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Despite the centrality of rationality to our identity 
as a species (let alone the scientific endeavour), 
and the fact that it has been studied for several 
millennia, the present state of our knowledge 
of the mechanisms underlying logical reason-
ing remains highly fragmented. For example, a 
recent review concluded that none of the extant 
(12!) theories provide an adequate account 
(Khemlani & Johnson- Laird, 2011), while other 
authors argue that we are on the brink of a par-
adigm change, where the old binary logic frame-
work will be washed away and replaced by more 
modern (and correct) probabilistic and Bayesian 
approaches (see for example Elqayam & Over, 
2012; Oaksford & Chater, 2009; Over, 2009). 

Over the past 15 years neuroscience brain imaging 
techniques and patient studies have been used to 
map out the functional neuroanatomy of reason-
ing processes. The aim of this research topic is to 
discuss whether this line of research has facili-
tated, hindered, or has been largely irrelevant for 
understanding of reasoning processes. The answer 

is neither obvious nor uncontroversial. We would like to engage both the cognitive and the 
neuroscience community in this discussion. Some of the questions of interest are: 
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How have the data generated by the patient and neuroimaging studies: 

•  influenced our thinking about modularity of deductive reasoning 
•  impacted the debate between mental logic theory, mental model theory and the dual 

mechanism accounts 
•  affected our thinking about dual mechanism theories 
•  informed discussion of the relationship between induction and deduction 
•  illuminated the relationship between language, visual spatial processing and reasoning 
•  affected our thinking about the unity of deductive reasoning processes 

Have any of the cognitive theories of reasoning helped us explain deficits in certain patient 
populations? 

Do certain theories do a better job of this than others? 

Is there any value to localizing cognitive processes and identifying dissociations (for reasoning 
and other cognitive processes)? 

What challenges have neuroimaging data raised for cognitive theories of reasoning? 

How can cognitive theory inform interpretation of patient data or neuroimaging data? 

How can patient data or neuroimaging data best inform cognitive theory? 

This list of questions is not exhaustive. Manuscripts addressing other related questions are wel-
come. We are interested in hearing from skeptics, agnostics and believers, and welcome original 
research contributions as well as reviews, methods, hypothesis & theory papers that contribute 
to the discussion of the current state of our knowledge of how neuroscience is (or is not) help-
ing us to deepen our understanding of the mechanisms underlying logical reasoning processes. 
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Editorial on the Research Topic

The Reasoning Brain: The Interplay between Cognitive Neuroscience and Theories of

Reasoning

The ability to reach logical conclusions on the basis of prior information is central to human
cognition. Yet, it is generally agreed that the state of our knowledge regarding the mechanisms
underlying logical reasoning remains incomplete and highly fragmented (e.g., Khemlani and
Johnson-Laird, 2012). The emergence of functional neuroimaging over the past 20 years—and its
ability to examine reasoning at the level of recruitment of cortical systems—provides an additional
source of data to, not only better understand reasoning as a phenomenon, but to test different
theoretical approaches. This has the potential to both prune the number of theoretical explanations
of reasoning, but also to expand the space of possibilities in directions unanticipated by behavioral
data. This Research Topic explores the extent to which neuroimaging and brain-lesion studies have
informed cognitive theories of reasoning. It includes a selection of 20 empirical and theoretical
papers from 69 authors. Below we briefly review these papers by breaking them down into two
types of contribution, (i) original research articles, and (ii) review and methodological articles.

ORIGINAL RESEARCH ARTICLES

Most contributions are original research articles that further our understanding of the
reasoning brain in several important ways. Perhaps the main finding from these studies is
that reasoning relies on a heterogeneous cerebral network that is task-dependent, as can
be seen from functional neuroimaging, brain-lesion, and behavioral studies. For example,
Liang et al. use neuroimaging data to show that different neural systems contribute to
semantic bias and conflict detection in the inclusion fallacy task. Smith et al. and Smith
et al. further demonstrate that the neural bases of logical syllogisms can be modulated
by the emotional context of the task. Pamplona et al. also provide evidence that general
intelligence modulates connectivity between brain regions underlying reasoning. Using a
behavioral approach, Andrews et al. show that a frontal-based domain-general capacity
for relational processing is particularly important for tasks that require planning, whereas
Vendetti et al. find hemispheric differences in the encoding of ordered vs. out-of-order
premises in relational reasoning tasks. Finally, Ye et al. demonstrate a causal relationship

6
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between activity in the temporo-parietal cortex and tasks relying
on mental state attribution for moral judgment.

The fact that the brain network for reasoning is
heterogeneous, however, does not imply that some regions
are not more important than others for reasoning. This is
notably the case for the Inferior Parietal Lobule (IPL), which is
related to several different aspects of reasoning in perspective
taking tasks (Arora et al.), and is consistently found activated in
reasoning tasks (Wendelken). The importance of the IPL is also
illustrated by Hinton et al. who show that enhanced activity in
the parietal cortex may be critical for compensating reasoning
deficits in sub-clinically depressed participants.

REVIEW AND METHODOLOGICAL

ARTICLES

Other contributions to the Research Topic are reviews
and opinions that speculate on the link between cognitive
neuroscience research and theories of reasoning. For example,
Oaksford reviews some of the brain imaging research on
deductive reasoning and argues that this literature could benefit
from adopting the probabilistic and dual-system frameworks
of reasoning. Oaksford is notably challenged by Bonatti et al.
who argue that neuroscience research has made clear progress
within these last 15 years, and does not have much to gain
from adopting such frameworks. Other important theoretical
contributions are those of Khemlani et al. who illustrate
how cognitive neuroscience research can inspire a novel
computational theory of how individuals segment perceptual
information into representations of events. In a similar vein,
Houdé and Borst show how cognitive neuroscience can be used
to test an inhibitory-control theory of the reasoning brain, which
stresses the importance of inhibiting misleading heuristics when
activating logical algorithms.

Six contributions are more methodologically driven and argue
for changes in the way cognitive neuroscience research on
reasoning is done. Papo argues that the study of reasoning in the
brain must rely on the development of a new set of non-standard
brain metrics, experimental designs, and analytical tools. Roser
et al. propose that a useful way to advance investigations of
the reasoning brain would be to integrate several neuroscience
methods within a single study. Heit argues that a greater use of

“forward inference” in interpreting cognitive neuroscience data

may settle disputes between competing cognitive theories. Rotello
and Heit caution how misinterpretation of behavioral data could
lead to the wrong conclusions at the neuropsychological level.
Cummins emphasizes the importance of taking into account
how knowledge is activated and weighted in decision processes
in the modeling of human causal inference. Finally, Beatty
and Vartanian point out that cognitive research on reasoning
might also have practical implications. For example, the fact that
reasoning is intrinsically linked to working-memory suggests that
workingmemory training could lead to important improvements
in reasoning.

Have neuroimaging and brain-lesion studies enhanced our
understanding of human reasoning? The main contribution of
the augmentation of behavioral data with neuropsychological
data has been to question unitary accounts and advocate for the
engagement of multiple cognitive systems in reasoning. That is,
rather than simply pruning the space of possibilities provided by
mental models, mental logic, dual mechanism, and probabilistic
account theories, the effect of the neuropsychological data
has been to expand the search space in ways not foreseen
by behavioral data. This does not make the contribution any
less valuable. It identifies challenges, issues, and directions for
future research. We hope that readers find this Research Topic
informative, thought provoking, and helpful in moving forward
the understanding of the cognitive and neural basis logical
reasoning.
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The inclusion fallacy is a phenomenon in which generalization from a specific premise cat-
egory to a more general conclusion category is considered stronger than a generalization
to a specific conclusion category nested within the more general set. Such inferences
violate rational norms and are part of the reasoning fallacy literature that provides inter-
esting tasks to explore cognitive and neural basis of reasoning. To explore the functional
neuroanatomy of the inclusion fallacy, we used a 2×2 factorial design, with factors for
quantification (explicit and implicit) and response (fallacious and non-fallacious). It was
found that a left fronto-temporal system, along with a superior medial frontal system,
was specifically activated in response to fallacious responses consistent with a semantic
biasing of judgment explanation. A right fronto-parietal system was specifically recruited
in response to detecting conflict associated with the heightened fallacy condition. These
results are largely consistent with previous studies of reasoning fallacy and support a
multiple systems model of reasoning.

Keywords: fMRI, inductive reasoning, prefrontal cortex, inclusion fallacy, category-based induction

INTRODUCTION
As rational beings, we look to reasons to motivate and justify our
actions. However, a long series of cognitive studies suggest that
we make systematic errors while reasoning. Perhaps the most per-
vasive errors have to do with the impact of our belief structures
on logical reasoning (Wilkins, 1928; Evans et al., 1983). Several
imaging studies have examined the neural basis of belief bias (i.e.,
the inclination to agree or disagree with an argument based upon
whether we find the conclusion believable or unbelievable) in syl-
logistic reasoning (Goel et al., 2000; Goel and Dolan, 2003). The
basic finding is that the left frontal–temporal system is recruited for
logical reasoning in the presence of semantic content about which
subjects have beliefs, and a right frontal and bilateral parietal sys-
tem is engaged where such beliefs are absent (Goel et al., 2000) or
need to be overcome to generate the logical response (Goel and
Dolan, 2003). Where the beliefs are not overcome, a ventral medial
frontal system is engaged (Goel and Dolan, 2003). The goal of the
current study is to see if these mechanisms generalize to more
informal reasoning domains, such as category-based induction.

Category-based induction is a reasoning process by which we
project knowledge about certain classes of entities to other related
classes of entities (e.g., inferring that ostriches have gene X from
the fact that robins have gene X). Inductive generalization from the
known to the unknown enables us to benefit from past instances
and enlarge the scope of our knowledge. There is a phenomenon
within this domain, known as the inclusion fallacy. The inclusion
fallacy is a phenomenon in which generalization from a specific
category to a more general category (e.g., from robin to bird) is

considered to be stronger or more convincing than generalization
to a more specific category (e.g., to ostrich) nested within the more
general set. Consider the following examples from Osherson et al.
(1990):

Robins secrete uric acid crystals
– – – – – – – – – – – – – – – – – –
Birds secrete uric acid crystals

and

Robins secrete uric acid crystals
– – – – – – – – – – – – – – – – – – –
Ostriches secrete uric acid crystals.

Subjects are presented with pairs of arguments, such as these, and
required to make a direct comparison of their relative strength.
Many (but not all) people sometimes (but not always) fallaciously
choose the first argument as stronger than the second, and thus,
commit the inclusion fallacy (since the conclusion of the second
argument is contained in the conclusion of the first, it can not be
stronger).

The individual arguments are inductive and have no logically
correct response. However, as typically administered (Osherson
et al., 1990), the task forces subjects to make a direct comparison
of the relative strength of the two arguments. There is a logi-
cally correct response to this critical component of the task. It
is to say that the generalization to all birds cannot be stronger
than the generalization to a specific bird (and vice versa). This
response is, however, excluded by the task setup. Subjects must
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choose one or the other as being “stronger,” there being no option
to say “same strength”1. None the less, it seems to defy ratio-
nal plausibility norms to assert a property to all birds but not
a specific bird.

The inclusion fallacy seems to reflect the perceived relation-
ship between the subjects in the premise and conclusion. The link
between robin and bird is quite strong because robin is considered
to be a typical/central member of the bird category. But an ostrich,
despite being a bird, is an atypical/peripheral member of the bird
category and is somewhat removed from the representation of
robin. In this sense, the phenomenon of inclusion fallacy is simi-
lar to the conjunction fallacy in the Linda problem2 (Tversky and
Kahneman, 1983) and the belief-bias effect in deductive reasoning
(Evans et al., 1983; Goel and Dolan, 2003; Evans and Curtis-
Holmes, 2005; De Neys, 2006a,b), in that the fallacious response
is biased by the organization of our world knowledge. However,
participants will sometimes overlook the more constrained/logical
response and answer on the basis of their knowledge about birds,
robins, and ostriches. The inference is biased toward the more
familiar/easily accessible category (bird over ostrich).

Not all participants are susceptible to the inclusion fallacy, and
those that are do not fall prey to it on all occasions. One factor that
may affect participants’ susceptibility to the fallacy is the quantifier
associated with the conclusion. In the stimuli used by Osherson
et al. (1990), e.g., “birds secrete uric acid crystals,” the quanti-
fier is only implied, leaving room for ambiguity. If one assumes a
strict universal quantifier (e.g.,“all birds secrete uric acid crystals”)
then one should be more aware of the fact that the superordi-
nate category (i.e., bird) subsumes the subordinate category (i.e.,
ostrich), which should in turn reduce the inclusion fallacy. How-
ever, if one does not assume strict universal quantification, then
one may be less likely to subsume the subordinate category in the
superordinate category. For example, the participant may reason
that perhaps the sentence means “most birds or virtually all birds.
And after all, ostriches are not real birds.” Under such an inter-
pretation one is more likely to make the inclusion fallacy. Thus,
the absence of an explicit “all” should increase uncertainty and
the inclusion fallacy while the presence of an explicit “all” should
decrease uncertainty and the fallacy response. That the presence
of an explicit or implicit quantifier should modulate the inclu-
sion fallacy is consistent with the psychological literature on the
interpretation of quantifiers (Collins and Quillian, 1969; Newstead
and Griggs, 1984). It is also consistent with a related study (Slo-
man, 1998) that shows that fallacious inferences (specifically, the
inclusion similarity)3 can be modulated by making the category
of inclusion relations explicit.

1It remains an open question whether the fallacious response would persist if a
“same strength” option was made available to participants.
2Like the inclusion fallacy, the conjunction fallacy requires a contrivance whereby
the one piece of information that appears individually and in the conjunct (i.e.,
Linda is a bank teller) is not in keeping with the description of Linda, whereas the
other half of the conjunct is.
3Inclusion similarity is the phenomenon whereby the first argument below is con-
sidered stronger (or more convincing) than the second argument: (A) all animals use
norepinephrine as a neurotransmitter. Therefore, all mammals use norepinephrine
as a neurotransmitter. (B) All animals use norepinephrine as a neurotransmitter.
Therefore, all reptiles use norepinephrine as a neurotransmitter. The rationale is

To understand the neural basis of the inclusion fallacy, and its
modulation by explicit and implicit quantifiers, we undertook an
fMRI study of healthy volunteers while they engaged in general-
ization inferences on material similar to Osherson et al. (1990). At
the behavioral level, we anticipated that a subset of the participants
would display the inclusion fallacy and that the fallacy would be
displayed much more frequently in the implicit quantifier condi-
tion than the explicit quantifier condition. At the neural level, we
were interested in the mechanisms underlying responses biased
by beliefs and knowledge structures (i.e., the fallacious responses)
versus responses in which these beliefs and knowledge structures
were bypassed/suppressed to generate non-fallacious responses.
We expected these systems to be modulated by the explicit/implicit
quantifier condition. Based on the fact that fallacious responses
are driven by the organization of our beliefs, we predicted involve-
ment of a left hemisphere frontal–temporal system, including left
middle/inferior frontal gyrus and middle temporal gyrus in this
condition as seen in several previous reasoning studies (Goel et al.,
2000; Goel and Dolan, 2004). Reasoning trials uninfluenced by
beliefs (i.e., the non-fallacious responses in the present study), on
the other hand, should activate a parietal system, often found in
reasoning trials devoid of beliefs (Goel et al., 2000; Waechter et al.,
2012). The task paradigm contains a tension/conflict between the
fallacious and non-fallacious responses. This is exasperated in the
implicit quantifier condition where the uncertain scope of the
quantifier leaves room for doubt (see Discussion). In this situa-
tion, we predicted activation in right frontal PFC in response to
conflict detection, particularly in the case of non-fallacy responses
(Goel et al., 2000; Goel and Dolan, 2003; De Neys et al., 2008;
Stollstorff et al., 2011).

MATERIALS AND METHODS
SUBJECTS
Sixty-two paid healthy undergraduate and postgraduate students
participated in the experiment. All subjects were right-handed and
had normal or corrected-to-normal vision. None of the subjects
reported any history of neurological or psychiatric diseases. The
study was approved by the Ethics Committee of Xuanwu Hospital,
Capital Medical University. All participants gave written informed
consent.

STIMULI AND DESIGN
One hundred twenty trials, modeled on the Osherson et al. (1990)
stimuli, were included in the current study. Each trial was com-
posed of pairs of arguments, one appearing above the other (see
Table 1). The ordering of the arguments was counterbalanced. The
subjects were instructed to judge, and indicate, which one of the
two arguments was stronger.

The stimuli were divided into two conditions (see Table 1),
explicit quantification (60), and implicit quantification (60). Sub-
jects’ responses to each trial were used to further divide the stimuli
into fallacy or non-fallacy response trials. A fallacious response
would be one where the participant chose the argument “robins
secrete uric acid crystals, therefore, birds secrete uric acid crystals”

that the class of mammals is considered to be more representative or similar to the
class of animals than is the class of reptiles.
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Liang et al. Neural correlates of the inclusion fallacy

Table 1 | Example of experimental tasks.

Explicit Implicit

Argument 1 (typical

to atypical)

All robins secrete

uric acid crystals

Robins secrete

uric acid crystals

All ostriches secrete

uric acid crystals

Ostriches secrete

uric acid crystals

Argument 2 (typical

to general)

All robins secrete

uric acid crystals

Robins secrete

uric acid crystals

All birds secrete uric

acid crystals

Birds secrete uric

acid crystals

as being stronger or more convincing than “robins secrete uric
acid crystals, therefore, ostriches secrete uric acid crystals.” The
reverse selection (i.e., where the latter is stronger or more con-
vincing than the former) would be the non-fallacious correct
selection. This yielded a 2× 2 factorial design, with factors for
quantification (explicit and implicit) and response (fallacious or
non-fallacious), resulting in the following four cells: implicit fal-
lacy (I_F), implicit non-fallacy (I_NF), explicit fallacy (E_F), and
explicit non-fallacy (E_NF).

STIMULI PRESENTATION
Stimuli from all conditions were organized into two sessions and
presented randomly in an event related design. The order of ses-
sions was counterbalanced among subjects. Trials began with the
presentation of one of the arguments (premise plus conclusion).
Two seconds later, the second argument (premise plus conclusion)
was presented and subjects were given 8 s to respond. Half of the
participants used a left button press to indicate that the first argu-
ment was stronger and the right button press to indicate that the
second argument was stronger. The other half of the participants
used the reverse. The two arguments remained on the screen until
the end of the trial or the subjects’ button-press response. Subjects
were instructed to respond as accurately and quickly as possible
and move to the next trial if the stimuli advanced before they
could respond. The length of trials varied from 9 to 11 s (with a
TR/2 jitter), i.e., the length of the trials may be 9, 10, or 11 s with
the same probability, randomly. This was determined by pilot data
indicating that the range of the inter-trial interval was 7–9 s, with
a reaction time of around 3 s. There were 60 event presentations
during a session and each session lasted 10 min.

MRI DATA ACQUISITION
Scanning was performed on a 3.0-T MRI system (Siemens Trio
Tim; Siemens Medical System, Erlanger, Germany) and with a
12-channel phased array head coil. Foam padding and head-
phones were used to limit head motion and reduce scanning
noise. High-resolution structural images were acquired using
a T1 weighted 3D MPRAGE sequence (TR/TE= 1600/2.25 ms,
TI= 800 ms, 192 sagittal slices, FOV= 256 mm, 9° flip angle, voxel
size= 1 mm× 1 mm× 1 mm). Functional images were obtained
using a T2* gradient-echo EPI sequence (TR/TE= 2000/31 ms,
90° flip angle, 64× 64 matrix size in 240 mm× 240 mm FOV).
Thirty axial slices with a thickness of 4 mm and an interslice gap

of 0.8 mm were acquired and paralleled to the AC–PC line. The
scanner was synchronized with the presentation of every trial.

DATA PREPROCESSING
Data were analyzed using SPM5 software4. The first four images for
each session were discarded to allow for T1 equilibration effects.
The remaining fMRI images were first corrected for within-scan
acquisition time differences between slices and then realigned to
the first volume to correct for inter-scan head motions (head
movements were <1 voxel in all cases). The structural image
was co-registered to the mean functional image created from the
realigned images using a linear transformation. The transformed
structural images were then segmented into gray matter (GM),
white matter (WM), and cerebrospinal fluid (CSF) by using a
unified segmentation algorithm (Ashburner and Friston, 2005).
The realigned functional volumes were spatially normalized to
the Montreal Neurological Institute (MNI) space and re-sampled
to 3 mm isotropic voxels using the normalization parameters
estimated during unified segmentation. The registration of the
functional data to the template was checked for each individ-
ual subject. Subsequently, the functional images were spatially
smoothed with a Gaussian kernel of 8 mm× 8 mm× 8 mm full
width at half maximum (FWHM) to decrease spatial noise.

fMRI ANALYSIS
For all trials, the epoch of interest extends from the presen-
tation of the first argument to the response. The BOLD sig-
nal was modeled using canonical HRF with temporal deriva-
tive implemented in SPM5. Condition effects at each voxel were
estimated according to the general linear model and region-
ally specific effects were compared using linear contrasts. Each
contrast produced a statistical parametric map (SPM) of the t -
statistic, which was subsequently transformed to a unit normal
Z -distribution. The contrast images were then used in a random
effect analysis to determine the regions most consistently activated
across subjects. The contrasts of primary interest in the present
study are the main effect of fallacy (F–NF, NF–F), explicitness
(I–E and E–I), and the interaction effects [(I_F–I_NF)–(E_F–
E_NF) and (E_F–E_NF)–(I_F–I_NF)]. The activations reported
survived a voxel-level threshold of p < 0.001 and a cluster size
comprised of a minimum of eight contiguous voxels, which
corresponded to a corrected p < 0.05 using the AlphaSim pro-
gram5 (parameters: FWHMx= 12.23 mm, FWHMy= 10.39 mm,
FWHMz= 9.67 mm, within the GM mask). The real smoothness
in the three directions was estimated by using 3dFWHMx.

RESULTS
BEHAVIORAL PERFORMANCE
Of the 62 subjects, 58 exhibited the fallacy at least once in the
implicit condition and 54 exhibited the fallacy at least once in the
explicit condition. To ensure adequate signal-to-noise ratio, and
to allow for within subject analyses, we used a cut off of at least
12 trials in the fallacy and logical response conditions to select
participants for fMRI analyses. Fifteen subjects (7 females) with a

4http://www.fil.ion.ucl.ac.uk
5http://afni.nimh.nih.gov/pub/dist/doc/manual/AlphaSim.pdf
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Liang et al. Neural correlates of the inclusion fallacy

mean age of 23.6± 3.1 years met this criterion and were included
in the subsequent fMRI data analysis. The initial behavioral analy-
sis, below, includes all 62 participants. The subsequent analysis is
limited to 15 participants used in the fMRI analysis. The pattern
of results in the two cases is identical.

Behavioral scores were in keeping with expectations (see
Figure 1). In terms of responses from all 62 participants, we
found a main effect of response [F(1,61)= 3.81, p= 0.05], such
that the number of non-fallacious responses were greater than
the number of fallacious responses. There was also a quantifica-
tion (explicit, implicit) by response (fallacy, non-fallacy) interac-
tion [F(1,61)= 23.97, p= 0.00] (see Figure 1A), driven by the
fact that there were more non-fallacious responses than falla-
cious responses in the explicit quantifier trials [F(1,61)= 15.54,
p= 0.00], but there was no difference in the number of
non-fallacious and fallacious responses in the implicit trials
[F(1,61)= 0.02, p= 0.90].

In terms of reaction times, there was a main effect of
response [F(1,49)= 6.15, p= 0.017], with participants taking
longer to respond in trials in which they commit the inclu-
sion fallacy (see Figure 1A). The main effect of quantification
[F(1,49)= 0.24, p= 0.62] and the quantification by response
interaction [F(1,49)= 2.68, p= 0.11] were not significant. The
post hoc analysis of RTs also showed that the RT for fallacy trials
was significantly longer than that for non-fallacy response trials in

the explicit condition [F(1,52)= 4.20, p= 0.046] but not in the
implicit condition [F(1,55)= 2.28, p= 0.14]. (Note: as there are
NULL values for RT in some conditions for several subjects, the
degrees of freedom are not always 61, but variable).

We then analyzed the results of the 15 subjects that will be
included in the fMRI analyses (see Figure 1B). In terms of accuracy
responses, we found a main effect of response [F(1,14)= 24.47,
p= 0.00], such that the number of non-fallacious responses was
greater than the number of fallacious responses, and a quantifica-
tion (explicit, implicit) by response (fallacy, non-fallacy) interac-
tion [F(1,14)= 11.70, p= 0.004], again driven by the fact that the
difference between non-fallacious and fallacious responses was
greater in the explicit trials than the implicit trials. In terms of
reaction times, the effects were not significant, but the pattern was
similar to that of the 62 subjects.

fMRI RESULTS
As noted above, the fMRI results are based on 15 of the 62
participants who had at least 12 trials in each of the 4 conditions.

The main effect of response (Table 2), derived from com-
parisons of trials with fallacious and non-fallacious responses
(F–NF), revealed activation of bilateral superior/medial frontal
gyrus (BA 8), left inferior frontal gyrus/insula (BA45, 13), and
left middle temporal gyrus (BA 21, 22) in the fallacy trials
(Table 2; Figure 2). The reverse comparison, of the main effect of

FIGURE 1 | (A) Behavioral performance of 62 subjects and (B) the 15 subjects with enough trials for the further fMRI data analysis. The error bars represent
the SEM.
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Liang et al. Neural correlates of the inclusion fallacy

Table 2 | Main effect of fallacy and explicitness and the interaction

effect of fallacy by explicitness.

Brain regions MNI

coordinate

BA Cluster

size

T -score

x y z

F–NF

Medial·Superior frontal gyrus 3 33 48 8 17 5.23

Lt. middle temporal gyrus −66 −39 −6 21 28 5.21

Lt. middle temporal gyrus −63 −36 3 22 4.58

Lt. inferior frontal gyrus/insula −39 15 9 45/13 17 4.81

−30 24 6 45 4.64

Lt. medial frontal gyrus −3 36 48 8 12 4.60

NF–F

No significant activation

E–I

No significant activation

I–E

Rt. inferior parietal lobule 42 −54 48 40 10 5.02

Rt. superior parietal lobule 36 −57 54 7 3.87

(I_F–I_NF)–(E_F–E_NF)

Rt. superior parietal lobule 27 −57 45 7 33 4.74

Rt. precuneus 24 −72 51 7 3.37

Lt. fusiform gyrus −48 −57 −15 37 10 4.22

Rt. middle frontal gyrus 48 33 18 46 10 3.70

(E_F–E_NF)–(I_F–I_NF)

No significant activation

response, non-fallacious versus fallacious trials (NF–F), revealed
no significant activations.

The main effect of quantification, derived from comparisons
of implicit minus explicit trials, revealed activation of right supe-
rior/inferior parietal lobule (BA 40, 7) (Table 2; Figure 3). The
reverse comparison, explicit minus implicit quantifiers, revealed
no significant activations.

We next examined the interaction between response and quan-
tification. The difference between fallacious and non-fallacious
responses in implicit condition trials [(I_F–I_NF)–(E_F–E_NF)],
resulted in greater activation in right middle frontal gyrus (BA
46), right superior parietal lobule (BA 7), and left fusiform gyrus
(BA 37) than the difference between fallacious and non-fallacious
responses in the explicit condition trials (Table 2; Figure 4). No
regions of significant activation were found in the reverse direction
[(I_NF–I_F)–(E_NF–E_F)].

Additionally, in order to exclude the potential effect of task dif-
ficulty on the activations, we performed another analysis using RT
of each trial as covariates. These results are reported in Table S1 in
Supplementary Material. It was found that almost all activations
survived the supplementary analysis, indicating that the results
were not driven by task difficulty differences between trial types.

DISCUSSION
Consistent with previous literature (Osherson et al., 1990; Shafir
et al., 1990), our results demonstrate susceptibility to the inclusion
fallacy in a subset of participants. Furthermore, we demonstrate

that the fallacy is indeed modulated by the explicitness of the
quantifier. The presence of an explicit universal quantifier signifi-
cantly reduces the rate of fallacious responses. This may be because
the explicit quantifier eliminates ambiguity regarding the scope of
the general category and increases the likelihood that the general
category will subsume the more specific category.

Our main aim is to explore the neural basis of this fallacy
and its modulation by explicit quantification. Consistent with our
first neural prediction we found that committing the fallacy was
associated with a predominantly left hemisphere frontal–temporal
system, including the left inferior frontal gyrus/insula and middle
temporal gyrus. This is a semantic system found to be involved in
inductive reasoning and belief-based deductive reasoning (Goel
et al., 2000; Goel and Dolan, 2004). The involvement of this
system in the fallacious response trials is consistent with the pos-
sibility that fallacious responses in this paradigm are driven by a
combination of the organization of our knowledge base (i.e., typ-
icality/centrality effects), which sometimes exclude ostriches from
the class of birds, and an overweighting of the resulting belief-
based response over the more rationally plausible response. The
activity in bilateral medial/superior frontal cortex may be associ-
ated with attentional orientation response (Hopfinger et al., 2000;
Rushworth et al., 2004; Woldorff et al., 2004; Taylor et al., 2008).

Despite our prediction of parietal activation, we did not find
significant activation in the reverse condition (non-fallacious
responses versus fallacious responses). One possible explanation
for the lack of finding in this comparison is that, unlike the syllogis-
tic reasoning paradigm, where the logical response is much more
complex and effortful, in the present paradigm the non-fallacious
response is trivial, so activations associated with it may have been
subsumed by the fallacy condition.

In terms of the quantification factor, the absence of the
explicit quantifier significantly increased the number of fallacious
responses and decreased the number of non-fallacious responses.
The neural correlates of this can be seen in the activation of
right inferior and superior parietal lobule in the comparison of
implicit versus explicit conditions. The implicit condition intro-
duces some uncertainty into the task by increasing ambiguity.
Parameter estimates (Figure 4) indicate that this activation is
driven by the difference in implicit fallacious versus implicit non-
fallacious responses. We consider this activation below, in the
discussion of the interaction results.

The explicit minus implicit comparison, on the other hand,
revealed no significant activation. As above, it is possible that,
given the explicit condition had a preponderance of non-fallacious
responses, and that the non-fallacious condition is quite trivial (if
the fallacious response is never considered), activations associ-
ated with the explicit quantifier condition may be subsumed by
activations in the implicit quantifier condition.

Focusing on the response by quantifier interaction highlights
the critical role of right lateral prefrontal cortex and parietal lobule
system in reasoning. As this is an interaction analysis, and con-
trols for the presence of fallacy and non-fallacy responses, one can
interpret the result as being driven by the greater uncertainty in
the implicit condition rather than general semantic requirements
of the fallacy responses (as in the main effect). (Examination of
the parameter estimates clearly indicates that the effect is driven
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Liang et al. Neural correlates of the inclusion fallacy

FIGURE 2 | A statistical parametric map (SPM) rendered into standard
stereotactic space. A comparison of fallacy trials versus non-fallacy trials
(F_NF) results in activation in left inferior frontal gyrus/insula (MNI: −39, 15, 9;
T =4.81) (BA 45/13), left middle temporal gyrus (MNI: −66, −39, −6;
T =5.21) (BA 21/22), left medial frontal gyrus (MNI: −3, 36, 48; T = 4.60) (BA
8), and right superior frontal gyrus (MNI: 3, 33, 48; T = 5.23) (BA 8) [also see
the main effect of (F–NF) inTable 2]. Condition specific parameter (beta)

estimates show that the left fronto-temporal system and bilateral mesial
frontal gyrus are specifically responding to fallacy trials in both implicit and
explicit conditions. The error bars represent the SEM. The activations reported
survived an uncorrected voxel-level intensity threshold of p < 0.001 with a
minimum cluster size of 10 contiguous voxels, which corresponds to a
corrected p < 0.05 (using the AlphaSim program as described in Section
Materials and Methods).

FIGURE 3 | A statistical parametric map (SPM) rendered into standard
stereotactic space. A comparison of implicit trials versus explicit trials (I–E)
results in activation in right inferior/superior parietal lobule (MNI: 42, −54,
48/36, −57, 54; T =5.02/3.87) (BA 40/7) [also see the main effect of (I–E) in
Table 2]. Condition specific parameter (beta) estimates show that the right
parietal area is responding to fallacy trials in both implicit and explicit

conditions, but the main effect in this region is mainly driven by the implicit
fallacy trials. The error bars represent the SEM. The activations reported
survived an uncorrected voxel-level intensity threshold of p < 0.001 with a
minimum cluster size of 10 contiguous voxels, which corresponds to a
corrected p < 0.05 (using the AlphaSim program as described in Section
Materials and Methods).
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FIGURE 4 | A statistical parametric map (SPM) rendered into standard
stereotactic space. The quantification (explicit, implicit) by response
(fallacious, non-fallacious) interaction, i.e., a comparison of the difference
between implicit fallacy trials versus implicit non-fallacy trials with the
difference between explicit fallacy trials versus explicit non-fallacy trials
[(I_F–I_NF)–(E_F–E_NF)], results in activation in right middle frontal gyrus
(MNI: 48, 33, 18; T =3.70) (BA 46) and superior parietal lobule (MNI: 27,
−57, 45; T =4.74) (BA 7) [also see the interaction effect of

(I_F–I_NF)–(E_F–E_NF) inTable 2]. Condition specific parameter (beta)
estimates show that the right fronto-parietal system is specifically
responding to fallacies with implicit items, but not to fallacies with explicit
items. The error bars represent the SEM. The activations reported survived
an uncorrected voxel-level intensity threshold of p < 0.01 with a minimum
cluster size of 10 contiguous voxels, which corresponds to a corrected
p < 0.05 (using the AlphaSim program as described in Section Materials
and Methods).

by differential response of this system to the fallacious versus non-
fallacious responses in the implicit condition. This right hemi-
sphere frontal parietal system shows no differential sensitivity to
the explicit condition trials.) When one exhibits the fallacy in the
explicit condition (i.e., after being told that All birds have X) it may
be a function of oversight, or simply believing that the property of
the superordinate category does not generalize to this specific sub-
ordinate category (e.g., believing that most properties of robins do
not generalize to ostriches). However, the implicit condition facil-
itates the fallacy by introduction of uncertainty and ambiguity.
In the absence of an explicit quantifier, one may be less likely to
subsume the subordinate category in the superordinate category.
For example, the participant may reason that perhaps the sentence
means “most birds or virtually all birds. And after all, ostriches are

not real birds.” Under such an ambiguous interpretation, one is
more likely to make the inclusion fallacy.

These results differ in two important respects from our
expectations. First, the activation was not specific to the non-
fallacious condition (i.e., where the fallacious response is sup-
pressed), as we had predicted. Previous studies have reported
right PFC activation in detecting and/or overcoming conflict
in reasoning (Goel et al., 2000; Goel and Dolan, 2003; Aron
et al., 2004; Prado and Noveck, 2007; De Neys et al., 2008;
Stollstorff et al., 2011). However, there is evidence that falla-
cious responses are accompanied by an awareness of the con-
flict between the more logical response and the belief cued
response, even when the fallacious response is not suppressed
(De Neys, 2006a,b). The present results suggest that detection
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of conflict may be sufficient to activate this system. Second,
while several previous studies report right PFC activation for
conflict detection, Goel and Dolan (2003) also noted accompa-
nying activation in parietal cortex, even though it did not sur-
vive correction. The present results suggest a role of the parietal
system in conflict detection. Finally, the recruitment of the left
fusiform gyrus is consistent with semantic processing and retrieval
(Thompson-Schill et al., 1999; Devlin et al., 2006; Mion et al.,
2010).

In summary, our results show that a left fronto-temporal sys-
tem, along with bilateral medial superior frontal system, is specifi-
cally activated in the main effect of fallacy in response to biasing of
reasoning judgment by the semantic organization of knowledge.
A right fronto-parietal system, along with left fusiform gyrus, is
specifically recruited in the absence of explicit quantifiers, where
fallacious responses increase, as a function of increased uncer-
tainty and ambiguity. These activations may reflect an awareness
of the conflict between the selected response and logical response.
More generally, these results reinforce the involvement of multiple
systems in logical reasoning.
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Despite the fact that most real-world reasoning occurs in some emotional context,
very little is known about the underlying behavioral and neural implications of such
context. To further understand the role of emotional context in logical reasoning we
scanned 15 participants with fMRI while they engaged in logical reasoning about neutral
syllogisms presented through the auditory channel in a sad, angry, or neutral tone of
voice. Exposure to angry voice led to improved reasoning performance compared to
exposure to sad and neutral voice. A likely explanation for this effect is that exposure to
expressions of anger increases selective attention toward the relevant features of target
stimuli, in this case the reasoning task. Supporting this interpretation, reasoning in the
context of angry voice was accompanied by activation in the superior frontal gyrus—
a region known to be associated with selective attention. Our findings contribute to a
greater understanding of the neural processes that underlie reasoning in an emotional
context by demonstrating that two emotional contexts, despite being of the same
(negative) valence, have different effects on reasoning.

Keywords: reasoning, emotion, fMRI, anger, sadness, auditory

Introduction

It has been demonstrated that whereas reasoning with neutral material was associated with acti-
vation in left dorsolateral prefrontal cortex, reasoning with negatively charged (provocative)
emotional material was associated with activation in ventromedial prefrontal cortex; furthermore,
these neural mechanisms were activated in a reciprocal manner (Goel and Dolan, 2003b). Smith
et al. (2014) found that, when emotion was induced by positively or negatively valenced picto-
rial stimuli prior to the introduction of the reasoning task, reasoning about neutral material led
to dissociable neural patterns depending on whether the induction had been positive, negative, or
neutral. For example, direct comparison of neural activation in the reasoning time windows in the
positive and negative conditions, after controlling for baseline effects, yielded activation in cerebel-
lar vermis and right inferior frontal gyrus (orbitalis) after positive emotion induction but activation
in left caudate nucleus and left inferior frontal gyrus (opercularis) after negative emotion induction.

In the current study, we continue our investigation of the effect that emotion has on reason-
ing. Whereas the previous studies examined the effects of visually presented emotional syllogism
content, and visually presented emotional valence (positive and negative), here our interest is to
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discover whether reasoning and its neural underpinnings will be
affected differently by exposure to the expression of two different
emotions in the auditory channel.

There is support from various theoretical models in the
literature for the existence of different specific emotions, each
with its own neural and/or physiological signature (Friedman,
2010); moreover, individuals in therapy can be guided to switch
from one specific emotion to another by methods designed to
alter their underlying physiology and therefore their current
emotional experience (Smith and Greenberg, 2007). Appraisal
models likewise consider the differential effects of specific
emotions such as dispositional fear and anger on the evalua-
tion of subsequently occurring events (Lerner and Keltner, 2001;
DeSteno et al., 2004; Dunn and Schweitzer, 2005).

Our interest in testing the effects of specific emotions (rather
than emotional valence) is that we hope to show that reasoning
and its neural underpinnings are affected differently by expres-
sion of different specific emotions. We chose anger and sadness as
the specific emotions because there is literature (to be presented
next) suggesting that these emotions are characterized differ-
ently.

The neuroimaging literature provides evidence that sadness
and anger are characterized differently. A meta-analysis of
neuroimaging of emotion (Murphy et al., 2003) reported that
whereas anger has been associated with the lateral orbitofrontal
cortex, happiness and sadness have been associated with
supracallosal anterior cingulate and dorsomedial prefrontal
cortex.

Neural activation associated with hearing the voice of an angry
speaker (Sander et al., 2005) was noted in bilateral superior
temporal sulcus (right BA 42, bilateral BA 22) and right amyg-
dala. Grandjean et al. (2005) demonstrated that superior temporal
lobe activation associated with anger prosody is associated with
the angry emotion itself, and not with low-level acoustical prop-
erties of the stimulus. Other activations found by Sander et al.
(2005) include cuneus, left superior frontal gyrus (BA 8), right
medial orbitofrontal cortex, left lateral frontal pole (BA 10),
right superior temporal sulcus (BA 39), and bilateral ventrolat-
eral prefrontal cortex (BA 47). Ethofer et al. (2009) investigated
whether neural activation to angry versus neutral prosody would
depend on the relevance of the prosody to the task; tasks were
to judge the affective prosody (angry, neutral) or word class
(adjective, noun) of semantically neutral spoken words. Neural
activation associated with angry versus neutral prosody was
reported in bilateral superior temporal gyrus, bilateral inferior
frontal/orbitofrontal cortex, bilateral insula, mediodorsal thala-
mus, and bilateral amygdala, regardless of task, suggesting that
these activations occur automatically when processing emotional
information in the voice. Neural activation was greater during
judgment of emotion than word classification in bilateral infe-
rior frontal/orbitofrontal cortex, right dorsomedial prefrontal
cortex, and right posterior middle and superior temporal cortex.
Quadflieg et al. (2008) found that neural activation associated
with angry versus neutral prosody was noted in fronto-temporal
regions, amygdala, insula, and striatum. Identification of the
prosody as emotional was additionally associated with acti-
vation in orbitofrontal cortex. Individuals with social phobia,

compared to healthy controls, demonstrated a larger response
in orbitofrontal cortex in response to angry prosody, regard-
less of whether the task related to the prosody (identify prosody
as emotional or neutral) or not (identify the gender of the
speaker).

Neural correlates of sadness invoked by re-experiencing of
sad autobiographical episodes (Liotti et al., 2000) were reported
in the subgenual anterior cingulate (BA 24/25), right poste-
rior insula, and left anterior insula. Relative deactivation was
noted in right dorsolateral prefrontal cortex (BA 9), bilateral
inferior temporal gyrus (left BA 20, right BA 20/37), right
posterior cingulate/retrosplenial cortex, and bilateral parietal
lobes.

A second reason for choosing anger and sadness is that
these emotions have been posited to have different effects on
attention, memory, and categorization (Gable and Harmon-
Jones, 2010b) and therefore may have different effects on
reasoning.

In theoretical terms, anger is an important emotion because
despite its negative valence it is an ‘approach-related’ emotion,
and this observation has prompted a reconsideration of theo-
retical models of emotion (Carver and Harmon-Jones, 2009).
Carver and Harmon-Jones (2009) proposed a model incorporat-
ing discrete emotions such as joy, anger, calm, and fear into a
dimensional model combining approach/withdrawal with system
functioning (i.e., events going well or poorly). In this model,
anger is classified as an approach emotion activated when system
functioning is going poorly.

Following on this, Gable andHarmon-Jones (2010b) proposed
a model outlining the consequences for attention, memory,
and categorization of emotions classified on the dimensions of
approach/withdrawal in relation to an object or goal, coupled
with the strength of that motivation. Specifically, disgust and fear
may be strong motivators to avoid an object or goal whereas
sadness may be a mild motivator to withdraw from an object or
goal. Anger, in contrast, may be a strong motivator to approach
an object or goal, despite being negative in valence (Carver and
Harmon-Jones, 2009). Regarding the consequences of a strong
motivator (such as anger) and a weak motivator (such as sadness)
on attention, converging evidence (see Gable and Harmon-Jones,
2010b for a review) suggests that strong motivation to either
approach or avoid an object or goal is associated with narrowed
attention toward that object or goal, and a lack of attention to
other stimuli in the environment that are not relevant to that
goal. In contrast, weak motivation, which may occur post-goal-
attainment, is associated with broadened attention toward more
information from the environment beyond the goal itself.

Consistent with the Gable and Harmon-Jones (2010b) model,
lab-induced anger and fear have (separately) led to selective
attention to targets at the expense of non-target information
(Finucane, 2011); so has disgust (Gable and Harmon-Jones,
2010a). Brosch et al. (2008) reported that angry prosody facili-
tated selective attention to a concurrently presented visual stim-
ulus.

In contrast, sadness has led to a broadening of attention to
global rather than local features of stimuli (Gable and Harmon-
Jones, 2010a).
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As has been noted above, anger is often studied using an
auditory paradigm. Accordingly, we decided to use an auditory
paradigm in the current study. Auditory paradigms have been
used previously to study reasoning in the absence of emotion
(Knauff et al., 2002, 2003; Fangmeier and Knauff, 2009).

Finally, we chose to deliver the reasoning material concur-
rently with the emotive (and neutral) tones of voice, rather
than subsequent to the different tones of voice. Our choice was
pragmatic: the latter design would have resulted in a longer
experiment, and therefore longer scanning time.

Therefore, our study investigated whether reasoning about
neutral material would be affected if the content were presented
in sad, neutral, or angry tone of voice. To address this issue, we
constructed a 3 (Emotion) × 2 (Task) within-subjects design,
where the three levels of the Emotion factor were sad, neutral,
and angry, and the two levels of the Task factor were reasoning
and baseline.

In Smith et al. (2014), the negative and positive valence
inductions were each comprised of a mix of emotions, and we
found that reasoning tended to be impaired after each valence of
emotion. In the current study, our choice of two specific nega-
tive emotive tones of voice, anger and sadness, was motivated by
the expectation that each of these specific expressions of emotion
would lead to different reasoning performance and different
underlying neural characteristics. Thus, our hypothesis was that
the neural systems underlying reasoning (involving syllogisms
with neutral content) following exposure to each of angry and
sad emotion expression would differ from the neural underpin-
nings of reasoning in the neutral condition, and would thereby
elucidate the mechanisms underlying differences in reasoning
performance in the two emotional contexts.

Materials and Methods

Participants
Data were acquired from 17 participants (10 males, 7 females).
Education levels ranged from partially completed undergraduate
study to completed graduate degrees, with a mean of 16 years
(SD = 2.04) of education. Ages ranged from 20 to 38 (mean
26.5 years, SD 5.95).

The study was approved by the York University Research
Human Participants Ethics Committee. All participants gave
informed consent.

Stimuli
Reasoning stimuli consisted of 80 syllogisms that were emotion-
ally neutral in content. The arguments in 39 of these syllogisms
were logically valid whereas the arguments in the remaining 41
were logically invalid. Examples of syllogisms are “All gentle
pets are canines. Some kittens are gentle pets. Some kittens are
canines” (which is valid), and “No fruits are fungi. All mushrooms
are fungi. Some mushrooms are fruits” (which is invalid).

As well, there were 40 baseline “syllogisms,” in which the
concluding sentence was taken from a different syllogism in
the dataset, thereby ensuring that the conclusion of the base-
line would be unrelated to the content of the two premises. An

example of a baseline trial is “Some movie-goers are men. All
men are French. No people are priests.” Thus, the baseline trials
provide a control for the reasoning trials, in that the following
processes are held constant across both types of trials: hearing
the speaker deliver sentences with neutral semantics, hearing
the emotion in the tone of voice (constant within each condi-
tion), learning the two premises of each argument, and preparing
to engage in reasoning. Crucially, what is not held constant is
that, in a baseline trial, the participant would disengage from the
reasoning process instead of making any attempt to integrate the
“conclusion” into the premises.

We controlled for the effect of belief-bias (Evans, 2003; Goel
and Dolan, 2003a) by ensuring the reasoning syllogisms were
balanced overall for validity and for congruence between logic
and beliefs. Congruence occurs when the argument logic is valid
and the conclusion is believable or when the argument logic is
invalid and the conclusion is unbelievable. Incongruence occurs
when the argument logic is valid and the conclusion is unbeliev-
able or when the argument logic is invalid and the conclusion is
believable.

Congruent syllogisms, incongruent syllogisms, and baselines
were chosen (during study design) for each level of the Emotion
factor (Sad, Neutral, and Angry). Then the order of the 120 trials
was randomized. Finally, the trials were segregated into three
presentation sets of 40 trials each. The order of presentation of
these three sets was counterbalanced among participants, one set
for each session (“run”) in the scanner.

All stimuli had been pre-recorded by the same female speaker
(Laura-Lee Balkwill). Among the 80 reasoning syllogisms, the
tone of voice was sad for 20, angry for 20, and neutral for 40
stimuli. Among the 40 baseline “syllogisms,” the tone of voice
was sad for 10, angry for 10, and neutral for 20 stimuli. Please
refer to the Supplementary Material for a discussion concern-
ing the frequency of baseline trials. The intended expression of
emotion of all of the stimuli was determined by a separate pilot
test involving 15 participants who did not participate in the main
experiment. See Appendix A for details.

Study Design
Each trial involved the following presentation sequence (see
Figure 1): On each trial, the participant listened to a syllogism
through earphones; the task was to press one of two keys to indi-
cate whether or not the conclusion followed logically from the
two previous statements. Each participant used one hand for both
responses; choice of hand was counterbalanced among partici-
pants. Soundfiles varied in length from 7.4 to 15.6 s (mean 10.74 s,
SD 1.77 s). However, presentation of the next sound stimulus
was not entrained to the preceding response but was timed to be
in synchrony with the acquisition of the brain scans. Therefore,
trials varied in length from 16.53 to 16.74 s (mean 16.65 s, SD
0.024 s).

fMRI Scanning Technique
A 1.5T Siemens VISION system (Siemens, Erlangen,
Germany) was used to acquire T1 anatomical volume images
(1 mm × 1 mm × 1.5 mm voxels) and T2∗-weighted images
(64 × 64, 3 × 3-mm pixels, TE = 40 ms), obtained with a
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FIGURE 1 | Design of each trial.

gradient echo-planar sequence using blood oxygenation level-
dependent (BOLD) contrast. Echo-planar images (2-mm thick)
were acquired axially every 3 mm, positioned to cover the whole
brain. Each volume (scanning of the entire brain) was partitioned
into 36 slices, obtained at 90 ms per slice. Data were recorded
during a single acquisition period. Volume (vol) images, 215
volumes per session, were acquired continuously, for a total of
645 volume images over three sessions, with a repetition time
(TR) of 3.24 s/vol. The first six volumes in each session were
discarded (leaving 209 volumes per session) to allow for T1
equilibration effects.

Data Analysis
Behavior
Behavioral data were analyzed using SPSS, version 16.0 (SPSS
Inc., Chicago, IL, USA).

Note that we shall refer to the conditions as ‘anger,’ ‘sad,’ and
‘neutral,’ for ease of reading, rather than repeating ‘expression of.’

Data from 15 of the original 17 participants were usable
in the neuroimaging analysis (data from two participants were
discarded because of head movement greater than 2 mm during
scanning); therefore, the behavioral analyses are based on 15
participants. As well, one person’s data for the third run (session)
were discarded because of lack of engagement in the task. There
were a total of 1760 trials remaining: 1175 reasoning (66.76%)
and 585 baselines (33.24%). Fifty percentage of trials were neutral;
25% were sad, and 25% were angry. Thus, half of all trials were
neutral and half were emotional.

Neuroimaging
The functional imaging data were preprocessed and subsequently
analyzed using Statistical Parametric Mapping SPM8 (Friston
et al., 1994; Wellcome Department of Imaging Neuroscience1).

All functional volumes were spatially realigned to the first
volume. All volumes were temporally realigned to the AC–PC
slice, to account for different sampling times of different slices.

1http://www.fil.ion.ucl.ac.uk/spm

A mean image created from the realigned volumes was coregis-
tered with the structural T1 volume and the structural volumes
spatially normalized to the Montreal Neurological Institute brain
template (Evans et al., 1993) using non-linear basis functions
(Ashburner and Friston, 1999). The derived spatial transfor-
mation was then applied to the realigned T2∗ volumes, which
were finally spatially smoothed with a 12 mm FWHM isotropic
Gaussian kernel in order to make comparisons across subjects
and to permit application of random field theory for corrected
statistical inference (Worsley and Friston, 1995). The resulting
time series across each voxel were high-pass filtered with a cut-
off of 128 s, using cosine functions to remove section-specific low
frequency drifts in the BOLD signal. Global means were normal-
ized by proportional scaling to a grand mean of 100, and the
time series temporally smoothed with a canonical hemodynamic
response function to swamp small temporal autocorrelations with
a known filter.

During each trial, the participant listened to the aural deliv-
ery of premise one, premise two, and the conclusion of the
syllogism. This was followed by a period of silence during
which the participant could indicate, by a keypress, whether or
not the conclusion logically followed from the first two state-
ments. During neuroimaging data analysis, the emotion expres-
sion time window was defined as “listening to premise one
and premise two, plus the gap following premise two.” The
reasoning time window was defined as “the gap from offset
of the conclusion up to but not including the actual motor
response.” Each of these time windows was analyzed sepa-
rately.

Within each stimulus soundfile, the mean decibel level was
calculated for the time segment corresponding to each brain scan
that had been acquired. During the first level of neuroimaging
analysis, described below, the potential confound of mean decibel
level was covaried out.

Condition effects at each voxel were estimated according to
the general linear model and regionally specific effects compared
using linear contrasts. Each contrast produced a statistical para-
metric map of the t-statistic for each voxel, which was subse-
quently transformed to a unit normal Z-distribution. The BOLD
signal was modeled as a canonical hemodynamic response func-
tion with time derivative.

Emotion Expression TimeWindow
All events from the emotion expression time window (sad, angry,
and neutral listening) were modeled in the design matrix as
epochs, and events of no interest (conclusion, thinking, and
motor response) were modeled out. Sad, angry, and neutral
listening were each modeled as an epoch from onset of premise
one, with duration being the length of the syllogism minus the
length of the conclusion. Onset for the conclusion condition was
the start of hearing the conclusion; onset for the thinking condi-
tion was the end of hearing the conclusion; and onset for the
motor response was the scan being acquired at the onset time
of each motor response for each participant for each trial. Mean
decibel level for each scan was covaried out during this first level
analysis.
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Contrast images were subsequently analyzed at the group
level. A one-way univariate analysis of variance (ANOVA),
within-subjects, was conducted with three conditions of interest
(sad, angry, and neutral) and 15 subject conditions, with correc-
tion for non-sphericity. The analysis generates one F test for the
effects of interest. The F test generated a statistical parametric
map of the F-ratio for each voxel. The subsequent comparisons
each generated a statistical parametric map of the t-statistic for
each voxel, which was subsequently transformed to a unit normal
Z-distribution. The activations reported in Supplementary Table
S1 survived a threshold of p < 0.005 using a random effect model
and an extent of 180 voxels. This choice of threshold and extent
corresponds to a corrected p< 0.05 using the AlphaSim program2

with parameters (FWHMx = 8.35 mm, FWHMy = 6.59 mm,
FWHMz = 7.74 mm, within the avg152T2.nii mask from the
SPM toolbox). The real smoothness in the three directions
was estimated from the residuals by using 3dFWHMx. (This
AlphaSim procedure was also used during the reasoning time-
window, with the following parameters: FWHMx = 8.33 mm,
FWHMy = 6.58 mm, FWHMz = 7.71 mm.)

Reasoning TimeWindow
For first-level analysis of the reasoning window, the scans
acquired while the participant was engaged in reasoning were
modeled as epochs by task (reasoning, baseline) and emotion
(sad, angry, neutral) whereas all other conditions (Premise 1,
Premise 2, Conclusion, motor response) were modeled out as
events of no interest.

Onset for the six Emotion × Task conditions was the end
of the conclusion sentence. Duration was from that moment
until the individual participants’ motor response within each
trial. However, for those trials where there was no response, or
the response occurred after the start of the next trial, the dura-
tion was set as “start of the next soundfile minus 200 ms.” For
those trials where participants responded during the conclud-
ing sentence (6% of trials), the duration was set as 100/3240
(that is, 0.03 TR); this strategy allowed us to include the contrast
image (rather than having an unbalanced design) while ensur-
ing minimal contribution of the activations to the analysis.
Onset for each premise and the conclusion was the beginning
of the relevant sentence; onset of the motor response was the
millisecond at which that response occurred. Thus, altogether, 10
(conditions) × 3 (sessions) contrast images were generated for
each participant. Mean decibel level for each scan was covaried
out.

Contrast images were subsequently analyzed at the group
level. A one-way univariate ANOVA was conducted, within-
subjects, with six conditions of interest (sad reasoning, sad base-
line, angry reasoning, angry baseline, neutral reasoning, neutral
baseline) and 15 subject conditions, with correction for non-
sphericity. The analysis generates one F test for the effects of
interest.

The F test and the subsequent a priori comparisons each
generated a statistical parametric map of the t-statistic for each
voxel, which was subsequently transformed to a unit normal

2http://afni.nimh.nih.gov/pub/dist/doc/manual/AlphaSim.pdf

Z-distribution. The activations reported in Supplementary Table
S2 survived a threshold of p < 0.005 using a random effect model
and an extent of 180 voxels. (See the above description regarding
the emotion expression time-window for details.)

Results

Behavioral Results
The overall percentage of correct responses on the reasoning
trials was 66.9%. For baselines (where the correct response
would always be “not valid”), the percentage of correct responses
was 99.3%. Mean reaction time, after presentation of the third
sentence, on reasoning trials was 2211ms (SD 1121), and on base-
line trials it was 472 ms (SD 112). This difference was significant:
paired t(14) = −6.366, p = 0.001.

For each participant, the percentage of correct responses was
calculated within each level of the Emotion factor. A repeated-
measures analysis was conducted, using the multivariate
approach; the omnibus test was significant: F(2,13) = 4.084,
p = 0.042. The Emotion factor (tone of voice) accounted for
38.6% of the total variance in the percentage of correct responses.
The percentage of correct responses was significantly higher in
the Angry condition than in the Neutral condition (p = 0.031,
corrected for multiple comparisons using Bonferroni). See
Figure 2.

Mean percentages of correct responses were as follows: neutral
64.4% (SD 14.9); sad 66.1% (SD 16.5); angry 72.6% (SD 16.7).

A repeated-measures analysis of response time on correct
responses was conducted across the Emotion factor. There was no
significant difference among the means (p = 0.818). Mean reac-
tion times were as follows: neutral 1599ms (SD 480); sad 1626ms
(SD 672); angry 1671 ms (SD 573).

Neuroimaging Results
Emotion Expression Time Window
As indicated in Supplementary Table S1, in the contrast
(Emotion − Neutral), relative deactivation was found in
left hippocampus extending into left insula and relative
activation was found in right posterior insula extending into

FIGURE 2 | The percentage of correct reasoning responses was
significantly higher in the angry condition than in the neutral or sad
conditions.
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right inferior temporal gyrus. The reverse contrast, namely
(Neutral − Emotion), yielded relative deactivation in left infe-
rior frontal gyrus (opercularis, extending into triangularis area
45) and in left precentral gyrus extending into left superior
frontal gyrus. The contrast (Sad − Neutral, masked inclusively
with Emotion − Neutral at p = 0.05) yielded relative activa-
tion in left hippocampus extending into left precuneus, in right
hippocampus extending into right inferior temporal gyrus and
right fusiform, in left inferior temporal gyrus extending into left
hippocampus and fusiform, and in right primary somatosen-
sory cortex extending into right precentral gyrus (area 6; see
Figure 3). The reverse contrast (Neutral – Sad) yielded rela-
tive activation in left superior temporal gyrus extending into
middle temporal gyrus, in right superior temporal gyrus, relative
deactivation in left cerebellum extending into right cerebellar
vermis, in left inferior frontal gyrus (opercularis: area 44), in left

calcarine gyrus (area 17), and in right cerebellum. The contrast
(Angry − Neutral, masked inclusively with Emotion − Neutral
at p = 0.05) yielded relative activation in left superior temporal
gyrus, in right superior temporal gyrus, and in right supra-
marginal gyrus extending into right superior temporal gyrus (see
Figure 4). The reverse contrast (Neutral − Angry) yielded rela-
tive deactivation in left superior frontal gyrus (area 6), in left
supramarginal gyrus, and in right angular gyrus. The contrast
(Sad − Angry, masked inclusively with Emotion − Neutral at
p = 0.05) yielded relative activation in left hippocampus extend-
ing into left cuneus, and in right hippocampus extending into
right inferior temporal gyrus. The reverse contrast (Angry − Sad,
masked inclusively with Emotion − Neutral at p = 0.05) yielded
relative activation in left superior temporal gyrus extending into
secondary somatosensory cortex, and in right superior temporal
gyrus.

FIGURE 3 | The contrast (Sad − Neutral) elicited activation in (A) left hippocampus (MNI co-ordinates: −30, −30, −12, cluster size 6766 voxels,
Z = 5.83), and in (B) right hippocampus (MNI co-ordinates: 40, −8, −24, cluster size 1135 voxels, Z = 4.51). There was also activation in left inferior
temporal gyrus and in right primary somatosensory cortex (not shown).

FIGURE 4 | The contrast (Angry − Neutral) elicited activation in (A) left superior temporal gyrus (MNI co-ordinates: −46, −14, 4, cluster size
746 voxels, Z = 5.01), and in (B) right superior temporal gyrus (MNI co-ordinates: 50, −10, −4, cluster size 463 voxels, Z = 6.20). There was also
activation in right supramarginal gyrus (not shown).
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Reasoning Time Window
As indicated in Supplementary Table S2, analysis of the main
effect of (Reasoning − Baseline) yielded relative activation
in right insula extending into right caudate nucleus, in left
precentral gyrus extending into left primary somatosensory
cortex, and in left insula extending into left inferior frontal
gyrus (triangularis). Analysis of the main effect (Emotional
Reasoning − Emotional Baseline) yielded relative activation
in right thalamus (temporal) extending into right insula, in
left precentral gyrus extending into left primary somatosensory
cortex, and in right middle cingulate cortex.

For results of simple effect analyses please refer to the
Supplementary Material including Supplementary Table S2.

We next addressed the question of whether neural acti-
vation underlying reasoning in an emotional context,
collapsed across the emotion factor, would differ from
that underlying neutral reasoning. The interaction contrast
[(Emotional Reasoning − Emotional Baseline) − (Neutral
Reasoning − Neutral Baseline)] yielded relative activation in left
thalamus (temporal) extending into right thalamus (temporal)
and right caudate nucleus, and in right middle cingulate cortex
(see Figure 5). For details of the reverse interaction contrast,
see the Supplementary Material including Supplementary
Table S2.

To determine whether neural activation underlying reasoning
in the sad and neutral time windows would differ, we analyzed the
interaction contrast [(Sad Reasoning − Sad Baseline) − (Neutral
Reasoning − Neutral Baseline)]; this analysis yielded no clus-
ters surviving the specified extent. For details of the reverse
interaction contrast, see the Supplementary Material including
Supplementary Table S2.

To determine whether neural activation underlying reason-
ing in the angry and neutral time windows would differ, we
analyzed the interaction contrast [(Angry Reasoning − Angry
Baseline) − (Neutral Reasoning − Neutral Baseline)]; this
analysis yielded relative activation in right superior frontal gyrus

and in right thalamus (prefrontal; see Figure 6). For details of
the reverse interaction contrast, see the Supplementary Material
including Supplementary Table S2.

To determine whether neural activation underlying reasoning
in the sad and angry time windows would differ, we analyzed the
interaction contrast [(Sad Reasoning − Sad Baseline) − (Angry
Reasoning − Angry Baseline)] and also the reverse interac-
tion contrast [(Angry Reasoning − Angry Baseline) − (Sad
Reasoning− Sad Baseline)]; neither of these interaction contrasts
yielded any clusters surviving the specified extent.

To determine whether there would be any activations in
common between sad reasoning and angry reasoning after
accounting for their respective baselines, we conducted a
conjunction analysis of the two interaction contrasts [(Sad
Reasoning − Sad Baseline) − (Neutral Reasoning − Neutral
Baseline)] and [(Angry Reasoning − Angry Baseline) − (Neutral
Reasoning − Neutral Baseline)]; however, there were no
suprathreshold clusters.

Discussion

Engagement with the Task
First, we consider whether participants were engaged in the
reasoning task, by looking first at the behavioral and then at the
neural results. Behaviorally, we note that accuracy levels were
above chance. At the neural level, we have reported caudate
nucleus involvement in several reasoning contrasts, including
the main effect of reasoning. Such findings are consistent with
the important role of basal ganglia in the reasoning process, as
reported in the literature (Goel et al., 2000; Christoff et al., 2001;
Melrose et al., 2007; Smith et al., 2014).

Success of Tone of Voice Manipulations
Second, we consider whether our tone of voice manipulations
were successful. Reasoning performance in the sad condition

FIGURE 5 | The interaction contrast [(Emotional Reasoning − Emotional Baseline) − (Neutral Reasoning − Neutral Baseline)] elicited activation in (A)
left thalamus (MNI co-ordinates: −8, −2, 6, cluster size 832 voxels, Z = 3.88), and in (B) right middle cingulate cortex (MNI co-ordinates: 12, 6, 38,
cluster size 311 voxels, Z = 3.47).
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FIGURE 6 | The interaction contrast [(Angry Reasoning − Angry Baseline) − (Neutral Reasoning − Neutral Baseline)] elicited activation in (A) right
superior frontal gyrus (MNI co-ordinates: 26, 22, 46, cluster size 611 voxels, Z = 3.43), and in (B) right thalamus (MNI co-ordinates: 12, −4, 8, cluster
size 220 voxels, Z = 3.67).

was neither impaired nor improved compared to reasoning in
the neutral condition. However, reasoning performance in the
angry condition was better than in the neutral tone of voice
condition. If we were to consider only the behavioral results,
we might conclude that the sad tone of voice was ineffective.
However, the pattern of neural results indicates that each of the
two tones of voice were successful: During the listening time
window, each emotive tone of voice condition yielded a differ-
ent pattern of neural activation. Specifically, the contrast “sad
minus neutral” activated a different neural pattern than did the
contrast “angerminus neutral.” As well, the contrasts “sadminus
angry” and “angryminus sad” yielded different patterns of neural
activation. Thus, evidence shows that while participants were
listening to the syllogism, they were being affected, concurrently,
by the emotion expression, whether in the sad or in the angry
condition.

The field of emotion research still has much to learn about
the decoding and interpretation of auditory anger; thus, we
should consider the possibility that our ‘anger’ stimuli invoked
responses in the participants that would be more associated with
fearful expression than expression of anger. We did not obtain
emotion ratings during scanning, nor did we acquire peripheral
psychophysical measurements from study participants. However,
converging evidence from the pilot study of stimuli ratings and
from other sources points more toward ‘anger’ than toward
‘fear.’

During the pilot study, participants had the opportunity on
50% of trials to reject both ‘sad’ and ‘angry’ as ratings in favor of
writing down a preferred term; nevertheless no participant wrote
‘fear’ for any stimulus. On the other 50% of trials, participants
were asked to rate stimuli in terms of being active (goal-oriented)
or passive (no goal) rather than choosing an emotion term. Only
one participant rated one ‘angry’ stimulus as passive. On 100% of
trials, participants indicated how sure they were of each rating; for
each of sad and angry, people indicated ‘yes’ or ‘definitely’ (rather
than ‘maybe’) on 29 out of 30 stimuli being rated. Please refer to

Appendix A for details. Secondly (see below), neural activation
associated with anger expression in the current study was simi-
lar to that reported by Grandjean et al. (2005). We did not find
any neural activation in amygdala, a neural region often asso-
ciated with fear (LeDoux, 1996; van Well et al., 2012; Adolphs,
2013).

Interpretation of Findings Regarding
Reasoning in an Angry Context
We now consider how the findings regarding reasoning in an
angry context should be interpreted. In two separate studies,
induced anger has been shown to enhance heuristic rather than
analytical processing (Bodenhausen et al., 1994; Tiedens and
Linton, 2001). In contrast, Gable and Harmon-Jones (2010b)
proposed that emotions such as anger that are associated
with high motivation toward a goal should promote selective
attention toward a target and away from irrelevant distrac-
tion. Indeed, that model fits well with our behavioral find-
ings, which were that reasoning (the target task) improved
after angry tone of voice (which was not the focus of the
assigned task) compared to reasoning after neutral tone of
voice.

As reported above, neural activation associated with hearing
the voice of an angry speaker (Sander et al., 2005) was noted in
bilateral superior temporal sulcus (right BA 42, bilateral BA 22),
and right amygdala; Grandjean et al. (2005) demonstrated that
superior temporal lobe activation associated with anger prosody
is associated with the angry emotion itself, and not with low-level
acoustical properties of the stimulus. Sander et al. (2005) utilized
a dichotic listening task, which was to attend to the left- or right-
ear presentation and identify the gender of the speaker; there
was no instruction associated with the speaker’s angry or neutral
tone of voice. The above findings (in Sander et al., 2005) were for
angry prosody regardless of whether attended or not; however,
neural data were also analyzed separately for the attended and
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unattended ear of presentation. There was a tendency (in Sander
et al., 2005) for activation in orbito-frontal cortex to increase
in the attended-side angry prosody condition and to decrease
in the unattended-side neutral prosody condition. Also, there
was a tendency for activation in bilateral ventro-lateral prefrontal
cortex to increase in the attended-side angry prosody condition.
There was also activation in right cuneus associated with attended
anger, but this activation did not survive correction for multi-
ple comparisons. In the current study, we noted activation in left
cuneus associated with the angry reasoning condition, but we did
not find any activations in orbito-frontal cortex, ventro-lateral
prefrontal cortex, right cuneus, or amygdala, in either the angry
listening time window or the angry reasoning timewindow. Thus,
neural activations previously associated with attention to the
anger prosody were not apparent among our findings.

Selective attention has often been associated with neural acti-
vation in right superior frontal gyrus (see the review by Corbetta
and Shulman, 2002). In the current study, reasoning in the angry
condition was found to be associated with significant activation
in right superior frontal gyrus and in right thalamus.

Thus, converging behavioral and imaging evidence suggests
that, during the listening time window, angry tone of voice
led to activation of neural regions previously associated with
unattended anger; subsequently, during the (silent) reasoning
time window, a neural region previously associated with selec-
tive attention toward the main task (in this case, reasoning) was
recruited and participants’ level of reasoning performance was
sharper than it was after neutral tone of voice.

Interpretation of Findings Regarding
Reasoning in a Sad Context
Clearly, a different mechanism was at work as a result of the
expression of sad tone of voice. As we indicated above, the
expressed sadness itself was effective, leading to a differentiated
pattern of neural activation during the listening time window.
Looking at past literature, we note that auditory induction of
sadness, using sad classical music, led to activation in hippocam-
pus/amygdala and auditory association areas (Mitterschiffthaler
et al., 2007); as in that study, our use of sad expression led to

extensive activation in hippocampus during the listening time
window. However, in Mitterschiffthaler et al. (2007) partici-
pants were directed to pay attention to their emotional experi-
ence during scanning. A different study showed that emotional
memories, but not neutral memories, have been associated with
hippocampal and amygdala activation (Dolcos et al., 2004).
Therefore, we propose that in the current study, participants were
attending to the sad tone of voice while simultaneously learning
the syllogism. However, given that reasoning performance in the
sad condition was comparable to that in the neutral condition,
we conclude that sad emotive tone of voice did not significantly
impact the reasoning process itself.

Conclusion

We have contributed to a deeper understanding of the character-
ization of specific emotions, by demonstrating that two contexts
of expressed emotion, each being of negative valence, have never-
theless different effects on reasoning. Unlike sad auditory context,
logical reasoning in an angry auditory context is characterized
by increased accuracy, and is accompanied by recruitment of an
underlying neural system known to be associated with selective
attention. These results increase our understanding of the neural
processes that underlie reasoning in the context of auditory
emotion.
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How emotions influence syllogistic reasoning is not well understood. fMRI was employed
to investigate the effects of induced positive or negative emotion on syllogistic reasoning.
Specifically, on a trial-by-trial basis participants were exposed to a positive, negative, or
neutral picture, immediately prior to engagement in a reasoning task. After viewing and
rating the valence and intensity of each picture, participants indicated by keypress whether
or not the conclusion of the syllogism followed logically from the premises.The content of
all syllogisms was neutral, and the influence of belief-bias was controlled for in the study
design. Emotion did not affect reasoning performance, although there was a trend in the
expected direction based on accuracy rates for the positive (63%) and negative (64%) ver-
sus neutral (70%) condition. Nevertheless, exposure to positive and negative pictures led
to dissociable patterns of neural activation during reasoning.Therefore, the neural basis of
deductive reasoning differs as a function of the valence of the context.

Keywords: reasoning, emotion, fMRI, IAPS, belief-bias, positive, negative

INTRODUCTION
Although the empirical literature examining the effects of emotion
on cognition is very large, relatively few studies have investigated
the effect of emotion on logical reasoning. Behavioral studies
that have investigated this effect have usually found that com-
pared to neutral valence, positive and negative valence result in
impaired accuracy in logical reasoning. This has been shown to
be true regardless of whether the emotions are manipulated via
the content of the logical arguments (Lefford, 1946), mood of
the participants (Melton, 1995; Oaksford et al., 1996), or both
(Blanchette and Richards, 2004; Blanchette, 2006). See also the
review by Blanchette and Richards (2010).

However, other studies have reported no impairment in cogni-
tive processing associated with negative emotion. In fact, sadness
and depression have been found to promote systematic cogni-
tive processing (Alloy and Abramson, 1979; Schwarz and Bless,
1991; Bless et al., 1992; Bohner et al., 1992; Edwards and Weary,
1993). Blanchette et al. (2007) found that reasoning in the negative
condition improved logical reasoning by reducing belief-bias, but
only when the material referred to participants’ actual exposure to
terrorist activity; otherwise, reasoning in the negative condition
was impaired, both for other participant groups on all negative
material and for the group exposed to actual terrorist activity on
non-terror-related negative material. Goel and Vartanian (2011)
found that, when argument logic and beliefs about the mater-
ial itself required opposite responses (incongruence) on a given
trial, reasoning performance was better when the reasoning mate-
rial was politically incorrect than when otherwise. These results

suggest that under some conditions negative content can improve
reasoning performance.

The inconsistency in the literature on the effect of emotion on
cognitive processes could arise from various sources, such as vari-
ations in the type of stimulus materials, incongruence between
argument logic and one’s beliefs about the content, or presenta-
tion of the emotion as either part of the content or separately, as
part of the context.

To extend this literature, we explored whether the effects of
emotion on underlying reasoning processes differ depending on
whether the emotion is positive or negative. This exploration
was motivated by evidence suggesting that positive and negative
emotions may exert different effects on cognition. Positive emo-
tion promotes creativity (Isen et al., 1987) and facilitates noticing
more relations among concepts (Isen and Daubman, 1984). It also
promotes a reliance on such heuristic shortcuts as source exper-
tise and stereotyping instead of considering the evidence when
making evaluations (Schwarz and Clore, 1983; Bless et al., 1992;
Bodenhausen et al., 1994). Positive emotion also impairs working
memory (Martin and Kerns, 2011), and distracts attention toward
task-irrelevant information (Biss and Hasher, 2011) at the level
of early sensory encoding (Vanlessen et al., 2013). The bulk of
available evidence suggests that positive emotion might exert its
deleterious effects on reasoning by taxing working memory with
induced bottom-up task-irrelevant information and by promoting
a top-down heuristic processing mode.

There is now good evidence to suggest that positive and nega-
tive emotion induction have different effects on the brain. Using
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a gender identification task (to reduce attention to the emotion
manipulation), Schmitz et al. (2009) found that positive emotion
broadened focus to peripherally presented stimuli (houses) and
was accompanied by neural activation in right lateral frontal pole
(BA 10), lateral orbitofrontal cortex (BA 11), as well as by corre-
lated activity in parahippocampal place area and primary visual
cortex. In contrast, negative emotion narrowed focus to targets
(faces) only, and was accompanied by neural activation in amyg-
dala, as well as by inversely correlated activity in parahippocampal
place area and primary visual cortex. In Schmitz et al. (2009), emo-
tion had been induced by means of pictures from the International
Affective Picture System (IAPS; Lang et al., 1997). In Dolcos et al.
(2004), valence ratings of positive and negative IAPS pictures dur-
ing scanning were accompanied by different patterns of neural
activation; positive evaluations were associated with activation
in left dorsolateral prefrontal cortex (BA 8/9), whereas negative
evaluations were associated with activation in bilateral dorsolat-
eral prefrontal cortex (BA 8/9) and right ventrolateral prefrontal
cortex (BA 47). Using only negative IAPS pictures, Taylor et al.
(2000) found that activation in the amygdala, uncus, and anterior
parahippocampal gyrus was positively correlated with increas-
ingly aversive ratings of pictures; as well, mildly aversive ratings
were associated with activation in left-hemisphere posterior and
subcortical regions, whereas strongly aversive ratings were associ-
ated with activation in bilateral posterior and subcortical regions
and lateral orbitofrontal cortex. In general, the above reports sug-
gest that, apart from activation in orbitofrontal cortex, positive
and negative emotion induction lead to differentiated underlying
patterns of neural activity; positive emotion is accompanied by
medial frontal and left frontal activation, whereas negative emo-
tion is accompanied by activation in amygdala and bilateral or
right frontal activation. Patterns of activation in posterior cortical
and in subcortical regions (apart from amygdala) vary depending
on the task but, within these studies, differ by valence or intensity
of emotion.

In the first neuroimaging study to examine the effect of emotion
on deductive reasoning, Goel and Dolan (2003b) demonstrated
that reasoning with negatively charged material was associated
with activation in ventromedial prefrontal cortex, whereas rea-
soning with neutral material was associated with activation in left
dorsolateral prefrontal cortex; furthermore, these neural mecha-
nisms were activated in a reciprocal manner. In that study, emo-
tion was manipulated using the content of the syllogism such
that, depending on the condition, content was either emotionally
provocative or neutral. The results demonstrated that the pat-
tern of neural activation during reasoning varies as a function of
emotional content.

In the present study, we sought to extend the findings of Goel
and Dolan (2003b) by making an important change to the par-
adigm. Whereas Goel and Dolan varied the emotionality of the
content itself, we chose to manipulate the emotionality of the con-
text in which reasoning about neutral material would take place.
Specifically, on each trial, participants first viewed and rated a pic-
ture on valence and intensity, and after the picture was removed
from view, they engaged in a syllogistic reasoning task involv-
ing visually presented syllogisms with non-emotional content.
This design feature enabled us to analyze the neural correlates of

reasoning separately from those acquired during emotion induc-
tion itself. Secondly, whereas the emotional content in Goel and
Dolan was negative and provocative, in the current study, we chose
to induce not only negative but also positive emotion.

Therefore, the current study utilized a 3 (Emotion)× 2 (Task)
within-subjects design, where the three levels of the Emotion fac-
tor were positive, neutral, and negative, and the two levels of the
Task factor were reasoning and baseline. Also, because it is known
that reasoning is subject to a belief-bias effect (Evans, 2003), we
controlled for belief-bias in the study design.

Because of the more common findings in the literature, that is,
that reasoning is impaired by positive or negative emotion manip-
ulation, we hypothesized that each of positive and negative emo-
tion would be detrimental to reasoning. Additionally, we hypoth-
esized that the neural systems underlying reasoning under those
two conditions would differ from that in the neutral condition.

MATERIALS AND METHODS
PARTICIPANTS
Data were acquired from 16 participants (7 males, 9 females). Edu-
cation levels ranged from partially completed undergraduate study
to completed graduate degrees, with a mean of 17.54 (SD= 3.82)
years of education. Ages ranged from 19 to 56 (mean age was 28,
SD= 10 years). All participants gave informed consent. The study
was approved by the York University Research Human Participants
Ethics Committee.

STIMULI
Pictures, normed as to emotional valence, were taken from the
IAPS system (Lang et al., 1997). The valence categories from the
IAPS were used to choose 40 positive and 40 negative pictures for
the experiment. In addition, 40 pictures of furniture were added,
to serve as neutral pictures.

Reasoning stimuli consisted of 75 syllogisms that were emo-
tionally neutral in content. The arguments in 38 of these syllogisms
were logically valid, whereas the arguments in the remaining 37
were logically invalid. An example of a valid syllogism is “All dogs
are pets; All poodles are dogs; All poodles are pets,”and an example
of an invalid syllogism is “All paper is absorbent; All napkins are
paper; No napkins are absorbent.”

As well, there were 45 baseline “syllogisms,” in which the con-
cluding sentence was taken from a different syllogism in the
dataset, thereby ensuring that the conclusion of the baseline would
be unrelated to the content of the two premises. Thus, in a base-
line trial, the participant would prepare to respond to what was
expected to be a syllogism; however, the unrelated conclusion
would indicate that the stimulus is not an argument and can be
rejected without integrating the conclusion into the premises.

STUDY DESIGN
The study involved 120 trials delivered over 3 sessions (or “runs”)
in the scanner. Each trial involved the following sequence (see
Figure 1): first, the participant saw a slide with the fixation point
(xxx) for 500 ms; then the fixation point disappeared. Next, the
participant viewed a picture and pressed one of eight keys to
indicate simultaneously the rating of positive or negative valence
and the intensity of the picture’s emotional content. The specific
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FIGURE 1 | Design of one trial.

meaning of the keys will be explained below. Then, the picture
disappeared and a syllogism was presented over three consecutive
slides (slide one: first premise alone; slide two: first two premises
together; slide three: the two premises plus the conclusion). The
syllogism remained in view during the reasoning period. The par-
ticipant pressed a key to indicate whether the conclusion followed
or not from the two statements (premises). Disappearance of the
picture and syllogism slides was not entrained to the responses
but was timed to be in synchrony with the acquisition of the brain
scans. Trials varied in length and were approximately 16–20 s.

The specific meaning of the eight picture-rating keys is as fol-
lows: valence and intensity were captured in the same keypress.
There were four keys in one direction for “increasingly negative”
and four in the other direction for “increasingly positive.” The
side was counterbalanced among participants. Participants used
the index finger of each hand to respond. All participants were
declared as right-handed.

The effect of belief-bias was controlled for. That is, the rea-
soning syllogisms were balanced overall for validity and for con-
gruence between logic and beliefs. Congruence occurs when the
argument logic is valid and the conclusion is believable or when
the argument logic is invalid and the conclusion is unbelievable.
Incongruence occurs when the argument logic is valid and the
conclusion is unbelievable or when the argument logic is invalid
and the conclusion is believable.

Thus, syllogisms and baseline trials were matched to pictures
so that there were equivalent numbers of congruent syllogisms,
incongruent syllogisms, and baselines within each level of the
emotion factor (positive, negative, and neutral). Then the order of
the 120 trials was randomized. Finally, the trials were segregated
into three presentation sets of 40 trials each (see Supplemen-
tary Material). Thus, pictures were not presented in blocks by
valence; the valences (positive, neutral, and negative) were quasi-
randomly intermixed. The order of presentation of these three sets
was counterbalanced among participants, one set for each session
(“run”) in the scanner.

fMRI SCANNING TECHNIQUE
A 1.5-T Siemens VISION system (Siemens, Erlangen, Ger-
many) was used to acquire T1 anatomical volume images
(1 mm× 1 mm× 1.5 mm voxels) and T2*-weighted images
(64× 64, 3 mm× 3 mm pixels, TE= 40 ms), obtained with a
gradient echo-planar sequence using blood oxygenation level-
dependent (BOLD) contrast. Echo-planar images (2 mm thick)
were acquired axially every 3 mm, positioned to cover the whole
brain. Each volume was partitioned into 36 slices, obtained at
90 ms per slice. Data were recorded during a single acquisition
period. Volume (vol) images, 243 per session, were acquired con-
tinuously, for a total of 729 images over three sessions, with a
repetition time (TR) of 3.24 s/vol. The first six volumes in each
session were discarded (leaving 237 per session) to allow for T1
equilibration effects.

DATA ANALYSIS
Behavior
Behavioral data were analyzed using SPSS, version 16.0 (SPSS Inc.,
Chicago, IL, USA).

In the design there were 120 trials, 75 (62.5%) involving reason-
ing and 45 (37.5%) baselines. Data from two participants were dis-
carded because of movement artifacts in the neuroimaging data.
Therefore, the behavioral analyses are based on 14 participants.
Twelve participants completed all three sessions of 40 trials each.
One participant completed two sessions. One other participant
completed all three sessions, but because some of the scan volumes
were missing from the data, it was necessary to excise three trials
from the middle of Session 1 and one trial from the middle of Ses-
sion 2. Thus, there were a total of 12× 120+ 80+ 116= 1636 tri-
als. Of these, 1021 (62.4%) were reasoning trials and 615 (37.6%)
were baselines. The participants’ valence ratings were sorted into
three categories: positive, negative, and neutral. Ratings of −2,
−3, or −4 were classified as “negative”; ratings of +2, +3, or +4
were classified as “positive.” Ratings of −1 or+1 were considered
“neutral.”

Neuroimaging
The functional imaging data were preprocessed and subsequently
analyzed using Statistical Parametric Mapping SPM8 (Friston
et al., 1994; Wellcome Department of Imaging Neuroscience;
http://www.fil.ion.ucl.ac.uk/spm/).

All functional volumes were spatially realigned to the first vol-
ume. Data from two participants with head movement >2 mm
were discarded. All volumes were temporally realigned to the
AC–PC slice, to account for different sampling times of differ-
ent slices. A mean image created from the realigned volumes was
co-registered with the structural T1 volume and the structural vol-
umes spatially normalized to the Montreal Neurological Institute
brain template (Evans et al., 1993) using non-linear basis functions
(Ashburner and Friston, 1999). The derived spatial transformation
was then applied to the realigned T2* volumes, which were finally
spatially smoothed with a 12 mm FWHM isotropic Gaussian ker-
nel in order to make comparisons across subjects and to permit
application of random field theory for corrected statistical infer-
ence (Worsley and Friston, 1995). The resulting time series across
each voxel were high-pass filtered with a cut-off of 128 s, using
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cosine functions to remove section-specific low-frequency drifts in
the BOLD signal. Global means were normalized by proportional
scaling to a grand mean of 100, and the time series temporally
smoothed with a canonical hemodynamic response function to
swamp small temporal autocorrelations with a known filter.

Condition effects at each voxel were estimated according to
the general linear model and regionally specific effects compared
using linear contrasts. Each contrast produced a statistical para-
metric map of the t statistic for each voxel, which was subsequently
transformed to a unit normal Z distribution. The BOLD signal
was modeled as a canonical hemodynamic response function with
time derivative. All events were modeled in the design matrix, but
events of no interest (the first two sentences, and the two motor
responses on a trial-by-trial basis) were modeled out. Positive,
neutral, and negative picture viewing/rating were each modeled
as an epoch from picture onset up to but excluding the motor
response. Positive, neutral, and negative reasoning, and positive,
neutral, and negative baseline were each modeled as an event. The
onset of the event was the halfway point between presentation of
the concluding sentence and the motor response.

Parametric (correlational) analyses were conducted to deter-
mine neural regions associated with increasingly intense positive
and negative picture ratings. The BOLD signal was modeled as a
canonical hemodynamic response function. All events were mod-
eled in the design matrix, but events of no interest (the three
sentences, and the two motor responses on a trial-by-trial basis)
were modeled out. Positive intensity and negative intensity were
each modeled as an event from picture onset.

The individual-level analyses involving emotion induction were
subsequently analyzed at the group level in a random effects
model, using t -tests (see Table 1 in Supplementary Material). The
individual-level analyses of the reasoning time window were ana-
lyzed at the group level in a random effects model, using a 2 (Task:
Reasoning, Baseline)× 3 Emotion (positive, negative, neutral) fac-
torial design, with correction for non-sphericity and with propor-
tional overall grand mean scaling (see Table 2 in Supplementary
Material).

All reported results survived a threshold of p < 0.005 and an
extent of k ≥ 20 voxels, a combination that has been demonstrated
to produce a desirable balance between type I and type II error rates
(Lieberman and Cunningham, 2009).

RESULTS
BEHAVIORAL RESULTS
For each participant, we computed the proportion of each of pos-
itive:total ratings, neutral:total ratings, and negative:total ratings.
For example, one participant rated 119 of the 120 trials, of which
39 were rated neutral; therefore, for this participant, the propor-
tion of neutral:total ratings is 0.33. A repeated-measures analysis,
multivariate approach, was conducted; the within-subjects fac-
tor was choice of valence (positive, neutral, and negative) and
the dependent variable was mean proportion. Participants rated
a significantly greater proportion of pictures as positive than as
negative (F 2,11= 9.988, p= 0.003, partial η2

= 0.645).
The mean response time to rate the pictures was calculated for

each participant, separately for each valence. A repeated-measures

analysis, multivariate approach, was conducted; the within-
subjects factor was Emotion (positive, neutral, and negative) and
the dependent variable was mean picture-rating response time.
Data were analyzed for 13 participants, as 1 participant had
not rated any picture as “neutral.” Participants took significantly
longer to rate pictures as positive than as neutral (F 2,11= 5.739,
p= 0.02, partial η2

= 0.511).
The mean (SD) proportion of total picture ratings for each

valence was as follows: positive 0.3859 (0.108), neutral 0.2731
(0.130), negative 0.2308 (0.085); the mean (SD) response time
in milliseconds to rate the pictures was as follows: positive 2184
(483), neutral 1919 (623), negative 2092 (467). See “Behavioral
Scores” in Supplementary Material.

For the reasoning trials, the overall proportion of correct:total
responses was 0.630. For baselines (where the correct response
would always be “not valid”), the proportion of correct:total
responses was 0.972. Mean reaction time was 4185 (SD 789) ms on
reasoning trials overall (that is, without regard to accuracy), and
1874 (SD 456) ms on baseline trials. This difference was significant:
paired t (13)= 8.567, p= 0.001.

The proportion of correct reasoning responses to the total num-
ber of reasoning trials was computed for each participant within
each valence. For instance, 1 participant rated 20 of the pictures
(on reasoning trials) as positive, and reasoned logically on 15 of
those trials; thus, the proportion of correct responses on posi-
tively valenced reasoning trials was 0.75 for that participant. Next,
a repeated-measures analysis of variance (n= 13; the one par-
ticipant who had not rated any pictures as neutral was excluded
from this analysis), multivariate approach, was conducted to test
whether the valence rating affected reasoning. The independent
variable was the emotion factor (positive, neutral, and negative),
and the dependent variable consisted of each participant’s mean
proportion of correct:total reasoning responses. The result was not
significant (p= 0.391, partial η2

= 0.157). Overall, the valence of
the picture did not significantly influence subsequent reasoning.
See “Behavioral Scores” in Supplementary Material.

A repeated-measures analysis of variance, multivariate
approach, indicated that mean reaction time to reasoning syllo-
gisms overall (that is, collapsed across accuracy) did not differ by
Emotion (positive, neutral, and negative). Participants responded
significantly more slowly on reasoning trials when their response
was incorrect than when it was correct, regardless of the valence
of the trial. The main effect of accuracy was significant: F(1,
12)= 7.537, p= 0.018, partial η2

= 0.386; there was no main effect
of Emotion (positive versus negative) and no significant inter-
action of Accuracy× Emotion). Mean (SD) reaction times in
milliseconds to syllogisms, by valence and accuracy, were as fol-
lows: for correct responses (n= 13), mean (SD) was 3480 (574)
for positive, 3759 (729) for neutral, and 3793 (461) for negative.
For incorrect responses (n= 9), mean (SD) was 4215 (673) for
positive, 4199 (691) for neutral, and 4008 (755) for negative. For
the sake of consistency with the other results, we repeated this
analysis using correct trials only (repeated-measures, multivariate
approach), and found that mean reaction time when responding
correctly to syllogisms did not differ significantly by Emotion
(p= 0.267, partial η2

= 0.213).
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Manipulation check demonstrating the need to control for
belief-bias
Instantiation of belief-bias in the current design would be as fol-
lows: on trials where there is incongruence between argument
logic and beliefs (valid argument and false belief, or invalid argu-
ment and true belief), responses should be less logical and slower
than on trials where there is congruence between argument logic
and beliefs (valid argument and true belief, or invalid argument
and false belief). We controlled for belief-bias in the study design,
by ensuring equivalent numbers of congruent syllogisms, incon-
gruent syllogisms, and baselines within each level of the emotion
factor.

We thank a reviewer for suggesting that we should test
directly this possible effect of belief-bias, at the behavioral
level. The proportion of correct:total responses was analyzed
for congruence with beliefs (congruent, incongruent) by Emo-
tion (positive, neutral, and negative) using a repeated-measures
analysis (multivariate approach). The main effect of Congru-
ence was significant (F 1,12= 6.835, p= 0.023, partial η2

= 0.363)
and the Congruence× Emotion interaction approached signifi-
cance (F 2,11= 3.194, p= 0.081, partial η2

= 0.367). Thus, correct
responding is significantly hindered when the logic of the argu-
ment conflicts with beliefs, tending to be more so (reduced to
chance level) after positive and negative than after neutral picture
ratings.

The mean proportions (SD) correct:total were as follows
(n= 13): for congruent syllogisms, positive:total was 0.727
(0.252), neutral:total was 0.729 (0.174), and negative:total was
0.762 (0.233). For incongruent syllogisms, positive:total was 0.537
(0.174), neutral:total was 0.659 (0.267), and negative:total was
0.504 (0.305).

The mean reaction time (RT) to the syllogisms where the
response was correct was analyzed for congruence with beliefs
(congruent, incongruent) by Emotion (positive, neutral, and neg-
ative) using a repeated-measures analysis (multivariate approach).
The main effect of Congruence was significant (F 1,11= 39.740,
p < 0.001, partial η2

= 0.783); the Congruence*Emotion inter-
action was not significant (p= 0.151, partial η2

= 0.315). Thus,
correct responses are significantly slower when the logic of the
argument conflicts with beliefs, regardless of valence.

Mean reaction times (n= 12) when responding correctly were
as follows: (a) congruent positive: 3097 ms (SD 530); (b) congruent
neutral: 3437 ms (SD 532); (c) congruent negative: 3410 ms (SD
499); (d) incongruent positive: 3901 ms (SD 829); (e) incongru-
ent neutral: 3585 ms (SD 1077); (f) incongruent negative: 4466 ms
(SD 625).

NEUROIMAGING RESULTS
Neuroimaging analysis: emotion induction time window
As indicated in Table 1 of Supplementary Material, the contrast
positive–neutral yielded neural activation in left thalamus, right
cerebellum, occipital lobe bilaterally, left parietal (supramarginal
gyrus and secondary somatosensory area), right inferior pari-
etal lobe, and left fusiform gyrus. The contrast negative–neutral
yielded neural activation in left putamen, right amygdala, occip-
ital lobe bilaterally, left inferior parietal (secondary somatosen-
sory cortex and supramarginal gyrus), right inferior parietal

(supramarginal gyrus), and right inferior frontal gyrus (trian-
gularis, area 45). The contrast positive–negative yielded neural
activation in left cerebellum, right hippocampus, left postcen-
tral gyrus, and superior temporal gyrus bilaterally. The contrast
negative–positive yielded neural activation in left amygdala and
insula, left middle cingulate, right hippocampus, left occipital lobe,
inferior parietal (supramarginal gyrus) bilaterally, left superior
parietal (area 7), right precuneus, right postcentral gyrus, inferior
frontal gyrus (left opercularis area 44, right area 44), left frontal
(supplementary motor area and area 4), right precentral gyrus
(areas 44 and 6), and superior frontal gyrus bilaterally. See Table 1
in Supplementary Material.

Parametric (correlational) analyses were conducted to deter-
mine neural regions associated with increasingly intense positive
and negative picture ratings. As positive intensity increased, sig-
nificant neural activation was noted in cerebellum bilaterally, left
thalamus, occipital lobe bilaterally, postcentral gyrus bilaterally,
middle temporal gyrus bilaterally, right inferior temporal gyrus,
right fusiform gyrus, and left inferior frontal gyrus. See Table 1
in Supplementary Material and Figure 2A. As negative intensity
increased, significant neural activation was noted in right amyg-
dala, right occipital lobe, and right inferior frontal gyrus. See
Table 1 in Supplementary Material and Figures 2B,C.

Neuroimaging analysis: reasoning time window
Neural activations associated with the reasoning time window are
listed in Table 2 in Supplementary Material.

The contrast positive reasoning–positive baseline yielded
neural activation in right thalamus, right occipital lobe, left pari-
etal (supramarginal gyrus), right middle temporal gyrus, and
right precentral gyrus. The contrast negative reasoning–negative
baseline yielded neural activation in occipital lobe bilaterally, left
inferior parietal lobe (supramarginal gyrus), left postcentral gyrus,
left middle temporal gyrus, and left inferior frontal gyrus (triangu-
laris). The contrast positive reasoning–neutral reasoning yielded
activation in right inferior parietal (supramarginal gyrus). The
contrast negative reasoning–neutral reasoning yielded neural acti-
vation in inferior occipital lobe bilaterally, left superior parietal
lobe, left postcentral gyrus, right supramarginal gyrus, left inferior
temporal and right middle temporal gyrus, left hippocampus, left
middle frontal gyrus, and right frontal gyrus area 6. The contrast
positive reasoning–negative reasoning yielded neural activation
in left insula, right thalamus, superior temporal gyrus bilaterally,
and right inferior frontal gyrus (orbitalis). The contrast negative
reasoning–positive reasoning yielded significant neural activation
in caudate nucleus bilaterally, left insula, occipital lobe bilaterally,
left precuneus, and left postcentral gyrus.

To determine whether neural activation underlying reasoning
in the positive and neutral time windows would differ after remov-
ing baseline effects, we analyzed the interaction contrast [(positive
reasoning–positive baseline)− (neutral reasoning–neutral base-
line)]; this analysis yielded neural activation in left middle cin-
gulate, occipital lobe bilaterally, left inferior parietal lobe (angu-
lar gyrus), left intraparietal sulcus, right postcentral gyrus, left
precentral gyrus, and right supplementary motor area.

To determine whether neural activation underlying reason-
ing in the negative and neutral time windows would differ after
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FIGURE 2 | (A) As picture ratings increase in positive intensity, activation
increases in left inferior frontal gyrus (orbitalis) (MNI co-ordinates: −36, 24,
−8, k =310, Z =3.54) and other areas (see Table 1 in Supplementary
Material). As picture ratings increase in negative intensity, activation increases

in (B) right inferior frontal gyrus (triangularis: area 45; MNI co-ordinates: 52,
32, 10, k =57, Z =3.31) and in (C) right amygdala (MNI co-ordinates: 20, −6,
−16, k =744, Z =3.81), as well as other areas (see Table 1 in Supplementary
Material).

FIGURE 3 | A conjunction analysis demonstrated activation in
common between the positive and negative reasoning time
windows in (A) left postcentral gyrus (at the crosshair; MNI
co-ordinates: −32, −32, 58, k =122, Z =3.43) and intraparietal
sulcus (shown to the left of the crosshair in the coronal image;

MNI co-ordinates: −48, −36, 46, k =34, Z =2.78), and in (B) right
supplementary motor area (MNI co-ordinates: 6, −20, 50, k =226,
Z =3.34), as well as other areas (seeTable 2 in Supplementary
Material). Graphs show size of effect (beta) with 5% confidence
interval.

removing baseline effects, we analyzed the interaction contrast
[(negative reasoning–negative baseline)− (neutral reasoning–
neutral baseline)]; this analysis yielded neural activation in left
superior parietal, inferior parietal lobe (angular gyrus) bilaterally,
left inferior parietal (supramarginal gyrus), left postcentral gyrus,
left inferior frontal gyrus (triangularis), and right supplementary
motor area.

The interaction contrast [(neutral reasoning–neutral base-
line)− (positive reasoning–positive baseline)] yielded neural acti-
vation in right fusiform gyrus. The interaction contrast [(neu-
tral reasoning–neutral baseline)− (negative reasoning–negative
baseline)] yielded neural activation in right hippocampus.

To determine areas activated in common in the positive and
negative reasoning time window, we performed a conjunction
analysis of two interaction contrasts: [(positive reasoning–positive

baseline)− (neutral reasoning–neutral baseline)] and [(negative
reasoning–negative baseline)− (neutral reasoning–neutral base-
line)]. This conjunction analysis revealed neural activation in left
superior parietal lobe, left inferior parietal lobe (angular gyrus,
intraparietal sulcus, and supramarginal gyrus), left postcentral
gyrus, and right supplementary motor area (see Figure 3).

To directly compare neural activations in the positive and
negative reasoning time window, we conducted two inter-
action contrasts as follows. The interaction contrast [(posi-
tive reasoning–positive baseline)− (negative reasoning–negative
baseline)] yielded neural activation in cerebellum (vermis), right
superior parietal lobe, left fusiform gyrus, and right inferior frontal
gyrus (orbitalis) (see Figure 4). The interaction contrast [(neg-
ative reasoning–negative baseline)− (positive reasoning–positive
baseline)] yielded neural activation in left caudate nucleus, left
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FIGURE 4 | Neural activation associated with the positive reasoning time
window that is not shared with the negative reasoning time window
occurs in (A) left fusiform gyrus (MNI co-ordinates: −34, −6, −38, k =28,
Z =3.06), in (B) the vermis of the cerebellum (MNI co-ordinates: 0, −56,

−18, k =35, Z =2.9), in (C) right inferior frontal gyrus (orbitalis; MNI
co-ordinates: 42, 40, −14, k =428, Z =3.91), and in right superior parietal
lobe (not shown) (seeTable 2 in Supplementary Material). Graphs show
size of effect (beta) with 5% confidence interval.

FIGURE 5 | Neural activation associated with the negative reasoning
time window that is not shared with the positive reasoning time
window occurs in (A) left caudate nucleus (MNI co-ordinates: −10, 2,
20, k =594, Z =3.39) extending into left inferior frontal gyrus
(opercularis; MNI co-ordinates: −38, −8, 26, Z =3.35), in (B) right

middle temporal gyrus (relative deactivation; MNI co-ordinates: 44,
−62, 20, k =39, Z =2.86), in (C) right precentral gyrus (area 6; MNI
co-ordinates: 48, 0, 50, k =38, Z =2.85), as well as in left occipital lobe
(not shown) (SeeTable 2 in Supplementary Material). Graphs show
size of effect (beta) with 5% confidence interval.

occipital lobe, left inferior frontal gyrus (opercularis), and right
precentral gyrus, as well as relative deactivation in right middle
temporal gyrus (see Figure 5).

DISCUSSION
The above-chance reasoning accuracy levels indicate that partici-
pants were engaged in the task. The emotion manipulations were
also successful, as indicated by the variation in participants’ ratings
of picture valence.

EMOTION INDUCTION
Patterns of neural responses during picture viewing/rating were
consistent with those reported in the literature. As positive inten-
sity increased, activation was noted in the left inferior frontal
cortex. Likewise, Dolcos et al. (2004) reported neural activation
in frontal cortex, left hemisphere only, in association with the
rating of positive pictures. Furthermore, there is a trend in the
neuroimaging literature (Wager et al., 2003) for left-lateralization
in the frontal lobe associated with approach-related emotions1.

1Approach emotions include anger but are otherwise positive; none of our stimuli
were designed to induce anger.

During negative picture viewing/rating, activations in the con-
trast (negative picture–neutral picture) included right amyg-
dala and right inferior frontal gyrus. Activations in the con-
trast (negative picture–positive picture) included left amyg-
dala and inferior frontal gyrus bilaterally. As negative inten-
sity increased, activations were in right occipital, right amyg-
dala, and right inferior frontal gyrus. In Dolcos et al. (2004),
rating of negative pictures was associated with neural activa-
tion in bilateral frontal regions. In Taylor et al. (2000), ratings
of aversiveness of negative pictures were associated with neural
activation in amygdala, uncus, and anterior parahippocampus.
Neuroimaging studies of emotion perception (including studies
using the IAPS) often report activation in amygdala, parahip-
pocampal cortex, pregenual anterior cingulate, dorsal inferior
frontal gyrus, inferior temporal and occipital cortex, and lateral
cerebellum (Wager et al., 2008); withdrawal-related emotions2

are generally correlated with bilateral frontal activation (Mur-
phy et al., 2003) and with amygdala activation (Wager et al.,
2003).

2Withdrawal emotions are negative in valence.
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REASONING
Based on existing literature, we had hypothesized that both pos-
itive and negative emotion would be detrimental to subsequent
reasoning. We did not find a significant difference in either reason-
ing accuracy or mean reaction time among the positive, neutral,
and negative conditions. The Congruence*Emotion manipulation
check indicated that reasoning was impaired when beliefs and
logic were incongruent; however, we did not have the power to
explore this at the neural level, because of design choices we made
at the outset. Further study of this issue may be warranted (see
Supplementary Material).

There have been other studies showing that emotion does not
necessarily impair reasoning. Specifically, negative emotions have
not invariably been associated in the literature with impaired rea-
soning. Goel and Vartanian (2011) conducted a behavioral study
in which they manipulated the conflict between argument logic
and beliefs about the conclusion by introducing politically incor-
rect material; on incongruent trials (a valid argument with an
unbelievable conclusion, or an invalid argument with a believable
conclusion), reasoning performance was better when the state-
ment was politically incorrect than when otherwise. Blanchette
et al. (2007) found that reasoning in the negative condition (com-
pared to neutral) improved only when the reasoning material was
related to participants’actual exposure to terrorist activity, whereas
reasoning about other negative material was impaired.

Blanchette and Leese (2011) found no relation between rea-
soning performance and participant ratings of the intensity of
negative and neutral stimuli. It is intriguing to note a similarity
between their study and ours; Blanchette and Leese’s study may
be the first to link deductive reasoning with physiological arousal
(measured with transient skin conductance response) underly-
ing negative emotion induction, and ours may be the first study
using pictures from the IAPS to link deductive reasoning with
neural activation (measured using fMRI) underlying positive and
negative emotion induction. Blanchette and Leese found no rela-
tion between reasoning performance and participant ratings of
the intensity of negative and neutral stimuli, whereas our study
found no effect on reasoning performance of positive or negative
emotion induction in a design that included participant ratings.

Our main interest, reflected in our hypotheses, was to show
that the neural systems underlying reasoning in each of the posi-
tive and negative conditions would differ from those in the neutral
condition. These hypotheses were supported.

First, results indicated a crossover interaction, or double disso-
ciation, between the positive and neutral reasoning time windows
at the neural level. Not only did the interaction contrast [(positive
reasoning–positive baseline)− (neutral reasoning–neutral base-
line)] reveal activations but so also did the reverse interaction con-
trast [(neutral reasoning–neutral baseline)− (positive reasoning–
positive baseline)]. Thus, although reasoning after positive emo-
tion induction is not impaired, it is implemented at the neural
level differently than is neutral reasoning. The neural pattern asso-
ciated with the positive reasoning time window involves increased
activation in left middle cingulate, occipital lobes bilaterally, left
inferior parietal (angular gyrus), left intraparietal sulcus, right
postcentral gyrus, left precentral gyrus, and right supplementary
motor area.

A double dissociation indicates those neural regions implicated
in condition A but not in condition B, and simultaneously, those
neural regions implicated in condition B but not in condition A.
Therefore, it indicates that conditions A and B involve separable
systems.

Activation in the left inferior parietal lobe has been associ-
ated with abstract reasoning (Goel et al., 2000; Goel, 2009; Kuo
et al., 2009; Watson and Chatterjee, 2012). Activation in the left
angular gyrus has been associated with semantic meaning (Seghier
et al., 2010; Sharp et al., 2010), more so when there is a conflict
involving implausible sentences (Ye and Zhou, 2009) or when the
stimulus is emotional (Hervé et al., 2012); it is implicated also in
problem identification (Dandan et al., 2013b), in problem solv-
ing (Dandan et al., 2013a; Grabner et al., 2013), and in cognitive
flexibility (Jacobson et al., 2011). Activation in intraparietal sul-
cus has been associated with item-specific processing but not with
relations among items (Ackerman and Courtney, 2012), with sym-
bolic number processing (Bugden et al., 2012), with attention to
items presented in the periphery (Gillebert et al., 2013), and with
temporal orienting (that is, attention toward a specific moment
in time; Davranche et al., 2011). Left frontal precentral gyrus has
been associated with the interaction of attention and language
comprehension (Kristensen et al., 2013), with syntax complexity
and post hoc reanalysis of sentence comprehension (Meltzer et al.,
2010), and with successful inhibitory control (Padmala and Pes-
soa, 2010). Activation in postcentral gyrus has been associated with
the illusory perception of motion (Planetta and Servos, 2012), and
with visceral stimulation (Hojo et al., 2012; Kaplan and Meyer,
2012). The right frontal supplementary motor area has been asso-
ciated with speeded decision-making (Wenzlaff et al., 2011), with
attention maintenance (Kristensen et al., 2013), and is considered
to be part of a ventral attention network that mediates bottom-up
capture of attention by memory (Burianová et al., 2012).

Secondly, results indicated a crossover interaction, or dou-
ble dissociation, between the negative and neutral reasoning
time windows at the neural level. Not only did the interac-
tion contrast [(negative reasoning–negative baseline)− (neutral
reasoning–neutral baseline)] reveal activations but so also did
the reverse interaction contrast [(neutral reasoning–neutral base-
line)− (negative reasoning–negative baseline)]. Thus, although
reasoning after negative emotion induction is not impaired, it is
implemented at the neural level differently than is neutral rea-
soning. The neural pattern associated with the negative reasoning
time window involves left postcentral gyrus, left inferior parietal
(supramarginal gyrus), left superior parietal lobe, inferior parietal
(angular gyrus) bilaterally, left inferior frontal gyrus, and right
supplementary motor area.

As mentioned above, activation in postcentral gyrus has been
associated with the illusory perception of motion and with vis-
ceral stimulation. Left supramarginal gyrus is considered to be
part of a ventral attention network (Corbetta et al., 2008) that
mediates bottom-up capture of attention by memory (Burianová
et al., 2012). Superior parietal lobe is involved in the interaction
between language processing and the control of movement (Segal
and Petrides, 2012); activation has been associated with syllogis-
tic reasoning involving abstract or incongruent materials (Tsujii
et al., 2011). As mentioned above, activation in the left inferior
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parietal lobe has been associated with abstract reasoning; activa-
tion in the left angular gyrus has been associated with semantic
meaning, more so when there is a conflict involving implausi-
ble sentences or when the stimulus is emotional, with problem
identification and problem solving, and with cognitive flexibility.
Activation in the left inferior frontal region has been associated
with semantic integration (Yu et al., 2011; Huang et al., 2012) and
with categorization (Lupyan et al., 2012; Philipp et al., 2013). As
mentioned above, activation in the right supplementary motor
area has been associated with speeded decision-making and with
attention maintenance, and is considered to be part of a ventral
attention network that mediates bottom-up capture of attention
by memory.

The positive and negative reasoning time windows yielded
similar activation in left superior parietal, left inferior parietal
(angular gyrus, intraparietal sulcus, and supramarginal gyrus),
left postcentral gyrus, and right supplementary motor area. This
finding emerged from a conjunction analysis of two interac-
tion contrasts: [(positive reasoning–positive baseline)− (neutral
reasoning–neutral baseline)] and [(negative reasoning–negative
baseline)− (neutral reasoning–neutral baseline)].

Beyond these similarities, however, results indicated a crossover
interaction, or double dissociation, between the positive and
negative reasoning time windows at the neural level. Not
only did the interaction contrast [(positive reasoning–positive
baseline)− (negative reasoning–negative baseline)] reveal acti-
vations but so also did the reverse interaction contrast [(neg-
ative reasoning–negative baseline)− (positive reasoning–positive
baseline)].

The interaction favoring the positive reasoning time window
revealed activation in right inferior frontal (orbitalis, or BA 47),
right superior parietal, cerebellar vermis, and left fusiform. In the
literature, activation in right frontal (BA 47) has been noted in
unconstrained hypothesis generation (Vartanian and Goel, 2005).
As mentioned above, superior parietal lobe is involved in the
interaction between language processing and the control of move-
ment. The cerebellar vermis is involved in autonomic and motor
responses to an emotional state (Strata et al., 2011). Activation
in left fusiform has been involved in lexico-semantic processing
(Tsapkini and Rapp, 2010; Thesen et al., 2012).

The interaction favoring the negative reasoning time window
revealed activation in left caudate nucleus, left inferior frontal
(opercularis, or BA 44), left occipital lobe, and right precentral
gyrus, as well as relative deactivation in right middle temporal
gyrus. In the literature, caudate nucleus has been shown to have
a crucial role in reasoning (Melrose et al., 2007) unless insuffi-
cient processing time has been allotted for reasoning (Kalbfleisch
et al., 2007). Activation in left inferior frontal (BA 44) is associ-
ated more with phonological than with semantic fluency (Katzev
et al., 2013). Right precentral gyrus is implicated in the represen-
tation of coordinated hand–mouth movements (Desmurget et al.,
2014) and the neural coding of oculomotor and somatomotor
space (Iacoboni et al., 1997). Activation in right middle temporal
lobe has been associated with verbal fluency (Krug et al., 2011)
and with semantic priming (Laufer et al., 2011).

Goel and Dolan (2003b) had manipulated emotion using the
content of the syllogism such that content was either emotionally

provocative or neutral; they found that reasoning with negatively
charged material was associated with activation in ventrome-
dial prefrontal cortex, whereas reasoning with neutral material
was associated with activation in left dorsolateral prefrontal cor-
tex. We have extended their findings by manipulating emotion
separately from the material itself. Our emotion manipulation
provides an emotional context in which to reason about neutral
material, rather than providing emotional content. Therefore, it
is not surprising that our findings differ from those in Goel and
Dolan (2003b). Reasoning in an emotional but unrelated con-
text involves a different neural underpinning than does reasoning
about emotional content.

The fact that we found neural level differences in reason-
ing, despite a lack of behavioral difference, suggests that the
neural systems underlying reasoning are sensitive to neural sys-
tems previously recruited by emotional context, and can to some
extent compensate for these effects of emotions. It is possible that
the behavioral manifestations (that is, impairment of reasoning)
emerge only when the system is stressed.

In summary, we had predicted that both positive and neg-
ative emotion would be detrimental to reasoning, and that the
neural systems underlying reasoning under those two conditions
would differ from that in the neutral condition. We found that,
although neither positive nor negative emotional context signif-
icantly impaired reasoning performance, positive and negative
context did have dissociable effects on the underlying neural
mechanisms involved in reasoning.
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Measurements of functional connectivity support the hypothesis that the brain is
composed of distinct networks with anatomically separated nodes but common
functionality. A few studies have suggested that intellectual performance may be
associated with greater functional connectivity in the fronto-parietal network and
enhanced global efficiency. In this fMRI study, we performed an exploratory analysis of
the relationship between the brain’s functional connectivity and intelligence scores derived
from the Portuguese language version of the Wechsler Adult Intelligence Scale (WAIS-III)
in a sample of 29 people, born and raised in Brazil. We examined functional connectivity
between 82 regions, including graph theoretic properties of the overall network. Some
previous findings were extended to the Portuguese-speaking population, specifically
the presence of small-world organization of the brain and relationships of intelligence
with connectivity of frontal, pre-central, parietal, occipital, fusiform and supramarginal
gyrus, and caudate nucleus. Verbal comprehension was associated with global network
efficiency, a new finding.

Keywords: functional connectivity, fMRI, network parameters, intelligence, Wechsler intelligence scales,

exploratory data analysis

INTRODUCTION
Functional connectivity is expressed as correlations between the
blood oxygenation level dependent signals in different regions of
the brain (Friston et al., 1993; Biswal et al., 1995; Van den Heuvel
and Hulshoff Pol, 2010). Consistent spatial patterns of functional
connectivity are found for individuals at rest and are presumed
to reflect information processing networks (Lowe et al., 1998;
Raichle et al., 2001; Beckmann et al., 2005; Damoiseaux et al.,
2006). Recent advances in neuroimaging have provided new tools
to measure and analyze interactions between brain regions, cat-
alyzing the study of functional connectivity of the brain (Van den
Heuvel and Hulshoff Pol, 2010). An important recent expansion
of functional connectivity studies was the use of the principles
of graph theory (Watts and Strogatz, 1998) to depict the brain
as an efficient complex network, with brain regions as the nodes
and functional connectivity as the edge weights (Sporns and Zwi,
2004; Bullmore and Sporns, 2009). The functional brain network
shows a highly efficient small-world organization, with a high
level of local clustering and short effective lengths between brain
regions. This leads to high global efficiency of information flow in
the network (Sporns and Zwi, 2004; Van den Heuvel et al., 2008).

An important tool to measure the intelligence in adults is the
Wechsler Adult Intelligence Scale (WAIS), based on the “global
capacity of the individual to act purposefully, to think rationally
and to deal effectively with his environment” (Wechsler, 1939).
Some studies have applied intelligence indices to anatomical and
functional brain measurements (Gray et al., 2003; Haier et al.,

2004; Song et al., 2008; Gläscher et al., 2009; Li et al., 2009). A
previous study found that higher IQ scores are associated with
greater functional connectivity within a fronto-parietal network,
suggesting that the coordination of these regions is an impor-
tant neural basis of individual intelligence (Song et al., 2008). A
region-specific analysis of the lateral prefrontal cortex, part of the
fronto-parietal network, found that its global connectivity pre-
dicted working memory performance and fluid intelligence (Cole
et al., 2012). Two studies have reported an association between
efficiency of global communication and intellectual performance,
suggesting that individuals with higher intelligence have a more
organized brain network overall (Van den Heuvel et al., 2008;
Song et al., 2009).

However, the relationships between brain functional connec-
tivity and psychological measures such as intelligence are not
fully defined. In the present exploratory study, we pursued this
line of research further by considering how the several indices
of intelligence measured by the Wechsler Adult Intelligence Scale
(WAIS-III) related to connection strengths and network proper-
ties in a brain network defined by a set of 82 a priori cortical
and subcortical regions derived from an atlas (Tzourio-Mazoyer
et al., 2002). The use of a smaller set of regions of interest pre-
serves structural and physiological similarities, while simplifying
the analysis and easing the interpretation of the findings relative
to the commonly used voxel-wise approach. In contrast to some
studies that considered a priori regions known to be related to
intelligence (Song et al., 2008; Cole et al., 2012), the present study
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explored the brain as a whole, with no region-specific or network-
specific hypotheses. This analysis could help to elucidate how the
human brain supports particular intellectual processes, extending
previous work and providing background to future studies.

MATERIALS AND METHODS
PARTICIPANTS
Thirty one healthy people were recruited from the academic
community and the local population living in the state of São
Paulo, Brazil. They were right-handed, had no history of neu-
rological or psychological illnesses, and were native speakers of
Brazilian Portuguese. People with a range of educational lev-
els were recruited to provide a greater range of intelligence
scores (Table 1). Thirty of these participants made up Dataset 1.
Volunteers participated in this study after responding to the stan-
dard screening interview of the Hospital of Clinics in Ribeirão
Preto, and providing written consent as approved by the Research
Ethics Committee of University of São Paulo.

MEASURES OF INDIVIDUAL INTELLIGENCE
The level of intellectual performance was measured (Gérson
S. Santos Neto and Sara R. E. Rosset) using the WAIS III
test (Wechsler Adult Intelligence Scale) as modified for the
Portuguese-speaking population of Brazil (Nascimento, 1998).
WAIS-III is a widely used instrument that assesses several cog-
nitive domains contributing to intelligence. It has high test-retest
reliability and a large database for comparison and standardiza-
tion (Gläscher et al., 2009). Measurements originating from the
third version of the test are the four fundamental indices Verbal
Comprehension Index, Perceptual Organization Index, Working
Memory Index, and Processing Speed Index; and the overall score,
Full-Scale IQ. The test took 1 h 30 min on average and was given
at a separate time from the image acquisition (less than 2 months
apart, except for one participant with a 3-month difference).

DATA ACQUISITION
Resting-state functional magnetic resonance images (eyes open,
no fixation) from each participant were acquired in a Phillips
3 Tesla scanner with a Quasar Dual gradient system (80 mT/m,
200 mT/m/ms), using an eight channel head coil and SENSE
encoding. An EPI sequence was performed with the following
parameters: 2000 ms repetition time, 30 ms echo time, 240 ×
240 mm field of view, 3 × 3 mm in-plane voxel size, 4.0 mm slice
thickness, 0.5 mm slice gap, 32 slices, 80◦ flip angle, 200 volumes,
25.2 Hz bandwidth per pixel. Overall functional acquisition time
was 6:48, including four initial volumes that were discarded prior
to analysis.

High-resolution anatomical images were also acquired using
a 3D T1 weighted turbo-field-echo gradient sequence with the
following parameters: 2500 ms repetition time, 3.2 ms echo time,
7.0 ms time echo spacing, 900 ms inversion time, 1 mm isotropic
voxel size, 8◦ flip angle, 240 × 240 × 160 mm3 field of view, and
overall time 5:19. Diffusion and other functional images were also
acquired, but not used in the present analysis.

A separate set of resting-state functional magnetic resonance
images (open eyes, with fixation) from 30 subjects (13M/17F,
age: 26.5 ± 5.5, age range: 20–42, right-handed) was included in

the analysis to provide a baseline for the small-worldness mea-
surement, and classified as Dataset 2. These images were from
the 1000 Functional Connectomes Project (Biswal et al., 2010),
specifically the data acquired in Leipzig, Germany, in a 3 Tesla
scanner with the following parameters: 2300 ms repetition time,
34 slices, 195 volumes.

PRE-PROCESSING
Functional MRI data were processed using the SPM8 soft-
ware (http://www.fil.ion.ucl.ac.uk/spm/software/spm8) and the
CONN functional connectivity toolbox (14), both implemented
in MatLab (R2013a, The MathWorks, Natick, MA, USA). For
each individual’s functional images, rigid body movement was
measured and corrected using a two-step procedure in which the
first of the specified functional images was used as a reference to
which all subsequent images were realigned, then the functional
images were re-registered to the mean image. Participants who
moved more than 2 mm in translation or 1 degree in rotation
were excluded from analysis. Functional images were then spa-
tially smoothed using a Gaussian filter of 5 mm full width at half
maximum.

Anatomical images from each volunteer were registered to the
mean functional image created in the previous step. The anatom-
ical volumes were segmented into gray matter, white matter and
cerebrospinal fluid compartments and non-linearly registered to
the MNI standard space. The resulting masks were eroded once
at an isotropic voxel size of 2 mm to minimize partial volume
effects. This step produced spatial normalization parameters that
were used to apply the transformations to the functional images.

Voxel time series were additionally processed to reduce noise.
Signals from the white matter and CSF compartments (5 princi-
pal components each) and the estimated head motion time series
and first differences were removed by regression. A temporal
band-pass filter was applied to remove signals outside the range
0.008–0.09 Hz (Whitfield-Gabrieli and Nieto-Castanon, 2012).

Average signals were extracted from a set of 116 regions
defined by the Automated Anatomical Labeling (AAL) atlas,
which is a macroanatomical parcellation of the single subject
MNI-space template brain (Tzourio-Mazoyer et al., 2002). Eight
of the AAL regions were excluded from the analysis due to
their small size (less than 300 voxels), which increased the likeli-
hood that partial volume effects would contaminate signals from
those regions. Cerebellum and cerebellar vermis regions were
also excluded because they were not fully covered by the fMRI.
Therefore, 82 cortical and subcortical regions were included in
total, all of them shown in the Supplemental Material (Table S1)
with their AAL abbreviations and the locations of their centers, in
x, y, and z.

ANALYSIS OF FUNCTIONAL CONNECTIVITY AND INTELLIGENCE
Weighted association matrices were created (Figure 1) using the
Pearson correlations between the time series of each pair of
brain regions. Functional connectivity of each path was compared
with the four fundamental intelligence indices and the Full-Scale
IQ using the Pearson correlation coefficient (Table 3, Figure 2).
Negative values of the matrices were included to consider also the
functional anticorrelations. Functional connectivity values were
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FIGURE 1 | Construction of weighted and binary correlation matrices of the brain.

FIGURE 2 | Axial, coronal, and sagittal projections of the brain showing the functional connections having associations with (A) Full-Scale IQ and (B)

Perceptual Organization Index at FDR < 0.05. Numbers correspond to the labels in Table 3.

the Fisher Z scores computed between the time series of each pair
of regions. Each list of 3321 p-values (all pairs of 82 regions) was
adjusted to maintain a false discovery rate of 0.05, separately for
each IQ index.

GRAPH ANALYSIS
We examined small-worldness, characteristic path length, clus-
tering coefficient, and global and local efficiency. Characteristic
path length is the shortest path length between all pairs of nodes.
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Clustering coefficient is the number of connections in the neigh-
borhood of a certain node divided by the maximum number of
possible connections between the neighbors of this node. Global
efficiency is inversely related to the characteristic path length and
measures how efficiently information is communicated between
nodes. Local efficiency of a given node is the inverse of the average
shortest path connecting all neighbors of that node and evaluates
the influence of different paths based on the connection weights
of the node’s neighbors, i.e., a path made of strong connections
contributes to the local efficiency more than a path made of weak
connections. Therefore, local efficiency of a node is related to its
clustering coefficient, since more connections or stronger ones
between neighbors directly affect both measures.

All the network parameters were computed using the Brain
Connectivity Toolbox (BCT) (Rubinov and Sporns, 2010).
Negative correlations in association matrices were not included in
any analysis of network measures, since they need to be removed
prior to BCT computations (Rubinov and Sporns, 2010, 2011).
Different network measures require different pre-processing of
the association matrix.

Small-worldness analysis
Characteristic path length (L) and clustering coefficient (C) were
computed to study the small-worldness of our data (Dataset
1, Figure 3) and of an independent set of resting-state fMRI
(Dataset 2, Figure 4) to verify the small-worldness of the network
in our sample and to provide a baseline for our measurements.

These calculations used binary matrices obtained by threshold-
ing the correlation matrices (Figure 1) at a range of values. The
same analysis was applied to 20 random matrices with the same
number of connections and similar distribution of connections
(Sporns and Zwi, 2004), to obtain a random-matrix characteris-
tic path length (Lrandom) and clustering coefficient (Crandom). The
networks are said to have small-world organization for correla-
tion thresholds in which L = Lrandom and C > Crandom; this was
calculated using a 2-sample t-test for p ≤ 0.01.

Analysis of global network properties and intelligence
Global network parameters (characteristic path length, clustering
coefficient, and efficiency), obtained using weighted networks,
were related to the intelligence indices using the Pearson correla-
tion coefficient (Table 4). The Z-transformed correlation matrix
was used for the association matrix, except for global efficiency,
which used the Pearson correlations due to the need to restrict
the range to [0,1]. Negative values were set to zero. Some form
of normalization is necessary to obtain measures that are inde-
pendent of the network size, dividing parameters obtained from
brain networks by those obtained from random networks. For
normalization of weighted networks, a recently approach pur-
poses to compute the average value from an ensemble of surrogate
graphs (Stam et al., 2009). In our study, 100 surrogate random
weighted networks were constructed, derived from the origi-
nal networks by randomly permuting the edge weights. The
parameters of these random weighted networks were averaged

FIGURE 3 | Our data (Dataset 1): Mean characteristic path length for brain (red) and random (blue) networks are shown on the left as a function of

threshold. Mean clustering coefficient for brain (red) and random (blue) networks are shown on the right. Confidence bands represent ±1 standard deviation.

FIGURE 4 | Independent test data (Dataset 2): Mean characteristic path length for brain (red) and random (blue) networks are shown on the left.

Mean clustering coefficient for brain (red) and random (blue) networks are shown on the right. Confidence bands represent ±1 standard deviation.
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and used in normalization. For this analysis, p-values were not
adjusted.

An additional analysis of global characteristic path length and
global clustering coefficient associated to intelligence indices was
performed using a binarized association matrix (thresholded at
r = 0.45) to facilitate comparisons with Van den Heuvel et al.
(2009) (Figure 5). Both metrics were normalized using the same
20 equivalent random binary matrices, specified in Section Small-
Worldness Analysis, averaged for each brain network. Pearson
correlations were also transformed using the Fisher Z in this
analysis.

Analysis of local network properties and intelligence
Finally, local efficiency, which is related to clustering coefficient,
was related to the intelligence indices using the Pearson correla-
tion coefficient (Table 5, Figure 6). Local efficiency calculations
used the untransformed Pearson correlation matrix for the asso-
ciation matrix, except that negative weights were replaced with 0.
For this analysis, false discovery rates were computed per node
(over the list of the 81 other regions).

RESULTS
Of the 31 volunteers, one did not perform the intelligence test
and exhibited excessive movement during imaging acquisition;
thus 30 participants (Dataset 1) were included in the small-world
organization study (ages: mean 27 years, standard deviation 6,
range: 19–38; 15 women) and 29 participants were included in
the intellectual performance study (ages: mean 27 years, stan-
dard deviation 6, range: 19–38; 14 women). Demographic data
for the intellectual performance study (29 participants) are in
Table 1.

We have included a table of correlations between the intel-
ligence indices in our sample (Table 2). Verbal IQ (VIQ) was
strongly correlated with Verbal Comprehension Index (VCI) and
Working Memory Index (WMI). Performance IQ (PIQ) was cor-
related strongly with Perceptual Organization Index (POI) and
moderately with Processing Speed Index (PSI). This was expected
because VIQ and PIQ are derived from the fundamental indices,
and so these indices were not used in the analysis of this study.
Full scale IQ (FSIQ) was strongly correlated with Perceptual
Organization and Working Memory indices and moderately

correlated with Verbal Comprehension and Processing Speed
Indices, also expected.

ASSOCIATIONS BETWEEN FUNCTIONAL CONNECTIVITY AND
INTELLIGENCE
Possible correlations of functional connectivity with FSIQ and
perceptual organization are shown in Table 3 and Figure 2.
Table 3 shows all correlations with FDR<0.05; Tables S2–S6 in
the Supplemental Material show complete results for the 15 most
significant associations for each IQ index. The most prevalent
regions were pre-central, parietal, and occipital.

SMALL-WORLDNESS ANALYSIS
To establish the baseline validity of the network analysis, we com-
puted small-worldness for our data and compared the results to
an independent data set. Brain networks showed a clear small-
world organization over a range of thresholds. Figure 3 (left) and
Figure 4 (left) show normalized characteristic path length from
binary networks as a function of threshold for participants for
Dataset 1 and Dataset 2, respectively. Mean values for 20 matched
random networks are also shown for comparison. Figure 3 (right)
and Figure 4 (right) shows the same for the normalized clustering
coefficient. In both datasets, networks showed a clear small-world
organization for correlation thresholds between 0.05 and 0.20,
characterized by L ≈ Lrandom for thresholds lower than 0.20 and
C � Crandom for thresholds higher than 0.05 (2-sample t-test, all
p < α = 0.01, Bonferroni corrected for multiple thresholds).

ASSOCIATIONS BETWEEN GLOBAL NETWORK PROPERTIES AND
INTELLIGENCE
We observed a negative, though statistically weak (p = 0.14), cor-
relation between FSIQ and normalized characteristic path length
(lambda) (Figure 5, left). This was computed using correlation
matrices binarized at a threshold of 0.45, the same threshold
applied by Van den Heuvel et al. (2009), for the purpose of direct
comparison.

Verbal comprehension was associated with normalized global
efficiency (r = 0.43, p = 0.02, uncorrected p-value). Also, global
efficiency was weakly correlated with FSIQ (r = 0.24, p = 0.22,
uncorrected p-value). These results along with a complete list
of correlations between intelligence scores and global network
parameters are shown in Table 4.

FIGURE 5 | Normalized characteristic path length (lambda) (left) and

normalized clustering coefficient (gamma) (right) had slight negative

relationships with Full Scale IQ, though these were not statistically

robust. The network path strengths were based on binarized correlation
matrices thresholded at 0.45 for this analysis. (�) corresponds to
measurements for an individual participant.
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FIGURE 6 | Axial, coronal, and sagittal views of the brain showing

the non-normalized weighted-network local efficiency in the

regions where it had the strongest association with (A) Full-Scale

IQ, (B) Verbal Comprehension Index, (C) Working Memory Index,

and (D) Processing Speed Index. Labels correspond to those shown
in Table 5.

ASSOCATIONS BETWEEN LOCAL NETWORK PROPERTIES AND
INTELLIGENCE
We observed also possible relationships between local efficiency
and measures of intelligence (Table 5, Figure 6). Prominent
regions were pre-central gyrus, associated with FSIQ; caudate
nucleus, associated with verbal comprehension and processing
speed; bilateral inferior occipital gyrus, associated with verbal
comprehension; and bilateral rolandic operculum, associated
with working memory and processing speed. However, in all

cases the false discovery rate was >0.05; uncorrected p-values are
reported here.

DISCUSSION
We have extended a number of previous observations concerning
brain functional connectivity and intelligence to the Portuguese-
speaking population. These include the presence of small-world
organization and correlations of intelligence with global and local
characteristics of the brain’s functional networks. Additionally,
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some novel findings in this exploratory study suggest hypotheses
for future research.

The global functional brain network exhibited small-world
organization at correlation thresholds between 0.05 and 0.20, α =
0.01, Bonferroni corrected for multiple comparisons of thresh-
olds, and this closely matched the small-world organization that
was apparent in the confirmation data set (Figures 3, 4). This sug-
gests a high level of local clustering combined with a relatively

Table 1 | Demographic data and estimated intelligence scores.

Category Data

Gender (M/F) 15/14

Age (years-old) 26.8 ± 5.8

Verbal IQ 111.7 ± 10.8

Performance IQ 116.0 ± 11.4

Full-scale IQ 114.2 ± 10.0

Verbal comprehension index 111.9 ± 11.0

Perceptual organization index 115.3 ± 11.9

Working memory index 111.4 ± 12.3

Processing speed index 116.1 ± 12.0

Age and intelligence scores are shown as mean ± standard deviation.

Table 2 | Correlations between intelligence scores.

VIQ PIQ FSIQ VCI POI WMI

PIQ 0. 54

FSIQ 0. 90 0. 85

VCI 0. 84 0. 29 0. 67

POI 0. 52 0. 95 0. 81 0. 23

WMI 0. 73 0. 56 0. 74 0. 49 0. 52

PSI 0. 45 0. 55 0. 55 0. 38 0. 35 0. 53

Bold numbers represent significant values for α < 0.01.

small number of long-distance connections (Watts and Strogatz,
1998). This threshold range is smaller than the thresholds of
0.3–0.5 reported in previous observations of small-worldness
in whole-brain networks (Van den Heuvel et al., 2008, 2009).
However, node definitions differed substantially between the
studies as well. Small-world networks are an attractive model for
the connected human brain, because of their ability to trans-
fer information with high efficiency for low wiring cost (Watts
and Strogatz, 1998), and seem ubiquitous in the organization of
anatomical connectivity, affected in a variety of diseases (Bassett
and Bullmore, 2009). Moreover, Sporns and Zwi, in 2004, stated
that information integration and even mental awareness depend
on the small-world structure. Our replication of this effect sup-
ports the validity and the reliability of the network measures in
this sample.

Globally, FSIQ showed a weak negative correlation with char-
acteristic path length (Figure 5, left; r = −0.28, 95% CI = −0.59,
0.10), although with no statistical significance. Additionally,
global efficiency (inversely correlated with path length) showed
a weak positive correlation with FSIQ (Table 4; r = 0.24 95%
CI = −0.14, 0.56), not statistically significant also. These same
correlations were weaker when the full (weighted) associa-
tion matrix was used (Table 4) instead of a binarized matrix
(Figure 5). It is not known whether the thresholding step
increases or decreases the reliability of the resulting measure-
ments; however, possibly of note, correlations were observed to
be the same sign in our results and in previous literature regard-
less of method or statistical significance. The consistent finding
of a negative correlation between characteristic path length and
FSIQ could be an extension to Portuguese speakers of the pre-
vious finding in Dutch speakers (Van den Heuvel et al., 2009):
for characteristic path length, r = −0.54, 95% CI −0.80,−0.11.
The negative correlation is consistent with the previously pro-
posed idea that human intelligence is related to how efficiently
different brain regions are organized and integrated (Van den
Heuvel et al., 2009). It also suggests that functional brain networks
are optimized in computational efficiency to promote higher

Table 3 | Associations between functional connectivity and intelligence indices (Full-Scale IQ—FSIQ, Perceptual Organization Index—POI) for

specific nodes (center coordinates in x, y, and z) in the overall network, and with (uncorrected) 95% confidence intervals.

Index Label Functional connectivity between (AAL label) Correlation FDR

MNI Region A Center A (mm) MNI Region B Center B (mm)

FSIQ 1 Fusiform R (33.7, −40.2, −21.5) Parietal Sup L (−23.7, −60.8, 57.7) 0.62 (0.36, 0.80) 0.003

2 Pre-central L (−39.0, −7.0, 49.6) Occipital Sup R (24.0, −82.2, 29.3) 0.60 (0.30, 0.79) 0.05

3 Occipital Sup R (24.0, −82.2, 29.3) Parietal Sup L (−23.7, −60.8, 57.7) 0.59 (0.29, 0.79) 0.03

4 Pre-central L (−39.0, −7.0, 49.6) Occipital Inf R (37.9, −83.2, −90) 0.57 (0.26, 0.78) 0.05

POI 1 Pre-central L (−39.0, −7.0, 49.6) Occipital Inf L (−36.5, −79.6, −9.2) 0.67 (0.40, 0.83) 0.006

2 Parietal Sup R (25.8, −60.4, 60.7) Paracentral Lobule L (−8.0, −26.7, 68.7) 0.66 (0.38, 0.82) 0.009

3 Occipital Inf R (37.9, −83.2, −90) Post-central L (−42.9, −23.8, 47.5) 0.63 (0.35, 0.81) 0.015

4 Pre-central L (−39.0, −7.0, 49.6) Occipital Inf R (37.9, −83.2,−90) 0.62 (0.32, 0.80) 0.015

5 Frontal Sup Orb L (−5.4, 52.5, −8.9) Frontal Sup Orb R (7.8, 50.4, −8.5) 0.61 (0.31, 0.80) 0.04

6 Pre-central L (−39.0, −7.0, 49.6) Parietal Sup R (25.8, −60.4, 60.7) 0.59 (0.29, 0.79) 0.020

Functional connectivity was measured as the Fisher transformed correlation between the two regions’ time series. Only region pairs whose connectivity was

correlated with IQ index at FDR < 0.05 are shown. Tables S2–S6 in the Supplemental Material show further results.
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processing speed (Van den Heuvel et al., 2009) with minimal
wiring cost (Chklovskii et al., 2002).

The network parameters studied here were measurements of
functional segregation (clustering coefficient and local efficiency),
that describe the processing occurring within densely intercon-
nected networks of brain regions; and functional integration
(characteristic path length, and its inverse, global efficiency), that
is related to how information from distributed brain regions is
combined (Rubinov and Sporns, 2010). Global efficiency was
associated with verbal comprehension (r = 0.43; 95% CI = 0.08,
0.69) (Table 4), a novel suggestive finding worthy of further study.
This finding, combined with associations between VCI and local
efficiency found in several brain regions (Table 5, Figure 6B and
further discussed below) suggests that linguistic and verbal abil-
ities are linked with a higher brain efficiency, at both global and
local levels.

No other associations were found between global network
parameters and intellectual performance (Table 4). Because of the
relatively small sample size of this study, we are not able to make
strong conclusions from this and it does not necessarily conflict
with prior findings, as our estimated 95% confidence intervals
included the statistically significant correlation values found by
others (Song et al., 2009; Van den Heuvel et al., 2009). However, it
is possible that relationships between functional connectivity and
intelligence could be limited to sub-networks of the brain, rather
than being present at a global level, so we proceeded to examine
network characteristics at a regional level also.

Local efficiency in the caudate nuclei was associated with
VCI (Table 5). Some studies show that this region is important
for language and verbal abilities, revealing that a smaller short-
est path between the caudate and neighbor regions would be
related to a higher verbal intelligence. This was not the only fea-
ture involving the caudate that was related with verbal abilities.
Caudate function has also been related to verbal fluency during
a working memory task (Gruber and von Cramon, 2003), and
has shown activity during speech contrasted with a non-speech
rest baseline condition (Simmonds et al., 2011). Significant asso-
ciations with verbal fluency performance have also been found
for caudate nuclei volume, suggesting that this region is impli-
cated in the circuitry mediating this ability (Hannan et al., 2010).
Left caudate plays an important role in language selection in
both monolingual and multilingual people (Crinion et al., 2006),
and some studies propose that the caudate would act to fine-
tune interactions between automatic and more complex language

processing (Friederici, 2006) or in the resolution of word ambi-
guity (Ketteler et al., 2008).

Local efficiency in the parietal gyrus was correlated with Verbal
Comprehension and Processing Speed indices (Table 5), and con-
nection strengths to the parietal lobe correlated with Perceptual

Table 5 | Associations between non-normalized weighted-network

local efficiency and intelligence indices (Full-Scale IQ—FSIQ, Verbal

Comprehension Index—VCI, Working Memory Index—WMI,

Processing Speed Index—PSI) for specific nodes in the overall

network, with 95% confidence intervals and p-values (uncorrected for

multiple comparisons).

Intelligence Label AAL atlas Correlation with

index region local efficiency

FSIQ 1 Pre-central R 0.48 (0.14, 0.72) p = 0.009

2 Occipital Inf L 0.45 (0.11, 0.70) p = 0.013

3 Pre-central L 0.37 (0.010, 0.65) p = 0.05

VCI 1 Putamen L 0.50 (0.16, 0.73) p = 0.006

2 Caudate R 0.48 (0.13, 0.72) p = 0.009

3 Supp Motor Area L 0.42 (0.07, 0.68) p = 0.022

4 Pre-central R 0.42 (0.06, 0.68) p = 0.024

5 Cingulum Mid L 0.42 (0.06, 0.68) p = 0.024

6 Frontal Sup L 0.41 (0.06, 0.68) p = 0.026

7 Occipital Inf R 0.41 (0.05, 0.67) p = 0.028

8 Occipital Inf L 0.40 (0.04, 0.67) p = 0.03

9 Caudate L 0.38 (0.016, 0.66) p = 0.04

10 Parietal Sup R 0.37 (0.010, 0.65) p = 0.05

WMI 1 Rolandic Oper R 0.52 (0.19, 0.74) p = 0.004

2 Rolandic Oper L 0.42 (0.07, 0.68) p = 0.022

PSI 1 Caudate L 0.46 (0.11, 0.70) p = 0.013

2 Rolandic Oper L 0.45 (0.10, 0.70) p = 0.014

3 Parietal Inf R 0.41 (0.05, 0.67) p = 0.028

4 Caudate R 0.41 (0.05, 0.67) p = 0.029

5 Temporal Mid L 0.39 (0.03, 0.66) p = 0.03

6 Rolandic Oper R 0.39 (0.03, 0.66) p = 0.04

7 Frontal Sup Medial L 0.39 (0.03, 0.66) p = 0.04

8 Frontal Inf Tri R 0.38 (0.013, 0.65) p = 0.04

Only the subset with correlations at p < 0.05 are shown (uncorrected for multiple

comparisons).

Table 4 | Pearson correlations between normalized weighted-network global parameters (characteristic path length, global efficiency, and

global clustering coefficient) and intelligence indices (Full-Scale IQ—FSIQ, Verbal Comprehension Index—VCI, Perceptual Organization

Index—POI, Working Memory Index—WMI, Processing Speed Index—PSI) with 95% confidence intervals and p-values (uncorrected for

multiple comparisons).

Normalized characteristic path length Normalized global efficiency Normalized global clustering coefficient

FSIQ −0.15 (−0.49, 0.22) p = 0.42 0.24 (−0.14, 0.56) p = 0.22 −0.07 (−0.42, 0.31) p = 0.74

VCI −0.27 (−0.58, 0.11) p = 0.16 0.43 (0.08, 0.69) p = 0.02 −0.25 (−0.57, 0.12) p = 0.18

POI −0.09 (−0.44, 0.29) p = 0.64 0.08 (−0.29, 0.44) p = 0.67 0.02 (−0.34, 0.39) p = 0.90

WMI −0.08 (−0.43, 0.30) p = 0.68 0.17 (−0.20, 0.51) p = 0.36 −0.03 (−0.39, 0.34) p = 0.88

PSI −0.04 (−0.40, 0.33) p = 0.82 0.12 (−0.26, 0.46) p = 0.55 0.15 (−0.23, 0.49) p = 0.43
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Organization and Working Memory indices (Tables S4, S5 in
Supplemental Material).

Local efficiency and connection strength in occipital lobe
regions were associated with higher general intelligence scores
and other indices (Tables 3, 5). This suggests an impact of
early perceptual processing on WAIS scores, especially Perceptual
Organization. Although we did not observe correlations between
the POI and segregational network properties (Table 5), there
were some correlations with individual connections (Table 3).
This may mean that this index is more related to individual con-
nections than to network organization, possibly because of the
necessity of rapid transfer of information of this region to oth-
ers. It may reflect the same phenomenon observed in a recent
study where higher IQ was correlated with shorter inspection
time measured by EEG (which tells how fast the system extracts
information from a given stimulus) because recurrent signals—
those that are transmitted from a higher-tier sensory region to a
lower one and that cognitive functions rely on—reach visual areas
faster (Jolij et al., 2007).

Local efficiency of bilateral rolandic operculum correlated with
WMI (Table 5, Figure 6C). This region encompasses part of the
pre-central gyrus. This is consistent with a number of other
findings relating pre-central areas to working memory, in terms
of both activity (Gruber and von Cramon, 2003; Colom et al.,
2010) and functional connectivity (Newton et al., 2011; Cole
et al., 2012). We also observed a correlation between left pre-
central regions and occipital ones with measures of general and
fluid intelligence (Table 3, Figure 2A). Although other findings
reported that pre-central activity and connectivity properties are
related to fluid intelligence (Cole et al., 2012) as well as general
intelligence (Gray et al., 2003), the specific role of the pre-central-
occipital connection to the general intelligence is not known.
Since these relationships are not described yet in the literature,
this study may be a starting point for this question.

At the level of single paths, the strongest correlations we
observed between FSIQ and functional connectivity (Table 3,
Figure 2A) are consistent with the parieto-frontal integration the-
ory (P-FIT) of Jung and Haier (2007), which was based on an
extensive review of the literature relating measures of intelligence
to brain structure and function. Individual differences of the
described connections in this model are predicted to correlate
with differences in intellectual performance. That is what we have
partially observed in the patterns of functional connectivity, with
higher functional connectivity predicting greater FSIQ and per-
ceptual organization capacity. The model proposes information
flow from basic sensory/perceptual processing regions to areas
where structural abstraction and elaboration are involved. This
is represented in our results by the connection between fusiform
gyrus—a region involved in recognition of visual input and visual
imagery—and parietal gyrus; and the connection between occip-
ital and parietal cortex (Table 3). Then, a parieto-frontal net-
work is responsible for information processing and abstraction,
and finally the anterior cingulate selects the response (Jung and
Haier, 2007), although no associations could be detected in our
study to corroborate these two parts of the model. Nevertheless,
direct connections between occipital regions and pre-central ones
were associated with FSIQ (Table 3, Table S2 in Supplementary

Material), which is not in accordance with the P-FIT and thus
suggests a need for further study. Of note, as not all of the rela-
tionships predicted by this model were present, more experiments
would be needed to robustly confirm or reject all aspects of the
model.

Our selection of 82 pre-defined atlas regions as network nodes
offers reduced complexity of the networks and higher data pro-
cessing speed compared to a voxel-wise approach, and possibly
easier interpretability of the findings in terms of known properties
of the relatively large regions. The finding of small-world organi-
zation bolsters the comparability of our results to those of other
studies that used different node definitions. However, it is also
true that results of this study are partially dependent on the node
definitions, and the node definitions used here may not coincide
with others. Example of correspondences include an association
between local efficiency in the left pre-central gyrus and the Full-
Scale IQ for a weighted anatomical network made of 90 AAL
atlas regions (Li et al., 2009) (r = 0.25; 0.03, 0.45), endorsing our
result in Table 5 (r = 0.37; 0.010, 0.65). In addition, we observed
a weak correlation (r = 0.24; p = 0.22) between global efficiency
and Full-Scale IQ (Table 4), just as Song et al. (2009) did for the
default mode network (r = 0.24; p = 0.072). Findings we did not
observe include those involving local efficiency of a number of
cortical and subcortical regions (Li et al., 2009) and the associ-
ations between intelligence and functional connectivity reported
by Song et al. (2008, 2009). Direct comparisons are reported in
the Supplement Material (Tables S7, S8).

In an exploratory study such as this one, the possibility
of chance findings must be clearly communicated. Failing to
acknowledge multiple tests would lead to many false positive
associations. On the other hand, strictly controlling type I error
is likely to eliminate interesting leads in a sample of this size.
Therefore, in associations between path connectivity values and
intelligence scores, we compromised by controlling the false dis-
covery rate (estimated fraction of positive findings that were false)
at 5% for each path (3321 values). As the associations with global
and local network parameters showed high p-values, FDR con-
trol was not performed in these cases to conserve a few of the
most relevant associations. Our findings that certain regions were
important in more than one context, and that some regions
showed symmetric bilateral effects, do lend some apparent valid-
ity to the results. We have provided complete information about
the statistical reliability of all findings to facilitate hypothesis
development and comparisons with other studies.

Further study of the relationships between brain network orga-
nization and intelligence would be necessary to complement
and extend the findings shown here. This study considered a
Portuguese-speaking population, but further data from different
populations should be analyzed to allow the results to be gen-
eralized, in particular the relationship between global efficiency
and verbal intelligence that was strongly apparent in our work.
More detailed templates could be used in the definition of the
network nodes for a finer-grained investigation of the brain’s con-
nectivity. It is also noteworthy that we considered only positive
correlations between nodes; anticorrelations may provide com-
plementary data once methods to quantify them arise (Rubinov
and Sporns, 2010).

Frontiers in Human Neuroscience www.frontiersin.org February 2015 | Volume 9 | Article 61 | 45

http://www.frontiersin.org/Human_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Human_Neuroscience/archive


Pamplona et al. Brain functional connectivity and intelligence

The findings shown here replicate and extend the negative
association between characteristic path length of the functional
brain network and cognitive general intelligence for a Portuguese-
speaking population. The small-world organization model was
verified as a feature of brain networks, suggesting an ability to
transfer information with high efficiency and low wiring cost.
Global efficiency was weakly associated with general intelligence
but strongly associated with VCI, a novel finding. Combined
with the observed relationship between verbal comprehension
and local efficiency in several regions, this suggests that a
possible link between language ability and organizational and
integrational properties of the brain network warrants further
study. Additionally, an exploratory analysis suggested associations
between intelligence and network properties of frontal, parietal,
and occipital cortices; and fusiform, supramarginal, pre-central
gyrus, and caudate nuclei.

SUPPLEMENTARY MATERIAL
The Supplementary Material for this article can be found
online at: http://www.frontiersin.org/journal/10.3389/fnhum.

2015.00061/abstract
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Planning on the 4-disk version of the Tower of London (TOL4) was examined in stroke
patients and unimpaired controls. Overall TOL4 solution scores indicated impaired plan-
ning in the frontal stroke but not non-frontal stroke patients. Consistent with the claim
that processing the relations between current states, intermediate states, and goal states
is a key process in planning, the domain-general relational complexity metric was a good
indicator of the experienced difficulty of TOL4 problems. The relational complexity metric
shared variance with task-specific metrics of moves to solution and search depth. Frontal
stroke patients showed impaired planning compared to controls on problems at all three
complexity levels, but at only two of the three levels of moves to solution, search depth
and goal ambiguity. Non-frontal stroke patients showed impaired planning only on the most
difficult quaternary-relational and high search depth problems. An independent measure
of relational processing (viz., Latin square task) predicted TOL4 solution scores after con-
trolling for stroke status and location, and executive processing (Trail Making Test). The
findings suggest that planning involves a domain-general capacity for relational processing
that depends on the frontal brain regions.

Keywords: Tower of London, planning, moves to solution, search depth, goal ambiguity, relational complexity,
stroke, frontal lobes

INTRODUCTION
Planning is important in many areas of life and impairments in this
capacity have adverse implications for independent living (Jeffer-
son et al., 2006). Planning involves cognitive processes that depend
on frontal regions of the brain (Shum et al., 2000, 2009; Unter-
rainer and Owen, 2006). In the current research, we examined
the extent to which planning assessed using a 4-disk version of
the Tower of London (TOL) is impaired in people who have suf-
fered a stroke. A further issue relates to the nature of the cognitive
processes that planning involves. More specifically, the research
investigated the claim that processing the relations between cur-
rent states, intermediate states, and goal states is a key process in
planning (Halford et al., 1998) and that the complexity of these
relations is a good indicator of the experienced difficulty of the
TOL problems.

Planning in tower tasks such as the Tower of Hanoi and the
TOL involves devising a sequence of moves in order to transform
an initial state into a specified goal state. In the original 3-disk ver-
sion of the TOL (viz., TOL3) developed by Shallice (1982), three
colored disks are presented on three poles that differ in height.
Respondents are required to rearrange the disks to match a target
configuration (goal state) and to do so in a specified number of
moves.

The results of several studies that employed the TOL3 to assess
planning following traumatic brain injury (e.g., Cockburn, 1995;
Rasmussen et al., 2006), suggested the need to increase the sensi-
tivity of the TOL3 by including more difficult items. To address

this issue, Tunstall (1999) developed the 4-disk version (TOL4)
that includes ten items that require as many as nine moves. Shum
et al. (2009) used the TOL4 to examine impairments in planning
following traumatic brain injury. The patients performed more
poorly than matched controls, but the impairment was specific
to patients with frontal damage and to the items that required a
greater number (i.e., six to nine) of moves. No planning impair-
ment was observed on items that required fewer (i.e., two to five)
moves. Planning performance in patients with no frontal dam-
age was comparable to matched controls. The findings of Shum
et al. (2009) demonstrated the importance of employing sensitive
measures of planning. In that study, sensitivity was achieved by
including simpler as well as more difficult problems that required
fewer moves or more moves, respectively.

Moves to solution is widely used as a metric of TOL problem
difficulty that has been employed in brain imaging studies and
computational approaches to planning and problem solving in the
TOL (e.g., Dehaene and Changeux, 1997; Newman et al., 2003).
However, the number of moves to solution has been criticized as
a complexity metric on the grounds that it does not sufficiently
capture the cognitive processes underlying performance. Such crit-
icisms have prompted researchers to consider alternate complexity
metrics that tap different structural parameters of the tower tasks
(Ward and Allport, 1997; Kaller et al., 2011, 2012; Köstering et al.,
2014).

Köstering et al. (2014) examined two such factors (search depth
and goal hierarchy) in the 3-disk TOL. Search depth refers to the
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number of intermediate moves that must be considered before
the first goal move is made. When search depth is higher a longer
series of intermediate moves and their interdependencies must be
considered. Goal hierarchy (goal ambiguity) refers to the extent to
which the correct sequential ordering of the goal moves is obvi-
ous from the specified goal state. When the goal state is vertical
(i.e., all disks on the same pole), it is clear that the disk in the
lowest position on the pole has to be placed before the disks in
higher positions, so the sequential ordering of the moves is rel-
atively unambiguous. When the goal state is flat (i.e., a disk on
each of three poles), the sequential ordering of the moves is more
ambiguous. Köstering et al. (2014) examined the effects of these
two factors in a sample of normally aging adults. Adults aged
from 60 to 76 years performed comparably on problems with low
search depth, but performance declined significantly from 60 to
76 years on problems with high search depth. Adults over 76 years
performed poorly irrespective of search depth. The effect of goal
ambiguity was significant in that problems with less ambiguous
goals were performed better than those with goals that were more
ambiguous. However, this effect did not vary with age. The find-
ings were interpreted as consistent with the frontal lobe theory of
cognitive aging. Greater search depth imposes a higher demand on
working memory, which is subserved by frontal regions, whereas
increased goal ambiguity is thought to involve the striatum.

The search depth metric used by Köstering et al. (2014) to esti-
mate the complexity of items on the 3-disk TOL is similar in some
respects to the metric proposed in relational complexity theory
(Halford et al., 1998). In this theory, complexity is defined in a
domain-general way. It corresponds to the number of variables
that are related in a cognitive representation, or the number of
slots that must be filled. The simplest (unary) relations have a sin-
gle slot. An example is class membership. The fact that Fido is a dog
can be expressed as dog (Fido). Binary relations have two slots. An
example is larger-than(elephant, mouse). Ternary relations have
three slots as in arithmetic addition(2,3,5). Quaternary relations
have four slots, as in proportion(2,3,6,9). More complex relations
are predicted to impose higher processing loads than less com-
plex relations. Thus, ternary relations impose a higher load than
binary relations, and quaternary relations impose a higher load
than ternary relations. On average, young adults can process four
interacting variables in the same decision (Halford et al., 2005)
consistent with a quaternary-relational limit.

The Method for Analysis of Relational Complexity (MARC)
incorporates a set of principles for estimating the complexity
of cognitive tasks (in terms of the metric) and the processing
loads they impose (Halford et al., 2007b, 2010; Andrews and
Halford, 2011). The estimates must be based on sound knowl-
edge of how people perform the task and opportunities to reduce
complexity and processing load through the use of segmentation
and chunking must be taken into account. Segmentation involves
decomposing (segmenting) complex tasks into less complex com-
ponents that do not overload capacity and that can be processed
in succession. Conceptual chunking involves recoding concepts
into fewer variables. For example, the ternary-relational concept
velocity, defined as velocity= distance/time, can be recoded into a
unary-relational concept as when speed is indicated by the posi-
tion of a pointer on a dial. However, the reduction in processing

load occasioned by conceptual chunking comes at the cost of tem-
porary loss of access to the relationships that make up the concept.
For example, a unary-relational representation of velocity would
not be sufficient to determine how velocity changes as a function
of time or of distance, but it would be adequate if current veloc-
ity is the only variable of interest. By the principle of cognitive
economy, humans will employ the least complex representation
available to complete the task. More complex representations
will be constructed only when less complex representations prove
inadequate.

When tasks have multiple steps, task complexity corresponds to
the most complex step. The processing load imposed will depend
on the number of interacting variables that must be represented
in parallel to perform the most complex step of the task, using the
least demanding strategy available. Thus, demand corresponds to
the peak load imposed during performance of the task, rather than
to the total amount of processing involved. Complexity and num-
ber of steps can be manipulated independently as shown by Birney
et al. (2006).

The relational complexity metric has been applied to tasks
in many different content domains including transitive infer-
ence (Halford, 1984; Andrews and Halford, 1998; Andrews, 2010;
Andrews and Mihelic, 2014), suppositional reasoning (Birney and
Halford, 2002), categorical syllogisms (Zielinski et al., 2010), con-
ditional reasoning (Cocchi et al., 2014), class inclusion (Halford
and Leitch, 1989), inferences based on classification hierarchies
(Halford et al., 2002b), card sorting (Halford et al., 2007a), bal-
ance scale reasoning (Halford et al., 2002a; Andrews et al., 2009),
numerical reasoning (English and Halford, 1995; Andrews and
Halford, 2002; Knox et al., 2010), and theory of mind (Andrews
et al., 2003; Halford and Andrews, 2014), as well as decision mak-
ing in gambling tasks (Bunch et al., 2007; Andrews et al., 2008),
delay of gratification (Bunch and Andrews, 2012), reversal learn-
ing and conditional discrimination (Andrews et al., 2012), and
comprehension of relative clause sentence (Andrews et al., 2006).
The breadth with which the relational complexity metric has been
(can be) applied contrasts with other metrics that apply to specific
content domains or tasks with a specific structure.

Studies such as those cited above show that the complexity of
relations that humans can process increases with age during child-
hood (Andrews and Halford, 2002, 2011; Bunch and Andrews,
2012), reaching quaternary relations in adulthood (Halford et al.,
2005) before declining in later adulthood (Viskontas et al., 2005;
Andrews and Todd, 2008).

In the current research, we tested the hypothesis that the diffi-
culty of TOL4 problems stems from their complexity. A relational
complexity analysis of the 10 TOL4 items was conducted. The
complexity analysis of three of the problems will be illustrated.
The initial configuration of disks on poles was the same for all
problems and it is shown in Figure 1A. The yellow (Y) and white
(W) disks were on the leftmost pole (1), the blue (Bu) and black
(Bk) disks were on the rightmost pole (3), while the middle pole
(2) was unoccupied.

A move is coded as the binary relation, shift(color, pole). In
the first problem, the goal is to transform the initial configuration
(Figure 1A) into the target configuration (Figure 1B) in which
yellow and white are on pole 1 and black and blue disks are on
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FIGURE 1 | Four-diskTower of London (TOL4) test. (A) Initial
configuration used in all problems; (B) target configuration for the
binary-relational problem described in the text; (C) target configuration for
the ternary-relational problem described in the text; (D) target configuration
for the quaternary-relational problem described in the text.

pole 2. This requires two moves. First, blue must be moved to pole
2. This is expressed as shift(Bu, 2). Second, black must be moved
to pole 2. This can be expressed as shift(Bk, 2). Each move can be
performed without taking any other move into account so com-
plexity depends solely on two slots, the disk to be moved and the
location to which it is moved. Therefore both moves are binary-
relational, so the maximum complexity during this problem is
binary-relational.

In a more complex problem, the goal is to transform the
initial configuration (Figure 1A) into the target configuration
(Figure 1C) in which all four disks are on pole 3 in the top-down
order yellow, white, blue, and black. This problem involves nested
moves. Before white can be moved to pole 3, yellow must be moved
to pole 2. Nested moves such as this are coded as the higher-order
relation:

prior(shift(color, pole), shift(color, pole)).

For the problem described, this sequence can be expressed as:

prior(shift(W, 3), shift(Y, 2)).

Here, there are four slots to be filled, so prima facie a relation
between four variables is being represented. However, conceptual
chunking can be employed to reduce the task to ternary-relational.
In the preceding example, Y, 2 can be chunked as a single entity
corresponding to “obstructing disk” (Y2) that has to be removed
to enable shift(W, 3). Thus the operative variables are: disk to be
shifted (W), the goal for that disk (3), and the goal for the obstruct-
ing disk (2). The principle is that the color of the obstructing disk
(Y) does not need to be processed independently of the need to
find a pole to shift it to, so as to remove the obstruction of shifting
white to pole 3. Planning these nested moves involves ternary-
relational processing. The final move involves shifting the yellow

disk to pole 3, shift(Y, 3), which is binary-relational, as in the previ-
ous example. Thus the maximum complexity during this problem
is ternary-relational.

In an even more complex problem, the goal is to transform
the initial configuration (Figure 1A) into the target configuration
(Figure 1D) in which yellow is on pole 1, black is above white
on pole 2, and blue is on pole 3. This problem involves multiple
nestings and conceptual chunking. Before yellow can be placed at
the base of pole 1, yellow must first be moved to pole 3 so that
white can be moved to pole 2. Such situations can be expressed as
the higher-order relation,

prior(shift(colour, pole), prior(shift(colour, pole)),

shift(colour, pole)).

These expressions can be read most easily starting at the rightmost
move. Thus, in the example immediately below, Y, 3 is moved first,
followed by W, 2, followed by Y, 1. For the problem described
(Figure 1D), this move can be expressed as:

prior(shift(Y, 1), prior(shift(W, 2), shift(Y, 3))).

This can be chunked to quaternary-relational representation as;

prior(shift(Y, 1), prior(shift(W/Y, 2/3)))

The chunked portion can then be unpacked as;

prior(shift(W, 2), shift(Y, 3))

This yields the move to shift Y to 3 before shifting W to 2, then Y
can be shifted to 1. The goal of the next move is to have blue on
pole 3 and black on pole 2. To achieve this goal, blue must be first
be moved to pole 1 so that black can be moved to pole 2 before
blue is moved back to pole 3. This move can be expressed as,

prior(shift(Bu, 3), prior(shift(Bk, 2), shift(Bu, 1))).

As with the previous problem, chunks Bu/Bk and 2/1 can be
formed, reducing the move to quaternary-relational complexity.
The chunked representation can be unpacked yielding Bk on 2
and Bu on 1. Finally, Bu can be moved to 3. As in the ternary-
relational problem described above, some chunking is possible.
However, planning the sequence of moves will be more demand-
ing in problems with multiple nestings because each nesting adds a
new variable. By applying chunking according to the MARC prin-
ciples the task can be performed with representations no more
complex than quaternary-relational.

Our complexity analysis showed that the 10-item TOL4 (Shum
et al., 2000, 2009) consists of two binary-relational, five ternary-
relational, and three quaternary-relational problems. To ensure
there were sufficient items at each complexity level, five additional
items were generated, resulting in a 15-item test with three, six, and
six problems at the binary-, ternary-, and quaternary-relational
levels of complexity, for use in the current study.

We predicted that problems with lower estimated complex-
ity would be easier than those with higher estimated complexity.
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Based on previous research demonstrating a quaternary-relational
limit in young to middle adulthood (Halford et al., 2005) and
age-related declines in relational processing in later adulthood
(Viskontas et al., 2005; Andrews and Todd, 2008), we expected that
quaternary-relational problems would be very difficult for our par-
ticipants whose mean age was 66.3 years. Problem difficulty was
also examined in relation to three metrics that are specific to tower
tasks; namely moves to solution, goal ambiguity, and search depth.

We predicted that frontal lobe lesions would particularly impair
TOL4 performance. This prediction is based on two lines of evi-
dence. First, planning as assessed by the TOL3 has been shown to
depend on the frontal regions (Newman et al., 2003; Unterrainer
and Owen, 2006; Köstering et al., 2014). Second, evidence from
lesion (Waltz et al., 1999, 2004; Andrews et al., 2013) and imaging
studies (Kroger et al., 2002; Crone et al., 2009) has demonstrated
an important role for the frontal lobes in relational processing.
Therefore, if participants who have suffered a stroke affecting the
frontal brain regions should show greater impairment on the TOL4
problems than those who have suffered a stroke affecting non-
frontal regions or those who have not suffered a stroke, this would
be consistent with the relational processing interpretation. Group
differences will be examined on TOL4 problems at each level of
relational complexity and at each level of moves to solution, goal
ambiguity, and search depth.

A further prediction based on relational complexity theory was
that an independent measure of relational processing [viz., Latin
square task (LST)] would predict TOL4 solution scores after con-
trolling for stroke status and location. This prediction was based
on research demonstrating the domain-general nature of capac-
ity to process complex relations (Halford et al., 2002a,b; Andrews
et al., 2006, 2013; Birney et al., 2006, 2012; Bunch and Andrews,
2012). The predictive ability of the LST which includes items at
binary, ternary, and quaternary levels of complexity was compared
to the Trail Making Test (TMT), which is widely used to assess
executive processes and frontal functioning. TMT was expected to
account for variance in TOL4 due to the tasks’ common reliance on
frontal regions (Müller et al., 2014). If the LST accounts for vari-
ance in TOL4 performance over and above the TMT this would
further support the view that TOL4 involves complex relational
processing.

MATERIALS AND METHODS
PARTICIPANTS
The sample consisted of 83 individuals who were all native speakers
of English and who were living independently in the commu-
nity. Forty-three participants had brain lesions due to stroke and
40 had no known brain injury. The unimpaired individuals were
recruited through sporting and social clubs. The stroke sufferers
were recruited through stroke support groups in the Brisbane and
Gold Coast areas in QLD,Australia. They were assigned to a frontal
stroke group (n= 14) or a non-frontal stroke group (n= 29) based
on neurologists’ reports and MRI/CT scan findings. Demographic
details for the three groups are reported in Table 1.

The three groups did not differ significantly in terms of gender
balance, χ2 (2, N = 83)= 0.95, p= 0.963, age, F (2, 80)= 0.94,
p= 0.394, nor years of education, F (2, 80)= 0.04, p= 0.96. Time
since stroke was significantly longer for the frontal stroke group

Table 1 | Demographic details for participants in the unimpaired,

non-frontal stroke, and frontal stroke groups.

Variable Group

Unimpaired Non-frontal

stroke

Frontal

stroke

Age (years) M 68.28 64.79 64.29

SD 12.16 13.41 8.82

Education (years) M 11.75 11.76 11.50

SD 3.12 3.30 3.23

Gender Males 24 19 7

Females 16 10 7

Time since stroke

(years)

M – 6.05 10.08
SE – 0.89 1.28

MMSE M 28.80 27.03 26.14

SE 0.40 0.47 0.67

N=83.

Table 2 | Lesion location in the non-frontal and frontal stroke groups.

Stroke group

Non-frontal

n = 29

Frontal

n = 14

Hemisphere of damage Left 11 7

Right 16 4

Both 2 3

Regions of damage Temporal 8 5

Occipital 3 1

Sub-cortical 19 5

Parietal 6 7

Frontal 0 14

Entries are frequencies.

than for the non-frontal stroke group, t (41)= 2.59, p= 0.013.
To the extent that there is some recovery of function over time,
this longer time since stroke would advantage the frontal stroke
group over the non-frontal stroke group, thus providing a counter-
confound to predicted differences between this and the other
groups.

Table 2 summarizes lesion location as a function of stroke
group. There was no significant association between stroke
group and damage to left, right, or both hemispheres, χ2 (1,
N = 43)= 3.48, p= 0.09, damage to temporal lobes, χ2 (1,
N = 43)= 0.30, p= 0.73, occipital lobes, χ2 (1, N = 43)= 0.12,
p= 0.74, sub-cortical regions, χ2 (1, N = 43)= 3.40, p= 0.10, nor
parietal regions, χ2 (1, N = 43)= 3.85, p= 0.08 (exact tests).

The Mini-Mental State Examination (MMSE; Folstein et al.,
1975) was administered to all participants in the standard manner.
The test consists of items assessing orientation to time and place,
concentration, language, constructional ability, and immediate
and delayed recall. The score was the number of correct responses
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(max.= 30). Mean MMSE scores are shown in Table 1. Analy-
sis of variance (ANOVA) revealed a significant effect of group,
F (2, 80)= 7.59, p= 0.001, partial η2

= 0.159. Post hoc Scheffe
tests showed that the unimpaired group had significantly higher
MMSE scores than the non-frontal stroke group (p= 0.019) and
the frontal stroke group (p= 0.004). MMSE was therefore used as
a covariate in all analyses that compared the groups.

MEASURES AND PROCEDURES
Ethical approval for the research was granted by the Griffith
University Human Research Ethics Committee (GU Ref No:
APY/82/04/HREC). Participants were tested individually at their
residences by two female research assistants with postgraduate
training in psychology and experience working with brain-injured
individuals. The tests described below were administered as part of
a larger battery. Testing was spread over two to four sessions, each
1–2 h in duration. Breaks were offered between tasks. Instructions
were repeated or elaborated as required to ensure that participants
understood the task requirements.

Tower of London
The task was an expanded 15-item version of the 4-disk TOL task
of Shum et al. (2000, 2009). The apparatus consisted of four col-
ored disks and a base with three vertical poles that differed in height
and accommodated a maximum of two, three, or four disks. On all
problems the apparatus was presented with the disks in the same
initial configuration, which is shown in Figure 1A and Table 3.
The goal states for the 15 problems are also shown in Table 3 as
are the moves to solution, estimated search depth, goal ambiguity,
and relational complexity for each problem.

Participants were instructed to rearrange the disks into the tar-
get configuration (shown pictorially), and to do so in a specified
number of moves. Only one disk could be moved at a time. Scores
of three, two, or one were awarded for correct solutions on the
first-, second-, and third-attempts, respectively, and zero for no
solution after three attempts. All participants received the prob-
lems in the order shown in Table 3 in which the problems with
higher expected difficulty were concentrated later in the sequence.
A stopping rule was implemented such that if participants failed
to solve two consecutive problems after three attempts at each
problem, no further problems were presented. The maximum
score was 45 (based on 15 items). The mean number of TOL
problems presented was 13.53 (SD= 2.11, range 5–15). Planning
times were measured for the first attempt of each problem. Tim-
ing began at the commencement of each trial and ended when
the first disk was moved. Instances of rule breaking (e.g., placing
more than the allowed number of disks on a pole, moving two
disks at a time) were also recorded. Rule breaks were not imme-
diately corrected because doing so might have unduly influenced
participants’ subsequent attempts on the problem.

Latin square task
On each problem on the LST task, a 4× 4 matrix was presented
on the left side of the computer screen (Birney et al., 2006, 2012;
Perret et al., 2011; Andrews and Maurer, 2012). Colored geometric
objects filled some cells, while other cells were empty, as shown in
Figure 2. The participants’ task was to select one of four objects
to fill a target cell (indicated by “?”). The response options were

shown to the right of the matrix. The rule was that each of the
four objects could occur only once in each row and column of the
matrix. Consistent with the principles described previously, the
complexity estimates reflect the most complex step within each
problem.

For binary-relational problems, the most complex step required
consideration of information from a single row or column. For
example, the first step of the binary-relational problem shown in
Figure 2A, involves working out that the empty cell in column
2 must be filled with a green square. This can be accomplished
by considering the contents of a single column, column 2 in this
example. On the next step, the object to be placed in the target cell
can be identified by considering the contents of a single row, row 1
in this example. Row 1 now includes blue diamond, green square,
and red circle, so it is clear that the pink cross must be placed in
target cell. According to the analysis of Birney et al. (2006, 2012)
considering the contents of a single row or a single column is
binary-relational.

For ternary-relational problems, the most complex step
required integration of information from a row and column.
These two sources of variation must be integrated to determine
the cell content. For the problem in Figure 2B, the first step is
to identify the object to be placed in the cell at the intersec-
tion of column 3 and row 3 (blue square) by considering the
objects already present in row 3 and column 3. Once this object
is identified, the content of the target cell (pink cross) can be
determined by considering the contents of row 3. The first (most
complex) step is ternary-relational, whereas the second step is
binary-relational.

For quaternary-relational problems, the most complex step
required integration of information across multiple rows and
columns. For the problem in Figure 2C, the first step is to identify
the object to be placed in the cell at the intersection of column 1
and row 3 (light blue diamond) by considering the objects already
present in this row and column. This step is ternary-relational.
The next step requires consideration of the information in three
columns (1, 2, and 4) to determine that light blue diamond should
be placed in the target cell. According to the analysis provided by
Birney et al. (2006, 2012) the second step is quaternary-relational.

There were four problems at each complexity level. Partici-
pants worked through the problems as quickly as possible doing all
working in their heads. The score was number correct (max= 12).

Trail making test
In TMT Part A, numbers (1–25) were arranged randomly on a
page. Participants drew lines connecting the numbers in ascend-
ing order as quickly as possible (Reitan and Wolfson, 1995). In
TMT Part B, the stimuli were numbers (1–13) and letters (A–
L). Participants drew lines connecting the numbers and letters in
alternating order (1, A, 2, B, . . .). Part B required integration of
two sequences (one numerical and one alphabetic) into a single
alternating sequence. The two dependent measures corresponded
to the times taken to complete Part A and Part B.

RESULTS
DIFFICULTY OF TOL PROBLEMS
Item-based correlations were computed to examine the extent of
overlap among the four metrics and the extent to which each
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Table 3 | Initial statea, goal states, moves to solution, relational complexity, goal ambiguity, and search depth for the 15Tower of London

problems.

Peg 1 Peg 2 Peg 3 Metric

Initial state

Yellow Blue
White –b Black

Goal state Moves to solution Search depth Goal ambiguity Relational complexity

1 Yellow Black 2 0 Moderate Binary
White Blue –

2 Yellow 3 1 Low Ternary
White
Blue

– – Black

3 Yellow White 3 0 Moderate Binary
– Blue Black

4 Blue 4 0 Moderate Binary
White

Black Yellow –

5 Yellow 3 0 Moderate Ternary
White

– Blue Black

6 Yellow 5 0 High Ternary
Black Blue White

7 White Yellow 5 2 Moderate Ternary
Blue – Black

8 Blue 5 2 Low Quaternary
Yellow
White

– – Black

9 Blue Yellow 6 1 Moderate Ternary
Black White –

10 Black 6 1 High Quaternary
Yellow White Blue

11 Yellow 6 3 High Quaternary
White Black Blue

12 Yellow 7 1 Moderate Ternary
Black

Blue White –

13 Yellow 7 3 High Quaternary
White Black Blue

14 Blue 9 5 Moderate Quaternary
Yellow

– Black White

15 Blue 9 5 Moderate Quaternary
White

Yellow Black –

aThe initial state was the same in all problems.
bIndicates an empty peg.
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metric was associated with performance on the fifteen TOL prob-
lems. As shown in Table 4, moves to solution, search depth
and relational complexity were significantly and positively inter-
correlated, but the correlations with goal ambiguity did not reach
significance.

FIGURE 2 | Latin square problems at (A) binary-relational, (B)
ternary-relational, and (C) quaternary-relational levels of complexity.

Moves to solution, search depth and relational complexity were
significantly negatively correlated with solution accuracy on the
TOL problems. Solution accuracy was lower for problems that
required more moves, had greater search depth and higher rela-
tional complexity. Moves to solution, search depth and relational
complexity were significantly positively correlated with planning
times on problems correctly solved on the first attempt. Plan-
ning times were longer for problems that required more moves,
had greater search depth and higher relational complexity. Goal
ambiguity was not significantly associated with solution accuracy
or planning times, therefore it was not included in subsequent
regression analyses.

Item-based multiple regression analyses were conducted to
determine which of three metrics accounted for independent vari-
ance in solution accuracy and planning times. Given the small
sample size (N = 15) the findings should be interpreted with cau-
tion. In the first analysis, moves to solution, search depth and
relational complexity together accounted for 88% variance in
solution accuracy, F (3, 11)= 26.85, p < 0.001. Moves to solu-
tion (8.29%, p= 0.019) and search depth (6.6%, p= 0.032) each
accounted for unique variance. The remaining variance (73%) was
shared by the predictors. In the second analysis, moves to solu-
tion, search depth, and relational complexity together accounted
for 76.3% variance in planning times, F (3, 11)= 11.79, p= 0.001.
Search depth accounted for unique variance (10.96%, p= 0.046).
The remaining variance (65%) was shared by the predictors.

TOL4 SOLUTION ACCURACY IN STROKE GROUPS
Mini-mental state examination was included as a covariate in all
analyses examining group differences. The means reported for the
group based analyses have been adjusted for the covariate.

A preliminary analysis of covariance (ANCOVA) was con-
ducted with group (unimpaired, non-frontal stroke, and frontal
stroke) as the between subjects variable, and MMSE as the covari-
ate. The dependent variable was the total score (max= 45) for
the 15 TOL4 problems. The analysis yielded a significant effect
of Group, F (2, 79)= 5.12, p= 0.008, partial η2

= 0.115. Con-
trast analyses showed that the difference between unimpaired
group (M = 32.29; SE= 0.99) and the non-frontal stroke groups
(M = 30.72; SE= 1.13) was not significant (p= 0.31). However,

Table 4 | Item-based correlations among moves to solution, relational complexity, goal ambiguity, search depth and solution accuracy, and

planning times on the first attempt for correctly solvedTower of London problems (N = 15).

Moves Search

depth

Goal

ambiguity

Relational

complexity

Solution

accuracy

Planning

times

Moves to solution

Search depth 0.83**

Goal ambiguity 0.28 0.05

Relational complexity 0.75** 0.76** 0.23

Solution accuracy −0.90** −0.89** −0.32 −0.71**

Planning times 0.81** 0.84** 0.27 0.61* −0.90**

Mean 5.40 1.60 1.13 3.20 2.04 22.59

SD 2.06 1.72 0.64 0.78 0.99 22.51

**p < 0.01; *p < 0.05.
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the frontal stroke group (M = 25.91; SE= 1.66) had significantly
lower scores than the non-frontal stroke group (p= 0.017) and
the unimpaired control group (p= 0.002). An analysis based on
the original ten TOL4 problems yielded the same pattern of group
differences.

SENSITIVITY OF THE DIFFICULTY METRICS TO STROKE DAMAGE
Four mixed ANCOVAs were conducted to examine group differ-
ences as a function of problem difficulty operationalized as moves,
goal ambiguity, search depth, and relational complexity.

For the first analysis, the problems were categorized according
to number of moves. The five low move problems required 2, 3,
or 4 moves to solution, the six moderate move problems required
5 or 6 moves, and the four high move problems required 7 or
9 moves. Solution accuracy scores were converted to percentages
and subjected to a mixed 3× 3 ANCOVA in which Moves (low,
moderate, and high) was a within-subject variable, Group was a
between groups variable, and MMSE was the covariate. Consis-
tent with the preceding ANCOVA and the correlations (Table 4),
there were significant effects of Group, F (2, 79)= 4.86, p= 0.01,
partial η2

= 0.11, and of Moves, F (2, 158)= 4.49, p= 0.013, par-
tial η2

= 0.054. Percentage solution scores were higher for low
move problems (M = 94.09; SE= 1.00) than for both the moder-
ate move problems (M = 70.67; SE= 2.38) (p= 0.007) and the
high move problems (M = 23.37; SE= 2.84) (p= 0.012). The
Group×Moves interaction, F (4, 158)= 1.37, p= 0.25 was not
significant. To facilitate comparison with other metrics, group dif-
ferences were examined at each level of moves. The adjusted means
are presented in Table 5.

For low move problems, there was a significant effect of group,
F (2, 79)= 7.78, p= 0.001, partial η2

= 0.165. Solution accuracy
in the unimpaired group and non-frontal stroke did not differ
significantly (p= 0.84). Solution accuracy in the frontal stroke
group was significantly lower than the unimpaired (p < 0.001) and
non-frontal stroke group (p= 0.001). For the moderate moves
problems there were significant effects of the covariate, F (1,
79)= 4.33, p= 0.041, partial η2

= 0.052 and of group, F (2,
79)= 3.90, p= 0.024, partial η2

= 0.09. Solution accuracy in the
unimpaired group and non-frontal stroke did not differ signifi-
cantly (p= 0.76). Solution accuracy in the frontal stroke group
was significantly lower than the unimpaired (p= 0.009) and non-
frontal stroke group (p= 0.016). For the high moves problems

Table 5 | Solution accuracy forTOL problems with low, moderate, and

high moves by group.

Group Moves

Low Moderate High

Unimpaired M 97.60 76.95 31.63

SE 1.36 3.23 3.85

Non-frontal stroke M 97.16 75.41 21.42

SE 1.55 3.68 4.39

Frontal stroke M 87.52 59.64 17.07

SE 2.72 5.41 6.45

there was no significant effect of group, F (2, 79)= 2.31, p= 0.11,
partial η2

= 0.055.
A similar approach was used to examine goal ambiguity. There

were two problems with low goal ambiguity, nine with moderate
goal ambiguity, and four with high goal ambiguity. There were
significant effects of Group, F (2, 79)= 5.40, p= 0.006, partial
η2
= 0.12, and Goal Ambiguity, F (2, 158)= 4.32, p= 0.015, par-

tial η2
= 0.052. Percentage solution scores were significantly higher

for low goal ambiguity (M = 89.28; SE = 2.05) than high ambigu-
ity (M = 53.82; SE = 2.97) problems, F (1, 79)= 6.13, p= 0.015,
η2
= 0.072, and marginally higher than for problems with the

moderate goal ambiguity (M = 66.01; SE= 1.44), F (1, 79)= 3.60,
p= 0.061, η2

= 0.044. The Group×Goal Ambiguity interaction,
F (4, 158) < 1, p= 0.55, did not approach significance. Group dif-
ferences for problems with low, moderate, and high goal ambiguity
were examined. The adjusted means are presented in Table 6.

For problems with low goal ambiguity, there was a significant
effect of group, F (2, 79)= 5.44, p= 0.006, partial η2

= 0.121.
Solution accuracy in the unimpaired group and non-frontal stroke
did not differ significantly (p= 0.68). Solution accuracy in the
frontal stroke group was significantly lower than the unimpaired
(p= 0.002) and non-frontal stroke group (p= 0.005). For prob-
lems with moderate goal ambiguity there was a significant effect of
group, F (2, 79)= 4.92, p= 0.01, partial η2

= 0.111. Solution accu-
racy in the unimpaired group and non-frontal stroke did not differ
significantly (p= 0.56). Solution accuracy in the frontal stroke
group was significantly lower than the unimpaired (p= 0.003) and
non-frontal stroke group (p= 0.01). For problems with high goal
ambiguity there was no significant effect of group, F (2, 79)= 2.40,
p= 0.097, partial η2

= 0.057.
Search depth was examined in the same way. The five low

search depth problems had a depth of zero, the six medium
depth problems had depths of 1 or 2, and the four high search
depth problems had depths of 3 or 5. There were significant
effects of Group, F (2, 79)= 5.36, p= 0.007, partial η2

= 0.12,
and Search Depth, F (2, 158)= 4.55, p= 0.012, partial η2

= 0.054.
Percentage solution scores were significantly higher for low depth
(M = 92.55; SE= 1.14) than high depth (M = 16.33; SE= 2.38)
problems, F (1, 79)= 8.30, p= 0.005, η2

= 0.095. Solution accu-
racy for the moderate depth (M = 75.74; SE= 2.43) problems
did not differ significantly from low (p= 0.11) or high depth
problems (p= 0.15). The Group× Search Depth interaction, F

Table 6 | Solution accuracy forTOL4 problems with low, medium, and

high goal ambiguity by group.

Group Goal ambiguity

Low Medium High

Unimpaired M 95.78 70.60 62.31

SE 2.78 1.95 4.02

Non-frontal stroke M 93.99 68.84 54.10

SE 3.17 2.23 4.58

Frontal stroke M 78.09 58.59 45.05

SE 4.66 3.27 6.73
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Table 7 | Solution accuracy forTOL4 problems with low, moderate,

and high search depth by group.

Group Search depth

Low Medium High

Unimpaired M 96.23 80.69 25.60

SE 1.54 3.29 3.22

Non-frontal stroke M 97.63 79.55 13.49

SE 1.76 3.75 3.67

Frontal stroke M 83.79 66.98 9.90

SE 2.59 5.50 5.39

(4, 158)= 2.27, p= 0.065, partial η2
= 0.054, approached signif-

icance. Group differences were examined at each level of search
depth. The adjusted means are shown in Table 7.

For low depth problems, there were significant effects of the
covariate (MMSE), F (1, 79)= 4.47, p < 0.038, η2

= 0.053, and
Group, F (2, 79)= 10.90, p < 0.001, η2

= 0.216. Solution accu-
racy in the unimpaired and non-frontal stroke groups did not
differ significantly (p= 0.56). Solution accuracy in the frontal
stroke group was significantly lower than in the non-frontal stroke
group (p < 0.001) and the unimpaired group (p < 0.001). For
the moderate depth problems, solution accuracy in the unim-
paired, non-frontal, and frontal stroke groups did not differ sig-
nificantly, F (2, 79)= 2.37, p= 0.10, η2

= 0.057. For high depth
problems, there was a significant effect of Group, F (2, 79)= 4.19,
p= 0.019, η2

= 0.096. Solution accuracy in the unimpaired group
was significantly higher than in the non-frontal stroke group
(p= 0.018) and significantly higher than in the frontal stroke
group (p= 0.018) but the two stroke groups did not differ
significantly (p= 0.577).

Relational complexity was examined in the same way. There
were three, six, and six problems, respectively at the binary,
ternary, and quaternary-relational levels of complexity. The analy-
sis yielded significant effects of Group, F (2, 79)= 5.65, p= 0.005,
partial η2

= 0.125 and Complexity, F (2, 158)= 5.23, p= 0.006,
η2
= 0.062. Solution accuracy was significantly higher for

binary- (M = 96.08; SE= 0.86) than ternary-relational problems
(M = 78.63; SE= 2.05), F (1, 79)= 4.07, p= 0.047, η2

= 0.049,
and for binary- than quaternary-relational problems (M = 37.99;
SE= 2.35), F (1, 79)= 8.85, p= 0.004, η2

= 0.101. There was also
a significant Group×Complexity interaction, F (4, 158)= 2.43,
p= 0.05, η2

= 0.058. Group differences were examined at each
complexity level. The adjusted means are shown in Table 8.

For binary-relational problems, there were significant effects
of the covariate (MMSE), F (1, 79)= 4.57, p < 0.036, η2

= 0.055,
and Group, F (2, 79)= 7.30, p= 0.001, η2

= 0.156. Solution accu-
racy in the unimpaired and the non-frontal stroke groups did
not differ significantly (p= 0.53). Solution accuracy was signif-
icantly lower in the frontal stroke group than the non-frontal
stroke group (p < 0.001) and the unimpaired group (p= 0.002).
For the ternary-relational problems, there was a significant effect
of Group, F (2, 79)= 4.47, p= 0.015, η2

= 0.102. Solution accu-
racy in the unimpaired and the non-frontal stroke groups did not

Table 8 | Solution accuracy for binary-, ternary-, and

quaternary-relationalTOL4 problems by group.

Relational complexity

Binary Ternary Quaternary

Unimpaired M 98.18 83.55 46.73

SE 1.16 2.78 3.18

Non-frontal stroke M 99.32 83.90 37.09

SE 1.32 3.17 3.63

Frontal stroke M 90.75 68.43 30.14

SE 1.94 4.66 5.32

differ significantly (p= 0.94). Solution accuracy was significantly
lower in the frontal stroke group than the non-frontal stroke
group (p= 0.006) and the unimpaired group (p= 0.008). For
quaternary-relational problems, there was a significant effect of
Group, F (2, 79)= 3.85, p= 0.025, partial η2

= 0.089. Solution
accuracy was marginally higher in the unimpaired group than the
non-frontal stroke group (p= 0.054) and significantly higher than
in the frontal stroke group (p= 0.011). The two stroke groups did
not differ significantly (p= 0.274).

In summary, the foregoing analyses show that patterns of group
differences on problems at low, intermediate, and high difficulty
levels differ according to how problem difficulty is measured. On
the easiest problems, the frontal stroke group performed more
poorly than the unimpaired group irrespective of whether problem
difficulty was expressed in terms of moves to solution, goal ambi-
guity, search depth, or relational complexity. The frontal stroke
group also performed more poorly than the non-frontal stroke
group on the easiest problems.

On problems with an intermediate level of difficulty, the frontal
stroke group performed more poorly than the unimpaired group
and the non-frontal stroke group when problem difficulty was
expressed in terms of moves to solution, goal ambiguity, and rela-
tional complexity, but not when difficulty was expressed in terms
of search depth. No significant group differences were observed
on moderate depth problems.

On problems at the highest level of difficulty, the frontal stroke
group performed more poorly than the unimpaired group when
problem difficulty was expressed in terms of search depth and
relational complexity. The frontal and non-frontal stroke groups
performed poorly on high search depth and quaternary-relational
problems and there were no significant differences between these
two groups. No significant differences were observed between
unimpaired, non-frontal stroke, and frontal stroke groups on high
move problems and problems with high goal ambiguity.

Thus the pattern of significance for the group effects shows that
TOL4 problems at all three levels of the domain-general relational
complexity metric were sensitive to frontal lobe damage whereas
TOL4 problems at two levels of the task-specific metrics (moves,
goal ambiguity, and search depth) were sensitive to frontal lobe
damage. Inspection of the effect sizes reported above indicates a
similar pattern in that effect sizes were <0.058 for the moderate
search depth, high moves, high goal ambiguity problems for which
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the group effect was not significant, whereas effects sizes exceeded
0.088 in all other conditions.

PLANNING TIMES FOR TOL PROBLEMS SOLVED ON FIRST ATTEMPT
Participants with no first attempt solutions for any problems at a
particular difficulty level were excluded from these analyses. This
meant that the overall sample sizes were reduced to 39 (n= 22
unimpaired; n= 12 non-frontal stroke; n= 5 frontal stroke) for
the analysis examining moves to solution, to 72 (n= 35 unim-
paired; n= 27 non-frontal stroke; n= 10 frontal stroke) for the
analysis examining goal ambiguity, to 28 (n= 22 unimpaired;
n= 4 non-frontal stroke; n= 2 frontal stroke) for the analysis
examining search depth and to 75 (n= 38 unimpaired; n= 27
non-frontal stroke; n= 10 frontal stroke) for the analysis examin-
ing relational complexity. The losses were due mainly to the more
difficult problems, where participants were more likely to require
multiple attempts.

Four separate ANOVAs were conducted with moves, goal ambi-
guity, search depth, or relational complexity as the within-subject
factor. There was a significant effect of Moves, F (2, 76)= 20.72,
p < 0.001, partial η2

= 0.353. Planning times (seconds) were sig-
nificantly shorter for low move problems (M = 8.22; SE= 0.52)
than for moderate move problems (M = 15.27; SE= 1.56), F (1,
38)= 19.87, p < 0.001, partial η2

= 0.343, which were significantly
shorter than for high move problems (M = 30.71; SE= 4.71), F (1,
38)= 17.17, p < 0.001, partial η2

= 0.311.
There was a significant effect of Goal Ambiguity, F (2,

142)= 21.36, p < 0.001, partial η2
= 0.231. Planning times (sec-

onds) for problems with low (M = 10.73; SE= 1.06) and moderate
goal ambiguity (M = 11.93; SE= 0.76) did not differ significantly,
F (1, 71)= 1.18, p= 0.282. Planning tomes for problems with
low ambiguity were significantly shorter than for problems with
high goal ambiguity (M = 19.69; SE= 1.91), F (1, 71)= 28.897,
p < 0.001, partial η2

= 0.289.
There was a significant effect of Search Depth, F (2, 54)= 23.48,

p < 0.001, partial η2
= 0.465. Planning times were significantly

shorter for low depth problems (M = 7.81; SE= 0.60) than
for medium depth problems (M = 13.90; SE= 1.30), F (1,
27)= 22.68, p < 0.001, partial η2

= 0.467, which were significantly
shorter than for high depth problems (M = 34.76; SE= 5.43), F
(1, 27)= 20.87, p < 0.001, partial η2

= 0.436.

There was a significant effect of Relational Complexity, F (2,
148)= 14.52, p < 0.001, partial η2

= 0.164. Planning times were
significantly shorter for binary-relational problems (M = 8.59;
SE= 0.52) than for ternary-relational problems (M = 11.18;
SE= 0.73), F (1, 74)= 13.80, p < 0.001, partial η2

= 0.157, which
were significantly shorter than for quaternary-relational prob-
lems (M = 19.19; SE= 2.08), F (1, 74)= 11.72, p < 0.001, partial
η2
= 0.137.
These findings are generally consistent with the item-based cor-

relations. However, when Group was included as an independent
variable along with MMSE as the covariate, the ANCOVAs yielded
no significant effects of Group, MMSE, Moves, Goal Ambiguity,
Depth or Relational Complexity, and no significant interactions.
These null results likely reflect inclusion of the covariate, the
small and unequal sizes of the unimpaired, non-frontal stroke
and frontal stroke groups, and high within-group variability in
planning times.

TOL RULE BREAKS
Analysis of covariance was applied to the number of rule breaks.
The analysis yielded a significant effect of Group, F (2, 79)= 5.03,
p= 0.009, partial η2

= 0.113. Contrast analyses showed that the
difference between the unimpaired group (M = 0.35; SE= 0.21)
and the non-frontal stroke group (M = 0.38; SE= 0.23) was
not significant (p= 0.938). The frontal stroke group (M = 1.56;
SE= 0.34) committed significantly more rule breaks than the non-
frontal stroke group (p= 0.005), however it should be noted that
the absolute number of rule breaks was quite low (M = 0.77;
SE= 0.15; N = 83).

PREDICTING TOL SOLUTION ACCURACY
Table 9 shows the zero-order correlations among the TOL4,
LST scores (max= 12) and TMT-Parts A and B. Stroke status
(0= unimpaired; 1= stroke) and frontal location (0= no frontal
injury; 1= frontal injury) were dummy variables that together
capture the grouping variable used in the ANCOVAs. The TOL4
measure is the average of the binary-, ternary-, and quaternary-
relational percentages scores. The results are very similar when
the total score (max 45) is used. The negative correlations occur
because TMT-A and TMT-B are measures of response times rather
than accuracy.

Table 9 | Zero-order correlations (N = 83).

TOL4 (%) Stroke status Frontal MMSE TMT-A TMT-B LST

Stroke status −0.31**

Frontal location −0.40*** 0.43***

MMSE 0.33** −0.38*** −0.27**

TMT-A (times) −0.51*** 0.34** 0.35** −0.51***

TMT-B (times) −0.62*** 0.38*** 0.44*** −0.55*** 0.85***

Latin square 0.51*** −0.32** −0.33** 0.29** −0.42*** −0.50***

Mean 73.00 0.52 0.17 27.74 43.94 146.01 5.78

SD 13.10 0.50 0.38 2.70 27.92 157.06 3.31

TOL, Tower of London; TMT-A, trail making test part A completion times; TMT-B, trail making test part B completion times; LST, Latin square task.

**p < 0.01; ***p < 0.001.
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Table 10 | Multiple regression analyses predictingTOL4 solution accuracy.

Predictors B SE (B) ß Part p

Step 1 Stroke status −2.72 3.02 −0.10 −0.09 0.372

Frontal/non-frontal −10.33 3.87 −0.30 −0.27 0.009

MMSE 1.01 0.53 0.21 0.19 0.060

Multiple R2
=0.218, F (3, 79)=7.35, p < 0.001

Step 2 Stroke status −1.47 2.69 −0.06 −0.05 0.586

Frontal/non-frontal −4.90 3.60 −0.14 −0.12 0.177

MMSE −0.16 0.53 −0.03 −0.03 0.765

TMT-A 0.03 0.08 0.05 0.03 0.753

TMT-B −0.05 0.02 −0.60 −0.29 0.001

Multiple R2
=0.405 F (5, 77)=10.47, p < 0.001

Step 3 Stroke status −0.67 2.62 −0.03 −0.02 0.800

Frontal/non-frontal −4.04 3.50 −0.12 −0.10 0.252

MMSE −0.15 0.51 −0.03 −0.03 0.771

TMT-A 0.02 0.08 0.05 0.03 0.770

TMT-B −0.04 0.02 −0.49 −0.23 0.008

LST 0.98 0.40 0.25 0.21 0.016

Multiple R2
=0.449, F (6, 76)=10.32, p < 0.001

A multiple regression analysis with TOL4 as the criterion vari-
able was conducted. On step 1, the dummy variables stroke status
and frontal-non-frontal were entered, along with MMSE. These
variables together accounted for significant variance in TOL4
performance. On step 2, TMT-A and TMT-B accounted for an
additional 18.6% variance (p < 0.001). On step 3, LST accounted
for a further 4.41% variance (p= 0.016). The unique contribu-
tion of TMT-B was reduced from 8.47% at step 2 to 5.38% at
step 3, indicating that TMT-B and LST accounted for shared
variance in TOL performance. This analysis is summarized in
Table 10.

DISCUSSION
Our research examined planning assessed using a 4-disk version
of the TOL (Shum et al., 2009) following stroke. The overall solu-
tion scores provided evidence of impairment but only in those
whose strokes resulted in damage to frontal regions of the brain.
The overall solution scores, which collapse over problem difficulty,
provided no evidence of planning impairments following stroke
affecting non-frontal brain regions. These findings are consistent
with previous research using the TOL4 (Shum et al., 2009).

We also investigated the extent to which relational complexity
theory (Halford et al., 1998), which has been shown to account for
performance in many cognitive domains also applies to planning
on the TOL4. According to relational complexity theory, integrat-
ing the relations between current states, intermediate states, and
goal states is a key process in planning. Three aspects of the findings
are consistent with relational complexity theory.

First, the observed difficulty of the TOL4 problems increased
with the estimated relational complexity of the problems. This
was also the case for other complexity metrics. The item-based
correlations demonstrate that moves to solution, search depth,

and relational complexity are not independent. In the regression
analyses, search depth and moves to solution emerged as predictors
of solution accuracy and search depth also predicted planning
times on problems correctly solved on the first attempt, but in
both cases the majority of the variance was shared. Search depth
and moves to solution are intrinsic to the TOL4 task but unlike
relational complexity they are not applicable across domains.

Search depth quantifies difficulty up to the first goal move.
Köstering et al. (2014) showed that search depth is well suited
to TOL3 problems. Our findings show that it also captures the
difficulty of TOL4 problems that require up to nine moves to
solution. The search depth metric and the relational complexity
metric both focus on the relations and interdependencies within a
sequence of moves and this might underpin the observed positive
correlation.

That the number of moves metric predicted solution accu-
racy is consistent with many previous findings (e.g., Newman
et al., 2003; Kaller et al., 2012). The finding is unsurprising in
one sense because problems that require more moves to solu-
tion also provide more opportunities for errors. Nevertheless, the
fact that number of moves was strongly correlated with search
depth and relational complexity, which are less vulnerable to this
criticism indicates its usefulness as a difficulty metric. One fea-
ture of the moves metric that might contribute to its prediction
of performance is its scaling. For problems used in the current
study, moves ranged from 2 to 9 with most intermediate values
represented. The values of search depth (0, 1, 2, 3, 5), goal ambigu-
ity (low, moderate, and high), and relational complexity (binary-,
ternary-, and quaternary-relational) were more limited in range.
These scaling differences between the metrics should be consid-
ered when interpreting the item-based correlations and regression
analyses.
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It is also likely that metrics that are specific to a task, as moves
to solution and search depth are to TOL, will tend to account for
more variance in that task. However, because such metrics cannot
be applied to other tasks, they cannot be used to compare diffi-
culty of TOL problems with other tasks. The relational complexity
approach does allow this. For example, number of moves on the
TOL4 task does not have the same meaning as number of moves
(steps to solution) on the LST, whereas the relational complexity
values are arguably comparable.

The second finding consistent with relational complexity the-
ory is that as in previous studies (Unterrainer and Owen, 2006;
Shum et al., 2009) impaired performance was most evident in
people with frontal lobe damage. Relational processing is known
to rely on the integrity of the frontal lobes (e.g., Waltz et al., 1999,
2004; Kroger et al., 2002; Crone et al., 2009; Andrews et al., 2013),
so this finding is consistent with the view that TOL4 problems
involve relational processing.

The frontal stroke group was impaired relative to unimpaired
controls on TOL4 problems at all three levels of relational com-
plexity. This was not the case when difficulty was expressed in
terms of moves, goal ambiguity, and search depth. TOL4 problems
with low and moderate numbers of moves, low and moderate goal
ambiguity, and low and high search depth were sensitive to frontal
lobe damage. Thus relational complexity was more sensitive to
frontal lobe damage than the other metrics were.

Relative to the non-frontal stroke group, the frontal stroke
group was impaired on low move and moderate move problems,
problems with low and moderate goal ambiguity, and problems
with low search depth and binary- and ternary-relational prob-
lems. Thus none of the metrics was successful in distinguishing
patients with frontal versus non-frontal damage at all three levels
of difficulty. The significant group effects that were observed on the
most difficult quaternary-relational and high search depth prob-
lems reflected differences between unimpaired and stroke groups
rather than between non-frontal and frontal stroke groups. That
this impairment in the non-frontal group was detected only on
a subset of the problems illustrates one benefit of analyzing the
cognitive demands involved in planning on the TOL4.

Given the demonstrated limit for young adults (Halford et al.,
2005), the poor performance of the two stroke groups on the
quaternary-relational problems is not surprising. Recent brain
imaging of individuals without brain damage showed that limits in
relational processing during a deductive reasoning task were mani-
fested in the brain as complexity-dependent modulations of large-
scale networks that involved both frontal and non-frontal (e.g.,
parietal, occipital) regions (Cocchi et al., 2014). If these regions
are damaged in individuals in the non-frontal stroke group, their
performance on the quaternary-relational TOL4 problems would
be adversely affected relative to the unimpaired group. Four of the
six quaternary-relational problems were classified as high search
depth, and this overlap would explain the similar pattern observed
on the high search depth and quaternary-relational problems.

A third finding is consistent with relational complexity theory.
As noted, the relational complexity approach has been applied
to tasks in many different content domains and cross-domain
correspondences in performance have been demonstrated in chil-
dren (Andrews and Halford, 2002; Halford et al., 2002a,b; Bunch

and Andrews, 2012), and adults (Andrews et al., 2006, 2013), sug-
gesting that relational processing is a domain-general capacity. As
predicted, relational processing in the LST accounted for variance
in TOL4 performance after controlling for stroke status and loca-
tion, MMSE and completion times on parts A and B of the TMT.
The TOL4 and the LST differ substantially in terms of their stim-
uli and procedural requirements. Therefore the shared variance
is unlikely to reflect common surface features of the tasks. We
interpret the variance shared by TOL4 and LST as evidence that
a common capacity for complex relational processing underpins
both tasks.

Completion times for the TMT also accounted for vari-
ance in TOL4, but this was due mainly to part B rather
than part A. Whereas TMT-A and TMT-B both require non-
executive processes involved in visual scanning and speeded motor
responses, TMT-B also requires the executive processes involved
in set-shifting, maintaining two response sets in working memory,
and inhibitory control (Müller et al., 2014). The unique contribu-
tion of TMT-B on step 2 of the regression analysis is consistent
with the involvement of executive processes in TOL4.

As well as accounting for independent variance in TOL4, TMT-
B, and LST also accounted for shared variance in TOL4. This
suggests that all three tasks have some common processes. We
argued previously that relational processing underpins both TOL4
and LST. TMT-B can also be construed in this way. It requires
integration of two well-known sequences, one numerical and the
other alphabetic. Each sequence incorporates a succession rela-
tion, in that one element is succeeded by the next element, for
example, succeeded by(3, 4) or succeeded by(D, E). Succession is
a binary relation because it cannot be defined on fewer than two
entities. TMT-B involves integrating the numerical and alphabetic
sequences such that the categories (numbers, letters) alternate,
for example, alternating (3, D, 4). Alternation is ternary-relational
because it cannot be defined on fewer than three entities. Thus we
propose that the variance shared by the three tasks reflects ternary-
relational processing. Some LST and TOL4 problems require
quaternary-relational processing, so the unique contribution of
LST might reflect this higher complexity.

The research contributes to our understanding of the processes
involved in TOL4. It adds to the studies cited previously, which
demonstrate that relational processing underpins performance on
a wide range of cognitive tasks. Given the ubiquitous nature of
relational processing, and the demonstrated effects of relational
complexity on performance, relational complexity theory provides
a parsimonious approach to conceptualizing human cognition.

The research also has practical implications. To the extent that
planning on tower tasks can be construed as relational processing,
interventions designed to improve relational processing through
for example, structural alignment training (Son et al., 2011; Hribar
et al., 2012), use of relational language (Gentner et al., 2011),
and techniques to improve access to relational components (e.g.,
Andrews et al., 2012) might also have beneficial effects on plan-
ning. Thus the findings have the potential to inform cognitive
rehabilitation of planning deficits following brain injury due to
stroke and other factors. Impairments in planning have adverse
implications for independent living (Jefferson et al., 2006). For
example, without the ability to plan, a person might have problems
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in achieving independent activities of daily living or their voca-
tional goals. Thus effective interventions would imply considerable
benefits for individuals as well as for society more broadly.
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Relational reasoning, or the ability to integrate multiple mental relations to arrive at a logical
conclusion, is a critical component of higher cognition. A bilateral brain network involv-
ing lateral prefrontal and parietal cortices has been consistently implicated in relational
reasoning. Some data suggest a preferential role for the left hemisphere in this form of
reasoning, whereas others suggest that the two hemispheres make important contribu-
tions. To test for a hemispheric asymmetry in relational reasoning, we made use of an old
technique known as visual half-field stimulus presentation to manipulate whether stimuli
were presented briefly to one hemisphere or the other. Across two experiments, 54 neu-
rologically healthy young adults performed a visuospatial transitive inference task. Pairs of
colored shapes were presented rapidly in either the left or right visual hemifield as par-
ticipants maintained central fixation, thereby isolating initial encoding to the contralateral
hemisphere. We observed a left-hemisphere advantage for encoding a series of ordered
visuospatial relations, but both hemispheres contributed equally to task performance when
the relations were presented out of order.To our knowledge, this is the first study to reveal
hemispheric differences in relational encoding in the intact brain.We discuss these findings
in the context of a rich literature on hemispheric asymmetries in cognition.

Keywords: reasoning, hemispheric specialization, deductive, transitive inference

INTRODUCTION
Relational reasoning is a cognitive process that requires the joint
consideration of relations in order to generate an inference to
support a conclusion. Although there is a wide range of theo-
retical models for relational reasoning (for review, see Goodwin
and Johnson-Laird, 2005; Knowlton et al., 2012), all of these
models present relational reasoning as a unitary system. How-
ever, work from neuropsychological and neuroimaging literatures
indicates that some cognitive functions may be supported by mul-
tiple, redundant systems in the brain (Roser and Gazzaniga, 2004;
Marinsek et al., 2014). Here, we sought to test whether one hemi-
sphere displays an advantage over the other during relational
encoding, or whether this function can be carried out equally well
by each hemisphere.

Hints of a possible left-hemisphere advantage in relational
reasoning have emerged over the course of a number of neu-
roimaging experiments (e.g., Goel and Dolan, 2004; Green et al.,
2006; Bunge et al., 2009; Wendelken et al., 2011). Importantly, sim-
ilar patterns have been observed for tasks involving either verbal
or non-linguistic/pictorial stimuli, suggesting that the observed
differences are not entirely stimulus-driven and do not completely
overlap with regions supporting language (Monti and Osherson,
2012). However, the conclusions we can draw from these fMRI
studies about lateralization of function are limited in several ways.
Namely, brain imaging provides correlational rather than causal
evidence, and results depend on the specific contrasts used as well
as the choice of statistical threshold. All of these factors can mask

whether both hemispheres are indicated as being involved in a par-
ticular task, and thus, any conclusions about localization should
converge with experimental findings using multiple approaches.

The neuropsychological literature also hints at possible hemi-
spheric differences in contributions to reasoning. Much of the
early work investigating differential hemispheric contributions
to cognitive function came from work on split-brain patients
(e.g., Sperry et al., 1969). These studies indicated an improved
ability for hypothesis testing during problem solving in the left
relative to the right hemisphere (LeDoux et al., 1977) and has
led to the idea of the left hemisphere being an “interpreter” of
events – i.e., the hemisphere with a major role of integrating
newly acquired perceived information with previously constructed
theories (Gazzaniga, 2000; Marinsek et al., 2014).

Following the seminal work of Gazzaniga et al. (1962) indicat-
ing how cognitive function differed in the two hemispheres fol-
lowing sectioning of the commissures, hemispheric asymmetries
in cognition have alternately been characterized as a dichotomy
between local and global (van Kleeck, 1989), categorical and coor-
dinate (Kosslyn, 1987; van der Ham et al., 2014), or serial and
parallel (e.g., Cohen, 1973) processes (for review, see Bradshaw
and Nettleton, 1981). In the present study, we did not set out to
evaluate these competing accounts of hemispheric specialization;
rather, we sought to characterize the contribution of each hemi-
sphere to performance of a relational reasoning task adapted from
one used in a prior fMRI study from our group (Wendelken and
Bunge, 2010).
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There is not a consistent pattern relating relational reasoning
ability to damage in a particular hemisphere. Neuropsychological
work on relational reasoning has demonstrated the necessity of
prefrontal and posterior parietal regions during transitive infer-
ence (Waltz et al., 1999; Krawczyk et al., 2008; Waechter et al.,
2012), analogical reasoning (Morrison et al., 2004; Krawczyk et al.,
2008), and matrix reasoning (Baldo et al., 2010; Woolgar et al.,
2010). Additionally, studies employing voxel-based lesion symp-
tom mapping to investigate relationships between patterns of
brain damage and resulting cognitive deficits in fluid intelligence
(Barbey et al., 2014) have suggested that damage to the right hemi-
sphere plays a more critical role. However, Baldo et al. (2010)
demonstrated that patients who have incurred strokes in the left
hemisphere have been shown to also have significant deficits in
a visuospatial relational reasoning task; therefore, more research
is needed to provide a better understanding of each hemisphere’s
role in relational reasoning.

We designed the current study to test the role of each hemi-
sphere in relational encoding through the use of a visual half-field
stimulus presentation procedure. This paradigm was originally
developed for use in split-brain patients, who have either minimal
or no connection between the two hemispheres (e.g., Gazzaniga
et al., 1962). Here, our participants were healthy adults whose
hemispheres are presumed to interact closely in the coordination
of task performance (Weissman and Banich, 2000). Nevertheless,
we sought to test for differences in response times and/or accu-
racy when relational information is initially encoded by the left or
the right hemisphere. This visual half-field stimulus presentation

procedure allowed us to test whether left and right hemispheres
differentially support relational encoding.

In the present study, we used a transitive inference task adapted
from an fMRI task that we have used previously (Wendelken
and Bunge, 2010). When reasoning using transitive inference, the
logical conclusion is deduced through transferring relational infer-
ences among terms expressed in the premises (e.g., if A > B and
B > C, then A must be greater than C). On this task, shown in
Figure 1, participants view a new set of relations on every trial
and are expected to integrate them in working memory. There
has been a rich literature on this form of reasoning (e.g., Hal-
ford, 1984; Cohen et al., 1997; Andrews and Halford, 1998; Greene
et al., 2001). Importantly, this form of relational reasoning bears
only a passing resemblance to transitive inference paradigms that
involve learning paired associations over many trials (e.g., Acuna
et al., 2002; Zalesak and Heckers, 2009; Koscik and Tranel, 2012;
for discussion, see Wendelken and Bunge, 2010). The major differ-
ence between our transitive inference paradigm and those based
on learning paired associations is that our task does not rely on
remembering associations to be transferred; instead, participants
must infer the spatial relationship based on the relations from the
most recent trial only. Having to perform this inference anew each
trial reduces any tendency to assume an object-order relationship
when attempting to solve the task.

Inspired by neuropsychological research demonstrating that
prefrontal patients have difficulty with transitive inference when
the relations are presented out of order (e.g., “Sam is taller
than Roy,” “James is taller than Sam”; Waltz et al., 1999;

FIGURE 1 | Example trial from Study 2 (including the visual mask).
Participants were shown three pairs of colored shapes. Following each pair,
participants were shown a visual mask overlaying the previous shapes, and
then a fixation cross. After the third pair was presented in a given trial,
participants had up to 10 s to decide the correct linear order of two shapes

based on the spatial relationships observed among the pairs. This is an
example of a reordered trial, in which participants would presumably have to
manipulate their memory of the pairs in order to deduce that the square goes
on top of the pentagon. Study 1 was similar in design except for the absence
of the visual mask presentations.
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Krawczyk et al., 2008), we manipulated the sequence of presen-
tation of the three relations. On half of the trials, the relations
were ordered (A > B; B > C; C > D), and on the other half, they
were reordered (A > B; C > D; B > C or C > D, A > B, B > C). We
hypothesized that manipulating encoding in this manner would
have an influence on the downstream integration process, and
sought to test for hemispheric differences in performance on tri-
als whose relations could be integrated readily (ordered trials) and
those that could not (reordered trials).

MATERIALS AND METHODS
PARTICIPANTS
Experiment 1: Twenty-three healthy adults (14 female, aged
18–34 years; X̄ ± SD age, 22±3.08 years). Experiment 2: Thirty-
one healthy adults (24 female, aged 18–25 years; X̄ ± SD age,
20±1.80 years). All participants attended the University of Cal-
ifornia, Berkeley, and participated in either Experiment 1 or 2
for partial fulfillment of a course requirement. All participants
had normal or corrected-to-normal vision, were right-handed,
and were fluent in English. Participants had no reported his-
tory of neurological or psychiatric disorders. All participants gave
their informed consent to participate in the study, which was
approved by the Committee for Protection of Human Subjects
at the University of California, Berkeley.

DESIGN
We ran two studies with a similar design except for the addition
of brief visual masks immediately following presentation of each
object pair (100 ms) and an additional 48 trials, both of which were
implemented in Experiment 2. We chose to insert the visual masks
in Experiment 2 to reduce any after-image perceptual influences
on decision making, in effect making the participant’s deduction
solely based on information stored and manipulated in working
memory (Kim and Blake, 2005). The task designs were identical
with the exception of these additions in Experiment 2; therefore,
all of the information below applied to both studies unless explic-
itly stated. The stimulus set consisted of four colored shapes: blue
triangle, orange circle, green pentagon, and pink square. On each
trial, three sets of relations – pairs of shapes arranged vertically,
with one colored shape positioned directly above another col-
ored shape – were presented in sequence (Figure 1). One-third of
the transitive inference trials involved ordered problems, in which
the source relations were presented in order (e.g., A > B, B > C,
C > D; A – D?); the other two-thirds involved reordered problems,
in which the middle relation was presented last (e.g., A > B, C > D,
B > C; A – D? or C > D, A > B, B > C; A – D?). Placing the middle
relation last instead of the final relation of the sequence assured
that participants could not rely on simple memory for the most
recent pair when making their decision.

Prior to the onset of each trial, white arrows appeared coming
from the four corners of the screen for 400 ms in order to direct eye
gaze to the center of the screen. Trials began with a white central
fixation cross displayed on screen for 50 ms. Each pair of shapes
was presented in the left or right visual hemifield for 200 ms, fol-
lowed by a visual mask for 100 ms (Experiment 2 only) and a
central fixation inter-stimulus interval (ISI) for 50 ms, and then
a different pair of shapes in either the same or opposite visual

hemifield for 200 ms. After being shown three pairs individually,
participants were asked to deduce the correct linear order of two
items (e.g., square and pentagon) based on the spatial relations
presented in the sequence of object pairs (e.g., square above trian-
gle, triangle above circle, and circle above pentagon). Participants
had≤10 s to make their decision regarding the correct linear order
of two colored shapes (i.e., which of the two objects would be on
top following the spatial relations represented in the trial).

PROCEDURE
Participants placed their heads in a chinrest affixed at arm’s length
from the screen, and were instructed to maintain their gaze on
a central fixation cross. Vertical pairs of shapes were displayed
between 4° and 6° of visual angle from central fixation (Buschman
et al., 2011).

In Experiment 1, the task included 96 trials total: 24 in which
all three shape pairs were presented to the left hemisphere (LLL),
24 in which they were presented to the right hemisphere (RRR),
24 in which they were presented to alternating hemispheres (12
LRL and 12 RLR trials), and 24 in which they were presented to
opposite hemispheres but did not alternate (12 LRR and 12 RLL
trials). The LRL, RLR, LRR, and RLL trials were inserted so that
participants could not reliably predict where the second and third
pairs would be presented. Experiment 2 included an additional 48
trials, but the balance of trial types was consistent with Experiment
1. Trials were evenly counterbalanced by hemispheric presentation
and ordering condition, and the trial order was fully randomized.

The final prompt displayed two shapes next to each other and
participants were instructed to indicate via key press which shape
should “go on top” based on the information in the three pairs of
relations. The “z” key corresponded to the shape on the left and
the “?/” key to the shape on the right; participants were instructed
to keep their left hand on the “z” key and right hand on the “?/”
key throughout the trials. In half the trials, the correct answer
appeared on the left and half on the right. Participants were given
a short break at the mid-point of the task. Experiment 2 contained
a third block of trials, so participants were given a second break.

RESULTS
FULLY LATERALIZED TRIALS
We first investigated whether the small differences in task design
between Experiments 1 and 2 would lead to any reliable differ-
ences in the results. A three-way mixed effects analysis of variance
(ANOVA) with experiment number as the between-subjects vari-
able, and hemispheric presentation (LH versus RH) and ordering
condition (ordered versus reordered) as within-subjects variables
indicated neither a main effect of experiment nor any interac-
tion with other factors, F’s < 1, p’s > 0.54. Thus, all subsequent
reported effects were generated from models collapsing across
studies1. We analyzed accuracy and response time data in sep-
arate two-way repeated measures ANOVAs, with hemispheric

1Including gender as a factor in the full model, we found that the males in this
study were more accurate than the females. Given the large gender imbalance in
our relatively small sample, this result should not be over-interpreted. Notably, both
males and females exhibited higher accuracy when the relations were presented to
the left hemisphere than to the right hemisphere.
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presentation and ordering condition as within-subjects factors.
In this first section, we discuss only those trials that were solely
presented to the left or right hemisphere. Behavioral results are
presented in Figure 2.

The ANOVA revealed a significant main effect of hemisphere
on accuracy, F(1, 53)= 27.15, MSE = 0.012, p < 0.01, η2

partial =

0.34, such that participants performed better when relational
information in the reasoning problem was initially encoded by
the left hemisphere (X̄= 0.76, SD= 0.17) as compared to the
right hemisphere (X̄= 0.68, SD= 0.16). A significant interaction
between hemispheric presentation and ordering condition was
also observed, F(1, 53)= 8.2, MSE = 0.013, p < 0.01, η2

partial =

0.13. Post hoc t -tests using Bonferroni correction showed that
participants were significantly more accurate when ordered pairs
were presented to the left hemisphere (X̄= 0.79, SD= 0.19)
as compared to the right hemisphere (X̄= 0.66, SD= 0.16),
t (53)= 6.02, p < 0.001, η2

partial = 0.41. By contrast, no significant

differences were found in accuracy between the left hemisphere
(X̄ = 0.74, SD= 0.17) and right hemisphere (X̄ = 0.70, SD= 0.19)
on reordered trials, t (53)= 1.51, p > 0.13, η2

partial = 0.04. We

could also describe this interaction by looking at differences
between trial types within each hemisphere. Although neither
of these comparisons passed Bonferroni correction, in the left
hemisphere, performance on ordered trials was better than on
reordered trials, whereas the opposite was true in the right hemi-
sphere. These results suggest that, although performance was best
when stimuli were presented in order to the left hemisphere, both
hemispheres performed similarly when relations were not pre-
sented in an order that is conducive to integration before solving
the transitive inference problem.

When including response times from correctly performed
trials as the dependent variable, the ANOVA produced a
marginally significant effect of hemispheric presentation, such

that participants were faster to produce the correct deci-
sion on trials that were presented to the left hemisphere
(X̄= 1218.41, SD= 433.56) as compared to the right hemisphere
(X̄= 1273.10, SD= 448.26), F(1, 53)= 3.93, MSE = 41115.21,
p= 0.053, η2

partial = 0.07. No other effects in relation to response

time were found to be statistically significant, F’s < 1.26, p’s > 0.26.
These results suggest that the left-hemisphere boost in perfor-
mance was not due to a speed-accuracy tradeoff; rather, when
object pairs were presented to the left hemisphere, participants
tended to respond faster than they would have if information had
been presented to the right hemisphere.

ALL TRIALS
In this section, we describe analyses investigating perfor-
mance across both fully lateralized and mixed hemisphere trials
(Figure 3). We ran 4× 2 repeated measures ANOVAs with num-
ber of times in the left hemisphere (0, 1, 2, 3) and order (ordered
versus reordered) as within-subject factors, predicting accuracy
and response time scores in separate models.

No significant effects were found for response times, F’s < 1.8,
p’s > 0.18. In terms of accuracy, we found a significant main
effect of number of times in the left hemisphere, F(3,159)= 8.79,
MSE = 0.013, p < 0.001, η2

partial = 0.14, such that greater accu-

racy was observed the more often premises were presented in the
left hemisphere. We also observed a trend for the effect of order,
such that accuracy on ordered trials (X̄= 0.74, SD= 0.16) was
marginally higher than on reordered trials (X̄= 0.72, SD= 0.15),
F(1,53)= 3.45, MSE = 0.017, p < 0.07, η2

partial = 0.06. We

observed a significant interaction between number of times in
the left hemisphere by order, F(3, 159)= 5.55, MSE = 0.013,
p < 0.001, η2

partial = 0.1. We found that for ordered trials there

was a significant monotonic increase in accuracy as premises were
presented to the left hemisphere, F(1, 53)= 38.11, MSE = 0.011,

FIGURE 2 | (A) Average proportion correct as a function of hemisphere
and ordering condition. A significant interaction was found such that
when pairs of objects were presented in order, performance was
significantly better when information was initially presented to the left
versus the right hemisphere. However, no reliable difference was
observed between hemispheres when pairs needed to be reordered in

memory. Additionally, an overall main effect was found indicating that
accuracy improved when pairs were initially encoded by the left
hemisphere as opposed to the right hemisphere. (B) Average response
time in milliseconds as a function of hemisphere and ordering condition,
for correct trials. No reliable differences were observed for response
time. **p < 0.01.
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FIGURE 3 | Accuracy as a function of ordering condition and number of
times premise was presented in the left hemisphere (0, 1, 2, 3). For
ordered trials, accuracy increased monotonically with the number of times
a premise was presented in the left hemisphere. For reordered trials, a
simple pattern was not observed; rather, accuracy decreased when
premises were presented in the left hemisphere two times (i.e., on LRL
and RLL trials) relative to one or three times. No effects were observed for
response times.

p < 0.001,η2
partial = 0.42. For reordered trials, no such linear trend

was observed, F(1, 53) < 1, p > 0.5. These results suggest that when
information is already ordered, increases in accuracy can be sig-
nificantly predicted by how many times the premises are presented
in the left hemisphere, and support our finding that participants
performed better when ordered trials were presented only to the
left hemisphere than to the right.

FOLLOW-UP ANALYSES
In testing for hemispheric differences in performance on this tran-
sitive inference task, we sought to ensure that participants were
performing this task in the manner expected. When three rela-
tions are presented in order, it is possible to produce the correct
response even without integrating multiple relations (Bryant and
Trabasso, 1971). In our design, this simpler, non-integrative strat-
egy could be undertaken by paying attention only to the top item in
the first premise rather than encoding all premises and integrating
the relations between them. If participants were to take this strat-
egy, they would be expected to achieve roughly 100% accuracy on
ordered trials, but only around 50% accuracy on reordered trials
(because the first item of the first premise only appeared in the
final prompt on two-thirds of the trials). Six out of 54 partici-
pants exhibited a pattern consistent with the use of this strategy.
The findings reported here hold even when excluding these six
participants.

DISCUSSION
Inspired by findings from the neuroimaging and neuropsy-
chological literatures, we tested whether healthy young adults’

performance on a reasoning task would differ on whether the stim-
uli were presented to the left or right hemisphere. By designing a
transitive inference task with visual half-field stimulus presenta-
tion, we were able to show differences in reasoning performance
as a function of the hemisphere that initially encoded the sets of
visuospatial relations. Given that the two hemispheres commu-
nicate freely in the intact brain, we had expected only modest
differences in response times for left- versus right-hemifield stim-
ulus presentation. As such, we were surprised by the magnitude
of the behavioral difference elicited by visual half-field presen-
tation in this study, with an average difference in accuracy of
11% between left-lateralized and right-lateralized ordered trials.
Although claims of inter-hemispheric differences in cognition
have been made for many years (Gazzaniga et al., 1962; Cohen,
1973), our study is the first to demonstrate hemispheric differences
in relational encoding in neurologically intact participants.

Although task performance (i.e., accuracy) improved overall
when participants encoded the visuospatial relations in the left
hemisphere, this effect was driven by performance on the ordered
trials. That is, we observed a left-hemisphere advantage when the
relations were ordered linearly and, therefore, could be integrated
directly, but not when it was necessary to rearrange the relations
before integrating them. For right-hemisphere trials, participants
did not show the predicted pattern of worse performance for
reordered versus ordered trials. This pattern was unexpected, and
warrants further investigation. Surprisingly, given that reordered
trials are hypothesized to require additional processing relative
to ordered trials (Waltz et al., 1999; Krawczyk et al., 2008), left-
hemisphere encoding of reordered relations was superior even
to right-hemisphere encoding of ordered relations. These results
suggest that the left hemisphere excels at relational encoding.

The present results fit well with neuroimaging studies that have
pointed toward a left-hemisphere specialization in relational rea-
soning (Wendelken et al., 2008; Bunge et al., 2009; Green et al.,
2010). In light of these findings, it is interesting to consider a
recent resting-state functional connectivity study showing that the
left-hemisphere interacts more exclusively with itself, whereas the
right hemisphere demonstrates connectivity patterns associated
with both hemispheres (Gotts et al., 2013). This result suggests
that the left hemisphere may operate independently, whereas the
right hemisphere functions, at least partly, with assistance from
the left hemisphere. Given these findings, we would predict a
left-hemisphere advantage if relational encoding hinges more on
intra-hemispheric interactions, and indeed this prediction was
supported by our analysis including the mixed trials.

A LEFT-HEMISPHERE ADVANTAGE FOR RELATIONAL ENCODING
The behavioral improvement observed in our study does not indi-
cate that the right hemisphere cannot encode relational informa-
tion, but rather suggests that relational encoding may be processed
more effectively in the left hemisphere. Although the stimuli were
visuospatial in nature, they nonetheless were easily identifiable ver-
bally (e.g., circle, square, pentagon). Given how quickly premises
were presented, it does not seem feasible that very many partici-
pants would have had enough time to verbally label objects while
they solved the task; however, we cannot conclusively rule out this
possibility. The present study establishes a paradigm that could be
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used for further examination of the necessity of verbal labeling for
relational reasoning.

Numerous dichotomies have been used to explain hemispheric
asymmetries in cognitive functioning (Bradshaw and Nettleton,
1981), and so we do not claim that the left-hemisphere advan-
tage observed in our study is unique to relational encoding, per se.
Beyond the verbal/non-verbal distinction (Gazzaniga et al., 1962),
other theories have focused on local versus global (van Kleeck,
1989), serial versus parallel (Cohen, 1973), holistic versus ana-
lytic (Nebes, 1978; Cooper and Wojan, 2000), categorical versus
coordinate (Kosslyn, 1987), or syntactical versus intuitive/“gist”
(Bogen, 1975; Phelps and Gazzaniga, 1992) processing, to name a
few. Such dichotomies are useful in that they demonstrate how a
higher level cognitive task such as reasoning might be represented
as a combination of lower order cognitive processes. Our transi-
tive inference task could be construed as being syntactical, serial,
and analytic, and previous work focusing on these distinctions has
consistently demonstrated a left-hemispheric specialization (for
review, see Bradshaw and Nettleton, 1981). Additionally, encod-
ing spatial relations in the premises categorically (e.g., identifying
the square as above the triangle) would also fit with previous
work demonstrating a left-hemispheric advantage for categorical
encoding of spatial relations (Kosslyn, 1987; van der Ham et al.,
2012).

CONCLUSION AND FUTURE DIRECTIONS
Our results shed light on cognitive theories of relational reasoning,
as they provide evidence for differential processing of relations by
the two hemispheres. Specifically, we found that participants per-
formed better on our transitive inference task when the premises
were presented to the left hemisphere. This effect was driven by an
interaction such that there was a greater difference in performance
when the premises were ordered than when participants presum-
ably had to reorder the premises before making their conclusion.
Theories describing a unitary mechanism of relational reasoning
(e.g., Hummel and Holyoak, 2003; Goodwin and Johnson-Laird,
2005) may need to incorporate multiple components in order to
fully represent interhemispheric differences used during relational
reasoning.

The present results are consistent with theoretical predic-
tions concerning hemispheric specialization of cognitive func-
tions. Specifically, participants are expected to perform better
when information is presented to the left hemisphere for tasks
that could be solved using a stepwise and analytical strategy. Our
findings extend previous work given that our transitive inference
task not only exemplifies these types of strategies but also relies
on the comparison of relational information between premises in
order to arrive at a solution.

These behavioral results warrant further investigation with
neuroscientific techniques. First, functional imaging techniques
could be used to measure the dynamic interplay between hemi-
spheres during performance of this lateralized transitive inference
task. Second, transcranial direct current stimulation could be used
to increase or reduce cortical excitability within a hemisphere and
test whether relational reasoning performance in each hemisphere
changes as a function of cortical excitability (Nitsche and Paulus,
2001; Ardolino et al., 2005). Finally, patients with unilateral brain

injuries could be tested on this lateralized task to assess whether
relational encoding is primarily a left-hemisphere function, or
whether the right hemisphere could specialize in this function after
left-hemisphere damage. Thus, reapplying this well-established
stimulus presentation procedure in these multiple contexts will
help us to better understand the underlying mechanisms required
for processing relational information during reasoning.
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Judgments about whether an action is morally right or wrong typically depend on our
capacity to infer the actor’s beliefs and the outcomes of the action. Prior neuroimaging
studies have found that mental state (e.g., beliefs, intentions) attribution for moral
judgment involves a complex neural network that includes the temporoparietal junction
(TPJ). However, neuroimaging studies cannot demonstrate a direct causal relationship
between the activity of this brain region and mental state attribution for moral judgment.
In the current study, we used transcranial direct current stimulation (tDCS) to transiently
alter neural activity in the TPJ. The participants were randomly assigned to one of three
stimulation treatments (right anodal/left cathodal tDCS, left anodal/right cathodal tDCS,
or sham stimulation). Each participant was required to complete two similar tasks of
moral judgment before receiving tDCS and after receiving tDCS. We studied whether
tDCS to the TPJ altered mental state attribution for moral judgment. The results indicated
that restraining the activity of the right temporoparietal junction (RTPJ) or the left the
temporoparietal junction (LTPJ) decreased the role of beliefs in moral judgments and
led to an increase in the dependance of the participants’ moral judgments on the
action’s consequences. We also found that the participants exhibited reduced reaction
times both in the cases of intentional harms and attempted harms after receiving right
cathodal/left anodal tDCS to the TPJ. These findings inform and extend the current
neural models of moral judgment and moral development in typically developing people
and in individuals with neurodevelopmental disorders such as autism.

Keywords: theory of mind, moral judgment, beliefs and outcomes, temporoparietal junction, transcranial direct
current stimulation

INTRODUCTION

In everyday life, a harm caused by an action is morally worse than an equivalent harm caused
by omission, and a harm intended as the means to a goal is morally worse than an equivalent
harm foreseen as the side effect of a goal (Cushman et al., 2006; Young and Koenigs, 2007).
Moral judgment entails judging others’ actions on the dimension of right and wrong, but this
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requires not only the outcomes of these actions but also the
cognitive ability to think about another person’s beliefs and
intentions, which is known as ‘‘theory of mind’’ (Young and Saxe,
2008).

A number of recent studies indeed demonstrate that mental
state information (e.g., desire, belief, intention) is one of
the crucial inputs into moral decision-making (for a review,
see Young and Tsoi, 2013). Evidence from developmental
psychology also shows that children (even preverbal infants)
start condemning negative intent that does not result in negative
outcome (see Baird and Astington, 2004; Killen et al., 2011).
But when beliefs and outcomes are incongruent with each other,
there are different ways that this incongruence can behaviorally
present itself relying on the valence of the conflicting belief and
outcome (Patil and Silani, 2014).

Cushman (2008) found that judgments of punishment
depended jointly on mental states and the causal relationship
of an agent to a harmful consequence. An account of these
phenomena has been proposed that distinguished two processes
of moral judgment (Young et al., 2007; Cushman et al., 2013;
Cushman, 2013): one which begins with harmful outcome and
attributes condemnation to the causally responsible agent, and
the other which begins with an action and analyses the mental
states responsible for that action.

Neuroimaging studies have investigated the selectivity and
domain specificity of these brain regions for thinking about
another person’s thoughts. These regions, which comprise the
‘‘theory of mind network, ’’ include the medial prefrontal cortex
(MPFC), precuneus (PC), right superior temporal sulcus (RSTS),
and bilateral temporal-parietal junction (TPJ; Gallagher et al.,
2000; Vogeley et al., 2001; Ruby and Decety, 2003; Saxe and
Kanwisher, 2003; Aichhorn et al., 2009).

The precise role of these brain regions in theory of mind for
moral judgment has been the topic of recent researches (Young
et al., 2007; Young and Saxe, 2008). Specifically, the TPJ exhibits
increased activity whenever participants read about a person’s
beliefs in nonmoral (Saxe and Kanwisher, 2003; Saxe and Powell,
2006) or moral contexts (Young et al., 2007, 2010b). However,
fMRI cannot demonstrate direct causal relationships between the
activities in these brain regions and mental state attribution for
moral judgment.

Noninvasive brain stimulation techniques, such as rTMS,
allow for the study of the decision consequences of externally
restrained brain activity in healthy participants and thus the
establishment of causal connections between the brain and
decisions without many of the confounds inherent to natural
lesion studies (Rafal, 2001; Robertson et al., 2003). Young et al.
(2010a) and Jeurissen et al. (2014) used rTMS to transiently
suppress activity in the right temporoparietal junction (RTPJ)
and provided evidence for the causal role of this structure in
mental state attribution for moral judgment.

Transcranial direct current stimulation (tDCS) has some
advantages relative to rTMS because it induces a stronger
modulatory effect on brain activity (Nitsche and Paulus, 2000;
Romero et al., 2002), allowing for reliable sham stimulation
(Gandiga et al., 2006). Importantly, anodal tDCS increases
excitability in targeted brain regions, which can transiently

enhance decisions and judgment in healthy humans (Fregni et al.,
2005; Wassermann and Grafman, 2005).

The goal of the present study was to alter moral judgments
by modulating the cortical excitability over the TPJ in healthy
adults. To measure the participants’ capacities to infer the actor’s
mental state attributions in moral judgment, we presented the
participants with moral scenarios in which (i) the protagonist
acts on either a negative belief (e.g., that he or she will cause harm
to another person) or on a neutral belief and (ii) the protagonist
either causes a negative outcome (e.g., harm to another person)
or a neutral outcome (Young et al., 2007; Young and Saxe, 2008).
Participants made judgments on a scale of 1 (permissible) to 10
(forbidden), which were regarded as their condemnation ratings
towards the behaviors described.

Previous findings have provided direct evidence supporting
the critical role of the RTPJ in mediating belief attribution
for moral judgment, For example Young et al. (2010a)
revealed that the disruption of the RTPJ with TMS led
participants to rely their judgments less on the actor’s mental
states, and Sellaro et al. (2015) found that participants who
received anodal tDCS over the RTPJ assigned less blame
to accidental harms compared to participants who received
sham stimulation. However, a direct causal relationship
between left temporoparietal junction (LTPJ) and mental
state attribution for moral judgments has not been studied.
In the present study, we sought to firstly test whether
modulating the activity of the LTPJ activity with tDCS
would also influence the role of beliefs on moral judgments.
Therefore, we performed an experiment to investigate whether
bilateral stimulation of the TPJ (anodal stimulation of the
right and cathodal stimulation of the left TPJ or vice versa)
would alter mental state attribution for moral judgments.
Our findings suggested that restraining the RTPJ or LTPJ
with tDCS decreased the role of beliefs in moral judgment.
Combining our findings with those of previous work,
we infer that the RTPJ and LTPJ commonly represent
the ability to use mental states in moral judgment and
that both are responsible for the role of belief in moral
judgment.

Besides the difference in stimulation electrode positions
from previous evidence, the present study has novel assignment
for moral judgment task and classification for story context.
The previous experiments demonstrated the role of the
RTPJ on belief attribution by comparing participants’
moral judgments following TMS to the RTPJ and TMS to a
control brain region (Young et al., 2010a), or investigating
participants’ performance on the moral judgment task
before and after having received anodal, cathodal, or sham
tDCS over the RTPJ (Sellaro et al., 2015). These studies
selected and randomly distributed moral stories among
different treatments (including active stimulations and sham
stimulation) and different tasks (pre-tDCS and post-tDCS
task) to test their hypotheses. However, they haven’t made
sure the balance and similarity of moral stories across the
treatments and tasks. In this study, each participant was
required to complete a similar (and we demonstrated the
similarity) moral judgment task before and after receiving
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tDCS. Therefore, we combined within-subject and between-
subject design in this experiment to test the causal role
of the bilateral TPJ regarding mental states in moral
judgment.

In addition, how one should act toward another depends
on whether the target is a friend, a stranger, a subordinate,
or an authority (Dungan and Young, 2012). Therefore,
we have assigned two different types of story context that
involved economic interests and relationships with friends
in moral judgment task to explore the role of TPJ on the
actors’ mental state attributions for moral judgment across
different contexts. Analyses indicated that in conditions
of neutral belief, the condemnation ratings of contexts
involving economic interests were lower than those of
contexts involving relationship with friends. Moreover,
in conditions of negative belief with contexts involving
economic interests, the condemnation ratings were lower
after receiving right anodal/left cathodal tDCS. These findings
indicate that the restraining effect of tDCS on the LTPJ in
the role of beliefs in moral judgment depends on moral
context.

MATERIALS AND METHODS

Subjects
We recruited 54 healthy college students (32 females; mean
age 22.11 years, ranging from 19–30 years) to participate
in our experiment. All participants were right-handed and
naïve to tDCS and moral judgment tasks, and they had
no history of psychiatric illness or neurological disorders.
The participants were randomly assigned to receive right
anodal/left cathodal tDCS over TPJ (n = 18, 11 females),
left anodal/right cathodal tDCS over TPJ (n = 18, 11
females) or sham stimulation over TPJ (n = 18, 10 females).
Each participant received 50 RMB yuan (approximately
7.995 US dollars) for their participation. Participants
gave written informed consent before entering the study,
which was approved by the Zhejiang University ethics
committee. No participants reported any adverse side
effects about pain on the scalp or headaches after the
experiment.

Transcranial Direct Current Stimulation
(tDCS)
tDCS was induced by two saline-soaked surface sponge
electrodes (35 cm2). Direct current was constant and
delivered by a battery-driven stimulator (Multichannel
noninvasive wireless tDCS neurostimulator, Starlab, Barcelona,
Spain), which was controlled through a Bluetooth signal.
It was adjusted to induce cortical excitability of the
target area without causing any physiological damage
to the participants. Various orientations of the current
had various effects on the cortical excitability. Generally
speaking, anodal stimulation enhances cortical excitability,
whereas cathodal stimulation inhibits it (Nitsche and Paulus,
2000).

TPJ was localized with location CP5 (left) and CP6 (right)
on an EEG cap laid out according to the International 10–20
System (Figure 1A). Participants were randomly assigned to
one of the three single-blinded stimulation treatments. For right
anodal/left cathodal stimulation, the anodal electrode was placed
over the CP6 according to the international EEG 10–20 system,
while the cathodal electrode was placed over the CP5. For left
anodal/right cathodal stimulation the placement was reversed.
The anodal electrode was placed over CP5 and the cathodal
electrode was placed over CP6 (Figures 1B,C). Therefore, the
target electrode (either the anode or the cathode) was centered
over CP6/CP5; the return electrode was placed over CP5/CP6.
The reason we chose a bifrontal electrode montage was to
provide stimulation able to enhance the activity of one side
of the TPJ while simultaneously diminish the other side. For
sham stimulation, the procedures were totally the same but the
current lasted only for the first 30 s. The participants may have
felt the initial itching, but actually there was no current for
the rest of the stimulation. This method of sham stimulation
has been shown to be reliable (Gandiga et al., 2006). The
current had an intensity of 2 mA with 15 s of ramp up and
down, the safety and efficiency of which was shown in previous
studies.

After the participant finished the first moral judgment task
(the computer program for these tasks was written in visual
C#) which was similar to Young’s design (Young et al., 2010a),
the laboratory assistant put a tDCS device on his/her head for

FIGURE 1 | Electrode placements. (A) Schematic of the electrode positions based on the EEG 10–20 system. (B) Left anodal/right cathodal stimulation over the
temporoparietal junction (TPJ) of the human brain. (C) Right anodal/left cathodal stimulation over the TPJ of the human brain. The axis represents the range of input
voltage from −18.476 to 14.463 V.
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stimulation and removed him/her from the computer screen.
After 15 min of stimulation, the participant was then asked to
complete the latter moral judgment task with the stimulation
being delivered for another 5 min (Figure 2).

Task and Procedure
The experiment included two moral judgment tasks. Each
participant was required to complete a moral judgment task
before receiving tDCS and to complete another moral judgment
task after receiving tDCS. To eliminate the sequence effect of the
two tasks, we randomly assigned half of the participants (Part I)
to complete moral judgment task A (including story S1 and S2)
before receiving tDCS and to complete moral judgment task B
(including story S∗

1 and S∗
2) after receiving tDCS; the remaining

participants (Part II) completed task B before receiving tDCS
and completed task A after receiving tDCS (Figure 3). Each story
was based on a type of context that involved economic interests
(S1 and S∗

1) or relationships with friends (S2 and S∗
2).

There were four conditions in each story that included belief
(negative vs. neutral) and outcome (negative vs. neutral) factors
to yield a 2 × 2 design. Specifically, they were intentional harm
(negative belief and negative outcome), accidental harm (neutral
belief and negative outcome), attempted harm (negative belief
and neutral outcome) and nonharm (neutral belief and neutral
outcome). Stories were presented in cumulative segments, each
presented for 8 s, describing in a fixed order: (i) background;
(ii) foreshadow; (iii) belief; and (iv) action. The background
was identical across conditions. Stories were then removed
from the screen and replaced with a question about the moral
permissibility of the action. Participants made judgments on
a scale of 1 (permissible) to 10 (forbidden) using a computer
keyboard, which were regarded as their condemnation ratings
towards the behaviors described. The time limit for responding
was 6 s. The reaction times were recorded and all of the
participants had made judgments within the time limit.

The participants were required to read and make judgments
about two moral stories with four conditions respectively before
receiving tDCS. After completing this moral judgment task,

they had a break and received tDCS for 15 min. Subsequently,
they were required to read and make judgments about another
two stories with four conditions respectively while receiving
stimulation for another 5 min. The latter moral judgment task
was similar to the first moral judgment task to avoid learning
effects in the within-subject design experiment. Both tasks
included two stories (S1 and S∗

1 ; S2 and S∗
2) with four conditions

(Figure 4). The same participant saw all four variations of the
same story in both sessions, eight stories pre-stimulation and
eight-stories post-stimulation, for a total of 16 stories. On average
each story consisted of about 91 words, and the number of words
was matched across conditions and tasks. When the subjects
completed the two moral judgment tasks, they were asked to
complete a questionnaire before finally receiving their payment.

Data Analysis
We first tested the similarity of tasks A and B using repeated
measures analyses of variance (ANOVA). Giving the two tasks
were equivalent in terms of condemnation ratings and reaction
times before receiving tDCS, it ensured us to compare the
performance of the participants before and after receiving
tDCS. Then we used repeated measures ANOVA to test if
the stimulation had changed the participants’ moral judgment
in different conditions, including condemnation ratings and
reaction times. As we distinguished between the contexts that
involved economic interests and relationships with friends, all
these tests were applied firstly without consideration of the
difference between the two contexts (the pooled sample) and then
treating context as a within-subjects factor (sample with context).
The statistical analyses were performed using SPSS statistical
software (SPSS Inc., Chicago, IL, USA).

RESULTS

The Pooled Sample
The mean condemnation ratings and standard deviation
information of different conditions and different stimulation
types are shown in Figure 5 and Table 1. We first tested

FIGURE 2 | Schematic representation of the experimental process. The participant was required to perform the first moral task before stimulation. After 15 min
of stimulation, each participant was asked to complete the second task while the stimulation was continued for another 5 min.
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FIGURE 3 | Experimental design. The half of participants (Part I) were
required to complete the moral judgment task A (S1, S2) before stimulation
and complete the moral judgment task B (S∗

1, S∗

2) after stimulation, while the
rest of participants (Part II) were required to complete task B (S∗

1, S∗

2) before
stimulation and complete task A (S1, S2) after stimulation.

whether task A was different from task B before receiving
tDCS using repeated measures ANOVA with Belief (neutral vs.
negative) and Outcome (neutral vs. negative) as within-subjects
factors and Task (A vs. B) as a between-subjects factor. There
was significant effect of task neither in condemnation ratings
[F(1,106) = 0.007, P = 0.931] nor in reaction times [F(1,106) = 0.752,
P = 0.388], which made it reasonable to regard the two tasks
as equivalent and compare the performance of the participants
before and after receiving the stimulations. Meanwhile, we
found significant effect of Belief [F(1,106) = 671.932, P < 0.001],
Outcome [F(1,106) = 419.632, P < 0.001] and a significant
interaction of Belief and Outcome [F(1,106) = 109.063, P < 0.001]
in condemnation ratings.

Since there was no significant difference between
condemnation ratings and reaction times for the two
moral judgment tasks, the difference before and after the
stimulations could be attributed to the effect of tDCS. We
ran a repeated measures ANOVA with Belief (neutral vs.
negative), Outcome (neutral vs. negative) and Time (before
vs. after tDCS) as within-subjects factors and stimulation
type (right anodal/left cathodal, left anodal/right cathodal or
sham) as a between-subjects factor. Significant effects of Belief
[F(1,105) = 845.032, P < 0.001] and Outcome [F(1,105) = 586.439,
P < 0.001] were observed, which meant that the participants’
condemnation ratings of moral judgment in conditions of
negative belief (mean = 8.671) were higher than that of neutral
belief (mean = 4.354). Similarly, conditions of negative outcome
(mean = 8.192) were more condemned than conditions of
neutral outcome (mean = 4.833). Moreover, the interaction of
Belief and Outcome also had a significant effect [F(1,105) = 4.454,
P = 0.014]. Post hoc analysis using bonferroni corrections
indicated that conditions of intentional harm (mean = 8.755)
and attempted harm (mean = 8.588) were less permissible than
both conditions of accidental harm (mean = 4.398) and nonharm
(mean = 4.310). We also found significant effect of stimulation
type [F(2,105) = 5.289, P = 0.006].

Importantly, we found a slightly significant three-way
interaction involving Outcome, Time and stimulation type
[F(2,105) = 3.185, P = 0.045]. Analysis showed that in

conditions of negative outcome, participants rated higher in
condemnation after receiving right anodal/left cathodal tDCS
[before: mean = 7.833; after: mean = 8.292; P = 0.005], especially
towards intentional harm [P = 0.001]. On the other hand,
in conditions of neutral outcome, participants rated lower in
condemnation after receiving left anodal/right cathodal tDCS
[before: mean = 5.764; after: mean = 5.000; P < 0.001], both
towards attempted harm [P = 0.001] and nonharm [P = 0.015].
These findings might indicate that restraining the activity of the
RTPJ/LTPJ decreased the role of beliefs in moral judgments and
led to the participants’ moral judgments being more dependent
on the actions’ consequences.

We paid attention to reaction time as well. Applying the
above repeated measures ANOVA, we found a significant
effect of Time [F(1,105) = 7.571, P = 0.007]. It is easy to
understand that the reaction times after stimulation were shorter
than before because that the participants were more familiar
with the task. Moreover, the three-way interaction of Belief,
Time and stimulation type was trending towards significant
[F(2,105) = 2.749, P = 0.069]. Post hoc analysis indicated that the
reaction times in conditions of negative belief were significantly
shorter after left anodal/right cathodal tDCS [P = 0.004],
while in conditions of neutral belief the reaction times were
significantly shorter after sham stimulation [P = 0.023]. The
mean reaction time and standard deviation information are
displayed in supplementary materials.

Lastly, we checked whether the sequence of the two tasks
would influence the participants’ moral judgment. Repeated
measures ANOVAs showed no significant effect of sequence in
condemnation ratings [F(1,102) = 0.154, P = 0.695] or in reaction
times [F(1,102) = 1.633, P = 0.204].

Sample with Context
To test the effect of context, we added Context (economic
interests vs. relationships with friends) as a within-subjects
factor into the repeated measures ANOVAs in section
‘‘The Pooled Sample’’. We first tested the similarity of tasks
A and B. No significant effect of Task in condemnation
ratings [F(1,52) = 0.004, P = 0.947] or in reaction times
[F(1,52) = 0.407, P = 0.526] was observed. Apart from the
significant effects of Belief [F(1,52) = 427.022, P < 0.001],
Outcome [F(1,52) = 254.778, P < 0.001] and a significant
interaction of Belief and Outcome [F(1,52) = 65.701, P < 0.001] in
condemnation ratings as in sections ‘‘The Pooled Sample’’,
there was also a significant interaction of Context and
Belief [F(1,52) = 7.379, P = 0.009]. Analysis indicated that
in conditions of neutral belief, the condemnation ratings
of contexts involving economic interests were lower than
those of contexts involving relationships with friends
[P = 0.010].

We then performed repeated measures ANOVA with
Context, Belief, Outcome and Time as within-subjects factors
and stimulation type as a between-subjects factor. Again we
found significant effects of Belief [F(1,51) = 473.717, P < 0.001]
and Outcome [F(1,51) = 321.762, P < 0.001], which meant that the
participants’ ratings of moral judgment in conditions of negative
belief were higher than that of neutral belief, as well as conditions
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FIGURE 4 | Task design and experimental stimuli. (A) Schematic representation of sample scenario. Light-colored arrows mark the combinations of
“Foreshadow” and “Belief” for which the belief is false. “Foreshadow” information foreshadows whether the action will result in a neutral or negative outcome. “Belief”
information states whether the protagonist holds a belief that he is in a neutral situation and that action will result in a neutral outcome (neutral belief) or a belief that
he is a negative situation and that action (or inaction) will result in a negative outcome (negative belief). (B) Combination of belief (neutral vs. negative) and outcome
(neutral vs. negative) factors yielded a 2 × 2 design with four conditions.

of negative outcome were more condemned than conditions
of neutral outcome. The interaction of Belief and Outcome
also had a significant effect [F(1,51) = 65.255, P < 0.001]. In
addition, we found significant effects of Context [F(1,51) = 5.391,
P = 0.024], which meant that contexts involving economic
interests [mean = 6.419] was less condemned than those of
contexts involving relationships with friends [mean = 6.606].
Besides, there was a significant four-way interaction involving
Context, Belief, Time and stimulation type [F(2,51) = 3.871,
P = 0.027]. Analysis indicated that in conditions of negative belief
with contexts involving economic interests, the condemnation
ratings were lower after receiving right anodal/left cathodal tDCS
[p = 0.014]. There was also a similar but slightly less significant
effect in conditions of negative belief with contexts involving
economic interests [P = 0.069].

As for the reaction time, we found a significant effect of
Time [F(1,51) = 4.517, P = 0.038] similar to section ‘‘The Pooled
Sample’’. A significant four-way interaction of Context, Belief,

Outcome and stimulation type was also observed [F(2,51) = 3.908,
P = 0.026], indicating that in conditions of accidental harm,
the reaction times of contexts involving economic interests were
longer than those of contexts involving relationships with friends
in sham stimulation [P = 0.013]. The mean reaction time and
standard deviation information are displayed in supplementary
materials. At last, no significant effect of sequence was observed
in condemnation ratings [F(1,48) = 0.083, P = 0.774] or in reaction
times [F(1,48) = 0.855, P = 0.360].

DISCUSSION

Human moral judgment often represents a response that
depends on various factors and features that include not only
the agent’s beliefs but also the agent’s desires (Cushman, 2008),
their consequences (Greene et al., 2001), the agent’s prior
record (Kliemann et al., 2008), the cause that leads to harm
(Cushman et al., 2008), whether the action was coerced by
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FIGURE 5 | Data of condemnation ratings. (A) The condemnation ratings
of participants with four conditions in the right anodal/left cathodal treatment
before and after stimulation. (B) The condemnation ratings of participants with
four conditions in the left anodal/right cathodal treatment before and after
stimulation. (C) The condemnation ratings of participants with four conditions
in the sham treatment before and after stimulation. Blue columns,
pre-transcranial direct current stimulation (tDCS); red columns, post-tDCS.
Error bars indicate 95% confidence intervals. Asterisks indicate statistical
significance of difference within-subject.

external circumstances (Woolfolk et al., 2006; Krebs et al., 2014),
(etc., Valdesolo and DeSteno, 2006; Young et al., 2010a). In the
present study, we manipulated two of these factors, the agent’s
belief and the outcomes of the action, and tested whether the
effect of modulating activity in the TPJ with tDCS was specific
to the agent’s mental state attribution for moral judgment.

This study corroborated and complemented the previous
finding by Young et al. (2010a), which postulated that
disrupting RTPJ function reduces the influence of beliefs

on moral judgment. We found that restraining the RTPJ
via tDCS caused the participants to judge attempted
harms and nonharm as less morally forbidden and more
morally permissible, while restraining the LTPJ via tDCS
caused the participants to judge accidental harms and
intentional harms as more morally forbidden and less morally
permissible. Thus, suppressing the activity in the RTPJ or
LTPJ disrupted the capacity to use mental states in moral
judgment.

To verify the robustness of our results, we modified a related
experimental design based on that of Young et al. (2010a).
Previous neurostimulation experiments of human decision-
making have primarily utilized between-subject design (Knoch
et al., 2006; Fecteau et al., 2007a,b; Boggio et al., 2010; Young
et al., 2010a). However, the corresponding results lack statistical
power due to the heterogeneity of the participants, especially
when the samples are small. Our experiment adopted a within-
subject design to avoid this interference from the heterogeneity
of the participants. Provided that the multiple exposures are
independent, this design makes it possible for causal estimates to
be obtained by examining how individual decisions change after
receiving stimulation.

Furthermore, the previous studies haven’t made sure the
balance of moral stories across the treatments. In this study, each
participant was required to complete similar moral judgment
task before and after receiving tDCS (active stimulations and
sham stimulation). We also demonstrated that task A was
equivalent to task B before receiving tDCS either in terms
of condemnation ratings or reaction times, which made it
reasonable to compare the performance of the participants
before and after receiving the stimulations. Since there was no
significant difference between the two moral judgment tasks, the
difference before and after the stimulations could be attributed to
the effect of tDCS.

Generally, moral judgments are robust to different
demographic factors such as gender, age, ethnicity, and
religion, but many complexities in moral judgment are still
left unresolved. No comprehensive model or taxonomy of
moral judgment thus far has accounted for its full diversity.
Some models call for a division of the moral space based on
the content, and there is work going one on about the role
of intentions as a function of the moral content (Shweder
et al., 1997; Rozin et al., 1999; Dungan and Young, 2012).
This content-based approach also proves fruitful in explaining
different emotional responses to different kinds of moral
violations. Specifically, there is evidence that individuals have
made difference for moral judgment between stranger and friend
(Ma, 1989; Smetana et al., 2006; Kurzban et al., 2012).

To consider the context effect on both participants’
condemnation ratings and the effects of tDCS for TPJ, we have
assigned two different types of moral context that involved friend
relationships (harm to her/his friend) and economic interests
(harm to her/his customer)—as food-safety problems in China
have contributed to a rapid decline of social trust (Yan, 2012)—as
stories of moral judgment and separately tested whether the
modulation of activity in the TPJ with tDCS changed the agents’
mental state attributions for moral judgment in both the friend
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TABLE 1 | The mean condemnation ratings and SD across conditions and stimulation types.

Condition R Anodal/L Cathodal L Anodal/R Cathodal Sham

Before After Before After Before After

Intentional harm 9.36 (0.99) 9.72 (0.51) 9.94 (0.23) 9.92 (0.37) 9.64 (0.83) 9.75 (0.5)
Accidental harm 6.31 (2.01) 6.86 (1.90) 6.44 (2.12) 6.11 (2.16) 7.03 (1.52) 6.72 (1.61)
Attempted harm 6.83 (2.70) 6.64 (2.75) 8.92 (0.97) 7.89 (2.23) 7.83 (1.61) 7.61 (1.82)
Nonharm 1.81 (1.06) 1.53 (0.88) 2.61 (1.89) 2.11 (1.53) 2.19 (2.15) 2.03 (1.9)

relationship and economic interest contexts. Analyses indicated
that in conditions of neutral belief, the condemnation ratings
of contexts involving economic interests were lower than those
of contexts involving relationship with friends. Moreover, in
conditions of negative belief with contexts involving economic
interests, the condemnation ratings were lower after receiving
right anodal/left cathodal tDCS. These findings indicate that the
restraining effect of tDCS on the LTPJ in the role of beliefs in
moral judgment depends on moral context.

The present study also investigated the participants’ reaction
times for moral judgments and found that the participants who
received restraint of the RTPJ exhibited reduced reaction times
in both the cases of intentional harms and attempted harms
when the story involved economic interests. Because restraining
the RTPJ significantly decreased the capacity to infer the actor’s
intentions in moral judgment, the participants could easily make
judgments that primarily considered the attribution of action’s
consequence when the role of belief in moral judgment was
reduced.

Many studies have shown that both the RTPJ and the LTPJ
play essential roles in the theory of mind and that the activities of
these two brain regions are associated with the understanding of
social intentions (Ciaramidaro et al., 2007; Sommer et al., 2007;
Aichhorn et al., 2009; Centelles et al., 2011). Recent fMRI studies
have also suggested that the bilateral TPJ are recruited for the
encoding and integrating process of beliefs (Young and Saxe,
2008). Specifically, Young et al. (2010a) used TMS to the RTPJ
to disrupt the capacity to integrate belief information. Samson
et al. (2004) reported evidence from brain-damaged patients that
indicated that the patients with lesions in the LPTJ region exhibit
impairment in false belief tasks.

In the present study, we also found that restraining the
RTPJ or LTPJ via tDCS decreased the role of beliefs in moral
judgment. Combining our findings with those of previous
work, we infer that the RTPJ and LTPJ commonly represent
the capacity to use mental states in moral judgment and that
both are responsible for the role of belief in moral judgment.
After receiving tDCS to restrain the activities of the RTPJ or
LTPJ, the role of beliefs in moral judgment is reduced. In
the four conditions of moral stories, the participants placed
more weight on the attribution of the action’s consequences
but not on intentions in moral judgment. Specifically, after
restraining the activity of the TPJ, participants judged intentional
harms and accidental harms as more morally forbidden and
less morally permissible, and the participants judged attempted
harms and nonharm as less morally forbidden and more morally

permissible. These effects might also depend on stories’ context
of moral judgment.

In conclusion, our findings provide important information
about the effects of tDCS on mental states in moral judgment.
These findings might be helpful for the study and treatment
of neurodevelopmental disorders, such as autism spectrum
disorders (ASDs). Children with ASDs are unable to impute
beliefs to others (Baron-Cohen et al., 1985). Even high
functioning adults with ASDs have a persistent impairment in
spontaneous mentalizing (i.e., the automatic ability to attribute
mental states to the self and others; Senju et al., 2009).
Furthermore, the impairment in the processing of the mental
states of others in autism is associated with reduced RTPJ
activity (Kana et al., 2009). Therefore, we believe that this study
might inform neural models of moral judgment and moral
development in typically developing people and in individuals
with neurodevelopmental disorders such as autism (Koster-Hale
et al., 2013).

Additionally, both folk moral judgments and legal decisions
depend on agent’s ability to make judgment for the consequences
of an individual’s actions to the beliefs and intentions of actions.
Our experiments revealed that the mental state attribution of
moral judgment, especially in cases involving attempted harm
and accidental harm, depends critically on neural activity in
the TPJ. Future studies should explore the relevance of these
findings for the real-life judgments made by judges and juries
who routinely make very detailed distinctions based on mental
state information.

Since the same participant saw all four variations of the
same story during the experiment, we acknowledged this design
may increase demand characteristics for the task as participants
could figure out the differences of four conditions. However,
we aimed to study whether tDCS to the TPJ (active stimulation
treatments) altered mental state attribution for moral judgment.
Therefore, the possibility of those demand characteristics which
were perceived by the participants would not lead to biased
experimental results. In addition, it was noted that the robustness
of the current findings across diverse moral contexts remained to
be determined because of the limited number of stimuli used in
the experiment.

Another limitation of the present study is that we were unable
to determine whether the effect on mental state attribution
of moral judgment was solely attributable to the modulation
of the activity in the RTPJ or whether the changes in moral
judgment resulted from altering the balance of activity across
the bilateral TPJ. With regard to the tDCS polarity effects,
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Jacobson et al. (2012) conducted a meta-analytical review aimed
to investigate the homogeneity/heterogeneity of the effect sizes of
the anodal-excitation and cathodal-inhibition effects dichotomy
in both motor and cognitive functions. They found that the
anode electrode is applied over a cognitive area, in most cases,
it will cause an excitation as measured by a relevant cognitive
task. However, the cathodal-inhibition effects seems to be robust
only in the motor and sensory cortex but there is wide variation
for cognitive studies. Therefore, our finding that the influence of
modulating activity in the bilateral TPJ with tDCS on the role of
beliefs in moral judgment, to a large extent, may resulted from
anodal-excitation effects, rather than cathodal-inhibition effects.
Future experiments may include neuroimaging measures to
explore the neural changes associated with the neuromodulation
that lead to decision-making effects and also to explore other
paradigms of stimulation, such as unilateral stimulation.
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Sellaro, R., Güroğlu, B., Nitsche, M. A., van den Wildenberg, W. P., Massaro, V.,
Durieux, J., et al. (2015). Increasing the role of belief information in moral
judgments by stimulating the right temporoparietal junction. Neuropsychologia
77, 400–408. doi: 10.1016/j.neuropsychologia.2015.09.016

Senju, A., Southgate, V., White, S., and Frith, U. (2009). Mind blind eyes: an
absence of spontaneous theory of mind in asperger syndrome. Science 325,
883–885. doi: 10.1126/science.1176170

Shweder, R. A., Much, N. C., Mahapatra, M., and Park, L. (1997). ‘‘The ‘‘big
three’’ of morality (autonomy, community and divinity) and the ‘‘big three’’
explanations of suffering,’’ in Morality and Health, eds A. Brandt and P. Rozin
(New York: Routledge), 119–169.

Smetana, J. G., Campione-Barr, N., and Metzger, A. (2006). Adolescent
development in interpersonal and societal contexts. Annu. Rev. Psychol. 57,
255–284. doi: 10.1146/annurev.psych.57.102904.190124

Sommer, M., Döhnel, K., Sodian, B., Meinhardt, J., Thoermer, C., and Hajak, G.
(2007). Neural correlates of true and false belief reasoning. Neuroimage 35,
1378–1384. doi: 10.1016/j.neuroimage.2007.01.042

Valdesolo, P., and DeSteno, D. (2006). Manipulations of emotional context shape
moral judgment. Psychol. Sci. 17, 476–477. doi: 10.1111/j.1467-9280.2006.
01731.x

Vogeley, K., Bussfeld, P., Newen, A., Herrmann, S., Happé, F., Falkai, P.,
et al. (2001). Mind reading: neural mechanisms of theory of mind and self-
perspective. Neuroimage 14, 170–181. doi: 10.1006/nimg.2001.0789

Wassermann, E. M., and Grafman, J. (2005). Recharging cognition with DC brain
polarization. Trends Cogn. Sci. 9, 503–505. doi: 10.1016/j.tics.2005.09.001

Woolfolk, R. L., Doris, J. M., and Darley, J. M. (2006). Identification,
situational constraint and social cognition: studies in the attribution of
moral responsibility. Cognition 100, 283–301. doi: 10.1016/j.cognition.2005.
05.002

Yan, Y. (2012). Food safety and social risk in contemporary China. J. Asian Stud.
71, 705–729. doi: 10.1017/s0021911812000678

Young, L., Camprodon, J. A., Hauser, M., Pascual-Leone, A., and Saxe, R. (2010a).
Disruption of the right temporoparietal junction with transcranial magnetic
stimulation reduces the role of beliefs in moral judgments. Proc. Natl. Acad.
Sci. U S A 107, 6753–6758. doi: 10.1073/pnas.0914826107

Young, L., Dodell-Feder, D., and Saxe, R. (2010b). What gets the attention of the
temporo-parietal junction? An fMRI investigation of attention and theory of
mind. Neuropsychologia 48, 2658–2664. doi: 10.1016/j.neuropsychologia.2010.
05.012

Young, L., Cushman, F., Hauser, M., and Saxe, R. (2007). The neural basis of the
interaction between theory of mind and moral judgment. Proc. Natl. Acad. Sci.
U S A 104, 8235–8240. doi: 10.1073/pnas.0701408104

Young, L., and Koenigs, M. (2007). Investigating emotion in moral cognition: a
review of evidence from functional neuroimaging and neuropsychology. Br.
Med. Bull. 84, 69–79. doi: 10.1093/bmb/ldm031

Young, L., and Saxe, R. (2008). The neural basis of belief encoding and integration
in moral judgment. Neuroimage 40, 1912–1920. doi: 10.1016/j.neuroimage.
2008.01.057

Young, L., and Tsoi, L. (2013). When mental states matter, when they don’t and
what that means for morality. Soc. Pers. Psychol. Compass 7, 585–604. doi: 10.
1111/spc3.12044

Conflict of Interest Statement: The authors declare that the research was
conducted in the absence of any commercial or financial relationships that could
be construed as a potential conflict of interest.

Copyright © 2015 Ye, Chen, Huang, Zheng, Jia and Luo. This is an open-access
article distributed under the terms of the Creative Commons Attribution License (CC
BY). The use, distribution and reproduction in other forums is permitted, provided
the original author(s) or licensor are credited and that the original publication in this
journal is cited, in accordance with accepted academic practice. No use, distribution
or reproduction is permitted which does not comply with these terms.

Frontiers in Human Neuroscience | www.frontiersin.org December 2015 | Volume 9 | Article 659 | 78

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://www.frontiersin.org/Human_Neuroscience
http://www.frontiersin.org/
http://www.frontiersin.org/Human_Neuroscience/archive


ORIGINAL RESEARCH
published: 30 June 2015

doi: 10.3389/fnhum.2015.00360

Frontiers in Human Neuroscience | www.frontiersin.org June 2015 | Volume 9 | Article 360 |

Edited by:

Ira Andrew Noveck,

Centre Nationale de la Recherche

Scientifique, France

Reviewed by:

Matteo Feurra,

National Research University, Russia

Maria Spychalska,

Ruhr University Bochum, Germany

Erica Cosentino,

Ruhr University Bochum,

Germany/University of Messina, Italy

*Correspondence:

Aditi Arora,

Center for Neurocognitive Research

and Department of Psychology,

University of Salzburg, Hellbrunnerstr.

34, 5020 Salzburg, Austria

aditi.arora@sbg.ac.at

Received: 11 August 2014

Accepted: 03 June 2015

Published: 30 June 2015

Citation:

Arora A, Weiss B, Schurz M, Aichhorn

M, Wieshofer RC and Perner J (2015)

Left inferior-parietal lobe activity in

perspective tasks: identity statements.

Front. Hum. Neurosci. 9:360.

doi: 10.3389/fnhum.2015.00360

Left inferior-parietal lobe activity in
perspective tasks: identity
statements
Aditi Arora 1, 2*, Benjamin Weiss 1, 2, Matthias Schurz 1, 2, Markus Aichhorn 1, 2,

Rebecca C. Wieshofer 1, 2 and Josef Perner 1, 2

1Department of Psychology, University of Salzburg, Salzburg, Austria, 2Center for Neurocognitive Research, University of

Salzburg, Salzburg, Austria

We investigate the theory that the left inferior parietal lobe (IPL) is closely associated with

tracking potential differences of perspective. Developmental studies find that perspective

tasks are mastered at around 4 years of age. Our first study, meta-analyses of brain

imaging studies shows that perspective tasks specifically activate a region in the left

IPL and precuneus. These tasks include processing of false belief, visual perspective,

and episodic memory. We test the location specificity theory in our second study

with an unusual and novel kind of perspective task: identity statements. According to

Frege’s classical logical analysis, identity statements require appreciation of modes of

presentation (perspectives). We show that identity statements, e.g., “the tour guide is

also the driver” activate the left IPL in contrast to a control statements, “the tour guide has

an apprentice.” This activation overlaps with the activations found in the meta-analysis.

This finding is confirmed in a third study with different types of statements and different

comparisons. All studies support the theory that the left IPL has as one of its overarching

functions the tracking of perspective differences. We discuss how this function relates to

the bottom-up attention function proposed for the bilateral IPL.

Keywords: identity, false belief, episodic memory, visual perspective taking, fMRI, IPL, overarching function

Introduction

There is growing evidence that the dorsal part of the left temporo-parietal junction (TPJ), which
overlaps with the left inferior parietal lobe (IPL), is reliably activated by perspective tasks (Goel
et al., 1995; Ruby and Decety, 2003). Perspective tasks are tasks that require tracking of (potential
or actual) perspective differences1. Findings from cognitive development indicate that these tasks
share a common cognitive basis. They are mastered around the age of 4 years. Brain imaging

1With “tracking perspective differences” or, for short, “perspective tracking” we want to merely grasp the existence of this

concept required for registering an actual or potential conflict between perspectives. The more common term “perspective

taking” suggests the ability to put oneself into another perspective than the perspective one currently has. This would require

the tracking of a particular perspective not just the tracking of a potential perspective difference. For, one can be aware of

perspectives being involved without being able to switch between them. One can be aware that another person has or may

have a different perspective without actually being able to figure out what that perspective is.

Abbreviations: +IDENT, identity condition; −IDENT, control of identity condition; +REVISION, belief revision

condition; −REVISION, control of belief revision condition; IDENTc, identity-with-context; PREDc, predication-with-

context; C, context-only; IDENTo, identity only; BL, baseline condition; FB, false belief; vPT, visual perspective taking; EM,

episodic memory.
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studies of perspective tasks also point to a common neural basis.
Existing evidence suggests regional specificity (Kanwisher, 2010)
of different kinds of perspective tasks activating the left IPL2 .
Our aim is to test this specificity hypothesis in three steps. In the
first step we carry out a meta-analysis of existing data from three
different kinds of perspective tasks to test the regional specificity
hypothesis. Partial activation overlap of the different kinds of
tasks within left IPL counts in favor of the hypothesis. In the
second step we test the hypothesis further with the prediction
that a novel and unusual perspective task, processing identity
statements, should activate within the region identified by the
meta-analysis. In a third step we confirm this finding with novel
stimulus material. To carry through with this project we need to
be more specific about what perspective tasks are and about the
criteria that define the region of overlap, for which we adopt the
overarching view proposed by Cabeza et al. (2012).

What are Perspective Tasks?

In response to this question we follow the intuition elaborated
by Perner et al. (2003), who links the notion of perspective
to the notion of representation and modes of presentation. A
representation represents something (object, target) as being in
a certain way (content). The content provides a perspective of the
target. Hence, if two representations represent the same target
(e.g., the spatial relation between objects A and B) but differ in
their content, i.e., how they represent the target as being (“A is
in front of B” vs. “A is behind B”) then we face a perspective
difference. Similarly, if one person individualizes an entity as a
mouse, another person the same entity as an animal, they differ in
how they think of the same target object. Psycholinguists express
this point by saying that the choice of label for an object puts a
different perspective on that object (see Clark, 1997; Tomasello,
1999). In general, a perspective task can be characterized as a
task where one becomes aware of the distinction between the
target and content. We now need to show that this can cover the
different cases in which all visual perspective tasks are thought to

play a role.

Visual Perspective
If two people look at different scenes their visual representations
are likely to differ because they see different scenes and not
because they have different visual perspectives of the same scene.
In contrast, if they stand side by side looking at the same
scene they see the same things in the world but their visual
representations still differ. Since they are looking at the same
scene that difference cannot be attributed to a difference in the
scenes they are looking at (the target) but only to how that single
scene presents itself differently to them due to their different
viewing positions. In the developmental literature children’s
understanding of perspective in this sense has been captured by
the notion of Level 2 perspective taking (Masangkay et al., 1974;
Flavell et al., 1981). At around 4 years of age children become
able to understand that people who look at the same objects

2With IPL we denote the inferior parietal lobe consisting of the ventral region

comprised by BA 40 located in the supramarginal gyrus and BA 39 located in the

angular gyrus (Caspers et al., 2006, 2008).

may see them related in different ways due to their different
viewing position. The classic example is a simple drawing of
a turtle positioned on a table between experimenter and child,
who face each other across the table. Children before the age of
4 years understand that the turtle “stands on its feet” when its
feet are pointing toward the child, and that it is “lying on its
back” when the drawing has been turned by 180◦. However, when
asked whether the experimenter sees the turtle as standing on its
feet or lying on its back they cannot give a correct answer until
around 4 years of age. In contrast, much younger children have
no problems with Level 1 perspective taking tasks, which test the
understanding that people may see different things from different
vantage points. For instance, if on a piece of paper, e.g., a car is
drawn on one side and a lion on the other side, children correctly
point out that the experimenter can see the car when they can see
the lion.

Unfortunately, brain imaging studies do not systematically
observe this distinction between Levels 1 and 2 tasks. Most
of them contrast questions about what another person can see
with what the participants themselves can see. Although this
often only requires a Level 1 understanding, it is still likely that
instruction to pay attention to what others see naturally triggers
Level 2 perspective taking processes.

False Belief
The false belief test (Wimmer and Perner, 1983) has become the
most popular way of assessing understanding and processing of
other people’s mental states both in developmental (Wellman
et al., 2001) and brain imaging research (Saxe and Kanwisher,
2003). Brain imaging studies present short vignettes in which
people develop a false belief (e.g., Aichhorn et al., 2009): “Julia
sees the ice cream van go to the lake. She doesn’t see that the
van turns off to the town hall. Therefore, Julia will look for the
ice cream van at the. . . lake/town hall?” To understand that Julia
is mistaken about the location of the ice cream van one has to
understand that she represents the van as being at the lake, while
we know that it is at the town hall. Both, Julia and we represent
the current location of the van (target) but she represents it as
being at the lake while we represent it as being at the town hall.
This is a difference in content hence a difference in perspective.

In contrast most imaging studies use the so-called “false
photo” task3 (originally designed for children; Zaitchik, 1990),
e.g., “Julia takes a picture of the ice cream van in front of
the pond. The ice cream van moves to the market place; the
picture gets developed. In the picture the ice cream van is by
the. . . pond/market place?” (Aichhorn et al., 2009). Although
this task parallels in many ways the belief task—an object changes
location and a representation of the object in its original location
(photo/belief) persists—there are crucial differences. Unlike the
belief the photo is not false and, unlike the belief, one does not
have to understand the photo as giving a differing perspective
on the object’s location from its actual location. One just has to
describe where the object is in the photo (notice: one could not
ask “In Julia’s belief the ice cream van is . . . ?”).

3The common name for this task is an unfortunate misnomer because the photo

correctly represents the object’s earlier location (Perner and Leekam, 2008).
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Episodic Memory
Episodic memory is defined in Tulving’s tradition by Wheeler
et al. (1997) as re-experiences of earlier experiences. Re-
experience requires tracking of perspective. When simply
experiencing an event one just takes in the event without
reflecting on the fact that one has had an experience. In contrast,
when re-experiencing a past event one has to understand that the
experience one currently has provides but a view (perspective)
of an actual past event. Without this awareness one would either
mistake the re-experience for an actual experience resulting in
severe delusion, or one would mistake it for an experience of
an imagined, fictional event. In neither case would it count as
remembering the past.

The strictest way to test for episodic memory is the remember-
know judgment (Tulving, 1989). When able to retrieve a learned
item or able to recognize it, participants are asked to judge
whether they really remember the item, i.e., can relive their
experience, or whether they just know that the item had been
presented. Unlike knowing of an event the critical element of
remembering an event is the double awareness of re-experiencing
the event and of the fact that the event happened in one’s past. In
order not to mistake the re-experience as experiencing the same
event again (Martin, 2001) one has to understand the ongoing
re-experience as providing a perspective on something that has
happened in the past.

False Signs
This task has been developed for children (Parkin, 1994) and was
adopted for brain imaging by Aichhorn et al. (2009), e.g., The ice
cream vendor’s sign points to the lake. The ice cream van goes to
the town hall without changing the sign. According to the sign
post the ice cream van is at the. . . lake/town hall?” The false
sign vignettes share with the false belief vignettes misinformation
or misconception about the current state of things. In the belief
vignette Julia thinks the van is at the lake, and in the false sign
vignette the sign shows that the van is at the lake, when it really
is at the town hall. Both vignettes differ from the “false photo”
vignettes in this respect. The photo does not show where the ice
cream van is, and participants are asked where in Julia’s photo
the van is. As pointed out earlier, this question is not possible
for Julia’s belief (Where in Julia’s mind is the ice cream van?)
and it is not possible for the false sign (Where in the sign is the
ice cream van?). The two imaging studies that used false sign
vignettes tested whether these vignettes activated the same brain
regions as false beliefs in contrast to the “false photo” vignettes.

Commonality of Perspective Tasks

Developmental Synchrony
The four kinds of perspective tasks listed above are those for
which we could find brain imaging data. All of them have been
used in child appropriate versions in developmental studies.
They all tend to be mastered between the age of 3–5 years (e.g.,
episodic remembering: Perner and Ruffman, 1995; Naito, 2003).
Moreover, several studies have used the false belief task together
with other perspective tasks and consistently found correlations
between these tasks when controlling for differences in age and

verbal intelligence (for overview see Perner and Roessler, 2012).
In particular, passing the false belief task correlates with passing
the level 2 visual perspective task (Hamilton et al., 2009—also in
children with autism) and with passing the false sign task (Parkin,
1994; Bowler et al., 2008—also in children with autism; Sabbagh
et al., 2006; Leekam et al., 2008; Iao and Leekam, 2014). Another
perspective task used with children, which has not been used for
brain imaging, is the appearance reality task (Flavell et al., 1983),
in which children are explicitly asked what a deceptive object (a
piece of sponge that looks like a rock) looks like and what it really
is. Children’s ability to draw this distinction also correlates with
passing the false belief task (Gopnik and Astington, 1988; Taylor
and Carlson, 1997; Courtin and Melot, 2005).

Cerebral Overlap: The Overarching View
Many of the developmental perspective tasks have been used in
brain imaging experiments on adults. We now look for evidence
whether their common development is also reflected in shared
brain activity. A strict criterion for sharing brain activation would
be activation overlap of all perspective tasks. This may, however,
be an overly conservative criterion as Cabeza et al. (2012) argued
for a similar case. Instead of looking for complete overlap
they proposed the “overarching function” view that allows for
subdivisions within a broader brain region. The broad region (in
our case, the left IPL) has a global, overarching function (tracking
perspective) and its various sub-regions mediate different aspects
(false beliefs, visual perspectives, etc.) of the global function. The
expected pattern of finding is that each perspective task should
activate the broad region and partially overlap with activations by
other perspective tasks. To check whether existing data support
this view we extended an existing meta-analysis for false belief
studies and visual perspective taking by Schurz et al. (2013) by
also including episodic memory studies testing for remember-
know judgments.

Study 1: Meta-analysis

For false belief studies and visual perspective studies we used the
meta-analysis data from the work by Schurz et al. (2013) based on
25 false belief and 14 visual perspective taking (vPT)4 studies. To
this we added a meta-analysis of episodic memory (EM) studies
that contrast items judged as “remembered” or “recollected” (the
sense of being able to re-experience the learning phase) with
items judged as just “known” or “of high confidence familiarity”
(the sense of the item being old without a re-experience of
learning the item). We found 16 studies that make the relevant
contrasts (see details in Table S1 in supplementary material).

4In order to find enough studies to allow for a meta-analysis, Schurz et al. (2013)

included level 1 as well as level 2 perspective tasks. Although this is conceptually

less than optimal, a follow-up review by the authors showed that the main areas for

vPT (e.g., the left IPL and precuneus) were equally often reported in Level 1 and

in Level 2 tasks (see Table 3 on p.7 in Schurz et al., 2013). Although level 1 tasks

are easy for children because they can be solved without understanding different

views of the same target (simply by judging whether the object is within or outside

the other person’s field of vision), the same activations by level 1 and level 2 tasks

in the meta-analysis suggest that level 1 tasks trigger level 2 perspective thoughts

in adults. The level 1 question of what the other sees tends also to activate concerns

about how the other sees the object, a level 2 concern.
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All meta-analytic maps were thresholded at a voxel-wise
threshold of p < 0.005 uncorrected and a cluster extent threshold
at 10 voxels. Figure 1 shows the activation maps for each meta-
analysis. As one can see there is a potential overlap among
all three kinds of tasks only on the left lateral hemisphere
(2nd and 4th column) in the parietal lobe and medially (3rd
column) in the posterior parts around the precuneus. Figure 2
shows these two areas in detail. Overlap in Figure 2 was
determined by conjunction analysis between maps of significant
meta-analytic activation (i.e., conjunction determined areas
significantly activated in map1 AND map 2). This was done with
the image calculator in SPM8 (www.fil.ion.ucl.ac.uk/spm/).

The observed pattern of overlap among activations from the
three meta-analyses conforms to the view by Cabeza et al. (2012)
that the IPL and possibly also parts of the anterior (y close
to −60) precuneus have the overarching function of tracking
perspective: All three kinds of tasks overlap in a central area
but also activate individually surrounding areas. We can now
use the activations shown in the meta-analyses to check whether
other perspective tasks, which were tested only in a few studies,
overlap with the meta-analysis. Since activations in individual
studies tend to be variable we cannot expect each single study
to show overlap with the central area where the three meta-
analytic activations overlap. Hence our criterion for supporting
evidence is that the activation of perspective tasks from individual
studiesmust overlap with at least one of the activation areas of the
meta-analysis.

As a first test case we have two studies that used false sign
vignettes (Perner et al., 2006; Aichhorn et al., 2009). They looked

at the regions of interest defined by the false belief vs. photo
vignettes (Saxe and Kanwisher, 2003). In both studies the false
sign vignettes activated the right IPL less than the false belief with
no difference to the photo vignettes. In the left IPL the vignettes
activated more strongly than the photo with no difference to the
false belief. The same held true for the precuneus as expected
under the regional specificity hypothesis that perspective tasks
like the false sign task should overlap with other perspective tasks
in the left IPL and precuneus.

Moreover, the left IPL was also reported in studies using
conceptual perspective tasks (Goel et al., 1995; Ruby and Decety,
2003). Goel et al. (1995) asked participants to describe how,
e.g., a person like Columbus from the perspective of the 15th
century could infer the function of a modern artifact, e.g., hair
drier. They reported activation in the left IPL and precuneus.
Ruby and Decety (2003) asked medical students to respond to
health-related questions either from their own perspective or
from the perspective of a “lay person.” Third person vs. first
person activated the IPL/TPJ on the left and also on the right
(to be expected since the third person perspective relied heavily
on what the lay person believes about the issues). No precuneus
activation was reported. So these studies confirm that the left IPL
and (with less certainty) precuneus have the overarching function
of tracking perspective.

In the following we test the prediction. We argue that
processing identity statements requires the tracking of
perspectives and thus should activate these areas in the left
IPL and in precuneus whose overarching function is to track
perspective.

FIGURE 1 | Activation maps of meta-analyses for three different domains. All maps are thresholded at voxel-wise threshold of p < 0.005 uncorrected and a

cluster extent threshold of 10 voxels. Activations of all meta-analyses are superimposed on the Talairach template.
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FIGURE 2 | Conjunction map of all meta-analyses false belief (FB),

episodic memory (EM), and visual perspective taking (vPT). White

indicates the regions activated by one meta-analysis, red and yellow indicate

the conjunction of at least two and three meta-analyses. Location of

activation peaks for the identity contrast are shown as blue circles with the

number of the study—see Table 4 for peak coordinates and overlap details

(areas of the blue circles do not reflect the actual size of the activation). All

meta-analytic maps were thresholded at voxel-wise threshold of p < 0.005

uncorrected and a cluster extent threshold of 10 voxels. Activations of all

meta-analyses are superimposed on the Talairach template.

Study 2: Identity 1

We want to provide a new test of the regional specificity
hypothesis that the left IPL and possibly the anterior precuneus
have the overarching function of tracking perspectives. For this
test we try to identify an unusual candidate for a perspective

task and then investigate whether it, too, activates the predicted

areas. For our test we focus on identity statements, which on
first blush seem to have little affinity to perspective. However,

identity statements, e.g., “the driver is the tour guide” involve

different labels (“driver,” “tour guide”) for the same individual.
Psycholinguists often say that identifying an object under
different labels puts a different perspective on that object (see
Clark, 1997; Tomasello, 1999). Frege’s (1967) and May’s (2001)
famous analysis of identity statements brings out the importance
of perspective in the form of modes of presentation. In the
identity statement “the driver is the tour guide” the expressions
“the driver” and “the tour guide” refer to the same individual

(person X). If the meaning of these expressions were understood
only in terms of their referent (person X) then the identity
statement would not be informative, for it would reduce to
“person X is person X.” The statement only makes sense if one
is sensitive to the fact that each constituent expression provides
a different mode of presentation (sense or perspective) of that
particular individual to which they both refer.

Mental files (Perry, 2002; Recanati, 2012) provide a helpful
alternative approach for seeing how perspective enters identity
statements and why they have an affinity to understanding belief
(Perner and Leahy, 2015). Use of the referential expressions “the
driver” and “the tour guide” in discourse create two mental
files for the same referent. They capture the two ways how one
conceives of person X. The files contain the information that
one has accumulated for the person under each conception.
The identity statement makes clear that these are but different
conceptions of a single person. One can then either keep the
two files separate but link them (Perry, 2002) or merge them
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into a single file for person X5. Similarly when representing what
someone mistakenly thinks, e.g., Julia in the false belief vignettes
about the ice cream van, two mental files are created, a regular
file registering what one knows about the van, and a vicarious
file indexed to Julia. The vicarious file is linked to the regular file
(Recanati, 2012) to represent sameness of referent, and on the
file one registers what Julia thinks about the van. In other words,
the regular file captures how oneself conceives of the van and
the vicarious file how Julia conceives of it. Both, understanding
identity statements and attributing false beliefs, require linked
files for a single referent. This common requirement can explain
why understanding identity and belief emerges at the same age
(Perner et al., 2011; Perner and Leahy, 2015).

If one wants to assess brain activation due to identity
statements, one has to make sure that the stimulus material
induces the relevant processing. There is a danger that listeners
to a statement like, “the driver is the tour guide,” do not—as
intended—think of two individuals, the driver and the tour guide,
and then understand that there is but a single individual who
is the driver and the tour guide. Instead, especially under the
repetitive presentation conditions typical for fMRI, participants
may gloss the sentence as “the driver is a tour guide,” i.e., they
only ever think of one individual as driver and then encode that
he works as a tour guide. This would ruin our identity condition.

Therefore, we took care that participants naturally thought
of two different individuals before they were given the critical
identity information, e.g.:

S1: “On this bus trip the tour guide talks to the passengers as much

as the driver.”

The listener now thinks of two people, the tour guide and the
driver. Then the identity statement is given:

S2: (+IDENT): “The tour guide is also the driver.”

This informs the listener that there are not two people involved
but only one person. This should—according to our Fregean
analysis—make the listener aware that “tour guide” and “driver”
are just two different perspectives (modes of presentation,
conceptions) of that one person. A suitable control statement
needs to be syntactically and in other aspects as similar as possible
to our critical statement without involving an identity relation,
e.g.:

S2: (−IDENT): “The tour guide has an assistant6.”

5Anderson and Hastie (1974) showed in a reaction time experiment that people

who have learned seemingly about two people and then learn that they are the

same person keep the representation (files) for each person separate at first and

later tend to merge them into a single file.
6Ideally the control sentence should be improved in two ways. One improvement

would be to use the same names as in the identity statements: “The tour guide

also has a driver,” but that would clash with the first sentence. However, this

difference in name is expected to be controlled for by the use of many different

sentences using different names for the identity and the control. However, it

leaves a systematic difference; the two names mentioned in S1 are both mentioned

again in S2 in +IDENT but only one of them in −IDENT. We therefore verified

whether repetition of namesmight activate the left IPL and precuneus in our study.

Unfortunately, in addition to the minor linguistic differences,
there is another not so negligible difference between these two
versions of sentence S2 to contend with. When two different
referential expressions like “the tour guide” and “the driver”
are used we naturally think (build a mental model) of two
distinct people. Although natural, it is strictly speaking a rash
interpretation, as the ensuing identity information makes clear.
There are not two but only one person talked about. In other
words, the listener has to revise her rashly formed belief of two
distinct people on this bus trip to believing that there is only
one person filling both positions. Quite plausibly the listener
will also notice that she has been briefly misled, which amounts
to attributing a false belief to herself in the immediate past. So
we need to control for this in order to prevent misinterpreting
activations due to the listener attributing a false belief to herself
as activations caused by identity statements. In order to control
for this possibility we introduced two further variations of
sentence S2 one involving belief revision without any identity
information:

S2: (+REVISION): “Today, the tour guide talks more than the

driver.”

This would also lead to revision of the belief created by the
first sentence that both people always talk the same amount.
In contrast to S2 (+IDENT) it does not involve an identity
statement. In order to identify activations due to this belief
revision we also used a control that was syntactically similar to
S2 (+REVISION) without involving a belief revision. It just adds
more information:

S2: (−REVISION): “The tour guide also earns as much as the

driver.”

The objective of our study is to see whether the identity contrast
(+IDENT > −IDENT contrast) activates identifiable regions of
the brain. The most general question (1) is whether there is any
such region. More specifically (2) we expect activations in areas
relevant for perspective awareness, specifically the network in
the left IPL identified in Figures 1, 2 by meta-analyses of other
perspective tasks.

However, these expectations have to be modulated
by results of our belief revision control contrast
(+REVISION > −REVISION), which indicates that belief
revision leads to self-attribution of a false belief. In this case the
identity contrast (+IDENT > −IDENT) can only be interpreted
outside these regions unless the (+IDENT > +REVISION)
contrast is also significant, i.e., the identity statement activates

Almor et al. (2007) contrasted a condition where the name introduced in the first

sentence was repeated in the second sentence with a condition where a pronoun

was used in the second sentence instead. This contrast did not show any activation

in the IPL. There was activation in the precuneus, but in quite a different part than

the activations in the present study. Another improvement would be to use “is”

instead of “has,” e.g., “the tour guide is a driver,” but this creates the danger that

participants might gloss this statement as an identity statement and annihilate any

activation difference between identity and control condition.
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the region in addition to any false belief attribution caused by
belief revision7.

Method

Participants
Twenty-one university students (6 males, mean age 23.95 years,
SD = 3.96) participated in this study for course credits and small
monetary reimbursement. All participants were native German
speakers, had normal or corrected-to-normal vision, and had
no history of neurological disorder. A written informed consent
was obtained from all the participants before scanning. The
ethics committee of the University of Salzburg approved the
study.

Stimuli
The stimuli consisted of written German sentences (example
sentences translated in English are presented in Table 1). During
the whole experiment, 18 different scenarios were used to
administer the four conditions of interest (+IDENT, −IDENT,
+REVISION, –REVISION). For a particular scenario there was a
standard first sentence S1. The second sentence (S2) differed for
each of the four conditions. This yielded 72 different vignettes.
The whole scanning session was split into three runs consisting
of six trials of each condition. To avoid sequence effects vignettes
derived from the same scenario were never presented near
each other. Moreover, participants were instructed that all
vignettes could be treated as independent and nothing had to
be remembered for longer than one trial. Thirty percent of
the vignettes were followed by a control question. Whether
the question was about the first or the second sentence, the
side of “Yes” and “No” response, and the side of the correct
answer-key was randomized. Stimulus presentation, timings and
response recording were controlled by Presentation software
(Neurobehavioral System, Albany, CA, USA).

Procedure and Design
Participants were asked to read short vignettes. Every trial
consisted of at least two sentences. At the beginning only the
first sentence S1 (e.g., “On the bus trip the tour guide talks as
much as the driver”) was presented for 5 s. Then the second
sentence S2 (e.g., “The tour guide is the driver”) was added and

both sentences remained for a further 6 s on the screen. In 70%
of the trials of each scanning run the vignette was followed by
the word “CONTINUE” (500ms) to indicate that the trial had
finished and the next one was about to start. To ensure the
compliance of participants, they had to answer in the remaining
trials a simple question within 6 s (e.g., “Thus a driver is on the
trip: Yes?/No?) by pressing a key. Between trials a fixation cross
was presented with varying duration, ranging from one to 4 s.

7As one of our reviewers rightly pointed out the contradiction in the control

task (+REVISION) is a direct incompatibility between S1 and S2, while the

contradiction in the identity task only occurs due to natural pragmatic assumptions

about S1 of there being two separate individuals. On this basis one would expect

stronger activations for belief revision in the control than in the identity task. This

safeguards against false positives, i.e., that we would not detect the effects of belief

revision in the control task when it is present in the identity task.

Correct affirmative and negative answers were balanced within
conditions.

The no-question trials lasted for an average of 14 s and
question trials for an average of 19.5 s. Before the start of each
trial there was an inter-stimulus interval of 1–4 s. The sequence
of the trial and the inter-stimulus interval was optimized using
Russ Poldrack’s script (we optimized a fixed time span for four
conditions of interest and one rest condition; http://sourceforge.
net/projects/fmri-toolbox/files/optimize_design/1.1/).

fMRI Data Acquisition

Functional and structural imaging was acquired with a Siemens
3 Tesla Tim-Trio Scanner, located at Christian-Doppler-Clinic,
Salzburg. Functional images sensitive to the BOLD contrast
were obtained with a T2*-weighted gradient echo-planar imaging
(EPI) sequence using a 32 channel head coil. Per subject, three
sessions, and a total of 239 EPI images including 6 dummy
scans at the beginning of the functional images were scanned
to allow transient signals to diminish (TR = 2000ms; TE =

30ms; matrix size = 96 × 96; voxel size = 2.187 × 2.187 ×

3.58mm3; slice thickness = 3.0mm; slice gap 0.6mm; FOV =

210mm; flip angle = 70◦). Thirty-six axial slices were acquired
in descending order parallel to the bicommissural (co-planar
with AC–PC) line along the z-axis. In addition to functional
scanning, sagittally oriented high-resolution structural scan was
acquired (T1-weighted MP-RAGE sequence; TR = 6.73ms;
TE = 3.14ms; voxel size 0.797 × 0.797 × 1.2mm3; slice-
thickness= 1.2mm;matrix 256×256; FOV= 204mm; 170 slices
per volume; flip angle= 8◦).

fMRI Data Processing

Preprocessing and statistical data analysis was performed by
Statistical Parametric Mapping (SPM8, http://www.fil.ion.ucl.ac.
uk/spm), implemented in MATLAB 7.3 [R2006b] (Matworks,
Sherborn, MA) runtime environment. Images were slice-time
and motion corrected by standard SPM8 algorithms. Functional
images were registered to the SPM8 EPI template. The structural
scan was co-registered onto the mean functional images of each
session and segmented. Segmentation parameters were used for
normalization of structural and functional images to MNI space
(Montreal Neurological Institute, McGill, Montreal, Canada)
template. The normalized images were resampled to isotropic
3 × 3 × 3mm voxels and smoothed with an 8mm full width at
half maximum (FWHM) Gaussian kernel.

The preprocessed data were analyzed using a general linear
model (GLM) approach. The functional data were high-pass
filtered in order to remove frequencies below 1/128Hz to reduce
low frequency drift. The serial correlation was taken into account
using the autocorrelation AR (1) model, as implemented in
SPM8. On individual level contrast the four conditions relative to
fixation baseline were modeled. The condition sentence (S2) was
modeled as an event of interest for all four conditions separately.
The context sentence (S1) and the verification questions were
modeled as regressors of no interest. Additionally, realignment
parameters and session mean were included as covariates. The
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TABLE 1 | Example sentences of Study 2 (translated from German; see Table S2. in supplementary material for more original examples in German).

Conditions Context sentence (S1) 5 s Condition sentence (S2) 6 s Verification sentence 6 s

Identity (+IDENT) On this bus trip the tour guide

talks to the passengers as

much as the drivera

The tour guide is also the driver Thus, a tour guide is on the bus. <yes>

No Identity (−IDENT) The tour guide has an assistant Thus, the assistant always comes

along. <yes>

Belief Revision (+REVISION) Today, the tour guide talks more than the driver Thus, today one of them does more of

the talking. <yes>

No Belief Revision (−REVISION) The tour guide also earns as much as the driver Thus, both earn different amounts of

money. <no>

aThe same context sentence was used for all conditions.

TABLE 2 | Behavioral results of Study 2: mean accuracy in percent hit rate

(SD).

Conditions

+IDENT −IDENT +REVISION −REVISION

Hit-Rate (%)SD 91.3(14.3) 87.2(8.5) 90.3(12.4) 94.3(9.1)

first level contrast images of each subject were used for the second
level (random effects) analysis, that allows for the generalization
to the population. The statistical comparisons were inspected at
a voxelwise threshold of p < 0.001 together with a cluster extent
threshold of p < 0.05, corrected for family-wise error (FWE).

Results

Behavioral Results
The overall accuracy was around 90% (see Table 2), indicating
that the participants were attentive and understood the task.
We computed a One-Way repeated measure ANOVA using
participants’ hit-rates. There was no statistically significant
difference in accuracy across the four conditions [F(3, 60) =

1.488, p = 0.22, η
2 = 0.069]. This implies that the difficulty

level was similar across all conditions.
We will not report reaction times (RT) for the sake of brevity.

This is because RTs were collected on the Yes/No responses to
the questions presented within the response window of 6 s, they
do not reflect the actual time taken to comprehend the vignettes
but rather the time taken to read the question and respond “yes”
or “no” to the visual cue.

Neuro-imaging Results
We report all regions for identity and belief revision contrasts at
FWE cluster level corrected p < 0.05 in Table 3.

Of main interest was the identity contrast comparing identity
with its control condition (+IDENT > −IDENT). Only one
parietal activation in the left inferior parietal lobe (left IPL) with
its main peak and one of the sub-peaks in the supramarginal
gyrus (SMG) and another sub-peak in angular gyrus (AG) was
FWE cluster level corrected significant at p < 0.05. Comparison
in the opposite direction (−IDENT > +IDENT) did not reveal
any significant cluster.

TABLE 3 | Supra-threshold whole brain activation of identity and belief

revision in Study 2.

Region H k Max Z MNI coordinates

x y z

IDENTITY: +IDENT > −IDENT

Supramarginal Gyrus (PF L) L 90 4.46 −60 −34 37

Angular Gyrus (PFm L) L – 3.84 −54 −52 43

Supramarginal Gyrus (PF L) L – 3.55 −54 −43 46

BELIEF REVISION: +REVISION > −REVISION

Angular/Lateral occipital cortex,

superior division (Pga L)

L 136 4.53 −51 −64 34

Angular Gyrus (PFm L) L – 4.26 −42 −58 31

Middle Frontal Gyrus (BA6 L) L 95 4.43 −39 11 52

Middle Frontal Gyrus (BA44 L) L – 3.65 −39 17 40

Middle Frontal Gyrus (BA44 L) L – 4.03 −42 20 49

Significant cluster are reported at p < 0.05 FWE cluster level corrected.

Regions are reported from posterior to anterior. Regions, Anatomical labeling

corresponding to the cluster peak and sub-peak (according to Harvard-Oxford

cortical and subcortical structural atlases). Regions in brackets, Anatomical labeling

corresponding to the cluster peak and to sub-peaks are also reported according to Jülich

histological cyto-and myelo-architectonic atlas by Eickhoff et al. (2005, 2006, 2007); H,

Hemisphere of peak; k, cluster extent in voxel; Max Z, Maximum Z-value; sub-peaks of

the regions with cluster level below p < 0.05 FWE corrected are reported in italics.

The belief revision contrast (+REVISION > −REVISION)
activated two clusters FWE corrected at p < 0.05; one in the
left IPL (angular gyrus) and the other in the left middle frontal
gyrus. The inverse contrast (−REVISION > +REVISION) did
not show any significant activation. For each relevant contrast,
overlap with meta-analytic activations was tested in the following
way: Based on the peak-voxel coordinate activated in this
contrast, we checked for each meta-analysis map if significant
activation was found here. The left angular gyrus cluster peak and
sub-peaks of the belief revision contrast were also significantly
activated in our false belief and in our episodic memory
meta-analysis. This overlap suggests that by becoming aware
of having to revise one’s belief one attributes a false belief to
oneself 8.

8This is a novel finding with interesting implications. Attribution of false beliefs

to oneself could be a reason why invalid cue trials on the Posner task activate the

belief attribution region in the TPJ (Mitchell, 2008).
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FIGURE 3 | Identity contrast (red); belief revision contrast (blue), and overlap between the two contrasts (magenta). Activation cluster are superimposed

on an MNI template. All contrasts were shown at p < 0.05 FWE cluster level corrected threshold.

Identity and Belief Revision
As argued earlier in the explanation of our experimental design,
we needed to check if brain activity for identity statements can
also be found for other statements that cause belief revision. This
is necessary in order to not misinterpret activations as caused by
identity statements when in fact they may be due to the listener
attributing a false belief to herself. Figure 3 shows the activation
patterns for the identity contrast (+IDENT > −IDENT) and for
belief revision contrast (+REVISION > −REVISION). Overlap
was determined by inclusively masking the belief revision
contrast with the identity contrast (at the default threshold
of p < 0.001). We found overlap in the left angular gyrus
(−54, −52, 43) k = 15 and in the right lateral occipital cortex
(48, −64, 40) k = 5. Given this overlap, we cannot rule out
that our identity statements were activating these left IPL areas
because they caused a belief revision. Therefore, to detect areas
activated by the identity contrast independently of belief revision,
we removed (exclusively masked) all regions activated by belief
revision (p < 0.001 uncorrected) from the identity contrast.
The identity contrast outside the belief revision mask stayed
significant in the left IPL, (k = 74) at FWE cluster level corrected
p < 0.05 with the cluster peak (−60,−34, 37) and two sub-peaks
in the left supramarginal gyrus (−54,−43, 46;−54,−49, 43).

This result confirms our expectation based on developmental
data that identity statements activate the left left IPL, as the
region is sensitive to perspective differences. To answer our more
specific question, whether identity statements activate a more
specific “perspective region” in the left IPL, we need to define
a region of interest. Here we adopt the overarching view of
Cabeza et al. (2012) that allows for subdivisions within a broad
brain region. The broad region (in our case, the left IPL) has
a global function (representing perspective differences) and its
various sub-regions mediate different aspects (false beliefs, visual
perspectives, etc.) of the global function. The expected pattern
of finding is that each perspective task should activate the broad
region and partially overlap with activations by the other tasks.
For this purpose we used the results from our meta-analysis. We
checked for each peak voxel if a meta-analysis showed significant
activation at the given coordinate. Results of this examination are

TABLE 4 | Overlap (+) of identity activations in Study 2 and 3 with false

belief, episodic memory, and visual perspective taking.

Peak label Overlap with

MNI coordinates FB EM vPT

STUDY 2

Cluster peak: SMG 1 −60 −34 37 – – –

Sub-peak: AG 1′ −54 −52 43 + – –

Sub-peak: SMG 1
′′

−54 −43 46 – – –

STUDY 3

Cluster peak: SMG 2 −39 −46 43 – – +

Sub-peak: SMG 2′ −42 −49 46 – – +

Peak label. corresponds to the labeling in Figure 2. MNI peak coordinates of Study 2 and

Study 3 were converted into Talairach space to have the same stereotactic space as the

meta-analysis. FB, False belief reasoning; EM, Episodic memory; vPT, Visual perspective

taking.

given in Table 4. Figure 2 show the overlay of identity contrast
peaks with the activations shown in the meta-analyses.

We were unable to directly compare results because our
imaging studies and the meta-analyses were analyzed in different
coordinate systems. All meta-analyses had to be performed
in Talairach space, as the default coordinate system of Effect-
Size Signed Differential Mapping (ES-SDM) software, version
2.31 for meta-analysis (Radua et al., 2010, 2012); http://www.
sdmproject.com), while our data were normalized in MNI space.
We thus converted our left SMG cluster peak and sub-peaks into
Talairach space (seeTable 4). We constructed a 3mm in diameter
sphere—which corresponds to the voxel-size of our images –
around those peaks using the WFU PickAtlas (http://fmri.
wfubmc.edu/software/PickAtlas). One of the sub-peak spheres
in the angular gyrus that overlapped with belief revision
also overlapped significantly with false belief meta-analysis
areas [a coordinate-wise search for foci that were significantly
activated in both analyses, performed in MRIcron (http://www.
mccauslandcenter.sc.edu/mricro/mricron/)]. This confirms our
prediction that the processing of identity statements might
have led participants to correct their rashly formed belief
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about the “tour guide” and the “driver” as being two distinct
people to believing that there is only one person filling both
positions.

Discussion

Our initially formulated expectations for the identity contrast
received a fairly clear answer. (1) We were able to identify at
least one region that is significantly (FWE-corrected) activated
by the identity contrast. (2) This identity cluster lies in the left
IPL as predicted in the hypothesis; tasks that require awareness
of perspective will activate this region. (3) Although the main
peak and one of the sub-peaks of the identity cluster were
in the left supramarginal gyrus another sub-peak was in the
angular gyrus that overlapped with false belief activation of the
meta-analysis.

This pattern of results fits the overarching view (Cabeza
et al., 2012) that the left IPL has the overarching function of
registering (actual or potential) perspective differences. Different
tasks modulate this function, showing activation in different
parts of the IPL but such that they partially overlap, as the
meta-analysis of perspective tasks (false belief, visual perspective
taking, and episodic memory) show. Our results extend this
picture to identity tasks.

Overlap of the identity contrast in our study happened to
occur in the meta-analytic areas for false belief activation. One
problem of interpretation occurred because our identity task
involved belief revision. Belief revision, as we were able to show,
also activates in the meta-analytic false belief area, suggesting
that belief revision, at least when one is aware of it, amounts
to attributing a past false belief to oneself. This raises the
possibility that the overlap between the identity contrast and false
belief may be due to the belief attribution caused by the belief
revision inherent in our identity condition. Therefore, it would be
reassuring if overlap with perspective tasks can be found without
the involvement of belief revision in identity tasks. This was
investigated in the next study.

Study 3: Identity 2

The objective of this experiment is to check whether the central
results of Study 2 can be replicated by avoiding the confounding
of identity statements with belief revision. The confound resulted
from our decision to prevent participants glossing a simple

identity statement like, “the mayor is the lawyer,” as an attributive
statement, “the mayor is a lawyer.” While the former mentions
two people (the mayor and the lawyer) and then says something
about their identity, the latter only mentions one person (the
mayor) and then informs about that person’s profession. To avoid
such a gloss we used a context sentence to establish the mayor
and the lawyer as two different individuals in participants’ minds.
With the identity statement participants then learned that mayor
and lawyer are the same person. This led inevitably to a belief
revision.

For this current experiment we decided to run the risk
of participants glossing some of the identity statements as
attributive assertions. If this results in similar activations as in
Study 2 (especially of the left IPL) we can conclude that these
activations are not due to belief revision. Trying to minimize
the risk of an attributive gloss, each statement used a common
description (the lawyer) as its first referential term and as the
second term a proper name (MrMüller). Although one can easily
gloss “Mr Müller is the lawyer” as “Mr Müller is a lawyer),” it is
harder to do so with “The lawyer is Mr Müller9.”

Method

Participants
Seventeen (5 males; mean age 24.6 years, SD = 4.9 years) right-
handed university students participated in this study for course
credits and small monetary reimbursement. All participants were
native German speakers, had normal or corrected-to-normal
vision, and had no history of neurological disorder. A written
informed consent was obtained from all the participants before
scanning. The ethical committee of the University of Salzburg
approved the study.

Design and Stimuli
The study had five conditions (see Table 5) consisting of written
German sentences. Three context conditions were introduced

9Although not impossible; one could gloss it as “The lawyer is called Mr Müller.”

Also, the use of a proper name in the identity condition raises the potential danger

that the proper name is responsible for the left IPL and precuneus activation

and not the identity statement itself. Fortunately, existing data from clinical and

imaging studies speak against this possibility (for review see Semenza, 2011).

Processing of proper names compared to common names was linked to activation

in bilateral temporal poles, and, somewhat less consistently, to anterior parts of the

superior temporal sulcus, ventral mPFC, and the anterior cingulate. In contrast,

the left IPL and precuneus were not associated with processing of proper names.

TABLE 5 | Example sentences of Study 3 (translated from German; see Table S3 in supplementary material for more original examples in German).

Conditions Context sentence (S1) 4.5 s Condition sentence (S2) 3 s Comprehension questions? 5.5 s

Identity-with-context (IDENTc) The doctor saves the lawyer after the accident The lawyer is Mr. Moser Who is Mr. Moser?a

Predication-with-context (PREDc) The lawyer is young Who is young?

Context only (C) – Who saved the lawyer?

Identity only (IDENTo) – The neurologist is Dr. Phillips Who is the neurologist?

Baseline (BL) The chair is old-fashioned What is old-fashioned?

aThe comprehension question in conditions with context sentence varied accordingly (see design and stimuli section of Study 3 for details).
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with a context sentence mentioning two people, e.g., a doctor
and a lawyer. In the identity-with-context (IDENTc) condition
an identity statement followed which expressed that one of
these people (lawyer) was identical to, e.g., Mr. Müller. In the
predication-with-context (PREDc) condition the second sentence
predicated some attribute of, e.g., the lawyer. In the context-only
(C) condition this second sentence was omitted. This condition
served as a parameter of no interest for comparing IDENTc with
PREDc. Two additional conditions served to replicate a finding
of a pilot study using simple identity statements without any
background context (identity only, IDENTo). The pilot activation
was difficult to interpret, as the design didn’t have any explicit
low-level baseline. We therefore included, a low-level baseline
condition (BL) with simple sentences (e.g., the glasses are old-
fashioned).

Twenty-seven different sentences were used per condition,
resulting in a total of 135 trials in the experiment. All sentences
of IDENTc and PREDc conditions were formed by linking a
referential noun phrase, e.g., “The lawyer” by the particle “is” with
either a proper name to form an identity statement or with an
adjective to form predicative sentences. The noun phrases were
counterbalanced for the two conditions.

We controlled for sentence length in all conditions. The
mean number of letters in the context sentences (S1) varied
between conditions from 40.7 (±6.0) in IDENTc to 40.5 (±6.0)
in PREDc to 41.2 (±7.0) in C, and the average letter count
in the identity sentences (S2) varied from 22.19 (±2.6) in
IDENTo to 23.5 (±2.9) in IDENTc. There was no significant
difference across conditions for context or for identity sentences
(all p’s ≥ 0.35).

The presentation times for sentences S1 and S2 are shown
in Table 5. On 30% of trials a comprehension question was
asked. In the context conditions this question could be about
any of the three names mentioned (for example see Table 5:
“Who saved the lawyer?” or “Who did the doctor save?” or “Who
is Mr. Moser?”). This variation was to ensure that participants
had to integrate sentences S1 and S2 in a single model. In the
conditions without context the question only varied between
the two names that referred to the same individual (e.g., “Who
is Mr. Moser?” or “Who is the neurologist?”). The total time
provided was 5500ms: the question was presented for 3000ms,
followed by 1000ms of black screen, and finally the answer option
for 250ms (e.g., <the lawyer> <the doctor>). Correct and
incorrect options to the question were balanced across conditions
to avoid confounds of any strategies to answer the questions
and habitual finger use. Stimulus presentation, timings and
response recording were controlled by the Presentation Software
(Neurobehavioral System, Albany, CA, USA).

Functional neuroimaging was divided into three sessions.
Each session comprised 45 trials, 9 pre-condition trials and
14 comprehension questions. The order of the presentation of
sessions was counterbalanced across participants. A single trial
without question lasted for 11 s in the conditions with context,
6.5 s in the identity only and in the baseline condition, and
8 s in the context only trials. Each single session lasted for
10.35min, and the whole functional scanning of the experiment
took 31.07min.

Procedure
The participants were given a training session before the start
of the scanning. They were specifically instructed to read
and understand the sentences carefully, and that they would
sometimes be asked to answer a question to verify their attention
and comprehension of the vignettes. Behavioral responses were
collected using an MRI-compatible response box.

fMRI Data Acquisition
Functional and structural imaging was acquired with a Siemens 3
Tesla Tim-Trio Scanner, located at the Christian-Doppler-Clinic,
Salzburg. Functional images sensitive to the BOLD contrast were
obtained with a T2*-weighted gradient EPI sequence using a
32 channel head coil. Per subject, three sessions, a total of 260
EPI images including 6 dummy scans at the beginning of the
functional images were scanned to allow transient signals to
diminish (TR = 2250ms; TE = 30ms; matrix size = 64 × 64;
voxel size = 3.0 × 3.0 × 3.0mm3; slice thickness = 3.0mm;
slice gap 0.3mm; FOV = 192mm; flip angle = 70◦). Thirty-
six axial slices were acquired in descending order parallel to the
bicommissural (co-planar with AC–PC) line along the z-axis.
In addition for each subject sagittally oriented high-resolution
structural scan was acquired (T1-weighted MP-RAGE sequence;
TR = 2300ms; TE = 2.91ms; voxel size 1.0 × 1.0 × 1.0mm3;
slice-thickness = 1.00mm; matrix 256 × 256; FOV = 256mm;
192 slices per volume; flip angle= 9◦).

fMRI Data Processing
Preprocessing and statistical data analysis was performed
using Statistical Parametric Mapping (SPM8, http://www.fil.ion.
ucl.ac.uk/spm), implemented in MATLAB 7.6.0.324 [R2008a]
(Matworks, Sherborn, MA) runtime environment. Images
were slice-time and motion corrected by standard SPM8
algorithms. Functional images were registered to the SPM8 EPI
template. The structural scan was co-registered onto the mean
functional images of each session and segmented. The structural
and functional images were normalized to MNI (Montreal
Neurological Institute, McGill, Montreal, Canada) template. The
normalized images were resampled to isotropic 3 × 3 × 3mm
voxels and smoothed with an 8mm full width at half maximum
(FWHM) Gaussian kernel.

The preprocessed data were analyzed using a GLM approach.
Per subject, and session, IDENTc, PREDc, IDENTo, and BL
condition sentence (S2) was modeled as a separate regressor
of interest with the duration of 3 s and convolved with the
hemodynamic response function. The S1 of conditions with
context (IDENTc and PREDc) and C were modeled with the
duration of 4.5 s as a single regressor of no interest. We also
modeled the comprehension question with the duration of 5.5 s
as a separate regressor of no interest. Additionally, realignment
parameters and sessionmeans were included in the designmatrix
as covariate. The low frequency noise was removed by high-pass
filter with a cut-off of 128 s, and serial correlation was taken into
account using an autocorrelation AR (1) model, as implemented
in SPM8. At the individual level of contrasts the four conditions
were modeled separately relative to an implicit baseline.

Frontiers in Human Neuroscience | www.frontiersin.org June 2015 | Volume 9 | Article 360 | 89

http://www.fil.ion.ucl.ac.uk/spm
http://www.fil.ion.ucl.ac.uk/spm
http://www.frontiersin.org/Human_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Human_Neuroscience/archive


Arora et al. Identity and awareness of perspective

TABLE 6 | Behavioral results of Study 3: mean accuracy in percent hit rate

(SD).

Conditions

IDENTc PREDc IDENTo BL C

Hit-Rate (%)SD 98.4(4.6) 97.4(5.9) 97.6(5.5) 100(0) 94.1(5.7)

Data at the second level were subject to a random effects
analysis to allow for population inference. We computed paired
t-tests between contrasts of interest. Whole brain results are
reported at a voxel-wise threshold of p < 0.001 together with
a FWE cluster level corrected threshold of p < 0.05.

Results and Discussion

Behavioral Results
Overall accuracy was very high 97.51% (see Table 6), with an
overall miss rate of 5.06%. The high accuracy was a good
indicator that participants were attentive and understood the
task. Given that accuracy was at ceiling in this study, it was
unnecessary to carry out statistical tests here.

We do not report reaction time (RT), since the RTs depended
on the time spent to answer the comprehension question they
do not reliably reflect the actual time taken to comprehend the
vignettes.

Neuro-imaging Results
The main contrast of interest is the one between identity-with-
context and predication-with-context (IDENTc > PREDc). The
whole brain analysis for this contrast showed two significant
FWE-corrected clusters (see Table 7). One cluster lies in the
precuneus on the left side, the other, in the left supramarginal
gyrus as predicted.

The inverse contrast (PREDc > IDENTc) showed activations
in quite distant parts of the brain (see Table 7 and Figure 4).
Two large FWE corrected clusters were located in the left
and right temporal pole area associated with social scripts
and social concepts (Zahn et al., 2007; Ross and Olson,
2010) and prevalent in theory of mind studies (Schurz et al.,
2014). This is plausibly due to the fact that predicative

information about a person (the lawyer is young) stimulates
social thoughts more strongly than a statement that this person
is identical to someone (Mr. Moser) about whom one has no
information.

The identity statement without context compared to the
baseline condition (IDENTo > BL) showed significant activation
of the left supplementarymotor area (SMA), left precentral gyrus,
left lateral occipital cortex, bilateral cerebellum, left inferior
frontal gyrus (IFG) and right superior parietal lobe activation at
FWE cluster level corrected at p < 0.0510.

10This finding poses two questions for us. The first one is problematic for our

account: Why does this contrast not activate in the left IPL? We can offer the

following two post-hoc explanations. Intuitively, in the no-context condition

(see Table 5) “The neurologist is Dr. Phillips,” can plausibly be glossed as “The

TABLE 7 | Supra-threshold whole brain activation of identity vs.

predication in context conditions of Study 3.

Region H k Max Z MNI coordinates

x y z

IDENTITY: IDENTc > PREDc

Precuneus Cortex (7M L) L 88 4.07 −12 −67 28

Lateral Occipital Cortex, superior L – 3.61 −15 −76 46

division (7P L)

Precuneus Cortex L – 3.58 −18 −70 22

Supramarginal Gyrus (hlP1) L 67 4.09 −39 −46 43

Supramarginal Gyrus (hlP1) L – 4.06 −42 −49 46

INVERSE IDENTITY: PREDc > IDENTc

Temporal Pole (No label) R 146 4.90 48 8 −26

Superior Temporal Gyrus (No label) R – 4.24 57 −10 −8

Superior Temporal Gyrus (No label) R – 4.58 54 2 −17

Temporal Pole (No label) L 191 5.69 −51 11 −20

Superior Temporal Gyrus (No label) L – 4.12 −51 −4 −17

Temporal Pole (No label) L – 5.19 −45 14 −26

Significant cluster are reported at p < 0.05 FWE cluster level corrected.

Regions are reported from posterior to anterior. Regions, Anatomical labeling

corresponding to the cluster peak and sub-peak (according to Harvard-Oxford

cortical and subcortical structural atlases). Regions in brackets, Anatomical labeling

corresponding to the cluster peak and sub-peak are also reported according to Jülich

histological cyto-and myelo-architectonic atlas by Eickhoff et al. (2005, 2006, 2007); H,

Hemisphere of peak; k, cluster extent in voxel; Max Z, Maximum Z-value; sub-peaks of

the regions with cluster level below p < 0.05 FWE corrected are reported in italics.

Relation to Study 2 and Meta-analysis
The predicted activation by the identity contrast (IDENTc >

PREDc) in Study 3 was in close vicinity to the activation observed
in the left IPL for the identity contrast (+IDENT > − IDENT)
in Study 2. After masking the belief revision clusters the average
Euclidian distance between the sub-peaks of Study 2 (−54,
−43, 46, and −54, −49, 43) and the cluster peak and sub-peak
(−39, −46, 43, and −42, −49, 46) of Study 3 was 14.16mm.
In order to assess the support for the claim that all perspective
tasks activate the overarching region in the left IPL we tested

neurologist is called Dr. Phillips,” hence no identity is expressed, and consequently

no left IPL activation. This gloss is intuitively less likely when a context is provided:

S1 “The doctor saves the lawyer after the accident,” followed by S2 “The lawyer is

Mr. Moser,” is less likely to be glossed in a similar way as indicated by the fact that

a glossed version of sentence 2 “The lawyer is called Mr. Moser,” would provide an

unexpected and less informative content than the un-glossed original version. Our

second explanation pertains to the fact that the comprehension questions in the

context conditions varied. They could be, e.g., “Who saved the lawyer?,” “Who did

the doctor save?,” or “Who is Mr. Moser?” which can only be answered if sentences

S1 and S2 have been integrated within a model. In contrast, sentences S2 without

context, e.g., “The neurologist is Dr. Phillip,” the questions were always about the

person mentioned in S2, “Who is the neurologist?” or “Who is Dr. Phillip?” This

question could be answered on the basis of the sentence’s surface form without

interpreting it within a mental model, i.e., without thinking of different individuals

and identity—hence no left IPL activation. The second question raised by this

finding is: Why does this contrast activate five areas which are not activated by

the sentences in the context conditions? This is an interesting question but not

directly problematic for our account. One feature that distinguishes IDENTo> BL

from IDENTc > PREDc contrast is that the former contrast is confounded with

a contrast of person vs. no person, which could account for at least some of these

activations.
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FIGURE 4 | Contrast of identity-with-context > predication-with-context (red) and the inverse contrast (blue). Activation cluster are superimposed on an

MNI template. All contrasts were shown at p < 0.05 FWE cluster level corrected threshold.

for overlap of the identity contrast (IDENTc > PREDc) with
areas shown in the meta-analyses. Using the same method as in
Study 2 we converted the left SMG cluster peak and sub-peaks of
Study 3 (see Table 4, Figure 2 for overlap details) into Talairach
space, and constructed a 3mm in diameter sphere around it,

which overlappedwith the regions of the visual perspective taking
meta-analysis and bordered on the areas activated by false belief
vignettes and episodic memory.

The fact that the activations found in the two identity studies
did not directly overlap is mitigated by the strong connectivity
between the subareas of the IPL in which the activations
occurred. The SMG cluster peak (−60, −34, 37) and the sub-
peaks (−54, −52, 43, and −54, −43, 46) of the identity contrast
in Study 2 (see Table 3) fall into the cytoarchitectonic area of the
left PF and PFm region (Caspers et al., 2006, Jülich Histological
Atlas). The SMG cluster peak (−39, −46, 43) and sub-peak
(−42, −49, 46) of Study 3 (see Table 7) are located in the left
intraparietal sulcus (subregion: hIP1; Choi et al., 2006; Jülich
Histological Atlas). According to Caspers et al. (2011) structural
connectivity fingerprints show a strong connection between PF,
PFm, and hIP1 region. The strong connectivity among the
different areas activated by our studies supports the conclusion
that different activation points reflect activity of an overarching
functionally related network.

General Discussion

Main Achievements
Our studies produced two main achievements. (a) We were able
to establish that the ability to track perspective, which marks an
important advance in child development around 4 years of age,
manifests itself in a common brain activity. Based on existing data
we hypothesized that such commonality might be reflected in
mutual activations of a particular brain region. The results show
that, indeed, all different kinds of perspective tasks that, to our
knowledge, have been used in brain imaging activate the left IPL
and precuneus; although the evidence for the latter remains less
solid.

(b) Our second achievement was to turn the “overarching
view” of a region’s broader function, which Cabeza et al. used

to summarize existing results, into a predictive instrument. We
proceeded in the following way. In a meta-analysis we established
that activations of three kinds of perspective tasks show triple
overlap in the left IPL and precuneus. This result establishes that
the left IPL and precuneus, qualify as areas with the overarching

function of tracking perspective. To test the general validity
that these regions are responsible for tracking perspective we
looked for further perspective tasks. We found several single
studies, too few for a meta-analysis. We then needed to check
whether the reported activations overlap with the meta-analytic
areas, ideally within the area of triple overlap. However, results
from single studies do not show the stability of meta-analyses
and total overlap with all three tasks from the meta-analysis
would be unreasonably conservative. So we settled for the
following criterion: The results satisfy the expectations from the
overarching view if the activations are found in the target areas
(the left IPL and precuneus) and overlap with at least one of the
meta-analytic activations in those areas.

With this procedure we were able to show that existing data
conform to the hypothesis that the left IPL and precuneus qualify
as areas with the overarching function of tracking perspective.
We then used the same technique for prediction of identity
statements, which qualify as perspective tasks on the basis of a
technical account, activate within the overarching regions of the
left IPL and precuneus. This prediction was confirmed and with
it the hypothesis that these areas track perspective.

The concept of an overarching function helps with the
problem of low power of individual studies. For instance, the
lack of overlap of activations in our two identity studies can be
explained by two factors accounted for in the overarching view.
Due to their low power, activations happen to be detected at
different points within the overarching region. Another reason
for the discrepancy is that the belief revision induced in our first
study drew the center of activationmore toward the region where
false beliefs are processed than in the second study where no
belief revision occurred.

Relation to Competing Theories
The main competitor for our claim that the left IPL has
the overarching function of tracking perspective is the BUA
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(bottom-up attention) model for the ventral part of the parietal
cortex (VPC = IPL) put forward by Cabeza et al. (2012). As an
extension of Corbetta and Shulman (2002) dual attention model
BUA sees the VPC (IPL) bilaterally responsible for detecting
salient and behaviorally relevant stimuli in the environment,
especially when they were previously unattended (exogenous,
or stimulus-driven attention). Cabeza et al. (2012) extended
this model from attention capture by environmental stimuli
to capture by internal (memory-based) information. Three
interesting aspects arise about the relationship between BUA and
perspective tracking: similarities, reducibility, and differences.

Similarities
Perspective tasks can be seen as a special kind of internal
attention capture. In our thinking and conversations we usually
stick to a single perspective because mixing different perspectives
is a source of confusion11 . Therefore, (external or internal
reasoning) cues that indicate the need for a change in perspective

are exogenous stimuli, and should activate the IPL according
to BUA. Attention capture by cues for potential perspective
differences is, however, special as it does not require reorienting
attention to information about a new topic but reorienting to
a new way of informing about (view, mode of presentation,
perspective of) the same topic. On these grounds we may
consider two possible views of how activation of the left IPL by
perspective tasks relates to BUA.

Differences
Perspective tracking differs strikingly from BUA in terms
of lateralization. Perspective tracking evidently has regional
specificity only for the left IPL, while BUA is claimed to operate
bilaterally. Cabeza et al. (2012) noticed a prevalence of the left
IPL (VPC) activation reports for some tasks in their review and
give two possible reasons for it. Left activation reports prevail
when predominantly verbal stimulus material is used. However,
this explanation does not quite fit the finding that false belief
vignettes, which are purely verbal, activate bilaterally (Schurz
et al., 2014) while visual perspective tasks, which use a much
stronger visual presentation mode, activate exclusively on the left
side (Schurz et al., 2013).

Cabeza et al. also suggested that authors often focus on one
hemisphere for historical reasons linked to work on patients
with lesions, e.g., neglect being observed with right hemisphere
parietal lesions. This explanation does not apply to the evidence
from perspective tasks we have reviewed, which stems exclusively
from fMRI studies without any historical bias. Although few
studies test for hemispheric asymmetry the sheer number of
studies that report activation only in left and not in the right IPL
is remarkable. Of the 14 visual perspective tasks included in the
meta-analysis by Schurz et al. (2013) all of them reported activity
in left, only Wraga et al. (2010) found bilateral IPL activation.
Similarly in ourmeta-analysis of 16 remember-know studies all of
them report left and only Eldridge et al. (2000) reported bilateral
IPL activation. This is clear evidence of stronger activation in

11A good example are conceptual pacts (Brennan and Clark, 1996) which help

ensure that a particular object of conversation is referred to under the same label,

since a change of label also entails a change of perspective (Clark, 1997).

the left, as only two out of thirty studies (combined vPT + EM)
showed bilateral activation and no other study showed activation
in the right hemisphere (binomial test z = −4.56, p < 10−6).

Moreover, the two false sign studies (Perner et al., 2006;
Aichhorn et al., 2009) only showed effects in the left IPL, and
our two studies with identity statements also showed significant
reliable activation in the left IPL12. The noticeable exception to
this left asymmetry are false belief vignettes, which activate the
TPJ (including the IPL) on the right asmuch as on the left (Schurz
et al., 2014; see our Figure 1). One reason for this may be that
the false belief task engages theory of mind, which activates areas
in temporal lobe immediately adjacent and overlapping with the
left and right IPL. In contrast, the other perspective tasks show
no activations in adjacent areas, only in rather distant areas.
All of them tend to activate the precuneus in an overlapping
fashion (see Figure 2). Episodic remembering activates bilateral
para-hippocampal gyrus areas [e.g., Daselaar et al., 2006; our
episodic memory meta-analysis (see Figure 1)], whereas visual
perspective tasks activate, the precuneus, left IPL, precentral, and
middle frontal region.

Reducing Perspective Tracking to BUA
As outlined above perspective tasks can be seen as a special case
of exogenous attention capture, because endogenous thinking
usually maintains to the same perspective. One obvious exception
to this occurs when perspective itself becomes the topic of
thinking. For instance, in visual perspective tasks the instructions
are to judge how another viewer sees the display. So taking
the other person’s perspective is endogenous to the set task
and should, according to BUA, activate dorsal parts of the
parietal cortex and not the IPL. Another problem case for BUA
is a fact persistently ignored in the discussion of why theory
of mind tasks activate the TPJ (or IPL) as a consequence of
attention reorienting in false belief tasks (Decety and Lamm,
2007; Corbetta et al., 2008; Mitchell, 2008; Cabeza et al., 2012). It
is never made clear why the act of reorienting plausibly required
in the false belief vignettes (shifting attention from where an
object actually is to where an agent mistakenly thinks it is) is
not also required in the photo control vignettes (shifting from
where the object actually is to where it is in a photo), a contrast
introduced by Saxe and Kanwisher (2003) and since used inmany
studies with exceedingly strong meta-analytic effects (Schurz
et al., 2014).

These two problem cases for BUA can be explained by
perspective tracking. Visual perspective tasks require perspective
tracking hence activate the left IPL. False belief tasks do so too
and reliably activate the left IPL, while the photo control tasks do
not. A photo taken of the ice cream van in an earlier location does
not give a different perspective on where the van is now (unlike a
false belief or a flipped direction sign which does give a different
view of where the van is now). In sum, although perspective
tracking shows a close affinity to bottom-up attention processes it
is unlikely that the activation in the left IPL perspective tasks can
be completely explained by BUA.

12However right IPL activation for the identity only condition suggests that the

lateralization is one of degree and not one without any involvement of the right

hemisphere.
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Reducing Left Lateralized BUA to Perspective

Tracking
A different view on perspective tracking and BUA is to claim
that only perspective tracking is the overarching function of (at
least) the left IPL. To defend this view one would need to show
that the evidence recited by Cabeza et al. (2012) in favor of
BUA can also be used as evidence for perspective tracking, i.e.,
that all the tasks that activate the left IPL can be argued to be
perspective tasks. Up to now we have considered only tasks that
had been independently claimed to be perspective tasks in the
developmental literature. Hence, whether a task should or should
not activate the left IPL was a predictive enterprise from an
existing classification. To retrospectively decide whether a task,
which activates the IPL, is a perspective task or not is a much
more unconstrained enterprise. We will therefore restrain our
analysis to some exemplary illustrations taken from the categories
discussed by Cabeza et al.

Number Processing
Equations can be viewed as identity statements (numerical facts:
4+5 is identical to 9) or computational procedures (if you have
4 and add 5 you get 9). So retrieval of numerical facts should
activate the left IPL since an identity is likely involved which
induces perspective tracking. And, indeed, the IPL is being
activated (Dehaene et al., 2003). In contrast, calculation of the
result should not activate the IPL or, at least, less so. This also
turns out to be the case (Grabner et al., 2009). So, some findings
in this area clearly relate to perspective tracking.

Episodic Retrieval
In contrast to three contenders discussed by Cabeza et al. BUA
can explain a characteristic U-function of recognition certainty.
The IPL activation is stronger for items judged “definitely old”
or “definitely new” than for uncertain answers (data only for
the left IPL; Yonelinas et al., 2005; Daselaar et al., 2006). This
activation pattern can also result from perspective tracking.
Correct recognition can come about for two reasons at least
(Jacoby, 1991). One can make a conscious judgment of whether
the presented test item has been on the learning list. In some of
these cases onemay use an episodic approach (Tulving, 1989) and
try to re-experience ones’ earlier experience of having seen this
item during learning. Re-experience requires awareness that one’s
re-experience of seeing the item is a representation, which gives
a perspective, of the past event (Perner et al., 2007). Plausibly if
this approach gives a clear answer it will provide high confidence
that the item has or has not been experienced. Since awareness
of perspective is involved, the confident judgments will activate

the left IPL. In other cases no clear judgment may be possible
but one can still rely on a feeling of familiarity. Depending on
the strength of this feeling one will respond with “old” or “new,”
but the subjective confidence will be low. Familiarity judgments
do not need awareness of perspective; hence the resultant low
confidence answers will not be associated with activations of the
left IPL.

Conclusion

Tracking and monitoring perspectives is a skill whose acquisition
has important consequences on children’s reasoning and social
competence around the age of 4 years. In a meta-analysis of
brain imaging in adults we were able to show that this important
developmental factor is also reflected in a common cerebral
resource: the left IPL and precuneus track perspective. In two
empirical studies we were able to extend this finding and confirm
that these brain regions are reliably involved in other and novel
kinds of perspective tasks, e.g., processing identity statements.
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Reasoning depends on the contribution of posterior parietal cortex (PPC). But PPC is
involved in many basic operations—including spatial attention, mathematical cognition,
working memory, long-term memory, and language—and the nature of its contribution
to reasoning is unclear. Psychological theories of the processes underlying reasoning
make divergent claims about the neural systems that are likely to be involved, and better
understanding the specific contribution of PPC can help to inform these theories. We set
out to address several competing hypotheses, concerning the role of PPC in reasoning:
(1) reasoning involves application of formal logic and is dependent on language, with PPC
activation for reasoning mainly reflective of linguistic processing; (2) reasoning involves
probabilistic computation and is thus dependent on numerical processing mechanisms
in PPC; and (3) reasoning is built upon the representation and processing of spatial
relations, and PPC activation associated with reasoning reflects spatial processing. We
conducted two separate meta-analyses. First, we pooled data from our own studies of
reasoning in adults, and examined activation in PPC regions of interest (ROI). Second, we
conducted an automated meta-analysis using Neurosynth, in which we examined overlap
between activation maps associated with reasoning and maps associated with other key
functions of PPC. In both analyses, we observed reasoning-related activation concentrated
in the left Inferior Parietal Lobe (IPL). Reasoning maps demonstrated the greatest overlap
with mathematical cognition. Maintenance, visuospatial, and phonological processing also
demonstrated some overlap with reasoning, but a large portion of the reasoning map did
not overlap with the map for any other function. This evidence suggests that the PPC’s
contribution to reasoning may be most closely related to its role in mathematical cognition,
but that a core component of this contribution may be specific to reasoning.

Keywords: deductive reasoning, posterior parietal cortex, IPL, SPL, numerical cognition, spatial cognition,
meta-analysis

INTRODUCTION
Reasoning, the capacity to reach novel conclusions on the basis
of existing premises, is among the most complex of cognitive
operations. It necessarily depends on multiple underlying capac-
ities, but the extent of this reliance on specific mechanisms is
a subject of considerable debate. One possibility is that rea-
soning, generally or in some cases, utilizes syntactic representa-
tions of premises and application of formal logical rules (Rips,
1994; Braine and O’Brien, 1998). If this is the case, then the
representations afforded by language are likely to be central
to reasoning (Kertesz and McCabe, 1975; Carruthers, 2002).
Another possibility is that reasoning proceeds via the use of
quasi-perceptual mental models, in which case the high-level
spatial and perceptual representations upon which the mod-
els are built would be critical for reasoning (Johnson-Laird,
1983, 2001). Recent work has emphasized the role of proba-
bilistic mechanisms, in contrast to deterministic logical rule-
following, in much of human reasoning (Oaksford and Chater,
2009). To the extent that reasoning proceeds via estimation and

probabilistic computation, mechanisms for number processing
should be critical. Of course, multiple mechanisms are possible
(see e.g., Goel et al., 2000), so these theories are not mutually
exclusive.

Reasoning often depends on attention to relational struc-
ture, so the mechanisms that support basic relational process-
ing are also likely to be key. Relational representations might
depend upon semantic understanding of relational terms, in
which case mechanisms of semantic processing can be expected
to come into play during reasoning. Alternatively, relational
representations may be built upon the representation of space
and spatial relationships, in which case the mechanisms of visu-
ospatial processing may be more central to reasoning. In addi-
tion, working memory, long-term memory, and attention are
all basic cognitive mechanisms that are likely to contribute to
reasoning.

Many investigations of reasoning, including our own, have
highlighted the role of rostrolateral prefrontal cortex (RLPFC;
Christoff et al., 2001; Bunge et al., 2005; Wendelken and Bunge,
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2010; Wendelken et al., 2012). In particular, these studies have
shown that RLPFC contributes to second-order relational rea-
soning, which involves the joint consideration or integration of
multiple relations and is thought to be a core component of the
reasoning capacity (Gentner and Holyoak, 1997; Halford et al.,
1998; Penn et al., 2008; Chuderski, 2014). However, posterior
parietal cortex (PPC) is also consistently engaged during rea-
soning tasks (Crone et al., 2009; Eslinger et al., 2009; Watson
and Chatterjee, 2012; Wendelken et al., 2012). Like RLPFC, PPC
is sensitive to the need to integrate relations, but PPC is also
sensitive to the number of relations considered (Crone et al.,
2009) and the specificity of those relations (Wendelken and
Bunge, 2010). Furthermore, there is mounting evidence from
lesion studies pointing toward a critical role for PPC in rea-
soning. One study of left-hemisphere stroke patients revealed
that performance on a matrix reasoning task was affected by
damage to the inferior parietal lobe (IPL; Baldo et al., 2010). In
another recent investigation, involving patients with damage to
RLPFC or parietal cortex, only patients with parietal damage were
significantly impaired on a transitive inference task (Waechter
et al., 2013).

That PPC makes an important contribution to reasoning is
apparent; but PPC is involved in numerous cognitive functions
besides reasoning. To understand PPC’s contribution to reason-
ing, it is critical to understand how it relates to the other functions
of PPC. We summarize primary functions attributed to PPC
briefly here. For more extensive review of parietal function, see
Grefkes and Fink (2005), Nickel and Seitz (2005), Seghier (2013),
and Humphreys and Lambon Ralph (2014).

A key function of PPC is the implementation of visuospatial
attention (Mesulam, 1981; Hopfinger et al., 2001; Wager et al.,
2004), and of spatial processing more generally (Marshall and
Fink, 2001; Husain and Nachev, 2007; Sack, 2009; Amorapanth
et al., 2010). The intraparietal sulcus (IPS), which separates
the inferior and superior parietal lobes, has been shown to
contribute to the maintenance of spatial location information
(Todd and Marois, 2004; Xu and Chun, 2006; Ackerman and
Courtney, 2012). IPL, by contrast, has been implicated as a
locus of spatial relational processing (Ackerman and Courtney,
2012).

PPC has also been linked to various language processes (Binder
et al., 2009; Wu et al., 2012). For example, posterior IPL, angular
gyrus, particularly on the left side, has been implicated as a
key locus for semantic processing (Binder et al., 2009; Seghier,
2013). Moreover, just as IPS has been implicated as the locus
of visuospatial maintenance, more anterior and ventral parts of
IPL have been implicated in maintenance of verbal information
(Paulesu et al., 1993; Awh et al., 1996; Becker et al., 1999).

In addition to its apparent role in the maintenance
of both spatial and verbal information, PPC, and in par-
ticular SPL, has also been implicated in manipulation of
the contents of working memory (Marshuetz et al., 2000;
Wager and Smith, 2003; Wendelken et al., 2008). More-
over, PPC contributes not only to various aspects of work-
ing memory, but also to episodic memory (for review, see
Berryhill and Olson, 2012). In episodic memory, parietal acti-
vation is most commonly associated with the endorsement of

stimuli as having been previously encountered (Wagner et al.,
2005; Nelson et al., 2013), though associations with mem-
ory encoding (e.g., Uncapher and Wagner, 2009) and mem-
ory confidence (e.g., Johnson et al., 2013) have also been
noted.

Finally, though this list is by no means exhaustive, PPC is a
primary contributor to mathematical cognition (Dehaene et al.,
2003; Rosenberg-Lee et al., 2011). Some aspects of mathematical
cognition may be linked to verbal and spatial representations
within PPC (Dehaene et al., 1999). But evidence suggests that a
core numerical system, localized to IPS, may be independent of
these (Dehaene et al., 2003; Cohen Kadosh et al., 2005; Nieder
et al., 2006).

Whether these various functions of parietal cortex on the one
hand rely on shared circuitry and similar operations, or on the
other hand represent separable circuits and distinct functionality,
is a subject of much debate. A number of studies have sought to
parcellate PPC into distinct subdivisions with differing functional
roles (e.g., Nelson et al., 2010, 2013; Mars et al., 2011), while
others have sought to explain apparently diverse functions in
terms of a core mechanism (e.g., Bueti and Walsh, 2009; Cabeza
et al., 2012).

It is possible that PPC supports reasoning through one dom-
inant mechanism, be it numerical processing, relational repre-
sentation, language, attention, working memory, or some other
function; but it is also possible that different subdivisions of PPC
support reasoning in different ways (see e.g., Goel, 2007; Prado
et al., 2011). Regardless, understanding the way or ways in which
PPC supports reasoning is critical for understanding not only the
neural implementation of reasoning, but also for understanding
the extent to which reasoning depends on different cognitive
mechanisms.

Here, we re-examined previously collected data to better
characterize the contribution of PPC to reasoning. We pur-
sued two broad approaches. First, we examined parietal data
from our own fMRI studies of deductive reasoning, all of
which included a contrast between second-order and first-order
relational reasoning conditions, to determine which parietal
subdivisions are most selectively engaged by the higher-order
reasoning condition. Second, we expanded our investigation
to a much broader collection of studies to find characteristic
activation patterns across PPC for reasoning as well as for a
number of other parietal functions. We compared the spatial
overlap of activation patterns associated with reasoning and with
other cognitive functions, to determine whether or not pari-
etal engagement during reasoning could be best understood in
relation to its involvement in these other functions of parietal
cortex.

METHODS
All of our analyses, described below, were focused on activation
patterns within PPC. Our specific parietal regions of interest
(ROIs) were based on the parietal subdivisions defined in Mars
et al. (2011) on the basis of tractography (Figure 1). The set
of ROIs included, on each side of the brain, five subdivisions
of the IPL, arrayed from anterior to posterior, and five subdi-
visions of the SPL, similarly arrayed from anterior to posterior;
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FIGURE 1 | Posterior parietal ROIs from Mars et al., 2011, including five subdivisions of IPL and five subdivisions of SPL, on the left and on the right.
Subdivisions are labeled “a” through “e”, from anterior to posterior.

thus, there were a total of 20 parietal ROIs. For convenience,
we label these regions IPLa—IPLe and SPLa—SPLe, with “a”
referring to the most anterior subdivisions and “e” referring to
the most posterior subdivisions. IPLa, with a center of gravity at
(±49, −25, 30), is located ventral to the other IPL regions, in
the parietal opercular region (Caspers et al., 2006). IPLb, with
center of gravity at (±53, −32, 44), corresponds to anterior
supramarginal gyrus, while IPLc, with a center of gravity at (±50,
−44, 43) corresponds to posterior supramarginal gyrus. IPLd,
with a center of gravity at (46, −55, 45), is located in the anterior
part of the angular gyrus, and IPLe, with a center of gravity at
(37, −67, 39), comprises posterior angular gyrus and the most
anterior parts of the lateral occipital complex. All of these IPL
regions, with the exception of IPLa, are bordered by the IPS.
The anterior-most SPL region (SPLa), with a center of gravity
at (30, −41, 53), was located on the anterior medial bank of the
IPS. SPLb, with center of gravity at (12, −50, 63), was adjacent
and medial to SPLa. SPLc, with center of gravity at (28, −55,
55), comprised the middle-to-posterior medial bank of the IPS.
SPLd, with center of gravity at (19, −63, 53), was medial and
posterior to SPLc. Finally, SPLe, with a center of gravity at (21,
−78, 43), included the most posterior part of the medial bank of
the IPS.

We first examined data from four different studies of relational
reasoning that we have previously conducted in young adults
(Bunge et al., 2009; Crone et al., 2009; Wendelken and Bunge,
2010; Wendelken et al., 2012). These deductive reasoning tasks
included matrix reasoning (Raven’s Progressive Matrices), tran-
sitive inference, relational shape matching, and relational picture
matching (see Figure 2). All tasks included a contrast between
second-order and first-order relational reasoning conditions. For
matrix reasoning, a second-order problem required considera-
tion of both row and column to determine the correct missing
element from a visuospatial array. For transitive inference, a
second-order problem required combining multiple premises.
The transitive inference task included problems that required
consideration of directional (inequality) relations (pictured in
Figure 2) as well as problems that required only consideration of
non-directional (equality) relations. For both relational matching
tasks, the second-order condition required participants to deter-
mine whether the top pair of stimuli matched along the same
dimension as the bottom pair. All three of the above tasks involved
visuospatial stimuli. By contrast, the relational picture matching

task included evaluation of semantic relationships (pictured) as
well as visuospatial relationships. We obtained contrast activation
values for each participant, from each of the four studies, for each
parietal ROI. We then submitted these contrast values to statistical
analysis in SPSS, wherein we conducted an ANOVA that included
parietal region, subdivision, and side as within-subjects factors
and task/study as a between subjects factor.

For the broader analysis of reasoning-related activation and its
relationship with other parietal functions, activation maps were
obtained using Neurosynth, which provides automated meta-
analyses based on Keywords (Yarkoni et al., 2011). The Neu-
rosynth algorithm extracts clusters associated with specific key
words across a large database (thousands) of neuroimaging stud-
ies. First, for a given key word (e.g., “reasoning”), it calculates fre-
quency of appearance within an article, and identifies studies for
which the key word appears at a high frequency (more than once
per thousand words). Second, it automatically extracts activation
coordinates from tables reported in these studies. Third, the set of
coordinates extracted from studies that have been linked to a key
word are submitted to multilevel kernel density analysis (MKDA)
to produce activation maps (c.f. Wager et al., 2009). Finally, taking
into consideration maps generated for a large number of different
key words, machine learning (naïve Bayes classification) is used
to estimate the likelihood that activations were associated with
specific psychological terms.

In addition to “reasoning”, we utilized the following terms
associated with functions of PPC: “numerical” and “calculation”
for mathematical cognition, “visuospatial” and “attention” for
visuospatial processing and attention, and “phonological”, “lexi-
cal”, and “semantic” for language-related processes. We also exam-
ined activation maps associated with the terms “maintenance”
and “manipulation” (working memory), and “memory encoding”
and “memory retrieval” (long-term memory). Table 1 gives the
number of studies included for each term. For each of these
terms, we obtained the reverse inference map, which displays
regions that are reported more often in studies that load highly
on the selected term than in studies that do not load highly
on the term. In other words, the reverse inference maps display
regions that are diagnostic of the term or feature. In addition, to
obtain a broader representation of reasoning-related activation,
we also obtained the forward inference map associated with
reasoning. The forward inference map includes regions that are
consistently activated in studies that load highly on the term.
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FIGURE 2 | Relational reasoning tasks, including (A) matrix
reasoning; (B) transitive inference; (C) relational shape matching;
and (D) relational picture matching. (A) For relational matching, the
given stimulus depicts a second-order problem, in which one must
consider the relationships in both the bottom row and rightmost
column to determine that the correct answer is #2. (B) For transitive
inference, a second-order problem is shown, for which one to evaluate
the validity of the probe (circled, “yellow is heavier than blue”), one
must combine both the second and fourth premises (“blue is same as
red” and “yellow is heavier than red”). (C) For the relational matching

task, equivalent stimuli were used across conditions. The given
stimulus is a texture match, because the top two shapes share the
same texture, a shape mismatch, because neither pair share the same
shape, and a relational match, because the same dimension of match
(texture) is present for both the top and bottom pairs. (D) The semantic
picture matching task follows the same logic as the relational matching
task, but utilized animal vs. vehicle and land vs. water as dimensions
of possible match or mismatch. The example depicts a relational match,
in that the dimension of match for the top pair (land vs. water) is the
same as the dimension of match for the bottom pair.

Thus, the forward inference reasoning map included regions that
are typically activated during reasoning tasks, not all of which are
particularly diagnostic of reasoning.

Calculations of image characteristics were done using FSL
(FMRIB Software Library, Oxford Center for Functional Magnetic
Resonance Imaging of the Brain). We first computed, for each
term, the extent of activation within each parietal ROI. Next, we
computed overlap volume between each reasoning map (forward
and reverse inference) and every other feature map (reverse
inference only). This was done separately for each parietal ROI.
From these initial values, we computed similarity scores relating
the reasoning maps to every other feature. Similarity between two
maps was defined as the volume of activation in the intersection
of the two maps divided by the total volume of activation in the

union of the two maps; thus, non-overlapping maps would have
a similarity score of 0 and maps that are the same would have
a similarity score of 1. We also computed the percentage of the
reasoning activation that was accounted for by each feature; this
differs from the similarity score in that a large activation cluster
that effectively contains the reasoning cluster, but which includes
many non-reasoning voxels as well, would have a high percent-of-
reasoning score but a lower similarity score.

RESULTS
POSTERIOR PARIETAL ENGAGEMENT DURING RELATIONAL
REASONING
First, we sought to characterize patterns of reasoning-related acti-
vation across the posterior parietal ROIs. Figure 2A shows average
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Table 1 | The number of studies included in the Neurosynth
meta-analysis, for each term.

Term Number of studies

Reasoning 124
Visuospatial 184
Attention 1199
Memory retrieval 144
Memory encoding 101
Manipulation 204
Maintenance 224
Numerical 64
Calculation 55
Semantic 701
Phonological 260
Lexical 212

percent signal change in each ROI. Notably, there was engagement
across posterior IPL, and to a lesser extent across left posterior
SPL. We conducted an ANOVA that included parietal region
(IPL or SPL), subdivision (1–5), and hemisphere (left or right)
as within-subjects factors, and task (matrix reasoning, transitive
inference, shape matching, or picture matching) as a between-
subjects factor. First, there was a main effect of hemisphere
(F(1,65) = 10.31, p = 0.002), such that activation on the left was
stronger than activation on the right. Second, there was a main
effect of subdivision (F(4,260) = 17.64, p < 0.001). Post hoc tests
indicated that this was driven by greater activation in the middle
and posterior subdivisions (c, d, and e) relative to the anterior
subdivisions (a and b; all p’s < 0.001). There was no main effect
of region (p > 0.2). However, there was a significant region ×

subdivision interaction (F(4,260) = 3.62, p = 0.007), such that
increased activation for IPL vs. SPL was observed in the middle
and posterior but not in the anterior subdivisions. There was also
an interaction between subdivision and side (F(4,12) = 5.06, p =
0.01), such that the increased activation within left vs. right PPC
was strongest in the posterior subdivisions and was not present in
the anterior subdivisions.

Although our purpose here was to determine commonalities
across studies, we note that there were differences between these
studies in terms of both the parietal subdivisions and hemisphere
that were most strongly engaged, as reflected in a subdivision
× task interaction (F(12,260) = 4.62, p < 0.001) as well as a
hemisphere × task interaction (F(3,65) = 7.01, p < 0.001). Notably,
the transitive inference task did not demonstrate the preferential
engagement of more posterior subdivisions that was present for
the other three tasks. Moreover, while three out of four tasks
engaged left PPC more than right PPC, the picture matching task,
which included a visuospatial component, engaged right PPC to
a greater extent.

POSTERIOR PARIETAL REGIONS ASSOCIATED WITH REASONING AND
OTHER TASKS
Next, we turned to the large-scale meta-analysis and exam-
ined the extent of reasoning-related activations within each
posterior parietal ROI. For the reverse inference reasoning
map, which shows voxels that are most selective for reasoning,
activations were almost entirely limited to the third and

fourth subdivisions of left IPL (IPLc and IPLd: 51% and 42%
of total active voxels, respectively;). For the forward infer-
ence map, activations were more extensive (Figure 3B), with
greater volume on the left vs. right (69% left; Figure 4A)
and greater volume within IPL vs. SPL (77% IPL; Figure 4B).
Again, active voxels were concentrated in left IPLc and
IPLd (26% and 20% of active voxels, respectively), but also
spread to IPLe as well as to the more posterior subdivisions
of SPL.

No other tested function demonstrated a similar concentra-
tion of active voxels within left IPLc. Memory retrieval, like
reasoning, had a large share of activated voxels in left IPLd; but
unlike for reasoning, memory retrieval activations were more
concentrated in left IPLe. Figure 4 shows relative numbers of
voxels for left vs. right PPC and for IPL vs. SPL, for each of
the examined features. Language and memory activations, like
reasoning, were heavily left-lateralized. In contrast, attention and
visuospatial activations, as well as those for manipulation, were
heavily right lateralized. Voxels associated with mathematical
cognition as well as maintenance were evenly balanced across left
and right. Memory retrieval and semantic processing, along with
reasoning, demonstrated the strongest preferential engagement of
IPL over SPL. In contrast, visuospatial processing and attention,
as well as memory encoding, demonstrated notable preferential
engagement of SPL.

SIMILARITY OF REASONING TO OTHER FUNCTIONS IN POSTERIOR
PARIETAL CORTEX
Our primary Neurosynth-based analysis involved examination
of overlap between the activation maps associated with rea-
soning and those associated with other parietal functions. For
each function (i.e., key word), in relation to reasoning, we
examined: (1) overlap volume; (2) percentage of the reasoning
volume accounted for by the overlap (“percent-of-reasoning”);
and (3) percentage of the total volume (for reasoning plus the
function of interest) accounted for by the overlap (“similarity”).
These measures were obtained for both the forward inference and
reverse inference reasoning maps. Overall results for each of the
three measures are presented in Figure 5.

For the forward inference reasoning map, the feature “numeri-
cal” demonstrated the greatest overlap with reasoning across PPC.
It overlapped with a large proportion (>50%) of the reasoning
activation in most of the parietal ROIs that we examined, except
for left IPLd, where the reasoning activation was most extensive.
The numerical map also demonstrated the greatest overall sim-
ilarity to the reasoning map. After numerical, the feature with
the second-greatest overlap with reasoning, and also the second-
highest similarity score, was calculation. Thus, the math cognition
measures were most closely related to reasoning.

In addition to the math cognition features, activation maps
from four other features demonstrated notable overlap with the
reverse inference reasoning map: attention, visuospatial, phono-
logical, and maintenance. Among these features, the attention
and visuospatial maps demonstrated the greatest overlap with
reasoning on the right side, particularly in IPLd, IPLe, and SPLc.
In contrast, among these four features, the phonological map
demonstrated the greatest similarity to the reasoning on the left,
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FIGURE 3 | (A) Average % signal change for the contrast between 2nd-order
and 1st-order relational reasoning, across four separate studies (matrix
reasoning, transitive inference, relational matching, picture matching). Error

bars are standard error of the mean across subjects. (B) Volume of the
Neurosynth forward inference map associated with reasoning, for each
posterior parietal ROI.

and overlapped with nearly 50% of the reasoning activation in
left SPL. The maintenance map demonstrated a more balanced
pattern of similarity to the reasoning map, across the collection of
parietal ROIs. For all of the other examined features, the percent-
of-reasoning scores were less than 10%.

In addition to examining the forward inference activation
map associated with reasoning, we also examined overlaps for
the much smaller reverse inference reasoning map. Here again,
numerical demonstrated the greatest overlap with reasoning,
accounting for 24% of the overall reasoning activation and 25%
of its activation within left IPL. The visuospatial map overlapped
with 75% of the small reasoning activation within right IPL; how-
ever, it accounted for only 3% of the overall reasoning activation.
In fact, no feature other than numerical accounted for more than
10% of the reasoning activation. Thus, a large proportion of the
activation related to reasoning, particularly within IPLd, appears
to be distinct from the activations associated with other parietal
functions.

Notably, there was a substantial part of the reasoning activa-
tion that did not overlap with that for any other feature. This was
particularly true within left IPLd, the region that demonstrated

the greatest specificity for second-order relational reasoning in
our own studies. The reasoning-specific activation cluster from
the Neurosynth analysis is shown in Figure 6. Although we did
not formally separate dorsal and ventral subdivisions of IPL, or
position along the gyrus vs. position in the depth of the IPS,
it is clear from the pattern of activations that reasoning-specific
activation is concentrated in dorsal IPL, on the border of the
IPS but not in the sulcus. By contrast, many other functions
appear to overlap more ventrally, and within the depth of the
sulcus.

DISCUSSION
The goals of the current study were to (1) better characterize the
pattern of posterior parietal engagement during reasoning; and
(2) to use this information, along with information about parietal
engagement in other domains, to better understand the parietal
contribution to reasoning.

PATTERNS OF PARIETAL ENGAGEMENT DURING REASONING
With regard to the first goal, we have obtained complemen-
tary evidence from two separate analyses that, within PPC,
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FIGURE 4 | Relative activation volumes associated with each term, for (A) left vs. right parietal cortex, and (B) IPL vs. SPL; and (C) anterior to
posterior parietal cortex. All bars add up to 100%. Terms are grouped according to the higher-level category to which they are thought to correspond.

FIGURE 5 | Overlap metrics for reasoning (forward inference map) in
relation to other functions (reverse inference maps). (A) Volume of overlap
with the reasoning map, for the activation maps associated with each other
term. (B) Percent of reasoning activation from the reasoning map that

overlapped with each other feature, across all parietal ROIs. (C) Similarity
scores comparing the reasoning map to the map associated with every other
feature, across all parietal ROIs. Similarity was computed as the volume of
overlap divided by the total volume of activation for both features.

reasoning is most strongly associated with activation of middle
to posterior IPL, and to a lesser extent with neighboring
regions of middle to posterior SPL. For both analyses that
we performed—of average percent signal change across four
studies of relational reasoning and of activation volumes associ-
ated with reasoning in a large-scale meta-analysis—IPL demon-
strated greater involvement in reasoning than did SPL, and
left PPC demonstrated greater involvement than right PPC.

In both analyses, the anterior-most subdivisions of IPL and
SPL demonstrated no involvement in reasoning. There were
some differences between the two approaches, with regard
to the pattern of involvement across posterior regions: the
relational reasoning tasks tended to engage the more poste-
rior regions to a greater extent, whereas activation volumes
were greatest within the middle regions for the larger-scale
meta-analysis.
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FIGURE 6 | The cluster within left mid-IPL (IPLc and IPLd) that was associated exclusively with reasoning and with no other examined term. This
cluster lies on the upper part of the ventral bank of the intraparietal sulcus. Note that the image is displayed in radiological coordinates, with left and right
reversed.

Both of our analyses here were focused on uncovering patterns
of engagement that are common across reasoning tasks. But in
addition to commonalities, we would expect, and indeed have
observed, differences among different kinds of reasoning in their
patterns of parietal activation. Notably, in our picture matching
task, which included both visuospatial and semantic relational
reasoning, we observed selectivity for higher-order visuospatial
but not semantic reasoning in right PPC (Wendelken et al.,
2012). In the transitive inference task, we observed stronger
PPC activation for reasoning with inequalities than for rea-
soning with equalities, and argued that this was due to repre-
sentation of the more specific inequality relationships in PPC
(Wendelken and Bunge, 2010). Moreover, In a meta-analysis
that directly examined different kinds of reasoning tasks, Prado
et al. (2011) reported bilateral PPC activation during rela-
tional reasoning, and left PPC activation during propositional
reasoning.

It is notable that the anterior subdivisions of both IPL and
SPL, which were not associated with reasoning in the Neurosynth
analysis, demonstrated reduced activation for second-order rela-
tive to first-order relational reasoning across our four reasoning
tasks. These differences were largely driven by larger positive acti-
vations for the first-order relational task, and not by deactivation
during second-order reasoning. However, this pattern of relatively
reduced activation during the generally more difficult second-
order reasoning condition in anterior PPC is consistent with
participation this region in the default mode network (see Laird
et al., 2009). Regions in the default mode network are typically
deactivated during a wide spectrum of cognitively demanding
tasks; thus, the deactivation in anterior PPC that we observe is
likely to be non-specific to reasoning.

THE PARIETAL CONTRIBUTION TO REASONING
With regard to our second goal, evidence from the large-scale
meta-analysis indicates clearly that the pattern of activation asso-
ciated with reasoning is most closely related to that for mathe-
matical cognition. There were also notable similarities between
reasoning activations and those associated with visuospatial pro-
cessing and attention, particularly on the right; between reasoning

and phonological processing, particularly on the left; and between
reasoning and working memory maintenance, bilaterally. These
findings help to clarify the possible contributions of PPC to
reasoning.

A key question is the extent to which reasoning is accom-
plished via mental logic and rule-following, on the one hand,
or estimation and probabilistic computation, on the other. The
current evidence clearly points towards the latter. Logical rule-
following is posited to depend on formal language-like constructs,
if not directly on linguistic representations. Although there was
some similarity between reasoning and phonological activations,
the overlap with mathematical cognition terms was much greater.
Moreover, there was practically no parietal overlap between the
reasoning map and maps associated with either lexical or semantic
processing. In addition to a reliance on language-related pro-
cesses, manipulation of formal logical rules can also be expected
to depend heavily on processes that support manipulation in
working memory. But here again, although there was some over-
lap between reasoning and working memory maintenance, there
was practically no overlap between reasoning and manipulation.
Thus, the current evidence points away from a logical rule-
following as a primary mechanism for reasoning, and is more
consistent with accounts that involve estimation and probabilistic
computation.

An alternative explanation of the strong overlap between
reasoning and math cognition is that, instead of reasoning relying
on basic mathematical cognition, some types of mathematical
cognition may rely on the capacity for reasoning. Indeed,
advanced mathematical operations place a strong demand on
reasoning, and math achievement in school is highly dependent
on reasoning ability (Taub et al., 2008). It is entirely possible that
some part of the overlap between reasoning and math-related
activation reflects activation associated with mathematical
reasoning. However, reasoning in math tasks is unlikely to fully
explain the observed overlap, because the math cognition studies
identified by the “numerical” and “calculation” keywords tend
to involve simple tasks that put the greatest demand on basic
numerical processes (e.g., magnitude estimation) and simple
calculations, and put relatively less demand on reasoning.
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The overlap between the reasoning map and the map associ-
ated with maintenance could reflect the importance of working
memory as a component process of reasoning (Kyllonen and
Christal, 1990; Salthouse, 1992). But the limited extent of this
overlap argues against working memory as the main explana-
tion for parietal engagement during reasoning. Similarly, overlap
between the maps for reasoning and attention leaves open the
possibility that part of the parietal activation for reasoning reflects
attentional processes. Indeed, attentional processes are likely to be
involved in many reasoning tasks. But here again, attention does
not appear to be the primary explanation for parietal activation
during reasoning.

Among potential parietal functions that we did not consider
here, social cognition is worthy of mention. One recent meta-
analyses highlights the tempo-parietal junction (TPJ), which
includes ventral parts of IPL, as a key locus of social cognition,
and points to overlap between the social cognitive function of
TPJ and other parietal functions including language, memory,
and attention (Carter and Huettel, 2013). However, while many
of the functions that we examined do activate this ventral IPL/TPJ
region, it is notable that reasoning does not, with reasoning
activations mostly limited to the more dorsal parts of IPL on the
border of the IPS. Notably, one class of social cognition studies—
those using false belief stories—have been linked to dorsal IPL
(Shurz et al., 2014). False belief studies probe the ability to reason
about theory of mind. Thus, dorsal IPL activation in these studies
may well be due to the reasoning demand inherent in this social
cognitive task.

PARIETAL SPECIALIZATION FOR REASONING?
It is notable that a large part of the activation map for reasoning—
particularly in left IPL in the vicinity of the IPS—did not overlap
with the maps for any of the other functions that were considered
here. Of course, it is possible that some other function of PPC,
not considered here, may help to explain the engagement of this
region for reasoning. But the current results are at least suggestive
of the possibility that this reasoning-related activation represents
a fairly narrow specialization of this part of PPC for reasoning
processes.

This mid-IPL region that appears as unique for reasoning in
our Neurosynth analysis is similar to the IPL activations that
we typically observe in studies of relational reasoning, and in
particular is consistent with the region for which we reported
the strongest contrast activation in our small-scale meta-analysis
of relational reasoning studies. We have previously argued that
RLPFC, in the frontal lobe, is specialized for second-order
relational reasoning. The current results are consistent with the
possibility that RLPFC may share this duty with a subregion
of mid-IPL. Although direct anatomical connections between
RLPFC and mid-IPL have not been reported, it is noteworthy
that these two regions demonstrate strong functional connectivity
during task execution (Boorman et al., 2009; Wendelken et al.,
2012) and even at rest (Vincent et al., 2008).

LIMITATIONS AND FUTURE WORK
It is important to note several limitations in the interpretation
of our findings. Our first analysis involved only a small number

of studies from our lab. This approach had the advantage, over
typical larger-scale meta-analyses, of allowing for extraction of
whole-brain contrast images based on complete data from each
study. The similarity of the tasks—each involving a contrast
between second-order and first-order relational reasoning—was a
key advantage that enabled this analysis. However, the fundamen-
tal similarity of these tasks, coupled with the small number, limits
the generalizability of our initial findings. Beyond the fact of the
small number of studies included here, and the similarity of the
tasks, all of these studies drew from a similar pool of participants
(UC Berkeley undergraduates) and involved similar analytical
methods. Moreover, and despite the fundamental similarity of the
tasks, there was variation across these studies in terms of parietal
activation, and the average activation measure that we examined
here only tells part of the story.

While the Neurosynth approach allowed for analysis of a much
larger set of studies, individual datapoints within this analysis
are much less informative and reliable. There are a number of
sources of potential error in the Neurosynth approach: (1) the
identification of studies by keyword will lead to both false inclu-
sions and omissions of relevant studies; (2) the identification
of coordinates within a study is done without regard to any
specific contrast; (3) there is no attempt to distinguish between
activations and deactivations; and (4) as with any meta-analysis,
there is an inherent confirmation bias, since results that do not
fit prior expectations may not be reported. Moreover, while the
selection of reasoning tasks examined by Neurosynth is consid-
erably broader than the four relational reasoning tasks examined
in our initial analysis, it may still be biased towards certain types
of reasoning tasks. Despite these limitations, examinations of
Neurosynth results have shown them to be very much in line with
those of more traditional meta-analyses. Our side-by-side exami-
nation of results from Neurosynth and from our own reasoning
studies was intended partly as a validation of the Neurosynth
reasoning results, though we could not validate results for other
keywords in a similar manner.

Because our focus in the current study was on the contribution
of PPC, our results only speak to the PPC role in reasoning, and
not to the contribution of other brain regions. Thus, while we
interpret the current evidence as supporting the hypothesis that
mathematical or probabilistic mechanisms underlie the parietal
contribution to reasoning, they do not rule out the possibility
that other mechanisms (e.g., linguistic) may support reasoning
through the engagement of other brain regions.

The Neurosynth-based analysis does not distinguish between
reasoning tasks that are by design deductive (where conclu-
sions follow necessarily from the premises) or inductive (where
uncertainty is an explicit part of the task). It is reasonable to
suppose that differences in the extent of logical rule following
vs. probabilistic calculation would be present for these different
kinds of reasoning. But the extent to which human reason-
ers employ logical rule-following to solve nominally deductive
tasks, or probabilistic computation to solve nominally inductive
tasks, is unclear. Much of the debate on logical rule-following
vs. probabilistic computation focuses specifically on deductive
reasoning (Oaksford and Chater, 2009; Khemlani and Johnson-
Laird, 2012), though this debate can also apply in the case

Frontiers in Human Neuroscience www.frontiersin.org January 2015 | Volume 8 | Article 1042 | 104

http://www.frontiersin.org/Human_Neuroscience
http://www.frontiersin.org/
http://www.frontiersin.org/Human_Neuroscience/archive


Wendelken Reasoning in parietal cortex

of inductive reasoning, with tools like fuzzy logic providing
a possible rule-based mechanism (Smithson and Oden, 1999).
Understanding how the parietal contribution to reasoning might
differ as a function of deductive vs. inductive reasoning is
an open question and an important follow-up to the current
results.

Limitations of the approach notwithstanding, these results
demonstrate the value of Neurosynth as a tool. Rigorous meta-
analyses have previously characterized patterns of activation asso-
ciated with reasoning (e.g., Goel, 2007; Prado et al., 2011). But
Neurosynth enabled direct comparison of activation maps for
reasoning and a wide range of other functions, in a manner
and at a scale that would be very difficult to achieve without
the automation that it provides. One of the chief ways that
neuroimaging work can inform psychological theory is by telling
us which functions potentially utilize the same neural circuitry.
Thus, the ability to characterize a pattern of activation associated
with some function of interest in terms of its overlap with many
other functional patterns may emerge as a fundamental analytical
tool.
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The capacity to learn new information and manipulate it for efficient retrieval has long been
studied through reasoning paradigms, which also has applicability to the study of social
behavior. Humans can learn about the linear order within groups using reasoning, and the
success of such reasoning may vary according to affective state, such as depression. We
investigated the neural basis of these latter findings using functional neuroimaging. Using
BDI-II criteria, 14 non-depressed (ND) and 12 mildly depressed volunteers took part in a
linear-order reasoning task during functional magnetic resonance imaging. The hippocam-
pus, parietal, and prefrontal cortices were activated during the task, in accordance with
previous studies. In the learning phase and in the test phase, greater activation of the pari-
etal cortex was found in the depressed group, which may be a compensatory mechanism
in order to reach the same behavioral performance as the ND group, or evidence for a
different reasoning strategy in the depressed group.

Keywords: fMRI, sub-clinical depression, reasoning

INTRODUCTION
A fundamental ability in both humans and animals is the capacity
to flexibly learn new information and to recall and manipulate that
information for future use (Simons and Spiers, 2003; Manns and
Eichenbaum, 2006). Indeed, both humans and animals can flexibly
make novel inferences from the information provided (Dickins,
2005; Vasconcelos, 2008). This process is often studied through
linear-order reasoning paradigms (Potts, 1972; Sternberg, 1980),
in which participants learn A > B and B > C; evidence of reason-
ing occurs when they can rearrange the incoming information into
a coherent representation, or mental model, in order to infer that
A > C. This type of reasoning is not purely an abstract cognitive
process, however, but one which has applications in the environ-
ment; for example, animals use this type of processing to learn
their place in the social order of their groups (Hogue et al., 1996;
Paz-Y-Miño et al., 2004). Humans can learn about rank orders
within groups of people using linear-order reasoning, and the suc-
cess of such reasoning may depend on affective state, particularly,
sub-clinical depression (Sedek and Von Hecker, 2004). Previous
research has found dysfunctions in the frontoparietal network in
depressed participants [for an overview see Brzezicka (2013)]. In
particular, Thomas and Elliott (2009), as well as Hugdahl et al.
(2004) found in their depressed participants that reduced parietal
activity was associated with impaired performance in mental arith-
metic tasks, as well as hyperactivity was associated with intact per-
formance, leading these authors to conclude that normal perfor-
mance in depression is associated with enhanced cortical, in partic-
ular parietal, function during reasoning. In this study, we use func-
tional MRI to investigate how brain activation during execution of

a different reasoning task, that is, linear-order construction, might
be altered in the brain, especially in parietal cortical areas, when
individuals are in a state of sub-clinical depression.

There is an increasing literature on the neural basis of linear
order, or transitive, reasoning [e.g., Christoff et al. (2001), Goel
and Dolan (2001, 2003, 2004), Acuna et al. (2002), Knauff et al.
(2002), Fangmeier et al. (2006), Greene et al. (2006), Monti et al.
(2007), Van Opstal et al. (2008), Wendelken et al. (2008)]. Studies
to date have largely taken an abstract form in the tasks employed
to reveal the underlying brain activation of making inferences.
A review of the above literature demonstrates that a “network”
of brain regions subserve reasoning, including the hippocampus,
parietal, and prefrontal cortices. Knauff et al. (2002) found that an
occipital–parietal–frontal network was activated during relational
reasoning, which includes areas in the visuospatial system. In line
with this research, we suggest that spatial processing of relations
is paramount to processing orders or hierarchies in order to solve
reasoning problems (Leth-Steensen and Marley, 2000). Specifi-
cally, the present study will look into the areas of intra-parietal
sulcus, inferior parietal lobe (BA 40), and posterior parietal lobe
(BA 7) as earlier work has suggested that these regions might
be involved in tasks involving spatial and numerical operations,
as well as working memory [e.g., D’Esposito et al. (1998), Sakai
et al. (1998), Pinel et al. (2001)], and, more specifically, in the spa-
tial operations during transitive inference (Goel and Dolan, 2001;
Acuna et al., 2002; Knauff et al., 2002). Furthermore, the role of the
prefrontal cortex (PFC) in reasoning has been highlighted in stud-
ies of relational complexity and integration (Christoff et al., 2001;
Acuna et al., 2002; Kroger et al., 2002; Wendelken et al., 2008).
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In the present study, rather than employing abstract symbols
in the task, we focus on more naturalistic linear-orders regarding
relationships within small sets of people. During functional mag-
netic resonance imaging (fMRI), participants learned a series of
pairwise information, such as “Andrew is taller than Brian,”“Brian
is taller than Colin,” and “Colin is taller than David.” Evidence
suggests that people spontaneously rearrange the three presented
pairs of information and integrate them into a coherent men-
tal model (≥“taller”): A > B > C > D, most likely involving spatial
representations (Huttenlocher, 1968; Waltz et al., 1999). After the
learning phase, test queries were asked about all possible pairs of
names, such as the three presented ones, i.e., A/B, B/C, C/D, and
also queries about those relations that were not presented during
learning, such as A/C, B/D (an inference spanning two distance
steps along the assumed mental model), and A/D (involving two
inferences, and corresponding to three distance steps along the
model).

There is some evidence to suggest that transitive reasoning is
affected by sub-clinical depression (Sedek and Von Hecker, 2004).
Such reasoning deficits may lie at the heart of some cognitive
problems found in those with depression, such as loss of creativity
and inferior ability to solve problems in the social domain (Gotlib
and Hammen, 1992; Marx et al., 1992; von Hecker and Sedek,
1999). Depressed participants showed inferior performance as
compared to non-depressed (ND) controls in the linear-order task
as described above, especially concerning the inferred pairs (Sedek
and Von Hecker, 2004, Exp. 1, 3, and 4). The authors suggested
that while ND individuals might create the comprehensive model
A > B > C > D spontaneously during learning, depressed individ-
uals might not do so (or not be successful in doing so), but engage
in reasoning more upon particular queries during the test phase,
this resulting in a less efficient processing overall. The present
hypothesis, therefore, is that compared to those without depres-
sion, individuals in depressed states may show higher indices of
brain activation in the spatial areas supporting transitive reason-
ing as described above, when tested on queries of any pair distance
across the linear-order A > B > C > D.

MATERIALS AND METHODS
PARTICIPANTS
Female participants were recruited into this study on the basis
of their score on the Beck depression inventory-II (Beck et al.,
1996). Only females were recruited for this study, as there is a
greater prevalence of depression in females (Nolen-Hoeksema,
2002). Participants attended one or two sessions. In the first ses-
sion, participants were given the BDI and CED depression scales,
and the operation span (OSPAN) and digital symbol substitution
test (DSST) tasks (see below for details). Participants who fitted
the BDI criteria for the ND or D groups in the first session were
asked to attend a second session 1 week later. In the second session,
participants were given both depression scales again. If their scores
allowed them to remain in their original group classification, they
immediately took part in the imaging phase. If not, the reasons
for them not continuing onto the imaging session were given, and
they were thanked and debriefed. For the ND group, those with
a score of 5 or below, on two occasions 1 week apart, were cho-
sen (n= 17). Those with a score of 13 or above, on two occasions

1 week apart, were included in the mildly depressed (D) group
(n= 15). Participants were given a second depression scale (Center
for Epidemilogic Studies Depression scale, CES-D, Radloff, 1977)
in the second session, on which participants had to get a score of
16 or above to remain in the D group.

Data from three participants from the D group and three from
the ND group had to be excluded from the analysis either due to
excessive movement in the scanner or misunderstanding the task
instructions. Twenty-six participants remained in the analysis: 14
in the ND group and 12 in the D group. Table 1 summarizes
the group demographics. All participants indicated that they were
right-handed, none had any history of psychiatric or neurological
disorders, and none were currently taking psychotrophic med-
ications. All participants gave informed consent. This study was
approved by the Cardiff School of Psychology Ethics Committee.

BEHAVIORAL TASKS AND DESIGN
During the fMRI, a mixed block/sparse event-related design was
used to present the linear-order reasoning task (Figure 1). As
described above, participants were shown information regard-
ing the relationships between four people (A > B > C > D), upon
which they were then tested. In the initial learning phase, presented
as a block, participants were sequentially shown three sentences
for 10 s each, followed by 30 s of fixation to a cross (X). Partic-
ipants were asked to remember the names and the relationships
between them, e.g., of one set (1) Andrew is taller than Brian
(A > B) (2) Brian is taller than Colin (B > C) (3) Colin is taller than
David (C > D). Other relational terms included “older,” “richer,”
“smarter,”“braver,” and “faster” (18 in total). Relational pairs were
presented in equal numbers of one of two order types: (i) where
the pairs are presented in the order in which they appear in the
putative model (e.g., A > B, B > C, C > D), or (ii) where the rela-
tions appear in a different order to the model (e.g., B > C, A > B,
C > D), in order to assess whether the latter required differential
brain activity to support the greater cognitive demands to support
the integration of pairs. A test phase followed in which a query sen-
tence was presented for 4.5 s followed by 10 s of fixation to allow
the BOLD response to return to baseline between events. Three
query sentences were presented in each test phase: One sentence
was randomly chosen from those presented in the learning phase

Table 1 | Participant information.

Non-depressed

group (ND)

Depressed

group (D)

N 14 12

Age (years) 22.6 (3.9) 22.7 (5.7)

BDI-II at time 1 2.3 (1.6) 16.6 (2.9)*

BDI-II at time 2 (imaging) 0.9 (1.1) 20.6 (7.0)*

CES-D at time 2 (imaging) 1.7 (2.2) 23.9 (6.9)*

DSST score 48.4 (6.8) 48.7 (10.1)

OSPAN words score (WM) 11.9 (6.3) 12.0 (7.8)

OSPAN maths score 37.2 (5.2) 37.4 (2.7)

(SD given in brackets) *indicates a significant difference at the level of p < 0.05

using an independent groups t test.
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FIGURE 1 | Design of the study.

(“one step” queries, A > B, B > C, or C > D, equivalent to one step
(A to B) on the hypothetical mental model), one sentence was
randomly chosen from “two-step” queries (A > C, B > D), and the
end-point query was presented (A > D). The queries were either
presented in correct or incorrect format (e.g., Andrew is taller than
Brian, or Brian is taller than Andrew). Participants had to respond
whether or not the query content was correct on the basis of the
information learned about the group of people in the learning
phase. Twelve sets of stimuli were presented in three imaging runs
of four sets. The format of the test phase queries were pseudo-
randomized such that over the course of the three runs there were
an equal number (12) of each type of query (one step, two step, and
end point), and an equal number of correctly (6),and incorrectly
presented trials (6). Total scan time was approximately 30 min,
followed by an anatomical brain scan for a further 10 min.

Data from the reasoning task were analyzed using ANOVA.
The dependent measures were the percentage of correct responses
and response time (within the 4.5 s window) to each query type
(one step, two step, and end point). Following the imaging session,
participants were given a post-imaging questionnaire, designed to
ascertain how participants reported doing the task. Participants
were also given an OSPAN task (Turner and Engle, 1989) as a
measure of working memory capacity, and the DSST, a subset of
the WAIS-R (Wechsler, 1981), as a measure of processing speed.
There were no significant differences between the groups on these
two control measures (see Table 1 for means; OSPAN t =−0.031,
p > 0.05; DSST t =−0.071, p > 0.05), so any differences found on
the reasoning task cannot be attributed to differences in processing
speed or working memory capacity.

IMAGE ACQUISITION
Anatomical and functional images were acquired at the Cardiff
University Brain Research Imaging Center (CUBRIC), using
a General Electric Excite-HDx 3 T MRI scanner. Functional
images were collected using a gradient-echo echo-planar pulse
sequence (TE= 35 ms; TR= 2500 ms; flip angle= 90°; acquisition
matrix= 64× 64; field of view (FOV) 64× 64; in plane resolution

3.75 mm). The volumes covered the whole brain in 37 slices
(thickness 3.8 mm) and were acquired in line with the anterior
commissure/posterior commissure line. A total of 684 volumes
were acquired for each participant in 3 sessions of 228 volumes
each. In each run of 228 volumes, 3 sets of stimuli were presented.
For each set (as described above, see Figure 1 for presentation
timing of one set of stimuli), a learning phase of 3 premise pair
sentences (e.g., A > B, B > C, C > D), each presented for 10 s, was
followed by a fixation cross for 30 s. The test phase then imme-
diately followed with 3 test queries (4.5 s each), each followed
by 10 s fixation. A filler task (counting backwards for 30 s) was
given to participants between each set in order to reduce pos-
sible interference between sets of relations. This results in 12
block scans for analysis of the learning phase, and 12 one-step,
12 two-step, and 12 end-point test queries for analysis of the test
phase. The timing of the program in presentation was designed
such that the test queries were not presented until a pulse had
been received by the scanner. This ensured that the task was
always in synchrony with the scanner. Finally, a high-resolution
T1-weighted FSPGR anatomical image was acquired (TR= 7.9 s;
TE= 3 ms; inversion time= 450 ms; flip angle= 20°; acquisition
matrix 256× 256× 176; FOV 256× 256× 176, resulting in 1 mm
isotropic voxels).

IMAGE ANALYSIS
Data was analyzed using the FSL package from FMRIB, University
of Oxford (http://www.fmrib.ox.ac.uk/fsl/). For each participant,
data were acquired in three runs. At the first level, each run
was pre-processed and analyzed separately, using the following
stages: motion correction using MCFLIRT (Jenkinson et al., 2002),
non-brain removal using BET (Smith, 2002), spatial smoothing
using a Gaussian kernel of FWHM 5 mm, mean-based intensity
normalization of all volumes, and high-pass temporal filtering.
Time-series statistical analysis was carried out using FILM with
local autocorrelation correction (Woolrich et al., 2001). The first
level modeled nine explanatory variables (EVs) for learning phase
order 1 and 2, the filler task between sets, one-step, two-step, and
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end-point test queries presented in the correct or incorrect for-
mat. Contrasts compared: (1) learning phase to baseline, (2) the
two different order of premises in the learning phase, (3) each test
query type to baseline, (4) one-step to two-step queries, and (5)
presented (one step) vs. inferred queries (two step and end point).
At the second level, the separate runs were combined into a fixed
analysis for each person, and then finally data from all participants
was combined in a third level analysis for each contrast. Higher-
level group analysis was carried out using a mixed effects group
analysis – FLAME (stage 1 only) (Beckmann et al., 2003; Woolrich
et al., 2004). Z statistic images were thresholded using Gaussian
random field (GRF)-theory based maximum cluster thresholding
with a corrected significance threshold of p= 0.05 (Worsley et al.,
1992). Registration to high resolution and standard images was
carried out using FLIRT (Jenkinson and Smith, 2001; Jenkinson
et al., 2002).

The study was designed to examine differences between groups
(ND and D) and between test relation types (one step, two step,
and end point). For the learning phase data, contrasts examined
(i) activation during the learning phase compared to baseline (fix-
ation cross) between the two groups, and (ii) activation during
the learning phase for each order of presented relations, using a
whole-brain corrected cluster-based threshold (z > 2.3, p < 0.05).
A subsequent analysis repeated (i), but for both groups together.
When reporting data for both groups together a stricter thresh-
old (z > 5) was chosen due to the large extent of activation found
when simply comparing task to fixation baseline.

For the test phase data, only correctly answered trials were
included in the analysis. This resulted in 5.3% of the total num-
ber of trials being excluded from the analysis. Contrasts examined
(iii) each test query type compared to baseline across groups, (iv)
previously presented queries compared to queries requiring infer-
ence, and most importantly (v) between group differences for each
test query type (one step, two step, and end point). The MNI coor-
dinate system is used in the results section when reporting the
activation peaks.

RESULTS
BEHAVIORAL DATA
Reasoning accuracy
The percentage of correct responses to the test queries is shown in
Figure 2A. The main effect of pair distance (step) was significant
(F 2,48= 5.061, p= 0.01), with accuracy increasing from one step
queries to end-point queries. However, there were no significant
differences in task accuracy between mood groups, between neigh-
boring distances (one step/two step or two step/end point), or any
interaction between group and pair distance.

Response times data
A significant stepwise decrease in reaction time was found across
query types of increasing pair distance (F 2,48= 11.30, p < 0.001) –
see Figure 2B. Pairwise comparisons showed that end-point
queries needed significantly less time than two-step queries
(p= 0.005), while the difference between one-step and two-step
queries was not significant. There was also no significant differ-
ence between mood groups or any interaction between group and
pair distance.

FIGURE 2 | Behavioral data. (A) Mean accuracy scores (percentage of
correct responses) and (B) mean response time in seconds for each test
query type (one step, two step, or end point) and for each group
(non-depressed or depressed).

Questionnaire responses
All 26 participants reported, without prompting, that they had
ordered the people in each set according to the relation speci-
fied between them, during the learning phase. Twenty-four out of
26 participants reported verbally rehearsing the correct order of
the people in each set during the fixation between the learning and
test phases; of the remaining participants, 1 reported using a purely
visual strategy, and the other reported simply fixating on the cross.

NEUROIMAGING DATA
Learning phase
No significant differences were found in the whole-brain analyses
brain activation between D and ND groups, while the partic-
ipants were learning the relations between the people in each
group. Moreover, no significant differences were found according
to the order of presenting the relational pairs. As such, the fol-
lowing results are reported including all 26 participants and both
order types using a whole-brain corrected cluster-based threshold
(z > 5, p < 0.05). A distributed network of areas was activated in
association with the learning phase of the task relative to fixation
(see Table S1 in Supplementary Material), including prefrontal
and parietal cortex, hippocampus, as well as occipital cortex and
cerebellum. (NB. Post hoc ROI analyses of the learning phase are
presented below).

Test phase
First, to investigate the basic pattern of activation associated with
the test phase queries, an average map of the activation found in
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association with each type of test query relative to fixation (one
step, two step, end point) for both D and ND groups together
is reported, which revealed a similar pattern across the query
types. For summary purposes, Table S2 in Supplementary Mate-
rial contains the results from all 26 participants together, using a
whole-brain corrected cluster-based threshold (z > 5, p < 0.05).

In order to examine, which areas were involved in making infer-
ences, a further comparison was made between the response to
test relations involving making an inference (two-step and end-
point relations) and those involving one-step relations that would
require recalling the previously presented information from the
learning phase. A significant difference in brain activation between
inferred and presented queries was found in the ND group only,
using a whole-brain corrected cluster-based threshold (z > 2.3,
p < 0.05). As shown in Figure 3, greater activation was found
in the superior and medial frontal cortex in association with
inferred queries (e.g., A > C, A > D) compared to the previously
presented queries (e.g., A > B). The same regions were not sig-
nificantly differentially activated in the depressed group for the
same contrast. However, the direct comparison between groups
did not reach significance [ND(inferred-presented)−D(inferred-
presented)]. It is possible that the frontal cortex was activated
more to inferred queries than presented queries in the depressed
group as well, but that this difference in activation did not reach
significance1.

One of the key contrasts of interest in this study was to
investigate differences in activation in response to the differ-
ent test relations, relative to fixation, between the D and ND
groups [D(test-fixation)−ND(test-fixation)]. Activation associ-
ated with each test query was analyzed between groups, using a
whole-brain corrected cluster-based threshold (z > 2.3, p < 0.05).
A significantly different pattern of activation was found in the pari-
etal lobe/post-central gyrus for end-point and one-step queries
between groups (D–ND), as shown in Figure 4A (end point),
Figure 4C (one step). For end-point queries, foci were found in
superior parietal cortex (26, −46, 60, z = 3.72), supramarginal
gyrus/post-central gyrus (x = 44, y =−26, z = 40, Z = 3.76). For
one-step queries, foci were found in the parietal lobe (post-central
gyrus x = 60, y =−12, z = 20, Z = 3.95; 58, −1, 46, z = 3.87).
Figure 4B (end point) and Figure 4D (one step) show how activ-
ity in these regions varies as a function of BDI-II score. These
scatter-plots show that on average the ND group shows relative
deactivation in these regions, whereas the D group show activa-
tion. A similar pattern of activation was found in the two-step
contrast as for the other test query types (as shown in Table S2
in Supplementary Material above), and a D–ND difference was
found for two-step queries in the same areas as for end-point and
one-step queries after lowering the threshold slightly, suggesting
that any difference between the groups did not quite survive the
cluster threshold for two-step queries.

1We thank the reviewer for pointing out that the inferred vs. presented contrast
can be difficult to interpret since the recall can interfere with the model creation
and the inference process. Maybe the participants hold the premises in mind and
rehearse them more or less extensively, which may interfere with later stages of
model creation.

FIGURE 3 | Activation map for inferred queries compared to previously
presented queries in ND group. Activation shown in medial frontopolar
cortex (BA 10, peak −4, 64, 14, z =3.26) and superior frontal cortex (BA8,
peak −26, 32, 50, z =3.63) in the contrast between inferred queries (two
step and end point) compared to previously presented queries (one step), in
the non-depressed group only. Cluster-based threshold: z > 2.3, p < 0.05.

To attempt to further understand the nature of these dif-
ferences, correlations were performed between activity during
end-point and one-step queries in the regions showing a sig-
nificant difference between groups, and performance on the task
(Figure 5). A significant negative correlation was found in the D
group between activity and response times to end-point queries
(r =−0.579, p= 0.048). The longer the response time, the less
activity was found in the parietal regions showing a difference
between groups. As Figure 5 shows, this correlation was only
found in the D group, with no such relationship in the ND group
(r =−0.009, p= 0.975).

Given the difference in the parietal cortex response between
groups during the test phase, further post hoc analyses were con-
ducted in order to test for differences during the learning phase in
this parietal region. Two separate masks of the parietal activation
showing differences between the D and ND groups in response
to one-step and end-point queries were created. In two separate
analyses, these were inputted into the learning phase group feat
analysis using pre-threshold masking. For both types of queries
(one step and end point), the D group do show significant acti-
vation in the corresponding parietal region during the learning
phase, whereas the ND group do not. The contrast between the
two groups (D–ND) does show a significant difference in this
region of the parietal cortex during the learning phase (x = 48,
y =−28, z = 40, Z = 3.5). The same activation peak during the
learning phase was seen using the one-step and end-point parietal
cortex masks, as these masks almost entirely overlap.

Frontiers in Human Neuroscience www.frontiersin.org January 2015 | Volume 8 | Article 1061 | 111

http://www.frontiersin.org/Human_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Human_Neuroscience/archive


Hinton et al. Linear-order reasoning in depression

FIGURE 4 | Differences between D–ND groups for end-point and one-step
queries. This figure shows the significantly different pattern of activation
found in the parietal lobe/post-central gyrus for end-point and one-step
queries between groups (D–ND): (A) for end-point queries, foci were found in
superior parietal cortex (26, −46, 60, z =3.72), supramarginal

gyrus/post-central gyrus (44, −26, 40, z =3.76); (B) shows how activation in
each group during end-point queries varied according to BDI-II score; (C) for
one-step queries, foci were found in the parietal lobe (post-central gyrus 60,
−12, 20, z =3.95; 58, −1, 46, z =3.87); (D) shows how activation in each
group during one-step queries varied according to BDI-II score.

DISCUSSION
Our results indicate that linear-order reasoning is an effective strat-
egy when learning about, and reasoning with, naturalistic orders
in humans. Moreover, hippocampal, parietal, and prefrontal cor-
tical activations during the task provide corroborative evidence
for a network of regions associated with reasoning found in previ-
ous studies (Christoff et al., 2001; Acuna et al., 2002; Knauff et al.,
2002; Goel and Dolan, 2004; Schubotz et al., 2004; Fangmeier et al.,
2006; Greene et al., 2006; Wendelken et al., 2008). In accordance
with our hypotheses, greater activation was shown by the mildly
depressed group compared to the ND group in spatial areas sup-
porting transitive reasoning, namely the parietal cortex, during
the spatial-like operations of solving the reasoning queries. This
may be a compensatory mechanism in order to reach the same
behavioral performance as the ND group [see Thomas and Elliott
(2009), Brzezicka (2013)], or evidence for a different reasoning
strategy in the depressed group. In post hoc analyses, correspond-
ing differences in parietal activation between the two groups were
also found for the learning phase.

DEPRESSED GROUP SHOW RELATIVELY GREATER PARIETAL
ACTIVATION DURING REASONING
When solving the test queries, the depressed group showed rel-
atively greater activation in the superior parietal lobe and in the
region of the supramarginal gyrus and post-central gyrus com-
pared to the ND group who showed relative deactivation during
the task (relative to baseline and the depressed group). Activa-
tion in the somatosensory cortices (post-central gyrus) is assumed
to reflect movement or non-task-related sensory feedback from
pressing the response button, in line with suggestions by Acuna
et al. (2002).

The greater activation in the parietal cortex during the test
phase in the depressed group may be more task-related. The pari-
etal lobe has been shown to be involved during mental operations
that require spatial manipulation of internal representations, such
as transitive inference (Goel and Dolan, 2001; Acuna et al., 2002;
Knauff et al., 2002; Monti et al., 2007). Recently, Waechter et al.
(2012) showed that patients with focal lesions in the parietal cor-
tex were significantly impaired on transitive reasoning tasks, as
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FIGURE 5 | Correlation in D group only between RT to end-point
queries and activation in regions in the D–ND contrast. A scattergram
plotting the reaction time during end-point queries against activation in
regions in the D–ND contrast in both groups. A significant negative
correlation between response time, after checking for outliers (none were
found) using the Tukey criterion (Clark-Carter, 2004, Chapter 9), and
activation during end-point trials was found in the D group (r =−0.579,
p=0.048; filled diamonds), but not ND group (r =−0.009, p=0.975; clear
squares).

compared to normal controls. It appears that the depressed group
required more activation than the ND group at test to make the
spatial aspects of the task sufficiently salient to arrive at the same
behavioral outcome. It should be noted, however, that by using
the contrast with fixation to examine the between group differ-
ences, this interpretation is not the only one possible. Greater
parietal lobe activation between depressed and ND in the par-
ticular contrast D(test-fixation)−ND(test-fixation) could either
reflect greater parietal lobe activation during the task (as stated),
but alternatively could reflect no change in task activation but a
greater deactivation during fixation in the depressed relative to the
ND. Future research should further examine these possibilities.

The longer the time the depressed group took to respond to the
test queries, the less activation was found in the parietal cortex. In
other words, the quicker the depressed individuals responded, the
more effort was indicated by brain activation. Given that this corre-
lation is based only on correct responses, it appears that depressed
participants needed to spend more effort to achieve quicker, cor-
rect responses, a correlation not found in the ND participants.
These results are in accordance with earlier behavioral findings
of Sedek and Von Hecker (2004). These authors suggested that
depressed individuals are not as successful or efficient in con-
structing a linear order during the learning stage, and so engage
in a different, compensatory style of reasoning when prompted by
a test query. By compensation we mean that the same region in
the brain may have to work harder in the depressed group than in
the ND control group, in order to achieve the same performance
level. This may be expected if depression is associated with more
difficulties in the early deployment of suitable strategies of task
execution and information integration (Hertel and Rude, 1991;
Sedek and Von Hecker, 2004).

Our argument follows the general logic that processing dis-
advantages can be indicated by the observation that in order to
achieve the same level of performance in a cognitive task, the dis-
advantaged group (in our case, depressed individuals) has to exert
relatively more mental effort than the non-disadvantaged group
(ND individuals). As such, this reasoning has previously been
applied to other domains within the literature on behavioral cor-
relates of cortical activation. For example, Fangmeier et al. (2006)
(Ruff et al., 2003) suggested that for individuals with high spatial
ability, the reasoning problems may have required less demand
for visuospatial processing such that less activity in the parietal
cortex was required to solve the problems, as compared to indi-
viduals with low spatial ability. In our case, the relative deactivation
shown in the ND group in this study may take this argument one
step further. A number of explanations for decreases in the BOLD
signal have been put forward, including suppression of task irrel-
evant activity or reallocation of resources [e.g., McKiernan et al.
(2003), Tomasi et al. (2006)], the default mode network (Raichle
et al., 2001; Singh and Fawcett, 2008), greater activity in the base-
line task than the task of interest (Gusnard et al., 2001; Stark and
Squire, 2001), or optimizing activity to focus task performance
(Astur and Constable, 2004; Rekkas et al., 2005). It is possible that
the deactivation seen in the ND group could be explained as opti-
mization of the activity in the parietal cortex, along the lines of
that suggested for hippocampal deactivation during a similar rela-
tional task (Astur and Constable, 2004), in which it was suggested
that inhibition was used to dampen irrelevant relations while the
representation of important relations remained. This would be in
line with the behavioral data, which suggests that retrieval of the
correct response is made easier through the use of an organized
mental array [see also Leth-Steensen and Marley (2000), Sedek
and Von Hecker (2004)]. It is possible that the ND group, after
successful construction of a mental array, tend to inhibit any addi-
tional (i.e., unnecessary) spatial processing that could interfere
with retrieval from the already existing representation.

The fact that in the post hoc analyses, the depressed, unlike
the ND, group displayed significant activation levels in the target
parietal region during the learning phase may be due to the char-
acteristics of the assumed process of mental model construction.
As argued earlier (Sedek and Von Hecker, 2004), depressed indi-
viduals may find such construction more difficult to do than ND
individuals. If it is further assumed that construction takes place
in the learning phase, and that spatial functions are involved in this
type of construction (Leth-Steensen and Marley, 2000), the more
intense recruitment of parietal regions in the depressed group
during learning appears plausible. It is further plausible to specu-
late that depressed individuals, more so than ND participants for
whom construction would be easier (and already accomplished
at the time of testing), would again recruit parietal regions more,
even at test, in their attempts to arrive at clear mental models of
the rankings2.

2We thank the reviewer who drew our attention to the possibility that part of the
reason why such parietal recruitment may be particularly required in depressed
individuals may be the fact that the premises for model construction, i.e., the one-
step pairs, are still rehearsed at test in the depressed, which would potentially entail
ongoing constructive effort during test, and as such would interfere with their quick
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While differential brain activity was found between groups dur-
ing the test phase and the learning phase, the behavioral results, and
the debriefing following scanning, did not show significant differ-
ences in performance between the depressed and the ND group, in
contrast to earlier findings (Sedek and Von Hecker, 2004). The dif-
ference in the results between this study and these earlier findings
could be due to differences in the paradigm arising from changes
needed to prepare the task for fMRI; for example, participants were
given extensive practice up to a criterion before being admitted to
the task, unlike in Sedek and Von Hecker (2004), so the lack of per-
formance differences may be due to a ceiling effect. Also, the timing
in the fMRI task provided participants with a fixed study time of
10 s when learning the relations as opposed to response-driven
timing, thereby providing more structure to the task, and possibly
helping to focus attention. Indeed, Hertel and Rude (1991) showed
that depressed participants exhibited performance deficits only in
task conditions where their attention remained unfocused during
task execution, but had normal performance when their attention
was focused by task constraints.

This discrepancy between the group differences showing the
neuroimaging results but not the behavioral data is not unprece-
dented. There is evidence to suggest that there are cognitive
impairments in depression that are only demonstrable using neu-
roimaging techniques. Several studies have shown comparable
performance on working memory and Stroop interference tasks
in depressed and control participants, but in association with
increased activation of the PFC in the depressed group (Wagner
et al., 2006; Matsuo et al., 2007; Walter et al., 2007). Explana-
tions for this differential brain activation include compensatory
recruitment of PFC resources to complete the task successfully
(Walter et al., 2007) and cortical inefficiency due to hyperactiv-
ity of key brain regions (Wagner et al., 2006). Smith et al. (2014)
induced effect in a within-participant design by having partici-
pants view positive, negative, and neutral picture stimuli. They
found that emotion did not impair logical reasoning, but that the
neural systems underlying such reasoning differed in activation
from those in the neutral condition. This dovetails with our finding
that equivalent levels of reasoning between depressed and ND par-
ticipants were associated with different activation levels in brain
areas known as underlying performance in the particular task.

GREATER PREFRONTAL ACTIVATION DURING INFERENCE
Several studies now suggest that the rostral PFC is important for
integration of relations into an internal representation (Christoff
et al., 2001; Kroger et al., 2002; Fangmeier et al., 2006; Van Opstal
et al., 2008; Wendelken et al., 2008). The results from the ND group
in this study clarify this further by suggesting that rostral medial
PFC (BA 8 and 10) activity is required when making novel infer-
ences by manipulating information within an integrated mental
model compared to recalling the answer to queries on previously

and efficient use of the mental model as a retrieval device. We agree. This possibility
is in line with earlier research showing that in non-depressed individuals, premises
of transitive mental models tend to be forgotten after successful construction (May-
berry et al., 1986), and that sad and depressed individuals tend to process detail
information meticulously, i.e., preserve behavioral information more than individ-
uals in neutral mood, when inferences from that information can be drawn (Gannon
et al., 1994; Yost and Weary, 1996).

presented relations. While some studies have found lateral RPFC
activity to be associated with relational integration (Christoff et al.,
2001; Wendelken et al., 2008), others have found medial RPFC
activation, including the present one (Fangmeier et al., 2006; Van
Opstal et al., 2008). In a review of models into the functions of
the anterior PFC (BA 10), Ramnani and Owen (2004) suggest that
the role of this region overall is “in integrating outcomes of two
or more separate cognitive operations in the pursuit of a higher
behavioral goal” (p. 1). The exact location of the activation found
could be a function of the particular task employed, the specific
cognitive processes required, sample recruited, stimuli used, and
so on.

LIMITATIONS AND CONCLUSION
These results should be considered in light of the limitations of
the study. The study was designed to compare directly activation
between test queries or the learning phase, as well as between
groups, as such a fixation baseline was deemed adequate. More
specific findings relating to the learning phase, in particular, may
have been possible with a baseline that provided greater control
over the non-reasoning task processes, such as reading or making a
response. Also we were unable to differentiate between activation
associated with maintaining the structure of the array (ABCD)
when presented in correct order type (i), as compared to the shuf-
fled order type (ii) which should pose greater integration demands.
These cognitive demands appeared not to require differential brain
activity within this design. However, this investigation may have
been improved if the design had allowed a greater number of
examples of each type.

In conclusion, we have shown that reasoning with naturalistic
linear orders in humans is subserved by a similar network of brain
regions, including hippocampus, parietal, and prefrontal cortices,
as compared to reasoning with purely abstract information found
in previous studies. As predicted, sub-clinically depressed partic-
ipants demonstrated higher activation of parietal areas during a
test, and the learning, of presented and inferred relations, possibly
reflecting a different strategy of task execution.
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There has been a great expansion of research into human reasoning at all of Marr’s
explanatory levels. There is a tendency for this work to progress within a level largely
ignoring the others which can lead to slippage between levels (Chater et al., 2003). It
is argued that recent brain imaging research on deductive reasoning—implementational
level—has largely ignored the new paradigm in reasoning—computational level (Over,
2009). Consequently, recent imaging results are reviewed with the focus on how they
relate to the new paradigm. The imaging results are drawn primarily from a recent meta-
analysis by Prado et al. (2011) but further imaging results are also reviewed where relevant.
Three main observations are made. First, the main function of the core brain region
identified is most likely elaborative, defeasible reasoning not deductive reasoning. Second,
the subtraction methodology and the meta-analytic approach may remove all traces of
content specific System 1 processes thought to underpin much human reasoning. Third,
interpreting the function of the brain regions activated by a task depends on theories of
the function that a task engages. When there are multiple interpretations of that function,
interpreting what an active brain region is doing is not clear cut. It is concluded that there is
a need to more tightly connect brain activation to function, which could be achieved using
formalized computational level models and a parametric variation approach.

Keywords: Marr’s levels, Bayesian inference, brain imaging, new paradigm

This paper presents a focused review of the brain imaging results
on deductive reasoning. The focus is given by the new paradigm
in reasoning (Over, 2009; also see Elqayam and Over, 2013, which
is an introduction to a special issue in the new paradigm), which
is based on Bayesian probability and dual processes. This new
paradigm offers an alternative theoretical framework to those
typically assumed in imaging research on deductive reasoning.
In providing such a review, it is fortuitous that there has been
a recent detailed meta-analysis of this area (Prado et al., 2011).
I therefore concentrate on the findings of this meta-analysis,
bringing in other relevant imaging results as they bear on the line
of argument.

I first discuss why we might expect slippage between different
levels of explanation in reasoning research in terms of Marr’s
levels. Brain imaging is concerned with the implementational
level whereas the new paradigm is a computational level theory.
I then summarize the results of Prado et al.’s (2011) meta-
analysis of 28 imaging studies. I then introduce the new paradigm
and trace the consequences of its two critical features—(i)
it is probabilistic and (ii) it invokes dual processes—for the
interpretation of these brain imaging results. In doing so, I
make several proposals. First, the main function of the core
brain region identified by Prado et al. (2011) is most likely
elaborative, defeasible reasoning not deductive reasoning. Second,
the subtraction methodology and the meta-analytic approach
may remove all traces of content specific System 1 processes
thought by many to underpin much if not most human reasoning.
Third, interpreting the function of brain regions activated by

a task depends on our theories of the function that a task
engages. When there are multiple interpretations of that function,
interpreting what an active brain region is doing is not clear cut.
Moreover, this issue is not resolvable at the implementational
level. I conclude that imaging research may need to catch up
with the computational level where there has been much recent
progress.

COMPUTATIONAL LEVELS
The multilevel nature of computational explanation in the
cognitive sciences leads to multiple research strategies for
investigating the cognitive processes that underlie any human
behavior. At Marr’s (1982) computational level, the function that
the mind/brain is believed to be computing in the performance
of some task is specified. At the algorithmic level, the sequence
of processing steps that compute this function is specified. At
this level, various processing limitations need to be taken in to
account, which may serve a critical explanatory role, e.g., working
memory limitations. Finally, at the implementational level, the
actual physical hardware in which the cognitive algorithm is
instantiated in the brain is specified. At this level, the limitations
of the physical components implementing the cognitive algorithm
are taken into account, e.g., the time course of neural responses.
As Marr envisaged these levels, addressing the computational level
was the priority, i.e., the “function first” approach, because only
this strategy was likely to prove successful. For example, little
progress was made in understanding the operation of the heart
until it was realized that its function was to circulate blood around
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the body. This multilevel nature of computational explanation
means that researchers often pursue different research strategies
that focus on only one level, usually determined by their own
particular technical competences. This is usually unproblematic
but it can create slippage between levels whereby research may
proceed at different paces for a period of time, i.e., one level
may move ahead while our understanding at the other levels lags
behind (Chater et al., 2003).

In this paper, I argue that there has been slippage between
the computational and implementational levels in the study
human reasoning. Brain imaging research has largely appealed
to theoretical frameworks at the computational level that over
the last 20 years have been strongly challenged by the new
probabilistic paradigm in human reasoning (Oaksford and
Chater, 1994, 2001, 2007; Over, 2009; Elqayam and Over, 2013).
In this paper, I examine what may be involved in re-aligning these
levels of explanation in reasoning research.

IMAGING RESULTS: PRADO ET AL.’S (2011) META-ANALYSIS
In describing the existing research on the brain imaging
of deductive reasoning, a good starting point is to briefly
summarize Prado et al.’s (2011) meta-analysis. These studies
initially presented a confusing set of results, which led (Goel,
2007, p. 440), to suggest that there may not be a unitary
neural system for deductive reasoning, but rather “a fractionated
system that is dynamically configured in response to certain
task and environmental cues”. Prado et al.’s (2011) meta-
analysis seems to reveal more consistency amongst these studies.
They appear to show a core, mainly left lateralized, system
being active in deductive reasoning with other subsystems
being recruited dependent on the nature of the task, be it
propositional, categorical, or relational reasoning. The core
system involved the left lateralized inferior frontal gyrus
(IFG), middle frontal gyrus (MFG), precentral gyrus (PG),
posterior parietal cortex (PPC), and the basal ganglia (BG);
it also included one medial structure, the medial frontal
gyrus (MeFG). Prado et al. (2011) interpret this finding
as consistent with the “left brain interpreter” hypothesis
(Roser and Gazzaniga, 2006). The left hemisphere is primarily
engaged in interpreting incoming information and filling in
the missing information via inferential processes. The primary
involvement of left lateralized brain systems seems to run
counter to some accounts of human reasoning that place special
emphasis on visual-spatial representations and processes, i.e.,
mental models (Johnson-Laird, 1983), which are primarily right
lateralized.

Additional systems seem to be recruited for specific deductive
tasks. Propositional reasoning involves relations between
propositions like if the key is turned, the car starts, the key is
turned, therefore, the car starts. This is the classical propositional
inference of modus ponens and it depends purely on the
connectives (if. . .then here but also and, or, not) and not on
any deeper analysis of the propositions involved. Relational
and categorical reasoning rely on going deeper in to the
subject/predicate structure of a proposition. Categorical
reasoning involves categorical statements like All artists are
beekeepers, where “artists” is the subject and “beekeepers” is the

predicate. This mode of reasoning is typically investigated using
two premise quantified syllogisms such as All artist are beekeepers,
Some artists are smokers, therefore, Some beekeepers are smokers.
Relational reasoning moves from unary predicates, involving
one variable, to relations, usually only binary, e.g., John is taller
than Fred. These are typically investigated using the transitive
inference paradigm—John is taller than Fred, Fred is taller than
Jane, is Jane taller than John?—and spatial reasoning, e.g., John is
to the left of Fred, Fred is to the right of Jane, is Jane to the right of
John?

Relational arguments activate bilateral PPC and right MFG.
Bilateral activation of the PPC is commonly seen in studies of
visuospatial tasks and the reliable activation of right PPC in
relational arguments seems consistent with theories like mental
models. Categorical arguments only show strong activation of left
lateralized IFG and BG and this activation is more consistent than
for relational or propositional reasoning. These regions seem to be
most consistently associated with processing syntax and grammar
(e.g., Goel et al., 2000; Ullman, 2006; Grodzinsky and Santi,
2008). Propositional arguments are also left lateralized and most
strongly activate PPC, PG, and MeFG. PPC and MeFG have been
associated with non-syntactic verbal processing and maintaining
abstract rules in memory respectively (Bunge et al., 2003; Booth
et al., 2007).

Prado et al. (2011) draw an important conclusion from the
finding that there is no one neural system apparently involved
in all three domains of deductive reasoning investigated in these
studies. No theory that suggests that these different domains
all rely on a unitary underlying cognitive process is likely to
be able to explain these results. Only some types of reasoning,
apparently relational reasoning, seem to invoke visuospatial
processing, propositional and categorical reasoning do not. They
suggest that this tends to rule out unitary theories like mental
logic (e.g., Rips, 1994) and mental models (Johnson-Laird,
1983) which propose that either formal rules or visuospatial
representations underlie all deductive reasoning. Indeed, mental
models theory makes the broader claim that such unitary
visuospatial representations underlie all reasoning, deductive or
inductive.

In most of the studies in Prado et al.’s (2011) meta-analysis,
the theoretical rationale was to compare just two computational
and implementational level theories of human reasoning. At
the computational level, both mental models and mental logic
theories take standard binary truth functional logic as defining
the function the cognitive system is trying to compute.1 They
diverge only on the nature of the representations and processes
that implement this logic in the human mind i.e., they disagree
primarily at the algorithmic level. Framing these investigations

1This can be disputed (Schroyens, 2010). It is possible that mental
models has introduced slippage between the computational and algorithmic
levels. That is, mental models has been making advances by proposing a
particular representation/process pair which can mimic logic under certain
circumstances but the actual full computational level theory of mental models,
i.e., the actual logic it implements at the algorithmic level, remains to be
defined. This is a coherent proposal and there may be candidate logics that
might make good on this claim. However, I have never heard this argument
put forward by any other mental models theorist.
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as deciding between these two theories also suggests that
investigating deductive reasoning means to only study reasoning
which can be captured by standard logic. However, it is arguable
that over the last 15–20 years the most notable progress in
the study of human reasoning has been at the computational
level where alternative probabilistic theories of what people are
doing in deductive reasoning tasks have been proposed (Hahn,
2014). These probabilistic accounts have become known as the
“new paradigm” (Over, 2009; Manktelow, 2012). I now trace
the origins of the new paradigm and its consequences for the
interpretation of neuroimaging data.

THE NEW PARADIGM
There are two strands to the new paradigm. First, it is
probabilistic. Second, it is a dual process theory that invokes both
System 1 and System 2 processes (Evans, 2010; Stanovich, 2011).
System 1 is Kahneman’s (2011) fast system and System 2 is his slow
system. I look first at the probabilistic strand and its motivations
and relate these directly to some of the results discussed in Prado
et al. (2011).

PROBABILITIES
In motivating the probabilistic strand of the new paradigm, I
begin with a quote from Dennett:

“But it is obviously true that most people never engage in explicit
non-enthymematic formal reasoning” (Dennett, 1998, p. 289).

Enthymematic reasoning, for example, Tweety is a bird
therefore Tweety flies, explicitly involves the use of world
knowledge in order to fill in information not explicitly stated, i.e.,
that all birds fly, normally birds fly or the probability that birds fly is
high. We make these inferences automatically with little conscious
thought. As Dennett’s remark implies, this is the kind of inference
that underpins our everyday lives and interactions with others.
It also implies that the kind of “non-enthymematic formal”
reasoning required in most of the reasoning tasks investigated in
Prado et al. (2011) and in most deductive reasoning tasks used in
the lab, are not commonly engaged in by the man or woman in
the street. Consequently, attempting to derive a general theory of
human reasoning by investigating these kinds of tasks is perhaps
to step off on the wrong foot.

Concerns could be assuaged if this kind enthymematic
reasoning could be captured by standard logic. However, one of
the primary motivations for moving to probabilistic theories in
the new paradigm has been the fact that enthymematic reasoning
is defeasible (Oaksford and Chater, 1991, 2007). That is, learning
that Tweety is an ostrich defeats the inference that Tweety
can fly on learning that Tweety is a bird. We have rehearsed
the problems of attempting to reconstruct such reasoning in
standard logic many times before and do not do so again here
(Oaksford and Chater, 1991, 1993, 1995, 2007). The probabilistic
approach characterizes these inferences as being underpinned by
probabilistic relations such as being a bird makes the probability
that something flies high. That is, the world knowledge that
underpins the enthymematic inference above is something like,

if x is a bird then x can fly, where Pr(if x is a bird then x can fly) =
Pr(x can fly|x is a bird) and this probability is high.

Another important aspect of this kind of reasoning, which
Fodor (1983) calls non-demonstrative inference, is that it is the
prototypical central cognitive process (Fodor, 1983; Oaksford
and Chater, 1991). The contrast between modular and central
cognitive processes is drawn along the lines of those that require
large amounts of world knowledge and those that do not. Fodor
(1983) argued that central cognitive processes are Quinean.2

A process is Quinean when it apparently invokes the whole
of our belief system. So the reason we draw the inference that
Tweety can fly is that this is the most plausible inference to
draw. But plausibility is only definable against the backdrop
of everything else we know or believe. Moreover, any Bayesian
probabilistic account is going to be Quinean. Our best bet about
how we determine someone’s subjective probability Pr(x can
fly|x is a bird) is given by the Ramsey test. This test involves
assuming Tweety is a bird, i.e., adding this proposition to our
stock of beliefs while making minimum adjustments to our other
beliefs, and reading off our new degree of belief that Tweety
flies. This is a philosophical prescription but its implications
for psychological processes are clear: defeasible reasoning,
probabilistically construed or not, must invoke central cognitive
processes.

Imaging, inference and central cognitive processes
This brief account of the underlying motivations for the
probabilistic strand of the new paradigm (see also, Oaksford and
Chater, 2007, Chapters 1–4) leads to two conclusions that appear
to be supported by the imaging results discussed by Prado et al.
(2011). First, Prado et al. (2011) identify their left lateralized
core system with Gazzaniga’s “left brain interpreter” hypothesis
(Roser and Gazzaniga, 2006). It is important to be clear on the
nature of the inferences that underpin this hypothesis. A main
source of evidence for the left brain interpreter hypothesis is the
elaborative inferences that some patients and normal participants
make in interpreting pictures. These elaborative inferences seem
to be responsible for false recognition of novel pictures as being
previously viewed. Of course, our enthymematic inference that
Tweety can fly is an elaborative inference of precisely this sort.
It could only be construed deductively if the enthymematically
provided premise was all birds can fly but then it would not be
defeasible. But all elaborative and enthymematic inferences are
defeasible and people may not even be aware of the fact that
they have drawn one until it is overturned, e.g., on being told
Tweety is an ostrich, and the mild sense of surprise that they
then experience. In sum, if the left brain interpreter hypothesis
is correct as an interpretation of the brain imaging results, then
its primary function is probably not in deductive reasoning but
rather elaborative, defeasible, and probabilistic reasoning. At
least this is the kind of reasoning that has provided the principal
evidence for the left brain interpreter hypothesis in the past.

2The philosopher, Willard Van Ormond Quine, famously commented that a
belief can always be saved from refutation by making adjustments elsewhere
in our belief system, i.e., the mechanisms of belief fixation and revision are
holistic, depending on everything else that we know or believe (Quine, 1953).
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Second, such defeasible, probabilistic reasoning, as we have
just discussed, is perhaps our best candidate for a central cognitive
process. That is, it is one of the processes that is least likely to be
subserved by a unitary cognitive module. And this would appear
to be exactly what the brain imaging data reveals, reasoning is
not subserved by a unitary cognitive process, be it formal rules
or visual spatial representations, in a single isolable module. It is
also worth noting that, given the defeasible, probabilistic nature of
the inferences that underpin the left brain interpreter hypothesis,
when deployed in deductive tasks this brain system is probably not
being used to perform functions for which it originally evolved.
That is, at best, deductive reasoning is a limiting case of this
system’s primary function, for example, when the probabilities go
to 0 or 1.

Deductive tasks
A possible objection to the line of argument in the last section
is that the imaging results reviewed in Prado et al. (2011)
specifically focused on deduction, i.e., the tasks were very
specifically deductive tasks, which could not form the evidential
basis for generalizing to defeasible non-demonstrative reasoning.
However, in the reasoning literature mental models theory has
taken these tasks to provide the basis for a wholly general
theory of reasoning subsuming deduction (Johnson-Laird and
Byrne, 1991), probabilistic inductive reasoning (Johnson-Laird
et al., 1999), causal reasoning (Goldvarg and Johnson-Laird,
2001) and much else besides. Moreover, mental logic and mental
models are the theoretical frameworks on which the imaging
research has primarily concentrated. The new paradigm argues
that because everyday, defeasible reasoning is the ubiquitous
phenomena people apply sensible reasoning strategies for dealing
with the everyday world to laboratory deductive reasoning tasks.
This strategy can explain away many of the so called biases
observed in human deductive reasoning (Oaksford and Chater,
2007).

Could it nonetheless be argued that the specific tasks used in
the imaging studies review by Prado et al. (2011) are uniquely
deductive and consequently they genuinely investigate just this
very narrow domain of human reasoning? A point I elaborate
on further below, is that we require a computational level theory
to define the function that a task engages (Functions, Tasks, and
Active Regions). In imaging research, “deduction” is taken to refer
to binary truth functional logic as it is in mental logic and mental
model theory. But there are a range of alternative logics especially
for the conditional (see, e.g., Haack, 1975; Bennett, 2003) and
there are well specified probabilistic accounts of categorical
reasoning (Chater and Oaksford, 1999). Moreover, there are
varieties of probability logic (Adams, 1998) in which coherent
probability intervals are deduced from probability assignments to
the premises (Pfeifer and Kleiter, 2010; Pfeifer, 2013). Such logics
are just as deductive as binary truth functional logic.

Perhaps it could be argued that at least tasks like relational
and spatial reasoning have deterministic binary logical solutions
and as such are genuinely “deductive” tasks in the sense intended
in mental logic and mental models theory. However, phenomena
like perspectival relativity (Barwise and Perry, 1983) question this
view. Take, for example, the premises John is to the left of Fred, Fred

is to the right of Jane which is assumed to lead to the deterministic
logical conclusion that Jane is to the right of John. If Jane and
John are both facing each other with Fred in the middle facing
neither then the question of whether Jane is to the right of John
has no deterministic answer, they are neither to the left nor to
the right of each other, despite the truth of the premises. Left
and right depend on our subjective frame of reference in personal
space. Another example is if Fred is standing at the North pole
and Jane and John at the South pole. In this case, Jane and John
would appear to be simultaneously to Fred’s left and to his right.
Such counterexamples suggest that there are certain orientations
that make the conclusion more likely but it does not follow
deterministically. Even relations like taller, which rely on being
able to measure the world, may require a probabilistic theory.
Measurement error suggests that our representations of items on
a scale use distributions which may overlap. Such representations
can explain the symbolic distance effect where for a long transitive
chain, e.g., a > b > c > d > e (“>” = is taller than), people
find it harder to discriminate whether c > d than a > e (Cohen
Kadosh et al., 2005). In summary, tasks are not deductive in and
of themselves. What function a task engages is determined by
the empirically most adequate computational level theory of that
task.

Imaging: deduction vs. induction
We have argued that the core system identified by Prado
et al. (2011) is concerned with defeasible, non-demonstrative
reasoning. The new paradigm has been characterized as
“imperialistic” (Rips, 2002) in that it attempts to assimilate
deduction to probabilistic inductive reasoning. However, there is
behavioral data suggesting that these processes dissociate (Rips,
2001; Heit and Rotello, 2010). Although recently Lassiter and
Goodman (2015) have shown these differences may have more
to do with the semantics of the terms used to elicit people’s
responses, i.e., is the conclusion “necessary” (deduction) or
“plausible” (induction), than with fundamental differences in
the reasoning process which remains probabilistic. A suggestion
originally made by Oaksford and Hahn (2007). There is also
imaging data relevant to this question.

Goel and Dolan (2004) found that some structures were more
active in deduction (left IFG) than in induction and that some
were more active in induction (primarily left MFG) than in
deduction. They argue that their findings are more consistent
with other studies, particularly lesion studies, than previous
work apparently showing that these modes of reasoning were
lateralized with induction associated with the left hemisphere and
deduction with the right (Parsons and Osherson, 2001). Goel and
Dolan’s (2004) studies were included in Prado et al.’s (2011) meta-
analysis and both these structures are part of the core system they
identified. Goel and Dolan argue that left IFG is associated with
Broca’s area and hence language, working memory and perhaps
syntactic processing. Left MFG activation, they hypothesize is
associated with the recruitment of general knowledge required for
induction.

Induction and deduction activate much the same brain
system. Moreover, given the nature of these inferences even what
differential patterns of activation there were are understandable.
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The new paradigm does not deny that deduction and induction
are distinct (Evans and Over, 2013). Deduction involves
inferences over the syncategorematic or logical terms of a
language (if. . .then, and, or, not, all etc.), i.e., the inference
follows from the meaning of these terms. This is not the case
for the inductive inferences that Rips (2001), Goel and Dolan
(2004), and Heit and Rotello (2010) investigated which involved
categorical induction. In deduction processing of the structure
of premises is important but it is less so for the premises of
an inductive inference which may simply present a string of
facts (e.g., domestic cats have 32 teeth, lions have 32 teeth).
Moreover, we learn about the world by observation in a similar
way, i.e., inductive inferences do not have to be mediated by
language in the way deductive inferences are. In probability
logic, the meaning of the conditional is given by the conditional
probability. The assertion of a conditional means that that the
conditional probability is high. So while both inferences types
are probabilistic, and both rely to a degree on world knowledge,
there is an important structural difference between induction and
deduction, which is what Goel and Dolan’s result are presumably
picking up. A final observation is that we can find no lesion
study showing a full double dissociation between induction and
deduction. Although Goel and Dolan cite one case study involving
a single dissociation using a theory of mind task (Varley and
Siegal, 2000), no classical deductive or inductive reasoning tasks
were used.

DUAL PROCESSES
In the new paradigm, it is agreed that a dual process theory
is required (Evans and Over, 2004; Evans, 2010; Oaksford and
Chater, 2010, 2011; Stanovich, 2011). System 1 is implicit,
probabilistic, and based on world knowledge. System 2 is explicit,
involves working memory, and is based on “analytic” processes.
These analytic processes have been argued to be either also
probabilistic (Evans and Over, 2004; Oaksford and Chater, 2009,
2010, 2011; Evans, 2010; Pfeifer and Kleiter, 2010) or based on
standard binary logic (Rips, 1994, 2001; Stanovich and West,
2000; Heit and Rotello, 2010; Klauer et al., 2010; Stanovich, 2011).
Whatever view one takes, it is generally agreed that deductive
reasoning behavior is a product of an interaction between both
these systems.

Kahneman (2011) uses some instructive examples to illustrate
the nature of System 1 and System 2 processes. To illustrate System
1, he simply presents the juxtaposition of two words:

Banana Vomit
As he observes, a whole panoply of responses are triggered
automatically by this juxtaposition. A whole causal story is
probably constructed connecting the ingestion of bananas and
vomiting. Moreover, a mild sense of surprise is invoked by this
unusual juxtaposition. Unpleasant visual and auditory images
will also be briefly triggered. The processes that produce these
reactions happen unconsciously and very rapidly, all we are
aware of is a reaction. He illustrates System 2, by tasks like
counting back in threes from say 1037. This task is effortful, fully
conscious, difficult to keep going, and involves applying the rules
of arithmetic. Tasks illustrating the interaction of these systems
are those like the bat and ball problem. In this task participants

are told that the bat costs a dollar more than the ball and that
together they cost $1.10 and they are asked how much does the
ball cost? A spontaneous System 1 response is ten cents, which
must be wrong because this would make the total cost of the bat
and ball $1.20. In such tasks, the automatic System 1 response may
need to be overridden and the actual cost consciously calculated
in System 2.

In deductive reasoning tasks, it may be that a spontaneous
System 1 response needs to be overridden but it seems unlikely
that lay participants are capable of then engaging the correct
logical rules in System 2 as they can the rules arithmetic for the
bat and ball problem. Except for the logically trained these rules
are simply not consciously available (of course for the bat and
ball problem to be solvable, the rules of arithmetic also had to
be learned). Consequently in deductive reasoning performance, it
is probably best not to consider System 2 as conscious. This seems
consistent with recent work on logical intuitions which shows that
people appear to unconsciously detect the conflict between the
intuitive System 1 response and the correct response even if they
make the apparently biased System 1 response (De Neys, 2012,
2014). What people will be conscious of is a response, initially
triggered by System 1, accompanied by a feeling of rightness
(Thompson et al., 2011). This feeling may well depend on how
the intuitive System 1 response agrees or conflicts with the output
of System 2.

A great deal of work in the new paradigm is on showing
that apparently irrational performance on many tasks is actually
rational from a probabilistic perspective. Moreover, much of this
behavior is hypothesized to be the responsibility of System 1.
Kahneman’s illustrative example of System 1 in action suggests
that much of the information required by a rational theory
of inference and decision is automatically computed at this
level. For example, to understand the juxtaposition of just these
two words people seem to generate a causal model relating
the ingestion of bananas to vomiting. Moreover, a surprising
event is one that is improbable, which suggests that relevant
probabilities are automatically computed. Furthermore, people
have a spontaneous emotional reaction to this juxtaposition
expressing relevant hedonic or experienced utilities. The almost
immediate availability of all this information may suggest
that System 1 is indeed capable of some complex inferential
processes, consistent with logical intuitions (De Neys, 2012,
2014).

Recently, it has been suggested that System 1 uses this
information in inference in a similar way to the unconscious
inferences involved in perception and action hypothesized by
Helmholtz (Oaksford, 2014, Submitted). Again most progress on
unconscious inference is being made at the computational level by
computational biologists. These unconscious inferential processes
are being understood in probabilistic terms in the Bayesian brain
hypothesis (Dayan and Hinton, 1996; Friston, 2005, 2008; Clark,
2013). In brief, perception is viewed as the process of using
alternative generative models of the current context to generate
hypotheses about the causes of the pertubations of our sensory
surfaces. These hypotheses, e.g., it is a dog or it is a cat, are at the
top level of a hierarchical Bayesian model and these cascade down
making lower level predictions ultimately for the responses of
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center surround units in our sensory receptors. Prediction errors,
e.g., the hypothesis says the unit should be on when it is off, are
then fed back up the hierarchy minimizing expected surprise or
entropy concerning the cause of the proximal stimulus, i.e., the
least surprising interpretation is adopted. It has also been shown
how these cascaded inferential processes can be implemented in
cortex.

In sum, most reasoning is largely unconscious, it occurs
automatically based on the rich information generated by System
1 which also seems directly implicated in unconscious inferences
in perception and action. Our theories of System 1 in the
psychology of explicit verbal reasoning and our theories of
unconscious inference in perception and action also converge on
a Bayesian account.3 This means that content, which fixes the
relevant probabilities, is central to the reasoning process. But most
imaging studies have framed their investigations in term of mental
logic and mental models in which content is largely irrelevant.
As I now argue, this fact may have important consequences for
the interpretation of imaging results in the psychology of verbal
reasoning.

Imaging system 1
Most brain imaging studies use the subtraction methodology
to isolate brain regions that are specific to deduction and this
usually involves contrasting materials with relevant content. So
for example, in Goel and Dolan (2003) experiments on belief bias
in categorical reasoning, materials like:

(A) No reptiles can grow hair
Some elephants can grow hair

So, No elephants are reptiles (true conclusion, invalid
inference) were contrasted with a baseline:

(B) No reptiles can grow hair
Some elephants can grow hair
No fried foods have cholesterol

Subtracting out activation due to this baseline may remove any
traces of the automatically activated content based processes like
those involved in Kahneman’s System 1 example. These processes
are automatically activated by the content of the words which are
also present in the contrast. But if most of the inferential action is
at the System 1 level this means that the subtraction methodology
may be removing most activations of interest (see also, Monti and
Osherson, 2012, for a similar line of argument). Other contrasts
that have been used, e.g., a simple fixation location, may seem
to avoid this problem. However, even if such contrasts retained
activations associated with content, the goal of Prado et al.’s
(2011) meta-analysis was to detect active regions across studies.
Consequently, these content based activations will be removed in
the meta-analysis because content varied between studies (and
indeed between tasks).

Content-based System 1 activations may be subject to a
great deal of variation not only across studies but also across
individuals. Would one expect, for example, there to be much

3This is also important because it suggests a unified account of System 1 and
unconscious inference in perception and action (Oaksford, 2014, Submitted).

spatial overlap between two people’s representations of the
concept “horse”? When one thinks of horses, regions associated
with their shapes, movements, smells, and locations where they
have been encountered are activated and binding these disparate
responses together is the crucial step in having the concept
“horse”. Given what is likely to be a diffuse pattern of activation,
presumably involving different sensory centers and memories,
it seems unlikely that there will be much spatial overlap in
regions activated across individuals, especially given the good
spatial resolution of fMRI. Presumably this information is lost
as a result of aggregating across individuals: even though each
individual is doing the same thing slightly different brain regions
are active.

Some studies support this contention. Having people think of
a particular concept, e.g., “horse,” leads to diffuse activation of
many regions across the whole brain (Pereira et al., 2011). Pereira
et al. (2011) also showed that at a certain level of abstraction
these activation patterns could predict the topic being thought
about and words associated with those topics. This was achieved
by extracting a latent topic model from Wikipedia articles.
Using machine learning technique a mapping was learnt between
the latent factors that summarized the articles and patterns of
distributed brain activity. This mapping could then be inverted to
use the pattern of brain activity to predict the topic being thought
about and hence words associated with that topic. Consequently,
at quite a high level of abstraction there may be some consistency
between topics being thought about and the spatial distribution
of activation in the brain. However, we know of no work that
relates individual concepts, such as “horse” to consistent patterns
of activation across individuals. Moreover, the simple fact that
these activations do not survive the subtraction methodology
used in the reasoning studies summarized by Prado et al. (2011)
suggests that across individuals there is little consistency in the
brain regions activated.

The notion that for many different concepts and events
people’s own unique experience may fail to lead to patterns of
brain activity that generalize fully across individuals is consistent
with the subjective nature of probabilities in the new Bayesian
paradigm. Our own unique experiences mean we may assign quite
different probabilities to the same events. Indeed, if we did not
differ in our beliefs in this way then there would be nothing
to argue about at the social level where, it has been argued,
most reasoning goes on (Hahn and Oaksford, 2007; Mercier and
Sperber, 2011).

In summary, these imaging studies are not recording System 1
in action.

Functions, tasks, and active regions
I have concentrated so far on what imaging studies may miss
in investigating System 1 processes. Before moving on to look
at the difficulties in interpreting the activations that remain, I
pause briefly to consider the relationship between cognitive tasks,
the functions they engage and the interpretation of active brain
regions. I argue that (i) function comes first, and two (ii) the
function a task engages may be in dispute. In the next section,
I trace the consequences of (i) and (ii) for the interpretations of
the regions identified by Prado et al. (2011).
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Function is assigned partly historically. For example, in
investigating belief bias, Goel and Dolan (2003) contrasted correct
and incorrect performance on trials that show a conflict between
the validity of an inference and the truth of the conclusion
(see (A) and (B)). One contrast revealed activation of right
inferior prefrontal cortex (rIPFC) and the other of ventromedial
prefrontal cortex (VMPFC). How do we interpret such findings?
This question is answered partly in terms of the nature of the
current task but also in terms of past history. So rIPFC is active
when correct responses are made to conflict problems implicating
inhibitory processes consistent with previous results. VMPFC is
active when incorrect responses are made to conflict problems
implicating intuitive, emotional processes, again consistent with
previous results. The functions assigned to these regions are partly
based on computational level assumptions. These determine
the “correct” response and the assumption that “inhibition” is
required to identify the correct response. But it is also based on
history, what tasks (with assumed functions) have activated the
region in the past. While this is all perfectly reasonable, there are
potential problems.

First, there is the problem of a general historical bias. Just
because a certain type of task, t1, with a certain presumed
function, f1, was first found to activate a region, r1, then this
is the function associated with that region. But this is simply a
historical artifact. If the current task, t2, with presumed function,
f2, had been investigated first and found to activate region r1

then f2 would be the function presumed to be engaged when this
region is activated and t1 may be assumed to engage f2 as well
as f1.

Second, this line of argument suggests that interpreting
imaging results requires us to be very clear on the functions that
cognitive tasks engage. Moreover, if this is clear then function
drives interpretation. If region r1 is activated by t2, even though
it has been previously associated with f1, it must now be regarded
as also computing f2. At least there is no reason, other than
history, to argue that instead t2 engages f1. Moreover, in cognitive
science, and in particular deductive reasoning, the task/function
relationship may be in dispute. So called deductive tasks, say t1,
are being interpreted as not engaging deduction, f1, but rather
probabilistic reasoning, f2. We can only interpret the function of
a brain region in terms of the tasks that engage those functions
and activate that region. If our theory of the function engaged
by a task changes, then so does our interpretation of what active
brain regions are doing. For example, later on I argue that the
computational level assumptions underlying the interpretation of
belief bias results (Goel and Dolan, 2003) may be wrong (NIRS,
TMS and Belief Bias). Imaging studies are only informative against
the backdrop of a computational level theory of the tasks used
in these studies. Consequently, whatever one’s preferred research
strategy, i.e., whether you concentrate on the implementational,
algorithmic, or computational level, function comes first.4

4Clearly the weight of evidence matters here. For example, if across a broad
range of different tasks, t1. . .tn, thought to engage probabilistic reasoning, r1

is consistently activated but it is not in say tn+1, i.e., a nominally deductive
task, then we might be begin to be persuaded that probabilistic reasoning
is not involved in deductive tasks. However, (i) this question has not been

Imaging beyond system 1
Against the backdrop of these last two arguments, I now consider
the other patterns of activation that Prado et al. (2011) found
with relational, categorical and propositional reasoning. With
relational arguments, in particular in transitive inference, e.g.,
A is taller than B, B is taller than C. . .etc, is C taller than A?,
Prado et al. (2011) found activation of bilateral PPC and right
MFG consistent with the use of visual representations. Although
this finding has recently been qualified by results showing that
when the transitive chain involves quantifiers, all A are B, all
B are C. . .etc, only left hemisphere activation is found (Prado
et al., 2013). These findings suggest, what many researchers have
suspected, that relational and spatial reasoning are not part of
our core reasoning system. Rather when such arguments can be
easily represented visually the mind/brain exploits this fact but
this is a specific strategy. Moreover, as Prado et al. (2013) have
shown, when this strategy is difficult, i.e., when the transitive
chain involves whole sets and not individuals, the system reverts
to the left brain interpreter.

Prado et al.’s (2013) results also argue against the mental
model theory of quantified syllogistic reasoning. In this account,
categorical reasoning proceeds over an imagistic representation
of a small number of arbitrary exemplars of the sets described
by the quantifiers. So according to mental model theory both
categorical reasoning and relational reasoning should engage right
lateralized systems. In contrast, the main probabilistic account of
categorical reasoning, the probability heuristics model (Chater
and Oaksford, 1999; Oaksford et al., 2002), suggests that a
simple set of probabilistically motivated heuristics operate over
linguistic representations of the premise and conclusion. Prado
et al.’s (2011) results for categorical reasoning are consistent with
this account. They show strong activation of left lateralized IFG
and BG, regions most consistently associated with processing
syntax and grammar. The heuristics in PHM select a syntactic
conclusion frame using probabilistically motivated heuristics and
then use other heuristics to determine the order of end terms
in this syntactic frame (Oaksford et al., 2002). These heuristics
depend on an ordering over the informativeness (the inverse of
probability) of the premises. Specific content has the potential
to alter this informativeness ordering leading the heuristics to
make different predictions. While this possibility has never been
experimentally tested, it shows that even this relatively abstractly
defined probabilistic theory still relies on System 1, i.e., on
content.

Prado et al. (2011) found that propositional arguments most
strongly activate PPC and MeFG which have been associated with
non-syntactic verbal processing and maintaining abstract rules in
memory respectively. Perhaps the most researched and important
area in propositional reasoning is conditional reasoning, i.e.,
reasoning using what is rendered in English as if. . .then. Most
recent research has involved causal conditional reasoning, where
it is clear that the specific contents are important. However,
conditional reasoning has also been extensively researched using

investigated with a broad range of different tasks, and (ii) as we have argued
that the bulk of probabilistic reasoning is a System 1 process, i.e., a central
process unlikely to be associated with a single isolable brain region.
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abstract materials, which seemingly could not engage content.
The fact that regions associated with maintaining abstract rules
in memory are activated suggests that perhaps formal syntactic
processes are directly involved. There are good arguments against
this interpretation.

First, as I have argued, the functions engaged by a brain
region may well be in dispute. Whether we need to use abstract
rules in language processing or reasoning is contentious. In
language processing the debate has raged since the advent of
neural networks in the 1980s (Rumelhart, 1986). The issues
hinge on whether generalization is achieved by abstract general
rules or by similarity and analogy to pre-existing knowledge.
Thus, as we discussed above, whether MeFG co-ordinates the
processes involved in computing similarity and analogy or storing
abstract rules is contentious from this perspective. An interesting
prediction is that if computing similarity and analogy is involved
in reasoning with abstract material one might expect more rather
than less general knowledge to be activated. As materials become
more abstract they will be similar to more of what we know,
e.g., to all domains we tend to describe using conditionals. We
may find an answer to this question once appropriate methods to
image System 1in action are used.

Second, it seems doubtful that humans have evolved a specific
module for handling abstract logical rules of inference that are the
product of the last two millennia of logico-philosophical labor.
Formal logic is a cultural product, a tool, for reasoning with
pencil paper or computer. It is not the workings of the human
mind made concrete in symbols. The if. . .then construction
is used ubiquitously because it can be used to describe the
various relationships or dependencies in the world, like causes,
dispositions, intentions, regulations and so on, which allow us to
predict what will happen next and to explain why what happened
happened. The reasoning mind is likely to be very concrete
constructing specific small scale models of reality in System 1, like
Kahnemen’s banana-vomit example or using specific relations,
and reasoning over these (Oaksford and Chater, 2013, 2014;
Oaksford, 2014, Submitted). These last two points make the
argument that there are functions, f2 and f3, that are in contention
to account for the tasks that engage MeFG. Consequently, there is
reasonable doubt about whether it engages abstract rules.

I finish this section by looking again at the function of the core
brain system identified by Prado et al. (2011). As I argued above,
it seems unlikely that either System 1 or System 2 processes in
most “deductive” reasoning tasks are like consciously performing
mental arithmetic like that required to solve the bat and ball
problem. However, in all reasoning tasks the results of these
processes must become conscious and be turned into a verbal
response to be delivered verbally (production task) or to match
to a range of possible response options (selection task). What
becomes conscious may also be a feeling of wrongness when the
outputs of System 1 and System 2 conflict.5 This would seem to be
the shared common core of most reasoning tasks. But of course it
is the final stage not the actual core of the reasoning process.

5De Neys et al. (2008) have shown that the anterior cingulate cortex, associated
with conflict detection, is active when these two systems conflict.

FURTHER IMAGING STUDIES
So far I have only discussed the fMRI localization studies included
in Prado et al.’s (2011) meta-analysis. However, there are other
imaging studies using fMRI and other imaging techniques, such as
EEG using ERPs, Infra-red Spectroscopy (NIRS) and Transcranial
Magnetic Stimulation (TMS), which are relevant to the dual-
process aspect of the new paradigm. In this section, I deal with
these further studies by the imaging technique used and then by
the task/functions investigated.

fMRI studies
Here I look at further fMRI studies used to investigate (i)
component process of deductive reasoning and (ii) the matching
effect (Evans and Lynch, 1973; Oaksford and Stenning, 1992).

Component processes. Some fMRI (Fangmeier et al., 2006) and
lesion studies (e.g., Reverberi et al., 2009) have concentrated on
the component processes of deductive reasoning. Reverberi et al.’s
(2009) lesion study was broadly consistent with the conclusion
of Prado et al. (2011) that the right hemisphere and imagistic
processing are not part of the core reasoning system. Right
frontal lesions did not impair deductive reasoning. Patients with
left frontal regions and impaired working memory did show
deficits. More revealing evidence distinguishing the fast System
1 from the slow System 2 would be expected from studies
investigating the time course of reasoning. Fangmeier et al. (2006)
investigated the component processes of deductive reasoning
separating out premise presentation, premise integration, and
validation. These stages were defined by the timing of the
presentation of two premises in visually presented spatial linear
syllogisms, e.g., premises: V X (after 2 s), X W (after 6 s),
conclusion: V W? (after 10 s). Perhaps unsurprisingly, given the
visual presentation of premises, the premise presentation phase
activated left and right occipital lobes. Premise integration and
validation phases shifted activation toward frontal structures. As
I have remarked, these purely visuospatial tasks are unlikely to
invoke the same reasoning processes that underlie human verbal,
reasoning. Moreover, the lack of content and the artificial pacing
of the stimulus presentation to allow data collection using the
relatively poor temporal resolution of fMRI are unlikely to be very
revealing of the rapid System 1 in action.

Matching effects. There have been studies looking at phenomena
that have provided evidence for dual processes, in particular, the
matching effect (Evans and Lynch, 1973). Matching occurs when
negations are included in the sentences used in a reasoning task.
Usually these are in conditionals, e.g., if there is an H then there
is not a circle. If asked to construct a falsifying instance of this
rule people find it relatively easy because the falsifying instance,
H and circle (a True/False instance TF), perceptually matches the
named items in the rule. However, if they are asked the same
question with the rule, if there is an H then there is a circle,
then they find it more difficult. The TF instance is, e.g., H and
square (or any non-circle), which does not completely match
the named items. In a PET study, Houdé et al. (2000) showed
that prior to perceptual inhibition training, this task primarily
activated occipital visual regions, consistent with perceptual
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matching, but post inhibition training activation shifted to
more frontal areas. More recently, Prado and Noveck (2006,
2007) have used fMRI to investigate the matching phenomenon.
Prado and Noveck (2007) used a novel parametric variation
approach identifying brain regions whose activation varied with
the number of mismatches or negations in a rule. They also
showed that frontal regions, which became more active with more
mismatches, showed decreases in their interactions with visual
cortex, consistent with inhibiting matching. Perceptual matching
can be regarded as one of the perhaps many subsystems of
System 1 (Stanovich, 2011) and the frontal systems that inhibit
this system is System 2.

The new paradigm is an evolving body of theory and there is
active disagreement over the interpretations of some phenomena.
Evans (2003) cites Houdé et al. (2000) as support for the dual
process theory. However, there are many reasons to doubt that
these PET and fMRI studies are recording System 1 in action.
First, there is a very close overlap in the regions activated in
Houdé et al. (2000) pre-intervention phase and in Fangmeier
et al.’s (2006) premise presentation phase. Of course, it is not
surprising that presenting premises activates visual areas as
written language is still a visual stimulus. There is no immediate
reason to think that activity in these regions should be a source
of reasoning bias. Second, matching is a far more nuanced
phenomenon than described in Houdé et al. (2000) and in Prado
and Noveck (2006, 2007). For example, in the original studies
(Evans, 1972; Oaksford and Stenning, 1992) it occurs only for
falsifying trials, like the example in the last paragraph. However,
verifying trials (constructing True/True instances) show a similar
pattern of mismatches as for falsifying trials. So, if the matching
phenomenon were a simple perceptual matching effect then
both types of trial should reveal the bias. Third, much simpler
manipulations than inhibition training remove this bias. For
example, using real world thematic content rather than abstract
alphanumeric stimuli or shapes removes the bias (Oaksford and
Stenning, 1992). This simple fact suggests that matching is not
a major factor in biasing everyday reasoning. Moreover, making
it easier to identify the “contrast class” for a negated constituent
removes the bias. Logically the contrast class for there is not a circle
can be anything, literally, that is not a circle (e.g., a coal scuttle).
But in context it is clear that another shape is intended. If there
were only two shapes and participants knew this, then matching
is likely to disappear, as it does when using rules like if there is a
vowel, then there is not an even number (Oaksford and Stenning,
1992). A number that is not even is obviously odd. Prado and
Noveck (2007) did detect areas that were differentially active
depending on the number of negations, i.e., right anterior pre-
frontal cortex, and suggest that this may be involved in computing
contrast classes.

Oaksford and Stenning (1992), (see also Oaksford and
Moussakowski, 2004) argued that the matching phenomenon is
part of the normal process of computing contrast classes which
is made difficult by the use of abstract material. They also show
how this account combines with the probabilistic component of
the new paradigm to explain matching effects both in the Wason
selection task (Oaksford and Chater, 1994, 2003, 2007) and in the
conditional inference task (Oaksford et al., 2000). Constructing

contrast classes is part of the System 1 processes involved in
generating probabilities.

Why do these imaging studies show the effects they do,
i.e., mismatches correlated with regions that are inhibiting
visual areas? I suspect that this is part of the much more
general phenomenon of suppressing distracting information
in attentional control. If shown a picture of a white bear
(Wegner, 1994) and told not to think about it, all you can
think about is white bears. Similar patterns of activation
are likely to occur on many tasks requiring the suppression
of distractors regardless of whether they are reasoning tasks.
Moreover, suppression in the visual modality can be made more
difficult in the presence of noise in the auditory modality.
There is also work on the neural basis of these effects (Smucny
et al., 2013) which reveals similar interactions between brain
regions as shown by Prado and Noveck (2007). fMRI scanners
are very noisy places and PET scanners are also quite noisy.
Consequently, while being scanned these attentional effects
would be expected to be even more pronounced and to
dominate the normal processes of contrast class construction.
In normal discourse, a whole range of phonetic, syntactic,
semantic and pragmatic factors contribute to making contrast
class construction easy (Oaksford and Stenning, 1992). It is only
in abstract tasks where these supports are removed that matching
is observed.

In sum, there is good reason to doubt that these studies of
matching bias tap into the fast System 1 responsible for the effects
in Kahneman (2011) anecdotal example and in contrast class
construction (although Prado and Noveck (2007) show some
evidence for the localization of these latter processes). Rather
the primary effects observed seem to be concerned with the
general suppression of distractors observed in many tasks which
are exacerbated by the noisy environment of the scanner.

NIRS, TMS and belief bias
The studies we looked at in the last section all used fMRI which
has limited temporal resolution and so is perhaps unlikely to
reveal much about fast System 1 processes. Where they have
been revealing on System 2 processes this has primarily involved
the function of dorsolateral pre-frontal cortex in inhibiting
distracting information emanating from visual areas not of the
analytic processes thought to require working memory. Perhaps
a better insight into the neural processes involved at the interface
between System 1 and System 2 might be found using imaging
methods with greater temporal resolution. In this section, I
briefly look and working using near infra-red spectroscopy and
TMS.

A series of four studies using NIRS by Tsujii et al. investigated
the role of inferior frontal cortex (IFC, which includes the
IFG) in the belief bias effect (Tsujii and Watanabe, 2009,
2010; Tsujii et al., 2010, 2011). This effect has also been
assumed to provide evidence for dual processes. The effect is
usually investigated using quantified syllogisms which can be
systematically varied along the binary dimensions of validity
(valid, invalid) and believability of the conclusion (believable,
unbelievable). For example, No mammals are birds, All dogs
are birds, therefore, No dogs are birds is valid and believable,
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whereas No pigeons are mammals, All pigeons are birds, therefore,
No birds are mammals is invalid and believable. The belief
bias effect is an interaction effect (Evans et al., 1983) such
that people endorse invalid believable conclusions as much as
valid believable conclusions (92% in both cases), whereas they
endorse valid unbelievable conclusions (46%) far more than
invalid unbelievable conclusions (8%). Accuracy is far greater
for congruent trials (valid/believable and invalid/unbelievable,
92%) than for incongruent trials (valid/unbelievable and
invalid/believable, 37%). In these imaging studies accuracy on
congruent and incongruent trials was the behaviorial dependent
variable. Incongruent trials require the System 1 belief based
response to be inhibited to allow the System 2 analytic response
to be made.

In Tsujii et al.’ studies they used manipulations to impair
working memory performance either by using a dual task (Tsujii
and Watanabe, 2009), time restrictions (Tsujii and Watanabe,
2010), or by using repetitive TMS on the IFC region (Tsujii et al.,
2010) thought to be involved in working memory. High dual
task load, short time restriction, and right IFC rTMS stimulation
led to less accurate performance but only on incongruent trials.
High dual task load and a short time restriction also reduced
IFC/IFG activation but only in the right hemisphere. These
findings suggest that right IFG is required to inhibit the System 1
heuristic or belief based response. In a further study, Tsujii et al.
(2011) also used rTMS on the superior parietal lobule (SPL)
as well as IFG using the belief bias paradigm. Stimulation in
this region impaired performance on abstract syllogisms and
incongruent trials, which they suggest require analytic System
2 processes. Tsujii et al. conclude that the function of right
IFG is in inhibiting belief biased responding, the function of
left IFG is a language area responsible for semantic processing
and belief bias, while the function of bilateral SPL is analytic
reasoning.

There are several points to make about these NIRS studies.
First, the activations were integrated over a period lasting over
a minute and so are not looking at rapid processes of the type
that underlie Kahneman’s System 1. Second, the results are not
consistent with previous fMRI studies. For example, the seat of
inhibitory processing has moved from DLPFC (BA 46) in Prado
and Noveck (2007) to right IFG (BA 44, 45, 47). Moreover,
there seems to be little evidence of Prado et al.’s (2011) core
left lateralized deductive reasoning system. Further problems of
interpretation arise from the interactional nature of the belief bias
phenomenon.

Recently, Dube et al. (2010) showed that the belief bias
interaction has been misinterpreted. They show that the
interaction effect observed in belief bias is consistent with
curvilinear ROC curves. Properly analyzed, accuracy remains
the same between conditions, and believability effects are
pure response biases. They argue that their modeling results,
“provide support for processing theories of deduction that
assume responses are driven by a graded argument-strength
variable, such as the probability heuristic model proposed by
Chater and Oaksford (1999).” Their results are also consistent
with probabilistic single function dual process theory (Oaksford
and Chater, 2012, 2014). There is a clear distinction between

processes based on long term memory for our beliefs about the
world and processes that require working memory. However, the
single function approach argues that these processes, where they
concern reasoning, are both probabilistic.

Dube et al.’s (2010) analysis shows that the belief bias
phenomenon that underpins the theoretical framework (logical
analytic System 2 and belief based/heuristic System 1) used to
interpret Tsujii et al. results, may not actually exist. A similar
state of affairs exists in the study of optimism bias (Weinstein and
Klein, 1996) where proper statistical analysis (Harris and Hahn,
2011) has shown that this phenomenon, apparently investigated
in many imaging studies (e.g., Sharot et al., 2011), may not
actually exist. These re-analyses of these phenomena are at the
computational level, i.e., they show that the actual functions being
computed in these tasks may not be what they first seemed. As
we argued in the section Imaging beyond System 1, theories of
function drive the interpretation of these imaging results, i.e.,
its function first. Consequently the interpretation of Tsujii et al.
results may need to be re-thought.

A paper aimed at making general theoretical points
about the current state of imaging research into deductive
reasoning is not the place to offer such a re-interpretation
of these results. However, it is worth observing that the
interpretation is going to be further complicated by the
fact the that people seem to unconsciously process both
the nominally analytic and heuristic responses as evidenced
by the activation of brain regions associated with conflict
detection, i.e., the anterior cingulate cortex, whether people
make the supposedly biased response or not (De Neys
et al., 2008). That is, both possible responses seem to be
computed in System 1. Such findings tend to suggest that
System 2 doesn’t so much do analytic reasoning as adjudicate
between possibilities and form a response (Oaksford, 2014,
Submitted).

In sum, a major problem for imaging research is that there
seem to be no onus to explore all the possible computational
level interpretations of any set of results. Moreover, there is only a
very loose connection between function and the activity of brain
regions assumed to compute it. For example, the inference to
SPL being the seat of analytic reasoning is based on a statistical
tendency for rTMS stimulation of that region to impair abstract
and incongruent tasks. In the light of Dube et al.’s analysis, it is
very difficult to know what to make of this result. However, it most
certainly does not tie this region to making deductive inference in
a mental logic.

ERP and conditional inference
To explore the brain systems involved in the rapid System 1
processes, event related potentials recorded using EEG would
seem to be the most promising route. The temporal resolution
is excellent and many of the evoked waveforms have a well
understood interpretation developed over many years of research.
The studies I review here have all focused on the conditional
reasoning paradigm. Inexplicably, some studies on conditional
reasoning using ERPs have focused on contentless, abstract
material (Bonnefond and Van der Henst, 2009). This is despite the
fact that in the psychology of conditional inference, the dominant
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paradigm since Cummins et al. (1991) ground breaking paper has
been the causal conditional inference task, which has arguably
completely altered the theoretical landscape of research into the
conditional.

The failure to consider the full theoretical possibilities is
repeated in Bonnefond and Van der Henst (2013), who introduce
the paper using the theoretical framework of mental logic, which
has not been applied to any of the major results in conditional
inference over the last twenty years of research. They argue that a
sustained late positive component to the EEG waveform suggests
that “participants consider logical arguments as a rule-governed
sequence.” The absence of an N400 (a negative going waveform
at around 400 ms) associated with semantic processing is not
consistent with apparent inconsistencies being semantic in origin
rather than formal. The implication of their results is that, even
though their materials introduced content, the main effect was
to facilitate activation of terms expected as a matter of logical
inference.

However, even more recently Bonnefond et al. (2014)
investigated the correlates of defeaters in conditional inference.
A defeater in a causal conditional reasoning task is an event that
could prevent the cause from producing its effect. For example, if
you turn the key the car starts, is defeated by the petrol tank being
empty or the battery being flat. In the Cummins paradigm, causal
conditionals are pretested for the number of defeaters they allow.
The primary behavioral observation is that the more defeaters a
conditional allows, the less willing participants are to endorse the
MP inference. Bonnefond et al. (2014) replicated these results and
found specific effects on EEG waveforms. Their main finding was
that presenting the conclusion of an MP inference led to,

“. . .a more pronounced N2 and less pronounced P3b for many
disabler conditionals. In the ERP literature this specific N2/P3b
pattern has been linked to the violation and satisfaction of
expectations, respectively. . .Thereby, the present ERP findings
support the idea that disabler retrieval specifically modulates
our expectations that the standard MP conclusion will follow.”
(Bonnefond et al. (2014), p. 258).

It is suggested that these results are consistent with conditional
inference not being mediated by formal logical rules. Indeed
the first demonstration of defeater effects (Byrne, 1989) was
interpreted as refuting mental logicians’ explanation of why
introducing alternative causes leads to reduced levels of the
affirming the consequent fallacy (Braine et al., 1984). Such
pragmatic factors may influence fallacies but they would not
be expected to affect logical rules of inference such as MP if
they play a role in real human inference. That is, Bonnefond
et al.’s (2014) results showing the brain correlates of defeater
information supplies just the evidence required to refute their
interpretation of their own previous results (Bonnefond and
Van der Henst, 2013). These results are also consistent with the
probabilistic approach adopted in the new paradigm (Oaksford
et al., 2000; Oaksford and Chater, 2007).

Another recent ERP study of conditional reasoning using
the MP inference has shown a strong N400 component, which
Bonnefond and Van der Henst (2013) did not observe (Blanchette

and El-Deredy, 2014). This component of time locked EEG signals
is strongly related to the processing of semantic content (Kutas
and Hilyard, 1980). This early response to the premises of an
argument is consistent with Kahneman’s banana-vomit example:
the content of the premises is processed very rapidly. Blanchette
and El-Deredy (2014) conclude that “conditional reasoning is
not a purely formal process but that it importantly implicates
semantic processing.” This conclusion is consistent with rapid
System 1 processes which generate the kinds of information we
discussed earlier and perhaps build an initial concrete model of
the described situation. Of course this interpretation does not
preclude System 2 involvement at some later point in the process.

In summary, the last two ERP studies reviewed are the
closest to seeing System 1 in action. Bonnefond et al. (2014)
also very commendably concede that their results question
their earlier interpretation of their findings using abstract
materials. Nonetheless, it is concerning that imaging results are
published which do not consider the current state of theoretical
development a topic has achieved in other areas of cognitive
science. I can but agree with Bonnefond et al.’s (2014, p. 260)
conclusion:

“Behavioral studies have also focused on the impact of different
types of conditionals (e.g., tips, warnings, promises, and causal
statements). . .We belief [sic] that the present study will pave the
way for a further exploration of the neural basis of these content
factors in future studies.”

Such studies are a pressing need in this area but also required
are methods that allow a much tighter integration between formal
computational level theories of function and the brain.

CONCLUSION
In this paper, I have discussed the interpretation of what is
currently known about the brain systems involved in human
deductive reasoning mainly using different imaging techniques
to localize function to specific brain regions. In doing so, I
have dealt with the results of Prado et al.’s (2011) meta-analysis
and a range of other results from the perspective of the new
paradigm in human reasoning. Prado et al. (2011) identified a
relatively restricted group of brain regions consistently activated
in deductive reasoning tasks. Like the studies in the meta-
analysis, Prado et al. (2011) interpret their results largely in terms
of mental logic and mental models theories. In this paper, I
have reinterpreted most of these findings in terms of the new
paradigm in reasoning which is a probabilistic dual process
theory.

The first substantive issue to emerge was that Prado et al.
identify their core left lateralized system with Gazzaniga’s left
brain interpreter hypothesis. This identification is not consistent
with this system being dedicated to deductive reasoning. The
kinds of inferences that motivates Gazzaniga’s hypothesis are
elaborative, defeasible inferences of the type that motivated the
introduction of the probabilistic approach to human reasoning
(Oaksford and Chater, 1991). Moreover, this is exactly the mode
of inference, i.e., non-demonstrative inference involving world
knowledge, which Fodor (1983) identified with central cognitive
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processes, i.e., those processes least likely to be subserved by an
isolable cognitive module.

The second substantive issue concerned the apparent inability
of the studies used in the meta-analysis to uncover the brain
regions involved in System 1 processes. These are highly content
dependent and are responsible for the automatic computation
of a range of information used in inference. As I argued, the
subtraction methodology and meta-analytic approach meant
the whole brain diffuse activations caused by specific contents
(Pereira et al., 2011) must have been subtracted out. Thus the
current methodology would appear to leave us largely ignorant
of the brain systems involved in System 1. I also explored a range
of other results using different imaging techniques and two recent
ERP studies (Blanchette and El-Deredy, 2014; Bonnefond et al.,
2014) seem to show results capable of illuminating the nature of
System 1.

Many of the studies using other techniques also seemed to
have problems related to the third substantive issue concerning
the interpretation of active brain regions. The interpretation
of these findings depends on the computational level theory
of the function engaged by a cognitive task. In general, either
the attribution of function provided by Prado et al. (2011)
was broadly consistent with the new paradigm, e.g., categorical
reasoning, or it was clear that there were multiple interpretations
of the function a region computed, e.g., abstract rules vs.
similarity and analogy or small scale models of specific relations.
Similar problems arose for the interpretation of studies of
matching bias using fMRI (Prado and Noveck, 2006, 2007) and
the NIRS studies of Tsujii et al. There is a failure to consider the
full range of computational level interpretations available in the
area.

While the localization approach has provided useful
information about the brain systems involved in deductive
reasoning, and its extension to looking a functional connectivity
may be even more revealing, the interpretation of these results
remains problematic. Certainly, following Goel (2007), I doubt
that any single isolable region “does” deductive or inductive
reasoning. Reasoning and inference are not special purpose add-
ons to the cognitive system. Unconscious inference in perception
and action, elaborative inference in language understanding and
explicit verbal reasoning are major functions of the brain. These
processes allow us to act adaptively and comprehend an uncertain
world the state of which at any point in time we are mostly
ignorant. Inference allows us to make the best guess about what
will happen next, what someone means, and whether what they
said is a good argument. One would imagine that a large amount
of cortex would be dedicated to these processes.

System 1 automatically generates a large range of information
and if the results using simple stimuli, e.g., thinking of horses,
is anything to go by many diffuse brain regions will be activated
by the materials in a reasoning problem. It is a reasonable
hypothesis that this is the source of information for the left brain
interpreter. The nature of System 2 is less clear. Results on logical
intuitions suggest that people are unconsciously generating the
logically correct answer even as they give the biased response.
A radical possibility is that analytic (putatively System 2) and
heuristic/probabilistic process (putatively System 1) are both

computed by the one System, i.e., System 1 (Oaksford, 2014,
Submitted). That is, in spontaneous human reasoning, without
logical training, pencil and paper, computer, or friends, there
is no conscious analytic process akin to the mental arithmetic
required to solve the bat and ball problem. That is, all spontaneous
reasoning is unconscious (Lakoff and Johnson, 1999). System
2 is where the products of these processes are posted and
decisions made about which response to go with and which
response to inhibit (Oaksford, 2014, Submitted). This is the
core system most likely identified in Prado et al.’s (2011)
meta-analysis, and thus interpreted, it seems that fMRI and
lesions studies have been most revealing of these slow System 2
processes.

An approach is required that can reveal how the interactions
between Systems unfolds over time and how these different
systems communicate with the process of forming a response.
System 1 responds rapidly and as we have seen, two very recent
EEG studies (Blanchette and El-Deredy, 2014; Bonnefond et al.,
2014), with good temporal resolution seem to provide the most
informative studies of System 1 in action. Perhaps the most
important innovation would be to conduct studies that had the
potential to tightly correlate formal computational models of
reasoning to brain activation be it using ERPs or fMRI. Many
models of reasoning are formally well specified. These tend to
be mostly emanating from the probabilistic side of the new
paradigm (Oaksford and Chater, 1994; Chater and Oaksford,
1999; Oaksford et al., 2000). Formal models of dual processes
are less in evidence, although Klauer et al. (2010), for example,
present a formal model with a specific parameter that indexes
System 1 vs. System 2 involvement. The value of such formal
models is that model based imaging can reveal correlations
between specific parameters of the formal model and brain
activation providing much tighter integration between imaging
results and the computational level. Pursing this line, I would
argue, could provide a more integrated approach bringing the
computational level and the implementational level into closer
alignment.
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The investigation of the mechanisms and principles of human reasoning is as ancient as the
history of philosophy. It has always been clear that there is something special that allows humans,
to a greater degree than other animals, to think about future states, make plans, have rational
discussions, handle complex social situations, and invent marvelous things such as science. What
this “something” was, however, has remained buried in mystery, and it still partially is. At the same
time, demonstrations of human rationality have always been countered by staggering examples
of bad reasoning, in history, in psychology, and, as many people (not us) will admit, in personal
experience. The camp of psychologists and philosophers has thus been divided among those who
were more impressed by the successes of humans against nature (Aristotle, Bacon, Descartes,
Kant, or closer to us, the neopositivists; in psychology, Johnson-Laird, Holyoak, Newell and
Simon, the Mental Logic camp) and those who were more impressed by their miserable failures
(Bacon, Schoepnhauer, Kierkegaard, the nichilists, or the deconstructivists; in psychology, Tversky,
Kahnemann, Evans, etc.). The latter group has argued that developing a theory of rational/logical
reasoning is doomed because there is no object to study. The former group has tried to explain the
(admittedly limited) rationality of the mind by developing theories of the mental representations
and processes involved in deductive, causal, or probabilistic reasoning (O’Brien, 1995; Braine and
O’Brien, 1998; Goldvarg and Johnson-Laird, 2001; Johnson-Laird, 2010): call this approach the
Not-So-New Paradigm.

Recently, a way to reconcile the angelic and the demoniac aspects of human reasoning has taken
the form of a single theory, the Dual System theory. As its name says, it replaces two alternative
theories with one single theory which postulates two alternative subsystems. One may get the
impression that the Dual System theory amounts to a mere reshuffling of the problems it was
supposed to address, however, some of its claims may make it more than a simple trick of cards.
The theory holds that one of the two systems is evolutionarily ancient, implicit, fast, mostly geared
to track statistical regularities, whereas the second system is explicit, slow, effortful, error-prone,
evolutionarily more recent, and perform abstract and logical reasoning. It is the characteristics of
this second system that explain human errors with logical or complex probabilistic problems.Merge
Bayesianism to this theory and you get what Oaksford calls the “New Paradigm,” which, he writes,
is “based on Bayesian probability and dual processes” (Oaksford, 2015). Not only does the New
Paradigm offer a novel theoretical framework to advance our knowledge of human reasoning, but
it also offer “an alternative theoretical framework to those typically assumed in imaging research
on deductive reasoning.”

We cannot feel the same enthusiasm. First, it seems to us that explaining human reasoning
by constraining it within the dual system theory is overly optimistic. Even within the narrow
realm of deductive reasoning, many systems are likely involved. Certainly beyond deduction
a whole constellation of inferential systems exist, and the interaction between them is neither
simple nor predictable along the very rough boundaries provided by the dual system theory.
Infants seem to be able to draw correct probabilistic inferences, both before and after being able
to verbalize their reasoning (Téglás et al., 2007, 2011, 2015), but it is not clear if these abilities
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are implicit or explicit. So, does probabilistic reasoning belong to
System 1 or 2?

There is also strong evidence that rational problem solving
is deeply entrenched in the human mind at its earliest stages.
Infants understand goals and the optimality of actions in a variety
of situations difficult to capture by the postulation of a single,
non-rational, system (Gergely et al., 1995, 2002; Csibra, 2008;
Csibra and Gergely, 2009; Southgate and Csibra, 2009); they
explore unknown situations making very specific hypotheses and
testing them (Gweon and Schulz, 2011; Stahl and Feigenson,
2015); and they know how to interpret simple probabilistic
situations and how event probabilities change in many different
contexts (Téglás et al., 2011, 2015). What system do these abilities
belong to, and, is it useful to even ask this question?With the little
we know about basic reasoning abilities and their development,
it is hard to see how jumping from paradigm to paradigm can
help in developing the necessary knowledge. Finally, as Oaksford
himself recalls, the Dual System theory cuts the pie in the wrong
way. For example, it is an assumption of the theory that errors
in deductive reasoning depend on it being a System-2-kind of
phenomenon. However, we now know that an important part
of deduction is implicit (De Neys and Schaeken, 2007; De Neys,
2012; Reverberi et al., 2012b), and that many easy deductive
inferences are fast, spontaneous, and make no use of working
memory to hold intermediate conclusions (Braine and O’Brien,
1998; Johnson-Laird, 2010), something that would make them a
System-1-like process. Again, does deduction belong to System 1
or System 2?We believe that the best way to address this question
is to refuse to answer in terms of a theory that is too coarse to
provide any substantial answer. In short, we fail to see what is
new in the New Paradigm, insofar as its novelty depends on the
adoption of the Dual System theory.

Second, besides the Dual Theory, the novelty of the New
Paradigm entirely consists of its probabilistic claim, mostly
spelled out in a Bayesian framework. We agree with Oaskford
that Bayesianism has made substantial new progress in the
understanding of human reasoning, although the framework
is so powerful that it is difficult to find its limits (Endress,
2013). However, it is an illusion to think that such progress
is reason to dismiss the very same questions with which the
Not-So-New paradigm struggles. Bayesianism is a theory about
how hypotheses change in the face of experience. There is no
Bayesian Theory to begin with, if one does not specify the
language with which the very same hypotheses whose degree of
confidence should change are framed. This language is going to
involve a logic, because it has to incorporate logical connectives,
quantifiers, modal operators, epistemic operators, and the like—
precisely the kind of objects that the Not-So-New paradigm aims
at studying (Tenenbaum et al., 2006; Stuhlmüller and Goodman,
2014). In short, the New Paradigm holds that most knowledge is
probabilistic, but that probabilstic knowledge must lie on a bed
of logical representations and of logical inference. So if you want
a new paradigm, you’d better develop the Not-so-New paradigm
along.

Given all the above, understanding how the human brain
implements the elementary building blocks of human deductive
competence is a fundamental goal. Neuroimaging can and

has been used to inform/constrain psychological theories of
deduction (see also Henson, 2005; Heit, 2015). However,
Oaksford argues that many studies mistakenly understood
as imaging deduction concern “elaborative, defeasible, and
probabilistic reasoning”, thus suggesting that imaging data
do not support the existence of deduction mechanisms. We
believe these criticisms underestimate the methodological and
experimental progress that the neuropsychology of reasoning,
inspired by the Not-So-New paradigm, has made in these last
15 years.

First, many studies already factor in the methodological

criticisms raised by Oaksford. For example, it has been pointed

out that specific task demands may greatly modify how
participants solve deductive problems, e.g., by using analytic or

heuristic processing (Reverberi et al., 2009a). The importance
of choosing an adequate baseline has also been emphasized

(Monti et al., 2007; Reverberi et al., 2007), or appropriate
behavioral indices (Rotello and Heit, 2014). Also, recent studies
consider between subject variability and try to identify fine-
grained functional specializations within the network involved in
deduction (e.g., Reverberi et al., 2010).

Second, recent convergent findings “deductive tasks” can be
naturally interpreted within the framework of the Not-So-New
paradigm:

1. The left ventro-lateral prefrontal cortex (left VLPFC,
Brodmann Area 47/10) is active when participants are either
evaluating or generating new deductive conclusions, both
when the problems are abstract, and when they contain
thematic information (Monti et al., 2007, 2009; Reverberi
et al., 2010; Prado et al., 2014). Furthermore, activity in the
left VLPFC predicts whether individuals tend to generate
valid answers to deductive problems (Reverberi et al., 2012a),
and is modulated in tasks requiring to evaluate compatibility
of simple propositional sentences with evidence (Baggio et al.,
2015).

2. The posterior portion of the left inferior frontal gyrus (left

IFG, mostly BA44/45) is involved in inference making (Baggio

et al., 2015; see also Goel et al., 2000; Reverberi et al.,
2007, 2010; Prado et al., 2011), and recent studies trace its
contribution to logical forms. Specifically, activity in left IFG
predicts whether or not participants extract and use the formal
structure of deductive problems for generating a conclusion.
Importantly left IFG activation does not predict whether the
generated conclusion will be valid or not, suggesting that
its role is less the active process of drawing a conclusion
than that of representing the logical form (Reverberi et al.,
2012a). Converging evidence suggests that left IFG is devoted

to computing hierarchies and relations among trees (Pallier
et al., 2011). Again, these results account for individual
differences, and suggest the presence of a cascade of mental
representations well predicted by the Not-So-New paradigm.

3. Functional dissociations have been reported between
deductive tasks of different types, such as relative
and propositional reasoning (Prado et al., 2010), or
conditional and categorical reasoning (Reverberi et al.,
2010). Furthermore, some part of the reasoning network
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(e.g., VLPFC) have been shown to dissociate “logic” from
“linguistic arguments” (Monti et al., 2009).

These results prompted revisions of too-coarse-grained versions
of theories of deductive reasoning (Monti et al., 2009; Reverberi
et al., 2009b; Prado et al., 2010), but they also confirmed
a neuroimaging approach inspired by main tenets of the
Not-So-New paradigms: content can be separated from form,
logical form from inference; strict predictive relations exist
between patterns of brain activities and individual differences
in participants’ solution strategies. By contrast, we find the
New Paradigm in this context predictively sterile: we fail
to see what novel or different predictions it would bring
about.

Perhaps future progress can be made by changing paradigm.
Certainly, we agree with Oaksford and others (e.g., Heit, 2015)
that the field would benefit from computational modeling,
and further theoretical development. But we believe there is
still much juice to be gained by squeezing the Not-So-New
paradigm. The perspective of progress it offers should not be
overlooked.
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Episodes, events, and models
Sangeet S. Khemlani *, Anthony M. Harrison and J. Gregory Trafton

Naval Research Laboratory, Navy Center for Applied Research in Artificial Intelligence, Washington, DC, USA

We describe a novel computational theory of how individuals segment perceptual

information into representations of events. The theory is inspired by recent findings in

the cognitive science and cognitive neuroscience of event segmentation. In line with

recent theories, it holds that online event segmentation is automatic, and that event

segmentation yields mental simulations of events. But it posits two novel principles

as well: first, discrete episodic markers track perceptual and conceptual changes,

and can be retrieved to construct event models. Second, the process of retrieving

and reconstructing those episodic markers is constrained and prioritized. We describe

a computational implementation of the theory, as well as a robotic extension of the

theory that demonstrates the processes of online event segmentation and event model

construction. The theory is the first unified computational account of event segmentation

and temporal inference. We conclude by demonstrating now neuroimaging data can

constrain and inspire the construction of process-level theories of human reasoning.

Keywords: event segmentation, temporal reasoning, mental models, episodic memory, MDS robot, ACT-R/E

INTRODUCTION

How do people represent and reason about time? Calendars, clocks, and timepieces come coupled
with the convenient illusion of time as a collection of discrete temporal markers, such as months
and minutes, which are experienced in serial order. Events, such as breakfast or the birthday
party, are perceived as hierarchical organized structures relative to those markers. In extraordinary
conditions of sensory deprivation—a prisoner in solitary confinement, for example –the façade of a
regimented temporal hierarchymelts away to reveal the truth: time at the scale of human experience
is a continuous flow of sensory information without subdivision.

Humans organize this unabating stream of sensory input into meaningful representations of
episodes and events. Brain regions are sensitive to perceptually salient event boundaries (Zacks
et al., 2001a), and people learn to segment continuous actions into discrete events in their infancy
(Wynn, 1996). The concept of time, temporal order, and event structure develops throughout
childhood (Piaget, 1927/1969; Harner, 1975; Hudson and Shapiro, 1991). By age 3, children
understand the temporal order of actions and their relations to one another in a sequence of
conceptually related events (Nelson and Gruendel, 1986). Adults in turn rely on complex event
structures in comprehending discourse and temporal expressions (Miller and Johnson-Laird, 1976;
Moens and Steedman, 1988), in remembering autobiographical episodes (Anderson and Conway,
1993), and in planning for the future (Bower, 1982). The end result of parsing the continuous
stream of sensory information appears to yield event structures that take the form of a mental
model, i.e., an iconic configuration of events organized around a spatial axis (Johnson-Laird, 1983;
Casasanto et al., 2010; Radvansky and Zacks, 2011; Bonato et al., 2012), from which temporal
relations between can be inferred (Vandierendonck and De Vooght, 1994; Schaeken et al., 1996;
Gentner, 2001).
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There is an intimate link between the processes of temporal
inference and the way in which the brain segments events:
event segmentation yields the mental representations that permit
temporal reasoning. Recent research focuses on how the brain
carves continuous experiences up to build discrete temporal
representations. Behavioral and imaging data suggest that to
construct representations of events online, individuals rapidly
integrate multiple conceptual and perceptual cues—such as a
movement to a new spatial location or the introduction of a
new character or object into the perceiver’s environment (Zacks
et al., 2007). But no theory describes how cues are accessed and
encoded, how they are integrated, and how they are used to build
representations of events; no extant computer program can solve
the task either.

To address the discrepancy, we describe a novel approach
that synthesizes these various operations to yield a unified
theory of event segmentation and temporal inference. We
implemented the system computationally in an embodied
platform that is able to process input from its sensors to
build discrete model-based representations of events. The paper
begins with a review of the functional neuroanatomy of the
brain mechanisms underlying the integration of conceptual and
perceptual cues to mark event boundaries. It then describes a
theory of how processing continuous sensory information yields
episodic memory representations, as well as how those memory
representations are used to build event models. It presents a
computational and robotic implementation of the theory, and
shows how the theory provides a foundation for an account
of temporal inference. Finally, it reviews the present approach
as one that marshals the insights of cognitive neuroscience to
advance theories of high-level inference.

EVENT SEGMENTATION IN THE BRAIN

You walk through a hallway to enter a room, where your
colleague sits behind her desk. You take a seat in front of the desk
and begin to converse with her. You leave the office sometime
later to head to the bar across to street to meet a friend for drinks.
At some point during this sequence of continuous environmental
changes, a new event began: the meeting. At another point, it
ended and a new event began. There exists no direct, observable,
physical cue that marks the beginning, duration, or end of the
meeting: the meeting and its extension across time has to be
perceived indirectly from an integration of multiple internal and
external cues (Zacks and Tversky, 2001), and the process of
perception has to yield a discrete representation of a sequence of
events (Radvansky and Zacks, 2011).

People can systematically parse out meaningful events by
observing sequences of everyday actions (Newtson, 1973;
Newtson et al., 1977). Newtson and his colleagues pioneered
the study of event segmentation behavior, and posited three
hypotheses on the perception of events: first, event boundaries
are distinguished by a large number of distinctive changes in
perceptual stimuli. Second, event boundaries are graded—some
boundaries are sharp and mark distinct separations between
two separate events, whereas other boundaries are fuzzier and
mark less distinguished separations. Finally, events are part of

a “partonomy,” i.e., a part-whole hierarchy (see Cooper and
Shallice, 2006; Hard et al., 2006). For example, suppose you wash
a set of dirty dishes. That event consists of subordinate events
(e.g., wash plate 1, wash plate 2, and so on) and is itself part of
a larger event (e.g., cleaning the kitchen).

Recent neuroimaging studies concur with Newtson’s
proposals. Zacks and his colleagues present decisive evidence
that processes governing event segmentation are unconscious,
automatic, and ongoing (Zacks et al., 2001a, 2010; Speer et al.,
2003). In one study, participants passively viewed sequences of
everyday activities in the scanner, and then viewed the sequences
again while they explicitly segmented the event boundaries
(Zacks et al., 2001a). The data revealed systematic increases
in BOLD response prior to points at which boundaries were
identified; likewise, there was a reliable difference in activation
of frontal and posterior clusters of brain regions as a function of
whether participants marked fine or course boundaries in events.
These two points suggest an ongoing, automatic segmentation
process that integrates cues from external stimuli in the absence
of conscious deliberation. A similar study by Speer et al. (2003)
revealed that evoked responses in the brain’s motion sensitive
area (extrastriate MT+ and the area connecting left inferior
frontal and precentral sulcus) occurred in temporal proximity
to participants’ overt segmentation behavior as they analyzed
videos of action sequences. Schubotz and colleagues show that
MT activation may play a more general role in segmenting
ongoing activity from movements, i.e., not just for goal-directed
action sequences (Schubotz et al., 2012). Participants’ behavioral
data likewise provide evidence for partonomic organization of
event segmentation: their subjective evaluations of coarse event
boundaries overlap with their evaluations of fine boundaries (see
Zacks et al., 2001a). Moreover, when asked to describe events
from memory, participants’ responses reveal a hierarchical
structure such that superordinate events are remembered and
described more frequently (Zacks et al., 2001b).

Online event segmentation is not driven by visual cues alone.
Speer et al. (2009) found an association between activations in
regions of the brain associated with processing event boundaries
and participants’ identification of event boundaries in linguistic
narratives. Event boundaries were distinguished by explicit
changes in characters, locations, goal-directed activities, causal
antecedents, and interactions with objects in the narratives
(Speer et al., 2009). Other evidence reveals brain regions
that subserve online event segmentation in auditory narrative
comprehension (Whitney et al., 2009) and in music (Sridharan
et al., 2007).

These results dovetail with other work that suggests that
understanding action narratives is similar to simulating motor
movements (e.g., Aziz-Zadeh et al., 2006). Aziz-Zadeh et al.
show that mirror neuron areas in the premotor cortex are active
both when participants passively observe action sequences as
well as when they read descriptions of those same sequences. As
they argue, the results support the activation of shared mental
representations for conceptually interpreting language input and
for perceptually processing visual input.

In sum, neural evidence corroborates three hypotheses about
event segmentation:
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1. Event segmentation is an ongoing, automatic process.
2. Events are segmented into discrete representations relative

to a temporal partonomy, where events are embedded
within other events. An additional computational
constraint is that because the brain cannot represent
infinite regression, the temporal partonomy must be
bounded.

3. Event segmentation is driven by detecting perceptual
changes in audiovisual stimuli and in conceptual changes in
mental representations of discourse (but cf. Schapiro et al.,
2013).

Gaps in Theories of Event Perception
It may be unimpeachable that people systematically carve
continuous experience into events, and that they do so
by marking boundaries between events. Many views from
philosophy, neuroscience, and psychology even concur that event
structures are discrete in nature (e.g., Casati and Varzi, 2008;
Radvansky and Zacks, 2011; Liverence and Scholl, 2012) and
some theorists posit specific ways in which those structures can
be organized relative to one another (Schapiro et al., 2013).
Indeed, few would argue that representations of event structure
aren’t critical for making inferences about temporal, spatial,
and causal relations. However, consensus over matters of event
cognition does not imply completeness. No extant theory of
event segmentation explains how the process yields discrete event
representations. Instead, many gaps in knowledge exist about
how event structures come about. Three salient questions remain
unanswered by theoretical and empirical investigations: First,
what is the neurocognitive representation of an event boundary?
It may be a discrete representation that is encoded in memory,
or it may be a transient set of activations that are rapidly
extinguished once a representation of an event is constructed.
Second, how does the online process of event segmentation
resolve multiple perceptual and conceptual segmentation cues?
Some cues appear more important than others, e.g., changes in
the focus of an object may be less important than changes in
location, and other cues may compete with one another. Third,
how does the brain recognize an event as an event? In addition
to encoding an event’s spatiotemporal frame, its characters, their
goals, their interactions, and the objects involved, the mind
needs to represent a nested structure of events within other
events, and no theory at present explains what the representation
looks like or what sorts of mental operations are permitted
by it.

To address these three questions, we developed a novel
theory of event segmentation and temporal inference. The
theory builds on the idea that changes to internal and
external stimuli precipitate segmentation behavior, but goes
beyond it to hypothesize that segmentation is driven by the
construction of episodic representations of event boundaries.
Some perceptual and conceptual cues take precedence to others
to yield a precedence hierarchy, and the hierarchy determines the
activations of episodic representations in memory. The episodic
memories in turn allow for the direct construction of mental
models of temporal relations. We present the theory in the next
section.

A UNIFIED THEORY OF EVENT
SEGMENTATION AND REPRESENTATION

Wedeveloped a novel, model-based theory of event segmentation
and event representation. The theory inverts a common strategy
in understanding event segmentation: instead of considering
how individuals parse a continuous stream of information
into discrete temporal units, we begin with the assumption
that the end result of segmentation is the construction of a
temporal mental model (Johnson-Laird, 1983; Schaeken et al.,
1996; Radvansky and Zacks, 2011). Craik (1943) was the first
psychologist to propose that people build and interrogate small-
scale models of the world around them, but philosophers
before him explored analogous notions. Mental models serve
as a general account of how individuals perceive the external
world, how they understand linguistic assertions, how they
represent them, and how they reason from them (see Johnson-
Laird, 1983; Johnson-Laird and Byrne, 1991; Johnson-Laird and
Khemlani, 2014). As Johnson-Laird (1983, p. 406) writes, “Mental
models owe their origin to the evolution of perceptual ability in
organisms with nervous systems. Indeed, perception provides us
with our richest model of the world.” Hence, models serve as
a way to unify perceptual and linguistic processes, as they are
hypothesized to be the end result of both. They are pertinent
to reasoning about abstract relations, as well as relations about
time and space (Goodwin and Johnson-Laird, 2005; Ragni and
Knauff, 2013). The model theory depends on three foundational
principles:

1. Mental models represent distinct possibilities: when perceiving
the world and processing language, models represent a
set of discrete possibilities to which the current situation
or description refers. When perceiving the world, models
represent a homomorphism of the sensory input, i.e., many
properties of the sensory input are omitted from the model.
The properties that are represented are subject to the next
principle of the theory.

2. The principle of iconicity: a model’s structure corresponds
to the structure of what it represents (see Peirce, 1931–1958,
Vol. 4). Events are represented as either kinematic models

that unfold in time, i.e., where time is represented by time
itself akin to a mental “movie” (Khemlani et al., 2013)
or else as a spatial arrangement of discrete events, where
time is represented along a mental time line (Schaeken
et al., 1996; Bonato et al., 2012). Logical consequences
emerge from the iconic properties of the models (Goodwin
and Johnson-Laird, 2005) and conceptual simulations on
the models (Trickett and Trafton, 2007; Khemlani et al.,
2013).

3. The principle of parsimony: In scenarios in which discourse
is consistent with multiple alternative models, people
tend to construct a single mental model, which yields
rapid, intuitive inferences. Provided that the inferential
task is not too difficult, they may be able to construct
additional alternative models from a description. However,

inferences that depend on alternative models are more

difficult.
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Mental models account for how people reason about time.
Schaeken et al. (1996) showed that reasoners are faster and make
fewer errors when reasoning about descriptions consistent with
just one event model than descriptions consistent with multiple
models. For example, the following description is consistent with
one model:

John takes a shower before he drinks coffee.
John drinks coffee before he eats breakfast.

The event model consistent with premises can be depicted in the
following diagram:

shower coffee breakfast

The diagram uses linguistic tokens arranged across spatial
axis that represents a mental timeline. The tokens are for
convenience, but the theory postulates that people simulate the
events corresponding to each token. They make inferences by
scanning the iconic representation for relations. When a token

is to the left of a second token on the timeline, the event to which
it refers happens before the event in the second token. Hence,
reasoners have little difficulty deducing that John takes a shower
before eats breakfast from the description. They do so rapidly
and make few mistakes. In contrast, the following description is
consistent with multiple models:

John takes a shower before he drinks coffee.
John drinks coffee before he eats breakfast.

The premises are consistent with the possibility in which the
coffee precedes the breakfast:

shower coffee breakfast

and also with the possibility in which the breakfast precedes the
coffee:

shower breakfast coffee

Reasoners have difficulty in deducing that no relation holds
of necessity between the shower, the coffee, and the breakfast.
They appear to build one model of the assertions and to refrain
from considering alternatives (see also Vandierendonck and De
Vooght, 1994, 1997). Vandierendonck and colleagues further
showed that reasoners construct initial event models relative to
their background beliefs (Dierckx et al., 2004).

The model theory accordingly serves as a viable account
of temporal representation and reasoning, though the theory
does not explain how events are perceived in the first place.
In the following sections, we posit two novel assumptions that
augment previous model-based accounts. The resulting theory
can cope with how people represent durations, and also how
they perceive durational events online. It accordingly provides a
unified account of temporal perception and inference.

Representing Duration with Models
One fundamental challenge to the theory presented above is that
it does not account for how people represent and reason about
events with durations. People make inferences about durations
on a routine basis: if you are scheduled to take part in a meeting
from 10 a.m. to 1 p.m., and a colleague asks you to join him for

lunch at 12 p.m., then you must first detect the conflict and then
prioritize your schedule accordingly. Hence, reasoners base their
actions on understanding durations of events. While previous
incarnations of the model theory have focused on punctate and
not durational events, we extend the theory to deal with both. The
reason is because many events can be construed in a punctual
aspect, i.e., as taking place in a single moment, as well as in a
durational aspect, i.e., one that describes a scenario that endures
across a temporal interval (Miller and Johnson-Laird, 1976;
Moens and Steedman, 1988). Consider the following examples
fromMiller and Johnson-Laird (1976, p. 429–431):

(a) It exploded when he arrived.
(b) It exploded while he arrived.

In (a), the sentential connective when ensures that the noun
phrase, he arrived, takes on a punctual aspect. Hence, people may
build a model akin to the following:

arrived
exploded

where the two events happen at same time and are therefore
vertically aligned (given a horizontal axis representing time). In
(b), the connective while confers a durational aspect, and so
people may directly represent the duration in their mental model,
e.g.:

[ arrived ]
exploded

where the brackets denote that the arrival is extended across
several time points. As both punctate and durational events are
pervasive in daily life, a rich account of temporal reasoning
must explain how both types of events are represented and
interrogated.

Durational events play an essential role in event perception.
Events are almost always perceived across a temporal interval. If,
as most theories of segmentation posit, people use environmental
changes to mark the beginnings and endings of events, then
events must extend across multiple moments in time for those
changes to be registered. It may be that events are perceived at
first as being durational in nature, and coalesce later into punctate
moments only after being encoded in memory. Exceptions exist:
the moment of birth, the moment of death, and winning the
lottery may be perceived as a single moment in time. But many
events are compiled into punctate representations only under
retrospective analysis. The process of segmenting events assumes
that segmentation is necessary to begin with, and hence, that
most events subject to direct perception have duration.

An initial step to a unified theory of event segmentation
and temporal inference is accordingly to explain how durations
are represented in models. Models concern discrete possibilities;
the theory eschews the representation of infinite sequences,
and so metric information is difficult to represent with models
of possibilities. One challenge is accordingly to describe a
method by which durations are represented discretely. Recent
work in cognitive neuroscience may provide insight into the
nature of the representation. Research on rats reveals specific
hippocampal neurons that fire reliably at particular moments
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in event sequences. These so-called “time cells” encode the
event for later retrieval, as well as episodic information such as
where the event takes place (MacDonald et al., 2011). Studies
on adults corroborate the essential role of the hippocampus
in encoding event sequences, encoding episodic information,
and bridging temporal gaps between discontiguous events
(Kumaran and Maguire, 2006; Lehn et al., 2009; Ross et al.,
2009; Staresina and Davachi, 2009; Hales and Brewer, 2010).
Ezzyat and Davachi (2011) show that event boundaries are
used to bind episodic information to event representations;
more generally, they posit a critical role of episodic memory in
event perception. In a similar vein, Baguley and Payne (2000)
present evidence that people encode episodic traces in memory,
and use those traces to build event models from temporal
descriptions.

We accordingly introduce the following principle about the
representation of durations:

The principle of discrete episodes: Reasoners represent durational

events by constructing discrete episode markers as chunks in

episodic memory. Episode markers represent perceived changes

in goals, locations, individuals, and objects. Markers are retrieved

to construct durational mental models in which one marker

represents the start of an event and another marker represents its

end.

The principle of discrete episodes has implications for both
event segmentation and mental model construction. According
to the principle, when an event boundary is identified during
online event segmentation, an episode marker is constructed.
The event boundary may be triggered by multiple perceptual or
conceptual cues; those cues are encoded in the representation of
the marker (cf. Ezzyat and Davachi, 2011). For example, consider
the scenario introduced in Section Event Segmentation in the
Brain of a meeting with your colleague. The meeting might begin
when you enter your colleague’s office. Many changes occur the
moment you enter: a change in location, the introduction of
a salient individual to the environment (your colleague), the
start of a goal (holding the meeting), and the introduction of a
salient object (e.g., a printout of data). A single episodic marker
encodes all of the detected changes: the location, the individual,
the goal, and the object. When the meeting ends and you leave
the office, there is a change in location, which may precipitate
the construction of another episodic marker. Other things may
or may not change; for example, if your colleague walks with you
back to your office with the printout in hand, no character- or
object-based changes would be encoded.

The principle posits that episodic markers are encoded as
chunks in episodic memory (Altmann and Trafton, 2002, p. 40).
As such, they are highly active when they are first constructed,
but memory for them gradually fades. Markers that encode many
perceptual and conceptual changes start with higher activations
than markers that track fewer changes. Episodic markers are
maintained in long-term memory (cf. Baguley and Payne, 2000),
and when they are retrieved, their activation spikes and spreads to
activate associated markers, i.e., those within the same temporal
context and those that track the same sorts of perceptual and
conceptual changes.

Episodic markers, by definition, encode punctate episodes.
They can also be used retrospectively to construct discrete
representations of events, i.e., durational event models. A
memory of “the meeting” would accordingly consist of two
separate markers as follows:

meetingSTART meetingEND

The markers may encode disparate sets of information. The
start and end of a meeting may be cued by perceptual changes
in location, for example, whereas the start and end of a bike
ride concerns the conceptual introduction and completion of a
goal (We address this issue in a thoroughgoing way in the next
section). In either case, episodic markers can be used to build
event models. Such models can be hierarchically organized:

daySTART dayEND
meetingSTART meetingEND

eveningSTART eveningEND
dinner

1 2 3 4 5 6 7

In the model above, each line represents a distinct event. The
model depicts a punctate event (dinner) represented within a
durational event (the evening). The dinner may be conceived
as durational as well, but at the bottom of the hierarchy, non-
intersecting durational events are functionally equivalent to
punctate events. The model is iconic and its components are
discrete, i.e., it does not maintain any metric information by
default, such as how many minutes the “day” event endured or
how many hours the “morning” event endured; hence, people
can reason about events whose durations outlast lifetimes (e.g.,
epochs and eons). Humans and other animals use other neural
mechanisms to track and represent metric information about
duration (see Allman et al., 2014, for a review). The numbers
represent individual episode markers, e.g., 3 represents the
episode marker that encodes the cues used to mark the end of
the meeting. It is also a parsimonious representation from which
to make temporal inferences. For example, the model above can
be used to infer the following temporal relations:

• The dinner did not occur during the meeting.
• The meeting occurred before the evening.
• The dinner happened during the day.

Hence, relations concerning relative duration and other temporal
relations can be drawn from models that maintain only discrete
representations. The principle of discrete episodes posits that
episode markers are used to construct events dynamically and to
retrospectively build representations of events from memory or
linguistic descriptions.

Constructing Models Dynamically from
Episodic Information
According to the principle of discrete episodes, episode
markers encode perceived changes in goals, locations, and other
salient conceptual and perceptual information. But how can
the system use the information encoded within an episode
marker to rapidly construct event models dynamically, even
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as new markers are being encoded? The problem is acute
because the cues used to mark the beginning of an event
may not be relevant in marking the end of an event. The
process of interrogating all of the information encoded by an
episodic marker is cognitively implausible on account of the
combinatorial explosion inherent in assessing and integrating
multiple types of properties. The theory accordingly posits amore
rapid procedure:

The principle of event prioritization: Events are associated with a

single perceptual or conceptual element whose change denotes

the beginning and end of the event. Changes in elements are

prioritized with respect to a given context: by default, goal

events are the highest priority as they override events based on

perceptual changes. When a goal is active, perceptual changes

do not yield episode markers outside the context of the goal.

Perceptual changes are likewise ranked in order of priority based

on the ease of detecting a change: location events override events

based on individuals, which in turn override those based on

objects in the environment.

One way of construing the principle of event prioritization
is that an ongoing event completes only when elements of
the highest pertinent priority change. Recent work uncovers
evidence for the prioritization and ordering of rule sets
(Reverberi et al., 2012), and we extend the general idea to
focus on event perception. In what follows, we describe how
the principle operates for four primary sorts of conceptual
and environmental changes: goals, locations, individuals, and
objects.

Goals
The principle posits that goal-directed events are of utmost
importance. Here we speak of goals in a narrow sense: goals are
mental states that govern immediate, short-term, and ongoing
sequences of actions that bring about a desired state of affairs
in the world. Hence, goal-directed actions are those that
subserve the completion of the goal. Life goals, career goals,
and romantic goals are outside the scope of our present analysis
because they do not govern immediate, short-term sequences.
Many seminal studies on event representations address the
integral involvement of goals in the way events are encoded,
retrieved, and reconstructed (Lichtenstein and Brewer, 1980;
Brewer and Dupree, 1983; Travis, 1997). Goals are of highest
importance because they provide a top-down structure on event
segmentation based on perceptual changes. An example of a
sort of goal that falls within the purview of the principle of
event prioritization is the goal to walk across town to meet a
friend for a drink at a prearranged time. The goal-based event
(walking across town) continues until the goal is completed.
While episodic markers are constructed as the event proceeds,
the perceived event remains organized relative to the goal and
not on any other perceptual experience, such as the perception of
changes in locations or individuals in the environment. Hence,
external cues that would otherwise signal the beginning of a new
event—such as a change in location—would instead signal the
beginning of a new subevent organized within the context of the
goal-based event.

Locations
Locations serve to organize multiple perceptual stimuli. As with
the time cells discussed above, animals and people have dedicated
hippocampal “place cells” that encode location information (see
Moser et al., 2008, for a review). A behavioral demonstration
of their importance is evident in studies by Radvansky and
Copeland (2006) and Radvansky et al. (2010). They show that
memory for objects drops when individuals move through a
doorway from one location to another in a virtual reality
environment, and explain the effect as a dynamic update to
an event model. The principle of event prioritization posits
that locations govern the perception of an event when a high-
level goal stays constant and ongoing, or is absent altogether.
Locations are also more stable than other sorts of perceptual
stimuli because locations generally do not change relative to
another individual’s agency, whereas other sorts of perceptual
cues (the individuals in the environment and the objects they
interact with) do change relative to agency.We discuss them next.

Characters and Objects
Characters and objects in an environment serve as low-level
perceptual cues for the dynamic construction of events in
the absence of both goal- and location-based cues. When
individuals have no goal to govern their actions and their
locations do not change for a long period of time (e.g., when
traveling on an airplane for several hours), the principle of
event prioritization posits that dynamic events are constructed
relative to detecting changes based on interaction, i.e., changes in
individuals and changes in objects to which the perceived attends.
One motivation for the deference of character- and object-based
cues to goal- and location-based cues is that the former two can
change rapidly, and it requires computational resources to track
those changes and use them to update event models. Another
motivation comes from evidence from Zacks et al. (2001b): they
asked participants to describe units of activity as they identified
them in an event segmentation task with instructions to mark
events using a fine-grain or a coarse-grain. Participants described
objects more often using fine-grain descriptions, and they used
a broader variety of words to describe objects for fine-grained
descriptions. These data suggest that people track objects more
frequently when locations and goals do not change. The principle
of event prioritization predicts that they may forget objects as
locations change, in line with the results from Radvansky et al.
(2010).

Summary
The unified theory of event segmentation and event
representation that we posit is based on the assumption
that segmentation yields and reasoning relies on mental models
of temporal relations. Previous model-based accounts could
not explain how durations were represented or how models
were constructed dynamically, and so our unified account
includes two novel assumptions: first, people track changes in
their environment by automatically constructing discrete units
of episodic memory, i.e., episode markers; and second, people
dynamically construct events by prioritizing some cues over
others. A summary of the theory is provided in Figure 1. To test
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FIGURE 1 | A diagram of the unified theory of event segmentation and

representation. In the event segmentation component of the system, which

operates online and in parallel with other cognitive processes, changes are

detected in continuous environmental input across a finite set of perceptual

stimuli, marked by X, Y, and Z in the diagram. At the onset of a stimulus, which

is indicated by a black circle, a new episodic marker is constructed. The offset

of a stimulus likewise yields a new episodic marker. When the system is

queried for information pertaining to temporal relationships, it uses the markers

to build a discrete event model. The system then scans the model to make

inferences.

the viability of the account, we turn next to describe its embodied
computational implementation.

An Embodied Implementation of the
Unified Theory
We developed an embodied, robotic implementation of the
theory described in the previous section. The unorthodox
approach is a result of the multifaceted nature of the tasks
under investigation. The approach may be highly relevant for
roboticists, because many robotic systems lack the ability to
perceive and construct representations of events (Zacks, 2005;
Maniadakis and Trahanias, 2011). But our goal is different. We
argue that an embodied demonstration of the theory at work can
help identify the types of information needed for the algorithms
at each stage of the theory. A viable theory of event segmentation
is one that integrates multiple perceptual and conceptual
cognitive processes such as goal maintenance, location detection,
person identification, and object recognition, and only a working
system that integrates these perceptual processes sufficiently
constrain and inform the implementational details of the theory
we developed. Recent work in our laboratory has focused on
each of these constituent perceptual processes: we have developed

an embodied robotic platform capable of fiducial-based location
tracking (see Kato and Billinghurst, 1999), person identification
through face recognition (Kamgar-Parsi and Lawson, 2011) and
soft biometrics (i.e., clothing, complexion, and height cues;
Martinson et al., 2013) and context-sensitive object detection
(Lawson et al., 2014). The platform’s sensors and perceptual
subsystems are interfaced with ACT-R/E, an embodied cognitive
architecture for human-robot interaction (Trafton et al., 2013)
based on ACT-R, a hybrid symbolic/subsymbolic production-
based system for mental processing (Anderson, 2007). The
system comes with multiple interoperating modules that are
designed to deal with different sorts of inputs and memory
representations called “chunks.” Modules make chunks available
through a capacity-limited buffer. Modules and buffers are
mapped to the functional operation of distinct cortical regions.
ACT-R/E builds on the ACT-R theory in that it can parse
environmental input from perceptual systems, which is translated
into chunks in a long-term memory store (the “E” stands for
“embodied”). ACT-R/E is also interfaced with robotic sensors
and effectors, and so it can act on the physical world. A
summary of the system’s sensors and its cognitive architecture
is provided in Figure 2. We briefly review how the system
implements event segmentation and the construction of event
models.

Online Episodic Segmentation
The principle of discrete episodes posits that at the lowest level,
an agent’s experience is carved up into discrete windows of
time by the encoding of episodic markers. As an agent’s goals,
locations, and observations of objects and people change, new
episodic markers are encoded and annotated with the type of
change (e.g., a change in location) and the contents of the
change (e.g., entered location-b). The markers do not represent
temporal durations, but rather single points in time. Encoding
happens automatically as a natural consequence of attending to
the environment. In the ACT-R/E cognitive architecture (Trafton
et al., 2013) when the computational implementation attends to
a new goal, a representation of that goal is placed within the
system’s goal buffer. The systemmonitors the buffers of relevance
(i.e., the goal buffer for goal changes, the configural buffer for
location changes, and the visual buffer for people and objects;
see Figure 2). It creates a new episodic marker when a change
in content is detected (Altmann and Trafton, 2002; Trafton et al.,
2011). Each episode is symbolically annotated with information
regarding environmental changes. It is also associatively linked to
the prior and new contents, as well as the prior episode marker.
Linking the markers in this way permits subsequent retrievals to
iterate through episodes and their associated contents.

Figure 3 provides a detailed trace of the creation of discrete
episodic markers. At the top of the figure is an activity trace
for an individual patrolling an area. When the goal of patrolling
is assigned (by, e.g., verbally issuing the directive to patrol the
area), a change of goal is detected and an episodic marker (Ep-
1) is encoded, and linked with the encoded goal. As the agent
proceeds through the task, it encounters new locations. For each
change of location, a new episodic marker is encoded (Ep-2,
Ep-3, Ep-4), and populated with details regarding the changes
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FIGURE 2 | The robotic implementation of the ACT-R/E cognitive. (A) depicts the MDS (mobile, dexterous, social) robot in use in our lab, and shows its various

sensors and effectors. (B) provides the details of the ACT-R/E cognitive architecture (Trafton et al., 2013). The architecture is an embodied extension of ACT-R

(Anderson, 2007), and it interfaces the robot’s sensory apparatus. ACT-R/E is composed of multiple modules that mimic components of human cognition. For

example, it includes modules for maintaining goals, storing declarative memories, processing visual, and auditory input, and issuing motor commands. Each module is

paired with a buffer that limits the capacity that the system can process at once, and accordingly implements a processing bottleneck characteristic of human

cognition. Computational implementations of cognitive processes, such as the event segmentation system we present, are developed in ACT-R/E by constructing

procedural memory representations that are executed under pre-specified conditions, and which retrieve information from or else modify the contents of the system’s

various buffers. In the diagram, the thin lines depict the pipeline for retrieval from the contents of the buffers and the thick lines depict the pipeline for modifying the

contents of the buffers.

in location, as well as the prior episodes. At one point, the
agent encounters a new individual (e.g., Bob). It encodes one
episodic marker to capture Bob’s arrival, and another to capture
Bob’s departure. Once the patrolling goal is accomplished, a
new marker is encoded. In line with extant theories of event
segmentation, the process of encoding events is continuous. As
the agent moves on to other tasks, more episodic markers are
created and stored in memory.

To perceive an event as an event, the system must retrieve the
markers in memory and use them to retrospectively construct an
event model. We turn to this procedure.

Event Model Construction
Event segmentation occurs on an ongoing basis by default, i.e.,
episodic markers are encoded online. In contrast, event models
are only constructed retrospectively, as a result of an external
query. It is from these models that people make inferences
about temporal matters. For example, the user can query the
system to remember a particular location, or to infer a particular
relation that holds between events, or to describe the events that
occurred in a given time window. Retrospective construction
is highly relevant when the system needs to make inferences
about its recent experiences. For example, if the system is
directed to perform a particular goal—as in the patrol example
above—then it will have two separate episodic markers that
highlight the start of a new goal and its completion, along
with any associated environmental information that the system

can detect. Now suppose that during the course of the goal,
the system traveled to two separate locations. That means
that the system will construct at least four separate episodic
markers:

1. A marker representing the start of a new goal.
2. A marker representing the detection of a new location

(location 1) as well as the current goal.
3. A marker representing the detection of a new location

(location 2) as well as the current goal.
4. A marker representing the satisfaction of the goal.

These four markers will be represented in long-term memory.
When the system is prompted to recall information about the
particular goal, it can retrieve all four markers. It parses markers
(1) and (2) to build a model of a goal’s duration:

goalSTART goalEND

Information provided from markers (2) and (3) allow for the
construction of the durational event marking location 1:

goalSTART goalEND
location1START location1END

and information provided from markers (3) and (4) allow for the
construction of the durational event marking location 2:

goalSTART goalEND
location1START location1END

location2START location2END
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FIGURE 3 | The process by which episodes are encoded at event boundaries. (A) Shows a diagram of a trace of activity as a function of changes in goals,

locations, and people. At each change, a new episodic marker is constructed (depicted as arrows). (B) Shows the representation of each episodic marker. Episodes

are linked with symbolic information that describes the perceived changes at the time of encoding. Hence, episodes are used to uniquely describe a change in goal,

location, person, and object (not depicted).

Hence, a complete event model of the relevant experiences is
represented in the following mental model:

goalSTART goalEND
location1START location1END

location2START location2END

From the model above, individuals can draw deductions
concerning event relations, such as that visiting location 1
occurred during the goal, and the visit to location 1 occurred
before the visit to location 2. The model can be revised and
modified, in which case inferences would be counterfactual
(Byrne, 2005). For example, reasoners can modify the event
model to move the duration of the visit to location 1 after the visit
to location 2. If no other changes are made to the model, then the
reasoner might make the following counterfactual conclusion: if
the visit to location 1 had happened after the visit to location 2,
then it would not have happened while the system was completing
the goal. In sum, episodic chunks can be used to build complex
event models from memories. Scanning and revising the models
accordingly serves as the basis of temporal reasoning.

The basic process for constructing an event model is
illustrated in Figure 4. At the top of the figure is the episodic
representation that was built in the patrolling example above
(Figure 3B). The system constructs an event model by retrieving
the earliest relevant episodic marker (e.g., Ep-1) and checking
how it was triggered (e.g., goal change). From this information, a
provisional event encoding is created and associated with content

regarding the type and trigger for the event (e.g., a goal change
initiated by following a command to patrol a given area). This
information is retained until a compatible episodic marker (e.g.,
Ep-8) is retrieved, marking the end of the event and committing it
to the event model. Each episode is retrieved and processed until
there are no more markers, or some temporal limit is reached.

The process is able to produce veridical event models, such
as that seen in Figure 4B: a veridical event model is a one-to-
one mapping of marker pairs and events. Humans are unlikely to
generate such complex and complete event models, particularly
over long periods of time. Instead event models are influenced
by the goals that triggered the retrospective construction in
the first place. The principle of event prioritization constrains
the construction of episodic marker types. By default, this
prioritization is (from highest to lowest priority): goal, location,
person, and object. During reconstruction, lower prioritized
events are only encoded when they fall within the bounds of
higher prioritized events. In this way, an implicit sub-event
model structure can be reconstructed. Figure 4C shows the
prioritized event model, which only represents the superordinate
event, i.e., the event that characterizes the goal of patrolling
an area. The principle of event prioritization, while specifying
a default prioritization, does not exclude the possibility that
other retrospective tasks could require other prioritizations.
User queries may demand some information over others and

prioritize, e.g., locations to be retrieved. The system supports the

construction of partial, incremental event models.

Frontiers in Human Neuroscience | www.frontiersin.org October 2015 | Volume 9 | Article 590 | 143

http://www.frontiersin.org/Human_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Human_Neuroscience/archive


Khemlani et al. Event segmentation and temporal reasoning

FIGURE 4 | The process by episodic markers are retrieved to build event models. (A) Shows the episodic representation (see also Figure 3B). (B) Shows a

veridical event model that can be constructed by an unprioritized mapping from episodic markers to model structures. (C) Shows a prioritized mapping, in which the

construction of a goal event takes precedence to that of other sorts of events. Additional queries can be used to revise and flesh out the prioritized event model.

A demonstration of the system for event segmentation and
model construction as it occurs online is available in the Video 1.

GENERAL DISCUSSION

We describe a unified synthesis of event segmentation and
temporal reasoning. Researchers typically focus on one process
or the other. In our treatment, both are organized around
the construction of discrete temporal mental models (i.e.,
event models). Models serve as the output of the event

segmentation and the basis of temporal inference. Event
segmentation is relevant in the online perception of events.
Humans are capable of applying a regimented hierarchy to
the continuous stream of sensory input they receive, and do
so automatically and without difficulty. Yet no current theory
of event segmentation or computer algorithm explains how
different pieces of environmental input are used to regiment the
stream of input. We accordingly developed an algorithm based
on two overarching principles: (i) individuals represent events
by constructing markers that track perceived changes in goals,
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locations, individuals, and objects; and (ii) episodic markers
are constructed based on a prioritization hierarchy, in which
changes in goals take precedence to changes in location, and
changes in location take precedence to changes in characters and
objects. The theory provides a plausible mechanism for temporal
reasoning. The account thus unifies temporal cognition from
how time is perceived to how temporal relations are inferred. The
two principles upon which the account is based are simulated in
a computational implementation of the theory, and on a robotic
platform that demonstrates the viability of the hypotheses are
guiding online perceptual input.

In addition to advancing temporal cognition, our theory is
grounded in systematic evidence from cognitive neuroscience.
The approach demonstrates a central role for neuroscientific
research in the development of cognitive theory. We conclude
by discussing a recent controversy on the role of cognitive
neuroscience in developing and testing psychological theories of
reasoning.

A central and irreproachable result from recent studies of
the neuroscience of deductive inference may be that it is not
modular: it implicates large swathes of the brain. A given
experiment can show activation in various configurations of
the basal ganglia, cerebellum, and occipital, parietal, temporal,
and frontal lobes (Goel, 2007; Prado et al., 2011). Different
sorts of inference recruit different brain regions (e.g., Waechter
and Goel, 2005; Kroger et al., 2008; Monti et al., 2009), and
a recent meta-analysis of 28 neuroimaging studies revealed
systematic consistency in those regional activations for relational,
quantificational, and sentential inferences (Prado et al., 2011).

Despite evidence of systematicity, many skeptics question if
neuroimaging data can ever help adjudicate between theories
of cognitive operations (Harley, 2004; Coltheart, 2006; Uttal,
2011). The problem is acute for students of reasoning: in order
to make use of the available data, predictions of functional
neuroanatomy are coaxed from psychological proposals. Most
cognitive accounts of inference make no strong claims about
functional neuroanatomy (Heit, 2015), i.e., they make no claims
at the “implementation level” of inference (see Marr, 1982).
Hence, coaxing predictions about implementation from accounts
that specify only the mathematical functions to be computed
for reasoning, or else the representations and algorithms
that underlie reasoning, has the insidious effect of washing
away theoretical nuances (Goel, 2007). Many imaging studies
test the extreme view that the biological implementation of
inferential procedures should rely on only one sort of mental
representation, which has a distinct neural signature. The
preponderance of evidence conflicts with such a view (Prado
et al., 2011), which is fortunate, because the present authors
know of no author or theory that defends it. And as Oaksford
(2015) observes, constraints on the methodology itself may
prevent diagnostic analyses. Researchers accordingly face a
methodological quandary: Is it possible to marshal insights from
cognitive neuroscience to inform theories of reasoning when
those theories fail to make predictions of neural mechanism?

Our present approach demonstrates that it is indeed possible
for theories of inferences to be informed by insights from

cognitive neuroscience. As in previous work on developing an
embodied theory of spatial cognition (Trafton and Harrison,
2011), we describe an embodied theory of temporal cognition
whose fundamental assumptions are informed and constrained
by recent work on the neuroscience of temporal processing.
Cognitive neuroscience may be in its infancy, and likewise,
theories of inference do not make predictions that can be
tested by the imaging methodologies. Nevertheless, results from
imaging studies rule out certain sorts of representations and
provide mechanistic constraints on how humans may engage
in particular cognitive tasks. The preceding discussion serves as
a case study in how neuroimaging results can serve to guide
and constrain the development of theories at Marr’s “algorithmic
level,” which focuses on cognitive representations and processes
upon those representations.

In particular, the representations we proposed in the present
theory—episodic markers and event models—are supported by
work on how event segmentation is carried out by the brain.
Likewise, the procedures we posit, including the hypothesis that
people prioritize certain changes in the environment over others,
are guided by both behavioral and imaging work on mental
processes that track ongoing changes in the environment. Hence,
cognitive neuroscience can play a pivotal role in the development
and enrichment of cognitive theories of reasoning: imaging
research can serve to rule out representations that cannot be
feasibly processed by complementary neural processes, and it can
suggest the need for alternative representations.

The skeptics may ultimately have purchase: no psychological
theory of reasoning can be said to be testable by means of
neuroscientific data unless that theory makes specific predictions
of neural processes. A first step toward such a theory for
any domain of cognition is to provide a unified account of
that domain that explains how low-level perception leads to
high-level inference. In the case of temporal cognition, we
provide such an account, and explain how events are perceived
to build mental simulations of their temporal experience,
and how reasoners make temporal inferences from those
simulations.
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In this article, we first describe our general inhibitory-control theory and, then, we
describe how we have tested its specific hypotheses on reasoning with brain imaging
techniques in adults and children. The innovative part of this perspective lies in its attempt
to come up with a brain-based synthesis of Jean Piaget’s theory on logical algorithms
and Daniel Kahneman’s theory on intuitive heuristics.
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Based on the numerous scientific data garnered in children of all ages, Jean Piaget (Piaget, 1983)
proposed a seminal model of cognitive development according to which children’s cognitive
abilities developed through four different stages from the sensorimotor stage (from birth to 2 years
of age) to the formal operational stage (starting at 12 years of age). Between two and 7 years
of age (the so-call preoperational stage), Piaget assumed that children were mainly illogical in
comparison to adults. Importantly, during the concrete operational stage, between 7 and 12 years
of age, children start to reason logically in several logico-mathematical domains (e.g., number,
categorization. . .). Finally, after 12 years of age, children’s reasoning is not limited to concrete
objects but can be applied to abstract propositions.

Inhibitory-Control Theory as an Alternative to Piaget’s Theory

In fact, Piaget underestimated the rich precocious logical knowledge already present in infants
and young children, and he overestimated the logical abilities of older children, adolescents and
adults, who commit systematic errors even in very simple logical tasks (Houdé, 2000; Kahneman,
2011). These logical errors usually occur when older children, adolescents and adults rely on
prepotent responses, illogical intuitions, or misleading strategies (such as heuristics) rather than
on logical algorithms. Importantly, the ability to overcome those errors is directly related to the
ability to inhibit these intuitive forms of thinking (Houdé, 2000; Kahneman, 2011; Houdé and
Borst, 2014). Consequently, today the discrete Piagetian stages theory is replaced by an approach
of cognitive development which is analogous to overlapping waves within a non-linear dynamic
system (Siegler, 1999). In such a system, at any point in time and at any age, different strategies
with different degrees of complexity and sophistication might be in conflict in the brain. According
to this theoretical framework, the progressive ability of the prefrontal cortex to inhibit irrelevant
or misleading strategies to activate the most logical one sustains the conceptual development
of children and the shift from one Piagetian stage to the next (Houdé and Borst, 2014). This
constitutes the central assumption of our new neo-Piagetian theory of reasoning development.

During cognitive development, children and adults have to choose, depending on
the context, between two types of strategies or multiple levels of ‘‘thinking fast and
slow’’ (Kahneman, 2011). Typically, individuals can either solve problems using heuristics
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(i.e., intuitions) or logico-mathematical algorithms. On the one
hand, heuristics are typically defined as strategies that are
effortless, rapid, often global or holistic which constitute the
most adaptive response in most situations but sometimes they
are misleading especially in situations in which they compete
with logical algorithms. Algorithms, on the other hand, are
slow, analytical and cognitively costly strategies but they always
provide the correct solution independently of the context.
In most contexts, children and adults spontaneously rely on
heuristics. However, choosing heuristics over algorithms does
not mean that children and adults are irrational per se (Houdé,
2000) or ‘‘happy fools’’ (De Neys et al., 2013). A ‘‘presumption of
rationality’’ is sometimes the best assessment.

Brain Imaging of Reasoning-Bias Inhibition
in Adults: The Example of Deductive Logic

As opposed to Piaget’s theory, which assumed that children
reached a logical stage of reasoning at 12 years of age (i.e., formal
operational stage), a number of studies have now provided
converging evidence that adolescents and adults continue to
make errors in simple deductive reasoning tasks (see e.g., Evans,
1998, 2003; Houdé, 2000). For instance, in the perceptual
matching bias task designed by Evans (Evans, 1998), the vast
majority of participants choose a red square on the left of a
yellow circle to falsify the following rule: ‘‘if there is not a red
square on the left, then there is a yellow circle on the right’’.
Evans attributed this error of logic to a perceptual matching bias
(or heuristic) according to which participants choose the two
geometrical shapes mentioned in the rules because a negation
is present in the antecedent rather than using the logical truth
table (in this case the algorithm). By using the logical truth table,
participants would chose two geometrical shapes (e.g., a blue
diamond to the left of a green square) validating a true antecedent
(i.e., not a red square) and a false consequent (i.e., not a yellow
circle). Critically, in order to avoid systematic logical errors in
this context, participants must resist (or inhibit) the perceptual
matching bias (i.e., red square on the left of a yellow circle) to
activate the logical algorithm.

According to our ‘‘presumption of rationality’’ analysis,
participants’ difficulty in solving this if-then logical problem is
not related to the difficulty of the deductive reasoning per se but
to the difficulty to exert inhibitory control over the misleading
heuristic (i.e., the perceptual matching bias). To provide evidence
for the role of inhibitory control in overcoming deductive
reasoning errors, we contrasted the effect of two types of training
on the ability to perform deductive reasoning tasks. In one
condition, participants were trained to inhibit the perceptual
matching bias. In the other condition, participants received
training focusing on explaining the underlying logic of the task.
Importantly, participants were trained on a different deductive
task (i.e., the Wason task, Wason, 1968) than the one performed
pre- and post-training (i.e., the perceptual matching bias task,
Evans, 1998). The effects of the two types of training were
compared to a test-retest control condition in which participants
simply performed the perceptual matching task two times.
Participants who were trained to inhibit the perceptual matching

heuristic were the only ones who succeeded to overcome their
deductive reasoning errors. This finding suggests that logical
reasoning errors are not due to a lack of logic (or experience)
but to a default to inhibit a misleading heuristic. In a follow-up
PET (positron emission tomography) imaging study in which we
compared the cerebral activation before and after the participants
were trained in inhibiting the perceptual matching bias, we
observed that the brain activation shifted from the posterior
perceptual regions pre-training to prefrontal executive regions
post-training. This is the first micro-longitudinal neuroimaging
study of deductive reasoning and it provides the first evidence
that inhibitory control was critical to reason logically.

Note that this brain imaging study on reasoning errors
correction was conducted on a sample of only eight participants
but the strength of these results stem from the fact that the
participants were their own controls in the pre-post training
comparison. Such intra-individual design is scarce in brain
imaging of reasoning. Indeed Fuster (Fuster, 2003), noted about
our results that ‘‘the exercise of logical reasoning seems to
overcome (or to inhibit) the biasing influences from the posterior
cortex and to lend to prefrontal cortex the effective control
of the reasoning task’’ (p. 231). More specifically, with respect
to our results in the prefrontal cortex, we observed a left-
middle-frontal gyrus activation which was likely to reflect the
logical manipulation of the algorithm in working memory, and
a left-inferior-frontal gyrus activation, which was likely to reflect
inhibition of the reasoning bias (or heuristic) and self-regulatory
inner speech (Broca’s area).

In this brain imaging study, the training condition that
focused on the inhibition of the misleading heuristic comprised
not only cognitive but also emotional executive warnings that
were not incorporated in the training condition focusing on
explaining the underlying logic of the deductive problem. By
directly contrasting the cerebral activity elicited by the two types
of training, we found greater activity (i.e., the rCBF: regional
cerebral blood flow) following inhibitory control training in
the right ventromedial prefrontal cortex (Houdé et al., 2001),
which is a paralimbic emotional area (Mesulam, 2000) known
to be involved in getting the mind on the ‘‘logical track’’ and
avoiding decision-making errors (Damasio et al., 1994; Damasio
and Carvalho, 2013). We speculate that the right ventromedial
prefrontal cortex could serve as an internal warning/self-feeling
device to correct errors during deductive reasoning. Converging
data on the link between emotion, conflict detection and
inhibition were reported by Spiess et al. (2007) and De Neys et al.
(2010).

After these two pioneer brain imaging studies on if-then
rules (Houdé et al., 2000, 2001), a set of new studies were
published during the past decade on deductive reasoning (e.g.,
Noveck et al., 2004; Prado and Noveck, 2007; for reviews see
Goel, 2007; Prado et al., 2011). Noveck et al. (2004) studied
the underlying brain network engaged in deductive reasoning
on abstract contents and found that a left lateralized parietal-
frontal network supported the if-then (or conditional) reasoning.
Importantly, the activation within this network increased as the
reasoning became more complex. As noted by Noveck et al.
(2004), a critical difference between their study and the two
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neuroimaging studies we conducted was that solving Evans’s
problem required a counterintuitive solution---i.e., a solution that
involved inhibiting the misleading heuristic. Prado and Noveck
(2007) using a similar deductive reasoning task as the one we
used provided convergent evidence that the resolution of such
problems involved inhibitory control. In their study, participants
were asked to determine whether a conditional rule such as ‘‘if
there is not a B there is a triangle’’ was falsified (or verified) by an
item (e.g., A and diamond). They reported increased activation
in the right mid-dorsolateral prefrontal cortex (mid-DLPFC),
the medial frontal areas (including the anterior cingulate area),
the pre-supplementary motor area and the parietal cortices
with increasing perceptual mismatch between the conditional
rule and the item (i.e., when the perceptual matching bias was
stronger). Critically, a psychophysiological interaction analysis
revealed that the integration between the visual areas of the brain
(supporting the perceptual matching heuristic) and mid-DLPFC
decreased when the perceptual mismatch increased. Taken
together the results suggest that overcoming the perceptual
matching bias is rooted in part by the inhibitory control exerted
by prefrontal regions (i.e., mid-DLPFC and the medial frontal
cortex) on lower level visual regions.

Note that whereas the left lateral prefrontal structures
(including the left IFG) supported the inhibition of the
misleading heuristic during conditional reasoning in our studies
(Houdé et al., 2000, 2001) subsequent studies reported activation
in the right IFG (e.g., Noveck et al., 2004; Prado and Noveck,
2007; for reviews see Goel, 2007; Prado et al., 2011). We suspect
that the activation in the left prefrontal areas of the brain reported
in our seminal studies could be a consequence of the verbal
nature of the executive training (given between the pre- and
post-test) which would have favored using inhibitory control
in verbal working memory after the training (i.e., during the
post-test). This interpretation is coherent with previous studies
showing that inhibition in verbal working memory is supported
by the left prefrontal areas of the brain (Jonides et al., 1998).

The role of inhibitory control and the prefrontal cortex
(including the inferior frontal gyrus, IFG) in deductive reasoning
has been demonstrated not only using conditional reasoning but
also syllogistic reasoning (De Neys and Van Gelder, 2009; Tsujii
et al., 2010, 2011). For instance, Tsujii et al. (2010) investigated
the network of brain areas involved in syllogistic reasoning.
Critically, prefrontal regions including the right IFG---i.e., a
region consistently activated when a prepotent response (or
a heuristic) is inhibited (see Aron et al., 2004, 2014)---are
specifically recruited when participants judge the validity of
syllogisms in which the logical validity of the conclusion is in
conflict with the belief of the participants (e.g., Valid incongruent
syllogism: No mammals are dogs/All German Shepherd are
mammals/No German Shepherd are dogs). Importantly, a follow-
up study revealed that the ability to reason on belief laden
syllogisms is impaired when the activity of the right IFG is
disrupted using rTMS (i.e., repetitive Transcranial Magnetic
Stimulation). This study provided additional evidence for a
causal relation between the right IFG and the ability to overcome
logical errors through the inhibition of heuristic thinking.

Brain Imaging of Reasoning-Bias Inhibition
in Children: The Example of Number
Conservation

One of the most famous Piagetian problems used for testing
reasoning in children is the number-conservation task (Piaget,
1983). In this problem, the child is first presented with two
rows of tokens with the same number of tokens and the same
length. After the child acknowledges that the two rows contain
the same number of objects, the tokens in one of the rows
are spread apart and the child is asked whether the two rows
contain yet the same number of tokens. Children younger than
6 or 7 years of age tend to report that the longer row contains
more tokens. According to Piaget (1952), young children make
systematic errors in the number-conservation problem because
they rely on an intuitive ‘‘illogical’’ mode of thinking which is a
hallmark of the preoperational stage of cognitive development.
When children reach 6 or 7 years of age, they successfully solve
the number conservation task by understanding the reversibility
of operations (any transformation can be cancelled out by the
reverse transformation) which is evidence that children are in the
concrete operational stage of development.

Following Piaget’s pioneer work, a growing number of studies
were proposed to investigate the cognitive development of
numeracy and raised numerous criticisms of Piaget’s theory. For
instance, studies have demonstrated that newborns and infants
understand that there is an invariance between number and
physical transformations, even in contexts extremely similar as
the one created in the number-conservation problem (Antell and
Keating, 1983; see also Dehaene, 2011). A critical question for
developmental psychologist is thus to understand why newborns
and infants who have some knowledge of the relation between
number and space will later on make systematic errors in the
number-conservation problem until age 6 or 7. This non-linear
pattern of development could be explained by the fact that
children learn a number of heuristics during their childhood
that are most of the times appropriate to find the solution
except in context in which they are misleading and need to be
inhibited (Houdé, 2000; Houdé and Borst, 2014). For instance, in
Piaget’s number-conservation problem, children tend to rely on
the misleading length-equals-number heuristic rather than on a
counting or operational reversibility algorithm.

One of the challenges of today’s research in developmental
psychology is thus to shift from the Piagetian (Piaget, 1983) and
neo-Piagetian (see Demetriou, 1988 for a review) views that the
conceptual change exclusively relies on the growing ability to
coordinate multiple systems of operations to a view according
to which conceptual change is in part rooted in a domain-
general ability of selection-inhibition of competing strategies, i.e.,
heuristics (or intuitions) and logico-mathematical algorithms.
Critically, at each age and in each situation the strengths of
the heuristics and the algorithms fluctuate within a nonlinear
dynamical system (Siegler, 1999; Houdé, 2000; Houdé and Borst,
2014). According to this new model, cognitive development
occurs in bursts with sometimes errors occurring after success
in both children and adults. This model is coherent with what
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we know of the structural changes of the brain from childhood
to adulthood (Casey et al., 2005). Indeed, the inhibition of
heuristics could remain challenging because the maturation
of the prefrontal cortex sustaining inhibitory-control ability
continues throughout childhood and adolescence.

To determine whether the growing ability to perform Piaget’s
number-conservation problem is rooted in the growing ability to
inhibit the length-equals-number heuristic due to the progressive
maturation of the prefrontal cortex, we asked 60 children aged
5--10 to solve Piagetian problems in a functional magnetic
resonance imaging (fMRI) study. We found that children
who succeed in solving Piaget’s number-conservation problems
(i.e., children aged 7 and older) recruited a parieto-frontal
network including the right IFG and the bilateral intra parietal
sulcus (IPS; Houdé et al., 2011)---two regions respectively
involved in inhibition (e.g., Aron et al., 2004, 2014) and
numeracy (e.g., Dehaene, 2011). In a subsequent fMRI study
(Poirel et al., 2012), we provided evidence that the recruitment
of the right IFG was directly related to the need to inhibit a
heuristic by reporting a significant positive correlation between
the BOLD (i.e., the blood-oxygen-level-dependent) signal in
the rIFG and the inhibitory control efficiency as measured by
an Animal Stroop task (Wright et al., 2003)---a Stroop task
adapted for non-reading children. The results we garnered in
schoolchildren are coherent with the ones we reported above
in adolescents and adults for which failure to inhibit a heuristic
led to systematic logical errors although they reached the formal
operational stage according to Piaget’s theory. Note, however,
that our developmental study on number conservation shows
a right-inferior-frontal gyrus activation for inhibition (in line
with Aron et al. (2004, 2014) meta-analysis reviews), while

our adults study on deductive reasoning (Houdé et al., 2000)
showed a left-inferior-frontal gyrus activation for inhibition. In
this last study, there was no Stroop-correlation control, but the
leftward lateralization was probably due to the strong verbal
component (rules) of the logical task, involving self-regulatory
inner speech. The number conservation problem is, inversely, a
visuospatial task which fits well with a rightward lateralization of
the activation.

Conclusion

In this review we want to argue that learning to inhibit
misleading heuristics from System 1 (i.e., intuitive system) when
they interfere with the activation of the logical algorithms
from System 2 (i.e., analytical system, see e.g., Evans, 2003;
Kahneman, 2011) is the critical process that allows one to
reason logically (Houdé, 2000; Goel, 2007; Prado and Noveck,
2007; De Neys and Van Gelder, 2009; Tsujii et al., 2010, 2011;
Prado et al., 2011; Houdé and Borst, 2014). The new post-
Piagetian theoretical framework we propose allows us to better
understand why newborns and infants who possess an early
ability to reason logically in different domains will later in life
have the tendency to reason illogically. Typically, at all ages,
overcoming systematic logical errors relies on blocking (i.e.,
inhibiting) our intuitions, a process that is highly dependent
on the maturation of the prefrontal cortex (Borst et al., 2013).
Finally, the ability to inhibit misleading heuristics remains
challenging throughout our lifetime. Thus children, adolescents
and adults may sometimes need ‘‘prefrontal pedagogy’’ to help
them overcome their tendency to rely on intuitive heuristics and
biases in reasoning tasks (Houdé, 2007).
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The brain did not develop a dedicated device for reasoning. This fact bears dramatic

consequences. While for perceptuo-motor functions neural activity is shaped by the

input’s statistical properties, and processing is carried out at high speed in hardwired

spatially segregated modules, in reasoning, neural activity is driven by internal dynamics

and processing times, stages, and functional brain geometry are largely unconstrained

a priori. Here, it is shown that the complex properties of spontaneous activity, which

can be ignored in a short-lived event-related world, become prominent at the long time

scales of certain forms of reasoning. It is argued that the neural correlates of reasoning

should in fact be defined in terms of non-trivial generic properties of spontaneous brain

activity, and that this implies resorting to concepts, analytical tools, and ways of designing

experiments that are as yet non-standard in cognitive neuroscience. The implications in

terms of models of brain activity, shape of the neural correlates, methods of data analysis,

observability of the phenomenon, and experimental designs are discussed.

Keywords: cognitive neuroscience, reasoning, scaling, non-stationarity, non-ergodicity, characteristic scales,

observation time, resting brain activity

Introduction

Consider an individual trying to solve a problem and reasoning for 10min before attaining a solu-
tion. Take the middle 5min. Clearly, though containing no behaviorally salient event, these 5min
represent a genuine, indeed rather general, instance of reasoning. What do we know about the
brain regime far from its conclusion? Can we use this regime to predict a solution, and a solution
to retrodict this regime?

Here, I concentrate on a form of reasoning, of which the above scenario constitutes an example,
which can broadly be defined as “thinking in which there is a conscious intent to reach a conclu-
sion and in which methods are used that are logically justified” (Moshman, 1995), with no a priori
assumption on the type of reasoning process that may take place during it. It is argued that finding
the generic properties of this form of reasoning entails addressing the following fundamental issues:
What are reasoning’s temporal and spatial scales?When is a given observation time sufficient? How
should we integrate the information contained in various reasoning episodes?

A Mini Literature Review

The neural correlates of reasoning have traditionally been expressed in terms of brain spatial coor-
dinates. Early neuropsychological work viewed reasoning as emerging from global brain processing
(Gloning andHoff, 1969), consistent with evidence indicating that it is negatively affected by diffuse
brain damage (Lezak, 1995). Neuroimaging studies have framed the neural correlates of reasoning
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in terms of local functionally specialized brain activity, either
by taking a normative approach to reasoning (Goel et al., 1997,
1998; Osherson et al., 1998; Parsons and Osherson, 2001; Noveck
et al., 2004; Prado et al., 2011), or by fractionating it into sub-
component processes (Houdé et al., 2001; Acuna et al., 2002;
Kroger et al., 2002; Reverberi et al., 2012). The results often lack
specificity to reasoning (Papo et al., 2007). Most importantly,
these investigations provide a static characterization of reasoning.

The neuroimaging literature mostly focused on short-term
and normative forms of reasoning (Prado et al., 2011; Bonne-
fond et al., 2013, 2014). This minimizes variability in reason-
ing episode length and allows segmenting reasoning episodes
into separable chunks, but does that at the price of limitations
in the phenomenology and ecologic value of its stimuli. Some
neuroimaging (Luo et al., 2004; Subramaniam et al., 2008) and
electrophysiological (Jung-Beeman et al., 2004; Mai et al., 2004;
Kounios et al., 2006, 2008; Lang et al., 2006; Bowden and Jung-
Beeman, 2007; Qiu et al., 2008; Sandkühler and Bhattacharya,
2008; Sheth et al., 2008) studies examined more ecological forms
of reasoning, viz. insight problems (Knoblich et al., 1999). How-
ever, even electrophysiological studies, despite optimal temporal
resolution, adopted an event-related perspective, concentrating
on activity occurring a few seconds before insight emergence,
which only documents the outcome of the reasoning process, not
the process itself.

Event-related neural activity associated with the solution of
riddles with insight was found to be related to properties of
preceding resting activity (Kounios et al., 2006, 2008). These
studies had the remarkable merit of using spontaneous brain
activity to characterize reasoning, but in essence provided a
comparative statics description. Although some behavioral stud-
ies treated reasoning as a dynamical process (Stephen et al.,
2009), a comparable neurophysiological characterization is still
incomplete.

The Problem(s) with Reasoning

The generalized form of reasoning considered in this study
comes in episodes offering scant behaviorally salient events
with no characteristic temporal length. Each episode is a non-
reproducible instance, as a reasoning task can be carried out in
multiple ways. Brain activity associated with reasoning is not
event-related, and many neurophysiological processes interact in
a wide range of spatial and temporal scales.

These phenomena can all be traced back to a basic fact: the
brain did not develop a dedicated device for reasoning. Hard-
wired partially segregated modules ensure that perceptuo-motor
functions are carried out at great speed, with stereotyped dura-
tion and time-varying profile, and identifiable stages, largely
determined by input statistical properties. Reasoning, on the con-
trary, is associated with an internally-driven dynamics: process-
ing times and stages, and functional brain geometry are largely
unconstrained.

Considering these extraordinary challenges, can we still
find general reasoning properties, over and above specific task
demands and individual differences? What sort of process is rea-
soning in its general form? Is it a series of simpler reasoning

cycles? Can we segment it into stages? What are the best neural
variables and tools to make these properties observable?

Characterizing the Reasoning Process

Robust characterizations of reasoning should incorporate prop-
erties consistently appearing across different subjects and in dif-
ferent periods of time, and select analytical tools accordingly.
For instance, perceptual response sensitivity to incoming sig-
nals, stability against noise, and minimal dependence on ini-
tial conditions favor tools capturing transient dynamics, which
naturally reproduce these properties under appropriate condi-
tions, over tools handling asymptotic activity, which fail to do so
(Rabinovich et al., 2008).

Reasoning’s relative instability and inefficiency suggest that
optimal circuitry may need constant reconstruction and protec-
tion from interference, summoning protracted support of ener-
getically costly long-range communications. Reasoning may be
a sort of resonant regime, where functional efficiency would
be achieved with specific, though unstable, spatio-temporal pat-
terns. This suggests that reasoning should be studied with
tools which can describe spatially-extended dynamic transients
and can quantify information transfer and the corresponding
energetic cost.

Reasoning Dynamics
Each cognitive process can be translated in dynamical terms and
corresponding aspects of neural activity.

Perceptual processes are relaxational, quasi-stereotyped short
duration processes. The brain can prima facie be modeled as
an excitable medium: perturbations above a threshold induce a
dynamical cycle before the system reverts to its initial silent state.

Learning too is a relaxational process. Following a gradient
dynamics, the brain incorporates the environment’s statistical
relationships by representing them in terms of its functional con-
nectivity (Sporns et al., 2000). Cycles can be of much longer
duration and non-trivial shape than perceptual ones. No single
instant summarizes the entire process, and the dynamics consists
of fluctuations much shorter than the whole process.

Reasoning may not be purely relaxational. As in the case of
learning, no instant summarizes the whole dynamics but, con-
trary to learning, there is no clear gradient. Neural activity is an
out-of-equilibrium endogenously modulated spontaneous brain
activity. Its phenomenology is considerably more complex than
the equilibrium event-related short time-scale one of percep-
tion or the gradient-driven regression to equilibrium dynamics
of learning.

To study reasoning, one should therefore first consider prop-
erties of spontaneous activity that are generic (i.e., that hold for
almost all conditions) at long time scales and then see how these
properties are modulated during reasoning (Papo, 2014a).

The Starting Point: Spontaneous Brain Activity
When observed long enough, brain fluctuations appear to be
characterized by structured patterns (Kenet et al., 2003). The tem-
poral sequence with which these patterns are re-edited across the
cortical space also appears to have non-random structure (Beggs
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and Plenz, 2003, 2004; Cossart et al., 2003; Ikegaya et al., 2004;
Dragoi and Tonegawa, 2011; Betzel et al., 2012). The structure
with which these fluctuations appear can be described in the
same way one would describe an object, characterizing its com-
ponent parts, the relationships between them, and the way one
can inspect it. For instance, if we think of brain fluctuations as
the steps of a random walker, one can describe the phase space,
i.e., the space of all states attainable by the system’s dynamics,
but also of traveled distances, times to reach a given target and
memory of previous steps.

In the equilibrium world of perceptual scientists, brain steps
are Gaussian distributed, and memory of past steps is lost so
rapidly that no structure is apparent when considering the time
course of activity. Spontaneous activity has no evident temporal
structure and can be treated as a null state to which the brain
reverts in the absence of stimulation.

At the long time scales of reasoning, the random walker
takes steps from a non-Gaussian distribution. Like a fractal
object, it displays similar properties at all scales (Novikov et al.,
1997; Linkenkaer-Hansen et al., 2001; Gong et al., 2002; Free-
man et al., 2003; Stam and de Bruin, 2004; Expert et al., 2010;
van de Ville et al., 2010; Fraiman and Chialvo, 2012). While
self-similarity may not be exact (Suckling et al., 2009; Zilber
et al., 2012), these scaling patterns indicate that activity at differ-
ent temporal scales is characterized by non-trivial relationships
between them (Bacry et al., 2001; Friedrich et al., 2011; Papo,
2013b). Not all regions of the phase space are equally visited,
with some taking an extremely long time to be reached (Bianco
et al., 2007). Transitions from one region to the other depend
on past history of the dynamics (Gilboa et al., 2005). Memory
of past steps decays so slowly that the time it takes two time-
points to totally decorrelate may diverge, so that a characteristic
time ceases to exist (Grigolini et al., 1999; Fairhall et al., 2001;
Gilboa et al., 2005; Lundstrom et al., 2008). Temporal correla-
tions are not stationary, but time-dependent (Bianco et al., 2007).
If, rather than an ordinary watch, one measured time with a
watch ticking at every step taken by the walker, the passage of
time would appear to be highly irregular and clustered, alter-
nating between relatively quiet phases and more turbulent ones
(Gong et al., 2007; Allegrini et al., 2010).

The temporal structure can be used to define landmarks
within time-windows where no behaviorally salient event occurs.
This can be done by identifying segments that can be consid-
ered stationary (Kaplan et al., 2005). The distribution of these
segments’ durations and their correlations and specific sequences
may help clarify whether reasoning far away from both problem
presentation and solution is merely a repetition of simple cycles
seen inmore controlled forms of reasoning, or is of a qualitatively
different nature, and if so, may help determine the time scales at
which simpler cycles are reedited.

To fully describe the phase space, one needs to consider that
the brain as a whole consists of a great number of local ran-
dom walkers. Local walkers interact to form transient patterns
of connectivity. These patterns can be endowed with topological
properties at all spatial scales by resorting to complex networks
theory (Bullmore and Sporns, 2009). Eventually, one deals with
an abstract structure consisting of spatial patterns endowed with

topological properties, the temporal evolution of which displays
the complex properties described above.

Overall, the space in which the random walker turns out to
live, and which reflects the brain’s dynamical repertoire, can be
represented as a complex spatio-temporal structure (Zaslavsky,
2002). This structure can be described in terms of symmetries and
universal properties, which are robust with respect to the nature
of microscopic details, by resorting to a variety of methods, e.g.,
algebraic and differential topology, renormalization group meth-
ods etc. (Lesne, 2008; Petri et al., 2014). Using these methods
it is possible (1) to partition the phase space, (2) to identify
dynamical pathways leading to specific regions of this space, and
(3) to relate descriptions of the same brain at different scales
and of different brains exhibiting the same large-scale behavior
(Lesne, 2008).

From Spontaneous Activity to Reasoning
Cognitive processes can be thought of as selections and orches-
trations of cortical states already present in spontaneous activity
(Kenet et al., 2003; Fiser et al., 2004; Luczak et al., 2009). Each
process reveals a specific part of the phase space, and can be asso-
ciated with its own topological properties and symmetries, and
characteristic kinematics, memory, aging properties, degree of
ergodicity, and internal clock (Papo, 2014a). For example, dif-
ferent conditions under which subjects carried out a reasoning
task were shown to modulate the scaling regime of fluctuations of
the corresponding brain activity (Buiatti et al., 2007), suggesting
that reasoning may modulate not brain activity’s amplitude but
its functional form (Papo, 2014a), e.g., by forcing the system’s sta-
tionary distribution to equal a target one. Thesemodulationsmay
correspond to cross-overs between universality classes, resulting
from transitions between different dynamical regimes (Burov and
Barkai, 2008).

The statistics of fluctuations can be used to study insight and
to evaluate whether insight occurrence can be predicted. The
sudden onset of insight may be thought of as an extreme event
comparable to earthquakes, financial crashes, or epileptic seizures
(Contoyiannis and Eftaxias, 2008; Osorio et al., 2010), e.g., as a
rupture phenomenon, and the route to it as a long charging pro-
cess, with nested hierarchical “earthquakes.” The probability dis-
tribution of fluctuations gives an estimate of the likelihood of the
occurrence of such events: for a Gaussian distribution, extreme
events are exponentially rare. However, for non-Gaussian dis-
tributions, such events do occur with non-zero probability. It is
tempting to conjecture that, in analogy with results of studies of
these phenomena, insight onset may be predicted by monitoring
changes in anomalous diffusion parameters (Contoyiannis and
Eftaxias, 2008), Gaussianity (Manshour et al., 2009), or frac-
tal spectrum complexity (de Arcangelis and Herrmann, 1989;
Kapiris et al., 2004).

Assessing Reasoning: from Dynamics to

Thermodynamics and Information

Considering the functions reasoning fulfills and the constraints
the brain faces while performing it can shed light on ways in
which brain fluctuations can help quantify how the brain carries
out reasoning.
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Reasoning, as other cognitive processes, e.g., memory recall
(Rhodes and Turvey, 2007; Baronchelli and Radicchi, 2013), can
be represented as a search process similar to that of animals for-
aging in an unknown environment (Viswanathan et al., 2011).
This search process can be characterized in terms of random
walks (Shlesinger et al., 1993; Codling et al., 2008; Lomholt et al.,
2008; Bénichou et al., 2011). Importantly, the statistics of ran-
dom steps and their correlations indicate the extent to which
a given trajectory optimizes search, given the characteristics of
the explored space and the resources available to the individ-
ual (Bénichou et al., 2011). Such a characterisation would allow
assessing in a context-specific way the quality of both the rea-
soning and the “reasoned.” That behavioral aspects of human
cognition (Rhodes and Turvey, 2007; Baronchelli and Radicchi,
2013) and brain activity both show non-Gaussian, heavy-tailed
distributions might indicate search optimality (Lomholt et al.,
2008; Humphries et al., 2012). However, because these properties
are generic in spontaneous activity, reasoning’s quality can only
be described in terms of its modulations, and finding the neural
property and spatial scale showing such scaling modulations are
the crucial steps.

Because it lacks a hardwired structure, reasoning faces both
a stability and an energetic problem. Fluctuation dynamics can
help address the first issue, but may not be sufficient per se to
address the second. While a graph theoretical representation of
functional brain activity may provide indications as to the ways
the brain tackles both problems (Bullmore and Sporns, 2012;
Papo et al., 2014), a direct characterization can be achieved by
considering the brain as a very complex engine and by char-
acterizing its thermodynamics. Crucially, thermodynamics can
be deduced from dynamics (Sekimoto, 1998). Such a charac-
terisation could be used to quantify variations in thermody-
namic variables such as free energy, entropy, or temperature
(Papo, 2013a) during a reasoning task, but also possible tran-
sitions in some other property of neural activity, for particular
values of these variables. For instance, a suitablymodified equilib-
rium temperature accounting for the non-equilibrium nature of
brain activity (Cugliandolo, 2011) can quantify deviations of each
spatio-temporal scale from equilibrium, entropy production, etc.
(Papo, 2014b).

Finally, one may want to quantify reasoning in terms of the
information created, erased, and transferred during its execution.
Simple fluctuations can be thought of as letters of an alphabet,
fluctuation complexes as words, and the reasoning process rep-
resented as a network traffic regulation problem. Characterizing
traffic regulation and phenomena such as overload or jamming
may involve using information-theoretical tools and complex
network theory and understanding the interplay between the
underlying network’s topology, the dynamics of information
packets and the shape of fluctuation distributions (DeDeo and
Krakauer, 2012; Delvenne et al., 2013; Lambiotte et al., 2013).
Although only causal information (Shalizi and Moore, 2003)
may directly serve reasoning purposes, the total information
encoded in the network may describe the noise-control mech-
anisms indirectly optimizing it. Interestingly, non-equilibrium
systems such as the brain, information, and thermodynamics can
be thought of as the opposite side of the same coin (Parrondo

et al., 2015). Ultimately, the information content of reasoning-
related neural activity could be extracted from its dynamics, via
thermodynamics.

From Theory to Experiment

Observing Reasoning
Reasoning is a difficult phenomenon to observe: tasks can be exe-
cuted in more than one-way, each possibly corresponding to a
neural phase space with convoluted geometry and the processes
involved in reasoning may evolve over time-scales exceeding
those typical of laboratory testing.

Proper observation of a given process requires that the obser-
vation time bemuch larger than any scale in the system. A process
is observable if it has a finite ratio between the characteristic
time of the independent variable and the length of the available
time series (Reiner, 1964). Factors including long-term memory,
aging and weak ergodicity breaking may result in a diverging
ratio (Rebenshtok and Barkai, 2007).

The observation time should also be much larger than the
time needed to visit the neural phase space. The time needed to
explore this space may far exceed the typical reasoning episode
duration. Cognitive neuroscientists observe phenomena through
experiments where subjects typically carry out given tasks a
large number of times, assumed to be independent realizations
of the same observable, and to adequately sample the phase
space of task-related brain activity. However, in the presence of
complex fluctuations, trials may not self-average, i.e., dispersion
would not vanish even for an infinite number of trials (Aharony
and Harris, 1996). Thus, trials may explore different aspects
of the space of available strategies and may therefore improve
phase space exploration rather than the signal-to-noise ratio
(Ghosh et al., 2007).

Experimental Implications
Reasoning’s characteristics, particularly its lack of characteris-
tic temporal duration, have implications at various levels. First,
episodes cannot be compared in an event-related fashion. Sec-
ond, defining reliable neural correlates of reasoning requires
defining its characteristic temporal scales. Third, measures of
brain activity should be invariant with respect to overall duration.
Scaling exponents, data collapse and universality of fluctuations
statistics (Bramwell et al., 1998; Bhattacharya, 2009; Friedman
et al., 2012), or explicit evolution equations for the parti-
cle’s momenta and for the cross-scale fluctuation probabilities
(Friedrich et al., 2011) can be retrieved from data and applied
to unevenly lengthen trials. Thermodynamic quantities such as
free energy or temperature can also be estimated for stochas-
tic trajectories over finite time durations (Ruelle, 1978; Beck
and Schlögl, 1997; Canessa, 2000; Olemskoi and Kokhan, 2006;
Papo, 2014b). In all cases, the reconstruction of the underlying
dynamics improves with the recording device’s resolution.

Reasoning presents a dilemma between ensuring complete
phase space exploration, which may require extremely long tri-
als, and signal stationarity, which is guaranteed only for time
scales much shorter than the reasoning episodes’ duration. At
fast time scales, the window in which relevant quantities are
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calculated should not introduce spurious time scales, filtering
out genuine ones. Altogether, reasoning’s inherently unstable
nature suggests that describing it may boil down to characterizing
non-stationarities and their aetiologies.

Reasoning tasks may be so difficult that only few partici-
pants manage to produce solutions within a reasonable time.
This represents a shortcoming when trials are considered as inde-
pendent and identically distributed, as the signal-to-noise ratio
improves with the square root of the number of trials. Smooth-
ing response times is a frequent strategy to obviate this prob-
lem, but limits or distorts the reasoning process. Furthermore,
however many, short trials may insufficiently explore the phase
space. Designs with few long trials may express richer spatio-
temporal brain dynamics than many short ones of equivalent
overall length.

Finally, while observed scaling properties may help us under-
stand whether insight is predictable, i.e., whether it is an outlier
or it is generated by the same distribution producing anony-
mous events, predicting insight onset in real data appears to be
a challenging task, as reasoning episodes are various orders of

magnitude shorter than earthquake, financial, or epilepsy time
series (Sornette, 2002).

Conclusions

Reasoning elicits an exceptionally rich repertoire of otherwise
unexpressed neural properties. Its neural correlates are therefore
as helpful to neuroscientists, who are compelled to consider hith-
erto neglected brain properties, as they are to psychologists who
strive to understand its underlying processes.

Defining general and robust mechanistic properties of healthy
and dysfunctional reasoning will require as yet non-standard
brain metrics, experimental designs, and analytical tools, and
may ultimately help us understand and fine-tune the action of
brain enhancers.
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Recent years have seen increased appli-
cation of functional MRI (fMRI), tran-
scranial magnetic stimulation (TMS) and
event-related potentials (ERP), to ques-
tions of human rationality. This has
both illuminated the brain bases of these
functions and contributed to theoretical
advances (Goel, 2007; Prado et al., 2008).
Most studies have, however, employed
only one method and the developing
literatures run somewhat parallel with
only informal integration of results across
methods. Results from other fields (Sarfeld
et al., 2012) demonstrate the potential
benefits of integration of multiple neu-
roscientific methods within studies of
human reasoning, allowing findings from
one method to influence the application of
other methods, or constrain the interpre-
tation of data derived therefrom. Including
data on regional brain volume, struc-
tural and functional connectivity, individ-
ual differences and development and aging
is particularly appropriate to the study
of neural mechanisms of human reason-
ing, which are likely to be formed from
networks of numerous widely-distributed
brain regions. Here we briefly describe
how the integration of several neurosci-
entific methods within a single study may
advance investigations of the reasoning
brain.

fMRI has now been applied to a large
number of reasoning paradigms (Goel,
2007). Consideration of what appears ini-
tially as a disparate set of brain activations
reveals consistencies suggestive of several

underlying neural systems. A formal anal-
ysis (Prado et al., 2011) of 28 studies found
similar consistency of activation across
studies and reasoning paradigms, but no
monolithic neural system for reasoning.
Instead, a collection of subsystems incor-
porating widely distributed areas of the
brain is apparent. This widespread acti-
vation, encompassing frontal and poste-
rior areas, in response to high-level tasks
with long processing times complicates
interpretation.

Approaches which move beyond map-
ping the spatial extent of activation to
consider the quality of brain activity seen
in separate regions promise to clarify the
distributed-network nature of the reason-
ing brain. Analyses may focus on the time-
courses of activation within brain regions
(Rodriguez-Moreno and Hirsch, 2009),
identifying subsets of regions involved at
different stages of reasoning, or, as in our
current research (ESRC Grant RES-062-
23-3285), the correlation in the degree of
activation seen in separate clusters with
individual differences (Reverberi et al.,
2012).

Formal analyses of functional con-
nectivity, or correlated activity (Friston,
2011), between brain regions active during
the resting state have revealed the effects
of prolonged practice on a reasoning task
(Mackey et al., 2013). The application of
functional-connectivity analyses to brain
activity elicited by reasoning, rather than
rest, awaits. While many imaging studies
of reasoning speak of the “networks”

involved it would be more accurate to
speak of distributed regions of task-
related activation as no studies have
formally tested functional connectivity
between regions. This is in contrast to
other areas, such as research in mem-
ory, attention and task control, in which
functional-connectivity analyses are com-
monplace and have greatly advanced the
characterization of implicated brain net-
works (Vincent et al., 2008). Functional-
connectivity analyses have the potential to
further clarify how subsets of the numer-
ous regions found active in fMRI stud-
ies of reasoning group together to form
dynamic networks that are reconfigured
across extended periods of reasoning-task
performance.

A further step is analysis of effective
connectivity in which causal networks
of distributed regions are modeled and
tested against observed data (Friston,
2011). Models incorporate information
about brain structural connectivity into
predictions of inter-regional functional
connectivity. These structural data have
traditionally come from monkey section
studies but human diffusion-tensor imag-
ing (DTI) data are now being used, as
described in a recent survey of meth-
ods and applications for fusing fMRI
and DTI data (Zhu et al., 2014). DTI
is a MRI technique which allows the
microstructural connectivity of brain tis-
sue to be probed (Le Bihan, 2003). The
data can be acquired in a scan lasting only
around 10 min, which could feasibly be
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included in a fMRI study. DTI data have
informed researchers about the constrain-
ing effect of structural connectivity upon
functional connectivity in non-reasoning
tasks (Honey et al., 2009). Structural-
connectivity maps of direct and indirect
connections between brain regions were
tested as predictors of resting-state inter-
regional functional connectivity, leading
to a model in which functional connec-
tivity is determined by a combination of
direct and indirect structural connections.
Ultimately, the integration of fMRI and
DTI datasets could allow the development
of richer models of dynamic networks of
distributed brain regions supporting rea-
soning performance. Putative networks of
brain regions activated by reasoning tasks
may be merely regions of correlated activ-
ity that do not exist in a causative rela-
tionship, or they may be comprised of
two or more overlapping and commonly-
activated sub-networks. These possibilities
can be tested using models informed by
integrated methods.

The further integration of a develop-
mental or aging perspective, to which
DTI is sensitive (Sullivan and Pfefferbaum,
2006), would allow the organization and
degeneration of brain structural connec-
tivity, and its role in supporting reasoning,
to be traced over the lifespan. Information
on brain regional and connective devel-
opment and degeneration is of great rel-
evance to a growing literature (Salthouse,
2005) of age effects on reasoning. The
anterior to posterior progression of degen-
eration in the aged brain, apparent in
DTI studies (Sullivan and Pfefferbaum,
2006), predicts that reasoning processes
that draw heavily on frontal support will
be more affected by age than are reason-
ing processes that primarily involve pos-
terior regions. Also of relevance is infor-
mation about brain regional volume, as
assessed by MRI, which has been shown
to be abnormal in some populations, such
as people with autism (Mcalonan et al.,
2005; Redcay and Courchesne, 2005), who
are also of interest to investigators of
reasoning (Mckenzie et al., 2010; Morsanyi
and Holyoak, 2010).

The incorporation of structural and
functional MRI into studies of reason-
ing using repetitive TMS has promise
to increase the power and accuracy of
a technique which can probe the causal

relationship between brain activity and
reasoning performance. Previous rTMS
studies (Tsujii et al., 2010, 2011) guided
stimulation using structural MRI but
selected cortical targets somewhat arbi-
trarily from a set of areas implicated in
fMRI studies. An improvement is to inte-
grate results from an fMRI study using
the same paradigm and stimuli to tar-
get specific locations found to be func-
tionally active. As considerable variation
in reasoning-associated activation across
studies using similar, but non-identical,
paradigms, and stimuli has been observed
(Goel, 2007) the targeting of specific areas
activated by specific experimental designs
is important. We (ESRC Grant RES-
062-23-3285) are doing this by warping
the standard-space group-analysis results
from our fMRI study of conditional rea-
soning into the individual TMS-subject
space to identify functionally-relevant tar-
gets. Furthermore, using a within-trial,
short-burst rTMS paradigm (Fuggetta
et al., 2008), allows greater temporal speci-
ficity in rTMS application. By disrupting
activity in ventral and dorsal prefrontal
cortex at different stages of conditional-
reasoning trials we predict a double dis-
sociation of the effect of rTMS on belief
bias at the two locations over the two stages
of the trial. This result would advance our
understanding of the processes involved in
conditional reasoning, and of the roles of
the two brain regions, and is an example
of how method integration might inform
psychological theory.

ERP studies of reasoning differ in the
degree to which they preserve the tradi-
tional behavioral paradigms (Qiu et al.,
2009; Luo et al., 2013), which typically
involve extended reading, and the tem-
poral specificity with which they are able
to resolve reasoning processes by adapt-
ing orthodox paradigms shown to elicit
well-defined ERPs (Prado et al., 2008;
Banks and Hope, 2014). Despite this
heterogeneity, evidence is accumulating
that ERPs and oscillatory activity asso-
ciated with expectation and inhibition
are modulated by performance on rea-
soning tasks (Bonnefond and Van der
Henst, 2009; Bonnefond et al., 2014).
Initial steps to identify the neural sources
of observed ERPs (Qiu et al., 2009; Luo
et al., 2013) could be greatly improved
by using results from fMRI studies to

constrain the fitting of source models. The
ultimate aim is to conduct simultaneous
recordings of EEG and fMRI (Baumeister
et al., 2014), illuminating sequential acti-
vations across distributed networks, as are
revealed by the less-available technique
of magnetoencephalography (Bonnefond
et al., 2013).

A full characterization of the rea-
soning brain will require models that
describe functional connectivity between
widespread brain regions, constrained and
shaped by structural connectivity, which
varies between and within individuals
across time and space. This implies a
conceptualization of the reasoning brain
as a spatially-extended dynamical system.
Models of this type will necessarily inte-
grate data derived from many different
methods and may require mathematical
tools not previously applied to investiga-
tions of reasoning (Siegelmann, 2010). At
present most of these techniques are being
applied to the study of the reasoning brain,
but in a parallel fashion. The lesson from
other areas of investigation (Calhoun and
Lemieux, 2014) is that their integration
can yield more than the sum of their parts.
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This review focuses on the issue of how neuroimaging studies address theoretical accounts
of reasoning, through the lens of the method of forward inference (Henson, 2005, 2006).
After theories of deductive and inductive reasoning are briefly presented, the method of for-
ward inference for distinguishing between psychological theories based on brain imaging
evidence is critically reviewed. Brain imaging studies of reasoning, comparing deductive
and inductive arguments, comparing meaningful versus non-meaningful material, investi-
gating hemispheric localization, and comparing conditional and relational arguments, are
assessed in light of the method of forward inference. Finally, conclusions are drawn with
regard to future research opportunities.
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How can neuroimaging techniques help address theoretical ques-
tions in reasoning research? To be more specific, how can tech-
niques such as functional magnetic resonance imaging (fMRI)
help researchers distinguish between psychological theories of rea-
soning? There have been thousands of behavioral experiments on
reasoning, and the field as a whole has several competing theories
without a consensus of which one best account for the behavioral
data. Potentially, new evidence on patterns of brain activity during
reasoning tasks could help resolve these long-standing debates.

This article will first briefly outline several psychological the-
ories of deductive and inductive reasoning. Next, a particular
method (forward inference; Henson, 2005, 2006) for using neu-
roimaging data to test predictions from psychological theories will
be critically discussed. Then, example neuroimaging studies of
deductive and inductive reasoning will be reviewed, through the
lens of the method of forward inference. By no means is forward
inference the only possible means to advance psychological theory
in the context of neuroimaging. This exercise will provide some
perspective both on neuroimaging studies of reasoning and on the
method of forward inference.

THEORIES OF REASONING
Researchers have studied reasoning on both problems of deduc-
tion and problems of induction. Problems of deduction require
drawing a valid, logical conclusion that must follow based on a
set of given premises. In contrast, problems of induction require
drawing probabilistic conclusions from given information as well
as other relevant knowledge (Heit, 2007; Hayes et al., 2010).
One open question in reasoning research is whether deduction
and induction simply refer to two different kinds of reasoning
problems – in terms of the structure and/or content of the
problems themselves – or if there are truly two different kinds

of reasoning, deductive reasoning and inductive reasoning, with
different cognitive processes (or different mixtures of cognitive
processes) involved (Rotello and Heit, 2009; Heit and Rotello,
2010; Heit et al., 2012).

According to dual-process accounts [e.g., Kahneman (2011),
Evans and Stanovich (2013)], there are two kinds of underly-
ing mechanisms, heuristic processing and analytic processing.
Both induction and deduction could be influenced by these two
processes, but in different mixtures (Rotello and Heit, 2009; Heit
and Rotello, 2010; Heit et al., 2012). Under this mixture account,
induction judgments could be particularly influenced by heuristic
processes that tap into associations and knowledge that do not nec-
essarily make an argument logically valid. In contrast, deduction
judgments could be more heavily influenced by slower analytic
processes that encompass more deliberative, and typically more
accurate, reasoning. However, for present purposes, the crucial
point is that there are two processes, not the details of any possible
mixture.

In comparison, single-process accounts explain reasoning in
terms of a common set of mechanisms across multiple forms of
reasoning, although typically these theories focus more on either
deduction or induction. Mental model theory (Johnson-Laird,
1994) asserts that a reasoner assesses an argument by constructing
a visuospatial model of the premises then looking for counterex-
amples. Although this theory is typically applied to problems of
deduction, it has also been applied to problems of induction.
Bayesian accounts of reasoning address performance on prob-
lems of deduction in terms of making probabilistic judgments
(Oaksford and Chater, 2007); hence, they are inductive in nature.
Indeed, related models of inductive reasoning are also Bayesian
in nature (Heit, 1998; Tenenbaum and Griffiths, 2001). Addi-
tionally, there are some models of inductive reasoning (Osherson
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Heit Brain imaging and reasoning theories

et al., 1990; Sloman, 1993) that focus on problems of induction
but can address performance on some problems of deduction as
well. Finally, mental logic theory (Rips, 1994; Braine and O’Brien,
1998) has focused on deduction, asserting that people reason on
problems of deduction by carrying out syntactic operations using
a system of logical rules.

DRAWING THEORETICAL INFERENCES
Although there has been skepticism about drawing inferences
about psychological theories from neuroimaging data [e.g., Colt-
heart (2006), Harley (2004), Uttal (2011), Van Orden and Paap
(1997)]. Henson (2005, 2006) has outlined a rationale for doing
so, adopting standard notions from experimental psychology on
employing behavioral data. Henson (2006) referred to this process
as “forward inference,” namely, “the use of qualitatively different
patterns of activity over the brain to distinguish between compet-
ing cognitive theories.” The key idea is that if theory 1 predicts that
the same cognitive processes underlie two different experimental
tasks, and theory 2 predicts that the tasks differ in terms of at least
one cognitive process, then theory 2 will be supported when pat-
terns of brain activity differ between the two tasks. This inference
depends on the assumption that there is at least some systematic
mapping between cognitive processes and brain regions, namely,
the weak assumption that within the experimental comparison of
interest, the same cognitive process is not supported by different
brain regions.

Forward inference itself has some limitations, such as its asym-
metrical nature, that is, theory 1 can be supported by null results,
whereas theory 2 could potentially be supported numerous dif-
ferences. Also, as Henson (2006) noted, forward inferences are
theory-dependent, namely, theories 1 and 2 may both be incorrect,
and some alternative account such as theory 3 may be correct. If
that alternative is not considered by the researcher, then forward
inferences based on theories 1 and 2 will be misleading. Another
pitfall is that there can be other reasons for differences in localiza-
tion, namely, if two experimental tasks differ in patterns of brain
activity, the reason may not be differences in cognitive processes
but differences in rate of responding “yes” [Nosofsky et al. (2012);
for a related argument, involving task complexity, see Johnson
(1993)]. Going beyond the issue of which regions are activated
is the matter of how these activations are causally related to each
other [e.g., Chiong et al. (2013)]. In general, as Monti and Osher-
son (2012) point out, reasoning“should be regarded as a collection
of processes and representations” [cf., Anderson (1978)], hence
observed differences may correspond not to processing differences
but differences in the content being processed.

A more fundamental problem for forward inference is that
the theories of interest simply may not make predictions about
brain activity. In Marr’s (1982) terms, the theories may be at the
algorithmic or computational level of description, without strong
connections to the implementation level. Henson (2005) was opti-
mistic, however, that brain imaging could either directly address
the algorithmic level of processing or do so indirectly, by illumi-
nating the implementation level which itself would constrain the
algorithmic level.

A companion article to Henson (2006), by Poldrack (2006),
described “reverse inference,” by which the presence of a particular

cognitive process is inferred from a pattern of brain activity [see
Del Pinal and Nathan (2013), for a critical review]. Poldrack
noted that a researcher’s confidence in a reverse inference can
be explained in terms of Bayes’s Theorem, with the conditional
probability that the cognitive process is engaged when a particular
brain region is activated depending, in part, on the prior likeli-
hood that cognitive process appears in the experimental context.
Put another way, if the cognitive process is implausible in absolute
terms, then the researcher should not be greatly confident that it is
tied to any particular brain region. This point echoes the situation
in forward inference that if two theories being compared are both
incorrect, then imaging results could only give misleading support
for one over the other. The conditional probability also depends
on the selectivity of the brain region. For example, if the brain
region is so large that it is activated by many cognitive processes,
then it will be difficult to infer the engagement of any one process
when the region is activated.

Although reverse inference is not used to directly compare the-
ories, it is a part of the scientific process that could be used to
develop theories. Moreover, Poldrack’s (2006) Bayesian formu-
lation of reverse inference inspires a Bayesian generalization of
forward inference, as shown in Eq. 1.

P
(
theory1|results

)
=

P
(
results| theory1

)
P(theory1)

P
(
results| theory1

)
P(theory1)+ P

(
results| theory2

)
×

P(theory2)+ . . .+ P
(
results| theoryn

)
P(theoryn)

(1)

Here, the conditional probability that theory 1 is correct after
observing a set of neuroimaging results depends on the conditional
probability of the results under that theory, as well as the prior like-
lihood of the theory. This probability must be normalized in terms
of the likelihood of other, competing theories. Forward inference
is a special case with two theories and the observed results being
either the same pattern of brain activity across two experimental
tasks or different patterns of brain activity.

PREDICTIONS ABOUT BRAIN ACTIVITY
Next, several examples of neuroimaging studies of reasoning, aim-
ing to address theoretical views, will be reviewed in the light of the
method of forward inference.

DEDUCTION VERSUS INDUCTION
At least one of the contrasts made in imaging research on reason-
ing is a good example of forward inference. Several studies (Goel
et al., 1997; Osherson et al., 1998; Parsons and Osherson, 2001;
Goel and Dolan, 2004) have compared deductive and inductive
reasoning tasks. One class of theories (including mental model
theory and Bayesian accounts) has suggested that deduction and
induction are performed by a common set of processes. Another
class of theories (dual-process theories) has suggested that there
are two types of underlying mechanisms of reasoning, heuristic
and analytic processing, which would contribute differentially to
deduction and induction. To the extent that different patterns of
brain activity are observed for deduction versus induction tasks,
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holding everything else equal between experimental conditions, by
forward inference, dual-process accounts will be supported over
single-process alternatives. (Note that three of these studies, all but
Goel and Dolan, 2004, used exactly the same materials for the two
conditions, but simply asked a deduction question or an induction
question.) Indeed, these four studies all found somewhat different
patterns of brain activation for deduction versus induction. Three
of these studies (Goel et al., 1997; Osherson et al., 1998; Goel and
Dolan, 2004) found increased activation for induction, relative to
deduction, in left frontal cortex, although in somewhat different
regions at a finer level. Although it would be valuable to have an
understanding of why the regions differ between studies, which is
not crucial for the method of forward inference.

Overall, these results do make a good case for dual-process the-
ories over single-process theories, notwithstanding the limitations
of forward inference described above. To accommodate, these
results would require single-process theories to assume some-
what different processes for deduction versus induction, e.g., to
become more like dual-process theories. In a related line of work
Houdé et al. (2000, 2001) compared brain activity before and after
a training session aimed at improving logical reasoning, rather
than comparing reasoning under two sets of instructions. In terms
of the method of forward inference, the qualitatively different pat-
terns of activity pre- versus post-training would be a challenge for
single-process accounts, without assuming that deduction before
and after training engages different processes.

MEANINGFUL VERSUS NON-MEANINGFUL MATERIAL
Another contrast is a slightly less clear example of forward infer-
ence. Several studies have varied the content of arguments while
otherwise keeping the task the same, e.g., abstract versus con-
crete materials (Goel et al., 2000; Goel and Dolan, 2001), materials
that agree, disagree, or are neutral with respect to prior knowl-
edge (Goel and Dolan, 2003), and visual versus spatial relations
such as “fatter than” versus “is a descendant of” (Knauff et al.,
2003). To apply forward inference, what is needed is one theory
that predicts the same cognitive processes between conditions, and
another theory that predicts different cognitive processes between
conditions. With regard to the abstract/concrete and prior knowl-
edge studies, the results were greater bilateral parietal activation
for abstract or neutral content, and in two of the studies, greater
left temporal activation for concrete or knowledge-related mate-
rials. With regard to the study on visual versus spatial relations,
the finding was that visual problems led to enhanced activity in
visual association cortex. Although these differences in brain activ-
ity would be consistent with dual-process accounts assuming that
somewhat different mechanisms are employed depending on con-
tent, the problem is that even single-process accounts would need
to make some assumptions to explain how content affects rea-
soning. So it is unclear that single-process accounts are ruled out
[cf., Keren (2013)]. From the perspective of forward inference,
the problem is the lack of well-defined theories making sharply
different predictions.

LEFT VERSUS RIGHT HEMISPHERE
A frequent prediction addressed in brain imaging research on
reasoning is whether the left or right hemisphere is activated.

It is tempting to link mental logic theory, having a proposi-
tional nature, with left hemisphere activation and mental model
theory, having a visuospatial nature, with right hemisphere activa-
tion. Therefore, by looking at which hemisphere is predominantly
activated during a reasoning task, one might see which theory has
greater support. With regard to mental model theory, the origin
of this prediction appears to be Johnson-Laird (1994), and it has
been tested in many studies (Goel et al., 1997, 1998, 2000; Parsons
and Osherson, 2001; Knauff et al., 2002, 2003; Noveck et al., 2004;
Monti et al., 2007, 2009). Although reasoning tasks are typically
associated with left hemisphere activation, the results have actually
been mixed (Goel, 2007), with many studies showing activation in
both hemispheres.

Of greater concern is not the result but the soundness of the
hemispheric prediction. An inference of the form “if theory X is
correct then brain region Y will be activated” is neither forward
inference nor reverse inference. Indeed, no proponent of either
theory of reasoning would likely abandon their beliefs based on
tests of these predictions. Noveck et al. (2004) suggested that no
proponent of mental logic theory has even made predictions about
brain regions. Moreover, the predictions about brain regions are
not unique, e.g., alternative predictions can also be made for men-
tal model theory, such as parietal activation (Knauff et al., 2003) or
activation in the anterior prefrontal cortex (Fangmeier et al., 2006).
Knauff et al. even suggested that left hemisphere activation may
be consistent with mental model theory, because comprehension
of arguments will recruit linguistic areas of the brain.

A final problem with the hemispheric prediction is that it sets
up a comparison between two theories that are not the only pos-
sibilities. In terms of Eq. 1, other theories need to be considered.
For example, the studies reviewed here did not consider Bayesian
accounts of deduction (Oaksford and Chater, 2007), yet these
accounts have amassed a growing set of successes in the domain
of reasoning.

CONDITIONAL VERSUS RELATIONAL ARGUMENTS
Other neuroimaging studies (Knauff et al., 2002; Prado et al., 2010)
have compared reasoning about two types of deduction problems,
conditional (if-then) arguments and relational arguments (e.g.,
regarding relative spatial position). The Knauff et al. study was
largely concerned with hemispheric predictions comparing men-
tal model and mental logic theory. There were some differences
in activation when comparing the two argument types; however,
these differences were bilateral and not interpreted strongly. Prado
et al. were more directly interested in comparing the two argu-
ment types, and indeed observed that the left inferior frontal
gyrus is activated more for conditional arguments and the right
temporo-parieto-occipital region is activated more for spatial
arguments. These results were interpreted as evidence against
“unitary” accounts of deduction and evidence for “fractionated”
accounts of deduction. To the extent that unitary views predict
that the same cognitive processes are used for the two tasks, and
fractionated views predict that different processes are used, this
is a good example of forward inference. Prado et al. took a par-
ticularly nuanced approach, pointing out that although mental
model and mental logic theory can be treated as unitary accounts,
it is possible to imagine “hybrid” versions predicting somewhat
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different cognitive processes depending on argument type. Hence,
the results are useful in ruling out basic versions of single-process
accounts of reasoning. However, the problem, in terms of forward
inference and Eq. 1, is that multiple theories of the fractionated
type, which is multiple theories that predict that different processes
will underlie different problems, are still possible. So there is neg-
ative evidence against some theories but the distinctive, positive
evidence for other theories is less clear.

For further discussion, including a meta-analysis of brain imag-
ing studies across argument types and presentation modalities, see
Prado et al. (2011) for an extended argument that deductive rea-
soning is better described in terms of multiple systems than a single
mechanism.

CONCLUSION
Just as researchers spell out all of the methodological details of
brain imaging studies, it is valuable when researchers spell out
the details of their own reasoning, e.g., list alternative theories,
give sources for predictions, examine alternative predictions, and
explain the rationale of testing predictions. The method of forward
inference is one such rationale, although as discussed, it is not with-
out its own limitations. This review of brain imaging studies of rea-
soning has shown that some comparisons, namely, deduction ver-
sus induction and conditional arguments versus relational argu-
ments, have made profitable use of forward inference. The possible
theoretical contributions of other studies reviewed here appears
to lie outside of forward inference, likely reflecting limitations of
forward inference as well as cases where the studies need a more
fully spelled-out rationale for making theoretical comparisons.

Looking to the future, another approach with great promise
is to combine neuroimaging with mathematical modeling, to
test well-specified psychological theories. Indeed, some meth-
ods of combining neuroimaging and modeling can be seen as
extensions or generalizations of the method of forward infer-
ence, providing alternative methods for distinguishing between
psychological processing accounts using neuroimaging data. For
example, rather than comparing a single-process account to a
dual-process account, McClure et al. (2007) implemented a mix-
ture model comprising two processes, with the aim of linking
model parameters to localized brain activity. Staresina et al.
(2013) used the method of state-trace analysis to look for non-
monotonic patterns of brain activity across experimental con-
ditions that would rule out single-process accounts. Mack et al.
(2013) compared patterns of brain activation to latent model
representations for competing psychological models, assessing
the match between brain activity and model predictions across
multiple experimental manipulations. Finally, Rotello and Heit
(2014) reinterpreted brain imaging studies of conflicts between
prior beliefs and deductive reasoning, seeming to show multiple
reasoning processes, using an algebraic analysis based on signal
detection theory.
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The belief bias effect in reasoning (Evans
et al., 1983) is the tendency for logical
problems with believable conclusions (e.g.,
some addictive things are not cigarettes) to
elicit more positive responses than those
with unbelievable conclusions (some ciga-
rettes are not addictive things). The effect
of believability interacts with conclusion
validity (see the lower rows of Table 1 for
example data), leading many researchers
to conclude that reasoning accuracy is
greater for problems with unbelievable
conclusions (e.g., Oakhill and Johnson-
Laird, 1985; Newstead et al., 1992; Quayle
and Ball, 2000). Dube et al. (2010, 2011)
[see also Heit and Rotello (2014)] demon-
strated that the typical ANOVA analysis of
these behavioral data was inappropriate,
and showed that a signal detection based
interpretation of the data reached a differ-
ent conclusion, namely that the effect of
conclusion believability was to shift sub-
jects’ response bias to be more liberal. Trip-
pas et al. (2013) also concluded that con-
clusion believability consistently affected
response bias, but that reasoning accuracy
was additionally affected by believability
under certain conditions (i.e., higher cog-
nitive ability, complex syllogisms, unlim-
ited decision time).

The belief bias effect has also been
studied in the neuroscience literature,
although the focus has been slightly dif-
ferent. Whereas in the behavioral litera-
ture, researchers have focused on the accu-
racy with which subjects can discriminate
valid from invalid conclusions, in the neu-
roscience literature, questions have cen-
tered on the brain regions responsible for
resolving the conflict between the logically

correct response to a problem and the
believability of its conclusion. That is, neu-
roscience analyses have divided test trials
into those for which validity and believabil-
ity lead to the same conclusion (congruent
trials) and those for which they lead to dif-
ferent conclusions (incongruent trials). A
consistent finding is that the percentage of
correct responses is higher for congruent
than incongruent trials, an effect attrib-
uted to the competition between System
1, which drives belief-based responding,
and System 2, which drives logic-based
decisions (e.g., Goel et al., 2000; Tsujii
and Watanabe, 2010; cf. Evans and Curtis-
Holmes, 2005). A similarly consistent find-
ing is the selective activation of right pre-
frontal cortex (rPFC) for incongruent, and
not congruent, test trials, suggesting a role
for rPFC in conflict detection and/or res-
olution (fMRI: Goel et al., 2000; Goel and
Dolan, 2003; Stollstorff et al., 2012; fNIRS:
Tsujii and Watanabe, 2009, 2010; Tsujii
et al., 2010b; TMS: Tsujii et al., 2010a). For
example, Stollstorff et al. (2012) noted that
right lateral PFC“is consistently engaged to
resolve conflict in deductive reasoning” (p.
28). In ERP,a late positivity for incongruent
trials has been interpreted similarly (Luo
et al., 2008, 2013). These data suggest that
rPFC activation inhibits System 1 respond-
ing, a conclusion that is broadly consistent
with the assumed inhibitory function of
right inferior frontal cortex (Aron et al.,
2014).

We will begin by showing that the par-
titioning of trials and subsequent analysis
are based on faulty logic, such that the
intended comparison of accuracy for con-
gruent versus incongruent trials actually

reflects differences in the “valid” response
rates to believable and unbelievable prob-
lems. Using simple algebra, we show that
accuracy for congruent and incongruent
trials can only be equal when the ‘valid’
response rate does not vary with believ-
ability. Second, we will turn to the inter-
pretation of the corresponding brain data,
arguing that it is also flawed because of its
dependence on those very same accuracy
differences. Finally, we will suggest an alter-
native interpretation of rPFC activation in
the belief bias task.

In belief bias studies, accuracy for the
congruent trials, Ac, is measured using per-
cent correct. It is simply the average of the
“valid” (hit) response rate in the believable
condition (H B) and the “invalid” (correct
rejection) response rate in the unbelievable
condition (CRU):

AC =
1

2
(HB + CRU) (1)

Likewise, accuracy for the incongru-
ent trials, AI, is simply the average of the
hit rate in the unbelievable condition and
the correct rejection rate in the believable
condition:

AI =
1

2
(HU + CRB) (2)

For example, for the representative
data in the lower rows of Table 1,
AC= 0.5(0.86+ 0.68)= 0.77, and AI= 0.5
(0.68+ 0.39)= 0.54, implying that accu-
racy is higher for the congruent than the
incongruent trials. Interestingly, the accu-
racy advantage seen for congruent trials
is observed even though believability did
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Table 1 | Data from Dube et al. (2010).

Experiment Condition Response rates

H = P (“valid”| Miss = P (“invalid”| F = P (“valid”| CR = P (“invalid”| Overall “valid”

Valid) Valid) invalid) invalid) response rate

1 Liberal 0.79 0.21 0.67 0.33 0.730

Conservative 0.55 0.45 0.31 0.69 0.430

2 Believable 0.86 0.14 0.61 0.39 0.735

Unbelievable 0.68 0.32 0.32 0.68 0.500

not affect validity discrimination in this
experiment (Dube et al., 2010, Exp. 2).

The interpretation of the neuroscience
data on belief bias depends crucially on the
difference in accuracy for congruent and
incongruent trials. To understand these
data, we first show that interpretation of
the percent correct accuracy measure actu-
ally depends on response rate differences.
Let us spend a moment examining how the
accuracy difference could come about, by
starting with the question of when accu-
racy for the two trial types would be equal.
In other words, under what conditions does
AC=AI, or, equivalently, when is Eq. 3
true?

1

2
(HB + CRU) =

1

2
(HU + CRB) (3)

Because the correct rejection rate, CR,
equals 1 minus the false alarm rate, F, we
can rewrite Eq. 3:

1

2
(HB + 1− FU) =

1

2
(HU + 1− FB) (4)

Some reorganization and simplification
yields

1

2
(HB + FB) =

1

2
(HU + FU) (5)

Equation 5 is revealing, because the
average of the hit and false alarm rates
equals the “yes” rate (assuming equal num-
ber of target and lure trials). As Macmillan
and Creelman (2005) showed, the yes rate
is a measure of response bias, not accu-
racy. Thus, Eq. 5 shows that the congru-
ent and incongruent trials can only yield
equal accuracy (measured with percent
correct; a related argument applies to d ′) if
the response rates to believable and unbe-
lievable problems are the same. This bias
restriction is unlikely to be met, because the

belief bias effect itself is a difference in pos-
itive response rates with conclusion believ-
ability (e.g., Evans et al., 1983; Dube et al.,
2010, 2011; Trippas et al., 2013). Believ-
able problems tend to elicit more positive
responses both for valid and invalid con-
clusions; thus, it is easy to see that the
congruency analysis will produce AC > AI.
Starting with a version of Eq. 4 that assumes
AC > AI

1

2
(HB + 1− FU) >

1

2
(HU + 1− FB) (6)

we can simplify and reorganize to see that
AC > AI whenever

HB −HU > FU − FB (7)

Because both the hit and false alarm rate
are higher to problems with believable con-
clusions, the left side of the inequality in
Eq. 7 will be positive, and the right side
will be negative: AC will always be greater
than AI if believable conclusions elicit more
positive responses than unbelievable con-
clusions. This observation generalizes to
any empirical manipulation that elicits a
response rate difference, as long as the more
liberal condition is treated as analogous to
the believable problems. For example, the
upper rows of Table 1 show data from Dube
et al. (2010) (Exp. 1), which was a syllogis-
tic reasoning task on abstract problems that
were structurally identical to those in their
belief bias experiments. One group of sub-
jects was told that 85% of the problems had
a valid conclusion, and another group was
told that 15% of the conclusions were valid,
though in fact both groups were given iden-
tical problem sets in which 50% of con-
clusions were logically valid. Treating the
liberal condition as analogous to the believ-
able problems, and letting the conservative
condition play the role of the unbelievable
problems, we can compute AC= 0.74 and

AI= 0.44, implying that accuracy is higher
for the congruent than the incongruent tri-
als despite the absence of any believable (or
unbelievable) content.

We turn now to the neuroscience liter-
ature, for which we argue that differences
in response rates have been misinterpreted
as accuracy differences. Neuroscience stud-
ies of belief bias have consistently found
selective activation of rPFC to incongruent
trials (Goel et al., 2000; Goel and Dolan,
2003; Tsujii and Watanabe, 2009, 2010; Tsu-
jii et al., 2010a,b; Stollstorff et al., 2012).
Indeed, Tsujii and Watanabe (2009, 2010)
and Tsujii et al. (2010b) took this general
finding a step further. In each of these three
studies, they reported a positive correla-
tion between the magnitude of activation
in rIFC and the difference in accuracy lev-
els for incongruent and congruent trials.
Tsujii and Watanabe (2009) wrote “sub-
jects with enhanced activation in the right
IFC could also perform better in conflicting
[incongruent] reasoning trials” (p. 121).
As we have seen, however, accuracy differ-
ences as a function of congruency simply
reflect a different “valid” response rate to
problems with believable and unbelievable
conclusions. So, a better interpretation of
these data is that right IFC activation cor-
relates with the magnitude of that response
rate difference. The scatter plots in each of
these studies show that the highest degree
of selective activation (largest difference
for incongruent compared to congruent
trials) corresponds to accuracy differences
(incongruent minus congruent) that are
zero or positive, meaning that those sub-
jects showed an atypical response to the
belief bias task: either they showed no
response rate difference with believabil-
ity (and thus had no accuracy difference,
see Eq. 5) or they made more positive
responses to unbelievable than believable
conclusions (and thus had higher accuracy
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for incongruent trials than congruent, see
Eq. 7).

Tsujii et al. (2010a) used TMS to show
that disruption to right IFC increased the
magnitude of the accuracy difference with
congruency: subjects showed large accu-
racy advantages for congruent trials, which
can only occur because of large response
rate effects of believability (Eq. 7). Inter-
estingly, disruption to left IFC eliminated
the accuracy advantage for congruent tri-
als, meaning that the “valid” response rate
to believable and unbelievable conclusions
was at least roughly equated (Eq. 5).

Our analysis of the accuracy effect of
congruency shows that the analyses in the
neuroscience literature on belief bias have
not directly addressed why congruency dif-
ferences occur, the brain regions respon-
sible for conflict detection/resolution, or
the relative involvement of reasoning Sys-
tems 1 (belief) and 2 (logic). None of those
processes have been shown to be involved
in the appearance of an accuracy difference
with congruency (see Eqs 5 and 7). Instead,
the selective activation of prefrontal cor-
tex in response to incongruent problems
must be a consequence of the response rate
difference for believable and unbelievable
problems.

The failure to consider response rate dif-
ferences across conditions has also lead to
the misinterpretation of behavioral data
in a variety of domains (e.g., Verde and
Rotello, 2003; Rotello et al., 2005; Dou-
gal and Rotello, 2007; Evans et al., 2009;
Mickes et al., 2012) and of other neuro-
science data. For example, fMRI evidence
from perceptual categorization and recog-
nition tasks had been interpreted as show-
ing distinct cortical systems for these tasks
(e.g., Reber et al., 1998). However, Nosofsky
et al. (2012) noted that the “yes” response
rate also differs by task: categorization nat-
urally suggests a more liberal response cri-
terion than recognition. When activation
patterns were compared for categorization
tasks and a recognition task in which sub-
jects were instructed to use a liberal recog-
nition criterion, no differences in brain
activation were found; the distinct pat-
terns were attributable to the response bias
difference.

Some recent neuroscience studies have
explicitly manipulated the decision crite-
rion across trials. In simple perceptual tasks
such as line length discrimination, this can

be accomplished by showing participants
the length of the line to use as the bound-
ary between “short” and “long” responses.
Using this strategy, White et al. (2012)
found left inferior temporal cortex, which
is responsible for representing objects, was
activated in response to the decision cri-
terion itself. They suggested that the cri-
terion value (here, an explicitly provided
line length) was stored much like any other
stimulus, and so its particular brain loca-
tion would vary with the task. In the case
of syllogistic reasoning, the decision cri-
terion represents a level of evidence for
the validity of the conclusion. Where this
information would be stored is an inter-
esting question to consider, but it seems
that one possible place to starting looking
would be in the right inferior frontal cor-
tex. More generally, we see much promise
in future neuroscience studies of belief bias
that take account of what can be inferred
from analysis of behavioral measures.
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Causal inference is a fundamental component of cognition and perception. Probabilistic
theories of causal judgment (most notably causal Bayes networks) derive causal
judgments using metrics that integrate contingency information. But human estimates
typically diverge from these normative predictions. This is because human causal
power judgments are typically strongly influenced by beliefs concerning underlying
causal mechanisms, and because of the way knowledge is retrieved from human
memory during the judgment process. Neuroimaging studies indicate that the brain
distinguishes causal events from mere covariation, and also distinguishes between
perceived and inferred causality. Areas involved in error prediction are also activated,
implying automatic activation of possible exception cases during causal decision-
making.
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Causal inference is a fundamental component of cognition and
perception, binding together conceptual categories, imposing
structures on perceived events, and guiding decision-making. A
type of causal inference that is of particular interest to decision
scientists is causal power judgment. Causal power refers to the
ability of a particular cause alone (when it is present) to elicit
an effect, relative to other causes (Cheng, 1997). For example,
selective serotonin-reuptake inhibitors (SSRI) may be considered
more effective in alleviating depression than a placebo if greater
depression alleviation is observed when an SSRI is ingested than
when a placebo is ingested.

In probabilistic theories of causal judgment, causal power is
assessed through metrics that integrate contingency information.
One such normative metric is defined as

1P = (E|C)−P(E| ∼ C)

that is, the probability of the effect occurring in the presence of the
cause minus the probability of the effect occurring in the absence
of the cause. (This metric is referred to as ∆P by Cheng (1997) and
as PNS by Pearl (2000)). An extension of ∆P that normalizes the
metric by means of the base rate of the effect measures the power
of the candidate cause to generate or prevent the effect relative to
other possible causes. Cheng (1997) defined this metric for causes
that generate an effect as

Pc = 1P/1− P(E| ∼ C).

This is equivalent to the metric defined by Pearl (2000) as PS.
For causes that prevent the effect, Cheng (1997) defined causal
power as

Pc = −1P/P(E| ∼ C).

The difficulty with the probabilistic approach is that human
causal power judgments frequently depart from the normative
values predicted by these metrics. This is because human causal

power judgments are typically strongly influenced by beliefs
concerning underlying causal mechanisms, and because of the
way knowledge is retrieved from memory during the judgment
process.

CAUSAL MECHANISMS
Causality is distinct from mere contingency or covariation. In
causality, one event has the power to bring about another
event. In covariation and contingency, two events are simply
statistically dependent on one another. People cognize causal
events differently than they do simple contingency or covariation,
and this is apparent in neuro-imaging results: When viewing
launching displays, significantly higher levels of relative acti-
vation is observed in the right middle frontal gyrus and the
right inferior parietal lobule for causal relative to non-causal
events (Fugelsang et al., 2005). Another study contrasted dis-
plays of normal causality with magic tricks that appear to vio-
late causality and those that are surprising but do not violate
causality (Parris et al., 2009). The results indicated that brain
areas responsible for detecting expectancy violations in gen-
eral (i.e., anterior cingulate cortex and left ventral prefrontal
cortex) are not responsible for detecting causality violations.
This function appears to be specific to the dorsolateral pre-
frontal cortex. In another study, identical pairs of words were
judged for causal or associative relations in different blocks of
trials. Causal judgments, beyond associative judgments, gen-
erated distinct activation in left dorsolateral prefrontal cortex
and right precuneus, again substantiating the particular involve-
ment of these areas in assessments of causality (Satpute et al.,
2005).

Other research indicates that perceptual causality can
be neurally distinguished from inferential causality. Inferen-
tial causality activates the medial frontal cortex (Fonlupt,
2003). Research involving callosotomy (split-brain) patients
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also indicates particular left hemispheric involvement (Roser
et al., 2005). In contrast, perception of causality can be
influenced by the application of transcranial direct stimula-
tion to the right parietal lobe, suggesting that the right pari-
etal lobe is involved in the processing of spatial attributes
of causality (Straube and Chatterjee, 2010; Straube et al.,
2011).

In short, neuroimaging studies show that the brain distin-
guishes causal events from non-causal events, and this distinction
cannot simply be attributed to the surprising nature of non-
causal event displays. It also distinguishes between perceived and
inferred causality.

The importance of causal mechanism assessment looms par-
ticularly large in causal decision-making. People typically dis-
count even strong covariation/contingency information if no
plausible causal mechanism appears responsible for the covari-
ation or contingency (Ahn et al., 1995). In a classic study by
Fugelsang and Dunbar (2005), people read either plausible or
implausible causal hypotheses and were shown covariation data
that were either consistent or inconsistent with these hypothe-
ses. A consistent case was one in which a plausible hypoth-
esis was accompanied by strong covariation (high ∆P) or an
implausible hypothesis was accompanied by weak covariation
data (low ∆P). An inconsistent scenario was on in which a
plausible hypothesis was accompanied by weak covariation data
(low ∆P) or an implausible hypothesis was accompanied by
strong covariation (high ∆P). The task was to estimate the
effectiveness of the purported cause in bringing about the effect.
The results showed quite clearly the impact of causal plausibility
on behavioral judgments and neural processing. Areas associ-
ated with thinking (executive processing and working memory)
were more active when people encountered data while evalu-
ating plausible causal scenarios. Areas associated with learning
and memory (caudate, parahippocampal gyrus) were activated
when data and theory were consistent (plausible + strong data
OR implausible + weak data). But when data and theory were
inconsistent (implausible + strong data OR plausible + weak
data), attentional and executive processing areas were active (ante-
rior cingulate cortex, prefrontal cortex, precuneus) Attentional
and executive processing areas (anterior cingulate gyrus, pre-
frontal cortex, precuneus) were particularly active when plausible
theories encountered disconfirming (weak) covariation. These
results were interpreted to mean that people focus on theories
that are consistent with their beliefs (plausible causal scenarios).
They also attend to disconfirming data, but they do not necessarily
revise beliefs in light of disconfirming data. This phenomenon
is sometimes referred to as truth maintenance (Doyle, 1979) or
belief revision conservatism (Kelly et al., 1997; Corner et al.,
2010). Both strategies seek to maintain coherence in one’s knowl-
edge base by minimizing changes to current belief in light of new
information.

KNOWLEDGE RETRIEVAL
Different types of knowledge are activated when reasoning from
cause to effect than when reasoning from effect to cause. When
reasoning from cause to effect, disablers are spontaneously acti-
vated; when reasoning from effect to cause, alternative causes

are spontaneously activated. (Preventive causes in this literature
are referred to as disablers.) Consider, for example, arguments of
the form “If Marilyn takes SSRI medication, then her depression
will lift/Marilyn is taking SSRI medication/Therefore, Marilyn’s
depression will lift”. People’s willingness to accept such arguments
is inversely proportional to the number of disablers activated in
memory (factors that could prevent Marilyn’s depression from
lifting even though she’s taking SSRI medication.) This effect has
been observed in adults (e.g., Cummins et al., 1991; Cummins,
1995, 1997; De Neys et al., 2002, 2003; Vershueren et al., 2004)
as well as children (Markovits et al., 1998; Janveau-Brennan and
Markovits, 1999).

Recently, two models have been proposed to capture the
impact of disablers on causal power judgments. In the first model,
proposed by Cummins (2010), causal power judgments are cap-
tured by the following equation:

Wc = B(α/(α + disablers))

Wc represents the decision-maker’s estimated probability that the
cause will in fact bring about the effect. B is a parameter that
reflects the believability of the causal mechanism underlying the
purported causal relationship. The inclusion of this parameter
is motivated by ample research showing that people ignore or
discount covariation information if no they can think of no
plausible causal mechanism whereby the purported cause can
bring about the effect (e.g., Ahn et al., 1995). In the model, if
a decision-maker does not believe the two events are causally
related, B = 0 and disablers are irrelevant and hence not activated
in memory. Only when they believe a causal mechanism exists
that empowers one event to evoke another (B = 1) do disablers
become relevant.

The term α/(α+disablers) is a memory activation function—
a positively accelerated curve—in which the first few disablers
retrieved from memory have greater impact on judgment than
those retrieved later. Activation spreads throughout the network
of associated disablers, and likelihood estimates drop off signifi-
cantly the farther it spreads. This is because stronger disablers are
presumed to be activated earlier than weaker ones, and therefore
have greater impact on judgment outcomes. In other words, the
psychological difference between 0 and (e.g.,) 3 items is greater
than the psychological difference between (e.g.,) 4 and 7. α is
a free parameter; it simply expresses the steepness of the curve,
and its value is determined empirically. Figure 1 depicts causal
power likelihood estimates for different disabler and α values
when B = 1.

The model captures the likelihood of an effect occurring
when a cause is present and disablers are absent, and its crucial
prediction is that the number of disablers and the order of disabler
retrieval both matter.

The inclusion of α as a parameter is motivated by research
on reasoning with causal conditional arguments. De Neys et al.
(2003) reported that while “thinking aloud”, reasoners did not
halt the retrieval process upon retrieving a single counterexample.
Instead, they continued to retrieve disablers until a final judg-
ment was made, and willingness to accept causal conclusions
declined as more disablers were activated in memory. Their results
suggested a non-linear retrieval function, however, in which a
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FIGURE 1 | A model of causal power values (Wc ) as a function of
belief that a causal mechanism underlies the contingency (B) and
number of disablers for different values of α, a free parameter
whose value is determined empirically. In the graph, B = 1, meaning

that the decision-maker believes the contingency reflects a causal
relationship. The function shows that the first few disablers retrieved
have greater impact on causal power estimates than ones retrieved
later.

threshold occurred at about 3 retrieved items, after which argu-
ment acceptance ratings changed very little.

In the second model, proposed by Fernbach and Erb (2013),
causal power judgments are based on an aggregate disabling
probability. Each disabler has some prior likelihood of being
present (Pd) and, when present, a likelihood of preventing the
effect from occurring, which constitutes its strength (Wd). The
disabling probability of any given disabler (Ai) is equal to the
product of its prior probability and its strength

Ai = Pdi
∗Wdi

The likelihood that the cause will successfully bring about an
effect is the aggregate of these individual disabling probabilities:

A′ =
∑n

i=1
Ai −

∑
i,j:i<j

AiAj +
∑

i,j,k:i<j<k
AiAjAk− · · ·

+ (−1)n−1
∏n

i=1
Ai

As an example, if there are two disablers, then the resulting
equation is

A′ = A1 + A2 − A1
∗A2

If there are three, then it becomes

A′ = A1 + A2 + A3 − A1
∗A2 − A1

∗A3 + A1
∗A2
∗A3

and so on. Causal power, Wc, is the complement of this aggregate
disabling probability, which means that it expresses the likelihood

that the cause will bring about the effect when there are no
disablers to prevent it:

Wc = 1− A′

To summarize, according to Cummins (2010) (a) causal power
likelihood estimates diminish as the number of disablers retrieved
increases; and (b) earlier retrieved disablers have greater impact
than later ones. According to Fernbach and Erb (2013), causal
power likelihood can be captured by aggregate disabler impact,
a value not affected by order of disabler retrieval.

Fernbach and Erb (2013) found that their model constituted a
reasonably good fit for causal arguments but not for non-causal
ones, despite similarity in their conditional probabilities. These
results constitute strong support for the inclusion of believability
parameter when modeling disabler impact. Cummins (2014)
found that aggregate impact scores did not fully capture final
likelihood judgments well, and the disparity was due to the fact
that order of disabler retrieval mattered. Stronger disablers are
retrieved first, but, contrary to Cummins’ model, the ultimate
judgment is more strongly influenced by later retrieved items than
by earlier ones.

Recent research has successfully identified the neurocorre-
lates of disabler retrieval during causal reasoning. Of particular
interest are two specific event-related potentials: N2 and P3b.
N2 is a frontal negative deflection observed between 200 ms
and 300 ms after stimulus onset while P3b is a centroparietal
positive deflection observed 250–450 ms after stimulus onset. N2
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is typically observed when causal expectations are violated while
P3b is typically observed when such expectations are satisfied
(Verleger, 1988; Folstein and VanPetten, 2008). Causal arguments
that admit of many disablers elicit more pronounced N2 and less
pronounced P3b responses than do causal arguments that admit
of few disablers (Bonnefond et al., 2014). This pattern of response
is interpreted to mean that disabler retrieval lowers reasoners’
expectations that an effect will in fact be elicited by a particular
cause.

In a related fMRI study (Fenker et al., 2010), a task cue
prompted people to evaluate either the causal or the non-
causal associative relationship between pairs of words. Causally
related pairs elicited higher activity than non-causal associates
in orbitofrontal cortex, amygdala, striatum, and substantia
nigra/ventral tegmental area. Importantly, this network overlaps
with the mesolimbic and mesocortical dopaminergic network
known to code prediction errors (O’Doherty et al., 2003, 2007).
Because the study context did not explicitly require people to
make predictions, activity in this network suggests that that
prediction error processing might be automatically recruited in
assessments of causality.

The take-home message of this work is that human causal
inference cannot be adequately modeled without taking into
consideration the ways in which knowledge is activated and
weighted in the decision process. Current popular models of
causal inference (e.g., Fernbach et al., 2011; Fernbach and Erb,
2013) analyze it as a type of Bayesian inference, yet such models
do not constitute adequate descriptive models of human predictive
inference because they abstract away from these crucially impor-
tant variables. This implies that human predictive inference is not
purely Bayesian. As was well-documented by Kahneman (2011),
the source of the discrepancy seems to lie in the way knowledge
retrieval transacts with probability estimations. Automatic (e.g.,
Cummins, 1995, 2010) activation of relevant alternatives is a
hallmark of human reasoning, and this characteristic must be
accommodated in descriptive models of causal inference if human
causal judgments are to be adequately predicted.
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A commentary on

Improving reasoning skills in secondary
history education by working memory
training
by Ariës, R. J., Groot, W., and van den
Brink, H. M. (2014). Br. Educ. Res. J. doi:
10.1002/berj.3142. [Epub ahead of print].

Cognitive (brain) training has been a
major focus of study in recent years. In
applied settings, the excitement regarding
this research programme emanates from
its prospects for far transfer—defined as
observing performance benefits in out-
come measures that are contextually,
structurally or superficially dissimilar to
the trained task (Perkins and Salomon,
1994). By and large, researchers have
focused on training working memory
(WM). This is not surprising, given the
ubiquity of WM requirements for think-
ing (Baddeley, 2003). Currently, much evi-
dence suggests that adaptive training on
WM tasks can increase WM skills. In
contrast, consistent evidence regarding far
transfer is lacking (see Melby-Lervåg and
Hulme, 2013), although there is evidence
to suggest that when the training modal-
ity is visuospatial, the likelihood of transfer
and the long-term stability of its benefits
are enhanced (Melby-Lervåg and Hulme,
2013; Stephenson and Halpern, 2013).

Theoretically, there is reason to sus-
pect that interventions that increase WM
skills and/or capacity could improve
deductive reasoning. This prediction
stems from the observation that individ-
ual differences in WM capacity predict
deductive reasoning performance on con-
flict problems where the believability of
conclusions conflicts with logical valid-
ity (e.g., Newstead et al., 2004). Conflict

problems require WM resources because
their correct solution depends on the
suppression of the heuristic system
(System I) in favor of responding in accor-
dance with the analytic system (System II).
Evidence for this interpretation was pro-
vided by De Neys (2006), who presented
participants with conflict and non-conflict
syllogisms while also burdening their exec-
utive resources with a secondary task.
Specifically, the between-subjects manipu-
lation of WM load consisted of presenting
a 3 × 3 matrix prior to each syllogism,
wherein the matrix was filled with a
complex four-dot pattern (high load) or
with three dots on a horizontal line (low
load)1. After making a validity judgment,
participants reproduced the matrix pat-
tern. This experimental design required
them to maintain the matrix pattern in
WM while reasoning. Whereas the high
load condition impaired performance on
conflict problems, there was no effect
of load on non-conflict problems. This
demonstrates that overcoming belief-logic
conflict is limited by WM capacity.

WM training could also lead to
improvement in deductive reasoning via
its effect on fluid intelligence—typically
measured using matrix reasoning tasks.
Specifically, much evidence suggests that
general cognitive ability and deductive rea-
soning are positively correlated (Stanovich
and West, 2000). In addition, a recent
meta-analysis demonstrated that train-
ing specifically on the n-back family of
WM tasks leads to a small but positive
effect on fluid intelligence (Au et al.,
2014). Therefore, theoretically, increases
in fluid intelligence could mediate the link

1 There was also a third no-load condition—not
pertinent to the present discussion.

between n-back training and deductive
reasoning, offering an indirect route for
improving the latter (Figure 1).

Recently, Ariës et al. (2014) investigated
the combined effect of reasoning strategy
and WM training on school performance.
The participants for Experiment 1 were
enrolled in lower-level Higher Secondary
Education history classes. During the 6-
week intervention period, participants in
the control condition were taught using
a “conservative” method that involved the
introduction of new subjects in new para-
graphs, and the answering of reasoning
questions from the textbook. In contrast,
for participants in the experimental con-
dition the same material was embedded
within two WM training tasks: n-back and
the Odd One Out. This approach ensured
that training was contextualized within the
subject matter of the history class. For
example, on each trial of the Odd One
Out four historical words or pictures were
presented successively on the screen, three
of which were related (e.g., were drawn
from agrarian civilizations) whereas the
fourth was not (i.e., was a depiction of
hunter-gatherer civilization). The partici-
pant had to maintain all four stimuli in
WM to select the odd one out. In the
n-back task, nouns (e.g., farming) and pic-
tures (e.g., hieroglyphics) drawn from the
content of the history class were used as
stimuli.

In addition, the experimenters trained
reasoning strategies using a modification
of the IMPROVE method (see Mevarech
and Kramarski, 2003). This intervention
is designed to teach the structure of rea-
soning, and works by testing understand-
ing of the problems, highlighting similari-
ties between problems, applying strategies

Frontiers in Human Neuroscience www.frontiersin.org February 2015 | Volume 9 | Article 56 |

HUMAN NEUROSCIENCE

177

http://www.frontiersin.org/Human_Neuroscience/editorialboard
http://www.frontiersin.org/Human_Neuroscience/editorialboard
http://www.frontiersin.org/Human_Neuroscience/editorialboard
http://www.frontiersin.org/Human_Neuroscience/about
http://www.frontiersin.org/Human_Neuroscience
http://www.frontiersin.org/journal/10.3389/fnhum.2015.00056/full
http://community.frontiersin.org/people/u/179450
http://community.frontiersin.org/people/u/64029
mailto:erin.beatty@drdc-rddc.gc.ca
http://www.frontiersin.org/Human_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Human_Neuroscience/archive


Beatty and Vartanian Cognitive training and deductive reasoning

FIGURE 1 | Two possible routes for improving deductive reasoning by working memory

training. The solid arrow depicts a direct effect. The dashed arrows depict an indirect effect.

for solving problems, and prompting
reflection on the reasoning process.
Compared to the control condition,
students in the experimental condition
exhibited significant gains in perfor-
mance on reasoning questions in official
school tests that necessitate inference
making—a difference that remained sig-
nificant 16 weeks after the termination
of training. Subsequently, participants in
Experiment 2 who were enrolled in higher-
level Higher Secondary Education history
classes received either WM or reasoning
strategy training. On its own, reasoning
strategy but not WM training improved
school test performance.

The results of Ariës et al. (2014) suggest
that for students of relatively lower abil-
ity, the combination of WM and reasoning
strategy training can be a successful recipe
for improving reasoning. This is likely
because whereas the former enhances WM
skills, the latter facilitates the acquisition
of the cognitive tools for logic. For stu-
dents of higher ability there might be less
room for improving WM (i.e., a ceiling
effect), such that learning the structure
of reasoning becomes a relatively more
important factor for improving perfor-
mance. Although the results of the two
experiments are not directly comparable
because of differences in the composition
of the samples and intervention strategies,

they do suggest that differences in baseline
ability must be taken into account while
assessing transfer effects (see Jaeggi et al.,
2014).

In conclusion, it appears useful to
pursue the possibility that WM training
could benefit deductive reasoning directly
by increasing WM skills, or indirectly
by increasing fluid intelligence. Critically,
Ariës et al.’s successful intervention con-
sisted of embedding WM training with
domain-relevant material. It has yet to be
demonstrated whether a domain-general
intervention to train WM will exhibit
a similar transfer profile in the con-
text of deductive reasoning. In addition,
the extent to which successful transfer
to deductive reasoning will require sup-
plementing WM training with strategy
training remains an open question.
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