things: recognition of common goals, time to develop
functional relationships, common vocabulary, careful facilitation
and ongoing maintenance of relationships, and resources.
Developing environmental data systems that are sufficient,
accessible, useful, and used requires both usable technical
cyberinfrastructure, good governance, and funding sufficient to
support both technical infrastructure and governance.

We found that engaging knowledgeable stakeholders with
detailed understanding of data needs and workflows involved
in different aspects of water-related decision making is essential
to identifying key aspects of data system usability. We also
note the importance of engaging those who hold a stake in
water decisions but do not have in-depth technical knowledge.
To support communication, we used professional facilitation
in larger meetings to ensure that project goals were articulated
clearly and concisely. We also found it useful to engage
stakeholders through different formats to serve different project
goals. Larger workshops were helpful in communicating overall
aims to a broader audience, including those with influence over
policy decisions. Smaller meetings enabled focused conversations

with specific groups of people with targeted technical knowledge.
Working directly with organizations to identify use cases was an
effective way to engage additional stakeholders.

User-focused data-system development can thus be framed as
an adaptive management cycle (Pahl-Wostl, 2007) that includes
multiple iterations of planning, implementation, and evaluation.
Stakeholder engagement should be formally integrated into this
cycle from an early stage to increase usability of the data system
(Welp et al., 2006; Reed, 2008). Because decision-maker needs
and technological capacities change over time, a data system
must be adaptable (McNie, 2007; Hanseth and Lyytinen, 2016),
and as new decision-maker needs and new technologies arise,
a data system must evolve to remain useful. The process of
identifying stakeholder objectives, translating these objectives
into functional and technical requirements, and using these
objectives to inform the development of data systems, can be built
into the life cycle of data system design.

Evaluating Decision-Driven Data Systems
To integrate the technical, governance, and stakeholder-
engagement considerations identified during our research and
outlined here, we propose a set of questions to guide evaluating
the success of an environmental data system (Table 5). This
set of evaluation criteria incorporates the multiple types of
data limitations identified in this paper (see Figure 1) and
includes technical considerations, governance considerations,
and stakeholder engagement considerations.

TABLE 5 | Proposed criteria for evaluating success of an environmental data

system (adapted from Cantor et al., 2018).

Evaluation criteria

Addressing

data

limitations

(see Figure 1)

Are appropriate data readily available?

Are data accessible in open, transparent, and usable formats?

Are data from multiple sources interoperable?

Are data available at appropriate spatial and

temporal resolution?

Technical

considerations

Is documentation adequate?

Are standards for metadata, data quality, and technical

requirements clear to data managers?

Does the data system effectively support synthesis

and analysis?

Are systems regularly updated?

Governance

considerations

Is there institutional commitment by key organizations to use

and maintain the system?

Do incentives exist to ensure participation by data providers

and users?

Are data providers participating, in practice?

Are sufficient resources allocated to long-term maintenance?

Is there a plan to ensure financial stability over time?

Stakeholder

engagement

considerations

Are data users engaged meaningfully at key points in data

system development?

Is involvement of stakeholders an ongoing process?

Is the system based on an understanding of decision-making

contexts and user needs?

Do users believe the system is useful and usable?

Is the system used in practice to inform decision making?

Frontiers in Climate | www.frontiersin.org 9 November 2021 | Volume 3 | Article 76144416

https://www.frontiersin.org/journals/climate
https://www.frontiersin.org
https://www.frontiersin.org/journals/climate#articles


Cantor et al. Water Data for Decision Making

These evaluation questions are in line with those developed by
others, such as the “FAIR” (Findable, Accessible, Interoperable,
Reusable) Guiding Principles (Wilkinson et al., 2016), but also
add to these guiding principles through inclusion of governance
and stakeholder engagement criteria, which we argue are crucial
to data system success and should therefore be included alongside
the more technical considerations. These questions are targeted
at data providers, although many of the evaluation questions
require the input of data users. The questions do not provide
quantitative measurements or metrics, which would need to be
specific to an individual data system; instead, these questions
provide a guide for data providers to consider how well their
system is serving users. Our evaluation criteria include the very
important question of whether the data system is ultimately used
in practice to inform decisionmaking—perhaps the key indicator
of success.

A crucial indicator of the success of our process can be
found in the formal uptake of the concepts of decision-driven
water data systems into state processes required by statute
(California Department of Water Resources, 2020). Based on
the results of our workshops and analysis, our recommendation
of a federated, use case-driven water data platform that
connects independent databases while prioritizing and managing
data based on how data will be used has been adopted by
California’s AB 1755 Partner Agency Team. Another indicator
of success is in the influence of other subsequent processes.
For example, organizers of a recent workshop on water data
in Texas used a use case approach based on our template
and model (Rosen and Roberts, 2018). Drawing from our
approach, the Texas workshop organizers also started from the
basic principle that water data systems must be responsive to
stakeholder needs in order to support decisionmaking in practice
(Rosen and Roberts, 2018).

Challenges and Limitations
In the course of our study, we experienced inevitable obstacles
related to the challenges of working with stakeholders. We
found that (as might be expected) engaging with stakeholders
meaningfully is time consuming and takes resources, and it
is important not to underestimate the capacity needed to
conduct effective stakeholder engagement. We also learned
that developing a sufficiently clear articulation of an objective
or decision around which to anchor a use case was not a
simple task. In practice, it proved difficult for larger groups
with greater diversity in their topical expertise to agree
upon objectives. At the same time, engaging participants
in groups helped ensure that different stakeholders with
various types of expertise could provide different types
of knowledge.

The work presented in this paper has several limitations.
First, many problems in the water sector are highly complex.
They may involve multiple levels or stages of decisions: in
this project we mainly tested the use case approach on single-
stage decisions and the concept would need to be adapted or
used iteratively to account for multi-stage decisions. Second,
the use case framework is helpful for identifying data gaps, but

does not necessarily provide a mechanism for evaluating the
relevance or significance of such gaps. That is, some limitations
represent a critical bottleneck to decision processes, while other
limitations do not actively constrain decisions from going
forward but still impact the quality of those decisions. Future
efforts to implement use cases and identify data limitations
could ask participants about the relative impact of a particular
data limitation. Third, we developed this methodology with the
creation of a new data system in mind; we did not test the
applicability of the methodology to existing data systems that
already have established formats and tools. Future work could
test our proposed evaluation criteria by applying it to an existing
system. Finally, given growing interest in water data from global
organizations (for example, the World Water Data Initiative,
led by the World Meteorological Organization) there may be
opportunity for future research to examine how these concepts
apply to different scales.

We also acknowledge that conflicts in water management go
beyond data. Water issues and proposed solutions frequently
evoke controversy and can be hotly contested. In this project we
did not directly address the complex politics and disagreements
between different stakeholder groups that frequently emerge
in environmental governance and problem-solving. While data
can, ideally, help inform and evaluate solutions to difficult and
controversial issues, we recognize that lack of data is not the only
issue preventing goodwater governance, and that conflict will not
be resolved solely through data availability.

CONCLUSIONS

Applying the concept of decision-driven data systems to
environmental management is an important contribution to
the overarching goal of enhancing data-informed environmental
decision making. Our case study of water data in California
identified specific ways in which less-than-adequate data
sources and systems are currently constraining decision making,
resulting in data gaps, ineffective delivery of overlapping data
needs across sectors, and limiting secondary uses of data.
Based on this research, we argue that to effectively inform
water management, data systems must begin with a strong
understanding of decision makers’ data needs, and should engage
decision makers to identify and address different types of data
gaps and limitations. Otherwise, data systems risk being of
limited utility, an inefficient use of resources, and a source of
frustration for users.

Our work shows that useful and usable environmental
data systems must consider not only technical elements, but
also data system governance and stakeholder engagement.
In the case we examined, given the distributed nature of
data required by stakeholders, the independence of disparate
agencies, and the need for interoperability, federated data
systems have the potential to address technical and governance
issues. In terms of stakeholder engagement, a responsive data
system requires ongoing analysis of stakeholder objectives and
translation of those objectives into functional and technical
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requirements. Resources for engagement should be considered
part of infrastructure investment, because they ultimately can
help inform usability of a data system and prevent wasting
future resources.

Supporting environmental decisionmaking through decision-
driven data systems is a long-term project involving ongoing
attention to meaningful engagement with decision makers
and other data stakeholders. As is true of other forms of
infrastructure, the full value of investments in environmental
data may only become apparent when it is sorely needed: for
example, the value of water data becomes apparent during
droughts, floods, or other crisis events. In such events, access to
information may be a crucial factor in determining whether or
not rapid and effective decisions can be reached. This prospect
alone justifies the forward-looking efforts described in this article,
and, more generally, greater attention to the role of data in
environmental management and sustainability.
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There is strong agreement across the sciences that replicable workflows are needed

for computational modeling. Open and replicable workflows not only strengthen public

confidence in the sciences, but also result in more efficient community science. However,

the massive size and complexity of geoscience simulation outputs, as well as the

large cost to produce and preserve these outputs, present problems related to data

storage, preservation, duplication, and replication. The simulation workflows themselves

present additional challenges related to usability, understandability, documentation, and

citation. These challenges make it difficult for researchers to meet the bewildering

variety of data management requirements and recommendations across research

funders and scientific journals. This paper introduces initial outcomes and emerging

themes from the EarthCube Research Coordination Network project titled “What About

Model Data? - Best Practices for Preservation and Replicability,” which is working

to develop tools to assist researchers in determining what elements of geoscience

modeling research should be preserved and shared to meet evolving community open

science expectations.

Specifically, the paper offers approaches to address the following key questions:

• How should preservation of model software and outputs differ for projects

that are oriented toward knowledge production vs. projects oriented toward

data production?

• What components of dynamical geosciencemodeling research should be preserved

and shared?

• What curation support is needed to enable sharing and preservation for geoscience

simulation models and their output?

• What cultural barriers impede geoscience modelers from making progress on

these topics?

Keywords: data, preservation, replicability, model, simulation

INTRODUCTION

Dynamical models are central to the study of Earth and environmental systems as they are used to
simulate specific localized phenomena, such as tornadoes and floods, as well as large-scale changes
to climate and the environment. High-profile projects such as the Coupled Model Intercomparison
Project (CMIP) have demonstrated the potential value of sharing simulation output data broadly
within scientific communities (Eyring et al., 2016). However, more focus is needed on open science
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challenges related to simulation output. Researchers face a
bewildering variety of data management requirements and
recommendations across research funders and scientific journals,
few of which have specific and useful guidance for how to deal
with simulation output data.

Simulation-based research presents a number of significant
data-related problems. First, simulations can generate massive
volumes of output. Increased computing power enables
researchers to simulate weather, climate, oceans, watersheds, and
many other phenomena at ever-increasing spatial and temporal
resolutions. It is common for simulations to generate tens or
hundreds of terabytes of output, and larger projects like the
CMIPs generate petabytes of output.

Second, interdependencies between hardware and software
can limit the portability of models, and make the long-
term accessibility of their output problematic. Many current
data management guidance documents provided by scientific
journal publishers conflate scientific computational models
with software, thereby not addressing whether/how to archive
model outputs. Equating computational models with software
does not add much clarity to these recommendations, as
ensuring “openness” of software is itself a significant challenge
(Easterbrook, 2014; Irving, 2016). Models in many cases involve
interconnections between community models, open source
software components, and custom code written to investigate
particular scientific questions. Large-scale models often also
borrow and extend specific components from other models
(Masson and Knutti, 2011; Alexander and Easterbrook, 2015).

Third, the lack of standardization and documentation for
models and their output makes it difficult to achieve the goals
of open and FAIR data initiatives (Stall et al., 2018). While
this problem is not unique to simulation-based research, it has
stimulated a number of initiatives to develop more consistency in
how variables are named within simulation models, how models
themselves are documented, and in how model output data are
structured and described (Guilyardi et al., 2013; Heydebreck
et al., 2020; Eaton et al., 2021).

The result is that the long-term value of simulation outputs is
harder to assess than of observational data, and requires focused
effort if the value is to be achieved. Key questions that challenge
researchers who use such models are “what data to save” and
“for how long?” Guidance on these questions is particularly vague
and inconsistent across funders and publishers. “Reproducibility”
is likewise difficult to define and achieve for computational
simulations. Many different approaches have been proposed
for what is required to successfully reproduce prior research
(Gundersen, 2021). Within climate science, for example, bitwise
reproducibility of model runs has not been a primary focus due to
the non-linear nature of the phenomena being simulated, as well
as the differences in bitwise output that occur when transferring
models to different computing hardware (Bush et al., 2020).

Following the terminology of the recent US National
Academies of Sciences, Engineering, and Medicine (2019) report
on “Reproducibility and Replicability in Science,” the primary
goal in Earth and environmental science research is replicability
of findings related to the physical system being simulated, not
bitwise computational reproducibility. In other words, the goal

is to have enough information about research workflows and
selected derived data outputs to communicate the important
configurational characteristics to allow a future researcher to
build from the original study.

This paper builds on the initial findings of the EarthCube
Research Coordination Network (RCN) project titled “What
About Model Data? - Best Practices for Preservation and
Replicability” (https://modeldatarcn.github.io/) to address the
following key questions related to open science and simulation-
based research:

• How should preservation of model software and outputs differ
for projects that are oriented toward knowledge production vs.
projects oriented toward data production?

• What elements of dynamical geoscience modeling research
should be preserved and shared?

• What curation support is needed to enable sharing
and preservation for geoscience simulation models and
their output?

• What cultural barriers impede geoscience modelers from
making progress on these topics?

The goal of this discussion is to highlight initial findings and
selected themes that have emerged from the RCN project. The
discussion is not intended to provide prescriptive guidelines for
what and how long data should be preserved and shared from
simulation based research to fulfill community open science
expectations. Instead, we share here initial progress toward
guidelines, and, importantly, the broader themes that we have
identified as crucial to understand and address in order to
reach community open science goals. We plan to share detailed
guidance for specific datasets in a future article.

RESEARCH COORDINATION NETWORK
PROJECT OVERVIEW

The ultimate goal of the RCN project is to provide guidance on
what data and software elements of simulation based research,
specifically from dynamical models, need to be preserved and
shared to meet community open science expectations, including
those of funders and publishers. To achieve this goal, two virtual
workshops were held in 2020, and ongoing engagement with
selected stakeholders has taken place through professional society
based town halls and webinars. Workshop participants included
representatives from a variety of communities, including
atmospheric, hydrologic, and oceanic sciences, data managers,
funders, and publishers.

Project deliverables developed through the workshops and
follow-on discussions include: (1) a preliminary rubric that can
be used to inform a researcher on what simulation output needs
to be preserved and shared in a FAIR aligned community data
repository to support replicability of research results, and allow
others to easily build upon research findings, (2) draft rubric
usage instructions, and (3) an initial set of reference use cases,
which are intended to provide researchers with examples of
what has been preserved and shared by other projects that
attained similar rubric scores. The current version of all project
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deliverables can be accessed at https://modeldatarcn.github.io/.
After further workshops are held and additional community
input is gathered in 2022, project stakeholders plan to refine the
project outputs further for later publication.

INITIAL RCN PROJECT FINDINGS

Knowledge Production vs. Data Production
A primary determinant of the data archiving for modeling
projects is whether they are oriented toward knowledge or data
production. Most scientific research projects are undertaken
with the main goal of knowledge production (e.g., running an
experiment with the goal of publishing research findings). Other
projects are designed and undertaken with the specific goal of
data production, that is, they produce data with the intention
that those data will be used by others to support knowledge
production research. For example, regional and global oceanic
and atmospheric reanalysis products produced by numerical
weather prediction centers would fall into the category of data
production. The importance of this distinction is that different
kinds of work are involved in knowledge vs. data production
(Baker and Mayernik, 2020, Figure 1).

In particular, data production cannot occur without
well-planned and funded data curation support, whereas
knowledge production-oriented projects can be quite successful
at generating new findings with minimal data curation. In
some cases, such as the CMIPs, projects are designed for both
knowledge and data production.

It is difficult to achieve either knowledge or data production
if a project does not have that orientation from the beginning.
Projects with a knowledge production orientation may generate
significant amounts of data, and may want other scientists to use
their outputs. But if data production is not the explicit goal and
orientation from the beginning of a project, it is difficult for data
to be used by others without direct participation by the initial
investigator(s). If preservation and broad sharing ofmost project-
generated data is intended to take place, a data production-
orientation is necessary. This must encompass data preparation
and curation tasks, such as ensuring that data and metadata
conform to standards, that files are structured in consistent
formats, that data access and preservation are possible, that data
biases and errors are documented, and that data can be accessed
and cited via persistent identifiers (McGinnis and Mearns, 2021;
Petrie et al., 2021).

Determining What to Preserve and Share
While each project is unique, certain data and software elements
should be preserved and shared for all projects to support
research replicability and allow researchers to more easily build
upon the work of others. Accordingly, workshop participants
found that it would be best to preserve and share all elements
of the simulation workflow, not just model source code
(Figure 2). Simply sharing model code doesn’t provide the level
of understanding needed to easily build upon existing research.
Also, if initialization and forcing data are provided by an outside
provider, such as a national meteorological center, it should be
the responsibility of that center to provide access to those data.

As discussed above, most scientific research projects are
focused on knowledge production and as such should be
saving little to no raw simulation data in repositories, instead
focusing on smaller derived fields that help communicate to
future researchers the environmental state or other information
important for building similar studies in the future. Particularly
for highly non-linear case studies, the goal is not exact
reproducibility, but rather enough output to understand the
environmental state that forced, and the impacts of, the features
being investigated. There may be unique projects in which
bitwise reproducibility is deemed necessary; in those cases,
containerization can be useful (Hacker et al., 2016). However, to
build upon prior research, most knowledge production research
does not require bitwise reproducibility. Conversely, as described
above, data production projects should have well-structured
plans to preserve and share all model outputs needed for
downstream users to successfully develop knowledge production
research from those outputs.

Need for Curation Support
Development of research data and software that adheres
to community best practice expectations for reuse requires
specialized knowledge, and can be resource intensive. For
example, data management includes a broad spectrum of
activities in the data lifecycle, including proposal planning, data
collection and organization, metadata development, repository
selection, and governance (Wilkinson et al., 2016; Lee and Stvilia,
2017). Model code, output data, and any platforms being used
to deliver code and/or software need to be documented clearly
to provide guidance for potential users. Research software should
be made available through collaborative development platforms
such as GitHub (github.com) or Bitbucket (bitbucket.org),
versioned, and licensed to describe terms of reuse and access
(Lamprecht et al., 2020; American Meteorological Society, 2021).
Both the data and snapshots of software versions that were used
to support research outcomes should be archived in trusted data
(e.g., https://repositoryfinder.datacite.org) and software (e.g.,
https://zenodo.org, https://figshare.com) repositories for long-
term preservation and sharing, and assigned digital object
identifiers to facilitate discovery and credit (Data Citation
Synthesis Group, 2014; Katz et al., 2021).

The RCN project is working to develop strategies for deciding
what needs to be preserved and shared, and communicate those
practices clearly to researchers, repositories, and publishers. This
should decrease the volume of simulation-related output that
needs to be preserved, but conversely there is an expectation
for researchers to share simulation configuration, model and
processing codes that can reasonably be understood and reused
by others with discipline specific knowledge. Researchers are
currently spending a significant portion of their own time
dealing with data curation; in some cases, over 50% of their
funded time. Developing and stewarding software that adheres to
community best practice expectations adds an additional burden
on the researcher that may take up more of their funded time.
Additionally, the availability of community data repositories in
selected disciplines, such as the atmospheric sciences, is sparse,
making it challenging for researchers to find an appropriate
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FIGURE 1 | Baker and Mayernik (2020). The two-stream model shows two branches: (1) knowledge production using data optimized for local use with the final form

optimized for publication of papers; and (2) data production creates data intended for release to a data repository that makes data accessible for reuse by others. This

figure was published via the Creative Commons Attribution 4.0 International copyright license (CC BY 4.0) https://creativecommons.org/licenses/by/4.0/.

FIGURE 2 | Data and software elements to be preserved and shared by all projects.

repository to deposit their data. A coordinated effort is needed to
fund personnel to assist researchers in data and software curation,
as well as investment in the needed repository preservation
and stewardship services, to complement existing capabilities
(Gibeaut, 2016; Mayernik et al., 2018). It is unreasonable to
expect already overloaded researchers to become expert data
managers and software developers, and find time to complete
their research activities.

Cultural Barriers to Progress
As was discussed already, resources (time, money, personnel)
remain a significant barrier to implementation of data

management best practices that promote increased scientific
replicability, reduced time-to-science, and broadened
participation. But there is also resistance to change as these
practices are often in opposition to the way much of the
community has built a successful career. Career advancement
for scientists in typical scientific career pathways at research
centers and universities is based on long-used metrics of
“scientific success.” The primary traditional metrics are number
of publications, citations, and amount of proposals awarded.
Often observational instrument researchers have built careers
by leveraging use of their instrument in field campaigns to
secure proposal dollars and subsequent publications. Some
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model researchers and theorists argue that limiting access to
their software is thereby an equivalent path that they take for
building their career. However, instrument researchers are only a
small subset of observationalists, and many scientists have built
a strong career without limiting access to their software or data.

That said, we do recognize existing challenges in sharing of
data and software. One challenge is the lack of adoption in
formally citing datasets and software in peer reviewed journals,
and consideration of such impact measurements in evaluations
for promotion. Initiatives to add data and software contributions
to the evaluation process for promotion and awards exist at
various institutions, but adoption of new practices tends to be
arduous. To protect early career scientists and researchers at
smaller institutions, we propose using the practices of data and
software sharing embargoes and curation waivers. Embargoes on
data sharing are often used in field campaigns to give graduate
students a certain amount of time to work with the data before
sharing more broadly, in recognition of their need to publish
on this data as part of their career development (and possibly
needing more time to do so than more experienced researchers).
This practice should be continued for new data and software
to protect early career researchers. Additionally, waivers are
often used to reduce requirements (e.g., publication fees) for
researchers without sufficient resources. Here, we can extend
waivers to curation requirements for researchers at institutions
lacking in data/software curation expertise. Embargoes and
waivers should not be used as excuses, however, to fall back on
“data available upon request” statements that are proven to be
problematic (Tedersoo et al., 2021). Overall, for these kinds of
considerations, we emphasize not disproportionately punishing
researchers with fewer resources.

Other common concerns from scientists about more open
access, and particularly to software, are misuse of the software
and fear of sharing suboptimal code. Misuse of software is a real
outcome, as any open source software may ultimately be misused
by some. However, the benefit of a more inclusive user base
far outweighs the dangers of misuse (American Meteorological
Society, 2021). A significant challenge is often determining who
is responsible, if anyone, for user support, as this is rarely
documented or formalized within research teams. As for sharing
suboptimal code, most researchers in the Earth sciences are not
formally trained programmers and many feel that their code
is clunky, sometimes embarrassingly so. However, while some
documentation is needed, elegant code is not a requirement
for success in the earth sciences. In general, the community is
accepting of code as long as it gets the correct physical answer. An
added benefit of sharing code is that later users may streamline
and optimize it, benefiting everyone.

DISCUSSION

We must work as a community to overcome the barriers to
open data and software because our current practices impede
broadened participation in the Earth sciences. Scientific equity
cannot be fully achieved when individual scientists act as
gatekeepers for new models, data, and software. However, these

new initiatives need to be supported financially, with expertise
and infrastructure, and incentivized through modernized merit
review criteria (Moher et al., 2018). As discussed above,
researchers are already struggling with data curation and
code documentation and sharing; the community needs help
from researchers trained in these areas (possibly as staff
support at shared repositories). Without financial support
and infrastructure provided for the scientific community,
researchers at smaller institutions will be the hardest hit
by these changes, negating the very advances we are trying
to achieve in broadening participation. We can mitigate to
some degree with embargos and waivers, but in the long
run, we need federal commitment to data and software
curation services.

Funding agencies are already paying for data work, if
indirectly, by adding open data requirements to research grants
but not increasing the investment in data infrastructures and
data curation expertise. The result has been that scientists
and graduate students re-allocate grant funding intended
for scientific research to complete data tasks. If open
science expectations for simulation-based research are to
be achieved, the investment in data work should be more
direct and intentional. Investigators spending research grant
dollars on minimal curation by untrained graduate students
is inefficient and will not lead to the intended outcomes
of high-quality data sets being deposited in well-curated
data repositories.

Finally, we emphasize that it is important to consider more
than just the extremes for many of the questions and topics
discussed in this paper. From our project’s discussions, it is
clear that we must get past the poles of either all or no
model output being preserved. The best outcome in most
use cases discussed within our project has been somewhere
in the middle, namely that some output be preserved, but
not all. Likewise, software need not be all open or closed.
Some software may be released openly even if other software
components are withheld from public view due to security or
proprietary concerns. Similarly, questions about curation work
should not be limited to a scientist vs. curator debate. Ideally,
curation tasks should involve partnerships between scientific and
data experts to take advantage of their respective knowledge
and skills.

The next steps for our project and for the community broadly
will be to address other important questions that have come up
in our project activities, but have not been discussed in detail.
For example, how long should simulation output be preserved
and shared? Needs for data longevity are almost impossible
to assess up front, due to the unknown future value and user
bases of archived data sets (Baker et al., 2016). Such assessments
have to be done downstream. But what are the best measures
of a data set’s value over time? Ideally this would be based on
robust metrics, but there is not yet community agreement on
what metrics are most appropriate. The overall goal is to make
sure that we are preserving materials that can enable follow-on
research, whether that be data, software, or both.More discussion
and use cases will be necessary going forward to address these
difficult challenges.
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We demonstrate that data abstraction via a timeline visualization is highly effective

at allowing one to discover patterns in the underlying data. We describe the rapid

identification of data gaps in the archival time-series records of deep-ocean pressure

and coastal water level observations collected to support the NOAA Tsunami Program

and successful measures taken to rescue these data. These data gaps had persisted

for years prior to the development of timeline visualizations to represent when data were

collected. This approach can be easily extended to all types of time-series data and the

author recommends this type of temporal visualization become a routine part of data

management, whether one collects data or archives data.

Keywords: data management, data rescue, timeline, tsunamis, visualization, water level

INTRODUCTION

Timelines are an effective way of visualizing data inventory, leading to the improvement of
both data curation and exploration (Kräutli, 2016; Shneiderman et al., 2017). They offer a
two-dimensional, graphical representation of history, often with important events annotated.
The NOAA National Centers for Environmental Information (NCEI) is the long-term archive
(hereafter, referred to as the Archive) for ocean-bottom pressure data (National Oceanic
and Atmospheric Administration, 2005) and coastal tide gauge data (Center for Operational
Oceanographic Products Services, 2007) collected in support of the NOAA Tsunami Program. The
Archive also provides quality control and tidal analysis of these data and maintains authoritative
information regarding past tsunamis (including sources) in the NCEI and the collocated World
Data Service for Geophysics (WDS) Global Historical Tsunami Database (National Geophysical
Data Center/World Data Service, 2018). Roughly speaking, the pressure goes up one atmosphere
for every 10 meters of water (Fofonoff and Millard, 1983). When we first started working at what
was then the NOAA National Geophysical Data Center in Boulder, CO, we wanted to understand
the extent of water level data we were managing. One had access to archive tape listings, maps,
and spreadsheets, but one could not make sense of the when and where of the data and any
underlying patterns. Inspired by the data visualization work of Robert Aspinall at the NOAA
Center for Operational Oceanographic Products and Services (CO-OPS, https://tidesandcurrents.
noaa.gov/inventory.html?id=9410230) and our own experience with web development, we began
to play with a number of open-source, Javascript libraries to display information about the data.
Vis.js (http://visjs.org/) had the best functionality out-of-the-box, had good documentation, and
is free and dual-licensed under Apache-2.0 and MIT. The construction of the timeline was much
easier once we converted all the data, archived as a mix of tabular data and hierarchical XML,
to a common standard, array-based format (netCDF) meeting the interoperable goal of the FAIR

27
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FIGURE 1 | A timeline and map view of DART® ocean bottom pressure data archived at NCEI. As a result of the 26 December 2004 Northern Sumatra earthquake

and tsunami, the U.S. DART® network was expanded from 6 to 39 stations by 2008. Superposed on the timeline are the dates of observed tsunami waves. As an

example, observations of the 11 March 2011 Great East Japan earthquake and tsunami are circled in dark blue. More than 20 gaps in the Archive were identified by

visual inspection of this timeline and filled by NDBC (circled in red, not all visible in this screenshot), including one deployment that observed two tsunamis. High

resolution, 15-s data is stored on the seafloor instrument until recovery. If the instrument was not recoverable, lower resolution data (i.e., “LO-RES”) reported in

real-time is archived instead. See https://www.ngdc.noaa.gov/hazard/dart.

Data Principles (Findable, Accessible, Interoperable, and Re-
usable) (Wilkinson et al., 2016). The construction of time-
series netCDF files followed the guidance provided by NCEI
at https://www.ncei.noaa.gov/data/oceans/ncei/formats/netcdf/
v2.0/index.html. We could then more easily extract and add the
temporal bounds of the data—start and end times as well as
data gaps—to the timeline. In an era of big data, visualizing
and interacting with information about the data, before diving
into the details, can leverage the power of human perception
and insight (Shneiderman et al., 2017). Visualization reduces
the need to formulate, in advance, specific questions about the
data. Unforeseen patterns emerge through interaction with and
exploration of the visualization. To our surprise, the visualization
of the ocean-bottom pressure data and coastal tide gauge data
revealed data gaps and patterns.

FINDING AND FILLING GAPS

It is extremely important to have continuous, uninterrupted
time-series of water level measurements, even in the absence
of tsunami observations. These data are the ground truth for
tsunami propagation models. In other words, if the model
predicts a tsunami to arrive at a given tide gauge location, but
that tide gauge observation showed no tsunami present, then
that model needs to be refined and corrected. If we don’t have a

measurement, we cannot validate the model. We cannot go back
and remeasure the past, so every observation counts.

Data are considered at-risk of being lost or, at least “un-
FAIR,” until they are archived and managed at NCEI. Success
in finding and filling gaps depends on data providers being
interested and willing collaborators. Our primary data provider
for ocean bottom pressure data is the National Data Buoy
Center (NDBC), and when the Deep-ocean Assessment and
Reporting of Tsunamis (DART R©) data inventory timeline
(see https://www.ngdc.noaa.gov/hazard/dart and the associated
Javascript code at https://www.ngdc.noaa.gov/hazard/js/dart_
inventory_timeline.js) went live in 2016, NDBC examined it
closely and compared it with their record of seafloor pressure
sensor deployments (spreadsheets). Each sensor deployment on
the seafloor produces 1–3 years of data and supporting metadata,
generally stored in separate files. These data and metadata files
from a single deployment are referred to as a “data package.”
NDBC identified over 20 deployment data packages, going back
as far as 12 years, that had not been submitted to NCEI for
archive—including one that detected tsunami waves (Figure 1).
Without the timeline, these data may have been lost forever.

With the coastal tide gauge inventory published (https://
www.ngdc.noaa.gov/hazard/tide), a clear pattern of data transfer
hiccups to NCEI really stood out: we observed a coincident
absence of archived data from the entire network on specific
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days. Fortunately, CO-OPS holds onto all of their data for
characterizing long-term changes and for defining tidal datums,
so filling in the gaps at NCEI was possible. Specifically, we
identified gaps in the Archive of 1-min water-level data going
back to 2008 and rescued an average of 3 months of data per
station across 243 coastal tide gauge stations operated by CO-
OPS. We rescued more than 6 months of data from 13 stations—
the longest record was 3 years’ worth of data from Pago Pago,
American Samoa. These rescued data include observations of two
tsunamis at Pago Pago and Kwajalein, Marshall Islands.

These backfilled data have been incorporated into our quality-
controlled and de-tided products (Mungov et al., 2013). One
unexpected benefit of this Archive reconciliation effort was the

discovery and correction of a reporting error: the CO-OPS Data
API reported two heights for the same time for 20 stations on
a select number of dates. We provided details to CO-OPS so
they could troubleshoot and resolve this issue. This work directly
supports NOAA’s data stewardship role by ensuring the ocean
environmental record is complete, preserved, and accessible.

IMPROVING QUALITY AND
COMPLETENESS

Constructing a timeline from the NCEI/WDS Global Historical
Tsunami Database of reported times and heights of maximum

FIGURE 2 | Clicking on one of the blue segments on the timeline (Figure 1) takes you to a page like this one. The deployment or station page shows a plot preview of

quality-controlled data, clearly showing tidal oscillations that correlate with the dates of the new and full moon (gray and white circles, respectively), and de-tided data.

The observation of the 11 March 2011 Great East Japan tsunami is circled in black.
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tsunami waves and the inventory of water level data can help us
fill in our record of reported tsunami waves. We can immediately
see where adjacent stations observed tsunami waves and begin to
take a look at stations where no report was made, but where a
closer examination of the quality-controlled and de-tided water
level data may reveal additional tsunami detections.

The NCEI/WDS Global Historical Tsunami Database consists
of dates and heights as reported in real-time by the National
Tsunami Warning Center (NTWC) or the Pacific Tsunami
Warning Center (PTWC). The centers are selective about which
stations they typically examine, and they don’t always report all
stations, especially if an event was small. With our timeline, we
can zero in on times and locations when and where a tsunami
ought to have been detected. Because we have access to the
digital time-series data, we then have an opportunity to fill in the
database with additional reports.

TOWARD EVENT-DRIVEN DISCOVERY
AND ACCESS

Timeline visualizations promote event-driven data exploration
and discovery. The most difficult aspect for a data curator
is deciding which events and other sources of information
to include and which sources are authoritative. During
a tsunami event, NTWC and PTWC provide products
listing the times and maximum heights of tsunami waves
at select stations in their respective areas of operation.
These are superposed on the DART R© and tide gauge data
inventory timelines to draw attention to events that may
be of interest. Station pages (Figure 2) are linked from the
timelines and provide access to raw data, quality-controlled
and de-tided data products, modeled tidal constituents,
summary time-series plots, and supporting metadata. In
the future, we plan to enhance the station pages with
interactive plots. We also hope to archive and redistribute
data from international partners, with appropriate agreements
in place.

These products support the operational forecasting efforts of
the Tsunami Warning Centers and the research efforts of the
NOAA Center for Tsunami Research (NCTR) under the auspices

of the NOAA Tsunami Program, as well as the broader tsunami
modeling community. If you have data you would like us to
archive and re-distribute, please contact us at haz.info@noaa.gov.
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Pangeo Forge is a new community-driven platform that accelerates science by providing

high-level recipe frameworks alongside cloud compute infrastructure for extracting data

from provider archives, transforming it into analysis-ready, cloud-optimized (ARCO) data

stores, and providing a human- and machine-readable catalog for browsing and loading.

In abstracting the scientific domain logic of data recipes from cloud infrastructure

concerns, Pangeo Forge aims to open a door for a broader community of scientists

to participate in ARCO data production. A wholly open-source platform composed of

multiple modular components, Pangeo Forge presents a foundation for the practice of

reproducible, cloud-native, big-data ocean, weather, and climate science without relying

on proprietary or cloud-vendor-specific tooling.

Keywords: data, community, cloud, ARCO, NetCDF, Zarr, Python

1. INTRODUCTION

In the past 10 years, we have witnessed a rapid transformation in environmental data access and
analysis. The old paradigm, which we refer to as the download model, was to search for files from
a range of different data providers, download them to a local laptop or workstation, and analyze
the data in a traditional desktop-based analysis environment (e.g., IDL, MATLAB, and ArcGIS).
The new paradigm, which we call data-proximate computing, instead brings compute resources
adjacent to the data, with users performing their data analysis in a web browser and retrieving
data on demand via APIs or HTTP calls (Ramamurthy, 2017). Data-proximate environmental data
analysis tools and platforms are often deployed in the commercial cloud, which provides scalable,
on-demand computing and high-throughput data access, but are not necessarily limited to cloud
environments. Data-proximate computing removes the burden on the data user to provide local
computing; this has the potential to massively expand access to environmental data, empowering
communities that have been historically marginalized and lack such local computing resources
(Gentemann et al., 2021). However, this democratization is not guaranteed. FAIR data, open
standards, and equitable access to resourcesmust be actively pursued by the community (Wilkinson
et al., 2016; Stall et al., 2019).

Many different platforms exist to analyze environmental data in the cloud; e.g., Google Earth
Engine (GEE) and Microsoft’s Planetary Computer (Gorelick et al., 2017; Microsoft, 2021). A
common need for all such platforms is access to analysis-ready, cloud optimized (ARCO) data.
While a range of powerful ARCO data formats exist (e.g., Cloud Optimized GeoTIFF, Zarr, TileDB
Embedded, and Parquet), ARCO data production has remained a bespoke, labor-intensive process.
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Recent sessions devoted to cloud computing at meetings of
the American Geophysical Union (AGU) and Earth System
Information Partners (ESIP) enumerated the considerable toil
involved in creating ARCO data in the cloud (Hua et al., 2020;
Quinn et al., 2020). For example, when GEE partnered with
the European Center for Medium-Range Weather Forecasting
(ECMWF) to bring a portion of the ERA5 reanalysis data to
GEE, the data ingestion process was incredibly time and resource
intensive, spanning 9 months and involving a suite of specialized
tools (Wagemann, 2020).

In addition to demanding computing resources and
specialized software, ARCO data production also requires
knowledge in a range of areas, including: legacy and ARCO data
formats, metadata standards, cloud computing APIs, distributed
computing frameworks, and domain-specific knowledge
sufficient to perform quality control on a particular dataset. In
our experience, the number of individuals with this combination
of experience is very small, limiting the rate of ARCO data
production overall.

This paper describes Pangeo Forge, a new platform for the
production of ARCO data (Pangeo Forge Community, 2021).
A central goal of Pangeo Forge is to reduce the toil associated
with downloading, cleaning, and preparing data for analysis,
particularly for the large, complex datasets associated with high-
bandwidth observing systems, Earth-system simulations, and
weather reanalyses. Recognizing that individuals with domain-
specific data knowledge are not necessarily experts in cloud
computing or distributed data processing, Pangeo Forge aims to
lower the barrier for these scientists to contribute to ARCO data
curation. Finally, we hope to build a platform that encourages
open and inclusive participation, crowdsourcing ARCO data
production from the diverse community of environmental data
specialists across the world, for the mutual benefit of all.

At the time of writing, Pangeo Forge is still a work on progress.
This paper describes the motivation and inspiration for building
the platform (section 2) and reviews its technical design and
implementation (section 3). We then describe some example
datasets that have been produced with Pangeo Forge (section 4)
and conclude with the future outlook for the platform (section 5).

2. MOTIVATION AND INSPIRATION

2.1. Analysis-Ready, Cloud-Optimized Data
In the context of geospatial imagery, remote sensing instruments
collect raw data which typically requires preprocessing, including
color correction and orthorectification, before being used for
analysis. The term analysis-ready data (ARD) emerged originally
in this domain, to refer to a temporal stack of satellite images
depicting a specific spatial extent and delivered to the end-user
or customer with these preprocessing steps applied (Dwyer et al.,
2018; Holmes, 2018). In the context of this paper, however, we
use the term “analysis-ready” more generally to refer to any
dataset that has been preprocessed such that it fulfills the quality
standards required by the analysis which will be performed on
it. This may include merging and alignment of many individual
source files or file-like objects into a single cohesive entity. For
remotely sensed measurements, it may involve signal processing

to correct for known atmospheric or other distortions. For
synthetic (i.e., simulation) data, quality control may include
ensuring that output values fall within test parameters defined
by the model developers, as well as homogenization of metadata
across simulation ensembles.

Analysis-ready data is not necessarily or always cloud-
optimized. One way of understanding this is to observe that just
because an algorithm can be applied to a given dataset, that fact
alone does not guarantee the algorithm will execute expediently
or efficiently. In a context where even efficient algorithms can
take hours or days to run, optimization matters. Computational
performance is affected by many factors including algorithm
design and hardware specifications, but in the case of big
data analytics, the rate-limiting aspect of the system is often
I/O throughput, i.e., the rate at which bytes can be read
into the algorithm from the data storage location (Abernathey
et al., 2021). This rate is itself influenced by variables such as
network bandwidth, hardware characteristics, and data format.
When we refer to “cloud-optimized” data it is this third
variable, format, which we are most concerned with. Cloud-
optimized data formats are unique insofar as they support direct
access to data subsets without the computational overhead of
opening and navigating through a massive data object simply
to retrieve a small subset of bytes within it. Implementations
of this functionality vary according to the specific cloud-
optimized format: some formats include a metadata header
which maps byte-ranges within a single large data object,
while others opt to split a large object up into many small
blocks stored in an organized hierarchical structure. Regardless
of the specific implementation, the end result is an interface
whereby algorithms can efficiently access data subsets. Efficient
access to data subsets is especially impactful in the context of
cloud object storage, where simultaneous read/write of arbitrary
numbers of data subsets does not decrease the throughput to
any individual subset. As such, parallel I/O dramatically increases
cumulative throughput.

Analysis-ready, cloud-optimized datasets are, therefore,
datasets which have undergone the preprocessing required to
fulfill the quality standards of a particular analytic task and which
are also stored in formats that allow efficient, direct access to
data subsets.

2.2. Open Science, Open Source
The Pangeo Forge codebase, which is written in Python, is
entirely open source, as are its Python dependencies including
packages such as NumPy, Xarray, Dask, Filesystem Spec, and
Zarr (Dask Development Team, 2016; Hoyer and Hamman,
2017; Harris et al., 2020; Durant, 2021; Miles et al., 2021). We
see open source software as a scientific imperative. Production
of ARCO datasets involves considerable preprocessing and
reformatting. Data corruptions can easily be introduced at
any step of these multi-stage transformations, either due to
user error or, less commonly but more consequentially, due
to bugs in the software packages used to perform the ARCO
transformation. In an open source context, the scientific user
community can readily introspect every step of the process,
building trust in its effectiveness as well as contributing to
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its robustness by identifying bugs when they arise. The core
scientific tenet of reproducibility is also served by open source:
the exact provenance of each byte of data that passes through
Pangeo Forge is entirely transparent, traceable, and recreatable.

Where Pangeo Forge must unavoidably rely on commercial
technology providers, we strive always to uphold the user’s Right
to Replicate (2i2c.org, 2021). In practice, this means that even
if an underlying cloud provider technology is closed source, the
application code defining our particular implementation of that
technology is always open source, allowing anyone the option
to replicate our system exactly as we’ve deployed it. Version
control hosting, continuous integration, compute infrastructure,
storage resources, and workflow automation are arenas in
which commercial solutions are implemented. The former two
services are provided through GitHub repositories and GitHub
Actions, respectively, and the latter three through the “big three”
cloud service providers (Google Cloud, Amazon Web Services,
Microsoft Azure) and Prefect, a dataflow automation provider.

2.3. Crowdsourcing Complexity: the Conda
Forge Model
The incredible diversity of environmental science datasets
and use cases means that a fully generalized and automatic
approach for transforming archival data into ARCO stores
is likely neither achievable nor desirable. Depending on the
analysis being performed, for example, two users may want the
same archival source data in ARCO form, but with different
chunking strategies (Chunking, i.e., the internal arrangement
of a dataset’s bytes, is often adjusted to optimize for different
analytical tasks). Transforming just a single dataset from its
archival source into an ARCO data store is an incredibly
complex task which unavoidably requires human expertise to
ensure the result is fit for the intended scientific purpose.
Fantasies of cookie-cutter algorithms automatically performing
these transformations without human calibration are quickly
dispelled by the realities of just how unruly archival data often
are, and how purpose-built the ARCO data stores created from
them must be. As with all of science, ARCO transformations
require human interpretation and judgement.

The necessity of human participation, combined with the
exponentially increasing volumes of data being archived, means
that ARCOdata production is more work than any individual lab,
institution, or even federation of institutions could ever aspire to
manage in a top-down manner. Any effort to truly address the
present scarcity of high-quality ARCO data must by necessity
be a grassroots undertaking by the international community
of scientists, analysts, and engineers who struggle with these
problems on a daily basis.

The software packaging utility Conda Forge, from which
Pangeo Forge draws both inspiration and its name, provides
a successful example of solving a similar problem via
crowdsourcing (Conda-Forge Community, 2015). Conda
Forge emerged in 2015 in response to frustrations scientific
software users consistently faced when attempting to install
system package dependencies in the course of their research.
Just like ARCO data production, installing open source software
packages with binary dependencies is frequently a multi-step
process involving an intricate sequence of software compilation.

FIGURE 1 | Number of software installation recipes hosted on Conda Forge

by year.

If any one step is completed out of order, or perhaps if one of
the sub-packages installed is of the wrong version, the end result
will be non-functional. This struggle devoured countless years
worth of human effort on the part of researchers who required a
specific software configuration to pursue their investigations.

Conda Forge introduced the simple yet revolutionary notion
that two people, let alone hundreds or thousands, should not
be duplicating effort to accomplish the same tedious tasks.
As an alternative to that toil, Conda Forge established a
publicly-licensed and freely-accessible storehouse, hosted on the
open internet, to hold blueprints for performing these arcane
yet essential engineering feats. It also defined a process for
contributing blueprints to that storehouse and established a
build system compatible with the Conda package manager, a
component of the open-source Anaconda Software Distribution,
itself a popular collection of data science tooling (Anaconda Inc.,
2021). This interconnection with the Conda package manager, in
addition to serving as the inspiration for Conda Forge’s name,
means that a given Conda Forge package can be built from the
public storehouse onto a community member’s system with just
a one-line command: conda install.

It is not an understatement to say that this simple invocation,
conda install, and the system built by Anaconda
undergirding it, fundamentally transformed for the better
the practice of computational science with open source software.
The crowdsourcing model defined by Conda Forge then
leveraged this technology to maximal advantage for the open
source scientific community. For evidence of this fact, we need
look no further than the incredible growth rate of community
contributed “recipes” (as these installation blueprints are known)
in the Conda Forge storehouse (Figure 1). The summed impact
of this solution totals untold numbers of reclaimed hours
which are now dedicated to scientific research itself, rather than
tinkering with finicky engineering issues.

In the case of Conda Forge, community members contribute
recipes to a public storehouse which define steps for building
software dependencies. Then they, along with anyone else, can
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avoid ever needing to revisit the toil and time of manually
building that specific piece of software again. Contributions
to Conda Forge, while they often include executable software
components, consist minimally of a single metadata file, named
meta.yaml, which conforms to a specification established in
accordance with the build system. This design is explicitly copied
in Pangeo Forge.

3. TECHNICAL DESIGN AND
IMPLEMENTATION OF PANGEO FORGE

Pangeo Forge follows an agile development model, characterized
by rapid iteration, frequent releases, and continuous feedback
from users. As such, implementation details will likely change
over time. The following describes the system at the time
of publication.

At the highest level, Pangeo Forge consists of three primary
components:

• pangeo-forge-recipes : A standalone Python package
which provides a data model (“recipes”) and scalable
algorithms for ARCO data production. This package can be
used by itself, without the platform’s cloud automation tools.

• An automation system which executes recipes using
distributed processing in the cloud.

• A catalog which exposes the ARCO data to end users.

3.1. Recipes: Object-Oriented Extraction,
Optimization, and Storage (EOS)
Algorithms
Inspired directly by Conda Forge, Pangeo Forge defines the
concept of a recipe, which specifies the logic for transforming a
specific data archive into an ARCO data store. All contributions
to Pangeo Forge must include an executable Python module,
named recipe.py or similar, in which the data transformation
logic is embedded (Figure 2). The recipe contributor is expected
to use one of a predefined set of template algorithms defined by
Pangeo Forge. Each of these templated algorithms is designed to
transform data of a particular source type into a corresponding
ARCO format, and requires only that the contributor populate
the template with information unique to their specific data
transformation, including the location of the source files and
the way in which they should be aligned in the resulting ARCO
data store.

Pangeo Forge implements template algorithms with object-
oriented programming (OOP), the predominant style of software
design employed in Python software packages. In this style,
generic concepts are represented as abstract classes which gain
meaning once instantiated with details relevant to a particular
use case. Once instantiated, class instances (as they are known)
can perform operations on or with the attributes (i.e., details)
they ve been given. In Pangeo Forge, the operations embedded
in the template algorithms are, broadly speaking, those of data
extraction, optimization, storage (EOS). First, data is extracted
from a traditional source file server, most commonly via HTTP or
FTP request; next, the source data is transformed into an ARCO
format; and finally, the data is deposited into cloud object storage.

Within a given class of these EOS algorithms, it’s possible to
largely generalize the esoteric transformation logic itself, while
leaving the specific attributes, such as source file location and
alignment criteria, up to the recipe contributor to fill in. The
completed recipe.py module containing a specific instance
of the generic EOS algorithm can then be executed in one of a
number of ways. While recipe developers are certainly free to
run these open source algorithms on private compute clusters,
they are strongly encouraged to submit their recipes to be run
on Pangeo Forge’s shared infrastructure, which has the dual
benefit of being a freely accessible resource and, perhaps even
more importantly, results in the ARCO data being written to
a publicly-accessible cloud storage bucket and added to the
Pangeo Forge catalog for discovery and shared use by the global
community. It is through scaling contributions to our public
ARCO data catalog that Pangeo Forge aspires to do for ARCO
data production what Conda Forge has already accomplished for
software dependency management.

3.2. Base Abstractions: Insulating
Scientific Domain Expertise From Cloud
Automation Concerns
Pangeo Forge consists of multiple interrelated, modular
components. Each of these components, such as the recipes
described above, consists of some abstracted notions about how a
given aspect of the system typically functions. These abstractions
are for the most part implemented as Python classes. They
include classes related to source file location, organization, and
access requirements; the recipe classes themselves; classes which
define storage targets (both for depositing the eventual ARCO
data store, as well as for intermediate caching); and multiple
different models according to which the algorithms themselves
can be executed.

The boundaries between these abstraction categories have
been carefully considered with the aim of insulating scientific
domain expertise (i.e., of the recipe contributor) from the equally
rigorous yet wholly distinct arena of distributed computing and
cloud automation. Among ocean, weather, and climate scientists
today, Python is a common skill, but the ability to script advanced
data analyses by no means guarantees an equivalent fluency
in cloud infrastructure deployments, storage interfaces, and
workflow engines. Moreover, Pangeo Forge aims to transform
entire global datasets, the size of which is often measured in
terabytes or petabytes. This scale introduces additional technical
challenges and tools which are more specialized than the skills
required to convert a small subset of data.

By abstracting data sourcing and quality control (i.e., the
recipe domain) from cloud deployment and workflow concerns,
Pangeo Forge allows recipe contributors to focus exclusively on
defining source file information along with setting parameters
for one of the predefined recipe classes. Recipe contributors
are, importantly, not expected to understand or manipulate
the storage and execution aspects of the system, which are
maintained by community members with expertise in those
areas. In what follows, well examine four aspects of the system
in closer detail.
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FIGURE 2 | A recipe in relation to Pangeo Forge architecture.

3.2.1. Source File Patterns
In Pangeo Forge, all data transformations begin with a
FilePattern. This Python class encodes information about
archival source files including their location, access requirements,
and alignment criteria. Data providers such as NASA and NOAA
commonly distribute source files over HTTP. File Transfer
Protocol (FTP) is also a common means for distribution of
source data in the earth and atmospheric sciences. In either case,
contributors specify the access URLs for their source files as part
of a FilePattern. If the archival data URLs correspond to a
dynamic API such as OPeNDAP (Cornillon et al., 2009; Hankin
et al., 2010), rather than a static file server, that information is
specified at this stage. In cases where authorization credentials
such as a password or API token are required to access the source
data, the names of environment variables which will point to
these values at runtime are included here as well.

from pangeo_forge_recipes.patterns import (
ConcatDim,
FilePattern,
MergeDim,

)

def make_full_path(variable, time):
url_base = "http://data-provider.org/data"
return f"{url_base}/{variable}_{time}.nc"

merge_dim = MergeDim(
"variable", ["temperature", "humidity"],

)
concat_dim = ConcatDim("time", list(range(1, 11)))
pattern = FilePattern(

make_full_path, merge_dim, concat_dim,
)

Listing 1 | Defining a source file pattern with alignment criteria.

Almost all ARCO datasets are assembled from many source
files which are typically divided by data providers according

to temporal, spatial, and/or variable extents. In addition to
defining the location(s) of the source files, the FilePattern
is where contributors define how the specified set of source files
should be aligned to create a single cohesive ARCO dataset.
Alignment operations include concatenation, for arranging files
end-to-end; and merging, for layering files which cover the
same spatial or temporal extent, but for different variables.
Listing 1 demonstrates how a recipe contributor would define
a FilePattern for archival data accessed via the imaginary
file server http://data-provider.org/ . The pattern
defined in the final line of this snippet encodes not just the
location of the source files, but also the fact that any resulting
ARCO data store should concatenate these files in the time
dimension, and merge them in the variable dimension. This
encoding relies on the near-universal practice among data
providers of defining URL naming schemes which are descriptive
of a given file server’s contents; i.e., the access endpoint for a
file covering specific extents will name those extents as part of
its URL. The objects merge_dim and concat_dim, in the
example provided in Listing 2, map our imaginary file server’s
URL character string representation of dataset dimensions onto
Pangeo Forge internal datatypes for consumption by downstream
recipe classes.

3.2.2. Recipe Classes
Ocean, climate, and weather data is archived in a wide range
of formats. The core abstractions of Pangeo Forge, including
FilePattern, are designed to be agnostic to data formats, and
can be leveraged to transform any archival source file format
into any corresponding ARCO format. The transformation
from a specific archival format (or category of formats) into a
corresponding ARCO format does require a dedicated algorithm,
however. In Pangeo Forge, recipe classes are the modular
template algorithms which perform a specific category of ARCO
transformation. As modular components, an arbitrary number
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of these classes can be added to the platform over time, with
each new class adding support for a new type of ARCO
data production.

As of the writing of this paper, Pangeo Forge defines
two such recipe classes, XarrayZarrRecipe and
HDFReferenceRecipe , each of which is most commonly
used to transform one or many NetCDF files into a single
consolidated Zarr dataset. The difference between these
algorithms lies in the nature of their outputs. Whereas,
XarrayZarrRecipe creates an actual Zarr store
by mirroring the source file bytes into a new format,
HDFReferenceRecipe leverages the Python library
kerchunk to write lightweight metadata files which map
the location of bytes within the archival source files, allowing
users to read the original data in a cloud-optimized manner with
the Zarr library, but without duplicating bytes (Durant et al.,
2021).

from pangeo_forge_recipes.recipes import (
XarrayZarrRecipe

)

recipe = XarrayZarrRecipe(pattern)

Listing 2 | Instantiating a recipe algorithm with a source file pattern.

As an algorithm case study, we ll take a closer look at the
internals of the XarrayZarrRecipe . To begin, let’s consider
howwewould create an instance of this algorithm. In the simplest
case each algorithm instance requires only a FilePattern
instance as input. Using the instance we defined in Listing 1,
we define a recipe as shown in Listing 2. In just these few
simple lines, we have created an algorithm containing all of the
information needed to extract data from our specified provider
archive and transform it into the cloud-optimized Zarr format.

Real-world use cases will likely necessitate additional options
be specified for the XarrayZarrRecipe instance. Pangeo
Forge supports many such options. One worth highlighting is
the target_chunks option, which is used to indicate the
desired chunking scheme of the resulting ARCO data store. As
mentioned in section 2.3, chunking, the internal subsetting of a
large dataset, is often optimized for a particular analytical aim,
with a classic example being the divergent chunking required
for optimizing timeseries vs. spatial analyses. Contributors pass
a mapping of a dimension name to an integer value to specify
their desired chunking; e.g., target_chunks={"time":
10} tells the algorithm to divide the ARCO dataset into chunks
of length 10 in the time dimension. Should downstream data
users require a variation on this or another contributor-defined
option, they canmake or request changes to the recipe and release
those changes as a new dataset version (see section 3.3.2 for
further discussion of dataset versioning).

A full treatment of the Zarr specification is beyond the scope
of this paper, but a brief overview will provide a better context
for understanding. In a Zarr store, compressed chunks of data
are stored as individual objects within a hierarchy that includes a
single, consolidated JSONmetadata file. In actuality, cloud object
stores do not implement files and folders, but in a colloquial
sense we can imagine a Zarr store as a directory containing a

FIGURE 3 | XarrayZarrRecipe algorithm.

singlemetadata file alongside arbitrary numbers of data files, each
of which contains a chunk of the overall dataset (Miles et al.,
2021). The XarrayZarrRecipe algorithm which transforms
archival data into this format consists of four sequential steps,
each of which performs a series of sub-operations. Depending on
the specific use case, one or more of these steps may be omitted,
but we will consider them here for the scenario in which they are
all performed (Figure 3).

Caching input files is the first step of the
XarrayZarrRecipe algorithm. This step copies all archival
files required for the dataset into temporary storage in a cloud
storage bucket. This affords downstream steps of the algorithm
fast, parallelizable access to the source data. Typically, the cached
source files will be in NetCDF format (Rew et al., 2006). As the
name of the algorithm suggests, however, the actual requirement
is not for NetCDF inputs specifically, but rather for input files
compatible with Xarray, a widely-used Python interface for
labeled multidimensional arrays that supports multiple backend
file formats, including GRIB, COG, and some flavors of HDF5
(Hoyer and Hamman, 2017).

Before any actual bytes are written to the Zarr store, the
target storage location must first be initialized with the skeletal
structure of the ARCO dataset. We refer to this step, which
immediately follows caching, as prepare_target. Preparing
the target entails reading metadata from a representative subset
of the source files to establish an empty Zarr store of the proper
dimensions at the target location.

Once this framework has been established, the algorithm
moves on to actually copying bytes from the source data into
the Zarr store, via the store_chunks task. Internally, this
step performs a lot of heavy lifting, insofar as it determines
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which specific byte ranges within which source files are required
to build each output chunk. Because both the cached source
bytes and target dataset reside on cloud object storage, which
supports scalable parallel reads and writes, this computationally
intensive step is designed to be executed in parallel; specifically,
each store_chunks task can be executed in any order,
without communication or synchronization needed between
processes. Parallelization of this step is essential to Pangeo Forge’s
performance, given that ARCO datasets are often hundreds
of gigabytes in size on the low end, and can easily reach
multi-petabyte scale.

Following the mirroring of all source bytes into their
corresponding Zarr chunks, the XarrayZarrRecipe
algorithm concludes with a finalization step which consolidates
the dataset’s metadata into a single lightweight JSON object.

Duplicating bytes is a costly undertaking, both
computationally, and because cloud storage on the order of
terabytes is not inexpensive. This is a primary reason why
sharing these ARCO datasets via publicly accessible cloud
buckets is so imperative: a single copy per cloud region or
multi-region zone can serve hundreds or thousands of scientists.
A clear advantage of the HDFReferenceRecipe algorithm is
that it does not require byte duplication, however it has certain
limitations. This approach requires that the data provider’s
server support random access to source file subsets, a common
but non-universal feature of HTTP and FTP servers. Because
the bytes on the data provider’s server are not duplicated,
use of HDFReferenceRecipe precludes forms of data
preprocessing which modify the data itself; only metadata
preprocessing is supported. Finally, opening data stores created
by this algorithm requires the Python package kerchunk,
effectively preventing access from languages other than Python,
as of writing. The interface specification for virtual Zarr stores
is clearly defined in the kerchunk documentation, therefore
we anticipate it may be implemented in other languages in the
future (Durant et al., 2021). HDFReferenceRecipe presents
a remarkably efficient pathway for certain use cases, however as
with most efficiencies, it comes with inevitable tradeoffs.

Pangeo Forge’s initial algorithms produce Zarr outputs
because this format is well-suited to ARCO representation
of the gridded multidimensional array data that our early
scientific adopters use in their research. Disadvantages of
Zarr include the fact that popular data science programming
languages such as R do not yet have an interface for the
format (Durbin et al., 2020). As our community grows, we
anticipate future recipe implementations to include support for
most common ARCO formats. These include TileDB Embedded,
for multidimensional arrays; Cloud Optimized GeoTIFF (COG),
which is widely used in the geospatial imagery community;
Parquet, for optimized tabular data stores; and the recently
announced Cloud Optimized Point Cloud (COPC) format
for, among other uses, light detection and ranging (LiDAR)
measurements (Holmes, 2021; Le Dem and Blue, 2021; Hobu,
Inc., 2021; TileDB, Inc., 2021). As with our Zarr algorithms,
which depend on Xarray as an I/O interface, our path to
implementing these algorithms will build on the standard Python
interfaces for each data structure; e.g., Rasterio for raster data and

Pandas for tabular data (Gillies et al., 2013; Pandas Development
Team, 2021).

3.2.3. Storage Abstractions
In the discussion of source file patterns, above, we referred
to the fact that input data may be arbitrarily sourced from a
variety of different server protocols. The backend file transfer
interface which enables this flexibility is the Python package
Filesystem Spec, which provides a uniform API for interfacing
with a wide range of storage backends (Durant, 2021). This same
package provides the engine behind our storage abstractions, a
set of modular components which handle various permutations
of file caching, reading, and writing. These classes need not
be enumerated here; the interested reader can find details
about them in the Pangeo Forge documentation. One aspect
of these components worth highlighting, however, is that even
though cloud object storage is the typical destination of datasets
processed by Pangeo Forge, the platform is just as easily
able to read from and write to a local POSIX file system
or, for that matter, any Filesystem Spec-compatible storage
location. Among other things, this capability allows recipe
contributors to experiment with recipe algorithms by writing
ARCO dataset subsets to local disk during the development
process. For our typical cloud storage interfaces, the Filesystem
Spec implementations we employ most frequently are s3fs (for
Amazon Web Services S3), gcsfs (for Google Cloud Storage),
and adlfs (for Azure Datalake and Azure Blob Storage).

3.2.4. Execution Modes
Instantiating a recipe class does not by itself result in any data
transformation actually occurring; it merely specifies the steps
required to produce an ARCO dataset. In order to actually
perform this workflow, the recipe must be executed. A central
goal of the software design of pangeo-forge-recipes is
to be as flexible as possible regarding the execution framework.
A wide range of frameworks for parallel and/or distributed
computing exist, and pangeo-forge-recipes seeks to be
compatible with as many of these as possible. For example,
high-performance computing (HPC) users may prefer to use
traditional job-queue based execution, while cloud users may
want to use Kubernetes (Brewer, 2015).

pangeo-forge-recipes does not directly implement
any parallel computing. Rather, the library has the ability to
compile recipes into several different formats used by common
distributed computing frameworks. As of writing, we currently
support four different flavors of compilation:

• Compilation to a single Python function: This is a reference
implementation for serial execution.

• Compilation to Dask Delayed graph: Dask is a general
purpose parallel computing framework widely used
in the scientific Python world (Dask Development
Team, 2016). By compiling recipes to Dask graphs,
pangeo-forge-recipes users are able to leverage
the variety of different schedulers Dask has implemented for
a wide range of different computing platforms. These include
dask-jobqueue for HPC systems using PBS, SLURM,
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SGE, etc. (Henderson, 1995; Gentzsch, 2001; Yoo et al.,
2003); Dask Kubernetes for cloud; and Dask-Yarn for Hadoop
(Shvachko et al., 2010). Dask’s single machine schedulers
enable recipes to be executed in parallel using threads or
processes on a single large server.

• Compilation to Prefect Flow: Prefect is a suite of workflow
automation tools encompassing both open source and
software-as-a-service (SaaS) components: Prefect Core is an
open source workflow engine for Python; a Prefect Flow is
a set of interrelated individual tasks, structured in a graph;
and Prefect Cloud is a SaaS platform which helps manage and
monitor Flow execution (Prefect Technologies, Inc., 2021).
Prefect provides a robust and observable way of running
recipes and is our current default model for the Pangeo Forge
cloud automation.

• Compilation to Apache Beam Pipeline: Apache Beam is
an open source framework for defining parallel processing
pipelines for batch and streaming data (Apache Software
Foundation, 2016). Beam Pipelines are high-level dataflow
graphs, composed of distributed datasets and globally
optimized, lazily evaluated processing steps. By compiling
to Beam Pipelines, pangeo-forge-recipes can be
executed on major distributed computation systems including
Apache Spark (Zaharia et al., 2016), Apache Fink (Apache
Software Foundation, 2015), and Google Cloud Dataflow
(Akidau et al., 2015), as well as through intermediaries such as
Hadoop, Yarn, Mesos, and Kubernetes (Shvachko et al., 2010;
Hindman et al., 2011; Brewer, 2015). Beam is a multi-language
framework capable of executing multiple languages in a single
Pipeline. This makes it possible to incorporate recipes into
execution workflows outside of the Python ecosystem.

In addition to these execution frameworks, recipe steps can be
manually run in sequential fashion in a Jupyter Notebook or
other interactive environment (Ragan-Kelley et al., 2014). This
facilitates user introspection and debugging.

3.3. Cloud Automation Platform
The nuclei of Pangeo Forge cloud automation are Bakeries, cloud
compute clusters dedicated specifically to executing recipes.
Bakeries provide a setting for contributors to run their recipes
on large-scale, distributed infrastructure and deposit ARCO
datasets into performant publicly-accessible cloud storage, all
entirely free of cost for the user. By running their recipes in a
Bakery, contributors are not only gaining access to free compute
and storage for themselves, but are also making a considerable
contribution back to the global Pangeo Forge community in the
form of ARCO datasets which will be easily discoverable and
reusable by anyone with access to a web browser.

Pangeo Forge follows the example of Conda Forge in
managing its contribution process through the cloud-hosted
version control platform GitHub. Recipe contributors who
wish to run their recipes in a Bakery first submit their
draft recipes via a Pull Request (PR) to the Pangeo Forge
staged-recipes repository which, as the name implies, is a
holding area for incoming recipes. Following an iterative review
process, described in detail below, recipe PRs are approved

by Pangeo Forge maintainers, at which point their contents
are automatically transferred out of the staged-recipes
repository and incorporated into a new, standalone repository
known as a Feedstock. It is from this Feedstock repository that
recipe execution is dispatched to the Bakery compute cluster. The
details of and rationale behind this workflow are provided in the
following subsections.

3.3.1. Contribution Workflow
Continuous integration (CI) is a software development practice
whereby code contributions are reviewed automatically by a
suite of specialized test software prior to being incorporated into
a production codebase. CI improves code quality by catching
errors or incompatibilities that may escape a human reviewer’s
attention. It also allows code contributions to a large project
to scale non-linearly to maintainer effort. Equipped with a
robust CI infrastructure, a single software package maintainer
can review and incorporate large numbers of contributions
with high confidence of their compatibility with the
underlying codebase.

Pangeo Forge currently relies on GitHub’s built-in CI
infrastructure, GitHub Actions, for automated review of
incoming recipe PRs (Figure 4). The first stage of this review
process consists of checks that the submitted files, including the
meta.yaml metadata and the recipe.py algorithm module,
conform to the technical and stylistic specifications defined in
the Pangeo Forge documentation. If errors are identified at this
stage, the contributor is notified automatically and given a list
of recommended changes, which must be incorporated prior to
advancing to the next stage of evaluation.

Once the PR passes this first gate, a human project maintainer
dispatches a command to run an automated execution test of
the recipe. This test of a reduced subset of the recipe runs
the same Prefect workflows on the same Bakery infrastructure
which will be used in the full-scale data transformation.
Creation of the reduced recipe is performed by a Pangeo
Forge function which prunes the dataset to a specified subset
of increments in the concatenation dimension. Any changes
required to the recipe’s functionality are identified here. For
datasets expected to conform to Climate and Forecast (CF)
Metadata Conventions, we plan to implement compliance checks
at this stage using established validation tooling such as the
Centre for Environmental Data Analysis (CEDA) CF Checker
and the Integrated Ocean Observing System (IOOS) Compliance
Checker (Adams et al., 2021; Eaton et al., 2021; Hatcher, 2021).
Following an iterative process of corrections based on the results
of the automated execution test (or a series of such tests, as
necessary), the recipe PR is accepted by a human maintainer.
At this point, a Feedstock repository is programmatically
generated by incorporating the recipe PR files into a predefined
repository template.

Creation of a Feedstock repository from the recipe PR triggers
the full build of the ARCOdataset, after which the only remaining
step in the contribution workflow is the generation of a catalog
listing for the dataset, an automated process dispatched by
GitHub Actions.
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FIGURE 4 | Pangeo Forge contribution workflow.

3.3.2. Feedstocks
Feedstocks are GitHub repositories which place user-contributed
recipes adjacent to Pangeo Forge’s cloud automation tools and

grant access to Pangeo Forge credentials for authentication

in a Bakery compute cluster. The Feedstock repository

approach mirrors the model successfully established in

Conda Forge. Those familiar with software version control

processes will know that, most often, merging a PR results in

proposed code changes being incorporated into an existing
repository’s codebase. As in Conda Forge, merging a PR to
staged-recipes takes on a slightly different meaning in
Pangeo Forge. Rather than incorporating a recipe’s code into
staged-recipes, merging a recipe PR results in the creation
of a new, dedicated GitHub repository for the recipe called
a Feedstock.

We can think of this new Feedstock repository as the deployed
or productionalized version of the recipe. The template from
which GitHub Actions automatically generates this repository
includes automation hooks which register the recipe’s ARCO
dataset build with the specified Bakery infrastructure. All of
these steps are orchestrated automatically by GitHub Actions and
abstracted from the recipe code itself. As emphasized throughout
this paper, this separation of concerns is intended to provide a
pathway for scientific domain experts to participate in ARCO
data curation without the requirement that they understand the
highly-specialized domain of cloud infrastructure automation.

As public GitHub repositories, Feedstocks serve as invaluable
touchstones for ARCO dataset provenance tracking. Most users
will discover datasets through a catalog (more on cataloging
in section 3.4). Alongside other metadata, the catalog entry for
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each dataset will contain a link to the Feedstock repository
used to create it. This link connects the user to the precise
recipe code used to produce each ARCO dataset. Among other
benefits, transparent provenance allows data users to investigate
whether apparent dataset errors or inconsistencies originate in
the archival source data, or are artifacts of the ARCO production
process. If the latter, the GitHub repository provides a natural
place for collaboration on a solution to the problem. Each time
a Feedstock repository is tagged with a new version number, the
recipe it contains is re-built to reflect any changes made since the
prior version.

Pangeo Forge implements a two-element semantic versioning
scheme for Feedstocks (and, by extension, the ARCO datasets
they produce). Each Feedstock is assigned a version conforming
to the format MAJOR.MINORand beginning at 1.0. Increments
to the minor version are made for changes which are likely to
be backwards-compatible with user code that relies on an earlier
version of the data. Such updates include metadata corrections,
adding new variables, or extending the temporal range of existing
variables. Major version increments are triggered for non-
backwards-compatible edits such as changing existing variable
names or revising preprocessing functions such that they alter
existing variable arrays. Pangeo Forge will maintain prebuilt
copies of all major versions of a given dataset, but in the interest of
storage efficiency will only retain the latest minor version for each
of these major versioned datasets. (For example, if prebuilt copies
of 1.0 and 2.0 exist in storage when 2.1 is released, 1.0 will
be retained but 2.0 will be overwritten by 2.1.) In cases where a
user may have a need for a specific minor version of a dataset that
has already been superseded in storage by a new minor version
release, the corresponding Feedstock can be used to rebuild any
version of the ARCO data store on an as-needed basis.

3.3.3. Bakeries: On-Demand Cloud Clusters Paired

With Cloud Storage Targets
As in Conda Forge, the majority of Pangeo Forge users will
not execute recipes themselves, but rather interact with recipe
outputs which are pre-built by shared cloud infrastructure. As
such, execution typically only occurs once per recipe (or, in
the case of updated recipe versions, once per recipe version).
This one-time execution builds the ARCO dataset to a publicly-
accessible cloud storage bucket. Arbitrary numbers of data users
can then access the pre-built dataset directly from this single
shared copy. This approach has many advantages for our use
case, including:

• Shared compute is provisioned and optimized by cloud
infrastructure experts within our community to excel at the
specific workloads associated with ARCO dataset production.

• As a shared resource, Pangeo Forge cloud compute can be
scaled to be larger and more powerful than most community
users are likely to be able to provide themselves.

• Storage and compute costs (financial, and in terms of
environmental footprint) are not duplicated unnecessarily.

Costs for these shared resources are currently covered through
a combination of free credits provided by technology service
providers and grants awarded to Pangeo Forge.

Bakeries, instances of Pangeo Forge’s shared cloud
infrastructure, can be created on Amazon Web Services,
Microsoft Azure, and Google Cloud Platform cloud
infrastructure. In keeping with the aforementioned Right
to Replicate, an open source template repository, tracing a
clear pathway for reproducing our entire technology stack,
is published on GitHub for each supported deployment
type (2i2c.org, 2021). In practice, the cost and complexity of
these deployments likely means they will be undertaken by
organizations rather than individuals. Over time, we anticipate
the benefits of participating in Pangeo Forge will motivate a wide
range of both non-profit and commercial partners to establish
Bakeries for community use. The greater the number and scale
of Bakeries in operation, the greater the capacity of Pangeo Forge
to democratize the means of ARCO data production.

When a community member submits a Pangeo Forge
recipe, they use the meta.yaml file included as part of
each recipe submission to specify the Bakery on which to
execute it, and the target storage location within that Bakery
in which to deposit the resulting dataset. Each Bakery will
manage their own compliment of storage buckets. Available
Bakeries and their specifications, including storage bucket
protocols and locations, are recorded in a public database
for reference. Selection of one Bakery over another may be
based on factors including the geographic location of the
associated storage bucket(s), given that physical proximity
of compute resources to data impacts performance for big
data analytics.

3.4. Cataloging and Loading
The SpatioTemporal Asset Catalog (STAC) is a human and
machine readable cataloging standard gaining rapid and
broad traction in the geospatial and earth observation (EO)
communities (Alemohammad, 2019; Emanuele, 2020; Holmes
et al., 2021). The value of STAC is enhanced by its tooling
ecosystem, which includes interfaces for many programming
languages and a community-supported web frontend (Emanuele
et al., 2021; Fitzsimmons et al., 2021). STAC was not originally
conceived as a cataloging solution for the Earth-system model
(ESM) data which will constitute a majority of Pangeo Forge’s
ARCO data holdings, however extensions such as the Datacube
Extension bring descriptive cataloging of ESM data with STAC
within reach (Mohr et al., 2021). Despite the imperfect fit of ESM
data into STAC, the momentum behind this specification and
its associated ecosystem recommends it as the best option for
implementation of our user-facing catalog.

Following the completion of each ARCO production build,
GitHub Actions automatically generates a STAC listing for
the resulting dataset and adds it to the Pangeo Forge root
catalog. Information which can be retrieved from the dataset
itself (including dimensions, shape, coordinates, and variable
names) is used to populate the catalog listing whenever possible.
Fields likely not present within the dataset, such as a long
description and license type, are populated with values from
the meta.yaml file which contributors include as part of
each recipe.
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STAC provides not only a browsing interface, but also
defines a streamlined pathway for loading datasets. Catalog-
mediated loading simplifies the user experience as compared to
the added complexity of loading directly from a cloud storage
Uniform Resource Identifier (URI). Pangeo Forge currently
provides documentation for loading datasets with Python into
Jupyter Notebooks, given that our early adopters are likely
to be Python users (Perkel, 2018). One distinct advantage of
STAC’s JSON-based specification over other language-specific
cataloging options is its current (or in some cases, planned)
interoperability with a wide variety of programming languages.
We look forward to documenting catalog access from JavaScript,
R, Julia, and many other contemporary languages as our user
community grows.

Discoverability is the ease with which someone without prior
knowledge of a particular dataset can find out about its existence,
locate the data, and make use of it. As the project grows, we
aspire to enhance data discoverability by offering a range of
search modalities for the Pangeo Forge ARCO dataset catalog,
enabling users to explore available datasets by spatial, temporal,
and variable extents.

4. EXAMPLES

In the course of development and validation, we employed
Pangeo Forge to transform a selection of archival NetCDF
datasets, collectively totalling more than 2.5 terabytes in size, into
the cloud-optimized Zarr format. The resulting ARCO datasets
were stored on theOpen Storage Network (OSN), anNSF-funded
instance of Amazon Web Services S3 storage infrastructure, and
have already been featured in multiple presentations and/or
played a central role in ongoing research initiatives. We offer
a brief summary of these example results below followed by
some general reflections, drawn from these experiences, on the
performance of the platform to date.

4.1. SWOT Ocean Model Intercomparison
The upcoming Surface Water and Ocean Topography (SWOT)
satellite mission will measure sea-surface height at high
resolution with synthetic aperture radar (Morrow et al., 2019). In
coordination with this mission, an international consortium of
oceanographers are currently undertaking modeling and in-situ
field campaigns for purposes of comparison to the forthcoming
SWOT satellite measurements (Li, 2019). As part of these
efforts, we have transformed portions of the outputs from the
FESOM, GIGATL, HYCOM, eNATL60, and ORCA36 ocean
models into ARCO datasets with Pangeo Forge (Chassignet et al.,
2007; Danilov et al., 2017; Brodeau et al., 2020; Castrillo, 2020;
Gula, 2021). From a technical perspective, these transformations
involved caching approximately a terabyte of ocean model data
from FTP servers in France and Germany onto Google Cloud
Storage in Iowa, USA via Pangeo Forge’s internal file transfer
utilities. This experience highlighted the persisting influence of
geographic distance on network communication speeds and led
to many improvements in how we manage file transfer internally
within the platform. From the standpoint of data structure, the
multigigabyte-scale array sizes contained within some of these

model outputs encouraged the development of a specialized
subsetting pathway within pangeo-forge-recipes for
handling larger-than-memory input arrays.

4.2. NOAA Optimal Interpolation Sea
Surface Temperature
NOAA’s Optimal Interpolation Sea Surface Temperature (OISST)
is a daily resolution data product combining in-situ field
measurements with satellite temperature observations from the
Advanced Very High Resolution Radiometer (AVHRR) (Huang
et al., 2021). With Pangeo Forge, we created a single consolidated
Zarr store from 14,372 NOAA OISST source files spanning a
time range from 1981 to 2021. This Zarr store was subsequently
used as part of investigations into the morphology of ocean
temperature extremes (Scannell et al., 2021). In many ways, this
flavor of recipe (concatenation of NetCDF timeseries archives
into a consolidated ARCO store) is what the earliest versions
of Pangeo Forge were designed to excel at. We therefore relied
heavily on this recipe during early development as a useful test
case for our cloud automation infrastructure.

import gcsfs
import xarray as xr
# open data
url = (

'gs://pangeo-forge-us-central1/pangeo-forge/'
'cmems/sea-level-anomalies.zarr'

)
gcs = gcsfs.GCSFileSystem(requester_pays=True)
ds = xr.open_zarr(

gcs.get_mapper(url), consolidated=True ,
)
# calculate mean
sla_zm = ds.sla.mean('longitude', keep_attrs=True )
# compute using Dask cluster
with cluster.get_client():

sla_zm.load()
sla_zm.plot(robust=True, x='time' )

Listing 3 | Code used to generate Figure 5 from the Pangeo Forge ARCO

sea-level data.

4.3. CMEMS Sea Surface Altimetry
A 70 gigabyte ARCO dataset of gridded sea surface altimetry
measurements was assembled by Pangeo Forge from nearly 9,000
files sourced from the Copernicus Marine Service (Copernicus
Marine Environment Monitoring Service, 2021). For researchers
wishing to study trends in sea level, downloading so many files
is a laborious barrier to science. With the Pangeo Forge ARCO
dataset, a reduction over the entire dataset to visualize the global
patterns of sea-level rise can be accomplished in less than a
minute and with just a few lines of code (shown in Listing 3).
This calculation was performed as part of live demonstrations of
Pangeo Forge presented at recent ESIP and Research Running
on Cloud Compute and Emerging Technologies (RRoCCET)
conferences (Barciauskas et al., 2021; Stern, 2021).

4.4. CESM POP 1-Degree
Processing this low-resolution output of the Community
Earth System Model (CESM) became an unexpected but
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welcome opportunity to examine how Pangeo Forge handles
user credentials for accessing source files and resulted
directly in the addition of query string authentication
features to pangeo-forge-recipes . Regarding the data
transformation itself, the source files for this recipe represented
yet another example of containing larger-than-memory variable
arrays (National Center for Atmospheric Research, 2021). The
development team’s swift and successful adaptation of Pangeo
Forge to accommodate this use case is a testament to the
extensibility of the platform’s base abstractions.

4.5. SODA 3.4.2 ICE
The Simple Ocean Data Assimilation (SODA) model aims to
reconstruct twentieth century ocean physics (Carton et al., 2018).
We transformed a subset of this model’s output consisting of
roughly 2,100 source files into a consolidated ARCO data store
to aid a colleague’s ongoing research.

4.6. Challenges, Performance, and Costs
We have had no difficulty converting any of the NetCDF files
from our use cases into Zarr, thanks to Xarray’s sophisticated
metadata and encoding management. Xarray faithfully replicates
all variables, metadata, and datatypes present in the archival
NetCDF files into their Zarr analogs such that the resulting
Zarr stores, when opened with Xarray, are identical to the
dataset present in the original (aggregated) NetCDF files. The
main known limitation of Xarray’s Zarr interface is that it
does not support hierarchically nested NetCDF groups, only flat
groups; this particular limitation has not affected our above-listed
use cases.

Pangeo Forge is generally I/O bound. The greatest challenge
we have experienced is slow downloading from source data
archives during the caching phase of recipe execution. If too
many simultaneous requests are made to an HTTP or FTP source
server, this will typically result in the per-file transfer throughput
decreasing considerably. Therefore, caching source files for a
given recipe is not highly parallelizable. As noted in section
4.1, transcontinental data transfer can be slow process, even for
sequential requests. Once the source files are cached into the
cloud, however, platform performance scales out well, since all
I/O is happening against cloud object storage.

We have not yet made a systematic assessment of cost
and performance. Regarding minimum hardware requirements,
Bakery workloads are typically distributed across large numbers
of lightweight compute nodes. In a typical implementation, each
node may be provisioned with roughly 4 gigabytes of RAM
and one CPU core. The larger-than-memory archival arrays
referenced in sections 4.1, 4.4 challenged this computational
model and prompted the addition of subsetting routines
to the platform that facilitate division of arbitrarily-sized
input arrays along one or multiple dimensional axes. This
allows our lightweight compute nodes to handle inputs in
excess of their RAM allocation. As we move from the
initial software development phase into productionalization of
increasing numbers of Bakeries, we look forward to sharing
more fine-grained assessments of the platform’s performance and
resource requirements.

5. FUTURE OUTLOOK

As of the time of writing this paper, all of the major components
of Pangeo Forge (with the exception of the data catalog)
have been released openly on GitHub, tested thoroughly, and
integrated through end-to-end workflows in the cloud. Dozens
of actual and potential users have interacted with the project via
GitHub issues and bi-weekly meetings. However, the platform
has not been officially “launched,” as in, advertised broadly to the
public as open for business.We anticipate taking this step in early
2022. After that point, development will continue indefinitely
into the future as we continue to refine and improve the service
in response to user feedback.

The current development of Pangeo Forge is supported
by a 3 year grant from the National Science Foundation
(NSF) EarthCube program. Storage expenses are covered
through our partnership with the Open Storage Network
(OSN), which provides Pangeo Forge with 100 terabytes of
cloud storage space, accessible over the S3 protocol for free
(Public cloud storage buckets often implement a “requester-
pays” model in which users are responsible for the cost
of moving data; our OSN storage does not). All three
major cloud providers offer programs for free hosting of
public scientific datasets. We anticipate engaging in these
programs as our storage needs grow. We have also begun to
evaluate distributed, peer-to-peer storage systems such as the
InterPlanetary FileSystem (IPFS) and Filecoin as an alternative
storage option.

Pangeo Forge is not itself an archival repository but
rather a platform for transforming data, sourced from archival
repositories, into optimized formats. We therefore do not
commit to preserving every recipe’s materialized data in
perpetuity. In nearly all cases, recipes source data from archival
repositories with a long-term stewardship plan. It should
therefore almost always be possible to regenerate a Pangeo
Forge ARCO dataset by re-running the recipe contained in the
versioned Feedstock repository fromwhich it was originally built.

We hope that the platform we create during the course of
our NSF award will gain traction that merits long-term financial
support for the project. The level of support required will
depend on the volume of community interest and participation.
In any scenario, however, it is not feasible for Pangeo Forge
core development team to personally maintain every Feedstock.
Instead, via the crowdsourcing model, we aspire to leverage the
expertise of a large community of contributors, each of whomwill
be responsible for keeping their recipes up to date. The core team
will support these maintainers to the greatest degree possible,
via direct mentorship as well as more scalable modes of support
such as documentation and automated integration tests. Recipe
contribution is not the only thing we envision crowdsourcing.
Indeed, the platform itself is designed to be “franchisable”: any
organization can run a Bakery. We envision Pangeo Forge not
as a single system with one owner but rather as a federation.
Participating organizations will bear the compute and storage
costs of the datasets they care about supporting and recipes
will be routed to an appropriate Bakery as part of the GitHub
contribution workflow.
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FIGURE 5 | Daily zonal mean sea-level anomaly, calculated from Pangeo Forge ARCO dataset.

In the remainder of this final section, we conclude by
imagining a future state, several years from now, in which Pangeo
Forge has cultivated a broad community of recipe contributors
from across disciplines, who help populate and maintain a multi-
petabyte database of ARCO datasets in the cloud. How will this
transform research and applications using environmental data?
What follows is inherently speculative, and we look forward to
revisiting these speculations in several years time to see how
things turn out.

5.1. An Ecosystem for Open Science
Pangeo Forge and the ARCO data repositories it generates are
most valuable as part of a broader ecosystem for open science
in the cloud (Gentemann et al., 2021). In particular, Pangeo
Forge ARCO data is designed to be used together with scalable,
data-proximate computing. For interactive data analysis, Jupyter
(including Jupyter Lab and Jupyter Hub) is emerging as a
consensus open-source platform for the scientific community
(Kluyver et al., 2016). Jupyter supports interactive computations
in all major scientific computing languages, including Python,
R, and Julia (We note especially that, although Pangeo Forge
itself is written in Python, the data formats and catalogs it
generates are all based on open standards, accessible from any
major programming language). Jupyter in the cloud, combined
with cloud-native parallel computing tools such as Dask (Rocklin,
2015) and Spark (Zaharia et al., 2016), creates a complete end-to-
end solution for data-intensive research based purely on open-
source software. By accelerating the production and sharing of
ARCO data, we hope to stimulate further development and broad
adoption of this new model for scientific research.

Beyond expert analysis, we also hope that the datasets
produced by Pangeo Forge will enable a rich downstream
ecosystem of tools to allow non-experts to interact with large,
complex datasets without writing code. ARCO formats like
Zarr are ideal for powering APIs, dashboards, and interactive

websites, since they are based on open standards and can be read
quickly from any programming language, including JavaScript,
the language of the web. As an example, the sea-level data
shown in Figure 5 could be used to create an interactive data
visualization website for high-school students to study sea level
change. Students wishing to go beyond the visual exploration
could transition to an interactive Jupyter notebook and write
their first lines of code, all pointing at the same underling data.
Similarly, industry experts and policymakers could use such tools
to examine climate impacts on their sector of interest. The direct
provenance chain from the interactive tool, to the ARCO data
copy, to the original upstream data provider would provide a fully
transparent and trustworthy foundation for decision making.

5.2. Collaboration and Recognition Around
Data Production
While nearly all scientists recognize the importance of data
for research, scientific incentive systems do not value data
production nearly as much as other types of scientific work, such
as model development (Pierce et al., 2019). This was emphasized
in a recent paper from Google Research, warning of the impact
of data quality issues in the context of artificial intelligence
research (Sambasivan et al., 2021). The undervaluing of “data
work” is pervasive in the sciences, as evidenced by the existence
of pejorative terms such as “data janitor.” Data work often occurs
in the shadows of science, not talked about much in papers or
recognized via honors and awards. One of our central hopes
with Pangeo Forge is that the preparation of well curated, quality
controlled datasets immediately accessible to high-performance
computing will become an area of increased collaboration and
visibility in environmental science research. By leveraging the
interactivity inherent in GitHub discussions, we hope to see
researchers from different institutions and countries coming
together around building shared datasets of use to many different
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groups. By establishing a community storehouse of datasets
themselves, as well as Feedstock repositories containing dataset
provenances, we hope to offer citable artifacts of data production
which, if reused and credited by the community, may serve to
elevate the profile of this essential scientific work. Perhaps 1 day
we will give an award for “most valuable recipe”!

Pangeo Forge does not currently implement a system for
assigning unique persistent identifiers, such as Digital Object
Identifiers (DOIs), to either Feedstocks or the datasets they
produce. We certainly appreciate the tremendous benefit such
identifiers provide, particularly for purposes of academic citation.
As noted above, at this stage of our development we are not
making a commitment to keeping datasets online in perpetuity,
as would be required for a DOI. This reflection leads us
to conclude that the Pangeo Forge Feedstock, a lightweight
repository which will be permanently stored on GitHub, may
in fact be the most appropriate object for DOI-assignment
and citation. Feedstocks (and within them, recipes) are also
the products which are most plainly expressive of contributors’
technical and domain expertise. We welcome community
feedback on how to best support contributors to receive the credit
and recognition they deserve.

5.3. Asking More Ambitious Questions
From Data
A recurring theme of the examples in section 4 is the relative
simplicity of aligning thousands of source files into a single
consolidated dataset with Pangeo Forge. The ARCO datasets
which result from this process are not simply faster to work
with than archival data, in many cases they enable an entirely
new worldview. When working within the confines of traditional
filesystems, it can be difficult for the scientific imagination to fly
nimbly across the grand spatial and temporal scales permitted
by ARCO workflows. By making entire worlds (observed or
synthetic, past or future) accessible in an instant through shared
ARCO data stores, we wholly expect that Pangeo Forge to not
only accelerate existing science, but to also play a pivotal role
in the reimagination of what’s possible in ocean, weather, and
climate science at scale.

5.4. Reproducibility in Action
Each Pangeo Forge recipe encodes data provenance starting from
an archival source, all the way to the precise derived version used
for a given research project. Tracking an unbroken provenance
chain is particularly important in the context of ARCO data,
which undergoes significant transformation prior to being used
for analysis. The algorithms used to create ARCO datasets
encode assumptions about what types of homogenization
and/or simplification may serve the investigation for which
the dataset is being produced. These judgement calls can
easily be as impactful to the scientific outcome as the
analysis itself. By tracking the ARCO production methodology
through a recipe’s Feedstock repository, Pangeo Forge affords
visibility into the choices made at the data curation stage
of research.

The oft-quoted eighty-twenty rule describes a typical
ratio of time required for cleaning and preparing data vs.

actually performing analysis. Depending on the type of
preprocessing applied to a dataset, the time and technical
knowledge required to reproduce previous derived datasets,
let alone results, represents a major barrier to reproducibility
in computational science. Duplication of data preparation
is unnecessary and can be avoided if the dataset used for a
given study, along with the recipe used to create it, are made
publicly accessible.

5.5. Broadening Participation
Traditionally, working with big environmental datasets has
required considerable infrastructure: big computers, hard drives,
and IT staff to maintain them. This severely limits who
can participate in research. One of the great transformative
potentials of cloud-native science is the ability to put powerful
infrastructure into the hands of anyone with an internet
connection (Gentemann et al., 2021). In our recent experience,
we have observed that it is easy enough to get started with cloud
computing; the hard part is getting the right data into the cloud
in the right format.

Pangeo Forge not only shifts the infrastructure burden
of data production from local infrastructure to the
cloud; it also lightens the cognitive burden for potential
contributors by encouraging them to focus on the
domain-specific details of the data, rather than the data
engineering. As a recipe contributor to Pangeo Forge,
anyone with a laptop can run their ARCO transformation
algorithm at a scale previously only available to a small
organizationally-affiliated group.

The true success of Pangeo Forge depends on creation of
a space where a diverse community of recipe contributors
can come together to curate the ARCO datasets which
will define the next decade of cloud-native, big-data
ocean, weather, and climate science. How we best nurture
this community, and ensure they have the education,
tools, and support they need to succeed, remains an
open question, and an area where we seek feedback from
the reader.
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Community resilience increases a place-based community’s capacity to respond and

adapt to life-changing environmental dynamics like climate change and natural disasters.

In this paper, we aim to support Earth science’s understanding of the challenges

communities face when applying Earth science data to their resilience efforts. First, we

highlight the relevance of Earth science in community resilience. Then, we summarize

these challenges of applying Earth science data to community resilience:

• Inequity in the scientific process,

• Gaps in data ethics and governance,

• A mismatch of scale and focus, and

• Lack of actionable information for communities.

Lastly, we offer the following recommendations to Earth science as starting points to

address the challenges presented:

• Integrate community into the scientific data pathway,

• Build capacity to bridge science and place-based community needs,

• Reconcile openness with self-governance, and

• Improve access to data tools to support community resilience.

Keywords: community resilience, data governance, actionable data, data ethics, data pathways, Earth science

data

INTRODUCTION

Climate change, natural disasters, and public health threats test the durability of our society. A
place-based community’s capacity to respond to and recover from life-changing events is called
community resilience. Science plays a key role in providing evidence that people and groups can
use to make informed decisions about their community’s resilience. Earth science data, which are
qualitative and quantitative products of observation representing properties of objects, events, and
their environments (Rowley, 2007), have been historically produced, curated, and managed for
use by scientists. Due to the nature of Earth science data, data support has been mostly provided
by and restricted to large institutions with access to high computing power (Dutton et al., 1995;
Ramapriyan and Behnke, 2019). However, the societal, political, technical, and cultural landscape
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around the meaning and use of data is changing. There are
growing expectations in society for more open data (ESIP
interview: Mayernik and Virapongse, 2019). Decision-makers,
such as practitioners, planners, industry leaders, and the general
public, seek to leverage scientific data and information to develop
new tools, make decisions, and act. There is still much work to be
done by Earth scientists and their data science partners to address
issues of data access and use by decision-makers (Wee and Piña,
2019), and particularly for community resilience.

The Earth Science Information Partners (ESIP) Community
Resilience cluster addresses how Earth science data can be
better utilized to support community resilience. Over the
past 5 years, members of the Community Resilience cluster
(co-authors of this paper) have been leading discussions
within ESIP on this topic during ESIP’s biannual meetings,
through monthly teleconferencing calls, and across other ESIP
clusters. With over 150 member organizations, ESIP includes
individuals from federal, state, and local government, non-
profit organizations, and the private sector. The discussions
that we had through these activities greatly informed
this paper.

In this paper, we aim to facilitate the contribution of Earth
science data to community resilience efforts by:

• summarizing challenges related to how data and information
are accessed, trusted, and made actionable for the purposes of
community resilience,

• framing how data use and community resilience can work
together, and

• presenting recommendations to address the challenges.

We pose the question: How can Earth science data

and information be used more effectively to enhance

community resilience? We aim for this paper to be
useful for people that generate, analyze, and manage Earth
science data, support the translation of scientific data
to information, and apply science-based information for
societal benefit.

COMMUNITY RESILIENCE

Community resilience functions within a complex social-
ecological system, where people, environment, climate, and other
entities interact. In this context, “community” is geographically
localized (place-based), while referring to the social interactions
that occur among people in a place (Theodori, 2005).
Communities can be defined by geopolitical units (e.g., town
or neighborhood), social groupings (e.g., demographic profile,
social class structure, culture, language), and entities organized
around special interests. We draw on a definition of “community
resilience” that describes it as the capacity of a system to
prevent, adapt, and recover from shocks and stressors so
that it grows stronger and is more prepared in the future
[United States Agency for International Development (USAID),
2012]. This framing enables us to conceptualize “community
resilience” expansively to consider a community’s capacity
to effectively respond to natural hazards such as flooding,

wildfires, and earthquakes (e.g., Cutter et al., 2013), human-
caused disasters such as mass shootings (e.g., Aldrich and
Meyer, 2015), as well as systemic trauma experienced by
indigenous people through repression and colonization (e.g.,
Kirmayer et al., 2009). While climate resilience in response
to adverse climate events has been a recent focus in the
literature, our definition encompasses it, acknowledging the
multiple scenarios that communities must cope with in
the face of external challenges. Our thesis in this paper
considers this broader focus of community resilience, with
recommendations that can be applied across different contexts
and circumstances.

Building the capacity and flexibility of a community to
adapt to an ever-changing socio-environment is central
to improving community resilience (Magis, 2010). In
application, community resilience goals help to frame and
guide local- to global-scale decision-making to improve
human livelihoods, address environmental change, and
prepare communities to cope with hazards, risks, and disasters
(PCAST-Executive Office of the President, 2011; Cutter
et al., 2013; Bone et al., 2016). Environmental justice goals
can also be addressed through community resilience efforts
aiming to reduce inequitable exposure from toxic waste in
industrial waterfront areas and improving residents’ health
and quality of life (Bautista et al., 2015); a community’s
resilience is dependent on the strength of the entire social-
ecological system as a whole. Improving community resilience
involves accounting for future change and uncertainty in
decision-making, including assessing when resisting change
is beneficial or detrimental, and developing plans that allow
flexibility as needed. To effectively impact a community’s
resilience, decision-making must be informed and empowered
at multiple socio-political scales (including individual, city,
and national levels) and across sectors (including community
members, private businesses, and government stakeholders)
(Table 1).

Navigating change to community resilience is often framed
within an adaptive cycle, which posits that growth is not constant
and reorganization is required to maintain the community as a
functioning entity (Fath et al., 2015). This emphasizes the need
for communities to adapt to and build capacity for a changing
suite of problems, while being aware of common pitfalls that
they may experience when responding to disturbances. Efforts
to create a more resilient community often require addressing
the tension between the inherent qualities of a system (e.g.,
physical and ecological structure, function, or states) and the
values that people (and often specific groups of people) associate
with different components of a system (Higuera et al., 2019).
Community resilience has been used to address industry changes
(King, 2008), diminishing natural resources (Smith et al., 2012),
climate change (Adger et al., 2005; Funfgeld and McEvoy,
2012), health crises (Chandra et al., 2011), health and wellbeing
of indigenous people (Kirmayer and Valaskakis, 2009), forest
fires (McWethy et al., 2019), and environmental management
(Virapongse et al., 2016). Fundamental concepts of resilience
can be operationalized to enhance a community’s ability to use
available Earth science data and information for their benefit.
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TABLE 1 | How geopolitical scale matters for community resilience data/information needs.

Geopolitical unit Example decision-maker Example resilience need Example of data and information needs,

and their infrastructure and policies

Individual A resident of a town or village Planning for evacuation or

sheltering-in-place at home for a

hurricane

Predicted heights of a tidal surge on resident’s

home and status of evacuation routes

Community Leaders and members of

subsistence-based indigenous

communities

Adapting subsistence lifestyles to

climate and ecosystem changes that are

occurring

Localized ecosystem data with observed trends

City City Planners Long to medium term uncertainties

regarding climate/natural disasters/

COVID-19

Improved data capability for smaller cities;

improved integration of diverse dataset and

information for decision-making

County Leaders, organizers, and

members of local

farming/forestry cooperatives or

granges

Understanding short term climate

forecasts for crop/financial planning

Climate data scaled appropriately, greater

short-term certainty

Region Leaders and participants in

recovery restoration efforts, like

in the US Gulf Coast

Long term restoration planning,

implementation, monitoring, and disaster

recovery

Challenges with data quality, documentation,

storage, product integration, discovery,

accessibility, and archiving

Country Members of legislature Equitably setting land use policies that

support the needs and interests of the

populace

Information collecting processes that

adequately represent diverse perspectives

equitably; Improved data and information on

the true effect, cost, and benefit of land use

practices to people and their environment

Global Members of the UN and other

multinational entities

Meeting climate action sustainable

development goals

Global statistics indicating the effect of climate

change on people and their environment

DATA CHALLENGES IN COMMUNITY
RESILIENCE

Closing the gap between community resilience needs and Earth
science data is an ongoing, multifaceted challenge. While we note
some well-known barriers that already have relatively extensive
literature describing these issues (for example, downscaling), we
concentrate primarily on aspects that are less well-studied.

Inequity in the Scientific Process
Without equitable representation in the scientific process, it is
unlikely that the resilience needs of communities—particularly
among those segments of the population that are historically
underrepresented across society—will be sufficiently addressed.
Scientific bodies, composed of academics and professionals,
largely determine who asks questions and makes decisions in
science. They decide the objectives of research, the purpose and
methods for data collection, the types of data products created,
and what research should be funded. Inequities and lack of
representation (e.g., race, ethnicity, class, political perspective;
Funk, 2012) among scientific decision-makers increases the
likelihood that scientific narratives and science agendas are
biased and perceived as untrustworthy. Indeed, the stakes are
high: scientific decision-making can determine the priority
placed on issues and the types of information and knowledge
generated to address them, potentially depriving more socially
vulnerable groups the right to scientific benefits (Klinsky et al.,
2017).

The harmful societal impact of such power discrepancies
in decision-making has been recognized in sectors like

environmental conservation in the US, where it is increasingly
apparent that conservation agendas are being drawn from a
primarily White perspective (Green2.0, 2021). Similarly, STEM
disciplines (e.g., geoscience) have historically created systemic
barriers and thwarted success (e.g., hostile work environments,
limited access to resources and opportunities) for researchers
minoritized due to their race, ethnicity, gender identity, sexual
orientation, and other aspects of their identities (e.g., Berhe et al.,
2022). In terms of topical areas, climate research is one where
such inequities exist in production as well as implementation
for impact. For example in the global context, the majority of
climate change research is conducted within the developed world
(Tai and Robinson, 2018), even though it is well established
that climate impacts less developed countries disproportionately
more (IPCC, Allen et al., 2014). The latest Intergovernmental
Panel on Climate Change report further documents theminiscule
amount of funding available for climate-related research in
Africa, despite worsening impacts of a warmer climate in the
continent such as biodiversity loss, droughts, reduced crop
productivity, and economic growth (Trisos et al., 2022, Chapter
9, pp. 9–18).

Poor representation in science perpetuates environmental
injustice (“a situation in which a specific social group is
disproportionately affected by environmental hazards”) (Brulle
and Pellow, 2006). A well-known example of environmental
injustice is the drinking water crisis in Flint, Michigan, which the
ESIP Community Data cluster (Diggs et al., 2021) examined as a
case study for the role of Earth Science data in environmental
justice. As a predominantly Black and socioeconomically
depressed community, Flint represents one of the most
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disadvantaged and marginalized groups in our society and in
the scientific process. The failure of the government to provide
adequate drinking water protections resulted in disastrous health
impacts and further erosion of trust between communities of
color and the local, state, and federal U.S. government. With
underrepresentation in the regulatory decision making process,
including any advocates for them, it was extremely challenging
for the Flint community to convince governmental agencies
to address water contamination issues, despite the alarm being
raised within the community (Butler et al., 2016). After attention
was drawn to the issue by the U.S. Environmental Protection
Agency (EPA), further deception of the EPA by state regulators
eventually led to criminal charges (Butler et al., 2016). It also
became evident that data collection protocols to test and monitor
drinking water were willfully ignored or misinterpreted–not
only in Flint but in other underserved communities in the
US as well (Balazs and Ray, 2014; Katner et al., 2016). The
Flint example highlights how scientists supporting government
decision-making must recognize and mitigate the challenges that
exist in applying the scientific process in communities striving for
environmental justice.

Fundamental issues regarding ownership of and access to
scientific data and information exacerbate inequity in the
scientific process by limiting who can use data and information.
Despite the fact that many scientific datasets are at least partially
funded by place-based communities (e.g., via taxes), much of the
scientific literature that reports Earth science research findings is
published in journals that are inaccessible to the public or behind
paywalls that are insurmountable by marginalized communities
and nations. Open licensing presents its own unique set of
challenges regarding the ownership of federally funded research
data (Khayyat and Bannister, 2015). Moreover, even when the
data and literature are available, it isn’t always clear that results
are easily and broadly usable by communities. While progress
toward public access to data continues to be incremental, the
equitable, technical, and legal challenges associated with data
inhibit the societal benefit of science.

Social structures inherent in science create rigidity in the
scientific process that inhibits the due consideration of stake
and rights holder input, and the equitable distribution of
benefits from science. These are especially pronounced given the
social inequities that exist in society, and the fact that science
has significant barriers to overcome with its implicit biases,
including learning to see how inequities show up within the
scientific establishment (Tanner, 2009). The question is, who do
scientists take an oath to when performing their duties? Are
they serving science and the continuation of its norms and
practices? Community resilience applications offer an option
to help scientists understand who science is being performed
for, so the due representation of disadvantaged and historically
underrepresented communities in the scientific process can
be improved. Only by adapting the scientific process to the
community context, can science address these inequities.

Gaps in Data Ethics and Governance
Improved community resilience relies on data that authentically
represents the specific context and needs of a place-based

community. Collecting such data, however, can be fraught and
contested if people are not able to control their data and trust
how it will be used. In this section, we focus on the ethical lapses
that occur when managing, using, and reusing data products.
Data governance entails formalizing ethical processes to ensure
data are correctly managed after collection–this can include data
preparation, maintenance, and security (Thompson et al., 2015).

In the community resilience context, data governance can
include community members designing restrictions on data
collection and use, and assigning responsibility for collecting,
maintaining, and protecting data in alignment with their cultural
identity. This is particularly crucial for indigenous peoples and
other racial and ethnic minority groups and the institutions
within which they are embedded (Smith, 2016). The ability of
groups to control their own data has been defined as part of
the right to self-determination as outlined in the United Nations
Declaration on the Rights of Indigenous Peoples (UN General
Assembly, 2007). The authority to control data collection and
use are also components of more recent CARE Principles for
Indigenous Data Governance (Carroll et al., 2020).

Data reuse can be ethically problematic. Interpretation and
reuse of data by third parties can be harmful if such use is
uninformed by the scientific and cultural context or selective in
its analysis of available data (Reimsbach-Kounatze, 2021). Many
datasets lack the information needed to inform data users about
how data should or should not be used. For example, the U.S.
Bureau of LandManagement (BLM) collected oral histories from
indigenous elders in Alaska Arctic boroughs in order to establish
indigenous rights to federal lands. The BLM controlled access
to the data for many years despite it being a valuable source
of cultural information for the associated communities (Pratt,
2004).

Systematic data collection from disenfranchized communities
can be intertwined with discrimination, reinforcing narratives
that may be detrimental to the communities themselves. In
addition, while data on their own may not disclose sensitive
information, they often can be combined with other data to
unintentionally or intentionally reveal sensitive information
about vulnerable populations. A broadly cited example is the
re-identification of individuals’ names and addresses by piecing
together multiple de-identified environmental quality datasets
from a public health study (Sweeney et al., 2017). The availability
of spatial data can similarly present a problem, such as when
personal information is unintentionally re-identified through a
geographic information system (GIS; Scassa, 2010).

Existing global inequality is perpetuated by data injustices
through surveillance, economic exploitation, algorithmic
profiling, and loss of the right to privacy (Heeks and Renken,
2018). Globally, approximately 19% of countries have no data
protection laws, leaving their residents acutely vulnerable
to personal security breaches and algorithmic prejudice
(UNCTAD DPR., 2016; UNCTAD, 2020). Refugees are even
more vulnerable. They lack access, control, and protection of
their data, since they may not have rights within an asylum
country to their data or be defended by the country they leave
(Rolan et al., 2020). As the collection, storage, sharing, and use
of Earth science data are increasingly facilitated by technological
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advances, ethical advances must also keep pace to ensure that the
interests of vulnerable communities are adequately protected.

Despite recent interest in co-production of scientific
knowledge between producers and users of science (e.g., Lemos
et al., 2018; Jagannathan et al., 2020), the literature remains
largely theoretical without addressing the specific challenges we
have described in this section (e.g., the step-by-step process of
co-development and relationship). While there are promising
trends to be more inclusive of communities in co-developed
climate services (i.e., customized products such as forecasts
and predictions), climate adaptation projects, environmental
decision making, and environmental sustainability projects
(Kirchhoff et al., 2013; Laursen et al., 2018; Bremer et al., 2019;
Mach et al., 2020), many projects still fail to authentically address
the inequitable power dynamics that are inherent in the processes
of collaboration. For initiatives aiming to enhance community
resilience in response to external events, including but not
limited to climate-related damage, the gap in skills, capacities,
and awareness needed for data producers to build trust with
users to enable co-creation continues to be a limitation.

A Mismatch of Scale and Focus
Earth science research and place-based communities often work
on different time and spatial scales, as well as have differing needs
and goals for data collection. Community resilience decision-
makers need data to make urgent and consequential decisions,
while addressing multiple spatial and temporal scales (Table 1)
and the needs of diverse stakeholders. An example of such
tradeoffs are near- and long-term economic stability, or a city vs.
an individual’s exposure to climate risks (Chelleri et al., 2015).

Earth science data products that are needed for community
resilience planning (e.g., climate projections, Earth systems
modeling) are often produced at vast spatial and temporal scales,
which are relevant to the understanding of long-term natural
phenomena (Kirchmeier-Young et al., 2019). Yet, communities
and industries often require data products that incorporate long-
term trends with more actionable near-term, higher accuracy
data (Vera et al., 2010; Dunn et al., 2015). Therefore, additional
research and processing of Earth science data are needed to make
these larger-scaled data more appropriate for community-level
resilience needs (Bhuvandas et al., 2014), but many communities
lack such data processing capacity (O’Neill, 2011). Without
correctly scaling data and information, decision-makers may
be taking (or not taking) actions that ultimately reduce their
community’s resilience. For example, Earth science phenomena
described at a coarse scale (i.e., large areas represented as uniform
depicted with lower resolution) may have directionally opposite
effects at a local scale (Keskitalo et al., 2016). The lack of
appropriately scaled Earth science data can limit its use to
community resilience efforts for larger geopolitical units (such as
nations), while local communities are left out of such efforts.

While the previously described issue of downscaling is well-
addressed in literature, there are other kinds of scale mismatches.
One is illustrated by the 2012U.S. National Science Foundation
(NSF) sponsored 2nd Semantic Sea Ice Interoperability Initiative
(SIII)—aworkshop that brought together Alaskan indigenous sea
ice experts, National Oceanic and Atmospheric Administration

(NOAA) specialists, and researchers around the topic of sea ice.
Some members of indigenous communities of the Arctic are sea
ice experts. However, their ability to understand and predict sea-
ice behavior has been becoming increasingly strained by climate
change. For years, NOAA had been providing sea ice charts,
which provide a low resolution but comprehensive picture of sea
ice in the Arctic. These charts are based on a variety of much
higher resolution data, including Synthetic Aperture RADAR
(SAR) full-resolution imagery; imagery that is too large to be
transmitted to indigenous coastal villages given their available
bandwidth. During the workshop, members of the indigenous
community suggested producing a cropped SAR data product
covering only the sea ice within a few miles of their community.
Such a product would be useful for making decisions about travel
and food harvesting. Existing ice charts and SAR products extend
for 100miles or more, far outside the bounds that a typical hunter
would travel, thus providing many times more data than are
useful at the community level. A cropped data product, however,
would fit within the bandwidth limitations of the communities
and could be directly compared to what community members
could see from shore and on shore fast ice; an insight that NOAA
data managers appreciated and acted upon.

Scientific research is often organized as individual research
projects (i.e., principal investigator-led projects) that range from
global efforts to local groups focusing on a single domain
area. While there is an assumption that the results of different
research projects will naturally inform each other, the reality
is that these connections often fail to form, resulting in a
splintered scientific approach that lacks place-based synthesis
and fails to address emerging disasters (Cutter et al., 2013).
For example, scientists studying rare earthquakes and floods do
not automatically integrate their research with those studying
modern disaster response or engineering cities (Ismail-Zadeh
et al., 2016). In addition, the relationships between the projects
may be too weak to support upward scaling of their goals and
extrapolation from their results (Taylor, 1984; Parsons et al.,
2011). Data products may neglect cross-scale relationships and
address communities as if they are stand-alone and isolated
entities (Sharifi, 2016), or provide sweeping results that are not
fine-grained enough for tangible and useful decision-making.
In contrast, information useful for community resilience must
be well-coordinated across various scales to accurately assess
risk, illuminate knowledge gaps and solutions, and communicate
hazards. The information available to decision-makers depends
on the strength of the interactions between data creators
operating at multiple scales (Pulsifer et al., 2020). Better
interaction across scales of this “information ecosystem” can
improve data for interdisciplinary, systemic research (Parsons
et al., 2011), such as for community resilience.

Lack of Actionable Information for
Communities
Earth science data are often created for a particular science
community with the expectation that others will find a way to
use them (Baker et al., 2015). The lack of attention given to
the nuanced needs and worldviews of specific groups that could

Frontiers in Climate | www.frontiersin.org 5 May 2022 | Volume 4 | Article 76149952

https://www.frontiersin.org/journals/climate
https://www.frontiersin.org
https://www.frontiersin.org/journals/climate#articles


Virapongse et al. Earth Scientists Contributions to Community Resilience

use Earth science data contributes to this challenge (Bhargava
and Manoli, 2015). For example, different communities use
different terminology, which impacts how information can reach
and influence people, and in turn impacts their knowledge
development (Eitzel et al., 2017). Further, existing power
dynamics in knowledge generation often undermine data and
knowledge that originate from outside of conventional scientific
frameworks, such as among traditional and tacit knowledge
systems (Brun and Schumacher, 1987; Roux et al., 2006; Dunlop,
2009). Often this issue is framed as a lack of data literacy, which
implies that the solution involves improving a community’s
ability to read, work with, analyze, and argue with data (D’Ignazio
and Bhargava, 2016). The problem with this framing is that
all of the responsibility for “learning” about data is placed
on community members, rather than Earth science researchers
making efforts to provide data and information that are useful
for those communities.

The application of Earth science data toward societal benefit
is often conceptualized as a data, information, knowledge, and
wisdom (DIKW) pathway (Ackoff, 1989; Sharma, 2008). This
DIKW pathway emphasizes the one-directionality of data to
application. An oversimplified and idealized version of the
climate change discourse illustrates an example of the DIKW
pathway from data to societal benefit: (1) Earth scientists notice
trends and describe climate change to their peers as part of their
typical scientific discourse, (2) scientists communicate technical
information about climate change outside their disciplines, and
their implications become evident in closely allied fields, (3)
climate change begins to be recognized broadly across a number
of disciplines and by a subset of the general public, and (4) climate
change is now a central part of public policy discourse with
analysis occurring cross-sectorally. There are many assumptions
within this process, such as the trickling effect of scientific
knowledge into the general public. However, it serves as a useful
example of how scientists might envision how their data efforts
contribute to societal benefit through the DIKW pathway.

Figure 1 depicts the data equivalent of such a DIKW pathway,
where source data is processed through a number of steps into
intermediate data products that become publicly accessible final
data products to be interpreted for community consumption.
Even with this simple, linear model it is clear that unless all of the
products along the path are continuously funded and available,
neither the final data products nor their interpretations will be
available for any community to consume.

An unexplored assumption behind long-term investments in
data management, and in today’s policy and decision making
context, is that the DIKW pathway justifies the initial investment
and creation of structured data, for example, climate data
records (Meier et al., 2021), even when existing knowledge
frameworks are too rigid to address today’s pressing needs and
priorities. Indeed, the example of the climate change information
pathway demonstrates how much easier it is to address an Earth
science problem from one worldview, rather than taking on the
challenge of considering the complex and nuanced perspectives
of multiple user communities. The challenge here is to present
more accurate conceptual frameworks that demonstrate the role
of users (community) in the data pathway.

In reality, the Earth science data “pathway” is oftenmore like a
“network system” (Li and Whalley, 2002) with multiple intended
products stemming from data sets or combined data sets, and
people who play multiple roles on the path and in the network.
Figure 2 depicts a fragment of an existing data product network
currently available at the National Snow and Ice Data Center
(NSIDC). Data products that are tailored to support a particular
user group’s needs have potential for greater use and applicability
by that user group, in contrast to data products that are developed
without a specific end user in mind. However, creation of such
downstream data and interpretive products for end users can be
challenging. Baker et al. (2015) describe a situation where data
products created by a specific Earth science community (e.g., the
sea ice scientific community) were confusing and unhelpful for
various groups outside of that community, leading to a process
of data development that continued for more than a dozen years.

RECOMMENDATIONS TO ENHANCE
COMMUNITY RESILIENCE

To address the challenges identified in the previous section, this
section describes four categories of recommendations to help
improve how Earth Science enhances community resilience:

• Integrate community into the scientific data pathway,
• Build capacity to bridge science and place-based

community needs,
• Balance openness with self-governance, and
• Improve access to data tools to support community resilience.

These recommendations present elements of decentralized,
transdisciplinary, and systems thinking, which are needed to
address the complex social-ecological systems that underlie
community resilience. Figure 3 provides a summary of
how the recommendations (section Recommendations to
Enhance Community Resilience) map to the challenges
presented previously in this paper (section Data Challenges in
Community Resilience).

Integrate Community Into the Scientific
Data Pathway
Develop new conceptual frameworks that incorporate all relevant
participants within data usage pathways for societal benefit
(e.g., communities, scientists, data managers, analysts, translators,
consultants, science communicators, non-profit groups, and
other intermediaries).

Earth science applications affect people, the world that we
live in, and the resilience of our communities. For this reason,
Earth science project design and development, including data
creation and curation, should be inclusive and representative
of all relevant perspectives, values, and needs. It is challenging
to consider the needs of different stakeholders and participants
present in a community context, but by doing so, Earth science
projects can be designed to ensure that the groups most
vulnerable to adverse effects of climate and other environmental
events are fairly represented in scientific processes. Progress
to that end involves co-production within the conceptual
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FIGURE 1 | The linear equivalent of the DIKW pathway for data.

framing of the Earth science data pathway for community
resilience. Such a process encourages more interaction between
scientific information and the applied context, helping to
overcome the entrenched knowledge systems that support one-
way linear processes where science disseminates information and
knowledge as a commodity.

While programs such as ELOKA have begun to facilitate
these processes (in ELOKA’s case for Arctic communities), more
long-term programs that facilitate co-production in individual
research activities for a wide variety of community contexts are
needed (Pulsifer et al., 2012). Similarly, large agency missions
should explicitly consider the entire range of communities that
could potentially find utility in the agency data produced and
should design their initial data products accordingly. In general,
it can be expected that different products will be needed for
each kind of community, so such products should be developed
in conjunction with those communities. Moreover, agencies
should expect that as conditions change over time, new needs
and uses for the data will be found. Consequently, ongoing
resources should be allocated to support co-development of
useful, new products as they are identified. NASA’s long-standing
Advancing Collaborative Connections for Earth System Science
(ACCESS) program is a prototype of such a program though
focused primarily on science community needs (Ramapriyan and
Murphy, 2017). Their Earth Science Applications programs that
call for projects in specific topic areas, such as health and air
quality, use Earth observations to improve decision-making and
service to the public.

Several ESIP clusters contribute in this area. For example, the
long-standing Agriculture and Climate cluster is working with
county and agency fire chiefs and managers on improved data
for dealing with wildfires and their aftermaths. A nascent Space
Weather group, whose members have worked with national grid
providers, are discussing how best to represent space weather
impacts on the electrical grid. The Community Data cluster also
grappled with how to better include community perspectives in
the analysis of data for environmental justice purposes.

Community resilience projects are diverse, and their
needs for different co-production processes can vary. Such
contextual variation is considered in typologies of community
participation (Cornwall, 2008) that range from a more passive
information-seeking approach to a more highly interactive
transdisciplinary approach, where users are more deeply

involved in developing the goals, methods, and analyses of
a project. Similarly Meadow et al. (2015) describe strategic
co-development of science knowledge through four increasingly
cooperative modes of engagement ranging from contractual,
consultative, collaborative, to collegial that reflect one-directional
flow of information to more shared exchange of different forms
of science knowledge. Their examples of conducting action
research incorporating social science approaches suggests an
openness to transdisciplinary learning that is critical to advance
community resilience.

An often used type of co-production approach in science is
citizen science, or “community science,” which centers around
involving members of the public in the scientific process to
both benefit the scientific process and the involved community
members (Craglia and Shanley, 2015). Areas of convergence
where science and communities can build beneficial co-
productive relationships include motivations to benefit society,
social location (i.e., the user groups that must be involved to
succeed at change), and ethics to support inclusive knowledge
generation (Jull et al., 2017).

Co-production in Earth science occurs as scientific data and
information interfaces with existing knowledge and wisdom
from communities to support decision-making for community
resilience. For such a model to work, mutual respect between
scientists and community members, as well as a more pluralistic
perspective of research expertise is needed to provide an
important starting point for successful co-production. This
can look like evidence-building activities that incorporate
scientific research findings and data (e.g., as expressed in the
Foundations of Evidence Based Policy-making Act of 2018) with
those based on traditional knowledge systems and tacit place-
based knowledge (Kendall et al., 2017; Rainie et al., 2017).
Strategic reframing is one approach for conflict resolution in
environmental management decisions that allows government
agencies to adapt to different stake and rights holder perspectives
and consider different scenarios (Auad et al., 2018). Such
integration of world views helps to build trust around science,
while also ensuring that scientific information is relevant and
useful within real-world contexts. The goal of these processes is
for Earth scientists to become more sensitive to the historical
colonial context of science that influences and colors their
assumptions, approaches, implicit biases, and applications within
their work (D’Ignazio and Klein, 2020).
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FIGURE 2 | Each bubble represents a data product, most of which are publicly available from NSIDC. Orange products are raw data; while dark blue indicates data

external to NSIDC used in creating NSIDC data products. Light blue indicates science products available from NSIDC; while Green indicates products that are NSIDC

terms “Easy-to-use”. In NSIDC’s view these data products are in “formats that require little or no processing or programming. These may be of particular interest to

K-12 teachers and students, the press, the general public, or non-cryospheric researchers.” (NSIDC, 2022). Purple represents science products (blogs) also available

from the NSIDC homepage that provide data interpretation for broad audiences. Figure adapted and updated from Baker et al. (2015).

Build Capacity to Bridge Science and
Place-Based Community Needs
Provide more skills development for scientists, community
members, and other participants within the data usage pathway
to help bridge gaps and develop intermediaries.

Training and professional development for scientists can
help them engage more meaningfully with communities and

better understand the real-world context that their work applies
to. While many scientists are unlikely to interact directly with
communities, some do interact with community members
that use and interface with data based on their unique skills
and to fulfill different roles (as intermediaries). These include:
Communicators (who make sense of and tell stories about data
for others to digest), Readers (who need skills to interpret data),
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FIGURE 3 | Recommendations to the Earth sciences as to how changes in Earth science can enhance community resilience, stemming from the challenges

described in this paper.

Makers (who need the skills to use data for problem solving), and
Scientists (who are knowledgeable about the data domain and
need to leverage strong technical data use and communication
skills) (Wolff et al., 2016). Community members with technical
skills (e.g., Scientists as described above) can be valuable brokers,
representing community needs in collaboration with the Earth
science data community. The Pacific Islands Climate Adaptation
Science Center’s University of Hawai’i’s Manager Climate
Corps program (Laursen et al., 2018) demonstrates the value
of a careful needs assessment as researchers embarked on a
collaboration with natural and cultural resource managers
to co-create climate adaptation strategies–their processes
of harnessing the knowledge and experiential capacities
of local experts through close interpersonal engagement
helped establish relationships that can jointly work toward
social-ecological change.

Recent trends in data science education are promising
for creating a new generation of application-focused data
scientists (e.g., Irizarry, 2020). Scholars have advocated for
multiple strategies and new curricular foci to train students to
effectively use data to understand and tackle societal problems–
these suggestions include creating opportunities for students
to actively engage with real-world projects, collaborate across
disciplines, and across sectors like industry and government
(Song and Zhu, 2016); learn to interact with multivariate
phenomena that depict the complexity and interconnectedness
of variables underlying societal issues (Engel, 2017); and
inculcate “habits of mind” (p. 5) in practice and theory
that encourage critical thinking, inquiry-based reasoning, and
problem solving (Finzer, 2013). Greater attention to skills-based

education is a start to help data scientists develop data
products for community members in a manner that prioritizes
community members’ use (rather than Earth scientists’ use).
However, the burden should not fall on communities to defend
themselves with data, and the education of data skills and
capability to work with data should not be isolated to the
privileged. This would help communities overcome barriers in
access and use of available information to advocate on their
own behalf.

To address the problems of scale and community data needs
that we identify in our challenges, new research pathways
can be created by pursuing transdisciplinary approaches based
on communities of practice (Wenger-Trayner and Wenger-
Trayner, 2015). Such communities of practice would include
Earth science and Community Resilience practitioners, who
are brought together by common needs and goals. These
communities of practice would act as transdisciplinary teams
to “work jointly to grasp the complexity of problems from
diverse scientific and societal perspectives, integrate natural and
social science disciplines, alter discipline-specific approaches,
and focus on problem-solving for what is perceived to be the
common good” (Yates et al., 2015). These teams would require
long-term and stable co-operation between Earth Scientists
and the community. Working together would help develop
translators or intermediaries between different stakeholders
in the information pathway, such as translating between
communities to understand information needs and what data
is appropriate for resilience planning. As an example, the
Bureau of Ocean Energy Management, a US federal agency,
could integrate a multi-scale resilience framework into its
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scientific research and management enterprise in order for
science to more clearly articulate and navigate the multi-
scale dynamics of social-ecological systems (Auad et al., 2018).
Building connections between Earth science and communities
may benefit from intermediary organizations and initiatives, like
the Thriving Earth Galkiewicz and Pandya (2014) which can help
identify communities with Earth science challenges and facilitate
interactions with Earth science experts.

Reconcile Openness With Self-Governance
Open science reduces barriers to information while
increasing governance & agency over data to protect
the interests of people and communities that are subjects
of data.

We articulated two problems concerning access to data.
The first is the limited access to relevant data by those
outside the Earth science community. The second problem is
marginalized communities’ limited agency over data use. While
these may seem to have different solutions, we argue that
both problems require the same solution: creating equitable
systems for data products, infrastructure, and governance. Such
management of Earth science data is not only scientific, but
also dependent on societal norms and cultural best practices.
Yet transformative shifts in norms of practice or systems
change are inherently challenging as highlighted by Jagannathan
et al. (2020) in their analysis of outcomes of knowledge co-
production processes observed in practice compared to those
theorized. However, initiatives are already in place to change
data systems that enable more transparency and access to data
and will hopefully spur additional efforts. For example, the FAIR
(Findable, Accessible, Interoperable, and Reusable) principles
(Wilkinson et al., 2016) is an example of one solution that
has been offered to help increase community members’ access
to data.

Additionally, there have been some good examples of how
the consideration of the ethical context around data collection,
governance, and use has occured at different scales that affect
the Earth science data community. The 2019 decadal U.S.
Federal Data Strategy emphasizes ethical governance, conscious
design, and learning culture to “continually challenge and
guide agencies, practitioners, and policymakers to improve
the government’s approach to data stewardship and the
leveraging of data to create value” (United States Government
et al., 2019). Recent findings from an open forum co-
hosted by the Data Coalition and the Data Foundation
concluded that future Federal Action Plans should emphasize
“equity and inclusion, the importance of sharing data in
a way that protects and respects privacy, and prioritizes
transparency and openness” (Turbes, 2020). The American
Geophysical Union (AGU) has also published ethics questions
for practicing scientists to consider during the data life
cycle (Gundersen, 2017) and the AGU Position Statement
on Data states “all players in the science ecosystem should
ensure . . . that relevant scientific evidence is processed, shared,
and used ethically. . . ” (American Geophysical Union, 2019).
Privacy concerns can involve the release of information by
different entities, so it may benefit from control by an

overarching governance body (Commission on Evidence-Based
Policymaking, 2017).

Openness, without governance, might infringe upon
the rights and privacy of people who are subjects of data,
but the CARE principles present an example of an ethical
bookend to FAIR. The CARE principles were formulated
to further the self-determination of indigenous people
against the ongoing process of colonial oppression and
exploitation of indigenous knowledge and data (Carroll
et al., 2020). Similar principles could also be more
broadly applied beyond the indigenous context and among
other groups of people who are historically marginalized
in society.

We note that principles alone will not resolve these issues.
Principles must be carried over into practice. While several
groups are working to translate FAIR principles into action
as well as measure the FAIRness of research data (Bahim
et al., 2020); practices and measures for the CARE principles
are not as far along. However, it should be noted that the
ESIP Sustainable Data Management cluster has been working
with the Global Indigenous Data Alliance (GIDA) to define
the responsibilities and actions data repositories should take
to become more CARE-compliant (Global Indigenous Data
Alliance, 2019). Moreover, work on translating the CARE
principles into theory and action for researchers is forthcoming
from IEEE (a project on “Recommended Practice for Provenance
of Indigenous Peoples’ Data” https://standards.ieee.org/ieee/
2890/10318/) and Research Data Alliance (International
Indigenous Data Sovereignty Interest Group, https://www.rd-
alliance.org/groups/international-indigenous-data-sovereignty-
ig).

Reconciling openness with governance offers the opportunity
to be deliberative with incremental progress that carefully
considers the ethics behind data use. Science and society has
no other option but to reconcile these objectives, as further
promotion of open principles along with due consideration
for the ethical dimension are two critical components for
maintaining the social contract (Lubchenco and Rapley,
2020).

Improve Access to Data Tools to Support
Community Resilience
Reduce the burden for community resilience
practitioners to discover and access Earth
science data.

People in communities use a diverse set of sources to make
decisions impacting their lives, including those that address
problems that arise within the complex systems that they live
in. Decisions are rapid and responsive to evolving information
contexts, and may not be based in the sciences, including Earth
sciences. In other words, in the absence of data that are specific
to a problem, people use whatever information they have at hand.
Decision-makers may base their decisions on data that have been
reinterpreted within a personal or specific context. They might
also seek out experts to help interpret the landscape of the Earth
sciences and present contextualized information relevant to the
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community’s predicament. Secondary data sources that provide
a level of interpretation, which people in communities consume
as scientific products, can form the basis of people’s world views.
For example, the Climate Data Initiative brought together earth
science datasets and reframed them in a global resilience context
to enable broader consumption by practitioners (Sisco et al.,
2019). In this derived data context, discovery of scientific data
may occur when pre-digested and cited secondary scientific
information is cataloged to allow people to back track to
originating discoveries and datasets more easily, and challenge
misconceptions that may inadvertently arise about the secondary
sources. Cvitanovic et al., 2014 also recommends the creation
of management-oriented summaries of research articles to
describe the policy implications of research outcomes in publicly
meaningful ways; many journals have instituted or are in the
process of instituting the concept of plain language summaries.

ESIP’s Discovery cluster emphasizes that making assumptions
about data’s future utility should be avoided. Instead, data
discovery informed by the end-user’s actual usage (Usage-based
data discovery; Lynnes et al., 2020) can better align existing
knowledge frameworks to re-prioritize research investments. As
a result of this process, intended audiences and beneficiaries of
datamanagement labors can be clearly identified, so the relevance
and value of highly technical endeavors can be better targeted
(e.g., decision-makers who seek to support resilience in their
community). Usage-based data discovery can further increase
the utility of data by providing examples of how data have been
used by other communities, while communicating the larger
application context for the data.With the right processes in place,
a feedback mechanism to data providers would also allow for
iterative improvements.

To further this process, Earth science repositories can develop
controlled vocabularies to tag datasets according to specific
information needs (e.g., Semnacher and Chong, 2019). This
allows federal agencies to enhance discovery and demonstrate
the applicability of their research products to society and
sustainable development goals (e.g., the Arctic report card by
Starkweather et al., 2020). In these scenarios, data products (e.g.,
summaries, subsets, trends, or infographic representations) that
are context- and culturally-specific are more easily utilized by
decision-makers within their community (Baker et al., 2015).
Correctly scaled data in a format usable by communities can
interact with their cultural knowledge to produce data subsets
and syntheses that directly improve community resilience. For
example, city governments develop resilience plans that cover
different sectors of the government, including energy, food,
and urban infrastructure. These plans aim to bring together
government, industry, community groups, and residents using
a collaborative transdisciplinary effort. Earth scientists would be
more closely involved in these efforts as the developers of data
being used to guide decision-making. Data are often used by
communities post-hoc, so the purpose of data and their relevant
metadata need to be carefully and clearly articulated so they can
be used appropriately.

Information about the reliability and trustworthiness of data
should also be provided. A basic overview of the database,
including how it was developed, who was involved, and the

audiences for whom it was intended are some basic metadata
that are fundamental to improving the usability of data. For
example, websites displaying analyses of Earth science can
provide a level of transparency to understand data sources
and versions of data used in the analytical products (Lynnes
et al., 2020). The Earth sciences could provide data that have
verifiable data trust measures as a means to pre-assess the quality
of data for applications (see example below). While there will
always be inherent uncertainty in Earth science data products,
certain datasets are categorically wrong for certain applications,
and an established and transparent evaluation process would
help mitigate untrained users from missapplying data (Ekstrom
et al., 2015; Nissan et al., 2019) and clearly communicate the
uncertainty within the dataset. This would enable increased
trust and reliability in external data sources by users of this
data in community contexts. Recent guidelines around the
trustworthiness of data can help the scientific community
(Jamieson et al., 2019) and repositories (Lin et al., 2020) with
their assessment of datasets. Trusted data are highly reusable,
broadly applicable, of verified quality, and clarify the source of
the data and its intended applicability. Data trust assessments
should be provided to datasets that meet transparent guidelines
or rules on data maintenance, governance, and storage that
emphasize access, accountability, and long-term management.
This is another area where ESIP clusters have been actively
working. For example, the Information Quality Cluster recently
published a paper calling for the development of practical
guidelines for representing and sharing data quality information
(Peng et al., 2021).

In another example, Operational Readiness Levels (ORL)
developed within the ESIP Disaster Lifecyle cluster provide
a ranking by which to provide decision-makers with an
understanding of the operational reliability of datasets using
predefined criteria (case study provided by Hicks in the ESIP
webinar Moe et al., 2018). This is an example of how credentials
can allow for diverse datasets to be accessed and used in decision-
making, while still accounting for the level of uncertainty
inherent to a given data set. This can drive community decision-
making by forwarding value-neutral information as to how
complete or ready a data set is. Similar ORLs could be developed
for community planning data, such as climate/weather/natural
disaster forecasts.

CONCLUSION

In this paper, we described the challenges of applying Earth
science data to community resilience decision-making. Inequity
in the scientific process presents challenges in identifying
solutions that are both innovative and reflective of community
needs. Gaps in data ethics and governance highlight the
need to be aware of how misuse of data can negatively
impact people who are subjects of that data. A mismatch
of scale and focus emphasizes the importance of how data
must address the different sociopolitical, temporal, and
geographical scales that are relevant to place-based community
resilience. Lack of actionable information for communities
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speaks to the gaps between the types of data products
that are produced and the expectations of communities to
use them.

We encourage the Earth science data community to
develop practices for improving how Earth science data and
analyses are disseminated to and used for community resilience
purposes. To that end, we have suggested the following
starting points:

• Integrate community into the scientific data pathway to
emphasize the importance of re-framing how we think about
data literacy, and re-conceptualize the DIKW pathway to be
more inclusive of community world views.

• Build capacity to bridge science and place-based needs to
help identify opportunities for skills development among
both scientists and community decision-makers to reduce the
disconnect between the groups.

• Reconcile openness with self-governance to create more ethical
and equitable systems of data products, infrastructure,
and governance.

• Improve access to data tools to support community resilience
by prioritizing usage-based discovery to ensure data can better
meet the needs of communities.

The framing that we present here can help organizations like
ESIP mobilize Earth science data scientists and practitioners to
develop innovative solutions to Earth science data challenges,
and affect durable and effective change with the most impactful
benefit across society. Such organizations have the capacity
and connections to integrate the suggestions that we offer
within the Earth science ecosystem. Through our work in
ESIP’s Community Resilience cluster and in collaboration
with other ESIP clusters, we see the potential to create
spaces within Earth science that better support place-based
community needs.

Contributing to these Earth science data opportunities
is our professional responsibility to the communities that
we are a part of, since as scientists we have access to
resources, skills, and tools that many in our society do
not. Without more attention given to bridging the gaps
between Earth science and community resilience, we risk
continuing to exclude and marginalize the most vulnerable
place-based communities in our world, and continue to
waste scarce resources on producing data and investing in
scientific initiatives that do not meet the urgent needs of
our society. By working in concert with communities, Earth

Scientists can contribute to making the systemic changes
needed to help overcome some of the biggest challenges of
our generation.
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While there has been a rapid increase in the use of participatory science methods over

the last decade, the usability of resulting data in addressing situations of environmental

injustice is often overlooked, neglected, or used as political fuel for ignoring inconvenient

truths. The inability of data to be used for policy, regulation, and enforcement impedes

its usefulness in various situations depending on user requirements and governance

scales. On the other hand, there are vast open datasets that could be useful for

communities and researchers, but these data are often difficult to find, use, or repurpose,

beyond their original intent. This article unpacks the data usability problem at the

frontier of environmental governance and decision-making, suggesting that by prioritizing

environmental data as a public good, there are clear mechanisms for ensuring data

usability toward participatory environmental governance. The authors are interested in

uncovering the policies and behavioral and bureaucratic patterns that have remained

static as participatory science methods and tools have advanced. It is necessary to

understand where and when associated tools, methods, and platforms have failed to

ensure that data is usable and useful for communities attempting deeper engagement

and representation in environmental governance.

Keywords: community data, environmental governance, environmental justice, data usability, public good, open

source, environmental data

INTRODUCTION

Data about the environment and its impact on health come from many places, including scientists
and researchers, government, and communities who are activated to collect their own data.
There are an equal number of issues with environmental data: scarcity in some places and
overabundance in others; difficulties collecting data based on timing, accessibility of tools, and
technical complexities of data requirements; figuring out where and how data can be disseminated
for use in different scenarios. While citizen science (Shirk et al., 2012) has dominated the language
and landscape of participatory science, this article is interested in forms of participatory science
such as community science (Dosemagen and Parker, 2019) and community-owned and managed
research (Heaney et al., 2007). These center scientific practice around the questions of communities,
seek to build co-equal partnerships between communities and scientists, and aim to leverage
multiple forms of data (e.g., quantitative data from sensors, traditional, and local knowledge)
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to an actionable end1, often in support of addressing
environmental injustices. This article is also interested in
the role of already available open government datasets2 and
the benefit for communities and other researchers beyond the
original intent of use.

In efforts to collect and share data and information as
part of environmental governance processes, there are limited
cases or examples that show how community data follows
a streamlined process from collection by communities to its
use in decision-making within and between communities and
tribal, local, state, national, and global governance processes.
While there is demonstrable progress—notably the inclusion
of water quality monitoring data in local, state, federal, and
multi-lateral processes such as the Sustainable Development
Goals3 and through legislation such as the Crowdsourcing and
Citizen Science Act of 20164—the problem of data usability is
often overlooked or neglected, in part allowing inconvenient
environmental truths to perpetuate. Likewise, data streams
coming from scientific institutions (e.g., research institutes,
government agencies, and universities) often struggle to solve
the data “last-mile” usability problem (Celliers et al., 2021).
In other words, frameworks have been created for ensuring
these data streams meet certain standards for enabling access
and usability, but we have yet to figure out how to format
data for a variety of different user needs and governance scales
beyond original intent. This perspective article unpacks the data
usability problem at the frontier of environmental governance
and decision-making.

The sophistication of participatory science continues to
grow, and progress has been made toward increasing actionable
data, yet there are limited instances of data and information
from communities being used in ways that demonstrate clear
integration with policymaking and ongoing, collaborative
interaction between government and communities around
environmental governance and management. Often, data
collected to demonstrate a potential environmental issue (see
for instance Allen, 2003) is paired with long-term and ongoing
community activism. The popular route of public notice-and-
comment leaves much to be desired as it does not account for
power differentials, creates further inequity through lack of
access to political know-how, and allows for an information
request without having a feedback loop through which response

1See for instance the American Geophysical Union’s Thriving Earth Exchange,

Public Lab and the Association of Science and Technology Centers.
2In 2019, the OPEN Government Data Act, a component of the Foundations

for Evidence Based Policymaking Act (https://www.congress.gov/bill/115th-

congress/house-bill/4174/text#toc-H8E449FBAEFA34E45A6F1F20EFB13ED95),

was turned into law. This, “requires federal agencies to publish their information

online as open data, using standardized, machine-readable data formats, with

their metadata included in the Data.gov catalog.” (https://www.data.gov/meta/

data-gov-at-ten-and-the-open-government-data-act/).
3See for example: Monitoring drinking water quality for the Sustainable

Development Goals (https://www.nature.com/collections/gdiahjefdh/) and UNEP

Monitoring Water Quality (https://www.unep.org/explore-topics/water/what-

we-do/monitoring-water-quality).
415U.S.C. §3,724. Crowdsourcing and citizen science (https://uscode.house.gov/

view.xhtml?req=granuleid:USC-prelim-title15-section3724&num=0&edition=

prelim).

is guaranteed to the comment provider (Rahman, 2011). Data
from communities can provide rich contextual and time-
sensitive information in environmental governance decisions,
like permitting affordances from industrial plants or land
stewardship practices for endangered species. The overused
data pipeline analogy suggests a clear route from community
data collection to enforcement of rights (see Figure 1), but
our workflows underperform when it comes to ensuring data
are usable and useful for communities attempting deeper
engagement and representation in environmental governance
(see Figure 2).

The onus of working within existing data systems has
long been placed on communities. This is exemplified through
priority placed on training communities to interact with existing
workflows, rather than internal agency self-reflection on where
data workflows complicating community involvement could
better function. It is the responsibility of government, with
insight and advice from civil society, to correct data workflow
issues and to modernize and update the infrastructure that
supports them. This can happen by prioritizing environmental
data as a public good (i.e., data that works for all) which
can emphasize the necessity and value of diverse data and
information in environmental governance (Williams et al., 2021).
While methods and tools for monitoring have proliferated
(for instance through next-generation sensors or the value
that local and traditional knowledge can bring toward adding
context to environmental datasets), the policies, behavioral
patterns, and bureaucratic systems around data have remained
relatively stagnant.

WHY NOW: THE OPPORTUNITY FOR A
WHOLE OF GOVERNMENT APPROACH

With the Biden-Harris Administration declaring a “whole-of-
government”5 approach to environmental justice (Justice406

and the need for climate action, it is an opportune time
to think differently about where data can be useful in
governance processes and also the ways in which data
moves between actors—from community to government,
government to community, researchers to communities.
Historically, community data is used by communities
and, in certain cases, researchers and government, to call
attention to potential environmental and health issues, often
resulting in establishing a baseline for further research,
indicating the need for additional monitoring, or assisting
media campaigns in support of community goals (National

5Fact Sheet: President Biden Takes Executive Actions to Tackle the Climate Crisis

at Home and Abroad, Create Jobs, and Restore Scientific Integrity Across Federal

Government (https://www.whitehouse.gov/briefing-room/statements-releases/

2021/01/27/fact-sheet-president-biden-takes-executive-actions-to-tackle-the-

climate-crisis-at-home-and-abroad-create-jobs-and-restore-scientific-integrity-

across-federal-government/).
6Justice40 does not explicitly mention data accessibility or usability, though the

recommendations from theWhite House Environmental Justice Advisory Council

reference community data input extensively and could signal a future push

to incorporate (https://www.whitehouse.gov/omb/briefing-room/2021/07/20/the-

path-to-achieving-justice40/).
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FIGURE 1 | Example of a theoretical streamlined process.

FIGURE 2 | Example of an actual data process.
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Advisory Council on Environmental Policy Technology,
2016). Rarely though, do we see environmental data used to
provide an ongoing system of collective accountability between
community, government, academia, and industry. The use
of data as a tool should be prioritized by government and
the broader public as a public good; explicit nomenclature
that designates data as such can highlight its use as a tool
for collective accountability. It is here that we need to focus
our efforts.

To achieve a whole-of-government approach to
environmental justice and climate change mitigation efforts,
agencies should embrace addressing and solving questions of
data use and accessibility that people have pressed for years7.
In addition to the Administration’s openness to incorporating
environmental justice into national agendas, there is also
demonstrated intent toward action from Congress such as the
introduction of the Environmental Justice Mapping and Data
Collection Act of 20218, Environmental Justice Act of 20219 and
the Environmental Justice for All Act10. The federal government’s
movement on this stands on the foundation of more localized
and regional action, largely catalyzed over the past 5 years, in
state, city, and mayoral offices.

Though tools such as EJScreen11 and the Climate and
Economic Justice Screening Tool12 offer useful demographic
data, these tools primarily are a means for understanding
and identifying environmental justice communities (Barnes
et al., 2021), rather than increasing access to national systems
of environmental governance. These tools, as well as new
modes of enhancing public data literacy and education, are

7For instance, see the case studies in the 2016 NACEPT report (National Advisory

Council on Environmental Policy Technology, 2016), the 2018 NACEPT report

(National Advisory Council on Environmental Policy Technology, 2018), and

reports by the Environmental Law Institute in 2020 (Moodley and Wyeth, 2020).
8The Environmental Justice Mapping and Data Collection Act of 2021 notes that

it “aims to create and authorize funding for a system to comprehensively identify

the demographic factors, environmental burdens, socioeconomic conditions, and

public health concerns that are related to environmental justice and collect high-

quality data through community engagement and a government-wide interagency

process. These data would be used to build layered maps depicting which

communities experience environmental injustices” (https://www.congress.gov/

bill/117th-congress/senate-bill/101).
9The Environmental Justice Act of 2021 aims “to improve research and data

collection relating to the health and environment of populations of color,

communities of color, indigenous communities, and low-income communities,

including through the increased use of community-based science” (https://www.

congress.gov/bill/117th-congress/senate-bill/2630?q=%7B%22search%22%3A3A

%5B%22S.+2630%22%2C%22S.%22%2C%222630%22%5D%7D&s=2&r=1).
10The Environmental Justice for All Act seeks “to improve Federal research and

data collection efforts related to— (I) the health and environment of communities

of color, low-income communities, and Tribal and Indigenous communities...”

(https://www.congress.gov/bill/116th-congress/house-bill/5986/text).
11EJScreen is the Environmental Justice Screen and Mapping Tool, developed

and used by the EPA “to screen for areas that may be candidates for additional

consideration, analysis or outreach as EPA develops programs, policies and

activities that may affect communities” (https://www.epa.gov/ejscreen/how-does-

epa-use-ejscreen).
12The Climate and Economic Justice Screening Tool is in its public beta form,

developed by the Council of Environmental Quality “to help Federal agencies

identify disadvantaged communities that are marginalized, underserved, and

overburdened by pollution” (https://screeningtool.geoplatform.gov/en/#3/33.47/-

97.5).

valuable and needed, but must be paired with programs such
as environmental justice training for federal employees and
the increased distribution of funds to environmental justice
communities. Such programs and support should seek to
identify and leverage places where data, information, and input
from communities could be used to create multi-stakeholder,
collaborative models of governance that value and encourage the
use of environmental data and information. This can include a
range of inputs from traditional ecological knowledge to “good
enough data” (Gabrys et al., 2016) that demonstrate where trends
might be emerging.

The Environmental Protection Agency (EPA)13 and other
federal agencies have a complicated road ahead in which they’ll
be required to address large-scale systems change across a gamut
of activities from transportation and land-use to infrastructure
upgrades. Environmental data has a role to play in these scaled
changes, to provide a clear understanding of what resources
are needed in which geographies. To create truly just systems
of environmental governance in which data that already exists
and data that is created by communities is valued as part of
the process, it is necessary for government to (1) consider
administrative justice14 alongside environmental justice, and (2)
to understand the entrenched behavioral and cultural challenges
that government faces before becoming open to this form of data
collection. It is also necessary to reconsider administrative justice
as, “a set of principles for shaping humane relationships between
citizen and state” in the “small places,” in the interactions between
civil servants, between government and community (Doyle
and O’Brien, 2020). A truly whole-of-government approach
must include these “small places” and data questions (Doyle
and O’Brien, 2020). Federal agencies that collect and share
environmental data, such as NOAA, USGS, and NASA, can and
should support these efforts, but as a regulatory agency whose
mission is to ensure human health (in addition to environmental
protection), the EPA is best positioned to lead such change.

WHY THIS: DATA AS A TOOL TOWARD
ENVIRONMENTAL JUSTICE

Early signals from the Biden-Harris Administration point to
environmental justice as a route for building conversations about
the role of environmental data and information from impacted
communities. The focus on a whole-of-government approach to
environmental justice will increase the propensity of government
to identify the needs of environmental justice communities.
However, the authors contend there is a more significant role for
community data in decision-making. Amplifying this role can be
accomplished by not only creating more data and maps to show
the distribution of environmental injustices, but also by creating

13While we acknowledge framing this paper to focus on EPA limits the whole-

of-government approach to one agency, the authors do so to help narrow the

discussion. Further exploration of how other agencies are addressing these topics

is a possible future route of work.
14Wenote that this term is specifically used as a concept in law and judicial systems,

but we use it here in parallel with the concept of environmental justice to underline

the complexity of administrative systems.
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data accessibility, literacy and transparency for a plethora of
researchers from community to academic. Government should
also look to the less acknowledged places where communities
can provide direct guidance on program rollouts. For instance,
in funding programs, identifying where points of input in
grantmaking processes about how funds are spent can lead to
a stronger balance in the distribution of these funds. The work
of identifying places of input has begun with the White House
Environmental Justice Advisory Committee and their Interim
Final Recommendations for the Climate and Economic Justice
Tool (WHEJAC, 2021), but there is additional work needed
to streamline this process and ensure that less acknowledged
communities are involved.

Additionally, the whole-of-government approach to
infrastructure and environmental justice seems to have its
limits within the Biden-Harris administration, namely when it
comes to the oil and gas industry, as they recently announced
an increase of exports of liquefied natural gas (Natter and
Dlouhy, 2022) and are outpacing the Trump administration
in issuing drilling permits on public lands (Phillips, 2022).
These types of environmentally harmful activities point to
places where community environmental data could bolster
calls for government accountability by providing, for instance,
information on the lived experiences of and impacts on
communities in proximity to this harm. Only when our
infrastructure allows for access to both data and decision-
making across the places where influence sits, will we move
from a whole-of-government to a multi-sector collaborative
governance model.

While environmental justice is the focus, a method of
collecting data to address these injustices15—citizen science
(and to some extent community science)—has previously made
large strides in becoming part of agency agendas. There is
an interagency working group on crowdsourcing and citizen
science16, the National Advisory Council on Environmental
Policy and Technology (NACEPT)17, wrote two substantial
reports on citizen science, and there is a law encouraging
the increased use of citizen science in Federal Government18

However, one of the key agencies required to interface with
community data, EPA, has historically viewed data input
and the methods for collecting it as a vehicle for agency
outreach and engagement. While EPA has created resources
such as the quality assurance toolkit (Environmental Protection
Agency, 2022b), houses an environmental monitoring tool
loan program (Environmental Protection Agency, 2022a), and
provides regional funding for citizen and community science
projects, less capacity has been directed at systemic Agency-wide
integration of community data and the infrastructure needed to

15Citizen science and environmental justice and their influences can be described

as a feedback loop, which can be positive or negative. See Figure 12.1 in Citizen

Science, Health, and Environmental Justice (Ceccaroni et al., 2021).
16Crowdsourcing and Citizen Science (https://digital.gov/communities/

crowdsourcing-citizen-science/).
17National Advisory Council on Environmental Policy and Technology (https://

archive.epa.gov/epa/faca/nacept.html).
1815U.S.C. §3724. Crowdsourcing and citizen science (https://uscode.house.gov/

view.xhtml?req=granuleid:USC-prelim-title15-section3724&num=0&edition=

prelim).

ensure this data is used. There is also a problematic history of
how communities seeking to be part of the environmental data
infrastructure have been categorically dismissed or viewed as data
contributors (rather than co-equal partners); they have filled in
gaps for government agencies that lack the political, social, or
economic capacity to achieve their mission of environmental and
health protection19 and management. Community data is not a
replacement for government inaction, or an avenue leading to
community-industry partnerships, but should be seen as a way
for communities to build agency in political decision-making
(Ottinger, 2013; Shapiro et al., 2017).

The reason we place value on community data is that
this data and information can serve to socially situate issues,
provide different perspectives, and communicate how people
are experiencing environmental injustices and the burden of
pollution20. Notably, ensuring the role of community data and
information in environmental governance can show us the value
of pairing scientific data alongside contextual information, for
instance indicating there are multiple truths to how people
experience living in polluted environments21. Community data
can also help agencies forecast areas where future interventions
are required with trend data collected by communities. Being
able to proactively point to out-of-pattern events is invaluable—
especially as we see the increasing effects of the climate crisis.

Community data can additionally provide new partnership
and outreach opportunities for agencies to work with scientists,
community organizers and advocates, educators, designers, and
technologists. These partnerships are integral to ensuring that,
as our innovation landscape around the next generation of
environmental sensors increases, technology, and its resulting
data are usable by agencies. The incorporation of environmental
data from communities requires an openness and willingness
on the part of agencies to examine and explore both these new
environmental data technology frontiers and their own complex
and difficult-to-navigate administrative systems. Working with
communities, and their data and information, can demonstrate
a willingness for agencies to collaboratively achieve EPA’s
mandate22 environmental and human health protection. This
participatory collaboration will require a switch from themindset
of being a gatekeeper of this responsibility to being a conduit for
working in partnership with the public. Building in processual
transparency and points of clear input for communities, can work
against the legacy of distrust in government by environmental
justice communities.

In the Biden-Harris Administration, there is also a notable
financial commitment, for instance, to increased air quality
monitoring (Environmental Protection Agency, 2021),
and billions allocated to cleaning up legacy pollution and
investments in the nation’s water infrastructure (Mock and

19The EPA mission is to protect human health and the environment. Read more

at: https://www.epa.gov/aboutepa/our-mission-and-what-we-do.
20For more on the situation of knowledge, see Situated Knowledges: The Science

Question in Feminism and the Privilege of Partial Perspective (Haraway, 1988).
21Communities can use environmental data to create information that

demonstrates experience of lived situations and other forms of knowing (see for

instance Celliers et al., 2021).
22The EPAmandate is derived from the Reorganization Plan No. 3 of 1970 (https://

archive.epa.gov/epa/aboutepa/reorganization-plan-no-3-1970.html).
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Lowenkron, 2021). Paired with a focus on squarely placing
routes of community input (not simply data collection)
and accountability into the infrastructure of these financial
commitments would signal the potential for a transformative
approach to environmental injustices.

HOW WE GET THERE: SYSTEMS FOR
COLLECTIVE ACCOUNTABILITY

To deepen the whole-of-government approach and create an
ongoing commitment to both the work of environmental justice
and environmental justice communities, policy frameworks
should incorporate the willingness to explore and expand an
ongoing system of collective accountability for environmental
protection, management, and governance. This is a complex
problem that requires a multi-faceted approach through which
we collaboratively, (1) build models for new ways to think about
incorporating diverse datasets and their metadata, while also
considering how to strengthen the current governance landscape
data lives in, (2) standardize across both new and old data systems
to support collective accountability, and (3) build legitimacy in
new data systems through this accountability.

To be successful in creating new systems of collective
accountability, changes in bureaucratic culture that lead to
administratively just systems should be created. While many
people in government agencies are proponents of incorporating
community data and information and recognizing the value of
collaborative governance, these are not agency-wide mandates.
For instance, only recently has the White House Office of
Science and Technology Policy explicitly advised that “where
appropriate, ITEK23 can and should inform Federal decision
making along with scientific inquiry” (Lander and Mallory,
2021). Instead, many times community input is seen as an
administrative burden in a system already weighed down
by bureaucracy (Harrison, 2017). Those that see community
input as a burden often actively resist—in both conscious
and unconscious ways—the work necessary for environmental
justice (Harrison, 2019). When the bureaucratic system of data
input and analysis by the agency causes additional delays, there
are failures in systems leaving limited choices for remedy.
These delays and blockades increase the failures of systems in
addressing environmental justice concerns (Goldman, 2000).

There are also places for considering hybrid social, legal,
and technical approaches to the way data becomes available
for government use. These places must consider and design
for the representation of a diversity of perspectives, respect the
boundaries of communities in sharing (as well as the necessity
of sovereignty) and ensure that there is a place of input beyond
public comment processes and the mechanics of town halls
and public hearings. For instance, the Open Environmental
Data Project (OEDP) has been working on conceptualizing
a community data hub model that is (a) decentralized
for collaborative ownership within each community and (b)
reflective of collective governance models24; at the same time, it

23Indigenous Traditional Ecological Knowledge.
24Collective, or collaborative governance models refers to a “multi-actor

collaboration, usually led by a public sector organization aimed at building

recognizes the importance and necessity of federated systems25

so that communities (and their data) can speak to each other
and government infrastructure (see Figure 3). OEDP pairs these
concepts and prototypes with models that tell the story of the
pain points these types of systems would encounter through
network amplifying conversations (i.e., OEDP’s Brain Trusts
or Data Dialogues series). These dialogues help us to identify
the complexities of usable data in ways that look at them as
opportunities for creating new systems or thinking in different
ways that will help us to alleviate environmental data burdens.

Through a dual approach that ensures environmental data is a
public good—it is non-rival and non-excludable—we mechanize
its ability to be an accountability measure in both directions—
from government to communities and from communities to
government. The space of community environmental data and
governance is ripe for this change.

DISCUSSION: ENVIRONMENTAL DATA AS
A PUBLIC GOOD

The roots of environmental injustice in the United States
span further back than the start of the environmental justice
movement or the EPA (Altman, 2021) into the early industrial
period of U.S. history (or, one could argue, early colonization).
Yet a century later, we are just starting to acknowledge that a
whole-of-government approach is needed to address these issues.
To make this whole-of-government (and community) approach
it is necessary to ensure the place of environmental data as a
public good (see Figure 4).

A public good serves the well-being of a populace. It is
past time to ensure both our available environmental data and
environmental data that are collected both on hyper-local scales
and by, for instance, sensor networks, are allowed this position in
society. The state of pollution combined with the climate crisis
means we need an all-hands-on-deck approach to solve these
problems. Our solutions are in the data, the technology, and the
ability for people to share what they know based on local and
lived experience. But it is necessary to put structures in place so
that in building environmental data as a public good, we ensure a
stronger and clearer emphasis on data “reusability”26. There are
three main ways in which this can happen:

Ensure that administrative justice27 is part of the

environmental justice whole-of-government approach. The
whole-of-government approach to addressing environmental
injustices will not work without putting specific attention toward

consensus among stakeholders on a formal set of policies designed and

implemented to generate public value” (Bianchi et al., 2021).
25Federated systems enable “queries to be sent between disparate data repositories,

or nodes in a federation.” For more on the benefits, risks, and elements of a

federated system (see Herrman, 2019).
26FAIR Principles address reusability, the closest acknowledgement of data

usability beyond original intent, though known problems exist with maintenance

of data under these principles (Wilkinson et al., 2016).
27In “NewDirections in Environmental Justice Research at the U.S. Environmental

Protection Agency: Incorporating Recognitional and Capabilities Justice Through

Health Impact Assessments” the authors also note the importance of capabilities

and recognitional justice in relation to environmental justice work with

communities (Eisenhauer et al., 2021).
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FIGURE 3 | Example of a community data hub.

FIGURE 4 | Example of what a workflow can look like when environmental data is a public good.

addressing behaviors and bureaucratic systems that are unjust
in themselves and then also exemplified as acceptable in agency
workflows (including those related to data). To ensure existing
data is usable, findable, accessible, and that there are routes of

input for communities, the administrative behaviors of agencies
will need to be examined, alongside technical workflows.

While working in current governance systems, create new

ones that are responsive to communities and their data needs.
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Change within government processes is slow and introducing
and adapting innovative and responsive governance models
for scaled use will be incremental. Though it is necessary to
work within current environmental governance systems (i.e.,
public commentary frameworks), the rise of new technology and
methods for data collection should encourage us to think about
how to use more representative forms of data and information
that allow for robust models of community governance. The
civic technology movement28 of over a decade ago provided a
plethora of valuable lessons (for instance, Costanza-Chalk, 2020;
Harrell, 2020), and models from within government that have
been reinterpreted by non-profits29 and vice versa. The models
and frameworks are there to build representative data systems
for collaborative environmental governance. While doing so,
consideration for what the connective tissues between old and
new systems are—and specifically what usability structures need
to be put into place—should be central.

Consider socio-technical touchpoints. Many times, new
technology for data management, storage, and collection does
not need to be built from scratch; instead, there is a needed
investment in critical digital infrastructure and features that will
make environmental data usable and useful. To create better
representation, the focus should be on the appropriateness of
models of collaborative governance30, community ownership,
direct routes of input and checks and balances that data
provides, and how the data fits into current data systems and
yet is proactively designed for future systems31. As previously
discussed, current problems with bureaucratic workflows point
out that these developments must work toward unburdensome

28Civic technology is a “loosely integrated movement that brings the strengths

of the private-sector tech world (its people, methods, or actual methodology) to

public entities with the aim of making government more responsive, efficient,

modern, and more just” (Harrell, 2020).
29See for instance, In the Realm of the Barely Feasible (Prabhakar, 2020).
30Part of creating these touchpoints is to understand and test models that have

risen around collaborative governance of resources in other sectors. Communities

who are collectively contributing data should have control mechanisms and

ownership boundaries in place. Extensive work has been done to this point

around the sharing of health data where models such as trusts and collectives

have been tested [e.g., Aapti Institute (https://www.aapti.in/) and GovLab’s Data

Collaboratives initiative (https://datacollaboratives.org/)]. Querying if a focus

on governance could bridge the conversation between data sovereignty and

representation in data-based governance decisions for communities is also

important.

governance structures or they simply will not be used. Also
known, through the reflections of researchers and practitioners
on the past decade of civic technology (see for instance
Costanza-Chalk, 2020), is that any design or technology
development that leaves people out, or is created for, not
with, will further problematize the push toward addressing
environmental injustices.

Across sectors and working in collaboration, this is an
opportune moment to grasp the momentum we’re seeing at the
top levels of the administration, Congress, and federal agencies
to do differently and do better for and with environmental justice
communities. To grasp this opportunity, we must recognize the
deep histories of misaligned bureaucratic practices that have
complicated, or even intentionally or unintentionally prevented,

how environmental justice can happen in practice. Building
workable routes in our current data systems should be prioritized,
while simultaneously encouraging spaces of innovation in which
we can consider legacy systems, setting the tone for new
ones that allow for proactive and collaborative environmental
governance. The rise of environmental data from multiple
sources should be considered a public good and we have
a collective responsibility to ensure it becomes a workable
public good for both communities and the elected officials that
represent them.
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The creation and curation of environmental data present numerous challenges and

rewards. In this study, we reflect on the increasing amount of freely available glacier data

(inventories and changes), as well as on related demands by data providers, data users,

and data repositories in-between. The amount of glacier data has increased significantly

over the last two decades as remote sensing techniques have improved and free data

access is much more common. The portfolio of observed parameters has increased

as well, which presents new challenges for international data centers, and fosters

new expectations from users. We focus here on the service of the Global Terrestrial

Network for Glaciers (GTN-G) as the central organization for standardized data on

glacier distribution and change. Within GTN-G, different glacier datasets are consolidated

under one umbrella, and the glaciological community supports this service by actively

contributing their datasets and by providing strategic guidance via an Advisory Board. To

assess each GTN-G dataset, we present a maturity matrix and summarize achievements,

challenges, and ambitions. The challenges and ambitions in the democratization of

glacier data are discussed in more detail, as they are key to providing an even better

service for glacier data in the future. Most challenges can only be overcome in a financially

secure setting for data services and with the help of international standardization as, for

example, provided by the CoreTrustSeal. Therefore, dedicated financial support for and

organizational long-term commitment to certified data repositories build the basis for the

successful democratization of data. In the field of glacier data, this balancing act has

so far been successfully achieved through joint collaboration between data repository

institutions, data providers, and data users. However, we also note an unequal allotment

of funds for data creation and projects using the data, and data curation. Considering the

importance of glacier data to answering numerous key societal questions (from local and

regional water availability to global sea-level rise), this imbalance needs to be adjusted.

In order to guarantee the continuation and success of GTN-G in the future, regular

evaluations are required and adaptation measures have to be implemented.

Keywords: glacier data, maturity matrix assessment, data repositories, Essential Climate Variable (ECV), Global

Terrestrial Network for Glaciers (GTN-G)
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BACKGROUND

The amount of glacier data has increased significantly over
the last two decades. In the year 2000, data from around a
hundred glaciers with direct mass-balance measurements and
from around 1,000 glaciers with annual observations of terminus
fluctuations were available. Today, satellite data in combination
with the Randolph Glacier Inventory (RGI) that became available
in 2012 (Pfeffer et al., 2014), enables the observation of all 215,000
glaciers worldwide. As a result, further observational parameters
have been included in glacier repositories, such as glacier area
and volume changes, flow velocities, ice-thickness distribution
and snow-covered areas. This presents new challenges for the
international data centers that provide access to glacier data,
and fosters new expectations from users. In parallel, the storage
(archiving), documentation (metadata), and access to the data
and related products have become much more complex.

The Global Terrestrial Network for Glaciers (GTN-G) is the
framework for the internationally coordinated monitoring of
glaciers in support of the United Nations Framework Convention
on Climate Change (UNFCCC). The network, authorized under
the Global Climate Observing Systems (GCOS), is jointly run
by the World Glacier Monitoring Service (WGMS), the U.S.
National Snow and Ice Data Center (NSIDC), and the Global
Land Ice Measurements from Space initiative (GLIMS). GTN-
G represents the glacier monitoring community and provides an
umbrella for existing and operational data services and related
working groups such as of the International Association of
Cryospheric Sciences (IACS). This setting is largely responsible
for its success.

In addition to qualitative data, such as photographs and
maps, the GTN-G provides standardized observations on
changes in mass, volume, area and length of glaciers with time
(glacier fluctuations), as well as statistical information on the
spatial distribution of perennial surface ice (glacier inventories)
(Figure 1). Such glacier fluctuation and inventory data are high-
priority key variables in climate system monitoring; they form a
basis for hydrological modeling with respect to possible effects
of global warming, and provide fundamental information in
glaciology, glacial geomorphology, and quaternary geology. The
increased amount of glacier data from the last decade has
enhanced the understanding of geophysical processes, improved
glacier-related modeling, and resulted in higher-confidence
statements in the last report of the International Panel on Climate
Change (IPCC, 2021). Beyond this, the data are needed for
the development of sustainable adaptation strategies and related
decision-making processes in glacierized mountain regions
(Nussbaumer et al., 2017; Gärtner-Roer et al., 2019). These urgent
demands are accompanied by equally urgent challenges, such as
the rapidly increasing number of glacier observations from space
that need to be managed in a functioning database infrastructure.

GTN-G facilitates free access to data through different
channels, depending on the level of interest and detail required,
and addresses issues such as the standardization of measurement
methods. Most important, it gathers high-level information
about and access to all available glacier datasets on one
platform (https://www.gtn-g.ch/data_catalog/). This ensures that

all data are equally available for any user: findable, accessible,
interoperable, and reusable, following the FAIR principles
(Wilkinson et al., 2016). While the public or mountain tourists
might use the “wgms Glacier App” for a quick overview of
available glacier data, scientists typically access data offered by
the glacier services using the GTN-G data browser or directly
from the catalog listing of data collections held by member
repositories. Decision makers make use of edited products such
as reports or specific country profiles. Finally, journalists often
approach the GTN-G or constituent services directly and ask for
support in filtering themainmessages out of the full database and
in showing different perspectives. Thus, the different repositories
serve different user communities and purposes. However,
whereas the FAIR principles emphasize the needs of data users,
the right of the data providers to be acknowledged should
not be neglected. Acknowledgment is accomplished through
versioning of the datasets, e.g., via digital object identifiers
(DOIs). When users cite datasets and include a DOI, the DOI
provides traceability between data creation and use. During the
whole process, the proper citation of data originmust be followed
and ideally should be controlled by repositories, journals, and
funding agencies. However, such control mechanisms have yet to
be established by the international community.

Each GTN-G dataset nicely reflects the history of glacier
monitoring, which began in 1894 with the internationally
coordinated systematic observations on glacier variation
(Figure 1). The history mostly followed the overall paradigms in
science: after empirical and theoretical investigations, focus was
given on simulations and, more recently, on “big data.” For the
long-term monitoring of environmental variables, continuous
and standardized measurements are of highest priority. The
in situ measurements, where methodology has changed little
over the last 125 years, are fundamental to this long-term
monitoring. On the other hand, in order to capture uniform
information on a large scale (glacier distribution, changes in
ice thickness), remote sensing data are indispensable. The
rise of “big data” in glaciology is a direct result of the rapid
increase in remote sensing techniques and corresponding data,
as well as free data-access policies (e.g., Landsat; Wulder et al.,
2012) and the availability of “analysis ready data,” for example
pre-orthorectified satellite scenes in GeoTIF format that can be
easily processed and analyzed.

With the increase in volume, timeliness, and variety of data,
as well as variety of data users, access becomes ever more
challenging and requires improved interfaces (Pospiech and
Felden, 2012). Citizens increasingly use data from different
sources (maps, tides, etc.) and glaciers all around the world
can now be explored and measured without much effort.
This has implications for the management and handling of
monitoring datasets that affect data providers as well as data
users. Hence it is time to critically reflect on the democratization
of glacier data. In the context of this study we understand
the term “democratizing” as the free access to glacier data for
everyone. As this is an active verb, it implies the transition
of a former “closed” system to a more “open” system, even if
access to most glacier data has been open already for many
years (WGMS, 1998). For the future, it is the process of proper
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FIGURE 1 | (A) The GTN-G data browser (zoomed) showing available glacier data for a region in southern Norway. The legend shows the different datasets and the

related sections in this paper where the datasets are described. Examples are given for Nigardsbreen, an outlet glacier of the Jostedalsbreen ice cap (Norway), as

represented in different glacier datasets accessible via the GTN-G data browser: (B) GLIMS outlines as of 2006 (ID: 352739); (C) topographic map of Nigardsbreen as

of 1998 (Norwegian Water Resources and Energy Directorate, NVE); (D) annual mass balance since 1960 (B. Kjøllmoen and colleagues, NVE; WGMS, 2021a); (E)

photo of the glacier tongue as of August 3rd, 2000 (E. Roland; Glacier Photograph Collection).

data stewardship and international standardization that ensures
the democratization of data. In this context, certification is
provided by the CoreTrustSeal (https://www.coretrustseal.org/),
an international, community based, non-governmental, and
non-profit organization promoting sustainable and trustworthy
data infrastructures.

We here systematically assess all seven GTN-G datasets
with a focus on data preservability, accessibility, usability,
production sustainability, quality assurance, quality control,
quality assessment, transparency/traceability, and integrity, as
described by Peng et al. (2015). The individual performance
is analyzed with regard to the historical development and
the current funding situation of individual datasets, but
also with regard to each dataset’s significance and function
for environmental monitoring and related decision-making
procedures. Particular challenges are stressed and suggestions

for solutions are provided by good-practice recommendations.
During this process, the requirements of both data providers and
data users are considered. Expectations from and ambitions of
GTN-G are also formulated, as they direct the way toward the
further democratization of glacier data.

DATA AND METHODS

Description of Datasets Available Within
the GTN-G
Internationally coordinated collection and distribution of
standardized information about glaciers was initiated in 1894
and is, since 1998, coordinated within GTN-G. Since 2008,
an international steering committee coordinates, supports, and
advises the operational bodies responsible for the international
glacier monitoring, which are the WGMS, the NSIDC, and
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GLIMS (Zemp, 2011). GTN-G ensures (1) the integration of
the various operational databases and (2) the development of a
one-stop web interface to these databases. The datasets all have
different purposes, formats and histories, reflecting the history
of glaciological science (Figure 2). By joint effort, consistency
and interoperability of the different glacier databases has had
to be developed; the different historical developments and
methodological contexts of the datasets are challenges for linking
individual glaciers throughout the databases.

For the analysis of the data, the interoperability with web-
based services (e.g., cloud services) need to be improved. So
far, most of the glacier datasets can be downloaded directly in
their entirety and can be integrated into a programmatic local
or cloud-based workflow. However, the linking between different
GTN-G datasets is not very mature and urgently needs to be
developed further. Developed in 2010 and updated since, a map-
based web interface spatially links the available data and provides
data users a fast overview of all available data (https://www.
gtn-g.ch/data_browser/; see Figure 1). The interface was adapted
for GTN-G from one developed for the constituent NASA-
sponsoredGLIMS initiative. It provides fast access to information
on glacier outlines from about 215,000 glaciers mainly based on
satellite images, length-change time series from 2,581 glaciers,
glaciological mass-balance time series from 482 glaciers, geodetic
mass-balance series from 37,446 glaciers, special events (e.g.,
hazards, surges, calving instabilities) from 2,747 glaciers, as
well as more than 25,000 photographs (RGI Consortium, 2017;
National Snow and Ice Data Center, 2021; WGMS, 2021b). By
choosing the browser layer for a particular dataset one can
quickly see the spatial distribution of that dataset. Whereas some
datasets are fed continuously by an active community (such
as the FoG (Fluctuations of Glaciers) and GLIMS datasets),
others are created on an ad-hoc basis (GlaThiDa glacier thickness
database and RGI dataset), have a random community (Glacier
Photograph Collection, Glacier Map Collection) or have been
discontinued (World Glacier Inventory, WGI).

The spatio-temporal coverage of the different datasets varies
largely, because of their individual histories. For the in situ
data there is a significant spatial bias toward the Northern
Hemisphere, in particular to Europe andNorth America, whereas
the Andes andAntarctica are underrepresented. In GlaThiDa, the
largest spatial gaps persist in Asia, the Russian Arctic, and the
Andes. With the recent developments in satellite remote sensing
of the cryosphere, the extended sharing of data, and the free
availability of a globally complete baseline glacier inventory (the
RGI), near global coverage has been achieved for many datasets
during the last decades (e.g., Farinotti et al., 2019; Hugonnet et al.,
2021). Other temporal gaps in the datasets are related to the
limited lifetime of individual projects or institutions. In addition,
political crises can have a direct influence on the long-term
continuation of data series. An assessment of national glacier
distribution and changes, delineating also spatio-temporal gaps,
is provided in Gärtner-Roer et al. (2019).

Fluctuations of Glaciers
Internationally collected and standardized data on changes
in glacier length, area, volume, and mass, based on in situ

and remotely sensed observations, as well as on model-
based reconstructions, are compiled in the Fluctuations of
Glaciers (FoG) database. The standardized compilation and
free dissemination of glacier data from all over the world, as
undertaken by the WGMS and its predecessor organizations,
are a major contribution to international initiatives and bodies
such as the United Nations Framework Convention on Climate
Change (UNFCCC) and the Intergovernmental Panel on Climate
Change (IPCC) (Figure 2). Since the beginning of coordinated
glacier monitoring, the collected data have been published in
written reports. The first reports were written in French, but
from 1967 on, all reports are published in English (see https://
wgms.ch/literature_published_by_wgms). The comprehensive
FoG reports represented the backbone of the scientific data
compilation, which comes with full documentation on principal
investigators, national correspondents, their sponsoring agencies,
and publications related to the reported data series. These
reports, issued every 5 years, were complemented by the bi-
annual Glacier Mass Balance Bulletin, which presented the
data in summary form for non-specialists through the use of
graphic presentations rather than as purely numerical data.
In 2015, these two publication series were merged into the
“Global Glacier Change Bulletin” series with the aim of
providing an integrative assessment of worldwide and regional
glacier changes at two-year intervals. Beyond these synthesis
reports, the FoG data are accessed by downloadable files of
past and current versions since 2008 (https://wgms.ch/data_
databaseversions/), direct visualizations via the FoG Browser
(https://wgms.ch/fogbrowser/), and the “wgms Glacier App” for
mobile devices (https://wgms.ch/glacierapp/).

With the inclusion of near real-time measurements at high
temporal resolution (e.g., hourly data) for selected study sites and
the increasing amount of satellite-derived observations (number
of records evolved from a few hundred to more than 200,000
glaciers), the database experienced growing pains. In order
to address these challenges, plans for migration to advanced
database structures are currently under development.

World Glacier Inventory
The WGI was planned as a snapshot of glacier occurrence on
Earth during the second half of the 20th century. In 1976, the
United Nations Environment Programme (UNEP), through
its Global Environment Monitoring System (GEMS) started
supporting activities of a Temporary Technical Secretariat for
the World Glacier Inventory (TTS/WGI) established at the
Geography Department of ETH (Eidgenössische Technische
Hochschule) Zurich. Detailed and preliminary regional
inventories were compiled all over the world. From these
inventories, statistical measures of the geography of glaciers
could be extracted. The WGI completed and updated earlier
compilations (e.g., by Mercer, 1967 and Field, 1975). Instructions
and guidelines for the compilation of standardized glacier
inventory data were developed by UNESCO/IASH (1970),
Müller et al. (1977), Müller (1978), and Scherler (1983). The
publication of the WGI report (WGMS, 1989) presented the
status at the end of 1988, and is the first such compilation to
give a systematic global overview. It contains information for
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FIGURE 2 | Timeline related to the operational bodies and partners within GTN-G and their predecessor bodies (blue bars), as well as influencing international efforts

in relation to use and valorization of glacier data (green bars). Figure modified after Allison et al. (2019).

approximately 130,000 glaciers. Inventory parameters include
geographic location, area, length, orientation, elevation, and
classification. The WGI is based primarily on aerial photographs
and topographic maps with most glaciers having one data entry
only. Hence, the dataset can be viewed as a snapshot of the glacier
distribution in the second half of the 20th century. An update of
the WGI was performed in 2012 (WGMS, and National Snow
and Ice Data Center, 2012).

The data collection presents a fairly complete, albeit
preliminary, picture of the world’s glacierized regions at the
given time. The WGI database is stored both at WGMS in
Zurich and in the National Snow and Ice Data Center’s NOAA
collection, part of the World Data Center for Glaciology in
Boulder, Colorado. It is most easily accessed through the website
of GTN-G (www.gtn-g.org). The WGI database is searchable
by glacier ID, glacier name, or latitude/longitude (as well as
other parameters) using the main ”Search Inventory” interface.
In addition, the “Extract Selected Regions” interface can be used.

It was the sincere wish of organizations and people who
have been involved in WGI activities over the years that the
information in the publication, together with the data available
in the database, be of service to scientists and decision makers
concerned with various applications of glacier data both then
and in the future (WGMS, 1989). For instance, it was suggested
that the information available within the WGI together with
other data provided by the WGMS could be usefully applied in
studies of the impact of a global warming on the availability of
water resources in frozen form, particularly in semi-arid and arid
regions bordering glacierized areas. Inventory data had already
proven useful for estimating precipitation amounts in some
mountainous regions where stations for direct measurements are
difficult to establish, and it was expected they would be used for
the same purpose in many more regions (WGMS, 1989).

Independent of the high scientific value of the glacier
information stored in the WGI, it has some disadvantages when
considering today’s applications. The foremost problem is its

storage as point information. The shapes and the extents of the
glaciers to which the data belong are unknown. It cannot be used
for change assessment or any application that requires glacier
outlines. The technological revolution in the 1990’s providing
Geographic Information Systems (GIS), digital elevation models
(DEMs) and satellite data covering nearly each region in the
world with glaciers, has made it possible to generate, store and
manipulate related vector data. As a consequence, the GLIMS
database (see Global Land Ice Measurements From Space) was
initiated at the turn of the century, superseding the WGI. The
compilation of a near-globally complete dataset of glacier outlines
as available from the RGI (see Randolph Glacier Inventory) was,
however, only possible once free access to orthorectified satellite
data, DEMs, and GIS environments was in place.

Global Land Ice Measurements From Space
The GLIMS glacier database (GLIMS Consortium, 2005)
contains multi-temporal outlines of glaciers in a vector format
with additional data about each glacier (e.g., name, area,
length or mean elevation). All data are stored in a PostGIS
relational database, providing support for geographic objects
allowing location queries. It emerged from the increasing
need for improved calculation of glacier changes and glacier-
specific assessments, which were impossible using the point data
provided by the WGI (see above). As the WGI and its extended
format WGI-XF (Cogley, 2009) was still spatially incomplete,
there was also an urgent need to obtain complete global coverage,
i.e., to have outlines from all glaciers in the world rather than just
2/3. At the inception of GLIMS in 2010 it was still not known
howmany glaciers we had on Earth, where they were located and
how large they were. Accordingly, all calculations concerned with
regional scale hydrology in mountain regions or global scale sea-
level rise were highly error prone. With the free availability of
multispectral images at 15m spatial resolution from the ASTER
sensor onboard the Terra satellite (after its launch in 1999), the
dream of a global glacier database suddenly became realistic. Data
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acquisition requests for ASTER were prepared (Raup et al., 2000)
and a geospatial database was created (Raup et al., 2007). The
relational database included everything that possibly could be
derived from a satellite image and slowly filled over the years.

Whereas algorithms for automated mapping of clean glacier
ice were already established at that time (e.g., Bayr et al., 1994;
Paul et al., 2002), two major bottlenecks hindered rapid and
efficient data processing: (a) debris-covered glacier parts were
not included and had to be delineated manually and (b) image
analysts had to manually orthorectify all ASTER scenes. With
no money available for such time-consuming activities both
could only be performed as a part of funded research projects
that mostly analyzed small regions (e.g., Paul and Kääb, 2005).
Fortunately, the opening of the Landsat archive in 2008 (Wulder
et al., 2012) suddenly provided free access to all Landsat scenes
in an already orthorectified format and obviated the need to use
manually orthorectified ASTER imagery. This encouraged glacier
mapping over larger regions (Bolch et al., 2010; Frey et al., 2012;
Rastner et al., 2012; Guo et al., 2015) which filled the GLIMS
database with more, better quality and also multi-temporal data.
At the time of writing, the GLIMS database hosts approximately
300,000 glacier outlines (including perennial snow patches), i.e.,
40% of the 215,000 glaciers have multi-temporal outlines. The
data have been widely used for a range of hydrological and
glaciological applications. The datasets stored in GLIMS also
formed the base for the compilation of a first globally complete
single snapshot inventory (RGI; see next section).

Randolph Glacier Inventory
The RGI was born from two ideas: to have (i) an easily accessible
temporal snapshot of glacier extents available that is (ii) globally
complete, i.e., there is one outline for each glacier in the world
with the relevant attribute information. This idea was motivated
primarily by the preparation of IPCC AR5, where a clear need for
such a dataset was communicated to the glaciological community
to improve the assessment of glacier-related questions (e.g.,
their contribution to sea-level rise) compared to IPCC AR4.
With glacier outlines from the GLIMS database and a special
community effort in glacier mapping (for details see Pfeffer
et al., 2014), first versions of this dataset were created and
provided for the global-scale calculations presented in IPCC
AR5 (Vaughan et al., 2013). Given the limited time available for
finalizing the product, shortcomings in quality were accepted,
noting that the outlines were produced for global to continental
scale assessments rather than regional or local ones. Over time,
the RGI was continuously improved (version 6.0 appeared in
2017) and the regionally most complete datasets were collected
and combined for the best possible product.

Whereas, the initial effort to get all data together in
a consistent format was enabled by a couple of engaged
individuals, the current effort for compilation of a further
improved RGI (version 7) is coordinated by a dedicated
IACS working group (https://cryosphericsciences.org/activities/
working-groups/rgi-working-group/) that is organizing and
structuring the related work. A detailed technical specification
about RGI contents, its development over time, and all its
contributors is available in the form of a Technical Note

from the RGI web page (https://www.glims.org/RGI/00_rgi60_
TechnicalNote.pdf). The RGI is split into 19 first order regions,
each having its own glacier outlines shapefile and hypsometric
data file. When summed up, it contains about 215,000 glacier
entities covering an area of more than 723,000 km2 (excluding
glaciers on the Antarctic Peninsula).

The RGI has likely become one of the single most important
datasets for glaciological and hydrological research. It is widely
accepted as the best possible dataset for large scale applications
and the number of studies using it might exceed 1000. The related
study by Pfeffer et al. (2014) describing version 3.2 in detail is
now the most cited publication in the Journal of Glaciology. The
intense use of the dataset is also a main reason for ongoing efforts
to further improve it, being careful not to lessen its usefulness.
For the new version 7 of the RGI it was decided to bring the
individual datasets closer to the year 2000 (e.g., to facilitate mass-
balance calculations starting with the SRTM or ASTER-derived
DEMs from 2000) and swap out datasets with known problems
(e.g., too much seasonal snow mapped as glaciers in the Andes)
for “better” ones.

A dataset such as the RGI is never perfect nor complete.
Whereas, obvious errors such as too much seasonal snow being
mapped as glaciers, wrongly mapped debris-covered glaciers
or (frozen) lakes or missing glacier parts due to clouds can
be detected and corrected, variability in the interpretation (is
this a rock glacier or a debris-covered glacier?, where is the
drainage divide?) or topological issues (is this one ice cap or
many glaciers?) are much harder to address. They will persist
in future versions of the RGI as there is no unique right or
wrong answer to these questions. In the end, a user of the
dataset can always consult the larger GLIMS database when
searching for an alternative interpretation of glacier extent or the
timing of the outline does not fit to the intended application.
Apart from the glacier mapping itself that should become more
precise over time as increasingly high resolution satellite images
(e.g., Sentinel-2) are available (Paul et al., 2016), the extraction
of a “new” RGI version from the GLIMS database is not a
button-press application but requires considerable effort. It is
yet unclear if funding will be available for this in the future.
The creation of RGI version 7 is largely automated now so
that future RGI versions can be extracted from the GLIMS
glacier database according to a set of pre-scribed criteria with
limited effort. However, due to topological inconsistencies and
the different internal handling of glacier datasets the creation of
this automation has been time-consuming.

Glacier Thickness Database
GlaThiDa is the only worldwide database of glacier ice
thickness observations, and thus plays an important role in
studies of glacier ice volumes and their potential sea-level rise
contributions (e.g., Farinotti et al., 2017; MacGregor et al.,
2021). The measurements are compiled from literature reviews
(e.g., Gärtner-Roer et al., 2014), imported from published
datasets, or submitted by researchers in response to calls for
data. While major versions of GlaThiDa are archived at the
WGMS (e.g., https://doi.org/10.5904/wgms-glathida-2020-10),
the dataset is developed online as a version-controlled “git”
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repository (https://gitlab.com/wgms/glathida). The development
environment (described in Welty et al., 2020) automatically
records changes to the dataset, continuously checks the integrity
of the dataset, and provides an interface for bug reports,
feature requests, and other community dialogue. Although a
few suspicious ice thickness measurements have been flagged
manually, source data are not automatically checked for
plausibility, and in some cases they may be very wrong
(e.g., https://gitlab.com/wgms/glathida/-/issues/25). Additional
checks could be developed to automatically flag data that
are inconsistent with neighboring measurements, modeled ice
thicknesses (e.g., Farinotti et al., 2019), or glacier outlines (e.g.,
GLIMS, RGI).

Glacier Map Collection
Many glacier maps were published in the FoG reports between
1967 and 2012. They often show individual glaciers and their
spatio-temporal changes in very detailed mappings, some of
them with outstanding quality. Several glaciers, e.g., Lewis glacier
(Kenya), were mapped repeatedly over many decades. This
additional dataset complements the FoG database with more
qualitative and comprehensive environmental information. To
enable a direct access and use, the maps were digitized and
made available online in 2018 (wgms.ch/products_fog_maps).
Sporadically, additional maps (newly created and digitized old
maps) are added to the collection.

Glacier Photograph Collection
The Glacier Photograph Collection (National Snow and Ice Data
Center, 2021) is an online (https://nsidc.org/data/glacier_photo/
search/), searchable database of digital photographs of glaciers
from around the world, some dating back to the mid-19th
century, which provide a historical reference for glacier extent.
The photos are either scanned from physical objects such as
photographic prints or slides or they originated in digital form
from a digital camera. As of May 2022, the database contains over
25,500 photographs. Most of the photographs are of glaciers in
the Rocky Mountains of North America, the Pacific Northwest,
Alaska, and Greenland. However, the collection does include a
smaller number of photos of glaciers in Europe, South America,
the Himalayas, and Antarctica. The collection includes a number
of sub-collections or Special Collections that are distinguished in
some way. For example, there is a special collection of Repeat
Photography of glaciers that provides a unique look at changes
in glaciers over time. These photographs constitute an important
historical record, as well as a data collection of interest to those
studying the response of glaciers to climate change. Educators use
the photographs frequently and artists have found inspiration in
the photographs.

The collection is maintained by NSIDC. New photographs are
submitted from a wide community and are added to the database
sporadically. The collection is accessible on the NSIDC website,
using a detailed search interface that allows request for regional
or national data and individual glaciers, as well for specific years
and single photographers.

Data Stewardship Assessment:
Parameters
The assessment of the different GTN-G datasets is performed
by the compilation of individual maturity matrices. Each
matrix compiles all information on preservability, accessibility,
sustainability, quality, reproducibility, and integrity of the data
and metadata in each dataset following the approach by Peng
et al. (2015, 2019), which is explained in more detail below. The
assessment is based on the conceptual model and the related
scoreboard presented by Peng et al. (2015). The individual
evaluation criteria are slightly adapted to the “language” of
glaciologists (see Table 1). The individual assessments of the
seven datasets are compiled in a separate score table (Table 2).

This maturity scale contains nine key components. For each
dataset, a maturity score from 1 to 5 is assigned, representing five
levels of maturity. The levels range from Level 1, corresponding
to a dataset that was developed ad-hoc and that is not managed,
to Level 5, representing a dataset that is optimally managed
and developed on the long-term and that is externally audited
(Table 1). The assessment was compiled by the authors of
the present paper who are managers of the different GTN-G
datasets. This expert evaluation is characterized by a multi-
step approach. First, each manager completed a full assessment
of their respective dataset (self-assessment) based on their
interpretation of the criteria as compiled in Table 1 and their
reading of the original work by Peng et al. (2015). Second, as
each dataset is run by several experts, the individual assessments
were discussed with the other people responsible for the dataset
in an iterative process to achieve a consensus. In a last iteration,
this consensus assessment was presented to and discussed with
the managers of the other datasets, representing also the GTN-
G Executive Board. Related key words for the assignment of
the score are given in Table 1 for each assessment criteria
(key component). In the following, the assessment criteria are
described from a more glaciological perspective:

Preservability
Are there any archiving standards (e.g., CoreTrustSeal) for
the dataset? Is there redundancy? Do the archiving processes
follow certain standards? Is there any predictive planning for
future changes?

Accessibility
Are the data publicly available? Do the data services follow the
sense of community standards? Is there additional dissemination
of data products to enhance data accessibility for different
user groups?

Usability
Data format: is it standard/non-standard? Are there
interoperable formats? Is the available metadata adequate
and in a usable form? Are the data and metadata sufficiently
documented? Is there any need for specific knowledge to
use the data? Are there online capabilities available, such as
visualizations or a product user guide?
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TABLE 1 | Maturity scale applied for the assessment of the GTN-G datasets [modified after Peng et al. (2015, 2019)].

Maturity scale / GTN-G

data sets (across)

Level 1 Level 2 Level 3 Level 4 Level 5

Key components (below) Ad-hoc not managed Minimal managed limited Intermediate managed

defined partially

implemented

Advanced managed well-defined

fully implemented

Optimal level 4 + measured

controlled, audit

Preservability: (The state

of being preservable)

Any data storage location

data only (no metadata)

Non-designated repository

data storage redundant

limited archiving metadata

Designated repository (e.g.,

CoreTrustSeal) data storage

redundant

community-standard

archiving metadata limited

archiving standards apply

Designated repository (e.g.,

CoreTrustSeal) data storage

redundant community-standard

archiving metadata community

archiving standards apply

Designated repository (e.g.,

CoreTrustSeal) data storage

redundant community-standard

archiving metadata community

archiving standards apply archiving

process monitored and audited

planned future data archiving

Accessibility: (The state of

being searchable and

accessible publicly)

Data not publicly available

data access

person-to-person

Data is publicly available

direct file download possible

data searchable online (on

dataset level)

Data is publicly available

direct file download possible

non-standard data service

provided limited data server

performance data

searchable online (on

granule/file level) limited

search metrics

Data is publicly available direct file

download possible

community-standard data service

provided enhanced data server

performance data searchable online

(on granule/file level) community

search metrics internal dissemination

report

Data is publicly available direct file

download possible

community-standard data service

provided enhanced data server

performance data searchable online

(on granule/file level) community

search metrics dissemination report

available online planned future data

accessibility

Usability: (The state of

being easy to use)

Specific knowledge required

no documentation online

Non-standard data format

limited documentation

online

Community-standard data

format (incl. Metadata)

documentation online

Community-standard data format

(incl. Metadata) documentation online

basic data characterization online

Community-standard data format

(incl. Metadata) documentation online

enhanced data characterization

online (e.g., visualization) community

metrics of data characterization online

external ranking

Production sustainability:

(The state of data

production being

sustainable and extendable)

Ad-hoc initiative no

deliverables existing

Short-term initiative

individual commitment by

PI’s

Medium-term initiative

institutional commitment

Long-term initiative (program)

institutional commitment product

improvement process in place

Long-term initiative (program) national

or international commitment planned

product improvement

Data quality assurance

(DQA): (The state of data

quality being assured)

DQA procedure unknown or

inexistent

DQA procedure random

DQA procedure not defined

and documented

DQA procedure defined,

documented and partially

implemented

DQA procedure well-documented,

fully implemented and available online

limited DQA metadata available

DQA procedure well-documented,

fully implemented, available online,

monitored and reported

community-standard DQA metadata

available external review of DQA

Data quality

control/monitoring: (The

state of data quality being

controlled and monitored)

No quality monitoring of

data and metadata

Limited monitoring of data

and metadata

Regular monitoring of data

and metadata, not

automatic

Fully automatic monitoring of data

and metadata following community

standards consistency checks

Fully automatic monitoring of data

and metadata following community

standards consistency checks

provider/user feedback in place

planned future data quality control

Data quality assessment:

(The state of data quality

being assessed)

Method and theoretical

basis assessed

Method and theoretical

basis assessed research

product assessed

Method and theoretical

basis assessed research

product assessed

operational product

assessed

Method and theoretical basis

assessed research product assessed

operational product assessed quality

metadata assessed

Method and theoretical basis

assessed research product assessed

operational product assessed quality

metadata assessed assessments

performed on recurring basis and

following community standards

external evaluation

(Continued)
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Production Sustainability
To what extent is there a commitment and stewardship,
from individuals (e.g., Principal Investigators) to
organizations/services (e.g., WGMS)? What is the rating of
the dataset, ranging from ad-hoc initiatives (with or without
deliverables) to long-term programs secured through national or
international funding?

Data Quality Assurance
Is a DQA procedure implemented? Is the procedure manual
or automated? Is there sufficient documentation of the DQA?
Are there any reports about the DQA, according to community
standards and with external review?

Data Quality Control/Monitoring
Is the data quality controlled and monitored based on a
regular sampling and analysis? Is there a systematic and/or
an automatic procedure? Are there regular consistency checks
following community standards? Are provider and user feedback
mechanisms in place?

Data Quality Assessment
Are there quality reports for methods and results? Is there
sufficient metadata about quality assessment? Is there an
assessment on a recurring basis? Is there an external evaluation?

Transparency/Traceability
Is there (online) product information available? Is the
data provenance sufficiently documented and are there
related operational algorithms? Are the data governance
mechanisms online available? Is all information important for
reproducibility available?

Data Integrity
Are there integrity checks? How do they perform, are they
verifiable? Integrity checks should address the following:
ingestion of data, data archiving, data access, data authenticity.
Is there a monitoring and reporting of the performance of data
integrity checks?

RESULTS: PERFORMANCE OF THE GTN-G
DATASETS

Table 2 summarizes the performance of the evaluated GTN-
G datasets. A score from 1 to 5 was assigned for each key
component, which is explained with the comments given in
Table 1.

Fluctuations of Glaciers
The FoG database performs between advanced and optimal. It
is a designated repository for glacier fluctuations data following
standards of the glaciological community and key standards
regarding archiving quality and security. Data are accessible
through different channels. Data quality assurance (DQA) is
manually ensured, but not automatically enforced. Data integrity
checks are not fully automatic. Each version of the dataset is
identified by its own DOI and the provenance of the data is
documented in detail both in themetadata and the database itself.
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TABLE 2 | Summary matrix with the performance of the seven datasets available within GTN-G.

Maturity scale / GTN-G data sets (across) FoG WGI GLIMS RGI GlaThiDa GMC GPC

Preservability: (The state of being preservable) 4 4 3 3 4 2 4

Accessibility: (The state of being searchable and accessible

publicly)

4 3 4 4 3 2 3

Usability: (The state of being easy to use) 5 4 4 4 4 2 3

Production sustainability: (The state of data production being

sustainable and extendable)

5 3 3 3 3 1 4

Data quality assurance (DQA): (The state of data quality being

assured)

3 3 2 2 3 1 2

Data quality control/monitoring: (The state of data quality

being controlled and monitored)

3 2 3 3 4 2 2

Data quality assessment: (The state of data quality being

assessed)

5 2 2 2 2 1 2

Transparency/traceability: (The state of being transparent,

trackable, and traceable)

5 4 2 2 4 3 3

Data integrity: (The state of data integrity being verifiable) 3 3 3 3 2 1 3

A score from 1 to 5 is given for each key component. The traffic-light colors give an additional hint to the maturity of the single datasets: green colors: good performance, yellow: medium

performance, orange: limited performance.

TABLE 3 | List of all GTN-G datasets with their URL (Uniform Resource Locator) and citation.

Dataset URL Citation

Fluctuations of Glaciers (FoG) https://dx.doi.org/10.5904/wgms-fog-2021-05 WGMS, 2021a: Fluctuations of Glaciers Database. World Glacier

Monitoring Service, Zurich, Switzerland.

doi: 10.5904/wgms-fog-2021-05

World Glacier Inventory (WGI) https://nsidc.org/data/glacier_inventory/index.html WGMS, and National Snow and Ice Data Center (2012) World

Glacier Inventory. Compiled and made available by the World

Glacier Monitoring Service, Zurich, Switzerland, and the National

Snow and Ice Data Center, Boulder CO, USA. Digital Media

Global Land Ice Measurements from

Space (GLIMS) Initiative

https://www.glims.org GLIMS and National Snow and Ice Data Center (2021): Global

Land Ice Measurements from Space glacier database. Compiled

and made available by the international GLIMS community and the

National Snow and Ice Data Center, Boulder CO, U.S.A.

doi: 10.7265/N5V98602

Randolph Glacier Inventory (RGI) https://www.glims.org/RGI/index.html RGI Consortium (2017): Randolph Glacier Inventory – A Dataset of

Global Glacier Outlines: Version 6.0: Technical Report, Global

Land Ice Measurements from Space, Colorado, USA. Digital

Media. https://doi.org/10.7265/N5-RGI-60

Glacier Thickness Database

(GlaThiDa)

https://www.gtn-g.ch/data_catalog_glathida/ GlaThiDa Consortium (2020): Glacier Thickness Database 3.1.0.

World Glacier Monitoring Service, Zurich, Switzerland.

doi: 10.5904/wgms-glathida-2020-10

Glacier Map Collection (GMC) https://wgms.ch/products_fog_maps/ WGMS (2018): Glacier Map Collection (GMC), World Glacier

Monitoring Service, Zurich, Switzerland.

doi: 10.5904/wgms-maps-2018-02

Glacier Photograph Collection (GPC) https://nsidc.org/data/glacier_photo/ National Snow and Ice Data Center (2021): Glacier Photograph

Collection, Version 1. Boulder, Colorado USA. NSIDC: National

Snow and Ice Data Center. https://doi.org/10.7265/N5/NSIDC-

GPC-2009-12

For this advanced performance, the FoG database was already
certified as trustworthy repository by CoreTrustSeal in 2019.

World Glacier Inventory
The WGI dataset performs between intermediate and advanced.
It is a well-managed dataset with clearly defined aims
and purposes. Lower scores stem from the data quality
control/monitoring (limited monitoring of data and metadata)
as well as the data quality assessment (assessment is performed

of the research product, but not of the dataset itself). As this
dataset represents a snapshot from 1989, with an update from
2012, data curation is currently non-existent. Hence, the overall
performance is low.

Global Land Ice Measurements From
Space
The GLIMS database performs with an overall score of
intermediate. While the database is accessible through an
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enhanced data server with provided dissemination metrics
according to community standards, a clear backdrop is the
largely voluntary basis of data provision by scientists from all
over the world. This leads to data contributions happening by
chance from research projects, with a wide range of interpretation
of glacier extent and limited control on data quality and
uncertainty assessment. Although several guidelines exist for the
community (Raup and Khalsa, 2007; Paul et al., 2009), various
quality checks have to be performed before data ingest. This
includes file formats, completeness of metadata, topologic errors,
location errors, outline quality, etc. Despite automated tools
being available for parts of this work, this still requires effort,
especially for less standard data formatting.

Randolph Glacier Inventory
The dataset performs similar to the GLIMS database, with an
overall score of intermediate. Data quality assurance (DQA) takes
place on an ad-hoc basis, is not systematic, and is dependent
on the data provider. Standard checks for data quality control
are implemented but not documented. Data transparency is low,
because product info can only be found in the literature that
documents the submitted data (but it is available and citable).

Glacier Thickness Database
The dataset achieves an overall performance between
intermediate and advanced. There is a designated repository
for the dataset (WGMS), which stores all versions and their
metadata, and ensures public and direct access to the files.
Data and metadata are machine-readable following community
standards. Data quality checks are performed systematically and
automatically, and are all documented either in the metadata or
in the source code. A lower performance stems from relatively
low production sustainability, as there is only a medium-term
commitment from the data repository to further develop the
dataset. Only cursory data integrity checks are performed,
but all changes to the files are tracked in a version-controlled
(git) repository.

Glacier Map Collection
This collection performs between minimal and ad-hoc for
management of the dataset, which currently consists of ad-hoc
initiatives (though regular inclusion of new maps in former
times). Data are accessible online, but there is only limited
documentation of the data itself. DQA procedures are random
and only the method and its theoretical basis are assessed. There
are no data integrity checks performed.

Glacier Photograph Collection
The collection is preserved at a designated repository (NSIDC)
with well-formed dataset and file-level metadata, following high
community-archiving standards. There is a direct and public
access of the data, with some search metrics provided. Long-
term commitment by the data repository ensures the production
sustainability. DQA procedures are performed but not defined
or documented. Data product information is available in a user
guide and data integrity checks are in place. This leads to an
overall performance of intermediate (advanced in a few criteria).

DISCUSSION OF OPPORTUNITIES AND
CHALLENGES

The maturity matrix approach (Peng et al., 2015) applied in
this study allows a clear and comprehensive assessment of
the individual glacier datasets, as well as a cross-comparison
to other datasets. Similar assessment schemes for maturity
matrices are available (Bates and Privette, 2012; Albani and
Maggio, 2020; CEOS, 2020), often with very similar parameters
as they are predominantly applied in environmental sciences.
For example, the European Organization for the Exploitation
of Meteorological Satellites (EUMETSAT) uses the maturity
matrix to assess the maturity of climate data records and the
development of Essential Climate Variables (ECVs). EUMETSAT
applies the systematic approach by Bates and Privette (2012)
to assess if the data record generation follows best practices
in the areas of science, information preservation, and usage
of the data. This approach was also used when preparing the
Copernicus Climate Change Service (C3S) and assessing the
needs for full access to standardized climate change data. In
this C3S context, the FoG and RGI glacier datasets were also
evaluated regarding the availability and quality of metadata, user
documentation, uncertainty characterization, public access, and
usage. A comparison of the C3S assessment with the outcome of
this study reveals a congruent performance.

The assessment of glacier datasets showed that most of the
datasets perform on an intermediate level. Given the individual
significance of the datasets, the most important ones, when
it comes to basic data on glacier distribution and glacier
changes, are managed on a long-term perspective, but have only
limited funding.

Historical Development
The current state of the GTN-G datasets can largely be explained
through their historical development. The glacier fluctuation
dataset (FoG) traces back to the end of the 19th century, when
the worldwide coordination of glacier monitoring was initiated.
With time, the uninterrupted continuation of the data collection
has become a strong argument to further institutionalize the
collection of glacier data. This led to the formation of the
Permanent Service on the Fluctuation of Glaciers (PSFG) in 1967,
under the umbrella of international auspice organizations, and
later in 1986 to the formation of the WGMS. The commitment
of the coordinators of this network as well as the dedication of
many investigators and collaborators in turn helped to emphasize
the achievements and positive reception of the services. Different
challenges that emerged during that time had to be tackled, and
different needs from data users, data producers, and international
organizations have to be satisfied by the international data
centers. As a consequence, this development is also reflected in
the GTN-datasets as presented of today.

This can be seen in several examples. First, FoG emerged from
simple length change measurements and later on included in
situ, geodetic and point mass balances. Hence, the dataset has
becomemore comprehensive, but this also neededmore effort for
maintenance and continued support. Second, GLIMS developed
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from glacier outlines for individual regions to a globaly near-
complete and partly multi-temporal glacier inventory, forming
the base for the RGI that reached completeness with a different
data model independently and was in turn ingested into GLIMS
to get it spatially complete. To maintain the RGI for the long-
term, it is now also provided via GLIMS and the NSIDC. These
examples show the independent development of each dataset
while maintaining links to the other GTN-G datasets, such as
GPC or GlaThiDa, which are steadily increasing in data richness.

We note that GTN-G has developed in a research
environment and, hence, has never reached the support
levels of operational monitoring networks such as within the
WMO with its national meteorological services. In summary,
there is a long history in glacier monitoring and so far, a good
job was done, but with the increasing amount of data, the
challenges and requirements (from different users) have changed
and need to be tackled. This is only possible with data curation
and stewardship.

Data Curation and Stewardship
The increasing amount of data from different sources pushes
most storage systems to their capacity limits and require regular
expansion of the hardware, including mirror sites. To ensure fast
and long-term data access, constant updates of the software are
required as well. Further, the increasing demand for direct access
to most up-to-date information is a common desire of many data
users. Therefore, data feeds, checks and updates must be carried
out continuously. In parallel, proper dataset versioning is needed
to guarantee traceability. Most of these challenges come with
technical demands of increasing complexity.

While the NSIDC offers a rather large infrastructure for
data repositories but has limited funding for active (hands-
on) data curation, the WGMS is a small service that has its
strengths in data analysis with a strong focus on one specific
database but limited capacities to host additional datasets. Hence,
for the different operational bodies, individual data curation
strategies need to be set up, evaluated and revised on a regular
basis and the responsible database manager(s) need to run
consistent procedures of data archiving, access and quality
checks. Regular training and exchange with colleagues from
the glacier community would also be an advantage to take up
current challenges quickly and become responsible data stewards.
Following these procedures will professionalize the repositories,
strengthen the data services, and serve the community of data
providers and users optimally.

The best-practice measures mentioned above of course come
at a price. In addition to upkeep of technical equipment
(hardware, software), science officers and database managers
need to be trained technically and substantively to ensure
a qualified data processing chain. To bolster support for
adequate technical equipment and staff training for the different
data services, support is needed from higher-level agencies or
international organizations. They are the only ones that can
commit and contribute to the data services for the long run.
Therefore, lobbyists are needed who communicate the recent
shortcomings and challenges to the responsible decision makers.
In the case of GTN-G, this task could be taken on by the Advisory

Board, as they know the glacier community sufficiently well and
have the right contacts to international organizations.

Funding Situation
From the assessment, we noted a direct relationship between
the scores of the datasets and the respective funding available
to maintain it. Funding often comes from research projects that
cover at most the next few years. In these cases, a long-term
perspective is lacking, since follow-up projects that would ensure
a direct continuation are often not guaranteed, or even dismissed
due to the “lack of innovation.” Hence, existing structures first
need to be sustained for a more long-term operation.

Within GTN-G, the funding situation currently looks as
follows: the only dataset with dedicated long-term funding
for data management is the FoG dataset (with 3 FTE (full
time equivalent), Swiss GCOS 2021-24; C3S 312b 2020-21). In
addition, the RGI runs on short-term funding (1 FTE, C3S 312b
2020-21), as does GLIMS (0.5 FTE, NASA Distributed Active
Archive Center funding). The other datasets are updated on
a more voluntary or ad-hoc basis without dedicated funding,
although the WGI and the GPC are minimally maintained with
support from the NOAA Cooperative Agreement with CIRES,
NA17OAR4320101. In the future, ad-hoc data compilations, such
as GlaThiDa, will be easier to fund, as they can build on existing
structures and can be linked to scientific projects or sponsored by
societies such as IACS. On the other hand, long-termmonitoring
necessitates a long-term commitment, which is more difficult to
secure funding for. Running trustworthy repositories needs long-
term security and perspective. Dedicated support and long-term
commitment for certified data repositories build the basis for the
successful democratization of data.

In the field of glacier data, this balancing act has so far been
successfully achieved through joint collaboration between data
repository institutions, data providers, and data users. However,
the money spent on the data provider and user side for creating
and working with the datasets (generally, scientific projects)
is several orders of magnitude larger than the funds available
for data curation. Hence, international organizations as well as
national authorities must offer support and take responsibility
on both sides. Most challenges can only be overcome in a
financially safe and secure setting for data services and with the
help of international standardization, as, for example, provided
by the CoreTrustSeal.

For the GLIMS glacier database, the funding situation is
too low to elevate its maturity score. GLIMS was started and
maintained for some years on short-term (3–5 year) project
funds, but has recently been folded into the NSIDC DAAC,
funded by NASA. Current GLIMS activities are being performed
mainly by one person at a 40% engagement, with other software
developers contributing on occasion. The database has some
issues that need to be improved to reach a higher standard, but
without sufficient and sustained funding of the required experts
this is difficult, or too slow. Given the importance of this database
for many other multi-million-dollar projects, the limited funding
available for keeping the database healthy and growing is more
than shameful. We acknowledge, however, that this is also a
result of the historical development up to the current explosion
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of available datasets and recently changed user demands and
possibilities (e.g., cloud computing).

Future Ambitions
In respectful view of the historical developments and the
awareness of the recent challenges, the individual GTN-G
data services need to take urgent actions. Minimum actions
are required to simply keep the state-of-the-art. Far-reaching
measures must be taken to secure the future of data services
and their benefits for the entire community and to serve
different stakeholders–experts, policy makers, the interested
public and journalists.

As mentioned in Data Curation and Stewardship, individual
data curation strategies are needed for the operational bodies of
GTN-G. Trained database managers will have to organize and
monitor the implementation of this strategy, and run consistent
procedures for data archiving and to perform access and quality
checks on a regular basis. In addition, different outreach products
need to be compiled for different levels of data users; while direct
data access is suitable for experts, decision makers need well-
condensed policy briefs and journalists often request individual
mentoring. By providing these services, the management of
the repositories will be professionalized and ready to serve the
entire community.

To address these future ambitions, problems of technical
equipment and the hiring and long-term retention of qualified
personnel must be tackled. Both aspects are required for proper
data curation and dissemination of glacier datasets. Hence,
in the future GTN-G has to find long-term funding to run
all datasets in a mature and sustainable way and serve the
community with FAIR and trustworthy glacier data of the
best quality.

CONCLUSIONS

Dedicated support and long-term commitment for certified data
repositories build the basis for the successful democratization
of data. In the field of glacier data, this balancing act has
so far been achieved through joint collaboration between data
repository institutions, data providers, and data users. From
the comparison of seven glacier datasets (Table 3) available
within the Global Terrestrial Network for Glaciers (GTN-G)
we conclude:

- The current state of the GTN-G datasets can largely be
explained through historical development, reflecting different
needs from stakeholders incl. users.

- The GTN-G datasets have been developed in a research
environment, hence long-term data curation and stewardship
are absolutely necessary.

- Currently, datasets that are managed based on a mid- to long-
term funding (e.g., the FoG dataset) have the highest maturity.

- Urgent action has to be taken to keep the state-of-the-art and
individual data curation strategies need to be implemented

and tailored for each operational body, considering the context
(e.g., funding situation; project funds vs. long-term funding).

- These strategies need to be evaluated, revised, and adapted
on a regular basis, which can be ensured through the GTN-G
Advisory Board.

- Data curation requires constant updates of software to meet
technical demands of increasing complexity and to provide
direct access to most up-to-date information, which in turn
needs proper data versioning.

- International standardization such as provided for example
by the CoreTrustSeal contributes to a secure setting for the
data services.

- Technical equipment, hiring professional staff and long-term
retention of qualified personnel is key to offer the different
services and to serve the entire community.

Most challenges can only be overcome in a financially safe
and secure setting for data services. However, the money spent
on the data provider and user side for creating and working
with the datasets is several orders of magnitude larger than the
funds available for data curation. Considering the importance of
glacier data to answer numerous key environmental and societal
questions (from water availability to global sea-level rise), this
bias needs to be adjusted.

DATA AVAILABILITY STATEMENT

All data are available on the website of the Global Terrestrial
Network for Glaciers (GTN-G; www.gtn-g.org) or on the specific
websites (see Table 3).

AUTHOR CONTRIBUTIONS

IG-R, SN, and MZ conceived the study, assessed the FoG
database, assessed the WGI, and assessed the GMC. BR, FP, and
MZ assessed the GLIMS database and assessed the RGI. EW,MZ,
and IG-R assessed the GlaThiDa. AW, FF, and SN assessed the
GPC. IG-R and SN wrote the paper and produced the figures. All
authors studied and commented on the selected methodology,
reviewed all assessments, and commented on and revised the
manuscript. All authors contributed to the article and approved
the submitted version.

FUNDING

This research has been supported by the Federal Office of
Meteorology and Climatology MeteoSwiss within the framework
of the Global Climate Observing System (GCOS) Switzerland.
FP acknowledges additional funding from the ESA project
Glaciers_cci (4000127593/19/I-NB). AW and FF acknowledge
support from NOAA Cooperative Agreement with CIRES,
NA17OAR4320101. BR acknowledges support for Global Land
Ice Measurements from Space from National Aeronautics and
Space Administration under the National Snow and Ice Data
Center and Distributed Active Archive Center.

Frontiers in Climate | www.frontiersin.org 13 June 2022 | Volume 4 | Article 84110384

https://www.gtn-g.org
https://www.frontiersin.org/journals/climate
https://www.frontiersin.org
https://www.frontiersin.org/journals/climate#articles


Gärtner-Roer et al. Democratizing Glacier Data

REFERENCES

Albani, M., and Maggio, I. (2020). Long time data series and

data stewardship reference model, Big Earth Data 4, 353–366.

doi: 10.1080/20964471.2020.1800893

Allison, I., Fierz, C., Hock, R., Mackintosh, A., Kaser, G., and Nussbaumer,

S. U. (2019). IACS: past, present, and future of the international

association of cryospheric sciences. Hist. Geo Space Sci. 10, 97–107.

doi: 10.5194/hgss-10-97-2019

Bates, J. J., and Privette, J. L. (2012). A maturity model for assessing

the completeness of climate data records, Eos trans. AGU 93, 441.

doi: 10.1029/2012EO440006

Bayr, K. J., Hall, D. K., and Kovalick, W. M. (1994). Observations on glaciers in the

eastern Austrian Alps using satellite data. Int. J. Remote Sens. 15, 1733–1742.

doi: 10.1080/01431169408954205

Bolch, T., Menounos, B., and Wheate, R. (2010). Landsat-based inventory of

glaciers in western Canada, 1985–2005. Remote Sens. Environ. 114, 127–137.

doi: 10.1016/j.rse.2009.08.015

CEOS. (2020). WGISS Data Management and Stewardship Maturity Matrix.

Version 1.3, Available online at: https://ceos.org/document_management/

Working_Groups/WGISS/Interest_Groups/Data_Stewardship/White_Papers/

WGISS%20Data%20Management%20and%20Stewardship%20Maturity

%20Matrix.pdf (accessed May 30, 2022).

Cogley, J. G. (2009). A more complete version of the world glacier inventory. Ann.

Glaciol. 50, 32–38. doi: 10.3189/172756410790595859

Farinotti, D., Brinkerhoff, D. J., Clarke, G. K. C., Fürst, J. J., Frey, H., Gantayat, P.,

et al. (2017). How accurate are estimates of glacier ice thickness? Results from

ITMIX, the ice thickness models intercomparison experiment. The Cryosphere

11, 949–970 doi: 10.5194/tc-11-949-2017

Farinotti, D., Huss, M., Fürst, J. J., Landmann, J., Machguth, H., Maussion, F., et al.

(2019). A consensus estimate for the ice thickness distribution of all glaciers on

Earth. Nat. Geosci. 12, 168–173. doi: 10.1038/s41561-019-0300-3

Field, W. O. (1975). Mountain Glaciers of the Northern Hemisphere. CRREL,

Hanover, Vol. 1, 698p, Vol. 2, 932p and an Atlas with 49 plates.

Frey, H., Paul, F., and Strozzi, T. (2012). Compilation of a glacier inventory for the

western Himalayas from satellite data: methods, challenges, and results. Remote

Sens. Environ. 124, 832–843. doi: 10.1016/j.rse.2012.06.020

Gärtner-Roer, I., Naegeli, K., Huss, M., Knecht, T., Machguth, H., and Zemp, M.

(2014). A database of worldwide glacier thickness observations. Glob. Planet.

Change 122, 330–344. doi: 10.1016/j.gloplacha.2014.09.003

Gärtner-Roer, I., Nussbaumer, S. U., Hüsler, F., and Zemp, M. (2019). Worldwide

assessment of national glacier monitoring and future perspectives.Mt. Res. Dev.

39, A1–A11. doi: 10.1659/MRD-JOURNAL-D-19-00021.1

GlaThiDa Consortium (2020). Glacier Thickness Database 3.1.0.

Zurich, Switzerland: World Glacier Monitoring Service.

doi: 10.5904/wgms-glathida-2020-10

GLIMS Consortium (2005). GLIMS Glacier Database, Version 1. Boulder, CO:

NASA National Snow and Ice Data Center Distributed Active Archive Center.

Guo, W., Liu, S., Xu, J., Wu, L., Shangguan, D., Yao, X., et al. (2015). The second

Chinese glacier inventory: data, methods and results. J. Glaciol. 61, 357–372.

doi: 10.3189/2015JoG14J209

Hugonnet, R., McNabb, R., Berthier, E., Menounos, B., Nuth, C., Girod, L., et al.

(2021). Accelerated global glacier mass loss in the early twenty-first century.

Nature. 59, 726–731. doi: 10.1038/s41586-021-03436-z

IPCC (2021). “Climate change 2021: the physical science basis,” in Contribution of

Working Group I to the Sixth Assessment Report of the Intergovernmental Panel

on Climate Change, eds V. Masson-Delmotte, P. Zhai, A. Pirani, S. L. Connors,

C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M. I. Gomis, M. Huang,

K. Leitzell, E. Lonnoy, J. B. R. Matthews, T. K. Maycock, T. Waterfield, O.

Yelekçi, R. Yu, and B. Zhou. Cambridge, UK; New York, NY, USA: Cambridge

University Press. doi: 10.1017/9781009157896

MacGregor, J. A., Studinger, M., Arnold, E., Leuschen, C. J., Rodríguez-Morales,

F., and Paden, J. D. (2021). Brief communication: an empirical relation

between center frequency and measured thickness for radar sounding of

temperate glaciers. The Cryosphere 15, 2569–2574. doi: 10.5194/tc-15-2569-

2021

Mercer, J. H. (1967). Southern Hemisphere Glacier Atlas. American Geographical

Society, US Army Natick Laboratories Technical Report, Natick, 325p.

Müller, F. (1978). Instructions for the Compilation and Assemblage of Data

for a World Glacier Inventory. Supplement: Identification/glacier number.

Temporary Technical Secretariat for theWorld Glacier Inventory.Zurich: Swiss

Federal Institute of Technology.

Müller, F., Caflisch, T., and Müller, G. (1977). Instructions for Compilation and

Assemblage of Data for a World Glacier Inventory. Temporary Technical

Secretariat for the World Glacier Inventory. Zurich: Swiss Federal Institute of

Technology.

National Snow and Ice Data Center (2021). Glacier Photograph Collection, Version

1. Boulder, CO: NSIDC: National Snow and Ice Data Center.

National Snow and Ice Data Center (2021) Glacier Photograph Collection, Version

1. Boulder, Colorado USA. NSIDC: National Snow and Ice Data Center.

doi: 10.7265/N5/NSIDCGPC-2009-12

Nussbaumer, S. U., Hoelzle, M., Hüsler, F., Huggel, C., Salzmann, N., and

and, M., Zemp (2017). Glacier monitoring and capacity building: important

ingredients for sustainable mountain development. Mt. Res. Dev. 37, 141–152.

doi: 10.1659/MRD-JOURNAL-D-15-00038.1

Paul, F., Barry, R. G., Cogley, J. G., Frey, H., Haeberli, W., Ohmura, A., et al. (2009).

Recommendations for the compilation of glacier inventory data from digital

sources. Ann. Glaciol. 50, 119–126. doi: 10.3189/172756410790595778

Paul, F., and Kääb, A. (2005). Perspectives on the production of a glacier

inventory from multispectral satellite data in Arctic Canada: cumberland

Peninsula, Baffin Island. Ann. Glaciol. 42, 59–66. doi: 10.3189/1727564057818

13087

Paul, F., Kääb, A., Maisch, M., Kellenberger, T., and Haeberli, W. (2002). The new

remote-sensing-derived Swiss glacier inventory: I. Methods. Ann. Glaciol. 34,

355–361. doi: 10.3189/172756402781817941

Paul, F., Winsvold, S. H., Kääb, A., Nagler, T., and Schwaizer, G. (2016). Glacier

remote sensing using Sentinel-2. Part II: Mapping glacier extents and surface

facies, and comparison to landsat 8. Remote Sens. 8, 575, doi: 10.3390/rs8070575

Peng, G., Privette, J. L., Kearns, E. J., Ritchey, N. A., and Ansari, S. (2015).

A unified framework for measuring stewardship practices applied to digital

environmental data s. Data Sci. J. 13, 231–252. doi: 10.2481/dsj.14-049

Peng, G., Wright, W., Baddour, O., Lief, C., and the SMMCDWork Group (2019).

The Guidance Booklet on the WMO-Wide Stewardship Maturity Matrix for

Climate Data. Figshare.

Pfeffer, W. T., Arendt, A. A., Bliss, A., Bolch, T., Cogley, J. G., Gardner, A. S.,

et al. (2014). The randolph glacier inventory: a globally complete inventory of

glaciers. J. Glaciol. 60, 537–552. doi: 10.3189/2014JoG13J176

Pospiech, M., and Felden, C. (2012). “Big data – A state-of-the-art,” in AMCIS

(Americas Conference on Information Systems) 2012 Proceedings. Available

online at: https://aisel.aisnet.org/amcis2012/proceedings/DecisionSupport/22

Rastner, P., Bolch, T., Mölg, N., Machguth, H., Le Bris, R., and Paul, F. (2012). The

first complete inventory of the local glaciers and ice caps on Greenland. The

Cryosphere 6, 1483–1495. doi: 10.5194/tc-6-1483-2012

Raup, B., and Khalsa, S. J. S. (2007). GLIMS Analysis Tutorial. Global Land Ice

Measurements from Space (GLIMS), 15p. Available online at: https://www.

glims.org/MapsAndDocs/assets/GLIMS_Analysis_Tutorial_a4.pdf

Raup, B., Racoviteanu, A., Khalsa, S. J. S., Helm, C., Armstrong, R., and Arnaud, Y.

(2007). The GLIMS geospatial glacier database: a new tool for studying glacier

change. Glob. Planet. Change 56, 101–110. doi: 10.1016/j.gloplacha.2006.07.018

Raup, B. H., Kieffer, H. H., Hare, T. M., and Kargel, J. S. (2000). Generation of

data acquisition requests for the ASTER satellite instrument for monitoring

a globally distributed target: glaciers. IEEE Trans. Geosci. Remote Sens. 38,

1105–1112. doi: 10.1109/36.841989

RGI Consortium (2017). Randolph Glacier Inventory – a data set of global glacier

outlines: version 6.0. Technical report. Global Land Ice Measurements from

Space (GLIMS), Boulder, CO, Digital Media.

Scherler, K. E. (1983). Guidelines for Preliminary Glacier Inventories. GEMS,

UNEP, UNESCO, ICSI, ETH-Z. Temporary Technical Secretariat for theWorld

Glacier Inventory. Zurich: Swiss Federal Institute of Technology.

UNESCO/IASH. (1970). Perennial Ice and Snow Masses. A guide for compilation

and assemblage of data for a world inventory. Technical Papers in Hydrology

No. 1. Paris: United Nations Educational, Scientific and Cultural Organization.

Vaughan, D. G., Comiso, J. C., Allison, I., Carrasco, J., Kaser, G., Kwok, R., et al.

(2013).Observations: Cryosphere. In: Climate Change 2013: The Physical Science

Basis. Contribution of Working Group I to the Fifth Assessment Report of the

Intergovernmental Panel on Climate Change, eds Stocker, T. F., Qin, D., Plattner,

Frontiers in Climate | www.frontiersin.org 14 June 2022 | Volume 4 | Article 84110385

https://doi.org/10.1080/20964471.2020.1800893
https://doi.org/10.5194/hgss-10-97-2019
https://doi.org/10.1029/2012EO440006
https://doi.org/10.1080/01431169408954205
https://doi.org/10.1016/j.rse.2009.08.015
https://ceos.org/document_management/Working_Groups/WGISS/Interest_Groups/Data_Stewardship/White_Papers/WGISS%20Data%20Management%20and%20Stewardship%20Maturity%20Matrix.pdf
https://ceos.org/document_management/Working_Groups/WGISS/Interest_Groups/Data_Stewardship/White_Papers/WGISS%20Data%20Management%20and%20Stewardship%20Maturity%20Matrix.pdf
https://ceos.org/document_management/Working_Groups/WGISS/Interest_Groups/Data_Stewardship/White_Papers/WGISS%20Data%20Management%20and%20Stewardship%20Maturity%20Matrix.pdf
https://ceos.org/document_management/Working_Groups/WGISS/Interest_Groups/Data_Stewardship/White_Papers/WGISS%20Data%20Management%20and%20Stewardship%20Maturity%20Matrix.pdf
https://doi.org/10.3189/172756410790595859
https://doi.org/10.5194/tc-11-949-2017
https://doi.org/10.1038/s41561-019-0300-3
https://doi.org/10.1016/j.rse.2012.06.020
https://doi.org/10.1016/j.gloplacha.2014.09.003
https://doi.org/10.1659/MRD-JOURNAL-D-19-00021.1
https://doi.org/10.5904/wgms-glathida-2020-10
https://doi.org/10.3189/2015JoG14J209
https://doi.org/10.1038/s41586-021-03436-z
https://doi.org/10.1017/9781009157896
https://doi.org/10.5194/tc-15-2569-2021
https://doi.org/10.7265/N5/NSIDCGPC-2009-12
https://doi.org/10.1659/MRD-JOURNAL-D-15-00038.1
https://doi.org/10.3189/172756410790595778
https://doi.org/10.3189/172756405781813087
https://doi.org/10.3189/172756402781817941
https://doi.org/10.3390/rs8070575
https://doi.org/10.2481/dsj.14-049
https://doi.org/10.3189/2014JoG13J176
https://aisel.aisnet.org/amcis2012/proceedings/DecisionSupport/22
https://doi.org/10.5194/tc-6-1483-2012
https://www.glims.org/MapsAndDocs/assets/GLIMS_Analysis_Tutorial_a4.pdf
https://www.glims.org/MapsAndDocs/assets/GLIMS_Analysis_Tutorial_a4.pdf
https://doi.org/10.1016/j.gloplacha.2006.07.018
https://doi.org/10.1109/36.841989
https://www.frontiersin.org/journals/climate
https://www.frontiersin.org
https://www.frontiersin.org/journals/climate#articles


Gärtner-Roer et al. Democratizing Glacier Data

G. K., Tignor, M., Allen S. K., Boschung J., Nauels, A., Xia, Y., Bex, V., and

Midgley P. M (Cambridge University Press, Cambridge, and New York, NY).

Welty, E., Zemp, M., Navarro, F., Huss, M., Fürst, J. J., Gärtner-

Roer, I., et al. (2020). Worldwide version-controlled database of

glacier thickness observations. Earth Syst. Sci. Data 12, 3039–3055.

doi: 10.5194/essd-12-3039-2020

WGMS (1989). World Glacier Inventory – Status 1988, eds Haeberli, W., Bösch,

H., Scherler, K., Østrem, G. and Wallén, C. C. IAHS(ICSI)/UNEP/UNESCO,

World Glacier Monitoring Service, Zurich, Switzerland, 458.

WGMS (1998). Into the second century of worldwide glaciermonitoring: prospects

and strategies, eds Haeberli, W., Hoelzle, M, and S. Suter. Studies and Reports

in Hydrology. Paris: UNESCO Publishing, 227.

WGMS (2018).Glacier Map Collection (GMC). Zurich, Switzerland: World Glacier

Monitoring Service. doi: 10.5904/wgms-maps-2018-02

WGMS (2021a). Fluctuations of Glaciers Database. Zurich: World Glacier

Monitoring Service.

WGMS (2021b). Global Glacier Change Bulletin No. 4 (2018-2019). Zemp, M.,

Nussbaumer, S.U., Gärtner-Roer, I., Bannwart, J., Paul, F., and Hoelzle, M,

eds ISC(WDS)/IUGG(IACS)/UNEP/UNESCO/WMO. Zurich: World Glacier

Monitoring Service, 278.

WGMS, and National Snow and Ice Data Center (2012).World Glacier Inventory,

Version 1. [Indicate Subset Used]. Boulder, CO: NSIDC: National Snow and Ice

Data Center.

Wilkinson,M. D., Dumontier, M., Aalbersberg, I. J., Appleton, G., Axton,M., Baak,

A., et al. (2016). The FAIR guiding principles for scientific data management

and stewardship. Sci. Data 3, 160018. doi: 10.1038/sdata.2016.18

Wulder, M. A., Masek, J. G., Cohen, W. B., Loveland, T. R., and Woodcock,

C. E. (2012). Opening the archive: how free data has enabled the science

and monitoring promise of Landsat. Remote Sens. Environ. 122, 2–10.

doi: 10.1016/j.rse.2012.01.010

Zemp, M. (2011). The Monitoring of Glaciers at Local, Mountain, and Global Scale.

Schriftenreihe Physische Geographie; Glaziologie und Geomorphodynamik 65.

University of Zurich, Faculty of Science, 72p.

Conflict of Interest: The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be construed as a

potential conflict of interest.

The reviewer LT declared a past collaboration with several of the authors

IG-R, SN, FP, and MZ to the handling Editor.

Publisher’s Note: All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated organizations, or those of

the publisher, the editors and the reviewers. Any product that may be evaluated in

this article, or claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

Copyright © 2022 Gärtner-Roer, Nussbaumer, Raup, Paul, Welty, Windnagel,

Fetterer and Zemp. This is an open-access article distributed under the terms

of the Creative Commons Attribution License (CC BY). The use, distribution

or reproduction in other forums is permitted, provided the original author(s)

and the copyright owner(s) are credited and that the original publication in

this journal is cited, in accordance with accepted academic practice. No use,

distribution or reproduction is permitted which does not comply with these

terms.

Frontiers in Climate | www.frontiersin.org 15 June 2022 | Volume 4 | Article 84110386

https://doi.org/10.5194/essd-12-3039-2020
https://doi.org/10.5904/wgms-maps-2018-02
https://doi.org/10.1038/sdata.2016.18
https://doi.org/10.1016/j.rse.2012.01.010
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/climate
https://www.frontiersin.org
https://www.frontiersin.org/journals/climate#articles


TYPE Perspective

PUBLISHED 25 August 2022

DOI 10.3389/fclim.2022.958533

OPEN ACCESS

EDITED BY

Ti�any C. Vance,

U.S. Integrated Ocean Observing

System, United States

REVIEWED BY

Ted Habermann,

Metadata Game Changers,

United States

*CORRESPONDENCE

Rosalie R. Rossi

rosalie.rossi@tamucc.edu

SPECIALTY SECTION

This article was submitted to

Climate Services,

a section of the journal

Frontiers in Climate

RECEIVED 31 May 2022

ACCEPTED 29 July 2022

PUBLISHED 25 August 2022

CITATION

Rossi RR, LeBel DA and Gibeaut J

(2022) Growing pains of a data

repository: GRIIDC’s evolution from

environmental disaster rapid response

to promoting FAIR data.

Front. Clim. 4:958533.

doi: 10.3389/fclim.2022.958533

COPYRIGHT

© 2022 Rossi, LeBel and Gibeaut. This

is an open-access article distributed

under the terms of the Creative

Commons Attribution License (CC BY).

The use, distribution or reproduction

in other forums is permitted, provided

the original author(s) and the copyright

owner(s) are credited and that the

original publication in this journal is

cited, in accordance with accepted

academic practice. No use, distribution

or reproduction is permitted which

does not comply with these terms.

Growing pains of a data
repository: GRIIDC’s evolution
from environmental disaster
rapid response to promoting
FAIR data

Rosalie R. Rossi*, Deborah A. LeBel and James Gibeaut

Harte Research Institute for Gulf of Mexico Studies, Texas A&M University — Corpus Christi, Corpus

Christi, TX, United States

GRIIDC is a multidisciplinary data repository created in the aftermath of the

Deepwater Horizon oil spill. Development of the repository occurred even as

researchers collected post-spill data, and as a result, the data management

system initially focused on the ingestion of data and metadata. Data sharing

was not as prevalent as it is currently, and many researchers were not familiar

with data sharing and data organization best practices. Implementation of data

management planning, submission, citation, and distribution features required

many iterations and occurred while GRIIDC was assisting researchers with

managing their rapid response data. From this challenging beginning, over

the decade since the Deepwater Horizon oil spill, GRIIDC has improved the

data management system and the training of researchers, which has enhanced

the ease of submission and quality of data submitted. The GRIIDC system

has also evolved to prioritize the implementation of FAIR data principles to

ensure the data are findable, accessible, interoperable, and reusable. All data

are issued digital object identifiers (DOIs) through DataCite and are findable via

GRIIDC’s data search page, DataONE, andGoogle Dataset Search. Each dataset

has a landing page where the data and metadata can be accessed. GRIIDC is

continuously striving to add FAIR principles to the system. Although there are

still many challenges including quality of data and metadata received, funding

limitations, and program priorities, GRIIDC must always continue to improve

its ability to meet user needs while implementing FAIR data principles.

KEYWORDS

data sharing, data management plan (DMP), FAIR data, multidisciplinary data

repository, data citation, data discoverability

Introduction

The Deepwater Horizon (DWH) offshore drilling rig operated by BP, located 50

miles off the coast of Louisiana, experienced a blowout on 20 April 2010 resulting in an

explosion that killed 11 workers, released an estimated 4.9 million barrels of oil (McNutt

et al., 2011), and sank the rig. Approximately 2.1 million gallons of dispersant were

released both at the surface and wellhead, the first time a dispersant was applied to the
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water column (Kujawinski et al., 2011). A disaster this large

mitigated with new methods required immediate research

to study the potential effects of oil and dispersant on the

environment. Although previous oceanographic research had

been performed in the Gulf of Mexico, the information collected

proved insufficient for this spill (Shepherd et al., 2016). Data for

determining effects of oil on species (Bjorndal et al., 2011) and

assessing the effects of the deep-water application of dispersants

were lacking (Kujawinski et al., 2011).

On 24 May 2010, while the well was still releasing oil, BP

committed $500 million dollars over a 10-year period “to fund

an independent research program designed to study the impact

of the oil spill and its associated response on the environment

and public health in the Gulf of Mexico.” This program,

the Gulf of Mexico Research Initiative (GoMRI), would be

independent of BP’s control and administered by the Gulf

of Mexico Alliance (GOMA). A Master Research Agreement

(MRA) between GOMA and BP stated that GoMRI-funded data

should be submitted to a “Research Database” and “that all

data shall be fully accessible and posted thereto with minimum

time delay.” The research database formed was the Gulf of

Mexico Research Initiative Information and Data Cooperative

(GRIIDC). GRIIDC would be based out of the Harte Research

Institute for Gulf of Mexico Studies (HRI) at Texas A&M

University—Corpus Christi as HRI’s vision and mission to

support a sustainable Gulf of Mexico aligned nicely with that

of GoMRI.

Developing a data repository in parallel with initial data

collection presented several challenges. Time was a critical issue

as a team of software developers was building the system while

other GRIIDC personnel were working with researchers to help

them organize and submit their data. Another barrier was that

in 2010, data sharing and data management best practices were

only just being developed. Some researchers were not familiar

with or resisted data sharing. Other researchers did not identify

their work as data, applying a traditional model of a physical

sample collected in the field and analyzed in the laboratory. Still

others valued only a publication as a product with impact, not

recognizing the benefits of data sharing to the researcher and

the general scientific community, including higher citation rates

(Piwowar et al., 2007). A final challenge was the breadth of the

research being undertaken in the aftermath of theDWHdisaster.

This included data collection in environmental, ecological, and

sociological/public health sectors.

GRIIDC did have the benefit of an advisory committee

which included members of its future research board and a

number of principal investigators from the GoMRI research

consortia. During initial GRIIDC planning meetings in 2011,

data management topics discussed included data management

plans, metadata standards, digital object identifiers (DOIs), data

citations, data types to accept, levels of processed data to store,

and best practices. The majority of these are features of a good

data management plan. It is obvious when reviewing meeting

notes that GoMRI and GRIIDC had already made a clear

commitment to adopting best data and metadata practices as set

by funding agencies such as National Science Foundation and

National Oceanic and Atmospheric Administration, including

interoperability, persistent DOIs, and promoting a different,

open culture for data sharing.

In 2016, FAIR data principles were published, codifying

principles which are finable, accessible, interoperable, and

reusable (Wilkinson et al., 2016). GRIIDC had already

established several FAIR data principles, including data

management planning and issuing DOIs, and continues to

learn and apply those principles in software development

and data curation practices. In the 11 years since the

formation of GRIIDC, the data management system has

evolved to mitigate submission barriers for researchers

and grow with the data sharing movement as best

practices advanced.

GRIIDC has developed easy-to-use and intuitive submission

and search interfaces, created useful management tools, crafted

curation standards, and trained researchers, resulting in the

submission of more useful and well-documented data that

meets funding deadlines and adheres to FAIR data principles.

The following sections present the principles GRIIDC initially

identified as critical: data management, data and metadata

submission, citation, and distribution.

Data management planning

A data management plan (DMP) template was one of the

first items prioritized as GRIIDC needed to collect information

about the data to be ingested to help determine repository

development needs (see Figure 1 for a timeline of events). A

DMP is a document that describes what data will be collected

or generated and how those data will be organized, stored,

documented, and backed up throughout the entirety of the

research project. GoMRI research consortia were required

to complete the DMP template and submit to GRIIDC via

email at the beginning of a funding cycle to plan for data

submission. At the beginning of the program, researchers

were not familiar with DMPs or the concept of sharing data

and needed guidance to develop these documents. GRIIDC

reviewed all GoMRI proposals to help determine what data

were to be collected and worked with researchers to develop

and understand the importance of DMPs. GRIIDC has updated

the DMP template through the years, adding more fields to

account for the wide variety of data types GRIIDC receives

(Figure 2). More specific details are obtained for each data type

such as research cruise, field work, environmental lab analysis,

microcosms/mesocosms, modeling, mapping, social surveys,

images, and video. Researchers can utilize these resources for any

project as many funding organizations now require DMPs when

submitting proposals.
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FIGURE 1

GRIIDC timeline of events.

FIGURE 2

Distribution by discipline of the 3,086 GoMRI-funded datasets. Imagery and model datasets typically have a second classification indicating

subject matter. Classes not labeled with a percentage comprise <1% of the total GoMRI-funded datasets.
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An important advance that GRIIDC made in data

management planning was the development of the Dataset

Information Form (DIF), which initiates metadata collection

for a dataset expected to be developed. Although a DMP for

the project has important information on the project level,

GRIIDC determined that more detail on specific datasets to be

submitted was needed to initiate tracking (Gibeaut, 2016) and

to organize dataset submissions. The DIF also helps GRIIDC

prepare to ingest the data. The DIF is implemented through

an online tool that GRIIDC developed, and it is integrated into

the data submission workflow on the GRIIDC website. The DIF

collects basic metadata such as title, abstract, data parameters

and units, size of dataset, estimated data sampling period, and

spatial extent. It also provides the opportunity for a researcher

to indicate if the data are already located at a national data

archive or if they are governed under the Institutional Review

Board (IRB) or Health Insurance Portability and Accountability

Act (HIPAA). When researchers are ready to submit data, the

submission form is pre-filled with information provided in the

DIF, thereby reducing work. GRIIDC’s dataset monitoring page

displays the status of a dataset through the data management

workflow allowing submitters, managers, journals, and funding

organizations to monitor its status. Requiring data management

planning prepares a researcher for the data management

lifecycle and provides a document to describe how data will

be FAIR.

Submitting data and metadata

Gathering information about GoMRI-funded projects and

data that were collected before GRIIDC was well established was

difficult as most researchers had never prepared to share data

before. GRIIDC recognized that the data submission process

would need to be straightforward to accommodate researchers’

various levels of technical experience, time, and patience.

However, with data already being collected, a submission

interface would need to be developed quickly. The first interface

included a “registration” page where users could upload data

and metadata. GRIIDC developed a metadata editor with which

users created ISO 19115-2 metadata xml files. Users had to

save the file locally and then submit the xml file to the

GRIIDC system. GRIIDC encountered issues with this process

as researchers would submit the data but not the metadata,

causing delays in the review of the dataset or prohibiting

publishing an incomplete dataset. Additionally, the submission

interface could only accept a single file, requiring users to

create an archive for multi-file datasets. GRIIDC would have

to mitigate issues with corrupt archives and files that could not

be opened.

Following user feedback and software development

improvements, GRIIDC has developed an easy-to-use dataset

submission form that integrates metadata and data submission

into one interface (Figure 1). The form is pre-filled with

information previously collected in the DIF. Users simply enter

metadata such as abstract, keywords, data parameters and units,

methods, spatial extent, and other descriptive information.

An ISO 19115-2 compliant metadata file is automatically

generated from this information and also includes other

attributes such as suggested citation, data usage license, and

distribution information. GRIIDC has added these fields to

ensure data are findable, interoperable, and reusable. GRIIDC

provides metadata in a human-readable format along with

the ISO-19115-2 xml version, allowing access to users with

different levels of technicality (Gries et al., 2018). Once the

metadata is provided, a user can submit the data by direct

upload. If data are large (over 25 gigabytes), the researcher may

transfer the data via SFTP, GridFTP, Globus, or an external

hard drive. If data are already located at a national data

archive, a user can provide the DOI URL for the data at that

location. Providing multiple methods for data submission

allows researchers to choose the best option for upload given

the size of their data, connection quality, location of data, and

technical experience.

Due to GRIIDC’s unique beginning in which researchers

were studying various effects of the Deepwater Horizon oil spill,

a wide range of data types were submitted to the repository

including biology, chemistry, physical oceanography, sociology,

political science, and public health (Figure 2). The varied

documentation and metadata presented another challenge

for GRIIDC. To provide more information to researchers,

GRIIDC to date has created 12 guidance documents that

describe recommendations for each data type. These are

constantly evolving as data standards are continuously being

developed and improved. For example, in 2018, to complement

the required metadata and facilitate submission of data to

the National Centers for Environmental Information (NCEI),

GRIIDC requested researchers submitting data acquired on

research vessels complete a cruise data documentation template.

This template provides supplemental information, including

cruise platform, dates, chief scientist, and cruise designation.

This allows identification of related data housed at other data

repositories such as Rolling Deck to Repository (R2R) and

NCEI and assists in obtaining additional documentation such as

cruise reports.

Data citation

GRIIDC determined at the beginning of the program that

assigning DOIs was a vital component of the data submission

process to make sure data were findable and reusable (Figure 1).

The University of California’s California Digital Library EZID

service was initially used to create DOIs for GRIIDC datasets.

GRIIDC developed a DOI request form that users would submit

as a separate process from data submission. The DOI at EZID

Frontiers inClimate 04 frontiersin.org

90

https://doi.org/10.3389/fclim.2022.958533
https://www.frontiersin.org/journals/climate
https://www.frontiersin.org


Rossi et al. 10.3389/fclim.2022.958533

would automatically have an “unavailable” status, meaning that

the DOI would resolve to a tombstone page with the citation’s

metadata and reason for not being available. GRIIDC personnel

would review the request; once the dataset had passed the

data package review process, the DOI would be changed to

“public” and would resolve to a dataset landing page. The

researcher would then have to return to the registration page

and enter the DOI to include it as part of the dataset. This

process required multiple steps from the user and GRIIDC

personnel. Additionally, it did not ensure that all datasets

were assigned DOIs as it relied on the user to request one.

In 2017, GRIIDC integrated DOI assignment with the dataset

submission process and switched to DataCite for DOI minting

services. Upon submission of a dataset, a DOI is assigned

which automatically displays on the dataset landing page where

the data can be downloaded, as well as a map displaying the

spatial extent (if applicable), author information, a suggested

citation, number of files, file size, file format, and the collected

metadata. The DOI will not resolve to the landing page if the

dataset has not completed the data package review process

or if there is an embargo on the dataset. Automating this

process has ensured that each GRIIDC dataset is assigned

a DOI and eliminates additional steps for the user and

GRIIDC personnel.

Displaying a DOI on a dataset landing page upon data

submission facilitates the user providing the DOI to journals

that require data be made publicly available. The dataset

landing page contains a suggested citation, which makes

it convenient for users of the data to properly cite the

resource. Citation provides credit to the researcher, helps in

data access and findability, and can track impact (Ball and

Duke, 2015). Also found on the dataset landing page is

a link to associated publications. GRIIDC has linked 1,358

publications to GRIIDC datasets. Pairing the linking of dataset

to publication and referencing the dataset DOI within its

associated publication maximizes the findability and impact of

the data.

Distributing data

Data can be found and downloaded using GRIIDC’s search

page. In keeping with the rapid response nature of GRIIDC’s

origin, the search functionality was originally quite minimal,

returning a simple listing of datasets. Improvements were made

with new software releases. Users can now enter advanced search

terms and narrow down to specific fields such as dataset title,

abstract, author, or theme keywords. Facets can be used to

further filter results by dataset status, funding organizations, and

research groups. Data may be downloaded by anyone with no

requirement of a GRIIDC account. Improvements to the user

interface in 2021 allow a dataset to be downloaded in its entirety

as a zip file or as individual files. Upon download, a SHA256

checksum hash is calculated for compressed files to confirm

transfer integrity.

Reflecting GRIIDC’s commitment to FAIR data principles

and long-term data archival, GRIIDC data is also available

from additional sources. Increased discoverability of data is

provided by participation in the Data Observation Network

for Earth (DataONE) where metadata of GRIIDC datasets can

be found. GRIIDC also submits GoMRI-funded oceanographic

data to NCEI for long-term archival. The use of standardized

National Oceanographic Data Center (NODC) vocabulary terms

or the National Aeronautics and Space Administration’s (NASA)

Global Change Master Directory (GCMD) vocabulary terms for

data types and instruments enhances data discovery.

GRIIDC is currently improving an Environmental Research

Division Data Access Program (ERDDAP) server, initially

developed in 2015, to further serve its oceanographic data

(hydrographic data, current measurements, underway sensor

measurements, and drifter/float trajectories). An ERDDAP

server provides additional search functionality and online map

and graph creation. It also provides the ability to download data

in a single format of the user’s choice, adding flexibility and

reducing the extraction/translation/load (ETL) burden.

Discussion

GRIIDC has a unique origin story as a data repository. Due

to the urgency of its initial development and the rapidly evolving

climate of data sharing, GRIIDC has faced challenges since its

inception. As GRIIDC was at the forefront of the data sharing

movement (Gibeaut, 2016), data standards were still being

developed and researchers’ knowledge of what constitutes data,

data organization, and data sharing data was limited. However,

involving an advisory committee during developmental stages

of the program helped to address these challenges and develop

data management best practices that would set the program up

for success well into the future. The data sharing culture has

vastly changed since the origination of the GoMRI program.

Many funding agencies and journals now require that data be

shared, and researchers are accepting the numerous benefits of

sharing data: open data can be used to discover errors, create

new questions, or be combined with other data (McNutt et al.,

2016). GRIIDC has prepared researchers for success in this data

sharing culture as they have been trained in data organization

and management and are now familiar with submitting data and

creating descriptive metadata.

GRIIDC is always striving to support FAIR data practices

and contribute to the ever-growing collection of open data.

GRIIDC now hosts data not only from GoMRI but also from

the Florida RESTORE Act Centers of Excellence Program; the

Mississippi Based Center of Excellence; the Harte Research

Institute; the National Academies of Sciences, Engineering,

and Medicine Gulf Research Program; as well as others.
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While its inception was based on an environmental disaster,

GRIIDC has come a long way, developing a data repository

that strives to follow the FAIR data principles and will

continue to ensure a data and information legacy for the

Gulf of Mexico.
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Biogeographic assessments aim to determine spatial and temporal

distributions of organisms and habitats to help inform resource management

decisions. In marine systems, rapid technological advances in sensors

employed for biogeographic assessments allow scientists to collect

unprecedented volumes of data, yet it remains challenging to visually

and intuitively convey these sometimes massive spatial or temporal data as

actionable information in geographically relevant maps or virtual models.

Here, we provide a case study demonstrating an approach to bridge this

data visualization gap by displaying coastal ocean data in a 3D, interactive

online format. Our case study documents a workflow that provides resource

managers, stakeholders, and the general public with a platform for direct

exploration of and interaction with 3D data from hydrographically mapping

shipwrecks and marine life on the continental shelf of North Carolina,

USA. We simultaneously mapped shipwrecks and their associated fish

using echosounders. A multibeam echosounder collected high-resolution

multibeam bathymetry of the shipwrecks and detected the broad extent of fish

schools. A calibrated splitbeam echosounder detected individual fish and fish

schools. After processing the echosounder data, we built an interactive, online

3D data visualization web application complemented by multimedia and story

text using ESRI geographic information systems. The freely available visual

environment, called “Living Shipwrecks 3D,” allows direct engagement with

the biogeographic assessment data in a customizable format. We anticipate

that additional interactive 3D data applications can be constructed using a

similar workflow allowing seamless exploration of complex spatial data used

in biogeographic assessments.

KEYWORDS

biogeographic assessment, data visualization, echosounder, online spatial

application, habitat mapping, shipwreck, water-column acoustics
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Introduction

Biogeographic assessments aim to quantify spatial and

temporal relationships between organisms and their habitats

to inform spatial planning decisions (Caldow et al., 2015).

Complex spatial data streams resulting from biogeographic

assessments, however, are challenging to communicate and

translate into accessible formats that can inform resource

management decisions and foster stakeholder engagement

(Caldow et al., 2015). This challenge is especially pronounced in

marine ecosystems, largely stemming from rapid technological

innovations that enable scientists to more quickly and efficiently

collect larger and more complex data at fine resolution and

over expanded spatial and temporal scales (Porter et al.,

2009). For example, active acoustics surveys, such as using

echosounders to map seafloor habitats and detect biological

organisms, including fish and plankton, can generate more

than 2GB of data per minute during acquisition, and passive

acoustic monitoring of marine soundscapes and soniferous

organisms can accrete data at rates exceeding multiple GB

of data per minute. Optical sensors, such as 4K and low-

light video used to visually characterize ecosystems, can collect

over several GB of imagery per minute, and photogrammetric

[e.g., structure from motion (SfM)] imagery of seabed habitats

and associated sessile organisms can breach 1 GB of imagery

per m2. Advances in marine robotics have allowed vehicles,

such as autonomous underwater vehicles (Morris et al., 2014),

autonomous surface vehicles (Ludvigsen et al., 2018), and

uncrewed aerial vehicles (Ridge and Johnston, 2020), to be

outfitted with acoustic and optical sensors further expand the

reach and endurance to continuously collect data over broader

spatial and temporal scales, amplifying the amount of data

collected in marine ecosystems that require visualization and

translation for biogeographic assessments.

Myriad approaches have been developed to more effectively

convey highly quantitative, large, spatial data for resource

managers and stakeholders by displaying these data within

geographic information systems (GIS), often manifested

through data or mapping portals and decision-support tools.

These applications provide platforms that can integrate

ecological, social, and economic information. For example,

“Marine Cadstre” (https://www.marinecadastre.gov/), a

government agency-supported data portal within the USA,

provides spatial data to support resource management decisions,

including offshore energy planning. As part of Marine Cadastre,

a tool called OceanReports (https://www.marinecadastre.

gov/oceanreports/) can output spatial characterizations and

high-level spatial planning analyses of coastal ocean areas to

further facilitate planning decisions. Formal decision-support

tools, like the “Barbuda Blue Halo” (https://www.seasketch.

org/), integrate multilevel survey information (e.g., habitat

classifications, biological organism occurrence), allowing

direct stakeholder interaction and exploration of the data.

Decision-support tools come in many different forms to

facilitate different aspects of spatial planning, as in the case

of “Coexist” that merges simulation models and stakeholder

consultations within an online framework aimed toward

sustainably integrating aquaculture and fisheries in Europe

(https://www.coexistproject.eu/). While these data portals and

decision-support tools provide pathways for constituents to

interact directly with and explore data, the tools do not always

provide data in a visually intuitive, easy to understand manner.

In fact, a recent review of decision-support tools for marine

spatial planning concluded that future tools could benefit

from expanded avenues for stakeholder engagement with data

(Pinarbaşi et al., 2017), and another synthesis concluded that

dramatic improvements are required when sharing data to the

public (e.g., accessible, translated, effectively communicated) to

foster a more transparent, integrated, and successful resource

management process (Caldow et al., 2015).

Here, we present a case study detailing a novel approach for

sharing complex, spatial data from biogeographic assessments

in a three-dimensional (3D), interactive online format. The

goal of our case study was to characterize and visualize

cultural and ecological resources within and around the USA’s

first federally-designated National Marine Sanctuary, Monitor

National Marine Sanctuary, to assess these resources. We also

developed quantitative metrics for hypothesis-driven research

on the ecological function of these resources (Paxton et al.,

2019), but in this paper we focus on the 3D visualization

of these complex data as a path toward disseminating and

translating key spatial data to support resource management

decisions and stakeholder engagement. Below we share our

workflow and use it to illustrate how this visualization method

can be applied to other coastal ecosystems, allowing seamless

exploration of complex coastal spatial data stemming from

biogeographic assessments.

Visualization approach

Overview

We simultaneously mapped shipwrecks and their associated

fish on 19 historical shipwrecks off North Carolina, USA

(Figure 1). The shipwrecks included the Civil War ironclad

vessel, USS Monitor, which sank in 1862 and was later

designated as the USA’s first national marine sanctuary in

1975, as well as shipwrecks on the outer continental shelf of

North Carolina (https://monitor.noaa.gov/). These surrounding

shipwrecks include three from the World War I time period,

two from the mid-1920’s, and thirteen from World War II. The

shipwrecks rest in waters ranging from 17m (Ashkhabad) to

231m deep (SS Bluefields). Each shipwreck was selected based on

its historical significance, and some were also selected because
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FIGURE 1

Locations of shipwrecks for which biogeographic assessments

were conducted. Splitbeam echosounder and multibeam

echosounder data from each shipwreck was displayed in

three-dimensions within the “Living Shipwrecks 3D” visualization

tool. Inset shows broader geographic context. Basemap credit:

General Bathymetric Chart of the Oceans, NOAA National

Centers for Environmental Information.

they had not yet been assessed and data were required to support

resource management decisions.

We surveyed each shipwreck using a suite of scientific

echosounders, including a multibeam echosounder and

splitbeam echosounders. We first collected high-resolution

multibeam bathymetry imagery of each shipwreck. Using the

resulting bathymetry, we then designed additional surveys

to detect fish associated with the shipwrecks. These fish

surveys were conducted using splitbeam echosounders and

the watercolumn data from the multibeam echosounder

and were designed in a grid survey pattern, with orthogonal

along-shipwreck and across-shipwreck survey lines. Survey line

spacing was determined based on the size of the shipwreck from

the multibeam bathymetry imagery to enable adequate spatial

coverage for fish detections.

Multibeam bathymetry

The multibeam echosounders (Reson 7125 and Kongsberg

EM2040) collected multibeam bathymetry of each shipwreck at

fine resolution (<1m x 1m cell size); the exact resolution was

selected to provide optimal coverage based on the depth and

anticipated shipwreck size.We corrected multibeam bathymetry

data for changes in the speed of sound throughout the water

column, tidal influence, static draft, latency, roll, pitch, yaw, and

sensor offsets during post-acquisition processing (NOAA OCS,

2021). To display these data visually within a GIS framework, we

imported the bathymetry elevation of each shipwreck as ground

layers into a scene rendered within ESRI ArcGIS Pro version

2.4.0 (ESRI, 2020) and imported the corresponding geotiff of the

bathymetry imagery into the ArcGIS Pro scene, as well.

Splitbeam echosounder

We detected fish associated with the shipwrecks using

splitbeam echosounders. The splitbeam echosounders

(Kongsberg Simrad EK60 with 7◦ beam angle) emitted

sound pulses downwards into the water column at three

frequencies and corresponding pulse lengths (38 kHz−0.256

µs, 120 kHz−0.128 µs, and 200 kHz−0.128 µs). Splitbeam

ping emissions were triggered by multibeam pings to reduce

interference among the echosounders. The hull-mounted

transducers were calibrated for backscatter response using a

tungsten carbide sphere (Demer et al., 2015). Following data

acquisition, we processed raw echogram data within Echoview

version 10.0 (Echoview Software Pty Ltd, 2020) to identify

and characterize individual fish and schools of fish around the

shipwrecks. We focused on the 120 kHz echosounder because

data from this frequency were most commonly used by the

authors in other studies for detecting fish across the varying

shipwreck depths.

To detect individual fish, we applied a target detection and

fish tracking algorithm that classifies sequential acoustic targets

as discrete fish. Data for tracked individual fish were exported

from Echoview with their corresponding latitude, longitude,

depth, and target strength. These data were read into R version

3.5 (R Core Team, 2020) using a custom written script and

exported as a shapefile. The shapefile was imported into ArcGIS

Pro with the “Feature to 3D by Attribute” geoprocessing tool

within the “3D Analyst” toolbox and displayed using at the

identified geographic location and depth using a selected 3D

symbology, where colored spheres sized proportionally to the

mean target strength represent individual fish.

We applied a SHAPES school detection algorithm (Barange,

1994) to detect schools of fish and calculate geometric metrics

associated with the schools, such as school thickness, school

length, school perimeter, and school area. Data for fish schools

were exported from Echoview with their corresponding centroid

latitude, centroid longitude, centroid depth, and geometries

(thickness, length, area, perimeter—all corrected for beam

geometry). Similar to the workflow described for individual fish,

we then read the exported data into R, exported the data from

R as a shapefile, imported the shapefile into ArcGIS Pro to

display the schools at the appropriate geographic coordinates

and depth, and set 3D symbology where spheres represent fish

schools. Sphere height was proportional to the corrected fish

school thickness, whereas sphere width was proportional to

the corrected fish school length. The presentation of schools

in this way simplifies the shape of often irregular fish schools,
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FIGURE 2

“Living Shipwrecks 3D” is an online interactive tool that displays habitat mapping data collected from acoustic surveys over shipwrecks, as well

as photographs and videos. The tool combines bathymetry maps with maps of fish (white circles) detected with echosounders.

but provides a standard presentation of relative size and extent

across the seascape in the 3D visualization.

Multibeam watercolumn

The multibeam echosounder used to acquire multibeam

bathymetry also collected watercolumn data. We used these

watercolumn data to detect the across-ship path extent of fish

schools associated with the shipwrecks. In comparison to the

narrow (7◦) beam width of the splitbeam echosounder, the

broader (∼130◦) beam width of the multibeam echosounder

permitted fish school detection of a larger area of the

watercolumn around shipwrecks. Raw multibeam data were

processed within Echoview to detect fish targets comprising a

fish school. Data rates for the multibeam echosounder require

significant computing and graphical resources. Therefore, for

each shipwreck, we selected segments of transects that contained

fish schools detected from the splitbeam echosounder data

and then applied a multibeam target detection algorithm to

subsets of ping transmissions in the data files, yielding a

“cloud” of targets constituting the fish school. These identified

multibeam fish targets representing the school were exported

from Echoview by multibeam ping. For each ping, fish target

values, including the target range, mean, major axis angle, and

minor axis angle, were provided.

The multibeam fish target data were then read into R,

where we performed geometric corrections accounting for ship

position and motion to compute the position of each target in

geographic space (latitude, longitude, depth). These processed

data with a corresponding latitude, longitude, and depth for each

target in the school were exported from R as a shapefile. The

shapefile was imported into ArcGIS Pro, as per the splitbeam fish

data described above, and set to the appropriate 3D symbology,

where standard sized spheres represented fish targets—we did

not vary sphere size by attribute because the multibeam system

is uncalibrated and backscatter values are affected by numerous

factors not limited to fish size and angular orientation relative

to the acoustic beam. We also applied a convex hull to the

multibeam fish targets within ArcPro, which allowed us to

quantify the volume of the school, as well as the school width,

thickness, and length. Ultimately, these schooling fish targets

from the wider angle multibeam fan convey the broader spatial

extent of the same fish schools that were originally detected

and visualized in a narrower slice of the watercolumn using the

splitbeam echosounder.

Data visualization

To visualize the multibeam bathymetry, splitbeam detected

individual and schooling fish, andmultibeam fish school extents,

we next developed an online 3D tool using ArcGIS software

products (Figure 2 and Supplementary Video S1). We exported

each layer from the ArcGIS Pro scene (bathymetry, ground

bathymetry, imagery, splitbeam individual fish, splitbeam fish
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schools, multibeam fish school extent) to the online NOAA

Geoplatform using the “Share as Web Layer” tool. Once the

layers were uploaded to the Geoplatform, we created a Web

Scene to depict all layers in 3D using the following steps.

First, we added a background ground layer to the Web Scene

for ocean bathymetry that displays the broader geographic

study area on a 3D ocean topography map (“TopoBathy

3D”) (ESRI, 2020). Second, we added the ground elevation

layers for each shipwreck that display the bathymetry-derived

shipwreck elevations in 3D. Third, we added the bathymetry-

derived geotiff imagery of the shipwreck, which drapes over

the ground elevation layer, providing a visual representation

of the shipwreck. Fourth, we added the fish detection layers

(splitbeam individual fish, splitbeam fish schools, multibeam

fish school extent), which displayed in 3D around the ground

elevation layers and accompanying geotiffs. We then imported

the Web Scene into a Web Application. By pulling the Web

Scene into a Web Application, we could customize the user

interface by adding menus, navigation options, and styling to

facilitate constituent exploration of and interaction with the

multiple data streams.

Once our data were compiled into the customized Web

Application, we created an Arc Hub site. Arc Hub is an online

ESRI software product that allows creation of customized web-

page content using a GUI interface (ESRI, 2020). By using Arc

Hub, we created a Hub Site called “Living Shipwrecks 3D” where

we could combine visual media and story text with the data

from the Web Scene and resulting Web Application (Figure 2

and Supplementary Video S1). The beauty of Arc Hub is that

by building Hub Pages within the Hub Site, we can organize

information into intuitive manners. For example, we created

Hub Pages specific to shipwrecks from certain time periods to

facilitate interaction with these data by stakeholders interested in

history. The visual media that we added to the Hub Site included

photographs and videos.

Conclusions

The “Living Shipwrecks 3D” visualization tool that we

developed allows resource managers and stakeholders to directly

access and engage with data in a way that best meets their

needs. Resource managers can use the tool to understand the

spatial extent and arrangement of shipwrecks and the spatial

distributions of fish reliant upon the shipwrecks. For example,

managers can measure the vertical height of shipwrecks from

habitat mapping data and relate the vertical height to fish

abundance and biomass. Information gained from interacting

with remote sensing data can help inform resource management

decisions on how to best ensure that shipwrecks remain special

places within the seascape. Stakeholders, including those with

an interest in ecology and history, can learn more about how

shipwrecks function as habitat for marine life using the tool. For

instance, recreational divers can use the tool to understand the

layout of shipwrecks that they may visit for recreational dives.

We anticipate that additional interactive 3D data tools

can be constructed using a similar workflow allowing

seamless exploration of complex coastal spatial data used

in biogeographic assessments. These tools can help overcome

inherent challenges of visualizing and translating complex

spatial datasets into formats that can be interpreted by diverse

stakeholders and into actionable information to guide resource

management decisions. Pursuits to develop similar visualization

tools can help democratize data access.
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