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Chengchuang Zhan1, Yanxiang Zang1, Tiankai Li1, Li Zhang1, Guangzhong Liu1 and
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Acute myocardial infarction (AMI) is myocardial necrosis caused by the persistent
interruption of myocardial blood supply, which has high incidence rate and high mortality
in middle-aged and elderly people in the worldwide. Biomarkers play an important
role in the early diagnosis and treatment of AMI. Recently, more and more researches
confirmed that circRNA may be a potential diagnostic biomarker and therapeutic
target for cardiovascular diseases. In this paper, a series of biological analyses were
performed to find new effective circRNA biomarkers for AMI. Firstly, the expression
levels of circRNAs in blood samples of patients with AMI and those with mild coronary
stenosis were compared to reveal circRNAs which were involved in AMI. Then, circRNAs
which were significant expressed abnormally in the blood samples of patients with
AMI were selected from those circRNAs. Next, a ceRNA network was constructed
based on interactions of circRNA, miRNA and mRNA through biological analyses to
detect crucial circRNA associated with AMI. Finally, one circRNA was selected as
candidate biomarker for AMI. To validate effectivity and efficiency of the candidate
biomarker, fluorescence in situ hybridization, hypoxia model of human cardiomyocytes,
and knockdown and overexpression analyses were performed on candidate circRNA
biomarker. In conclusion, experimental results demonstrated that the candidate circRNA
was an effective biomarker for diagnosis and therapy of AMI.

Keywords: circRNA1, AMI 2, microarray 3, bioinformatics 4, circRNA_1047615

INTRODUCTION

AMI is myocardial necrosis induced by sudden occlusion of a coronary artery (Anderson and
Morrow, 2017). In the past few decades, AMI has become a significant cause of emergency
medical care, hospitalization, and death in China (Gao et al., 2008; Dai et al., 2017). Globally, the
incidence of AMI is increasing year by year with a serious threat to human health and survival
quality (Roger et al., 2012). Early diagnosis of AMI is critical for the appropriate initiation of
life-saving treatment (Jeong et al., 2020). Biomarkers, such as creatine kinase isoenzyme (CKMB)
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and troponin I (TnI), are considered the gold standard for
AMI. However, early diagnosis of AMI with borderline values
of cardiac enzymes or waiting for serial changes could be
challenging (Hajar, 2016). Therefore, a better understanding of
the pathophysiological mechanisms of AMI and identifying new
biomarkers for accurate and specific diagnosis are valuable.

Circular RNA (circRNA) is a type of single-stranded RNA
that differs from well-known linear RNA by forming a covalently
closed continuous loop (Zeng et al., 2017; Lu et al., 2019).
They are generated by back-splicing of pre-mRNA transcripts, in
which an upstream splice acceptor is connected to a downstream
splice donor (Chen et al., 2019). The closed circular RNA
was often considered a by-product of splicing error with little
functional potential (Cocquerelle et al., 1993). However, based
on the development of high-throughput sequencing, circRNAs
have been found abundant, conserved, and specific, implying
that they may possess biological and regulatory functions in the
cytoplasm (Chen et al., 2019). Currently, circRNAs are found to
have the following functions: they can modulate gene expression
at the transcriptional or post-transcriptional level by sponging
microRNAs (miRNAs) (Hansen et al., 2013; Wei et al., 2014);
they can interact with RNA-binding proteins (Du et al., 2016;
Wei et al., 2017); and they also have been shown to code for
proteins (Begum et al., 2018). circRNA can serve as efficient
miRNA sponges, interacting with miRNA to regulate mRNA
expression. These specific functions and features of circRNAs
suggest that they may be the ideal biomarkers to diagnose some
human diseases rapidly.

Circular RNAs have been confirmed to be involved in
the development of a variety of diseases (Zeng et al., 2020),
including tumor system diseases (Xu et al., 2020), neurological
disorders (Rybak-Wolf et al., 2015), endocrine system diseases
(Gu et al., 2017), rheumatic system diseases (Luo et al., 2020), and
cardiovascular diseases (CVD) (Geng et al., 2016; Wang et al.,
2016) observed that circRNA HRCR acted as an endogenous
miR-223 sponge to inhibit cardiac hypertrophy and heart failure.
(Geng et al., 2016) found that over-expression of circRNA CDR1
in vivo increased the cardiac infarct size and suggested the
potential of CDR1 was used as a new therapeutic target. These
studies implied that circRNA may be a potential diagnostic
biomarker and therapeutic target for CVD. However, few studies
focused on the effect of circRNA on AMI. This study aimed
to investigate the relationship between differentially expressed
circRNA and AMI, and reveal the potential mechanisms via
circRNA overexpression and knockdown. The ultimate goal was
to provide new biomarkers for AMI diagnosis and new target for
clinical treatment.

In this study, we performed a series of system biological
analysis on RNA expression to find new effective circRNA
biomarkers for AMI. The Arraystar Human Circular RNA
Microarray Version 2.0 system was employed to detect the
differential expression of circular RNAs in the whole blood
of 8 patients (4 with acute myocardial infarction (AMI) and
4 with mild coronary artery stenosis). A total of 64 up-
regulated and 90 down-regulated circRNAs were identified using
traditional statistical methods such as Student two-sample t
test and fold change. Therefore, five typical down-regulated

circRNAs were chosen for RT-qPCR validation. The relative
expression levels of 3 circRNAs (068655, 104761, and 104765)
were consistent with the results of the microarray. TargetScan
and miRanda databases were used to predict interactions between
circRNAs and miRNAs. Furthermore, the circRNA-microRNA-
mRNA network was constructed. The prediction suggests that
the circRNA_104761 can sponge microRNA-449 and microRNA-
34a, which are closely correlated with AMI. A larger scale sample
experiment observed that the expression of circRNA_104761 was
the highest in healthy volunteers, the second highest in mild
coronary artery stenosis patients, and the lowest in AMI patients.
The area under the receiver operating characteristic (ROC) curve
for circRNA_104761 is 0.89, implying a satisfactory prediction
accuracy for AMI. To further verify the role of circRNA_104761
in AMI, the hypoxia model of human cardiomyocytes AC16
was established. All the experimental results demonstrated that
circRNA_104761 could not only be an effective biomarker
for AMI diagnosis, but also differentiate normal coronary
artery, mild coronary artery stenosis, and AMI. Furthermore,
circRNA_104761 may become a potential therapeutic target.

MATERIALS AND METHODS

Overall Strategy
Abnormally expressed circRNAs often affect the occurrence and
development of diseases. To discover the circRNAs related to
acute myocardial infarction (AMI), the expression levels of
circRNA in blood samples of patients with AMI and those with
mild coronary stenosis are firstly analyzed to find abnormally
expressed (up-regulated or down-regulated) circRNAs. Next,
differentially expressed circRNAs between AMI patients and mild
coronary artery stenosis patients were analyzed with hierarchical
clustering to find out the similarity of these whole blood
samples. Then, RT-qPCR was performed to detect expression
levels of circRNAs that were significantly abnormally expressed
in blood samples of AMI patients. Afterward, TargetScan and
miRanda databases were applied to obtain the data of circRNAs-
miRNAs interaction to construct a ceRNA network involving
three candidate circRNA biomarkers. Finally, according to the
reported data of miRNA regulation of AMI, the circRNA involved
in relevant regulation progression was identified and selected
circRNA_104761 as candidate biomarker.

To determine the diagnostic potential of the circRNA
biomarker selected by above methods for AMI, a series of
biochemical experiments were performed. First of all, the
expression levels of candidate circRNA biomarker in blood
samples of AMI patients, mild coronary artery stenosis patients
and normal coronary artery volunteers were detected. The
expression levels of candidate circRNA were significantly
different in these three groups, and it indicated that the
circRNA biomarker was sensitive to AMI and can be used as
diagnostic marker. Secondly, hypoxia is a direct consequence of
AMI and an important factor leading to death. Subsequently,
the expression levels of candidate circRNA biomarker in
human cardiomyocytes under different hypoxia conditions were
analyzed. The expression levels of candidate circRNA were
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significantly different under different hypoxia conditions, and
it would suggest the circRNA biomarker can be used as
molecular marker to determine the pathogenesis of AMI. Finally,
the expression levels of candidate circRNA biomarker were
intervened by either knockdown or overexpression, identified
the influence on the occurrence and development of AMI. The
overall strategy was illustrated in Figure 1A.

Collection of Patient Samples and Ethics
Statement
Whole blood samples were collected from 34 AMI patients, 34
patients with mild coronary artery stenosis, and 30 volunteers
with normal coronary arteries who attended the First Affiliated
Hospital of Harbin Medical University (Harbin, China) in
2019. AMI patients were diagnosed based on acute ischaemic-
type chest pain, electrocardiogram (ECG), cardiac enzyme, and
coronary angiography, etc. The patients with mild coronary
artery stenosis and volunteers with normal coronary arteries
were diagnosed by coronary CTA. Patients were excluded from
malignant arrhythmia, cardiomyopathy, valvular heart disease,
malignant tumors and rheumatic immune system diseases. Blood
samples from the AMI patients were collected in 10 min when
they arrived at the hospital before taking any medications.
Patients with mild coronary artery stenosis and normal coronary
artery volunteers were recruited at the time of the fasting blood in
the morning. The clinical specimens were obtained from patients
who gave informed consent. In the microarray experiment,
blood samples from 4 AMI patients and 4 patients with mild
coronary artery stenosis were collected. circRNA_104761 was
further validated in 30 AMI patients, 30 patients with mild
coronary artery stenosis, and 30 volunteers with normal coronary
arteries using RT-qPCR. All patients were males, and their age
was recorded. The clinical characteristics of the study populations
are shown in Supplementary Table 1. The Harbin Medical
University ethics committee approved all experimental protocols
for the use of human samples, and the methods were carried out
in accordance with the approved guidelines.

Handing and Extraction Total RNA From
Human Blood Samples
Whole blood samples (1 mL per patient) were drawn from the
study donors via direct venous puncture into 2.0 mL siliconized
vacuum tubes containing K2 ethylene diamine tetraacetic acid
(EDTA) for Microarray analysis and RT-qPCR. After blood
collection, the blood samples were immediately placed into a
liquid nitrogen tank and quickly transferred to an ultra-low
temperature freezer at −80◦C for storage until use. This study
extracted total RNA using TRI Reagent BD (Molecular Research
Center, OH, United States).

Microarray Hybridization and Data
Analysis
In this study, blood samples from 4 AMI patients and 4
patients with mild coronary artery stenosis were analyzed by
the Arraystar Human circRNA Microarray version 2.0 system
(Arraystar Inc, Rockville, MD, United States). Total RNA

from each sample was quantified using the NanoDrop ND-
1000. All samples’ preparation and microarray hybridization
were conducted based on the Arraystar’s standard protocols.
Briefly, total RNAs were digested with Rnase R (Epicentre,
Inc.) to remove linear RNAs and enrich circular RNAs. The
enriched circular RNAs were then amplified and transcribed into
fluorescent cRNA utilizing a random priming method (Arraystar
Super RNA Labeling Kit; Arraystar, MD, United States). The
labeled cRNAs were hybridized onto the Arraystar Human
circRNA version 2.0 (8x15K, Arraystar). After having washed the
slides, the arrays were scanned by the Agilent Scanner G2505C.
Agilent Feature Extraction software (version 11.0.1.1) was used
to analyze acquired array images. Quantile normalization and
subsequent data processing were performed using the R software.
Before being used for the cluster analysis, the data were
converted to standards. The function of dist and hclust were
used to calculate distance and cluster, respectively. Hierarchical
Clustering was performed to show the distinguishable expression
profile of circRNAs between two groups. Differentially expressed
circRNAs with statistical significance between the two groups
were identified through Volcano Plot filtering. Differentially
expressed circRNAs between two samples were identified through
Fold Change filtering.

RT-qPCR
Total RNA was isolated from 1 mL whole blood using a phenol-
chloroform extraction procedure (Jiang et al., 2019; Liu et al.,
2019), and RNA extraction process was performed as previously
described (Section 2.2). circRNAs’ relative expression level was
detected by TB Green Premix Ex Taq II (TaKaRa Bio, Shiga,
Japan) with β-actin as an internal control. The validation of all the
circRNAs by qPCR was performed ViiA 7 Real-time PCR System
(Applied Biosystems). 2−11 Ct method was used to analyze
the RT-qPCR data. Primers used in RT-qPCR for validation are
shown in Supplementary Table 2.

Cell Culture and Hypoxia Models
Human myocardial cell AC16 was purchased from Shenzhen
Haodi Huatuo Biotechnology Co Ltd. The basal medium was
DMEM medium supplemented with 10% fetal bovine serum
(Gibco) and 1% double antibody (100 U/ml penicillin and
100 µg/ml streptomycin, Invitrogen) at 37◦C and 5% CO2
atmosphere. For the hypoxia experiments, the cells were seeded in
the anaerobic mode (oxygen concentration less than 0.1%, carbon
dioxide is 5%, and the rest is nitrogen), and then used after 6, 12,
and 24 h of treatment.

Fluorescence in situ Hybridization (FISH)
First, AC16 cell climbing slices were fixed in 4%
paraformaldehyde (DEPC) for 20 min, shaken, and washed
3 times with PBS (pH 7.4) on a decolorizing shaker, and
digested by dropping proteinase K (20 ug/ml) for 8 min. Then,
pre-hybridization and hybridization were performed, blocking
serum BSA, mouse anti-digoxigenin labeled peroxidase (anti-
DIG-HRP), and CY3-TSA was instilled in sequence, and stained
with DAPI. Finally, we observed and collected images under
fluorescence microscopy.
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FIGURE 1 | Overall strategy.

Knockdown and Overexpression of
circRNA_ 104761
The sequences of siRNA for circRNA_ 104761 used in this
study were all synthesized by General Biological System
(Anhui) Co Ltd, and three pairs of down-regulation primers
were designed for circRNA_ 104761 at the same time. The
sequences of primers are shown in Supplementary Table 3.
The plasmid vector of circRNA_104761 overexpression model
was also synthesized by General Biological System (Anhui)
Co Ltd. Cell transfection was performed according to the
manufacturer’s instructions.

CCK-8 Assay, LDH Assay, and Apoptosis
Assay
Cell Counting Kits (CCK-8 Kits) were purchased from
Tongren Chemical (item number: CK04) to detect cell
activity. LDH Assay Kits were purchased from Biyuntian
Biotechnology Company (item number: C0017C0017).
AnnexinV-FITC/PI Apoptosis Detection Kits were purchased
from BD Company (item number: 556547). CCK-8 assay, LDH
assay, and Apoptosis assay were all performed according to the
kit’s instructions.

Statistical Analysis
Statistical significance between groups was calculated by Student
two-sample t-test. The diagnostic value of circRNAs was assessed
by receiver operating characteristic (ROC) curves. SPSS statistics
version 16.0 software (SPSS Inc, Chicago, IL, United States) was
used to do the statistical analysis. A p-value < 0.05 was considered
to be significant. The Student two-sample t-test is expressed as:

t(υ(i)) =
m2(i)−m1(i)√

s2
1(i)
n1
+

s2
2(i)
n2

, (1)

where i refers to the ith circRNA. n1 and n2 correspond to sample
size of two groups. m1(i) and m2(i) represent the mean values
of i within the samples in each group. s2

1(i) and s2
2(i) denotes the

corresponding sample variances. υ(i) refers to the freedom. That
is:

υ(i) =
(s2

1(i)/n1 + s2
2(i)/n2)

2

s4
1(i)/[n2

1 · (n1 − 1)] + s4
2(i)/[n2

2 · (n2 − 1)]
. (2)

In order to obtain ROC curves and the area under it (Wang et al.,
2013; Zhao et al., 2015, 2017; Yang et al., 2020, 2021; Zhai et al.,
2020), a certain classifier needs to be assigned. Here, we utilize
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Fisher’s linear discriminative analysis. A direction vector w is to
be determined, where data x is to be projected to obtain a value
y. That is y = wtx. The means of the two groups can be expressed
as:

m1 =
1

n1

∑
x∈D1

x, m2 =
1

n2

∑
x∈D2

x, m1 =
1

n1

∑
x∈D1

wtx

= wtm1, m2 =
1

n2

∑
x∈D2

wtx = wtm2, (3)

where m1, m2, m1, and m2 correspond to mean vectors and mean
values of the two sample groups before and after projection. Also,
we can get:

|m1 −m2| = |wt(m1 −m2)|. (4)

The covariance matrix of samples between classes is:

SB = (m1 −m2)(m1 −m2)
t. (5)

From equation (4) and equation (5), we can get:

(m1 −m2)
2
= (wtm1 − wtm2)

2
= wt(m1 −m2)(m1 −m2)

tw

= wtSBw. (6)

Correspondingly, the covariance matrix of within class samples
can be expressed as:

Sw =
∑
x∈D1

(x−m1)(x−m1)
t
+

∑
x∈D2

(x−m2)(x−m2)
t. (7)

From equation (7), we can get:

s2
1 + s2

2 =
∑
y∈D1

(y−m1)
2
+

∑
y∈D2

(y−m2)
2

=

∑
x∈D1

(wtx-wtm1)
2
+

∑
x∈D2

(wtx-wtm2)
2

=

∑
x∈D1

wt(x−m1)(x−m1)
tw

+

∑
x∈D2

wt(x−m2)(x−m2)
tw = wtSww (8)

From equation (6) and equation (8), the Optimization function is
expressed as:

J(w) =
(m1 −m2)

2

s2
1 + s2

2
=

wtSBw
wtSww

(9)

Correspondingly, the best direction for projection can be
obtained using following derivation. That is:

∂J
∂w
=

(SB + St
B)w

wtSww
−

wtSBw[(Sw + St
w)w]

(wtSww)2 = 0⇔

2(wtSww)SBw − 2wtSBw(Sw)w
(wtSww)2 = 0⇔

wtSwwSBw = wtSBwSww⇔
λS−1

w SBw = w, where wtSww/wtSBw = λ⇔

λS−1
w (m1 −m2)(m1 −m2)

tw = w⇔
w = λ

′

S−1
w (m1 −m2), where λ

′

= λ(m1 −m2)
tw

(10)

Regarding λ
′

as a scalar which can be omitted, the final direction
vector w can be expressed as:

w = S−1
w (m1 −m2). (11)

Therefore, Fisher’s linear discriminative analysis can be expressed
as:

wtx+ w0 = 0 (12)

where w0 = w (m1 +m2) /2.

RESULTS

circRNA Expression Profiles of AMI and
Mild Coronary Artery Stenosis Patients
In this study, 64 up-regulated and 90 down-regulated circRNAs
were identified in 4 AMI patients compared with 4 mild
coronary artery stenosis patients (fold change > 2.0) by
microarray analysis (GSE169594), indicating these circRNAs
were dysregulation. Differentially expressed circRNAs between
AMI patients and mild coronary artery stenosis patients were
subjected to hierarchical clustering analysis, suggesting the
similarity of these whole blood samples. Hierarchical clustering
revealed that the circRNA expression levels were distinguishable
in the associated heat map (Figure 2A). A shorter distance
generally indicates a high similarity. Therefore, Figure 2A
shows that the circRNAs in the AMI patient group, and
circRNAs in the mild coronary artery stenosis patient group
had a relatively higher similarity. Box plot view (Figure 2B)
shows the distribution of the hybridization data and degree of
dispersion in AMI patients and mild coronary artery stenosis
patients. The box plot shows that after log2 normalization,
no abnormal distributions of data were observed in the 8
samples. The scatter and volcano plots shows varied circRNA
expressions between the AMI and mild coronary artery stenosis
samples (Figures 2C,D). In addition, a volcano plot identified
differentially expressed circRNAs at different p-values and fold-
changes between the two groups.

In situ Validation of the Differentially
Expressed circRNAs by RT-qPCR
In terms of the microarray results, circRNAs were down-
regulated greater than up-regulate, so the down-regulated
circRNAs were selected for continued validation. According to
circRNA fold change values, P value magnitude, basic intensity
of raw signal value (RawIntensity) (recommended above 200),
number and sites of circRNA-bound miRNAs and current
research status of bound miRNAs, five typical down-regulated
circRNAs (hsa_circRNA068655, 089763, 103149, 104761, and
104765) were chosen (shown in Table 1) for further RT-
qPCR validation. As shown in Figure 3, the relative expression
levels of 4 circRNAs (068655, 089763, 104761, and 104765)
were down-regulated in 4 AMI patients, which were consistent
with the results of the microarray. However, the p-value of
circRNA_089763 was over 0.05, which implied a nonsignificant
expression difference of circRNA_089763 in two groups. In
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FIGURE 2 | circRNA expression profiles of AMI patients (Group T: T1, T2, T3, T4, and n = 4) and mild coronary artery stenosis patients (Group C: C1, C2, C3, C4,
and n = 4) screened by microarray analysis. (A) Heat Map showing a distinguishable expression profile of circRNAs between two groups. Black stands for 0,
indicating no change in gene expression; red represents up-regulation, and green represents down-regulation. (B) Boxplot view showed the distribution of
normalized expression intensity values for two groups. (C) Scatter plot indicated the variation of circRNA expression in AMI patients (y-axis) and mild coronary artery
stenosis patients (x-axis). (D) Volcano plots visualizing differential circRNA expression between the two groups. The vertical lines correspond to a 2.0-fold change
(FC) (log2 scaled) (up-regulation and down-regulation, respectively).

addition, the relative expression level of circRNA_103149 showed
the opposite results of microarray analysis. Therefore, the
circRNA_068655, circRNA_104761, and circRNA_104765 could
be the potential biomarkers for AMI diagnosis and potential
target for AMI treatment.

Detailed Annotation for Interaction
Between circRNA and miRNA
This study applied TargetScan and miRanda to find the target
miRNA which interacted with circRNAs (068655, 104761,

and 104765) and predict the potential biological process
in which the discovered circRNAs may participate in. The
interaction between circRNAs (068655, 104761, and 104765)
and corresponding miRNAs are shown in Table 2. circRNA
_104761 may bind potential target miRNAs (hsa-miR-34c-5p,
hsa-miRNA-449a, hsa-miRNA 449b-5p, hsa-miRNA-449c-
3p, hsa-miR-370-3p) and the secondary structure of the
binding site were predicted in Figure 4A. A circRNA-miRNA-
mRNA network was built by Cytoscape_3.7.0 as shown in
Figure 4B. circRNA_104761 may sponge Hsa-miRNA-34a-5p,
Hsa-miR-34b-5p, Hsa-miR-34c-5p, Hsa-miRNA-449a,
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TABLE 1 | Five typical down-regulated circRNAs in AMI patients identified by microarray analysis.

circRNAs (has_circRNA) Alias (has_circRNA) Fold change P-value FDR Regulation circRNA type Gene symbol

089763 0089763 14.83 0.014599771 0.684403672 Down exonic JA760600

104761 0001847 4.09 0.002673316 0.665381639 Down exonic UBAP2

068655 0068655 3.43 0.035551229 0.710909208 Down exonic UBXN7

104765 0001850 3.40 0.00561669 0.665381639 Down exonic UBAP2

103149 0002903 3.39 0.026855105 0.684403672 Down exonic PCNT

FIGURE 3 | (A–E) The relative expression of circRNAs. In-situ verification of the relative expression level of 5 down-regulated circRNAs (068655, 089763, 103149,
104761, and 104765) by RT-qPCR. Results are represented as means ± standard deviation (SD). Data shown in the graphic was analyzed by independent sample t
tests with a significance level of 95%.

Hsa-miRNA-449b-5p, and Hsa-miRNA-449c-3p. The
circRNA_104761 can sponge microRNA-449 and microRNA-34a
which is correlated with AMI (Fan et al., 2013; Zhang et al., 2019).
Therefore, circRNA_104761 was selected for further validation
in subsequent assays.

Expression Levels of circRNA_104761 in
the Whole Blood of 90 Volunteers
The differential expressed circRNA_104761 was further validated
in 30 AMI patients, 30 mild coronary artery stenosis patients, and
30 normal coronary artery volunteers. As shown in Figure 5A,
the average expression level of circRNA_104761 was significantly
lower (18%) in AMI patients (0.639 ± 0.217)) than mild
coronary artery stenosis patients (0.824 ± 0.216, p = 0.002),
suggesting that the predicated circRNA by microarray was
effective in a larger scale sample. Besides, it is worthy to note
that the expression difference of circRNA_104761 between mild
coronary artery stenosis group (0.824 ± 0.216) and normal
coronary artery group (1.012 ± 0.235) was also significant
(p = 0.002), which implied the expression of circRNA_104761
in mild coronary artery stenosis patients had been inhibited.

The expression of circRNA_104761 was the highest in normal
coronary artery volunteers, the second highest in mild coronary
artery stenosis patients, and the lowest in AMI patients.
The median cycle threshold (Ct) value for circRNA_104761
in 90 samples was 29.027, ranging from 27.623 to 32.971.
These results suggest that circRNA_104761 is sensitive and
abundant in human blood.

ROC Analysis of Validated circRNAs in
AMI Patients and FISH
The receiver operating characteristic (ROC) curves and the
area under the ROC curve (AUC) were used to confirm
the relationship between circRNA_104761 and AMI. As
shown in Figure 5B, the AUC value of the ROC curve
for circRNA_104761 was 0.890 (95% confidence interval
[CI] = 0.807–0.973). Meanwhile, the sensitivity and specificity
of the circRNA_104761 ROC curve were 0.867 and 0.800,
respectively. These results indicated that circRNA_104761 can
be considered a preferable and effective biomarker for the
diagnosis of AMI. RNA-FISH assay reveals that circRNA_104761
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TABLE 2 | TargetScan and miRanda predicted the interaction between circRNA and microRNA.

circRNAs (has_circRNA) T/C p-value MRE1 MRE2 MRE3 MRE4 MRE5

068655 0.27 0.00441 hsa-miR-3140-3p hsa-miR-4539 hsa-miR-3660 hsa-miR-4260 hsa-miR-3118

104761 0.43 0.03983 hsa-miR-34c-5p hsa-miR-449a hsa-miR-449b-5p hsa-miR-449c-5p hsa-miR-370-3p

104765 0.44 0.04856 hsa-miR-532-5p hsa-miR-496 hsa-miR-767-5p hsa-miR-589-5p hsa-miR-188-3p

FIGURE 4 | The predicted miRNAs. (A) TargetScan and miRanda predicted the 5 most potential target miRNAs that may bind to circRNA _104761 and the binding
site’s secondary structure. (B) Network of circRNA (068655, 104761, and 104765) -miRNA-mRNA.

FIGURE 5 | The relative expression of circRNA _104761 in larger scale and the ROC curve analysis. (A) Verification of the relative expression level of down-regulated
circRNA _104761 by RT-qPCR in expanded sample test. (B) ROC curve analysis evaluating the diagnostic value of validated circRNA_104761 for AMI.
(C) RNA-FISH assays determined the subcellular localization of circRNA_104761 in AC16. Results are represented as means ± standard deviation (SD). Data shown
in the graph was analyzed by independent sample t-tests with a significance level of 95%.
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FIGURE 6 | Expression of circRNA_104761 in hypoxic human cardiomyocytes AC16 and the circRNA_104761 editing efficiency. (A) Expression of circRNA _
104761 in AC16. (B) The down-regulation efficiency of three siRNAs (siRNA-1, siRNA-2, and siRNA-3). (C) The effect of siRNA-1 on endogenous circRNA_104761
and its source gene UBAP2. (D) The over-expression efficiencies of circRNA_104761 and UBAP2. *p < 0.05 and **p < 0.01.

(FAM-labeled) distinctly distributed in the cytoplasm of AC16
cells (Figure 5C).

Expression of circRNA_104761 in
Hypoxic Human Cardiomyocytes AC16
and the circRNA_104761 Editing
Efficiency
Hypoxia is an important factor causing myocardial injury. After
cardiomyocytes AC16 were treated with hypoxia condition for
6 h (6 h group), 12 h (12 h group), and 24 h (24 h group), and
the expression of circRNA_104761 was detected by RT-qPCR.
The results showed that the expression level of circRNA_104761
in hypoxic cardiomyocytes AC16 (Hypoxia, 6, 12, and 24h) was
inhibited compared with normal AC16 (Normoxia), and the
expression level of circRNA_104761 in hypoxic cardiomyocytes
AC16 (12h, 24h) was significantly decreased (Figure 6A,
p < 0.01). Hypoxia treatment for 12 h was chosen for
subsequent experiments. To further investigate the effect of
circRNA_104761 on cardiomyocytes, we constructed siRNAs that
could knockdown the expression of circRNA_104761. This study
designed three pairs of siRNAs (siRNA-1, siRNA-2, and siRNA-3)

to verify the down-regulation efficiency by RT-qPCR. The results
showed that siRNA-1 and siRNA-2 down-regulation efficiency
was significant (Figure 6B). Moreover, siRNA-1 was selected
for further experiments. The source gene of circRNA_104761
was UBAP2 mRNA by circbase query, and specific siRNA-1 was
able to significantly interfere with endogenous circRNA_104761,
but had no significant effect on its source gene (UBAP2)
(Figure 6C). Furthermore, we constructed a plasmid vector to
overexpress circRNA_104761 in AC 16, and RT-qPCR was used
to verify the overexpression efficiency. The results showed that
the overexpression efficiency of the constructed plasmid vector
was significant. The specific plasmid vector could significantly
overexpress circRNA_104761, but had no significant effect on its
source gene (UBAP2) (Figure 6D). Therefore, this plasmid vector
was used for the following experiments.

Effect of circRNA_104761 Knockdown
and Overpression in Human
Cardiomyocytes AC16
After knockdown of circRNA_104761 with siRNA, LDH assay
demonstrated LDH activity increased after hypoxia treatment,
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FIGURE 7 | Effect of circRNA_104761 knockdown and overpression in human cardiomyocytes AC16. (A–D) Effect of circRNA_104761 knockdown on AC16.
(A) LDH activity test (Normoxia and Hypoxia). (B) Cell viability was determined by CCK8 assay. (C,D) Flow data analysis of apoptosis. (E–H) Effect of
circRNA_104761 overexpression on AC16. (E) LDH activity test (Normoxia and Hypoxia). (F) Cell viability was determined by CCK8 assay. (G,H) Flow data analysis
of apoptosis. Results are represented as means ± standard deviation (SD). Data shown in this graph was analyzed by independent sample t-tests with a significance
level of 95%. **p-value < 0.01 and *p-value < 0.05.

and that down-regulation of circRNA_104761 significantly
increased the release of lactate dehydrogenase in AC16
cell after hypoxia treatment (Figure 7A, p-value < 0.01).
CCK8 assay demonstrated cell viability was significantly
lower after hypoxia treatment, and that down-regulation
of circRNA_104761 significantly reduced AC16 cell viability
after hypoxia condition (Figure 7B), which enhanced AC16
cell death. Flow cytometry data demonstrated apoptosis was
significantly increased after hypoxia, and that down-regulation
of circRNA_104761 significantly exacerbated the early apoptotic
level of AC16 cells after hypoxia treatment (Figures 7C,D).

When the expression of circRNA_104761 was overexpressed
by the constructed plasmid vector, LDH activity was
significantly increased after hypoxia, and the results of
LDH tests demonstrated that exogenous overexpression
of circRNA_104761 significantly decreased the release of
lactate dehydrogenase in AC16 cell after hypoxia treatment
(Figure 7E, p < 0.01). CCK8 assay demonstrated cell viability
was significantly lower after hypoxia treatment, and that the
overexpression of circRNA_104761 significantly increased AC16
cell viability after hypoxia treatment (Figure 7F). Flow cytometry
data demonstrated apoptosis significantly increased after
hypoxia treatment, and that overexpression of circRNA_104761
significantly alleviated the early apoptotic level of AC16 cell after
hypoxia treatment (Figures 7G,H).

DISCUSSION

For the first time, our study applied microarray to identify
the differences in circRNA expression levels between AMI
patients and mild coronary artery stenosis patients. Results

of microarray analysis were validated by RT-qPCR in larger
samples (30 AMI patients, 30 mild coronary artery stenosis
patients, and 30 normal coronary artery volunteers) and in
human cardiomyocytes AC16, which implied that the expression
of circRNA_104761 was an effective biomarker for AMI
diagnosis. Given that circRNAs and miRNAs interact each other,
circRNAs may be involved in the biological process of AMI
through sponge miRNAs (Tang et al., 2018; Faiza et al., 2019;
Chowdhury et al., 2020; Khan et al., 2020). The target microRNAs
of circRNA_104761 were predicted by TargetScan, miRanda,
and circRNA–microRNA-mRNA network, and we found that
circRNA_104761 could sponge microRNA-449 and microRNA-
34a. It is worth noting that miRNA-449 and miRNA-34a are
closely linked to AMI.

circRNA_ 104761 may promote cardiomyocyte apoptosis
through sponging miR-449. In the study of Zhang et al.
(2019), they found that knocking down lncRNAX inactivation
specific transcript (XIST) in the AMI rat model could down-
regulate the level of miRNA-449 and inhibit rat cardiomyocyte
apoptosis, suggesting that miRNA-449 is directly involved in the
regulation of MI. MiRNA-449 regulate gene expression post-
transcriptionally through mRNA degradation or translational
repression (Esquela-Kerscher and Slack, 2006). MiRNA-449 is
down-regulated in various cancers and is a strong inducer of
cell cycle arrest (including senescence) and apoptosis in tumor
cell lines (Bou Kheir et al., 2011). MiRNA-449 regulates various
pathways (Lize et al., 2011), including Notch (Marcet et al., 2011),
p53, E2F1 (Lize et al., 2010; Noonan et al., 2010),Wnt (Iliopoulos
et al., 2009), and cell cycle (Bou Kheir et al., 2011). Among them,
miRNA-449 provides negative feedback on E2F pathway and
positive feedback on the p53 pathway, strengthening E2F1-p53
interdependence (Lize et al., 2010). In response to DNA damage,
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the transcription p53 and E2F1 deregulated in cancer, and then
they were activated to induce pro-apoptotic genes, which directly
promote apoptosis (Lize et al., 2011). circRNA_104761 is down-
regulated in AMI, which may reduce sponge miRNA-449 and
change p53 and E2F-1 pathways,increasing myocardial apoptosis.

Furthermore, circRNA_ 104761 may promote cardiomyocyte
apoptosis through sponging miR-34a. Fan et al. (2013)
observed that miRNA-34a promoted cardiomyocyte apoptosis by
negatively regulating aldehyde dehydrogenase 2 (ALDH2), which
was increased in circulation under myocardial infarction (MI)
conditions. In addition, the miR-34a can act as p53-responsive
genes, which can induce apoptosis and cell cycle arrest in tumor
cell lines (Rockenfeller et al., 2010). MiRNA-34a regulates many
target proteins, which induce cell apoptosis in p53-dependent
manner, including bcl-2 (Cole et al., 2008), YY1 (Chen et al.,
2011), Notch (Li et al., 2009), MAPK (Tivnan et al., 2011), and
DLL1 (Lewis et al., 2003), or independent manner. In AMI, the
expression of circRNA_104761 is down-regulated, which may
reduce the sponge function of circRNA_104761 on miRNA-
34a, resulting in changes in the p53-miRNA-34a axis, causing
myocardial apoptosis.

There are several limitations in our study, which cannot
be ignored. First, the number of subjects is not large enough,
limiting the clinical value of circRNA_104761 as a potential
biomarker. Also, a more diverse control group is needed,
such as patients with moderate coronary artery stenosis and
patients with severe coronary artery stenosis. Second, to
further illustrate the application value of circRNA_104761 in
AMI, animal models with knockdown or overexpression of
circRNA_104761 are needed, and this experiment only carried
out cell verification. In addition, due to limited funding,
we only speculated the mechanism of circRNA_104761 via
miRNA-449 and miRNA-34a to cause AMI by functional
analysis. The relationship between circRNA_104761 and
miRNA-499/miRNA-34a needs further investigation and
verification. Finally, restricting the population to Asian
males limited the generalizability of the findings to females
and other races.

In summary, our results demonstrated that circRNA_104761
could not only be an effective biomarker for AMI diagnosis,
but also differentiate normal coronary artery, mild coronary
artery stenosis,and AMI. This study also identified that
knockdown of circRNA_104761 with siRNA aggravated hypoxia-
induced cardiomyocytes injury in AC16, and overexpression
of circRNA_104761 alleviated hypoxia-induced injury.

Therefore, circRNA_104761 may be considered a potential
therapeutic target.
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Characterization and identification of recombination hotspots provide important insights
into the mechanism of recombination and genome evolution. In contrast with existing
sequence-based models for predicting recombination hotspots which were defined in
a ORF-based manner, here, we first defined recombination hot/cold spots based on
public high-resolution Spo11-oligo-seq data, then characterized them in terms of DNA
sequence and epigenetic marks, and finally presented classifiers to identify hotspots. We
found that, in addition to some previously discovered DNA-based features like GC-skew,
recombination hotspots in yeast can also be characterized by some remarkable features
associated with DNA physical properties and shape. More importantly, by using DNA-
based features and several epigenetic marks, we built several classifiers to discriminate
hotspots from coldspots, and found that SVM classifier performs the best with an
accuracy of ∼92%, which is also the highest among the models in comparison. Feature
importance analysis combined with prediction results show that epigenetic marks
and variation of sequence-based features along the hotspots contribute dominantly
to hotspot identification. By using incremental feature selection method, an optimal
feature subset that consists of much less features was obtained without sacrificing
prediction accuracy.

Keywords: recombination hotspots, DNA physical property, classifier, epigenetic mark, optimal feature set

INTRODUCTION

Meiotic recombination is crucial to gametogenesis as it helps the faithful separation of homologous
chromosomes into gametes by forming chiasma (Coop and Przeworski, 2007). Abnormal or no
recombination between homologous chromosomes would cause aneuploidy in gametes and affect
health in offspring. For example, 10–30% of zygotes are aneuploid and approximately 30% of
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maternally derived cases with chromosome mis-segregation are
associated with failure of crossover formation (MacLennan
et al., 2015). Recombination also attracts researchers’ attention
because it drives genome evolution by producing genetic diversity
(Webster and Hurst, 2012).

During meiosis, DNA double-strand break initiates
recombination at leptotene stage of first round of meiotic
division (MI) (Baudat et al., 2013). Only a few of DSB sites across
a chromosome are selected to designate cross-over (CO) that is
followed by CO maturation (Wang et al., 2017). DSB hot sites are
strongly correlated with recombination rate, and hence are used
to indicate recombination hotspots. In contrast with hotspots,
coldspots refer to the genomic regions undergo no or extremely
low level of recombination. Recombination rate is unevenly
distributed along chromosomes, but it is still unclear that how
hotspots are arranged across the genome. DNA sequence features
like PRDM9-binding motif (Myers et al., 2008), GC content
(Galtier et al., 2001), GC-skew (Smagulova et al., 2011), SNP
pattern (Pratto et al., 2014), and dinucleotide bias (Liu and Li,
2008) were known to correlate recombination rate, but the effects
of DNA physical properties and DNA shape on recombination
need further investigation.

Computational identification of recombination hotspots may
help people get quick information about recombination and
relieve the time-consuming experimental determination of
hotspots with high cost. As reviewed in Yang et al., 2020,
there are some existing models for hotspot identification at
present (Zhou et al., 2006; Jiang et al., 2007; Liu et al., 2012,
2017; Chen et al., 2013; Li et al., 2014; Qiu and Xiao, 2014;
Jani et al., 2018; Zhang and Kong, 2019; Khan et al., 2020).
Almost all of the models were DNA sequence dependent and
epigenetic marks that have been increasingly freely available
were not considered. For example, nucleosome depletion (Pan
et al., 2011) and H3K4me3 mark (Borde et al., 2009) were
not considered in the models. Although in our previous study,
we attempted to include the effect of nucleosome occupancy
(Zhang and Liu, 2014), the use of MNase-seq data derived
from non-meiotic cells may not provide reliable information.
In fact there are more and more chromatin level factors and
DNA-protein binding have been shown to affect recombination
(Getun et al., 2010; Zhang et al., 2011; Cesarini et al., 2012;
de Castro et al., 2012; Sommermeyer et al., 2013; Yamada
et al., 2013; Gittens et al., 2019; Pyatnitskaya et al., 2019;
Heldrich et al., 2020; Karányi et al., 2020; Paiano et al., 2020;
Serrano-Quílez et al., 2020). In addition, DNA shape and
physical properties were also shown to affect recombination
hotspot identification (Chen et al., 2013), but the importance
of individual DNA shape feature is unclear because they were
implicitly incorporated in the model in the form of pseudo
nucleotide composition. Furthermore, as far as we know, DNA
shape parameter sets derived from different groups differ a
lot (Liu et al., 2016), suggesting that the accuracy of the
parameter estimation is unclear. In this aspect, it is also worth
noting that the DNA shape parameters are sequence context-
dependent (Zhou et al., 2013), and context-dependent estimation
of DNA shape parameters may assist hotspot prediction.
Indeed, DNA shape features were used in the prediction

of DSB sites (not meiotic DSB sites) in human cell lines
(Mourad et al., 2018).

In this study, we first characterized the recombination
hot/cold spots with regard to DNA sequence-based features and
some other features like histone modification and Top2 binding
signal, and then developed several classifiers to discriminate
recombination hotspots from coldspots. Comparison with other
models demonstrated the good performance of our model.

MATERIALS AND METHODS

Benchmark Datasets
Benchmark datasets here include two datasets: positive and
negative dataset. Positive dataset consists of 3,600 recombination
hotspots defined by other group based on high-resolution Spo11-
oligo sequencing data (Pan et al., 2011). Generally speaking, the
construction of negative dataset is much trickier than positive
one in binary classification, because the negative samples are
much more enriched than positive samples, leading to unbalance
between positive and negative dataset. Moreover, negative
samples selected to represent non-positive samples may include
a big noise. For example, there is a tremendous number of “non-
hotspot” regions in the genome, but recombination rate at those
regions are not necessarily low because they are just undetected
by peak calling algorithm for hotspot identification. To address
this problem, we defined negative dataset of recombination
coldspots as the genomic regions of at least 500 bp long with
no Spo11-oligo signal (zero value) based on the full Spo11-
oligo map (Pan et al., 2011). Defining coldspots in this way, we
focus on relatively large cold regions with low recombination,
which may not result from the noise or limited sequencing
depth in Spo11-oligo seq. To give a visual inspection, a plot of
hot/cold spot regions along with Spo11-oligo signal is shown
(Figure 1). The final benchmark consists of 3,600 hotspots
and 2,538 coldspots. The length distribution of the hot/cold
spots sequences was provided in Supplementary Information
(Supplementary Figure 1). All datasets used in this study were
provided in Supplementary data (Supplementary Table 1).

It should be highlighted that the hotspots and coldspots used
in this study are not defined as in previous models in ORF-based
way (Zhou et al., 2006; Jiang et al., 2007; Liu et al., 2012, 2017;
Chen et al., 2013; Li et al., 2014; Qiu and Xiao, 2014; Jani et al.,
2018; Zhang and Kong, 2019; Khan et al., 2020), but are based on
the high-resolution Spo11-oligo seq data. In this way we train our
models on “true” hotspots, rather than on hot/cold ORFs that are
not necessarily equivalent to “true” hotspots.

Feature Extraction
Three types of features are used in our prediction (Table 1):
sequence compositional information, DNA physical properties
and non-DNA features. Features that indicates sequence
compositional information includes: GC content, GC-skew,
mutual information and k-mer composition. Features used to
reflect DNA physical properties include DNA shape parameters
(Zhou et al., 2013), DNA rigidity, etc. Non-DNA features we
used include some epigenetic marks (H3K4me3 and H3K56ac),
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FIGURE 1 | Distribution of hot/cold spots along chromosome is shown with Spo11-oligo signal taken from Pan et al. (2011). Genomic regions marked in red denote
hotspots and gray represent coldspots defined in this study.

MNase-seq signal, and Top2 binding signal. These features are
calculated in the following way.

pt(k) =


Nt∑4k

t=1 Nt
k = 1, 2

Nt+1∑4k
t=1 Nt+4k

k = 3, 4, 5, 6
(1)

GC−content =
NG + NC

NA + NT + NG + NC
(2)

GC-skew =
NG − NC

NG + NC
(3)

MI =
∑

i,j

pij log2
pij

pipj
(4)

where Ni represents the occurrence number of nucleotide i in
a DNA sequence; pi or pj

(
i, j = A, G, C, T

)
is the fraction

of nucleotide i or j and pij is the fraction of dinucleotide ij
in a sequence. Mutual information (MI) describes the overall
deviation of observed probabilities of dinucleotides from those
expected from mononucleotide probabilities (Luo et al., 1998).
pt(k)represents the composition of t-th k-mer (oligonucleotide
of k bp in length) in a sequence, which refers to the occurrence
probability of the k-mer counted by a sliding step of 1 bp
along the sequence. To avoid the shortcoming caused by small
sequence length in the calculation of k-mer compositional
probability, Laplacian correction was done for k-mers where
k > 2 [see eq. (1)].

DNA shape parameters were calculated at base pair step
resolution using R package DNAshapeR (Zhou et al., 2013). With
respect to DNA physical property, we also used the parameter
set collected in a previous study (Chen et al., 2012), three
DNA thermodynamic property parameters including Gibbs free
energy, entropy and enthalpy (Ignatova et al., 2008), DNA rigidity
(Scipioni et al., 2002; Liu et al., 2018), and parameter set including
equilibrium base-pair step parameters (Supplementary Figure 2)

and force constants which were estimated in our previous
study by using crystal structure of protein-DNA complexes (Liu
et al., 2019, 2021). The values of the parameters were listed in
Supplementary Tables 2–4.

Sequence-based features including sequence-compositional
information, DNA shape features, and DNA physical properties
were calculated by merely using the DNA sequence as input.
At first, we retrieved 1000-bp sequence for each hot/cold spot
from the genome of Saccharomyces cerevisiae (SacCer3). Then,
sequence-based features were calculated. GC-content, GC-skew,
and MI were calculated along the sequence by using a sliding
window of 100, 100, and 200 bp, respectively. K-mer composition
was calculated for central 300-bp (or 150- and 500-bp) regions
of the sequences. Other sequence-based parameters (DNA shape
features and DNA physical properties) were calculated at each
base-pair step and smoothed with a 10-bp average. Based on these
data, distribution profile plots for the features (e.g., Figures 2–4)
were generated. Finally, mean and variance of the sequence-
based parameters along the central 300 bp were calculated and
used as final features in the prediction. Calculated variance hear
measures the variation of sequence-based parameters along the
sequence. Utilizing the processed data available online, non-
DNA features were calculated by averaging the signals within
300 bp regions at hot/cold spots. Variance was not calculated for
non-DNA features.

Classifiers
Random Forest
Random Forest (RF) is one of the widely used ensemble learning
algorithms (Breiman, 2001). It generates numerous decision trees
based on the training set and then majority voting strategy is used
to label the class of the sequences in the test set. Its success in
various fields is ascribed partially to de-correlating the bootstrap
sampling decision trees by random sampling sub-sized features
from the whole feature space at each splitting node. A RF-based
model was developed to classify recombination hot/cold spots
by using R package “randomForest”. To be specific, after the
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TABLE 1 | Features used in this study.

Feature type Features Feature
extraction

manner

Feature
number
(96 + 4k)

References

DNA composition GC content Mean + var 2 –

GC-skew Mean + var 2 –

MI Mean + var 2 Luo et al., 1998

K-mer composition Overall 4k –

DNA shape MGW, HelT, rise, roll, shift, slide, tilt, buckle, opening, ProT,
shear, stagger, and stretch

Mean + var 13 × 2 Zhou et al., 2013

DNA physical
properties

EP Mean + var 2 Zhou et al., 2013

Rigidity Mean + var 2 Scipioni et al., 2002

Gibbs free energy Mean + var 2 Ignatova et al., 2008

Enthalpy Mean + var 2 Ignatova et al., 2008

Entropy Mean + var 2 Ignatova et al., 2008

Parameter set (Chen) Mean + var 12 × 2 Chen et al., 2012

Parameter set (Liu) Mean + var 12 × 2 Liu et al., 2021

Non-DNA
features

H3K4me3 (GSE11004) Mean 1 Borde et al., 2009

H3K56ac (GSE37487) Mean 1 Karányi et al., 2020

H3K4me3 (GSE59005) Mean 1 Hu et al., 2015

H3K56ac (GSE59005) Mean 1 Hu et al., 2015

MNase-seq (GSE59005) Mean 1 Hu et al., 2015

Top2-CC-seq (GSE136675) Mean 1 Gittens et al., 2019

MGW, minor groove width; ProT, propeller twist; HelT, helical twist; EP, electrostatic potential; Parameter set (Chen) include 12 features collected in Chen et al. (2012);
Parameter set (Liu) include force constants and equilibrium structure parameters for 10 unique dinucleotides presented in Liu et al. (2021). Data of Top2 CC-seq
used here refers to the processed data of VP16-treated sample (RA7-RA13_Cer3H4L2_MJ551_pdr1mre11_VP16.FullMap); H3K4me3, H3K56ac, and MNase-seq
data were derived from meiotic cells at 4 h during sporulation when recombination initiates. For some non-DNA features, data resolution is not high enough (e.g.,
H3K4me3_GSE11004), which would impede us to obtain reliable high-resolution variation patterns of the features at hot/cold spots. Therefore, variances of non-DNA
features along hot/cold spots were not considered.

FIGURE 2 | Sequence compositional feature profile of hot/cold spots. GC-skew (A), GC-content (B), and Mutual information (C) were calculated along sequences
by using a sliding window of 100 bp, 100 bp, and 200 bp respectively.

benchmark dataset was prepared, we characterized each sequence
and prepared feature matrix for benchmark dataset. The number
of features sampled from the feature space at each splitting point
was set to log2m where m is total number of features in feature
space. Optimal number of decision trees generated in the RF was
set to 130 by inspecting Error-tree plot. Five-fold cross-validation
was performed to evaluate the model.

Support Vector Machine
Support vector machine (Cortes and Vapnik, 1995) is an efficient
classifier which has been widely used to solve classification and
regression tasks. In SVM algorithm, input data (feature data)
is mapped to a new feature space with higher dimension by

using a kernel function and then optimal separating hyperplane is
determined in the new feature space. In the current study, linear
kernel was used to implement SVM-based classification using R
package “e1071” with default values for all other parameters.

Logistic Regression
Logistic regression model is a generalized linear model that
is used to predict the probability of a binary (yes/no) event
occurring based on a set of independent variables (Collins
et al., 2004; Nick and Campbell, 2007). In brief, the model the
outcome of multiple regression is mapped to logistic function
(sigmoid function), which is then transformed to eq. (5) by logit
transform and the result of a binary event is predicted based on a
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FIGURE 3 | Distribution of DNA shape and physical properties at hot/cold spots. The plots were smoothed with a 10-bp moving average.

threshold value (e.g., 0.5). In our model, independent variables
are sample features, and the dependent variable is the label of
the sample (e.g., hotspot or coldspot). The regression coefficients
are estimated based on train dataset, and the outcomes of test
samples are predicted.

logit(p) = ln
p

1− p
= θ0 + θ1x1 + θ2x2 + ...+ θnxn (5)

Naive Bayesian Classifier
Naive Bayesian classifier is a simple and fast classification
algorithm (Friedman et al., 1997), which has been successfully
used for many machine learning purposes and works particularly

well in text classification. It uses Bayes’ Theorem to predict
the label of a sample. “Naive” means the assumption that the
occurrence of features is independent with each other, and thus
likelihood P(x|c) is calculated as the product of each feature’s
likelihood P(xi|c) as indicated in eq. (6). Likelihood probability
for each feature is estimated by a Gaussian model. Then two
posterior probabilities are calculated for each test sample by
using Bayes theorem and the larger probability indicates the class
(label) of the sample.

P(c|x)=
P(c)P(x|c)

P(x)
=

P(c)
P(x)

∏
i

P(xi|c) (6)
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FIGURE 4 | Distribution of DNA base-pair-step parameters at hot/cold spots. The plots were smoothed with a 10-bp moving average. The base-pair-step
parameters were taken from Liu et al., 2021 (Supplementary Table 2).

WhereP(c|x)is posterior probability that represents the
probability of observing class c (c = hotspot or coldspot)
given feature set x, P(c) is prior probability, and P(x|c) is
class-conditional probability (likelihood).

Decision Tree
Decision tree describes the classification process of samples
based on features (Quinlan, 1986). In other words, it consists
of a series of decision rules that divide samples contained
in each node into two or more subsets according to a
feature-based decision rule. Decision tree begins with a root
node representing training samples, and recursively generates

new branches and nodes by using feature-based “if-then”
rule until the node cannot be further classified. The final
nodes are called leaf nodes. At each decision step, the best
feature is used. Best feature for each node (root node or
internal decision node) can be selected by a quantitative
measurement method such as Gini index or Information
Gain. Based on training data-based decision tree, the labels
of test samples are predicted. The typical algorithm of
decision tree is CART (Breiman et al., 1984), and we used
R package “rpart” to develop CART-based decision tree
classifier (parameters used in rpart function: method = “class,”
cp = 0.000001).
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Assessment of Model Performance
Five-fold cross-validation was performed for each of the five
classifiers introduced above, and overall performances were
reported. The performance of classification model is quantified
by widely used metrics including Sensitivity (SN), Specificity
(SP), Accuracy (ACC), F-measure, and Area Under ROC curve
(AUC)

SN =
TP

TP + FN
(7)

SP =
TN

TN + FP
(8)

ACC =
TP + TN

TP + FP + TN + FN
(9)

F−measure =
2× precision× recall

precision+ recall
=

2TP
2TP + FN + FP

(10)

where TP, FN, TN, and FP denote, respectively, the numbers
of true positive, false negative, true negative, and false positive
samples. F-measure is the harmonic mean of the precision
and recall.

RESULTS AND DISCUSSION

Characterization of Hotspots
To show how DNA-based features distribute at hot/cold spots, we
plotted the average profile of DNA-based parameters at hot/cold
spots (Figures 2–4). It is apparent that some of the parameters
exhibit a clear characteristic pattern at hotspots, contrasting
with random distributions at coldspots. For example, GC-skew
shows a characteristic reversed skew between the two sides of the
hotspot center, probably due to mutational bias (Smagulova et al.,
2011); Mutual information has a dramatic peak at hotspot center
(Figure 2), suggesting the possible biased usage of dinucleotides
(Liu and Li, 2008); DNA shape parameters such as slide, shift,
rise, helical twist, roll, stretch, opening, propeller twist, and minor
groove width (MGW) show a peak or dip at the hotspot center
(Figure 3). The force constants reflecting the deformation rigidity
with regard to corresponding degrees of freedom also differ
between hotspots and coldspots (Figure 4). It is worth noting that
some of the distribution patterns of base-pair step parameters
calculated based on our previously estimated parameter set
(Figure 4) differ from DNAshapeR-based results (Figure 3). For
example, both tilt and shift exhibit an anti-symmetric pattern
with respect to hotspot center in Figure 4, while this pattern
is absent for DNAshapeR-based results (Figure 3). It would be
interesting if the specific patterns observed in Figure 4 represent
an intrinsic feature of recombination hotspots. We also presented
the distribution patterns of some other DNA physical properties
at hot/cold spots (Supplementary Figure 3).

In addition, we also analyzed the difference of several
epigenetic signals between hotspots and coldspots (Figure 5). The
results show that H3K4me3, H3K56ac, MNase-seq signal, and

Top2 binding signal differ between hotspots and coldspots. High
levels of H3K4me3 and H3K56ac and reduced MNase-seq signal
at hotspot center are usually used to indicate high chromatin
accessibility. The enrichment of top2 binding at hotspots was
reported previously (Gittens et al., 2019). It is unexpected
that two H3K56ac datasets show different enrichment patterns
(Figure 5), and the reason for the discrepancy is unclear.

Performances of Classification Models
DNA-Based Prediction
We first focus on DNA-based prediction as many others done
before. DNA-based features can be divided into two types: DNA
compositional features and DNA physical properties. Let’s start
with DNA compositional features.

Our previous study as well as others’ show that k-mer
composition is related to recombination hotspots (Liu et al.,
2012). To gain knowledge about which size of k-mer (k = 1–6)
has the best predictive ability to discriminate hotspots from
coldspots, we trained classifiers on k-mer probability features,
where k ranges from 1 to 6, and predicted the class of test set
samples. Our results based on five-fold cross-validation show
that 4-mer composition is the best predictor (Supplementary
Table 5 and Figure 6), achieving an accuracy of ∼83.7% by
SVM-based classifier. Among the five classifiers, SVM performs
the best, followed by logistic regression and RF. Naive Bays
classifier is unstable when k is larger than four, which might
be caused by inadequate sampling of k-mers in short sequences
(300-bp) we used. Because many k-mers when k is 4–6 have
zero occurrence in a short DNA sequence, and the derived
probability of zero for the k-mers does not represent true
case. Even if we introduced pseudo-count to smooth the k-mer
probability, Naive Bays classifier still performs badly. Particularly
for Naive Bays classifier, Gaussian distribution-based maximum
likelihood estimate of posterior probability is unreliable, or even
un-computable, because many zero values of k-mer occurrence
(or homogeneous value of smoothed probability) may result in
the variance of zero for a particular k-mer feature in feature
space (4k features), making the Gaussian probability density used
in maximum likelihood estimate of posterior probability un-
computable. In addition, predictions based on sequences shorter
or longer than 300 bp (e.g., 150 and 500-bp) could not generate
improved accuracy, suggesting that 300 bp is a proper window
size for hotspot prediction (Supplementary Table 5).

The second class of DNA-based features is DNA physical
properties, which impact DNA deformation such as DNA
bending, stretching, base-paring and stacking. DNA shape
parameters were included in this category. When predicting
hot/cold spots based on this feature set, a worse prediction
accuracy (Supplementary Table 6, SVM: ACC = 80.3%) than
the 4-mer compositional features (Supplementary Table 5, SVM:
ACC = 83.7%) was obtained (Figure 7). Again, predictions based
on 300-bp window-based feature extraction are better than 150-
and 500-bp window (Supplementary Table 6).

We then ask if the variation of sequence-based parameters
along the sequences (see Figures 2–4) contributes to hot/cold
spot classification. To test this, we included the variance of
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FIGURE 5 | Difference of epigenetic marks between hot/cold spots. The p-values were obtained via t-test.

the sequence-based features along the sequences in feature set,
and made predictions. The results show that the variation
of the parameters indeed remarkably improved the prediction
performance (Supplementary Table 7 and Figure 7, ACC = 85.4
vs. 80.3%). Combination of all the DNA-based features
produced a prediction accuracy of 85.6% (Figure 7 and
Supplementary Table 8).

Non-DNA Features Are a Strong Predictor of
Recombination Hotspots
After evaluating the influence of DNA sequence information
on discriminating hotspots and coldspots, we then sought
to uncover how non-DNA features affect the identification
of hotspots. Based on prior knowledge discovered in other
experimental studies, we considered several types of non-
DNA features: MNase-seq signal, histone modification signals
(H3K4me3 and H3K56ac), and Top2 signal. It is apparent that
this non-DNA feature set is capable of classifying hot/cold spots
with a much higher accuracy (Figure 6J, AUC = 0.969) than
DNA sequence-based features (Figure 6I, AUC = 0.922). It is
unexpected that H3K56ac signal difference between hotspots
and coldspots differs between two independent studies from
which we obtained H3K56ac data (Figure 5). But in both studies
(Hu et al., 2015; Karányi et al., 2020), H3K56ac was claimed
to have positive contribution to recombination, probably due

to H3K56ac-promoted chromatin accessibility which favors the
binding of recombination machinery to hotspots. We therefore
carried on prediction after removing the unexpected H3K56ac
feature (H3K56ac_GSE37487) as well as one of redundant
H3K4me3 features (H3K4me3_GSE11004) from our feature
space. We see that even based on the only four non-DNA
features, we still obtained high prediction accuracy (Figure 6K
and Supplementary Table 9). Non-DNA features obtained from
150-bp regions led to almost the same prediction accuracy than
features based on 300-bp span (Supplementary Table 9).

It is interesting that among the five classifiers used in
this study, RF performs best when using non-DNA features,
but SVM is the best when prediction is based on DNA
features (Supplementary Table 9). This suggests that prediction
performance is determined by the combinatorial effect of features
and classification algorithm. Overall, SVM works the best with
the whole feature set which consists of DNA-based features
and non DNA features (Supplementary Table 10). The feature
matrices for hot/cold spots were available at https://github.com/
gqliu1010/Rec_hotspots.

Effect of Hot/Cold Spot Length on Prediction
Performance
We carried out our prediction above on the whole hot/cold
spots dataset by calculating features from equally sized regions
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FIGURE 6 | AUC-based comparison of prediction performance between different classification models. Results are based on combined decision values inferred
from five-fold cross validation. Features including k-mer composition (A–F), DNA physical properties (G,H), and several non-DNA features (H3K4me3, H3K56ac,
MNase-seq signal, and Top2 binding signal) were obtained from 300-bp regions centered at hot/cold spots. Mean and variance were calculated for DNA physical
property features by averaging across the 300-bp genomic regions for each hot/cold spot. In non-DNA features (J), predictions were based on six features
(H3K4me3_GSE11004, H3K4me3_GSE59005, H3K56ac_GSE37487, H3K56ac_GSE59005, MNase_GSE59005, and Top2_GSE136675), and those excluding two
redundant features (H3K4me3_GSE11004 and H3K56ac_GSE37487) were denoted as “clear” (K). All DNA features (I) include 4-mer composition, GC-content,
GC-skew, mutual information, DNA physical property features listed in Table 1. Note that DNA physical property features here include DNA physical properties and
DNA shape parameters. All features include all DNA features and clear non-DNA features (L).

(e.g., 300-bp regions), without considering the potential effect of
hot/cold spot length. Given the variable size of hot/cold spots, it is
conceivable that features are also size-dependent. To investigate

size-related effect, we selected the hot/cold spots that are larger
than 300 bp, and re-examined if prediction accuracy is affected in
this case. Our results show that both DNA-based and non-DNA
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FIGURE 7 | Comparison of SVM-based prediction accuracy between various
feature sets. Feature range used in the prediction is 300 bp. Results are
based on combined decision values inferred from five-fold cross validation.
“phys.pro.” denotes physical property-based prediction, and “opt.Set”
denotes optimal feature set.

feature-based prediction got increased accuracy (Figure 8 vs.
Figure 6), indicating that longer hot/cold spots are more
predictable as their underlying DNA sequence and epigenetic
information are more informative than shorter hot/cold spots.

Comparison With Existing Models
In order to assess the performance of models presented in this
study, we compared with some other existing computational
models designed to predict hot/cold spots. Hold-out validation
is used for prediction: randomly sampled 70% of the whole
benchmark dataset is used to train models and the remaining 30%
is used as test set. All the compared models made predictions on
the same test set. As far as we know, previously developed models
for recombination hot/cold spot classification are all based
on DNA-based features. Hence, in order to make comparison

more objective, we compared our DNA-based models with
existing models.

The results show that our model achieved
similar level of prediction accuracy (Table 2, SVM:
ACC = 85.1%) as aforementioned five-fold cross-validation
(Supplementary Table 8, SVM: ACC = 85.6%). However,
applying the webservers for two other start-of-art models to the
same test dataset, we obtained prediction accuracy of ∼60%,
which is worse than our models. Why do the start-of-art models
have so poor power to discriminate hot/cold spots? It is most
likely because those models were trained on ORF sequences with
high DSB frequency, while hotspots and coldspots in this study
were rigorously defined based on high resolution Spo11 oligo-seq
data. Although it was reported that recombination hotspots in
budding yeast prefer promoter regions and may have overlap
with coding region (Mancera et al., 2008), it is inappropriate to
represent a hotspot with its adjacent ORF as coding regions and
non-coding genomic regions differ a lot in terms of composition,
structure and function. Thus, ORF-based training is not the
best choice in computational models and may fail to predict
rigorously defined hot/cold spots. Indeed, an IDQD model (Liu
et al., 2012) trained on the hot/cold spots defined in this study
achieved a much successful prediction (Table 2).

Feature Importance and Optimal Feature Set
To give information about what features weigh much in our
computational model, we first sorted the features according
to Gini index that has been widely used to measure feature
importance. The feature importance was inferred from the RF
model trained on the whole benchmark dataset. We see that in
DNA features, the variations of the DNA-based parameters along
sequences rank high and composed the majority of the top 30
features (Figure 9B). Stretch and mutual information rank in
the top 30. In addition, the list of top 30 4-mers (Figure 9A)
indicates that oligomers such as AAAA/TTTT, TATA, and CGCG
are important in hot/cold spot classification.

FIGURE 8 | Higher AUC values are obtained when predicting larger hotspots (>300 bp). Results are based on combined decision values inferred from five-fold cross
validation by using all DNA features (A) and non-DNA features (B). See Table 1 for feature details.
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TABLE 2 | The performances of several models in discriminating recombination
hot/cold spots (feature range = 300 bp).

Method Feature SN (%) SP (%) TA (%) F-measure

iRSpot-PseDNCa PseDNC 47.3 56.9 51.3 53.2

iRecSpot-EFb DNA-based features 38.8 71.5 51.8 49.3

IDQD 4-mer 82.8 83.3 83.0 85.1

SVM (current study) All DNA features 85.1 85.0 85.1 86.8

RF (current study) All DNA features 87.0 79.0 83.6 86.0

Logistic regression
(current study)

All DNA features 86.2 81.1 84.0 86.2

aPrediction from Chen et al., 2013.
bPrediction from Jani et al., 2018.

Feature selection is crucial in machine learning, because
the high dimension of feature space often cause high risk of
over-fitting and make the prediction model computationally
expensive. There are several feature selection strategies, such
as filter, wrapper and embedding. We used IFS method
(Zhang et al., 2021), which is a filter-based approach, to obtain

an optimal feature set which can give best prediction. In the IFS
method, analysis of variance (ANOVA) was used to assess feature
importance. The features were sorted according to the decreasing
order of the ratio between inter-group variance and intra-group
variance. The higher the ratio is, the more powerful the feature
is in discriminating the two groups of samples (hotspots and
coldspots). Then the features were added one by one to feature
space in the descending order of feature importance. For each
turn of feature addition, SVM classifier was trained by using
the new feature set, and average prediction accuracy of five-fold
cross validation was reported (Figure 10A). If the addition of
a feature increases the average prediction accuracy, the feature
was retained in the feature set, otherwise it was removed.
Optimal sets were sought, respectively, in DNA-based feature
space and the whole feature space. We show that our model based
on the optimal feature set which consists of only 62 features
achieved a slightly improved accuracy than all-feature-based
model (Figure 7, 93 vs. 92.1%). In addition, we also examined the
overlap between top 50 features determined, respectively, by Gini
index and ANOVA. Most of them (80%) occur in both feature

FIGURE 9 | Feature importance sorted by Gini index. (A) top 30 k-mers; (B) top 30 features selected from the whole feature set. Examples of feature name
illustration: “F.Slide.Liu.var” represents the variance of force constant for slide taken from Liu et al. (2021); “Duplex.free.energy.Chen.var” represents the variance of
“Duplex free energy” taken from Chen et al. (2012); “Stretch” is DNA shape parameter calculated by using DNAshapeR. See Supplementary Tables 2–4 for more
details about the features.
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FIGURE 10 | Optimal set of DNA features is determined through a SVM-based Incremental Feature Selection method (IFS). (A), In the IFS method, ANOVA was
used to sort feature importance and then features were added one by one to feature space in the descending order of feature importance. For each turn of feature
addition, SVM classifier was trained on the updated feature set, and average prediction accuracy of five-fold cross validation was reported. If the addition of a feature
increases the average prediction accuracy, the feature was retained in the feature set, otherwise it was removed. Optimal sets were sought, respectively, in
DNA-based feature space (DNA features) and the whole feature space (DNA features + non DNA features). Two optimal feature sets composed of 45 features and
44 features were obtained. (B), Inter-correlated features were excluded sequentially from the feature sets obtained in figure (A). During the feature-excluding
process, no new peak was observed for prediction accuracy, and thus the optimal feature set determined through IFS remain unchanged.

sets, suggesting the consistency of feature importance between
the two methods (Supplementary Figure 4). The consistent
features occurred in both top feature sets might represent the
most important features (Supplementary Table 11).

Excluding redundant features is another way to reduce feature
dimensionality with no or little sacrifice in prediction accuracy. If
two features strongly correlate with each other, it is possible that
only one of them is sufficient for prediction. We used a recursive
redundant-feature-excluding method, in which highly correlated
features are excluded one by one from the optimal feature
set according to the descending order of Pearson’s correlation
coefficients between features. One of the two correlated features,
performing worse in univariate classification, was removed at
each round, and then the model was re-trained on the updated
feature set of training dataset, followed by a five-fold cross
validation. The univariate classification means individual feature-
based classification. During the feature-excluding process, no
new peak was observed for prediction accuracy, and thus the
optimal feature set determined through IFS remained unchanged
(Figure 10B). We can also see that the earliest removal of
features which represent the exclusion of highly correlated
(redundant) features has little impact on prediction accuracy,
while the later-removal of features affect prediction accuracy
remarkably (Figure 10B).

CONCLUSION

In summary, firstly we defined a reliable set of recombination
cold spots based on high-resolution Spo11-oligo sequencing
data; secondly, we characterized recombination hot/cold spots in
terms of sequence-derived features and epigenetic marks; thirdly,
we performed binary predictions based on five classification
algorithms. Our results show that, overall, SVM classifier

performs the best in hot/cold spot classification, and also
outperforms other existing methods. Importantly, our results
indicate that variance in sequence-based feature profile and
epigenetic marks are able to assist remarkably the identification
of recombination hotspots.
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Since the first report of COVID-19 in December 2019, more than 100 million people
have been infected with SARS-CoV-2. Despite ongoing research, there is still limited
knowledge about the genetic causes of COVID-19. To resolve this problem, we applied
the SMR method to analyze the genes involved in COVID-19 pathogenesis by the
integration of multiple omics data. Here, we assessed the SNPs associated with COVID-
19 risk from the GWAS data of Spanish and Italian patients and lung eQTL data from the
GTEx project. Then, GWAS and eQTL data were integrated by summary-data-based
(SMR) methods using SNPs as instrumental variables (IVs). As a result, six protein-
coding and five non-protein-coding genes regulated by nine SNPs were identified as
significant risk factors for COVID-19. Functional analysis of these genes showed that
UQCRH participates in cardiac muscle contraction, PPA2 is closely related to sudden
cardiac failure (SCD), and OGT, as the interacting gene partner of PANO1, is associated
with neurological disease. Observational studies show that myocardial damage, SCD,
and neurological disease often occur in COVID-19 patients. Thus, our findings provide
a potential molecular mechanism for understanding the complications of COVID-19.

Keywords: SMR, COVID-19, eQTL, GWAS, UQCRH, PPA2, OGT, PANO1

INTRODUCTION

In December 2019, SARS-CoV-2 was first reported to lead to the respiratory disease coronavirus
disease 2019 (COVID-19) (Zhou et al., 2020). Subsequently, COVID-19 quickly spread to all parts
of the world and became a worldwide public health event. As of February 17, 2021, more than
100 million people had been infected, and more than 2.4 million people had died of COVID-19.
At present, a total of seven types of coronaviruses that can infect humans have been discovered,
including SARS-CoV, SARS-CoV-2, and MERS-CoV, which have high case fatality rates (CFRs)
(Gussow et al., 2020). The other four coronaviruses, HCoV-HKU1, HCoV-NL63, HCoV-OC43, and
HCoV-229E, only cause mild symptoms in humans. Although the CFR of SARS-CoV-2 is relatively
lower than those of SARS-CoV and MERS-CoV, it is still highly infectious.

Exploring the origin of the virus would help to increase the understanding of SARS-CoV-2
(Cui et al., 2019; Narang et al., 2019; Benetti et al., 2020; Meng et al., 2020; Wan et al., 2020; Qi
et al., 2021). Previous studies have shown that bats are the natural host of the evolved coronavirus
(Jiang et al., 2020; Kwon et al., 2020). Based on the alignment of the reference genome sequence, a
phylogenetic tree was constructed, indicating that the genes are very similar between SARS-CoV-2
and members of the bat Sarbecovirus subgenus Betacoronavirus (Wu et al., 2020). According to
sequence mapping, the whole-genome sequence of SARS-CoV-2 has the highest similarity with
SARS-CoV BatCoV RaTG13, reaching over 96%. The similarity between SARS-CoV-2 and the
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coronaviruses SARS-CoV and MERS-CoV is only 79 and 50%,
respectively (Andersen et al., 2020). Although the specific route of
transmission of SARS-CoV-2 from its natural host to humans is
not yet clear, researchers have discovered that the key functional
sites of the SARS-CoV-2 spike protein are almost the same as
those of the virus isolated from pangolins. Therefore, a pangolin
coronavirus may have provided part of the spike gene for SARS-
CoV-2.

Computational methods with omics data have shown strong
power in identifying disease-related genes (Zhao T. et al., 2020c).
SARS-CoV-2 is a single-stranded RNA virus (Chen et al., 2020).
The reference genome shows that it has 29,903 nucleic acid base
pairs, including seven conserved unstructured protein domains
and four structural protein domains, including the spike protein.
The sequence of SARS-CoV-2 has mutated since its discovery. As
early as March 2020, researchers analyzed 160 early virus strains
and found three important single-point mutations, T8782C,
C28144T, and G26144T (Forster et al., 2020). Among them, the
mutations T8782C and C28144T are used to distinguish between
type A and B viruses, and the mutation G26144T represents a
newer virus type (type C). In May 2020, Cheng et al. analyzed
more than 1,800 strains of viruses in the Americas, Europe, and
Asia and verified that type B viruses are more infectious and have
almost replaced the type A viruses in current circulation (Cheng
et al., 2021). Through comparison with the reference genome, it
was found that each virus mutated at approximately 1.75 sites per
month. The overall mutations were silent mutations and would
not cause major functional changes in the virus. Cheng et al.
proposed to analyze the mutation rules of the virus over time and
identified seven dominant mutations. According to functional
bioinformatics analysis, these mutations likely caused the virus
to decrease in toxicity and increase in infectivity. In addition,
mutation clustering information (Zhu X. et al., 2019; Qi et al.,
2020; Zhao T. et al., 2020b; Zhao X. et al., 2020; Zou et al.,
2020; Zhao et al., 2021) indicated that the virus circulating in the
Americas is more similar to RaTG13.

By searching for the origin of SARS-CoV-2, researchers also
found that SARS-CoV-2 and SARS-CoV use the same receptor,
angiotensin-converting enzyme II (ACE2). SARS-CoV-2 invades
human cells by binding to ACE2. By interacting with proteins
in human cells, SARS-CoV-2 affects human health. In August
2020, researchers found hundreds of interactions between human
proteins and SARS-CoV-2 proteins. Although many proteins that
interact with SARS-CoV-2 have been discovered so far, the genes
associated with SARS-CoV-2 pathogenesis are still unknown.
Since genomics data of many COVID-19 patients have been
reported, there is an opportunity to find potential risk genes
through analysis and integration of omics data of susceptible
populations (Cheng, 2019; Cheng et al., 2019; Li F. et al., 2020;
Wang et al., 2020).

SMR is a method used to determine the causal association
between genetically determined traits and diseases, and eQTLs
are genetic variations related to the expression of traits. Since
eQTL data are tissue specific, it is possible to correlate the eQTL
data of disease-related tissues with disease GWAS data and use
the SMR method to find causal genes for diseases. Therefore, in
our study, we used lung eQTL data of GTEx and GWAS data of

COVID-19 patients to identify the genes related to COVID-19
pathogenesis using the SMR method.

MATERIALS AND METHODS

Risk SNPs for Severe COVID-19
According to current knowledge, some people are more
susceptible than others to COVID-19. To assess the impact of

FIGURE 1 | The distribution of GWAS beta in severe COVID-19 patients.

FIGURE 2 | The distribution of eQTL beta on lung SNPs.
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FIGURE 3 | The workflow of identifying causal genes of COVID-19 using the SMR method.

FIGURE 4 | The distribution of SMR p-values of SNPs.

SNPs on the risk of COVID-19, researchers conducted a genome-
wide association study (GWAS) on two groups of European
patients in seven hospitals in Italy and Spain and performed
a meta-analysis of the results of the two groups (Ellinghaus
et al., 2020). First, quality control was conducted on 1980 severe
COVID-19 patients, and 1,610 patients remained after removing
population outliers. Then, the researchers performed a GWAS
on 835 Italian patients and 1,255 control group members (Sun
et al., 2019), as well as 775 Spanish patients and 950 control
group members. As a result, they obtained severe COVID-19 risk
data for 8,582,968 SNPs. Finally, the two sets of experimental
results were meta-analyzed to obtain the final risk SNPs. Figure 1
shows the distribution of risk betas of SNPs in COVID-19
patients. Most SNPs had no impact on the risk of COVID-19.
In addition, researchers found that COVID-19 high-risk SNPs
clustered on 3p21.31.

Lung eQTL
To date, many GWAS have been performed. These studies have
identified thousands of disease-related risk SNPs. Since more
than 90% of SNP sites exist outside of protein-coding genes, it
is difficult to understand the mechanisms by which these SNPs
affect diseases. To this end, researchers investigate expressed
quantitative trait loci (eQTLs) to reveal the genes regulated by
SNPs in the blood, lung and other tissues (Zhao T. et al., 2020a).
Therefore, the NIH launched the gene type-tissue expression
(GTEx) project, with the goal of establishing the relationships
between SNPs and gene expression in different tissues. Currently,
the project has accepted more than 900 post-mortem donors.
Sequencing of different tissues in the donors has identified a
large number of SNP-regulated genes. Summarized GTEx data
could be obtained from the project’s website. Figure 2 shows the
distribution of beta values of lung SNPs on gene expression.

Identification of Potential Causal Genes
of COVID-19 Based on the SMR Method
In the domain of biomedicine, many causal disease associations
have been discovered through observational research, such as
the association between smoking and lung cancer (Ghosh and
Yan, 2020; Li J. et al., 2020; Yuan et al., 2020). However,
the associations between phenotypes and diseases found in
these observational studies cannot reflect causality. However,
because observational studies are usually disturbed by external
factors and often face practical problems related to long time
frames and high costs, there are large errors in the analysis of
pathogenic factors of diseases. Mendelian randomization follows
the Mendelian inheritance law of allele separation and free
recombination of nonalleles and makes causal inferences based
on genetic variation, which does not change with environment
or age, so this method is widely used in causal inference
of pathogenic factors. Sometimes, due to the influence of
confounding factors, the correlation found is not accurate.
This greatly limits the development of the field. To solve this
problem, the statistician Katan (1986) introduced the concept of
Mendelian randomization (MR) in 1986 to study whether low
serum cholesterol levels can increase the risk of cancer. MR uses
genotype as an instrumental variable (IV) and applies the two-
stage least squares method to infer the pathogenicity of diseases.
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With the gradual deepening of GWAS research, this method has
been widely applied using SNPs as IVs. This method assumes
that Z is an instrumental variable (SNP), X represents exposure
factors or gene expression levels, and Y represents the disease.
According to the two-stage least squares method, the effect of X
on Y is evaluated as follows.

BetaXY = BetaZX / BetaZY (1)

Here, BetaZX represents the least-squares estimate of Z on X, and
BetaZY is the least-squares estimate of Z on Y. Then, we estimate
the significance of X on Y as TMR.

TMR = (BetaXY)2/var(BetaXY) (2)

Theoretically, GWAS and eQTL need to target the same sample,
but GWAS and eQTL are performed independently, so we use
the two-sample MR method, and TSMR is obtained as the final
evaluation value (Zhao S. et al., 2019; Zhao T. et al., 2019):

TSMR = ZZY2∗ZZX2/(ZZY2ZZX2) (3)

where Zzy represents the Z statistics from the GWAS, and Zzx
represents the z statistics from the eQTL study. Since the true

values of BetaZX and BetaZY cannot be obtained, we can use
estimations to replace them. The TSMR yields an approximate
Chi-square test statistic.

Here, we used the SMR method to evaluate the mechanism by
which SNPs affect COVID-19 and identify potential pathogenic
genes in the lungs. The specific process is shown in Figure 3. The
GWAS data of COVID-19 patients and the lung eQTL data were
obtained from a public dataset. TSMR was calculated based on the
two-sample MR method, which was then further evaluated using
the chi-square test to identify significant SNPs and genes.

RESULTS

Causal SNPs and Genes of COVID-19
A total of 1,072 SNPs appeared in both GWAS and eQTL
data. After application of the SMR method, 1,072 SNPs were
determined to regulate the P value distribution of COVID-
19 through genes (Figure 4). The P values of SMR for most
SNPs were concentrated in the range of 0.02–0.08. Here, the
threshold was set as 0.003, and then 11 genes (UQCRH,

FIGURE 5 | The experimental results based on SMR.

TABLE 1 | Nine Causal SNPs and eleven pathogenic genes of COVID-19.

SNP P_SMR Gene chr pos P_GWAS P_eQTL

rs41292543 0.002574 UQCRH 1 46309111 0.001553 2.65E − 16

rs35258888 0.002419 PPA2 4 105355205 0.001035 2.61E − 10

rs70947091 0.002154 PAPSS1 4 107694523 0.001899 2.28E − 56

rs8176719 3.07E-06 ABO 9 133257521 8.76E − 07 1.27E − 34

rs10678686 4.68E-05 AP006621.5 11 780321 3.96E − 05 1.28E − 100

rs10678686 4.34E-05 CMB9-55F22.1 11 780321 3.96E − 05 9.62E − 143

rs10678686 6.40E-05 AP006621.6 11 780321 3.96E − 05 1.12E − 44

rs7104929 0.001973 PANO1 11 784340 3.73E − 05 0.0111629

rs10407383 0.001423 CTD-2027I19.2 19 24134099 0.000412 4.61E − 09

rs6122883 0.000702 LINC01273 20 50172836 0.000494 3.43E − 34

rs6151429 0.000645 ARSA 22 50625049 0.000522 4.70E − 50
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PPA2, PAPSS1, ABO, AP006621.5, CMB9-55F22.1, AP006621.6,
PANO1, CTD-2027I19.2, LINC01273, and ARSA) regulated by
nine SNPs (rs41292543, rs35258888, rs70947091, rs8176719,
rs10678686, rs10678686, rs10678686, rs7104929, rs10407383,
rs6122883, and rs6151429) with P values lower than the threshold
were considered to increase the risk of COVID-19 (Table 1).
Figure 5 shows the GWAS P value, eQTL P value, and SMR
P-value of all SNPs.

Functional Analysis of Causal Genes
Among the identified pathogenic genes, there were a total of six
protein-coding genes (UQCRH, PPA2, PAPSS1, ABO, PANO1,
and ARSA) and five noncoding genes. We then performed
functional analysis of these six protein-coding genes to identify
their functions, related diseases and pathways.

UQCRH participates in cardiac muscle contraction. A large
number of studies have found that approximately 8–12% of
COVID-19 patients have myocardial damage (Lippi et al.,
2020). Although heart problems are usually not the most
prominent or deadly feature of COVID-19, they are common
and are severe enough that most people admitted to the
hospital for COVID-19 are now being screened for myocardial
damage. There are many potential causes of COVID-19-related
myocardial damage, but it is often difficult to determine the
specific cause in a specific individual. The UQCRH gene found
here may be a potential cause. In addition, according to
Gene Ontology annotation, UQCRH has ubiquinol-cytochrome-
c reductase activity.

PPA2 is closely related to sudden cardiac failure (SCD).
At present, there have been reports of COVID-19 patients
who have died of SCD. In July 2020, Samira et al. diagnosed
three patients with COVID-19 according to the reverse
transcriptase-polymerase chain reaction of nasopharyngeal
swabs and radiological examinations (Shirazi et al., 2021) who
eventually died of SCD. Thus, the authors recommended
that it is necessary to monitor the heart conditions of
COVID-19 patients. Although there is no direct causal
link between SCD and COVID-19, analysis of current
data shows that there is a reasonable link between them.
According to the latest studies, the incidence of SCD in the
community and hospital environment has increased since
the outbreak of COVID-19 (Yadav et al., 2020). Based on
our findings, PPA2 can increase the risk of COVID-19,
so PPA2 may be a potential factor that results in SCD in
COVID-19 patients.

Interaction Between the Causal Gene
PANO1 and OGT
We searched for the interactions between causal genes of
COVID-19 and other genes. As a result, we found that OGT
can interact with PANO1. Then, we further investigated the
function of OGT to explore the potential mechanism of PANO1
in the risk of COVID-19. At the start of the COVID-19
epidemic, some patients experienced neurological symptoms,
such as feeling confused, being unable to discern direction, and

feeling restless (Marshall, 2020). A total of 0.2% of the patients
of two other SARS-CoV-2-related coronaviruses, SARS-CoV and
MERS-CoV, have neurological disease. Given the number of
COVID-19 patients, hundreds of thousands of patients may
have neurological complications. As genes related to neurological
disease and risk genes for COVID-19, OGT, and PANO1 must be
considered further.

CONCLUSION

In this article, we used the SMR method to analyze the genes
involved in COVID-19 pathogenesis. Here, the risk SNPs for
COVID-19 were derived from the GWAS data of Spanish
and Italian patients. Lung eQTL data were acquired from
the GTEx project. In the postgenomic era, MR and SMR
methods have been widely used (Liu et al., 2018). Currently,
a large number of pathogenic phenotypes and genes have
been identified based on these methods. Through SMR, this
article discovered six protein-coding genes and five noncoding
genes that can increase the risk of COVID-19. Finally, nine
SNPs that met the threshold conditions were identified, and
the SMR method was used to determine that these SNPs
regulated 11 disease-causing genes that could increase the risk
of COVID-19. Then, disease pathway enrichment analysis was
performed on these genes.

Through functional analysis, we found that UQCRH
participates in cardiac muscle contraction, PPA2 is closely
related to SCD, and myocardial damage and SCD occurred
in patients with COVID-19. Therefore, our findings provide
a potential molecular mechanism for these processes. Further
analysis revealed an interaction between OGT and PANO1. OGT
is associated with neurological disease. This may explain the
neurological complications in COVID-19 patients.

DATA AVAILABILITY STATEMENT

The original contributions presented in the study are included
in the article/supplementary material, further inquiries can be
directed to the corresponding author/s.

ETHICS STATEMENT

Ethical review and approval was not required for the study
on human participants in accordance with the local legislation
and institutional requirements. Written informed consent for
participation was not required for this study in accordance with
the national legislation and the institutional requirements.

AUTHOR CONTRIBUTIONS

YZ and XL wrote the manuscript and did the experiments. XL
provided ideas of this work. YZ analyzed the data. Both authors
approved the submitted version.

Frontiers in Genetics | www.frontiersin.org 5 July 2021 | Volume 12 | Article 69034936

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-12-690349 July 2, 2021 Time: 13:5 # 6

Zong and Li Identified Causal Genes of COVID-19

REFERENCES
Andersen, K. G., Rambaut, A., Lipkin, W. I., Holmes, E. C., and Garry, R. F.

(2020). The proximal origin of SARS-CoV-2. Nat. Med. 26, 450–452. doi:
10.1038/s41591-020-0820-9

Benetti, E., Tita, R., Spiga, O., Ciolfi, A., Birolo, G., Bruselles, A., et al. (2020).
ACE2 gene variants may underlie interindividual variability and susceptibility
to COVID-19 in the Italian population. Eur. J. Hum. Genet. 28, 1602–1614.
doi: 10.1038/s41431-020-0691-z

Chen, W., Feng, P., Liu, K., Wu, M., and Lin, H. (2020). Computational
identification of small interfering RNA targets in SARS-CoV-2. Virol. Sin. 35,
359–361. doi: 10.1007/s12250-020-00221-6

Cheng, L. (2019). Computational and biological methods for gene therapy. Curr.
Gene Ther. 19, 210–210. doi: 10.2174/156652321904191022113307

Cheng, L., Han, X., Zhu, Z., Qi, C., Wang, P., and Zhang, X. (2021). Functional
alterations caused by mutations reflect evolutionary trends of SARS-CoV-2.
Brief. Bioinform. 22, 1442–1450. doi: 10.1093/bib/bbab042

Cheng, L., Zhao, H., Wang, P., Zhou, W., Luo, M., Li, T., et al. (2019).
Computational methods for identifying similar diseases. Mol. Ther. Nucleic
Acids 18, 590–604. doi: 10.1016/j.omtn.2019.09.019

Cui, J., Li, F., and Shi, Z. L. (2019). Origin and evolution of pathogenic
coronaviruses. Nat. Rev. Microbiol. 17, 181–192. doi: 10.1038/s41579-018-
0118-9

Ellinghaus, D., Degenhardt, F., Bujanda, L., Buti, M., Albillos, A., Invernizzi,
P., et al. (2020). Genomewide association study of severe Covid-19 with
respiratory failure. N. Engl. J. Med. 383, 1522–1534. doi: 10.1056/nejmoa202
0283

Forster, P., Forster, L., Renfrew, C., and Forster, M. (2020). Phylogenetic network
analysis of SARS-CoV-2 genomes. Proc. Natl. Acad. Sci. U.S.A. 117, 9241–9243.
doi: 10.1073/pnas.2004999117

Ghosh, A., and Yan, H. (2020). Stability analysis at key positions of EGFR related
to non-small cell lung cancer. Curr. Bioinform. 15, 260–267. doi: 10.2174/
1574893614666191212112026

Gussow, A. B., Auslander, N., Faure, G., Wolf, Y. I., Zhang, F., and Koonin,
E. V. (2020). Genomic determinants of pathogenicity in SARS-CoV-2 and
other human coronaviruses. Proc. Natl. Acad. Sci. U.S.A. 117, 15193–15199.
doi: 10.1073/pnas.2008176117

Jiang, S., Du, L., and Shi, Z. (2020). An emerging coronavirus causing pneumonia
outbreak in Wuhan, China: calling for developing therapeutic and prophylactic
strategies. Emerg. Microbes Infect. 9, 275–277. doi: 10.1080/22221751.2020.
1723441

Katan, M. B. (1986). Apolipoprotein E isoforms, serum cholesterol, and cancer.
Lancet 1, 507–508. doi: 10.1016/s0140-6736(86)92972-7

Kwon, E., Cho, M., Kim, H., and Son, H. S. (2020). a study on host tropism
determinants of influenza virus using machine learning. Curr. Bioinform. 15,
121–134. doi: 10.2174/1574893614666191104160927

Li, F., Luo, M., Zhou, W., Li, J., Jin, X., Xu, Z., et al. (2020). Single cell RNA and
immune repertoire profiling of COVID-19 patients reveal novel neutralizing
antibody. Protein Cell 1–5. doi: 10.1007/s13238-020-00807-6

Li, J., Chang, M., Gao, Q., Song, X., and Gao, Z. (2020). Lung cancer
classification and gene selection by combining affinity propagation clustering
and sparse group lasso. Curr. Bioinform. 15, 703–712. doi: 10.2174/
1574893614666191017103557

Lippi, G., Lavie, C. J., and Sanchis-Gomar, F. (2020). Cardiac troponin I in patients
with coronavirus disease 2019 (COVID-19): evidence from a meta-analysis.
Prog. Cardiovasc. Dis. 63, 390–391. doi: 10.1016/j.pcad.2020.03.001

Liu, G. Y., Zhao, Y., Jin, S., Hu, Y., Wang, T., Tian, R., et al. (2018). Circulating
vitamin E levels and Alzheimer’s disease: a Mendelian randomization study.
Neurobiol. Aging 72, 189.e1-189.e9. doi: 10.1016/j.neurobiolaging.2018.08.008

Marshall, M. (2020). How COVID-19 can damage the brain. Nature 585, 342–343.
doi: 10.1038/d41586-020-02599-5

Meng, C., Zhang, J., Ye, X., Guo, F., and Zou, Q. (2020). Review and comparative
analysis of machine learning-based phage virion protein identification methods.
Biochim. Biophys. Acta Proteins Proteom. 1868:140406. doi: 10.1016/j.bbapap.
2020.140406

Narang, P., Dangi, M., Sharma, D., Khichi, A., and Chhillar, A. K.
(2019). An integrated Chikungunya virus database to facilitate
therapeutic analysis: ChkVDb. Curr. Bioinform. 14, 323–332. doi:
10.2174/1574893613666181029124848

Qi, C., Wang, P., Fu, T., Lu, M., Cai, Y., Chen, X., et al. (2021). A comprehensive
review for gut microbes: technologies, interventions, metabolites and diseases.
Brief. Funct. Genomics 20, 42–60. doi: 10.1093/bfgp/elaa029

Qi, R., Ma, A., Ma, Q., and Zou, Q. (2020). Clustering and classification methods
for single-cell RNA-sequencing data. Brief. Bioinform. 21, 1196–1208. doi:
10.1093/bib/bbz062

Shirazi, S., Mami, S., Mohtadi, N., Ghaysouri, A., Tavan, H., and Nazari, A. (2021).
Sudden cardiac death in COVID-19 patients, a report of three cases. Future
Cardiol. 17, 113–118. doi: 10.2217/fca-2020-0082

Sun, L., Liu, G., Su, L., and Wang, R. (2019). HS-MMGKG: a fast multi-objective
harmony search algorithm for two-locus model detection in GWAS. Curr.
Bioinform. 14, 749–761. doi: 10.2174/1574893614666190409110843

Wan, Y., Shang, J., Graham, R., Baric, R. S., and Li, F. (2020). Receptor recognition
by the novel coronavirus from wuhan: an analysis based on decade-long
structural studies of SARS Coronavirus. J. Virol. 94, e127–e120.

Wang, P., Jin, X., Zhou, W., Luo, M., Xu, Z., Xu, C., et al. (2020). Comprehensive
analysis of TCR repertoire in COVID-19 using single cell sequencing. Genomics
113, 456–462. doi: 10.1016/j.ygeno.2020.12.036

Wu, F., Zhao, S., Yu, B., Chen, Y. M., Wang, W., Song, Z. G., et al. (2020). A new
coronavirus associated with human respiratory disease in China. Nature 579,
265–269.

Yadav, R., Bansal, R., Budakoty, S., and Barwad, P. (2020). COVID-19 and sudden
cardiac death: a new potential risk. Indian Heart J. 72, 333–336. doi: 10.1016/j.
ihj.2020.10.001

Yuan, F., Lu, L., and Zou, Q. (2020). Analysis of gene expression profiles of lung
cancer subtypes with machine learning algorithms. Biochim. Biophys. Acta Mol.
Basis Dis. 1866:165822. doi: 10.1016/j.bbadis.2020.165822

Zhao, S., Jiang, H., Liang, Z. H., and Ju, H. (2019). Integrating multi-omics data
to identify novel disease genes and single-neucleotide polymorphisms. Front.
Genet. 10:1336. doi: 10.3389/fgene.2019.01336

Zhao, T., Hu, Y., and Cheng, L. (2020a). Deep-DRM: a computational method
for identifying disease-related metabolites based on graph deep learning
approaches. Brief. Bioinform. bbaa212. doi: 10.1093/bib/bbaa212

Zhao, T., Hu, Y., Peng, J., and Cheng, L. (2020b). DeepLGP: a novel deep learning
method for prioritizing lncRNA target genes. Bioinformatics 36, 4466–4472.
doi: 10.1093/bioinformatics/btaa428

Zhao, T., Hu, Y., Zang, T., and Cheng, L. (2020c). MRTFB regulates the expression
of NOMO1 in colon. Proc. Natl. Acad. Sci. 117, 7568–7569. doi: 10.1073/pnas.
2000499117

Zhao, T., Hu, Y., Zang, T., and Wang, Y. (2019). Integrate GWAS, eQTL, and
mQTL data to identify Alzheimer’s disease-related genes. Front. Genet. 10:1021.
doi: 10.3389/fgene.2019.01021

Zhao, T., Lyu, S., Lu, G., Juan, L., Zeng, X., Wei, Z., et al. (2021). SC2disease:
a manually curated database of single-cell transcriptome for human diseases.
Nucleic Acids Res. 49, D1413–D1419. doi: 10.1093/nar/gkaa838

Zhao, X., Jiao, Q., Li, H., Wu, Y., Wang, H., Huang, S., et al. (2020). ECFS-DEA: an
ensemble classifier-based feature selection for differential expression analysis
on expression profiles. BMC Bioinformatics 21:43. doi: 10.1186/s12859-020-
3388-y

Zhou, P., Yang, X. L., Wang, X. G., Hu, B., Zhang, L., Zhang, W., et al. (2020). A
pneumonia outbreak associated with a new coronavirus of probable bat origin.
Nature 579, 270–273. doi: 10.1038/s41586-020-2012-7

Zhu, X., Li, H.-D., Guo, L., Wu, F.-X., and Wang, J. (2019). Analysis of single-
cell RNA-seq data by clustering approaches. Curr. Bioinform. 14, 314–322.
doi: 10.2174/1574893614666181120095038

Zou, Q., Lin, G., Jiang, X., Liu, X., and Zeng, X. (2020). Sequence clustering in
bioinformatics: an empirical study. Brief. Bioinform. 21, 1–10. doi: 10.1093/bib/
bby090

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Copyright © 2021 Zong and Li. This is an open-access article distributed under the
terms of the Creative Commons Attribution License (CC BY). The use, distribution
or reproduction in other forums is permitted, provided the original author(s) and
the copyright owner(s) are credited and that the original publication in this journal
is cited, in accordance with accepted academic practice. No use, distribution or
reproduction is permitted which does not comply with these terms.

Frontiers in Genetics | www.frontiersin.org 6 July 2021 | Volume 12 | Article 69034937

https://doi.org/10.1038/s41591-020-0820-9
https://doi.org/10.1038/s41591-020-0820-9
https://doi.org/10.1038/s41431-020-0691-z
https://doi.org/10.1007/s12250-020-00221-6
https://doi.org/10.2174/156652321904191022113307
https://doi.org/10.1093/bib/bbab042
https://doi.org/10.1016/j.omtn.2019.09.019
https://doi.org/10.1038/s41579-018-0118-9
https://doi.org/10.1038/s41579-018-0118-9
https://doi.org/10.1056/nejmoa2020283
https://doi.org/10.1056/nejmoa2020283
https://doi.org/10.1073/pnas.2004999117
https://doi.org/10.2174/1574893614666191212112026
https://doi.org/10.2174/1574893614666191212112026
https://doi.org/10.1073/pnas.2008176117
https://doi.org/10.1080/22221751.2020.1723441
https://doi.org/10.1080/22221751.2020.1723441
https://doi.org/10.1016/s0140-6736(86)92972-7
https://doi.org/10.2174/1574893614666191104160927
https://doi.org/10.1007/s13238-020-00807-6
https://doi.org/10.2174/1574893614666191017103557
https://doi.org/10.2174/1574893614666191017103557
https://doi.org/10.1016/j.pcad.2020.03.001
https://doi.org/10.1016/j.neurobiolaging.2018.08.008
https://doi.org/10.1038/d41586-020-02599-5
https://doi.org/10.1016/j.bbapap.2020.140406
https://doi.org/10.1016/j.bbapap.2020.140406
https://doi.org/10.2174/1574893613666181029124848
https://doi.org/10.2174/1574893613666181029124848
https://doi.org/10.1093/bfgp/elaa029
https://doi.org/10.1093/bib/bbz062
https://doi.org/10.1093/bib/bbz062
https://doi.org/10.2217/fca-2020-0082
https://doi.org/10.2174/1574893614666190409110843
https://doi.org/10.1016/j.ygeno.2020.12.036
https://doi.org/10.1016/j.ihj.2020.10.001
https://doi.org/10.1016/j.ihj.2020.10.001
https://doi.org/10.1016/j.bbadis.2020.165822
https://doi.org/10.3389/fgene.2019.01336
https://doi.org/10.1093/bib/bbaa212
https://doi.org/10.1093/bioinformatics/btaa428
https://doi.org/10.1073/pnas.2000499117
https://doi.org/10.1073/pnas.2000499117
https://doi.org/10.3389/fgene.2019.01021
https://doi.org/10.1093/nar/gkaa838
https://doi.org/10.1186/s12859-020-3388-y
https://doi.org/10.1186/s12859-020-3388-y
https://doi.org/10.1038/s41586-020-2012-7
https://doi.org/10.2174/1574893614666181120095038
https://doi.org/10.1093/bib/bby090
https://doi.org/10.1093/bib/bby090
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-12-712164 July 22, 2021 Time: 16:58 # 1

ORIGINAL RESEARCH
published: 28 July 2021

doi: 10.3389/fgene.2021.712164

Edited by:
Lei Deng,

Central South University, China

Reviewed by:
Yuansong Zhao,

University of Texas Health Science
Center at Houston, United States

Sheng Li,
Zhongnan Hospital, Wuhan University,

China

*Correspondence:
Yadong Wang

ydwang@hit.edu.cn

†These authors have contributed
equally to this work and share first

authorship

Specialty section:
This article was submitted to

Statistical Genetics and Methodology,
a section of the journal

Frontiers in Genetics

Received: 20 May 2021
Accepted: 02 July 2021
Published: 28 July 2021

Citation:
Cui X, Xu C, Zhang L and Wang Y
(2021) Identification of Parkinson’s
Disease-Causing Genes via Omics

Data. Front. Genet. 12:712164.
doi: 10.3389/fgene.2021.712164

Identification of Parkinson’s
Disease-Causing Genes via Omics
Data
Xinran Cui†, Chen Xu†, Liyuan Zhang and Yadong Wang*

Center for Bioinformatics, School of Computer Science and Technology, Harbin Institute of Technology, Harbin, China

Parkinson’s disease (PD) is the second most frequent neurogenic disease after
Alzheimer’s disease. The clinical manifestations include mostly motor disorders, such
as bradykinesia, myotonia, and static tremors. Since the cause of this pathological
features remain unclear, there is currently no radical treatment for PD. Environmental
and genetic factors are thought to contribute to the pathology of PD. To identify the
genetic factors, some studies employed the Genome-Wide Association Studies (GWAS)
method and detected certain genes closely related to PD. However, the functions of
these gene mutants in the development of PD are unknown. Combining GWAS and
expression Quantitative Trait Loci (eQTL) analysis, the biological meaning of mutation
could be explained to some extent. Therefore, the present investigation used Summary
data-based Mendelian Randomization (SMR) analysis to integrate of two PD GWAS
datasets and four eQTL datasets with the objective of identifying casual genes. Using
this strategy, we found six Single Nucleotide Polymorphism (SNP) loci which could cause
the development of PD through altering the susceptibility gene expression, and three
risk genes: Synuclein Alpha (SNCA), Mitochondrial Poly(A) Polymerase (MTPAP), and
RP11-305E6.4. We proved the accuracy of results through case studies and inferred
the functions of these genes in PD. Overall, this study provides insights into the genetic
mechanism behind PD, which is crucial for the study of the development of this disease
and its diagnosis and treatment.

Keywords: Parkinson’s disease, SMR analysis, GWAS summary data, eQTL summary data, risk genes

INTRODUCTION

Parkinson’s disease (PD) is the second most common degenerative disorder of the nervous system.
As the incidence of this disease is strongly linked to age, approximately 1% of 65-year-olds has
this disease, rising to 4–5% among aged 85 (Trinh and Farrer, 2013). Statistically, the rate of PD
increases 5–10 times from the age of 60 to the age of 90 (Poewe et al., 2017). The main clinical
manifestations are involuntary limb tremor, bradykinesia, walking difficulty, and stiff limbs, and
these symptoms become aggravated with time. This causes that PD patients are peculiarly prone
to falls on routine activities. The incidence of falls could reach 40–70% (Kerr et al., 2010). Falling
can lead to injury and the decrease of survival for PD patients. Thus, the health and life of human
beings, especially the elderly, are threatened by this disease.
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There are two main pathologic characteristics of PD. One
is the degeneration and death of dopamine neurons in the
substantia nigra pars compacta of the midbrain and the
consequent depletion of dopamine in the striatum (Ammal
Kaidery and Thomas, 2018). Dopamine is synthesized by
dopamine neurons, and then delivered to the striatum to regulate
somatic motor (Schwarz and Peever, 2011). The other feature is
the formation of acidophilic inclusions known as Lewy bodies
in the cytoplasm of the remaining neurons in the substantia
nigra (Feng et al., 2020). Although many studies have explored
the pathological mechanism of PD, there is still no sufficient
evidence to explain the degeneration of dopaminergic neurons
and the formation of Lewy bodies, thus the current PD treatment
approaches can only relieve symptoms with medication but
cannot reverse this disease progression (Ball et al., 2019).
Moreover, long-term treatment results in the development of
drug resistance, and the available drugs have significant adverse
effects. Therefore, it is urgent to understand the biological process
leading to these pathological changes for the cure of PD.

Some studies revealed that both environmental and genetic
factors contribute to the pathological features of PD. The
main biological mechanism by which environmental factors
can damage dopaminergic neurons involves the inhibition
of the activity of mitochondrial complex enzymes and the
mitochondrial respiratory chain (Holper et al., 2019). In addition
to environmental factors, some patients may have inherited
certain particular mutated gene that lead to the development of
PD (Antony et al., 2013). Understanding what these genes do
has crucial implications for understanding the changes in the
biological processes underlying PD. Thus, it is necessary to reveal
these mutant genes for conquering this disease.

A genome-wide association study (GWAS) identified more
than 10 PD-causing genes (Nalls et al., 2014). GWAS is a strategy
for identifying common genetic variants [Single Nucleotide
Polymorphism (SNP)] significantly associated with a complex
trait or a disease in the whole human genome, thus recognizing
the disease-related genes (Cannon and Mohlke, 2018). In the
results of GWAS analysis, most significant SNP sites were located
in non-coding regions, making it difficult to directly explore
the regulatory mechanism of these sites (Rojano et al., 2016).
Thus, there are some PD risk genes revealed in many GWAS
studies, what role do these genes play in the development of PD
remains unknown.

The combined analysis of GWAS and expression Quantitative
Trait Loci (eQTL) has become an important means to reveal the
function of significant variants. Although GWAS have identified
thousands of variants associated with complex traits, their
biological explanation is often still unclear. Most of these variants
overlap with eQTL, suggesting that they may be involved in the
regulation of gene expression (Zhu et al., 2016). Genes associated
with these variants could be regarded as PD causing-genes. This
study exploited Summary data-based Mendelian Randomization
analysis (SMR) to integrate and analyze the PD summary data of
the GWAS with the summary data of eQTL, to explore the genetic
mechanism by which certain disease-causing genes contribute to
PD. The SMR analysis method does not require the data with
both genotype and gene expression and a massive size. Thus, this

approach could leverage the published data to a large extent. The
statistical analysis of the relationship between a single SNP and
gene expression is called the eQTL analysis (Shabalin, 2012). If
the expression of a gene is affected by a SNP, then this genetic
variant is considered as an eQTL locus. Since SNP is the subject
of study in both GWAS and eQTL, SNP is used as an instrumental
variable in the SMR method to determine which genes expression
changes could lead to the occurrence of PD. Thus, the SMR
analysis results may provide a direction for the treatment of PD.

MATERIALS AND METHODS

Data Acquisition
Two public summary datasets of GWAS for PD were downloaded
from the GWAS catalog website. One of the GWAS datasets
represented data from 282,871 white British inpatient samples
reported by the UK Biobank. The UK Biobank is a cohort study
collecting, physical, and health data of approximately 500,000
British individuals. For the purpose of this analysis, this dataset
was named “GUB” (Bi et al., 2020). The other GWAS dataset
is based on the genetic data of 28,568 PD patients obtained
from International Parkinson’s Disease Genomics Consortium
and was named “GIPD” (Blauwendraat et al., 2019). This data
consists of Parkinson’s patients from European countries such
as United Kingdom, Dutch, Finnish, and German. The present
study also employed four eQTL datasets. EQTL data are generally
collected from peripheral blood, thus one dataset is the summary
level statistics of eQTL from the Consortium for the Architecture
of Gene Expression (CAGE) data. It provides the measurements
of the level of gene expression in peripheral blood. This dataset
contains more than 3 million SNPs, identified by 33,323 probes.
Since PD is a neurodegenerative disease, the second dataset
includes the level of gene expression in brain tissue and includes
information on 28,522 probes and more than 13 million SNPs.
To explore whether PD is associated with other factors such
as reduced immunity, we selected two sets of eQTL data sets
for T cells. The remaining two datasets list the level of gene
expression in CD4- and CD8-positive cells, respectively. CD4
and CD8 are both markers of T lymphocytes. The CD4 dataset
includes more than five hundred thousand SNPs, measured by
7,350 probes, while the CD8 dataset includes more than three
hundred thousand SNPs through using 5,829 probes.

SMR Analysis
Both GWAS and eQTL were used to investigate the relationship
between SNP and traits or gene expression through linear
regression analysis. In the regression analysis, the effect size (beta-
value) corresponds to the value of the regression coefficient, while
SE stands for the standard error of the regression coefficient.
Then, the GWAS and eQTL data were standardized using the
Z-score method, in which the Z was calculated as the quotient
of the beta-value and the SE-value.

After computing the Z-score, we performed SMR analysis on
an eQTL dataset and a GWAS dataset (Figure 1). Since SNPs are
regarded as instrumental variables in SMR analysis, we identified
the overlapped SNPs between an eQTL dataset and a GWAS
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FIGURE 1 | The Summary data-based Mendelian Randomization (SMR) analysis flow chart. One PD GWAS was integrated with each of eQTL data. After calculating
TSMR and chi-square test, the significance of gene expression were discovered.

dataset and then generated a new dataset including all eQTL
and GWAS data of the overlapped SNPs. As a result, eight new
datasets were obtained by this approach, and each of them was
subsequently subjected to the SMR analysis. According to the
formula,

T
SMR≈

ZGWAS2×ZeQTL
2

ZGWAS2+ZeQTL
2

the Z values of GWAS and eQTL were used to calculate the
TSMR value. The chi-square test was applied to the TSMR values to
calculate their P values (PSMR). Each SMR dataset has a specific
threshold. This threshold is calculated by dividing 0.05 by the
number of probes in the corresponding eQTL dataset. If we
find that some PSMR values are less than the threshold value of
their data set, the genes corresponding to these PSMR can be
considered as risk genes.

RESULTS

Identification of Overlapping SNPs
Since SNP is an instrumental variable, we searched for the same
SNPs between a GWAS dataset and an eQTL dataset, generating
eight new datasets (Table 1 and Supplementary Figures 1, 2).
The results showed that both GUB_Brain and GIPD_Brain
datasets contain more than 10 million overlapped SNPs and
about 28, 000 genes. There are over two million SNPs and about
20,000 in GUB_Cage and the GIPD_Cage datasets. The other
four data have fewer than half a million SNPs and about four to
five thousand genes.

Subsequently, we compared the two datasets generated by
using the same eQTL data and found that the genes overlapping
between the two datasets accounted for about 98–100% of
genes in each dataset, implying that the PD-associated genes
identified in the two GWAS datasets are highly similar (Figure 2).
Additionally, we analyzed the four datasets generated by the same
GWAS dataset. This analysis showed that the overlap rate of the

genes was not high among these datasets, with the largest overlap
being less than 50% (Figure 3). Even though CD4 and CD8 are
both markers of T lymphocytes, the gene overlap rate between the
GUB_CD4 and GUB_CD8 datasets or between the GIPD_CD4
and GIPD_CD8 datasets were around 36%. This indicates a low
degree of correlation between these eQTL datasets, which may be
caused by the large differences in the number of SNPs found.

SMR Analysis
The SMR approach was employed to analyze the eight datasets.
The PSMR value calculated was compared with the corresponding
threshold value, and finally three risk genes were found
(Tables 2, 3). As Supplementary Figure 3 shown, whether
GUB GWAS or GIPD GWAS, the significant SNPs were
only located on chromosome 4. However, the results of the
SMR analysis showed that that GUB_Brain identified one
target SNP locus associated with two genes: Mitochondrial
Poly(A) Polymerase (MTPAP), RP11-305E6.4, which is located
on chromosome 10. Coincidentally, GUB_Cage identified only
this SNP locus, and the MTPAP gene associated with this
SNP was also identified. Additionally, GIPD_Cage identified the
highest number of the SNP sites of interest. These five SNPs
were located on chromosome 4 and corresponded to the same
Synuclein Alpha (SNCA) gene. However, the risk genes were
not detected in the GIPD_Brain dataset. Similarly, based on
Supplementary Figures 3E–H, no significant gene was identified

TABLE 1 | The new dataset list for SMR analysis.

eQTL GWAS

Brain Cage CD4 CD8

GUB GUB_Brain GUB_Cage GUB_CD4 GUB_CD8

GIPD GIPD_Brain GIPD_Cage GIPD_CD4 GIPD_CD8

Each GWAS data combined with each eQTL data were analyzed to produce a new
SMR data. Thus, there were eight SMR datasets.
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FIGURE 2 | (A) The overlap genes of the GUB_Brain and GIPD_Brain data. 28,142 genes were overlapped. (B) The overlap genes of the GUB_Cage and
GIPD_Cage data. There were 19,691 overlapped genes. (C) The overlap genes of the GUB_CD4 and GIPD_CD4 data. These two datasets have 5,656 identical
genes. (D) The overlap genes of the GUB_CD8 and GIPD_CD8 data. These two datasets have 4,528 identical genes.

FIGURE 3 | (A) The heatmap of the four GUB data. (B) The heatmap of the four GIPD data. The correlation of these four different eQTL datasets were compared
under the background of the same GWAS dataset.

for GUB _CD4, GUB _CD8, GIPD_ CD4, and GIPD_CD8
datasets, likely due to significantly lower p-values of CD4 and
CD8 eQTL than those of the other two eQTL datasets. Thus, the
SMR analysis of the 8 datasets identified a total of six candidate
SNP loci and three genes, and the expression level of these three
genes can affect the occurrence of PD.

Gene Function Analysis
Three candidate genes were SNCA, MTPAP, and RP11-305E6.4.
To investigate how the expression of the three genes identified
using SMR analysis contributes to the development of PD, we

searched for their function in the KEGG database and related
publications. The main pathological features of PD consist
of the formation of Lewy bodies. The main component of
the Lewy body is α-synuclein (α-syn) encoded by the SNCA
gene. Mutation of this gene can cause the overexpression of
α-syn, leading to the formation of Lewy bodies and hence
the development of PD. The MTPAP gene encodes a nuclear
polymerase responsible for generating homopolymerized (A)
tails on mitochondrial mRNA. Although the search results did
not reveal an evident relationship between this gene and PD,
some studies show that mitochondrial dysfunction is involved in
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TABLE 2 | PSMR threshold for these eight SMR datasets.

SMR dataset GUB_Brain GUB_Cage GUB_CD4 GUB_CD8

PSMR threshold 1.8× 10−6 1.5× 10−6 6.8× 10−6 8.6× 10−6

SMR dataset GIPD_Brain GIPD_Cage GIPD_CD4 GIPD_CD8

PSMR threshold 1.8× 10−6 1.5× 10−6 6.8× 10−6 8.6× 10−6

The same eQTL datasets have the same threshold.

TABLE 3 | Discovery of PD causative gene by the Summary data-based
Mendelian Randomization (SMR) analysis for these eight datasets.

SMR datasets Number of
discovered genes

Gene name P value

GUB_Brain 2 MTPAP 7.215× 10−7

RP11-305E6.4 1.624× 10−6

GUB_Cage 1 MTPAP 4.191× 10−7

GUB_CD4 0 – –

GUB_CD8 0 – –

GIPD_Brain 0 – –

GIPD_Cage 1 SNCA 4.671× 10−7

GIPD_CD4 0 – –

GIPD_CD8 0 – –

This list showed the number of genes found in different datasets, their names, and
the value of PSMR calculated.

the pathogenesis of many neurodegenerative diseases, including
PD. Abnormal mitochondrial structure or function has been
found to induce a progressive loss of dopaminergic neurons
and even trigger PD symptoms. Although the exact function of
the polyadenylation of mitochondrial mRNA is unknown, the
process is essential for maintaining correct mRNA expression in
the mitochondria, and its disruption can lead to mitochondrial
dysfunction. Therefore, the mutation of this gene may block
the expression of MTPAP, causing mitochondrial dysfunction
and leading to PD. The MTPAP gene is also known as PAPD1
or RP11-305E6.3, and another gene was found to be RP11-
305E6.4. Both MTPAP and RP11-305E6.4 gene corresponds
to the same SNP locus in this SMR analysis. This SNP
may be localized in a non-coding gene regulatory region
between these two adjacent genes. However, the function of
this gene has not been identified yet, and its impact on PD
remains unknown.

DISCUSSION

The SMR method was employed to integrate two GWAS
datasets and four eQTL datasets. This approach identified six
SNP candidate loci and three risk genes whose expression
can significantly influence on the development of PD. The
SNCA gene is the first confirmed pathogenic gene for
PD (Lunati et al., 2018). It is located on chromosome
4 and contains six exons. The SNCA gene encodes the
α-syn protein that is the main component of Lewy bodies
(Mehra et al., 2019). α-syn is abundant in the brain and
is also expressed in the heart, skeletal muscle, and other

tissues. In the brain, α-syn is found primarily in presynaptic
terminals, which release neurotransmitters essential for normal
brain function. Mutation of the SNCA gene can cause the
overexpression of the α-syn protein, leading to the formation
of Lewy bodies and the development of PD. Different
types of variations in the coding region and non-coding
regions of the SNCA gene can increase its transcription
and translation. The level of α-syn protein can also be
increased by point mutation or copy number duplication
of the SNCA gene (Kim, 2013). Moreover, in SNCA copy
number repeat variation, the disease was more severe in
the presence of the triploid type than the diploid type,
indicating that the expression of α-syn may positively correlate
with the severity of PD (Nussbaum, 2018). Therefore, the
SNCA gene can be considered to be an effective target
for the treatment of PD. SNCA is also believed to be
involved in various other neurodegenerative diseases, such as
Alzheimer’s disease, Lewy body disease, and muscular atrophy.
Thus, the development of methods to inhibit SNCA gene
mutations and decrease the formation of aggregates are of great
clinical relevance.

Additionally, the polyadenylation of mRNA by the nuclear
DNA-encoded mitochondrial poly(A) RNA polymerase is crucial
for maintaining gene expression in human mitochondria
(Lapkouski and Hällberg, 2015). Although the exact function
of mitochondria mRNA transcription of adenosine acidification
is not yet fully understood, the process is essential for
ensuring correct mRNA expression in the mitochondria. MTPAP
mutant proteins can shorten polyadenylation of mitochondrial
mRNA, resulting in post-transcriptional downregulation of the
expression of components of the respiratory chain complex and
the impairment of an essential mitochondrial function (Wilson
et al., 2014). Mitochondrial dysfunction is involved in many
processes and diseases, including aging, cancer, diabetes, and
neurodegenerative diseases such as PD and Alzheimer’s disease
(Larsen et al., 2018). Among several mechanisms responsible
for the pathogenesis of PD, mitochondrial dysfunction may
be related to the death of dopaminergic neurons. Many
of the PD-associated gene mutations result in an abnormal
mitochondrial function and, eventually, neuronal damage,
which is a critical component of the onset and development
of the disease. Thus, compounds that target mitochondria
and improve their function represent potential therapeutic
options for delaying and treating degenerative diseases of the
central nervous system.

RP11-305E6.4 is a long non-coding RNA (lncRNA)
gene. LncRNAs are non-coding RNA molecules with a
length of more than 200 nucleotides, which can govern
gene expression, transcription, and post-transcription.
Currently, there are few studies on this gene, and it is
still unknown which genes are regulated by this lncRNA
to influence the occurrence of PD. Nevertheless, the
transcript of RP11-305E6.4 overlaps with that of MTPAP,
and further studies could be conducted to determine whether
this gene can regulate MTPAP to affect the occurrence of
PD in the future.
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In conclusion, we verified that the abnormal expression
of the SNCA gene could lead to PD and found that
the abnormal expression of the MTPAP and RP11-
305E6.4 genes may also cause PD. This study further
demonstrates that the design of drugs targeting SNCA gene
is conducive to inhibit the formation of Lewy bodies, and to
completely cure PD. Moreover, we have identified two new
candidate genes for PD. This provides a research direction
for understanding the biological significance behind the
pathological features of PD.
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Age-related macular degeneration (AMD) is the most common cause of irreversible
vision loss in the developed world which affects the quality of life for millions of elderly
individuals worldwide. Genome-wide association studies (GWAS) have identified genetic
variants at 34 loci contributing to AMD. To better understand the disease pathogenesis
and identify causal genes for AMD, we applied random walk (RW) and support vector
machine (SVM) to identify AMD-related genes based on gene interaction relationship
and significance of genes. Our model achieved 0.927 of area under the curve (AUC),
and 65 novel genes have been identified as AMD-related genes. To verify our results,
a statistics method called summary data-based Mendelian randomization (SMR) has
been implemented to integrate GWAS data and transcriptome data to verify AMD
susceptibility-related genes. We found 45 genes are related to AMD by SMR. Among
these genes, 37 genes overlap with those found by SVM-RW. Finally, we revealed the
biological process of genetic mutations leading to changes in gene expression leading
to AMD. Our results reveal the genetic pathogenic factors and related mechanisms
of AMD.

Keywords: AMD, GWAS, eQTL, SNPs, disease susceptibility

INTRODUCTION

Age-related macular degeneration (AMD) is the most common cause of irreversible blindness
with limited therapeutic options in the elderly in many countries (Lim et al., 2012). AMD
causes decreased photoreceptor function in the macular area of the retina (Fritsche et al., 2014).
Researchers have found many factors which are related to the development and severity of AMD.

Genetic factors are significantly related to AMD. In 2005, Klein et al. found that CFH gene was
related to AMD, which was the first discovered AMD-related gene (Haines et al., 2005). This gene
is significantly expressed in retinal pigment epithelial cells. Y402H mutation of CFH impairs the
complement pathway regulation function of CFH gene (Landowski et al., 2019). Subsequently,
the ARMS2 gene cluster was also found to be related to AMD. Multiple studies have shown that
there is a strong correlation between multiple genetic variants in this gene cluster and AMD
(Johnson et al., 2001). Recently, it has been discovered that the apolipoprotein E (APOE) gene
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has a strong correlation with AMD (Fernández-Vega et al.,
2020). The APOE gene plays a role in transporting lipids and
cholesterol in the central nervous system, and multiple studies
have shown that this gene is associated with neurodegenerative
diseases such as Alzheimer’s disease and stroke (Feher et al., 2006;
Zhao et al., 2019, 2020d). The gene is expressed on photoreceptor
cells, retinal ganglion cells, retinal pigment epithelial cells, Bruch’s
membrane, and the choroid. Most studies have proved APOE
can prevent AMD (Pang et al., 2000). The genetic risk of
advanced AMD is increased (Heiba et al., 1994). Researchers
have found that the heritability estimate for twin studies is 0.45
for early AMD (Hammond et al., 2002) but 0.71 for late AMD
(Seddon et al., 2005).

Computational methods have been widely used to discover
functions of biological molecules (Zhao et al., 2020a,b, 2021a).
AMD-related genome-wide association studies (GWAS) analyses
have identified a strong association of 52 independent single-
nucleotide polymorphisms (SNPs) at 34 genetic loci accounting
for over 50% of the genetic heritability (Fritsche et al., 2016).
Machine learning methods can help researchers find disease-
related information on a large scale. However, these methods
cannot explain the genetic mechanism of the results. GWAS
studies are a valuable resource for understanding disease
pathologies, but they may not precisely point out the causal
genes responsible for the disease of interest. Besides, there have
been studies that reported that causal genes are distinct from
the nearest genes discovered by GWAS (Smemo et al., 2014;
Claussnitzer et al., 2015). However, The gene expression is
related to the genetic variant so the gene expression levels are
different in different genotypes (Zhao et al., 2020c). Expression
quantitative trait locus (eQTL) mapping offers a powerful
approach to elucidate the genetic component underlying altered
gene expression. Gene expression is vital for complex diseases
(Zhao et al., 2021b) and is also differentially regulated across
tissues, such as the brain, heart, and pancreas. Ratnapriya et al.
(2019) have found potential causal genes in six AMD GWAS
loci from human retinal samples. However, that analysis only
considered retinal samples and was not comprehensive since
it is difficult to obtain multiple living tissues and most eQTL
studies so far have been performed with RNA isolated from
immortalized lymphoblasts or lymphocytes. In this study, we
fused random walk (RW) with support vector machine (SVM)
to identify AMD-related genes. Since many GWAS and eQTL
studies have been made public, to verify our results, AMD
GWAS data and blood eQTL studies are integrated to further
find expression of the genes related to AMD. In this method,
we referred to the concept of Mendelian randomization (MR)
analysis (Davey Smith and Ebrahim, 2003; Katan, 2004), where
a genetic variant (such as a SNP) is considered as an instrumental
variable (such as gene expression) to validate for the causative
effect of an exposure on an outcome (such as a phenotype). Based
on this assumption, we can obtain AMD-related genes based
on MR. We collected eQTL data from the GTEx database and
collected GWAS datasets including 12,711 advanced AMD cases
and 14,590 controls of European descent from a study by Han
et al. (2020); 707 Caucasian AMD patients and 2,014 controls
from a study by Yan et al. (2018); and 14,034 cases, 91,214

controls, and 11 sources of data including the International
AMD Genomics Consortium, IAMDGC, and United Kingdom
Biobank (UKBB) from a study by Winkler et al. (2020). Based
on these GWAS studies and eQTL dataset, we can not only
identify genes related to AMD but also speculate on their
biological processes.

MATERIALS AND METHODS

Encoding Gene Interaction Network by
Random Walk
The RW algorithm is a method that is simple to operate
but not easy to fall into a local minimum. We constructed a
gene interaction network by known AMD-related genes and
a string database. Then, we implemented RW on the gene
interaction network.

f (x) is a multivariate function with n variables;
x = (x1, x2, ..., xn) is an n dimension vector.

Step 1: Given the initial iteration point x, λ is the first walking
step length, and ε is the control accuracy (ε is a very small positive
number, used to control the end of the algorithm).

Step 2: Given the number of iterations control N, k is the
current iteration number; set k = 1.

Step 3: When k < N, randomly generate an n-dimensional
vector between (−1, 1). u = (u1, u2, ..., un), (−1 < ui < 1, i = 1,
2,..., n), and standardize it to get u′.

u′ =
u√∑
u2
i

Let x1 = x+ λu′ to complete the first step of walking.
Step 4: Calculate the value of the function, if f (x1) < f (x),

which is a better point than the initial value, then reset k to 1,
change x1 to x, and go back to step 2; otherwise, k = k + 1.
Go back to step 3.

Step 5: If no better value can be found for N consecutive
times, it is considered that the optimal solution is within the
N-dimensional sphere with the current optimal solution as
the center and the current step as the radius (if it is three-
dimensional, it just happens to be in the space sphere). At this
point, if λ < ε, the algorithm ends; otherwise, let λ = λ2, go back
to step 1, and start a new round of walking.

Finally, we can get the gene feature after encoding
the gene network.

Classification by Support Vector
Machine
We obtained the gene feature in the last section. Then, we can
input the gene feature and label into SVM to get the relationship
between the gene and AMD. The workflow of SVM is shown in
Figure 1.

First, we used Z-score normalization to process the gene
feature. Then, we constructed a Lagrangian function to obtain
the values and dualized the original problem. Sequential minimal
optimization (SMO) algorithm was used to solve the dualization
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Gene feature
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function
DualizationNormalization

SMO algorithm

Classification model

Output prediction

FIGURE 1 | Workflow of SVM. SVM, support vector machine; SOM, sequential minimal optimization.

problem. Finally, we can obtain the classification model and
output the prediction results.

RESULTS

AMD-Related Genes Identification by
SVM-RW
We obtained 34 known AMD-related genes from GWAS data.
We constructed a gene network which has 239 nodes (genes). We
did 10-cross validation by SVM-RW and tested the performance
of SVM-RW. The area under the curve (AUC) of SVM-RW is
shown in Figure 2.

SVM-RW achieved AUC of 0.927 in identifying AMD-related
genes. We compared the results of SVM-RW with several other
methods. The results are shown in Table 1.

FIGURE 2 | ROC curve of SVM-RW. ROC, receiver–operator characteristic;
SVM-RW, support vector machine and random walk.

After verifying the effectiveness of SVM-RW, we randomly
selected 34 genes as negative samples and built a final
SVM model. SVM-RW predicted 65 novel genes as AMD-
related genes.

Verify SVM-RW Results by Summary
Data Level-Mendelian Randomization
Analysis
If we use g to denote a genetic variant (such as a SNP), x as the
expression level of a gene, and y as the trait, then the two-step
least-squares (2SLS) estimate of the effect of x on y from an MR
analysis can be denoted as:

Êxy = Êzy/Êzx (1)

where Êzy and Êzx indicate the least-squares estimates of y
and x on z, respectively, and Exy indicates the effect size of
x on y free of confounding from non-genetic factors. Then
the sampling variance of the 2SLS estimate of Exy can be
denoted as:

var
(
Êxy
)
=

[
var

(
y
)

(1− P2
xy

]
/
[
n var(x)P2

zy

]
(2)

where n denotes the sample size, P2
xy indicates the proportion of

variance in the explanation of y by x, and P2
zy is the proportion

of variance in the explanation of y by z. Therefore, we use the

TABLE 1 | Comparison results.

Algorithm AUC AUPR

SVM-RW 0.927 0.781

Random forest-RW 0.852 0.645

Naive Bayes-RW 0.711 0.586

Backpropagation-artificial neural network-RW 0.823 0.692

Logistic regression-RW 0.691 0.531

AUC, area under the curve; AUPR, area under the precision-recall curve;
RW, random walk.
Bold values highlight the result of SVM-RW.
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FIGURE 3 | (A,B) Distribution of GWAS summary dataset and blood eQTL dataset. GWAS, genome-wide association studies; eQTL, expression quantitative trait
locus.

FIGURE 4 | Workflow of SMR on AMD based on GWAS and eQTL datasets. AMD, age-related macular degeneration; GWAS, genome-wide association studies;
eQTL, expression quantitative trait locus; SMR, summary data-based Mendelian randomization.

Frontiers in Genetics | www.frontiersin.org 4 August 2021 | Volume 12 | Article 72659948

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-12-726599 July 30, 2021 Time: 16:49 # 5

Du et al. Genetic Mechanism Revealed of AMD

statistic TMR to test the significance of Exy; TMR can be denoted
as:

TMR = Ê2
xy/var(Êxy)

where TMR=χ2
1.

Based on the suggestion that the power of detecting Exy can be
significantly increased using a two-sample MR analysis (Inoue
and Solon, 2010; Pierce and Burgess, 2013), if GWAS and
eQTL datasets share the same population, we can use unbiased
estimates ε̂zx to replace Ezx. We therefore have

Êxy = Êzy/ε̂zx (3)

where Êzy is the estimate of a SNP effect from a GWAS for a trait,
and ε̂zx is the estimate of a SNP effect on the expression level of

a gene from an eQTL study. The sampling variance of Êxy can be
approximately computed by the Delta method (Lynch and Walsh,
1998) as:

var
(
Êxy
)
≈

E2
zy

ε2
zx

[
var(ε̂zx)

ε2
zx
+

var(Êzy)
E2
zy
−

2cov(ε̂zx, Êzy)
εzxEzy

]
(4)

where cov(ε̂zx, Êzy) is 0. Based on experience, we can replace them
by their estimates in practice, indicated as an approximate χ2 test
statistic of:

TSMR =
Ê2
xy

var
(
Êzy
) ≈ z2

zyz
2
zx

z2
zy + z2

zx
(5)

where zxy is the z statistic of the GWAS and zzx is the z statistic
of the eQTL study.

FIGURE 5 | (A–C) Distribution of p-value calculated by SMR for three GWAS datasets. GWAS, genome-wide association studies; SMR, summary data-based
Mendelian randomization.
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In an MR analysis, Exy is interpreted as the effect of a
phenotype on the gene expression without considering non-
genetic confounders. We first collected GWAS summary data and
blood eQTL data from available online studies. We first collected
a GWAS summary dataset composed of 12,711 advanced AMD
cases and 14,590 controls of European descent from the study
by Han et al. (2020); 707 Caucasian AMD patients and 2,014
controls from the study by Yan et al. (2018); and 14,034
cases, 91,214 controls, and 11 sourced from datasets including
the International AMD Genomics Consortium, IAMDGC, and
UKBB from the study by Winkler et al. (2020). The distribution
of the above datasets is shown in Figures 3A,B.

Then summary data-based Mendelian randomization (SMR)
analysis is implemented on the blood eQTL data and GWAS data;
in this paper, we identified 48 SNPs regulating 45 genes (including
41 coding genes and four non-coding genes) resulting in AMD
susceptibility. The workflow is shown in Figure 4.

For the first GWAS datasets consisting of 12,711 AMD cases
and 14,590 controls from European cohorts, in total we found
3,872 SNPs coexist in both GWAS data and eQTL data; 43
of 3,872 SNPs are significant and regulate 44 genes in gene
expression level. In the second GWAS dataset, we found 714
SNPs coexist in both GWAS dataset and eQTL dataset, with

none significant. In the third GWAS dataset, we found 1,149
SNPs coexist both in GWAS dataset and eQTL dataset, with
one significant regulating one gene in gene expression level.
The distribution of the p-value of SNPs regulating genes tested
by SMR is shown in Figures 5A–C. A Supplementary Table 1
indicates the p-values of significant SNPs regulating genes tested
by SMR; the last line resulted from GWAS dataset 3, and the rest
resulted from GWAS dataset 1.

Case Study
Age-related macular degeneration has been described as a
partly genetic disease (Heiba et al., 1994; Stone et al., 2004).
Recently, a unifying hypothesis is that immune response
gene polymorphisms modulate susceptibility to AMD. Human
leukocyte antigen (HLA) polymorphisms, encoded within
the major histocompatibility complex (MHC), are the most
polymorphic within the human genome. In AMD, researchers
detected intense HLA-DR immunoreactivity in not only soft
but also hard drusen (Mullins et al., 2000). In the study of
Goverdhan et al. (2005), considering the effect of smoking, age,
and body mass index (BMI), HLA alleles B∗4001, DRB1∗1301,
and Cw∗0701 were found to be related to AMD, which is
consistent with our results displayed in Table 1.

FIGURE 6 | Gene interaction network obtained from 45 genes.
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In a study by Gu et al. (2013), they researched P2RX7 and
P2RX4 genes in 744 AMD patients and 557 Caucasian controls
and reached a conclusion that a rare functional haplotype of the
P2RX4 leads to loss of innate phagocytosis and confers increased
risk of AMD. P2RX7 and P2RX4 damage the normal scavenger
function of macrophages and microglia through interaction,
making individuals susceptible to AMD.

Gene Interaction Network Based on AMD
Figure 6 shows the gene interaction network produced from the
results of SMR on AMD. Based on the interaction network, the
HLA class intensively interacted and is significantly associated
with AMD.

The cluster consisting of DDX39B (aka BAT1), PRRC2A
(aka BAT2), and SKIV2L are genes found in the class III
region of the MHC (MHC Class III). These genes encode
RNA-binding proteins with clear roles in post-transcriptional
gene regulation and RNA surveillance. They are likely to
have important functions in immunity and are associated
with autoimmune diseases (Schott and Garcia-Blanco, 2020).
Early work by immunologists have shown that DDX39B
promoted gene expression of anti-inflammatory pathways
(Allcock et al., 2001). Therefore, understanding the genes
interactions may help speculate on the proposed AMD
mechanisms and immunotherapy.

CONCLUSION

We applied the SMR method on AMD to test the gene–AMD
associations based on GWAS summary data and blood eQTL
data. From a total of 27,452 AMD cases and 107,818 controls,
we obtained 44 SNPs regulating 45 genes significantly associated
with AMD. Among the results, HLA class genes have been proved
to be associated with immunologically mediated diseases because
of the critical role of HLA in mediating the immune response, and
genes from MHC Class III are also associated with autoimmune

diseases. These genes may play important roles in causing AMD
susceptibility and need to be further verified with experiments.
Since AMD has been considered as a genetic disease, from this
perspective, it is helpful in understanding the disease from gene-
expression level to speculate about the AMD mechanisms and
pathology and propose future treatment options for AMD.
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The comprehensive discovery of structure variations (SVs) is fundamental to many
genomics studies and high-throughput sequencing has become a common approach
to this task. However, due the limited length, it is still non-trivial to state-of-the-art
tools to accurately align short reads and produce high-quality SV callsets. Pan-genome
provides a novel and promising framework to short read-based SV calling since it
enables to comprehensively integrate known variants to reduce the incompleteness and
bias of single reference to breakthrough the bottlenecks of short read alignments and
provide new evidences to the detection of SVs. However, it is still an open problem
to develop effective computational approaches to fully take the advantage of pan-
genomes. Herein, we propose Pan-genome augmented Structure Variation calling tool
with read Re-alignment (PanSVR), a novel pan-genome-based SV calling approach.
PanSVR uses several tailored methods to implement precise re-alignment for SV-
spanning reads against well-organized pan-genome reference with plenty of known SVs.
PanSVR enables to greatly improve the quality of short read alignments and produce
clear and homogenous SV signatures which facilitate SV calling. Benchmark results on
real sequencing data suggest that PanSVR is able to largely improve the sensitivity of
SV calling than that of state-of-the-art SV callers, especially for the SVs from repeat-rich
regions and/or novel insertions which are difficult to existing tools.

Keywords: structure variation calling, pan-genome, read re-alignment, high-throughput sequencing data, repeat-
rich region variation

INTRODUCTION

Structural variants (SVs) are the genomic variations usually defined as genome rearrangement
longer than 50 base pairs (bps), which alter a large number of bases in human genomes, although
they are fewer than that of single nucleotide variants (SNVs) and short indels. Previous studies have
demonstrated that there are many associations between SVs and human phenotypes and diseases
(Weischenfeldt et al., 2013; Sudmant et al., 2015; Chiang et al., 2017), thus the comprehensive
discovery of SVs in human genomes is fundamental to many genomics studies.

High throughput sequencing (HTS) technologies are rapidly developing and ubiquitously used
in human genome re-sequencing projects. Especially, the short reads produced by mainstream
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platforms like Illumina sequencers play important roles to the
detection of various types of genomic variations including SNVs,
indels and SVs (Collins et al., 2019). Due to the high sequencing
quality, short reads are feasible to call SNVs and indels and
they have demonstrated their ability in many large-scale genomic
studies to build the variation maps of various populations
(Durbin et al., 2010; The 1000 Genomes Project Consortium,
2012; The UK 10K Consortium, 2015; Cong et al., 2021).
However, due to the limited read length, short read had lower
ability in SV calling theoretically and practically, comparing to
that of the data produced by long reads sequencing platforms
such as PacBio or ONT sequencers (Ebert et al., 2020; Beyter
et al., 2021). For example, a previous study (Ebert et al., 2021)
indicated that, on average 9,320 SVs per sample were called with
short reads by three SV calling pipelines, however, this is still less
than half of the number of SVs called by long reads. Many of SV
calling tools designed for TGS long reads [for example sniffles (De
Coster et al., 2019), cuteSV (Jiang et al., 2020), and svim (Heller
and Vingron, 2019, 2020)], have the ability to call over 20,000
SVs per individual.” Therefore, it is important to develop novel
approaches to improve the ability of SV calling with short reads
since the sequencing cost of short reads is still much lower.

Many efforts have been made to develop short read-based
SV calling approaches. Most of state-of-the-art SV callers [for
example delly (Rausch et al., 2012), lumpy (Layer et al., 2014),
manta (Chen et al., 2016), and CNVnator (Abyzov et al.,
2011)] extract one or multiple kinds of signatures from read
alignments, such as discordant read pair, split read, read depth,
and local assembly, as evidences to detect SVs. However, all
these kinds of signatures could be less effective in practice due
to the shortcomings of read aligners which it is still non-trivial
to produce the accurate and confident alignments around the
breakpoints of SVs (Zook et al., 2020). Most of state-of-the-
art read aligners, such as BWA-MEM (Li, 2013), NovoAlign,
Bowtie2 (Langmead and Salzberg, 2012), and deBGA (Liu et al.,
2016), use seed-and-extension approach. They usually neglect the
highly repetitive seeds occurring many times in the reference,
however, this could map the reads from repeat-rich regions
incorrectly and further affect SV calling. Meanwhile, reads from
long novel insertions cannot be correctly aligned in theory, since
the abundance of the inserted sequences in reference. Thus, it
could extract very few evidences for those insertion events from
the alignment results.

With the increasing numbers of sequences samples and known
genomic variations (Chaisson et al., 2019), pan-genome-based
methods are promising to break through the bottlenecks to the
alignment of short reads and provide new opportunities to solve
the problems in SV calling. Pan-genome is the ensemble of all
the genomes from a species (Sherman and Salzberg, 2020), and
in practice it is usually composed by the genomes of multiple
samples of the same species or a reference genome plus a set
of genomic variations of a population. It has advantages to use
a pan-genomes as reference instead of a single genome in read
alignment since pan-genome enables to integrate much more
reference information to help the alignment of SV-spanning
reads. For example, with the integration of known SVs, pan-
genome has less bias during the seeding process, so that aligners

can locate reads to SV regions with more confidence. Moreover,
the sequences of integrated SVs also help the aligners to
implement full-length read alignments with high scores instead of
the chimeric alignments with plenty of clippings, split alignments
and discordant pairs under the circumstance of a single reference.
Further, the alignments between reads and integrated SVs can
also be used as the evidences of SVs in donor genomes.

However, it is still an open problem to well-organize pan-
genome and take its advantage to implement effective and
efficient read alignment and SV calling. Efforts have been made
to the construction and organization of pan-genome (Sirén
et al., 2011, 2020a; Paten et al., 2018; Rakocevic et al., 2019).
Moreover, several read alignment and genotyping approaches
have been proposed. VG (Garrison et al., 2018; Hickey et al.,
2020), giraffe (Sirén et al., 2020b), minigraph (Li et al., 2020) are
designed for aligning short reads and GraphAligner (Rautiainen
and Marschall, 2020) is designed for aligning long reads. They
show higher ability to read alignment and genotyping comparing
to the traditional pipelines using single reference. However,
most of them are not tailored to SV calling. Especially, these
approaches still do not fully consider the divergences between
known SVs and the SVs in donor genome, so that they could still
have lowered ability to handle newly sequenced samples. Thus,
novel computational approaches are still on demand. Moreover,
the extraction and analysis of SV signatures is largely different
between traditional and pan-genome-based approaches, and they
could also be complementary to each other. However, it is also
another open problem to integrate various approaches to achieve
highest yields in SV calling tasks.

Herein, we propose a novel approach, i.e., Pan-genome
augmented Structure Variation calling tool with read Re-
alignment (PanSVR). PanSVR focuses to well-handle the
potential SV-spanning reads under pan-genome framework to
implement more sensitive SV calling. Mainly, it collects known
SV information to build pan-genome SV reference and use it
as anchors to precisely re-align chimeric reads and find the
evidences of SVs with the improved alignments of the reads
against pan-genome. Benchmark results on real sequencing data
suggest that PanSVR enable to largely improve the sensitivity of
SV calling than that of state-of-the-art SV callers, especially for
the SVs from repeat-rich regions and/or novel insertions which
are difficult to existing tools.

MATERIALS AND METHODS

Overview of PanSVR Approach
The motivation of PanSVR is to take the advantages of known
SVs as anchors to improve the sensitivity and accuracy of the
alignment of SV-spanning reads to breakthrough the bottleneck
of commonly used short read aligners. Moreover, with the
improved read alignments, more homogeneous SV signatures
can be captured and higher numbers of supporting reads can be
found to facilitate the detection of SVs.

Pan-genome augmented structure variation calling tool with
read re-alignment uses several tailored methods to implement
this approach. Mainly, it is composed by two parts. Firstly,
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PanSVR integrates known SVs into commonly used reference
genome to build an augmented pan-genome SV reference.
The SV reference consists of the sequences around SV sites
including the sequences of novel insertions which do not exist
in the original reference. This reference is used as anchors to
provide additional information for read aligners to improve the
reads having clippings, split alignments or discordantly placed
which are potentially SV-spanning reads. Secondly, PanSVR
collects potential SV-spanning reads and employs short read
aligner to re-align those reads against the SV reference. The
newly supplied alignments have fewer large divergences such
as clippings and split-alignments but more homogenous and
confident alignments with the anchors, i.e., the sequences around
SV sites. Thus, more homogeneous SV evidences can be collected
by PanSVR to further use them to infer accurate SV events.
Mainly, PanSVR approach have three main steps as following
(Figure 1).

(1) Given a set of known SV events (in VCF format), PanSVR
converts each of them as an anchor sequence. The generated
anchor sequences are then concatenated to build the SV
reference and further being indexed by a de Bruijn graph-
based genome indexing (RdBG-index) approach (Liu et al.,
2016).

(2) Given a set of aligned sequencing reads (in BAM/CRAM
format), PanSVR extract the reads having SV signatures
(such as clippings and split alignments) and re-align them
against the SV reference with the help of RdBG-index and a
tailored realignment method. The results are filtered based
on the new and original alignments of the same reads and
PanSVR clusters them based on their mapping coordinates.

(3) PanSVR separately assemble the reads for all the clusters
to generate consensus sequences. Each of the generated
sequence is precisely aligned to local region around SV sites
in the original reference. The alignment results are used as
evidences to infer SVs.

The Construction of SV Reference
Initially, an SV related pan-genome reference (“SV reference”)
is built from known SVs. Using a reference and a set of SVs
records in VCF format as inputs, PanSVR extracts the sequences
around the breakpoints of known SVs and stores them in a
FASTA format file. It is also worth noting that the current version
of PanSVR accepts only one VCF file to build SV reference.
However, SV merging tools like SURVIVOR (Jeffares et al., 2017)
are feasible to merge multiple SV sets before the construction of
SV reference. By default, the sequences of 250 bp flanking SV
breakpoints are extracted to construct SV reference as they are
long enough to align the short reads produced by mainstream
platforms. In details, PanSVR constructs SV reference by the
following methods:

(1) For each of the deletions, genomic sequences upstream the
first breakpoint and downstream the second breakpoint
are directly concatenated together to make the SV anchor
sequence;

(2) For each of the insertions and duplications, the inserted
(or duplicated) sequences recorded in the ALT field of VCF

file are extracted, and the SV anchor sequence is produced
by concatenating the local reference sequence upstream the
breakpoint, the inserted sequences and the local reference
sequence downstream the breakpoint.

Structure variation reference is generated by concatenating all
the generated SV anchor sequences. Further, PanSVR employs a
de Bruijn graph-based indexing approach to index SV reference
(the default value of k-mer is 22 bp) for the realignment of
potential SV-spanning reads.

The Realignment and Clustering of
Potential SV-Spanning Reads
Pan-genome augmented structure variation calling tool
with read re-alignment recognizes the reads potentially
spanning SV sites according to their alignments against
original reference, and realigns them against the SV reference.
Especially, the reads are handled by two steps, i.e., single
end read mapping and mate pairing. Further, the realigned
reads are clustered by their coordinates and SV signals
for SV inference. The method is implemented in four
sub-steps as following.

Chimeric Reads Extraction
Reads with chimeric alignments are initially extracted from
original SAM/BAM/CRAM files and stored as FASTQ format.
Pair-end reads are re-paired by their names if the input
file is sorted BAM/CRAM file. In details, PanSVR rejects
the read-pairs being perfectly aligned to the reference, i.e.,
no more than one mismatch for any end in a read-pair
and other reads are extracted. This is a restrict condition
since SNPs and indel are also useful for SV detection if
the reads are mapped to highly repetitive regions, such as
VNTRs or STRs. The alignment information related to SV
calling is extracted, including alignment position, alignment
score, CIGAR, MAPQ, and ISIZE if available. The information
is further recorded in the comment field of the converted
FASTQ file.

Single-End Read Realignment
The extracted reads are re-aligned to SV reference using
a seeding-chaining-and-extension approach (Figure 2). To
reduce computational cost, PanSVR selects unique k-mers in
a read as seeds (default value of k: 20), unlike traditional
seeding methods. This design is to handle repetitive k-mers
within STR or VNTR regions which could appear hundreds
and thousands of times in reference and consume plenty
of time during the seeding and chaining process. Other
than unique seeds, the seeds from repetitive regions are
also employed, if they are placed at either end of the
reads (Figure 2A).

A two-phase chaining method is used for chaining the seeds.
In the first phase, seeds are chained within the unitigs of RdBG-
index of SV reference to generate longer match blocks from the
shorter seeds. The match blocks are then mapped back to original
reference as long seeds. If a match block is highly repetitive, i.e., it
can be mapped to over 1000 genomic positions, 1000 positions
are randomly selected for further processing. In the second
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FIGURE 1 | Overview of PanSVR SV calling process. Three main steps of PanSVR SV calling process. (A) In the first step, SV reference is built from known SVs; (B)
In the second step, read signals are extracted from original BAM files and mapped to the SV reference; (C) Finally, read signals clustered around SV breakpoints are
assembled and SV results generated from consensus strings.
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FIGURE 2 | The seeding-chaining-and-extension in the alignment step. (A) The seeds generated in “unique region” of reads are located in reference using deBGA
index. (B) Seeds within UNITIG of deBGA index will be greedy chained to longer blocks, then those blocks will be mapped to reference and chained again using
SDP. (C) Sequence between chained blocks will be aligned using NW algorithm.

phase, the long seeds are chained by using a sparse dynamic
programming (SDP)-based method with following functions:

f
(
LSp

)
= max

{
max
p>q≥1

{
f
(
LSq

)
+ L

(
LSpq

)
− θ

(
p, q

)}
, L

(
LSp

)}
(1)

θ
(
p, q

)
= 0.125×

((
LSRp − LSRq

)
−

(
LSrp − LSrq

))
+ 3 (2)

where LSp and LSq are the p-th and q-th long seeds (sorted by
coordinates in reference); L

(
LSp

)
is the length of long seed p

and L
(
LSpq

)
is the length of LSp (only consider the part that not

overlap with LSq). LSrp is the position of LSp on the reference,
and LSrp is the position of LSp on the read; f

(
LSp

)
is the scoring

function for the LSp, and θ
(
p, q

)
is the penalty score for the two

chained long seeds LSp and LSq .
In extension step, a traditional Smith-Waterman alignment is

implemented for the top 12 seed chains with highest scores using
ksw2 library (Li, 2018; Suzuki and Kasahara, 2018). The results
are recorded in a list as single end alignment.
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Mate Read Pairing
For a read pair, PanSVR uses the single end alignments for
the both two ends of a read pair and their original alignments
to compose a concordant pair-end alignment and compute the
score of the refined alignment. Since the coordinates in the SV
reference are not always same to the coordinates in original
reference, the two coordinates of the original alignments could
be divided to two different values that one of them is not changed
and the other is adjusted by the length of the corresponding SV.
Both two the values can be used as its coordinates. The score of a
read pair is defined as the sum of alignment scores for both ends.
When the two ends in a pairing condition have right directions
and the ISIZE is within 1.5 times standard deviations of mean
ISIZE, an additional score is added. The final score of a read pair
is calculated using the following functions:

S (RPi) = max
Ni > p ≥ 1
Mi > q ≥ 1

{
s
(
R1p

)
+ s

(
R2q

)
+ θ

(
p, q

)}
(3)

θ
(
p, q

)
=

{
K if R1p paied with R2q properly
0 otherwise

(4)

where S (RPi) is the final score of the i-th read pair; Ni is the
number of single end alignment results for the first read in
read pair and Mi is the number for results for the second read;
s
(
R1p

)
is the score of the p-th single end alignment result for

first read in a read pair, and s
(
R2q

)
is the score of the q-th

single end alignment result for the second read in that read pair;
θ
(
p, q

)
is the additional score be added when the two results

pairing properly.
All pairing conditions are sorted by the scores and the one

with the highest score is output as paired alignment result. It is
also worth noting that the alignment result is discarded and the
corresponding read-pair is recorded as unmapped if its alignment
result (or one of the multiple results with equal scores) is not
made by PanSVR but the original aligner. All the remaining
alignment results are stored in SAM format. An additional tag
that records the ID of SV anchor sequence is added in the SAM
optional field, and it will be used to cluster the read in the
following steps.

Read Clustering
All the SAM records of the improved alignments are sort by
their positions in the SV reference. Since there could be multiple
known SVs in highly repetitive regions and some of various
known SVs could overlap with each other, the chimeric reads
could be mistakenly assigned during read clustering. To address
this issue, PanSVR clusters nearby known SVs as a group and
only keeps the top two SVs with highest number of supporting
reads and the reads assigned to other nearby SVs are re-assigned
to them. Herein, the SVs are clustered in a greedy manner,
i.e., an SV is added to a cluster if its upstream breakpoint is
within 50 bp of the downstream border of the cluster, and
the cluster expends until no nearby SV can be added into it.
For a cluster, PanSVR separately counts the numbers of the
reads being aligned to the SVs and uses these numbers as the
scores of the SVs. For the reads not in the top two clusters,

each of them is re-assigned to one of the two SVs by a simple
k-mer counting method. That is, PanSVR counts the numbers
of identical k-mers between a read and the anchor sequences of
the two SVs and re-assign the read to the SV with more identical
k-mers. If the two SVs have equally high numbers, the read is
randomly assigned.

The Assembly of Clustered Read and the
Inference of SVs
Pan-genome augmented structure variation calling tool with read
re-alignment implement an assembly for each of the clusters
to produce the consensus sequence of the reads. The generated
sequences are then aligned to the SV reference and PanSVR
collects SV evidences from the alignment results. The method is
implemented in four sub-steps as following.

Read Preprocessing
Pan-genome augmented structure variation calling tool with
read re-alignment does a filtration on the reads before assembly
with two rules to reduce false positives. Firstly, a proportion
of reads with low scores are filtered out from the SV reference
regions having extremely high read coverages. More precisely,
PanSVR partitions a given reference region into 64 bp blocks and
calculates the read coverages of the blocks. If a block has 1.5 times
or higher read depth than average read depth, the reads having
low scores in the block are discarded. Secondly, the reads are
filtered by mapping quality. That is, for a given cluster, if over
80% of the reads have MAPQ = 0 for their original alignments and
the scores of their improved alignments produced by PanSVR are
also close to that, the read cluster is considered as an uncertain
cluster and being discarded.

Assembly of Clustered Reads
Pan-genome augmented structure variation calling tool with read
re-alignment uses a modified version of the assembly module of
MANTA (Chen et al., 2016) to implement read assembly for all
the clusters. Moreover, if a cluster belongs to a long SV region, i.e.,
the length of the corresponding SV is over 500 bp, the SV region
is partitioned into 500 bp blocks and the assembly is separately
implemented for the blocks. When the employed assembler picks
up a read to extend the contig, it records at which position the
read joins in the assembling contig. This information guides
the realignment of the reads to the contig after assembly. Only
mismatches are allowed in the realignment of reads to contig.
Read coverage information on consensus sequence is calculated
based on the realignment results.

Alignment of Consensus Sequence
For a consensus sequence, PanSVR detects some candidate
positions in SV reference to implement local alignment at first.
These candidate positions are from the mapping positions of
the supporting reads in SV reference with some additional
filtrations. Firstly, if all the candidate positions are out of range,
the consensus sequence is discarded. Secondly, at least one read
used in the generation of the consensus sequence should have a
realignment score higher than that or its original alignment. After
the filtration, a Needleman-Wunsch alignment is implemented
for each of the candidate positions. The mismatches and indels
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between the consensus sequence and local sequence in SV
reference is recorded at each position of SV reference. Moreover,
read depths along the consensus sequences are also stored by all
the corresponding coordinates in SV reference.

SV Calling and Genotyping
Pan-genome augmented structure variation calling tool with
read re-alignment infers SVs from the alignment of consensus
sequences. A candidate SV other than novel insertions implied
by a consensus sequence is inferred if it has high enough depth at
both the two breakpoints. Meanwhile, for novel insertions, the
inserted sequence should also have high depth. Moreover, the
positions of breakpoints and the inserted sequences are adjusted
by the variations to make a more accurate inference. After the
adjustment, SVs longer than 50 bp are kept and further genotyped
with the coverage information.

RESULTS

Implementation of Benchmark
To assess the ability of PanSVR, we composed an SV reference
with a set of high-quality SVs at first. Mainly, the SVs are derived
from PacBio CCS datasets of 16 different samples. Thirteen of
them are from Human Genome Structural Variation Consortium
(HGSVC) database where the datasets are phased assembly of
CCS reads. There are two haplotypes of for each of the samples,
and we aligned those genomes against human reference genome
(version: hs37d5) by minimap2 and input the alignments into
SVIM-asm (Heller and Vingron, 2019, 2020) to produce SV
callsets. Moreover, we also downloaded three SV callsets of
Genome in a Bottle (GIAB) Trio samples HG002, HG003, and
HG004. These callsets are produced by GIAB consortium from
PacBio CCS datasets using PBSV pipeline. SVs from different
samples were merged by the following rule: two SVs were
merged if they were of the same type and their breakpoints were
within 50 bps. The merge operation was implemented by using
SURVIVOR (Jeffares et al., 2017).

We benchmarked PanSVR on three real sequencing datasets
produced by Illumina platforms from various samples (i.e.,
HG00512 and HG002) with various read lengths (i.e., 126, 148,
and 250 bp). Refer to Supplementary Table 2 for more detailed
information. Two state-of-the-art short read-based SV callers,
i.e., Manta and Delly, were also implemented on the same datasets
for comparison. During the benchmark, leave-one-out strategy
was applied for PanSVR, i.e., the SVs of the corresponding sample
was removed from the known SV sets beforehand so that the
constructed SV reference is blind to the benchmarked dataset.
The reads were aligned against human reference hs37d5 by BWA-
MEM with default settings. Manta and Delly directly detected SVs
from the read alignments.

Results on Real Sequencing Datasets
The sensitivity, accuracy and F1-score of the benchmarked SV
callers were assessed by using the “merge” and “genComp”
commands of SURVIVOR. All the benchmarks were carried out
on an Ubuntu Linux server with one AMD 3950X CPU (32 cores)

and 256 GB RAM. All the SV callers were run in using 8 CPU
threads. Mainly, three issues were observed from the results.

PanSVR Has Good SV Calling Yields
For all the datasets, PanSVR obviously outperformed Manta
and Delly for F1-scores on both insertions and deletions
(Figure 3). We investigated the intermediate results of PanSVR
and found that the SV reference greatly helped to improve
the alignment of SV-spanning reads. Although the known
SV sets cannot cover all the SVs of the testing samples, the
anchor sequences of the SV reference enable to rescue many
reads which cannot be correctly and/or confidently aligned
with the original reference. This feature largely improves the
sensitivity of SV calling, especially for large insertions. For all
the datasets, the numbers of insertions detected by PanSVR are
nearly two times to that of Manta. Moreover, Delly showed a
relatively poor ability to detect insertions, i.e., it only called
a few hundreds of insertions for each sample and only a few
of them were true positive. It is also worth noting that all
the callers have relatively good results on deletions since short
reads spanning deletions are much easier to be aligned and the
SV signatures of short reads around deletion events, such as
discordant read pairs and split alignments, are less complicated
and more homogeneous.

As for the influence of read length on the SV calling ability,
most of time, longer reads do help to achieve better SV calling
results. For Delly, the F1 scores increased with the increase of
read length and reach best value on the 250 bp dataset, while
PanSVR and manta achieved best F1 scores on 148 bp dataset.
We investigated the details of the results and found that the large
numbers of low-quality bases at the tails of the 250 bp reads
affected the local assembly operation of PanSVR.

PanSVR Has Good Ability to Call Long Insertions
It is a still non-trivial task for state-of-the-art short read-based
callers to detect long insertions due to two issues. First, when
an insertion is longer than the read length, one or two ends of
a read pair around the insertion could be unmapped. Second, the
length of insertion cannot be easily estimated and assembling all
reads around and within an insertion is usually hard. Based on
pre-built SV reference, PanSVR enable to detect long insertions
with the help of SV anchor sequences that the reads can be
effectively realigned to imply plenty of SV signatures. Moreover,
PanSVR also has the ability to detect the SNVs and indels
within the inserted strings of the sequenced sample from the
realignments of the reads, so that the inserted sequences of donor
samples can be correctly recovered even if they are divergent to
the anchor sequences of SV reference. As showed in Figure 4,
there are only 48 > 500 bp true positive insertions in the
callset of Manta, and the corresponding number for PanSVR
is 917. However, we also observed that PanSVR has lowered
ability to handle ALU insertions (as show in Figure 4A which
the length distribution of the SVs detected by PanSVR has
no significant peak around 300 bp). This is mainly due to
that ALUs are extremely repetitive in human reference genome
and the average mapping quality of the reads being aligned to
ALU regions are usually close to 0. PanSVR filters out such
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FIGURE 3 | The sensitivity, precision and F1 score of PanSVR, manta and delly on three NGS datasets. (A,D,G) F1 score, sensitivity and accuracy of SV calling
results of PanSVR, manta and delly applied on Illumina 126 × 2 dataset; (B,E,H) The SV calling results of those tools on Illumina 148 × 2 dataset; (C,F,I) The SV
calling results of those tools on Illumina 250 × 2 dataset.

regions according to the low MAPQ so that ALU insertions
could be missed.

The Ability of PanSVR Could Be Complementary to
State-of-the-Art SV Callers
Most of existing SV callers use chimeric alignments such as split
reads, discordant read pair and large clippings as SV signatures.
PanSVR does not rely on those kinds of signatures but use a
different approach, so that it could produce higher-quality SV
callsets by merging the results of PanSVR and other tools. We
merged the results of PanSVR and Manta using SURVIVOR by
various parameters. Firstly, we generated the union SV calling set
of PanSVR and Manta. The SVs are treated as one when their
breakpoints are distanced less than 50 bp. For all the samples
and SV types, the merged SV callset achieved higher sensitivities

and F1-scores than the callsets separately produced by PanSVR
and Manta (Supplementary Table 3), although the precisions
could decrease. For example, the merged callset of the 148 bp
HG002 dataset called 12272 true positive SVs with 77.4% true
positive rate, while PanSVR and Manta called 11540 and 6980
true positive SVs, respectively. We also tried to generate an
intersection SV set from the results of the two tools. It reached
more than 96% true positive rate in all three datasets, however,
the F1-score slightly decreased comparing to that of Manta only
(Supplementary Table 4).

We also assessed the speed and memory footprint of PanSVR.
It takes less than 2.7 h to process all steps using 8 threads for a
60x coverage dataset. This is slower than Manta and Delly, but
still affordable. This is mainly due to the realignment procedure
of the approach which is more computation-intensive than that
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FIGURE 4 | SV length distribution of insertions from HG00512 126 × 2 sample. (A) Insertion length distribution of PanSVR true positive set (917 insertions longer
than 500 bp); (B) Insertion length distribution of manta true positive set (48 insertions longer than 500 bp); (C) Insertion length distribution of CCS SV set (2,660
insertions longer than 500 bp).

of directly analyzing the read alignment results like most of short
read-based SV callers do. Moreover, the time cost of the assembly
of clustered reads is also non-neglectable. However, PanSVR still
has good scalability since all the steps can be run in a parallel
way. The memory footprint of the PanSVR is about 3.5 GB in the
benchmark where the memory is mainly used by the RdBG-index
of SV reference in the read realignment step.

DISCUSSION

Previous studies (Hickey et al., 2020; Sirén et al., 2020b) have
demonstrated that ability of pan-genomes to help the alignment
of short reads and SNP/INDEL calling. In this study, we
introduce a pan-genome augmented read realignment and SV
calling tool, PanSVR. Results on real NGS datasets demonstrate
that it is feasible to use pan-genome based realignment approach
to realign short reads to break through the bottleneck of short
read alignment and further improve SV calling.

Mainly, we found that two main categories of SVs can be better
handled with the pan-genome-based method. Firstly, the SVs in
tandem repeat regions can be recused by PanSVR. This is due
to that SNPs and INDELs within VNTR or STR can be used to
correct short read alignments around those regions. A case is
shown in Supplementary Figure 1 that a 70 bp insertion around
chr1:1913259 were successfully called by PanSVR, however, no
other tool is able to detect them in the benchmark. We checked
alignment results around those regions manually and found that
the spanning reads can be fully mapped to that region by BWA-
MEM, but with a number of mismatches and indels. The lower
quality alignments affect the callers and the SVs are recognized as
multiple SNP/indels. However, these reads can be re-aligned with

exact matches to the SV reference by PanSVR and evidences can
be collected to call the SVs confidently.

Secondly, the results indicated that pan-genome-based
method greatly help to improve recall of long insertions which
is surprising since additional reference information is added. It
is shown that PanSVR has a nearly 20 times higher number of
long insertion (>500 bp) calls than that of Manta. This is very
complementary to the state-of-the-art SV calling approaches.
A case is shown in Supplementary Figure 2 that a 955 bp
insertion at chr2:235423389, which cannot be called by other
callers but PanSVR. The read alignments show that there are
few split-read and discordant read pair signals around the
SV breakpoints, so that the SVs are hard to detect, however,
the realignment against the SV reference recused most of SV-
spanning reads and provided homogeneous SV signatures.

The results also suggest that it is also helpful to merge the
SV callsets by multiple callers to further increase sensitivity.
For example, the sensitivity increased by 3.4% for the 148 bp
dataset comparing to that of the original callset of PanSVR.
This is consistent with previous studies (Chaisson et al., 2019)
as multiple tools could be complementary to each other by
various kinds of signatures and models. However, it is also worth
noting that the simple union of the callsets of various tools could
introduce more false positives, so that more advanced approaches
for the filtration and prioritization of SV calls are still needed.

There is still a huge gap for the sensitivity of SV calling
between short and long sequencing reads, although pan-genome
is used. There could be caused by two issues.

Firstly, some of the SVs in donor genomes are individually
specific and their breakpoints are far away from known SVs or
even not related to them at all. In this situation, the pan-genome-
based method cannot provide much help and the detection
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of SV only depends on the alignments of the reads against
original reference. A case is shown in Supplementary Figure 3
that an 87 bp insertion in chr1:2213294 is unique for
HG002 sample. It was not in the SV reference during the
leave-one-out benchmark and PanSVR failed. However, with
the many on-going population-scale genomics studies, it is
promising to build more comprehensive SV databases. For
example, a recent study (Beyter et al., 2021) has built an SV
database of Iceland population with 133,886 reliably genotyped
SVs and such SV databases could be available for various
populations with the ubiquitous application of high-throughput
sequencing technologies.

Secondly, the limited length of short reads is still a bottleneck
even if under the circumstance of pan-genome. Especially, this
could cause lower coverage to correct anchors in SV reference
for PanSVR. A case is shown in Supplementary Figure 4 that
there is nearly no read being aligned to a 103 bp insertion in
chr1:1855662. The inserted sequence is highly repetitive, i.e.,
ACCACCCCCCAGCTCACAGCCCACCCCCCCATCTCACCG
CCCAGCCCCCCCATCTCACCAGCTGCCCCCTCCCGGGCA
CACCGCCCACCCCCCCATCTCACCA. Such repeats can still
not be spanned by short reads and the reads are usually mapped
to other copies of the sequences with nearly perfect alignments,
i.e., exactly matched without mismatch or indel. In this situation,
the SV is non-trivial to be solved. Moreover, the results also
indicated that PanSVR could make false positives in some cases.
We checked the SVs mistakenly called by PanSVR and found that
they were mainly in repeat regions. Some consensus sequences
were not long enough to across the repeat region, either. Wrong
alignment of them might cause wrong SV calling.

Pan-genome-based SV calling approach is promising to the
comprehensive discovery of individual genomes, especially for
short read datasets. With the supplement of additional SV
information, it enables to produce higher-quality alignments and
help to provide more evidences to make SV calls with confidence.

However, there are still open problems to the use of known SVs,
moreover, some of SVs can still not solved with the available
SV databases. These are also important future works to us to
further improve PanSVR approach. With the higher sensitivity
and yield, we believe that PanSVR has the potential to many
genomics studies.
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Gene expression and methylation are critical biological processes for cells, and how

to integrate these heterogeneous data has been extensively investigated, which is the

foundation for revealing the underlying patterns of cancers. The vast majority of the

current algorithms fuse gene methylation and expression into a network, failing to fully

explore the relations and heterogeneity of them. To resolve these problems, in this study

we define the epigenetic modules as a gene set whose members are co-methylated and

co-expressed. To address the heterogeneity of data, we construct gene co-expression

and co-methylation networks, respectively. In this case, the epigenetic module is

characterized as a common module in multiple networks. Then, a non-negative matrix

factorization-based algorithm that jointly clusters the co-expression and co-methylation

networks is proposed for discovering the epigenetic modules (called Ep-jNMF). Ep-jNMF

is more accurate than the baselines on the artificial data. Moreover, Ep-jNMF identifies

more biologically meaningful modules. And the modules can predict the subtypes of

cancers. These results indicate that Ep-jNMF is efficient for the integration of expression

and methylation data.

Keywords: DNA methylation, network biology, functional epigenetic module, non-negative matrix factorization,

heterogeneous network

1. INTRODUCTION

DNA methylation modifies the cytosine base associating with cellular differentiation and cell
development (Suzuki and Bird, 2008; Deaton and Bird, 2011; Teschendorff et al., 2012; Ziller et al.,
2013). For example, DNA methylation regulates the expression of genes by decreasing the affinity
of transcription factors (Bird and Wolffe, 1999). Furthermore, abberations of methylation directly
result in oncogenesis of cancers (Varley et al., 2013). For instance, the methylation of CpG islands
(CGIs) plays a critical role in renal cell cancers (Herman et al., 1994), breast cancer (Fleischer et al.,
2014), and colorectal cancer (Hinoue et al., 2012).

Thus, it is promising to mine methylation patterns, such as the methylated CpG islands and
epigenetic modules, because they are the foundation for revealing the mechanisms of cancers.
For instance, dynamics of methylation of tissues is critical for the development of cells. The
methylation patterns of genes closely associate with survival time of patients (Fleischer et al., 2014),
and similarity of methylation profiles is also associated with cancer subtypes (West et al., 2013;
Gavaert et al., 2015).
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These efforts are insufficient to fully exploit the methylation
patters because they only make use of methylation data, ignoring
the regulation of methylation (Teschendorff and Relton, 2018;
West et al., 2018). Since methylation directly regulates the
expression of genes, it is natural to identify the epigenetic
modules by integrating them. However, it is non-trivial for this
issues largely due to two reasons. First, the pre-requisite of
the integration of methylation and expression is the matched
samples. Second, no cut-off definition of epigenetic modules is
available because the regulation strategies vary. For instance, in
most case, methylation in promoters negatively regulates the
expression, whereas the positive regulation also exists (Varley
et al., 2013).

For the first concern, the world consortia make use of the
next-generation sequencing technologies to generate sample-
matched data for cancers, which enables the possibility to
exploit epigenetic modules. For instance, The Cancer Genome
Atlas (TCGA)1 produces genomic data for various cancers,
covering mutation, transcription, methylation, etc. Furthermore,
Encyclopedia of DNA Elements (ENCODE)2 generate matched
samples for cell lines and tissues.

For the second concern, even though it is intuitive to
define epigenetic module for methylation profiles and networks
by simply extending the traditional clustering problem, it is
difficult to present a satisfied definition with heterogeneous
data. The available algorithms for the integration of methylation
and expression by either using a integrated network and
multiple networks. Algorithms in the first class construct an
integrated network, where the correlation between methylation
and expression are integrate edge weight. Then, the epigenetic
module in the integrated network is defined as a dense
subgraph. For example, the FEM algorithm (Jiao et al.,
2014) addresses this problem with the assumption that DNA
methylation and expression is anti-correlated, where hot-spot
and methylated modules are successfully identified. However,
the recent evidence indicates that the correlation between
methylation and expression could be both positive and negative
(Varley et al., 2013), implying that the integrated network-
based approaches are not precise enough to characterize the
epigenetic modules.

To attack this issue, efforts have been devoted by using
multiple networks to identify graph patterns. For example, in
our previous study (Ma et al., 2014), dynamic modules are
extracted from multiple networks by exploiting the temporality
of cancer progression. Driver genes of cancers can be identified
by exploiting the relations of various layers (Cantini et al., 2015),
implying the importance and effectiveness of multiple networks.
Clustering multiple networks aims to identify modules in
networks, which can be achieved by extending measurement for
single networks (Didier et al., 2015). These results demonstrate
that multiple networks are more accurate and generalized than
single networks in terms of characterizing biological patterns.
In our previous study (Ma et al., 2017), the epigenetic module
is a group of co-methylated and co-expressed genes in multiple

1https://cancergenome.nih.gov/
2https://www.encodeproject.org/

networks, and then the epigenetic modules are discovered by
using the M-Module algorithm (Ma et al., 2014). The success
of the multiple network-based approaches demonstrates that the
multiple networks model is much better than the integrated
network base method.

Even though multiple network-based algorithms have been
devoted to the epigenetic module discovery, many unsolved
problems exit. Particularly, the quantification of modules in
multiple networks is fundamental, and how to further improve
performance of algorithms for epigenetic modules. In the
present study, we discuss these two issues. To identify the
epigenetic modules in the co-methylation and co-expression
networks, the key problem is how to characterize the topological
structure of modules in multiple networks. Then, we define the
epigenetic module as the common module in multiple networks.
To discover the functional epigenetic modules in multiple
networks, a novel non-negative matrix factorization algorithm
for epigenetic module (Ep-jNMF) is proposed, which jointly
analyzes the gene co-expression and co-methylation networks
(Figure 1). It first constructs the two layer networks, and
extracts features usingmatrix factorization, where the topological
structure is regularized into the objective function. Extensive
experiments are performed, where Ep-jNMF achieves the best
performance on the artificial networks. Moreover, it identifies
more biological meaningful modules than the baselines, and
some of obtained modules precisely predict the survival time
of patients.

The rest of this study is organized as follows: section 2 presents
the mathematical model and algorithm. The experiments and
conclusion are depicted in sections 3 and 4, respectively.

2. METHODS

The model and procedure of Ep-jNMF are depicted in
this section.

2.1. Notations
A network (graph) is denoted by G = (V ,E) with vertex set
V and edge set E. Multiple network G = {G1,G2, . . . ,GM} is a
sequence of networks, where Gm is the m-th snapshot. In this
study, the vertex set of G is fixed, i.e.,Gm = (V ,Em). The adjacent
matrix of G is a tensor W = (wijm)n×n×M , where n = |V| and
wijm is the weight on the edge (vi, vj) in Gm. Actually, W =

[W1,W2, . . . ,WM], where Wm = (wijm)n×n is the adjacency
matrix of Gm. In this study, the attached subscript m represents
the value of the variable at conditionm.

Vertex degree is the sum of weights on the incident edges,
i.e., dim =

∑

j wijm. Betweenness is a typical centrality (Freeman,

1979; Brandes, 2001), which is defined as

betweennessm(v) =
∑

vi 6=vj ,vi 6=v,vj 6=v

givj

gij
,

where givj and gij are the number of the shortest paths between
vi and vj passing, and without passing v, respectively. Given a
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FIGURE 1 | Overview of Ep-jNMF. It is composed of network construction, matrix factorization, and module discovery, where network construction obtains the gene

co-expression and co-methylation networks, and the matrix decomposition extracts features.

FIGURE 2 | A schematic example of common module, which is

well-connected in both networks.

group of genes, denoted by C, the density of C in network Gm

is defined as

Densitym(C) =
2|Em(C)|

|C|(|C| − 1)
,

where Em(C) is the edge set of the subgraph induced by C in
network Gm, i.e., Em(C) = {(vi, vj)|vi ∈ C, vj ∈ C, (vi, vj) ∈ Em}.

In G, a module is a group of vertices with more edges within
it, and fewer ones outside it. In G, the common module is a
group of vertices whose connectivity is strong in all snapshots.
For example, the module consisting of {1, 2, . . . , 6} in Figure 2 is
well-connected in both networks. In this study, we aim to obtain
the common modules in the co-expression and co-methylation
networks. The common module detection corresponds to a hard
partitioning {C1,C2, . . . ,Ck} (denoted by {Cl}

k
l=1

) such that Cl1 ∩

Cl2 = ∅ if l1 6= l2 and V =
∑

l Cl, where k is the number
of modules.

2.2. Mathematical Model
The quantification of connectivity of common modules in
multiple networks is fundamental. Typical measurements,
including the entropy function (Ma et al., 2014), modularity
(Newman and Girvan, 2004), and modularity density (Li et al.,
2008), are proposed. However, these strategies are inapplicable
for the multiple networks. Here, we extend the modularity
density D (Li et al., 2008) since it tolerates the resolution limit
problem at some extent. Specifically, connectivity of module Cl

in Gm is defined as

Dm(Cl) =
1

∑

vi∈Cl
dim

(

L(Cl,Cl)− L(Cl,Cl)
)

, (1)

where L(Cl,Cl) =
∑

vi∈Cl ,vj∈Cl
wijm and Cl = V\Cl. Ideally, we

maximize the connectivity of module Cl in all snapshots, i.e.,







maxD1({Cl}),
· · ·

maxDM({Cl}).
(2)

However, it is difficult to reach maximal value for each network.
Therefore, we transform themulti-objective function in Equation
(2) into a single objective function using the geometric mean of
the connectivity, i.e.,

D(Cl) = (
∏

m

Dm(Cl))
1/M . (3)

The underlying assumption is that a group of genes form
a common module if and only if they are well-connected
in all networks.

The partitioning {Cl}
k
l=1

is represented by Xn×k with xij =1 if
vi ∈ Cj, 0 otherwise. The overall function is the connectivity of
all modules, i.e.,

∑

l

maxD(Cl) (4)
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s.t.







xij ∈ {0, 1},
∑k

j=1 xij = 1,
∑n

i=1 xij ≥ 1,

where the second constraint enable the hard partitioning, and
the last one ensures non-empty of modules. To avoid multi-
objectives in Equation (4), we relax it as

max
∑

l

D(Cl) (5)

s.t.







xij ∈ {0, 1},
∑k

j=1 xij = 1,
∑n

i=1 xij ≥ 1.

2.3. The Ep-jNMF Algorithm
The algorithm consists of three components, which are
introduced in turn (Figure 1). Networks are constructed using
the Pearson correlation of gene profiles, and the PCIT package
(Reverter and Chan, 2008) is adopted to remove noise.

NMF (Lee and Seung, 1999) approximates the target matrix
using the product of two low-rank matrices as

W ≈ BF (6)

s.t.

{

B ≥ 0,
F ≥ 0,

where Bn×k and Fk×n are the basis and coefficient matrix,
respectively, and k is the number of features. Usually, k ≪ n
indicates that BF represents a compressed form of the original
data W. Not allowing negative entries in B and F enables a non-
subtractive combination of parts to form a whole. Equation (6) is
solved by minimizing the approximation error as

e(B, F) = ‖W − BF‖2, (7)

where ‖W‖ is the Frobenius Norm ofmatrixW. Tri-factorization
is more efficient than NMF (Yoo and Choi, 2010), where
Equation (8) is formulated as

e(B, F) = ‖W − BHF‖2, (8)

where H is the factor matrix.
For each snapshot, Ep-jNMF jointly factorizesWm as

Wm ≈ BHFm. (9)

Intuitively, we can minimize the approximation error for each
snapshot as

∑

m

min ‖Wm − BHFm‖
2 (10)

s.t.

{

B ≥ 0,
Fm ≥ 0

Algorithm 1: Ep-jNMF.

Input:

G: Networks;
k: Number of features;

Output:

{Cl}
k
i=1: Common modules.

Procedure I: network construction

1: Constructing the gene co-expression (co-methylation)
network using partial Pearson coefficient;
Procedure II: matrix decomposition

2: Fixing Fm(1 ≤ m ≤ M) and H, update x B as equation (12);
3: Fixing B and Fm(1 ≤ m ≤ M), update H as equation (13);
4: Fixing B and H, update Fm(1 ≤ m ≤ M) as equation (14);
5: Keep updating the steps 3 and 4 until the termination

criterion is reached;
Procedure III: common module discovery

6: Extracting modules from B;
7: return

However, it is difficult to reach minimization for each snapshot.
Similar to Equation (5), we reformulate Equation (11)

min
∑

m

‖Wm − BFm‖
2 (11)

s.t.

{

B ≥ 0,
Fm ≥ 0.

The algorithm iteratively updates B and Fm by following the
multiplicative rules (Lee and Seung, 1999), where the update rules
are formulated as

B = B

∑

mWmF
T
m

B
∑

m FmFTm
, (12)

H = H

∑

m BTFTmWm

BTBFmFTm
, (13)

and

Fm = Fm
BTWm

BTWmB
. (14)

Ep-jNMF (Algorithm 1) updates rules until termination is
reached. For example, the approximation error threshold is set
as 10−2, or the maximum iteration number is 103. Because the
initial solution is random, we repeat the procedure 50 runs with
different initial solution matrices. The modules are extracted
based on B, i.e., xij∗ = 1 where j∗ = argmaxjBij, 0 otherwise.
The Ep-jNMF algorithm involves one parameter k, which is the
number of features to obtain the coefficient matrices. We select it
using the instability of matrix factorization (Wu et al., 2016).

2.4. Algorithm Analysis
On the space complexity, G requires space O(n2M). The basis
matrix requires space O(nk) and the coefficient matrices need
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space O(knm). The space of the index matrix X is the same as the
basis matrix B. In all, Ep-jNMF takes space O(n2m) + 2O(nk) +
O(nkm) = O(n2M) since k≪ n.

On the time complexity, for each Fm, Ep-jNMF needs time
O(rkn2), where r is the number of iterations. And the running
time for coefficient matrices in Ep-jNMF isO(rkn2M). Therefore,
the total time complexity of Ep-jNMF is O(rkn2M).

3. EXPERIMENTS

To validate the performance of Ep-jNMF, we select sixe state-
of-the-art methods for a comparison, including M-Module
(Ma et al., 2014), consensus clustering (CSC) (Cantini et al.,
2015), multiple-modularity method (MolTi) (Didier et al., 2015),
stability NMF (sNMF) (Wu et al., 2016), FEM (Jiao et al.,
2014) and spectral clustering (SPEC) (Newman, 2006a), covering
single-network- and multiple-network-based approaches. The
former ones are extended using the consensus strategy (Cantini
et al., 2015).

3.1. Data and Criteria
The artificial networks are derived from GN benchmark
(Newman, 2006b), where each snapshot consists of 4 equal size
communities with 32 vertices, and the degree of vertices is fixed

as 16. Parameter Zout controls the noise level of networks, and
Zout increases from 1 to 8. By manipulating parameter Zout ,
two types of multiple networks are generated, where in the
homogeneous networks (HomoNet) the noise levels in snapshots
are the same, and in heterogeneous networks (Heter-Net) it varies
in different snapshots. Specifically, Zout is fixed as 4 in the first
snapshot, and it varies from 1 to 8 in the others. We downloaded
the sample-matched gene expression and methylation profiles
of breast cancer from TCGA. Specifically, the gene expression
level is quantified using RPKM values and methylation level is
measured by β signal, which are imputed using PCIT (Tibshirani
et al., 2002).

The normalized mutual information (NMI) (Danon et al.,
2005) measures the closeness of two partitioning: standard
partition P∗ and obtained partitioning P. NMI generates matrix
N with the element Nij as the size of vertices overlapped by C∗

i
and Cj, which is formulated as

NMI(P, P∗) =
−2

∑|P|
i=1

∑|P∗|
j=1 Nij log(

NijN

Ni.N.j
)

∑|P|
i=1 Ni. log(

Ni.
N )+

∑|P∗|
i=1 N.j log(

N.j

N )
,

where |P| is the cardinality of P and Ni. =
∑

j Nij.

FIGURE 3 | Performance on artificial networks: (A) Heatmap of common modules in Homo-Net (Zout = 1); (B) selection of the number of modules using instability of

matrix factorization with various noise levels; (C) NMIs of algorithms on Homo-Net; (D) NMI of algorithms on Heter-Net; and (E) scalability analysis of Ep-jNMF.
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To check whether the predicted epigenetic modules are
biological meaningful, various annotation databases are selected
as gold standards for the enrichment analysis, where the
significance is obtained by using the hypergeometric test
(corrected by Benjamini–Hochberg test) with a cutoff of 0.05.

3.2. Performance on Simulated Networks
Each simulated snapshot contains 128 vertices and 4 modules
of equal size with fixed degree 16. Parameter Zout controls the
noise level of networks. As Zout increases from 1 to 8, the module

structure is obscure. In this study, we generate two types of
simulated networks with M = 2: Homo-Net and Heter-Net.
Specifically, the parameter Zout of both networks of Homo-Net
is the same, while the Zout of one network of Heter-Net is fixed
as 4 and the parameter of the other network varies from 1 to 8.
Figure 3A is the heatmap of the Homo-Net networks with Zout
= 1, where the common modules locate at the diagonal.

First, how the Ep-jNMF algorithm selects the parameter k,
i.e., the number of modules, is studied. How the instability of
Ep-jNMF changes as k increases from 2 to 10 for Homo-Net

FIGURE 4 | Performance on the cancer networks: (A) a typical epigenetic module predicted by Ep-jNMF with red border color as hit genes; (B) the density of the

modules in the co-methylation and co-expression network; (C) percentage of predicted modules enriched by one reference pathways or functions (specificity); and

(D) percentage of reference pathways or functions enriched by a predicted module.
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is shown in Figure 3B, where it chooses the optimal value 4
because the minimal is reached at 4. The similar pattern repeats
for Heter-Net, which is not shown because of redundancy. The
result demonstrates that the strategy is promising in selecting the
number of modules.

Then, we compare M-Module, CSC, MolTi, sNMF, and SPEC
on the simulated networks. Figure 3C shows the accuracy of
various algorithms for Homo-Net, while Figure 3D shows the
accuracy of various algorithms for Heter-Net. The performance
of all these algorithms decreases as the parameter Zout increases
from 1 to 8 because the module structure is difficult to detect
as Zout increases. M-Module and Ep-jNMF outperform the rest
of algorithms because the CSC, MolTi, and SPEC are based on
the consensus clustering, which ignores the connection among
multiple networks. However, M-Module and Ep-jNMF make
use the multiple networks simultaneously during the module
search procedure, which improves the accuracy of detecting the
common modules. In all, the Ep-jNMF algorithm is better than
the M-Module algorithm. More specifically, when Zout is less
than or equal to 5 in Homo-Net, the Ep-jNMF and M-Module
algorithms have a similar performance.When Zout is greater than
or equal to 6, Ep-jNMF outperforms M-Module, indicating the
superiority of Ep-jNMF. The similar tendency also repeats in
Heter-Net (Figure 3D).

Finally, we investigate the accuracy of Ep-jNMF by increasing
the number of vertices from 512 to 4096. The performance of
Ep-jNMF is shown in Figure 3E, suggesting that the algorithm
is robust. These results demonstrate that Ep-jNMF is promising
to identify common modules in artificial networks.

3.3. Performance on Cancer Networks
For cancer networks, we select the Ep-jNMF, M-Module, MolTi,
sNMF, and FEM algorithms for a comparison since they
significantly outperform CSC and SPEC. The Ep-jNMF, M-
Module, MolTi, sNMF, and FEM algorithms identify 17, 26, 94,
26, and 460 modules, respectively.

Figure 4A presents a functional epigenetic module obtained
by Ep-jNMF with cell proliferation (p = 3.8E-4), which is
critical for breast cancer metastasis (Loayza-Puch et al., 2016;
Thienpont et al., 2016). Interestingly, the epigenetic module
contains the HAND2 sub-module, which is validated by the
biological experiments (Jones et al., 2013). The HAND2 module
has been used as the benchmark for the algorithms for the
methylated module (Jiao et al., 2014). Furthermore, we find
that only FEM and Ep-jNMF can discover the HAND2 module,
whereas the others cannot. These results imply that Ep-jNMF
is effective for the identification of critical epigenetic modules.
To check whether the genes within the obtained common
module are well-connected in both networks, the density of the
module in different snapshots is shown in Figure 4B. Clearly, the
connectivity is strong in both snapshots because the density is
0.47 and 0.22, which is significantly higher than that in random
networks. The possible reason why the module is much denser in
the co-expressed network than that in the co-methylated network
is that methylation is more specific than expression.

To fully validate the performance of Ep-jNMF, Gene Ontology
(Ashburner et al., 2000), KEGG (Kanehisa et al., 2012), Reactome

(Croft et al., 2014), Biocart (Nishimura, 2001), and Canonical
pathways (Subramanian et al., 2005) are selected as reference
annotation. To evaluate the performance, we first check the
percentage of predicted modules that significantly enriched by
at least one reference annotation, and then we calculate the
percentage of the reference pathways that significantly overlaps
with at least one predicted module. Figures 4C,D show that Ep-
jNMF achieves higher specificity with comparable sensitivity,
implying that the predicted modules are more meaningful in
terms of the biological background.

3.4. Performance on Predicting Cancer
Subtypes
Evidence proves that hub genes facilitate the prognosis of cancers
(Taylor et al., 2009). Therefore, we check whether epigenetic
modules also serve as biomarkers to discriminate cancer subtypes
by using the methylation profiles. We select modules predicted
by Ep-jNMF, FEM, sNMF, M-Module, and MolTi. Furthermore,
we also include size-matched set of randomly modules to
validate the performance of different features. Support vector
machine is selected as classifier to calculate the percentage of
patient samples that are classified correctly (accuracy). The
fivefold cross-validation is used for SVM, which is shown in
Figure 5A, indicating that modules obtained by Ep-jNMF are
more discriminative than the others. Specifically, the accuracy of
Ep-jNMF is 82.4%, whereas that ofM-Module is 75.1% (p= 4.9E-
6, Wilcoxon test), showing that modules in multiple networks
are more accurate to capture the structure and functions of
cancers. The external dataset is also performed (GSE5874), which
is shown Figure 5B. Specifically, Ep-jNMF is also superior to the
baselines (i.e., 74.6% for Ep-jNMF vs. 62.9% for M-Module, p =
2.1E-4, Wilcoxon test).

FIGURE 5 | Performance on the prediction of subtypes with various validation

in terms of accuracy: (A) internal validation with the error bar as for the

standard deviation and (B) external validation.
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4. CONCLUSION

Epigenetic modification is a critical biological process, and
mining the patterns is promising for the understanding of
cancers. The advances in the next-generation sequencing
technologies facilitate the generation of genomic data for
cancers, which enables the integrative analysis of omic data.
How to integrate gene methylation and expression data
is the fundamental step for revealing the mechanisms of
cancers. The traditional methods fuse them into a single
network by assuming the positive and negative correlation
between expression and methylation. However, these strategies
are criticized for the undesirable performance since the
underlying assumption is not consistent with the biological
principle.

In this study, we use the multiple networks model to
characterize functional epigenetic modules, which corresponds
to the common modules detection in multiple networks. Finally,
we present a matrix factorization algorithm for extracting
the common modules from heterogeneous networks. Overall,
the contributions are summarized as follows: (i) it provides
a mathematical model for the functional epigenetic modules,
which overcomes the limitation of the current approaches, i.e.,
the correlation specification between methylation and expression
is not required; (ii) a joint learningmethod is proposed to identify
the epigenetic modules in multiple networks, which avoids the
structure preservation of single network-based method, which
can be easily extended for other data, such as Chip-seq and

mutation data; and (iii) the experiments show the superiority
of Ep-jNMF.

In further research, we will investigate how to
integrate heterogeneous entities, such as microRNAs, to
extract the regulation programming based on multiple
heterogeneous networks.
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Bone mineral density (BMD) is a complex and highly hereditary trait that can lead to
osteoporotic fractures. It is estimated that BMD is mainly affected by genetic factors
(about 85%). BMD has been reported to be associated with both common and
rare variants, and numerous loci related to BMD have been identified by genome-
wide association studies (GWAS). We systematically integrated expression quantitative
trait loci (eQTL) data with GWAS summary statistical data. We mainly focused on
the loci, which can affect gene expression, so Summary data-based Mendelian
randomization (SMR) analysis was implemented to investigate new genes and loci
associated with BMD. We identified 12,477 single-nucleotide polymorphisms (SNPs)
regulating 564 genes, which are associated with BMD. The genetic mechanism we
detected could make a contribution in the density of BMD in individuals and play an
important role in understanding the pathophysiology of cataclasis.

Keywords: BMD, GWAS, eQTL, causative gene, disease susceptibility, SMR

INTRODUCTION

Bone mineral density (BMD), is a main risk factor for osteoporosis (OP) or systemic bone loss,
which is associated with the increasing risk of fragility fracture, especially for older women (Glüer
et al., 2004; Cauley et al., 2007). BMD also plays a role for causing bone fractures, including pressure
fractures (Nattiv, 2000). Generally, BMD can be detected by dual-energy X-ray absorptiometry
(DXA), which is a non-invasive bone densitometry method but hard to implement. Another
method to measure BMD is quantitative ultrasound of the calcaneus (QUS), which is flexible,
inexpensive, and easier to perform. BMDs at the spine and hip are reported to be highly heritable
(Arden et al., 1996; Lee et al., 2006), which could be detected by DXA (Gonnelli et al., 2005), and
are fracture risk related to fracture risk (Bauer et al., 2007).

Based on genome-wide association studies (GWAS) analysis using heel ultrasound parameters,
Moayyeri et al. (2014) identified mutations at nine loci, including seven previously reported loci.
GWAS, so far, have detected more than 100 genetic variants associated with BMD, including many
significant loci associated with risk of fractures. In recent years, more and more BMD risk variants
with low frequencies have been detected based on deep whole-genome sequencing. However, most
experiment-verified variants can rarely explain approximately 5.8% of the phenotypic variance in
BMD (Zheng et al., 2015). Estrada et al. (2012) identified 62 significant SNPs by performing a
meta-analysis consisting of 17 BMD GWAS studies, which focused on lumbar spine or femur neck.
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Kemp et al. (2017) performed a genome-wide association screen
by UK Biobank and identified 307 independent SNPs located in
the 203 loci. However, it remains elusive on how these genetic loci
lead risk to BMD based on linkage disequilibrium phenomenon
(LD) between detected SNPs and real causative mutations. In
addition, due to the strict statistical significance threshold set
in GWAS analysis, it is difficult to detect co-pathogenic loci
in a single GWAS study. Therefore, we need to use other
omics data to reveal the potential effect of these weak GWAS
association signals on BMD, which may help to understand the
heritability of this trait.

By these biological experiments, researchers have found
several genes, which are related to BMD. Some researchers have
used computational method to identify more BMD-related genes
(Wu et al., 2021). Machine learning and deep learning methods
have been widely used in the prediction of trait-related genetic
factors (Zhuang et al., 2019; Tarwadi et al., 2020; Zhao et al.,
2020a). Most of these methods predict the associations between
biomolecules by feature extraction and building mathematical
models (Tianyi et al., 2021; Zhao et al., 2020b, 2021a). However,
these studies fail to explain the biological mechanism of results.
Therefore, it is necessary to further reveal the mechanism of
significant SNPs identified by GWAS (Zhao et al., 2019).

Considering the influence of LD, systematical approaches
are proposed to explore the latent regulatory functions of the
risk variants reported in previous GWAS studies by integrating
multiple omics data (Peng and Zhao, 2020; Zhao et al.,
2020c). Since gene expression is an important factor related
to genetic mutations and traits, many researchers tried to
reveal pathogenesis by gene expression (Zhao et al., 2021b).
Researches have detected numerous expression quantitative trait
loci (eQTLs) associated with BMD based on eQTL data from
primary bone cell cultures (Grundberg et al., 2009; Kwan et al.,
2009). Kwan et al. (2009) has found that rs136564 plays an
important role in regulating the expression of a novel transcript
of FAM118A, and rs136564 is also reported to be related to BMD
based on GWAS analysis. Therefore, many studies focused on
confirming whether an SNP can be detected by both GWAS and
eQTL analysis (Farber, 2012). However, most studies focused on
separately analyzing GWAS data and eQTL data rather than in an
integrative way to identify disease genes (Farber and Lusis, 2008).

Mendelian randomization approach is proposed as a method
of using genetic variants as instrumental variables to examine the
causal influence of a modifiable exposure on diseases. Based on
this assumption, we can identify the most functionally related
genes to diseases. Apparently, complex traits, such as BMD, are
not only derived from the effect of a single gene but also the
integrated influence from complex biological networks (Schadt,
2009). In this study, we applied the Mendelian randomization
(MR) method based on summary statistic data to identify novel
causative genes associated with BMD. We first collected two
GWAS datasets from UK Biobank [including 394,929 individuals
(Zheng et al., 2015)], UK10K [including 32,965 individuals (Kim,
2018)], and blood eQTL data (Westra et al., 2013). Then SMR
was implemented to investigate new genes and loci associated
with BMD. As a result, we identified 12,477 SNPs regulating 564
genes, which have causal effect on BMD. Finally, we assessed

the functional interactions between these genes to examine their
underlying functional mechanism.

DATA AND METHODS

Data
Genome-Wide Association Studies Summary Data
The GWAS summary data were obtained from UK Biobank and
UK10K project, respectively. Individuals (394,929) with genotype
and phenotype data were collected from the UK Biobank. The
DNA variants were filtered by MAF > 0.1%. The dataset from
UK10K is composed of 2,882 whole-genome sequencing (WGS
data), 3,549 whole-exome sequencing (WES data), 26,543 deep
imputation of genotyped samples, and 20,271 de novo replication
genotyping. The detailed description information of GWAS
datasets can be accessed from previous studies (Westra et al.,
2013; Zheng et al., 2015).

Expression Quantitative Trait Loci Summary Data
It has been validated that bone metabolism is related to various
types of cells such as peripheral blood monocyte cell (PBMC),
B and T lymphocytes (Chalmers et al., 1981). PBMC plays an
important role in studying gene expression functions related
to human osteoporosis risk (Liu et al., 2005). They can also
be considered as precursors of osteoclasts (Geissmann et al.,
2010) and express various cytokines, which are essential in
the biological process of osteoclast (Deng et al., 2011). B
lymphocytes can also express biological factors associated with
osteoclastogenesis and plays an important role in the immune
system (Manabe et al., 2001). Recently, studies based on eQTL-
mapping methods indicated that most of the disease-causative
mutations actually have an influence on the expression level
of nearby genes due to the phenomenon of LD (Dubois et al.,
2010; Nicolae et al., 2010). Researchers have also identified that
trans-eQTLs can reveal the downstream consequences of the
variants (Fehrmann et al., 2011; Innocenti et al., 2011; Grundberg
et al., 2012). In this study, we collected eQTL summary data
of 5,311 samples in peripheral blood tissue, which is derived
from a total of nine datasets from seven different cohorts
(Westra et al., 2013).

Methods
Genome-Wide Association Studies Meta-Analysis
Since GWAS analysis focus on the effect of a single genetic
variant, it ignores the interactions between different loci.
However, the effect size of an SNP is different from diverse
datasets. Thus, we performed a GWAS meta-analysis on two
GWAS summary datasets in order to correct the effect size
of multiple GWAS datasets. By assigning different weights
to each SNP from different datasets, we can integrate these
GWAS datasets into a more comprehensive one. There are three
measurements to assess the association score between variants
and the trait in GWAS dataset, β, SE, and p-value. β measures
the estimate of a causative effect between SNP and trait, and SE
indicates the standard deviation (SD) of β. The p-value denotes
the significance level of association between SNP and the trait.
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Since SE can represent the reliability of β, it can be inferred
that the bigger the SE, the more inaccurate the β. Because SE is
the SD of β, the weight of β can be denoted as the inverse ratio of
the SE square. Thus, the weight wi of βi in the ith GWAS dataset
can be denoted as:

wi = 1/SE2
i (1)

where SEi denotes the SD of the SNP in the ith dataset.
Thus, we can integrate the effect size measurement β between

different datasets, and it can be denoted as:

β =
∑
i

βiwi/
∑
i

wi (2)

In the meantime, SE after the integration of the datasets can be
denoted as:

SE =
√

1/
∑
i

wi (3)

Then we calculated the Z-score of SNPs based on the effect size β

and SE to obtain the significance of SNPs. Z-score can be denoted
as:

Z = β/SE (4)

Then we obtained the p-value of the association after the
integration of the effect of SNPs from different datasets based on
the hypothesis testing of the normal distribution of the Z-score.

GWAS DATA 1

GWAS DATA 2

GWAS meta-
analysis

GWAS DATA 
analysis

Gene varia�on Gene expression

sample1

sample2

sample3

sample1

sample2

sample3

eQTL 

SMR Gene 
expression

SNP

BMD

FIGURE 1 | Workflow of SMR on bone mineral density (BMD) based on genome-wide association studies (GWAS), and expression quantitative trait loci (eQTL)
datasets.

FIGURE 2 | The result of GWAS meta-analysis on BMD.
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Thus, we can integrate multiple GWAS datasets by applying
the above method. It can be deduced that the reliability of SNPs
and SE are negatively correlated, and the weight of β is lower
compared with other datasets, while the SE value is bigger. Thus,
the value of β can be corrected across multiple datasets according
to different weights.

Summary Data-Based Mendelian Randomization
Analysis
Multiple potential and unmeasurable confounding factors may
lead to huge challenges in inferring the causative relationship
between genes and complex traits. However, genetic mutation
is a major factor of heredity. Thus, exploring the underlying
mechanism of genetic variants is important to reveal the
pathologies of complex traits. Due to the linkage disequilibrium,
the effect size between SNPs detected by GWAS analysis and
BMD may not be accurate. Moreover, GWAS cannot fully explain
the association between BMD and SNPs. Thus, the MR method is
first proposed to consider a genetic variant as a factor to assess
and examine for the effect size of an exposure variable on an
outcome (Smith and Ebrahim, 2008). Based on the MR theory,
if we use z to denote an SNP, x as the gene expression, and y as
the BMD, then the association of gene expression (x) and BMD
(y) can be denoted as bxy,

bxy = bzy/bzx (5)

where bzy indicates the association between SNP and BMD, and
it can be represented as the slope of z to y. bzx denotes the
association between SNP and gene expression, and it can be
denoted as the slope of z to x. bzy and bzx can be obtained from
two independent GWAS dataset and eQTL dataset.

FIGURE 3 | The results of BMD-related genes based on SMR. The red line
means “Significant threshold”.

Then the sampling variance of the estimate value of bxy can be
denoted as:

var
(
b̂xy
)
=

[
var

(
y
) (

1− P2
xy

)]/[
n var (x) P2

zx
] (6)

where n denotes the size of samples, b̂xy denotes the estimate
value of bxy P2

xy indicates the proportion of variance in
BMD, which is explained by gene expression, P2

zx indicates the
proportion of variance in gene expression level explained by SNP.
Therefore, the statistic TSMR is utilized to test the significance of
bxy, and TSMR can be represented as:

TSMR = b̂2
xy
/
var

(
b̂xy
)

(7)

However, it is not realistic, so far, to collect genotype data and
gene expression data from a very large sample size. Also, because
the effect size of eQTL was unavailable, bzx can be estimated from
the Z-score of eQTL data as b̂zx:

b̂zx = ZzxSzx (8)

where Szx = 1
√

2f
(
1− f

) (
n+ Z2

zx
)
, f is the allele frequency, and

n is the sample size. An unbiased estimate of bzx could be denoted
as ε̂zx. We therefore have:

b̂xy = b̂zy
/̂

εzx (9)

where b̂zy denotes the estimate of the effect of an SNP from
GWAS data for BMD, and ε̂zx is the estimate of the effect of an
SNP on the gene expression level from an eQTL data. The Delta
method can be utilized to calculate the sampling variance of b̂xy
approximately (Lynch and Walsh, 1998):

var
(
b̂xy
)
≈

b2
zy

ε2
zx

var
(
ε̂zx
)

ε2
zx

+

var
(
b̂zy
)

b2
zx

−

2cov
(
ε̂zx, b̂zy

)
εzxbzy


(10)

where cov
(
ε̂zx, b̂zy

)
is 0 when εzx and bzy are derived from

independent GWAS and eQTL datasets. Because the distribution
of the Z-score is known, while the distributions of εzx and bzy are

TABLE 1 | Ten of the top 20 significant genes and related study.

Gene PubMed ID

DGKQ PMID:30048462

FDFT1 PMID:25223561

Cdc42 PMID:29314205

LRP3 PMID:27019110

TMUB2 PMID:27019110

ASB16 PMID:32269995

RERE PMID:18597038

MS4A6A PMID:33604283

EPDR1 PMID:32619791

SPTBN1 PMID:19801982
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unknown, TSMR can be approximately denoted as:

TSMR =
b2
xy

var
(
b̂xy
) ≈ Z2

zyZ
2
zx

Z2
zy + Z2

zx
(11)

where Zzy and Zzx denotes the Z-score derived from GWAS
and eQTL data. Since the distribution of TSMR is x2

= 1, the
significance of bxy can be calculated by performing a χ2-
test of TSMR, which is also the significance of the association
between gene and BMD.

SMR Analysis for Bone Mineral Density With
Expression Quantitative Trait Loci Data From Blood
Tissue
We first integrated two independent GWAS datasets to obtain
a more comprehensive GWAS dataset. After obtaining β and

SE of each SNP based on GWAS dataset and eQTL dataset,
respectively, we obtained the estimate of effect size of SNPs
on BMD based on integrated GWAS summary data and
estimate of effect size on gene expression based on SNPs
from eQTL data. We obtained two Z-scores of the same
SNP based on two datasets, ZGWAS and ZeQTL. The GWAS
dataset provides the SNPs associated to BMD, and the eQTL
dataset provides the association between these SNPs and
expression level of gene. Then the SMR method is utilized
to examine the effect size of SNPs on BMD excluding some
irrelevant factors.

Since one single SNP can regulate multiple genes, we then
identify the causative genes, which are regulated by these SNPs
and are associated with BMD. We performed a Bonferroni test
to filter the SNPs we obtained for the SMR method. After all, we
identified 12,477 SNPs, and 564 genes regulated by these SNPs

FIGURE 4 | Gene interaction network obtained from the top 100 genes.
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are associated with BMD. It is clear from the result that most of
the causative genes are regulated by multiple SNPs, which means
detecting the disease-related genes merely depending on GWAS
datasets is not reliable. The workflow is shown in Figure 1.

RESULTS

The result of the GWAS meta-analysis is shown in Figure 2. It
is apparent that the original datasets from former studies are
not consistent. After integration, we obtained a more precise
GWAS dataset for BMD. Since there are many overlapping SNPs
in the GWAS dataset and eQTL dataset, we have to filter these
SNPs to find out whether the genes regulated by these SNPs
are associated with BMD. Thus, the SMR method is utilized to

examine latent associations between gene expression and BMD.
The results of BMD-related genes based on GWAS and eQTL to
test for the integrated data are shown in Figure 3. We identified,
in total, 12,477 SNPs regulating 564 genes associated with BMD.
This indicates that multiple SNPs may cooperate and effect the
expression of a single gene. For example, gene FDFT1 is regulated
by 451 SNPs, and most SNPs can regulate multiple genes as well,
such as rs10085549, rs1073, and so on. They can regulate seven
genes. Supplementary Material indicates the significant genes
and SNPs related to BMD.

Case Study
As a result of the SMR method, we identified 12,477 significant
SNPs and 564 significant genes associated with BMD. Several
significant genes of the results have been reported in recent

FIGURE 5 | Gene interaction network obtained from all significant genes.
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studies. In the study of Kim (2008), they identified that gene
DGKQ is associated with heel BMD. In the study of Wang et al.
(2015) they have found the association between FDFT1 and the
therapeutic response among Chinese postmenopausal women
suffering from osteopenia or osteoporosis. Cdc42 is identified
to be strongly related to bone deterioration in experimental
osteoarthritis according to the study of Hu et al. (2018). LRP3,
TMUB2 has also been reported as a risk factor for BMD of the
lumbar spine (LS-BMD) (Zhu et al., 2016). RERE is reported to
be a novel suspective gene associated with BMD from a group
of Caucasian-origin families (Zhang et al., 2009). In total, there
are 10 out of the top 20 significant genes in our results that have
been reported to be related with BMD according to previous
studies. Table 1 shows these 10 genes and related GWAS studies
published previously.

Gene Interaction Network Based on
Bone Mineral Density
Figure 4 shows the top 100 gene interaction networks derived
from the results of the SMR method on BMD. Figure 5
shows the gene interaction network from all significant genes
derived from the SMR method. Based on the top 100 gene
interaction networks, Cdc42 and CTNNB1 are intensively
interacted and significantly associated with BMD. It is known
that the process of bone (re)modeling is based on the distinct
actions of osteoclasts and osteoblasts, which are achieved by the
organization of osteoclast cytoskeleton. Cdc42 belongs to the Rho
GTPase subfamily, which is considered to be major regulators
of cytoskeleton, and it has been reported to be a prospective
therapeutic target for preventing osteoporosis (Ito et al., 2010).
CTNNB1 has been reported to be related to BMD in the spine
and hips (Estrada et al., 2012).

In total, we identified 12,477 SNPs and 564 genes related to
BMD by the SMR method. Then we performed the case study
of the identified genes to prove the effectiveness of our BMD-
related gene identification method based on multiple omics
data integration.

CONCLUSION

We use the SMR method to integrate omics data to identify
BMD–gene associations. First, we integrated two independent
GWAS data sets by adjusting the weights of SNPs to overcome
that different GWAS datasets have different sample sizes. Then

we reduced the impact of linkage disequilibrium and identified
the impact of SNPs on BMD based on GWAS data and eQTL
data. Through the Bonferroni test, we obtained 12,477 SNPs
and 564 genes significantly related to BMD. Among these genes,
10 of the top 20 risk genes have been previously reported
to be associated with BMD, which proves the validity of our
method and the correctness of the results, but further biological
experiments are needed to verify our results. Our results indicate
that BMD is a highly inherited polygenic trait and is significantly
associated with osteoporosis. These findings help us reveal the
pathology of osteoporosis and determine the relevant pathways
and therapeutic drugs.
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Identification of miRNA Signature
Associated With Erectile Dysfunction
in Type 2 Diabetes Mellitus by Support
Vector Machine-Recursive Feature
Elimination
Haibo Xu1,2, Baoyin Zhao2, Wei Zhong2, Peng Teng2 and Hong Qiao1*

1The Second Affiliated Hospital of Harbin Medical University, Harbin, China, 2The First Hospital of Qiqihar, Qiqihar, China

Diabetic mellitus erectile dysfunction (DMED) is one of the most common
complications of diabetes mellitus (DM), which seriously affects the self-esteem
and quality of life of diabetics. MicroRNAs (miRNAs) are endogenous non-coding
RNAs whose expression levels can affect multiple cellular processes. Many pieces of
studies have demonstrated that miRNA plays a role in the occurrence and
development of DMED. However, the exact mechanism of this process is unclear.
Hence, we apply miRNA sequencing from blood samples of 10 DMED patients and 10
DM controls to study the mechanisms of miRNA interactions in DMED patients.
Firstly, we found four characteristic miRNAs as signature by the SVM-RFE method
(hsa-let-7E-5p, hsa-miR-30 days-5p, hsa-miR-199b-5p, and hsa-miR-342–3p),
called DMEDSig-4. Subsequently, we correlated DMEDSig-4 with clinical factors
and further verified the ability of these miRNAs to classify samples. Finally, we
functionally verified the relationship between DMEDSig-4 and DMED by pathway
enrichment analysis of miRNA and its target genes. In brief, our study found four key
miRNAs, which may be the key influencing factors of DMED. Meanwhile, the
DMEDSig-4 could help in the development of new therapies for DMED.

Keywords: micrornas, diabetes mellitus, erectile dysfunction, signature, molecular mechanisms

INTRODUCTION

Erectile dysfunction (ED) refers to the persistent or repeated failure of men to achieve and/or maintain
penile erection for satisfactory sexual activity. As a common and the most neglected complication of
diabetes (Zhao et al., 2020; Long et al., 2021; Yang et al., 2021), diabetic mellitus erectile dysfunction
(DMED) is an important factor affecting psychological well-being, spousal relationship and family life
(Malavige and Levy, 2009). The massive research indicated patient of T2MD incidence ED was
significantly higher than that of the health. 75%male with diabetes is affected with ED. 66.3% is
T2MD among of the data (Kouidrat et al., 2017; Cheng et al., 2018; Zagidullin et al., 2019; Zhu et al.,
2021a). DMED is considered as an alternative marker for diabetes and cardiovascular disease, and is the
primary feature of diabetes. Meanwhile, DMED has a multifactorial pathological process that can occur
simultaneously with cardiovascular disease, neuropathy, and depression. How to effectively intervene in
DMED has become an urgent problem in the global medical community.
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MicroRNAs (miRNAs) are small non-coding RNAs of 19–25
nucleotides (Cheng et al., 2016; Lu and Rothenberg, 2018; Wu
et al., 2019; Mo et al., 2020). They have been used as important
regulators of gene expression in recent decades. Changes in their
expression levels can affect multiple cellular processes and are
used as molecular markers for diagnosis and follow-up (Han
et al., 2021). It is widely involved in pathological processes such as
cancer (Rupaimoole and Slack, 2017; Liu et al., 2021a; Lei and
Shu-Lin, 2021; Sheng et al., 2021; Tang et al., 2021), DM (Vasu
et al., 2019), cardiovascular events (Barwari et al., 2016), and ED
(Ding et al., 2017). However, there are few related studies
in DMED.

Growing evidences have indicated that miRNAs play an
important role in the occurrence and development of DM and
diabetic complications (Kong et al., 2011; Jiang et al., 2015).
Unfortunately, the exact pathogenesis of miRNAs action on
DMED remains to be largely unknown. Hence, we adopted
the machine learning method (SVM-RFE), identified the
characteristic miRNAs of DMED, constructed the signature of
DMED and found potentially related pathways. Our work has
significance for the identification of the molecular mechanism
and the early prediction and diagnosis of DMED.

MATERIALS AND METHODS

Subjects
Inclusion criteria: T2DM patients admitted to Qiqihar Medical
College from December 2020 to June 2021 were selected as the
study subjects. Erectile dysfunction was identified by
international index of erectile function -5 (IIEF-5). Diagnostic
criteria for T2DM: in line with WHO diabetes diagnostic criteria
in 1999; Diagnostic and grading criteria for ED: 1) Regular sexual
partner and normal sexual life; 2) History of ED for more than
6 months; 3) Erectile dysfunction was assessed according to IIEF-
5, and the total score ≤21 was divided into ED; A score of five to
seven was severe, 8–11 was moderate, 12–21 was mild, and ≥22
was no ED. Healthy married men with erectile dysfunction aged
30–70 years with a course of 2–10 years were included in
the study.

Exclusion criteria: 1) The informed consent is not signed or
the medical records are incomplete; 2) Incomplete research
data; 3) Type 1 diabetes mellitus (T1DM), adult latent
autoimmune diabetes mellitus (LADA), acute complications
of diabetes mellitus; 4) Hypogonadism, thyroid disease,
adrenal disease, pituitary disease, etc.; 5) Pelvic and urinary
genital malformations, inflammation, tumor, trauma, surgical
history; 6) Serious blood system, cardiovascular, liver, kidney
disease or other disease affecting sexual activity; 7) Spinal cord
injury; 8) Smoking, alcohol, drug abuse and masturbation
history; 9) A history of drug abuse; (10) Receiving ED
treatment or drugs that affect ED; Such as
immunosuppressants, glucocorticoids, diuretics, receptor
blockers, antioxidants, etc.; 11) History of mental illness,
and the ED caused by anxiety, depression and other
psychological factors was excluded according to the SAS
standard score <50 and SDS standard score <53.

According to the above criteria, a total of 20 male T2DM
patients were included and divided into DMED group (10 cases)
and DM group (10 cases). The study was conducted in
accordance with the Declaration of Helsinki,and with approval
from The first hospital of Qiqihar ethics committee for clinical
trials (2020-KY-007–01).Written informed consent was obtained
from all the participants.

Clinical Data of Patients
General information such as name, age, sex, height, weight,
marital history, personal history, infection history, surgery and
trauma history were collected. IIEF-5 scores, SAS scale and SDS
scale were obtained using a questionnaire. Body mass index
(BMI) was calculated by formula: BMI � Body weight/height2

(kg/m2). The remaining indicators were determined by
clinical tests.

Collection of Serum Samples
Clinical serum samples were collected by utilizing residual
specimens from patients undergoing routine medical care.
Each blood sample is 4–6 ml. Samples were then centrifuged
and the supernatant was stored at −80°C in the centrifuge tube.

Sample Sequencing
MiRNA sequencing was performed on a total of 20 cases, 10 cases
in each group with no statistical difference in age, course of
disease and BMI.

The Method of Sample Detecting
Use Agilent 2100 Bioanalyzer to test sample integrity and
concentration, and NanoDrop to Inorganic ions
orpolycarbonate contamination. This step aimed to provide a
reference for library construction and later analysis.

Library Construction
Filter Small RNA: Use the 200ng-1 μg of RNA sample, then
separate RNA segment of different size by PAGE gel, select
18–30 nt (14–30 ssRNA Ladder Marker, TAKARA) stripe and
recycle; Adaptor ligation: Prepare connection 3′adaptor system
(Reaction condition:70°C for 2min; 25°C for 2 h); Secondly add
RT-Primer, (Reaction condition: 65°C for 15 min; ramp to 4°C at
a rate of 0.3°C/s); Thirdly add 5′adaptor mix system (Reaction
condition: 70°C for 2 min; 25°C for 1 h).

RT PCR: Prepare First Strand Master Mix and Super Script II
(Invitrogen) reverse transcription (Reaction condition: 42°C for
1 h; 70°C for 15 min); Several rounds of PCR amplification with
PCR Primer Cocktail and PCR Master Mix were performed to
enrich the cDNA fragments (Reaction condition: 95°C for 3 min;
15–18 cycles of (98°C for 20 s, 56°C for 15 s, 72°C for 15 s); 72°C
for 10 min; 4°C hold); Purify PCR products: Then the PCR
products were purified with PAGE gel, dissolve the recycled
products in EB solution.

Circularization
The double stranded PCR products were heat denatured and
circularized by the splint oligo sequence. The single strand circle
DNA (ssCir DNA) were formatted as the final library.
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Library Quality Control
Library was validating on the Agilent Technologies 2100
bioanalyzer.

Sequencing
The library was amplified with phi29 to make DNA nanoball
(DNB) which have more than 300 copies of one molecular. The
DNBs were loaded into the patterned nanoarray and single end 50
bases reads were generated in the way of combinatorial Probe-
Anchor Synthesis (cPAS).

Feature Selection of Diabetic Mellitus
Erectile Dysfunction Based on Support
Vector Machine-Recursive Feature
Elimination
Support Vector Machine-Recursive Feature Elimination (SVM-
RFE) is a sequence backward selection algorithm based on the
maximum interval principle of Support Vector Machine (SVM)
(Guyon et al., 2002; Tang et al., 2018; Cheng et al., 2019; Yang
et al., 2020; Liu et al., 2021b; Joshi et al., 2021).

The counts data based on miRNA sequencing were combined
with the improved SVM-REF method proposed by Kai-Bo Duan
et al. (Duan et al., 2005) to select miRNAs. Due to the randomness
in Kai-Bo Duan’s method, in order to obtain a model with
relatively small error, the whole process was repeated for 1,000
times. The model with the smallest error was selected as the final
model. If there were multiple models with the same minimum
error, the model with a large number of miRNAs was selected.
The characteristic miRNAs, called DMEDSig-4, were finally
screened.

Differentially Expressed
According to the identified DMEDSig-4, we combined the
miRNA read counts data calculated by the sequencing process.
In view of the negative binomial distribution of counts data, we
used the R package DESeq2 to calculate the differences between
the DM groups and DEMD groups (Love et al., 2014).

Identification of miRNA Target Genes
The miRNA-targeted mRNAs of DMEDSig-4 were pooled using
the online bioinformatics analysis tool (EncoRI). Firstly, we
searched EncoRI database (http://starbase.sysu.edu.cn/) (Li
et al., 2014), which included seven databases (microT,
miRanda, miRmap, PITA, RNA22, PicTar and TargetScan).
Then, we entered characteristic miRNA of DMEDSig-4, set
CLIP-Data≥5, Program-Number≥5, and Degradome-Data≥1 to
obtain miRNA target genes.

Analysis of Gene Function Enrichment
Regulatory Network
The R package FGNet allows functional enrichment analysis
(FEA) to be performed on a list of genes or expression sets
and the results to be converted into a network (Aibar et al., 2015;
Azimi et al., 2021). The network can provide an overview of the

biological function of genes/terms, and allows easy seeing of links
between genes, the overlap between clusters, etc. We selected the
annotation tool topGO for functional annotation of target genes.
GO was used to describe gene functions along with three aspects:
biological process (BP), cellular component (CC) and molecular
function (MF). The p < 0.01 was considered significant.

RESULTS

Statistical Analysis of Clinical Data
Firstly, we collected 20 high-quality samples (10 DMED and 10
DM) from 60 patients according to the inclusion criteria. Then,
we collected and collated the clinical information of these 20
samples. Subsequently, statistical analysis was performed for
the DMED group and the DM group, including age,
diabetes duration, BMI, fasting plasma glucose, glycated
hemoglobin, total cholesterol, triglyceride, testosterone, thyroid
stimulating hormone, serum creatinine, carbamide, alanine
aminotransferase, aspartate aminotransferase. Meanwhile, we
also conducted a questionnaire survey on these 20 patients,
and obtained IIEF-5 score, self-rating anxiety scale (SAS) score
and self-rating depression scale (SDS) score. In this project, a total
of 20 samples were tested using DNBSEQ platform. The average
ratio of sample to genome was 78.22%. A total of 1,044 small
RNAs were detected.

SAS9.4 international standard statistical programming
software was used for statistical analysis. Measurement data
processing normal distribution and variance homogeneity were
measured, The measurement data conforming to normal
distribution are expressed by mean ± standard
deviation,comparison between two groups with sample
t tests,non normal distribution adopt median and IQR to
express, makes the non-parametric test. p < 0.05 could be

TABLE 1 | Comparisons of clinical data. BMI, body mass index; IIEF-5,
international index of erectile function 5; SAS, self-rating anxiety scale; SDS,
self-rating depression scale; FPG, fasting plasma glucose; HbA1c, glycated
hemoglobin; TC, total cholesterol; TG, triglyceride; TT, testosterone; TSH, thyroid
stimulating hormone; Scr, serum creatinine; Urea, carbamide; ALT, alanine
aminotransferase; AST, aspartate aminotransferase.

Parameter Group (DMED) Group (DM) p Value

Age, years 48.7 ± 5.03 46.6 ± 6.19 0.416
Diabetes duration, years 4 (2–8) 2 (2–5) 0.147
BMI, kg/m2 26.19 ± 3.08 26.71 ± 3.39 0.725
IIEF-5 score 12.30 ± 4.85 23.40 ± 1.07 <0.0001***
SAS score 41.7 ± 4.9 40 ± 6.5 0.517
SDS score 48.5 (46–51) 50 (50–51) 0.244
FPG, mmol/l 12.61 (8.29–14.11) 9.46 (8.31–10.02) 0.364
HbA1c, % 9.75 ± 2.63 8.56 ± 1.59 0.236
TC, mmol/l 5.54 ± 1.15 4.87 ± 1.33 0.243
TG, mmol/l 2.4 ± 1.41 2.99 ± 2.09 0.468
TT, ng/ml 4.08 ± 1.11 3.87 ± 1.01 0.658
TSH, uIU/ml 2.21 ± 0.69 1.75 ± 0.95 0.225
Scr, umol/L 70.8 ± 11.03 63 ± 6.25 0.067
UREA, mmol/L 5.88 ± 1.24 6.03 ± 1.43 0.813
ALT 18.8 (16.5–21.4) 25.15 (19.8–34.5) 0.059
AST 16.18 ± 3.92 21 ± 8.93 0.136
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considered statistically significant (Table 1). Finally, according to
the results, there were no statistically significant differences with
regard to age, diabetes duration and BMI (p > 0.05). In addition,
there was no significant difference in other statistical indicators
(p > 0.05) except IIEF-5 (p < 0.05). This showed that we chose
samples to avoid the influence of other factors as much as
possible.

Construction of microRNAs Signature
Associated With Diabetic Mellitus Erectile
Dysfunction
Many pieces of evidence have shown that miRNAs have
diagnostic and predictive value for DMED in mice (Li et al.,
2017; Cong et al., 2020; Huo et al., 2020). However, few
correlational researches of DMED have been conducted on
the human body. In order to further explore the mechanism of
miRNAs regulating DMED in the human body, we selected 10
DM groups and 10 DMED groups for miRNA sequencing
based on the inclusion criteria. The miRNA counts data of 20
samples were obtained. Firstly, miRNA counts data were
filtered to delete miRNAs with counts of 0 in most samples.
The selected miRNAs should have counts of non-0 in at least
18 samples. Due to the limited sample size of miRNA
expression profiles in DM groups and DMED groups, we
adopted the machine learning method of SVM-RFE to
screen characteristic miRNAs (Sanz et al., 2018).

Firstly, the miRNA counts data contained all miRNAs that will
be imported. Secondly, the algorithm used SVM model training
samples to calculate the weight of each miRNA. Subsequently, we
ranked miRNAs according to their weights and deleted the
bottom-ranked miRNAs from the subset (Lin et al., 2017).
Meanwhile, the remaining miRNAs were used to train the

model again for the next iteration. Finally, the required
number of miRNAs were selected. The later the miRNA was
removed from the subset, the more significant the miRNAs were.
We employed SVM-RFE machine learning method. Firstly,
SVM-RFE method can be used for linear/nonlinear
classification as well as regression with low generalization
error rate. That is to say, he has a good learning ability, and
the results of learning have a good extension. Secondly, SVM-RFE
method can solve the problem of machine learning in the case of
small samples, solve the problem of high dimension, and avoid
the problem of neural network structure selection and local
minimum point. Finally, SVM-RFE method is the best off-the-
shelf classifier and can get a low error rate. Meanwhile, SVM-RFE
method can make good classification decisions for data points
outside the training set.

Since SVM-REF was more sensitive to feature changes, the
ranking of features was different each time. For the robustness of
feature selection, we refer to the method of Kai-Bo Duan (Duan
et al., 2005). We used ten-fold cross-validation here by adding
resampling to each iteration to stabilize the ranking (Zhu et al.,
2021b). After 1,000 cycles of the algorithm (Supplementary
Table S1), four characteristic miRNAs (hsa-let-7E-5p, hsa-
miR-30 days-5p, hsa-miR-199b-5p, and hsa-miR-342–3p) were
obtained according to the lowest error rate of 0.25 in ten-fold
cross-validation (Figure 1). We found that the error rate
decreased significantly from the first to the fourth feature
number, and then increased significantly from the fifth.
Obviously, the feature number of four had the best
differentiation between DMED groups and DM groups. These
four miRNAs (hsa-let-7E-5p, hsa-miR-30 days-5p, hsa-miR-
199b-5p, and hsa-miR-342–3p) obtained by machine learning
methods had the best classification performance in the DMED
and DM groups. Therefore, we referred to this predictive

FIGURE 1 | SVM-RFE were used for feature selection. The point highlighted indicates the lowest error rate, and the corresponding miRNA at this point are the best
signature selected by SVM-RFE.
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signature as DMEDSig-4. In the following results, the
performance of DMEDSig-4 was verified and analyzed.

Classification Capability Verification and
Clinical Association Analysis of Diabetic
Mellitus Erectile DysfunctionSig-4
In order to investigate the expression patterns of four
characteristic miRNAs predicted by DMEDSig-4, we first
conducted hierarchical clustering according to counts data
of these four miRNAs and plotted the clustering heat map of
DMEDSig-4 in 20 samples (Figure 2A). The results of
hierarchical clustering analysis showed that the 20 samples
were clustered into three clusters by DMEDSig-4. The two
clusters on the right were completely composed of samples
from the DM or DMED groups. Although the cluster on the
left was a mixture of the two types of samples, except for
DMED_3, DM and DMED were significantly clustered into the
same cluster. This phenomenon indicated that all samples
were characterized by the DMEDSig-4 expression pattern.
In addition, we also calculated the similarity between
samples according to Euclidean distance (Figure 2B). The
results showed that the Euclidean distance between some
samples was very small, indicating these samples had a high
similarity. For example, samples DM_8, DM_5, DM_9, DM_2,

DM_6 and DM_7. Samples DMED_10, DMED_7, DMED_8,
DMED_1 and DMED_9.

In order to further explore the correlation between DMEDSig-
4 and clinical factors, we calculated the Spearman correlation
between miRNAs and clinical indicators of all samples
(Figure 2C, Supplementary Table S2). It could be observed
that the four miRNAs in DMEDSig-4 were positively correlated
with each other, indicating that there might be a mechanism of
co-operative regulation of DMEDSig-4. In general, the diagnosis
of ED depends on the history of disease and the IIEF-5 (Rosen
et al., 1997; Hatzichristou et al., 2002). It could be observed that
IIEF-5 was negatively correlated with DMEDSig-4. Meanwhile,
IIEF-5 was negatively correlated with testosterone, glycated
globin, creatinine, fasting blood glucose and other indicators.
Previous studies had verified that testosterone was a protective
factor in DMED (Diaz-Arjonilla et al., 2009), and the negative
correlation between testosterone and indicators confirmed the
correctness of IIEF-5 data.

In order to verify the classification ability of the four
characteristic miRNAs in DMEDSig-4 for samples, we
calculated the significant difference of miRNA expression
between the DM groups and the DMED groups. The results
showed that the differences of hsa-let-7e-5p, hsa-miR-199b-5p
and hsa-miR-342–3p were significant (p < 0.01), while the effect
of hsa-miR-30 days-5p was not significant (p > 0.05) (Figure 2D).

FIGURE 2 | The verification of DMEDSig-4 classification ability and the association of clinical information. (A) Clustering heat map of DMEDSig-4 in DM and DMED
groups. Red: Up-regulated expression; Blue: Down-regulated expression. (B) Heat map of similarity between DM groups and DMED groups. (C) Correlation analysis of
DMEDSig-4 and clinical factors. BMI, bodymass index, IIEF5, international index of erectile function 5; HbA1c, glycated hemoglobin; TT, testosterone; GLU, glucose; Cr,
creatinine; TG, triglyceride; ALT, Alanine transaminase; AST, aspartic acid transaminase. (D) Violin diagram of differential expression of DMEDSig-4 in DM and
DMED samples.

Frontiers in Genetics | www.frontiersin.org October 2021 | Volume 12 | Article 7621365

Xu et al. miRNA Signature for Diabetic Erectile Dysfunction

85

https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


These results indicated that the miRNAs we identified have
certain characteristics between the DM and DMED groups,
regardless of the individual miRNA level or the overall
expression pattern, and there were also certain correlations
with clinical indicators. These showed that DMEDSig-4 had a
certain role in helping to identify DMED.

Identification of Target microRNAs of
Diabetic Mellitus Erectile DysfunctionSig-4
Many pieces of evidence demonstrated that miRNAs were
capable of regulating various biological and pathological
processes via inhibiting target mRNA translation or promoting
mRNA degradation (Fabian et al., 2010; Fang et al., 2019; Riaz
and Li, 2019; Wang et al., 2020). Meanwhile, the miRNAs could
act as signatures of disease, strong indicators of prognosis or
potential therapeutic targets (Zhu et al., 2011; Huang, 2018;
Norsworthy et al., 2020). In order to further study the effects
of the DMEDSig-4 target mRNAs on ED, we used the online
bioinformatics database ENCORI (http://starbase.sysu.edu.cn/)
to identify the target mRNAs. According to the parameters set,
the target genes corresponding to each miRNA were obtained.
The results of predicting targeted mRNAs on four miRNAs
showed that there were 40 targeted mRNAs for hsa-let-7e-5p,
42 targeted mRNAs for hsa-miR-30 days-5p, nine targeted
mRNAs for hsa-miR-199b-5p, and 15 targeted mRNAs hsa-
miR-342–3p (Figure 3A).

In order to observe the relationship between miRNAs and
target mRNAs, we constructed the miRNA-mRNA interaction
network diagram based on DMEDSig-4 and target mRNAs
through STRING database (https://string-db.org/) (Figure 3B).
The network consisted of four miRNA nodes, 105 mRNA nodes
and 870 edges. Among them, 764 edges were the relationship
between target mRNAs, and 106 edges were the relationship

between miRNA and target mRNAs. There was only one
intersection among miRNA target mRNAs, indicating that
these miRNAs did not tend to jointly regulate a target mRNA,
and the identified target mRNAs had a close interaction
relationship, suggesting that these mRNAs might act together
on the same pathway.

Functional Annotation of microRNAs and Its
Target microRNAs
In order to investigate the function of DEMDSig-4 targeted
mRNAs, we used the topGO (Yang et al., 2021) annotation tool
in R package FGNet for functional annotation of DEMDSig-4.
We aimed to the functional analysis of each target mRNA
searching further to verify the characteristic function of
DEMDSig-4. The resulting network represented the links
and associations between clusters of mRNAs and enriched
terms. We annotated the biological process (BP), cellular
component (CC) and molecular function (MF) of the target
mRNAs. A total of 255 clusters and descriptions, we provided
in the form of supplementary files (Supplementary Table S3).
Here, we focused on the biological process of the target
mRNAs. Due to the large number of biological processes
and the complexity of the network, we manually selected
representative biological processes for demonstration,
including most of the mRNAs targeted for DMEDSig-4
(Figure 4A). The biological process includes: Regulation of
nitrogen metabolic Process non-canonical Wnt signaling
Pathway Neuron Projection Development “Wnt Signaling
Pathway, Planar Cell Polarity Pathway” Regulation of
Neuron projection Development, And “Density Lipoprotein
receptor particle metabolic Process”. We found that the
subnetwork was divided into two broad functional
categories, including metabolic function and neural

FIGURE 3 | Statistics of miRNA target miRNAs in DMEDSig-4. (A) Bar chart of DEMDSig-4 target genes (B) miRNA-mRNA interaction network diagram of
DEMDSig-4. Red: target mRNAs; Blue: miRNAs of DMEDSig-4.
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function, which were closely related to the pathological
mechanism of ED (Müller and Mulhall, 2006; Shamloul and
Ghanem, 2013).

Although FGNet provided a broad overview of the biological
effects of human-specific genetic alterations by clustering
functional terms within clusters and establishing relationships
between such clusters, it lacked the detail that could be obtained
by analyzing each functional category individually (Bitar et al.,
2019; Zhang et al., 2021). Therefore, we turned to gene ontology
(GO) analysis. The top 20 salient biological processes were
functionally annotated in terms of p values (Figure 4B). The
results demonstrated most of the signaling pathways were
associated with DMED at the molecular and cellular levels,
which could provide important information for revealing the
most significant biological functions of DMED. We found that
the biological processes of DMEDSig-4 were mainly divided into
cell metabolism, neural signal transmission and planar cell
polarity pathway. For example, we queried that the biological
process “regulation of nitrogen Compound metabolic process”
was associated with endothelial dysfunction (Andersson, 2003;
Yuyun et al., 2018; Cyr et al., 2020). Endothelial dysfunction was
recognized as a mainstay in the pathophysiology of the disease
(Castela and Costa, 2016). As for the “WNT signaling pathway”,
studies had demonstrated that the Wnt family contributed to the
pathogenesis of diabetes-induced erectile dysfunction (Shin et al.,
2014; Ghatak et al., 2017). ED was also involved in the regulation
of the metabolic and nervous systems (Burnett, 2005; Ryan and
Gajraj, 2012; Mitidieri et al., 2020). For example, GO terms
included “regulation of primary metabolic process” “regulation
of cellular metabolic process” and “cellular response to stress”.
Literature verification showed that the above pathways were

related to the pathological mechanism of DMED (Matfin
et al., 2005; Zsoldos et al., 2019).

Finally, we annotated the characteristic miRNAs in
DMEDSig-4 to prove the mechanism relationship between
DMEDSig-4 and DMED. The expression of hsa-miR-342–3p
helped to identify patients with cardiovascular disease (Seleem
et al., 2019; Ray et al., 2020). Meanwhile, the expression level of
this miRNA was significantly increased in diabetic nephropathy
(Eissa et al., 2016; Jiang et al., 2020). Importantly, hsa-miR-
342–3p was differentially expressed in obese children with and
without endothelial dysfunction (Khalyfa et al., 2016), which was
one of the important factors causing DMED. Meanwhile, hsa-
miR-199b-5p, hsa-miR-30 days-5p and hsa-let-7e-5p were all
related to diabetic kidney damage and cardiovascular diseases
(Jia et al., 2016; Fedorko et al., 2017; Sun et al., 2018), which were
all risk factors for ED.

DISCUSSION

Erectile dysfunction (ED) is a common and often overlooked
complication of diabetes that can wreak havoc on men both
physically and mentally. Studies have shown that type 2 diabetes
mellitus (T2DM) is widely associated with ED and is a risk factor
for ED. Interestingly, several studies have demonstrated that
miRNAs are involved in the pathogenesis of ED. For example,
Rama Natarajan et al. explored the role of miRNAs in the
pathology of diabetic complications and also discussed the
potential use of miRNAs as novel diagnostic and therapeutic
targets for diabetic complications (Natarajan et al., 2012; Wang
et al., 2019). Wang et al. found that upregulation of miR-320 was

FIGURE 4 | Functional annotation of DMEDSig-4. (A) Functional Gene Network (FGN) of clusters defined by topGO for DMEDSig-4 Targeted Genes. Edges: link
genes annotated under the same enrichment terms. Node colors: functional clusters containing genes. White nodes: hub genes expressed in multiple clusters. (B)
Bubble chart of function enrichment results of DMEDSig-4.
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associated with impaired angiogenesis in diabetes (Wang et al.,
2009). Yan Wen et al. found that miR-205 may contribute to the
pathogenesis of DMED via down-regulation of androgen
receptor expressions (Wen et al., 2019). Although a large
number of studies have proved the regulatory relationship of
miRNAs on ED, there is still a lack of research on the relationship
between miRNAs and ED in the context of T2DM. This study
aimed to further explore ED signature associated with diabetes by
analyzing miRNA expression data in patients with DM. This
signature may play a certain role in the diagnosis and treatment of
DMED. This study is not only a preliminary attempt on miRNA
signature of DMED, but also may serve as the basis for
subsequent studies.

In terms of data, we collected a large amount of clinical
information and conducted preliminary screening to select
patients (disease history/clinical information) as similar as
possible and to eliminate the interference of other factors to
the greatest extent possible. Finally, we selected 10 DM patients
and 10 DMED patients as the final study subjects. However, due
to the limited time and cost, our patient cohort is still relatively
small, and there is no additional data set verification, so the
identified DMEDSig-4may not have good universality, which will
be our further research direction. In this study, we used a machine
learning approach (SVM-RFE) to identify potential miRNA
features in a sample of DM and DMED patients. First, four
optimal feature miRNAs (hsa-miR-342–3p, hsa-miR-199b-5p,
hsa-miR-30 days-5p and hsa-let-7e-5p) were identified after
1,000 cycles of the algorithm, called DMEDSig-4. They all had
a good classification effect, and there might be a potential
mechanism of co-regulation. Subsequently, after associating
with clinical factors, we found that DMEDSig-4 was positively
correlated with each other and negatively correlated with IIEF-5.
Then, we searched for the miRNAs targeted by DMDESig-4 and
constructed a miRNA-mRNA interaction network. The results
showed that the network consisted of four miRNA nodes, 105
mRNA nodes and 870 edges. Meanwhile, there was only one
intersection between the targeted miRNAs of miRNA, indicating
that these miRNAs did not tend to jointly regulate a target
mRNA. Importantly, the identified target mRNAs had a close
interaction relationship, suggesting that these mRNAs might act
together on the same pathway. This might play an enlightening
role in the subsequent studies of miRNA on DMED. Finally, we
searched for the miRNAs targeted by DMDESig-4 and performed
functional enrichment. The results showed that the DMDESig-4

pathways were closely related to DM and ED, which might
contribute to the pathogenesis of ED. The literature review has
shown that DMEDSig-4 was associated with cardiovascular
disease, diabetic nephropathy and liver injury, which were all
potential risk factors for ED (Hu et al., 2021). Clinical ED patients
are often accompanied by cardiovascular disease, kidney and liver
damage and other symptoms.

We hope that the characterization of miRNAs will contribute
to a comprehensive understanding of their pathways in DMED
and improve therapeutic strategies for patients with DMED. We
hope that the identification of DMEDSig-4 will contribute to a
comprehensive understanding of its pathway mechanism in
DMED and improve therapeutic strategies for patients
with DMED.
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Rationale: Severe asthma is a heterogeneous disease with multiple molecular
mechanisms. Gene expression studies of asthmatic bronchial epithelial cells have
provided biological insights and underscored possible pathological mechanisms;
however, the molecular basis in severe asthma is still poorly understood.

Objective: The objective of this study was to identify the features of asthma and uncover
the molecular basis of severe asthma in distinct molecular phenotype.

Methods: The k-means clustering and differentially expressed genes (DEGs) were
performed in 129 asthma individuals in the Severe Asthma Research Program. The
DEG profiles were analyzed by weighted gene co-expression network analysis
(WGCNA), and the expression value of each gene module in each individual was
annotated by gene set variation analysis (GSVA).

Results: Expression analysis defined five stable asthma subtype (AS): 1) Phagocytosis-
Th2, 2) Normal-like, 3) Neutrophils, 4) Mucin-Th2, and 5) Interferon-Th1 and 15 co-
expressed gene modules. “Phagocytosis-Th2” enriched for receptor-mediated
endocytosis, upregulation of Toll-like receptor signal, and myeloid leukocyte activation.
“Normal-like” is most similar to normal samples. “Mucin-Th2” preferentially expressed
genes involved in O-glycan biosynthesis and unfolded protein response. “Interferon-Th1”
displayed upregulation of genes that regulate networks involved in cell cycle, IFN gamma
response, and CD8 TCR. The dysregulation of neural signal, REDOX, apoptosis, and
O-glycan process were related to the severity of asthma. In non-TH2 subtype (Neutrophils
and Interferon-Th1) with severe asthma individuals, the neural signals and IL26-related co-
expression module were dysregulated more significantly compared to that in non-severe
asthma. These data infer differences in the molecular evolution of asthma subtypes and
identify opportunities for therapeutic development.

Edited by:
Lei Deng,

Central South University, China

Reviewed by:
Chuan-Le Xiao,

Sun Yat-sen University, China
Guoqing Liu,

Inner Mongolia University of Science
and Technology, China

*Correspondence:
Xiao-Feng Jiang

jiangxiaofeng@hrbmu.edu.cn
Yan Zhang

zhangtyo@hit.edu.cn

†These authors share Co-first
authorship

Specialty section:
This article was submitted to

Statistical Genetics and Methodology,
a section of the journal
Frontiers in Genetics

Received: 27 August 2021
Accepted: 29 September 2021

Published: 25 October 2021

Citation:
Li B, Sun W-X, Zhang W-Y, Zheng Y,
Qiao L, Hu Y-M, Li W-Q, Liu D, Leng B,
Liu J-R, Jiang X-F and Zhang Y (2021)
The Transcriptome Characteristics of
Severe Asthma From the Prospect of

Co-Expressed Gene Modules.
Front. Genet. 12:765400.

doi: 10.3389/fgene.2021.765400

Abbreviations: Normal: Healthy controls, AS: asthma subtype, BAl: bronchoalveolar lavage, FeNO: fractional exhaled nitric
oxide, ppb: parts-per-billion, Up: the number of upregulated genes in the module, Down: the number of downregulated genes in
the module, NonS: the mean value of module in non-severe asthma samples. meanS: the mean value of module in severe asthma
samples.

Frontiers in Genetics | www.frontiersin.org October 2021 | Volume 12 | Article 7654001

ORIGINAL RESEARCH
published: 25 October 2021

doi: 10.3389/fgene.2021.765400

91

http://crossmark.crossref.org/dialog/?doi=10.3389/fgene.2021.765400&domain=pdf&date_stamp=2021-10-25
https://www.frontiersin.org/articles/10.3389/fgene.2021.765400/full
https://www.frontiersin.org/articles/10.3389/fgene.2021.765400/full
https://www.frontiersin.org/articles/10.3389/fgene.2021.765400/full
http://creativecommons.org/licenses/by/4.0/
mailto:jiangxiaofeng@hrbmu.edu.cn
mailto:zhangtyo@hit.edu.cn
https://doi.org/10.3389/fgene.2021.765400
https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/journals/genetics#editorial-board
https://doi.org/10.3389/fgene.2021.765400


Conclusions: Asthma is a heterogeneous disease. The co-expression analysis provides
new insights into the biological mechanisms related to its phenotypes and the severity.

Keywords: Phagocytosis-Th2, normal-like, neutrophils, mucin-Th2, Interferon-Th1

INTRODUCTION

Asthma is a chronic disorder, characterized by airway hyper-
responsiveness (AHR) and remodeling with variable degrees
of eosinophilic and neutrophilic inflammation resulting in
significant morbidity and mortality (Wilson et al., 2006; Kim
et al., 2010). It affects about 5% of the population (Global
et al., 2017). According to the clinical characteristics, it is
mainly divided into the acute and the non-acute asthma,
which is further divided into mild, moderate, and severe
asthma individual. About 5–10% of the patients do not
respond well to standard treatment and have a poor
prognosis (Higgins, 2003). The bronchial epithelial cells act
as a physical barrier in airway immunity and as central
modulators of inflammatory response (Hamilton et al.,
2001). Environmental stimuli promote epithelial cell
synthesis and secretion by a variety of mediators, such as
cytokines, chemokines, reactive oxygen species, lipid, and
peptide mediators and eventually involved in recruiting
leukocytes, mucus secretion, vascular permeability,
bronchoconstriction, and airway hyper-responsiveness
(Whitsett, 2018).

Gene expression and genetic variation studies both indicate that
asthma is a polygenic and heterogeneous disease with multiple
molecular roots (Langfelder and Horvath, 2008; Belsky et al.,
2013). Based on the gene profiles in bronchial epithelial cells
associated with fractional exhaled nitric oxide (FeNO), Modena
et al. identified five phenotypes of asthma. The results showed
that a large number of individuals were severe asthma in each
subtype (Modena et al., 2014). However, the typical characteristics
of phenotype and the features related to severe asthma in phenotype
were also unclear. Therefore, revealing these characteristics in each
molecular subtype could be valuable for individualized treatment of
severe asthma.

In recent years, the WGCNA (Langfelder and Horvath, 2008)
(weighted gene co-expression network analysis) is a new system
biology approach that can be used to identify co-expression gene
sets that largely represent the typical biological characteristics in
complex disease. Therefore, in this study, we used the co-
expressed gene modules (GMs) that were used to uncover the
typical features in subtype and severe asthma.

MATERIALS AND METHODS

Study Population and Data Processing
As part of SARP (Severe Asthma Research Program), bronchial
brushing samples and matching demographic data were obtained
from 155 participants (129 asthmatics and 26 healthy subjects)
from 2009 to 2011. Gene expression of the SARP and external
cohorts are available online (GEO database; http://www.ncbi.\.

K-Means and Limma Analysis
According to the transcription of bronchial epithelial cells, the
k-means method integrated in the ConsensusClusterPlus
(Wilkerson and Hayes, 2010) package was adopted to
identify stable subtypes, and the stability was evaluated by
iterating for 1,000 times at a sub-sampling rate of 0.95. A total
of 4,650 (MAD: median absolute deviation >0.5) genes were
used as input. Starting from k � 4-5, a significant
improvement in clustering stability can be observed, but it
has no effect on k > 5 (Figure 1C). They were termed by
asthma subtype. After the establishment of these ASs, the
Bayesian method in Limma package was used to select the
differentially expressed genes (DEGs) between each
ASs and the normal. The cutoff setting: FC ≥ log (1.5),
FDR ≤ 0.05.

To determine the inflammatory Th2 group, K-means on
155 subjects was performed based on microarray expression
profiles of three Th2 marker genes (Woodruff et al., 2007)
(periostin: POSTN, channel regulator 1: CLCA1, and serpin
peptidase inhibitor clade B member 2: SERPINB2).
and three main clusters were identified. They were named
Th-H (Th2-high), Th-M (Th2-moderate), and Th-L
(Th2-low).

WGCNA Co-expressed Analysis
Using the default parameter setting and the 2,664 DEGs
selected in ASs, the WGCNA was performed. This method
clusters genes into modules using a topological overlap
measure (TOM) (Langfelder et al., 2008). The TOM was a
highly robust interconnection measurement method that
essentially provided a measure of the connection strength
between two adjacent genes and all other genes in a network.
Genes were clustered using 1-TOM as the distance measure
and GMs were defined as branches of the resulting
cluster tree using a dynamic branch-cutting algorithm.
Based on the dysregulated direction of each gene in
asthma, the genes in each co-expressed module were split
into 2 GMs.

Gene Set Variation Analysis
Gene Set Variation Analysis (GSVA) was performed using the
R package “GSVA” (Hänzelmann et al., 2013) (function gsva -
arguments: method � “gsva”, mx. diff � TRUE). GSVA
implements a non-parametric unsupervised method of gene
set enrichment that allowed an assessment of the relative
enrichment of a selected pathway across the sample space.
The output of GSVA was a gene set by sample matrix of GSVA
enrichment scores that were approximately normally
distributed. GSVA enrichment scores were
generated for each gene set using the normalized gene
expression data.
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Pathway Enrichment Analysis
Using the clusterProfiler (Yu et al., 2012) package, the functional
enrichment analysis was performed for the up- and
downregulated GMs. Significance cutoff was defined as FDR
<0.05 for multiple testing.

Correlation Analysis
The correlation analysis was performed by Pearson. The GSVA
score in each gene set represented its overall expression in
individual. The C2 (curated gene sets) dataset was downloaded
from Molecular Signatures Database (MSigDB), which is a
collection of annotated gene sets for pathway analysis (http://
software.broadinstitute.org/gsea/msigdb).

RESULTS

K-Means and Differentially Expressed Gene
Analysis
The k-means was performed, and five stable asthma subtypes
were obtained (Figure 1A). These subtypes were named as

follows: 1) Phagocytosis-Th2, 2) Normal-like, 3) Neutrophils-
Type, 4) Mucin-Th2, and 5) Interferon-Th1 based on the
differential expression modules and their related biological
clinical characteristics. These five subtypes were associated
with specific clinical characteristics (Table 1). “Interleukin-
Th2” is the youngest group (mean age � 29) with an elevated
FeNO (43 ppb). “Normal-like” has the highest Juniper AQLQ
(mean 5, p � 4.2E-12). “Neutrophils-Type” has the highest
levels of neutrophils in blood (mean, 60, p � 0.02) and BAL
(mean, 4, p � 0.02) and the lowest total cells count in BAL
(mean, 2.3, p � 3.9E-05). “Mucin-Th2” has the highest FeNO
overall (mean, 46, p � 2.5E-05) and the greatest reversibility
(mean, 21, p � 2.5E-05). The “Interferon-Th1” has the highest
lymphocytes (mean, 14, p � 0.01) in BAL. In addition, three
subtypes (“Neutrophils-Type”, “Mucin-Th2”, and
“Interferon-Th1”) had more percentage of severe asthma
individuals (chi-square, p < 0.001) (Figure 1B).

The Co-expression Features of AS
A total of 2,664 DEGs were detected among these five ASs
compared to the normal samples. Using 2,664 DEG as input, a

FIGURE 1 | The heatmap of molecular subtype in asthma and the percentage of severe asthma in each cluster. The heatmap of molecular subtype in asthma and
the percentage of severe asthma in each cluster (A) The k-means identified five stable asthma subtypes (AS1–5), the heatmap was derived by 2,664 DEGs selected in
each subtype. To define the Th2 subtype, the unsupervised hierarchical clustering was performed based on the microarray expression levels of periostin (POSTN),
channel regulator 1 (CLCA1), and serpin peptidase inhibitor, clade B, member 2 (SERPINB2). We named these subtypes: (1) Th-H, High; (2) Th-M, Moderate; (3)
Th-L, Low. According to the severity of the disease, the samples were divided into five groups: Normal for normal group; Mid/Mod-noICS for mild and moderate without
ICS treatment; Mid + ICS for mild and ICS treatment group; Mod + ICS for moderate and ICS treatment group; and Severe for severe asthma group (B) The percentage
of severe asthma in each cluster (red, normal samples, green: non-severe asthma individuals; blue: severe asthma individuals).
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total of 15 coordinately expressed GMs representing distinct
biological processes were obtained. In these 15 GMs with only
upregulated genes, 10 discriminated these five asthma clusters
(Figure 2). In the validation dataset, compared to the normal
group, the overall expression level of these modules was
consistent with the trend in this study.

Phagocytosis-Th2 Subtype: AS1
Two core gene programs (GM2 and GM3) characterized
“Phagocytosis-Th2”, which included gene networks involved in
leukocyte migration (5.3%, FDR � 9.15E-05), osteoclast
differentiation (4.5%, FDR � 0.006), receptor-mediated
endocytosis (5.7%, FDR � 7.03E-04, COLEC12, MSR1, CD163),
and antigen processing and presentation viaMHC class II (6%, p �
1.42E-13, HLA-DMA (Gao et al., 2020), HLA-DRB5, HLA-DMB,
HLA-DRB4, HLA-DPB1, HLA-DRA, HLA-DRB3, HLA-DOA,
HLA-DQA2 (Lasky-Su et al., 2012), HLA-DRB1, HLA-DPA1).
The clinical characteristics showed that the eosinophils (mean: 4,
p � 0.0009) were abnormally increased in blood. FeNo (mean: 43,
p � 2.5E-05) levels were higher, while the lymphocyte counts
(mean, 5.8, p � 0.01) in BAL were lower compared to normal
samples. The overall expression of GM2 in this cluster was

significantly related to phagocytosis category, which was the
reason why it was termed as “Phagocytosis-Th2”.

Normal-like Subtype: AS2
The Normal-like subtype was the most similar to the normal
group, with the mildest clinical symptoms and the fewest
differential expressed genes. The top three upregulated genes
were PHACTR3 (Itoh et al., 2014), SLCO1B3, and GNMT, which
were related to the response of glucocorticoids.

Neutrophils-type Subtype: AS3
The GM10 was a typical feature of Neutrophils-Type. This
module only contained eight upregulated genes, including
SLCO1B3, PHACTR3, TPO, and FKBP5 (Binder, 2009), which
were also related to the glucocorticoids and severity. The TPO
was a marker that related to the severity of asthma (Voraphani
et al., 2014).

Mucin-Th2 Subtype: AS4
Three core gene programs (GM6, GM9, and GM14)
characterized “Mucin-Th2”, which included gene networks
involved in O-linked glycosylation (2%, p � 0.01,

TABLE 1 | Summary of clinical characteristics of the SARP cohort in AS.

Normal AS1 AS2 AS3 AS4 AS5 p-value

Inflammatory cells in blood

Total WBC 5.5 ± 1.3 6.1 ± 1.8 6.4 ± 1.8 7 ± 2.7 6.8 ± 2.9 7 ± 2.9 0.0007
Neutrophils, % 54 ± 6.3 52.8 ± 10 61 ± 8.7 62 ± 15.4 62 ± 12.9 62 ± 13.9 0.02
Basophils, % 1 ± 0.5 0.6 ± 0.5 0.6 ± 0.5 0.2 ± 0.5 1 ± 0.5 1 ± 0.5 0.73
Eosinophils, % 2 ± 1.1 4 ± 2.6 2 ± 1.2 3 ± 4.4 5 ± 2.7 2.5 ± 3.3 0.0009
Lymphocytes, % 33 ± 5.6 34 ± 8.2 31 ± 9.1 26 ± 11.1 29 ± 11.2 26 ± 10.9 0.004
Monocytes, % 8 ± 2.5 8 ± 1.8 7 ± 2 8 ± 4.8 6 ± 1.4 7 ± 2 0.001

Inflammatory cells in BAL

BAL Total cells 6.1 ± 3.5 8 ± 8.8 7 ± 8.8 2.3 ± 2 4.3 ± 3.6 4.7 ± 8.9 3.9E-05
BAL macrophages,% 86.4 ± 9 91 ± 5.8 90 ± 6.4 85 ± 11.8 89 ± 18.6 81 ± 12.6 0.002
BAL lymphocytes,% 9 ± 7.5 5.8 ± 4.8 7.8 ± 6 9.3 ± 7.2 7 ± 9.5 14 ± 8.3 0.01
BAL eosinophils,% 0.2 ± 1.9 0.4 ± 1.6 0.4 ± 0.7 0.7 ± 1.8 1 ± 2.6 0.3 ± 1.1 0.01
BAL Neutrophils,% 2 ± 4.2 1.3 ± 2.7 1.5 ± 1.8 4 ± 8.2 2 ± 12 2.7 ± 8.7 0.02

Inflammatory cells in sputum

Total cells, millions 2.1 ± 3.7 1.6 ± 3.8 2 ± 1.4 1.9 ± 5.4 1.4 ± 1.2 1.1 ± 3.6 0.46
Total WBC, millions 1.1 ± 2.2 0.8 ± 3.5 1.3 ± 1 1.3 ± 4.8 1.1 ± 1 0.7 ± 3.6 0.45
Viability of WBCs,% 67 ± 16.6 54 ± 25.9 68 ± 25.7 74 ± 12.2 69 ± 26.9 67 ± 27.8 0.54
Macrophages, % 28 ± 15.1 42 ± 23.8 46 ± 25.9 33 ± 16.1 42 ± 18 42 ± 30.6 0.46
Bronchial epithelial cells,% 3 ± 6 3 ± 9.5 2.5 ± 6.9 2.5 ± 10 5 ± 10.7 1 ± 1.6 0.11
Eosinophils, % 0.9 ± 6.7 0.7 ± 2.9 0.5 ± 10 2.2 ± 15 7.2 ± 11 2.7 ± 1.4 0.40
Lymphocytes, % 1.1 ± 1.4 1.7 ± 3.2 1.4 ± 2.5 1.8 ± 2.2 1 ± 1.5 1.1 ± 1.2 0.82

Pulmonary function and other characteristics

Baseline FEV1, % predicted 94.5 ± 9 83 ± 16.4 81 ± 24.5 67 ± 25.3 59 ± 19.4 67 ± 18.3 9.9E-08
Baseline FVC, % predicted 96 ± 10.9 93 ± 13.3 85 ± 20.6 81 ± 22.2 69.4 ± 20 89 ± 17.7 0.0009
Maximum FEV1 reversal, % 5.3 ± 3.6 13 ± 16.2 8.7 ± 24 15 ± 38.4 21 ± 27.7 15 ± 13.1 2.5E-05
Juniper AQLQ 7 ± 0.1 4.4 ± 1.2 5 ± 1.3 4.9 ± 1.4 3.8 ± 1.3 3.9 ± 1.1 4.2E-12
Age, years 28 ± 11.9 29 ± 10.7 43 ± 12.2 48 ± 13.7 42 ± 11.1 35 ± 15.5 0.005
Age when first diagnosed NA 6 ± 10.7 12 ± 14 10 ± 20 13 ± 8.9 9 ± 14.5 0.001
Body mass index 24 ± 5.2 29 ± 5.6 28 ± 6.3 31 ± 6.3 33 ± 10.2 27 ± 6.3 0.052
Number_of_positive_skin_reactions 1.5 ± 3.2 4 ± 3 2 ± 3.2 4 ± 4.1 5 ± 3.6 3 ± 1.9 0.02
FeNO, ppb 21 ± 50.9 43 ± 30.9 17 ± 14.9 43 ± 34.6 46 ± 66.6 22 ± 18.3 2.5E-05
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i.e., GALNT7, PGM3 (Zhang et al., 2019), and GALNT10), amino
acid biosynthetic process (3%, p � 0.08, i.e., FOLH1, FOLH1B,
and PYCR1), and negative regulation of endopeptidase activity
(5.7%, i.e., SERPINA11, SERPINB10, SERPINB2 (Sánchez-
Ovando et al., 2020), AHSG, WFIKKN2, and FETUB (Diao
et al., 2016)). Individualized functional analysis showed that
about 90% of individuals in “Mucin-Th2” significantly
enriched Mucin type O-Glycan biosynthesis pathway. This
cluster has the highest expression of Th2 marker genes
(CLCA1, POSTN, and SERPINB2) and has the highest FeNo
overall (median � 46 ppb, p � 2.5E-05) and eosinophils in blood,
BAL, and sputum (Table 1). AlthoughMucin-Th2 was the typical
Th2, no inflammation and immune-related modules (GM2,
GM3, GM5, and GM7) were found overexpressed in this cluster.

Interferon-Th1 Subtype: AS5
Three core gene programs (GM4, GM5, and GM7) characterized
Interferon-Th1, which included gene networks involved in cell

division (23%, p � 2.39E-29, i.e., ERCC6L, CDCA2, and CDCA3),
type I interferon response (15%, p � 5.84E-30, i.e., IFITM3,
IFITM1, and IFITM2), antigen processing and presentation
via MHC class I (6%, p � 6.53E-09, i.e., HLA-H, HLA-B,
HLA-C, HLA-A, HLA-F, B2M, HLA-G, and HLA-E), and
T-cell activation (8.9%, p � 7.17E-12, i.e., ITK, ZAP70,
TNFSF14, CD8B, CD8A, and CD48). The overall expression
of GM5 was significantly related to interferon response, which
was the reason we termed this type “Interferon-Th1”. This
subtype was a typical non-Th2 subtype with normal FeNo
(mean:22) and eosinophils in peripheral blood, BAL, and sputum.

The Characteristics Related to Severity in
Asthma
In GMs with upregulated genes, 9 GMs (0, 1, 3, 4, 6, 8, 10, 12, and
14) were positively correlated to the severity and positive
association with the use of ICS and OCS. They were also the

FIGURE 2 | The heatmap of modules with upregulated genes in ASs. The overall expression is represented by red and blue; the red indicates high expressed in
cluster, and the blue indicates low expressed in cluster. M0–M14 represents 15 co-expressed modules with upregulated genes.
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most negatively correlated with FEV1% predicted and AQLQ
(Figure 3). These genes encode proteins related to calcium ion
transmembrane transport (6.34%, p � 0.003, i.e., P2RY12,
LOXHD1, CACNB4, and PKDREJ), apoptotic process (7.26%,
p � 0.006, i.e., MTFP1, C8ORF4, PTPRH, and LGALS7B),
O-glycan processing (4.46%, p � 1.33E-06, i.e., GALNT14,
MUC1, and MUC2), and amino acid biosynthetic process (3%,
p � 0.003, i.e., FOLH1, FOLH1B, and PYCR1). In 3 GMs (0, 1, 8),
this expression increased with each step of disease severity:
healthy control (Normal) < mild-to-moderate asthma not
treated with ICS (mild-mod-noICS) < mild-to-moderate
asthma treated with ICS (mild-mod-ICS) < severe asthma
(severe) (Figure 5).

In GMs with downregulated genes, 8 GMs (1, 2, 4, 6, 7, 8, 12,
and 14) were negatively correlated to the severity and negative
association with use of ICS and OCS. They were also the most
positively correlated with FEV1% predicted and AQLQ
(Figure 4). These genes encode proteins related to cell
adhesion (5.24%, p � 0.002, i.e., CD164, COL16A1,
PRKCE, and KIAA1462), innate immune response (10%,
p � 4.94E-04, i.e., C1QA, MARCO, and SAA1), potassium
and sodium ion transmembrane transport (3.7%, p � 5.20E-4,
i.e., KCNB1, KCNA1, SLC20A2, and SCN11A), lipoprotein
metabolic process (5.62%, p � 2.05E-5, i.e., LRP1, APOC2,
APOC1, LPL, and APOE), cellular oxidant detoxification

(5.8%, p � 0.01, i.e., GSTM2, GPX3, and CYGB), and
neuron signal (10%, p � 1.77E-4, i.e., TUBB2B, SPOCK1,
and NRCA). In 4 GMs (2, 4, 7, and 8), this expression
decreased with each step of disease severity: healthy
control (Normal) < mild-to-moderate asthma not treated
with ICS (mild-mod-noICS) < mild-to-moderate asthma
treated with ICS (mild-mod-ICS) < severe asthma (SA)
(Figure 5).

The comparison between mild-mod-ICS and mild-mod-
noICS showed that ICS/OCS significantly reduced the
expression of 3 GMs (2, 7, and 13) with upregulated genes,
while increasing the expression of GM4 with upregulated
modules.

The Severe Characteristics in AS
A total of 8 GMs (0-up, 1-up, 8-up, 11-up, 13-up, 8-down, 10-
down, 12-down) were significantly different between the severe
and non-severe group in specific phenotypes (Table 2), and 6 of
them were shown in Figure 6. Compared to that in normal and
non-severe samples, the GM0-up related to calcium ion trans-
membrane transport (6.3%, p � 0.004, i.e., P2RY12, LOXHD1 and
CACNB4) and negative regulation of endopeptidase activity
(4.7%, p � 0.04, i.e., SERPINB3 and SERPINB4) was
abnormally high expressed in severe asthma across all subtypes.

FIGURE 3 | The heatmap of correlation between co-expressedmodules
with upregulated genes and clinical characteristics. The clinical characteristics
include BMI, AQLQ, IgE, fractional exhaled nitric oxide (FeNO), FEV1%
predicted, use of inhaled (ICS) and oral corticosteroids (OCS), high dose
use of ICS, systemic use CS, anti_IgE treatment, nasal steroids, and the
severity of asthma. Positive correlations are red, and negative correlations
are blue.

FIGURE 4 | The heatmap of correlation between co-expressedmodules
with downregulated genes and clinical characteristics. The clinical
characteristics include BMI, AQLQ, IgE, fractional exhaled nitric oxide (FeNO),
FEV1% predicted, use of inhaled (ICS) and oral corticosteroids (OCS),
high dose use of ICS, systemic use CS, anti-IgE treatment, nasal steroids, and
the severity of asthma. Positive correlations are red, and negative correlations
are blue.
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In “Phagocytosis-Th2”, the GM10-down related to nitrogen
compound metabolic process (2.06%, p � 0.02, i.e., VNN1 and
VNN3) was differentially expressed between severe and non-
severe groups. In “Mucin-Th2”, the GM1-up related to O-glycan
processing (4.7%, p � 1.33E-06, i.e., GALNT14, MUC1, and
MUC2), GM8-up related to apoptotic process (17%, p � 0.01,
i.e., LGALS7B, MAL, and SGK1), and GM8-down related to
immune response (7.1%, p � 0.01, i.e., C3, CXCL6, IL6, and
SUSD2) were significantly different between severe and non-

severe groups. The GM1-up and GM8-up were much higher
expressed while the GM8-down was lower expressed in severe
asthma in the “Mucin-Th2” phenotype.

In “Neutrophils-Type” and “Interferon-Th1” (non-Th2)
phenotypes, two specific modules (GM13-up and GM12-down)
show different expression between severe asthma and non-severe
asthma. The GM13-up related to interleukin-26 (IL26, PIK3R5, and
LRRC2) was much higher expressed in severe individuals while the
GM12-down module related to the nervous system (10%, p � 1.77E-

FIGURE 5 | Seven modules expression related to asthma severity. The geometric means were measured according to asthma severity. These classes included
healthy controls (Normal), mild-to-moderate asthma not on inhaled corticosteroids (Mild-Mod-noICS), mild-to-moderate asthma on inhaled corticosteroids (Mild-Mod-
ICS), and severe asthma (SA).
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04, i.e., TUBB2B, SPOCK1, andASCL1) wasmuch lower expressed in
severe asthma individuals. The similar results were shown in the
validation data (Figure 7).

DISCUSSION

Asthma is a heterogeneous disease with multiple immune and
non-immune mechanisms (Ito et al., 2004; McKinley et al., 2008).
This study shows that the transcriptome of bronchial epithelial
cells was related to ASs and the severity.

Using cluster analysis, five stable ASs were obtained. Multiple
clinical features had significant differences among these ASs.
These results were similar to that of previous studies
(Langfelder and Horvath, 2008). Using the expression of 2,664
DEG profiles as input, the WGCNA co-expression analysis was
performed and the module was split based on the dysregulated
direction of each gene; 30 GMs were obtained, 15 of which
contain only upregulated genes and the other 15 contain
downregulated genes (Table 3). These split modules were
essential for the description of the typical characteristics in
ASs. In each co-expressed module, there was a negative
correlation between the two gene sets with up- and

TABLE 2 | The differential expression of nine co-expression modules between
severe and non-severe individuals in specific subtypes.

AS Module meanNonS meanS p-value

AS1 GM10-Down −0.159 −0.52 0.02
AS1 GM0-Up −0.036 0.157 0.01
AS3 GM0-Up -0.031 0.148 0.008
AS3 GM11-Up −0.237 0.252 0.016
AS3 GM13-Up −0.203 0.367 0.005
AS4 GM8-Down −0.436 −0.551 0.037
AS4 GM1-Up 0.13 0.434 0.018
AS4 GM8-Up 0.298 0.554 0.007
AS5 GM12-Down 0.154 −0.478 8.82E-06
AS5 GM13-Up −0.314 0.191 0.016

FIGURE 6 | Six modules expression in each phenotype between severe and non-severe groups. The geometric means were measured according to each cluster.
These classes included healthy controls (Normal), five asthma phenotypes (AS1–5), non-severe asthma, and severe asthma (SA).
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downregulated genes, respectively. For example, in GM9 with
upregulated genes, multiple Th2-related marker genes (CLCA1,
POSTN, etc.) were included, while in GM9 with downregulated
genes, the MUC5B (Zhang et al., 2019), SLC28A3, and
CSGALNACT1 genes were included and closely related to the
reduction of airway defense response (Ridley and Thornton,
2018; Rojas et al., 2019). The MUC5B plays a key role in
airway defense. The lack of MUC5B leads to lung
inflammation, impaired immune balance, and chronic
infection mediated by a variety of bacteria (Roy et al., 2014).
These two aspects (up and down features) might be two effective
strategies for individualized treatment in asthma.

Among these 15 modules containing upregulated genes, 4 GMs
(2, 3, 5, and 7) were typical immune-related modules and had
obvious subtype distribution characteristics. The GM2 and GM3
were typical characteristics of “Phagocytosis-Th2” while the GM5
andGM7were the typical features of “Interferon-Th1”. The function

enrichment analysis showed that the GM2 and GM3 were mainly
related to the receptor-mediated endocytosis and antigen
presentation via MHC-II. The GM5 and GM7 were highly
expressed in “Interferon-Th1” and mainly related to type I
interferon response and T-cell toxicity. Although the “Mucin-
Th2” was a typical Th2 phenotype, the four immune-related
modules mentioned above were not significantly increased in this
cluster, while the increased glycosylation of O-type glycans, amino
sugar and nucleoside sugar metabolism, proteolysis, and unfolded
protein reaction were highly expressed in this cluster and positively
correlated to the expression of Th2 markers. It suggested that these
biological functions could be coordinated with the Th2 signals and
related to the physio-pathological mechanisms in “Mucin-Th2”. The
increased mucus in airway was a typical clinical feature of Th2
asthma (Dunican et al., 2018; Lambrecht et al., 2019). Studies had
shown that the galectin-10 (Galectin-10 and Gal10) crystal structure
in airway mucus stimulates the immune system and induces the
changes in airway inflammation and mucus secretion (Nyenhuis
et al., 2019; Persson et al., 2019). Clearing the crystal structure can
effectively relieve airway inflammation and asthma symptoms.

Correlation analysis showed that the apoptotic process and
O-glycan processing were positively correlated to asthma severity,
while the cell adhesion, innate immune response, potassium and
sodium ion transmembrane transport, cellular oxidant
detoxification, and neuron signal were negatively correlated to
asthma severity. Correcting the imbalance of oxidation and anti-
oxidation in the lung may be an important method to relieve
asthma symptoms in clinic. GSH is themost important antioxidant
in lung tissues (Brigelius-Flohé and Maiorino, 2013). GSH can
inhibit a variety of pathogen replication and survival, and
increasing the GSH can effectively improve the body’s ability to
resist foreign microorganisms (Fitzpatrick et al., 2012). The
inhibition of the activity of the CYP450 pathway could destroy
the phagocytosis of macrophage and reduces the clearance
efficiency of inflammatory stimuli (Bystrom et al., 2013).

FIGURE 7 | The expression of M13-Up and M12-Down modules in clusters between severe and non-severe groups.

TABLE 3 | The number of upregulated and downregulated genes in co-expressed
modules.

Up Down

Module0 66 86
Module1 185 354
Module2 210 42
Module3 190 85
Module4 194 28
Module5 154 58
Module6 108 56
Module7 118 24
Module8 32 109
Module9 103 25
Module10 8 117
Module11 72 4
Module12 3 50
Module13 43 2
Module14 27 11
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In “Phagocytosis-Th2”, the GM10-down was differentially
expressed between severe and non-severe groups. In “Mucin-
Th2”, the O-glycan processing (GM1-Up), apoptotic process
(GM8-Up), and oxidation–reduction process (GM8-down)
were significantly different between severe and non-severe
groups. The oxygen free radical increase in bronchoalveolar
lavage fluid and peripheral blood associated with the severity
of disease (Mossberg et al., 2009; Sangiuolo et al., 2015), especially
in a typical Th2 phenotype (Huang et al., 2019).

In “Neutrophils-Type” and “Interferon-Th1” (non-Th2)
phenotype, interleukin-26 (IL26)-related function was
upregulated and related to the severity of asthma. IL-26 is a
member of IL-10 cytokine family, is abundant in human airways,
and induces the production of pro-inflammatory cytokines
(Louhaichi et al., 2020). Stimulation of cultured CD4+ T cells
with monocyte by recombining IL-26 promoted the generation of
RORγ Th17+ cells, inducing the production of IL-17A, IL-1β, IL-
6, and TNF-α (Louhaichi et al., 2020). Therefore, IL-26 could
appear as a novel pro-inflammatory cytokine, produced in
airways, and may be a promising target to treat inflammatory
asthma.

Although we clustered the transcriptome of bronchial
epithelial cells and revealed the typical features in five stable
subtypes, the heterogeneity in asthma is much higher than that in
subtypes. The characteristics in individuals were more likely a
mixture of typical features in multiple subtypes. For asthma,
distinguishing subtypes was only a powerful method for
uncovering the heterogeneity of complex diseases. Therefore,
the individualized analysis based on phenotypes in asthma was
a powerful tool for individualized diagnosis and treatment.
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Transcriptomics Landscapes of
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Systemic lupus erythematosus (SLE) is a complex and heterogeneous autoimmune
disease that the immune system attacks healthy cells and tissues. SLE is difficult to
get a correct and timely diagnosis, which makes its morbidity and mortality rate very high.
The pathogenesis of SLE remains to be elucidated. To clarify the potential pathogenic
mechanism of SLE, we performed an integrated analysis of two RNA-seq datasets of SLE.
Differential expression analysis revealed that there were 4,713 and 2,473 differentially
expressed genes, respectively, most of which were up-regulated. After integrating
differentially expressed genes, we identified 790 common differentially expressed
genes (DEGs). Gene functional enrichment analysis was performed and found that
common differentially expressed genes were significantly enriched in some important
immune-related biological processes and pathways. Our analysis provides new insights
into a better understanding of the pathogenic mechanisms and potential candidate
markers for systemic lupus erythematosus.

Keywords: systemic lupus erythematosus, differential expression analysis, gene functional enrichment analysis,
RNA-seq, protein-protein interaction

INTRODUCTION

Systemic lupus erythematosus is a chronic autoimmune disease (Beccastrini et al., 2013; Davies et al.,
2021). Its clinical manifestations are heterogeneous and involve one or more organs such as skin,
kidney, joints, and nervous system (Von Feldt, 1995; Adinolfi et al., 2016; Ronco et al., 2021). The
latest data from the US Lupus Registry and published studies around the world can more accurately
estimate the incidence and prevalence of SLE. It is estimated that the incidence of 23.2 cases per
100,000 people in North America is the highest in the world (Tsokos, 2011; Rees et al., 2017). SLE is a
heterogeneous rheumatic systemic disease with extremely diverse clinical manifestations and diverse
pathogenesis (Wu et al., 2021). In addition, it is one of the most varied diseases in its epidemiology
and etiology, with different types of immune dysfunction (Oku and Atsumi, 2018). SLE patients’
immune system activation is characterized by exaggerated B cells and T cells responses (Tsokos,
2011). The health-related quality of life of SLE patients is significantly impaired (Di Battista et al.,
2018). To obtain a better diagnosis and treatment method, it is necessary to explore the pathogenesis
of SLE.

Since the successful application of high-throughput technology, it has been widely used in almost
all biological research fields (Hess et al., 2020). With the development of high-throughput technology
(Hess et al., 2020), biological research has been transformed from a single gene level to a full
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transcriptome level, which has greatly advanced many
research fields in biology (Wang et al., 2009; McDermaid
et al., 2019). Cheng. et al. based on the genome-wide
expression data of peripheral blood mononuclear cells
(PBMC) of SLE patients found a novel marker of SLE
(Cheng et al., 2021). Jiang. et al. discovered a new type of
lncRNA that plays an important role in the pathogenesis of
SLE based on the whole transcriptome data of PBMC of SLE
patients (Jiang et al., 2021). However, these studies were only
conducted on a single dataset, and there was heterogeneity
between different datasets. Therefore, through a
comprehensive analysis of multiple datasets, more robust
results will be obtained.

In this study, we conducted a systematic analysis of two gene
expression datasets of SLE. First, differential expression analysis
was performed to obtain differentially expressed genes (DEGs) in
each dataset. To obtain robust results, we intersected the DEGs s
of the two datasets. We found that 790 genes were differentially
expressed in both datasets. Finally, gene function enrichment
analysis showed that common DEGs were enriched in immune-
related biological pathways. Overall, our research provided new
insight into the molecular mechanism of SLE.

MATERIALS AND METHODS

Datasets
“Systemic Lupus Erythematosus” and “RNA-seq” were used
as the keywords for searching the GEO database. The gene
expression datasets of PBMC from freshly isolated healthy
controls and SLE patients were downloaded from the GEO
database (GSE162828 and GSE169080), the platforms used
were GPL24676, and GPL20795. GSE162828 included 10
samples of peripheral blood mononuclear cells and was
divided into the SLE group (5 samples) and healthy
controls group (5 samples). GSE169080 included seven
samples of peripheral blood mononuclear cells and was
divided into SLE group (4 samples) and healthy controls
group (3 samples) (Clough and Barrett, 2016; Cheng et al.,
2021; Jiang et al., 2021).

Data Pre-processing and Identification of
Differential Expressed Genes
R package DESeq2 (1.26.0) was used for the analysis of the
original datasets (Love et al., 2014). |log FC| > 1 and p. adj
<0.05 were defined as the cutoff values for further analysis of
DEGs. Volcano and heatmap were constructed by R package
ggplot2. Venn plot (http://bioinformatics.psb.ugent.be/
webtools/Venn/) was used to draw the intersection of two
databases.

Analyzing of DEGs on Protein-Protein
Interaction Network
Protein-protein interaction (PPI) network analysis helps to
study the molecular mechanism of diseases from a systematic

perspective and discover new drug targets (Wu et al., 2019).
STRING (https://string-db.org/) is a database covering more
than 5,000 organisms with known and predicted protein-
protein interactions, providing direct (physical) and indirect
(functional) associations (Szklarczyk et al., 2017). We used
String (https://string-db.org/) to generate biological
networks for proteins, and the results were analyzed by
Cytoscape (Shannon et al., 2003; Szklarczyk et al., 2017).

Gene Functional Enrichment Analysis
Gene Ontology (GO) is an ontology widely used in the field of
bioinformatics, which covers three aspects of biology:
biological process (BP), cellular component (CC), and
molecular function (MF) (Thomas, 2017). Kyoto
Encyclopedia of Genes and Genomes (KEGG) is a
biological system advanced function and utility database
based on molecular-level information from genome
sequencing and other high-throughput experimental
technologies (Kanehisa et al., 2017). In this study, R
package clusterProfiler was used to perform GO functional
annotation and KEGG pathway enrichment analysis for
DEGs (Yu et al., 2012).

RESULTS

Differentially Expressed Genes Between
SLE Patients and Healthy Controls
To obtain abnormally expressed genes in SLE patients, we
separately analyzed the differential expression of two GEO
datasets (GSE162828 and GSE169080). As shown in
Figure 1A, there were 4,713 DEGs, including 2,717 up-
regulated and 1,996 down-regulated in the GSE162828
dataset. In the GSE169080 dataset, there were 2,473 DEGs,
including 1,552 up-regulated and 921 down-regulated
(Figure 1B). In both datasets, the number of up-regulated
DEGs was more than the number of down-regulated DEGs
(Figure 1C). In the GSE162828 dataset, the up-regulated
DEGs accounted for 56.7% of all DEGs. At the same time,
the up-regulated DEGs accounted for 62.8% of all DEGs in
the GSE169080 dataset. The trends in the two datasets were
roughly the same.

In addition, the heatmap showed that DEGs can group
samples by sample type, namely SLE patients (SLE) and
healthy controls (Norm) (Figures 1D,E). These genes were
highly concordant within groups. The expression level of these
genes between SLE patients and healthy controls exhibited a large
difference in both databases.

Identification of Common Differentially
Expressed Genes by Integrated Analysis
Due to the heterogeneity between different datasets, the analysis
results of different datasets may have certain differences (Ying
et al., 2020). The gene expression in different samples may be
different (Bao et al., 2021). To avoid this problem, integrating
multiple datasets and a large number of samples help obtain more
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FIGURE 1 | Analysis of differentially expressed genes (DEGs) between SLE patients and healthy controls. (A,B) The volcano plots exhibited the differentially
expressed genes in SLE patients groups compared to healthy controls groups. Each dot in the figure represented one gene. The green dots indicated the differentially
expressed genes, while the red dots denoted no significant difference. (C) Barplot showed the number of DEGs whose expression levels were up-regulated (green) and
down-regulated (red) in the two datasets. (D, E)Hierarchy Clustering Analysis. Repeated samples are clustered together, indicating the repeatability of samples and
the differences between samples.

FIGURE 2 | Common differentially expressed genes. (A) Venn plot showed the intersection of DEGs in two datasets (B) The histogram showed the distribution of
DEGs on chromosomes.
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solid results (Kou et al., 2020). In this study, we integrated DEGs
from two datasets to obtain common DEGs.

The Venn diagram showed that 790 DEGs were shared
between the two datasets (Figure 2A). They accounted for
16.8% (GSE162828) and 31.9% (GSE169080) of the two
datasets, respectively. There were 3,923 DEGs only in the
GSE162828 dataset, and 1,683 DEGs only in GSE169080
dataset. This may be caused by different sequencing
technologies and sample heterogeneity.

We defined these 790 DEGs as common DEGs. To further
explore the distribution of common DEGs on the
chromosomes, we had made statistics on the chromosomal

locations of these genes. As shown in Figure 2B, we found
that these genes were distributed on every chromosome. Most
of these genes were distributed on chromosome 19. On the
contrary, they were only 6 DEGs on chromosome 13.

Analysis of Common Differentially
Expressed Genes on Protein-Protein
Interaction Network
Proteins usually perform biological functions in concert. It
has been shown that there is a close relationship between
Protein-Protein Interaction (PPI) and the biological

FIGURE 3 | Protein-Protein Interaction network of common DEGs. The size and color of the node depending on the degree, the larger the degree, the larger
the node.
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functions of gene/protein clusters (Li H. et al., 2019). To
further analyze the correlation between common DEGs,
STRING and Cytoscape were used to construct the PPI
network (Figure 3). Part of common DEGs was predicted
to have a strong association with other genes. The size and
color of the node depending on the degree, the larger the
degree, the larger the node.

Especially, CCNB2, CDCA8, AURKB, BUB1B, RRM2, BIRC5,
and UBE2C had the largest degree. CCNB2 is an essential
component of the cell cycle regulatory machinery (Takashima
et al., 2014; Li R. et al., 2019). CDCA8 is an essential regulator of
mitosis and cell division (Zhang et al., 2020). AURKB participates
in the regulation of alignment and segregation of chromosomes
during mitosis and meiosis through association with
microtubules (Ahmed et al., 2021). BUB1B encodes a kinase
involved in the spindle checkpoint function (Zhang et al.,
2021). RRM2 encodes one of two non-identical subunits for
ribonucleotide reductase (Mazzu et al., 2020). BIRC5 encodes

negative regulatory proteins that prevent apoptotic cell death
(Adamopoulos et al., 2021).UBE2C is required for the destruction
of mitotic cyclins and cell cycle progression (Jin et al., 2020).

Functional Enrichment Analysis of Common
Differentially Expressed Genes
To investigate the biological function of common DEGs, we used
clusterProfiler to perform Functional enrichment analysis. Biological
Process (BP) enrichment showed that the common DEGs were
enriched in neutrophil mediated immunity, neutrophil
degranulation, neutrophil activation involved in immune response,
neutrophil activation and regulation of inflammatory response
(Figure 4A). Cellular Component (CC) enrichment showed that
the common DEGs were mainly enriched in secretory granule
lumen, cytoplasmic vesicle lumen, vesicle lumen, secretory granule
membrane and vacuolar membrane (Figure 4B). Molecular Function
(MF) enrichment showed that the common DEGs were significantly

FIGURE 4 | Functional Enrichment Analysis of common DEGs. (A) Biological process analysis of common DEGs. (B) Cellular component analysis of common
DEGs. (C) Molecular function analysis of common DEGs. (D) KEGG analysis of common DEGs.
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enriched in tubulin binding, microtubule binding, carbohydrate
binding, cargo receptor activity and immunoglobulin binding
(Figure 4C).

KEGG pathway analysis provided a potential functional cluster of
common DEGs, indicating that the common DEGs were clustered in
Herpes simplex virus one infection, HumanT−cell leukemia virus one
infection, Cell cycle, Transcriptional misregulation in cancer and
Epstein−Barr virus infection (Figure 4D).

DISCUSSION

SLE is a multi-system autoimmune inflammation that can
affect multiple organs and cause extensive and severe clinical
manifestations (Wu et al., 2021). The current understanding
of the pathogenesis of SLE is not comprehensive. The key
driving factors involved in the occurrence and development
of SLE remain to be determined. In this study, we provided
new insights into the transcriptome of SLE based on RNA-
seq data.

The results showed that compared with the normal healthy
control groups, a large number of genes in SLE patients were
abnormally expressed. Through integrated analysis, we found
that there were 790 shared DEGs in the two databases. The results
indicated that these common DEGs may lead to the occurrence
and development of SLE. Previous studies had shown that
lncRNA and circRNA are important factors leading to the
occurrence of SLE (Cheng et al., 2021; Jiang et al., 2021). We
found that the differential expression of these common DEGs
might play an important role in this process.

Through further analysis, we found that the DEGs tended to
up-regulated in the two datasets. Through protein-protein
interaction network analysis of commonly dysregulated genes,
we found that there was a strong correlation between these genes.
These PPI networks may have affected the occurrence and
development of SLE. Pathway enrichment results showed that
common DEGs were significantly enriched in immune-related
pathways such as neutrophil mediated immunity, neutrophil
degranulation, neutrophil activation involved in the immune
response.

In summary, we integrated and analyzed high-throughput
sequencing RNA-seq datasets to uncover potential molecular
mechanisms of SLE. Our findings provide new clues for
possible targeted therapy of SLE. Further studies on the
functions of those common DEGs hoped to better understand
SLE by integrating more data.
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Construction of sRNA Regulatory
Network for Magnaporthe oryzae
Infecting Rice Based on Multi-Omics
Data
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Studies have shown that fungi cause plant diseases through cross-species RNA
interference mechanism (RNAi) and secreted protein infection mechanism. The small
RNAs (sRNAs) of Magnaporthe oryzae use the RNAi mechanism of rice to realize the
infection process, and different effector proteins can increase the autotoxicity by inhibiting
pathogen-associated molecular patterns triggered immunity (PTI) to achieve the purpose
of infection. However, the coordination of sRNAs and proteins in the process ofM. oryzae
infecting rice is still poorly understood. Therefore, the combination of transcriptomics and
proteomics to study the mechanism of M. oryzae infecting rice has important theoretical
significance and practical value for controlling rice diseases and improving rice yields. In
this paper, we used the high-throughput data of various omics before and after the M.
oryzae infecting rice to screen differentially expressed genes and sRNAs and predict
protein interaction pairs based on the interolog and the domain-domainmethods.Wewere
then used to construct a prediction model of the M. oryzae-rice interaction proteins
according to the obtained proteins in the proteomic network. Finally, for the differentially
expressed genes, differentially expressed sRNAs, the corresponding mRNAs of rice and
M. oryzae, and the interacting protein molecules, the M. oryzae-rice sRNA regulatory
network was built and analyzed, the core nodes were selected. The functional enrichment
analysis was conducted to explore the potential effect pathways and the critical infection
factors of M. oryzae sRNAs and proteins were mined and analyzed. The results showed
that 22 sRNAs ofM. oryzae, 77 secretory proteins ofM. oryzaewere used as effect factors
to participate in the infection process of M. oryzae. And many significantly enriched GO
modules were discovered, which were related to the infection mechanism of M. oryzae.

Keywords: Magnaporthe oryzae, rice, multi-omics, sRNA, protein, machine learning

INTRODUCTION

Rice is an important crop, providing a portion of staple food for more than half of the world’s
population (Ruiz-Sánchez et al., 2010). However, rice blast is the most severe disease of rice, caused
by Magnaporthe oryzae, which seriously affects crop stability and sustainability around the world
(Imam et al., 2015). Therefore, research on how to control rice blast is widespread.
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Although M. oryzae is a model fungus for the study of plant-
fungal diseases, current studies have shown that the long-term
control performance of rice blast by using rice fungicides in the
field or selecting rice varieties resistant to M. oryzae is still
unstable (Deng and Naqvi, 2019). Therefore, people have done
a lot of research on M. oryzae infecting rice and achieved some
research results. However, the interaction mechanism between
fungi and plants is very complicated, and it is currently
challenging to analyze the molecular interaction mechanism
only by biological experiments (Li et al., 2017; Nelson et al.,
2018). Therefore, researchers began to use biocomputing
methods to assist and guide biological experiments based on
the emergence of many omics data related to fungus-plant
interactions, such as genomics, transcriptomics, proteomics
and metabolomics multi-omics data to reveal interactions
between biomolecules and explore key factors in biological
processes.

For exploring the key biomolecules in the process of fungus-
plant interactions small RNAs (sRNAs) were first studied in
depth. sRNAs refer to those that do not encode proteins in
the organism and are mostly 18nt-40nt in length (Mueth
et al., 2015). The common mechanism of action of sRNAs is
RNA interference (RNAi). The effector complex RISC is added to
one of the sRNA strands to achieve the purpose of inhibiting
protein biosynthesis (Majumdar et al., 2017). Researchers have
found that using the host plant’s RNAi mechanism by pathogenic
sRNAs to achieve the infection process may be ubiquitous in the
fungus-plant interaction mechanism (Weiberg et al., 2013; Cai
et al., 2018).

In addition, fungi as eukaryotes, their secreted proteins are
transported across the membrane by endocytosis and exocytosis
(Pompa et al., 2017; Riquelme et al., 2018). Secreted proteins are
proteins produced by the nucleus, processed and transported
through the endoplasmic reticulum and Golgi apparatus, and
secreted outside of cells or other cells. They play key biological
regulatory roles, such as hormones, antibodies, and enzymes
(Faso et al., 2009). In addition, studies have found that
pathogens invade hosts through secreted proteins to achieve
an attack on the hosts’ immune effect. For example, when
soil-borne pathogenic fungi invade plants, they secrete an
effector protein (Verticillium dahliae polysaccharide
deacetylase, VdPDA1), which deacetylates chitin
oligosaccharides produced by plants to resist infection by
pathogens, thus reducing or inactivating the immune system
of plants, to achieve the purpose of infection (Cui et al., 2020).

However, at present, the research on the mechanism of
fungus-plant interaction is still in its infancy (Kim et al., 2016;
Larsen et al., 2016; Großkinsky et al., 2018; Wang et al., 2019). In
addition to genomics research combining plant disease resistance
genes and sRNA for analysis (Zhang et al., 2016; Raman et al.,
2017), other omics analysis is still based on single omics analysis,
and some sRNAs (Zhang et al., 2019; Chang et al., 2020), proteins
(Solomon and Oliver, 2001; Grenville-Briggs et al., 2005;
Grohmann and Bronte, 2010; McGaha et al., 2012; Yang et al.,
2012), metabolites (Parker et al., 2009) have been identified. In
fungi infecting plants, how sRNA and protein molecules are
involved in the regulation is still unknown. Therefore, based

on differentially expressed genes, differentially expressed sRNAs
and protein interaction pairs in the process ofM. oryzae infecting
rice, this study proposed a new method to analyze the multi-
omics data of M. oryzae infecting rice and constructed a multi-
omics data integration-basedM. oryzae-rice interaction network.
It also wholly presented the interaction relationship between the
markers of various omics in the process ofM. oryzae infecting rice
and revealed the key nodes that play a regulatory role inM. oryzae
infection in rice. This paper found a possible solution for studying
the mechanism ofM. oryzae infecting rice and provided research
ideas for preventing and controlling rice and other food crops.

DATA AND METHODS

Firstly, the genomic, transcriptome, and proteome data were
analyzed to establish the M. oryzae-rice sRNA interaction
network and M. oryzae-rice protein interaction network.
Then, the sRNA and protein interaction networks of M.
oryzae and rice were analyzed. Finally, the PPI interaction
networks and GO functional enrichment modules of M.
oryzae and rice were excavated, respectively, and the key
factors of multiple omics joint regulations and the biological
processes involved were explored. The design roadmap for this
work is shown in Figure 1.

Data Source
Regarding the genome and transcriptome, this paper used the
gene chip expression data of rice before and after M. oryzae
infection with rice at 72 h, sRNA data of M. oryzae cultured on a
complete medium for 16 h, the mixed sRNA data of the rice
infected by M. oryzae for 72 h (Raman et al., 2013), the gene
expression data of rice after 48 h of culture, the gene expression
data of rice after 48 h of infection by M. oryzae (Chujo et al.,
2013), and the mRNA data of rice. These are all from the NCBI
database. Regarding the proteome, high-throughput protein data
of mode hosts, mode pathogens, rice andM. oryzaewere obtained
from HPIDB, NCBI and Uniport databases. We first obtained the
protein IDs of M. oryzae and rice from the NCBI and Uniport
databases. Because different databases have different identifiers
for the same protein, the obtained protein IDs must be converted
uniformly. Here, the protein IDs of the Uniport database were
selected as the unified protein ID identifiers, and the high-
throughput data of these proteins were obtained after the
protein IDs were converted.

Data Preprocessing
The Acquisition of Differentially Expressed Genes in
Rice
The commonly used R software packages for the gene chip probe
level data processing include affy, affyPLM, affycomp, gcrma, etc.
In this step, the affy package was used to analyze the rice gene
differential expression. Firstly, the background noise of the gene
chips was denoised by the MAS method. Then, in order to
eliminate the influence of signal strength and other factors
between different chips, the linear normalization method was
used for chip data. Next, the expression amount of the gene
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probes was calculated by the hybridization signal of the probeset
using the function computeExprSet in the affy package.

Then, the sequence number of the probes used by the gene
chip was retrieved from the GEO database and the probe

sequences were downloaded. Then, the whole rice genome
sequences were downloaded from RAP-DB, and the sequence
alignment between the gene probe sequences and the whole rice
genome sequences was performed by using the SeqMap sequence

FIGURE 1 | Overall design route.

FIGURE 2 | Algorithms for the analysis of differentially expressed genes.
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alignment tool to find the rice gene IDs corresponding to the gene
probes. Finally, by extracting the matched rice gene IDs, the
conversion from gene probes to gene IDs was completed, and 1.5-
fold differentially expressed rice genes were screened out, totaling
1,368. This process is shown in Figure 2.

Differentially Expressed sRNAs Screening of M.
oryzae
First, to remove the adapters and get the correct sRNA sequences,
the cutadapt tool was used to remove the sRNA data adapters.
Next, genome matching was performed on the sRNA data of M.
oryzae after removing the adapters to remove the sRNA data that
were not ofM. oryzae from the data. The specific operation was to
perform the mapping operation on the mixed sRNA data of M.
oryzae after removing the adapters and match it to the genome of
M. oryzae to obtain the pure sRNA data ofM. oryzae. The genome
matching tools used in this section were bowtie and samtools.

Since there are several sRNA sequences of different lengths in
FASTQ files, it is necessary to control the length of these sRNA
sequences. According to the available length of plant sRNAs, we
selected the sRNA sequences ofM. oryzae from 18nt to 25nt, and
suggested that these sRNAs could be used to predict the target
genes of rice. File A containing sRNA sequence, sequence length
and sequence expression amount ofM. oryzae was obtained from
the M. oryzae sRNA data after length control and without
genome mapping. Then, the file after genome mapping was
extracted, and each sRNA sequence of M. oryzae was
extracted into file B. Finally, the two files were matched. After
matching each sRNA sequence in file A, M. oryzae sRNA data
appearing in file B was output.

In this paper, the 3/4 quantile normalization method was used to
normalize the sRNA expression amount data before and after the
infection of M. oryzae. The specific method was to rank the sRNA
expression amount of M. oryzae from high to low and find the M.
oryzae sRNA ranked in 3/4. Then, this expression amount was taken
as the baseline of the lower expression level, and the expression
amounts of other samples were converted to multiples of this
expression amount. Finally, the data of M. oryzae differentially
expressed sRNA after normalized treatment were statistically
analyzed, and the expression amount and expression rate was used
for screening. The following formula calculated the expression rate:

Growth Rate � countafter − countbefore
countbefore

It was found that there were 4933 new sRNA data after
infection, and the expression amount was sorted, and the top
146 sRNA data with the highest expression amount were selected.
The data of 6,100 sRNA species before and after the infection of
M. oryzae were screened by two conditions: expression amount
and expression rate. A total of 220 speciesM. oryzae sRNAs were
screened out by selecting sRNAs whose differential expression
amount increment was more significant than or equal to 9 and
differential expression increase rate was more significant than or
equal to 2. Similarly, the sRNA data ofM. oryzae with differential
expression amount increment less than −116.5 were selected, and
there were 257 kinds of sRNA data. The differential expression

amount increment and expression amount increase rate of
sRNAs above were all greater than the corresponding mean
values of increase or decrease. Because the sRNA differential
expression increase rate ranged from 0 to 1, and the change rate
was meager, only the increment of differential expression amount
was used to screen the decreased expression sRNA of M. oryzae.
The distribution map ofM. oryzae differentially expressed sRNAs
is shown in Figure 3.

Preprocessing of Protein Data
Blast sequence alignment was performed on the protein amino
acid sequences of downloaded rice and M. oryzae. Proteins with
sequence similarity more significant than 95 were removed as
repeated proteins to eliminate the error in the same protein
sequencing by different sequencing platforms and avoid
duplicating the same protein that was considered to be caused
by two different proteins.

Prediction of M. oryzae-Rice sRNA
Interaction Pairs
Using the bioinformatics method to accurately and rapidly predict
the target genes of miRNA can provide clues for studying the
function of miRNA. Using target gene prediction software to
predict miRNA target genes is more efficient and faster than
experimental biological methods. There are many standard target
gene tools, including TargetScan, miRcode, miRDB, RNA22, and
tapir, the target gene prediction tool used in this paper. Before the
prediction, T was converted to U in the sRNA data and such
sequence files were converted to FASTA files. After the sequence
base conversion of FASTA files, the tapir tool can be used to predict
the target genes of the sRNA sequence files of M. oryzae.

First, the FASTA CDS files of M. oryzae and rice were
downloaded, and the FASTA files of the differentially
expressed M. oryzae sRNAs were obtained. Then, when the
tapir tool was used for target gene prediction, the matching
score was set as 0.5 and the free energy ratio was set as 0.7.
After target gene matching, Python script was applied to process
the prediction results, and the final target gene prediction result
file was obtained.

In this section, 366 kinds of differential expression amount up-
regulated and newly added of M. oryzae sRNAs were targeted to
rice mRNAs. A total of 1,857 rice mRNAs were obtained. After
gene IDs matching and deduplication of these mRNAs, 1,121 rice
gene IDs were obtained. In the same way, 257 kinds ofM. oryzae
sRNAs with down-regulated differential expression amounts
were targeted to M. oryzae, and 664 M. oryzae mRNAs and
264 M. oryzae genes were obtained.

Prediction of M. oryzae-Rice Protein
Interaction Pairs
Sequence-Based
The protein interaction prediction method based on sequence
features (interolog method) is based on the principle that
homologous proteins have similar functional and structural
characteristics (Thanasomboon et al., 2017). Here, the
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interspecific interolog method predicted the protein interaction
relationship between M. oryzae and rice. First, the confirmed
interaction mode host and mode pathogen protein sequences
were recorded as A and B, while the protein sequences of rice and
M. oryzae were recorded as A′and B′. Then, for each protein
amino acid sequence in A′, sequence alignment was carried out
with the protein amino acid sequences in A, and the accuracy was
obtained. Similarly, file B also followed this step. Finally, the
accuracy of the interaction relationship pairs between A′and B′
was calculated by interacting with the proteins in A and B. The
process is shown in Figure 4.

In this process, the interolog method was used to screen the
protein interaction pairs between rice and M. oryzae, and the
threshold was set as E-value less than or equal to 1E-5 and
similarity greater than or equal to 30. Then, the model pathogen
and mode host protein pairs corresponding toM. oryzae and rice
proteins were matched, and the protein pair files ofM. oryzae and
rice were obtained based on the interolog method.

Domain-Based
The available domain-based protein interaction prediction
method (domain-domain interaction method) is based on the
principle that interacting protein pairs may have the exact
functional domains (Lee et al., 2006). For example, for the
confirmed interactions between mode host protein A and
mode pathogen protein B, if rice protein A′and M. oryzae
protein B′ have the same interaction functional domains as
protein A and protein B, then rice protein A′and M. oryzae
protein B′ interact. The process is shown in Figure 5.

In this process, functional domains were obtained from the protein
amino acid sequences of mode hosts, mode pathogens, rice and M.
oryzae through the Pfam database. E-value was selected as 1E-5 and
the coincidence rate was selected as 90%. TSV files containing protein
IDs, protein functional domains and E-values were obtained. Then,
protein domain files were extracted and sorted to obtain protein
interaction relationship pairs based on functional domains.

Prediction of Secreted Protein of M. oryzae
By combining the interolog method and domain-domain method,
83664 pairs of protein interactions were obtained following the two
methods. However, not all M. oryzae proteins can be transported
across the membrane, it is necessary to do the secreted protein
identification of the aboveM. oryzae proteins and screen out theM.
oryzae-rice protein interaction network that M. oryzae proteins
were secreted proteins.

In this paper, the secreted proteins ofM. oryzae were predicted
on TMHMM. The FASTA files of 323 M. oryzae protein amino
acid sequences were obtained through the Uniport database and
imported into the TMHMM website to obtain their secreted
proteins’ predicted results. When the expected number of
amino acids in the transmembrane helix of a protein is greater
than or equal to 18, or when the transmembrane helix number of
N-the best predicted is greater than or equal to 1, the protein can be
considered a secreted protein. Therefore, protein IDs with

FIGURE 3 | (A) The distribution of differential expression rate (ER) of sRNAs ofM. oryzae was greater than or equal to 2 and the expression amount (EA) was more
significant than or equal to 9. (B) The distribution of differential EA of sRNAs of M. oryzae was less than or equal to −116.5.

FIGURE 4 | Interolog method.
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parameters ExpAA greater than or equal to 18 or PredHel greater
than or equal to 1 were extracted. The obtainedM. oryzae secreted
proteins were matched and screened with the previous 83664 M.
oryzae-rice protein interaction pairs, and finally, 7352 M. oryzae-
rice protein interaction pairs were obtained.

Construction of a Prediction Model for
Cross-Species Regulatory Protein Pairs
Between M. oryzae and Rice
Acquisition and Processing of Positive and Negative
Samples
This paper established a prediction model for M. oryzae and rice
interaction protein pairs and obtained protein interaction pairs
through the sequence and functional structure prediction in
experiments. The 7352 data of the effective interaction pairs of
M. oryzae and rice obtained above were used as positive samples.
The negative samples were randomly selected from other M.
oryzae rice protein interaction pairs except the positive samples
that the ratio of positive and negative samples was 1:1.

For the protein features ofM. oryzae and rice, the proteins’ amino
acid sequences and functional domains were used as the feature data.
In addition, functional domain texts were preprocessed before
training, including unifying special symbols, spaces, upper and
lower case letters of each functional domain and removing stop
words to achieve standardized processing of data samples.

Construction of Protein Interaction Pair Prediction
Model Based on textRNN
Recurrent Neural Network (RNN) is mainly used in sequence
prediction, character generation, emotion recognition, man-
machine dialogue, etc. RNN is a kind of recursive neural network
that takes sequence data as input, recurses in the sequence’s evolution
direction, and connects all nodes in a chain. The sequence
information determines the task of the event itself, which requires
previous knowledge and current information to determine the output
result jointly. As a result, textRNN can more effectively address the

problem of contextual semantic relevance. Considering that the
protein’s amino acid sequence and functional domains belonged
to short texts, which have contextual semantic relevance
characteristics, this paper used textRNN to construct the protein
interaction pair binary classification model.

A multi-layer RNN network needs to be established in the
construction of RNN model. The dropout layer was added after
each RNN kernel function, and the amino acid sequences after the
M. oryzae and rice protein interaction pair segmentation were used
as the input variable of the RNN model. The first hidden layer
activated this input. Then the successive activations were performed
layer by layer to get the output. Each hidden layer had its ownweight
and bias. Parameters such as the classification results, accuracy and
loss function of the output protein interaction pairs were output by
the output layer. The optimal RNN protein interaction model was
obtained by adjusting learning_rate, dropout_keep_prob and total
iteration cycles according to the learning curve and confusion
matrix. Finally, different evaluation indexes were applied to
evaluate and verify the model. The accuracy of protein
interaction pairs predicted by the interolog method and domain-
domain method in this paper was proved.

Analysis of Regulatory Network BetweenM.
oryzae and Rice
In order to analyze the obtained sRNA and protein interaction
network of M. oryzae-rice, and the network diagram of M.
oryzae-rice protein interaction was too significant. Therefore,
the PPI networks of M. oryzae and rice jointly regulated by
various omics were explored, respectively. First, the PPI network
of M. oryzae was mined based on the proteins regulated by M.
oryzae differentially expressed sRNAs and M. oryzae proteins in
the M. oryzae-rice protein interaction network. And the PPI
network of rice was mined based on the proteins regulated by rice
differentially expressed genes and rice proteins in the M. oryzae-
rice protein interaction network. Then the PPI networks of M.
oryzae and rice were analyzed for GO pathway enrichment, and

FIGURE 5 | Domain-domain method.
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the modules were separated. Finally, by analyzing the isolatedM.
oryzae and rice protein networks, the main modules’ biological
functions and KEGG enrichment pathways were described. The
key nodes of M. oryzae-rice and their interaction networks were
mined by using multi-omics network data to explore the
molecular mechanism of M. oryzae and rice interaction.

RESULTS

Prediction Model Results of the
Interspecies Regulatory Protein Pairs
Between M. oryzae and Rice
The learning curves of the textRNN model on the functional
domain and amino acid sequence are shown in Figure 6.

The model was evaluated according to the precision, recall and
F1 indexes, and the accuracy indexes of the TEXTRNN model in
the functional domain and amino acid sequence are shown in
Table 1 and Table 2, respectively.

When textRNN model with the functional domain as feature
data was tested, the testAcc of textRNNmodel was 98.81%, testLoss

was 0.029, and the confusion matrix was: [[414 6]
[4 415]] .

When textRNN model with protein amino acid sequence
as feature data was tested, the testAcc of textRNN model
was 97.49%, testLoss was 0.086, and the confusion matrix

was: [[391 8]
[12 386]] .

Therefore, the textRNN model can be used to predict the M.
oryzae-rice protein interaction pairs, and the prediction model
performed well in this paper. Furthermore, the prediction of
protein interaction pairs in plants infected by other fungi can also
refer to this model.

Analysis Results of M. oryzae-Rice
Transcriptome and Proteome Networks
After target prediction of the 623 kinds ofM. oryzae sRNAs, 1,857M.
oryzae-rice sRNA interaction pairs and 664M. oryzae internal sRNA
interaction pairs were obtained. By digging positive and negative
regulatory factors, 1,166 M. oryzae genes, 1,121 rice genes, 1,173 M.
oryzae proteins and 1,677 rice proteins were found to be involved in
the biological process of M. oryzae infection to rice. In addition, the
transcriptome network of M. oryzae and rice was visualized by the
Cytoscape tool. There were 20 sRNA-mRNA interaction clusters with
two ormore sRNAs involved in regulation. The network diagramwas
shown in Supplementary Figure S1.

Based on the 7,352M. oryzae and rice protein interaction pairs
obtained previously, the M. oryzae-rice protein interaction
network diagram was drawn with a total of 11 rice protein
interaction clusters. The network diagram was shown in
Supplementary Figure S2.

A total of 593 kinds of M. oryzae sRNAs and 581 kinds of M.
oryzae secreted proteins directly involved in the two interaction
mechanisms were excavated through the M. oryzae-rice sRNA
interaction network and protein interaction network, and they
were put into the STRING database for GO pathway enrichment

FIGURE 6 | (A) The learning curves of textRNN model on functional domain and (B) amino acid sequence characteristics.

TABLE 1 | Evaluation indexes of textRNN model on the functional domain.

Precision Recall F1-score Support

0 0.99 0.99 0.99 420
1 0.99 0.99 0.99 419
Accuracy 0.99 839
Macro avg 0.99 0.99 0.99 839
Weightrd avg 0.99 0.99 0.99 839

TABLE 2 | Evaluation indexes of textRNN model on the amino acid sequence.

Precision Recall F1-score Support

0 0.97 0.98 0.98 399
1 0.98 0.97 0.97 398
Accuracy 0.97 797
Macro avg 0.97 0.97 0.97 797
Weightrd avg 0.97 0.97 0.97 797
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analysis and KEGG enrichment analysis. First, the p-value was set as
1E-16, and the GO enrichment results and KEGG enrichment results
were derived. The PPI network diagram ofM. oryzae was too large to
be shown in this paper and was shown in Supplementary Figure S3.
Next, GO enrichment analysis (Figure 7A) and KEGG pathway
enrichment analysis (Figure 7B) were carried out on PPI
interaction network diagram of M. oryzae. It can be seen that
most of these enrichment pathways were involved in the biological
processes of sRNA synthesis, protein synthesis and transport in M.
oryzae. To some extent, the above conclusions proved thatM. oryzae
could complete the infection process of rice through sRNAs and
secreted proteins.

The obtained rice differentially expressed genes, rice proteins
regulated by mRNAs and rice proteins in the protein interaction
network of M. oryzae and rice were analyzed by GO enrichment
and KEGG enrichment. However, there were too many rice-
related protein nodes. Firstly, the protein nodes obtained by three
ways were mined through the STRING database for their PPI.
Then the rice protein interaction pairs obtained were imported
into Cytoscape to obtain the rice protein interaction network.
Finally, the rice protein interaction network was divided into
modules and the largest five rice modules were screened out. The
GO enrichment pathways (Figure 8A) and KEGG pathways
(Figure 8B) of each module were excavated, respectively.

Modularity Analysis Results of M. oryzae
and Rice Regulatory Networks
(Cluster 1–10)
In this paper, Clusterviz, a Cytoscape plug-in, was used to segment the
protein interaction network betweenM. oryzae and rice into modules,

and the FAG-EC algorithm was selected to intercept only the subnet
modules with more than six nodes. Next, the segmentation subnet
modules were sorted by complexity, and GO function enrichment
analysis was carried out for eachmodule. The largest five subnets with
significant function enrichment analysis were selected for subsequent
analysis and named Cluster 1–10. Then, each subnet’s GO functional
modules and KEGG enrichment pathways were mined to explore
their biological processes.

Cytoscape calculated the network topology attributes, and its
plug-in NetworkAnalyzer was used to calculate the degree and
betweenness of nodes in each subnet. Betweenness is a measure of
the centrality of a node in the network. In some sense, it measures
the influence of a node on information spread through the
network. The following formula calculates betweenness:

Cb(n) � ∑
s≠ n≠ t

(δst(n)/δst)

Where s and t are genes different from n in the network, δst
represents the shortest path from s to t, and δst (n) represents the
shortest path from s to t and through n.

The nodes of each subnet were sorted according to betweenness,
and the top 6 nodes with the highest betweenness in each subnet
were obtained, which were regarded as the central nodes of the
subnet and marked in the subnet interaction diagram.

After the segmentation module of the regulatory network ofM.
oryzae, five largest significant functional enrichment subnets were
selected, which were the M. oryzae helicase activity and protein
synthesis module (Cluster 1), M. oryzae DNA repair-related
module (Cluster 2), M. oryzae RNA transport and molecular
transport-related module (Cluster 3), M. oryzae gene expression
and mRNA processing-related module (Cluster 4) and M. oryzae

FIGURE 7 | (A) Go enrichment module diagram ofM. oryzae. The first three significantly enriched Go-terms of the biological process modules are protein N-linked
glycosylation, GPI anchor biosynthesis process and protein glycosylation. The first three significantly enriched GO-terms of the cell component modules are
oligosaccharyltransferase complex, endoplasmic reticulum membrane, and integral component of the membrane. The first three significantly enriched GO-terms of
molecular function modules are transferase activity, transferring glycosyl groups, dolichyl-phosphate-mannose-protein mannosyltransferase activity, and dolichyl-
diphosphooligosaccharide-protein glycotransferase activity. (B) KEGG enrichment bubble diagram ofM. oryzae. There are 10 significant enrichment pathways in KEGG
enrichment pathways, which are mainly related to various glycan organisms, anchor organisms, steroid organisms, biosynthesis of secondary metabolites, protein
processing and metabolic pathways.
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biosynthetic pathway-related subnet (Cluster 5). Cluster 1 was
closely related to a series of protein synthesis processes and helicase
activity (Supplementary Figure S4). The KEGG enrichment
pathways of Cluster 2 mainly included nucleotide excision
repair pathway, homologous recombination and mismatch
repair pathway, etc (Supplementary Figure S5). The KEGG
enrichment pathways of Cluster 3 mainly involved RNA
transport, MAPK signaling pathway-yeast and endocytosis
pathway (Supplementary Figure S6). The GO items of Cluster
4 were mainly involved in RNA transcription, translation and
protein synthesis. The KEGG enrichment pathways of Cluster 4
mainly included basic transcription factor enrichment pathway,
RNA polymerase enrichment pathway, pyrimidine metabolism
enrichment pathway, purine metabolism enrichment pathway,
nucleotide excision repair enrichment pathway, ribosome
biogenesis in eukaryotes enrichment pathway and metabolic
pathway enrichment pathway (Supplementary Figure S7). The
KEGG enrichment pathways of Cluster 5 mainly included steroid
biosynthesis, antibiotic biosynthesis, secondary metabolite
biosynthesis, terpenoid skeleton biosynthesis and metabolic
pathway (Supplementary Figure S8).

After the segmentation module of the regulatory network of rice,
five largest significant functional enrichment subnets were selected,
which were the rice protein binding functional module (Cluster 6),
rice GTP and nucleoside triphosphatase-related module (Cluster 7),
rice gene expression, transport and metabolism-related module
(Cluster 8), rice protein synthesis module (Cluster 9) and rice
gene expression and defense response regulation module in rice
(Cluster 10). Cluster 6 was significantly enriched in the unfolded
protein binding function module (Supplementary Figure S9).
Cluster 7 was significantly enriched in GTPase activity, GTP
binding and nucleoside-triphosphatase activity (Supplementary
Figure S10). The go terms of Cluster 8 were related to regulation
of gene expression, transport pathway of biomolecules, and rice
metabolic pathways. These GO functional modules showed that the
infection process of M. oryzae affected the gene expression and
metabolism of rice (Supplementary Figure S11). Cluster 9 was

significantly enriched in nucleus, ribosome, ribonucleoprotein
complex, cytoplasm, cell, translation and structural constituent of
ribosome. Most of these GO modules were related to the protein
synthesis process (Supplementary Figure 12). The go terms of
Cluster 10 were related to regulation of gene expression, protein
synthesis, and rice defense module. These GO functional modules
showed that the infection process of M. oryzae affected the
differential gene expression in rice (Supplementary Figure S13).

PPI Network Analysis and Screening
Results of Main Regulatory Factors of M.
oryzae and Rice
After the 366 sRNAs up-regulated during theM. oryzae infecting
rice process to predict the target genes of rice mRNAs, 1,857 rice
mRNAs were obtained, pointing to 1,121 rice genes. After the 257
sRNAs were down-regulated during the M. oryzae infecting rice
process to predict the target genes of M. oryzae mRNAs, 664 M.
oryzae mRNAs were obtained, and 264 M. oryzae genes were
involved in regulation. The 664 kinds of M. oryzae mRNAs were
input into the Uniport database to obtain 2,644 protein IDs
corresponding to these mRNAs. According to GO, the obtained
protein IDs were matched with their interacting protein IDs to
expand the proteins involved in regulation by M. oryzae. These
expanded proteins also used TMHMM to predict secreted
proteins, and 337 M. oryzae proteins were obtained. Then 601
protein IDs, which were involved in the transboundary regulation
of the secreted proteins of M. oryzae, were matched with the M.
oryzae-rice protein interaction pair network to obtain the M.
oryzae and rice sRNA-protein interaction network (Figure 9).

Analysis Results of the Core Nodes of the
Interaction Network BetweenM. oryzae and
Rice
TheM. oryzae infecting rice interaction network diagram and the
rice response of M. oryzae infection network diagram obtained

FIGURE 8 | (A) Five modules significantly enriched GO functional enrichment module diagram and (B) KEGG enrichment pathway bubble diagram of rice.
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above were combined to find the biomolecules that play a role in
them. However, the large number of these biomolecules was not
conducive to our further analysis ofM. oryzae and rice interaction
mechanism, so core node mining was needed. In this study, the
biomolecules involved in the infection of rice by M. oryzae were
extracted by multi-omics joint analysis, including 8 rice
differentially expressed genes, 31 rice mRNAs, 77 rice proteins,

22 M. oryzae sRNAs, 1 M. oryzae mRNA, and 38 M. oryzae
proteins (Supplementary Table S1).

22 differentially expressed sRNAs were found, including
12 up-regulated sRNA data of M. oryzae, 8 newly increased
sRNA data of M. oryzae, and 2 down-regulated sRNA data of
M. oryzae. 20 up-regulated and newly added sRNA data were
used to infect rice by targeting rice mRNAs for rice RNA

FIGURE 9 | Interaction network diagram betweenM. oryzae and rice main regulatory factors. The red regular triangles are the sRNA nodes ofM. oryzae, the green
inverted triangles are the mRNA nodes of rice, the red inverted triangle is the mRNA node ofM. oryzae, the green circles are the protein nodes of rice, the red circles are
the protein nodes ofM. oryzae, and the green diamonds are the gene nodes of rice. According to the screening of degree and betweenness, the key protein nodes can
be found as RIB3_MAGO7, L7JCG4_MAGOP, A0A4P7NCR6_MAGOR, L7JIK4_MAGOP, HOX5_ORYSJ and R27AA_ORYSJ. The key mRNA nodes can be
found as XM_015784275 and XM_015765891. The key sRNA nodes can be found as 4933_146_U_99 and 6100_220_U_126. The key genetic nodes can be found as
Os01g0178400 and Os01g0197200.
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silencing. And 2 down-regulated sRNAs of M. oryzae may
increase some proteins in M. oryzae to achieve the purpose of
invading rice by secreted proteins.

77 rice core proteins were imported into the STRING
database, 32 influential rice gene nodes were obtained, and
GO function enrichment analysis and KEGG pathway
enrichment analysis was conducted. There were 19 interacting
gene nodes. The PPI interaction network diagram of rice core
nodes is shown in Figure 10.

The enrichment analysis of the GO pathway of rice core
protein nodes found that the significantly enriched GO
functions in rice were distributed in three aspects. One was
gene expression-related modules, including negative regulation
of gene expression, gene expression regulation, epigenetic
regulation, gene silencing, and gene expression. The second
was protein molecular synthesis and transport-related
modules, including protein complex, protein
heterodimerization activity, nucleic acid binding, protein
binding, organic circular compound binding, heterocyclic
compound binding, DNA binding, intracellular protein
transport. The third was metabolism-related modules,
including protein metabolism process, macromolecular
metabolism process, proteolysis, nitrogen compound
metabolism process, cellular macromolecular decomposition
process, regulation of nitrogen compound metabolism process,
regulation of primary metabolic process, primary metabolic

process, etc. According to the KEGG pathways enrichment
analysis of rice core nodes, the significantly enriched KEGG
pathways were protein processing and endocytosis in the
endoplasmic reticulum. These GO functional modules with
significant enrichment of rice key proteins were basically
consistent with the GO functions of the main modules of the
rice regulatory network, which verified the accuracy of the rice
core proteins mined through multi-omics joint analysis.

GO functional modules of the M. oryzae infecting rice
mechanism and rice core nodes for the combined analysis
found that the GOs were significantly enriched in the gene
expression regulation module, protein synthesis and transport
module, and metabolism module. The significant enrichment of
gene expression modules indicated that M. oryzae silenced rice
genes through RNA silencing mechanism to achieve the purpose
of infecting rice. In addition, the protein synthesis and transport
module showed thatM. oryzae infected rice by secreted proteins.
The module included protein synthesis, nucleic acid binding,
protein binding, organic cyclic compound binding, heterocyclic
compound binding and transport. These results indicated thatM.
oryzae invaded rice by secreted proteins which combined with
some proteins or biomolecules in rice to affect the defense
mechanism of rice, thus realizing the infection process. Based
on the analysis of KEGG metabolic pathway in rice, it was found
that these key proteins in rice affected the metabolic mechanism
of rice. After M. oryzae infected rice by sRNAs and secreted

FIGURE 10 | PPI network diagram of rice core nodes.
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proteins, the rice metabolism was affected, including nitrogen
compound metabolism, protein metabolism, other biological
macromolecules metabolism, etc. The table of these GO
enrichment modules was shown in Supplementary Table S2.
The GO enrichment function diagram of rice core proteins is
shown in Figure 11.

DISCUSSION

In this study, a variety of omics data of M. oryzae and rice were
used to excavate the interaction network between M. oryzae and
rice to explore the mechanism of M. oryzae infection on rice to
mine the key nodes involved in the interaction process. The data
of each omics used in this paper included sRNA data before and
after M. oryzae infecting rice, M. oryzae mRNA data, M. oryzae
protein data, M. oryzae gene expression data before and after M.
oryzae infecting rice, rice mRNA data, rice protein data, and
protein data of mode host-mode fungus. First, each omics data

was screened separately to mine differentially expressed rice gene
data, M. oryzae-rice sRNA interaction pairs, and M. oryzae-rice
protein interaction pairs. Then, the interaction network of each
omics was analyzed longitudinally to construct the regulatory
network ofM. oryzae-rice multi-omics interaction and explore its
biological process.

In genomics, a total of 1,368 1.5-fold differentially expressed
rice genes were extracted by screening the gene expression data of
rice before and after the infection of M. oryzae. In
transcriptomics, this study analyzed the sRNA data of M.
oryzae before and after infection with rice and obtained 366
kinds of up-regulated and newly added sRNAs of M. oryzae,
which all had the possibility of interacting with host rice, that is,
to infect rice by RNA silencing mechanism. In addition, for the
257 species of M. oryzae sRNAs whose expression levels were
reduced during the infection process, it may be through the
regulation of the protein expression in M. oryzae, through the
secreted protein into the rice to achieve the purpose of infection.
Therefore, according to the two infection mechanisms of M.

FIGURE 11 | GO pathway enrichment analysis diagram of rice core proteins.
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oryzae, the 623 kinds ofM. oryzae sRNAs screened were analyzed.
Furthermore, through the method of target gene prediction, 1,857
sRNA interaction pairs of M. oryzae-rice and 664 sRNA
interaction pairs of M. oryzae were found.

In proteomics, some studies have proved that the secreted
proteins of the pathogen can enter the host body and interact
with the host proteins to interfere with the protein expression of
the host. However, it is not clear which protein molecules are
involved in the infection process ofM. oryzae to affect the defense
and growth of rice in the existing studies. In this paper, the protein
interaction pairs between mode pathogens and mode hosts that
experiments have verified were collected and used as the prediction
template. Firstly, the interolog method based on homology was
used to predict the protein interaction pairs betweenM. oryzae and
rice. Next, the domain-domain method was used to make the
second prediction of the protein interaction pairs predicted by the
interologmethod. Then TMHMM secreted protein prediction tool
was used to screen the secreted proteins of M. oryzae. In the
screening of the final protein interaction pairs, the three prediction
methods should be met simultaneously, and 7,352 protein
interaction pairs of M. oryzae-rice were obtained.

In this study, a total of 8 rice differentially expressed genes,
31 rice mRNAs, 77 rice proteins, 22 M. oryzae sRNAs, 1 M.
oryzae mRNA and 38 M. oryzae proteins were identified as the
core nodes of the M. oryzae and rice multi-omics interaction
network by high-throughput data analysis, combined with joint
analysis ofM. oryzae and rice multi-omics data, which involved
significantly enriched GO modules. Most of them were related
to gene expression, molecular protein synthesis, molecular
transport and metabolism, that is, the infection mechanism
of M. oryzae. However, all the experiments in this paper were
based on the premise that sRNA and protein interaction
mechanisms exist between M. oryzae and rice. The accuracy
of this experiment still needs to be further verified. In addition,
due to the mutual regulation between plants and pathogens,
some host sRNAs and secreted proteins can enter the fungi
during the infection process to resist infection. However, this
paper only studied the infection mechanism of M. oryzae and
neglected the analysis of the defense mechanism of rice.
Moreover, significant enrichment of biomolecular transport
modules was found in the GO function enrichment analysis
of key factors ofM. oryzae in this study, but it is not clear which
rice biomolecules are involved in the defense mechanism. And
although there are some insufficient, this paper for theM. oryzae
infecting rice joint analysis of multi-omics data, which provided

a specific data basis for further study of the mechanism of M.
oryzae-rice interaction, made some specific contributions to the
prevention of diseases and insect pests in rice and provided a
new train of thought and theoretical basis for the fungus-plant
interactions mechanism research.
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Graph Embedding Based Novel Gene
Discovery Associated With Diabetes
Mellitus
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Diabetes mellitus is a group of complex metabolic disorders which has affected hundreds
of millions of patients world-widely. The underlying pathogenesis of various types of
diabetes is still unclear, which hinders the way of developing more efficient therapies.
Although many genes have been found associated with diabetes mellitus, more novel
genes are still needed to be discovered towards a complete picture of the underlying
mechanism. With the development of complex molecular networks, network-based
disease-gene prediction methods have been widely proposed. However, most existing
methods are based on the hypothesis of guilt-by-association and often handcraft node
features based on local topological structures. Advances in graph embedding techniques
have enabled automatically global feature extraction from molecular networks. Inspired by
the successful applications of cutting-edge graph embedding methods on complex
diseases, we proposed a computational framework to investigate novel genes
associated with diabetes mellitus. There are three main steps in the framework:
network feature extraction based on graph embedding methods; feature denoising
and regeneration using stacked autoencoder; and disease-gene prediction based on
machine learning classifiers. We compared the performance by using different graph
embedding methods and machine learning classifiers and designed the best workflow for
predicting genes associated with diabetes mellitus. Functional enrichment analysis based
on Human Phenotype Ontology (HPO), KEGG, and GO biological process and publication
search further evaluated the predicted novel genes.

Keywords: diabetes mellitus, graph embedding, novel gene discovery, molecular network, disease gene prediction

INTRODUCTION

Diabetes mellitus is a chronic disease where the blood sugar in patients is abnormally elevated
because of the underproductive pancreas or the ineffective response toward insulin (Kharroubi and
Darwish, 2015). According to the global diabetes map (ninth edition) published by the International
Diabetes Federation (IDF) in 2019 (Cho et al., 2018), the number of diabetic patients worldwide is
increasing, with an average global growth rate of 51%. There are currently 463 million diabetic
patients. According to the growing trend, there will be 700 million diabetic patients worldwide by
2045 (Cho et al., 2018). Diabetes mellitus and its multiple complications have largely increased the
risk of mortality, blindness, and kidney failure of patients, and posed a heavy burden on human
society. It is urgent to investigate the disease mechanisms and find more effective cures.

There are different types of diabetes: type 1 diabetes (T1D), type 2 diabetes (T2D), gestational
diabetes and other types (Geerlings and Hoepelman, 1999; Kharroubi and Darwish, 2015). For
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different types of diabetes, the causes and risk factors vary. Type
1diabetes is an autoimmune disease, where the insulin-producing
cells in the pancreas are attacked by the immune system of
patients. The pathogenesis of type 1 diabetes is still unclear,
but some researchers think it is caused by a combination of
genetic and environmental factors. The genome-wide association
studies (GWAS) have identified over 60 susceptibility loci for
T1D (Systematic evaluation of genes and genetic variants
associated with Type 1 diabetes susceptibility). And post-
GWAS functional analyses (Shabalin, 2012; Westra et al.,
2013; Fagny et al., 2017; Wang et al., 2019a; van der Wijst
et al., 2020) such as expression quantitative trait loci (eQTL)
analysis have been performed to infer the underlying causal genes
(Nyaga et al., 2018). Cells become resistant to insulin in type 2
diabetes, resulting in higher demand for insulin. However, the
dysfunction of pancreatic β cells decreases secretion of insulin,
leading to evaluated blood sugar levels in patients. The
pathogenesis of T2D is also unclear, but the genetic studies of
T2D provided novel susceptibility loci and candidate genes.
Similarly, the mechanisms of other types of diabetes are also
not clear. It is urgent to discover genes associated with diabetes
mellitus to find therapeutic targets and improve diagnoses
(Kharroubi and Darwish, 2015).

There have been intense efforts to predict genes associated
with complex diseases in recent years (Ghiassian et al., 2015; Peng
et al., 2017; Agrawal et al., 2018; Cheng et al., 2019; Wang et al.,
2020). GWASs can directly reveal the associations between
genome variants and diseases (Zhu et al., 2016a; Zhu et al.,
2016b; Visscher et al., 2017; Gallagher and Chen-Plotkin, 2018;
Visscher and Goddard, 2019). However, most GWAS SNPs locate
in non-coding regions, i.e., intronic or inter-genetic regions,
leading to a limited discovery of disease genes. Functional
analysis, such as eQTL analysis (Wang et al., 2021a; Wang
et al., 2021b), can further translate GWAS signals to functional
genes through measuring the regulation pattern between genomic
variations (genotypes) and transcriptome variations (gene
expression level). These statistical methods have achieved
tremendous success in discovering disease-associated genes. And
these discoveries have also been recorded in biological databases
such as DisGeNet (Piñero et al., 2015; Piñero et al., 2016; Piñero
et al., 2020). However, these methods mostly are based on simple
“gene-disease” associations and ignore the underlying functional
collaborations among genes.

With the development of molecular networks, such as protein-
protein interaction (PPI) networks and gene regulatory networks,
it is feasible to investigate disease genes based on gene networks
(Peng et al., 2021a). Under the hypothesis of guilt–by–association
(GBA), the novel disease-associated genes can be predicted by
measuring the neighborhood structures of known disease genes.
In recent years, there have been many network-based methods
emerging as powerful tools for disease-gene prediction (Wang
et al., 2019b; Wang et al., 2019c; Yang et al., 2019). The task of
disease-gene prediction can be considered as a classification
problem in machine learning. There are two types of
classification in disease-gene prediction based on the types of
entity the methods aim to predict. One is node classification,
where genes in the gene network can be separated into two

groups: known disease-genes and unlabeled genes, and the
prediction methods aim to give a rank to unlabeled genes
based on the prediction model. Top-ranked genes will be
predicted as novel disease genes. Methods such as PRINCE
(Vanunu et al., 2010), VAVIEN (Erten et al., 2011), and N2A-
SVM (Peng et al., 2019a) belong to this category. The other type
of classification in disease-gene prediction is edge classification,
also called link prediction. In this category, genes and diseases
both exist in the network as nodes, which comprise a
heterogeneous graph. The prediction methods learn features
from known disease-gene edges and predict novel disease-gene
links. The feature of a disease-gene link is combined from a pair of
node features. Methods such as RWRH (Li and Patra, 2010) and
RWPCN (Yang et al., 2011) belong to this category.

From the aspect of features extracted from the network, the
disease-gene predictionmethods can be separated into handcrafted
feature-basedmethods and automatic feature representation-based
methods. In the first category, methods engineered features for
nodes in biological networks, such as using node degree, graphlet
degree, common neighbors, shortest path length meta-paths, etc.
However, methods relying on direct neighborhood counting can
only capture the local network structure while ignoring the global
structure. To overcome this issue, Xu et al. proposed a method by
integrating multiple topological features to predict disease genes
(Xu and Li, 2006). In their methods, they expanded the neighbors
of a seed by considering 2-hop neighbors. Besides the network
topological structure, some methods integrated more biological
data as features. DERanking (Nitsch et al., 2010) incorporated
differential expression in features. BRIDGE (Chen et al., 2013)
integrated multiple data sources besides the PPI network, such as
gene expression, gene ontology (GO), and the KEGG database.
DiGI (Tran et al., 2020) used gene co-expression network,
functional pathways, PPI network, and other cofunction
networks in feature engineering. Although these methods based
on handcrafted features have achieved tremendous success in
multiple fields, there needs a lot of domain knowledge and it
may also introduce biases with manually engineered features.

In recent years, graph embedding learning methods emerged
as powerful tools for extracting the latent features from networks.
Graph embedding is also known as graph representation learning,
aiming at mapping large and sparse graph data into low-
dimensional dense feature vectors. There are matrix
factorization-based graph embedding methods [such as IMC
(Natarajan and Dhillon, 2014) and PCFM (Zeng et al., 2017)],
and also methods based on skip-gram based neuron networks
[such as LINE (Tang et al., 2015), DeepWalk (Perozzi et al., 2014),
and Node2Vec (Grover and Leskovec, 2016)], and graph neuron
networks [such as graph convolutional network (Wu et al.,
2020)]. These techniques have been widely used in
bioinformatics applications such as the discovery of antibiotics
(Stokes et al., 2020), disease genes (Peng et al., 2021b), disease
modules (Wang et al., 2020), drug targets (Peng et al., 2021c),
drug side-effects (Han et al., 2021), RNA-targets (Peng et al.,
2019b), molecular network edges (Perozzi et al., 2014; Ribeiro
et al., 2017; Peng et al., 2021d), etc. However, there has been a lack
of research on discovering genes associated with diabetes mellitus
using cutting-edge graph-embedding techniques. In this study,
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we designed a computational framework based on graph
embedding approaches to discover novel genes associated with
diabetes mellitus without distinction between diabetes types. We
first extracted gene features from a PPI network. During this
phase, we compared three cutting-edge graph embedding
methods, i.e., LINE (Tang et al., 2015), DeepWalk (Perozzi
et al., 2014), and Node2Vec (Grover and Leskovec, 2016).
Next, we applied a stacked auto-encoder to further process the
node embeddings into lower-dimensional space. Finally, we used
widely-used machine learning classifiers for the task of gene
prediction. In the experiments, we evaluated the performance
of our model by using five-fold cross-validation, and we also
compared the performance using various graph embedding
methods, hyper-parameters, and machine learning classifiers.

METHODOLOGY

There are three main steps in our graph embedding based
diabetes-gene prediction model: 1) we used three cutting
graph embedding methods, i.e., LINE, DeepWalk, and
Node2Vec, to extract node features from a PPI network; 2) A
three-layer stacked autoencoder was applied to further reduce
feature dimension and automatic feature extraction; 3) disease
gene prediction using support vector machine (SVM) (Chang and
Lin, 2011), and other two widely-used classifiers (random forest
and logistic regression) were compared. Four metrics (AUPRC,
AUROC, ACC, and F1 score) were used to measure the
performance in five-fold cross-validation. Functional
enrichment and network analysis were applied for evaluation.
The workflow of our method is shown in Figure 1.

Extract Features From PPI Network Based
on Graph Embedding
To extract the latent feature from PPI network, we adopt three
cutting-edge graph embedding methods: Node2vec, DeepWalk,
and LINE, and compared their performance in the task of
predicting genes associated with diabetes mellitus. DeepWalk
draws on the idea of the word2vec algorithm. Word2vec is a
commonly used word embedding method in natural language

learning (NLP). It describes the co-occurrence relationship
between words and words through the sentence sequence in
the corpus and then learns the vector representation of words
based on skip-gram neuronal network model. The DeepWalk
algorithm is similar to word2vec and uses the co-occurrence
relationship between nodes in the graph to learn the vector
representation of nodes. DeepWalk uses random walk to
sample paths with fixed lengths. The paths are consisted of
randomly visited nodes and are similar to sentences in NLP.
And then word2vec is used to learn the co-occurrence
relationship of nodes based on skip-gram neuronal network
model. The weights on the hidden layer of skip-gram model
will be the latent features.

Node2vec is a graph embedding method improved based on
DeepWalk. The novel part of Node2vec is that it uses a biased
random walk process to generate random paths. The
hyperparameters p and q are used to control the directions of
random walk in consonance with breadth-first search (BFS) or
depth-first search (DFS) in the PPI network. Parameter p
determines the process of revisiting the nodes within random
walk and q affects the possibility of capturing local or global
nodes. Compared to DeepWalk, Node2vec provides more various
elements, and particularly, if the value of p and q both equal 1,
these two algorithms are the same.

LINE is also a method based on the assumption of
neighborhood similarity, except that LINE uses BFS to
construct neighborhoods while DeepWalk uses DFS to
construct neighborhoods. LINE also takes into account the
first-order and second-order similarities between nodes and
can be applied to various types of networks and large-scale
networks. However, some vertices have few adjacent points,
which leads to insufficient learning of embedding vectors and
insufficient use of high-level information.

Feature Regeneration and Reduction Using
Stacked Autoencoder
Autoencoder is an unsupervised artificial neural network that can
automatically extract latent features from data. Autoencoder has
been successfully applied in many applications, such as speech
recognition, self-driving cars, human gesture detection, etc. The

FIGURE 1 | Workflow of our method. Abbreviations: SVM: supporting vector machine, RF: random forest, LR: logistic regression.
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autoencoder structure is composed of three parts: the input layer,
the hidden layer, and the output layer, which correspond to the
encoder, bottleneck and decoder respectively. Among them, the
encoder is responsible for selecting key features from the data,
and the decoder is responsible for recreating the original data
using key components. Since the number of hidden layer nodes is
less than the number of input nodes, the autoencoder can reduce
the data dimension by retaining only the features needed to
reconstruct the data. The autoencoder is also a feed-forward
network, which can be trained using the same procedure as the
feed-forward network. Although Autoencoder has the same input
and output, it also has a certain degree of loss, so autoencoder is
also called lossy compression technology.

Since there are complicated relationships within the elements
in some data sets, only one autoencoder cannot meet the
requirements. To reduce the dimensionality of the input
features, a single autoencoder may not be able to complete it.
In response to this situation, the stacked autoencoder was
proposed. As the name suggests, stacked autoencoders are
multiple autoencoders stacked on top of each other. The
specific process of the stacked autoencoder method is
described as follows: First, given the initial input, train the
first-layer autoencoder in an unsupervised way to reduce the
reconstruction error to the set value. Second, take the output of
the hidden layer of the first autoencoder as the input of the second
autoencoder, and use the same method as above to train the
autoencoder. Third, repeat the second step until all autoencoders
are initialized. Finally, use the weights of the hidden layer of the
last stacked autoencoder as the final features.

Machine Learning Classifiers Used for
Disease Gene Prediction
After the process of network representation learning and feature
denoising, we apply classification methods for the final prediction
task. Three widely-used machine learning algorithms were used
for predicting genes associated with diabetes mellitus: support
vector machine (SVM), Logistic regression, and Random Forest.
Logistic regression models the relationship between predictor
variables and a categorical response variable. Given feature vector
x and the label y ∈ {0, 1} of each sample, the logistic regression
models feature x and the probability of y by Eq. 1, where w
represents weights and b represents bias. This equation means the
log odds of prediction y � 1 equals linear regression of input
feature x. The parameters w and b can be estimated by maximum
likelihood estimation.

wTx + b � ln
p(y � 1

∣∣∣∣x)
1 − p(y � 1

∣∣∣∣x)
i.e., p(y � 1|x) � 1

1 + e−(wTx+b)
(1)

Random Forest is an integrated algorithm composed of decision
trees, which achieves excellent performance in many applications.
Decision tree is a supervised learning algorithm based on “if-
then-else” rules. When we perform the classification task, the
input samples are classified by each decision tree separately. And
each decision tree will get its own classification result. Those

decision trees form the random forest, and it will ensemble all
prediction results, and output the label with the most consistent
evidence.

Support vector machines (SVM) is a binary classification
model. Its basic model is a linear classifier featured with the
largest interval between two classes in the feature space. Kernel
techniques can be applied to SVM, which makes it a non-linear
classifier. The learning strategy of SVM is to maximize the
interval, which can be formalized as a problem of solving
convex quadratic programming. As shown in Eq. 2, the SVM
model is to construct the hyperplane (ω is the variable coefficient,
c is the constant), so that the labels of the samples can be divided
correctly.

ωxT + c � 0 (2)

Metrics for Evaluating Prediction
Performance
In the task of binary classification, samples in the test set can be
separated into four classes: true positive (TP), true negative (TN),
false positive (FP), and false negative (FN). And the sample size of
the test set (N) equals to the sum of TP, TN, FP, and FN. Based on
these measures, we used four metrics to evaluate the prediction
performance: accuracy (ACC), area under the receiver operating
characteristic curve (AUROC), area under the precision and
recall curve (AUPRC) and F1 score. The accuracy is defined
as the ratio of number of correctly predicted samples (TP + TN)
and the sample size of the test set (N). However, ACC is not
robust in study with unbalanced samples, which means there is
only a small number of positive/negative sample. The other three
metrics can solve this problem to some extent. The PR curve is
defined based on precision and recall which are defined in Eqs 3,
4, respectively. The precision and recall are on y and x-axis
respectively. Since there are N possible thresholds of prediction
probability, there would beN points, i.e., (precision, recall) on the
PR curve.

precision � TP

TP + FP
(3)

recall � TP

TP + FN
(4)

Similarly, the ROC is defined based on true positive rate (TPR)
and false positive rate (FPR), which are defined in Eqs 5, 6
respectively. In ROC, the TPR and FPR are on y and x-axis
respectively. F1 score is a combination of precision and recall,
which is defined in Eq. 7.

TPR � TP

TP + FN
(5)

FPR � FP

TN + FP
(6)

F1 � 2 p precision p recall

precision + recall
(7)

The area under ROC and PRC (AUROC and AUPRC) are widely
used to compare the performance of different classifiers. Given a
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series of points {(x1, y1), (x2, y2), . . . . . . , (xn, yn)} on the ROC
or PRC curve, the area under the curve (AUC) can be
approximately computed by Eq. 8.

AUC � 1
2
∑
n−1

i�1
(xi+1 − xi) · (yi + yi+1) (8)

RESULTS AND DISCUSSION

Datasets
We first downloaded the diabetes mellitus associated genes
from DisGeNet database (as of June 2021, UMLS CUI:
C0011849). 2,803 genes were recorded in this database, and
each gene was assigned with a gene-disease association (GDA)
score, indicating the levels of evidence. The GDA score takes into
account the number and type of sources (level of curation,
organisms), and the number of publications supporting the
association. After filtering GDA score with threshold set to
0.1, there were 476 genes left that were used for model
training in the downstream prediction.

The protein-protein interaction network was obtained from
Menche et al.’s work (Menche et al., 2015). This PPI network
consists of multiple sources of protein interactions, such as
regulatory interactions, yeast two-hybrid high-throughput
interactions, literature curated databases, metabolic enzyme-
coupled interactions, protein-protein complexes, etc. By
combining those interactions, we obtained this PPI network of
13,460 proteins and 141,296 interactions.

Network Representation Learning Using
DeepWalk, LINE, and Node2vec
We extracted the node features of the PPI network using the
technique of network representation learning or graph
embedding, which maps the topological features of nodes in
the network into the embedding space. To choose a proper
method, three cutting-edge network representation learning
methods were used for feature extraction. And we compared
their performance using five-fold cross-validation. To balance the
sample size of positive samples and negative samples, we
randomly selected the same number of nodes not labeled as
disease genes as negative samples.

We run these methods on the PPI network and generate
features with 512 dimensions. Then the features were further
processed by a stacked autoencoder with three levels, which will
reduce noises and generate latent features. The 512-dimensional
features were converted to 64-dimensional features using this
autoencoder. And SVM was used for final classification using the
same setting parameters.

Figure 2 shows the average AUROC, AUPRC, F1 score, and
accuracy (ACC) values of three methods achieved in this
experiment. We can see that Node2vec achieves the best
performance under all metrics. And DeepWalk is the second-
best method. This is easy to understand because Node2vec

improves DeepWalk by a biased random-walk strategy (see
details in Methods).

Feature Dimension Affects Prediction
Performance
As a non-end-to-end model, our framework first generates
features of network nodes and then predicts disease-associated
genes based on SVM. All of the three network-representation-
learning methods mentioned above are based on a skip-gram
neuron network model, where the dimension of output features
equals the number of neurons in the hidden layer of skip-gram
neuron network. To explore the impact of feature dimensions on
our predicting framework, we compared the performance of the
representation learning methods with various dimensional
features extracted from the PPI network. Those features were
all converted to 64-dimensional features using the stacked
autoencoder described above, followed by the SVM classifier
under the same settings (RBF kernel and other settings in default).

Based on five-fold cross-validation, we got the results shown in
Figure 3. The four sub-panels in Figure 3 represent the prediction
performance on diabetes genes using different feature dimensions
(i.e., 64, 128, 256, and 512 feature dimensions) generated by three
network representation learning methods. The average AUROC,
AUPRC, F1 score, and ACC values were compared.

When the feature dimension equals 64, Node2vec achieved the
best performance in ACC, F1 score, and AUROC. And LINE
achieved the best performance in AUPRC and the second-best
performance on ACC and F1 score. While as the feature
dimension increased to 128 and 256, the DeepWalk achieved
the best performance, and Node2vec achieved the second-best
rank. However, The Node2vec achieved the maximum AUROC
(0.74) and AUPRC (0.72) scores with 512 feature dimensions
compared with other methods in various feature dimensions. In
summary, the feature dimension and network representation
learning method both affect the prediction performance in a

FIGURE 2 | Prediction performance in five-fold cross validation based on
three graph embedding methods. Three different graph embedding methods
are compared: DeepWalk, LINE, and Node2vec. Four metrics are used for
performance evaluation: AUROC, AUPRC, F1 score, and
accuracy (ACC).
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task-dependent way. In our case, i.e., predicting genes associated
with diabetes mellitus, we choose Node2vec as the method of
feature learning from PPI network, and output 512-dimensional
features in downstream analysis.

Exploring the Effect of Hyper-Parameters in
Node2vec and Different Classifiers
As previous publications have pointed out, the hyper-parameter p
and q, in Node2vec have potential influence to feature learning

and downstream analysis. To optimize the two parameters, we
performed a grid search on p and q, and calculated the
corresponding performance. Since p controls the random walk
to visit new nodes or visited nodes, we set p in a larger manner to
encourage the random walk to visit new nodes, and we choose p ∈
(2, 20, 200). And q controls the random walk towards a BFS or
DFS graph search. To let the random walk be biased to a DFS
search, we set q ∈ (0.1,0.01, 0.001, 0.0001). The performance of
various p and q values is shown in Figure 4A. It seems there is not
a linear relationship between (p, q) values and the performance.

FIGURE 3 | The effects of feature dimension on prediction performance. Four feature dimensions (i.e., 64, 128, 256, and 512) generated by graph embedding
methods are used for comparison. Three different graph embedding methods are also compared.

FIGURE 4 | Effect on prediction performance by hyper-parameters in Node2vec and different machine learning classifiers. (A) Prediction performance under
various p and q values in Node2vec. (B) Prediction performance of SVM, Logistic regression and Random Forest in five-fold cross validation.
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TABLE 1 | Top 15 genes predicted associated with diabetes mellitus.

Gene id Gene name Gene description Score

331 BIRC4 X-linked inhibitor of apoptosis 0.78
7098 TLR3 Toll like receptor 3 0.77
55905 ZNF313 Ring finger protein 114 0.76
8915 BCL10 BCL10 immune signaling adaptor 0.76
3654 IRAK1 Interleukin 1 receptor associated kinase 1 0.75
3659 IRF1 Interferon regulatory factor 1 0.75
84270 CARD19 Caspase recruitment domain family member 19 0.75
64320 RNF25 Ring finger protein 25 0.75
340061 TMEM173 Stimulator of interferon response CGAMP interactor 1 0.74
59307 SIGIRR Single ig and TIR domain containing 0.74
9451 EIF2AK3 Eukaryotic translation initiation factor 2 alpha kinase 3 0.74
5608 MAP2K6 Mitogen-activated protein kinase 6 0.73
51135 IRAK4 Interleukin 1 receptor associated kinase 4 0.73
220885 RPSAP15 Ribosomal protein SA pseudogene 15 0.73
9344 TAOK2 TAO kinase 2 0.73

FIGURE 5 | Largest component of PPI subnetwork among these top-predicted genes and known genes associated with diabetesmellitus. Nodes in pink represent
top predicted genes. Nodes in blue represent know diabetes genes.
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As we can see, when p � 200 and q � 0.001, it achieves the best
performance (AUROC � 0.74) on this specific task, i.e., prediction
genes associated with diabetes mellitus. Since the best
combination of (p, q) values varies from study to study, it is
recommended to perform a grid search to find the best
hyperparameters.

To evaluate the effect of different classifiers, we compared
SVM with two other widely-used classifiers: Logistic regression

and Random Forest. Using the same features obtained from
Node2vec followed by a stacked autoencoder, we compared
the prediction performance of SVM, Logistic regression, and
Random Forest in five-fold cross-validation. The results are
shown in Figure 4B, where we can see SVM achieves the best
performance than Logistic regression and Random Forest. Based
on this analysis, our prediction model will use SVM as classifier to
predict genes associated with diabetes mellitus.

FIGURE 6 | Functional enrichment results based on HPO, KEGG, and GO. p-values are shown in log scale and only top 10 terms are shown in each category.
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Top Genes Predicted to Be Associated With
Diabetes Mellitus
To discover novel genes associated with diabetes mellitus, we
predicted all unlabeled genes in the PPI network using the final
trained model. The model uses Node2vec (with p � 200 and q �
0.001) to extract node features in 512-dimension followed by a three-
layer autoencoder to compress the feature to 64-dimension, and SVM
is applied to predict the possibility of unlabeled genes to be a diabetes
gene. The SVM model was trained using all the 476 genes labels as
disease-related. Then all the unlabeled genes were predicted by SVM.
We ranked the gene predicted by our methods and listed the top 15
genes in Table 1. The size of the top 15 genes is artificially set.

Researchers have delineated the relevance of some predicted
genes to diabetes mellitus. Zhou et al. (2017), evaluated the gene-
environment interactions and haplotype associations and
extrapolated the pathogenic role of genetic variants in the
TLR3-TRIF-TRAF3-INF-β in causing type 2 diabetes mellitus.
Al Dubayee et al. (2021), examined the increased expression of
BCL10 and reduced expression of caspase-7 from peripheral
blood mononuclear cells of diabetic individuals during the
apoptosis in insulin resistance, which reveals close relationship
between BCL10 gene and diabetes mellitus. Maikel et al. (Colli
et al., 2018), utilized immunofluorescence to discern the positive
correlation between expression of PDL1 and IRF1, based on the
fact that PDL1 expression is elevated in insulin-containing islets
of individuals with type 1 diabetes, IRF1 and Diabetes Mellitus
show a high probability of interaction.

Figure 5 shows the largest component of PPI subnetwork
among these top-predicted genes and known genes associated
with diabetes mellitus. Those predicted genes are closely
connected with known diabetes genes in the database. For
example, IRAK1 and IRAK4 have the highest degrees
connecting both known genes and predicted genes. It has been
shown that deletion of IRAK1 improves glucose tolerance by
elevating insulin sensitivity (Sun et al., 2017). IRAK4 inhibitors
can block MyD88 dependent signaling, which contributes to the
pathogenesis of type I diabetes (Sabnis, 2021).

Functional Enrichment Analysis of the
Predicted Genes
Gene set enrichment analysis has been performed for the top 15
genes predicted to be related to diabetes mellitus. Gene functional
categories in Human Phenotype Ontology (HPO), KEGG, and
GO biological process were used for over-representation analysis
using WebGestaltR (Liao et al., 20192019). The top enrichment
terms are shown in Figure 6. Our predicted genes have shown
over-representation in genes of the HPO term “transient neonatal
diabetes mellitus” with suggestive p-value < 0.01. The top HPO
term enriched was “hepatic encephalopathy,” and it has been
shown that diabetes mellitus plays a role in hepatic
encephalopathy by releasing and enhancing the inflammatory
cytokines (Ampuero et al., 2013). In KEGG enrichment results,
the term “NF-kappa B signaling pathway” achieves the best
significance with p-value < 5*10–5. Romeo et al. (2002) has
shown that diabetes and high glucose can induce the

activation of nuclear factor-kB (NF-kappa B), which regulates
a proapoptotic program in retinal pericytes. The second term is
“Toll-like receptor signaling pathway diabetes” with enrichment
p-value < 5*10–5. Dasu and Martin (2014) has shown the
increased toll-like receptors (TLRs) expression and activation
contribute to the hyper inflammation in human diabetic wounds.
The third enriched term is “toxoplasmosis”. There have been
findings that patients with toxoplasmosis are more susceptible to
be diabetics than those without toxoplasmosis, suggesting a role
of toxoplasmosis in diabetes mellitus (Shirbazou et al., 2013).
Most enriched terms in GO are related with the immune
response. And it has been well established that patients with
diabetes mellitus have more susceptibility to infections (Berbudi
et al., 2020). The high blood glucose levels, as well as the
inflammatory mediators produced by adipocytes and
macrophages, can result in the immune response (Geerlings
and Hoepelman, 1999).

CONCLUSION

Diabetes mellitus has widely affected the population in the world,
without knowing the underlying mechanism. Discovering genes
associated with diabetes will pave the way for developing novel
efficient therapies. In this work, we designed a computational
framework for diabetes gene prediction based on graph
embedding techniques. This framework consists of three main
steps: network feature extraction based on graph embedding
methods; feature denoising and regeneration using stacked
autoencoder; and disease-gene prediction based on machine
learning classifiers. By comparing with different graph
embedding methods and widely-used machine learning
classifiers, we proved the efficiency and accuracy of our
method. By applying this method to diabetes gene discovery,
we found novel genes that have been reported in publications
with clear association evidence but not recorded in the database.
Through functional enrichment analysis based on Human
Phenotype Ontology (HPO), KEGG, and GO biological
process, we found the top predicted genes are enriched in
multiple terms that have been proved to have a role in
diabetes mellitus. Our computational method may also benefit
gene discoveries for other complex diseases.
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Protein Function Prediction Based on
PPI Networks: Network
Reconstruction vs Edge Enrichment
Jiaogen Zhou1†, Wei Xiong2†, Yang Wang3 and Jihong Guan3*

1Jiangsu Provincial Engineering Research Center for Intelligent Monitoring and Ecological Management of Pond and Reservoir
Water Environment, Huaiyin Normal University, Huian, China, 2Shanghai Key Lab of Intelligent Information Processing, and School
of Computer Science, Fudan University, Shanghai, China, 3Department of Computer Science and Technology, Tongji University,
Shanghai, China

Over the past decades, massive amounts of protein-protein interaction (PPI) data have been
accumulated due to the advancement of high-throughput technologies, and but data quality
issues (noise or incompleteness) of PPI have been still affecting protein function prediction
accuracy based on PPI networks. Although twomain strategies of network reconstruction and
edge enrichment have been reported on the effectiveness of boosting the prediction
performance in numerous literature studies, there still lack comparative studies of the
performance differences between network reconstruction and edge enrichment. Inspired
by the question, this study first uses three protein similarity metrics (local, global and sequence)
for network reconstruction and edge enrichment in PPI networks, and then evaluates the
performance differences of network reconstruction, edge enrichment and the original
networks on two real PPI datasets. The experimental results demonstrate that edge
enrichment work better than both network reconstruction and original networks.
Moreover, for the edge enrichment of PPI networks, the sequence similarity outperformes
both local and global similarity. In summary, our study can help biologists select suitable pre-
processing schemes and achieve better protein function prediction for PPI networks.

Keywords: edge enrichment, network reconstruction, protein-protein interaction networks, protein function
prediction, protein sequence annotation

1 INTRODUCTION

Over the past decades, massive amounts of un-annotated protein sequence data have been
accumulated with the advancement of high-throughput biological technologies. Due to high
costs and time-consummation of experimental determining protein function annotation, the
proportion of annotated proteins has been still relatively low (Sharan et al., 2007; Barrell et al.,
2009). The increasing efforts have been made to predict protein functions.

As the best-known and early method of protein function prediction, homology-based prediction
method indeed gave rise to a series of protein function predictionmethods based on protein sequence
or structural similarity (Sleator andWalsh, 2010). At the same time, the emerging of available protein
databases, such as FATCAT (Ye and Godzik, 2004), PAST (Täubig et al., 2006) and PROCAT
(Wallace et al., 1996), has further helped to improve the effectiveness of protein prediction. However,
the low sequence similarity scores often occur when comparing target protein sequences with source
protein sequences (Ofran et al., 2005), and thus this significantly reduces the effective application of
homology-based prediction methods.
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With the increasing amounts of the measured protein-
protein interaction (PPI) data, more and more protein
function prediction methods based on PPI networks are
proposed and generally outperform the above homology-
based prediction methods. In PPI networks, proteins and
protein-protein interactions are represented by nodes and
edges, respectively (Sharan et al., 2007; Chen et al., 2020;
Wu et al., 2020; Waiho et al., 2021). Up to now, numerous
algorithms have been used in protein function prediction
based on PPI networks, such as edge-betweenness clustering
(Dunn et al., 2005), Graphlet-based edge clustering (Solava
et al., 2012), clique percolation (Adamcsek et al., 2006),
GRAAL (Kuchaiev et al., 2010), hybrid-property based
method (Hu et al., 2011), and IsoRank (Singh et al., 2008).
Moreover, advanced machine learning and deep learning
techniques have also been used for protein function
prediction, including collective classification (Xiong et al.,
2013; Wu et al., 2014), active learning (Xiong et al., 2014),
DeepInteract (Sunil et al., 2017), ConvsPPIS (Zhu et al., 2020),
PhosIDN (Yang et al., 2021) and WinBinVec (Abdollahi et al.,
2021), etc.

The above methods mainly use existing PPI data. However,
current PPI data mainly generated by high-throughput or
TAP-MS techniques (Berggard et al., 2007), are often in
presence of noise and incompleteness, and this unavoidably
causes adverse effects on the prediction performance. Two
main methods of network reconstruction and edge enrichment
are proposed to effectively boost the prediction performance.
Different strategies are used for network reconstruction or
edge enrichment. For example, Bogdanov and Singh (2010)
presented a network reconstruction approach by extracting
functional neighborhood features using random walk with
restart. Chua et al. (2007) used weighting strategies to
enrich PPI networks, and adopted a local prediction method
to predict the functions of un-annotated proteins. Xiong et al.
(2013) applied collective classification to PPI networks with
enriched edges to predict protein functions.

Although the above two types of approaches achieve
promising performance improvements, there still lack
comparative studies of the performance differences between
network reconstruction and edge enrichment. We do not still
know which one is better in performance, or specifically, which
one should be applied for different situations. Inspired by the
question, we conducte a comprehensive comparison of two
network transformation of network reconstruction and edge
enrichment for boosting the performance of PPI network-
based protein functional annotation. Concretely, we first use
three different protein similarity metrics for network
reconstruction and edge enrichment of PPI networks, and
then evaluate the performance differences between the two
transformed networks (network reconstruction and edge
enrichment) and original networks on two real PPI datasets.
The results of experiments demonstrate that edge enrichment
work better than both network reconstruction and original
networks. Moreover, for the edge enrichment of PPI networks,
the sequence similarity outperformes both local and global
similarity. More detailed work will be presented in later sections.

2 MATERIALS AND METHODS

2.1 Similarity Metrics
As we point out above, the noise and incompleteness of PPI
network data adversely affects the performance of protein
functional annotation. Network reconstruction and edge
enrichment are major approaches to improve PPI data quality.
In this work, we carry out comparison study on these two
approaches by reconstructing and enriching original networks
using various protein similarity metrics, including sequence
similarity, local similarity and global similarity. In what
follows, we describe and discuss these similarity measures in
detail.

2.1.1 Protein Sequence Similarity
BLAST method (Altschul et al., 1997) is used to measure the
similarity between any two proteins in this study. The similarity
of a given protein Vx with other proteins is defined as

S(Vx) � [Sx,1, Sx,2, . . . , Sx,i, . . . , Sx,n] (1)

where Sx,i is the similarity score between the pair of proteins Vx

and Vi. Due to ignoring self-similarity, Sx,i � 0 is set when x � i.

2.1.2 Local Similarity Indices
Weconsider three kinds of local similarity indices, includingCommon
Neighbors (CN), Jaccard Index and Functional Similarity (FS).

Common Neighbors. Given nodes u and v, their neighboring
sets are Nu and Nv, respectively. The CN is defined as the
neighborhood overlap of the nodes (Newman, 2001). The
more identical neighbors two nodes have, the higher the CN
value is. The measure of CN is as follows:

SCN(u, v) � Nu ∩ Nv| | (2)

Jaccard Index. Given nodes u and v and their corresponding
neighboring sets of Nu and Nv, Jaccard index is used to measure
the similarity between the Nu and Nv sets, and it is calculated as:

SJaccard(u, v) � Nu ∩ Nv| |
Nu ∪ Nv| | (3)

Functional Similarity (FS). For a PPI network, FS index was
first used to measure the similarity of any pair of proteins (Chua
et al., 2006), and it is defined as follows:

SFS(u, v) � 2 Nu ∩ Nv| |
Nu −Nv| | + 2 Nu ∩ Nv| | + λu,v

× 2 Nu ∩ Nv| |
Nv −Nu| | + 2 Nu ∩ Nv| | + λv,u

(4)

where λu,v � max(0, navg − (|Nu −Nv|) + |Nu ∩ Nv|)), and by
using the λu,v factor, similarity weights between protein pairs
are penalized when their common neighbors are too few. navg is
the average number of close neighbors that each node has in the
network. In a weighted PPI network, the labeled weights of edges
mean interaction confidences between pairs of proteins. Thus, we
can modify the FS index to take into account the confidence of
each interaction. The extended FS index for weighted PPI
networks, named FS.R, is defined as follows:
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SFS.R(u, v) �
2∑w∈(Nu ∩ Nv)ru,wrv,w

∑w∈Nu
ru,w +∑w∈(Nu ∩ Nv)ru,wrv,w + λu,v

×

2∑w∈(Nu ∩ Nv)ru,wrv,w

∑w∈Nv
rv,w +∑w∈(Nu ∩ Nv)ru,wrv,w + λv,u

.

(5)

2.1.3 Global Similarity Indices
Two global similarity indices are considered in this paper, they
are Katz index and random walk with restart.

Katz Index. This index is proposed by Lü and Zhou (2011). It
sums the set of paths directly and deals with the paths by length so
that the shorter paths get more weights. Formally,

SKatz(u, v) � ∑
∞

L�1
βL · paths<L>uv

∣∣∣∣
∣∣∣∣

� βAuv + β2(A2)uv + β3(A3)uv + . . . (6)

where paths<L>uv is the set of the paths, which connect the nodes of u
and v with a path length of L. The parameter of β controls the path
weights.

RandomWalkwith Restart (RWR). Tong et al. (2008) used RWR
index to measure the relevance score between node j and node i in
a PPI network. Given the adjacency matrixWn,n of a PPI network,
a random walker transmits from the starting node i to one of its
neighbors at random with probability c, and returns to the node i
with the probability 1 − c. Finally, the walker will stay stably at
node j with probability Ri,j. The steady-state probability Ri,j is
defined as RWR index. We have

Ri
→ � c ~W

T
Ri
→+ (1 − c) ei→ (7)

where ei
→ is the starting vector, the ith element is 1 and the other

elements are 0. ~W is a weighted matrix. For an unweighted network,
~Wij � 1/m (wherem is the number of neighbors that node i has) if i
and j are connected, and ~Wij � 0 otherwise. For a weighted network,

~Wij � Wij/∑
n

j�1
Wij, if i and j are connected.

~Wij � 0, otherwise.

⎧⎪⎪⎨
⎪⎪⎩

(8)

2.2 Network Reconstruction and Edge Enrichment
Network reconstruction is carried out as follows: First, the similarity
scores between protein pairs in the original PPI network are calculated
according to the above similarity indexes. Next, some interactions are
selected to reconstruct the PPI network based on the similarity scores.
As in Liben-Nowell and Kleinberg (2007), an appropriate score
threshold is used such that the number of protein pairs with
higher scores than the threshold is as same as possible to the
interaction number of the original network. Then, a new network
is formed by using the protein pairs with higher scores over the
threshold. However, this approach may lead to absence of some
proteins in the new network. Alternatively, for any node Ni in the
original network, we first remove all its interactions.We find the top k
neighbors most similar to the node Ni. Then, the k edges from the
node Ni to its top k neighbors are created, and their similarity scores
are used as edge weights in the new network. Thus, we have

S(Ni)k � [Si,1, Si,2, . . . , Si,k]. (9)

Edge enrichment is also performed in two steps as in
network reconstruction, the only difference is that all
interactions in the original network are preserved. An
enriched network has two types of edges: explicit edges (old
edges) and similarity-inferred edges (new edges). Here, there
are two questions to be addressed: One is how to combine the
edge weights with different semantics, and another is how
many edges are added for each protein, that is, how to optimize
the parameter k (see Eq. 9). The questions will be discussed in
the following sections.

2.3 Protein Function Prediction Approaches
In this study, protein function predictions on two real PPI
datasets are performed using two different approaches.The
first one is majority method, which is a local neighbor
counting approach (Schwikowski et al., 2000). The second
is a global protein function prediction approach, which is
common called collective classification (Xiong et al., 2013).
Details of this approach are presented in the following
subsections.

2.4 Gibbs Sampling Based Collective
Classification
Gibbs sampling (GS) includes two main processes of
bootstrapping and iterative classification (Sen et al., 2008). The
pseudo-code is illustrated below.

2.4.1 Bootstrapping
The closer the proteins to each other, the more similar their
functions become in a PPI network. For an unannotated protein,
its probability distribution is estimated using a weighted voting
method. In the original or reconstructed network, there is only
one kind of annotated neighbors to vote. An unannotated protein
Vx has the corresponding explicit neighbors of Nx or k similarity-
inferred neighbors. For the above neighbor sets, we have their
edge weights as follows:

N w
x � [wx1, wx2, . . . , wxi, . . . , wxNx]

N s
x � [Sx,1, Sx,2, . . . , Sx,i, . . . , Sx,k] (10)

The probability of Vx having the jth function Fj (VxFj) is
calculated as follows:

ALGORITHM 1 | Gibbs sampling
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Pj
x �

1
Zw

x

∑
Nx

i�1
wx,ifi,j Pj

x �
1
Zs

x

∑
k

i�1
Sx,ifi,j (11)

where Zw
x and Zs

x are the normalizers:

Zw
x � ∑

m

j�1
∑
Nx

i�1
wx,ifi,j Zs

x � ∑
m

j�1
∑
k

i�1
Sx,ifi,j (12)

However, in the enriched network, there are both old (explicit)
and new (similarity-inferred) neighbors which need to be voted. So,
the parameter λ ∈ (0, 1) is used to combine the two types of different
neighbors. Given a query protein Vx, the VxFj probability is
calculated as follows:

Pj
x � λ

1
Zw

x

∑
Nx

i�1
wx,ifi,j + (1 − λ) 1

Zs
x

∑
k

i�1
Sx,ifi,j (13)

A higher Pj
x value indicates a higher probability that protein

Vx is more likely to have jth function Fj. The VxFj probability
distribution is represented as:

ax
�→ � [P1

x, P
2
x, . . . , P

m
x ] (14)

2.4.2 Iterative Classification
Iterative classification has two main steps of burn-in and
sampling. In burn-in period, iteration number is fixed, and ax

�→
is updated in each iteration. In sampling period, we update ax

�→ in
each iteration, and also count how many times the jth function Fj
for protein Vx are sampled. Considering each protein with one or
more functions, therefore, we define the most likely function of
the protein Vx as follow:

bjx � argmaxj∈[1,m]Pj
x (15)

where bjx represents the jth most likely function of the protein Vx,
that is the jth-rank result. We further use bxi

�→
vector to record all

ranking results in the ith iteration.

bxi
�→ � [b1xi, b2xi, . . . , bmxi]. (16)

The matrix Mx with s rows and m columns is produced after
running the predetermined s number of iterations.

Mx � [bx1�→
, bx2
�→

, . . . , bxs
�→]T. (17)

Finally, we obtain the required m-dimensional vector cx
→ for

query protein Vx:

cx
→ � [c1x, c2x, . . . , cmx ]. (18)

where c1x is the first ranked prediction in the ith column of Mx.

3 RESULTS AND DISCUSSION

3.1 Data Preprocessing and Experimental
Workflow
The two PPI datasets of A and B are used in our study. The datasets
A and B are downloaded from the databases of BioGRID (Stark et al.,
2011) and STRING (Szklarczyk et al., 2011), respectively. The
datasets A and B are annotated as in Ashburner et al. (2000).
The datasets in this study are based on Gene Ontology (GO)
annotation. GO annotations consist of three basic namespaces:
molecular function, biological process and cellular component.
We construct one protein interaction network for each GO
namespace using only physical interactions.Therefore, there are
totally six PPI networks (three for S.cerevisiae and the other three
for M.musculus) in Dataset A. For Dataset B, we construct two PPI
networks (one for S.cerevisiae and another for M.musculus).More
detailed information was listed in the supplementary material
(Supplementary Table S1).

The comparison of the function prediction performance on
the reconstructed and enriched networks with that on the original
networks is first performed using the cross validation of leave-
one-out method (LOOM). LOOM takes each protein in turn as a
query protein, and carries out function prediction with the
remaining proteins in the network. As the bootstrapping in
Gibbs sampling based collective classification does not result in
updating of the query protein, therefore we use the majority
method to predict protein functions in LOOM cross validation.
Then, the annotated protein proportion is changed from 10% to
90%, and the average performance of 10 experiments is reported
for each of all proportions. Themajoritymethod is not suitable in
this setting because it is a local neighbor counting approach and

TABLE 1 | Comparison of performance differences between similarity indices (Dataset A: M.musculus).

Indices Molecular function Biological process Cellular component

1st rank 2nd rank 3rd rank 1st rank 2nd rank 3rd rank 4th rank 1st rank 2nd rank 3rd rank

Origin 0.28 0.12 0.10 0.39 0.23 0.13 0.09 1.63 0.45 0.24

CN 0.21 0.09 0.07 0.27 0.22 0.14 0.09 1.44 0.47 0.16
Jaccard 0.30 0.16 0.11 0.49 0.30 0.129 0.11 1.94 0.56 0.25

FS 0.33 0.15 0.15 0.47 0.28 0.16 0.12 2.13 0.61 0.27
CN+ 0.27 0.14 0.10 0.37 0.26 0.14 0.11 1.70 0.54 0.21

Jaccard+ 0.35 0.16 0.12 0.54 0.34 0.15 0.12 2.03 0.62 0.27
FS+ 0.38 0.16 0.15 0.52 0.30 0.16 0.14 2.23 0.69 0.29

Katz 0.29 0.13 0.12 0.45 0.23 0.17 0.11 1.70 0.54 0.28
RWR 0.32 0.15 0.13 0.49 0.26 0.16 0.12 2.23 0.61 0.30

Katz+ 0.31 0.16 0.14 0.47 0.26 0.19 0.14 2.13 0.59 0.27
RWR+ 0.35 0.15 0.16 0.52 0.28 0.17 0.12 2.45 0.64 0.33
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does not work well in sparsely-labeled network. Thus, the Gibbs
sampling based collective classification is used to predict protein
functions. The main hardware configuration of an Inter dual-core
processor (3 GHz) and 16GB RAM, with a Linux operating
system, and Python 3.0 is as the programming environment
for running the algorithms.

Finally, as in Bogdanov and Singh (2010), the ratio of the
number of true positive (TP) predictions to the number of false
positivepredictions (FP) is produced in the cross validation, i.e.
TP/FP is used to assess prediction accuracy of PPI networks. We
define the overall ith rank true positive (TP) as the number of
proteins whose ith rank predicted function cix is one of the true
functions of protein Vx, and the overall ith rank false positive (FP)

as the number of proteins whose ith rank predicted function cix is
not one of the true functions of protein Vx.

3.2 Similarity Index Selection and the Effect
of the Parameters k and λ
In this study, in addition to sequence similarity, the PPI networks are
reconstructed and enriched by using three local similarity indices
(CN, Jaccard and FS)and two global similarity indices (Katz and
RWR). In order to choose the best ones for the following
experiments, the performance differences between the five
similarity indices are evaluated over the two datasets of A and B.
The experimental results over the dataset A are presented in

TABLE 2 | Comparison of performance differences between similarity indices (Dataset B).

Indices S.cerevisiae M.musculus

1st rank 2nd rank 3rd rank 1st rank 2nd rank 3rd rank

Origin 2.23 0.75 0.49 1.94 1.49 0.82

CN 1.50 0.54 0.29 1.28 0.69 0.43

Jaccard 1.55 0.62 0.39 1.51 1.13 0.79
FS 1.70 0.64 0.41 1.56 1.22 0.75

CN+ 1.85 0.67 0.43 1.63 1.27 0.72

Jaccard+ 1.95 0.65 0.49 1.78 1.33 0.78
FS+ 2.13 0.72 0.47 1.92 1.51 0.81

Katz 1.63 0.62 0.41 1.70 1.33 0.75
RWR 1.78 0.67 0.43 1.78 1.27 0.79

Katz+ 1.86 0.64 0.47 1.86 1.51 0.79
RWR+ 2.23 0.75 0.52 2.03 1.49 0.85

TABLE 3 | The influence of the parameter of k (M.musculus in Dataset A).

Indices Molecular function Biological process Cellular component

1st rank 2nd rank 3rd rank 1st rank 2nd rank 3rd rank 4th rank 1st rank 2nd rank 3rd rank

Origin 0.28 0.12 0.10 0.39 0.23 0.13 0.09 1.63 0.45 0.24

BLAST 1 0.34 0.19 0.09 0.30 0.16 0.08 0.04 0.79 0.34 0.13

BLAST 5 0.43 0.26 0.13 0.45 0.22 0.12 0.08 0.98 0.38 0.18

BLAST 10 0.45 0.27 0.11 0.43 0.18 0.13 0.09 0.96 0.35 0.17

BLAST 15 0.41 0.21 0.13 0.42 0.20 0.11 0.09 0.92 0.33 0.19

BLAST+1 0.39 0.24 0.15 0.47 0.26 0.15 0.12 1.71 0.49 0.27

BLAST+5 0.47 0.29 0.23 0.56 0.30 0.18 0.14 2.02 0.67 0.32

BLAST+10 0.49 0.24 0.21 0.54 0.32 0.14 0.11 1.94 0.58 0.29

BLAST+15 0.46 0.27 0.20 0.49 0.34 0.15 0.12 1.86 0.62 0.33

FS 10 0.30 0.14 0.12 0.42 0.24 0.14 0.09 1.71 0.54 0.23

FS 30 0.33 0.15 0.15 0.47 0.28 0.16 0.12 2.13 0.61 0.27

FS 50 0.35 0.16 0.17 0.46 0.30 0.18 0.14 2.04 0.64 0.28
FS 100 0.32 0.18 0.12 0.45 0.27 0.17 0.15 1.95 0.57 0.26

FS+10 0.32 0.14 0.12 0.26 0.14 0.14 0.10 1.95 0.58 0.25

FS+30 0.39 0.16 0.15 0.52 0.30 0.16 0.14 2.23 0.70 0.30

FS+50 0.41 0.15 0.11 0.54 0.24 0.14 0.14 2.21 0.67 0.25

FS+100 0.38 0.18 0.16 0.50 0.27 0.16 0.13 2.07 0.64 0.27

RWR 10 0.25 0.13 0.11 0.41 0.21 0.14 0.09 1.86 0.54 0.24

RWR 30 0.32 0.15 0.13 0.49 0.26 0.16 0.11 2.23 0.61 0.30
RWR 50 0.31 0.16 0.11 0.47 0.21 0.17 0.12 2.33 0.58 0.27

RWR 100 0.29 0.15 0.15 0.44 0.22 0.16 0.14 2.12 0.55 0.30

RWR+10 0.29 0.14 0.13 0.47 0.23 0.15 0.12 2.13 0.57 0.29

RWR+30 0.35 0.15 0.16 0.52 0.28 0.18 0.12 2.45 0.64 0.33

RWR+50 0.34 0.16 0.15 0.49 0.28 0.14 0.13 2.36 0.62 0.32

RWR+100 0.31 0.15 0.15 0.46 0.25 0.16 0.12 2.23 0.58 0.36
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FIGURE 1 | The performance evaluation by leave-one-out validation over the PPI networks (Dataset A: S.cerevisiae andM.musculus). Here, the sub figures
in the horizontal and vertical directions represent the experimental results for the PPI networks of different data sets and function types, respectively.
Horizontally, the top three subplots represent ones on S.cerevisiae, and the bottom for ones on M.musculus. (A) and (D) Molecular function, (B) and (E)
Biological process, (C) and (F) Cellular component.

TABLE 4 | The effect of the parameter k (Dataset B).

Indices S.cerevisiae M.musculus

1st rank 2nd rank 3rd rank 1st rank 2nd rank 3rd rank

Origin 2.23 0.75 0.49 1.94 1.49 0.82

BLAST 1 0.96 0.37 0.17 1.28 0.59 0.35
BLAST 5 1.18 0.43 0.28 1.63 0.75 0.45
BLAST 10 1.21 0.39 0.24 1.70 0.72 0.41
BLAST 15 1.15 0.42 0.26 1.56 0.70 0.50

BLAST+1 2.11 0.64 0.45 2.15 1.51 0.82
BLAST+5 2.83 0.82 0.64 2.45 1.63 0.87
BLAST+10 2.57 0.75 0.65 2.33 1.57 0.85
BLAST+15 2.40 0.69 0.62 2.28 1.49 0.76

FS 10 1.53 0.55 0.38 1.33 1.06 0.68
FS 30 1.72 0.64 0.41 1.56 1.22 0.75
FS 50 1.75 0.57 0.38 1.64 1.19 0.79
FS 100 1.63 0.61 0.37 1.68 1.18 0.73

FS+10 1.93 0.65 0.40 1.85 0.42 0.79
FS+30 2.13 0.72 0.47 1.92 1.51 0.81
FS+50 2.05 0.70 0.44 1.83 1.40 0.76
FS+100 1.90 0.67 0.49 1.92 1.45 0.78

RWR 10 1.50 0.57 0.36 1.57 1.08 0.69
RWR 30 1.78 0.67 0.43 1.78 1.27 0.79
RWR 50 1.72 0.63 0.40 1.69 1.31 0.74
RWR 100 1.70 0.61 0.45 1.64 1.17 0.82

RWR+10 2.00 0.70 0.46 1.88 1.40 0.69
RWR+30 2.23 0.75 0.52 2.03 1.49 0.85
RWR+50 2.11 0.72 0.49 1.94 1.43 0.82
RWR+100 1.94 0.81 0.48 1.82 1.45 0.75
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Supplementary Table S3 and Table 1, and ones over the Dataset B
listed in Table 2. Using FS as the local similarity index and RWR as
the global similarity index generally achieve the best performance.
Hence, FS and RWR are selected as the local similarity index and
global similarity index, respectively in the following experiments.

The effect of two parameters on the performance of network
reconstruction and edge enrichment are also examined in our study.
The first one is the number of similarity-inferred edges k. The
prediction performance on the Datasets of A and B is listed in
Supplementary Table S4, Table 3, and Table 4, with the varying
values of k. For both the datasets A and B, experimental results show
that BLAST roughly achieves the best performance by setting k � 5.
When the values of k � {10, 30, 50, 100} are used for FS and RWR,
using k � 30 or k � 50 generally works best in most cases, and the
overall performance is relatively robust for the reconstructed or
enriched networks. Hence, in the following experiments, the

parameter value of k is used as 5, 30, 30 for BLAST, FS and
RWR, respectively.

The second parameter λ dominates the tradeoff between
explicit edges and similarity-inferred edges. Further, the
effect of the parameter λ is evaluated on the prediction
performance when it varies from 0.1 to 0.9. The results on
the Dataset A are listed in Supplementary material (see
Supplementary Table S5) and Table 5, and ones on the
Dataset B in Table 6, respectively. Generally, the λ value has
a relatively small impact on prediction accuracy, unless it is too
large or too small. In the following experiments, the λ value is set
uniformly at 0.7.

3.3 Performance Evaluation on Dataset A
The performance comparison of reconstructed and enriched
networks with that of the original networks is first carried out by

TABLE 5 | The influence of the parameter λ (M.musculus in Dataset A).

Indices Molecular function Biological process Cellular component

1st rank 2nd rank 3rd rank 1st rank 2nd rank 3rd rank 4th rank 1st rank 2nd rank 3rd rank

Origin 0.28 0.12 0.10 0.39 0.23 0.13 0.09 1.63 0.45 0.24

BLAST+0.1 0.38 0.21 0.11 0.43 0.24 0.12 0.13 1.52 0.41 0.20
BLAST+0.3 0.40 0.25 0.18 0.49 0.29 0.17 0.11 1.65 0.54 0.25
BLAST+0.5 0.44 0.30 0.16 0.537 0.27 0.15 0.15 1.85 0.62 0.28
BLAST+0.7 0.47 0.29 0.23 0.56 0.32 0.16 0.14 2.02 0.67 0.34
BLAST+0.9 0.33 0.16 0.15 0.42 0.23 0.13 0.10 1.76 0.55 0.27

FS+0.1 0.31 0.14 0.12 0.49 0.24 0.15 0.13 1.94 0.59 0.27
FS+0.3 0.35 0.16 0.16 0.53 0.33 0.13 0.10 1.86 0.68 0.25
FS+0.5 0.37 0.15 0.13 0.49 0.31 0.18 0.11 2.04 0.63 0.28
FS+0.7 0.39 0.16 0.15 0.52 0.30 0.16 0.14 2.23 0.70 0.30
FS+0.9 0.30 0.13 0.10 0.42 0.222 0.14 0.11 1.86 0.57 0.26

RWR+0.1 0.30 0.13 0.12 0.47 0.29 0.16 0.12 2.12 0.59 0.28
RWR+0.3 0.33 0.15 0.14 0.50 0.31 0.11 0.08 2.22 0.64 0.32
RWR+0.5 0.35 0.13 0.17 0.50 0.24 0.16 0.10 2.32 0.74 0.30
RWR+0.7 0.37 0.17 0.14 0.52 0.28 0.18 0.12 2.45 0.64 0.33
RWR+0.9 0.30 0.13 0.10 0.43 0.26 0.14 0.10 1.94 0.57 0.27

TABLE 6 | The influence of the parameter λ (Dataset B).

Indices S.cerevisiae M.musculus

1st rank 2nd rank 3rd rank 1st rank 2nd rank 3rd rank

Origin 2.23 0.75 0.49 1.94 1.49 0.82

BLAST+0.1 1.56 0.63 0.41 1.76 1.28 0.72
BLAST+0.3 1.89 0.70 0.58 2.01 1.44 0.78
BLAST+0.5 2.56 0.75 0.66 2.34 1.37 0.82
BLAST+0.7 2.83 0.82 0.64 2.45 1.63 0.87
BLAST+0.9 2.36 0.79 0.56 2.12 1.51 0.85

FS+0.1 1.86 0.66 0.42 1.70 1.33 0.74
FS+0.3 1.93 0.64 0.45 1.86 1.38 0.81
FS+0.5 2.06 0.69 0.43 2.02 1.44 0.87
FS+0.7 2.13 0.72 0.47 1.92 1.51 0.84
FS+0.9 1.99 0.75 0.41 1.88 1.62 0.79

RWR+0.1 1.82 0.62 0.42 1.65 1.38 0.77
RWR+0.3 1.94 0.65 0.48 1.83 1.44 0.83
RWR+0.5 2.02 0.71 0.54 1.95 1.46 0.73
RWR+0.7 2.23 0.75 0.52 2.03 1.49 0.82
RWR+0.9 2.12 0.69 0.47 1.92 1.43 0.77
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leave-one-out validation. The top protein function prediction is
selected according to the average number of useful functions per
protein in the PPI networks. Therefore, only the top 2 predictions are
performed on the PPI networks of S.cerevisiae in the Dataset A, and
the top 3 or 4 predictions are examined forM.musculus in Dataset A.

Obviously, edge enrichment gains more accurate
predictions than network reconstruction and original
networks, due to the combination of explicit and implicit
(similarity-inferred) edges (Figure 1). The results clearly
indicate that edge enrichment indeed gains better prediction

performance by adding similarity-inferred edges to PPI
networks. BLAST-enriched networks always worke best,
while BLAST-reconstructed networks always work worst.
This is because BLAST-inferred edges are based on protein
sequence information that is short in the original networks.
The useful information in the original network greatly
increases by adding BLAST-inferred edges, and
consequently boosts prediction accuracy. However, in the
reconstructed networks, the original PPI edges are put aside
first, BLAST-reconstructed networks contain only protein

FIGURE 2 | The performance evaluation over the sparsely-labeled networks (Dataset A: S.cerevisiae). Here, the sub figures in the horizontal and vertical directions
represent the experimental results for the PPI networks of different function types and rank predicted functions, respectively. Horizontally, the top two subplots represent
ones of molecular function, the middle for ones of biological process, and the bottom for ones of cellular component (A), (C) and (E) first rank predicted function, (B), (D)
and (F) second rank predicted function.
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FIGURE 3 | The performance evaluation over the sparsely-labeled networks (Dataset A:M.musculus). Here, the sub figures in the horizontal and vertical directions
represent the experimental results for the PPI networks of different function types and rank predicted functions, respectively. Horizontally, the top three subplots
represent ones on the PPI networks of molecular function, the middle for ones of biological process, and the bottom for ones of cellular component (A), (D) and (G) first
rank predicted function, (B), (E) and (H) second rank predicted function, (C), (F) and (I) third rank predicted function.

FIGURE 4 | The performance evaluation by leave-one-out validation over the PPI networks (Dataset B: S.cerevisiae andM.musculus) (A) S.cerevisiae (B)M.musculus.
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sequence information, and thus performe worst. The
experimental results also validate that FS-reconstructed
networks and RWR-reconstructed networks work better
than the original networks in most cases. This is because
the reconstructed networks filter out noisy or spurious
interactions in the original PPI networks.

We further evaluate prediction accuracy of these three kinds of
networks by using Gibbs Sampling in sparse-labeled PPI
networks. Concretely, in PPI networks, the annotated protein
proportion is changed from 0.1 to 0.9, and the remaining protein
functions are predicted. For each proportion of the annotated
proteins, the average prediction accuracy of running 10
experiments is presented on the PPI networks of S.cerevisiae
(Figure 2)and M.musculus (Figure 3), respectively. The
enrichment gains more accurate predictions than network
reconstruction and original networks. The BLAST-enriched
networks always work the best, while the BLAST-
reconstructed networks always perform the worst. As expected,
the experimental results also validate that FS-reconstructed
networks and RWR-reconstructed networks generally performe
better than the original networks. As the annotated protein
proportion in the original networks increases, the prediction
performance gets better for most networks, especially for the
1-st rank function. However, the prediction performance of the
original network slightly declines as its annotated protein
proportion increases (Figure 3G, H).

3.4 Performance Evaluation on Dataset B
As above, the performance of reconstructed and enriched
networks is first compared with that of the original networks

by leave-one-out validation. Here, the top 3 protein function
predictions are considered for both PPI networks of S. cerevisiae
and M. musculus. As expected, edge enrichment gaines higher
accurate predictions than network reconstruction and original
networks. Moreover, BLAST-enriched networks get best, while
the BLAST-reconstructed networks always work worst
(Figure 4). The reasons are the same as for the dataset A.

Next, we evaluate the prediction performance of these
networks in sparse-labeled conditions with the collective
classification method. Similarly, the average prediction
performance is generated over running 10 experiments, with
the annotated-protein proportion varying from 0.1 to 0.9.
Generally, the experimental results present a similar trend to
the above for the dataset A (Figure 5). However, FS-
reconstructed networks and RWR-reconstructed networks do
not outperform the original networks, due to the quality
properties of the dataset itself. This is mainly because many
informative interactions are deleted and the prediction
performance is impaired when reconstructing the networks
based on similarity.

To validate this point, 10% and 50% interactions of the original
network of the dataset B are randomly selected to construct two sparse
networks. The leave-one-out validation is then performedover the two
sparse networks. The selection process have two steps: First, a random
weight is assigned to each edge of the original network, and a
minimum spanning tree is constructed on the new network. The
randomness of the minimum spanning tree (MST) is ensured by the
random weights, and MST ensures the connectivity of the sparse
network. Second, theMST is expanded by adding a number of edges,
which are randomly selected from the original network (but not

FIGURE 5 | The performance evaluation over the sparsely-labeled networks (Dataset B: S.cerevisiae andM.musculus). Here, the sub figures in the horizontal and vertical
directions represent the experimental results for different data types and rank predicted functions, respectively. Horizontally, the top three subplots represent ones over the dataset
of S.cerevisiae, and the bottom for ones of M.musculus. (A) and (D) first rank predicted function, (B) and (E) second rank predicted function, (C) and (F) third rank predicted
function.
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already on the MST). Hence, the number of edges in the sparse
network is equal to 10% or 50% of edges in the original network. The
sparse network preserves the basic topological properties of the
original network.

The final experimental results also confirm the above-
mentioned phenomenon. For example, in Figure 6, the FS-
reconstructed networks and the RWR-reconstructed networks
work better than the original networks when the networks are
very sparse (e.g. 10%). However, as the networks become denser,
the FS-reconstructed networks and the RWR-reconstructed
networks get worse than the original networks.

4 CONCLUSION

The systematic comparison of two network transformation
approaches (network reconstruction and edge enrichment) is
performed using three different protein similarity metrics
(sequence similarity, local and global similarity). In summary, edge
enrichment performs better than network reconstruction and original
networks, while network reconstruction is more effective on relatively
small and incomplete PPI networks. The edge enrichment of PPI
networks based on sequence similarity outperforms those based on
both local and global similarity. As the PPI networks become more
and more complete, the effectiveness of both edge enrichment and
network reconstruction will decrease or relatively decrease.

Research efforts will be further expanded in future, which
include: 1) how the removal of noisy edges and addition of
informative edges affect the prediction performance; 2) a
combining approach that combines the best properties of all

these indices is developed since the similarity indices considered
here have different properties and performances.
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Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) is the causative agent of the
coronavirus disease 2019 (COVID-19) pandemic. In this study, we conducted a comparative
analysis of the structural genes of SARS-CoV-2 and other CoVs. We found that the sequence
of the E gene was the most evolutionarily conserved across 200 SARS-CoV-2 isolates. The E
gene and M gene sequences of SARS-CoV-2 and NC014470 CoV were closely related and
fell within the same branch of a phylogenetic tree. The absolute diversity of E gene andM gene
sequences of SARS-CoV-2 isolates was similar to that of common CoVs (C-CoVs) infecting
other organisms. The absolute diversity of the M gene sequence of the KJ481931 CoV that
can infect humans was similar to that of SARS-CoV-2 and C-CoVs infecting other organisms.
The M gene sequence of KJ481931 CoV (infecting humans), SARS-CoV-2 and NC014470
CoV (infecting other organisms) were closely related, falling within the same branch of a
phylogenetic tree. Patterns of variation and evolutionary characteristics of the N gene and S
gene were very similar. These data may be of value for understanding the origins and
intermediate hosts of SARS-CoV-2.

Keywords: severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), common coronaviruses (C-CoVs),
structural gene, evolution, intermediate hosts

INTRODUCTION

The coronaviruses (CoVs) are a large family of viruses that infect many organisms, including humans
(Ma et al., 2020). The primary symptoms resulting from CoV infection are respiratory diseases and
severe acute respiratory syndrome (Ashour et al., 2020). CoVs are enveloped viruses with a positive
sense single stranded RNA genome. CoVs were first discovered in patients with the common cold in
1966 (Tyrrell and Bynoe 1966; Velavan and Meyer 2020).

Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) belongs to the
Betacoronavirus genus and the Sarbecovirus subgenus (Ceraolo and Giorgi 2020; Li F et al.,
2020). Infection by SARS-CoV-2 results in a syndrome called coronavirus disease 2019 (COVID-
19); the virus has caused a global pandemic, resulting in large numbers of illnesses and deaths
[(An update on the epidemiological characteristics of novel coronavirus pneumoniaCOVID-19)
2020]. The main features of COVID-19 are high transmissibility and high mortality [Lai et al.,
2020, (An update on the epidemiological characteristics of novel coronavirus pneumoniaCOVID-
19) 2020]. Since the first patient with COVID-19 was identified (Lai, Shih, Ko, Tang and Hsueh
2020), more than 68 million additional cases have been confirmed globally with over 1.5 million
deaths.
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Many organisms have been considered as potential intermediate
hosts of SARS-CoV-2 [Guo et al., 2020; Jiang and Shi 2020, (An
update on the epidemiological characteristics of novel coronavirus
pneumoniaCOVID-19) 2020; Zhang et al., 2020c; Zhou et al., 2020].
In a previous study, we concluded that SARS-CoV-2 may have
evolved from a distant common ancestor of other common CoVs
(C-CoVs), and may have persisted in an unidentified primary host
for a long period (Li X et al., 2020). However, the origins and the
intermediate hosts of SARS-CoV-2 remain unclear.

The SARS-CoV-2 genome is about 30 kb in size, making it
one of the largest known viral RNA genomes. The genome
contains four structural genes: S, E, M and N (Comas-Garcia
2019; Khailany et al., 2020). The “crown-like” appearance of
SARS-CoV-2 results from the presence of the spike (S)
glycoprotein (encoded by the S gene) on the surface of the
virus (Jacofsky et al., 2020). The S protein binds to angiotensin-
converting enzyme-2 (ACE2) and mediates fusion of
the viral envelope with host cells (Lu et al., 2020). The other
major SARS-CoV-2 envelope protein is the transmembrane
(M) glycoprotein (encoded by the M gene) (Jacofsky et al.,
2020). The main functions of the M protein are viral
envelope formation and virion assembly (Ujike and Taguchi
2015; Jacofsky et al., 2020). The SARS-CoV-2 capsid and
genomic RNA are linked by the basic (N) phosphoprotein
(encoded by the N gene) (Khailany et al., 2020;
Mousavizadeh and Ghasemi 2020). The other structural
protein is the envelope (E) protein (encoded by the E
gene), which is involved in virion assembly, release,
and viral pathogenesis (Schoeman and Fielding 2019).
The sequences of SARS-CoV-2 structural genes or
proteins may contain information on the origins and
intermediate hosts of the virus, which may be useful for
vaccine development.

In this study, we analyzed the sequences of the structural genes
of SARS-CoV-2 and C-CoVs that infect humans and other
organisms. We aimed to understand variation and evolutionary
characteristics of SARS-CoV-2 structural gene sequences.

MATERIALS AND METHODS

Materials
We obtained structural gene sequences from 200 SARS-CoV-2
isolates, 126 C-CoVs that infect humans, and 53 C-CoVs that
infect other organisms from the NCBI database (https://www.
ncbi.nlm.nih.gov/sars-cov-2/).

Analysis of Variation in SARS-CoV-2
Structural Gene Sequences
To analyze variation in the structural gene sequences of 200 SARS-
CoV-2 isolates, we carried out multiple sequence alignments using
Vector NTI software (Li et al., 2016). We analyzed the influence of
mutations in structural gene sequences on the functions of
structural proteins using DNAMAN software. We used MEGA-
X software (Gorbalenya et al., 2020) to analyze the evolutionary
features of SARS-CoV-2 structural gene sequences.

Comparative Analysis of Structural Genes in
SARS-CoV-2 and Other CoVs
We chose SARS-CoV-2 structural genes that showed sequence
variation or evolutionary relatedness to C-CoVs for further
analysis (Table 1). Using Vector NTI software and MEGA-X
software (Kumar et al., 2018), we conducted a comparative
sequence analysis of the structural gene sequences of SARS-
CoV-2, C-CoVs that infect humans, and C-CoVs that infect
other organisms.

RESULTS

Genomic Analysis of SARS-CoV-2
Structural Gene Sequences
The four structural genes encoded in the SARS-CoV-2 genome
are E (228 nt), M (669 nt), N (908 nt), and S (3,822 nt). As shown
in Figure 1, the similarities and absolute diversities of SARS-
CoV-2 structural gene sequences were very high (Figure 1 A,B).

Two SARS-CoV-2 isolates had two single nucleotide
polymorphisms (SNPs) within the E gene (Figure 1 C,D and
Table 1), nine isolates had three variations (one mutation and
two SNPs) within the M gene (Figure 1 C,D and Table 1), 28
isolates had 22 variations (13 mutations and nine SNPs) within
the N gene (Figure 1, C–T and Table 1) and 89 isolates had 25
variations (16 mutations and nine SNPs) within the S gene
(Figure 1, C–T and Table 1).

The variance rates (VRs) of structural genes among the
200 SARS-CoV-2 isolates were 1% (E), 4.5% (M), 14% (N)
and 44.5% (S) (Table 1). The gene size variance rates
(GSVRs) of the four genes were 0.44/10,000 (E), 0.67/
10,000 (M), 1.54/10,000 (N) and 1.16/10,000 (S)
(Table 1). The sequence of the E gene was the most
highly conserved across the 200 SARS-CoV-2 isolates.

Influence of Mutations in SARS-CoV-2
Structural Genes on the Features of
Structural Proteins
We identified 30 mutations within the structural genes of 200
SARS-CoV-2 isolates. Subsequently, we analyzed the influence of
these mutations on the features of structural proteins. As shown
in Supplementary Figure S1, the Val70→Ile substitution in the
M gene of the MT263397 isolate had little effect on the
transmembrane segment of the M protein.

In the N gene, six mutations affected N protein
hydrophobicity, three mutations affected protein
hydrophilicity, 10 mutations affected protein secondary
structure, and four mutations affected the transmembrane
segment (Supplementary Figure S2).

One mutation in the S gene affected S protein hydrophobicity,
one mutation affected protein hydrophilicity, and three
mutations affected protein secondary structure
(Supplementary Figure S3).

In general, mutations in the N gene of SARS-CoV-2 isolates
occurred between amino acid residues 200 to 300 and had large
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TABLE 1 | Analysis of structural gene sequences of 200 severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) isolates.

Genes Size
(nt)

Variations1 Variance
rate2 (%)

Gene
size

variance
rate3

SNPs Mutations For further analysis

E gene 228 2 1 0.44/
10,000

MT263389, MT259248 — MT263389, MT259248,
MT2634106

M
gene

669 9 4.5 0.67/
10,000

MT259252, MT263384,
MT263410, MT263389,
MT263443, MT263388,
MT263422, MT263447

MT263397 MT263410, MT263389,
MT263397, MT2630746

N gene 908 28 14 1.54/
10,000

MT263398, MT2569174,
MT2569184, MT259270,
MT263430, MT259267,
MT263421, MT263451,
MT258382, MT263435,
MT263458, MT263395,

MT259237

MT259237, MT259269,
MT259274, MT263429,

MT2569174, MT2569184,
MT258379, MT259250,
MT259263, MT263402,
MT263074, MT263386,
MT263410, MT263411,
MT256924, MT263422,

LC534419

MT263410, MT263074,
MT263422, MT259237,
MT259269, MT256917,
MT263386, MT263411,
MT258382, MT263398,
MT259274, MT259270,
MT263429, MT259267,
MT263421, MT256924,
LC534419, MT263435,
MT263395, MT2633896

S gene 3,822 89 44.5 1.16/
10,000

MT259262, MT263410,
MT259257, MT263441,
MT263469, MT263386,
MT259287, MT263074,
MT259269, MT259227

MT263414, MT263460,
MT263384, MT259249,

MT263466(2)5, MT259236,
MT259276, MT263403,
MT263412, MT263418,
MT259262, MT259282,
MT259253, MT262915,
MT263457, MT263443,
MT263393, MT263420,
MT263385, MT263387,
MT251973, MT251976,
MT251979, MT258378,
MT258379, MT258380,
MT258382, MT258383,
MT259235, MT259239,
MT259240, MT259243,
MT259244, MT259246,
MT259248, MT259249,
MT259250, MT259251,
MT259256, MT259258,
MT259260, MT259261,
MT259263, MT259264,
MT259265, MT259273,
MT259277, MT263431,
MT263436, MT259278,
MT259281, MT259286,
MT263074, MT263390,
MT263391, MT263392,
MT263394, MT263402,
MT263406, MT263408,
MT263411, MT263413,
MT263415, MT263417,
MT263426, MT263428,
MT263432, MT263433,
MT263437, MT263438,
MT263439, MT263442,
MT263445, MT263446,
MT263459, MT263465,
MT263467, MT263468

MT263410, MT263074-3,
MT263466, MT263384,
MT263443, MT259269,
MT263386, MT259249,
MT263414, MT259262,
MT259257, MT259236,
MT259282, MT263441,
MT262915, MT259287,
MT251973, MT263393,
MT263385, MT259253,
MT263457, MT263420,
MT259227, MT2633896

Notes: 1Variations include single nucleotide polymorphisms (SNPs) and mutations.
2Variance rate= (variations/200) × 100%.
3Gene size variance rate= (variations/200/gene size) × 10,000/10,000.
4There were two variations in the MT256917 and MT256918 CoVs, respectively.
5There were two mutations in the MT263466 CoV.
6No variation controls for further analysis of structural genes.
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impacts on the function of the protein (Figure 1 and
Supplementary Figure S2).

Phylogenetic Analysis of SARS-CoV-2
Structural Gene Sequences
Next, we analyzed the evolutionary characteristics of the
structural genes of SARS-CoV-2 isolates. As shown in
Figure 2, the SARS-CoV-2 structural genes showing increased
variation also showed distinct evolutionary features. The
sequence of the E gene was the most evolutionarily conserved
across the 200 SARS-CoV-2 isolates (Figure 2). We selected the
sequences of structural genes that showed variation and
evolutionary relatedness with C-CoVs for further analysis
(Table 1).

Comparative Analysis of Structural Gene
Sequences of SARS-CoV-2 and C-CoVs
That Infect Humans
To understand the relationships between the structural genes of
SARS-CoV-2 and C-CoVs that also infect humans, we carried out
a comparative sequence analysis of selected structural gene
sequences from SARS-CoV-2 (Table 1) and C-CoVs that
infect humans. As shown in Figure 3, the E gene sequences of
SARS-CoV-2 isolates were evolutionary intermediates between
KJ481931 and MG011357 (Figure 3A). In terms of their E gene
sequences, SARS-CoV-2 and KJ481931 were the most closely
related evolutionarily (Figure 3A), and the absolute diversities of
the E gene sequences of these two CoVs was similar (Figure 3B).

The M gene sequences of SARS-CoV-2 isolates were
evolutionary intermediates between KJ48193 and a group of
other CoVs (KP209309, KY581691, KY581689, KY581686,
KP209307, KP209313, and KP209306). The M gene sequences
of SARS-CoV-2 and KJ481931 were the most closely related
evolutionarily (Figure 3C), and the absolute diversities of the M
gene sequences of these two CoVs was similar (Figure 3D).

The N gene and S gene sequences of SARS-CoV-2 isolates
were evolutionarily distinct (Figure 3E and Figure 3G). The
absolute diversities of N gene sequences in SARS-CoV-2 isolates
differed from those of all other C-CoVs (Figure 3F). However,
the S gene sequences of SARS-CoV-2 isolates and KJ481931 were
the most closely related evolutionarily (Figure 3G), and the
absolute diversities of the S gene sequences of these two CoVs
were similar (Figure 3H).

Comparative Analysis of Structural Gene
Sequences of SARS-CoV-2 and C-CoVs
That Infect Other Organisms
To understand the relationships between the structural genes of
SARS-CoV-2 and C-CoVs that infect other organisms, we carried
out a comparative sequence analysis of selected structural gene
sequences from SARS-CoV-2 (Table 1) and C-CoVs that infect

FIGURE 1 | Absolute diversity and variations in the structural genes
of 200 severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2)
isolates. The similarity and absolute diversity in structural genes
sequences were very high. Two SARS-CoV-2 isolates had two single
nucleotide polymorphisms (SNPs) within the E gene, nine isolates had
three variations (one mutation and two SNPs) within the M gene, 28
strains had 22 variations (13 mutations and nine SNPs) within the N gene,
and 89 strains had 25 variations (16 mutations and nine SNPs) within the S
gene.
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other organisms. As shown in Figure 4, the E gene sequences of
SARS-CoV-2 isolates were most closely evolutionarily related to
NC014470, DQ415914, NC026011, NC006213, JN874559, and
U00735l; NC014470 was also located within the same branch of a
phylogenetic tree as SARS-CoV-2 isolates (Figure 4A). The
absolute diversities of E gene sequences from NC014470,
DQ415914, NC026011, NC006213, JN874559, and U00735
were similar to those of E gene sequences from SARS-CoV-2
isolates (Figure 4B).

The M gene sequences of SARS-CoV-2 isolates were most
closely related to NC014470, EF065513 and NC030886
(Figure 4C). The absolute diversities of M gene sequences from
NC014470, EF065513 and NC030886 were similar to those of M
gene sequences from SARS-CoV-2 isolates (Figure 4D).

In terms of N gene and S gene sequences, SARS-CoV-2 was
most closely evolutionarily related to NC014470; these two CoVs
formed a separate clade in a phylogenetic tree (Figure 4E and
Figure 4G). The absolute diversity of N gene sequences from
SARS-CoV-2 isolates was similar to that of the N gene sequence
of NC014470 (Figure 4F). However, the absolute diversity of the
S gene sequence from NC014470 was more similar to those of the
S gene sequences of other C-CoVs (Figure 4H).

Comparative Analysis of Structural Gene
Sequences of SARS-CoV-2 and C-CoVs
That Infect Humans and Other Organisms
We next wanted to analyze the evolutionary relationships among
the structural genes of SARS-CoV-2 and C-CoVs that infect
humans and other organisms. We performed a comparative

sequence analysis of the structural genes from SARS-CoV-2
isolates (Table 1) and those from C-CoVs (Table 2). As
shown in Figure 5, the E gene sequences of SARS-CoV-2
isolates and C-CoVs could be grouped into three clades (CI,
CII and CIII) (Figures 5A,B). In terms of their E gene sequences,
SARS-CoV-2 isolates were most closely related to NC014470;
these two CoVs represented evolutionary intermediates in the
phylogenetic tree between C-CoVs that infect humans and those
that infect other organisms (Figures 5A,B). The absolute
diversity of E gene sequences of SARS-CoV-2 isolates was
most similar to that of the E gene sequences of C-CoVs that
infect other organisms (Figure 5C).

The M gene sequences of SARS-CoV-2 isolates and C-CoVs
could be also grouped into three clades (CI, CII and CIII)
(Figures 5D,E). The M gene sequences of SARS-CoV-2
isolates were evolutionary intermediates between NC014470
(infecting other organisms) and KJ481931 (infecting humans);
SARS-CoV2 isolates grouped closely together in a same branch of
the phylogenetic tree (Figures 5D,E). The absolute diversity of
the M gene sequences of SARS-CoV-2 isolates was more similar
to those of the M gene sequences of C-CoVs that infect other
organisms (Figure 5F). However, the absolute diversity of the M
gene sequence of KJ481931 (infecting humans) was more similar
to that of M gene sequences from SARS-CoV-2 isolates and
C-CoVs that infect other organisms (Figure 5F).

The N gene sequences of SARS-CoV-2 isolates were closely
related and grouped together within the same branch of a
phylogenetic tree (Figures 5G,H). The N gene sequence of
NC014470 was an evolutionary intermediate between SARS-
CoV-2 isolates and C-CoVs that infect humans (Figures

FIGURE 2 | Evolutionary characteristics of the structural genes of 200 severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) isolates. (A,B): The two
isolates with single nucleotide polymorphisms (SNPs) in the E gene were evolutionary distinct. (C,D): The nine isolates with variations in the M gene were evolutionary
distinct. (E,F): The 28 isolates with variations in the N gene were evolutionarily distinct. (G,H): The 88 strains with variations in the S gene evolutionarily distinct.

Frontiers in Genetics | www.frontiersin.org April 2022 | Volume 13 | Article 8019025

Zhang et al. Genomic Analysis of SARS-CoV-2

150

https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


FIGURE 3 | Evolutionary characteristics and absolute diversity of structural genes in severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) isolates and
common coronaviruses (C-CoVs) that infect humans. (A): The E gene sequences of SARS-CoV-2 isolates were evolutionary intermediates between KJ481931 and
MG011357. (C): The M gene sequences of SARS-CoV-2 isolates were evolutionary intermediates between KJ48193 and a group of C-CoVs (KP209309, KY581691,
KY581689, KY581686, KP209307, KP209313, and KP209306). (B,D): The absolute diversities of the E and M gene sequences within the KJ481931 C-CoV were
similar to those of the E and M gene sequences of SARS-CoV-2 isolates. (E,G): The N and S gene sequences of SARS-CoV-2 isolates were evolutionarily distinct. (F,H):
The absolute diversities of the N and S gene sequences of SARS-CoV-2 isolates differed from those of all C-CoVs that infect humans.
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5G,H). The absolute diversity of the N gene sequences of
SARS-CoV-2 isolates differed from the absolute diversity of
the N gene sequences of C-CoVs (Figure 5I).

The evolutionary features and absolute diversities of the S gene
sequences of SARS-CoV-2 isolates and C-CoVs that infect other
organisms or humans were very similar to those of the N gene
sequences (Figures 5J–L).

DISCUSSION

Genetic information determines the functions and characteristics
of biological factors and organisms. Gene annotation and

evolutionary analysis are important steps in interpreting
sequence information (Khailany et al., 2020). In this work, we
profiled variations in the structural gene sequences of SARS-
CoV-2 isolates. We analyzed the evolutionary characteristics and
absolute diversities of structural gene sequences of SARS-CoV-2
isolates and C-CoVs that infect humans and other organisms.

CoVs are positive-single-stranded RNA viruses. The major
symptoms caused by CoV infection are respiratory tract
infections. SARS-CoV, Middle East Respiratory Syndrome
(MERS)-CoV and SARS-CoV-2 are three highly contagious
and deadly CoVs that have caused outbreaks in humans
(Singh Tomar and Arkin 2020). The genomes of SARS-CoV
and SARS-CoV-2 share approximately 80% identity, but are

FIGURE 4 | Evolutionary characteristics and absolute diversities of structural genes in severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) isolates and
common coronaviruses (C-CoVs) that infect other organisms. (A,C): The E and M gene sequences of SARS-CoV-2 isolates were evolutionarily intermediates between
C-CoVs that infect other organisms. (A): In terms of E gene sequences, SARS-CoV-2 isolates were most closely related to the C-CoVs NC014470, DQ415914,
NC026011, NC006213, JN874559 and U00735. (B): The absolute diversities of the E gene sequences of the C-CoVs NC014470, DQ415914, NC026011,
NC006213, JN874559, and U00735 were similar to those of the E gene sequences of SARS-CoV-2 isolates. (C): In terms of M gene sequences, SARS-CoV-2 isolates
were most closely evolutionarily related to the C-CoVs NC014470, EF065513 and NC030886. (D): The absolute diversities of the M gene sequences of the C-CoVs
NC014470, EF065513 and NC030886 were similar to those of M gene sequences of SARS-CoV-2 isolates. (E,G): In terms of N and S gene sequences, SARS-CoV-2
isolates were most closely evolutionarily related to the C-CoV NC014470, forming a separate clade. (F): The absolute diversity of N gene sequences of SARS-CoV-2
isolates was similar to that of the C-CoV NC014470. (H): The absolute diversity of the S gene sequence of the C-CoV NC014470 was similar to those of other C-CoVs.

TABLE 2 | Analysis of structural gene sequences of common coronaviruses (C-CoVs) evolutionarily related to severe acute respiratory syndrome coronavirus-2 (SARS-
CoV-2).

Genes C-CoVs infecting humans C-CoVs other organisms

E gene KJ481931, MG011357 NC014470, DQ415914, NC026011, NC006213, JN874559,
U00735

M gene KJ481931, KP209309, KY581691, KY581689, KY581686, KP209307, KP209313,
KP209306

NC014470, EF065513, NC030886

N gene KJ156911, KJ156905 NC014470
S gene KJ481931, MG011344 NC014470
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distinct from those of other C-CoVs that infect humans (Lu et al.,
2020, The species Severe acute respiratory syndrome-related
coronavirus: classifying 2019-nCoV and naming it SARS-CoV-
2 2020).

The SARS-CoV-2 genome including four structural genes
encoding structural proteins: E, M, S and N (Comas-Garcia
2019). The functions of the E protein include assembly,
release, and pathogenesis of CoVs (Schoeman and Fielding

2019). Important features of the E gene and protein are their
small size and the high hydrophobicity of the E protein. Those
features suggests that the E protein may act as a viroporin, and
that CoVs lacking the E protein may be less virulent. The E
protein many serve as a vaccine candidate (Fett et al., 2013;
Regla-Nava et al., 2015). In this work, using the genome
sequences of 200 SARS-CoV-2 isolates, we found that only
two isolates had SNPs within the E gene. The sequence of the E

FIGURE5 | Evolutionary characteristics and absolute diversities of structural genes of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) isolates and
common coronaviruses (C-CoVs). (A,B,D,E): The E and M gene sequences of SARS-CoV-2 isolates and common CoVs could be grouped into three clades (CI, CII and
CIII). A, B: The E gene sequences of SARS-CoV-2 isolates and C-CoV NC014470 were evolutionary intermediates between C-CoVs that infect humans and other
organisms. (C): The absolute diversities of E gene sequences of SARS-CoV-2 isolates were more similar to those of C-CoVs that infect other organisms. (D,E): The
M gene sequences of SARS-CoV-2 isolates, NC014470 (infecting other organisms) and KJ481931 (infecting humans) were closely related and grouped together in the
same branch of a phylogenetic tree. The M gene sequences of SARS-CoV-2 isolates were evolutionary intermediates between those of NC014470 (infecting other
organisms) and KJ481931 (infecting humans). (F): The absolute diversities of M gene sequences of SARS-CoV-2 isolates were more similar to those of C-CoVs infecting
other organisms. (F) (Green box): The absolute diversity of M gene sequences of KJ481931 (infecting humans) was more similar to those of M gene sequences from
SARS-CoV-2 isolates and C-CoVs that infect other organisms. (G,H,J,K): The N and S gene sequences of SARS-CoV-2 strains grouped closely together on the same
branch of an evolutionary tree. (G,H,J,K): The N and S gene sequences of NC014470 were located between those of SARS-CoV-2 isolates and C-CoVs that infect
humans. (I,L): The absolute diversities of N and S gene sequences of SARS-CoV-2 isolates were unlike those of C-CoVs.
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gene was the most highly conserved across the 200 SARS-
CoV-2 isolates.

The genomes of many CoVs contain an E gene, including
SARS-CoV (Torres et al., 2006; Parthasarathy et al., 2008),
MERS-CoV (Surya et al., 2015), human CoV 229E (Wilson
et al., 2006), and SARS-CoV-2. In terms of their E gene
sequences, we found the SARS-CoV-2 was most closely
evolutionarily related to NC014470 [a C-CoV that infects
bats (Drexler et al., 2010)]; these two CoVs were
evolutionary intermediates between C-CoVs that infect
humans and those that infect other organisms. The absolute
diversity of the E gene sequences of SARS-CoV-2 isolates was
more similar to that of E gene sequences from C-CoVs that
infect other organisms.

The genetic and evolutionary features of M gene sequences
within the 200 SARS-CoV-2 isolates were very similar to those of
E gene sequences. As a major envelope protein, the M protein is
responsible for viral envelope formation and virion assembly
(Ujike and Taguchi 2015; Jacofsky et al., 2020). Here, we found
that nine of 200 isolates showed variations (one mutation and
eight SNPs) in the M gene. The VR and GSVR of the M gene were
slightly higher than those of the E gene. However, theM protein is
a major envelope protein (Ujike and Taguchi 2015), and the
mutation (Val70→Ile) in the M gene of MT263397 had little
impact on the transmembrane segment of the M protein. The M
gene and protein is another good candidate for SARS-CoV-2
vaccine development.

The evolutionary features of M gene sequences were very
interesting. The M gene sequences of SARS-CoV-2 isolates were
evolutionary intermediate between those of NC014470 (infecting
other organisms) and KJ481931 [infecting humans; (Marthaler
et al., 2014)]; the M gene sequences of these CoVs were grouped
closely together within the same branch of a phylogenetic tree.
The absolute diversity of the M gene sequence from KJ481931
was more similar to that of M gene sequences from SARS-CoV-2
isolates and to those of M gene sequences of C-CoVs that infect
other organisms.

During CoV infection, the N protein and viral RNA enter host
cells together, where they are involved in viral assembly, release
and genome replication (Narayanan et al., 2003). In the early
stages of infection, antibodies against the N protein are highly
specific (Shi et al., 2003; Leung et al., 2004; Tan et al., 2004). In
this study, we found that 28 of 200 SARS-CoV-2 isolates showed a
total of 22 variations within the N gene. Mutations mainly
occurred between amino acid residues 200 to 300 and had a
large impact on N protein function.

The genetic and evolutionary features of N and S structural
genes within the 200 SARS-CoV-2 isolates were very similar. The
VRs of N and S genes were 14 and 44.5%, respectively. However,
the S gene sequence is longer than the N gene sequence (Khailany
et al., 2020). The GSVR of the S gene was 1.16/10,000, lower than
that of the N gene (1.54/10,000). We identified 58 isolates bearing
the same variation (Asp614→Gly), but mutations in the S gene
had little effect on protein function. The N gene sequence was less
conserved than the S gene sequence.

The main function of the S protein is to mediate CoV entry
into host cells (Tortorici and Veesler 2019). Among the four

structural proteins, the S protein is the largest (Khailany et al.,
2020). In the S protein, SARS-CoV-2 and SARS-CoV share 76%
amino acid identity (de Groot 2006; Zhang et al., 2020a). Entry of
SARS-CoV-2 into host cells can be prevented by antibodies raised
against SARS-CoV (Hoffmann et al., 2020). The S protein of
SARS-CoV-2 shared 93 and 97% amino acid identity with Bat
CoV RaTG13 and Pangolin-CoV, respectively (Zhang et al.,
2020b; Special Expert Group for Control of the Epidemic of
Novel Coronavirus Pneumonia of the Chinese Preventive
Medicine Association, 2020; Zhou et al., 2020). These results
strongly suggest potential intermediate hosts based on
conservation of the S protein. However, in our study we found
that S gene sequences of SARS-CoV-2 isolates were evolutionarily
independent in a phylogenetic tree, with a relatively large
evolutionary distance separating the S genes of SARS-CoV-2
and C-CoVs. The absolute diversity of S gene sequences
within SARS-CoV-2 isolates was also unlike those of S genes
sequences from all the other C-CoVs.

CONCLUSION

On the basis of these results, we conclude that the E and M
structural genes of SARS-CoV-2 and the NC014470 and
KJ481931 CoVs are important for understanding the origins
and intermediate hosts of SARS-CoV-2.
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Supplementary Figure S1 | Influence of a mutation in the M gene (g.208G→A,
p.70Val→Ile) of the MT263397 coronavirus on protein structure and function. The
mutation had little effect on the transmembrane segment of the M protein.

Supplementary Figure S2 | Influence of mutations in the N genes of 200 severe
acute respiratory syndrome coronavirus-2 (SARS-CoV-2) isolates on protein
structure and function. Six mutations (MT259237, p.3Asp→Tyr; MT263429,
p.194Ser→Leu; MT256917 and MT256918, p.197Ser→Leu; MT263410,
p.208Ala→Gly; MT256924, p.238Gly→Cys; and MT263422, p.271Thr→Ile) had
effects on protein hydrophobicity. Three mutations (MT259237, p.3Asp→Tyr;
MT263429, p.194Ser→Leu; MT256917 and MT256918, p.197Ser→Leu) had
effects on protein hydrophilicity. Ten mutations (MT259237, p.3Asp→Tyr;
MT259274, p.35Ala→Thr; MT263429, p.194Ser→Leu; MT256917 and
MT256918, p.197Ser>→Leu; MT263386, p.202Ser→Asn; MT258379,
MT259250, MT259263, MT263074, and MT263402, p.203Arg→Lys and

p.204Gly→Arg; MT263411, p.232Ser→Thr; MT256924, p.238Gly→Cys;
MT263422, p.271Thr→Ile; and LC534419, p.289Gln→His) had effects on
protein secondary structure. Four mutations (MT259237, p.3Asp→Tyr;
MT263386, p.202Ser→Asn; MT258379, MT259250, MT259263, MT263074,
and MT263402, p.203Arg→Lys and p.204Gly→Arg; and MT263422,
p.271Thr→Ile) had effects on protein transmembrane segments.

Supplementary Figure S3 | Influence of mutations in the S genes of 200 severe
acute respiratory syndrome coronavirus-2 (SARS-CoV-2) isolates on protein
structure and function. One mutation in the S gene affected protein
hydrophobicity (MT263384, p.29Thr→Ile) and one mutation affected
hydrophilicity (MT251973 and MT251976, p.614Asp→Gly). Three mutations
(MT259253, p.348Ala→Thr; MT263466, p.1258Glu→Asp and p.1259Asp→His;
MT263385, MT263387, p.1259Asp→His) in the S gene had effects on protein
secondary structure.
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