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Editorial on the Research Topic

Hydroclimatology of the Great Lakes region of North America

The Great Lakes region of North America encompasses the Laurentian Great Lakes

and the surrounding provinces and states of Canada and the United States. Although

the sensitivity of the Great Lakes region to climate variability and change has long

been recognized, current understanding of the historical and potential future changes in

the regional hydroclimatology, and the consequences for physical and human systems,

remains incomplete.

For this Research Topic, we sought submissions that improve our understanding of

the trends and projected changes in the various components of the hydrological cycle,

with the overall goal of providing novel insights to facilitate climate-related decision

making in the Great Lakes region. Below we first provide as context a brief overview

of the Great Lakes region, after which we integrate the contributions comprising this

Research Topic around four themes: (1) historical trends in precipitation, (2) future

projections for fine-scale assessment of regional thermal and hydrological characteristics,

(3) lake effect climatology, and (4) challenges and novel approaches to assessing lake

level fluctuations.

An introduction to the Great Lakes region

The Laurentian Great Lakes of North America, a series of interconnected freshwater

lakes (Lakes Superior, Michigan, Huron, Erie, and Ontario), constitute the largest

supply of fresh water in the world with more than 20% of the global total (Quinn,

1988) and with a coastline exceeding 14,000 km in length (Gibb, 2013). The climate

of the Great Lakes region is influenced by its continental location, seasonal shifts in

the location and configuration of the polar jet stream, and the frequency and tracks

of transient midlatitude cyclones (Andresen et al., 2014). The Great Lakes modify

the thermal and moisture characteristics of air masses transported into the region,
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with locations downwind of the lakes generally having a cloudier,

wetter, and more moderate climate than those less influenced by

the lakes (Andresen and Winkler, 2009).

Over 30% of the population of Canada, and ∼10% of the

United States population, currently reside in the Great Lakes

region (US EPA, 2021), and the region is home to over 40 Tribal

Nations (Gibb, 2013). The availability of iron ore, the region’s

proximity to energy resources, and access to transportation

contributed in the late 1800s and early 1900s to the development

of manufacturing surrounding the Great Lakes, and the region

remains the focus of the North American automobile industry

(Sousounis and Albercook, 2000). Agriculture is the major

regional land use (Niyogi and Mishra, 2013). The western

portion of the Great Lakes region intersects the fertile North

American Corn Belt (Hart, 1986) where corn (i.e., maize) and

soybean production dominate (National Agricultural Statistics

Service, 2022), whereas the eastern Great Lakes region is

known for its diverse agriculture including fruit and vegetable

production (Winkler et al., 2002). Tourism is an additional

major revenue source and includes sport fishing, hiking and

camping, and winter recreation (Shih et al., 2009; Nicholls,

2014). A multimodal transportation system, which includes

marine ports and inland waterways, is central to the region’s

economy (Council of the Great Lakes Region, 2017).

Precipitation trends and mechanisms

Considerable uncertainty surrounds the sign and magnitude

of historical trends in precipitation for the Great Lakes region,

and several contributions to the Research Topic focus on

the computation of robust estimates of regional precipitation

trends. Motivated by previous studies that often found

contradictory trends even for stations in close proximity, Baule

et al. applied multiple quality control procedures to station-

level precipitation observations to minimize the influence of

station inhomogeneities on trend calculations. Temporal trends

computed using the quality-controlled time series were, when

significant, almost always positive, suggesting a general increase

in recent decades in both high frequency, low magnitude

and low frequency, high magnitude precipitation events.

In contrast, Paxton et al. removed from trend calculations

the autocorrelation in time series of extreme precipitation

introduced by the persistence of large-scale modes of climate

variability. They, too, found that all significant trends were

positive in sign. Both studies, however, show that precipitation

trends remain statistically insignificant for substantial portions

of the Great Lakes region. Kunkel et al., who calculated temporal

trends in extreme precipitation events for four overlapping

periods spanning 1908–2020, note that significant trends were

more likely for the more recent time periods. Together, these

studies suggest a regional-scale trend toward a wetter climate

that is emerging from interannual variability. Focusing on

proxy measures of precipitation, Trumper et al. found that

in the northern Great Lakes region the correlation between

latewood tree-ring width from Pinus resinosa (red pine) with

daily precipitation variability has weakened since the 1980s,

limiting the utility of latewood for assessing ongoing trends in

the regional hydroclimate.

These authors also consider atmospheric processes

contributing to the precipitation trends. Both Kunkel et al. and

Baule et al. explore the relationship between precipitable water

and precipitation, with Kunkel et al. finding that precipitation

amounts increase with precipitable water depths greater than

30mm, whereas the insignificant temporal trends in precipitable

water found by Baule et al. for large portions of the Great Lakes

region point to cautious interpretation of the relationship

between precipitable water trends and precipitation trends. On

the other hand, Paxton et al.’s findings suggest that regional

trends in extreme precipitation are associated with changes

in the strength and frequency of jointly-considered 500mb

geopotential height and 850mb relative humidity fields, as

identified using bivariate self-organizing maps. Furthermore,

Kunkel et al. found that over 78% of daily extreme precipitation

events in the Great Lakes region occur along frontal boundaries

of midlatitude cyclones.

Future projections of
hydroclimatological variables

Future economic development of the Great Lakes region

is greatly dependent on projected future changes in the

temperature and precipitation climatology. Evaluating these

changes on finer temporal and spatial scales by using local

and regionally specific projections is imperative for successful

planning for future resilience and adaptation. Several papers

of this Research Topic (Grady et al., Kluver and Robertson,

Xie et al., Shrestha et al.) address projected future changes in

temperature and precipitation at a variety of spatial scales within

and around the Great Lakes region. All of these papers base

their investigation on dynamically downscaled projections using

mostly the high emissions scenario RCP8.5.

Similar to existing research, the papers agree on the

projected increases of temperatures in the future, e.g., rise in

average daily maximum and minimum temperatures over the

Saginaw Bay watershed (Kluver and Robertson) or in annual

mean temperature over the Great Lakes region (Shrestha et al.).

In parallel with these findings, Xie et al. show that extreme high

temperature days are expected to increase exponentially with

rising temperatures within the region, and this projected change

is independent of physics parameterizations and global climate

model (GCM) forcing.

Mean annual precipitation is projected to increase,

mostly due to higher intensity as found, for example,

over smaller areas such as the Saginaw Bay watershed
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in Michigan by Kluver and Robertson. These changes in

annual precipitation are also corroborated over the larger

Great Lakes Basin by Shrestha et al. who indicate that the

projected future changes in highest one-day precipitation

and number of wet days may indicate increases in extreme

precipitation in the region. Furthermore, Shrestha et al.,

considering additional land hydroclimatology characteristics,

indicate that annual runoff is also expected to increase

despite the fact that snowpack is projected to decrease and

actual evapotranspiration, especially in summer, is projected

to rise.

The seasonal and monthly projected changes in

precipitation and runoff are dependent on the season and

to an extent the location, as indicated by Grady et al. and

Shrestha et al. For example, Grady et al. identify for the

spring season good model agreement indicating an increase

in precipitation amount and intensity, and a decrease in the

length of dry spells and the number of dry days. For summer,

however, projections of precipitation amount and intensity do

not show such strong consensus in sign and strength and display

smaller changes with higher spatial variability. Considering

compound risk events such as dry summers following wet

springs, a combination which can be highly detrimental to corn

and soybean yields, Grady et al. find that the risk is projected to

be small by mid and late-century.

Lake e�ect climatology

Lake effect snow (LES) plays an important role in the

hydroclimatology of the Great Lakes region. A number of papers

within the Research Topic explore LES climatology and revisit

several questions that have been raised previously, yet remain

unanswered. One such question involves the contribution of LES

to the overall snow climatology of the region. Although LES is

an important contributor to snowfall, significant snow is also

associated with synoptic-scale systems. Separating the influence

of each requires that snow events be linked to a storm type, such

as lake effect, synoptic, or some combination. We see a number

of different approaches represented in this special collection.

Jones et al. used a dataset published by Laird et al. (2017) that

was based on an examination of daily GOES imagery. Direct

observation of lake effect precipitation structures was also used

by Hartnett, who classified snow events using a combination of

reanalysis data and radar observations. Ellis and Suriano used

the Temporal Synoptic Index (TSI) developed by Suriano and

Leathers (2017) and the Spatial Synoptic Classification (SSC)

from Ellis et al. (2021) to build a record of lake effect days.

Neither dataset represents direct observations of lake effect

cloud bands or precipitation, but the TSI provides a record of

days that possess the synoptic conditions most associated with

LES and the SSC provides insight into the way air masses are

modified as they cross the Great Lakes.

These differing approaches in determining LES, along with

the varying influence of each lake, contribute to highly variable

estimates of the climatological contribution of LES. Jones et al.

compared the very active lake effect winter of 2012/13 to

the relatively inactive 2009/10 winter and found that LES

contributions in the vicinity of Lakes Michigan, Erie, and

Ontario ranged from 10 to 70%. Hartnett found that 13–48% of

snowfall in central and northern New York was lake effect in

origin, although this result varied throughout the winter season.

Finally, Ellis and Suriano, using a hybrid lake effect dataset that

combined the TSI and SSC classifications for the eastern Great

Lakes, estimated that 31% of snow was lake derived. Although

these percentages are generally consistent with those of earlier

research (see Jones et al. Table 2), the substantial differences

in LES estimates highlight the continuing uncertainty in the

climatological contribution of LES.

Temporal trends in LES also have received considerable

prior attention (e.g., Hartnett et al., 2014) and are further

evaluated in this Research Topic, although the findings are

contradictory. Meng et al. examined eight quality controlled

snow records from western and central Michigan and found

that seven exhibited statistically significant increases from 1932–

2015. In contrast, Ellis and Suriano’s hybrid lake effect dataset

showed a declining trend in lake effect synoptic patterns and

air mass signatures from the late 1970s to the early 2000s. The

persistence of this question reflects the difficulty in assessing

snowfall records and the role that snow data quality, period of

analysis, and methodology all play in the conclusions.

Clark et al. presented an analysis of snow band structure

and snowfall along the southern end of Lake Michigan and

linked these structures to wind and temperature characteristics.

Chief among their findings is that bands parallel to the wind are

most common and determine much of the spatial distribution

of snowfall in this region. However, the less common shore

parallel bands account for some of the largest snowfalls in the

area. They also found that upstream inversion heights, which are

an indicator of the depth through which lake effect convection

operates, were not significantly correlated with snowfall, perhaps

due to the erosion of the inversion with over-lake passage.

Lake level trends and projections

In spite of both record low and record high Great Lakes

water levels observed during the early twenty-first century

(Gronewold and Rood, 2019), long-term trends in lake levels

remain poorly documented. Fry et al. argue that a constraining

factor is the limited availability of appropriate hydroclimate

data sources for large-scale hydrological modeling, in part

due to discontinuities from the Canadian-U.S. international

border and the sparse observations across the surface area

of the Great Lakes. In addition, currently available datasets

lack appropriate documentation for their shared use by water
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managers and the earth system modeling community, arguing

for greater engagement of these two communities. Moreover, the

limitations of downscaling GCM simulations to the scale of the

Great Lakes basin make assessing future lake level fluctuations

challenging. VanDeweghe et al. illustrate an approach that

links a lake-to-lake routing model to monthly values of the

environmental components contributing to net basin supply

that were estimated using a parametric regular vine copula.

Application of these methods to two plausible water supply

scenarios (one a continuation of current net basin supply trends

and the other a blend of existing trends with downscaled

projected trends from regional climate models) suggests only a

modest increase, but continued large variability, in Great Lakes

water levels.

Concluding remarks

This suite of papers point to the many complexities and

uncertainties surrounding the historical and projected future

changes in the hydroclimatology of the Great Lakes region

of North America, as highlighted by the careful consideration

of data issues (e.g., availability and inhomogeneities), the

application of multiple methodologies, and the spatial variations

that exist in many of the hydroclimate processes examined in

this Research Topic. The submissions reflect the continuing

efforts to improve our understanding of the fundamental

components of the hydrological cycle in the Great Lakes

region and to provide stakeholders with useful information for

decision making.
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Winter snowfall, particularly lake-contributed snowfall, has a significant impact on

the society and environment in the Great Lakes regions including transportation,

tourism, agriculture, and ecosystem. Understanding the inter-annual variability of

snowfall will provide sound basis for local community safety management and reduce

its environmental impacts on agriculture and ecosystems. This study attempts to

understand the trend and inter-annual variability in snowfall in the Lower Peninsula of

Michigan (LPM) using statistical analysis based on snowfall measurements from eight

weather stations. Our study demonstrates that snowfall has significantly increased from

1932 to 2015. Correlation analysis suggests that regional average air temperatures have

a strong negative relationship with snowfall in the LPM. On average, approximately

27% of inter-annual variability in snowfall can be explained by regional average air

temperatures. ENSO events are also negatively related to snowfall in the LPM and can

explain∼8% of inter-annual variability. The North Atlantic Oscillation (NAO) does not have

strong influence on snowfall. Composite analysis demonstrates that on an annual basis,

more snowfall occurs during the years with higher maximum ice cover (MIC) than during

the years with lower MIC in Lake Michigan. Higher MIC is often associated with lower air

temperatures which are negatively related to snowfall. This study could provide insight

on future snow related climate model improvement and weather forecasting.

Keywords: snowfall, inter-annual variability, Lake Michigan, trend, maximum ice cover, ENSO

INTRODUCTION

Winter snowfall, particularly lake-contributed snowfall, has a significant impact on the society
and environment in the Great Lakes regions including transportation, tourism, agriculture, and
ecosystem (Norton and Bolsenga, 1993; Schmidlan, 1993). The Lower Peninsula of Michigan
(LPM) experiences significant amounts of snowfall each year due to its geographic location east
of Lake Michigan. In the winter season, the LPM is affected by both mid-latitude cyclones and
lake-induced winter storms (Pettersen et al., 2020). Mid-latitude cyclones are often associated
with low-pressure centers such as the Colorado Low or Gulf Low that follow the jet stream. The
movement of mid-latitude cyclones over the LPM brings abundant moisture and snowfall to this
region. In addition to these synoptic low-pressure systems, Lake Michigan drives meso-beta scale
(20–200 km) convective lake-effect snowfall when cold-air moves over the relatively warm lake
surface. Due to the localized convection, lake-effect snowfall distribution is spatially variable and is
limited to the downwind shores of the Great Lakes. For instance, Scott and Huff (1996) defined an
80-km wide band around Lake Michigan as the area with significant lake effects while Braham and
Dungey (1984) used a 40 km wide band for the lake effect region.
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Contribution of lake-effect snowfall to seasonal snowfall totals
could vary from region to region and from season to season.
Scott and Huff (1996) suggested ∼35% increase in snowfall in
southwestern lower Michigan due to lake effects. Changnon
(1968) calculated a 30% increase for the same region and a much
higher increase (∼50%) for northwestern Michigan. Hartnett
(2020) classified snowstorms affecting central New York into
non-direct cyclonic storms and direct cyclonic storms and found
that lake effect storms contributed to ∼39.4% of total snowfall
for the period of 1985–2015. Hartnett (2020) also suggested that
heavy snow storms (>25.4 cm) contributed to more than 50% of
total snowfall for every type of snowstorms. Suriano et al. (2019a)
examined the contribution of snowfall from diverse synoptic
conditions in south-central New York and found that lake effect
snowfall accounted for 38% of season totals for the period of
1960–2009. Meng and Ma (2021) calculated the percentage of
annual snowfall totals that can be classified as lake-effect snowfall
in the LPM and found that it varied significantly from 63 to 7%
with a long-term average of 39% for the period of 1933–2015.

Previous studies have suggested inconsistent trends in
snowfall in the Laurentian Great Lakes depending on
locations/time periods (Norton and Bolsenga, 1993; Kunkel
et al., 2009; Clark et al., 2016, 2018). Kunkel et al. (2009)
examined the trend in snowfall in the lake-effect snowbelts of
the Laurentian Great Lakes using a quality-controlled dataset
and found an upward trend for Lakes Superior and Michigan
and no changes for Lakes Erie and Ontario. Hartnett et al.
(2014) found an increase during the period 1931–1972 and a
less decrease for 1972–2012 in total snowfall in central New
York, similar to the trend found in Bard and Kristovich (2012).
Suriano et al. (2019b) investigated the trend in snow depth using
a 1-degree gridded snow depth dataset and found a significant
decrease (25–30%) in average basin-wide snow depth for Lake
Michigan. Clark et al. (2016) investigated the spatiotemporal
trends in annual total snowfall in the Lake Michigan region and
found no changes during the period of 1950–2013 based on
station measurements. However, they found an increase in the
fraction of snowfall that occurs from December to February.
Their follow-up study in 2018 (Clark et al., 2018) suggested a
decreasing trend in November and March snowfall in the same
region. Baijnath-Rodino and Duguay (2018) found a significant
decrease in total snowfall for the period of 1980 to 2015 along the
Canadian leeward shores of Lakes Superior and Huron-Georgian
Bay using the Daymet (version 3) gridded estimation. Our
previous study (Meng and Ma, 2021) calculated the lake-effect
snowfall (total snowfall minus non-lake effect snowfall) in the
LPM from weather station measurements and found an overall
increasing trend from 1933 to 2015.Within the overall increasing
trend, there was a strong increase from 1933 to 1969 followed by
a less change from 1970 to 2015.

Winkler et al. (2012) indicated that over 90% of the 21 General
Circulation Models (GCMs) projected an increase in annual and
wintertime precipitation by 2080–2099 for the LPM.Hayhoe et al.
(2010) assessed the projected climate change in the U.S. Great
Lake region under different greenhouse gas emissions scenarios
and found that the projected change in precipitation ranges from
decreases of a few percentages to increase of up to 7% from 2010

to 2039. By the end of twenty-first century, most models predict
an increase in winter precipitation in the Great Lakes region and
more precipitation falls as rain instead of snow due to the increase
in winter temperatures.

Note that a large uncertainty remains in the future climate
projection, particularly the precipitation projection (Winkler
et al., 2011, 2012).

Two dominant factors that influence the intensity and
frequency of U.S. winter storms are ENSO and the North
Atlantic Oscillation (NAO) (Kunkel and Angel, 1999; Seager
et al., 2010; Kunkel et al., 2013). Kunkel and Angel (1999)
suggested a significant relationship between the frequency of
cyclones and El Nino winters for the contiguous United States.
Seager et al. (2010) found that snowfall anomalies during the
winter season of 2009–2010 in the Northern Hemisphere can
be attributed to the combination of a negative NAO and an El
Nino event. Clark et al. (2016, 2018) also found that snowfall
is very sensitive to the ENSO and NAO for the Lake Michigan
region. Kluver and Leathers (2015) examined the factors that
influence decadal-scale snowfall variations in the United States
and found that both ENSO and NAO are useful predictors of
snowfall for the period of 1930–2006. Smith and O’Brien (2001)
found that snowfall decreased during both El Nino and La Nina
years compared to ENSO neutral years in the Midwest and
forecasting could be potentially improved with the inclusion of
ENSO phases. Patten et al. (2003) investigated the impact of
ENSO on snowfall frequencies in the United States and found
that low and moderate snowfall frequencies increased during
ENSO cold-phase winters relative to ENSO neutral winters.
Coleman and Stefl (2016) examined the relationship between
snowfall totals and three teleconnection patterns and found that
NAO negative conditions are usually associated with higher
snowfall totals in Eastern United States. Serreze et al. (1998)
examined the relationships between snowfall and precipitation
and the maximum temperature on precipitation days and found
no consistent trends in snowfall and in the strength of the Pacific-
North America (PNA), Tropical-Northern Hemisphere (TNH),
and East Pacific (EP) teleconnection patterns.

In addition to the above teleconnection indices, local and
regional environmental variables could also affect the intensity
and distribution of snowfall. It has been suggested that
winter maximum and minimum temperatures could influence
snowfall trends over the Canadian Domain of the Great
Lakes Basin (Baijnath-Rodino and Duguay, 2018). Suriano
(2019) found that both lake-effect synoptic type circulation
patterns and surface air temperatures contribute to the change
in snowfall in the Great Lakes region. Model studies have
suggested that both surface air temperature and lake ice cover
influence the distribution and intensity of lake-effect snowfall
(Notaro et al., 2013; Wright et al., 2013).

Given the complexity in factors that influence snowfall in the
Great Lakes region, causes of inter-annual variability in snowfall
are not satisfactorily understood. In this study, we will investigate
the trends and inter-annual variability of seasonal snowfall in the
LPM and their relationships with air temperature, ENSO, and
NAO. Understanding of such statistical relationships will help
future model development related to the mechanism of snowfall
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and improve prediction of snowfall intensity and distribution.
The major difference between this study and Meng and Ma
(2021) is that Meng and Ma (2021) focused on the calculated
lake-effect snow (total snowfall minus non-lake effect snowfall)
with an emphasize on regional average and this study investigates
seasonal snowfall totals, which have been used in most of the
previous studies. As mentioned in Meng and Ma (2021), the
calculated lake-effect snow was not validated again observations
due to the lack of direct lake-effect snowfall measurements. Use of
seasonal snowfall totals will make this study directly comparable
with similar studies for different parts of the Great Lakes region.

DATA AND METHODS

Snowfall Data
Monthly snowfall data for the period of 1932–2015 is collected
from the National Weather Service’s Cooperative Observer
Network (COOP) stations. Datasets obtained from the COOP
stations have gone through a comprehensive set of fully
automated quality assurance procedures to detect duplicate data,
climatological outliers and various inconsistencies. Details on the
quality control procedures can be found in Durre et al. (2010)
and Lawrimore et al. (2020). Only eight COOP stations in the
LPM are used (Figure 1). These eight stations were determined to
be homogeneous through the expert quality assessment defined
in Kunkel et al. (2009). Therefore, snowfall data from these
eight stations is deemed appropriate for trend analysis and for
studying the inter-annual variability of snowfall. Each snow year
is defined as November-to-March. In this study, for instance,
snow year 1950 refers to November and December in 1949 and
January, February, and March in 1950. In the LPM, most of
snowfall occurs between November and March (Figure 2). Due
to the existence of missing data, the individual snow year will be
excluded in our analysis if snowfall is missing from any month
between November and March. The annual total snowfall in this
analysis refers to the amount occurring between November and
March and is represented as the sum ofmonthly snowfall between
November and March. The statistics of annual total snowfall in
the eight stations are listed in Table 1.

Surface Air Temperature Data
Monthly surface air temperature data is obtained from the
Parameter-elevation Relationship on Independent Slope Model
(PRISM) working group at Oregon Station University (accessible
at http://www.prism.oregonstate.edu/) (Daly et al., 2008). The
PRISM data were produced from the combination of weather
station datasets and digital elevation model (DEM) through
a climate-elevation regression method (Daly et al., 2008).
The PRISM provides consistent and long-term records of
climatic variables including precipitation and temperatures.
Winter season temperatures are represented as the average of
monthly temperatures between November and March over the
entire LPM.

SSTs and NAO Dataset
The Nino 3.4 sea surface temperature (SST34) index (1932–
2015) obtained from the Earth System Research Laboratory

(ESRL) of National Oceanic and Atmospheric Administration
(NOAA) (http://www.esrl.noaa.gov/psd/gcos_wgsp/Timeseries/
Nino34/) is used in this study to represent the El Niño
Southern Oscillation (ENSO) phenomena. Average monthly
SST34 anomalies between November and March (NDJFM) are
used to represent winter season ENSO conditions. In this study,
El Niño (La Niña) years are defined when SST34 anomalies are
greater (smaller) than+0.5◦C (−0.5◦C).

The Hurrell NAOmonthly index (station-based) (1932–2015)
is used in this study (accessible at https://climatedataguide.ucar.
edu/climate-data/hurrell-north-atlantic-oscillation-nao-index-
station-based). November–March average NAO represents
winter-season pressure conditions. The positive NAO index is
often associated with stronger-than-average westerlies over the
mid-latitudes (Hurrell, 1995). A winter with positive (negative)
phase of the NAO is when the winter mean NAO value exceeds
+0.5 (−0.5) standard deviation. The NAO-neutral phase is
defined when the NAO index is between+0.5 standard deviation
and −0.5 standard deviation. This method to define different
NAO phases has been used in Bai et al. (2012).

Maximum Ice Cover in Lake Michigan
The maximum ice cover (MIC) dataset for Lake Michigan
(1973–2015) is obtained from the NOAA Great Lakes
Environmental Research Laboratory at http://www.glerl.
noaa.gov/. An additional 10 years MIC data from 1963 to 1972 is
digitized from Figure 2 in Bai et al. (2012). Therefore, the MIC
dataset is available from 1963 to 2015. Our analysis related to the
MIC dataset is restricted to the period of 1963–2015. This dataset
has been used in Meng and Ma (2021).

Methods
The Mann-Kendall analysis will be used to identify the trend in
snowfall at each station. In addition, sliding correlation analysis,
linear regression, composite analysis, student t-test, and chi-
square test will be used in this study to investigate the relationship
between annual total snowfall and different climatic variables
including surface air T, SST34, NAO, and MIC.

RESULTS

Long-Term Trend in Annual Total Snowfall
in the LPM
The Mann-Kendall test is used to investigate the trend in annual
total snowfall in the eight stations. Our analysis indicates that the
amount of snowfall has generally increased from 1932 to 2015
(Figure 3). The rate of increase ranges from 0.095 cm/year in
Kent City to 2.483 cm/year in East Jordan with an average rate
of 0.91 cm/year. The increasing trend is statistically significant
at the 95% confidence level in all stations except Kent City
and Wellston. There are large variations in the annual total
snowfall during the period of 1932–2015. The minimum annual
snowfall in the eight stations ranges from 43.43 to 108.2 cm
with an average of 63.47 cm. The maximum annual snowfall
in the eight stations ranges from 210.8 to 465.84 cm with an
average of 315.98 cm. At each station, the maximum annual
snowfall is at least four times of the minimum annual snowfall
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FIGURE 1 | The study area and the location of the eight Cooperative Observer Network (COOP) weather stations. These eight COOP stations are temporally

homogeneous stations defined based on the criteria used in Kunkel et al. (2009).
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FIGURE 2 | Climatology of monthly snowfall averaged over the eight stations (refer to Figure 1) used in this study for the period of 1932–2015.

during the period of 1932 to 2015. Figure 3 also suggests that
the maximum annual snowfall at these eight stations did not
occur in the same year. Four of the eight stations had the
maximum annual snowfall in 2008/09 winter season (Battle
Creek, East Jordan, Lake City, and Wellston). Seven of the
eight stations had their maximum annual snowfall in the most
recent years after 1997 except Big Rapids, which had maximum
annual snowfall in 1951/52. Kent City did not show significant
increasing trend, largely due to its minimum annual snowfall
(only 43.43 cm) in 2014 when other stations had at least
231.14 cm of snowfall.

Snowfall and Air T
Strong negative correlations (significant at 95% confidence level)
exist between regionally average air temperatures and annual
total snowfall in all of these eight stations for the period of
1932–2015. The correlation at each individual station varies
from −0.25 in Lake City to −0.54 in Wellston (Table 2)
with an average of −0.40. It is also found that regionally
average snowfall over the eight stations is highly correlated with
regionally average air temperature with a correlation of −0.52
(Figure 4), suggesting that air temperatures in the LPM can
explain approximately 27% variability in snowfall. Our analysis
demonstrates that both snowfall at individual stations and
regionally average snowfall are highly related to air temperatures
in the LPM.

TABLE 1 | Basic statistics of annual total snowfall (cm) at the stations for the

period of 1932–2015.

Station Mean Standard

deviation

Min Max

Battle Creek 131 48 46 278

South Haven 147 60 44 289

Kent City 129 37 43 211

Big Rapids 156 57 60 293

Wellston 228 63 108 397

Houghton Lake 141 44 61 273

Lake City 184 53 81 322

East Jordan 256 81 64 466

Stations are ordered from south to north based on latitudes. All numbers are rounded to

the nearest cm.

Snowfall and ENSO
ENSO is considered to be one of the primary factors that
influence stormy weather in eastern stations in the United States.
In this study, SST anomalies in Nino 3.4 region (SST34) are
used to indicate the ENSO events. Our study suggests negative
correlations between SST34 and snowfall in the LPM (Table 2).
The correlations vary from −0.07 to −0.37 and are significant
at the 90% (95%) level in 6 (4) of the eight stations. We further
divide the 84 years (from 1932 to 2015) into El Niño (SST34
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FIGURE 3 | Trends in annual total snowfall (cm) at the eight stations (refer to Figure 1) for the period of 1932–2015. The trend analysis was conducted using the

Mann-Kendall test.

≥ 0.5◦C), La Niña (SST ≤ −0.5◦C), and neutral (between −0.5
and 0.5◦C) years based on the SST anomalies. There are 18 and
26 La Niña years. The average mean snowfall over the eight

stations is 157.99 and 190.75 cm during the El Niño and La
Niña years, respectively (Table 4). This suggests that El Niño (La
Niña) events tend to decrease (increase) snowfall in the LPM.
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In addition, the regionally average air temperatures are −2.96
and−3.26◦C during the El Niño and La Niña years, respectively.
This suggests that during the El Niño years the LPM is warmer
than during the La Niña years. Such results are consistent with
the negative relationship between air temperatures and snowfall

TABLE 2 | Pearson correlation coefficients (r) between annual total snowfall and

NAO/SST34/Air T for the whole study period (1932–2015) at the stations.

Station Correlations with snowfall

NAO SST34 Air T

Battle Creek 0.06 −0.17 −0.37**

South Haven −0.08 −0.07 −0.48**

Kent City −0.28* −0.21* −0.37**

Big Rapids −0.13 −0.19* −0.51**

Wellston −0.20* −0.25** −0.54**

Houghton Lake −0.16 −0.25** −0.38**

Lake City 0.01 −0.35** −0.25**

East Jordan −0.04 −0.37** −0.32**

The correlation analysis was conducted after the linear trend was removed for all the

data involved.

*Significant at the 90% confidence level.

**Significant at the 95% confidence level.

as demonstrated in section Snowfall and Air T. On the regional
scale, approximately 8% of inter-annual variability in snowfall
can be explained by SST34 anomalies (Figure 5).

A 21-year sliding correlation between SST34 and the annual
snowfall averaged over the eight stations shows that a strong and
significant (at the 95% confidence level) relationship only exists
for the period of 1963–2015 (Figure 6). It is also found that the
variation of SST34 is larger during the period of 1963–2015 than
during the period of 1932–1962 (Figure 6). At each station, the
correlation between SST34 and the annual snowfall is stronger for
the period of 1963–2015 than the period of 1932–1962 (Table 3)
for all the stations except East Jordan. This suggests that the
increased variability of SST34 might contribute to the stronger
correlations between SST34 and the annual snowfall. Further
research is needed to validate this conclusion for other regions to
determine whether it is unique to the LPM or it can be generally
applied to other regions with similar climatological conditions.

Snowfall and NAO
Overall, the NAO does not have strong influence on snowfall
in the LPM. The correlation between the NAO and snowfall
in the eight stations is negative in six of the eight stations
and is not significant at the 90% confidence level (Table 2)
in all eight stations. Composite analysis suggests that average
snowfall (183.14 cm) in the defined 22 negative (–) NAO years

FIGURE 4 | Scatter plot of average annual total snowfall over the eight stations vs. regional average air temperatures. A Pearson correlation coefficient (r) and p-value

are shown on the figure.
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FIGURE 5 | Scatter plot of average annual total snowfall over the eight stations vs. SST34 anomalies. A Pearson correlation coefficient (r) and p-value are shown on

the figure.

is slightly higher than that (169.93 cm) in the defined 28 positive
(+) NAO years. The average regional temperature in these –
NAO and +NAO years is −3.96 and −2.89◦C, respectively
(Table 5). Further, the average snowfall over these eight stations
is negatively related to the NAO and only ∼2% of inter-annual
variability can be explained by the NAO during the period of
1932–2015 (Figure 7).

A 21-year sliding correlation between NAO and the annual
snowfall averaged over the eight stations suggests that the
correlation is not significant at the 95% confidence level over
most of the time period (not shown).

Snowfall and Maximum Ice Cover
The MIC dataset is only available starting from 1963. Our
analysis related to MIC is restricted to the period of 1963–
2015. Overall, there is a significant positive correlation (0.35,
significant at the 95% confidence level) between annual total
snowfall and MIC for the period of 1963–2015. The top five
MIC (1963, 1977, 1979, 1994, and 2014) and bottom five MIC
years (1964, 1969, 1998, 2002, and 2006) are selected to further
investigate the relationship between the MIC and snowfall. Our
results suggest that annual total snowfall is approximately 24%
higher during the top five MIC years than that during the
bottom five MIC years over the eight stations except Kent City
(Figure 8). Figure 9 indicates that the MIC has a strong negative
correlation with air temperatures with a correlation coefficient

of −0.76. Therefore, our relationship between the MIC and
snowfall is in consistent with the negative air temperature-
snowfall relationship. However, caution should be exercised here
that the increase in snowfall during the top five MIC years
compared to that during the bottom five MIC years is not
statistically significant possibly due to the sample size.

DISCUSSIONS

Trend in Annual Total Snowfall in the LPM
This study indicates that annual total snowfall in the LPM has
generally increased in all eight stations. This is consistent with
the findings in Kunkel et al. (2009) who found an upward trend
in snowfall in the Snowbelt area of Lake Michigan. The upward
trend in snowfall in the LPM is accompanied by a decreasing
trend (0.004◦C/year, not significant at the 90% confidence level)
in regional average winter T (not shown). The trend in regional
average winter T in this study is different from those shown
in Kunkel et al. (2009). Kunkel et al. (2009) found a slightly
increasing trend in winter air temperatures averaged at the
weather stations in the Michigan-Huron region used in their
study. The differences between our study and Kunkel et al. (2009)
are: (1) the period of study (1932–2015 in our study vs. 1900–
1995 in Kunkel et al., 2009); (2) the domain size for average
temperature (the whole LPM region in our study vs. several
weather stations in Kunkel et al., 2009). These differences might

Frontiers in Water | www.frontiersin.org 8 November 2021 | Volume 3 | Article 74635417

https://www.frontiersin.org/journals/water
https://www.frontiersin.org
https://www.frontiersin.org/journals/water#articles


Meng et al. Inter-annual Variability of Snowfall

FIGURE 6 | Temporal variation in the 21-year sliding correlation between SST34 and the average annual snowfall over the eight stations (the solid black line). For

example, the correlation at 1983 is calculated using SST34 and snowfall over the period of 1963–1983. The dashed straight line indicates correlation significance at

the 95% confidence level. Also shown in this figure is the standard deviation of the corresponding 21 years of SST34 (the red solid line).

TABLE 3 | Pearson’s correlations coefficients (r) between SST34 and snowfall for

the periods of 1932–1962 and 1963–2015 at the stations.

Station Correlation between SST34 and snowfall

1932–1962 1963–2015

Battle Creek −0.04 −0.39*

South Haven 0.11 −0.12

Kent City −0.01 −0.3*

Big Rapids 0.03 −0.33*

Wellston −0.17 −0.31*

Houghton Lake −0.24 −0.31*

Lake City −0.32* −0.39*

East Jordan −0.5* −0.45*

*Indicate correlation significance at the 95% confidence level.

contribute to the different trend in winter air temperatures.
Please note that temperatures at individual weather station might
be affected by local topography, land-water distributions, and
nearby urban areas.

Another factor that might influence the measurement of
snowfall and temperatures is the land cover and land use
change (LCLUC). It was shown in Wolter et al. (2006) that

2.5% of the U.S. portion of the Great Lakes had experienced
changes from 1992 to 2001. The change in the land cover
and land use influences surface wind conditions, temperatures,
and surface convergence/divergence due to wind/temperature
changes (Mahmood et al., 2010; Szczypta et al., 2015). Although
efforts have been introduced to minimize any changes with
the selected weather stations (Kunkel et al., 2009), it is still
possible that LCLUCs around these weather stations influence
the snowfall measurement and identified trends. These weather
stations used in this study have gone through a rigorous expert
selection process (Kunkel et al., 2009). Therefore, the LCLUC
should have limited impacts on the snowfall measurement.

Negative Correlation Between Air
Temperature and Snowfall
This study demonstrates that a statistically significant
negative correlation exists between regional average winter
air temperatures and annual total snowfall in the LPM,
suggesting that annual total snowfall will increase when winter
air temperatures decrease. The regional average air temperature
in the LPM is largely affected by cold and continental air masses
(i.e., cP or cA air masses) that move southeastward from the
Arctic basin and the interior of Canada (Hayhoe et al., 2010).
In the meantime, movement of the cP/cA cold air mass over
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FIGURE 7 | Scatter plot of average annual total snowfall over the eight stations vs. the NAO index. A Pearson correlation coefficient (r) and p-value are shown on

this figure.

the relatively warm water surface of the Great Lakes leads
to enhanced production of the lake-effect snowfall on the
lee of Lake Michigan due to the strong contrast of water-air
temperatures (Dockus, 1985). Therefore, the cP/cA cold air mass
will produce abundant lake-effect snowfall and bring cold air to
the LPM, resulting in a negative correlation of air temperature
and snowfall. Such negative correlations have also been found
in other regions. For instance, Blechman (1996) found a strong
negative correlation in winter mean monthly temperature and
snowfall in western and central New York and the lee of Lakes
and Ontario and Erie.

Relationship Between MIC and Snowfall
Previous research has suggested that higher ice cover in the Great
Lakes region will decrease lake-effect snowfall on the downwind
side of the Great Lakes through the reduction of evaporation
and lake-climate interactions (Gerbush et al., 2008; Brown and
Duguay, 2010). However, our study indicates an increase in
annual total snowfall during the years with higher MIC. This
is not in contrast with the idea that higher ice cover tends to
reduce lake-effect snowfall. Notaro et al. (2013) conducted a
model simulation of heavy lake-effect snowstorms in RegCM4
and found that lake-effect snowfall is most frequent and intensive
in December–January. In Lake Michigan, MIC typically occurs
in February–March based on the results in Assel (2005) (see the
Figure 3 in Assel, 2005). Figure 10 suggests that the amount

of snowfall is comparable in November and December and
almost doubled in January during the 5 years with highest MIC
compared to those 5 years with lowest MIC in the LPM. As
expected, snowfall has reduced in March after the ice cover has
peaked in February in the years with higher MIC (Assel, 2005).
The MIC and snowfall relationship is also consistent with the
snowfall-air temperature relationship. Maximum ice cover and
air temperatures have a strong negative relationship indicating
that the winters with higher MIC are typically colder than those
with lower MIC (Figure 9). This is consistent with our study on
lake-effect snowfall (Meng and Ma, 2021).

Snowfall and ENSO/NAO
The SST34 has a stronger correlation with snowfall than the
NAO (Table 2). The composite analysis suggests El Niño (or La
Niña) events would likely decrease (or increase) snowfall in the
LPM. The impact of different phases of ENSO on snowfall is
significant at the 95% confidence level (Table 4). The different
impact of El Niño and La Niña events on snowfall in the LPM
might be due to different large-scale atmospheric circulations
that affect the southeastward movement of cP and cA air masses.
Smith and O’Brien (2001) found similar results and suggested
that the decrease in snowfall during El Nino events might be
associated with warmer surface temperatures and relative shift
of jet stream locations to the south. Bai et al. (2012) found
that El Niño events are associated with a unique atmospheric
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FIGURE 8 | Comparison of average annual total snowfall during the top five and bottom five maximum ice cover (MIC) years at each station and averaged over

all stations.

circulation pattern (a deep-than-normal trough over the Gulf
of Alaska, a weaker-than-normal ridge over the west coast,
and a weaker-than-normal Hudson Bay trough over eastern
Canada) that prevent a cold Arctic air mass from intruding
the Great Lakes region resulting in a decrease in snowfall and
warm temperatures in the LPM. For the LPM, the average air
temperature is −2.96 and −3.26◦C during the defined El Niño
and La Niña years (Table 4), respectively. This further confirms
the negative correlations between air temperatures and snowfall.

Our study also demonstrates that the negative (positive)
phase of NAO tends to increase (decrease) snowfall in the LPM
(Table 5). This might be related to the impact of the NAO on
the strength of polar vortex and westerly winds. During the years
with negative NAO phases, a stronger-than-normal trough and
ridge are developed near the Great Lakes and the U.S. west coast,
respectively. The locations of the trough and ridge in North
America favor the southward movement of an Arctic air mass
over the Great Lakes and promote lake-effect snowfall and deliver
cold air to the LPM (Bai et al., 2012). However, the impact of the
NAO on snowfall in the LPM is not statistically significant (at the
90% confidence level) between the positive and negative phases
of NAO. A weak correlation between snowfall and the NAO was
also demonstrated in Clark et al. (2016, 2018) and inGong andGe
(2009). The weak linkage between snowfall and the NAO might
be due to the NAO’s complicated interactions with the snow
cover and the ENSO. Gong et al. (2002) investigated the impact

of snow cover variations on NAO patterns and suggested that
NAO patterns can bemodulated by inter-annual snow variations.
Previous studies also suggest complicated relationships between
NAO-ENSO (Zhang et al., 2018, 2019; Mezzina et al., 2020). Such
complicated relationships between NAO-ENSO might explain
why snowfall-ENSO relationship is significant while snowfall-
NAO relationship is not significant. Modeling studies will be
needed to find the physical mechanism for the weak snowfall-
NAO relationship.

CONCLUSIONS

In this study, both the snowfall trend and the
relationship between snowfall in the LPM and air
temperature/ENSO/NAO/MIC are investigated using statistical
analysis including Mann Kendall test, linear regression, and
composite analysis. The eight stations with homogeneous
time series dataset defined by Kunkel et al. (2009) are used.
Our results indicate that snowfall has generally increased in
the eight stations used in this study in the LPM during the
period of 1932–2015 and the trend is statistically significant
at the 95% confidence level in seven of the eight stations. The
average rate of snowfall increase is 0.91 cm/year with a range of
0.094–2.48 cm/year.

Statistical analysis suggests that regional air temperatures
in the LPM are the dominant factor influencing annual
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FIGURE 9 | The temporal variation in the maximum ice cover (MIC) (%) (solid black line) and surface air T (◦C) (dashed red line) in the Lower Peninsula of Michigan.

TABLE 4 | Impact of the ENSO on annual total snowfall in the LPM.

El Niño La Niño

Number of years 18 26

Mean snowfall (cm) 157.99* 190.75*

Mean temperatures (◦C) −2.96# −3.26#

*Indicate significance at the 95% confidence level.
#Not significant at the 95% confidence level.

total snowfall, followed by the ENSO and NAO. Regional
air temperatures have statistically significant (at the 95%
confidence level) negative correlations with annual total snowfall
in all stations used. Sea surface temperature anomalies in
the Niño region 3.4 are significantly correlated with snowfall
in the LPM in six of the eight stations (Table 2) for the
period of 1932–2015. Sliding correlation analysis suggests that
the average snowfall over the eight stations is significantly
(at the 95% confidence level) correlated with the ENSO
during the period of 1963–2015. It is demonstrated that
the NAO is not significantly related to snowfall in the
LPM. Our study also suggests that increased annual total
snowfall occur in the years with higher MIC in Lake
Michigan. Most of the increased snowfall occurs before the
ice cover peaks in February/March. Regionally average air
temperature has a strong correlation with MIC during the period
of 1963–2015.

TABLE 5 | Impact of the NAO on annual total snowfall in the LPM.

NAO(+) NAO(–)

Number of years 28 22

Mean snowfall (cm) 169.93# 183.14#

Mean temperatures (◦C) −2.89* −3.96*

*Significant at the 95% confidence level.
#Not significant at the 95% confidence level.

In summary, our study suggests that air temperature is highly
correlated with annual snowfall in the LPM. During the period of
1932–2015, the winter air temperature averaged over the entire
LPM has slightly decreased (not shown), which corresponds well
with the increased trend in snowfall. Currently global mean
temperature has continuously increased during the past decades.
If the winter air temperature of the LPM follows the global
trend, the annual total snowfall in the LPM might decrease in
the future if the relationship persists. Additional data collection
and further analysis are necessary to confirm the relationship
between air temperatures and snowfall. Further, this study only
used the dataset from those weather stations in the LPM that are
homogeneous and appropriate for the long-term trend analysis
based on Kunkel et al. (2009). Inclusion of additional weather
stations might slightly affect the trend. Lastly, it should be noted
that one of the caveats in this study is that statistical analysis
can only refer the possible linkage between snowfall and several
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FIGURE 10 | Comparison of snowfall averaged over all eight stations during the top five and bottom five MIC years.

climatic variables. Modeling studies are required to provide
the detailed mechanisms on how air temperatures/ENSO/NAO
influence snowfall variability. This study on the trend of snowfall
and its relationship with teleconnection patterns and regional
temperatures/ice covers will provide scientific basis for policy
makers on disaster clarification and severe winter storm policy
and help local governments in preparation for winter seasons.
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Located at the eastern extent of the Great Lakes snowbelt, Central New York averages

some of the highest annual snowfall totals east of the Rocky Mountains. This is in large

part due to the variety of snowstorms that affect the region including lake-effect storms,

coastal storms, and overrunning storms. Previous estimates suggest that lake-effect

snowstorms account for approximately half of the seasonal snow in the Great Lakes

basin, but ignore the spatial variability that exists within the region. Therefore, this

study examines the seasonal snowfall contributions of the different snowstorm types

to affect Central New York. Results suggest that although lake-effect snowstorms are

the dominant snowstorm type in the region, their seasonal snowfall contributions vary

between 13 and 48%. Although lake-effect snowstorms produce more snow during

the peak and mid-seasons, their relative contribution is greatest during the early and

mid-winter seasons. Generally, higher contributions occur near the Tug Hill Plateau,

with lower contributions in southern Central New York. Instead, snowfall in southern

Central New York is mostly dominated by Nor’easters (16–35%), with lesser contributions

from Rocky lows (14–29%). Overrunning storms that originate in Canada (e.g., Alberta

clippers) and non-cyclonic storms contribute the least to seasonal snowfall totals across

Central New York; however, they are often the catalyst for lake-effect snowstorms in

the region, as they advect continental polar air masses that destabilize across the lake.

Understanding the actual snowfall contribution from different snowstorm types is needed

for future climate predictions. Since the potential trajectory of future snowfall varies

according to the type of storm, climate models must accurately predict the type of storm

that is producing the snow.

Keywords: snowstorms, snowfall, lake-effect, Nor’easters, cokriging

INTRODUCTION

Snow is an integral part of the environment and society of high latitudes and high elevations
(Rooney, 1967; Sharratt et al., 1992; Kocin and Uccellini, 2004; Cortinas and Kitron, 2006; Rohr
et al., 2011; Hagenstad et al., 2018). This is especially prevalent in areas surrounding the Laurentian
Great Lakes, which experience some of the greatest seasonal snowfall totals in North America.
The presence of the Great Lakes considerably affects the climate of this region, especially during
cold-season months (October–May). As cold air advects across the relatively warmer lakes, there
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is a destabilization of the air column and an influx of moisture
(Peace and Sykes, 1966; Niziol, 1987; Pease et al., 1988). This
leads to frequent, and sometimes intense lake-effect precipitation,
downwind of the lakes (e.g., Niziol et al., 1995).

Lake-effect precipitation occurs approximately one out of
every five days in the early winter season (September–
November) of the Great Lakes basin (Miner and Fritsch, 1997).
Precipitation is predominately rain from September through
October, but often transitions to snow following the first week
of November. Lake-effect storms become more frequent as the
season progresses, peaking in early January (Niziol et al., 1995).
Due to their relative frequency, it is estimated that lake-effect
snowstorms contribute anywhere from 20 to 80% of the seasonal
snowfall in the Great Lakes basin (Eichenlaub, 1970; Miner and
Fritsch, 1997; Liu andMoore, 2004; Veals and Steenburgh, 2015).
Eichenlaub (1970) suggests that lake-effect storms contribute at
least 20% of the seasonal snowfall in areas lee of Lake Superior
and Lake Michigan. This estimate is modest, compared to those
from other studies that suggest contributions are closer to 50%
in other subregions of the Great Lakes basin and during more
recent years (Kelly, 1986; Braham and Dungey, 1995; Liu and
Moore, 2004; Hartnett, 2020; Pettersen et al., 2020; Suriano and
Wortman, 2021).

The influence of lake-effect snowstorms varies across the
Great Lakes region. Multiple researchers have noted that seasonal
snowfall is highly influenced by a location’s elevation, and
proximity and orientation to the lakes (e.g., Hjelmfelt, 1992; Scott
and Huff, 1996; Perry and Konrad, 2006; Hartnett et al., 2014;
Campbell et al., 2016). In general, areas downwind (east) of the
lakes tend to be snowier than those upwind (west). For example,
Changnon (1968) and Gatz and Changnon (1976) suggest that
lake-effect snowstorms increase snowfall by up to 100% on the
downwind shores of Lake Michigan compared to the upwind
shores, especially in December. A more modest increase of 20–
35% was found by subsequent studies conducted within the
region (Kelly, 1986; Braham and Dungey, 1995; Scott and Huff,
1996, 1997). Some of the snowiest regions within the Great Lakes
basin are found to the lee (downwind) of Lake Ontario, including
the Tug Hill Plateau of New York State (further referred to as
the Tug Hill). Using different approaches, the recent studies of
Hartnett (2020) and Suriano and Wortman (2021) suggest that
lake-effect snowstorms account for ∼35–42% of the snowstorm
events to the lee of Lake Ontario, yet contribute between 42
and 48% of the seasonal snowfall. The percent contribution is
even greater within the Tug Hill, as Veals and Steenburgh (2015)
estimate that lake-effect snow accounts for∼61–76% of the mean
cool-season snowfall. The greater percentages in the Tug Hill
are likely due to the more frequent and more intense lake-
effect snowstorms that occur because of the land-breeze fronts
that form along the southeastern shore of Lake Ontario, the
localized ascent along the frontal boundary, and the intensified
and broadened ascent regions induced by the Tug Hill (Campbell
and James Steenburgh, 2017).

Although lake-effect snowstorms are found to dominate
snowfall in this region, they are not the only snowstorm type
to contribute to seasonal totals. Karmosky (2007) and Suriano
et al. (2019) suggest that three distinctive weather patterns tend

to produce snowfall in upstate New York including coastal
mid-latitude cyclones, overrunning systems, and lake-effect or
Great Lakes enhanced storms. Suriano et al. (2019) found
that overrunning systems and coastal mid-latitude cyclones
account for ∼55% of the seasonal snowfall in Catskill/Delaware
Watershed. Hartnett (2020) found 11 different snowstorm types
that contribute to seasonal snowfall totals in central New
York State. These storms included clippers, Colorado lows,
frontal storms, Great Lakes lows, Hudson lows, lake-effect
snowstorms, Nor’easters, Oklahoma hooks, Texas hooks, tropical
cyclones, and upper atmospheric disturbances. Similar to Kelly
(1986), the author found that non-lake effect snowstorms occur
more frequently than lake-effect snowstorms, with Nor’easters
and clippers contributing ∼11.3 and 9.2%, respectively, of
the seasonal snowfall between 1985 and 2015. However,
distinguishing lake-effect snow from synoptically driven snow
is complicated by mesoscale lake snow bands within large-scale
cyclonic storms (e.g., Houze and Hobbs, 1982; Kristovich et al.,
2000; Tardy, 2000; Owens et al., 2017; Kulie et al., 2021). This
can result in additional snowfall, which is termed lake-enhanced
snow (Eichenlaub and Hodler, 1979; Liu and Moore, 2004).

To date, most studies assessing snowfall contributions to
the lee of Lake Ontario only focus on snowfall from lake-
effect storms. Additionally, most studies use proxies to identify
lake-effect snow versus non-lake-effect snow, such as synoptic
patterns (Suriano et al., 2019; Suriano and Wortman, 2021)
or cloud base heights (Pettersen et al., 2020), rather than a
complete analysis of each individual snowstorm. There also
is little attention given to the spatial variability that exists
within the Lake Ontario basin, even though it is well document
that lake-effect snow contributions decrease further from the
Great Lakes (Dewey, 1970; Scott and Huff, 1996, 1997; Suriano
et al., 2019). Snowstorms, especially lake-effect snowstorms, can
produce extremely localized snow (e.g., Andersson and Nilsson,
1990; Steenburgh et al., 2000; Eito et al., 2005; Laird et al.,
2009; Kindap, 2010). Relatively small topographic features such
as hills and plateaus downwind of the lakes can dramatically
increase snowfall totals (Hill, 1971; Hjelmfelt, 1992; Campbell
and James Steenburgh, 2017). The objectives of this study are
to provide the first comprehensive examination of snowstorms
affecting the Lake Ontario basin and to determine how snowfall
contributions from various storms varies spatially across the
region. Since snowfall trends vary between lake-effect and non-
lake-effect snowstorms (Norton and Bolsenga, 1993; Leathers and
Ellis, 1996; Burnett et al., 2003; Kunkel et al., 2009a; Bard and
Kristovich, 2012; Hartnett et al., 2014; Notaro et al., 2015; Suriano
and Leathers, 2016), teasing out the snowfall contributions of
different snowstorm types will help to better understand potential
future changes.

METHODS

Snowstorm Categorization
Seasonal snowfall contributions were determined by identifying
every snowstorm to influence central New York State (Figure 1)
from the 1995/96 to 2014/15 cold seasons (October to May).
Snowstorms were identified using data from the National
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FIGURE 1 | Central New York study area. Included are the county names

(black text) and prominent regions (white text).

Weather Service’s Cooperative Observer Program (COOP) and
are defined as any storm in which at least 0.1 cm of snow was
observed for at least two of the two-hundred and two reporting
stations within the study area (Perry et al., 2007; Hartnett, 2020;
Figure 2). Using the methods outlined by Hartnett (2020), a
storm was considered independent from other events if there
was at least a 6-h gap in precipitation (e.g., 6-h gap in 15-
min precipitation records and/or radar) anywhere within the
study area. There were 1,285 snowstorms identified during
the study period. Daily snowfall totals for the 202 reporting
COOP stations were assigned to individual storms. In some
instances, a single storm spanned multiple days, and therefore
its snowfall total represents the summation of multiple daily
snowfall observations. Due to snowfall measurement practices
(Doesken and Judson, 1996; NWS, 2012), limitations exist on
the temporal resolution of snowfall observations. Thus, it is
assumed that a single storm produces the entire daily snowfall
total observed on a day. Although there may be inaccuracies
that emerge from this assumption (Wu et al., 2005; Daly et al.,
2007; Kunkel et al., 2007; Leeper et al., 2015; Lundquist et al.,
2015), it is an adequate method of interpretation and has
been partly addressed later in this study with the inclusion
of lake snow.

Following the methods and classification system outlined by
Hartnett (2020), snowstorms were categorized into storm types
using NCEP/NCAR reanalyzes and NEXRAD data. Due to a
lack of NEXRAD data prior to the 1995/96 season, snowstorm
observations are limited to the establishment of the Binghamton,
NY (KBGM) and Montague/Ft. Drum (KTYX) radar sites.
Lake-effect snowstorms were delineated as any storm lacking
a central low pressure within 150 km of the study area and
a quasi-stationary banded precipitation pattern connected to
Lake Ontario that strengthened downwind of the lake and was
independent from other mesoscale cloud structures. If these
conditions were not met, yet there was no central low pressure
within 150 km of Central New York, the storm was classified

FIGURE 2 | COOP stations used for analysis in Central New York. Included

are the 202 COOP stations reporting from 1995/96 to 2014/15 (“Reporting

Stations”), 155 stations used for the sub-seasonal analysis (“Sub-seasonal

Reporting Stations”), and the 111 stations used for seasonal analyses

(“Seasonal and Sub-seasonal Reporting Stations”).

as a non-cyclonic snowstorm. Cyclonically driven snowstorms
are those with a central low pressure within 150 km of the
study area. These storms were further classified based on their
zone of cyclogenesis and grouped into one of three categories:
Nor’easters, Canadian lows (Clippers, Hudson lows, and Great
Lakes lows), and Rocky lows (Colorado lows, Oklahoma hooks,
and Texas hooks). Snowstorms originating as tropical storms
were omitted from this study due to their infrequency (only one
storm during the study period). Snowstorm counts for the five
categories area found in Table 1.

Since there are instances where lake-enhanced snow bands
occur during cyclonic storms (Eichenlaub and Hodler, 1979;
Liu and Moore, 2004; Owens et al., 2017; Kulie et al., 2021),
storms were also categorized as lake snowstorms and non-
lake snowstorms (Table 1). Lake snowstorms attempt to account
for lake-enhanced snowfall events and are categorized similar
to lake-effect snowstorms; however, precipitation and cloud
structure does not have to be independent from other mesoscale
storms and there does not have to be a six-hour gap in
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TABLE 1 | Number of snowstorms per storm type to affect Central New York from

the 1995/96 season to the 2014/15 season.

Storm type Count

Lake snow 495

Non-lake snow 790

Lake-effect 381

Non-cyclonic 255

Upper disturbance 172

Frontal 83

Nor’easters 144

Canadian lows 253

Clipper 136

Hudson low 23

Great Lakes low 94

Rocky lows 251

Colorado lows 100

Oklahoma hook 98

Texas hook 53

Tropical storm 1

Total 1,285

precipitation between storm events (Hartnett, 2020). Non-lake
snowstorms are all other storms. These categories are mutually
exclusive from each other, but not from the other storm types.
For example, a storm can be classified as both a Nor’easter and a
lake snowstorm but cannot be classified as both a lake snowstorm
and a non-lake snowstorm. The methods presented in this study
are a more direct analysis of snowstorms, expanding upon the
procedures outlined by Pettersen et al. (2020) and Suriano and
Wortman (2021) who use proxies to distinguish lake-effect snow
versus non-lake-effect snow.

Total Seasonal Snowfall Contributions
To determine the seasonal snowfall contributions of the different
snowstorm types within Central New York, total monthly
snowfall for each station was calculated for cold-season months
from July 1995 to June 2015. A station’s monthly snowfall total
was calculated by summing the snowfall produced at that station
by each snowstorm that occurred during that month. Since
these are voluntary data, there are instances where snowfall
measurements are missing for some snowstorms, most notably,
during light snowfall events. Therefore, using the guidance of
Kunkel et al. (2009b), a station’s monthly snowfall total was only
used if snowfall observations were reported for at least 90% of the
monthly snowstorms during that month. Data were removed for
all months that did not contain any snowstorms.

Prior to calculating snowfall contributions, seasonal snowfall
totals for each station were calculated by summing the monthly
snowfall totals for that station across the snowfall season,
which was defined as July 1–June 30. A station’s seasonal
snowfall total was only reported if monthly observations
existed for every cold season month (October–May). To

FIGURE 3 | Average seasonal snowfall totals (cm) for Central New York from

1995/96 to 2014/15.

increase the spatial coverage of observations, any station with
at least one season that met the above criteria were used
for analysis (111 stations; Figure 2). Using the 111 available
stations, interpolated surfaces were created for every snowfall
season from 1995/96 to 2014/15. Surfaces were created using
simple cokriging interpolations in ArcGIS with elevation as an
independent variable (Guan et al., 2005; Grieser, 2015). The
twenty (one per season) interpolated surfaces were then averaged
in ArcGIS (Norton and Bolsenga, 1993), to produce a single map
representing the average seasonal snowfall across Central New
York (Figure 3). This figure provides a reference to compare the
percent contributions.

To address the percent contribution of the different
snowstorm types to seasonal snowfall totals within Central New
York, seasonal totals for each storm type were calculated for
the 111 stations. To compare snowfall totals across the study
area and reduce biases in the results, the ratio of snowfall
produced by each storm type to the total snowfall produced at a
station was calculated. These values are referred to as the percent
contributions. The percent contributions were then used to create
interpolated surfaces for each storm type for every cold season
from 1995/96 to 2014/15. The average snowfall contribution
across the study area was calculated for each storm type by
averaging the 20 interpolated surfaces (Figures 4, 5).
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FIGURE 4 | Seasonal snowfall contributions of lake snowstorms (A) and non-lake snowstorms (B) from 1995/96 to 2014/15.

Sub-seasonal Lake-Effect Snow
Contributions
To address the seasonal variability in snowfall contributions from
lake-effect storms that exists within a cold season, monthly totals
were grouped into four sub-seasonal categories: early season
(October to November), peak season (December to January),
mid-season (February to March), and late season (April to
May) (Niziol et al., 1995; Veals and Steenburgh, 2015; Clark
et al., 2016). Monthly snowfall totals for each cold season
calculated in “Total Seasonal Snowfall Contributions” Section
were summed across the sub-seasonal scale for each COOP
station. Sub-seasonal totals were only reported if that station
had reliable records (snowfall reports for 90% of the monthly
snowstorms) for both months (e.g., reliable data for December
1995 and January 1996). To increase the spatial density of
observations, COOP stations were retained for analysis if there
was at least one reliable sub-seasonal snowfall total during the
study period. Thus, 155 COOP stations were used for analysis
in this section (Figure 2). Sub-seasonal lake-effect snowfall
contributions for each station were calculated by comparing the
sub-seasonal snowfall totals from these storms to the total sub-
seasonal snowfall at that station. Like “Total Seasonal Snowfall
Contributions” Section, interpolated surfaces were created in
ArcGIS for each sub-season. The 20 surfaces were averaged to
produce two figures for each sub-season, one representing the
average snowfall contribution total and the other representing
the percent contribution of lake-effect snow across Central
New York.

RESULTS

Seasonal Snowfall Totals
The mean seasonal snowfall in Central New York from 1995/96
to 2014/15 is plotted in Figure 3. Seasonal snowfall totals are
greatest (∼500 cm) over the Tug Hill, with lower totals generally
further from the region. Seasonal snowfall contributions of lake-
snowstorms and non-lake-snowstorms are presented in Figure 4.
Throughout the majority of Central New York (98.4%), non-
lake snowstorms contribute more to these seasonal snowfall
totals than lake snowstorms. A small section of the Tug Hill is
the only location that receives more snowfall from lake snow
than non-lake snow. Instead, the majority (77.8%) of the area
receives between 30 and 50% of its seasonal snowfall from lake
snowstorms, including areas downwind of Lake Ontario, the
western Adirondack Mountains, and the Southern Hills. Lake
snow contributions were least in areas furthest from and sub-
parallel to the horizontal axis of Lake Ontario.

Seasonal Snowfall Contributions
To examine the spatial variation of seasonal snowfall
contributions from different storm types, snowfall contributions
were mapped for the five snowstorm types (Figure 5). While it
is widely believed that lake-effect snowstorms are the dominant
snowfall producer in Central New York (e.g., Burnett et al.,
2003; Hall et al., 2017; Suriano et al., 2019; Hartnett, 2020), the
figures show that this is not the case throughout the entire study
area (Figure 5A). Lake-effect snow accounts for 35–48% of the
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FIGURE 5 | Seasonal snowfall contributions for the five different snowstorms to affect Central New York from 1995/96 to 2014/15. Figures include contributions from

lake-effect storms (A), Nor’easters (B), Rocky lows (C), Canadian lows (D), and non-cyclonic storms (E).

seasonal snowfall over northern Central New York, whereas
contributions are as low as 13–15% in southeastern Central New
York. Lake-effect snowstorms for the majority (71.7%) of the
region account for at least 20% of the seasonal snowfall.

Seasonal snowfall contributions of Nor’easters and Rocky
lows are greatest for southern Central New York (Figures 5B,C).
Although patterns are similar, there are noticeable differences
in the spatial distribution of their contributions. Snowfall
contributions from Nor’easters are greatest (30–35%) in
southeastern Central New York, and generally decrease to the
northwest (Figure 5B). Comparatively, there is a pronounced
increase in the percent contribution (25–30%) from Rocky lows
in southwestern Central New York and a noticeable decrease
(10–15%) over Oswego County, just west of Lake Ontario

(Figure 5C). It should be noted that these figures represent the
percent contribution of a snowstorm to seasonal snowfall totals
relative to the amount of snow a location receives. Therefore,
even though Nor’easters only contribute between 15 and 20%
of the annual snow in the Tug Hill, this region also averages
∼200 cm of more snowfall than other areas in Central New
York (Figure 3). Conversely, the greater snowfall contributions
in southern and southeastern Central New York are in large
part due to the lower seasonal snowfall totals. However, the use
of percentages allows for comparisons between different areas
regardless of their seasonal snowfall totals.

Seasonal snowfall contributions from Canadian lows and
noncyclonic storms are more homogeneous throughout the
study area (Figures 5D,E). Although there is some spatial
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variability that exists, it is not as prominent as the other three
storm types. Snowfall contributions from Canadian lows are
greatest (10–15%) over eastern Central New York, most notably
around the western edge of the Adirondack Mountains
(Figure 5D). Seasonal contributions from noncyclonic
snowstorms exhibit a slightly higher contribution (10–15%)
over a small area in Lewis County (Figure 5E).

Sub-seasonal Lake-Effect Snow
Contributions
Multiple researchers have suggested that lake-effect snow
exhibits sub-seasonal variability in its prevalence (Strommen
and Harman, 1978; Niziol et al., 1995; Veals and Steenburgh,
2015; Clark et al., 2016, 2020; Fairman et al., 2016). Harrington
and Dewey (1987) found that lake-effect snowstorms are most
common from November to January, when the lake surface
is the warmest, resulting in large surface to 850 hPa lapse
rates and minimal ice cover. Therefore, cold seasons were
divided into four time periods (early, peak, mid-, and late
seasons) and contributions were averaged across the 20 seasons
(Figure 6). The results suggest that lake-effect snowstorms
contribute considerably more snowfall during the peak season
and mid-season than during the early and late seasons
(Figures 6A,C,E,G). Nontheless, lake-effect snow accounts for
a greater percentage of the sub-seasonal snow during the
early and peak-seasons (October–January) (Figures 6B,D,F,H).
Spatial patterns were mostly consistent across the four sub-
seasons, as lake-effect snowfall contributions were greatest
directly east of Lake Ontario. However, there was a movement
of the greatest snowfall totals closer to the lake as the season
progressed (Figures 6A,C,E,G). Comparatively, the percent
contribution of lake-effect snow exhibited greater variability
throughout a season than snowfall totals. During the early
and peak seasons, lake-effect contributed the most to seasonal
snowfall totals in north-central Central New York, including the
Tug Hill (Figures 6B,D,F,H). By the mid-season, the greatest
contributions were near the southeastern shore of the lake,
centered over western Oswego County. Come the late-winter,
lake-effect was relatively sparse throughout Central New York.

Even though the general spatial patterns of lake-effect snowfall
contributions remained relatively consistent across the four sub-
seasons, the relative percentage of lake-effect snow compared
to the other snowstorm types changed dramatically as winter
progressed. In the early season (October–November), lake-effect
snow dominates throughout Central New York, accounting for
at least 40% of the snow throughout the majority (73.9%)
of the study area (Figure 6B). The greatest contributions (>
65%) are centered over the Tug Hill, producing upwards of
30 cm per season (Figure 6A). Lake effect snow remains the
dominant snowfall contributor in December and January for
northern Central New York, but produces considerably more
snowfall (225–300 cm) during this time (Figures 6C,D). The
largest contributions from lake-effect snow shifted north, with
parts of northern Lewis and northwest Jefferson Counties
receiving 45–55% of their snowfall from lake-effect (Figure 6D).
Lake effect is noticeably less prevalent in southern Central

New York with contributions ranging from 9 to 15%. Later in
the snowfall season, lake-effect contributions decrease further.
Although these storms are still producing an average of 80–
180 cm of snow over and around the Tug Hill from February–
March, they only account for 25–35% of the snow, mostly near
the lakeshore (Figures 6E,F). The maximum percentage that
lake-effect contributed during this time (30–35%) was located
on the southeastern shore of the lake over western Oswego
County. By the late-snowfall season (April–May), lake-effect
snow accounts for less than one centimeter of the snow, which
equates to <5% of the snowfall that occurs throughout Central
New York (Figures 6G,H).

DISCUSSION

Snowfall Contributions From Lake-Effect
Snow
A persistent question in the climatological community has been
how much of the Great Lakes’ snowfall derives from lake-effect
snow. Previous estimates suggest that lake-effect snowstorms
contribute between 30–70% of the seasonal snowfall downwind
of the Great Lakes (Eichenlaub, 1970; Miner and Fritsch, 1997;
Liu and Moore, 2004; Veals and Steenburgh, 2015). However,
these estimates ignore the spatial variability that exists within
a lake’s snow basin, and often assumes a single contribution
at a coarse resolution. Findings from this research suggest that
the greatest contributions (45–55%) from lake snowstorms are
located directly east of Lake Ontario, including over the Tug
Hill (Figures 3, 4); findings that are consistent with those of
Hartnett (2020) and Suriano and Wortman (2021). Although
lake snowstorms account for over 50% of the seasonal snowfall
in parts of Central New York, contributions are closer to
25% further from the lake. These findings align with those
of Eichenlaub (1970), who found that lake-derived snowfall
accounts for at least 20% of the seasonal snowfall in areas to the
lee of the Great Lakes. However, this is notable variability within
a relatively small area. It is well-documented that lake-effect snow
can be highly localized, as it depends on factors such as wind
speed and direction, fetch, and elevation (Peace and Sykes, 1966;
Niziol, 1987; Reinking et al., 1993; Niziol et al., 1995; Lackmann,
2001). Slight changes in any of these factors can produce large
magnitude differences in snowfall totals between locations only
kilometers away. This research shows that seasonal snowfall
contributions vary considerably across central New York State,
and the importance of scale when working with lake-effect snow,
something that has been largely ignored in previous studies.

Lake-effect storms contribute the most to seasonal snowfall
totals to the lee of Lake Ontario, with enhanced contributions
also over the Southern Hills and western Adirondack Mountains
(Figure 5A). The higher elevations and orientations of these
regions are prime for lake-effect snow, leading to greater
contributions (Wilson, 1977; Hjelmfelt, 1992; Notaro et al.,
2013b). Lake-effect snow is especially common from December
to January with contributions between 100 and 300 cm of snow
for over half of the study area (Figure 6C). Although still
common in the early andmid-seasons, snowfall contributions are
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FIGURE 6 | Sub-seasonal snowfall contributions of lake-effect snow within Central New York from 1995/96 to 2014/15. Snowfall contributions (totals and percentage)

are mapped for October to November (A,B), December to January (C,D), February to March (E,F), and April to May (G,H).

considerably lower than the peak season (Figures 6A,E). Relative
to the total snowfall during each sub-season, the majority of the
study area receives at least 25–35% of its snowfall from lake-effect
snowstorms from October–January (Figures 6A,B). Lake-effect
contributions decrease considerably from February–May across
the study area. The decrease is likely due to changes in lake
and atmospheric dynamics (e.g., colder surface lake temperature,
greater ice cover extent, smaller surface to 850 hPa lapse rates
and CAPE, lower boundary layer height, etc.) which inhibit the
formation of lake-effect snow (Cordeira and Laird, 2008; Brown
and Duguay, 2010; Notaro et al., 2013a; Vavrus et al., 2013).
Additionally, by the late snowfall season, other snowstorms (e.g.,
Nor’easters and Rocky lows) become more frequent due to the
southern displacement and meridional patterns of the polar jet
stream (Hirsch et al., 2001; Hoskins and Hodges, 2019).

There is also a noticeable shift in the maximum contribution
of lake-effect across a cold-season. Although lake-effect
contributions are generally greatest directly east of Lake Ontario,
there is a movement of the largest snowfall totals closer to the
lake as the season progresses (Figures 6A,C,E,G). Additionally,
the largest percent contributions of lake-effect snow are over the
Tug Hill during the early season, shift north by the peak-season,

and then southeast of and closer to the lake shore by the mid-
season (Figures 6B,D,F,H). These intraseasonal shifts may be
due to a weakening of the conditions necessary for the formation
of lake-effect snow, most notably greater ice cover on Lake
Ontario and a decreased surface to 850 hPa lapse rate (Wright
et al., 2013). As Wright et al. (2013) suggest, frozen lakes and
cooler lake surface temperatures will shrink the snow bands
and confine them closer to the lake shore, which ultimately
diminishes lake-effect contributions further from the lake.
Furthermore, the location of snow bands is influenced by the
presence of upper-tropospheric short-wave troughs (Metz et al.,
2019). Metz et al. (2019) found that lake-effect bands concurrent
with short-wave troughs were most common during the peak
season (December–January), which may displace snow bands
directly east or northeast of the long-axis of the lake.

Multiple researchers have noted a pronounced increase in
snowfall in areas downwind of the Great Lakes compared to
areas upwind of the lakes (Changnon, 1968; Gatz and Changnon,
1976; Kelly, 1986; Braham and Dungey, 1995; Scott and Huff,
1996, 1997); but few have examined the spatial variability that
exists within a snow basin. From the results, lake-effect snow
contributions are 150–250% greater in areas directly east of Lake
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Ontario compared to southeastern, southwestern, and northern
Central New York (Figure 5A). Although lake-effect snow is
mostly confined to the nearshore of the lakes, snow bands can
propagate inland (Eipper et al., 2019). The presence of lake-
effect in this region requires strong, organized snow bands
capable of retaining moisture over high terrain. To produce such
snow bands there generally needs to be a multi-lake upwind
connection. These connections produce lake-to-lake snow bands,
snow bands that continuously extend across two or more
lakes, that tend to be less organized and less frequent (Schultz
et al., 2004), resulting in the lower lake-effect contributions.
Nonetheless, this leads to challenges in defining a lake’s snow
basin. If defined by the influence of lake-effect snow, it may be
argued that all of Central New York falls within the Lake Ontario
snow basin. However, as per the results, there are clear spatial
variations that exist throughout this relatively small region. The
results highlight the importance of non-lake snowstorms in a
region that is seemingly dominated by lake-effect snow. The
pronounced occurrence of non-lake snowstorms is likely due to
the additional moisture supply from the Atlantic Ocean, a source
less available to other parts of the Great Lakes region (Sanders
and Gyakum, 1980; Zishka and Smith, 1980; Jacobs et al., 2005;
Changnon et al., 2008).

Snowfall Contributions From
Non-lake-effect Snow
Of the non-lake-effect snowstorms that produce snowfall in
Central New York, Nor’easters and Rocky lows contribute
the most to seasonal snowfall totals. Most of the study
area (67.6%) receives 16–25% of its seasonal snowfall from
Nor’easters (Figure 5B), while 86.1% receives 16–25% of its
seasonal snowfall from Rocky lows (Figure 5C). Nor’easters are
especially influential in southeastern Central New York, while
Rocky lows dominate in southwestern Central New York. The
greater contributions in these areas are likely due to the source
regions of the storms and their general tracks. Nor’easters,
also known as east-coast storms, form along the baroclinic
zone of the eastern United States or Gulf Coast (Sanders and
Gyakum, 1980; Zishka and Smith, 1980; Cione et al., 1993;
Hirsch et al., 2001; Kocin and Uccellini, 2004; Jacobs et al.,
2005). As these storms propagate to the northeast, the central
low moves to the southeast of Central New York, producing
snowfall over the region (northwest quadrant of the storm)
(Bosart, 1973; Hirsch et al., 2001; Kocin and Uccellini, 2004;
Mercer and Richman, 2007). Central New York’s position to
the northwest of the storm’s center often brings a period of
significant snowfall sourced in Atlantic moisture brought in by
the northeasterly winds. In the northwest sector of the storm,
northwest winds often cause the formation of lake-effect and
lake-enhanced snowfall to the southeast of Lake Ontario (Niziol,
1987; Liu and Moore, 2004; Suriano and Leathers, 2017). Rocky
lows typically originate to the lee of the Rocky Mountains
(Whittaker and Horn, 1981; Zielinski, 2002; Changnon and
Changnon, 2006; Hartnett, 2020). As they move eastward, they
tend to display a pronounced curvature in their track west of the
Appalachian range (Changnon, 1969; Branick, 1997; Zielinski,

2002; Changnon et al., 2008). This displaces the low pressure west
of the central low of Nor’easters, likely accounting for the greater
snowfall contributions in southwestern Central New York.

A noticeable difference between snowfall contributions from
Nor’easters and Rocky lows was the pronounced spatial
variability across the study area. Although lake-effect snowstorms
have the highest contribution of any snowstorm types to a
single area, snowfall contributions from Nor’easters were more
homogenous. This likely reflects the general size of these
storms. Since Nor’easters are some of the largest snowstorms
(Davis and Dolan, 1993), they tend to affect the entire study
area. Additionally, there is a pronounced decrease in snowfall
contributions from Rocky lows directly east of Lake Ontario
over Oswego County. Since Rocky lows tend to occur more
frequently in late winter (Whittaker andHorn, 1981), lake surface
temperatures are cold and ice cover extent is at a maximum
(Wang et al., 2012). Therefore, when these storms pass across the
region, there is limited access tomoisture from the lake inhibiting
the formation of lake-effect and lake-enhanced snow which may
be common with earlier season storms. Thus, areas that typically
receive lake-effect snow do not receive any additional snow from
the Rocky lows.

Snowfall contributions from Canadian lows and non-cyclonic
storms are relatively low and homogenous throughout the
study area (Figures 5D,E). The northern formation of Canadian
lows is likely responsible for their low seasonal contribution
(Figure 5D). Since these storms form at northern latitudes inland
from major moisture sources, they are often associated with
anomalously cold, yet dry conditions (Hutchinson, 1995; Thomas
andMartin, 2007). Snowfall directly generated from the central is
often light to moderate in magnitude with a high snow-to-liquid
ratio (Rochette et al., 2017). Non-cyclonic storms are associated
with an upper-level disturbance, cold air advection, or quasi-
stationary fronts, but no central low pressure near the study
area. Although they can be accompanied by significant lake-
effect snow development, they tend to be varied in form and
genesis (Lackmann, 2001; Scott and Sousounis, 2001; Chuang
and Sousounis, 2003). Upper atmospheric disturbances tend to
favor ascending air and an unstable atmosphere ahead of a
westerly trough (NWS, 2014). Since the trough can extend to the
Gulf of Mexico, the snowfall produced often occurs throughout
Central New York, as shown by the relatively homogeneous
percent contributions (Figure 5E). Behind the western trough,
winds generally shift from the northwest, which are conducive
for the formation of lake-effect snow, and the greater snowfall
totals in northern Central New York. Stationary fronts can also
produce a relatively homogenous percent snowfall contribution
across Central New York when the warmer air mass contains a
lot of water vapor (Neiman et al., 1998; Kusunoki et al., 2005).
Since the front is stationary, this can lead to prolonged periods of
intense precipitation. A storm’s influence on snowfall is not just
driven by the regional geography, but by the nature of the storm.

CONCLUSIONS

Lake-effect snow is a regional phenomenon that greatly
influences the climate, hydrology, biology, and economy of the
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Laurentian Great Lakes. Although it is considered the dominant
snowstorm type in this region, it is not the only storm that
produces snow. This research examines the seasonal snowfall
contributions from the different snowstorm types in Central
New York. The results suggest that although lake-effect storms
are the dominant snowfall contributor (48%) in parts of the
study area, notably the Tug Hill, seasonal contributions are as
little as 13% in southeastern Central New York. Additionally,
as the cold season progresses, there is a general decrease in the
percent contribution from lake-effect throughout the study area
and a movement of the maximum contributions. During the
early and peak sub-season, the largest contributions are found
tens of kilometers inland, directly east of Lake Ontario. By the
mid to late cold season, greater snowfall totals from lake-effect
snow are concentrated closer to the lakeshore with the largest
percent contributions found southeast of the lake’s longitudinal
axis. Snowfall totals in southern Central New York are mostly
dominated by Nor’easters (25–35%) and Rocky lows (15–20%).
This is likely driven by moisture sourced from the Atlantic Ocean
rather than the Great Lakes. To reduce the over homogenization
of snowfall contributions, it is suggested that snowfall patterns
within the Great Lakes basin are examined at the local level.

Understanding the actual snowfall contribution from different
snowstorm types throughout a snowfall season is needed for
future climate predictions. Since the early twentieth century,
trends in lake-effect snowfall have fluctuated, while snowfall
trends for areas less prone to lake-effect snow have remained
unchanged or decreased (Norton and Bolsenga, 1993; Ellis and
Leathers, 1996; Burnett et al., 2003; Kunkel et al., 2009a; Bard and
Kristovich, 2012; Hartnett et al., 2014). Seasonal snowfall patterns
within the Great Lakes region are closely tied to air temperatures,
lake surface temperatures, and ice cover on the lakes (Tsuboki
et al., 1989; Hanson et al., 1992; Segal and Kubesh, 1996; Wang
et al., 2012; Notaro et al., 2015; Shi and Xue, 2019). Since
the formation of lake-effect snowstorms and non-lake-effect
snowstorms are fundamentally different, a warming climate may
have contrasting influences on these storms. This is especially
important for storms that occur near the beginning or end of the
snowfall season, as recent studies have noted a transition from
snow to rain in these storms (Schmidlin et al., 1987; Groisman
and Easterling, 1994; Miner and Fritsch, 1997; Knowles et al.,

2006; Pierce and Cayan, 2013; Kluver and Leathers, 2015; Clark
et al., 2020). Since the potential trajectory of future snowfall varies

according to the type of storm, for accurate snowfall predictions,
models need to decipher the relative contributions of different
snowstorm types to the seasonal snowfall total. Therefore, the
analyses in this study help to better understand how snowfall
may change in the future by directly teasing out the snowfall
contributions from different snowstorm types. These analyses
also emphasize the spatial variability of snowfall contributions,
which suggest that future snowfall trends may vary across a
region depending on the type of snowstorm that dominates
seasonal totals. The results from this study provide an important
baseline to track these future scenarios, and to help isolate the
changes in frequency and contributions of all the storms that
track across the region.
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Extreme heat events in the Great Lakes Basin (GLB) region of eastern North America are

expected to increase in concert with greenhouse gas (GHG) induced global warming. The

extent of this regional increase is also influenced by the direct effects of the Great Lakes

themselves. This paper describes results from an ensemble of dynamically downscaled

global warming projection using the Weather Research and Forecast (WRF) regional

climate model coupled to the Freshwater Lake (FLake) model over the Great Lakes

region. In our downscaling pipeline, we explore two sets of WRF physics configurations,

with the initial and boundary conditions provided by four different fully coupled Global

Climate Models (GCMs). Three time periods are investigated, namely an instrumental

period (1979–1989) that is employed for validation, and a mid-century (2050–2060) and

an end-century (2085–2100) periods that are used to understand the future impacts of

global warming. Results from the instrumental period are characterized by large variations

in climate states between the ensemble members, which is attributed to differences

in both GCM forcing and WRF physics configuration. Results for the future periods,

however, are such that the regional model results have good agreement with GCM results

insofar as the rise of average temperature with GHG is concerned. Analysis of extreme

heat events suggests that the occurrence rate of such events increase steadily with rising

temperature, and that the Great Lakes exert strong lake effect influence on extreme heat

events in this region.

Keywords: FLake, CMIP5, WRF, climate change, extreme heat event, Great Lakes (North America)

1. INTRODUCTION

Record breaking extreme heat events have been occurring more frequently around the world in
recent years. Some, such as the extreme heat events over Europe in 2019 (Vautard et al., 2020) and
over western North America in 2021 (Philip et al., 2021) were especially severe, causing significant
loss of life and property. This trend of increasingly active heat events has attracted a great deal of
attention from the public, businesses and policy makers. Interest is particularly great in attempting
to understand the susceptibility of regions of interest, such as those at high risk of wildfires to
changes in the frequency of these events.

The Great Lakes Basin (GLB) region of North America is the largest fresh-water system on
Earth, by area, and supports a population in the tens of millions along with extensive agricultural
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and industrial activity. Extreme heat events can be very
debilitating to this region, and lead to impacts that would be
felt far-and-away. It is therefore of great interest to understand
climate change induced changes to extreme heat events and the
extent to which the influence of such events may be affected by
the presence of the Great Lakes. The purpose of the present paper
is to begin a discussion on the expected frequency of occurrence
of extreme heat events in the GLB in the future.

The climate of the GLB has traditionally been studied from
either an observational perspective (Scott and Huff, 1996) or
via the application of coupled Global Climate Models (GCMs;
Lofgren, 1997). In recent years, however, there have been
advances in the usage of high-resolution Regional Climate
Models (RCMs), often in conjunction with a lake model, to study
the impacts of global warming in this region at a resolution and
fidelity higher than that which is afforded by GCMs.

The first attempt to examine the GLB region with an RCM
together with a lake model was undertaken by Gula and Peltier
(2012) who employed WRF in a dynamical downscaling pipeline
wherein the NCAR CCSM3 global model (Collins et al., 2006)
was used to force a nested WRF configuration with an outer
domain covering the entire North American continent at 30 km
resolution and an inner domain covering the GLB at 10 km
resolution. The lakemodel in their study, FLake (Mironov, 2008),
was run in offline mode, nevertheless, it was apparent from the
study that FLake was able to accurately represent the area covered
by lake ice in winter as well as the timing of onset and retreat
of the lake ice. More importantly, the analysis demonstrated the
capability of nested dynamical downscaling to fully resolve lake
effect meteorological processes such the formation of snow belts
in the lee of the lakes during winter, and to describe the impacts
of the global warming in that region.

The nested downscaling pipeline of Gula and Peltier (2012)
was enhanced further by fully coupling FLake to WRF and
the improved configuration was used by d’Orgeville et al.
(2014) to present the first study of the expected changes
to extreme precipitation in the GLB under the influence of
anthropogenic climate change. High resolution output from
the inner WRF domain was employed to drive an analysis of
precipitation extremes using a peak-over-threshold technique
to quantitatively assess the extent to which the return times of
extreme precipitation events of varying intensities are expected to
decrease through the current century under the RCP8.5 “business
as usual” radiative forcing scenario. It was found that the time
separating extremes of any given precipitation intensity would
decrease by at least a factor of two by mid-century. A follow
up study by Peltier et al. (2018) made use of a larger ensemble
of WRF physics configurations and investigated the “fattening
of the tail” of the probability distribution under climate change
by using the Generalized Extreme Values (GEV) distribution
methodology. The results for end-century for both temperature
and precipitation were in agreement with the earlier analyses of
d’Orgeville et al. (2014).

FollowingGula and Peltier (2012), results from the application
of RCMs to the understanding of the climate of the GLB
started to be reported by other researcher groups. Notaro
et al. (2013) reported on an RCM configuration that employed

the Abdus Salam International Center for Theoretical Physics
Regional Climate Model, version 4 (ICTP RegCM4), forced by
the National Centers for Environmental Prediction (NCEP)–
NCAR reanalysis and the Global Sea Ice and Sea Surface
Temperature (GISST) dataset from the UK Met Office, coupled
to a one-dimensional energy-balance lake model. By comparing
their results for the GLB with those obtained from another
model run in which the lakes were replaced by a landscape
similar to that of the surrounding region, they demonstrated
that the presence of the Great Lakes reduces the amplitude
of both diurnal and annual temperature change due to their
large thermal inertia. Subsequently, Notaro et al. (2015b) forced
their lake coupled RegCM4 model with the outputs of two
Coupled Model Intercomparison Project Phase 5 (CMIP5)
GCMs over the historical and future global warming periods. The
results demonstrated, unsurprisingly, that winter temperature
is expected to rise, and that reduced lake ice cover leads to
an increase in lake effect precipitation which gradually shifts
from snow to rain as the climate continues to warm. In an
accompanying paper, Notaro et al. (2015a) discuss the effect of
projected changes in precipitation and evaporation on future
lake levels.

Mallard et al. (2014) also employedWRF coupled to the FLake
model and showed that the configuration is able to simulate the
regional climate with higher accuracy than reanalysis that has
a lower spatial resolution. Xue et al. (2017) coupled RegCM4
with a different lake model based on the Finite Volume
Community Ocean Model (FVCOM) 3D hydrodynamic model
to obtain highly accurate lake fields. Recently, by coupling the
NASA-Unified WRF model (NU-WRF) to both a 1D lake model
and a 3D lake model, Notaro et al. (2021) showed that the 3D lake
model performed better over the Great Lakes region.

A major shortcoming in this extensive literature on the
application of RCMs to the GLB is that nearly all of these studies
used global forcing data from only one GCM. Therefore, the
effect of the choice of GCM data on the downscaled results
for the GLB remains largely unconstrained. Zobel et al. (2018b)
presented regional climate results over the Continent of US
(CONUS) from the WRF model forced by 3 different GCMs
and demonstrated that different GCM forcings lead to significant
differences over their domain. Therefore, we could expect to see a
similar variability in the downscaled climate over the GLB region
depending on the GCM data. Here we make progress on filling
this knowledge gap by using outputs from a selected set of GCMs
that have participated in the Coupled Model Intercomparison
Project Phase Five (CMIP5; Taylor et al., 2012) and whose data
have been uploaded to the project archive. The CMIP5 models
have been used to simulate both the twentieth century over which
their results can be verified against high quality instrumental
observations, and the twenty-first century over which we are
interested in performing downscaled projections. The CMIP5
archive was key to the findings reported in the IPCC Fifth
Assessment Report (IPCC, 2013a) and the data has been used for
understanding climate change projections over North America
(Sheffield et al., 2013a,b).

In addition to the mean climate state of the GLB region, the
modeling of extreme events and projections of their change into
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the future has also generated considerable interest. Modeling and
projection of changes in extreme precipitation using a lake model
coupled to a RCM has been previously reported (d’Orgeville
et al., 2014; Peltier et al., 2018), but in contrast much less effort
has been expended to studying extreme heat events using this
configuration. While some studies have attended to the question
of regional extreme heat events, those have been either based
on observations (Peterson et al., 2008) and so cannot be used
for future projections, or use low-resolution GCM data (Meehl
and Tebaldi, 2004; Kharin et al., 2013; Sillmann et al., 2013a,b)
or downscale GCM data without resolving lake dynamics (Jeong
et al., 2016; Byun and Hamlet, 2018). The latter two approaches
are unable to explicitly include lake effects in the Great Lakes
region. Studies have shown that lakes are not immune to climate
change (O’Reilly et al., 2015; Woolway et al., 2020), and therefore
interaction between a warmed lake and its surroundings needs to
be resolved by a lake model in order to obtain accurate climate
change signal over the surrounding region.

This study will employ the dynamical downscaling
pipeline that was recently used in Peltier et al. (2018) but
apply it to CMIP5 data to construct a new ensemble of
downscaled simulations. This new ensemble will be used

to explore the variability in the downscaling process when
forcing from different GCM models is employed, and
thereby attempt to address the impact of GCM selection
on regional climate results. Extreme heat event analysis is
performed on this ensemble to explore the evolution of
heat waves under the influence of different simulations for
climate change.

2. EXPERIMENTAL DESIGN, CLIMATE
MODELS, AND VALIDATION DATASETS

2.1. Experimental Design
The dynamical downscaling experiments presented in this paper
follow the two-step nesting procedure established in Gula and
Peltier (2012) and d’Orgeville et al. (2014) wherein the first of the
nested domains, namely the outer domain, covers the continent
of North America at a resolution of 30 km, and the nested inner
domain covers the GLB at 10 km resolution. Technical details are
described in Erler (2015). This pipeline has also been employed
to perform downscaling experiments in other regions, such as
Western Canada (Erler et al., 2015; Erler and Peltier, 2016, 2017),

FIGURE 1 | Mean winter season 2 m air temperature biases with respect to the NRCan dataset over the outer WRF domain for the GCMs (top row), WRF ensemble

members with G physics (middle row), and WRF ensemble members with T physics (bottom row). From left to right are experiments (GCM or GCM driven WRF)

associated with CESM1, GFDL-ESM2M, GFDL-CM3 and MIROC5 respectively.
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and India and South-east Asia (Huo and Peltier, 2019; Huo et al.,
2021).

2.2. CMIP5 GCM Models
The CMIP5 archive contains data generated by over 50 climate
models from 20 modeling groups from around the world. It
is a comprehensive source of global climate data for both
historical and future projection periods (Taylor et al., 2012).
Several studies have used the CMIP5 archive to investigate future
climate projections over various regions of the world (see for
example Kug et al., 2015; Song and Yu, 2015; Cheng et al., 2017;
Peings et al., 2017), and the relative performance of the models,
over North America has been evaluated for the historical period
(Kumar et al., 2013; Sheffield et al., 2013a,b) and the future
(Maloney et al., 2014).

Our downscaling pipeline requires the availability of several
atmospheric, sea ice and land surface variables from the GCM
at 6-h resolution. At the time of this study, only data from
MIROC5, GFDL-ESM2M and GFDL-CM3 stored on the CMIP5
archive satisfied these requirements. Accordingly, in this study
we use data from these three GCMs, together with data from
our own simulation using CESM1. Sheffield et al. (2013a) found

that these models cover a broad range of performance and
concluded that CESM1 is one of the better performing models,
while GFDL-CM3 is among the models that perform worse over
the historical period. Both GFDL-ESM2M and MIROC5 were
ranked in between CESM1 and GFDL-CM3.We therefore expect
this set of models to provide a good spread of climate states in the
RCM ensemble.

The Model for Interdisciplinary Research on Climate
(MIROC; Watanabe et al., 2010) is developed and operated by
the Japanese research community. The atmospheric component
of the model has a spectral dynamical core that operates at a
horizontal resolution of T85 (1.4◦ × 1.4◦) and has 40 layers in
the vertical. The ocean grid uses stereographic projection and
conformal mapping to transfer the north pole to 80◦N, 40◦W and
the south pole to 80◦S, 40◦W in order to prevent the geometric
singularity due to the convergence of the meridians from existing
in the oceanic domain. The grid resolution in the zonal direction
is fixed at 1.4◦ but the meridional resolution decreases from
0.5◦ at 8◦ equivalent latitude to 1.4◦ at equivalent latitudes
poleward of 65◦. The vertical discretization includes 49 layers
that are unevenly distributed with greater concentration near
the surface. The atmospheric component uses parametrization

FIGURE 2 | Winter season zonally mean zonal wind speed at 250 hPa pressure level. Left panel shows results for the historical period where ERA-Interim reanalysis

result is plotted in black as reference, and the right panel shows result for mid-century period. 30◦and 40◦ latitude are marked to enable easier comparison between

plotted curves.
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schemes that includes a cumulus convection scheme, cloud and
cloudmicrophysics schemes, turbulence diffusion scheme and an
aerosol model. Sea ice is treated on ocean cells with dynamics
and thermodynamics included. The land component operates
with 6 soil layers and includes snow and ice albedo effects, and
a lake submodel.

The Global Coupled Carbon–Climate Earth System Model
(GFDL-ESM2M) is developed by the Geophysical Fluid
Dynamics Laboratory (GFDL) of the National Oceanic and
Atmospheric Administration (NOAA; Dunne et al., 2012,
2013). This model uses a finite volume dynamical coreon an
atmospheric grid with 2.5◦ longitude and 2.0◦ latitude horizontal
resolution and 24 vertical levels. The tripolar ocean grid has a
horizontal grid spacing of 1◦ that gradually decreases to 1/3◦

meridionally at the equator and has 50 vertical levels. The land
model parameterizes all physical and biological processes and the
included carbon cycle simulates carbon transport between the
model components. Components that treat sea ice and icebergs
are also included in the model.

The GFDL Global Coupled Model (GFDL-CM3 Donner et al.,
2011; Griffies et al., 2011) is also from GFDL. This model uses
a finite-volume dynamical core with a cube-sphere grid that
has 48 vertical levels and 48 cells along each edge of the cube,
leading to grid cell sizes that range from 163 km to 231 km.
The output data of this model are projected to an atmospheric
grid with 2.5◦ longitude × 2.0◦ latitude resolution. This model
includes the same ocean and land model components as GFDL-
ESM2M. This model also employed various parametrization
schemes including aerosol physics, cloud physics, and schemes
for trace gas and ozone.

FIGURE 3 | Winter season sea level pressure biases with respect to the CFSR

dataset for the GCMs over the WRF model outer domain.

Using multi-millennial runs performed with the two GFDL
models, Paynter et al. (2018) show that GFDL-CM3 model has
a higher equilibrium climate sensitivity than GFDL-ESM2M.
Furthermore, Maloney et al. (2014) show that the GFDL-
CM3 model experiences more warming compared to other
models in the CMIP5 archive at the end of the twenty-first
century. Therefore, we expect the GFDL-CM3 forced RCM
experiments to be warmer than other members during the future
projection periods.

The fourth member of our ensemble is driven by the
Community Earth System Model version 1 (CESM1; Gent et al.,
2011), which has been used in previous studies from the Toronto
group. CESM1 is a fully coupled global climate model developed
by the National Center for Atmospheric Research (NCAR) and
contains submodels for all major components of the climate
system. The atmospheric component, called CAM4, (Neale et al.,
2013) operates on a latitude-longitude grid with resolution
1.26◦ × 0.9◦ and 26 vertical layers. The ocean component,
called the Parallel Ocean Program (POP) version 2 (Danabasoglu
et al., 2012), uses a displaced-dipole grid with 1◦ longitudinal
resolution, varying latitudinal resolution from 0.27◦ near the
equator to 0.54◦ near the pole and has 60 vertical level. The land
component, Community LandModel version 4 (CLM4 Lawrence
et al., 2012), runs on the same grid as the atmospheric component
and has 15 soil layers. The sea ice component is the Community
Ice Code version 4 (CICE Holland et al., 2012) that runs on the
ocean grid and simulates both dynamics and thermodynamics.

The CESM1 data used in this study (and in other studies from
this group) is from a local simulation performed with the model
and therefore there will be subtle differences between this data
and that on the CMIP5 archive. Peings et al. (2017) examined
internal variability in a large ensemble of 40 CESM1 simulations
and concluded that the model does not display significant
internal variability. Therefore, using a local CESM1 simulation
as forcing should not affect its reliability and the results can still
remain comparable to those obtained using CESM1 data from the
CMIP5 archive. Previous studies have thoroughly discussed the
behavior of CESM1 forced dynamical downscaling experiments
(d’Orgeville et al., 2014; Li et al., 2018; Peltier et al., 2018; Zobel
et al., 2018b) with most of the studies concluding that CESM1
forced climate results match observations closely. Henceforth,
to distinguish between the models whose data were directly
obtained from the CMIP5 archive and CESM1 for which we use
local data, we will use the phrase CMIP5 models to refer to the
collection of GFDL-CM3, GFDL-ESM2M and MIROC5, and the
term CMIP5 data as data for these three models. These terms will
not refer to the CESM1 GCM or data from that model.

The representation of lakes in the GCMs and their
performance deserve attention since we are interested in the
GLB region. All GCMs that we employ in this study contain a
lake submodel within the land component. However, given the
resolution of the GCMs (1◦ for CESM, T85 for MIROC5, and
2◦ for the GFDL models), the representation of lakes is very
coarse and they are often defined in terms of fractional units
of land grid cells. This leads to a poor representation of lake
extents and of land-lake contrast. As a result, those lake models
cannot represent lake effects in a manner that is achievable when
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using a high-resolution lake model within an RCM (Notaro et al.,
2013). Briley et al. (2021) analyzed how CMIP5 models simulate
the Great Lakes and concluded that representation to not be
very credible.

Each GCM is forced by historical greenhouse gas
concentrations for the historical period (pre-industrial to
2005) and by Representative Concentration Pathway 8.5
(RCP8.5) emissions scenario from year 2006 to year 2100.

2.3. RCM Model Configuration
The regional climate model employed for this study consists of
the Weather Research and Forecasting (WRF) model, version
V3.4.1, with the Advanced ResearchWRF (ARW) dynamical core
(Skamarock and Klemp, 2008), fully coupled to the Freshwater
Lake (FLake; Mironov, 2008) model. The FLake model is
configured with a 70 m false bottom as in d’Orgeville et al. (2014)
and Peltier et al. (2018). In these two studies, five different sets of
physics configurations were employed and discussed, and here
two of the sets, namely G and T (see Table 1 of Peltier et al.,
2018, for details of the two sets), will be used so that variations
in modeled result caused by differences in GCM forcing data
could be cross compared with variations caused by different

physics configuration sets. The T physics set use the WRF single-
moment 6-class microphysics (Hong and Lim, 2006) and the
Kain-Fritsch cumulus parameterization (Kain, 2004) schemes
while the G physics set uses the Morrison microphysics scheme
(Morrison et al., 2009) and the Grell-3 cumulus scheme (Grell
and Dévényi, 2002). Other configurations, which are common
to both sets, include the Noah land surface model (Chen and
Dudhia, 2001), the Rapid Radiative Transfer Model for General
CirculationModels (Iacono et al., 2008) radiation scheme and the
Mellor-Yamada-Nakanishi-Niino level-2.5 (Nakanishi andNiino,
2009) planetary boundary layer parameterization scheme.

The dynamical downscaling process follows the procedure
established in Gula and Peltier (2012), wherein forcing in the
from of large-scale GCM data is used as initial condition
and boundary condition for WRF. The boundary forcing data
includes 6-h temperature, wind, humidity and pressure, whereas
the initial conditions include land surface temperature, sea
surface temperature, sea ice cover and assorted variables required
for the initialization of the land component. A relaxation
zone is used to apply boundary forcing smoothly into the
WRF outer domain. Spectral nudging is also applied to the
pressure, wind, potential temperature and humidity fields in

FIGURE 4 | Mean winter season 2 m air temperature biases with respect to the NRCan dataset over the inner WRF domain for the GCMs (top row), WRF ensemble

members with G physics (middle row), and WRF ensemble members with T physics (bottom row). From left to right are experiments (GCM or GCM driven WRF)

associated with CESM1, GFDL-ESM2M, GFDL-CM3 and MIROC5 respectively. The Great Lakes basin is outlined in black.
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the outermost domain in all ensemble members in order to
preserve the large-scale circulation features of the GCMs. For
each ensemble member, we perform experiments for three
different time periods: historical (1979–1989), mid-twenty-first
century (2050–2060), and end-twenty-first century (2085–2100).
TheWRF simulations also employ the RCP8.5 emission scenario,
so the strength of anthropogenic forcing is kept the same as in
the GCMs. Lake data is not used to force WRF runs in this study,
so the WRF results presented here are not affected by the lake
representation in GCMs.

2.4. Validation Datasets
To validate simulations for the historical period, observational
and reanalysis datasets are employed. The Natural Resource
Canada (NRCan; McKenney et al., 2011) observational data
is used to provide ground truth for surface temperature,
precipitation, and incoming shortwave radiation. It should be
noted explicitly that the NRCan dataset does not have direct
measurements over the lakes, so surface temperatures over the
lakes are interpolated from nearby land stations and therefore
might deviate from true values. The Climate Forecast System
Reanalysis dataset (CFSR; Saha et al., 2010) is used to compare
surface pressure fields.

Throughout the paper, summer includes the months June,
July, and August while winter includes December, January and
February. Unless otherwise stated, model results presented are
averaged over all years in the respective time periods.

2.5. Methods and Data Used for Extreme
Heat Event Analysis
Before performing any analysis of extreme heat events, it is
necessary to fix a working definition for such extremes. Several
definitions have been proposed and used in the literature and
studies have found that the detected heat events are sensitive to
the choice of definition (Robinson, 2001; Perkins and Alexander,
2013). It has also been suggested that the definition of a heat event
should be customized to suit the climate of the region of interest.
For this study, this requires being cognizant of the lake effects
that would be accurately simulated by our setup which includes a
lake model. During summertime the lakes reduce the maximum
atmospheric temperature achievable by absorbing heat, resulting
in a cool zone around the lakes (Scott and Huff, 1996). This
cooling effect will dampen the tail end of the distribution of
extreme heat events extracted by percentile thresholds, so a static
threshold method is preferred. For this reason, we choose the
Environmental and Climate Change Canada’s definition of a heat

FIGURE 5 | Similar to Figure 4 but for the mean winter precipitation differences.
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wave as ‘a period with more than three consecutive days of
maximum temperatures at or above 32◦C/90◦F’ in this study.

At the same time, the lakes also serve as a source of moisture
during the summer season. Although the evaporation process
absorbs heat and moderates the temperature, the increase in
relative humidity itself increases the risk to the health of the
inhabitants of the region. Therefore, here we also use the Heat
Index (HI) method from NOAA/National Weather Service
(Anderson et al., 2013) which combines temperature and
relative humidity into a single index (Appendix A1). There are
several other widely used measures that also seek to combine
temperature and humidity, including Environmental and
Climate Change Canada’s Humidex, (https://www.canada.ca/en/
environment-climate-change/services/sky-watchers/glossary.
html) and the wet bulb globe temperature (Li et al., 2017).
Exploring their differences is beyond the scope of this study.

Calculating HI requires both temperature and relative
humidity which are provided on daily interval by WRF. Days
in each model year that experience extreme heat events are
determined using the HI definition above (similarly extreme
heat days are identified using temperature only when using the
temperature metric). The threshold values for the definition of

heat waves is kept the same in both the temperature and HI
methods, and for all time periods without any bias correction.
Original GCM output is not included in this analysis for two
reasons: firstly, as discussed above none of the GCMs include
a lake model that can suitably capture lake effect and secondly,
extreme heat event analysis with GCMs has already been covered
by other studies (e.g., Kharin et al., 2013; Sillmann et al., 2013a,b).

3. MEAN CLIMATE AND EXTREME HEAT
EVENT ANALYSIS FROM DYNAMICAL
DOWNSCALING

3.1. Simulation Results Over the Historical
Period
The winter average near surface temperature (T2) biases with
respect to the NRCan dataset (henceforth bias is defined as
model minus observation) over the outermost WRF domain are
presented for the selected GCM results and the GCM driven
downscaled results in Figure 1. It is readily apparent that the
downscaled experiments are producing results that are distinctly
different from the GCM data that is used as their forcing. This

FIGURE 6 | Mean summer season 2 m air temperature biases with respect to the NRCan dataset over the outer WRF domain for the GCMs (top row), WRF ensemble

members with G physics (middle row), and WRF ensemble members with T physics (bottom row). From left to right are experiments (GCM or GCM driven WRF)

associated with CESM1, GFDL-ESM2M, GFDL-CM3, and MIROC5, respectively.
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is particularly the case for WRF simulations forced with CMIP5
models, whereas WRF results forced with CESM1 show the
smallest (but still sizeable) differences with the GCM data. The
strongest biases in CESM1 are the warm bias over Alaska and
northeastern Canada and the cold bias over northern Canada.
These features are retained to varying degrees in the downscaled
experiments, with the G physics version greatly attenuating the
cold bias without effecting the warm bias and the T physics
version being successful in reducing the magnitude of both
biases. On the other hand, while the G physics version is able to
improve the performance by attenuating the moderate warm bias
throughout the interior of the continent, the T physics version
replaces that with a moderate cold bias.

The MIROC5 model does not have a strong bias over North
America, but the two GFDL models produce strong warm bias
over Canada, Alaska and northwestern US. In contrast, the WRF
results associated with these models all have a large cold bias
over the continent, up to 5◦ C in most regions and up to 10◦ C
in the coldest regions. The magnitude of this bias is larger than
the natural variability in the models for this region as previous
studies (d’Orgeville et al., 2014; Peltier et al., 2018) have shown
that the typical range of bias with physics or initial condition
ensemble is ∼ 4◦ C. This range is also applicable for other
regions such as western Canada (Erler and Peltier, 2017), India
(Huo and Peltier, 2019), andNorth America (Zobel et al., 2018b),

and is in general also true for other models (for a discussion of
variability in GCM results, see Deser et al., 2012, 2014; Peings
et al., 2017).

The source of this large cold bias in WRF results with CMIP5
models can be traced to the large-scale wind and pressure fields,
and the jet stream position. We begin with an examination of
the jet stream position first. The left panel of Figure 2 reveals
that in WRF there is a 10◦ difference in the position of the
jet stream between CESM1 forced and CMIP5 forced results.
This bias in jet stream position is inherited from CMIP5 forcing
data through the spectral nudging process. In order to give a
reasonable ground state as reference, the zonal wind from ERA-
Interim reanalysis data (Dee et al., 2011) is also plotted, and
the ERA-Interim results lie right between the northward biased
CESM1 and southward biased CMIP5 results. Since the position
of the sub-tropical jet stream marks the northern extent of the
Hadley Cell, a southward shift in the position of the jet stream
means that heat transport from the tropics by the Hadley cell
terminates further southward. This leaves the region north of
the jet stream under the influence of colder polar air from the
Arctic instead, which disrupts surface temperature fields in the
WRF. Furthermore, the largest cold bias in each of the CMIP5
forcedWRF results is centered in the range 40◦N to 50◦N, which
overlaps with the region where a shift in the jet stream position
would be most influential.

FIGURE 7 | Similar to Figure 6 but for the incoming shortwave radiation differences.
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The second cause for the bias in CMIP5 driven WRF
results is the surface pressure field. Figure 3 displays the bias
of winter season average mean sea level pressure over the
WRF outer domain. It is to be noted that the bias in the
pressure fields for each GCM differ considerably as a function
of increasing latitude: CESM1 varies from high to low, GFDL-
CM3 is low over land and high over the Arctic Ocean, and
both GFDL-ESM2M and MIROC5 vary from low to high. Since
air flows outwards from high-pressure region, a high pressure
bias over high latitude forces cold polar air southward thereby
causing surface temperatures to drop. As a result, downscaled
simulations forced by MIROC5 and GFDL-ESM2M have the
largest surface cold bias while GFDL-CM3 forced results have
a smaller cold bias and CESM forced results have almost no
cold bias.

As discussed in Scott and Huff (1996), the Great Lakes
moderate air temperature above them by absorbing heat
from air during spring-summer season, and releasing it
back during the fall-winter season. The release of heat
continues until lake surfaces are completely frozen and
thermal exchange between lake surface and the atmosphere
is blocked. These lake characteristics are confirmed by
previous work that employed RCMs coupled to lake models

(Gula and Peltier, 2012; Notaro et al., 2013; Mallard et al., 2014).
A closer look at winter average near surface temperature (T2)
biases over the WRF inner domain (Figure 4) reveals that the
cold biases over the lake surfaces and the surrounding regions is
smaller by ∼2◦ C than biases over other regions in both CESM
and CMIP5 members of the ensemble. This demonstrates that
the lake model employed in this study is effective at resolving
the temperature mitigating effects of the presence of the lakes
even when the region is dominated by a large cold bias. In
contrast, in GCM results regions over the lakes are colder than
their surroundings, which is contrary to what is expected. This
supports the findings of Briley et al. (2021) who found that
GCMs do not simulate lake effects accurately because they
do not contain a detailed lake model that explicitly resolves
land-atmosphere-lake coupling and the exchange of fluxes
between them. Figure 5 shows the precipitation bias over the
inner WRF domain for all ensemble members in winter, and
again the WRF results are able to better capture the spatial
distribution compared to their GCM counterparts. Although a
smaller bias still exists in regions around the lakes where the lake
effect matters, it is likely caused by the cold temperature bias
that freezes the lakes early and suppresses evaporation, thereby
reducing overall moisture source for those regions.

FIGURE 8 | Mean winter season precipitation biases with respect to the NRCan dataset over the outer WRF domain for the GCMs (top row), WRF ensemble

members with G physics (middle row), and WRF ensemble members with T physics (bottom row). From left to right are experiments (GCM or GCM driven WRF)

associated with CESM1, GFDL-ESM2M, GFDL-CM3, and MIROC5, respectively.
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FIGURE 9 | Same as Figure 8 but for summer precipitation biases.

The near surface temperature (T2) averaged over the summer
season for all ensemble members and their respective GCMs
are compared with the NRCan dataset over the outermost WRF
domain in Figure 6. There is a noticeable difference between
the G physics and T physics ensemble members; the latter are
warmer than the former by ∼2 ◦ C. In Figure 7 the bias in the
incoming shortwave radiation for all ensemble members during
the summer season is displayed, and it is immediately clear that
the primary discriminant in modeled results for this variable
is the choice of parameterization set. This difference in surface
incoming shortwave radiation is very likely caused by different
cloud cover fractions in the atmosphere, which is determined by
cumulus and microphysics schemes. These schemes affect cloud
cover and cloud reflectance, thereby modifying the planetary
albedo. The difference in incoming shortwave radiation also
explains why simulations using G physics have a colder surface
than those using T physics, which is consistent with earlier
results reported in d’Orgeville et al. (2014), and Peltier et al.
(2018) that different physics schemes lead to different bias in
WRF results. For more information on the impact of physics
schemes in atmospheric modelling, see Thompson et al. (2016)
who examined the impact of cloud physics and radiation
parametrization on WRF simulations, and also Fouquart et al.
(1990) for general information on the influence of clouds on
radiation in climate modelling.

In summer, the CESM1 driven WRF result is ∼2◦ C warmer
than CMIP5 driven results, which is caused by differences
in GCM forcing data. The jet streams are weaker and
meridional pressure gradients are flatter in summer, thus the
GCM caused cold bias is smaller in magnitude than in the
winter season. Meanwhile in Gula and Peltier (2012) a 2–
3◦ C temperature difference in the region around the lakes
is also reported due to the inclusion of the lake model,
which is of similar magnitude as biases from other causes
discussed herein. Therefore, lake effect is a first order influence
on the regional climate and we again confirm the findings
in Bates et al. (1993), Lofgren (1997), Notaro et al. (2013)
and Mallard et al. (2014) that including a proper lake model
is absolutely necessary to properly resolve climate around
the lakes.

Choice of physical parameterizations also has a strong
influence on the modeled precipitation. The precipitation bias
for the same collection of model results is presented in Figure 8

for the winter season and in Figure 9 for the summer season.
For both season the primary difference in spatial pattern is
between the group of WRF members using G physics and the
group using T physics, stronger in summer season as there is
little precipitation over winter, and little to no difference across
members driven by different GCMs. Related works (d’Orgeville
et al., 2014; Huo and Peltier, 2019) also revealed that different sets
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FIGURE 10 | Mean winter season 2 m air temperature anomaly for the 2050–2060 period with respect to the historical period over the outer WRF domain for the

GCMs (top row), WRF ensemble members with G physics (middle row), and WRF ensemble members with T physics (bottom row). From left to right are experiments

(GCM or GCM driven WRF) associated with CESM1, GFDL-ESM2M, GFDL-CM3, and MIROC5, respectively.

of physical parameterizations would create large differences in
the precipitation result. Note that none of theWRF results have a
spatial pattern that resembles the pattern of their respective GCM
forcing data, so precipitation data from GCMs is rewritten by the
RCMmodel over the regional domain. Results from (Zobel et al.,
2018a) also show that precipitation from RCMs are completely
different from GCMs that are used for forcing, indicating that
model settings used in the RCM exert a strong influence over
modeled precipitation.

3.2. Simulation Results Over Future
Projection Periods
Before presenting climate results for the two climate projection
periods discussed in section 2, several technical details need
to be stated here. First, all comparisons of CMIP5 ensemble
member for future projection period results have been performed
with respect to the historical results of each individual ensemble
member. Second, in order to preserve the model variability
signal, no bias correction has been applied before comparing
model results. Third, the two future projection periods (the mid-
century (2050–2060) and the end-century (2085–2100) periods)
have different time length, but results of the two periods will still

be presented in the form of averages over all years over each
time period.

According to conclusions in section 3.1, jet stream position
has the potential to inflict large temperature bias in the RCM
results. Therefore, changes in jet stream position during future
projection periods should be examined to determine their
contribution to projected climate changes. The right panel of
Figure 2 presents the zonally averaged zonal wind speed at
250 hPa vertical level for the CMIP5 ensemble members during
mid-twenty-first century projection period, and similar to the
left panel of Figure 2 the WRF data forced by CMIP5 GCMs
still have their jet stream centered around 30◦N latitude, while
CESM1 forced results position it at around 40◦N latitude. This
persistence in the bias of jet stream position indicates that the
base state of climate for each CMIP5 member of the ensemble
is likely unchanged during future projection periods, and the
difference in model results (both WRF and GCMs) are more
related to the change in GHG concentration toward the end of
twenty-first Century.

Changes in the near surface temperature (T2) field between
the mid-twenty-first century projection period and historical
period are presented in Figure 10 for the winter season and
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FIGURE 11 | Same as Figure 10 but for the summer season temperature anomalies.

Figure 11 for summer season. The most important information
that follows from these figures is that all of the WRF results,
whether obtained using G or T physics, have a surface
temperature change signal that closely mimics the strength of the
signal in their respective GCM forcing data, regardless of season.
Results for the end-twenty-first century period also have WRF
regional T2 warming bias closely follow the T2 warming bias in
their respective GCM forcing data and are mostly independent
of the physics parametrization schemes employed. This closeness
in the climate change temperature signal is very interesting given
the large difference in the climate base state in both winter and
summer season presented in section 3.1, indicating that given a
forcing scenario including GHG forcing from emission pathway,
general circulation patterns from GCM forcing data, WRF is able
to recreate the same amount of surface warming in the GCM
forcing data. The amount of climate sensitivity in the GCM is
also preserved, as Paynter et al. (2018) has described the high
climate sensitivity of the GFDL-CM3model, and theWRF results
forced by GFDL-CM3 data have the same high climate sensitivity
in both winter and summer season. This closeness observed
between WRF and GCM results shows that the climate change
temperature signal is reasonably well captured by the GCMs
with respect to their individual climate base state. Therefore,

this study affirms that warming forecasts in the GCM model are
reliable, and support works on future warming analysis using
GCM results such as Kharin et al. (2013) and Maloney et al.
(2014). On the other hand, the independence of this closeness
from the physics parametrization used means that variability in
the choice of cumulus and microphysics schemes within the 2
sets employed in this study will not dominate the temperature
forecast results.

Another important potential implication of this closeness
concerns the creation of climate projection forecasts for
temperature using bias correction techniques: for the WRF
settings used in this study, climate change signal for temperature
is well captured at the GCM level, and the bias in the climate
forecast result would be primarily in the base climate state.
Therefore, bias correcting the GCM base climate state would
be sufficient in providing reasonable climate predictions for
future periods, at least for similar WRF settings. Other studies
have employed bias correction as part of their scheme to
forecast future climate (Byun and Hamlet, 2018; Zobel et al.,
2018b) and it would be interesting to study future climate
projection signals for the CMIP5 ensemble after bias correction.
However, this is beyond the scope of this study and left for
future works.
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FIGURE 12 | Mean summer season relative change in precipitation for the 2050–2060 period with respect to the historical period over the outer WRF domain for the

GCMs (top row), WRF ensemble members with G physics (middle row), and WRF ensemble members with T physics (bottom row). From left to right are experiments

(GCM or GCM driven WRF) associated with CESM1, GFDL-ESM2M, GFDL-CM3 and MIROC5 respectively.

Justifying the reliability of GCM predictions in surface
temperature warming does not undermine the scientific values of
dynamical downscaling experiments, as dynamical downscaling
remains capable of improving other variable fields. Precipitation,
for example, is strongly dependent on resolution and local
processes, and having increased resolution in the climate model
will almost certainly improve the quality of precipitation results
(Notaro et al., 2013; d’Orgeville et al., 2014; Zobel et al., 2018a).
The mid-twenty-first century projection of precipitation changes
for the CMIP5 ensemble is showed in Figure 12, where along
with similarity between GCM and RCM results, a noticeable
difference between results using G or T physics is observed.
This means cumulus and microphysics scheme still have their
role in refining local precipitation projections. The dependence
on physics parametrizations is probably stronger if the outlier
physics set ‘g’ described in Peltier et al. (2018) with Morricon
microphysics scheme (Morrison et al., 2009), Grell-3 cumulus
scheme (Grell and Dévényi, 2002) and Noah MP land surface
scheme (Niu et al., 2011) is employed in this study. Details
of the physics set dependence on precipitation distributions
and precipitation extremes in WRF results over the regional
domain of this study are discussed in details in d’Orgeville et al.

(2014) and Peltier et al. (2018), so it will not be repeated in
this study.

Overall, the results of CMIP5 ensemble over future projection
periods may be summarized as follows: despite the large
difference between WRF and GCM data in the historical
period, the climate change signal in surface temperature for the
WRF results is closely following the signal in their respective
GCM forcing data when comparing to their counterparts in
the historical period. Switching between G and T physics
parameterizations does not change this closeness in temperature
but does affect local change in precipitation projections. These
future projection period climate data, along with historical data
presented in 3.1, will serve as a reliable database for the extreme
heat analysis below.

3.3. Extreme Heat Event Analysis Over the
Great Lakes Region Based on the CMIP5
Ensemble Data
On the basis of results from section 3.1, summer season surface
temperature between groupmembers differs inmagnitude of bias
but not in spatial pattern. Therefore, most of our analysis on

Frontiers in Water | www.frontiersin.org 14 December 2021 | Volume 3 | Article 78226551

https://www.frontiersin.org/journals/water
https://www.frontiersin.org
https://www.frontiersin.org/journals/water#articles


Xie et al. GLB Heat Waves

FIGURE 13 | Extreme heat event analysis for simulation with CESM forcing and T physics. The three rows display annually averaged number of extreme heat days per

year computed using surface temperature, average summer surface relative humidity, and average number of extreme heat days per year computed using the HI. The

three columns represent the historical, mid-twenty-first century and end-twenty-first century time periods. Color bar at the bottom represents the scale used for

extreme heat days for each column respectively. Note that the scale of colorbars for heat event days differs between the time periods.

extreme heat will use a representative ensemble member and we
will call upon the full ensemble for only selected analysis. We
repeat here for the reader that the definition of a heat wave in
this study is “a period with more than three consecutive days of
maximum temperatures at or above 32◦C/90◦F” (section 2.5).
Daily data from WRF are used to compute days that have heat
wave with temperature and HI metrics and with the same static
threshold for all time periods. The wide range of climate covered
by our ensemble enables us to explore the change of extreme
events around a variety of climate states, and a range of biases.
Therefore, no bias correction is applied to the model results
before performing this analysis. A direct consequence of this is
the preservation of cold biases in the historical results (Figure 6),
and therefore we do not expect our extreme heat analysis to
match observational records over the historical period.

For our representative ensemble member, we select the
simulation with CESM1 forcing and T physics. The first row in

Figure 13 compares the number of extreme heat days (computed
with surface temperature data and averaged over years within
each time period) over the WRF inner domain, between the
historical, mid-twenty-first century and end-twenty-first century
periods from left to right. During the historical period, extreme
heat events are largely confined to the southernmost part of
the domain, but they progressively expand to influence most of
the land area as the climate change signal strengthens by the
end of the century. The number of extreme heat days per year
averaged over the GLB (excluding lake surface) increases from
0.5 days during the historical period to 5.7 days during the mid-
twenty-first century period to 13.6 days during the end-twenty-
first century period. The entire Great Lakes region is largely
free from extreme heat events in the historical period, but the
number of extreme heat days increases to ∼30 days per year
south of the lakes and ∼5 days per year north of the lakes by the
end of the century. The middle row of the figure shows surface
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FIGURE 14 | Zonally averaged number of extreme heat days over the central part of the domain (95− 75W◦,41− 56N◦) for all end-century ensemble members.

Water surfaces are excluded when taking average.

relative humidity averaged over the summer season, and which
remains moderately high over the domain with little change
between the different time periods.When the contribution of this
humidity to extreme heat is included through the HI, the region
that experiences extreme heat events increases considerably, as
displayed in the bottom row of the figure. HI derived number of
extreme heat days per year averaged over the GLB also increases
to 4.5 days during historical period, 20.9 days duringmid-twenty-
first century period, and to 42.3 days in end-twenty-first century
period. During the historical period, regions south of the Great
Lakes experience ∼20 extreme heat days per year while such
events remain extremely rare north of the Great Lakes. Toward
the end of the century, the number of extreme heat days increases
to 60–80 days south of the lakes and∼30 days north of the lakes.

Spatially, it is very clear that the occurrence of extreme heat
over the lake surfaces is lower than the surroundings. This is
not surprising because the heat capacity of water is much higher
than that of the surrounding landscape. Furthermore, when
temperature is used as the metric, the number of extreme heat
days is significantly lower in regions east of Lake Superior and
northeast of Lake Huron compared to other regions at the same
latitude.WhenHI is used the same spatial pattern is obtained, but
with reduced magnitude. This is likely due to lake effect: when
extremely hot air coming from the south passes over the lakes,
both heat conduction and evaporation of lake water extracts
sensible heat from that air mass, resulting in cooler air in the
downwind region which reduces both temperature andHI. At the
same time, the increase in the humidity of the air as it passes over
the lakes leads to an increase in the HI. Thus employing the HI

accounts for competing influences of lakes, through temperature
and moisture, on the likelihood of heat events. The extent of the
region with low extreme heat activity is larger than that described
by Scott and Huff (1996), and the reasons for this difference will
warrant a future study. In our results the differences between
the analysis produced using temperature and using the HI is
clear and similar for all ensemble members (not shown), and this
difference reflects the importance of including moist effects in
calculating extreme heat risks in a moist environment.

Influence of lake effects is also visible when the number of
extreme heat days over land is zonally averaged, excluding lakes
(Figure 14). Regardless of the metric used to determine the
occurrence of extreme heat days, the zonally averaged number
of heat days decreases as a function of latitude, and which is
clearly due to the latitudinal decrease of temperature. However, at
the latitudes of Lake Superior (47–49N◦), there is a conspicuous
drop in the number of days, punctuating the trend of a smooth
decrease with latitude. This drop is clearly due to the temperature
mitigating effect of the lakes that matches the region with
low extreme heat activity described just above. Since part of
the mitigation of extreme heat events is associated with the
conversion of heat to humidity, the drop is smaller in the HI
calculated results that capture moisture effect as part of extreme
heat risk. Results over all time periods have this latitudinal drop,
while end-twenty-first century result with the clearest signal is
presented in Figure 14.

The dependence of extreme heat activity on the mean climate
state is illustrated in Figure 15 where results from all ensemble
members is used. Each data point on this figure represents the
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FIGURE 15 | Log plot of annually and spatially averaged number of extreme

heat days vs. average summer surface temperature, for all members of the

ensemble and all time periods. Dots and crosses represent ensemble

members with different physical parameters, red color represent results

calculated using temperature, with blue color represents results calculated

using the HI. The black line marks reference value of 0.2.

GLB averaged surface temperature and number of extreme heat
days (on a log scale), based upon either temperature or HI, for
one ensemble member at one time period. From this figure it
is noted first that the number of extreme heat days increase
with increasing temperature, which is obvious since the method
employed is static. With a rise in temperature, increasing extreme
heat events is predicted by almost all studies that discuss extreme
event frequency under climate change (see IPCC, 2013b, for a
nice summary), regardless of the method of analysis employed.
Secondly, when using the temperature metric for extreme, for
average temperatures above 18◦ C (16◦ C when HI is used), the
simulated number of extreme heat days scales roughly linear with
respect to average temperature on the log plot, which implies an
exponential growth in the number of heat days with temperature.
This nonlinear increase of extreme heat days in the coming years
deserves attention from policy makers to better understand the
associated health risk.

Another point worth noting from Figure 15 is that the
exponential dependence of the number of extreme heat days on
temperature starts a few degrees earlier using the HImethod than
temperature. This difference represents the effect of humidity in
enhancing the severity of a heat wave event, which is important
for a moisture rich region such as the GLB. This signal implies
that for regions that have an abundant supply of moisture,
increase in extreme heat events will commence earlier than
predicted using only temperature as a metric. Future studies
focusing on related fields should invest some attention on this
moisture effect, to ensure the full risk of extreme heat event
is captured.

4. SUMMARY AND DISCUSSION

An ensemble of WRF-based dynamically downscaled
experiments for climate change projections over the Great
Lakes Basin (GLB) has been completed using forcing data

from four GCMs. Previous studies using the same dynamical
downscaling process (d’Orgeville et al., 2014; Peltier et al.,
2018) were focused on validating the experiment setup and
model reliability and therefore their physics ensemble was
driven only by simulations performed with the CESM1
global model. Here, we use multiple data from several GCMs
available in the CMIP5 archive, along with data from our
own simulations with CESM1 as forcing for the regional
model in order to cover a wide range of possible climate
states and to validate the quality of CMIP5 forced WRF
results. We also perform analysis of extreme heat events
with this ensemble to explore the evolution of such events
around the GLB under increasing GHG toward the end of the
twenty-first century.

The bias in our ensemble is governed by GCM forcing,
WRF physics scheme selection, and inclusion of the lake model.
Temperature bias is dominated by large scale effects in the winter
season while in summer all sources of biases have first order
impact. Precipitation bias in our ensemble is mostly influenced
by the cumulus and microphysics schemes used in WRF, and
the FLake lake model resolves lake effects effectively around the
Great Lakes. However, sources of bias in WRF are not limited
to just these factors, as Zobel et al. (2018b) have shown that
spectral nudging is capable of generating large differences in
WRF results, and Zagar et al. (2013) have shown that there can
be uncertainty in WRF results associated with domain size and
nesting. Despite large difference between GCM and RCM results
in the historical period, the magnitude of climate warming signal
is found to be the same between the downscaled simulations
and their associated GCMs. This similarity is independent
from the physics parametrization employed, indicating that this
signal is primarily determined by the large scale circulation
features resolved in GCMs, and well captured over the RCM
domain by the dynamical downscaling process. Meanwhile,
projected changes in local precipitation are still influenced
by the physics parametrizations employed, which agrees with
findings in previous studies (d’Orgeville et al., 2014; Peltier et al.,
2018).

The wide spread of possible climate states in this expanded
ensemble provides an excellent basis on which to perform
extreme heat event analysis. This analysis reveals a steady
increase of extreme heat days with respect to increasing
GHG forcing toward the end of the twenty-first century.
This increase of extreme heat days with temperature during
the projection periods is not surprising, as it would emerge
naturally from the definition of extreme heat events used
in this study. Meanwhile, our analysis shows that the rate
of growth of extreme heat days as a function of surface
temperature is independent of physics parametrization and
GCM forcing, suggesting that our conclusions for the increase
in heat waves toward the end of the century is robust. The
extreme heat analysis takes further advantage of the fact that
WRF is coupled to a proper lake model (FLake) which helps
us simulate the impact of lake effect on the frequency of
heat waves in the surrounding regions. A key outcome is
the reduction in the number of extreme heat days in the
downwind region of the lakes as the lakes absorb heat from
the atmosphere.
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Along with high temperature, high moisture content in the
atmosphere also increases the severity of extreme heat events.
The Great Lakes region includes a significant source of moisture,
the effect of which on the occurrence of extreme heat events is
captured with the HI method for detecting the occurrence of
such events. With this method it is shown that the presence of
moisture will trigger the onset of extreme heat events in the GLB
region at a lower temperature threshold, and that the effect of lake
induced sensible cooling in regions downwind of the lakes is also
reduced as a result of the conversion of sensible heat to humidity.
Since humans are vulnerable to both high temperature and high
humidity environments, decision makers should be fully aware
of the consequence of high moisture in the Great Lakes region,
especially when evaporation from lake surfaces converts high
temperature to high relative humidity, leaving a change in the net
heat effect that is smaller than that which would be expected from
the reduction of air temperature.

DATA AVAILABILITY STATEMENT

The raw data supporting the conclusions of this article will be
made available by the authors, without undue reservation.

AUTHOR CONTRIBUTIONS

FX, AE, and WP contributed to the conception and design of
this study. FX, AE, and DC contributed to the software, data
analysis and visualization of this study. All authors contributed
to discussing the result and preparing the submitted version of
the article.

FUNDING

Support for FX has been provided by NSERC Discovery Grant
A9627 to WP.

ACKNOWLEDGMENTS

The simulations presented in this manuscript were performed
on the SciNet High Performance Computing facility at the
University of Toronto, which is a component of the Compute
Canada HPC platform. The authors would like to thank Frédéric
Laliberté for providing support with using the cdb_query
software that processes CMIP5 data.

REFERENCES

Anderson, G. B., Bell, M. L., and Peng, R. D. (2013). Methods to calculate the heat

index as an exposure metric in environmental health research. Environ. Health

Perspect. 121, 1111–1119. doi: 10.1289/ehp.1206273

Bates, G. T., Giorgi, F., and Hostetler, S. W. (1993). Toward the simulation of

the effects of the great lakes on regional climate. Mon. Weather Rev. 121,

1373–1387. doi: 10.1175/1520-0493(1993)121<1373:TTSOTE>2.0.CO;2

Briley, L. J., Rood, R. B., and Notaro, M. (2021). Large lakes in climate models: a

great lakes case study on the usability of cmip5. J. Great Lakes Res. 47, 405–418.

doi: 10.1016/j.jglr.2021.01.010

Byun, K., and Hamlet, A. F. (2018). Projected changes in future climate over the

midwest and great lakes region using downscaled cmip5 ensembles. Int. J.

Climatol. 38, e531–e553. doi: 10.1002/joc.5388

Chen, F., and Dudhia, J. (2001). Coupling an advanced land surface-hydrology

model with the penn state-ncar mm5 modeling system. part i: Model

implementation and sensitivity.Mon.Weather Rev. 129, 569–585. doi: 10.1175/

1520-0493(2001)129<0569:CAALSH>2.0.CO;2

Cheng, G. H., Huang, G. H., Dong, C., Zhu, J. X., Zhou, X., and Yao, Y. (2017). An

evaluation of cmip5 gcm simulations over the athabasca river basin, canada.

River Res. Appl. 33, 823–843. doi: 10.1002/rra.3136

Collins, W. D., Bitz, C. M., Blackmon, M. L., Bonan, G. B., Bretherton, C. S.,

Carton, J. A., et al. (2006). The community climate system model version 3

(ccsm3). J. Clim. 19, 2122–2143. doi: 10.1175/JCLI3761.1

Danabasoglu, G., Bates, S. C., Briegleb, B. P., Jayne, S. R., Jochum, M., Large,

W. G., et al. (2012). The ccsm4 ocean component. J. Clim. 25, 1361–1389.

doi: 10.1175/JCLI-D-11-00091.1

Dee, D. P., Uppala, S. M., Simmons, A. J., Berrisford, P., Poli, P., Kobayashi, S., et al.

(2011). The era-interim reanalysis: configuration and performance of the data

assimilation system. Q. J. R. Meteorol. Soc. 137, 553–597. doi: 10.1002/qj.828

Deser, C., Phillips, A., Bourdette, V., and Teng, H. (2012). Uncertainty in climate

change projections: the role of internal variability. Climate Dyn. 38, 527–546.

doi: 10.1007/s00382-010-0977-x

Deser, C., Phillips, A. S., Alexander, M. A., and Smoliak, B. V. (2014). Projecting

north american climate over the next 50 years: uncertainty due to internal

variability. J. Clim. 27, 2271–2296. doi: 10.1175/JCLI-D-13-00451.1

Donner, L. J., Wyman, B. L., Hemler, R. S., Horowitz, L. W., Ming, Y., Zhao,

M., et al. (2011). The dynamical core, physical parameterizations, and basic

simulation characteristics of the atmospheric component am3 of the gfdl global

coupled model cm3. J. Clim. 24, 3484–3519. doi: 10.1175/2011JCLI3955.1

d’Orgeville, M., Peltier, W. R., Erler, A. R., and Gula, J. (2014). Climate change

impacts on great lakes basin precipitation extremes. J. Geophys. Res. Atmos. 119,

10799–10812 doi: 10.1002/2014JD021855

Dunne, J. P., John, J. G., Adcroft, A. J., Griffies, S. M., Hallberg, R. W., Shevliakova,

E., et al. (2012). Gfdl’s esm2 global coupled climate-carbon earth systemmodels.

part i: physical formulation and baseline simulation characteristics. J. Clim. 25,

6646–6665. doi: 10.1175/JCLI-D-11-00560.1

Dunne, J. P., John, J. G., Shevliakova, E., Stouffer, R. J., Krasting, J. P., Malyshev,

S. L., et al. (2013). GFDL’s ESM2 global coupled climate?carbon earth

system models. part ii: carbon system formulation and baseline simulation

characteristics. J. Clim. 26, 2247–2267. doi: 10.1175/JCLI-D-12-00150.1

Erler, A. R. (2015). High Resolution Hydro-climatological Projections for Western

Canada (Ph.D. thesis). University of Toronto.

Erler, A. R., and Peltier, W. R. (2016). Projected changes in precipitation extremes

for western canada based on high-resolution regional climate simulations. J.

Clim. 29, 8841–8863. doi: 10.1175/JCLI-D-15-0530.1

Erler, A. R., and Peltier, W. R. (2017). Projected hydroclimatic changes in

two major river basins at the canadian west coast based on high-resolution

regional climate simulations. J. Clim. 30, 8081–8105. doi: 10.1175/JCLI-D-16-

0870.1

Erler, A. R., Peltier, W. R., and D’Orgeville, M. (2015). Dynamically downscaled

high-resolution hydroclimate projections for western canada. J. Clim. 28,

423–450. doi: 10.1175/JCLI-D-14-00174.1

Fouquart, Y., Buriez, J. C., Herman, M., and Kandel, R. S. (1990). The influence of

clouds on radiation: A climate-modeling perspective. Reviews of Geophysics, 28,

145–166. doi: 10.1029/RG028i002p00145

Gent, P. R., Danabasoglu, G., Donner, L. J., Holland, M. M., Hunke, E. C., Jayne,

S. R., et al. (2011). The community climate system model version 4. J. Clim. 24,

4973–4991. doi: 10.1175/2011JCLI4083.1

Grell, G. A., and Dévényi, D. (2002). A generalized approach to parameterizing

convection combining ensemble and data assimilation techniques. Geophys.

Res. Lett. 29, 38-1–38-4. doi: 10.1029/2002GL015311

Griffies, S. M., Winton, M., Donner, L. J., Horowitz, L. W., Downes, S.

M., Farneti, R., et al. (2011). The gfdl cm3 coupled climate model:

Characteristics of the ocean and sea ice simulations. J. Clim. 24, 3520–3544.

doi: 10.1175/2011JCLI3964.1

Frontiers in Water | www.frontiersin.org 18 December 2021 | Volume 3 | Article 78226555

https://doi.org/10.1289/ehp.1206273
https://doi.org/10.1175/1520-0493(1993)121<1373:TTSOTE>2.0.CO;2
https://doi.org/10.1016/j.jglr.2021.01.010
https://doi.org/10.1002/joc.5388
https://doi.org/10.1175/1520-0493(2001)129<0569:CAALSH>2.0.CO;2
https://doi.org/10.1002/rra.3136
https://doi.org/10.1175/JCLI3761.1
https://doi.org/10.1175/JCLI-D-11-00091.1
https://doi.org/10.1002/qj.828
https://doi.org/10.1007/s00382-010-0977-x
https://doi.org/10.1175/JCLI-D-13-00451.1
https://doi.org/10.1175/2011JCLI3955.1
https://doi.org/10.1002/2014JD021855
https://doi.org/10.1175/JCLI-D-11-00560.1
https://doi.org/10.1175/JCLI-D-12-00150.1
https://doi.org/10.1175/JCLI-D-15-0530.1
https://doi.org/10.1175/JCLI-D-16-0870.1
https://doi.org/10.1175/JCLI-D-14-00174.1
https://doi.org/10.1029/RG028i002p00145
https://doi.org/10.1175/2011JCLI4083.1
https://doi.org/10.1029/2002GL015311
https://doi.org/10.1175/2011JCLI3964.1
https://www.frontiersin.org/journals/water
https://www.frontiersin.org
https://www.frontiersin.org/journals/water#articles


Xie et al. GLB Heat Waves

Gula, J., and Peltier, W. R. (2012). Dynamical downscaling over the great lakes

basin of north america using the wrf regional climate model: the impact of the

great lakes system on regional greenhouse warming. J. Clim. 25, 7723–7742.

doi: 10.1175/JCLI-D-11-00388.1

Holland, M. M., Bailey, D. A., Briegleb, B. P., Light, B., and Hunke, E.

(2012). Improved sea ice shortwave radiation physics in ccsm4: The impact

of melt ponds and aerosols on arctic sea ice. J. Clim. 25, 1413–1430.

doi: 10.1175/JCLI-D-11-00078.1

Hong, S.-Y., and Lim, J.-O. J. (2006). The WRF single-moment 6-class

microphysics scheme (WSM6). J. Korean Meteor. Soc, 42, 129–151.

Huo, Y., and Peltier, W. R. (2019). Dynamically downscaled climate simulations

of the indian monsoon in the instrumental era: physics parameterization

impacts and precipitation extremes. J. Appl. Meteorol. Climatol. 58, 831–852.

doi: 10.1175/JAMC-D-18-0226.1

Huo, Y., Peltier, W. R., and Chandan, D. (2021). Mid-holocene monsoons in south

and southeast asia: dynamically downscaled simulations and the influence of

the green sahara. Clim. Past 17, 1645–1664. doi: 10.5194/cp-17-1645-2021

Iacono, M. J., Delamere, J. S., Mlawer, E. J., Shephard, M. W., Clough, S. A.,

and Collins, W. D. (2008). Radiative forcing by long-lived greenhouse gases:

calculations with the aer radiative transfer models. J. Geophys. Res. Atmos.

113:D13103. doi: 10.1029/2008JD009944

IPCC (2013a). The Fifth Assessment Report (AR5) of the United Nations

Intergovernmental Panel on Climate Change (IPCC), Climate Change 2013: The

Physical Science Basis, IPCC WGI AR5, Chapter 14. Cambridge; New York,

NY: Cambridge University Press; Climate Phenomena and their Relevance for

Future Regional Climate Change.

IPCC (2013b). The Fifth Assessment Report (AR5) of the United Nations

Intergovernmental Panel on Climate Change (IPCC), Climate Change 2013: The

Physical Science Basis, IPCCWGI AR5, Chapter 9. Cambridge University Press;

Evaluation of Climate Models.

Jeong, D. I., Sushama, L., Diro, G. T., Khaliq, M. N., Beltrami, H., and

Caya, D. (2016). Projected changes to high temperature events for canada

based on a regional climate model ensemble. Clim. Dyn. 46, 3163–3180.

doi: 10.1007/s00382-015-2759-y

Kain, J. S. (2004). The kain?fritsch convective parameterization: An update. J. Appl.

Meteorol. 43, 170–181. doi: 10.1175/1520-0450(2004)043<0170:TKCPAU>2.0.

CO;2

Kharin, V. V., Zwiers, F. W., Zhang, X., and Wehner, M. (2013). Changes in

temperature and precipitation extremes in the cmip5 ensemble. Clim. Change

119, 345–357. doi: 10.1007/s10584-013-0705-8

Kug, J.-S., Jeong, J.-H., Jang, Y.-S., Kim, B.-M., Folland, C. K., Min, S.-K., et al.

(2015). Two distinct influences of arctic warming on cold winters over north

america and east asia. Nat. Geosci. 8, 759–762. doi: 10.1038/ngeo2517

Kumar, S., Kinter, J., Dirmeyer, P. A., Pan, Z., and Adams, J. (2013). Multidecadal

climate variability and the “warming hole” in north america: results from cmip5

twentieth- and twenty-first-century climate simulations. J. Clim. 26, 3511–3527.

doi: 10.1175/JCLI-D-12-00535.1

Lawrence, D. M., Oleson, K. W., Flanner, M. G., Fletcher, C. G., Lawrence,

P. J., Levis, S., et al. (2012). The ccsm4 land simulation, 1850–2005:

assessment of surface climate and new capabilities. J. Clim. 25, 2240–2260.

doi: 10.1175/JCLI-D-11-00103.1

Li, C., Zhang, X., Zwiers, F., Fang, Y., and Michalak, A. M. (2017). Recent very

hot summers in northern hemispheric land areas measured by wet bulb globe

temperature will be the norm within 20 years. Earths Future 5, 1203–1216.

doi: 10.1002/2017EF000639

Li, K., Zhang, J., and Wu, L. (2018). Assessment of soil moisture-temperature

feedbacks with the ccsm-wrf model system over east asia. J. Geophys. Res.

Atmos. 123, 6822–6839. doi: 10.1029/2017JD028202

Lofgren, B. M. (1997). Simulated effects of idealized laurentian great lakes

onregional and large-scale climate. J. Clim. 10, 2847–2858. doi: 10.1175/1520-

0442(1997)010<2847:SEOILG>2.0.CO;2

Mallard, M. S., Nolte, C. G., Bullock, O. R., Spero, T. L., and Gula, J. (2014). Using a

coupled lakemodel with wrf for dynamical downscaling. J. Geophys. Res. Atmos.

119, 7193–7208. doi: 10.1002/2014JD021785

Maloney, E. D., Camargo, S. J., Chang, E., Colle, B., Fu, R., Geil, K.

L., et al. (2014). North american climate in cmip5 experiments: Part

iii: assessment of twenty-first-century projections. J. Clim. 27, 2230–2270.

doi: 10.1175/JCLI-D-13-00273.1

McKenney, D. W., Hutchinson, M. F., Papadopol, P., Lawrence, K.,

Pedlar, J., Campbell, K., et al. (2011). Customized spatial climate

models for north america. Bull. Am. Meteorol. Soc. 92, 1611–1622.

doi: 10.1175/2011BAMS3132.1

Meehl, G. A., and Tebaldi, C. (2004). More intense, more frequent, and

longer lasting heat waves in the 21st century. Science 305, 994–997.

doi: 10.1126/science.1098704

Mironov, D. V. (2008). Parameterization of lakes in numerical weather prediction.

description of a lake model. Technical report, Deutscher Wetterdienst,

Offenbach amMain, Germany.

Morrison, H., Thompson, G., and Tatarskii, V. (2009). Impact of cloud

microphysics on the development of trailing stratiform precipitation in a

simulated squall line: comparison of one- and two-moment schemes. Mon.

Weather Rev. 137, 991–1007. doi: 10.1175/2008MWR2556.1

Nakanishi, M., and Niino, H. (2009). Development of an improved turbulence

closure model for the atmospheric boundary layer. J. Meteor. Soc. Jpn 87,

895–912. doi: 10.2151/jmsj.87.895

Neale, R. B., Richter, J., Park, S., Lauritzen, P. H., Vavrus, S. J., Rasch, P.

J., et al. (2013). The mean climate of the community atmosphere model

(cam4) in forced sst and fully coupled experiments. J. Clim. 26, 5150–5168.

doi: 10.1175/JCLI-D-12-00236.1

Niu, G.-Y., Yang, Z.-L., Mitchell, K. E., Chen, F., Ek, M. B., Barlage, M., et al.

(2011). The community noah land surface model with multiparameterization

options (noah-mp): 1. model description and evaluation with local-scale

measurements. J. Geophys. Res. Atmos. 116:D12. doi: 10.1029/2010JD015139

Notaro, M., Bennington, V., and Lofgren, B. (2015a). Dynamical

downscaling?based projections of great lakes water levels. J. Clim. 28,

9721–9745. doi: 10.1175/JCLI-D-14-00847.1

Notaro, M., Bennington, V., and Vavrus, S. (2015b). Dynamically downscaled

projections of lake-effect snow in the great lakes basin. J. Clim. 28, 1661–1684.

doi: 10.1175/JCLI-D-14-00467.1

Notaro, M., Holman, K., Zarrin, A., Fluck, E., Vavrus, S., and Bennington, V.

(2013). Influence of the laurentian great lakes on regional climate. J. Clim. 26,

789–804. doi: 10.1175/JCLI-D-12-00140.1

Notaro, M., Zhong, Y., Xue, P., Peters-Lidard, C., Cruz, C., Kemp, E., et al. (2021).

Cold season performance of the nu-wrf regional climate model in the great

lakes region. J. Hydrometeorol. 22, 2423–2454. doi: 10.1175/JHM-D-21-0025.1

O’Reilly, C. M., Sharma, S., Gray, D. K., Hampton, S. E., Read, J. S., Rowley, R. J.,

et al. (2015). Rapid and highly variable warming of lake surface waters around

the globe. Geophys. Res. Lett. 42, 10773–10781. doi: 10.1002/2015GL066235

Paynter, D., Frölicher, T. L., Horowitz, L. W., and Silvers, L. G. (2018). Equilibrium

climate sensitivity obtained from multimillennial runs of two gfdl climate

models. J. Geophys. Res. Atmos. 123, 1921–1941. doi: 10.1002/2017JD027885

Peings, Y., Cattiaux, J., Vavrus, S., and Magnusdottir, G. (2017). Late twenty-first-

century changes in the midlatitude atmospheric circulation in the cesm large

ensemble. J. Clim. 30, 5943–5960. doi: 10.1175/JCLI-D-16-0340.1

Peltier, W. R., d’Orgeville, M., Erler, A. R., and Xie, F. (2018). Uncertainty in

future summer precipitation in the laurentian great lakes basin: dynamical

downscaling and the influence of continental-scale processes on regional

climate change. J. Clim. 31, 2651–2673. doi: 10.1175/JCLI-D-17-0416.1

Perkins, S. E., and Alexander, L. V. (2013). On the measurement of heat waves. J.

Clim. 26, 4500–4517. doi: 10.1175/JCLI-D-12-00383.1

Peterson, T. C., Zhang, X., Brunet-India, M., and Vázquez-Aguirre, J. L. (2008).

Changes in north american extremes derived from daily weather data. J.

Geophys. Res. Atmos. 113:D7. doi: 10.1029/2007JD009453

Philip, S. Y., Kew, S. F., van Oldenborgh, G. J., Yang, W., Vecchi, G. A., Anslow, F.

S., et al. (2021). Rapid attribution analysis of the extraordinary heatwave on the

pacific coast of the us and canada june 2021. Technical report.

Robinson, P. J. (2001). On the definition of a heat wave. J. Appl. Meteorol. 40,

762–775. doi: 10.1175/1520-0450(2001)040<0762:OTDOAH>2.0.CO;2

Saha, S., Moorthi, S., Pan, H.-L., Wu, X., Wang, J., Nadiga, S., et al. (2010). The

ncep climate forecast system reanalysis. Bull. Am. Meteorol. Soc. 91, 1015–1058.

doi: 10.1175/2010BAMS3001.1

Scott, R. W., and Huff, F. A. (1996). Impacts of the great lakes

on regional climate conditions. J. Great Lakes Res. 22, 845–863.

doi: 10.1016/S0380-1330(96)71006-7

Sheffield, J., Barrett, A. P., Colle, B., Fernando, D. N., Fu, R., Geil, K. L., et al.

(2013a). North american climate in cmip5 experiments. part i: evaluation of

Frontiers in Water | www.frontiersin.org 19 December 2021 | Volume 3 | Article 78226556

https://doi.org/10.1175/JCLI-D-11-00388.1
https://doi.org/10.1175/JCLI-D-11-00078.1
https://doi.org/10.1175/JAMC-D-18-0226.1
https://doi.org/10.5194/cp-17-1645-2021
https://doi.org/10.1029/2008JD009944
https://doi.org/10.1007/s00382-015-2759-y
https://doi.org/10.1175/1520-0450(2004)043<0170:TKCPAU>2.0.CO;2
https://doi.org/10.1007/s10584-013-0705-8
https://doi.org/10.1038/ngeo2517
https://doi.org/10.1175/JCLI-D-12-00535.1
https://doi.org/10.1175/JCLI-D-11-00103.1
https://doi.org/10.1002/2017EF000639
https://doi.org/10.1029/2017JD028202
https://doi.org/10.1175/1520-0442(1997)010<2847:SEOILG>2.0.CO;2
https://doi.org/10.1002/2014JD021785
https://doi.org/10.1175/JCLI-D-13-00273.1
https://doi.org/10.1175/2011BAMS3132.1
https://doi.org/10.1126/science.1098704
https://doi.org/10.1175/2008MWR2556.1
https://doi.org/10.2151/jmsj.87.895
https://doi.org/10.1175/JCLI-D-12-00236.1
https://doi.org/10.1029/2010JD015139
https://doi.org/10.1175/JCLI-D-14-00847.1
https://doi.org/10.1175/JCLI-D-14-00467.1
https://doi.org/10.1175/JCLI-D-12-00140.1
https://doi.org/10.1175/JHM-D-21-0025.1
https://doi.org/10.1002/2015GL066235
https://doi.org/10.1002/2017JD027885
https://doi.org/10.1175/JCLI-D-16-0340.1
https://doi.org/10.1175/JCLI-D-17-0416.1
https://doi.org/10.1175/JCLI-D-12-00383.1
https://doi.org/10.1029/2007JD009453
https://doi.org/10.1175/1520-0450(2001)040<0762:OTDOAH>2.0.CO;2
https://doi.org/10.1175/2010BAMS3001.1
https://doi.org/10.1016/S0380-1330(96)71006-7
https://www.frontiersin.org/journals/water
https://www.frontiersin.org
https://www.frontiersin.org/journals/water#articles


Xie et al. GLB Heat Waves

historical simulations of continental and regional climatology*. J. Clim. 26,

9209–9245. doi: 10.1175/JCLI-D-12-00592.1

Sheffield, J., Camargo, S. J., Fu, R., Hu, Q., Jiang, X., Johnson, N., et al. (2013b).

North american climate in cmip5 experiments. part ii: evaluation of historical

simulations of intraseasonal to decadal variability. J. Clim. 26, 9247–9290.

doi: 10.1175/JCLI-D-12-00593.1

Sillmann, J., Kharin, V. V., Zhang, X., Zwiers, F. W., and Bronaugh, D. (2013a).

Climate extremes indices in the cmip5 multimodel ensemble: Part 1. model

evaluation in the present climate. J. Geophys. Res. Atmos. 118, 1716–1733.

doi: 10.1002/jgrd.50203

Sillmann, J., Kharin, V. V., Zwiers, F. W., Zhang, X., and Bronaugh, D.

(2013b). Climate extremes indices in the cmip5 multimodel ensemble:

Part 2. future climate projections. J. Geophys. Res. Atmos. 118, 2473–2493.

doi: 10.1002/jgrd.50188

Skamarock, W. C., and Klemp, J. B. (2008). A time-split nonhydrostatic

atmospheric model for weather research and forecasting applications. J.

Comput. Phys. 227, 3465–3485. doi: 10.1016/j.jcp.2007.01.037

Song, Y., and Yu, Y. (2015). Impacts of external forcing on the decadal

climate variability in cmip5 simulations. J. Clim. 28, 5389–5405.

doi: 10.1175/JCLI-D-14-00492.1

Taylor, K. E., Stouffer, R. J., and Meehl, G. A. (2012). An overview of

cmip5 and the experiment design. Bull. Am. Meteorol. Soc. 93, 485–498.

doi: 10.1175/BAMS-D-11-00094.1

Thompson, G., Tewari, M., Ikeda, K., Tessendorf, S., Weeks, C., Otkin, J., et al.

(2016). Explicitly-coupled cloud physics and radiation parameterizations and

subsequent evaluation in wrf high-resolution convective forecasts. Atmospheric

Research, 168, 92–104. doi: 10.1016/j.atmosres.2015.09.005

Vautard, R., van Aalst, M., Boucher, O., Drouin, A., Haustein, K., Kreienkamp,

F., et al. (2020). Human contribution to the record-breaking june and

july 2019 heatwaves in western europe. Environ. Res. Lett. 15:094077.

doi: 10.1088/1748-9326/aba3d4

Watanabe, M., Suzuki, T., O’ishi, R., Komuro, Y., Watanabe, S., Emori, S., et al.

(2010). Improved climate simulation by miroc5: mean states, variability, and

climate sensitivity. J. Clim. 23, 6312–6335. doi: 10.1175/2010JCLI3679.1

Woolway, R. I., Kraemer, B. M., Lenters, J. D., Merchant, C. J., O’Reilly, C. M.,

and Sharma, S. (2020). Global lake responses to climate change. Nat. Rev. Earth

Environ. 1, 388–403. doi: 10.1038/s43017-020-0067-5

Xue, P., Pal, J. S., Ye, X., Lenters, J. D., Huang, C., and Chu, P. Y. (2017).

Improving the simulation of large lakes in regional climate modeling: two-way

lake?atmosphere coupling with a 3d hydrodynamic model of the great lakes. J.

Clim. 30, 1605–1627. doi: 10.1175/JCLI-D-16-0225.1

Zagar, N., Honzak, L., Zabkar, R., Skok, G., Rakovec, J., and Ceglar, A. (2013).

Uncertainties in a regional climate model in the midlatitudes due to the

nesting technique and the domain size. J. Geophys. Res. Atmos. 118, 6189–6199.

doi: 10.1002/jgrd.50525

Zobel, Z., Wang, J., Wuebbles, D. J., and Kotamarthi, V. R. (2018a). Analyses

for high-resolution projections through the end of the 21st century for

precipitation extremes over the united states. Earths Future 6, 1471–1490.

doi: 10.1029/2018EF000956

Zobel, Z., Wang, J., Wuebbles, D. J., and Kotamarthi, V. R. (2018b).

Evaluations of high-resolution dynamically downscaled ensembles over the

contiguous united states. Clim. Dyn. 50, 863–884. doi: 10.1007/s00382-017-3

0645-6

Conflict of Interest: AE is employed by Aquanty Inc.

The remaining authors declare that the research was conducted in the absence of

any commercial or financial relationships that could be construed as a potential

conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated organizations, or those of

the publisher, the editors and the reviewers. Any product that may be evaluated in

this article, or claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

Copyright © 2021 Xie, Erler, Chandan and Peltier. This is an open-access article

distributed under the terms of the Creative Commons Attribution License (CC BY).

The use, distribution or reproduction in other forums is permitted, provided the

original author(s) and the copyright owner(s) are credited and that the original

publication in this journal is cited, in accordance with accepted academic practice.

No use, distribution or reproduction is permitted which does not comply with these

terms.

Frontiers in Water | www.frontiersin.org 20 December 2021 | Volume 3 | Article 78226557

https://doi.org/10.1175/JCLI-D-12-00592.1
https://doi.org/10.1175/JCLI-D-12-00593.1
https://doi.org/10.1002/jgrd.50203
https://doi.org/10.1002/jgrd.50188
https://doi.org/10.1016/j.jcp.2007.01.037
https://doi.org/10.1175/JCLI-D-14-00492.1
https://doi.org/10.1175/BAMS-D-11-00094.1
https://doi.org/10.1016/j.atmosres.2015.09.005
https://doi.org/10.1088/1748-9326/aba3d4
https://doi.org/10.1175/2010JCLI3679.1
https://doi.org/10.1038/s43017-020-0067-5
https://doi.org/10.1175/JCLI-D-16-0225.1
https://doi.org/10.1002/jgrd.50525
https://doi.org/10.1029/2018EF000956
https://doi.org/10.1007/s00382-017-3645-6
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/water
https://www.frontiersin.org
https://www.frontiersin.org/journals/water#articles


Xie et al. GLB Heat Waves

A1. HEAT INDEX EQUATION

Heat Index (HI) equation we use following https://www.wpc.
ncep.noaa.gov/html/heatindex_equation.shtml is given as:

HI =− 42.379+ 2.04901523 ∗ T + 10.14333127 ∗ RH

− .22475541 ∗ T ∗ RH − .00683783 ∗ T ∗ T

− .05481717 ∗ RH ∗ RH

+ .00122874 ∗ T ∗ T ∗ RH + .00085282 ∗ T ∗ RH ∗ RH

− .00000199 ∗ T ∗ T ∗ RH ∗ RH

where T is temperature in degrees Fahrenheit and RH is relative
humidity in percent. HI is the heat index expressed as an apparent
temperature in degrees Fahrenheit. If the RH is less than 13% and
the temperature is between 80◦F and 112◦F, then the following
adjustment is subtracted from HI:

ADJUSTMENT = [(13− RH)/4] ∗
√

[17− |T − 95|]/17

On the other hand, if the RH is greater than 85% and the
temperature is between 80◦F and 87◦F, then the following
adjustment is added to HI:

ADJUSTMENT = [(RH − 85)/10] ∗ [(87− T)/5]

An alternative equation is used when heat index value is
expected to fall below about 80◦F where the regression
analysis that leads to the main HI equation becomes
inappropriate. The alternative simpler equation is
the following:

HI = 0.5 ∗ {T + 61.0+ [(T − 68.0) ∗ 1.2]+ (RH ∗ 0.094)}

However, this alternative equation is less relevant for this study
since HI threshold for extreme heat events is 32◦ C=89.6◦F that is
strictly above the 80◦F limit.
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Fundamental differences in the nature of climate and hydrologic models make coupling

of future climate projections to models of watershed hydrology challenging. This study

uses the NCAR Weather Research and Forecast model (WRF) to dynamically downscale

climate simulations over the Saginaw Bay Watershed, MI and prepare the results for

input into semi-distributed hydrologic models. One realization of the bias-corrected

NCAR CESM1 model’s RCP 8.5 climate scenario is dynamically downscaled at a spatial

resolution of 3 km by 3 km for the end of the twenty-first century and validated based on

a downscaled run for the end of the twentieth century in comparison to ASOS and NWS

COOP stations. Bias-correction is conducted using Quantile Mapping to correct daily

maximum and minimum temperature, precipitation, and relative humidity for use in future

hydrologic model experiments. In the Saginaw Bay Watershed the end of the twenty-first

century is projected to see maximum and minimum average daily temperatures warming

by 5.7 and 6.3◦C respectively. Precipitation characteristics over the watershed show

an increase in mean annual precipitation (average of +14.3mm over the watershed),

mainly due to increases in precipitation intensity (average of +0.3mm per precipitation

day) despite a decrease in frequency of −10.7 days per year. The projected changes

have substantial implications for watershed processes including flood prediction, erosion,

mobilization of non-point source and legacy contaminants, and evapotranspirative

demand, among others. We present these results in the context of usefulness of the

downscaled and bias corrected data for semi-distributed hydrologic modeling.

Keywords: dynamical downscaling from a global climate model, bias correction, precipitation, temperature,

Saginaw Bay, hydrologic inputs

INTRODUCTION

Climate change has the potential to substantially alter the abundance, availability, distribution,
fluxes, and quality of water in the Great Lakes region (Hayhoe et al., 2010; D’Orgeville et al., 2014;
Byun and Hamlet, 2018; Wang et al., 2018; Byun et al., 2019; Mahdiyan et al., 2021). Increases
in extreme weather events, changes in the timing, type, and spatial distribution of precipitation,
and alterations to evapotranspirative fluxes all have implications for streamflow and water quality.
Effects of climate change on hydrologic extremes such as drought and flooding have the potential
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to compound existing stressors in Great Lakes watersheds already
impacted by decades of land use change, legacy and non-point
source pollution, and loss of wetland habitat. Predictions from
global scale climate modeling establish that rising temperatures
will result in changes to the atmospheric characteristics in the
Great Lakes region that will have direct effects on watershed
health, such as increases in extreme precipitation and droughts
(which impacts erosion, nutrient cycling, and flux of pollutants),
increased temperatures (impacts to phenology, ecology, and
agriculture), and changes to soil moisture (impacting nutrient
cycling, hydrologic fluxes, phenology, and water quality; Angel
et al., 2018). However, there remains significant uncertainty in
how the projected climate changes modeled at the global scale
translate to hydrologic impacts at the regional and watershed
scales. One reason that uncertainty persists is the fundamentally
different nature of global climate models (GCMs) and hydrologic
models. While GCMs are applied at global scales for long
periods of time, many of the processes that scientists and
policy makers seek to model for watersheds, such as daily
streamflows for ecological minimums and flood event timing and
magnitude, are much smaller in extent and discrete in time. The
contrast between spatial and temporal resolutions and modeling
approaches poses challenges for model coupling. However, the
gap between these two modeling paradigms is worth bridging,
particularly for understanding the complex nature of changes
in Great Lakes watersheds in response to future climate change.
One notable effort toward reconciling the challenge of coupling
atmospheric and terrestrial hydrologic models is WRF-Hydro,
which provides high resolution (both spatially and temporally)
streamflow predictions on short (sub-hourly) to seasonal time
scales (Lin et al., 2018; Somos-Valenzuela and Palmer, 2018; Yin
et al., 2020). A significant drawback to theWRF-Hydro modeling
framework is that it is extremely computationally intensive to
get streamflow in a fully or semi-distributed representation of
a catchment which becomes prohibitive over the climate-scale
simulations required to realize future hydrologic distributions.

Because GCMs use physical principles of the atmosphere to
drive long-term simulations of climate variability and change
(rather than observations, such as in Numerical Weather
Prediction), they are computationally intensive, and must
therefore be of a coarse spatial resolution, generally greater than
1◦ latitude by 1◦ longitude. Their purpose is to capture the
physical processes that occur over the entire globe at timescales
greater than weather forecasts and to indicate broad regional
changes to climate parameters. Inputs and output are in the
form of gridded fields at specific points in time. By contrast,
hydrologic models are frequently applied to explore watershed
and stream response to changes at the basin scale, which
depending on the size of the catchment can range from as
small as the contributing area to a local stream to as large
as continental scales. Hydrologic models can be conceptual
(based on physical concepts), empirical, or physically based
and can range both in complexity of modeled processes and
spatial distribution. To explore how streamflow responds to
variations in watershed characteristics and perturbations such
as land use and climate change, physically based distributed
or semi-distributed hydrologic models (SDHMs) are necessary

(Jajarmizdeh et al., 2012; Khakbaz et al., 2012). A benefit SDHMs
can provide is prediction of streamflow in ungauged catchments,
a capability that is critical where monitoring networks are sparse.
SDHMs require input of spatially explicit datasets including
watershed properties such as soil, topography, and land use,
and climatological inputs such as precipitation, temperature,
solar radiation, wind speed, and relative humidity. The type
and detail of inputs varies between models; fully distributed
models may use gridded data for all inputs, whereas semi-
distributed models can incorporate both gridded and point data
(which is then interpolated to provide the necessary input).
For most SDHM applications, climatological inputs come from
existing observation stations (e.g., NWS COOP network in
the U.S.) or gridded products (e.g., CFSR; National Center
for Atmospheric Research Staff, 2017). However, these inputs
are not available for future conditions; this is where GCM or
Regional ClimateModel (RCM) output links to SDHMs (e.g., Das
and Umamahesh, 2018; Singh and Saravanan, 2020; Martínez-
Salvador et al., 2021); in these cases, resolving the difference
in spatial resolution remains a challenge. To model hydrologic
response to future climate conditions, climatological inputs based
on those future conditions are needed. It is imperative that
the climatological inputs are as representative of likely future
atmospheric conditions (given a particular emissions scenario)
as possible, as calibration of SDHMs relies on altering empirical
fit parameters linked to physical characteristics and properties
of the watershed rather than correction of climatological inputs
(Arnold et al., 2012; Zhai et al., 2018; Gou et al., 2020). To
take the low-resolution gridded outputs produced by GCMs and
prepare them in such a way as to capture accurate sub-grid
scale variability for hydrologic modeling is no simple task. It
involves some form of downscaling to a resolution that is useful
for quantifying watershed-scale variability, but also validation
and bias correction from in-situ “ground truth” stations at such
a resolution, which requires the transition from gridded spatial
data to spatially explicit (point) data.

In order to address the challenge of coupling GCMs to
hydrologic models, researchers have turned to two main
approaches: statistical (empirical) and dynamic downscaling
(Hewitson and Crane, 1996). Statistical downscaling involves
development of empirical relationships between outputs from
a course resolution GCM (a predictor) and a historic data set
(a predictand). The type of statistical model used to define
this relationship can vary, but is limited in that it does not
represent the atmospheric processes that link the two scales
together (large scale to local scale; Maraun andWidmann, 2018).
Dynamical downscaling on the other hand is process-driven and
is conducted via nested climate/weather models of progressively
smaller domain and finer resolution [these can then be called
Regional Climate Models (RCMs)]. While statistical downscaling
is computationally much more efficient, dynamical downscaling
has the ability to adapt to complex changes in future climate—
assuming the relevant processes are represented in the model.

Dynamically downscaled climate model outputs have been
used as inputs into several distributed and semi-distributed
hydrologic models to address changes in physical characteristics
and properties that impact streamflow (e.g., rainfall-runoff
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ratio, snowmelt timing, and evapotranspirative demand) as
well as extreme events (e.g., drought, flood risk, and extreme
precipitation; Salathe et al., 2014; Mendoza et al., 2015; Vu et al.,
2015 and others). Recent studies that have used downscaled
climate model output in such a manner have taken a number
of approaches. Most commonly the variables retained from the
model output are limited to monthly mean temperature and
precipitation [with the exception of Erler et al. (2019), which
uitilized mean monthly precipitation, snow depth and PET in
the HydroGeoSphere model]. Raghavan et al. (2014), Vu et al.
(2015), and Tiwari et al. (2018) passed climate output fields
to the SWAT hydrologic model un-corrected, and calibrated
SWAT to make up for any discrepancies between modeled and
observed stream gauge data. Shrestha et al. (2017) took another
approach and found that applying simple corrections to only
modeled temperature and precipitation improved hydrologic
model performance (they also used SWAT).

The main limitations to the previous body of work revolve
around incorporating the processes that are evolving in the
atmosphere in future states of the climate with the impacts
of those processes on hydrologic systems. Without a GCM
that is based on coupled atmospheric, land, and ocean
components, future climate estimates are likely to miss global-
and hemispheric-scale drivers of climate, such as the El Niño
Southern Oscillation, Arctic Oscillation, sea ice fluctuations,
and others. However, the GCMs that are capable of simulating
these global-scale processes are substantially mismatched in
spatial resolution with the types of systems usually modeled
in SDHMs. Such a mismatch will result in instances where
GCMs and coarse-resolution RCMs are not capturing the sub-
watershed spatial variability even if the atmospheric processes are
accurately represented at the larger grid scale. This can leave out
atmospheric drivers of hydrologic processes of interest, such as
erosion, non-point source pollution, land use stressors, and point
source pollutant mobilization.

This study presents a unique approach to addressing some
of the challenges posed by the existing methodologies for
preparation of future climate projections for coupling with
hydrologic SDHMs. One realization of a GCM’s projections
of future climate are dynamically downscaled with a high-
fidelity weather model, to retain the physical processes occurring
within the atmosphere at subsequently smaller spatial and
temporal resolutions. This is done at a very high resolution,
with the inner-most domain having grid cells of 3 km by 3 km.
After downscaling, bias correction is applied to atmospheric
variables at locations within the watershed to leverage the in-
situ observations available to provide improved atmospheric
forcing for the hydrologic model, thereby reserving hydrologic
model calibration for the streamflow parameters. Lastly, the steps
for data preparation are applied to several variables (maximum
temperature, minimum temperature, daily precipitation, and
relative humidity) due to their potential to alter components on
hydrologic systems such as flooding, ET demand, soil moisture
storage, runoff, infiltration, nutrient cycling, and water levels.

In this paper, we focus on an example from the Saginaw Bay
watershed in the lower peninsula of Michigan. We use the NCAR
Weather Research and Forecast model (WRF) to dynamically

downscale CMIP5 output to a nested domain of 3 km grids
centered over the Great Lakes region, running this weathermodel
as an RCM. We ran two 15-year periods; one at the end of the
twentieth century and one at the end of the twenty-first century
using RCP 8.5 to quantify climate change impacts on the region
and explore the variability of such changes over a high spatial
resolution within the watershed, which would not be captured
in statistically downscaled climate output. Then, we applied
quantile mapping to the precipitation, daily maximum and
minimum temperatures, and relative humidity to bias correct the
variables prior to using them as input for hydrologic modeling.

DATA AND METHODS

Study Area
The Saginaw Bay Watershed (SBW) is located in the eastern part
ofMichigan’s lower Peninsula (Figure 1). It is the largest drainage
basin in the state of Michigan, encompassing approximately
14,000 km2, 22 counties, and a wide range of land uses
from highly urbanized to agricultural and forested. Its outlet,
Saginaw Bay, provides habitat for multiple federal and state
recognized threatened and endangered species including resident
and migratory birds, reptiles, insects, aquatic invertebrates, and
plant species (U.S. Fish Wildlife Service., 2018; Michigan Natural
Feathers Inventory) and is also a U.S. EPA designated Area of
Concern with ongoing Beneficial Use Impairments (BUIs) related
to nonpoint source pollution and legacy contamination in the
sediments (Selzer et al., 2014). Eutrophication, nuisance algal
blooms, beach closures, and ecosystem degradation are current
challenges that also may be exacerbated by climate change
impacts within the watershed. Many of the tributaries in the SBW
are prone to rapid hydrologic response (Michigan Department of
Natural Resources Surface Water Quality Division, 1988; Selzer
et al., 2014) resulting from land use changes and low permeability
soils; the “flashy” response may be compounded by climatic
shifts, and, also have the potential to contribute to sediment and
non-point source pollutant loading, negatively impacting water
quality conditions and ecosystem services in Saginaw Bay.

The climate of this region is largely influenced by its position
in the mid-latitude Westerlies, with sizable influence from the
surrounding Great Lakes. The large bodies of water that surround
the Michigan Lower Peninsula on 3 sides act to moderate
the temperatures in this region, but also act as a moisture
source for precipitation. Despite the maritime effect from the
Great Lakes, in the last century Michigan has still experienced
increasing annual temperatures of around 0.8◦C and future
warming is projected to be as much as 5.4◦C (for RCP 8.5)
by 2099 (Wuebbles et al., 2019). Precipitation is achieved in
the SBW through transient synoptic weather patterns (such as
fronts, or mid-latitude cyclones) or the moistening of cold air
masses as they pass over the Great Lakes (Andresen, 2012).
Over the twentieth century annual precipitation in the SBW
region has increased by as much as 15% (Wuebbles et al.,
2019), mostly due to the increases in extreme precipitation event
sizes (Easterling et al., 2017). Future projections continue this
trend of more annual precipitation, primarily due to extreme
events (Wuebbles et al., 2019). When examining the CMIP5
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FIGURE 1 | Study area. (A) WRF downscaled domains, outer domain (dashed line) and inner domain (solid line). (B) Location of in-situ weather stations in relation to

the Saginaw Bay Watershed: I. East Tawas/Oscoda, MI; II. Midland, MI; III. Mount Pleasant, MI; IV. Alma/Gratiot, MI; and V. Owosso, MI.

suite of GCMs’ projections for the Great Lakes region, Notaro
et al. (2015) found that the maximum precipitation increases
by the end of the twenty-first century (RCP 8.5) occurred in
March–April–May and were +0.61mm day−1 compared to late
twentieth century values. Increases in temperature were also
documented, with a maximum warming of +7.0◦C occurring in
December–January–February.

Downscaling
The NCAR Weather Research and Forecast (WRF) model
(version 3.7) with the Advanced Research WRF (ARW) core
dynamical solver (Skamarock et al., 2008) is used to model
the atmospheric parameters over the SBW. The WRF model
is configured with the following physics schemes: the unified
Noah Land Surface Model for surface physics (Tewari et al.,
2004); the NCEP GFS boundary layer physics (Hong and
Pan, 1996); the Kain-Fritsch convection scheme (applied to
both domains; Kain, 2004); the Dudhia shortwave radiation
scheme (Dudhia, 1989); the Rapid Radiation Transfer Model for
longwave radiation (Mlawer et al., 1997); and the WRF Single-
Moment 5-Class scheme for microphysics (Hong et al., 2004).
Nudging is not applied in an effort to preserve precipitation
variability within the inner domain (Alexandru et al., 2009),
although it has been shown by multiple studies to improve
WRF downscaling simulations of 1–3 year periods (Spero et al.,
2018). The Climate simulations from the NCAR CESM Global
Bias-Corrected CMIP5 Output to Support WRF/MPAS project
(Monaghan et al., 2014) are used as initial boundary conditions
for the WRF model. These data are bias-corrected using the
ECMWF ERA-Interim from 1981 to 2005 (Bruyère et al., 2014,
2015) and are available for the IPCC AR5 RCP 4.5, 6.0, and 8.5
scenarios from 2006 to 2100. A simulation from 1950 to 2005
is also used to calibrate the GCM model and is available as a
twentieth century run.1 The bias-corrected CESM data set is
useful, because systematic biases in the Great Lakes region can

1https://rda.ucar.edu/datasets/ds316.1.

vary by season (too wet in winter and spring and too dry in
fall) and be large (as much as −13% fall precipitation bias from
CESM1; Briley et al., 2020). In all WRFmodel runs the 1◦ CESM1
6-hourly output files are used as the boundary conditions for an
outer domain of 15 km horizontal grids and then are dynamically
downscaled to a two-way nested inner domain of 3 km horizontal
grids (shown in Figure 1). The WRF model was developed as a
high-resolution weather forecasting tool (shorter time scales but
higher spatial resolution) and has since started to be used as an
RCM, sometimes simulating time periods as long as those used
in this study. The advantage of using WRF in this application is
its ability to simulate at a spatial resolution that is sufficient to
represent atmospheric processes, such as precipitation, that are
usually considered “sub-grid scale” for long-term global climate
models (Wang and Kotamarthi, 2015). The trade-off to using this
model is the cost of computation and data storage to produce
such fine spatial-scale but long runs.

Due to the computationally demanding nature of numerical
weather models, only one realization of the WRF model is run
for two different 15-year periods. The first is a twentieth Century
simulation from 1991 to 2005 for use in model validation, which
we will refer to as the ‘historical’ run. The second 15-year
WRF run is using the RCP 8.5 future scenario, simulated from
2085 to 2099, which assumes an increase in radiative forcing
of +8.5 W/m2 over pre-industrial values (Van Vuuren et al.,
2011; Stocker et al., 2013; Bruyère et al., 2014). We will refer
to this run as the “future” run. Notaro et al. (2015) assessed
the uncertainty in CMIP5 models over the Great Lakes region
for this time period. They found that the deviation among the
models in the end-of-twenty-first century RCP 8.5 scenario runs
resulted in an average temperature and precipitation uncertainty
of 1.29◦C and 0.20mm day−1. For both WRF model runs
the daily variables retained for future input into SDHMs are:
maximum temperature (◦C); minimum temperature (◦C); total
liquid precipitation (mm); average relative humidity (%); and
average daily wind speed (m/s) computed for each grid cell
in the SBW domain. Wind speeds are reduced to 2-m height
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and adjusted to account for varying ground cover types using
the Prandtl-von Karman Universal Velocity-Distribution for
Turbulent Flows (Dingman, 2008). The friction velocity for
the vegetation types are based on previous field experiments
(Izumi and Caughey, 1976; Churchill and Csanady, 1983;
Santoso and Stull, 2001; Jiao-jun et al., 2004). For the basin-
wide figures and statistics, WRF output grids are clipped to
only those within the Saginaw Bay Watershed, with a 1,000m
buffer for the centroids falling within the boundary of the
watershed (n= 2582).

Validation and bias correction of the downscaled atmospheric
variables is essential at the points for which data will be passed
to the SDHM, because the coarse resolution GCMs lack some
sub-grid scale features. One relevant shortcoming of the CMIP5
models (and this CESM1 contribution to CMIP5 in particular)
is the lack of lake surface temperatures included in the output
files for use in regional downscaling (Spero et al., 2016). Without
lake water temperatures from the input GCM, the WRF model
defaults to extrapolating water temperature from the nearest
point designated as water. In this situation, different portions
of the Laurentian Great Lakes are interpolated from grid cells
over the Atlantic Ocean (southern lake areas), or from James and
Hudson Bays (northern lake areas; Mallard et al., 2015; Spero
et al., 2016). Mallard et al. (2015) found discontinuities in lake
surface temperature of as much as 17K in Lakes Michigan and
Huron, and 3K in Lake Superior during one simulated test date.
Spero et al. (2016) examined the same CESM1 model used in
the current study and found lake temperatures that were colder
in the summer and warmer in the winter, compared to a WRF
downscaling that included a lake model. The largest impacts were
in the winter, where thermally induced low pressure and warmer
air temperatures downwind of the lakes impacted the frequency
of freeze days and number of days with precipitation (Spero et al.,
2016). Since the default WRF treatment of “water” grids is used
in the current study, careful validation and bias correction are of
the utmost importance.

Bias Correction
WRF model validation is conducted by comparing the WRF
downscaled model output against historical climate station data
from the in-situ stations from the National Weather Service
Cooperative Observer Program (NCEI., 2017), and wind data
from the NOAA’s Automated Surface Observation Stations
(ASOS) locations (NCEI, 2019). The locations of the stations
that have both COOP and ASOS data and lie inside the
Saginaw Bay Watershed (SBW) are given in Figure 1. Errors
are computed only at model grid cells that are co-located with
historic in-situ stations, in order to avoid any potential bias
that may be introduced by interpolation during error estimation
or correction. However, it should be noted that since spatial
autocorrelation decreases with distance, the representativeness
of co-located in-situ stations and model grid cells can vary
if station locations are offset by only a few tenths of a
degree latitude or longitude. These historic in-situ locations are
subsequently the only grid cells bias-corrected for ingest into
a SDHM. The Kolmogorov-Smirnov test is conducted on each
set of distribution comparisons to identify whether they could

statistically be from the same distribution (Schuenemeyer and
Drew, 2011).

After errors are identified in the historic run, by comparing
the downscaled WRF output to the observational stations,
bias correction is performed. We apply bias correction on
temperature, precipitation, and humidity variables. Relative
humidity is not often included or bias corrected for in GCM-
hydrologic model coupling, however, Masaki et al. (2015) found
that bias correction of humidity (even simplistic methods)
reduce uncertainty in hydrologic models. Of the recent studies
that have conducted bias correction on WRF data for use in
hydrologicmodels, themajority used a gridded dataset or gridded
historical observations as their ground truth. The interpolation
of the historical station data to produce such a dataset
can introduce additional biases, particularly for precipitation,
which has increased interpolation error with increased station
distances (Bussieres and Hogg, 1989). For this paper, the
WRF grid cells that correspond to historical weather station
locations are the ones at which bias correction is applied as
these would be a standard input for climate variables into
a SDHM.

Because the entire range of the statistical distributions of
the variables that are input into the hydrologic model has
implications for hydrologic processes within the watershed
and therefore streamflow, quantile mapping is used for bias
correction. Compared to the more commonly used change
factor (add or subtract model anomalies from observations), the
quantile mapping method allows for the amount of correction
applied to the model data to vary along the distribution. The
quantile mapping method of bias correction (Boé et al., 2007;
Gudmundsson et al., 2012; Gudmundsson, 2014) estimates
the empirical cumulative distribution function (ecdf) of both
the modeled and observed variables. The model data is
then corrected (or transformed) at the specific quantiles (we
used every 10th percentile), and intermediate values must
be interpolated (in this study, the non-linear monotonic
tricubic spline interpolation is used; Gudmundsson et al., 2012;
Mosier et al., 2014, 2018; Sippel et al., 2016; Alidoost et al.,
2021). This produces a bias correction that is tailored to the
correction needs at different levels in the distribution, rather
than one correction applied unilaterally. This is particularly
useful for distributions that require different corrections for
the tails of the distributions compared to the means of
the distributions, as the tails represent flood and drought
conditions that can have important devastating impacts on
hydrologic systems.

RESULTS

WRF Simulations of the SBW: 1991–2005
and 2085–2099
Annual average watershed values produced from the 1991 to 2005
historical WRF run are shown in Figure 2A through Figure 7A

and future WRF model run in Figure 2B through Figure 7B. In
order to examine the spatial changes projected to occur, annual
average values from the entire modeled watershed are compared
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FIGURE 2 | Uncorrected WRF output of mean maximum daily temperature (◦C) from (A) the 1991–2005 historical climate run; (B) the 2085–2099 future RCP 8.5

scenario; (C) the difference between the (A) and (B) future–past and (D) the empirical distribution from all of the grid cells in the watershed for mean maximum daily

temperature for (A) (solid line) and (B) (dashed line).

for the twentieth century run to the end of the twenty-first
century RCP 8.5 run and the change is displayed in Figure 2C

through Figure 7C. Empirical distributions are generated from
the grid cell values over the watershed to show the distribution of
the data throughout the study area and how it changes between
the two time periods (Figure 2D through Figure 7D).

For the historic WRF run the variables plotted show a
spatially reasonable pattern, with cooler average maximum
and minimum temperatures along the shores of the Saginaw
Bay (3.8 and −5.3◦C, respectively) and increased temperatures
westward (11.7 and 1.5◦C, respectively; Figures 2A, 3A). Not
only are the areas around the bay cooler, but they experience
higher relative humidity (∼86% compared to 71.5% inland;
Figure 4A). Precipitation characteristics around Saginaw Bay are
also distinctly different than the inland part of the SBW. WRF
grid cells near the bay experience precipitation more frequently
(∼210 days/year compared to∼176 days/year; Figure 6A), but at
a lower intensity (3.69 mm/rain day compared to 5.14 mm/rain

day; Figure 7A), resulting in lower total amounts of precipitation
than inland (∼739mm compared to 995.4mm; Figure 5A).

In Figure 2B, future mean maximum temperatures across the
SBW range from 17.3◦C in the western portion of the watershed,
to as low as 10.0◦C along the Saginaw Bay. The mean value across
the entire watershed is 15.8◦C, with a standard deviation of 0.89
◦C. Comparing this spatial distribution to the historic model
run (Figure 2A), annual average maximum temperatures in the
SBW shows a mean change of 5.7◦C by the end of the twenty-
first century for the RCP 8.5 scenario. The spatial difference
map (Figure 2C) shows the warming is largest along the coast
of the Saginaw Bay (highest warming in a single grid cell is
6.1◦C) and lowest in “the Thumb” area of 5.4◦C. The empirical
distributions created from the grid cells in each watershed map
show that the entire distribution of temperatures shifts to higher
temperatures, putting the majority of grid cells at temperatures
above even the warmest maximum temperatures in the historic
time period (Figure 2D).
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FIGURE 3 | Same as Figure 2, but for minimum daily temperature.

The change signal in minimum temperatures is similar to
maximum temperatures (Figure 3). Future values of minimum
temperature over the SBW range from a minimum value of
1.7◦C to a maximum value of 7.8◦C, with a watershed average
5.7◦C. The average minimum temperature in the watershed is
projected to increase by 6.3◦C from the historic run. The map
shows that these increases are the highest around the coast
(7.1◦C), and lowest in the southeast and northwest edged of the
watershed (5.9◦C). The empirical distribution shows that nearly
all grid cells in this watershed experience minimum temperatures
in the future time period above even the extreme minimum
temperatures in the historic model run.

A slight reducing pattern is projected to occur in relative
humidity across the SBW by the end of the century, as can
be seen in Figure 4B. The maximum average relative humidity
in the future WRF run is 83.9%, compared to 86.1% in the
historic run, occurring along the Saginaw Bay. When compared
to the historic run (Figures 4A,C), the drying signal appears the
smallest (−1.9%) on the northern coast of the Saginaw Bay and is
the largest (−3.1%) in the southwestern corner of the watershed,

near Owosso, MI (station V). The empirical distribution shows
a future shift of ∼2.7% drier in the future (watershed mean RH
goes from 77.1 to 74.4%).

The northeastern side of the SBW is projected to receive more
total annual precipitation by the end of the twenty-first century
than it experienced in the historic model run (Figure 5B). When
comparing the future projection map to the historic model run,
the watershed’s average increase of 14.3mm (848.0mm vs. the
historic run’s 833.7mm) does not convey the spatial variability
within the SBW. Particularly, drying occurs in the south and
southwestern parts of the watershed, while moistening is isolated
to the northeastern part of the SBW (Figure 5C). The maximum
change over the twenty-first century at a single grid cell is
an increase of 87.4mm, and the largest drying is −63.0mm.
Figure 5D shows a flattening of the empirical distribution curve
in the future model projections, with fewer grids having a
precipitation value near the average, and more years with annual
precipitation amounts occurring in the right tail of the curve.
The reason for this can be more clearly seen by examining
precipitation frequency and intensity.
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FIGURE 4 | Same as Figure 2, but for mean daily relative humidity.

Annual precipitation frequency (number of days with
measurable precipitation per year) decreases in a future RCP 8.5
scenario at all grid cells in the Saginaw BayWatershed (Figure 6)
with a range of 4.7 to 24.4 fewer days per year. The average over
the entire watershed is a decrease in precipitation frequency of
10.7 days per year. The empirical distributions show a similar
shape to the two distributions, but the future distribution is
shifted left (toward a lower frequency of days with precipitation)
and the right tail of the distribution becomes shorter (fewer
extremely high frequency years; Figure 6D).

Precipitation intensity is calculated as the mean annual
precipitation value at a grid cell divided by the number of
days in which precipitation occurs at that location. The average
precipitation intensity over the SBW in the historic model
run is 4.4 mm/precipitation day while the average intensity
in the future model run is 4.8 mm/precipitation day. The
model runs have a similar spatial pattern (Figures 7A,B),
with the lowest intensities occurring around Saginaw Bay (3.7
mm/precipitation day in the historic model run and 4.2mm per
precipitation day in the future run) and increasing intensities

in the northwestern and southeastern parts of the watershed
(maximum of 5.1 mm/precipitation day in the historic run and
5.7 mm/precipitation day in the future run). When comparing
the average precipitation intensity at each grid cell in the future
model run to the historic model run, Figure 7C shows increases
in intensity over the twenty-first century with the largest
increases of 0.7 mm/precipitation day in the “thumb” region of
the Lower Peninsula, the eastern portion of the watershed. This
corresponds with the region that saw an increase in total annual
precipitation in Figure 6C. The empirical distributions show that
in the future time period the average intensity becomes larger and
there is less variability within the watershed (as the size of the
tails is reduced; Figure 7D). This indicates that by the end of the
twenty-first century precipitation in the SBW will become more
intense (larger amount per precipitation day) and there will be
less variability in the range of intensities experienced.

The relative changes in the SBW variables indicate that
on average this watershed will warm by 5.7◦C in daily
maximum temperatures and more (6.3◦C) in daily minimum
temperatures. Relative humidity shows a slight reducing trend
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FIGURE 5 | Same as Figure 2, but for annual total precipitation amount.

when looking at annual averages. The projected change to
total annual precipitation varies across the watershed, but
the picture of the characteristics of SBW precipitation is
consistent. Precipitation will occur less frequently across the
watershed but will be more intense, as the amount that falls per
precipitation day will increase. All of the SBW is not projected
to have an increase in total annual precipitation because even
though all locations are projected to experience increased
precipitation intensity, decreases in precipitation frequency also
occur across the watershed. In the west and southwestern
parts of the watershed the increase in intensity is not enough
to negate the decrease in frequency, and the annual total
precipitation decreases. Grid cells near the Saginaw Bay coast are
expected to experience more extreme changes than the rest of
the watershed.

Validation and Bias Correction
WRF Model Validation
For the most accurate one-way coupling of the dynamically
downscaled WRF data with a hydrologic model the data must be

validated against “ground truth” observations to estimate errors,
and bias corrected to compensate for those errors. Since the
climate model inputs into SDHMs is spatially explicit both the
validation and bias correction are performed at the locations
in the SBW that also have in-situ meteorological data for the
historic period (1991–2005; Figure 1). For the 5 in-situ weather
stations in the study region the average differences between
historic modeled data and the historic observations are given
in Table 1.

For daily maximum temperature, the observed mean is

warmer than the model output for all stations. The largest
difference is 6.5◦C, which is located at the north-eastern tip of

the SBW. The temperature differences are much smaller near the

central part of the lower peninsula [lowest is 2.6◦C at Mount
Pleasant, MI (station III)]. This indicates that for the SBW region

the model keeps the daily maximum temperatures too cool by

3.9◦C on average (more near the coast). Standard deviations of
the daily maximum temperature show that all station locations

have a larger modeled standard deviation than is observed
(overall average of 2.0◦C larger standard deviation).
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FIGURE 6 | Same as Figure 2, but for mean annual precipitation frequency.

The daily minimum temperature shows a similar relationship
between modeled and observed values. The largest difference
is where modeled temperatures are 6.5◦C warmer and again
occurs at the East Tawas station, in the north-eastern part
of the watershed. Stations in the central part of the MI
lower peninsula have smaller differences between the observed
minimum temperatures and modeled temperatures, but overall
the model generates minimum daily temperatures 4.0◦C cooler
on average. Differences in standard deviations of minimum
temperatures are 2.6◦C, indicating that the model produces a
larger standard deviation than the observed data. For relative
humidity, the WRF model is slightly more moist by 2.4%. It
is also more variable, with a standard deviation 3.5% more
than observed.

Annual total precipitation (mm) is slightly higher in the
historic model run, by 25.5mm on average. The discrepancy
is the highest (765.1mm observed vs. 861.6mm modeled) at
Midland, MI (station II) in the central part of the lower
peninsula, near the western edge of the SBW. The source of
this over-production of precipitation in WRF is due to the

frequency of precipitation generated in the model. WRF causes
precipitation to occur on average 64.4 days too often per year
compared to the observed frequency. This is the worst at Mount
Pleasant (station III), where the observed frequency is 88.5
days per year and the modeled frequency is 178.7 days per
year. On the other hand, the WRF simulation under—produces
with regard to precipitation intensity (mm/precipitation day),
on average 2.4mm less than observed [this is larger than the
measurement accuracy for human recorded precipitation which
is 0.5mm (NOAA., 2018)]. This difference was also largest at
Mount Pleasant, MI (station III) where the average intensity
is observed at 9.1 mm/precipitation day and modeled to be
4.5 mm/precipitation day. The combination of too frequent
precipitation events but less intense rain events result in
close values at Mount Pleasant for total annual precipitation
(795.5mm observed vs. 793.1mm modeled) although that is
because the inaccuracies cancel each other out. This helps
to illustrate why adjusting precipitation is still needed, even
though errors of total annual precipitation might not seem
that high. Accurate capture of precipitation frequency and
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FIGURE 7 | Same as Figure 2, but for mean annual precipitation intensity.

TABLE 1 | Average (standard deviation) of station and WRF variables of interest for hydrologic inputs at the five observational stations within the watershed for 1991–2005.

Variable Station (observed) WRF (modeled) Model error

(modeled—

observed)

Bias corrected WRF

(modeled)

Model error after bias

correction

(modeled—observed)

Daily maximum temperature (◦C) 13.8 (11.8) 9.9 (13.8) −3.9 (2.0) 13.8 (11.6) 0.0 (−0.2)

Daily minimum temperature (◦C) 3.0 (10.0) −1.0 (12.7) −4.0 (2.6) 3.1 (10.2) 0.1 (0.2)

Annual total precipitation (mm) 792.2 (246.5) 817.7 (132.6) 25.5 (−113.9) 798.7 (140.5) 6.5 (−106.0)

Annual precipitation frequency (days/year) 118.9 (33.7) 183.3 (31.1) 64.4 (−2.6) 122.8 (12.3) 3.9 (−21.4)

Annual average intensity (mm/day of precipitation) 6.9 (1.1) 4.5 (0.9) −2.4 (−0.2) 6.6 (1.0) −0.3 (−0.1)

Relative humidity (%, data from ASOS stations) 74.2 (11.2) 76.7 (14.7) 2.4 (3.5) 74.4 (11.2) 0.2 (−0.1)

Italicized values indicate the standard deviations.

intensity are particularly important for hydrologic modeling
applications. The Kolmogorov-Smirnov test resulted in a p-value
is near zero in all cases, indicating that the two distributions
are likely not from the same population (p < 0.05) for
all stations and all variables. Therefore, bias adjustments are
required for the WRF data before ingesting the data into any
hydrologic model.

Quantile Mapping Bias Correction
Quantile Mapping bias correction is applied to each of the
5 locations within the SBW that are co-located with in-situ
weather stations. The data from the weather stations are used to
generate the empirical cumulative distribution function used to
transform the WRF historical run data. The transform functions
are retained for use at those same locations in future model
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runs. An example of the results of the bias correction is given
in Figure 8, and comparison statistics for all of the variables are
shown in Table 1. The Kolomorgov-Smirnov test is again used to
determine whether the bias corrected model data is statistically
similar to the observed values.

The differences between the bias corrected WRF output
and the observational values have been reduced dramatically
in Table 1, compared to the un-corrected differences (Model
Error column in Table 1). Before, WRF was underpredicting
temperatures by 3.9◦C (maximum temperatures) and 4.0◦C
(minimum temperatures). After bias correction, the average
difference between modeled maximum temperatures and
observed maximum temperatures is 0.0◦C, and the average
difference for minimum temperatures is 0.1◦C. The error
associated with the relative humidity also became almost
negligible, at a mere 0.2%. A graphical demonstration of the
impact of this correction on maximum temperature at the
Oscoda, MI location (station I) is shown in Figure 8.

Average annual total precipitation amount observed at the 5
stations is 792.2 mm/year and the un-corrected WRF historic
model over-forecasted precipitation by 25.5mm on average.
However, after bias correcting the WRF output, the difference
is reduced to 6.5mm of precipitation per year (Table 1). The
intensity of precipitation also shows substantial improvement.
Without correction, the WRF model produces precipitation 64.4
more days than observed. After applying the Quantile Mapping
bias correction, WRF only generates precipitation 3.8 days per
year more than observed. The average intensity of precipitation
events was under forecast by WRF by −2.4 mm/day. However,
after bias correction this difference is −0.2 mm/day. All three
of these variables show the improvements to WRF’s ability
to represent the nuances of the precipitation regimes after
bias correction.

According to the K-S test for the likelihood of two sample
distributions coming from the same population, all total
precipitation samples (observed, modeled, and bias corrected
modeled) are likely from the same population distribution (p
≤ 0.05). This is mostly due to the low error for total annual
precipitation values, which we have shown is an artifact of
frequency and intensity errors canceling each other out. When
considering precipitation frequency and intensity only, the
observed and bias-correctedmodel distributions have statistically
significant K-S D values, indicating they are likely from the
same distribution (for all 5 stations in the watershed). This
is also the case for the other variables, where only after bias-
correction could observations and modeled output be assumed
to come from the same distribution. The exceptions are with
2 stations failing to meet this assumption at the p ≤ 0.05
significance level for minimum temperature, and one station for
maximum temperature.

Bias Corrected Future run
The quantile mapping transforms developed between the station
data and historical model data are applied to the 5 corresponding
point locations for the RCP 8.5 WRF future run. The resulting
values averaged over the 5 locations are given in Table 2 for
comparison with the historic model run values. Empirical density
functions (edfs) are fit to the historic and future precipitation

data in order to estimate the probability distribution functions
of the data and to visualize the differences in the entire variable’s
distribution. The value for the 75th and 90th percentile are
computed for precipitation, and the 10th and 90th percentiles
for the other variables (Figures 9–12). Above/below average and
extreme values can be used to develop relationships between
climatological variables and streamflow; this is especially true
for precipitation with regards to flood event prediction but
also applies temperature and RH for their effects on watershed
processes including evapotranspirative demand.

Average daily maximum temperature increases from 13.8
to 18.3◦C during the twenty-first century (Table 2). The edfs
of maximum temperature calculated for each of the station’s
historic and future bias corrected variables are displayed in
Figure 9. All of the stations experience a shift in the future
maximum temperature distributions toward the right, indicating
higher temperatures. In addition, the 10th and 90th percentile
temperature values increase at all locations with the maximum
increase in the 10th percentile of 5.6◦C (from −1.1 to 4.5◦C)
occurring at Oscoda, MI (station I), the northern most location
in the SBW (Figure 9B). The largest increase in the size of the
90th percentile temperature is at Mount Pleasant, MI (station III)
where the 90th percentile goes from 28.3◦C in the historic edf to
35.1◦C in the future edf (Figure 9D).

Likewise, the average daily minimum temperatures at the 5
stations within the SBW increase from 3.0 to 8.0◦C (Table 2).
The edfs of minimum temperatures (Figure 10) show that a
shift of the entire distribution toward higher temperatures is
consistent across the watershed. It is interesting to note from
these comparative distributions that the 10th percentile values
increase more than the 90th percentile values at almost all
stations, indicating a substantial change in the frequency and
value of extreme cold minimum temperatures. The largest of
these 10th percentile warmings occurs at Oscoda, MI (station
I) in the northern part of the SBW (Figure 10B). The largest
warming of the 90th percentile minimum temperature is 8.9◦C
(from 17.2 to 26.1◦C) and occurs at Midland, MI (station II), in
the western part of the watershed (Figure 10C).

In the SBW, the future model run produces a signal of
decreasing relative humidity from 74.2 to 71.6% (Table 2). Even
though the average relative humidity decreases, the average
standard deviation of relative humidity increases from 11.2 to
18.3%. This is more easily observed in Figure 11, which plots
the historic and future bias corrected edfs of relative humidity
at the 5 locations in the SBW. These figures show the flattening
of the distribution and the corresponding increase in variability,
particularly in the left tail. The 90th percentile values increase at
all 5 stations [by as much as 5.3% at Gratiot, MI (station IV);
Figure 11A], but the 10th percentiles show the largest amount
of change. All of the stations experience a decrease of the
10th percentile values of at least 4.7%, and Gratiot, MI (in the
southwestern part of the watershed) experiences a reduction of
15.6% over the twenty-first century. The increased intensity and
decreased frequency of precipitation events may lead to longer
periods of drier air between events.

Total annual precipitation does not appear to experience
substantial change in the future model run once the WRF
output is bias corrected (Table 2). There is a slight decrease

Frontiers in Water | www.frontiersin.org 12 December 2021 | Volume 3 | Article 77981170

https://www.frontiersin.org/journals/water
https://www.frontiersin.org
https://www.frontiersin.org/journals/water#articles


Kluver and Robertson Saginaw Bay Watershed Climate Projections

FIGURE 8 | Observed (solid), modeled (dotted), and bias corrected (dashed) modeled daily maximum temperatures for observational station 202423 (Oscoda, MI).

TABLE 2 | Average (standard deviation) of bias corrected WRF variables for the historic and future model runs.

Variable Bias corrected

modeled (1991–2005)

Modeled (2085–2099) Bias corrected

modeled (2085–2099)

Difference in bias

corrected modeled

(future-historic)

Daily maximum temperature (◦C) 13.8 (11.6) 15.1 (16.2) 18.3 (14.0) 4.5 (2.4)

Daily minimum temperature (◦C) 3.1 (10.2) 5.0 (13.6) 8.0 (12.3) 4.9 (2.1)

Annual total precipitation (mm) 798.7 (140.5) 819.3 (143.1) 793.4 (132.9) −5.3 (−7.6)

Annual precipitation frequency (days/year) 122.8 (12.3) 173.3 (24.4) 116.2 (12.4) −6.6 (0.1)

Annual average intensity (mm/day of precipitation) 6.6 (1.0) 4.8 (0.9) 7.0 (0.9) 0.4 (−0.1)

Relative humidity (%, data from ASOS stations) 74.4 (11.2) 73.1 (21.4) 71.6 (18.3) −2.8 (7.1)

These are for the 5 observational stations within the watershed.

Italicized values indicate the standard deviations.

(−1.2mm) in average annual precipitation totals at the 5 station
locations, due to a decrease in frequency (−2.7 days/year)
and increase in intensity (0.1 mm/precipitation day). However,
from the spatial maps (Figures 2–7) it can be seen that the
projected changes to precipitation vary in magnitude and
sign across the watershed, and the bias-corrected future time
series are only created at the 5 locations with station data.
Figure 12 shows the edfs for the historic and future bias
corrected model values for daily precipitation events. For these
distributions the 75th and 90th percentiles are indicated on
the plots, since understanding above average and extreme
precipitation events is paramount for modeling event-based
flow. All of the locations experience a slight increase in
the magnitude of 75th and 90th percentile events except for
Owosso, MI (station V), in the southern part of the watershed
(Figure 12E), which corresponds with the area of decreased
precipitation intensity in Figure 7C. The largest magnitude

increases in 90th percentile precipitation events occur at Gratiot,
MI (station IV), Oscoda, MI (station I), and Mount Pleasant,
MI (station III; Figures 12A,B,D). These locations experience
extreme precipitation increases around 1.2mm in magnitude
and corresponds to areas of increased precipitation intensity
in Figure 7C.

DISCUSSION

Inferences and Implications
End-of-century model runs indicate that the SBWwill experience
substantial and spatially variable effects from climate change.
On the whole, the watershed will be slightly drier, with lower
relative humidity and fewer precipitation days than at the end
of the twentieth century. This change in relative humidity is
consistent with what is expected from the Clausius-Clapeyron
relation of increased atmospheric moisture capacity without
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FIGURE 9 | Daily maximum temperature empirical density functions. The solid

black line is the historic bias corrected data and the dashed line represents the

future bias corrected data at each location. The solid vertical lines represent

the 10 and 90% values at location (A) 200146 (Gratiot, IV), (B) 202423

(Oscoda, I), (C) 205434 (Midland, II), (D) 205662 (Mount Pleasant, III) and (E)

206300 (Owosso, V).

large changes in moisture flux over land (Byrne and O’Gorman,
2016). Temperatures will increase substantially, with the largest
changes occurring at the extremes (10th percentile maximum
and 90th percentile minimum), meaning that it is likely that
the SBW will see simultaneously more frost-free days in
the winters and more exceptionally hot days in the summer
months. This trend of decreasing diurnal temperature range
due to a faster rate of warming by minimum temperatures
is consistent with what has happened in the last century
(Easterling et al., 1997; Thorne et al., 2016; Sun et al., 2019
among others) and what is expected to continue in a warming
climate (Zhou et al., 2009). The small decline in total annual

FIGURE 10 | Same as Figure 9 but for daily minimum temperature.

precipitationmasks projected increases in precipitation intensity,
with the increases in precipitation intensity modeled across
nearly the entire watershed. The projected changes will not
be uniform, with the coastal region experiencing some of the
most extreme temperature changes and considerable spatial
variability in precipitation frequency and intensity throughout
the watershed. One of the benefits of dynamical downscaling
with the WRF model is that finer resolution processes, such
as convection, can identify spatial patterns within the study
domain that would not be apparent in a coarse-resolution GCM
(Qiu et al., 2021). The difference in projected characteristics
between the coastal area and inland would have been sub-
grid scale in the 1◦ spatial resolution of the parent climate
simulations we used before downscaling, which could also be
missed in statistical downscaling without observations to provide
“predictand” distributions at those locations. It is important to
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FIGURE 11 | Same as Figure 9 but for daily relative humidity.

note that this is on realization of just one GCM-RCM coupling.
Other GCMs coupled to other RCMs or multiple realizations of
the current GCM-RCM combination would produce different
temperature, precipitation, and relative humidity projections.
Therefore, the direction and general magnitude of the future
projections are more important than the exact magnitude of
the changes.

The large increases in mean minimum and maximum
temperature along the coast of Saginaw Bay could be a
substantial stressor on wetland vegetation; increased air and
water temperatures and the associated declines in water level
(for emergent wetlands) and water clarity (for submergent
wetlands) all can negatively impact wetland plants and potentially
decreasing associated ecosystem services including nutrient
cycling, sediment trapping and deposition, and flood modulation
(Erwin, 2009; Steinman et al., 2012; Junk et al., 2013; Short

FIGURE 12 | Daily precipitation empirical density functions. The solid black

line is the historic bias corrected data and the dashed line represents the future

bias corrected data at each location. The dashed vertical lines represent the

75th and 90th (bold) percentile values for the future data and the solid vertical

lines represent the 75th and 90th (bold) percentiles values for the historical

data at location (A) 200146 (Gratiot, IV), (B) 202423 (Oscoda, I), (C) 205434

(Midland, II), (D) 205662 (Mount Pleasant, III) and (E) 206300 (Owosso, V).

et al., 2016). Considering the substantial resources that have
been committed to restoring coastal wetlands in Saginaw
Bay (Hartig et al., 2020), a decline in function due to
climate change impacts should be cause for concern. Capturing
spatial variability in precipitation frequency and intensity
is fundamental to effectively modeling rainfall-runoff ratios,
flooding in ungauged catchments, erosion processes, and the
potential for mobilization of non-point and point source
pollutants. Recognizing that changes in precipitation intensity
and frequency will not be uniform and may exacerbate existing
watershed stressors like land use change is needed in order
to quantify changes in hydrologic regime and prediction of
extreme events.
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Limitations and Future Work
The distinct difference between the Saginaw Bay coastal grids
and the rest of the SBW’s projected changes in climate merit
future investigation. There are not in-situ stations from the
NOAA COOP or ASOS networks within these cells to use
for validation, so error cannot be ascertained in the same
manner. The closest in-situ station is Oscoda, MI (station I),
located along the northern coast of the Saginaw Bay, which
had model errors (before bias correction) of less than 0.1mm
for precipitation, ∼6% for relative humidity, and ∼6.5◦C for
temperatures. Without further investigation it is unclear if
the bias correction applied at Oscoda, MI is appropriate for
the rest of the Saginaw Bay coast. Part of the uncertainty
here is because the atmospheric model used in this study for
dynamical downscaling does not contain a dynamic lake model,
but rather designates a “water bodies” land cover type (WRF
v3.7; Skamarock et al., 2008), which lacks realistic lake surface
temperatures (Gula and Peltier, 2012; Xiao et al., 2016). The
study uses a bias-corrected GCM with a nested RCM that was
also validated and bias-corrected, which assists in removing
some systematic errors that may be introduced because of
this inaccurate lake grid treatment. However, research in the
last several years has been actively seeking a better coupling
between WRF and dynamic lake models for use in regional
climate studies (Gu et al., 2015; Xiao et al., 2016; Peltier et al.,
2018; Ma et al., 2019; and others). To better understand the
reliability of the projections for the Saginaw Bay coastal area,
and to what extent bias-correction can remediate a lack of
some of the GCM’s sub-grid-scale influences, future work may
include comparison with some of these lake-coupled models.
Additionally, it would be worthwhile to perform the historical
downscaling simulation with nudging applied to the RCM,
to examine the impact of this “relaxation” toward the GCM
on the precipitation variability and extremes over such a fine
spatial resolution as the inner domain and over such a long
time scale. Another avenue of future work with these data will
be to diagnose error and bias-correct all of the modeled grid
points within the watershed, for sensitivity analyses with SDHMs.
Alternative in-situ observations that are not as long-running
as the stations used in this paper or gridded products may
be used to supplement the stations within the watershed for
these future analyses.

Such high spatial resolution climate data over a long time
period processed for coupling with SDHMs is a valuable tool
for examining climate change impacts on hydrologic systems.
However, the full potential of this dataset is not realized in this
study. Even though dynamic downscaling captures the variability
in atmospheric processes throughout the watershed, without
bias correction of that data before ingestion by hydrologic
models errors are needlessly propagated into them and can
obfuscate the empirical parameter calibration that must happen.
Additionally, questions remain as to how many of the 3 km by
3 km grid cells within the SBW need to be provided as input to
a SDHM to capture the necessary atmospheric variability within
the watershed, and what is the best method for bias correcting
those grid cells without in-situ validation data. Answering these
questions will allow future research to more accurately bridge the
spatial and temporal gap between GCMs run for future climate
scenarios and SDHMs that are able to simulate multifaceted
impacts of atmospheric variability on hydrologic processes.
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Extreme precipitation contributes to widespread impacts in the U.S. Great Lakes

region, ranging from agricultural losses to urban floods and associated infrastructure

costs. Previous studies have reported historical increases in the frequency of extreme

precipitation in the region and downscaled model projections indicate further changes

as the climate system continues to warm. Here, we conduct trend analysis on the 5 km

NOAA NClimDiv data for the U.S. Great Lakes region using both parametric (Ordinary

Least Squares) and non-parametric methods (Theil-Sen/Mann-Kendall) and accounting

for temporal autocorrelation and field significance to produce robust estimates of extreme

precipitation frequency trends in the region. The approaches provide similar overall results

and reflect an increase in extreme precipitation frequency in parts of the U.S. Great Lakes

region. To relate the identified trends to large scale drivers, a bivariate self-organizing map

(SOM) is constructed using standardized values of 500 hPa geo-potential height and 850

hPa specific humidity obtained from the ECMWF ERA-5 reanalysis. Using a Monte Carlo

approach, we identify six SOM nodes that account for only 25.4% of all days, but 50.5%

of extreme precipitation days. Composites of days with and without extreme precipitation

for each node indicate that extreme events are associated with stronger features (height

gradient and background humidity) than their non-extreme counterparts. The analysis

also identifies a significant increase in the frequency of one SOM node often associated

with extreme precipitation (accounting for 8.5% of all extreme precipitation days) and

a significant increase in the frequency of extreme precipitation days relative to all days

across the six extreme precipitation nodes collectively. Our results suggest that changes

in atmospheric circulation and related moisture transport and convergence are major

contributors to changes in extreme precipitation in the U.S. Great Lakes region.

Keywords: Great Lakes region, climate extremes, extreme precipitation, self-organizing maps, global change

INTRODUCTION

Extreme precipitation is associated with wide-reaching impacts in the Great Lakes region of the
United States, including direct effects on localized and large-scale flooding (Winters et al., 2015),
transportation and infrastructure (Angel et al., 2018) and agriculture, and many indirect effects,
such as heightened risk of gastrointestinal illness (Drayna et al., 2010), impacts on disease vector
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habitats, and overall water quality. Improved understanding of
the changing nature and drivers of extreme precipitation is
therefore critical for reducing the impacts of current and future
climate impacts in the region.

Extreme precipitation events occur in the absence of
enhanced radiative forcing from greenhouse gases, but there
is also a theoretical expectation, and growing observational
evidence, of an increase in precipitation extremes associated
with anthropogenically-driven global warming (Allan and Soden,
2008). The Clausius-Clapeyron (C-C) relation indicates an ∼7%
increase in saturation specific humidity per degree of warming
under constant relative humidity. Because regional changes in
extreme precipitation are determined not only by background
humidity, but also by transport of atmospheric moisture to
regions of convergence, local, and regional changes in extreme
precipitation can differ substantially from the expected C-C
scaling (Lenderink and Van Meijgaard, 2010), especially for the
most extreme precipitation values and at the shortest time scales
(Pendergrass, 2018).

Multi-decadal climate projections from ensembles of climate
models indicate further increases in extreme precipitation over
most land areas (IPCC, 2021) as the atmospheric continues to
warm. Regional studies conducted with multiple generations
of climate models, statistical and dynamical downscaling
approaches, and mid- and late-century time horizons have
similarly pointed to more frequent and intense precipitation
events in the region under additional global and regional
warming (Pryor et al., 2013; D’orgeville et al., 2014; Byun and
Hamlet, 2018; Zhang et al., 2019).

The nature of historical and potential future changes in
extreme precipitation in the U.S. Great Lakes region, as well
as their drivers, need to be well-understood so that appropriate
mitigation and adaptation strategies can be identified and
implemented. Precipitation extremes results from processes
occurring across spatial scales, ranging from the micro-scale
to the upper end of the mesoscale (sometimes referred to
as synoptic scale) (Orlanski, 1975). There is growing interest
in identifying the mesoscale and synoptic scale conditions
associated with events (Barlow et al., 2019), including those
occurring at the regional scale (e.g., the Northeast USA by Agel
et al., 2018). As noted by Barlow et al. (2019), the synoptic scale
is particularly critical for understanding extreme precipitation
events as synoptic scale processes are (1) important for producing
extreme precipitation events, (2) associated with some medium-
range predictability, and (3) resolved in both weather and
climate models.

To contribute to a better understanding of changes in extreme
precipitation in the U.S. Great Lakes region, we first conduct
a historical trend analysis of daily extreme precipitation events
identified using a peaks-over-threshold framework [section
Bivariate Synoptic Classification Using the Self-Organizing Map
(SOM)]. The trend analysis includes both parametric and
non-parametric trend estimation techniques that account for
temporal autocorrelation in the time series and field significance.
We then develop a bivariate synoptic classification by applying
the self-organizing map (SOM) technique (section Linking
SOM Nodes and Regional Precipitation Extremes) to synoptic

scale atmospheric circulation and humidity fields. Finally,
we investigate relationships between trends in precipitation
extremes and their associated synoptic patterns.

STUDY REGION AND DATA

Study Region
The study region is defined as the states bordering the Laurentian
Great Lakes, plus Iowa which is mostly contained within the
convex hull of the lake-border states. The region therefore
includes Illinois, Indiana, Iowa, Michigan, Minnesota, New York,
Ohio, Pennsylvania, andWisconsin (Figure 1) and includes parts
of the drainage basin for the Great Lakes, but also for the
Mississippi and Ohio Rivers. The general pattern of annual
precipitation is characterized by a decreasing amounts from
southeast to northwest (Pryor et al., 2013), driven primarily
by variations in winter precipitation. Extreme precipitation has
widespread impacts in the region, including those on agriculture,
natural ecosystems, urban systems, and water quality, among
others (Wuebbles et al., 2019).

Data
Precipitation Data

Our analysis of extreme precipitation is based on daily
precipitation data from NOAAs NClimDiv data set (Vose et al.,
2014), a 5 km resolution gridded temperature and precipitation
product derived via climatologically aided interpolation (CAI;
Willmott and Robeson, 1995) of station data from the daily
Historical Climatological Network (HCN-D; Menne et al., 2012).
Relative to previous divisional data sets, NClimDiv includes a
larger number of stations, additional quality assurance tests,
and bias adjustments for changes in observation technique as
described in Vose et al. (2014). Daily precipitation grids are
available from 1951 to present for the contiguous United States.
The 5 km NClimDiv grid used in this study covers the labeled
states shown in Figure 1.

Because NClimDiv is derived from interpolation of available
station data, the product is spatially and serially complete. While
NClimDiv does not provide information regarding sub-daily
precipitation extremes, the consistent long-term perspective it
provides regarding daily precipitation extremes is valuable for
understanding regional changes in extreme precipitation over
time. Additional details about the NClimDiv data set, including
identification of extreme precipitation events is provided in
section Precipitation Extremes.

Reanalysis Data

To characterize the synoptic environment as it relates to extreme
precipitation events, we used the European Center for Medium-
Range Weather Forecasts (ECMWF) ERA5 reanalysis (Hersbach
et al., 2020). ERA5 represents an improvement over previous
reanalysis products as a result of improved model accuracy
and data assimilation techniques, resulting in more accurate
estimates and at higher resolution. ERA5 currently provides
global, hourly estimates of atmospheric and land surface variables
at a resolution of 0.25◦ for pressure levels ranging for 1–1,000 hPa
starting in 1979, with a plan to ultimately extend the analysis back
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FIGURE 1 | Map showing Great Lakes region used for analysis of extreme precipitation and the ERA5 0.25◦ grid used for the synoptic classification using

self-organizing map (SOM) algorithm.

to 1950. Our analysis of both precipitation extremes and their
corresponding synoptic-scale patterns therefore starts in 1979
and ends in 2019.

Reanalysis data should be used cautiously in areas with sparse
data. Because upper air conditions in the central and eastern
United States are regularly observed using radiosondes, and these
measurements are assimilated by ERA5, the reanalysis outputs
should provide an excellent representation of the upper air
conditions in the region. With high spatial resolution and spatial
and serial completeness, ERA5 is ideal for investigating synoptic
scale circulation variability and links with the surface extreme
precipitation record. Previous studies (Junker et al., 1999;
Schumacher and Johnson, 2005, 2006; Tryhorn and Degaetano,
2011; Kunkel et al., 2013; Nasri et al., 2016) have established that
synoptic scale drivers of extreme precipitation include measures
of circulation and atmospheric humidity. We therefore use
500-hPa geo-potential height to reflect circulation and 850-hPa
specific humidity to characterize moisture availability. The ERA5
grid point used in this study are shown in Figure 1. For this
application, the hourly ERA5 outputs were used to compute daily
averages for use with the daily precipitation data described in
section Precipitation Data.

METHODS

Our research design includes several types of analysis designed to
meet the stated research objectives. First, we define our extreme
precipitation metric and explore the climatology of extreme

precipitation events in the U.S. Great Lakes region, including
a detailed analysis of trends in extreme event frequency.
Second, we classify regional circulation and humidity data in a
bivariate synoptic classification to investigate large-scale drivers
of extreme precipitation. Finally, we examine changes in extreme
precipitation through the lens of the resulting synoptic classes.

Precipitation Extremes
Identification of Precipitation Extremes

Extreme values in climate science have been traditionally
investigated using either a block maximum approach, in which
the maximum value from each time block is identified and then
the collection of block maxima are studied, or by the peaks-
over-threshold approach, in which exceedances of a pre-specified
threshold are counted and explored. We chose to use the peaks-
over-threshold to ensure that no extreme events were discarded,
following Acero et al. (2011). An additional subjective decision is
the choice of an absolute or relative threshold. Because extreme
precipitation magnitude varies across the region, a relative
threshold is used. Specifically, for each grid point in NClimDiv,
the threshold applied is the magnitude of precipitation associated
with a 1-year recurrence interval based on a partial duration
series (PDS, see Bonnin et al., 2005). Since the record of study
is 1979–2019 (41 years), this value is determined by ranking the
daily precipitation values across all years from largest to smallest
and identifying the 41st ordered value.We then use this threshold
value with the daily NClimDiv data to compute the number of
exceedances per year from at each grid point in the region.
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Extreme Precipitation Trend Analysis

Changes in extreme precipitation in the U.S. Great Lakes
region are quantified by applying trend analysis to the extreme
precipitation counts from the analysis of precipitation extremes.
Because ordinary least squares (OLS) regression is sensitive to
outliers and extreme values at the series endpoints, we follow
previous studies that have considered both parametric and non-
parametric approaches (Huth and Pokorna, 2004; Asadieh and
Krakauer, 2015). The non-parametric technique adopted is Theil-
Sen estimation (Sen, 1968), which is equivalent to median-of-
pairwise slopes regression (see Lanzante, 1996). Both approaches
have advantages and disadvantage. Despite sensitivity to outliers,
OLS regression is powerful approach for estimating trends and
assessing their differences from 0. In OLS, the trend magnitude
and statistical significance are determined simultaneously. In the
non-parametric technique, a Mann-Kendall test (Kendall, 1975)
is used to assess the statistical significance of the monotonic
trend estimated by the Theil-Sen approach. Both techniques are
applied with a significance level of 0.1 (α = 0.1) under the null
hypothesis that there is no trend in the frequency of extreme
precipitation events exceeding themagnitude associated with a 1-
year recurrence interval. Rejection of the null hypothesis implies
the existence of a monotonic trend.

The significance of a temporal trend in a time series can
be inflated (deflated) in the presence of positive (negative)
autocorrelation. Although our times series of frequencies of
threshold exceedances are likely to be less persistent that
the original daily series that they are derived from, they
may still contain autocorrelation associated with persistence of
large-scale modes of climate variability. Rather than assuming
independence, modifications to the trend estimation technique
can be implemented to better assess the trend significance (Santer
et al., 2000; Yue and Wang, 2004). The modification is an
adjustment on the sample variance. In both parametric and non-
parametric techniques, this is a correction factor based on the
effective sample size. That is,

S∗ = S ·
n

n
∗

(1)

where S is the sample variance, n is the sample size, and n∗ is the
effective sample size, which is a function of the autocorrelation
present in the time series. Because the trend can contaminate the
estimate of sample autocorrelation, the estimate is based on the
detrended time series. Here, the trend is removed by subtracting
the product of the estimated trend (θ) and the position of that
year within the time series from each year. In particular,

xi
∗

= xi − θ · (i− 1) , i = 1, 2, . . . , 41. (2)

The lag-1 autocorrelation (ρ) is then determined from the
detrended time series and the effective sample size is given by:

n
∗

=

1− ρ

1+ ρ
. (3)

With a positive autocorrelation, the effective sample size is
smaller than n, which increases the variance of the test statistic,

leading to a failure to reject the null hypothesis when a naïve test
may have found the presence of a significant trend. On the other
hand, the presence of negative autocorrelation in the time series
increases the effective sample size, decreasing the test statistic
variance, and can therefore either sustain already significant grid
points or bring the non-significant points past the threshold
needed to reject the null hypothesis.

We assess the significance of the parametrically- and non-
parametrically-derived trends at the local level. However, with
such a large number of tests conducted, there is an increased
chance of identifying a significant result by chance when it
does not truly exist. To avoid these issues, Wilks (2006, 2016)
recommend the use of the false discovery rate criterion (FDR).
In this meta-test, a maximum number of significant points are
determined such that a global test of significance at all local points
is met. In this case, the FDR procedure is used to evaluate the
field significance of trends in precipitation days per year with
αglobal = 0.2 (see Wilks, 2006 for details). First, the p-values of
each local hypothesis test result are ordered from the lowest to
the highest (p1, p2, . . . , pn) and compared to the corresponding
value (i/N)∗αglobal. The maximum significant p-value is largest of
the n p-values that satisfies the inequality:

pi ≤ (i/N)αglobal (4)

Once this threshold is obtained, grid points with a lower p-
value (p1, p2, . . . , pi) are designated as significant trends having
satisfied the global meta-test.

Bivariate Synoptic Classification Using the
Self-Organizing Map (SOM)
While several approaches exist for classification of atmospheric
patterns, the self-organizing map, or SOM (Kohonen, 1998) has
emerged as a leading approach in synoptic climatology. The SOM
algorithm distributes a designated number of nodes across the
multidimensional input space and sequentially moves each node
toward the best matching input data based on a set learning rate
and a predetermined number of iterations. The result is a two-
dimensional map of nodes representative of the continuum of
the input data (Hewitson and Crane, 2002; Sheridan and Lee,
2011). The SOM technique is also selected for its demonstrated
skill in feature extraction and the interpretability of a map space
(Liu et al., 2006; Agel et al., 2018).

Prior to classification with the SOM algorithm, several data
preprocessing steps were necessary. First, the hourly ERA5
outputs of 500-hPa geo-potential height and 850-hPa specific
humidity were aggregated to daily averages, producing 14,975
daily grids for the 1979–2019 study period. SOM results can be
sensitive to the choice of spatial domain. We opted for a domain
that closely corresponds to the Great Lakes region (Figure 1)
to reduce the variability with the goal of better representation
of rare patterns (Gibson et al., 2017), but with some additional
grid points to the South and West, the predominant direction
for approaching weather systems. Finally, to consider both
geo-potential height and specific humidity, which differ by
several orders of magnitude, each variable was standardized by
subtracting the mean and dividing by the standard deviation.
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This standardization is applied to each day in the sample on
the basis of calendar year means and standard deviations. This
allows for equal weighting in the classification process, as both
geo-potential height and specific humidity input data will have a
mean of 0 and a standard deviation of 1. The data presented to
the SOM are therefore the daily standardized values of 500-hPa
geo-potential height and 850-hPa specific humidity at each of the
9,801 ERA5 grid points in the region on each of the 14,975 days,
producing a 19,602× 14,975 input array.

There are a number of additional subjective decisions required
for SOM-based classifications. Among these is the desired size
(number of nodes) in the resulting SOM space. Given the
relative rarity of the events of interest (precipitation extremes
exceeding the value associated with a 1-year recurrence interval),
the SOM dimensions must be sufficiently large to isolate the
large-scale signal associated with extremes. We investigated
SOM architectures ranging from 4 to 45 nodes in various
configurations and used two approaches to assess the viability
of the SOM and find a balance of within-type and between-
type variability. Specifically, we used the root-mean-square error
(between a sample grid and its representative node) and Sammon
mapping of the resulting SOM nodes to justify our selection
following (Jiang et al., 2015). The difference between the sample
grid and its representative node decreases as map size increases,
whereas smaller node numbers contribute to a more cohesive
mapping pattern across space. Using these approaches, we
converged on a 20 node (5 × 4) SOM solution. Given the
SOM size, the learning rate and number of iterations are also
parameters that influence the result of the mapping algorithm.
Defaulting to recommendations of the software (Matlab’s Deep
Learning Toolbox), the initial learning rate in this instance was
set to 4. The number of iterations was then set to 1,000 to ensure
the success of the training while minimizing the computation
time of the algorithm.

Linking SOM Nodes and Regional
Precipitation Extremes
The output of the SOM algorithm includes the centroid for each
node, a distance matrix relating the node centroids, and an index
of the closest node for each of the 14,975 daily ERA5 grids.
These outputs allow the construction of a synoptic catalog in
which each day is assigned to one node of the SOM, which can
then be considered in the context of the extreme precipitation
climatology. To this end, we establish a framework for connecting
the large-scale meteorological patterns with the established
extreme precipitation climatology by identifying the nodes most
associated with extreme precipitation. We classify a day as
an extreme precipitation day if at least 1% of the 81972.5km
NClimDiv grid points in the region exceeds its threshold.

Once we have identified the extreme precipitation days
belonging to each node, we conduct a Monte Carlo experiment
to determine which nodes are associated with a greater than
expected number of extreme precipitation days, following Agel
et al. (2018). For each node, a random sample of days equal to
the number of days within the node are selected and the number
of extreme precipitation days in the random sample are noted.

FIGURE 2 | Map of the study region showing the threshold used for

identification of extreme precipitation days (the magnitude of the daily

precipitation associated with a 1-year recurrence interval (mm).

Resampling 1,000 times establishes a distribution for the expected
number of extreme precipitation days corresponding to a specific
node size. A node is then established as a node associated with
extreme precipitation, and thus classified as an “extreme node,” if
the number of extreme days associated with the node exceeds the
97.5th percentile of the resulting distribution.

Further analysis places these extreme nodes in the context
of the entire SOM space and explores changes in node
occurrence over time. First, the days belonging to each extreme
node are separated into sets representing extreme and non-
extreme days. Composites of these sets denote the differences
in structure and magnitude due to internode variability and
illustrate the characteristics of weather types favorable for
extreme precipitation. After examining the structure of the
extreme nodes, trend analysis is conducted to better understand
the frequency of occurrence of extreme nodes over time, with the
trend estimated by the Theil-Sen approach and the significance
of the trend is assessed using a Mann-Kendall test.

RESULTS

Extreme Precipitation Climatology and
Trends
The threshold used to identify extreme precipitation days (the
value associated with a 1-year recurrence interval) exhibits
considerable spatial variability across the U.S. Great Lakes region
(Figure 2). There is a general south to north gradient with the
largest values, ∼70 mm/day, occurring in southeastern NY and
southern IL. The lowest values of the precipitation magnitude
associated with a 1-year recurrence interval, around 35 mm/day,
occur in the northern parts of MI and MN. The average value
over all NClimDiv grid points in the region is 44.2 mm/day.

Our examination of precipitation extremes is based on a
trend analysis designed to identify changes in Great Lakes
extreme precipitation frequency over time. As described in
section Extreme Precipitation Trend Analysis, our trend analysis
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FIGURE 3 | Results of trend analysis for extreme precipitation frequency in the Great Lakes region. The points shown reflect grid points with significant trends for the

Theil-Sen/Mann-Kendall non-parametric approach (left column) and OLS parametric approach (right column). The rows show the trends from the natïve approach

(first row, A,B) and after accounting for temporal autocorrelation (second row, C,D), and field significance (third row, E,F). The trend magnitude at points identified as

field significant are shown in the fourth row (G,H).

includes both parametric (OLS) and non-parametric (Theil-
Sen/Mann-Kendall) approaches for trend fitting and assessment
of statistical significance. In both cases, additional considerations
are made to account for autocorrelation in the time series and
test multiplicity, and we draw additional comparisons between
the parametric and non-parametric approaches at each step in
the analysis. The non-parametric approach sometimes leads to
a counterintuitive result when applied to time series containing
many zeros (such as a time series of extreme event counts).
Specifically, it is possible that the slope value will be 0, but
the Mann-Kendall test will indicate significance. We therefore

present our initial results only in terms of trend significance
(binary) and discuss trend magnitude only for our final trend
analysis results.

Significant trends in extreme precipitation frequency
identified by the naïve Theil-Sen/Mann-Kendall and OLS
approaches are shown in Figures 3A,B, respectively. Both
approaches identify a large number of grid points in the U.S.
Great Lakes region exhibiting significant trends (Figure 3,
Table 1). The maps show strong qualitative similarity, with a
slightly larger number of significant trends identified by the
Theil-Sen/Mann-Kendall relative to OLS. Despite the greater
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TABLE 1 | Summary of trend analysis.

Theil-Sen/Mann-Kendall Ordinary least squares (OLS) Either Both

Standard test 25,044 (31.4%) 18,363 (23.0%) 25,607 (32.1%) 17,800 (22.3%)

Accounting for temporal autocorrelation 23,328 (29.3%) 18,380 (23.1%) 25,145 (31.5%) 16,563 (20.8%)

Accounting for temporal autocorrelation and field significance 12,773 (16.0%) 10,799 (13.6%) 14,241 (17.9%) 9,331 (11.7%)

Table entries show the number of Great Lakes region NClimDiv grid cells (out of 79,679) for which computed trends were statistically significant (α = 0.1). Results are shown for the

standard test (top row), after accounting for temporal autocorrelation (middle row), and after also accounting for field significance (bottom row). The columns show the results from the

non-parametric Theil-Sen/Mann-Kendall method and the parametric Ordinary Least Squares method. The final two columns reflect the level of agreement between the results, indicating

how may grid points exhibit statistically significant trends using either method and both methods.

extent of significant trends from the Theil-Sen/Mann-Kendall
approach, the region of significance overlaps well. A total of
25,607 out of 79,679, or 32.1% of points within the region, are
identified as having significant trends by either approach with
69.5% of these 25,607 points identified as having significant
trends by both approaches. Spatially, the locations with
significant extreme precipitation frequency trends are scattered
in clusters across the region but tend to be more widespread in
the western portion.

To account for temporal autocorrelation in the time series,
modified tests, which alter the sample variance based on the
lag-1 autocorrelation, were conducted. As described in section
Extreme Precipitation Trend Analysis, this correction is needed
because an autocorrelated series violates the assumption that
time series values are independent. The most common outcome
is that significance is reduced by the presence of positive
autocorrelation. However, in cases where the autocorrelation
is negative, the effective sample size can be larger than
the actual sample size. This can lead to points that were
previously below the significance threshold becoming significant.
Autocorrelation in our extreme precipitation time series (not
shown) is highly variable over space and does not exhibit a
clear spatial pattern. For the Theil-Sen/Mann-Kendall approach,
accounting for autocorrelation reduced the number of points
with significant trends in extreme precipitation frequency
slightly (cf. Figures 3A,C, Table 1). The modified OLS approach,
on the hand, led to virtually no change in the number of
significant grid points (cf. Figures 3B,D, Table 1). In both cases,
the maps before and after accounting for autocorrelation are
qualitatively and quantitatively similar and agreement between
the non-parametric and parametric approaches remains strong.
A total of 25,145 grid points (31.5%) exhibit significant extreme
precipitation frequency trends according to either approach
and 65.9% of these points have significant trends under both
approaches after accounting for autocorrelation.

When conducting a large number of hypothesis tests, there
is potential for rejecting a substantial number of hypothesis
incorrectly by chance or due to spatial autocorrelation.
Consideration of field significance addresses these issues by using
the false discovery rate (FDR) criterion. As described in section
Extreme Precipitation Trend Analysis, for each approach, the
number of field significant points is determined by ordering the
p-values of the local tests and identifying their intersection with
the false discovery rate threshold. Any grid point where the p-
value is lower than the p-value at this intersection is said to

have a regionally significant trend. For both the non-parametric
and parametric approaches, accounting for field significance
decreases the spatial extent of significant trends in extreme
precipitation frequency (Figures 3E,F). For the Theil-Sen/Mann-
Kendall approach, the ordered p-value curve intersects the FDR
threshold at a p-value of 0.0328, so that 12,773 grid points in the
regionmeet field significance criteria (i.e., those with p< 0.0328).
In the OLS approach, the ordered p-value curve intersects the
FDR threshold at a p-value of 0.0271, yielding 10,799 points
meeting field significance criteria. Although accounting for field
significance reduced the overall extent of significant trends in
extreme precipitation frequency, there is still relatively strong
agreement between the approaches with 65.5% of points with a
significant result from either approach have a significant result
from both approaches.

After accounting for both autocorrelation and field
significance, we are left with considerable parts of the U.S.
Great Lakes region exhibiting significant trends in extreme
precipitation frequency regardless of the methodological
approach used for trend analysis.

The magnitude of the estimated trends in extreme
precipitation frequency is shown in Figures 3G,H. The
greater spatial extent of the OLS-derived trends relative to those
derived from the Theil-Sen/Mann-Kendall approach is related to
the presence of significant trends with no magnitude, resulting
from separately assessing the slope magnitude (Theil-Sen) and
significance (Mann-Kendall) within this approach. As noted, this
results from the time series being characterized by a relatively
high proportion of zeros so that the median of pairwise slopes
using in the Theil-Sen estimator is zero. Because of this, only
a fraction (1,694 of 12,773, or 13.3%) of points with significant
trends according to the Mann-Kendall test have a non-zero
Theil-Sen slope estimate. These points are located primarily in a
block along the Illinois-Iowa border, with some smaller regions
of significance scattered in other parts of the domain. The
average magnitude of significant non-zero trends is 0.328 days
per decade, ranging from 0.125 to 0.556 days per decade. In the
OLS approach, the trend magnitude and significance are more
directly connected, so that any grid point found to be significant
will have a non-zero slope. For the 10,799 points identified as
having a significant trend in extreme precipitation frequency, the
resulting trends varied from 0.085 to 0.706 days per decade, with
an average of 0.324 days per decade.

Despite the differences resulting from the tendency of
the Theil-Sen/Mann-Kendall approach to produce significant
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FIGURE 4 | The 20-node (5 × 4) SOM solution showing standardized anomalies of 500 hPa geo-potential height (black contours) and 850 hPa specific humidity

(shaded in color). Nodes are numbered 1–20 for reference within text.

trends without magnitude, both parametric and non-parametric
approaches indicate positive trends in the number of extreme
precipitation days in the region, with strikingly similar location

and magnitude. Overall, the clear indication from our trend
analysis is that extreme precipitation frequency is increasing
in the region, even when applying conservative approaches
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to account for temporal and spatial autocorrelation and test
multiplicity. These robust changes can now be explored in the
context of the large-scale climate influencing the region.

Weather Type Classification
To better understand the large-scale circulation and humidity
regimes associated with extreme precipitation in the U.S. Great
Lakes region, we applied a bivariate self-organizing map (SOM)
to 500 hPa geo-potential height and 850 hPa specific humidity as
described in section Bivariate Synoptic Classification Using the
Self-Organizing Map (SOM). Following experimentation with
the SOM architecture, we developed a 20-node (5 × 4) solution,
which is displayed in Figure 4. The right-hand side of the SOM is
largely characterized by patterns with negative height anomalies
over the western (top rows), central or eastern (bottom rows)
parts of the region. Conversely, the left side of the SOM space
is characterized by generally characterized by positive height
anomalies over the central and western parts of the region. In
terms of 850 hPa specific humidity, nodes with positive anomalies
tend to be clustered along the top of the SOM space with
drier patterns along the bottom of the SOM space. Considering
both variables together, the SOM allows for identification of
patterns that couple high values of humidity with strong height
gradients, leading the moisture transport into the study region
(e.g., Node 3).

To determine the association between the SOM nodes and the
extreme precipitation days, we first computed the distribution
of total days by node and extreme precipitation days by node
(Table 2). The SOM classifies the original 14,975 days into 20
nodes ranging in size from 405 days (2.70%, Node 1) to 965
days (6.44%, Node 18). Using the criteria in section Linking
SOM Nodes and Regional Precipitation Extremes, we identified
a total of 1,024 extreme precipitation days. The share of these
days belonging to each node is also shown in Table 2 and
ranges from just 15 days (1.46%, Nodes 9, 15, and 18) to 123
days (12.01%, Node 3). To identify nodes that are associated
with a higher-than-expected share of extreme precipitation days,
we apply a Monte Carlo approach (see section Linking SOM
Nodes and Regional Precipitation Extremes), which identifies
six nodes: 1, 2, 3, 4, 7, and 8, that account for 517 (50.5%) of
the extreme precipitation days. More than half of the extreme
precipitation days correspond to just 30% of the nodes that
collectively represent 25.4% of all days.

Structurally, the nodes associated with extreme precipitation
belong to the top portion of the SOM space and therefore
have some common physical characteristics, including high
standardized values of specific humidity across the domain.
Aside from the nodes with the highest average specific humidity
anomalies (1 and 2), the remaining nodes associated with
extreme precipitation are characterized by high specific humidity
anomalies and a geo-potential height gradient across the
region with the lowest heights anomalies toward the west.
This configuration leads to moisture transport into the region
and may be reflective of mesoscale convective systems and/or
frontal systems, which account for a large majority of the
extreme precipitation events in the Central US (Schumacher
and Johnson, 2005; Kunkel et al., 2012). While a majority of

TABLE 2 | (a) Frequency of occurrence for each SOM node (out of 14,975) and

(b) frequency of occurrence of extreme precipitation days for each SOM node (out

of 1,024).

(a)

All days

405 (2.70%) 631 (4.21%) 561 (3.75%) 706 (4.71%)

706 (4.71%) 812 (5.42%) 815 (5.44%) 683 (4.56%)

803 (5.36%) 874 (5.84%) 816 (5.45%) 807 (5.39%)

905 (6.04%) 926 (6.18%) 952 (6.36%) 680 (4.54%)

615 (4.11%) 965 (6.44%) 607 (4.05%) 706 (4.71%)

(b)

Extreme precipitation days

42 (4.10%) 87 (8.50%) 123 (12.01%) 71 (6.93%)

47 (4.59%) 57 (5.57%) 100 (9.77%) 94 (9.18%)

15 (1.46%) 56 (5.47%) 36 (3.52%) 61 (5.96%)

44 (4.30%) 18 (1.76%) 15 (1.46%) 39 (3.81%)

32 (3.13%) 15 (1.46%) 17 (1.66%) 55 (5.37%)

Each table entry contains the number of occurrences and percentage [of all days in (a), of

extreme precipitation days in (b)] corresponding to the same position in the 5 × 4 SOM

(Figure 3).

extreme precipitation days fall into the six extreme patterns, just
13.6% of the days within those patterns are classified as extreme,
reflecting within-node variability. We therefore considered
differences between non-extreme precipitation days and extreme
precipitation days within each node using compositing. Figure 5
displays each extreme node, along with composites of the non-
extreme and extreme precipitation days for that pattern. In
each case, we found that the overall structure of the pattern in
the node (i.e., the location of height/humidity extrema) does
not differ between extreme and non-extreme days. However,
we often identified a stark difference in the magnitude of
those extrema. For each extreme precipitation node, extreme
precipitation days are characterized by stronger 500 hPa geo-
potential height gradients and similar or larger 850 hPa specific
humidity anomalies (Figure 5).

Examination of these specific nodes also reflects their
association with extreme precipitation frequency across the U.S.
Great Lakes region (Figure 5). As expected, for each node, the
areas with the greatest extreme event frequency are located
directly east of the negative geo-potential height center and near
the area of positive specific humidity. Nodes 1 and 4 tend to
produce extreme precipitation in the north-west part of the
region, while Nodes 2, 3, and 7 produce extreme precipitation in
the west-central part of the region, and Node 8 produces extreme
precipitation in the east-central part of the region. Although
(Schumacher and Johnson, 2005) use a much higher extreme
precipitation threshold (the precipitation amount associated
with the 50-year recurrence interval), our extreme nodes reflect
some of the processes described in their work. For example,
the circulation and humidity patterns characterized by Node
2 and Node 7 are consistent with the east-west orientation of
the training line/adjoining stratiform (TL/AS) type of mesoscale
convective system identified in their study. While a full analysis
of node transitions is beyond our scope, we did assess the
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FIGURE 5 | SOM nodes associated with extreme precipitation in the Great Lakes region. For each of the six nodes, the figure shows the original SOM node from

Figure 4 (1st column), the composite pattern of days without extreme precipitation (2nd column), the composite pattern of days with extreme precipitation (3rd

column), and the location of extreme precipitation associated with the SOM node events within the region, defined as the frequency of extreme precipitation at each

NClimDiv grid cell on days belonging to the SOM node (4th column).
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TABLE 3 | Seasonal characteristics of SOM nodes associated with extreme precipitation.

DJF MAM JJA SON ANN

Node 1 7/129 (5.4%) 12/145 (8.3%) 15/56 (26.8%) 8/75 (10.7%) 42/405 (10.4%)

Node 2 2/145 (1.4%) 18/161 (11.2%) 38/161 (23.6%) 29/164 (17.7%) 87/631 (13.8%)

Node 3 6/123 (4.9%) 21/129 (16.3%) 52/151 (34.4%) 44/158 (27.9%) 123/561 (21.9%)

Node 4 0/168 (0.0%) 9/160 (5.6%) 34/183 (18.6%) 28/195 (14.4%) 71/706 (10.1%)

Node 7 10/205 (4.9%) 21/210 (10.0%) 51/229 (22.3%) 18/171 (10.5%) 100/815 (12.3%)

Node 8 14/178 (7.9%) 16/172 (9.3%) 17/115 (14.8%) 47/218 (21.6%) 94/683 (13.8%)

All extreme nodes 39/948 (4.1%) 97/977 (9.9%) 207/895 (23.1%) 174/981 (17.7%) 517/3,801 (13.6%)

For each node and season (and for the full year), each entry shows the number of extreme precipitation days relative to the total number of occurrences and the resulting season- and

node-specific frequency of extreme precipitation days.

TABLE 4 | Summary of trend analysis on SOM nodes associated with extreme

precipitation days.

All days Extreme precipitation days

Trend P-value Trend P-value

(days/decade) (days/decade)

Node 1 0.00 0.76 0.00 0.46

Node 2 2.91 <0.01 0.48 0.02

Node 3 0.91 0.09 0.00 0.29

Node 4 −1.88 0.03 0.00 0.36

Node 7 2.00 0.07 0.26 0.15

Node 8 –0.71 0.36 0.00 0.38

All Extreme Nodes 4.43 0.08 1.27 0.03

Trends (days/decade) and their associated p-values are shown for all days within the node

and for days associated with extreme precipitation. Entries that are significant (with α =

0.05) are in bold.

persistence of each node by examining the days preceding and
following and extreme precipitation day. Nodes 2 and 7 were
the most persistent nodes consistent with a stationary east-west
moisture maximum across the region. Nodes 3 and 8, on the
other hand, are the least persistent and are likely to be associated
with faster moving synoptic systems and their associated fronts.

Extreme precipitation in the region exhibits notable seasonal
variability which is evident in the seasonal frequencies of the
associated SOM nodes. While the six specific nodes highlighted
in Figure 5 occur approximately evenly across the seasons,
40.0% of the extreme precipitation events (207 of 517 events)
occur during the summer and 33.6% (174 of 517 events) occur
during the autumn (Table 3). Most of the remaining events
(97 of 517 or 18.6%) occur in the spring and only 7.5%
(39/517) occur during the winter. Therefore, even across the
nodes associated with extreme precipitation, winter extreme
precipitation events are relatively uncommon. This may result
partially from the SOM design, which uses daily standardized
values of 500-hPa geo-potential height and 850-hPa specific
humidity. Even anomalously high 850-hPa specific humidity
in winter may be insufficient to support extreme precipitation.
However, our results are consistent with previous studies (e.g.,
Schumacher and Johnson, 2006) that have identified a strong
summer maximum in extreme precipitation. During the winter,

within-type variability is also larger, and the percentages of each
node associated with extreme precipitation are at a minimum.
During summer, the six key nodes produce extreme precipitation
on nearly 25% of days on which they occur, and for Node 3,
extreme precipitation occurs onmore 1/3 of summer days. Trend
analysis of the frequency of SOM nodes associated with extreme
precipitation provides an initial perspective on how synoptic-
scale variability and change may be related to changes in extreme
precipitation. The number of extreme precipitation days in the
U.S. Great Lakes region is increasing at a rate of 1.27 days/decade,
which may be at least partially explained by variations in
the frequency of days belonging to those specific SOM nodes
associated with elevated extreme precipitation frequency. We
find that two extreme precipitation nodes exhibit significant
trends over time (Table 4). Node 2 has a significant positive trend
of 2.91 days/decade (p < 0.01), while Node 4 has a significant
negative trend of−1.88 days/decade (p∼ 0.03). The other nodes
associated with extreme precipitation have positive trends that do
not meet the criteria for significance (with α = 0.05). Finally, we
assessed trends in the occurrence of extreme precipitation days
within each extreme node and across all extreme nodes. Results
indicate that across all extreme nodes, there is a significant
trend of 1.27 extreme precipitation days per decade (p ∼ 0.03).
This is driven primarily by Node 2, which has a significant
positive trend (p ∼ 0.02) of 0.48 days/decade in days meeting
the extreme precipitation criteria. The impact location associated
with Node 2 (Figure 5) corresponds very well with the extreme
precipitation trends presented in section Extreme Precipitation
Climatology and Trends and Figure 3, suggesting a potentially
substantive role for mesoscale and synoptic processes in the
observed extreme precipitation increases.

SUMMARY AND DISCUSSION

The objectives of this study were to quantify changes in extreme
precipitation frequency in the U.S. Great Lakes region and
their links with large-scale circulation and humidity. We first
conducted an analysis of trends in extreme event frequency, using
both parametric and non-parametric trend estimation techniques
and accounting for autocorrelation and field significance. While
accounting for autocorrelation and field significance reduced
the spatial extent of the identified trends, we identified the

Frontiers in Water | www.frontiersin.org 11 December 2021 | Volume 3 | Article 78284788

https://www.frontiersin.org/journals/water
https://www.frontiersin.org
https://www.frontiersin.org/journals/water#articles


Paxton et al. Extreme Precipitation Great Lakes Region

existence of positive extreme frequency trends in the region using
both techniques. No negative precipitation trends were identified
in the region. To relate regional extreme precipitation events
to atmospheric drivers, we applied a bivariate self-organizing
map to assign each day in the record to one of 20 distinct
nodes characterized by their standardized 500 hPa geo-potential
height and 850 hPa specific humidity anomalies. A Monte Carlo
approach was then used to identify six nodes associated with
regional extreme precipitation occurrence. Each of these extreme
nodes featured a unique structure, typically with a strong geo-
potential height gradient and corresponding low-level humidity
maximum. When considering only the extreme precipitation
days within each node, we found these features to be exaggerated
(i.e., a stronger gradient and higher humidity), indicating that
structure and magnitude of these weather types are both essential
for relating them to extreme precipitation. Finally, for each of
the extreme nodes, and for all extreme nodes collectively, we
quantified the trend in overall frequency and in the frequency of
extreme precipitation days associated with the node. Collectively,
the frequency of these extreme nodes is increasing over time (not
significant) and the frequency of extreme days within the nodes
is also increasing over time (significant with α = 0.05). Node
2 specifically exhibits significant increases in overall frequency
and in the frequency of extreme days within Node 2. The
spatial structure of extreme precipitation frequency under Node
2 qualitatively matches the observed trend structure.

Our results are consistent with results of previous students,
such as the significant increase in the frequency of heavy
precipitation over the central United States reported by
Mallakpour and Villarini (2015). Because they used alternative
data sources with different spatial resolutions and time periods,
a direct comparison is not possible. However, the greater
spatial extent of extreme precipitation trends in the parts
of their domain that overlap with ours, could result from
our consideration of autocorrelation in the time series. We
recommend that time series studies account for autocorrelation
to avoid overconfidence in identified trends. The results of
our synoptic classification (and the identified nodes associated
with extreme precipitation) are also in agreement with previous
studies. For example, each of the nodes that we associated with
extreme precipitation are instantiations of the “Midwest water
hose” pattern denoted by Zhang et al. (2019). In that study,
the authors used a broader domain to identify a connection
between extreme precipitation and circulation. In the current
study, we’ve used a narrower domain leading to a wider array
of identified circulation/humidity types. As discussed in section
Results, Nodes 2 and 7 are consistent with the east-west “training”
events described by Schumacher and Johnson (2005) that are
responsible for a large number of extreme precipitation events
identified in their study.

The vast majority of previous synoptic classifications with the
SOM algorithm have relied on a single classification variable,
usually geo-potential height or sea level pressure, to reflect the
primary circulation features. Our results, based on a bivariate
SOM, demonstrate that consideration of additional variables, 850
hPa specific humidity in our case, can improve the interpretation
of the resulting weather types and their associations with extreme

precipitation. Each of the nodes that we associated with extreme
precipitation occurrence is characterized by a combination of
geo-potential height and specific humidity anomalies in specific
geographic regions. The SOM nodes that are not associated with
extreme precipitation occurrence may exhibit similar structure
in either geo-potential height or specific humidity, but not both.
We also found that the magnitude of both of these parameters
is vital. Our study suggests that extreme days are related to both
steepened geo-potential height gradients and amplified specific
humidity. Agel et al. (2019) similarly reported that extreme
precipitation events were related to enhancedmoisture transport.

Previous studies focused on the central United States have
identified disparate drivers of extreme precipitation changes.
Specifically, Kunkel et al. (2012), attributed increasing extreme
events to be related to frontal systems, while Schumacher
and Johnson (2005, 2006) and Barlow et al. (2019) identified
mesoscale convective systems occurring during spring and
summer as a major cause. These differences may result from
different definitions and the extreme nodes identified in this
study are consistent with both mesoscale convective systems
and frontal systems. While direct comparison with previous
studies is difficult, our results indicate that extreme precipitation
frequency is increasing in many parts of our region, with
substantial contributions from unique combinations of large-
scale circulation and humidity patterns. Future studies may
benefit from including additional information from reanalyses,
such as the convective vs. large-scale rain rates to better
differentiate between the large-scale mechanisms that produce
extreme precipitation. The strength of the links between SOM
nodes and extreme precipitation may be further improved by
incorporating greater specificity regarding regional precipitation
drivers, perhaps including aspects of the Great Plains low-level
jet (Junker et al., 1999) or consideration of multi-day events and
their associated large-scale drivers.

While our results contribute to greater understanding of
changes in precipitation extremes in the U.S. Great Lakes
region, there are some limitations worth noting. In synoptic
classification problems, the goal is to minimize within-type
variability and maximize between-type variability, but resulting
nodes often suffer from a large degree of within-type variability
(Brinkmann, 1999). Although we identified six patterns that
account for more than half of all extreme precipitation days,
each of the nodes identified as an extreme precipitation
node also includes a large number of days without extreme
precipitation. This limitation is also noted by Gibson et al.
(2017) in the context of using SOMs to explore extreme event
environments. Our analysis of the difference between large-scale
patterns associated with extreme and non-extreme precipitation
days within the nodes, determined by simple compositing,
indicates that the pattern magnitudes are greater on extreme
precipitation days, reflecting within-type variability. Another
limitation is related to our use of standardized anomalies. While
this was necessary to include both geo-potential height and
specific humidity which differ by several orders of magnitude,
it can also mask important seasonal variations in extreme
precipitation drivers. For example, anomalously high specific
humidity during winter may still be insufficient to produce
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extreme precipitation. Specific analysis focused on each season
may therefore provide greater insight into the physical processes
involved. Despite these caveats, this study was successful in
identifying trends in extreme precipitation in the U.S. Great
Lakes region and relating them to specific circulation/humidity
regimes. Key contributions of our work include insights gained
from estimating trends using multiple techniques that account
for autocorrelation and field significance and relating those
trends to combinations of large-scale geo-potential height and
humidity. The framework developed here could easily be
expanded to other regions or to include more than two large-
scale variables.

Projections from contemporary climate models indicate
additional increases in the frequency of extreme precipitation
under further large-scale warming (IPCC, 2021). However,
regional changes in precipitation are still a challenge for
climate models (Tabari et al., 2019), which often fail to
produce the key precipitating systems, such as mesoscale
convective systems (Gutowski et al., 2020). Analyses like
those presented here can provide a basis for evaluation of
climate models by specifically assessing the frequency with
which they produce the large-scale conditions required for
extreme precipitation. Studies in other regions (e.g., the NE
by Agel et al., 2020) have begun to assess the ability of
climate models to simulate extreme precipitation and its related
circulation. Future work will expand upon these results to

assess representation of the extreme precipitation nodes in
contemporary climate models.
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Spring and summer precipitation are both important factors for agricultural productivity

in the Midwest region of the United States. Adequate summer precipitation, particularly

in the reproductive and grain fill stages in July and August, is critical to corn and soybean

success. Meanwhile, excessive spring precipitation can cause significant planting delays

and introduces challenges with weed and pest management, and soil erosion and

compaction. However, uncertainty especially in future summer precipitation changes,

translates to uncertainties in how the joint distributions of spring and summer precipitation

are expected to change by mid- and late-century across the Midwest. This study

examines historical and projected changes in the characteristics of spring and summer

precipitation in theMidwest using 12 dynamically downscaled simulations under the high-

emission representative concentration pathway (RCP 8.5) from the NA-CORDEX project.

Historical increases in spring precipitation and precipitation intensity are projected to

continue into the mid- and late-century across the region, with strong model agreement.

By comparison, projected changes in Midwest summer precipitation are more modest

than for spring and have much less model agreement. Despite a projected three- to

four-fold increase in the frequency of wet springs by late-century, relative to the model

ensemble historical average, the lack of substantial and robust projected change in

summer precipitation results in only a small increase in the risk of dry summers following

wet springs in the Midwest by mid- and late-century.

Keywords: drought, climate projections, climate change, Midwest, agriculture, NA-CORDEX

INTRODUCTION

The Midwest region of the United States is an area crucial to the nation’s production of corn
and soybeans. Seven Midwest states—Iowa, Illinois, Minnesota, Indiana, Ohio, Missouri, and
Wisconsin—rank among the top 10 for corn harvested for grain (National Agricultural Statistics
Service, 2021), and six Midwest states—Illinois, Iowa, Minnesota, Indiana, Missouri, and Ohio—
are also in the top 10 for soybean production (National Agricultural Statistics Service, 2021).
Altogether, the Midwest produced over 9 billion bushels of corn and over 2.6 billion bushels of
soybeans in 2020, accounting for about 64% of the yearly total produced for each crop in the
United States. Corn production in the Midwest United States alone falls between the total corn
production of China and Brazil, the second and third highest corn-producing countries (Foreign
Agricultural Service, 2021).
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The distribution of precipitation throughout the growing
season can have a significant impact on corn and soybean
production in the Midwest. Both corn and soybean yields tend to
be positively correlated with summer precipitation (Goldblum,
2009; Liu and Basso, 2020), especially in July and August, during
critical reproductive stages of corn and soybeans, respectively (El
Mourid et al., 1986; Hatfield et al., 2018). Therefore, precipitation
in July and August tends to be a strong predictor of end-of-
season yield in both corn and soybeans across the Midwest (Hu
and Buyanovsky, 2003; Westcott et al., 2005), such that drought
in mid- to late-summer typically results in below-trend corn
and soybean yields (Mishra and Cherkauer, 2010). Concurrently,
excessive precipitation in the spring can have a negative impact
on Midwest corn and soybeans. This is particularly the case
with excessively wet conditions in April and May, which can
delay fieldwork and planting, reduce flexibility for pre- and post-
emergence herbicide application, discourage deep root growth,
increase pressure from disease, weeds, and insect pests, and
increase the risk of soil compaction (Hatfield et al., 2018; Daigh
et al., 2020; Winsor, 2020). Urban et al. (2015) found that an
extremely wet spring can reduce yields by 10% in Iowa, Illinois,
and Indiana.

Given the negative impacts of both excessively wet springs and
excessively dry summers onMidwest crop production, years with
consecutive wet springs and dry summers are of great concern for
Midwest producers. Climate model projections indicate Midwest
spring precipitation will increase throughout the twenty-first
century (Swain and Hayhoe, 2015; Byun and Hamlet, 2018;
Bukovsky and Mearns, 2020), which is in line with historical
spring precipitation trends across the Midwest. In northern
Illinois, for example, April–May precipitation has increased by
4.6mm per decade since 1895 and has increased 6.9mm per
decade since 1950 (NOAA NCEI, 2011). However, the picture
is less clear for future changes in summer precipitation by mid-
and late-century. While July–August precipitation has increased
over the past 125 years across much of the Midwest, recent
studies project decreased summer precipitation across all or part
of the Midwest (Winkler et al., 2012; Byun and Hamlet, 2018;
Gautum et al., 2021). Summer precipitation projections often
come with more uncertainty than their corresponding springs
due to poorer summertime ensemble agreement (Byun et al.,
2019). Bukovsky and Mearns (2020) found in their models for
North American summer precipitation “consistent inconsistency
within regions and across the ensemble in the sign of the
precipitation projections.” The ensemble changes in summer
precipitation tend to be smaller than the ensemble changes in
spring precipitation as well.

Uncertainty in future summer precipitation changes in the
Midwest translates to uncertainties in how the joint distributions
of spring and summer precipitation are expected to change. For
example, Ford et al. (2021) found transitions from extremely wet
to extremely dry conditions on subseasonal to seasonal timescales
were occurring both more quickly and more frequently in recent
decades in parts of the central and southern Midwest. Christian
et al. (2015) found increasing interannual variability in recent
decades, resulting in a higher likelihood of a significant wet year
following a significant drought year in the central United States.

Given the importance of spring and summer precipitation
for agriculture in the Midwest, it is crucial to gain a better
understanding of how spring and summer precipitation patterns
are projected to simultaneously change across the Midwest, and
how these changes are expected to affect Midwest agriculture. By
employing a suite of climate models, we estimate the projected
changes in spring and summer precipitation, and examine how
the frequency of wet springs, dry summers, and combinations of
the two are expected to change in coming decades.

DATA

To examine the projected changes in these precipitation patterns,
we employ 12 model combinations from the North America
Coordinated Regional Downscaling Experiment (NA-CORDEX)
(Mearns et al., 2017). North America Coordinated Regional
Downscaling Experiment provides dynamically downscaled
climate simulations at spatial resolutions of 50 and 25 km
over a domain covering most of North America from multiple
regional climate models (RCMs), which are driven by the
output of different global climate models (GCMs) from the
Coupled Model Intercomparison Project-Phase 5 (CMIP5).
In this study, we use the NA-CORDEX simulations at a
spatial resolution of 25 km. Table 1 shows the details of the
available 12 GCM-RCM combinations used in our analysis.
There are seven GCMs (CanESM2, GEMatm-Can, GEMatm-
MPI, GFDL-ESM2M, HadGEM2-ES, MPI-ESM-LR, and MPI-
ESM-MR) used as lateral boundary conditions for four RCMs
(CanRCM4, CRCM5-UQAM, RegCM4, and WRF). Among
the seven GCMs, GEMatm-Can and GEMatm-MPI have bias-
corrected sea ice and sea-surface temperatures (SSTs) from
a separate GCM simulation (Hernández-Díaz et al., 2019).
Therefore, the boundary conditions GEMatm-Can (or GEMatm-
MPI) include the atmospheric fields from CanESM2 (or MPI-
ESM-MR) and the bias-corrected SSTs. Among the four regional
models, both CanRCM4 and CRCM5-UQAM are Canadian
Regional Climate Model. The former is version 4 developed
in Canadian Center for Climate Modeling and Analysis, and
the latter is version 5 developed in Université du Québec à
Montréal. Daily precipitation is obtained from the 12 GCM-
RCM downscaling simulations for the historical period (1950–
2005) and the Representative Concentration Pathway 8.5 (RCP
8.5) future period (2006–2100). The RCP8.5 represents a high-
emission scenario. It allows us to examine the precipitation
changes under the worst-case scenario of climate change. The
RCP4.5 scenario, which represents mid-range emissions, is only
available for very limited simulations at a spatial resolution of
25 km, and therefore not included in our analysis. It also should
be noted that we use the raw downscaling output in this study
because of the recently reported errors in its bias-corrected data
(McGinnis, 2021).

We investigate changes in both spring (April–May) and
summer (July–August) precipitation characteristics. We focus
on April and May for spring and July and August for summer
because excessive (deficient) rainfall in April–May (July–August)
is associated with negative impacts to both corn and soybean
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TABLE 1 | The 12 NA-CORDEX GCM-RCM combinations used in this study.

No. Global climate model (GCM) Regional climate model (RCM)

1 CanESM2 CanRCM4

2 CanESM2 CRCM5-UQAM

3 GEMatm-Can CRCM5-UQAM

4 GEMatm-MPI CRCM5-UQAM

5 GFDL-ESM2M RegCM4

6 GFDL-ESM2M WRF

7 HadGEM2-ES RegCM4

8 HadGEM2-ES WRF

9 MPI-ESM-LR CRCM5-UQAM

10 MPI-ESM-LR RegCM4

11 MPI-ESM-LR WRF

12 MPI-ESM-MR CRCM5-UQAM

yields in the Midwest (Westcott et al., 2005; Hatfield et al., 2018).
Specifically, spring and summer precipitation is characterized by
four metrics: (1) total seasonal precipitation, (2) the simple daily
intensity index (SDII), (3) the number of heavy precipitation days
in a season, (4) and the number of dry days in a season. Total
precipitation is calculated from all days, including those with
non-zero totals that are <2.5mm. A heavy precipitation day is
one in which at least 25mm of precipitation is observed, and a
dry day is one in which <2.5mm is observed. Conversely, we
define a wet day as one in which 2.5mm or more of precipitation
is observed, and the SDII is the average precipitation that falls on
wet days during a season.We also employ three different versions
of the dry daymetric.While the seasonal total number of dry days
is the one primarily used, we also consider both the average and
maximum dry spell length in a season in later sections, where a
dry spell is a period of consecutive dry days.

Verification of the NA-CORDEX simulation ensemble
is done using gridded precipitation observations from the
National Oceanic and Atmospheric Administration Monthly
United States Climate Divisional Database (NClimDiv, Vose
et al., 2014). The NClimDiv historical record covers the
period 1951 through the present and contains precipitation
data interpolated to 5-km grids spanning the contiguous
United States. For comparison, the NClimDiv data is upscaled
to the NA-CORDEX spatial resolution. The study area, defined
as the Midwest United States, spans 35.5◦ and 48◦N latitude and
83◦ and 95◦W longitude.

RESULTS

Precipitation Climatology and NA-CORDEX
Validation
Figure 1 shows the upscaled spring and summer NClimDiv
observed precipitation climatology across the Midwest during
the period 1951–2005. Total spring precipitation follows a
strong south-to-north gradient across the region, ranging from
nearly 300mm in western Kentucky to <120mm in northern
Minnesota. Spring precipitation intensity—represented by both

SDII and the frequency of heavy precipitation days—are also
highest in the southern Midwest and lowest in the northern
Midwest. Specifically, parts of southern Missouri and western
Kentucky experience, on average, 3–4 heavy precipitation
days (>25mm) per spring season, while much of Minnesota,
Wisconsin, and Michigan experience fewer than one heavy
precipitation day on average in spring. Conversely, the northern
Midwest experiences more dry days in spring, 45–50 in
Minnesota, Wisconsin, and Michigan, compared with 40–45 dry
days in Indiana, Ohio, and Kentucky.

Summer precipitation characteristics are less spatially
coherent than in spring. Summer tends to be wetter in the
western and southeastern Midwest, with totals ranging from
nearly 250mm in parts of Iowa and Kentucky to <150mm in
Michigan (Figure 1). The patterns of precipitation intensity and
dry day frequencies in the summer distinguish multiple, diverse
summer precipitation regimes in the Midwest. Specifically, the
southwest quadrant of the Midwest experiences both highest
summer SDII (i.e., highest precipitation intensity) and highest
dry day frequency. For example, parts of northwest Missouri
experience, on average, among the highest rates of both heavy
precipitation days (2–3) and dry days (48–50) in the summer.
This implies the southwest Midwest experiences highly variable
summer precipitation climatology, with prolonged dry periods
broken up by intense precipitation. In contrast, the areas adjacent
to Lake Superior, including parts of Minnesota, Wisconsin, and
Michigan, experience relatively low frequencies of both heavy
precipitation days (0.5–1.5) and dry days (43–45) per summer.
This pattern suggests a more consistent, less intense summer
precipitation climatology in the northern part of the Midwest.

We compare the NClimDiv observed data with the NA-
CORDEX multi-model ensemble median during the 55-year
period 1951–2005. Figure 2 shows the median of differences
from this comparison. The NA-CORDEX simulations exhibit
a wet bias across most of the region in spring of about 25–
50mm, or approximately 10–20% of the regionally averaged
observed spring precipitation climatology (Figure 2A). The
largest biases can be seen in the southwest and northeast
parts of the Midwest, where the multi-model ensemble
median shows spring precipitation totals that are 50–75mm
greater than the observed climatology (15–25% of historical
climatology). The simulations exhibit slightly higher spring
precipitation intensity than the observed climatology across the
Midwest, especially in the Great Lakes region, with SDII biases
mostly <2mm (Figure 2B) and 1 or fewer additional heavy
precipitation days (Figure 2C). The models produce 1–4 fewer
dry days than observed across virtually the entire Midwest
(Figure 2D).

The simulations show a dry bias in summer in the western
Midwest of 10–50mm, 10–25% of the regionally averaged
observed summer precipitation climatology, and a wet summer
bias of similar magnitude in the northeast and southeast
Midwest (Figure 2E). The simulations also show lesser summer
precipitation intensity outside of Michigan and parts of Ohio
and Kentucky, with SDII biases between 1 and 2.5 (Figure 2F).
Simulations produce 1–1.5 fewer (additional) heavy precipitation
days in the western Midwest (Michigan) (Figure 2G), and
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FIGURE 1 | The upscaled NClimDiv spring and summer climatology for the seasonal precipitation totals [(A,E), mm], SDII [(B,F), mm day−1], seasonal number of

heavy precipitation days [(C,G), days], and seasonal number of dry days [(D,H), days] for the historical period 1951–2005.

generally have 1–2 additional summer dry days across the region
(Figure 2H).

The performance of NA-CORDEX model combinations
in simulating spring and summer Midwest precipitation are
summarized in Table 2. The region-average mean absolute
error (MAE) of spring season total precipitation is 45.1mm,
representing approximately 20% of the observed climatological
spring totals. Region-average summer total precipitation MAE
was 22.2mm, between 11 and 12% of the observed climatological
summer total. Despite the relatively high differences in spring,
the simulations do a good job representing the spatial
gradient of spring precipitation (spatial correlation of 0.97).
Comparatively, simulation underestimation (overestimation)
of summer precipitation in the western (eastern) Midwest
(e.g., Figure 2) results in a low summer precipitation spatial
correlation of 0.13. The NA-CORDEX simulations do a better job
representing spring and summer precipitation intensity (SDII)
and dry day frequency, with MAE representing <7% of the
observed climatology and spatial correlations ranging from 0.70
to 0.95. The MAE values of both spring and summer heavy
precipitation day frequency are <0.5 day. However, while the

simulations capture the spatial gradient of heavy precipitation
days in the spring (spatial correlation of 0.95), their performance
in the summer is lacking (spatial correlation of 0.21).

Projected Changes in Spring Precipitation
Our investigation of projected changes in spring and summer
Midwest precipitation focuses on three 30-year periods: historical
1976–2005, mid-century 2030–2059, and late century 2070–2099.
We compare projections from RCP 8.5 to the model historical
period to characterize projected changes in both spring and
summer precipitation. Comparison of the NA-CORDEX multi-
model ensemble median projections for mid- and late-century
spring precipitation with the historical period reveals several
noteworthy patterns. Overall, total precipitation, precipitation
intensity (SDII), and the frequency of heavy precipitation days
in April andMay are all projected to increase across the Midwest.

The largest increases in both total spring precipitation and
spring precipitation intensity by the late-century are in the
western parts of the Midwest, ranging from 50 to 80mm
of additional spring precipitation west of the Mississippi
River, representing a 25–50% increase relative to the model
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FIGURE 2 | The NA-CORDEX multi-model ensemble median error when compared with the upscaled NClimDiv observed climatology for the spring and summer over

the historical period 1951–2005. Shown are the results for the seasonal precipitation totals [(A,E), mm], SDII [(B,F), mm day−1], seasonal number of days with heavy

precipitation [(C,G), days], and seasonal number of dry days [(D,H), days].

TABLE 2 | Model validation summary statistics.

Metric Mean absolute error Spatial correlation

Season Spring Summer Spring Summer

Seasonal total (mm) 41.5 (20.0%) 22.2 (11.3%) 0.97 (<0.01) 0.13 (0.23)

SDII (mm day−1) 0.69 (5.6%) 0.82 (6.7%) 0.95 (<0.01) 0.72 (0.01)

Number of heavy days (days) 0.47 (25.5%) 0.31 (19.3%) 0.95 (<0.01) 0.21 (0.12)

Number of dry days (days) 2.05 (4.5%) 1.15 (2.5%) 0.89 (<0.01) 0.70 (0.02)

Left columns show region-average mean absolute error and—in parentheses—percent mean absolute error for each of the four metrics. The right columns show the spatial correlation

between models and observations for each of the four metrics. The p-values from correlation statistical significance tests are shown in parentheses in the right columns.

historical baseline. The simulations show good agreement in
increasing spring precipitation by mid-century for most of the
Midwest outside of southeast Wisconsin and northern Michigan
(Figures 3A–C), while agreement is strong across the entire
region for increases by late-century (Figures 3D–F). Projected
increases in precipitation intensity, both SDII and heavy
precipitation day frequency, by mid-century are robust across
most of the Midwest region (Figures 3B,C). Meanwhile, there is

widespread agreement across the entire Midwest for late-century
projected increases in both precipitation intensity metrics
(Figures 3E,F). Late-century projections indicate increased SDII
by 1–4mm region-wide and an additional 1–2 spring heavy
precipitation days, with the largest projected increases in the
southern and western halves of the region.

Coinciding with projected increases in April–May
precipitation and precipitation intensity across the Midwest,
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FIGURE 3 | Projected changes in the 30-year spring climatology of the NA-CORDEX multi-model ensemble median in mid- (2030–2059) and late-century

(2070–2099), relative to the model historical period (1976–2005). Maps show the seasonal precipitation totals [(A,D), inches], SDII [(B,E), mm day−1], and heavy

precipitation day frequency [(C,F), days]. Stippling represents areas where fewer than 9 of the 12 simulations agreed on the sign of the change.

projections indicate overall decreases in the frequency of dry
days and length of dry spells in spring (Figure 4). There is
a distinct spatial gradient, however, in both the average and
maximum dry spell lengths in projections for both mid- and
late-century. Namely, the multi-model mean shows slight
(0.3–1 day per year) increases in the average and maximum
dry spell lengths across the southeast Midwest, while most
of the northwest quadrant of the Midwest exhibits decreased
average and maximum dry spell lengths of 0.5–2 days per
year by mid-century. The simulations do not show good
agreement in mid-century projections of changes in dry days
or dry spell length (Figures 4A–C). Meanwhile, late-century
projections of decreases in spring dry days and dry spell length
are more widespread, more robust, and of larger magnitude

(Figures 4D–F). Namely, the average dry spell length is projected
to decrease by 0.5 to over 2 days by late century, with the largest
changes in northern Wisconsin and Minnesota. Overall, we find
good agreement in both mid- and late-century projections of
increased spring precipitation and precipitation intensity across
the Midwest.

Projected Changes in Summer
Precipitation
We compare projected summer precipitation metrics in the
mid- and late-century to the model historical period (Figure 5).
Projected changes in summer precipitation and precipitation
intensity are more variable in both sign and strength and
exhibit more spatial variability than spring projections. Ensemble
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FIGURE 4 | The projected change in the 30-year spring climatology of the NA-CORDEX multi-model ensemble median in mid- (2030–2059) and late-century

(2070–2099), relative to the model historical period (1976–2005). Shown are the number of dry days (A,D), the average dry spell length (B,E), and the maximum dry

spell length (C,F). Stippling represents areas where fewer than 9 of the 12 simulations agree on the sign of the change.

median projections indicate 10–30mm decreases in summer
precipitation across most or parts of Missouri, Illinois, Indiana,
Michigan, and Ohio, and increased precipitation of the same
magnitude in the northwest and southeast Midwest (Figure 5A).
Meanwhile, late-century projections show more widespread 10–
40mm increases in summer precipitation across the Midwest
(Figure 5D). However, projections of modest increases or
decreases in total summer precipitation and precipitation
intensity by mid- and late-century are overwhelmed by the
lack of simulation agreement. As indicated by widespread
stippling in Figure 5 maps, agreement in the projected sign of
summer precipitation and precipitation intensity change was
low across most of the Midwest. The lone exception is for
late-century projected increases in summer SDII on the order of

1–2.5mm, which are robust for much of the northwest Midwest
(Figure 5E).

Simulations indicate an increase of 1–3 additional summer
dry days by mid- and late-century in the northern and western
Midwest, with more modest projections of <1 fewer summer dry
day in the southern Midwest (Figure 6). Mid- and late-century
projections also show increased dry spell length, particularly
in the northern and western Midwest. However, like summer
precipitation and intensity projections, agreement for summer
dry day frequency and dry spell length is low across the region.

We compare individual model projected changes in region-
wide summer precipitation characteristics to better understand
the lack of consistency between models. Each simulation’s
mid- and late-century projections of region-wide summer total
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FIGURE 5 | The projected change in the 30-year summer climatology of the NA-CORDEX multi-model ensemble median in mid- (2030–2059) and late-century

(2070–2099), relative to the model historical period (1976–2005). Shown are the seasonal precipitation totals [(A,D), mm], SDII [(B,E), mm day−1], and the number of

heavy precipitation days [(C,F), days]. Stippling represents areas where fewer than 9 of the 12 simulations agree on the sign of the change.

precipitation, SDII, and heavy precipitation days (Figure 7)
along with total dry day frequency and average and maximum
dry spell lengths (Figure 8) are compared to that simulation’s
historical values using a two-sample t-test. Projected changes
are considered statistically significant at the 95% confidence
level. Only 7 of the 12 simulations project increases in
region-wide summer precipitation by mid- and late-century,
although 5 of the 7 late-century projections are significantly
different from the model historical climatology (Figures 7A,B).
In general, the simulations are a bit more consistent in
projected increases in summer SDII, with at least 9 of
12 projecting increased SDII by mid- and late-century.
Five simulations project significant increases in SDII by
mid- and late-century (Figures 7C,D). Projected changes in

region-wide spring precipitation have considerably stronger
agreement between simulations compared to those for summer
(Supplementary Figure 1). All 12 simulations show significant
increases in total spring precipitation, spring SDII, and the
frequency of spring heavy precipitation days by late-century
(Supplementary Figure 1).

Late-century projections of summer dry days and dry spell
length have a bit more agreement between models than mid-
century for the Midwest region (Figure 8). Disregarding whether
the projected change is statistically significant or not, only 3 of
the 12 simulations project decreased dry day frequency and 2 out
of 12 project decreased average or maximum dry spell length by
late-century (Figures 8D,F). This compares to five simulations
that project decreased dry day frequency and four simulations
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FIGURE 6 | The projected change in the 30-year summer climatology of the NA-CORDEX multi-model ensemble median in mid- (2030–2059) and late-century

(2070–2099), relative to the model historical period (1976–2005). Shown are the number of dry days (A,D), the average dry spell length (B,E), and the maximum dry

spell length (C,F). Stippling represents areas where fewer than 9 of the 12 simulations agreed on the sign of the projected change.

that project decreased dry spell length by mid-century. Late-
century projections of spring dry days and dry spell length show
better agreement between simulations than those for summer
(Supplementary Figure 2). Only 1 out of 12 simulations show
increased spring dry days, average dry spell length, andmaximum
dry spell length (Supplementary Figure 3).

Region-wide projected changes in summer precipitation
characteristics, including totals, frequency, and intensity,
are more consistent between the 12 NA-CORDEX model
combinations than when comparing projections locally; and
agreement on the sign of summer precipitation change tends
to increase from mid- to late-century projections. Overall,
most simulations project increased summer precipitation in the

Midwest region by mid- and late-century, but with a higher
frequency of dry days and longer average and maximum dry
spell lengths. Taken together, the projections indicate a wetter,
but more variable Midwest summer precipitation climatology
throughout the remainder of the twenty-first century.

Changing Risk of Wet Spring-Dry Summer
Seasons
Projections of continued increases in April andMay precipitation
and concurrent (albeit less consistent) increased July and August
precipitation variability imply the potential risk of more frequent
excessively wet springs followed by dry summers. We investigate
the joint changes to spring and summer Midwest precipitation
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FIGURE 7 | The projected changes in the 30-year, regionally averaged summer climatologies for each NA-CORDEX model in mid- (2030–2059) and late-century

(2070–2099), relative to the model historical period (1976–2005). Shown are the seasonal precipitation totals [(A,B), mm], SDII [(C,D), mm day−1], and the number of

heavy precipitation days [(E,F), days]. Model numbers are the same as in Table 1. Asterisks indicate models where the regional change was statistically significant at

the 5% level.

in the Midwest in more detail. Specifically, we examine how
the frequency of years with both wet springs and dry summers
is projected to change through the end of the century. We
examine the difference between each season’s precipitation total
and the corresponding historical average at each grid point.
Spring seasonal precipitation totals at a particular grid point that
are at least 1.3 standard deviations above the historical average
at that point will be considered wet. Likewise, summer totals that
are at least 1.3 standard deviations below the historical average

at a point will be considered dry. The 1.3 standard deviation
threshold is commonly used to denote severe drought, as in the
U.S. Drought Monitor (Svoboda et al., 2002), and has been used
in past studies to represent both severe dryness and wetness (e.g.,
Ford et al., 2021).

Figure 9 shows the occurrences of wet springs, dry summers,
and years with both in the observed NClimDiv data during the
30-year period 1976–2005. Although there is quite a bit of spatial
variability, in general the frequency of wet springs outweighs that
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FIGURE 8 | The projected changes in the 30-year, regionally averaged summer climatologies for each NA-CORDEX model in mid- (2030–2059) and late-century

(2070–2099), relative to the model historical period (1976–2005). Shown are the number of dry days (A,B), average dry spell length (C,D), and the maximum dry spell

length (E,F). Model numbers are the same as in Table 1. Asterisks indicate models where the regional change was statistically significant at the 5% level.

of dry summers in theMidwest. The region-wide average number
of wet springs was 5.6, or 1 in every 5–6 years over the 30-year
historical period, while the average number of dry summers was
3.2, or 1 in every 9–10 years. However, dry summers rarely follow
wet springs in the Midwest, and most areas did not experience
a wet spring to dry summer transition between 1976 and 2005.
With that said, a small region in southern Illinois and Indiana
has experienced between 2 and 4 of these events in the 30-year
historical period. This is also a region shown by Ford et al. (2021)

to have an increasing propensity for wet-to-dry transitions on
subseasonal timescales over the past several decades.

Compared with the historical observations, NA-CORDEX
model combinations produce far fewer historical wet springs
(Figure 10A) and slightly fewer historical dry summers
(Figure 10D). For the simulations, the region-wide average
number of historical wet springs is around 3.2, and the average
number of historical dry summers is around 2.5, compared
with 5.6 and 3.2 for the NClimDiv data, respectively. Analysis
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FIGURE 9 | Observed historical (1976–2005) frequency of wet springs (A), dry summers (B), and years with adjacent wet springs and dry summers (C). The

thresholds used to identify wet springs and dry summers were calculated using the data from 1951 to 2005.

of the individual model ensemble members revealed none
of the members produced wet spring frequency equal to or
exceeding that in the observations. These discrepancies could be
partly attributed to the lower interannual variability in spring
precipitation in the simulations relative to the observations.
When averaged across all simulations and the entire study
region, the simulated standard deviation of spring precipitation
during the historical (1951–2005) period represents 27% of
the simulated mean total spring precipitation. Meanwhile, the
observed standard deviation of spring precipitation represents
36% of the mean total, implying overall more interannual
variability in the observations than the simulations. Due to
the relative dearth of wet springs in the simulations, there
are virtually no years with both wet springs and dry summers
anywhere in the Midwest during the model historical period
(Figure 10G).

The projected frequency of wet springs increases to a regional
average of 7 springs for the 30-year mid-century period and
12 springs for the 30-year late-century period (Figures 10B,C).
Meanwhile, the frequency of dry summers is projected to
increase only in the far western and northern Midwest, by
2–3 summers for the 30-year mid-century and late-century
periods (Figures 10E,F). Despite the sizeable projected increase
in wet spring frequency, the modest projected change in summer
precipitation limits projected wet-spring to dry-summer years to
1 additional for the 30-year late-century period (Figures 10H,I).

Excessively wet springs can cause significant impacts to
agriculture, irrespective of conditions in the following summer.
The Midwest experienced one such year in 2011, when persistent
rains across the Midwest caused damaging floods, saturated soils,
and significant planting delays, all of which placed enormous
physical, emotional, and financial strain on Midwest farmers
(Olson and Wright Morton, 2012; NOAA NCEI, 2021). Region-
wide April–May 2011 was the wettest in the historical observed
period of record. To put this record season in the context of

projected increased spring precipitation across the region, we
compared the wettest spring in the 55-year historical period for
each simulation and found its corresponding rank in spring total
precipitation in the last 55-years of each simulations’ projection
(2045–2099). The rank of the historically wettest spring in each
simulations’ 2045–2099 projections ranged from 5th wettest to
18th wettest, with a 12-simulation median rank of 10th wettest.
These results suggest a substantial increase in the likelihood of
excessive and damaging spring precipitation, akin to 2011, by
mid- to late-century in the Midwest.

SUMMARY AND CONCLUSIONS

In this study, we have examined changes to spring and summer
precipitation characteristics in the Midwest by the mid- and late-
century as projected by an ensemble of NA-CORDEX model
combinations. The simulations strongly agree that springs will
become increasingly wetter through the end of the century.
Heavy and persistent spring precipitation can be detrimental
to Midwest agriculture through delays in planting, pre- and
post-emergence disease and pest control, and increasing soil
erosion (Landau et al., 2021; Thaler et al., 2021). Increased
river nitrogen loads in the Midwest are directly attributable
to heavy precipitation in the region, particularly in the spring
(Baeumler and Gupta, 2020). Issues caused by excessively high
spring precipitation can significantly affect crop yield, but also
increase stress on farmers, farm workers, and rural economies
(Cianconi et al., 2020; Henning-Smith et al., 2021).

We find projections of changes in summer precipitation are
variable in both sign and strength across theMidwest. Simulation
agreement on summer precipitation changes by mid- and late-
century is low relative to spring projections. This agrees with
Bukovsky and Mearns (2020), who find a robust increase in
spring total precipitation and consistent inconsistency in the sign
of the summer total precipitation projections in NA-CORDEX.
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FIGURE 10 | The number of wet springs (A–C), dry summers (D–F), and years with both (G–I) during each period based off the multi-model ensemble median

seasonal totals for the NA-CORDEX historical period 1950–2005.
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Although, when examining projections on a region-wide scale
we find more consistent indications of increases in Midwest
summer precipitation by late-century, albeit with more frequent
summer dry days and longer summer dry spells. These findings
indicate a potential transition to a wetter but more variable
summer precipitation climatology for the Midwest as a whole,
while agreement on future changes in local summer precipitation
characteristics is much more uncertain.

Projected changes to precipitation in the NA-CORDEX
simulations can be influenced by the forcing GCM output.
Consistent with the downscaling results, each of the five
CMIP5 models, which are used as the lateral boundary
conditions for the NA-CORDEX downscaling, showed increased
precipitation in the Midwest during spring in the mid-century,
with even higher totals evident by the end of the century
(Supplementary Figure 3). However, changes to summer
precipitation are more mixed. Two models (HadGEM2-ES and
MPI-ES-LR) show an overall drying trend, and the changes in the
other models are less evident, suggesting less robustness in the
projections of summer precipitation. CanRCM4 downscaling.
Meanwhile, we noted many NA-CORDEX simulations show
opposite changes in summer precipitation between the mid-
century and late-century (Figures 7A,B), which are not found in
the CMIP5 models (Supplementary Figure 3). This discrepancy
can possibly be associated with the physics and configurations
of the downscaling models. Previous comparison studies
have documented the difference in summertime precipitation
projections between GCMs and RCMs (e.g., Mariotti et al., 2011;
Liu et al., 2017; Coppola et al., 2021), which can possibly be
attributed to the different treatments of aerosol forcings and
local land-atmosphere feedbacks.

This may also explain why our summertime results differ from
those in other recent studies (e.g., Winkler et al., 2012; Swain
and Hayhoe, 2015; Byun and Hamlet, 2018; Byun et al., 2019;
Hamlet et al., 2020). While most of these studies agree with our
results that spring precipitation will continue to increase in the
Midwest through the end of the century, some disagree about
late-century summers, projecting that the mid-century dryness
will continue through the late-century. This could be attributable
to the specific data sets and models used and how they are
downscaled in each study. While our models are dynamically
downscaled, those in Byun and Hamlet (2018), Byun et al. (2019),
and Hamlet et al. (2020) for example are statistically downscaled,
and Swain and Hayhoe (2015) directly use the GCMs instead.
Although downscaling relies on projections from the driving
GCMs, RCMs have the potential to capture some of the synoptic
and mesoscale convective processes that dominate mid- to late-
summer precipitation in the Midwest, which could explain
the different results. In other words, the regional assessment
based on the downscaled results can be affected by the choice
of RCMs due to their different parameterizations of physical
processes. For instance, with the same driving GCM as their
boundary conditions, RCMs show different changes in summer
precipitation (Figures 7, 8). The different treatments of climate
forcings (e.g., aerosols) in GCMs and RCMs can also lead to
different behaviors of climate variables (Chen, 2021; Coppola
et al., 2021). However, the inconsistency in summer projections

implies further model refinement and inter-comparison are
needed to better understand and communicate the potential risks
of summer precipitation changes in the Midwest.

It should be noted, in both discussion of the observed
precipitation climatology and the comparison with the model
historical climatology that our use of the gridded NClimDiv
dataset to represent observations comes with its own limitations.
Spatial interpolation that is necessary to move from individual
gauge-based to gridded precipitation datasets has been shown
to reduce the frequency of heavy precipitation events in the
Midwest (Ensor and Robeson, 2008). We demonstrate this issue
by comparing high-quality gauge observations from the National
Weather Service Cooperative Observer station in Champaign,
Illinois with the NClimDiv grid cell in which the station resides
over the period 1951–2020. The gridded NClimDiv dataset
consistently underestimates the frequency of heavy precipitation
days (>25mm) and overestimates the frequency of wet days
(>2.5mm) in both spring and summer, relative to the gauge-
based observations (Supplementary Figure 4). The differences
between gridded and gauge-based heavy precipitation days in
Champaign are 0.56 days in spring and 0.61 days in summer,
representing 29 and 26% of the 1951–2020 gauge-based average
in spring and summer, respectively. Differences in wet days in
Champaign are 1.9 days in spring and 3.2 days in summer,
representing 13 and 27% of the gauge-based average for each
season. Although gridded observation-based datasets provide
many advantages over gauge-based observations, particularly
in comparison to or validation of gridded model simulations,
the biases reported in prior literature and demonstrated in
Supplementary Figure 3 are important to acknowledge.

This study does not consider projected changes to
temperature, which are widely expected to increase through
mid- and late-century in the Midwest (Hamlet et al., 2020;
Wuebbles et al., 2021). Increased growing season temperatures
are associated with increases in evaporation and evaporative
demand, which can induce additional stress to crops. Elevated
evaporative demand, when combined with preexisting dryness,
can create damaging flash drought in the Midwest, as was the
case in 2012 (Otkin et al., 2018). Vapor pressure deficit has been
shown to be an important precursor to agricultural drought
impacts in the Midwest (Kimm et al., 2020). However, studies
of historical changes in vapor pressure deficit in the Midwest
have yielded varying results. Ficklin and Novick (2017) find
significant increases in vapor pressure deficit in the Midwest
between 1979 and 2013. However, Seager et al. (2015) found
vapor pressure deficit in the Midwest has decreased over the
longer period between 1961 and 2013, driven by observed
increases in actual vapor pressure in the region. Similarly, Basso
et al. (2021) find growing season potential evapotranspiration
in the Midwest has decreased between 1960 and 2019, but more
importantly find that the sign and strength of apparent Midwest
evapotranspiration and vapor pressure deficit trends are highly
sensitive to the historical record length. These inconsistencies
are partly due to the complex change in Midwest temperatures
both over the past century and in the past 30 years. Over both
long-term (e.g., 50–100 year) and short-term (20–30 year)
periods, growing season minimum temperatures have risen at
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a faster rate than maximum temperatures (Pathak et al., 2016;
Angel et al., 2018; Basso and Ritchie, 2018), which has caused
actual vapor pressure to increase at a similar rate to saturation
vapor pressure (Basso et al., 2021). Importantly, summertime
maximum temperatures in the Midwest have increased at a faster
rate over the past 30 years relative to their rate of change since the
turn of the twentieth century (Wuebbles et al., 2021). If changes
in summertime maximum temperatures begin to outpace those
of minimum temperatures in the Midwest, vapor pressure deficit
will increase. However, if minimum temperature increases
continue to exceed maximum temperature changes through
the twenty-first century, increased vapor pressure deficit in the
Midwest is not inevitable. Differences in the magnitude of daily
minimum and maximum temperatures, as well as humidity, will
continue to be important considerations for drought research in
the Midwest.

Our study also only considered the high emissions RCP8.5
scenario, and it is possible that different pathways, such as
RCP4.5 for example, may show different results. However,
Midwest precipitation response to emissions reductions,
particularly spring and summer precipitation, have been shown
to be less dramatic than temperature (Wuebbles et al., 2021). It
also should be noted that the climate projections in this study
are based on downscaled CMIP5 simulations. Although CMIP5’s
successor, CMIP6, provides climate simulations from state-of-
the-art climate models with improved model physics (Eyring
et al., 2016), most of their spatial resolutions (e.g., 50 km or more
coarse) are still not adequate for regional climate assessments.
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Pinus resinosa Tree-Ring Latewood
Response to Daily-Scale
Precipitation Variability at Lake
Itasca, Minnesota
Matthew L. Trumper*, Daniel Griffin, Evan E. Montpellier and Kurt F. Kipfmueller

Department of Geography, Environment, and Society, University of Minnesota, Minneapolis, MN, United States

Analysis of daily scale climate observations alongside sub-annual tree-ring data offers

new potential for contextualizing climate change in the Great Lakes region. This pilot

study combined daily observations from a high-quality station record with a co-located

chronology of Pinus resinosa latewood width at Lake Itasca, Minnesota. We evaluate

trends in observational data and use multiple methods to compare day-wise aggregated

climate observations with tree rings over the eleven-decade common period. The Itasca

record exhibited strong increases in warm-season precipitation, minimum temperature

in all seasons, and lengthening of the freeze-free season. Correlation analyses verified

a strong, multi-month warm-season precipitation response in Pinus resinosa latewood

width. Distinct from previous work, daily data analyses were used to fingerprint an

∼2-week period starting in late July when rainfall variability was historically a major

control on interannual tree growth. Climatologically, the timing of this subseasonal critical

climate period corresponds with a relative minimum in mean midsummer precipitation.

Since the 1980s, the latewood correlation with midsummer rainfall has vanished, and

the seasonal-scale rainfall response diminished considerably. This result, new for Pinus

resinosa in Minnesota, is consistent with studies showing a declining relationship

between tree growth and drought in the Midwest United States. Further attribution

analyses emphasizing daily-scale phenomena are needed to elucidate mechanisms

responsible for the tree-growth response to variability, change, and extremes in climate

throughout the Great Lakes region, where the biophysical and socioeconomic impacts

of climate change are multifaceted issues of increasing urgency.

Keywords: daily observations, dendroclimatology, warm season hydroclimate, red pine, bimodal precipitation,

latewood width, Itasca State Park

INTRODUCTION

Climate change in the Great Lakes region is clearly identifiable in observational data and model
projections (Hayhoe et al., 2010; Andresen et al., 2012; Cook et al., 2020). These general trends
toward warmer and wetter conditions give urgency to refining understanding about how climatic
change in the coming decades will alter agricultural systems, ecological communities, culture,
and society in the Great Lakes region (Kling et al., 2003; Frelich et al., 2021). Tree rings can
offer critical long-term context for climate changes in the Great Lakes region. Moisture-sensitive
tree-ring chronologies have been used to investigate growth sensitivity to climate conditions
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(Graumlich, 1993; Kipfmueller et al., 2010), and to evaluate
century- to millennial-scale variability in warm season drought
and precipitation (Blasing and Duvick, 1984; Meko et al., 1993;
St. George et al., 2009; Cook et al., 2010; Maxwell J.T. et al., 2020;
Stahle et al., 2020; Larson et al., 2021a).

A possible weakening of the statistical relationship between
tree rings and warm-season drought has been detected in recent
decades in the Great Lakes region (Maxwell et al., 2016; Maxwell
J.T. et al., 2020; Heilman et al., 2021). This “Fading Drought
Signal” has been attributed to a lack of recent droughts in
the region that could reduce radial growth (Maxwell et al.,
2016), as well as higher CO2 and plant intrinsic Water Use
Efficiency (Heilman et al., 2021). If further replicated across
space and tree species, a fading drought signal result would
underscore the need to better understand the coupled systems
linking climate, environment, and tree growth to ensure robust
interpretation of tree rings as a proxy record of Great Lakes
hydroclimate. Diagnosing temporal changes in tree growth-
climate relationships would be particularly important if the
ongoing period of wetness, identified in both observational and
paleoclimatic records, persists (Andresen et al., 2012; Ford, 2014;
Stahle et al., 2020).Most studies investigating tree growth-climate
relationships in the Great Lakes region have used monthly-
aggregated climate data and total ring-width. It is unknown if
the mechanisms underlying the fading drought signal may be
better understood by evaluating climate and growth relationships
at multiple timescales, including those that operate at the daily to
biweekly timescales which can be obfuscated by time and space
aggregation to monthly, seasonal, and regional scales.

A subtle but intriguing feature of precipitation seasonality
in the Upper Midwest that could influence tree growth is the
presence of two wet peaks during the warm season (Trewartha,
1981; Harrington and Brown, 1985; Keables, 1989). Trewartha
(1981) identified two peaks of rainfall (commonly June and
September) and described spatiotemporal variability in this
bimodal behavior, which fluctuated by decade and between
stations. The bimodal precipitation profile can be viewed as
a decrease in midsummer precipitation that climatologically
follows the primary peak in June and precedes a secondary
peak later in the warm season. This precipitation minima
has been linked to an increased frequency of circulation
patterns in midsummer that favor northerly flow and the
advection of cooler, continental air to the Upper Midwest
(Keables, 1989). It is reasonable to expect that this subseasonal
precipitation variability could influence soil moisture availability
and forest stress during the summer growing season. However,
to our knowledge, the regional bimodal profile has not been
systematically studied in relation to tree growth or tree-ring
data. This is despite evidence elsewhere in North America that
tree rings can respond to subseasonal precipitation climatologies
and anomalies (Edmondson, 2010). A classic example of tree-
growth response to a secondary peak in precipitation is the North
American summer monsoon in the southwestern United States,
which has been reconstructed using networks of latewood tree-
ring chronologies (Griffin et al., 2013 and references therein), and
more recently investigated used daily climate data and adjusted
latewood chronologies (Howard et al., 2021).

Advancing methods in dendroclimatology provide new
opportunities to investigate tree growth response to subseasonal
climate variability and change. For example, day-wise aggregated
climate data is increasingly used to compare with tree-ring
proxies instead of the traditional month-wise approach (Vaganov
et al., 1999; Ackerman et al., 2017; Jevšenak and Levanič, 2018;
Howard and Stahle, 2020; Maxwell R.S. et al., 2020). A principal
advantage of this method is that the day-wise approach can
highlight tree-growth response to hydroclimate regimes with
variability and dynamics that do not conform to Julian calendar
months (Howard et al., 2021). Additionally, daily data can be
used to characterize changes in the optimal window of tree
growth response during the growing season (Jevšenak, 2019).
Ideally, the daily data observations would be located in close
proximity to the site from which tree-ring data were developed.

The use of sub-annual growth chronologies is another
increasingly common method in dendroclimatology. Annual
growth rings can be partitioned into sub-annual growth
increments (i.e., earlywood and latewood) that can contain
stronger and season-specific climate signals (Watson and
Luckman, 2016; Stahle et al., 2020). Sub-annual chronologies
have been developed across North America (Torbenson et al.,
2016), but a gap in publicly-available data exists both in the
Great Lakes region, and for red pine (Pinus resinosa), a long-lived
and climatically sensitive tree species (Kipfmueller et al., 2010).
Across North America, species from the Pinus subgenus have
been somewhat unique in terms of their response to late growing
season precipitation (Stahle et al., 2020), and the prospects for
using red pine in the Great Lakes region are substantial.

Kipfmueller et al. (in press) developed new sub-annual
red pine chronologies near Lake Itasca, the headwaters of
the Mississippi River, in Itasca State Park (ISP), Minnesota.
In comparison to earlywood-width and total ring-width, the
latewood-width timeseries from ISP exhibited stronger internal
crossdating in ring-width patterns and statistical covariance
within and between trees. Kipfmueller et al. (in press) found
the strongest relationships between warm-season precipitation
and summer forming latewood-width. However, analyses of
daily-scale observations and temporal stability of the climate-
tree growth relationships were not conducted in that study.
Subsequently, exploratory analysis of the correlation between
their latewood data and divisional PDSI data (Vose et al., 2014)
indicated: (1) a notable decline in PDSI-latewood covariance
during recent decades (not shown), and (2) the dominant role of
precipitation as a historical driver of PDSI variability, consistent
with the results of St. George et al. (2010). Exploratory analysis
also indicated a decrease in midsummer rainfall in the daily
precipitation climatology, raising the question as to whether red
pine growth at ISP is sensitive to this subseasonal precipitation
variability over time.

This pilot study offers a close examination of changes and
trends in the daily observational climate record at ISP, and a
diagnosis of the strength and temporal stability of the tree-growth
response to climate across daily to multidecadal timescales.
Specific objectives of this study are to (1) assess trends in the
observational climate record at ISP, (2) investigate the climatic
drivers of sub-annual growth chronologies at ISP using daily
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climate data, and (3) examine the temporal stability of the
daily precipitation response of latewood width at ISP using
multiple methods.

DATA

We collected increment cores from living red pine trees in
Itasca State Park, located in north central Minnesota. Each
series was surfaced using a core microtome, visually cross-
dated (Stokes and Smiley, 1996), and earlywood-, latewood-,
and total ring widths were measured to the nearest 0.001mm.
Ring-width measurements were detrended using a 150-year
cubic spline and the 131 individual series were combined
into a single chronology using Tukey’s bi-weight robust mean
(Kipfmueller et al., in press). Daily precipitation and temperature
data were acquired from the University of Minnesota Itasca
Biological Station and Laboratories weather station located in
ISP (Figures 1D,E; GHCND ID: USC00214106). We focused
our analyses on unadjusted latewood and precipitation and
minimum temperature, which were found to be the strongest
tree-ring climate covariates by Kipfmueller et al. (in press). The
ISP station, located <10 kilometers from the trees we sampled,
has a daily record that extends from 1911 to present with <2%
missing values.

METHODS

We used a multiple linear regression approach to estimate
missing daily data from the ISP station. Daily precipitation and
minimum temperature data were acquired from three Historical
Climatology Network stations surrounding ISP (Menne et al.,
2012). Multiple linear regression was used with the ISP record
as the predictand and the other three stations as predictors
to estimate missing precipitation and minimum temperature
values for the full 1912–2020 period. We used quantile mapping
to adjust the distribution of the filled-in precipitation values
toward the distribution of the observed ISP precipitation data,
in an attempt to mitigate errors common to regression-based
imputation methods, i.e., the overestimation of the number
of wet days and underestimation of the number of heavy
precipitation events (Simolo et al., 2010; Gudmundsson et al.,
2012). Trends in precipitation and temperature from 1912 to
2020 were assessed using linear regression. We calculated the
length of the freeze-free season using the traditional definition
based on the number of days between the last spring freeze and
first autumn freeze (Tmin < 0◦C). Differences in mean daily
precipitation were identified using the non-parametric Kruskal-
Wallis test and a post-hocDunn’s test with p-values adjusted using
the Holm method.

We assessed tree growth response to daily climate data using
the daily_response() function in the R package dendroTools
which compares tree-ring parameters and a daily climate variable
using a moving window of variable widths (Jevšenak and
Levanič, 2018). Earlywood-, latewood-, and total-ring width were
correlated with daily total precipitation and mean minimum
temperature aggregated into all windows between 10 and 365

days. Windows of daily-aggregated climate data advance in 1-
day increments starting with day of year (DOY) 1 and finishing
with DOY 365. Pearson correlation coefficients were calculated
using a window of 24 months from January in the previous
year to December in the current year for the years 1913–
2018. The large number of correlation tests carried out by the
daily_response() function inflates the number of theoretical type
I errors (Jevšenak, 2019). To correct for test multiplicity and
reduce the risk of identifying spurious correlations as significant,
we applied the False Discovery Rate procedure (Benjamini
and Hochberg, 1995) with a q-value of 0.05 to match our
p-value threshold.

We used multiple approaches to assess the time stability of
growth-climate relationships. First, we used the daily_response()
function to calculate correlations between latewood width and
daily climate data for the full common period (1913–2018).
Second, we repeated use of this approach for three non-
overlapping subperiods of approximately equal length (early,
1913–1947; middle, 1948–1983; late, 1984–2018). As described
fully below, the strongest latewood correlations in the full
period analysis were for a 12-day critical climate period in
late July and early August (July 27–August 7; hereafter “12-
day CCP”) and a 109-day critical climate period from late
May through early September (May 25–September 10; hereafter
“seasonal CCP”). Third, to investigate the time stability of
latewood response to the 12-day and seasonal CCPs, we
extracted daily-aggregated precipitation each year corresponding
to the July 27–August 7 and the May 25–September 10
periods, resulting in two precipitation time series for the full
period from 1913–2018. Fourth, we used a 31-year running
correlation to compare each precipitation time series with
the latewood chronology from 1913 to 2018. The power of
running correlation analysis is hampered by the reduced degrees
of freedom, particularly when using climatic timeseries that
exhibit routinely characteristic autocorrelation (Hu et al., 2017).
Consequently, we also investigated possible time-dependence in
growth-climate relationships using a Bayesian generalized linear
model as a dynamic regression modeling procedure (Helske,
2021). Like the application of the Kalman filter method in
dendroclimatology (Visser and Molenaar, 1988; Cook et al.,
2002), this method allows regression coefficients to vary as
a random walk and uses the Kalman filter to objectively
identify time-dependence in the relationship between predictor
and predictand variables. However, this Bayesian method uses
Markov chainMonte Carlo sampling of the posterior distribution
to estimate the unknown regression coefficients rather than
maximum likelihood estimation. All analysis presented here was
conducted in the statistical software R [version 4.0.3; R Core
Team, 2020].

RESULTS

May–October is the season that may be most relevant to red
pine radial growth (Kipfmueller et al., in press), and the ISP
station showed an increasing linear trend in warm season
(May–October) precipitation (11.6mm decade−1; Figure 1B).
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FIGURE 1 | Characteristics of climatology and change at Itasca State Park. Mean daily precipitation (black line) and 11-day moving average precipitation (red line) for

the period 1912–2020 (A). Timeseries (gray) and linear trend (red), and 1991–2020 mean (black) for warm-season (May–October) precipitation and freeze-free season

length (days; 0◦C minimum temperature threshold) for 1912–2020 (B,C). Regional-scale linear trends in CLIMGRID warm season (May–October) precipitation (D) and

minimum temperature (E) for 1895–2020, with the black contour encompassing areas where trend test p-values were <0.05.

Although increasing trends in precipitation were found in
every season and in every month except for January at ISP,
the strongest increases were found in September, October, and
the SON season (Supplementary Figure 1). Warming trends
at ISP were reflected in a substantially longer freeze-free
season (3.8 days decade−1; Figure 1C). Additionally, large
increases in minimum temperature were found in every season
and month except February, April, October, and November
(Supplementary Figure 2). These increases in precipitation and
minimum temperature from the ISP station are consistent
with the broad scale spatial pattern of trends toward warmer
and wetter warm-season conditions in the Great Lakes region
(Figures 1D,E).

Sub-annual tree-ring chronologies from ISP exhibited
correlation coefficients with daily precipitation and minimum
temperature with magnitudes that can be considered strong
for red pine in this region (i.e., r > 0.45) over intervals
ranging from 10 to 365 days, but in general the strongest
relationships were between warm-season precipitation and
latewood (Figures 2A–C; Supplementary Figure 3). Over the

full period from 1913 to 2018, the daily precipitation window
that had the highest correlation with latewood width was
from Julian Day 145–253, or May 25 to September 10 (r =

0.508; Supplementary Figure 3; seasonal CCP). In addition
to long seasonal windows of response, strong to moderate
correlations between warm-season precipitation and latewood
were also observed for shorter time windows (e.g., 10–20 days;
Figures 2A,B). Over the full period, the short daily precipitation
window that had the highest correlation with latewood width
was from Julian Days 208–219, or July 27 to August 7 (r = 0.383;
Supplementary Figure 3; 12-day CCP). Growth-climate results
were similar using daily climate data containing imputed or
missing values.

Daily analysis for non-overlapping periods revealed a strong
to moderate summer precipitation signal in red pine latewood
with a growth response that was similar in magnitude and timing
in the early and middle periods (Figures 2A,B). However, the
magnitude and frequency of positive correlations diminished in
the most recent late period (Figure 2C). The optimal windows
of warm-season precipitation response in latewood, as calculated

Frontiers in Water | www.frontiersin.org 4 January 2022 | Volume 3 | Article 801265111

https://www.frontiersin.org/journals/water
https://www.frontiersin.org
https://www.frontiersin.org/journals/water#articles


Trumper et al. Pinus resinosa Tree-Ring Latewood Response

FIGURE 2 | Heat maps from the daily_response() function (Jevšenak and

Levanič, 2018) illustrate correlations between the ISP latewood chronology

and weekly to annual scale precipitation sums for three non-overlapping

subperiods (A–C). Correlations are calculated in relation to the ending day of

the window (e.g., the correlation coefficient between latewood and total

precipitation from DOY 10 to DOY 50 is plotted on DOY 50). Only correlations

with p-values <0.05 are shown. Black dots indicate that the correlation does

not pass the significance threshold after correcting p-values for test multiplicity.

using the daily_response() function, differed between the early (r
= 0.651; June 21 to September 10), middle (r = 0.658; July 27 to
August 6), and late (r = 0.458; June 6 to June 15) periods.

The daily precipitation climatology in split periods showed
increasing annual precipitation over time at ISP (Figure 3A).
Running correlations using a fixed 12-day window revealed
correlations between latewood and precipitation that peaked on
the 12-day CCP straddling July and August (Figure 3B). This 12-
day response over late July to early August was moderate for the
full period (r = 0.383; July 27 to August 7), although split-period
analysis revealed that this response was temporally unstable
(Figures 3B, 4A). Twelve-day correlations in midsummer were
considerably stronger in the early (r = 0.583; July 25 to August
5) and middle (r = 0.608; July 27 to August 7) periods, and
close to zero in the late period. Notably, this 2-week interval
in midsummer coincides with a local minima in the daily
precipitation climatology at ISP that is evident in the full period
(Figure 1A). While this minima in the precipitation climatology

FIGURE 3 | Daily precipitation climatology and tree ring latewood correlations

for early (1913–1947, blue), middle (1948–1983, orange), late, (1984–2018,

red), and full (1913–2018, black) periods. Eleven-day moving averages of

mean daily precipitation (A). Tree ring correlations with overlapping 12-day

precipitation intervals, advancing 1 day at a time (B). Tree ring correlations with

overlapping 109-day precipitation intervals, advancing 1 day at a time (C).

Dark and light gray boxes correspond to the 12-day and 109-day critical

climate periods diagnosed in the full period analyses.

also appears relatively stable in the split periods (Figure 3A),
mean precipitation for the 2-week period immediately preceding
the minima (July 12–27) has increased from the early to late
period (Kruskal-Wallis test statistic = 2.84; p = 0.014). The
deteriorating tree-ring response to midsummer conditions is
further illustrated with a time series comparison of latewood
and total precipitation for the 12-day CCP (Figure 4B). Dynamic
regression analysis between latewood and the 12-day CCP shows
a relationship that was positive and strong throughout the early-
to mid-20th century before weakening markedly to zero after the
1970s (Figure 4C).

Running correlations using a fixed 109-day window revealed
correlations between latewood and total precipitation that were
strong to moderate in all three periods (Figures 3C, 4D). The
seasonal scale response was strongest in the early (r= 0.626; June
22 to October 8) and middle (r = 0.639; May 22 to September 7)
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FIGURE 4 | Tree ring latewood vs. daily precipitation for the July 27–August 7 subseasonal (A–C) and the May 25–September 10 seasonal (D–F) windows

determined to exhibit maximum covariance. Scatter plots illustrate the linearity of relationships for three non-overlapping periods spanning the full common period

(A,D). Timeseries plots illustrate z-scores for the data standardized over the 1912–2018 common period (B,E). The bottom row (C,F) illustrates running 31-year

correlations (red lines) and Bayesian generalized linear models of time varying coefficients (solid black lines). Blue shaded areas represent uncertainty estimated with

95% credible intervals for the regression coefficients.

periods before weakening in the late (r = 0.4; April 25 to August
11) period. The differences between latewood-precipitation
correlations in the three non-overlapping periods were not
statistically clear (all p > 0.05). A time series comparison shows
additional evidence for time-dependence in the relationship
between latewood width and total precipitation for the seasonal
CCP (Figure 4E). Dynamic regression analysis showed a positive
relationship between latewood and the seasonal CCP that varied
throughout the early- to mid-20th century before weakening
after about 1980 (Figure 4F). The 95% credible intervals of
the time-varying regression coefficients do not contain zero
throughout the full period of 1913–2018 (Figure 4C), suggesting
a response that has diminished in the past several decades but
remains moderate.

DISCUSSION

A short term, midsummer window of precipitation variability
seems to have been a major control on red pine tree growth and
latewood width at ISP from the 1910s through the early 1980s.
This 12-day CCP was found to be embedded within the broader,
multi-month seasonal response to warm-season precipitation at

ISP. Results from several statistical approaches robustly indicate
that the strength of these subseasonal and seasonal precipitation
signals has diminished in recent decades. Precipitation in the 12-
day CCP has not been strongly correlated with latewood width
since the 1980s. The seasonal CCP correlation also weakened
appreciably in recent decades, though hydroclimatic variability
during this multi-month period must still be important for
tree growth. The late May through early September season
does correspond to the historical timing of cambial activity
for red pine, as detected through observations in north-eastern
Minnesota (Ahlgren, 1957). Nevertheless, it is abundantly clear
that the strength of the precipitation signal in red pine at ISP has
faded over recent decades.

As scientists increasingly recognize the prevalence of non-
stationary relationships between tree growth and climate (e.g.,
D’Arrigo et al., 2008), there has been a growing effort to critically
examine the stability of climate-growth relationships over the full
instrumental climate record (Wilmking et al., 2020). Some studies
in the Great Lakes region demonstrate a decrease in sensitivity of
radial tree growth to precipitation and drought (Maxwell et al.,
2016; Heilman et al., 2021). Our results, although limited to a
single site, are consistent with these studies and show what is,
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to our knowledge, the first evidence for declining precipitation
sensitivity in red pine.

Daily climate data analysis facilitated improved
understanding of short-term (days to weeks) changes in
the hydroclimatology at ISP that could not be easily detected at
coarser temporal scales but may contribute to the weakening
latewood-precipitation relationship. Specifically, the response of
latewood to warm-season precipitation at ISP remains moderate
for the seasonal CCP but the 12-day CCP response is absent
in recent decades (Figures 2, 4C). The declining precipitation
sensitivity in red pine latewood co-occurs with climatic changes
at ISP that could hypothetically alter the conditions limiting
to radial tree growth, including increases in precipitation
(Supplementary Figure 1) and minimum temperature
(Supplementary Figure 2), and a lengthening freeze-free
season (Figure 1C). In addition, increases in atmospheric CO2

(Heilman et al., 2021), and the local disturbance history at ISP
could contribute to the fading strength of the rainfall signal in
red pine at this site. Known disturbances at ISP include reduced
fire activity and possible changes in understory composition and
density since the park’s establishment in 1891 (Frissell, 1973),
wind events (Webb et al., 2001), and changes in nutrient status
(Howard and McLauchlan, 2015).

The once important 12-day CCP from late July to early
August has coincided with a relative minima in the climatological
mean of midsummer rainfall at ISP. While this midsummer
break in mean-state precipitation has remained relatively stable
over time at ISP, the magnitude and timing of climatological
rainfall bursts in the weeks before and after this dry period
have been variable at ISP (Figure 3A), and elsewhere in the
Midwest (Trewartha, 1981). It could be relevant that the 2 weeks
leading up to the 12-day CCP were wetter in the late (1984–
2018) period (Figure 3A). This is a key multi-week season in
midsummer when temperature and evaporative demand remain
near their annual maximum. Might wetter conditions leading
into the start of the 12-day CCP impart enough moisture to
buffer trees against enhancedmoisture stress during the relatively
dry 12-day CCP? Though beyond the brief scope of this pilot
study, systematic attribution research is needed to diagnose the
interplay of the coupled and non-stationary systems linking
climate, environment, and tree growth at ISP. This might be
accomplished with analysis of additional datasets from elsewhere
in the region, and with careful modeling of water balance
across multiple timescales and time periods. Forwardmodels that
simulate tree-ring formation using daily climate data constitute
another powerful tool to understand temporal shifts in growth-
limiting factors (Anchukaitis et al., 2006, 2020; Bunn et al.,
2018; Jevšenak et al., 2021) and this approach could provide a
complementary perspective of relevance to the use of red pine for
making paleoclimate inference.

Using daily precipitation data, we observed many growth-
climate correlations with higher magnitudes than those observed
in other red pine studies using monthly data (e.g., Kipfmueller
et al., 2010; D’Amato et al., 2013). However, there are limitations
to this approach. While the day-wise method is flexible in that
it ignores calendar month boundaries, the substantial number of
correlations calculated greatly inflates the number of theoretical
type I errors (Jevšenak, 2019). For precipitation data in particular,

short-term (days to weeks) totals are frequently noisy and heavily
skewed, which could lead to spurious correlations with tree-ring
data. It is thus important to ensure that daily windows with
correlation magnitudes deemed meaningful fit with site-specific
understanding of the environmental processes leading to ring
width formation. In this study, we focused covariance analysis
on the precipitation and minimum temperature variables, which
Kipfmueller et al. (in press) detected to be potentially relevant
controls on tree growth. Although our results show relatively
weak correlations between latewood and minimum temperature
data, the increases in minimum temperature and lengthening
freeze-free season evident at ISP, and indeed across much of the
Great Lakes region (e.g., Skaggs and Baker, 1985; Robeson, 2002),
have significant practical implications for plant communities
including red pine. For example, a lengthened growing season
could have a strong influence on red pine phenology and the
timing of growth responses to temperature in the transition
spring and fall seasons. The application of multiple tree-ring
proxies, ranging from quantitative wood anatomy (Arnič et al.,
2021) to stable isotopes (Maxwell R.S. et al., 2020), as well as
cambial phenology (Moser et al., 2010), constitute a promising
way forward to improve process-level understanding of the daily-
scale drivers of wood formation at this site.

Many forest systems are experiencing alarming signs of
decline (Allen et al., 2010, 2015). Climate change in the Great
Lakes region holds unknown consequences for the future health
of red pine. Here we identify a diminishing moisture signal that
may continue to decay with projected changes in the amount
and timing of precipitation. Moreover, frequent fire in red pine
ecosystems results in a xerification of the landscape that benefits
red pine regeneration and persistence (Larson et al., 2021b).
Projected increases in precipitation, coupled with the ongoing
removal of fire from Great Lake forests, may jeopardize the
overall health of red pine. Nearly a century of fire suppression
in remnant red pine forests of the Great Lakes region may have
also led to dramatic changes in forest composition, structure, and
competitive effects. These factors have been shown to alter red
pine radial growth and climate sensitivity (Aakala et al., 2013;
D’Amato et al., 2013; Magruder et al., 2013), highlighting the
uncertainty of red pine growth response to climate change.

CONCLUSION

This pilot study provides a new perspective on the timescales
of climatic response of red pine, an important tree species for
reconstructions of drought and seasonal precipitation in the
upper Great Lakes region. In addition to long seasonal windows,
the daily data covariance approach identified a critical climate
period for tree growth that coincided with a distinct but perhaps
understudied feature of the regional precipitation climatology.
If replicated across additional locations and tree species, the
short-term response shown here could indicate an important
coupling between tree growth in the late growing season
and the bimodal warm-season precipitation profile previously
identified in the Upper Midwest. We believe there is potential
to diagnose critical climate periods for tree growth using
daily data elsewhere in the Great Lakes region. Further, close
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evaluation of the daily climate record over time at sites with co-
located tree-ring and observational data may highlight possible
mechanisms driving the fading drought signal in regional tree-
ring chronologies. The statistical growth-climate relationships
presented here do not imply causal links and developing
better process-based understanding of the multivariate climate
response of red pine remains a priority. Nonetheless, the results
presented here suggest that the daily-scale approach can be a
valuable complement to typical dendroclimatic studies that use
monthly data.

DATA AVAILABILITY STATEMENT

The tree-ring data for this study will be found in the International
Tree-Ring Data Bank (ITRDB) upon publication: https://
www.ncei.noaa.gov/products/paleoclimatology/tree-ring.
The University of Minnesota Itasca Biological Station and
Laboratories weather station data is available from the National
Oceanic and Atmospheric Administration: https://www.
ncdc.noaa.gov/cdo-web/datasets/GHCND/stations/GHCND:
USC00214106/detail.

AUTHOR CONTRIBUTIONS

KK secured funding and sampling permission for field collection
of tree ring data. MT and DG designed the methods. MT
performed analyses and prepared figures with oversight and
feedback from DG, EM, and KK. MT wrote the first draft of
the paper and managed writing contributions from DG, EM,
and KK. All authors participated in fieldwork and tree-ring
chronology development and contributed to the interpretation of
the data.

FUNDING

This work was not funded by a grant or other funding sources.
We declare no specific funding for this work.

ACKNOWLEDGMENTS

The lands currently defined as Itasca State Park were frequently
used by the Dakota and more recently the Ojibwe, besides its use
by earlier cultural groups, prior to European colonization. We
acknowledge and are grateful for the opportunity to gather and
deploy tree-ring resources from this land to inform our research
and findings. We thank the personnel from the Minnesota
Department of Natural Resources for granting us sampling
permission in Itasca State Park. We also thank the personnel
at the University of Minnesota Itasca Biological Station and
Laboratories, especially Jonathan Schilling, Lesley Knoll, and
Laura Domine, for logistical support and helpful discussions
about research in the park. Daniel Brumm, Daniel Crawford,
Jared Stachiw, Evan Larson, Lane Johnson, Elizabeth Schneider,
and undergraduate students from the University of Wisconsin-
Platteville provided critical assistance in the field and laboratory
work. We thank the personnel from the Chippewa National
Forest and students and staff from the Leech Lake Tribal
College STEM Club for their fieldwork assistance and insightful
comments and perspectives.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/frwa.
2021.801265/full#supplementary-material

REFERENCES

Aakala, T., Fraver, S., D’Amato, A. W., and Palik, B. J. (2013). Influence of

competition and age on tree growth in structurally complex old-growth

forests in northern Minnesota, USA. For. Ecol. Manage. 308, 128–135.

doi: 10.1016/j.foreco.2013.07.057

Ackerman, D., Griffin, D., Hobbie, S. E., and Finlay, J. C. (2017). Arctic shrub

growth trajectories differ across soil moisture levels. Glob. Chang. Biol. 23,

4294–4302. doi: 10.1111/gcb.13677

Ahlgren, C. E. (1957). Phenological observations of nineteen native tree species in

Northeastern Minnesota. Ecology 38, 622–628. doi: 10.2307/1943128

Allen, C. D., Breshears, D. D., and McDowell, N. G. (2015). On underestimation of

global vulnerability to tree mortality and forest die-off from hotter drought in

the Anthropocene. Ecosphere 6, 1–55. doi: 10.1890/ES15-00203.1

Allen, C. D., Macalady, A. K., Chenchouni, H., Bachelet, D., McDowell, N.,

Vennetier, M., et al. (2010). A global overview of drought and heat-induced tree

mortality reveals emerging climate change risks for forests. For. Ecol. Manage.

259, 660–684. doi: 10.1016/j.foreco.2009.09.001

Anchukaitis, K. J., Evans, M. N., Hughes, M. K., and Vaganov, E. A.

(2020). An interpreted language implementation of the Vaganov–

Shashkin tree-ring proxy system model. Dendrochronologia 60:125677.

doi: 10.1016/j.dendro.2020.125677

Anchukaitis, K. J., Evans, M. N., Kaplan, A., Vaganov, E. A., Hughes, M. K.,

Grissino-Mayer, H. D., et al. (2006). Forward modeling of regional scale tree-

ring patterns in the southeastern United States and the recent influence of

summer drought. Geophys. Res. Lett. 33:L04705. doi: 10.1029/2005GL025050

Andresen, J., Hilberg, S., Kunkel, K., and Center, M. R. C. (2012). “Historical

climate and climate trends in the midwestern USA,” in U.S. National Climate

Assessment Midwest Technical Input Report, eds J. Winkler, J. Andresen, J.

Hatfield, D. Bidwell, D. Brown, et al. [The Great Lakes Integrated Sciences and

Assessments (GLISA) Center]. Available from: http://glisa.msu.edu/docs/NCA/

MTIT_Historical.pdf (accessed September 20, 2021).
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Despite the fact that the Great Lakes contain roughly 20% of the world’s surface

freshwater, there is a relatively limited body of recent work in peer reviewed literature

that addresses recent trends in lake levels. This work is largely coming from a handful

of authors who are most well-versed in the complexities of monitoring and modeling

in a basin that spans an international border and contains vast areas of surface water

connected by both natural and managed connecting channel flows. At the same

time, the recent dramatic changes from record low water levels in the early 2010’s

to record high water levels across the Great Lakes in 2019 and 2020 have brought

significant attention to the hydroclimatic conditions in the basin, underscoring the need

to bring new approaches and diverse perspectives (including from outside the basin) to

address hydroclimate research challenges in the Great Lakes. Significant effort has led

to advancements in data and model coordination among U.S. and Canadian federal

agencies throughout the decades, and at the same time research from the broader

community has led to higher resolution gridded data products. In this paper, we aim to

present the current state of data and models for use in hydrological simulation with the

objective of providing a guide to navigating the waters of Great Lakes hydroclimate data.

We focus on data for use in modeling water levels, but we expect the information to be

more broadly applicable to other hydroclimate research. We approach this by including

perspectives from both the Great Lakes water management community and the broader

earth science community.

Keywords: Great Lakes (North America), hydroclimate, data products, coordination, binational

INTRODUCTION

Anthropogenic climate change, population growth and the accompanying urbanization and
agricultural demand, and economic development have been increasingly placing pressure on the
world’s freshwater (Wada et al., 2017). In addition, there is general agreement that intensification
of the hydrologic cycle as a result of anthropogenic change means that assumptions of stationarity
are not sufficient to informwatermanagement. In the Great Lakes region, changes in the hydrologic
cycle have been observed in the form of increasingly variable water levels (Gronewold and Rood,
2019). From the late 1990’s to 2020, the Great Lakes have experienced both record low water levels,
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during an extended period of low water on Lake Superior and
Lake Michigan-Huron, and record high water levels, following
a dramatic multi-year rise culminating in record high water
levels on all lakes in 2017, 2019, and/or 2020, depending on
the lake. Adaptive management of Great Lakes water resources
requires understanding and predicting changes in Great Lakes
water balance components under a changing hydroclimate. The
intensification of the hydrologic cycle, along with increasing
pressure on Great Lakes water resources, motivates the need for
advancing hydroclimate modeling in the Great Lakes basin.

Early development of Great Lakes basin runoff and
evaporation models (Croley II, 1983, 1989) was arguably at
the forefront of large scale hydrological modeling, and was
driven largely by the need to understand and predict changes in
Great Lakes water levels. Since then, significant advancements
have beenmade in the arena of large basin, continental, and earth
systems modeling and data due to water scarcity and flooding
concerns (e.g., Salas et al., 2017; Xue et al., 2017; Lakshmi et al.,
2018, among others).

Despite the growing body of research (and researchers) aimed
at advancing large basin hydrological models, improvements to
Great Lakes regional modeling have been limited. This is, in part,
due to challenges related to identifying appropriate hydroclimate
data sources for use in model development and simulation.
Data discontinuities that result from both the international
border and the vast surface area of the lakes themselves,
where surface observations are scarce, pose unique challenges
in hydroclimate data development and use (Gronewold et al.,
2018). The authors of this article have observed that although
there is significant effort put toward developing, compiling, and
coordinating hydroclimate data across the border (Gronewold
et al., 2018), there is a need to communicate these data to the
broader hydroclimate and hydrological modeling communities.
The objectives of this article are to (1) document the unique
hydroclimate data requirements for Great Lakes hydrological
modeling, and (2) direct the reader to readily available datasets
coming from both the water management and numerical
modeling communities that have been developed with these
requirements in mind. Focus is geared toward datasets used for
model development and historical simulation of water supply and
water levels.

Resolving Earth Systems and Water
Science Perspectives
Monitoring, forecasting, and managing Great Lakes water
supplies and water levels requires complex, internationally-
coordinated hydroclimate models and data sets. Nowhere else
on Earth is there such a large chain of interconnected lakes
(only Lake Baikal has a larger volume than the collective
volume of the Great Lakes, and Lake Superior alone is the
largest lake on Earth by surface area) and such a diverse
range of thermodynamic behavior (including, for example,
seasonal ice cover formation and the propagation of lake
effect snow events). The challenges of developing and applying
hydroclimate models and data to this massive freshwater
system are further exacerbated by differences in federal agency

monitoring protocols and modeling frameworks on either side
of the U.S.-Canada international border. These differences
can propagate into severe biases and anomalies in widely-
distributed data products. For example, the National Oceanic
and Atmospheric Administration (NOAA) National Center for
Environmental Prediction North American Regional Reanalysis
(NCEP-NARR) spatial patterns of precipitation and evaporation
reveal dry conditions directly over the U.S.-Canada border.
This is likely a result of the differences in observation datasets
assimilated by NARR where a sharp contrast exists between the
two countries, with considerable sparsity of surface observations
incorporated by NARR over the Canadian side of the Great Lakes
basin (Figure 1; Minallah and Steiner, 2021a).

In light of these challenges, it is the authors’ belief that two
distinct approaches to developing and applying Great Lakes
hydroclimate data and models have evolved. A primary goal
of this paper is to address and begin to reconcile those two
approaches. The first approach directly embraces and responds
to the needs of Great Lakes regional water resources management
authorities. The second perspective is rooted in the historical and
ongoing development of complex numerical models covering
broad spatial domains that rely on explicit modeling of critical
physical processes.

The regional water resources management perspective is
largely driven by the mandate facing the three Great Lakes
International Boards of Control, all of which operate under the
auspices of the 1909 Boundary Waters Treaty and subsequent
formation of the International Joint Commission, or IJC
(Lemarquand, 1993). The three Boards work collectively to
ensure that outflows from Lake Superior and Lake Ontario, as
well as ice and flow control structures above Niagara Falls, are all
operated in accordance with IJC regulation plans. The decisions
made by these boards are guided by regulation plans and treaties
that have been developed using historical records of incoming
water supplies, connecting channel flows, and lake water levels.
In addition, current conditions can act as triggers for decisions
within the regulation plans. For example, the relative difference
between the water levels of Lake Superior and Lake Michigan-
Huron is one of the factors for how much water is released from
Lake Superior.

Of course, having coordinated values of water levels,
connecting channel flows, and historical water supply is crucial,
as even differences of 1 cm in water level could result in different
decisions being made. It is also imperative to coordinate values
communicated to the public. This is especially critical during
times of extreme conditions, when differing values could result
in public confusion if mixed messages are received from the
regulation agencies. Finally, coordinated historical datasets are
an integral part of the process of developing and evaluating
regulation plans, which includes examining the trends in water
levels and their drivers.

The need for such tight coordination has led some of the
management boards to form subcommittees that specifically look
at these issues. For instance, the International Lake Ontario
St. Lawrence River Board has granted authority to the St.
Lawrence Committee on River Gauging to oversee and ensure
the accuracy of flow estimates and water level measurements
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FIGURE 1 | Visible discontinuities in (left) precipitation and (right) evaporation (evapotranspiration over the land surface) along the US-Canada border in the NCEP

North American Regional Reanalysis.

TABLE 1 | Water level data products.

Dataset (bold =

officially

coordinated)

Begin End Spatial

resolution

Annual Monthly 1/4

Monthly

Daily Subdaily Distribution

Coordinated

lake-wide average

water levels

1918 Last month Average over lake

surface

x x www.greatlakescc.org

Daily lake-wide average

water levels

2005 Yesterday Average over lake

surface

x Available from USACE or

ECCC upon request

Beginning of period

levels

1900 Current month Average over lake

surface

x x www.greatlakescc.org

Water level gage

observations (Canada)

Varying record length Point x https://www.waterlevels.

gc.ca/eng

Water level gage

observations (U.S.)

Varying record length Point x x x x https://tidesandcurrents.

noaa.gov/

Change in storage 1950 2019 Average over lake x https://deepblue.lib.

umich.edu/data/concern/

data_sets/sb3978457

in the international section of the St. Lawrence River. This
Committee inspects the computational methods and conducts
an annual field inspection of the water level gages used by the
Board to monitor river conditions and performs monthly audits
of the water level and outflow data collected and archived by
the power entities. In addition, the need to coordinate data to
informwatermanagement decisions on the Great Lakes led to the
establishment of the Coordinating Committee for Great Lakes
Basic Hydraulic andHydrologic Data (subsequently referred to as
“Coordinating Committee”) in 1953. This group, which consists
of members from U.S. and Canadian federal agencies responsible
for water balance monitoring, forecasting, and management,
works to coordinate data required by the Boards of Control.
Datasets that have been officially coordinated are in bold text
in Tables 1–5. In addition to coordinating official datasets, the
Coordinating Committee also serves as a forum for federal
scientists and engineers to compile, understand, and evaluate

recent advancements in available data products for all variables
of the water balance.

While the models and data sets used by the Boards of
Control (and other regional management authorities) were
developed by scientists and practitioners with this “first”
perspective and explicitly include local-scale hydroclimate
phenomena and anthropogenic impacts on the hydrology
cycle, they typically do not adequately reflect climatological
dynamics at regional to continental scales, nor do they
typically reflect broad advancements in the state-of-the-art in
hydroclimate modeling.

The second perspective on the development of Great Lakes
hydroclimate models and data is, in fact, directly aligned with
the earth systemsmodeling community. Numerical earth systems
models require spatially consistent data spanning regional to
global areas. Although this perspective does not conflict with the
water management perspective, we find that there is significant
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TABLE 2 | Connecting channel and diversion flow products.

Dataset (bold =

officially

coordinated)

Begin End Spatial

resolution

Annual Monthly 1/4

monthly

Daily Subdaily Distribution

Longlac diversion

flows

1939 2 months ago Average for

diversion

x www.greatlakescc.org

Ogoki diverson flows 1943 2 months ago Average for

diversion

x www.greatlakescc.org

Longlac and Ogoki

(LLO) combined

flows

1939 2 months ago Average for

diversion

x www.greatlakescc.org

Welland Canal flows 1900 2 months ago Average for

diversion

x www.greatlakescc.org

NYSBC flows 1900 last year Average for

diversion

x www.greatlakescc.org

Chicago diversion

flows

1900 Several years

ago

Average for

diversion

x www.greatlakescc.org

St. Marys, St. Clair,

Detroit River gages

2008 Present Point x https://waterdata.usgs.

gov/nwis/rt

L2SWBM (LLO,

Welland, and Chicago)

1950 2019 Average for

diversion

x https://deepblue.lib.

umich.edu/data/concern/

data_sets/sb3978457

St. Marys River

discharge

1900 Last month Average for river x www.greatlakescc.org

St. Clair River

discharge

1900 Last month Average for river x www.greatlakescc.org

Detroit River

discharge

1900 Last month Average for river x www.greatlakescc.org

Niagara River

discharge

1900 Last month Average for river x www.greatlakescc.org

St. Lawrence River

discharge

1900 Last month Average for river x www.greatlakescc.org

L2SWBM (connecting

channel flows)

1950 2019 Average for river x https://deepblue.lib.

umich.edu/data/concern/

data_sets/sb3978457

room for improving the integration of research advances by
the earth systems modeling community, and likewise improving
the application of advancements in Great Lakes region specific
data resulting from collaborations in the Water Management
arena. This paper represents a step toward reconciling these
two approaches.

SUMMARY OF AVAILABLE DATASETS AND
CONVENTIONAL APPLICATIONS

The following subsections describe datasets for each variable of
the Great Lakes water balance, shown in Equation (1). Datasets
are summarized in Tables 1–5.

dS = Qin − Qout + P + R− E+ ε (1)

where dS is the change in storage (i.e., the change in
volume due to changes in lake level), Qin is the inflow
from the upstream lake and through diversions as described
in Section Diversion Flows, Qout is the outflow to the
downstream lake (or, in the case of Lake Ontario, to the

St. Lawrence River) and through diversions as described in
Diversion Flows, P is the precipitation falling directly over
the lake surface, R is the lateral tributary runoff into the
lake, E is the evaporation from the lake surface, and ε

is the uncertainty term. Conventional practice is to lump
direct groundwater inflow and thermal expansion into this
uncertainty term.

Water Levels
Water level data products are shown in Table 1. For the
purpose of monitoring and predicting the water budget
of the Great Lakes, officially coordinated water levels are
computed as lake-wide averages. Also, since Lake Michigan
and Lake Huron are connected via the Straits of Mackinac,
hydrologically they are considered one lake, referenced as
“Lake Michigan-Huron.” Lake-wide average water levels are
calculated using a network of gages that has been agreed
upon by the Coordinating Committee to give a complete
depiction of the water level across the entire lake surface.
Lake-wide average levels have been computed using a
different set of gages over time on each lake due to data
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TABLE 3 | Net basin supply (NBS) and NBS component data products.

Dataset (bold =

officially

coordinated)

Begin End Spatial

resolution

Annual Monthly 1/4

monthly

Daily Subdaily Distribution

Residual net basin

supply

1900 Last month Averaged over

lake surface

x x www.greatlakescc.org

L2SWBM Component

NBS

1950 2019 Averaged over

lake surface

x https://deepblue.lib.

umich.edu/data/concern/

data_sets/sb3978457

Runoff

GLERL Hydromet

Database Runoff

1940 Recent Total runoff into

lake

x https://www.glerl.noaa.

gov/ahps/mnth-hydro.

html

L2SWBM 1950 2019 Total runoff into

lake

x https://deepblue.lib.

umich.edu/data/concern/

data_sets/sb3978457

Precipitation (overlake)

GLERL Hydromet

Database Overlake

1940 Recent Averaged over

lake area

x https://www.glerl.noaa.

gov/ahps/mnth-hydro.

html

Binational Precipitation

Grids

2002 Yesterday 10-km resolution x https://mrcc.purdue.edu/

gismaps/naprecip.htm

CaPA-10km x https://mrcc.purdue.edu/

gismaps/naprecip.htm

RDRS_v2 2000 2018 10-km resolution x https://caspar-data.ca/

CaPA-2.5km 2018 Days ago 2.5-km resolution x https://caspar-data.ca/

MPE 2002 Yesterday 4-km resolution x https://mrcc.purdue.edu/

gismaps/naprecip.htm

L2SWBM 1950 2019 Averaged over

lake surface

x https://deepblue.lib.

umich.edu/data/concern/

data_sets/sb3978457

Evaporation (overlake)

GLERL Hydromet

Database Evaporation

1940 Recent Averaged over

lake surface

x https://www.glerl.noaa.

gov/ahps/mnth-hydro.

html

Next Gen GLCFS

Nowcast

YTD Averaged over

lake surface

x x https://www.glerl.noaa.

gov/res/glcfs/glcfs.html

Water cycle prediction

system

2016 Yesterday Averaged over

lake surface

x www.greatlakescc.org

L2SWBM 1950 2019 Averaged over

lake surface

x https://deepblue.lib.

umich.edu/data/concern/

data_sets/sb3978457

GLEN stations Varying record length Point data x https://

superiorwatersheds.org/

GLEN/

availability dating back to the 1860’s. The gages listed below
are the locations included in lake-wide average water level
calculations currently:

Lake Superior: Point Iroquois, Michipicoten, Thunder Bay,
Marquette, and Duluth
Lake Michigan-Huron: Harbor Beach, Thessalon, Mackinaw
City, Milwaukee, Ludington, Tobermory
Lake St. Clair: Belle River and St. Clair Shores
Lake Erie: Port Colborne, Port Stanley, Toledo, Cleveland
Lake Ontario: Oswego, Toronto, Kingston, Rochester, Port
Weller, Cobourg.

The U.S. locations are gages operated by the National
Oceanic and Atmospheric Administration (NOAA) and the
gages in Canada are operated by the Canadian Hydrographic
Service (CHS).

Officially coordinated monthly mean (MM) lakewide average
water levels are computed using the same procedure by both
the U.S. Army Corps of Engineers (USACE) and Environment
and Climate Change Canada (ECCC): (1) compute daily means
for each gage and round to the nearest 0.01m, (2) compute
the lakewide average (using gage pairing logic described in
Supplementary Tables 1–5 when a gage is missing daily data)
and round to the nearest 0.01m, (3) compute monthly mean
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TABLE 4 | Lake surface water temperature (LSWT) and ice cover data products.

Dataset (bold =

officially

coordinated)

Begin End Spatial

resolution

Annual Monthly 1/4

monthly

Daily Subdaily Distribution

GLSEA LSWT and Ice

cover data

1992 2020 1024 × 1024 pixel

or lakewide

. x https://coastwatch.glerl.

noaa.gov/glsea/

ARC-Lake and Globo

Lake

1995 2016 0.025◦ x http://www.laketemp.net/

home/

Buoy data Varying record length Point x https://www.ndbc.noaa.

gov/

Great Lakes Ice Cover

Database

1973 Present 1024 × 1024 pixel

map

x https://www.glerl.noaa.

gov/data/ice/

lakewide average water levels by taking the mean daily values
for each day in the month and round to the nearest 0.01m. The
same procedure is used to compute beginning of month water
levels, except that in the third step, the beginning of month
(BOM) level is computed by taking the average of the daily
lakewide average water level on the last day of the month just
ending and the 1st day of the month just starting for each lake.
Coordinated BOM and MM water levels are significant data for
use in outflow management, as described in Section Resolving
Earth Systems and Water Science Perspectives. Accordingly,
considerable attention is given to ensuring that both agencies use
the same procedure, including the rounding. For each rounding
application, the practice is to round to the nearest even centimeter
when the thousandth of a meter is 5 (National Aeronautics
Space Administration, 1994). For example, if the water level
is 183.565m, the rounded water level would be rounded to
183.56 m.

MM water levels and BOM levels are coordinated between
federal agencies in both the U.S. and Canada. Those agencies
are the USACE and ECCC. At the end of every month, MM and
BOM levels are preliminarily coordinated as part of operational
forecasting procedures. In the spring, when daily water level data
has been verified by NOAA and CHS through December of the
previous year, final coordination is done for all months of the
year that just ended. MM water levels as of September 2021 are
shown in Figure 2, with 2021 data still provisional. Data for the
full coordinated period of record back to 1918 can be obtained
from the Coordinating Committee.

Water levels aremeasured as a surface elevation with reference
to the International Great Lakes Datum (IGLD) 1985. The IGLD
1985 reference zero point is located at Rimouski, Quebec. The
datum is updated every 25–35 years to account for isostatic
rebound or crustal movement from the weight of the glaciers
that once covered the Great Lakes—St. Lawrence River system
during the last ice age (Coordinating Committee on Great Lakes
Basic Hydraulic Hydrologic Data, 1992). At the time of writing
this manuscript, the Coordinating Committee is working on
updating the IGLD (Coordinating Committee on Great Lakes
Basic Hydraulic Hydrologic Data, 2017).

Diversion Flows
Diversion flows are shown in Table 2. There are anthropogenic
diversions of water both into and out of the Great Lakes basin

that are other avenues where water enters or leaves the system.
Beginning furthest upstream, the Long Lac and Ogoki Diversions
flow into Lake Superior. The Chicago Diversion flows out of Lake
Michigan and is the only diversion that diverts water out of the
system. TheWelland Canal is another way water flows from Lake
Erie to Lake Ontario and was built to aid with navigation due to
Niagara Falls. The New York State Barge Canal also diverts water
from the Lake Erie basin to the Lake Ontario basin. A map of
the Great Lakes basin including the locations of the Great Lakes
Diversions is shown in Figure 3.

Long Lac and Ogoki
The Long Lac Diversion was completed in 1941 and flows
into Lake Superior via the Aguasabon River with headwaters
at the Kenogami River (International Joint Commission, 1985).
The Ogoki Diversion was completed in 1943 and connects
the Ogoki River to Lake Nipigon, which then flows into Lake
Superior (International Joint Commission, 1985). Since they both
flow into Lake Superior, they are usually referenced together
as the Long Lac and Ogoki Diversions. Both diversions are
located on the Canadian side of the border and are operated by
Ontario Power Generation (OPG), which provides hydropower
generation to northern Ontario. The combined diversion flow
averages about 150 m3/s (5,300 ft3/s) into Lake Superior.
Measured flows are made available by OPG and provided
to ECCC for Great Lakes water budget monitoring efforts.
Information on monthly flow rates derived from OPG reports
can be obtained from the Coordinating Committee.

Chicago
The Chicago Diversion diverts water out of Lake Michigan.
In 1900, the construction of the Chicago Sanitary and Ship
Canal was completed and in 1922 the Calumet-Sag Channel was
completed, which allowed the water to be diverted out of Lake
Michigan into the Illinois River system (Figure 4; International
Joint Commission, 1985). There are multiple components of the
diversion, such as lockages, leakages, navigation make-up flow,
and discretionary flow, which contribute to the total flow (Lake
MichiganDiversion Committee, 2019). The total diversion flow is
set by a Supreme Court Decree, which was last modified in 1980,
that allows a total diversion of 91 m3/s or 3,200 ft3/s. The USACE
Chicago District has the responsibility to monitor and audit the
diversion. An annual report is published once a year that will
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TABLE 5 | Meteorological forcing data products.

Dataset (bold =

officially

coordinated)

Begin End Spatial

resolution

Annual Monthly 1/4

monthly

Daily Subdaily Distribution

NAM 2012 Present 12 km x https://www.ncei.noaa.gov/

products/weather-climate-

models/north-american-

mesoscale

GFS 15 Jan 2015 Present 0.25◦ x https://www.ncei.noaa.gov/

products/weather-climate-

models/global-forecast

RAP/HRRR Varies Realtime 3 km x https://rapidrefresh.noaa.

gov/hrrr/

ERA-Interim Jan 1979 Aug 2019 ∼ 80 km (0.75◦) x x x https://www.ecmwf.int/en/

forecasts/datasets/

reanalysis-datasets/era-

interim

ERA5 1950 Present ∼ 31 km (0.25◦) x x https://www.ecmwf.int/en/

forecasts/datasets/

reanalysis-datasets/era5

NASA MERRA-2 1980 Present ∼ 50 km (0.5 ×

0.625◦)

x x x https://gmao.gsfc.nasa.

gov/reanalysis/MERRA-2/

NCEP-CFSR Jan 1979 Mar 2011 ∼ 38 km x x https://www.ncei.noaa.gov/

products/weather-climate-

models/climate-forecast-

system

NCEP-CFSv2 Apr 2011 Present ∼ 100 km (∼0.93◦ x x https://www.ncei.noaa.gov/

products/weather-climate-

models/climate-forecast-

system

NCEP-NARR 1979 Present ∼ 36 km x x x https://psl.noaa.gov/data/

gridded/data.narr.html

RDRS_v2 2000 2018 10-km resolution x https://caspar-data.ca/

CMIP5 1850 2005 Variabe resolutions x x x https://esgf-index1.ceda.

ac.uk/projects/cmip5-ceda/

CMIP6 1850 2014 Variabe resolutions x x x https://esgf-index1.ceda.

ac.uk/projects/cmip6-ceda/

NARCCAP 1971 2000 (?) Variabe resolutions x https://www.narccap.ucar.

edu/data/index.html

CRU 1901 2020 0.5◦ x https://crudata.uea.ac.uk/

cru/data/hrg/

GPCC 1891 2018 0.5◦ x x https://www.dwd.de/EN/

ourservices/gpcc/gpcc.html

UoD 1900 2017 0.5◦ x https://psl.noaa.gov/data/

gridded/data.UDel_AirT_

Precip.html

CPC-Unified over

CONUS

1948 Present 0.25◦ x x https://psl.noaa.gov/data/

gridded/data.unified.daily.

conus.html

Coordinated

overbasin

precipitation

1900 2 years ago Averaged over

lake + land area

x x www.greatlakescc.org

GLERL Hydromet

Database Overbasin

1940 Recent Averaged over

lake + land area

x https://www.glerl.noaa.gov/

ahps/mnth-hydro.html

GLERL Hydromet

Database Overland

1940 Recent Averaged over

land surface

x https://www.glerl.noaa.gov/

ahps/mnth-hydro.html

contain the diversion accounting for one or more of the previous
years. Data, reports, and further information can be found on the
USACE Chicago District website at: https://www.lrc.usace.army.

mil/Missions/Lake-Michigan-Diversion-Accounting/. Monthly
flow rates derived from the USACE Chicago District reports can
be obtained from the Coordinating Committee.
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FIGURE 2 | Monthly mean water levels for each of the Great Lakes and Lake St. Clair shown as a blue line (as of September 2021). 2021 data highlighted in gray is

still provisional (source: www.lre.usace.army.mil).

Welland Canal
The Welland Canal was originally constructed in 1829, but has
been modified and reconstructed and the current structure of the
canal was completed in 1932 (International Joint Commission,
1985; St. Lawrence SeawayManagement Corporation, 2003). The
primary use for the canal was to provide a navigational route
for ships that bypassed the Niagara Falls, however, the canal
also provides water for hydropower, industrial and municipal
uses. The present structure consists of eight locks that span
between Port Colborne, Ontario and Port Weller, Ontario (St.
Lawrence Seaway Management Corporation, 2003). The flow
through the Welland Canal varies but is typically about 200
m3/s (7,100 ft3/s). The data is provided via the St. Lawrence
Seaway Corporation. Monthly flow rates can be obtained from
the Coordinating Committee.

New York State Barge Canal
The New York State Barge Canal takes water from the Niagara
River at Tonawanda, NY and returns it back to Lake Ontario
via tributaries and the Oswego Canal (International Joint
Commission, 1985). The amount of water diverted varies by the
time of year, but ultimately has no hydraulic effect on the Great
Lakes. During the navigation season, the flow is estimated to
be 31 m3/s (1,100 ft3/s) (International Joint Commission, 1985).

Since 1956, the winter flow estimate is typically 0 m3/s due to the
gates installed on the Erie Canal at Pendleton, which will close
the canal for maintenance and repair. The New York State Barge
Canal data is provided by the New York State Canal Corporation.
Flows prior to 1951 are documented in reports (International
Niagara Falls Engineering Board, 1953). Monthly flow rates can
be obtained from the Coordinating Committee.

Connecting Channel Flows
Connecting channel flows are shown in Table 2. In the Great
Lakes basin, the Great Lakes and Lake St. Clair are connected
by the connecting channels, which are the St. Marys River,
St. Clair River, Detroit River, Niagara River, and the St.
Lawrence River.

St. Marys River
The amount of water that flows through the St. Marys River is
prescribed monthly by the International Lake Superior Board
of Control (ILSBC), although actual flow can differ from
the prescribed flow due to potential unintentional deviations
and differences between expected minor components (e.g.,
lockages and domestic use) and actual flows of these smaller
components. The ILSBC was established by the International
Joint Commission (IJC) through a 1914 Order of Approval
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FIGURE 3 | A view of the Great Lakes basin, highlighting the diversions in the system. Source: USACE, Detroit.

FIGURE 4 | Before and after diagram of the Chicago diversion based on the completion of the canal system [source: United States Army Corps of Engineers (2019)].

(International Joint Commission, 1914), which gives the Board
the objective to regulate the outflow from Lake Superior. There
have been Supplementary Orders of Approval (https://ijc.org/en/
lsbc/who/orders) over the years that have included updates to
procedures and regulation plans that have been used to determine
the flow. The current regulation plan is Plan 2012, which was

implemented in January 2015 because of the 2014 Supplementary
Order of Approval (International Joint Commission, 2014).

Plan 2012 provides operational guidelines and procedures to
be followed when determining outflow each month. The main
objective of Plan 2012 is to regulate outflow with consideration
of conditions that are occurring both upstream and downstream,
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while maintaining much of the natural variability in lake levels.
This is achieved by using a pre-project flow relationship, which is
the flow that would have occurred prior to the canals and dams
being built in the St. Marys River. This preproject relationship
is based on the year 1887, which is generally thought of as
the last year of the natural system (Clites and Quinn, 2003).
Also, further adjustments are made by a balancing factor that
adjusts flows depending on the level of Lake Superior and Lake
Michigan-Huron relative to seasonal targets based on average
conditions. Lastly, operational and physical limits are applied.
Some examples of when limits would need to be considered
include stable ice formation in the St. Marys River, conditions
in regard to navigation or hydropower, flood risk, and safe
operations of the control structures (International Lake Superior
Board of Control., 2016). Once the total outflow for the month
is determined, the flow is allocated through various control
structures on the St. Marys River (Figure 5). This accounts
for flow that is used for fish passage and other environmental
considerations in the St. Marys Rapids, navigation and domestic
users, and flow that goes to U.S. and Canadian hydropower plants
(International Lake Superior Board of Control., 2016). For more
information on the ILSBC, the current regulation plan, and flow
data, visit the Board’s website at https://www.ijc.org/en/lsbc.

As noted above, the actual flow through the St. Marys River
can differ from the prescribed flow for unforeseen reasons.
Therefore, the ILSBC determines the actual flow after-the-
fact by summing the various components of flow through the
structures in Figure 5 (referred to as “flow accounting”). These
component flows are determined using reports from the various
contributing agencies shown in Figure 5. These monthly flows
can be obtained from the Coordinating Committee. In addition
to the historical flows determined using flow accounting, real-
time point estimates of discharge on the St. Marys River are
available at U.S. Geological Survey (USGS) station 04127885.
This station is operated through collaboration among USGS,
ECCC, and USACE.

St. Clair River and Detroit River
Water flows out of Lake Huron and enters Lake St. Clair via
the St. Clair River and then water leaves Lake St. Clair via the
Detroit River into Lake Erie. The flows through the St. Clair
River and Detroit River are unregulated and are coordinated
periodically between federal agencies in the U.S. and Canada
through the auspices of the Coordinating Committee. In the
past, the flows have been calculated monthly using stage fall
discharge (SFD) relationships and unsteady flowmodels. Reports
produced by the committee have tracked these changes over
time (Coordinating Committee on Great Lakes Basic Hydraulic
Hydrologic Data, 1982, 1988; International Upper Great Lakes
Study Board, 2009; Thompson et al., 2020). Most recently,
index-velocity ratings have been used to calculate discharge
measurements for the St. Clair River and Detroit River since
2009 (Thompson et al., 2020). The development of acoustic
Doppler velocity meters (ADVMs) and index-velocity ratings has
allowed for high temporal resolution computation and reporting
of discharges. The method was developed by Levesque and Oberg
(2012). ADVMswere installed in the St. Clair River at Port Huron

and in the Detroit River at Fort Wayne in 2008 (Thompson
et al., 2020) and since 2009 the daily data have been used to
estimate the monthly average flow in the St. Clair and Detroit
Rivers (McClerren, 2021). The data at these gages on the St. Clair
at Port Huron and Detroit River at Fort Wayne are provided
by USGS (stations 04159130 and 04165710). In the absence
of data at these ADVM gages for more than a 24-h period,
the SFD equations would be used to compute the flow by the
Coordinating Committee (Thompson et al., 2020).

Niagara River
The outflow from Lake Erie into Lake Ontario is computed in
two parts, first, the discharge in the Niagara River, and second,
the discharge through theWelland Canal, although the discharge
through the Welland Canal is typically <5% of the Niagara River
discharge. The Niagara River section has many flow components
shown in Figure 6.

The Niagara River flow is determined by accounting for flows
at different parts of the river, including the outflow from the
Maid-of-the-Mist (MoM) Pool, diversion through the New York
State Barge Canal, the flow over the Niagara Falls, Welland
River flow, flow diverted to hydropower entities in U.S. and
Canada, and locally estimated flows. The MoM outflow (QMoM)
is determined using the rating equation shown in Equation (2).

QMoM = 0.6429 (AA− 82.814)3 (2)

In Equation (2), AA represents the water level at the Ashland
Avenue gage (shown Figure 6) in meters.

Over time, this rating equation has been adjusted, due to
changes in the river and gauging stations (Noorbakhsh, 2009).
Each month, flows are estimated for the Niagara River at Buffalo
(QBuffalo) by summing the outflow at theMoMPool, flow diverted
for hydropower, and the New York State Barge Canal Diversion,
and subtracting local inflows and the portion of the Welland
Canal Diversion (Welland River) that is returned to the river
upstream of the Falls using Equation (3) (Noorbakhsh, 2009).

QBuffalo = QMoM + BD+MD+ NYSBCD−WR− LI (3)

In Equation (3), BD is the water diverted to the Sir Adam Beck
Power Plants, MD is the water diverted to the Robert Moses
Niagara Power Plant,NYSBCD is the NewYork State Barge Canal
Diversion flow,WR is the Welland River flow, and the LI is local
inflows. This is also represented in Figure 7.

The MoM flow, Beck, and Moses discharges and diversions
are provided by the International Niagara Committee, which
includes the New York Power Authority and Ontario Power
Generation. The Welland Canal River flow and Diversion
flow are provided by the St. Lawrence Seaway Management
Corporation (SLSMC). The New York State Barge Canal
data is provided by the New York State Canal Corporation.
Monthly Niagara River flows can be obtained from the
Coordinating Committee.

St. Lawrence River
Water leaving Lake Ontario flows through the St. Lawrence River,
which eventually leads to the Atlantic Ocean. Flow through the
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FIGURE 5 | View of the various structures at the head of the St. Marys River that are considered in determining monthly outflow from Lake Superior (source: ILSBC).

St. Lawrence River is primarily determined by the flow through
the hydropower plants, which include the Moses-Saunders and
Long Sault Dams. These computations are performed by the
hydropower operators and the ratings are regularly verified by
ECCC field staff using a vessel mounted acoustic Doppler current
profiler. Discharges are reported to the International Lake
Ontario-St. Lawrence River Board (ILOSLRB). However, other
smaller components of the total flow also must be accounted
for and this includes flow through the navigation canals and
water diverted for domestic use. This Board of Control was
established in 1952 under its first Order of Approval through the
IJC (International Joint Commission, 1952). Outflows have been
regulated since 1960, however, through Supplemental Orders of
Approval modifications have been made to the regulation plan
over time (International Joint Commission, 2016). The most
recent Supplemental Order of 2016 commenced the Plan 2014 as
the regulation plan to aide in determining outflows. The flow is
primarily regulated through the Moses-Saunders Dam, which is
located near Cornwall, ON and Massena, NY and jointly owned
and operated by OPG and NYPA (International Lake Ontario St.
Lawrence River Board, 2020).

Plan 2014 determines its weekly outflow based on the inflow
of water to the lake from Lake Erie, water supplies to the lake via
components (precipitation, runoff, and evaporation), the water
level of Lake Ontario, and conditions upstream and downstream
of the lake. Also, physical and operational limits are considered in
regard to navigation and municipal uses, hydropower, flood risk,
and stable ice formation in the St. Lawrence River in the winter.

For more information on the regulation, history, and flow
data, visit https://ijc.org/en/loslrb and https://ijc.org/en/loslrb/
watershed/outflow-changes. Monthly flows can also be obtained
from the Coordinating Committee.

Net Basin Supply
From a lake water balance modeling perspective, it is convenient
to combine over-lake precipitation, over-lake evaporation, and
lateral tributary runoff into a single term representing the portion
of a lake’s water originating within a lake’s basin (exclusive of
connecting channel inflows and outflows). This single term is
commonly referred to as a lake’s net basin supply (or NBS).

There are two methods for estimating the NBS: the residual
NBS (NBSR, computed from change in storage (dS), inflows
(Qin), and outflows (Qout) using a water balance approach) and
the component NBS (NBSC, computed as the sum of overlake
precipitation (P), overlake evaporation (E), and lateral tributary
runoff (R) into the lakes). The component and residual NBS
are derived by rearranging the lake water balance (Equation 1),
shown in Equations (4, 5).

Qout − Qin + dS = P + R− E+ ε (4)

NBSR = NBSC + ε (5)

In practice, the residual NBS is considered to be more easily
observed, due to the challenges of estimating the overlake
precipitation, evaporation, and lateral tributary runoff into the
lakes resulting from vast ungaged areas over the lakes themselves
and data discontinuities across the U.S.-Canada border. Net
basin supply and its components are shown in Table 3.

Residual Net Basin Supply
The Coordinating Committee computes the residual NBS (in
m3/s) using Equation (6):

NBSR = kdS+ Qout − Qin (6)

where k is a conversion factor based on lake surface area.
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FIGURE 6 | Map of the Niagara River and Welland Canal [source: Neff and Nicholas (2005)].

Change in storage is calculated by taking the difference in
water levels from the beginning to the end of a time period,
typically monthly, that describes the total sum of water entering
and leaving the lake via the components described above.
Beginning of Month levels are determined using the approach
described in Section Water Levels. Inflows and outflows are
determined using diversion flows and connecting channel flows
described in Sections Diversion Flows and Connecting Channel

Flows. Note that the NYSBC diversion does not factor into any
NBSR calculations, as water is diverted from the Niagara River
and returned to Lake Ontario.

Residual NBS is another dataset that is coordinated by the
Coordinating Committee, and coordinated data go back to 1900.
The long historical record of this dataset makes it acceptable to be
used in operational and regulation efforts that are conducted on
both sides of the border (International Upper Great Lakes Study,
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FIGURE 7 | Diagram of how water flows from Lake Erie to Lake Ontario. Note that the size of the arrows does not reflect the relative size of the flows. For example,

the arrow pointing from the Welland Canal to the Welland River represents a siphon system discharging only about 6 m3/s, compared to flows of around 8,000 m3/s

for the Niagara River at Buffalo [adapted from: Coordinating Committee on Great Lakes Basic Hydraulic Hydrologic Data (1976)].

2012). However, there can be uncertainties when calculating
NBS due to the magnitude of connecting channel flows and
change in storage (Neff and Nicholas, 2005) in addition to
other uncertainty in minor diversions, consumptive use, and
thermal volumetric changes (Bruxer, 2010; International Upper
Great Lakes Study, 2012). Despite uncertainties, this dataset helps
water management agencies express water supply in the Great
Lakes over an extended historical period and can provide insight
moving forward in our changing climate.

Component Net Basin Supply and Lumped P, E, R

Estimates

Component NBS
For decades, Great Lakes scientists had followed a practice of
combining individual estimates of P, E, and R (sometimes from
different data sources) to estimate NBS. However, even when
these estimates come from a common model, we find that none
of these models explicitly constrain them to be faithful to the
water balance. Relatively recently, regional scientists developed
a statistical model, commonly called the Large Lake Statistical
Water Balance Model (L2SWBM) that assimilates output from
multiple models and data sets to infer constrained estimates of
each water balance component, for each lake, that is consistent
with all other water balance components across the Great Lakes
system (including observed changes in lake storage). As such,
simulations from L2SWBM are generally considered to be the
only source of component NBS that is faithful to the holistic water
balance. For a recent data product produced by L2SWBM, see Do
et al. (2020).

Precipitation
Although precipitation is also included in forcing datasets
described in Section Meteorological Data, it is included here
in order to specify datasets that can be used for representing
the overlake component of net basin supply. As noted in the
introduction, the challenge of representing this important NBS

component is complicated by both the vast surface area of the
lakes themselves, resulting in the need to interpolate surface
observations over broad areas, as well as the international border,
resulting in discontinuities in some datasets. As a result, a handful
of Great Lakes specific datasets have been developed for the
purpose of water supply monitoring and simulation (Table 3).

The GLERL Hydrometeorological Database overlake
precipitation uses a Thiessen weighting approach to compute
overlake precipitation [described by Hunter et al. (2015)]. This
dataset is not an operational dataset, and is updated on a roughly
annual basis for the purpose of providing data for research to
monitor the Great Lakes water balance.

More recently, to support Coordinating Committee needs,
the Midwest Regional Climate Center has operationalized a
binational gridded precipitation product that combines the state-
of-the-art operational precipitation products from the U.S. and
Canada. The current version of this gridded bi-national product
(referred to as “Binational Precipitation Grids” in Table 3) blends
the 10-km Canadian Precipitation Analysis (CaPA, described by
Fortin et al., 2015 and Lespinas et al., 2015) with the U.S. Multi-
sensor Precipitation Estimate [MPE, described by Kitzmiller et al.
(2013)] resampled to the same 10-km grid. These two products
combine gage and radar data, and CaPA also includes a numerical
weather prediction model. An archive of this binational gridded
data and anomalies can be accessed through the Midwest
Regional Climate Center. This product represents a promising
pathway for developing future coordinated datasets produced
by the Coordinating Committee. It is worth noting that as a
result of the collaborative process of blending the two data sets,
special attention has been given to improving the representation
of precipitation by the two products over the lakes and across
the border.

In addition to contributing to the binational gridded
precipitation product, various versions of the CaPA product are
available at multiple resolutions through the Canadian Surface
Prediction Archive (CaSPAr). Among these CaPA products is
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the 10-km precipitation included in the Regional Deterministic
Reanalysis System (v2), described in Section Reanalysis (referred
to as RDRS_v2 in Table 3). The reanalysis includes hourly data
from 1980–2018. It is anticipated that, due to the use of modeled
data in addition to surface observations, estimates of historical
overlake precipitation derived from this reanalysis product
will be a more appropriate representation of actual overlake
precipitation than the Thiessen-weighting product provided with
the GLERL Hydrometeorological Database.

The other Great Lakes specific dataset comes from
the L2SWBM via Do et al. (2020), described in Section
Component NBS.

Runoff
The precipitation that falls on the land surface can take various
paths to get to the lakes, this can be by overland flow across
the land surface, sub-surface flow through the top soil layers, or
baseflow through the groundwater system. The combination of
these flows can be summed for each grid square or hydrological
unit and is the more traditional definition of runoff for the
scientific community; for example, when obtaining data from
a reanalysis product such as the North American Land Data
Assimilation System (NLDAS) or the European Centre for
Medium-range Weather Forecasts (ECMWF) reanalyses.

The runoff from the land surface travels down the streamflow
channels to eventually be deposited into the lakes. For the
purposes of the calculation of NBS, the runoff for each lake is
the amount of water that enters the lakes through the incoming
river systems, with the exception of the flow from the upstream
lake if there is one. Ideally, all of these rivers would have their
flow measured at the point that they enter the lakes, however
this is only true on a small number of the rivers in the Great
Lakes. The percentage of the drainage area that is gaged varies
depending on the lake and often the most downstream station
may not be close to the outlet into the lake [for a representation
of the portion of the basin that is gaged over time, see Fry et al.
(2013)]. The location of gauging stations is often determined
by local considerations and thus may not be the ideal location
for the purpose of calculating flow into the lakes. Thus, there
is a requirement to model the ungaged portion of the basin in
some manner.

This modelling can range from simple area-ratio methods
that transfer the amount of measured flow proportionally to the
ungaged areas to sophisticated hydrological models that simulate
the flow of water throughout the water cycle. The choice of model
that is used can be based on many factors such as the final use of
the results, the time required to run the model, or the availability
of the input data. At the time of writing of this manuscript, there
are two publicly available datasets for total runoff into the lakes.
The GLERL Hydrometeorological Database (Hunter et al., 2015)
includes runoff estimates computed using an area ratio estimate
using a set of “most downstream” gages (Croley II and Hartman,
1986; Croley II and He, 2002). This approach has been shown
to provide reliable estimates of total discharge to the lakes for
gage combinations with similar catchment characteristics to the
outlet’s catchment (Fry et al., 2013). The second publicly available
historical runoff dataset comes from the L2SWBM (described

in Section Component NBS), and includes uncertainty estimates
determined by resolving the Great Lakes water balance (Do et al.,
2020).

There are many different agencies and research groups that
run hydrological models around the Great Lakes, however there
are only a few agencies that have an interest in obtaining data
from both sides of the international border. Of course, flows from
both sides of the international border are required in order to
calculate the runoff into the lakes.

Initiated in 2014, the Great Lakes Runoff Intercomparison
Projects (GRIP) are a series of studies that have focused
on comparing the runoff generated by models from various
academic institutions and federal agencies. The first study
concentrated on Lake Michigan (Fry et al., 2014), second on
Lake Ontario (Gaborit et al., 2017), and a third on Lake Erie
(Mai et al., 2021a). The latest of the GRIP projects involves a
wide range of lumped and distributed models that are being
run over the entire Great Lakes watershed (Mai et al., 2021b),
and represents an example of productive coordination between
the research community and the Great Lakes water management
community. In addition to including a broader variety of models,
the later phases of GRIP have evolved to harmonize both the
input datasets as well as the land surface database used by all
models for both calibration and verification. It is hoped that once
this latest GRIP project is completed, at least some of the different
models would be adopted for operational monitoring of runoff by
the Great Lakes water management community.

Evaporation
Like most runoff estimates, evaporation estimates for the
Great Lakes are primarily determined using models driven by
atmospheric forcing. There are a number of models that have
been developed and applied specifically to the Great Lakes for
simulating total evaporation from the lakes’ surfaces. The GLERL
Hydrometeorological Database, for example, provides time series
of monthly evaporation from each of the lakes, computed by the
Large Lake Thermodynamics Model [LLTM, described by Croley
II (1989)]. The LLTM is a 1-dimensional thermodynamics model
that computes evaporation by simulating the energy balance
in the atmosphere above the lake, heat storage throughout
the lake’s vertical column, and aerodynamic evaporation. The
estimates provided in the GLERL Hydrometeorological Database
are driven by meteorological forcing computed by interpolation
of surface observations using a Thiessen weighting approach.
More recently, GLERL has begun providing estimates of
lake-wide average evaporation aggregated from output from
Next Generation Great Lakes Coastal Forecast System nowcast
(Anderson et al., 2018). Fluxes in the Next Generation GLCFS
are computed by experimental runs of the Finite Volume Coastal
Ocean Model (Chen et al., 2003).

Atmospheric reanalyses and General Circulation Models
(GCMs) also provide estimates of over-lake evaporation,
however, the representation of lakes within the modeling
system can considerably alter the simulation of lake-effect
processes and lake-atmosphere interactions. In such modeling
systems, lakes are either represented by prescribing the lake
surface water temperatures through various observational and
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operational sources or parameterized through shallow 1-
dimensional lake models, while inclusion of more involved 3-
dimensional lake models is generally absent in Earth System
Models due to computational costs and other challenges
(Mironov et al., 2010; Fiedler et al., 2014; Minallah and Steiner,
2021b,c). It is important to note that differences in lake
representation in models can considerably alter the lake surface
water temperatures, evaporation, and lake-effect precipitation
magnitudes. For example, Minallah and Steiner (2021c) assess
the effects of lake representation differences between two
generations of the ECMWF reanalyses, ERA-Interim and the
newer ERA5, where the former prescribes surface temperatures
through external data sources while the later introduces the 1-
dimensional Freshwater Lake (FLake) model. This difference in
lake simulation resulted in ERA5 showing much warmer Great
Lakes surface temperatures (by up to 5K) in the summer and
producing twice the magnitude of evaporation as compared
to ERA-Interim. This significantly alters the simulation of the
regional hydroclimate and the water cycle both on climatological
and short-term meteorological timescales between these two
datasets, emphasizing the importance of careful examination of
how lakes are simulated in the models before conducting more
involved regional hydroclimatic assessments.

Validation of simulated evaporation by models can be a
challenge due to spatial sparsity of buoy data and general absence
of spatiotemporally consistent observational datasets. The Great
Lakes Evaporation Network (GLEN) currently provides flux
tower observations of evaporation for six sites over the Great
Lakes, with four platforms located on offshore lighthouse sites
(Stannard Rock, White Shoal, Spectacle Reef, shown in Figure 8,
as well as Granite Island located on Lake Superior) and the
remaining two located on nearby land. Half hourly data for
each station are available, which have undergone only basic flux
corrections, so careful pre-processing is required before it can
be used to validate model outputs. The GLEN station data has
been used to assess and improve Great Lakes hydrodynamics
models (e.g., Durnford et al., 2018; Fujisaki-Manome et al., 2020).
However, similar analyses have not been conducted between
the lake surface fluxes from earth systems models and these
stations. A visual comparison is included here in Figure 8, and
indicates that both the global products and station data likely
have significant biases that would need to be corrected before
application to Great Lakes regional climate studies and water
resources management.

Lake Surface Water Temperature (LSWT)
and Ice Cover
Lake surface water temperature (LSWT, shown in Table 4) is
one of the primary drivers of the lake-atmosphere interaction
and related processes; e.g., lake-effect precipitation, lake breeze
circulation patterns, cloud formation, etc. (Wright et al.,
2013; Laird et al., 2017; Minallah and Steiner, 2021c). These
LSWT are highly sensitive to climate warming and show
an amplified response as compared to the surrounding land
(Zhong et al., 2016; Kravtsov et al., 2018). Recent research has
shown that LSWT have increased worldwide along with air

temperatures, which has implications for ecosystems and water
supply (Woolway et al., 2020). Further, the Coupled Model
Intercomparison Project (CMIP) 6 projections reveal that earth
systems models with some lake representation simulate a higher
increase in the lake surface evaporation as compared to the
surrounding land by the mid-century, especially in the winter
months (Minallah and Steiner, 2021b) which has implications
for NBS assessments. Interestingly, there is far less monitoring
of subsurface temperatures, although the subsurface observations
can provide indication of changes in thermal regimes in the lakes
(Anderson et al., 2021).

LSWT can be measured both directly over the water body
(buoy data) and through satellite retrievals of the water surface
temperature. For the Great Lakes, two main satellite-derived
LSWT datasets are available. The first is the Great Lakes Surface
Environmental Analysis (GLSEA) Surface Water Temperature,
produced by NOAA Great Lakes Environmental Research
Laboratory using AVHRR (Advanced Very High Resolution
Radiometer) imagery from the NOAA satellite series. This data
is available for the 1992–2020 period as 1024 × 1024 pixel maps
or as lake-averaged temperatures. The second dataset is produced
at the University of Reading using the Earth Observing missions
of the European Space Agency for all lakes globally (including
lakes in the Great Lakes basin). This includes the ARCLake
(Along-Track Scanning Radiometer (ATSR) Reprocessing for
Climate: Lake SurfaceWater Temperature and Ice Cover) dataset
and the newer generation GloboLakes (Global Observatory
of Lake Responses to Environmental Change) dataset. Both
datasets provide daily LSWT averages, with the GloboLakes
having a finer resolution of 0.025 × 0.025 (1995–2016 period),
while ARCLake has a resolution of 0.05 × 0.05 (1995–2013
period; Merchant and MacCallum, 2018; Carrea and Merchant,
2019).

While these datasets provide high resolution estimates of
LSWT, cautionmust be exercised in their use as satellite retrievals
can have errors due to sensor limitations, especially under cloudy
conditions. Past assessment of these datasets for the Great Lakes
region (Minallah and Steiner, 2021c) has shown spatiotemporal
inconsistencies in data availability that introduce biases in lake-
averaged measurements. This issue is especially pronounced
in the winter months when data availability is almost non-
existent and lake averages produce relatively warmer LWSTs. For
example, Figure 9B shows the long-term lake-average LSWT for
the three satellite-based datasets and different reanalyses over
Lake Superior, where themonths from Jan toMar are consistently
warm (∼275K) for the three satellite-based datasets, whereas
the reanalysis datasets show varying magnitudes below 273K,
depending on how lakes are simulated in these models. For
GLSEA, we again note that while there is a clear distinction in the
LSWT for the five Great Lakes in the summer months (with Lake
Erie being the warmest and Lake Superior coldest), the winter
months show near same magnitude of ∼275K for all the lakes
(Figure 9A).

For the summer months (ice-free season), buoy observations
for the lake surface and air temperatures are also available;
however, buoys are removed at the end of the autumn season
and therefore they cannot supplement the satellite-derived LSWT
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FIGURE 8 | 30-day running mean evaporation rate (mm/day) for three GLEN stations (location shown on map) and corresponding magnitudes for ERA-Interim (0.75◦)

and ERA5 (0.25◦) grid cells. The running mean is computed after pre-processing and removal of erroneous and extreme values in the GLEN station data. (A) Stannard

rock. (B) White Shoal. (C) Spectacle Reef.

for winter months to establish the ground truth (Gronewold and
Stow, 2014).

In addition to LSWT, surface ice cover data (also shown in
Table 4) is informative for verification of lake thermodynamics
models. NOAA Great Lakes Environmental Research Laboratory
maintains a Great Lakes Ice Cover Database, which compiles data
from the Great Lakes Ice Atlas [1973–2002, described by Assel
et al. (2002)], with addendums in separate reports for 2003–2005
described by Assel (2005) and updates for 2006-present using the
same methods as the Great Lakes Ice Atlas (Wang et al., 2012,
2017). Daily gridded data are available for the ice season, which
varies somewhat by year.

Meteorological Data
Global and regional meteorological data products, including
precipitation, are included in Table 5.

Precipitation
Various global-scale observation-based gridded precipitation
products are available for assessment of precipitation time
series and spatial patterns; however, due to lack of observations
over the lake surfaces and employment of land-based gage
measurements, these products are better suited for over-land
analyses. Commonly used global datasets include CRU time
series (University of East Anglia Climate Research Unit; Harris
et al., 2014), UoD time series (University of Delaware Global
Land Data; Willmott, 2000), GPCC dataset (Global Precipitation
Climatology Center; Schneider et al., 2014), and NOAA CPC
Unified Gauge-Based Analysis over CONUS. These datasets can
provide an adequate benchmark for assessment of model outputs
(Figure 10); however, the quality of the time series is affected
by the varying gage density both spatially and temporally. In
general, their time series are similar in magnitudes, however,
we note some differences from 1997 onward, likely due to

Frontiers in Water | www.frontiersin.org 16 February 2022 | Volume 4 | Article 803869133

https://www.frontiersin.org/journals/water
https://www.frontiersin.org
https://www.frontiersin.org/journals/water#articles


Fry et al. Navigating Great Lakes Hydroclimate Data

FIGURE 9 | 2001–2018 climatology of lake-average GLSEA LSWT for the five Laurentian Great Lakes (A) and Lake Superior LSWT for the different satellite-based

and reanalysis datasets [(B); averaging period included in the legend]. (B) Is adapted from Minallah and Steiner (2021c).

differences in the number of gages assimilated to produce the
gridded products.

In addition to the gridded products described above,
several precipitation products have been developed specifically
for the Great Lakes region. For example, the Coordinating
Committee produces monthly overbasin (including lake and
land area) precipitation estimates on an annual basis. A
primary goal of the coordinated dataset is to provide a long
term record of precipitation that can be used to compute
anomalies and statistics in order to monitor the water budget
of the Great Lakes. Accordingly, the coordinated precipitation
product is compiled from a number of interpolated station-
based datasets with records dating back to 1900. At the
time of writing of this manuscript, the coordinated dataset
includes data from three interpolated products: the U.S. Army
Corps of Engineers’ Areally-Weighted District product (1900–
1930), the NOAA GLERL Monthly Thiessen Polygon estimates
(1931–1947), and daily Thiessen polygon estimates produced
by the Great Lakes Seasonal Hydrologic Forecasting System
(referred to as GLSHyFS, 1948-recent). These three products
are described by Hunter et al. (2015), however it should
be noted that the GLSHyFS software has replaced the Great
Lakes Advanced Hydrologic Prediction System which was
previously used to compute the daily estimates, and recent quality
control efforts have resulted in using a smaller set of station
observations. The GLERL Hydrometeorological Database also
includes GLSHyFS-derived estimates of precipitation, which also
include overbasin and overland precipitation in addition to the
overlake precipitation described in Precipitation. These lumped
estimates are conventionally used to (a) develop climatologies
and (b) drive lumped rainfall-runoff models, notably the

Large Basin Runoff Model, which is used to inform the U.S.
contribution to the internationally coordinated 6-month Great
Lakes water level forecast (Fry et al., 2020). In addition, the
binational precipitation grids and CaPA products described in
Section Precipitation are consistent across the border.

Reanalysis
Reanalysis products are helpful to provide a consistent process-
based assessment of the various hydroclimatic variables and can
be used as both forcing or validation datasets for hydrological
modeling. Due to limitations of the interpolated gage-based
estimates, reanalysis datasets are oftenmore suitable and accurate
(Essou et al., 2017). The commonly used global reanalyses
are listed in Table 5. Past assessments on inter-comparison
of these datasets reveal that the regional reanalysis NCEP-
NARR has lowest overall magnitudes of precipitation but one of
the highest magnitudes for evaporation (Figure 10), especially
in the summer months. The other NCEP product, Climate
Forecast System Reanalysis (CFSR), has considerable biases in
the seasonal cycle of precipitation and evaporation, despite
getting relatively reasonable estimates of the annual magnitudes.
These reanalyses are somewhat inadequate in capturing the
various water budget quantities. NASA MERRA-2 reanalysis is
also relatively wetter as compared to gage-based datasets and
other reanalyses (Figure 10) and is especially wet in the spring
and early summer months (Minallah and Steiner, 2021a). The
two ECMWF reanalyses (ERA-Interim and ERA5) generally
capture better annual and seasonal magnitudes; however, as
explained in Section Evaporation, the differences in how
lakes are simulated in the two versions result in significant
differences in the over-lake conditions which subsequently alters
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FIGURE 10 | Great Lakes domain-averaged (40–51N, 74–94W) precipitation and evaporation timeseries as simulated by various reanalysis datasets. Dashed lines in

the top panel show gridded gage-based precipitation products.

the simulation of lake-effect processes. Therefore, users must
exercise caution in employing these datasets as their quality
will depend on the spatiotemporal scales and objectives of
the study.

In addition to the global products described above, one newer
surface reanalysis product that is noted to be of particular
interest for transboundary and northern watersheds in North
America is the Canadian 10 km North American precipitation
and land-surface reanalysis (Gasset et al., 2021). This reanalysis
(listed as RDRS_v2 in Table 5) is the result of initializing
the Global Deterministic Reforecast System with ERA-Interim
and dynamically downscaling the output using the Regional
Deterministic Reforecast System (RDRS), coupled with the
Canadian Land Data Assimilation System (CaLDAS) and the
Canadian Precipitation Analysis (CaPA). The reanalysis includes
hourly data from 1980 to 2018. Data are available for download

from the Canadian Surface Prediction Archive (CaSPAr, at
https://caspar-data.ca/). This product was used to construct
the forcing for the later phases of the Great Lakes Runoff
Intercomparison Project, described in Section Runoff.

High-Resolution Meteorological Forcing
Various numerical weather prediction model outputs are
available as atmospheric forcing datasets for hydrological
modeling. These include HRRR (High-Resolution Rapid
Refresh), RAP (Rapid Refresh), GFS (Global Forecast System),
and NAM (North American Mesoscale Forecast System).
These operational datasets provide high resolution weather
forecasts that are available on 3–6 hourly time steps for historical
periods (2010’s - present), but they do not go farther back
in time. Furthermore, frequent changes in the model physics
and assimilation schemes of the operational systems can
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introduce some irregularities if assessments over multiple years
are conducted.

General Circulation Models (GCMs)
GCM outputs are often used as direct input to hydrological
models as they can provide both historical simulations and
future projections under various climate scenarios. Before
conducting assessments of future changes in the hydrological
cycle, assessment of historical simulation must be conducted
as GCMs contain multiple biases, especially for precipitation
(Sperna Weiland et al., 2010). For the Great Lakes region,
such assessments have been conducted for GCMs participating
in the CMIP5 and CMIP6 programs. Briley et al. (2021)
conducted a usability study for CMIP5 climate models in
the Great Lakes region and found that many GCMs do not
simulate these lakes in a way that can capture their impact
on the regional climate, therefore use of these models for
future assessments is impractical. They propose a framework
to categorize various CMIP5 GCMs under three categories;
simulation of lake dynamics, crude representation of lakes, and
absence of lake simulation. They concluded that only 4 CMIP5
GCMs have adequate representation of the lakes that provide
credible information for practitioners.

For the most recent CMIP6, Minallah and Steiner (2021c)
conducted an assessment of the water cycle as simulated by 15
available GCMs. They find that most GCMs (10/15) either do not
simulate large inland water bodies at all (represented as land cells)
or have major inconsistencies in how the lakes are simulated.
They find that these lakes have prominent effects on moisture
generation and distribution processes at both meteorological
and climatic time scales. Therefore, representation of detailed
lake processes in GCMs is important for accurate assessments
of the regional hydroclimate. Dynamical downscaling of GCMs
using regional climate models (RCMs) has emerged as an
approach for improving the representation of lakes [see Delaney
and Milner (2019) for a summary of recent developments in
regional climate modeling for the Great Lakes]. Further, the
GCMs that can provide credible information for hydrological
modelers require bias-correction of the atmospheric variables
(specifically precipitation) using the various station-based or
reanalysis datasets before they can be input as forcing for
hydrological models to ensure consistencies in surface runoff
and streamflows.

CONCLUDING REMARKS

In conducting this exercise of aggregating and describing data
sources for use in Great Lakes hydroclimate monitoring and
simulation, we identified two key gaps that create barriers to
appropriate data selection and application.

First, there are important successes in coordinating data
for water management across the lakes and across the border;
however, we find a general lack of shared documentation,
communication, and data use across perspectives (i.e., water
management and earth systems modeling communities). For
many of the Great Lakes region specific datasets, there is a lack
of formal documentation, or, where documentation does exist,

it is in the form of reports (and sometimes internal operating
procedures) that are not discovered under traditional academic
research. On the other hand, important advancements achieved
by the earth systems modeling community are not always
evaluated, documented, or communicated with region-specific
water management activities in mind.

Second, we find that this lack of formal documentation and
communication results in earth system and forecast models
being developed in the absence of consistent data across the
U.S.-Canada border. If regional datasets are not consistent
or readily available (in terms of format, accessibility, and
discoverability), they will not be assimilated into earth systems
models. Discontinuities across the border in region- or country-
specific datasets often render them impractical for transboundary
basin-wide assessments resulting in use of coarser and less
precise, but spatiotemporally consistent, global datasets by the
earth sciences community.

We make two recommendations to address the gaps
identified above. First, we believe it is incumbent on the earth
systems modeling community to engage regional practitioners
to understand unique data gaps, limitations, and challenges,
particularly those associated with monitoring and modeling
large freshwater surfaces and domains that interact across an
international border. Second it is imperative that the individuals
and organizations that make up the water management
community improve documentation and communication of
region-specific hydroclimate data. This action will enable the
global earth science community (and other research groups
outside of the Great Lakes basin) to use the data that have
been evaluated and coordinated across both sides of the
international border. This advancement has the potential to
broadly diversify the range of models and datasets available for
improved understanding and management of water resources of
the Great Lakes.
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Changes in precipitation can have broad and significant societal impacts. A number of

previous studies that analyzed changes in precipitation across the Great Lakes and

Midwest for a variety of time periods and using a range of quality-control standards

and methods observed increased precipitation rates and totals, although there was

considerable site-to-site variability, even for sites in close physical proximity. Biases

and discontinuities in precipitation observations may contribute to this variability. This

study identifies and examines changes in precipitation utilizing a unique approach to

observation series screening over a region encompassing the Great Lakes and broader

Midwestern region of the United States for the period 1951–2019. A multiple tier

procedure was utilized to identify high quality input data series from the Global Historical

Climatology Network-Daily dataset. Annual and seasonal time series of precipitation

indicators were calculated and subjected to breakpoint analysis as further quality control.

Trends were analyzed across a broad range of related indicators, from totals and

frequencies of threshold events to event duration and potential linkages with total

precipitable water. Results indicate that annual precipitation has generally increased

across the region in terms of totals, although there is substantial variation across the

study domain in the significance and magnitude of annual trends by indicator. Annual

trends were spatially most consistent across eastern areas of the study domain while

relatively greater station-to-station variability in trend significance and magnitude was

observed across northern and western portions. Significant trends were generally fewer

in number for seasonal precipitation indicators and less spatially coherent. The greatest

number of significant trends occurred in fall with the fewest in spring. Correlation of

indicator trends with trends of mean total precipitable water suggests weak correlations

annually and moderate correlations at the seasonal scale. The trends of the precipitation

indicators in our study exhibited more coherent spatial patterns when compared with

studies with different quality control criteria, illustrating the importance of quality control of

observations in climatic studies and highlighting the complexity of the changing character

of precipitation.

Keywords: hyrdoclimatology, precipitation, climate change, temporal trend, quality control procedures, regional

climatology
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INTRODUCTION

Precipitation is the longest observed and most widely reported
meteorological variable and is an essential component of

the Earth’s hydrologic cycle (Legates and Willmott, 1990).
Precipitation is commonly defined as “the amount, usually
expressed in millimeters or inches of liquid water depth, of the

water substance that has fallen at a given point over a specified
period of time” (Huschke, 1959, p. 438). Although precipitation
accumulation at daily, monthly, seasonal and annual scales has

received the most attention in the climatological literature (e.g.,
Contractor et al., 2021), other precipitation characteristics such

as frequency, intensity, and duration are as much, if not more,
of a concern for many natural and human systems (Trenberth
et al., 2003; Bartels et al., 2020). Moreover, changes in one or
more precipitation characteristics can have substantial societal

implications impacting many sectors, including, among others,

agriculture (e.g., Pielke and Downton, 2000; Rosenzweig et al.,
2002; Hunt et al., 2020; Kiefer et al., 2021), transportation (e.g.,
Attavanich et al., 2013; Talukder and Hipel, 2020), and tourism
(e.g., Chin et al., 2018).

Changes in precipitation characteristics are a particular
concern for the Midwest and Great Lakes region of the
United States given the region’s unique hydrology (Gronewold
et al., 2021) and its agricultural importance and contribution
to regional, national and global food security (Angel et al.,
2018; Takle and Gutowski, 2020). Not surprisingly, a number
of studies have investigated temporal trends in precipitation
characteristics either specifically for the region (e.g., Zhang and
Villarini, 2019) or as part of larger analyses of precipitation
trends in the United States (e.g., Kunkel et al., 2020a). For the
most part, these analyses have focused on trends in annual and
seasonal precipitation totals (e.g., Schoof et al., 2010), extreme
precipitation (e.g., Pryor et al., 2009; Walsh et al., 2014), and/or
the frequency of wet days (e.g., Roque-Malo and Kumar, 2017;
Bartels et al., 2020). In general, precipitation frequency and total
accumulation appear to have increased across the region over
the last several decades (Higgins et al., 2007; Dai et al., 2016;
Contractor et al., 2021). In addition, the amount of precipitation
falling during the heaviest events has increased at a greater rate
in the Midwest and Great Lakes region compared to the national
average (Angel et al., 2018). Extended dry periods have become
less frequent, but their intensity (i.e., length) has increased
slightly in recent decades (Groisman and Knight, 2008).

One constraint to comprehensive and accurate analysis of
temporal trends in precipitation characteristics at the regional
scale is the availability and quality of precipitation observations
(Costa and Soares, 2009). Although numerous authors have
examined the homogeneity of time series for various climatic
variables including daily precipitation (Winkler, 2004; Daly
et al., 2007; Wang et al., 2010), many studies employing in-
situ climate observations fail to take data quality, other than
data completeness, into account, even though the magnitude and
sign of temporal trends can be biased by changes in technology,
station siting, observing practices and other inhomogeneities
that are not necessarily captured by station record completeness
or recorded in standard metadata archives (Wang et al., 2010;

Williams et al., 2012; Baule and Shulski, 2014). Recent progress
in the development of spatial and temporal interpolation
schemes and gridded datasets, the integration of radar and
satellite derived precipitation estimates with in-situ observations,
the development of atmospheric reanalysis products, and the
availability of simulations from regional and global climate
models have only partially alleviated concerns about data quality
(Zhang et al., 2011). The limited periods of record for radar
and satellite precipitation estimates constrain their use for
estimating temporal trends, and gridded datasets can inherit
the inhomogeneities of the underlying station observations, with
developers of these datasets often advising against their use
for time series analysis (e.g., Daly et al., 2010). Consequently,
station-based climatologies, in spite of their limitations, remain
the benchmark for the assessment of long-term trends (Kiefer
et al., 2021), although caution in their application is critical to
guard against misinterpreting temporal trends. Earlier studies
of precipitation trends for the Midwest and Great Lakes region
frequently used station-level daily precipitation observations
from the Global Historical Climatology Network-Daily (GHCN-
D) database (Menne et al., 2012) for trend estimation (e.g.,
Villarini et al., 2011; Janssen et al., 2014; Guilbert et al., 2015;
Wu, 2015; Hoerling et al., 2016; Huang et al., 2017, 2018; Roque-
Malo and Kumar, 2017; Kunkel et al., 2020a,b). For the most part,
quality-control procedures have been limited to those applied by
the GHCN-D dataset developers to identify and/or correct for
errors and inhomogeneities in the precipitation data (Durre et al.,
2008, 2010), supplemented by an evaluation of data completeness
(e.g., Kunkel et al., 2020b).

Other studies have investigated the synoptic-scale drivers
of precipitation, particularly those associated with extreme
precipitation, finding that extreme precipitation events across
the Midwest and Great Lakes region are often associated with
a westward expansion and strengthening of subtropical high
pressure across the western Atlantic Basin (Gutowski et al., 2008)
as well as the advection of low-level moisture from the Gulf
of Mexico ahead of slow moving tropospheric waves (Winkler,
1988; Zhang and Villarini, 2019), with the latter being more
prevalent in the western portions of the region and the former in
the eastern areas (Bell and Janowiak, 1995; Konrad, 2001;Weaver
and Nigam, 2008). Consistent with these findings, Kunkel et al.
(2020a) showed that extreme daily precipitation events across
the contiguous United States, including the Midwest and Great
Lakes region, are directly related to total precipitable water.
Specifically, Kunkel et al. (2020b) examined the relationship
between regional trends in total precipitable water and regional
trends in extreme precipitation as calculated from GHCN-D
station-level time series. These large-scale drivers of precipitation
are often amplified or suppressed by regional and local climate
drivers such as topography, water bodies, and land use/land
cover (Myhre et al., 2016; Kunkel et al., 2020a), which can
introduce considerable spatial variability in the temporal trends
of precipitation characteristics, especially in the Midwest and
Great Lakes region with its large water bodies and varied
land use/land cover. For the most part, quality control of the
precipitation observations employed in these studies of the
synoptic, regional and local drivers of precipitation and their
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FIGURE 1 | Study region and the United States Historical Climate Network (USHCN) stations (green circles) within the study region that passed the quality control

checks for data completeness and lack of observer bias as outlined in the methods. Stations that passed the data completeness check but failed at least one of the

tests for lack of observer bias are shown as pink circles. The number of stations that passed the third quality control test (no breakpoints) is given in Table 2.

contribution to temporal trends in precipitation was confined
to an assessment of data completeness of the precipitation
time series.

This study provides a comprehensive assessment of the
temporal trends in precipitation characteristics for the Midwest
and Great Lakes region that focuses on the quality of available
precipitation time series. We employ a three-step quality-control
procedure that evaluates the GHCN-D precipitation time series
for data completeness, possible observer bias, and potential
breakpoints (i.e., discontinuities) with the goal of identifying
those GHCN-D stations in which we have the greatest confidence
for precipitation trend analysis, thereby increasing confidence
in the sign, magnitude, significance, and spatial coherence
of precipitation trends. We include a range of precipitation
indicators that capture the frequency and persistence of high
frequency, low magnitude and low frequency, high magnitude
events. Furthermore, we examine the associations between
temporal trends in the quality-controlled suite of precipitation
indicators and trends in atmospheric moisture. The study
findings provide the region’s many stakeholders with needed
information on long-term trends in precipitation characteristics
of concern to them, greater certainty in incorporating these data
in planning processes and a high-quality baseline for assessing
future trends.

METHODS

Study Region and Precipitation Data
For this study, the Midwest and Great Lakes region was defined
as the states of Pennsylvania, Ohio, Indiana, Michigan, Illinois,
Wisconsin, Minnesota, Iowa, Missouri, Kansas, Nebraska, South
Dakota, New York, and North Dakota (Figure 1).

We analyzed a subset of individual site climate series from
the National Centers for Environmental Information’s (NCEI)
GHCN-D collection (Menne et al., 2012). As a first step in
selecting stations for the analysis, we examined the GHCN-
D database for station series included in the United State
Historical Climatology Network (USHCN; Easterling, 2002)
which had at least 90% data completeness for daily precipitation
during 1951-2019. Only USHCN sites were considered, as these
stations were preselected by NCEI based on record length,
data completeness, and historical stability (Menne et al., 2012).
Data flagged by the GHCN-D quality control procedures as
suspicious were marked as missing (Menne et al., 2012). The
length of the study period allowed for trends in the second
half of the 20th century and the early 21st century to be
assessed while maintaining a relatively large pool of potential
stations and reasonable spatial coverage. This first data quality
control step led to an initial subset of 317 stations over the
study region.

The next quality control step involved using tests proposed
by Daly et al. (2007) to check for observer bias in precipitation
time series, specifically the underreporting of light (1.26mm)
precipitation amounts and the over-reporting of precipitation
amounts evenly divisible by 5 and/or 10 when expressed as
inches. As these tests were designed for data originally measured
in inches, they are described here using inches (in.) in place of
millimeters. The under-reporting check consisted of calculating
the ratio of counts between 0.06–0.10 in. (C6−10) and 0.01–0.05
in. (C1−5) as follows:

RL =

C6−10

C1−5
,
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FIGURE 2 | Histograms from two example stations in the study region showing precipitation frequency (blue bars) over the period from 1951 to 2019 binned in 0.01

increments and a gamma distribution (red line) fit to the data following Daly et al. (2007). (A) Manhattan, KS HCN passes (p ≤ 0.01) the tests for underreporting of daily

precipitation amounts <0.05 in. (1.26mm) and for over-reporting of daily precipitation amounts (in inches) evenly divisible by 5 or 10 despite showing a small divisible

by 10 bias. (B) Lamar 7N, MO HCN fails all three tests (p ≤ 0.01), showing a strong under reporting bias, a strong divisible by 5 bias, and a strong divisible by 10 bias.

where C6−10 is the total observation count in the 0.06–0.10-in.
range, and C1−5 is the total observation count in the 0.01–0.05-
in. range. If the ratio, RL, between C6−10 and C1−5 exceeded 0.60,
the station failed the check (Daly et al., 2007).

The tests for errant reporting of values divisible by 5 or 10
were conducted by binning precipitation into 0.01 in. bins, fitting
a gamma distribution to the data between 0.03 and 1.00 in., and
comparing the predicted (P) and observed (O) frequency of the
binned observations with the residual (R) calculated as:

R = 100∗(P − O)

The test for biases in amounts divisible by 5 and amounts only
divisible by 10 were carried out separately. For the divisible by
5 test, the first residual mean was calculated by averaging the
residuals over all amounts except those divisible by 5 (R1) and
the second residual (R5) consisted of the mean of residuals for
only amounts divisible by 5 as follows:

R1 =

∑n1
i=1 R1i
n1

; R5 =

∑n5
i=1 R5

n5

where n1 and n5 are the number of ones and fives bins and R1

and R5 are residuals calculated from equation 2. The means for
the divisible by 10 bias were calculated similarly, instead using
values only divisible by 10. The means were compared using a
two-tailed t-test with an alpha level of 0.01.

Examples of output from the second quality control
procedures are shown in Figure 2 for two locations, Manhattan,
KS HCN which passed all the bias tests at p ≤ 0.01 or RL ≤ 0.6
despite showing a small divisible by 10 bias, and Lamar 7N, MO
HCNwhich failed the bias tests showing a strong under reporting
bias, a strong divisible by 5 bias, and a strong divisible by 10

bias. Stations that failed any of the tests were removed from the
analysis, leaving a subset of 114 long-term climate series across
the Midwest and Great Lakes region for the period from 1951 to
2019 for precipitation indicators.

The third quality control step involved checking the time
series of the precipitation indicators for breakpoints. Possible
sources of discontinuities in the time series include, among
others, instrument changes, station moves, and changes in
observation protocols including time of observation (Winkler,
2004). Following Mallakpour and Villarini (2016), the Pettitt test
(Pettitt, 1979) was applied to identify years when a breakpoint is
likely, indicating a non-homogenous time series. A breakpoint
was considered significant at p ≤ 0.01, and the time series for
that station was excluded from further analysis. This resulted in
a variable number of stations per indicator, with the number of
excluded stations ranging from none to a maximum of 17. The
description of the Pettitt test, following Jaiswal et al. (2015) is: a
method that detects a significant change in the mean of a time
series, where the exact time of the change (i.e., breakpoint) is
unknown, According to the Pettit test, if x1,x2,x3,. . . xn is a series
of observed data which has a break point at t so that x1,x2,x3,. . . xt
has a distribution [F1(x)] which is different from the distribution
[F2(x)] of the second part of the series xt+1,xt+2,xt+3,. . . xn.
The non-parametric test statistic is described
as follows:

Ut =

t
∑

i=1

n
∑

j=t+1

sgn(xi − xj)

sgn
(

xi − xj
)

=







1, if
(

xi − xj
)

> 0

0, if
(

xi − xj
)

= 0

−1, if
(

xi − xj
)

< 0
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TABLE 1 | Precipitation indicators included in the analysis.

Index name ID Definition Units

Accumulation/simple intensity

Annual total wet day precipitation PRCPTOT Total precipitation on wet days (PRCP ≥ 1.26mm) mm

Simple daily intensity index SDII Total precipitation divided by the number of wet days mm day−1

Duration

Consecutive wet days CWD Maximum number of consecutive days with PRCP ≥1.26mm days

Consecutive dry days CDD Maximum number of consecutive days with PRCP < 1.26mm days

Percentile (Percentile values were calculated for the period 1951–1980)

Precipitation on very wet days R95pTOT Total precipitation on days when PRCP ≥ 95th percentile mm

Precipitation on extremely wet days R99pTOT Total precipitation on days when PRCP ≥ 99th percentile mm

Threshold

Number of days with measurable precipitation R1.26mm Number of days with PRCP ≥ 1.26mm days

Number of heavy precipitation days R10mm Number of days with precipitation ≥ 10mm days

Number of very heavy precipitation days R20mm Number of days with precipitation ≥ 20mm days

Number of days with consecutive days with measurable

precipitation

WW Annual count of days when PRCP ≥ 1.26mm on consecutive

days

days

Number of days with consecutive days without measurable

precipitation

DD Annual count of days when PRCP < 1.26mm on consecutive

days

days

Absolute

Maximum 1-day precipitation* Rx1day Maximum 1-day precipitation mm

Maximum 5-day precipitation* Rx5day Maximum consecutive 5-day precipitation mm

All indicators were calculated annually and seasonally except those marked with an asterisk(* ). These were only calculated annually.

The test statistic K and the associated confidence level (ρ) for the
sample length (n) is described as:

K = Max |Ut|

ρ = e
( −K
n2+n3

)

When ρ is smaller than the specified confidence level (p), a
breakpoint is considered significant.

Precipitation Indicators
This study included a range of precipitation indicators. Several
indicators were used to characterize the frequency of non-
extreme precipitation, including the number of days with
measurable precipitation (e.g., Pryor et al., 2009) and the
probabilities of wet-wet day and dry-dry day sequences (e.g.,
Ines et al., 2011). A wet day was defined as a precipitation
total ≥ 1.26mm (0.05 in) (Groisman et al., 1999). Extreme
precipitation was represented in the analysis by indices developed
by the Expert Team on Climate Change Detection and
Indices (ETCCDI) (Donat et al., 2013) and annual values
were calculated using the software packages provided by the
ETCCDI Working Group (available at http://www.climdex.org).
The extreme precipitation indicators include 10 wet indices and
1 dry index that can be further grouped into percentile-based
indices (2), threshold indices (3), absolute value indices (2),
duration indices (2), annual accumulation, and “simple” intensity
(annual total precipitation divided by the number of wet days).
For the percentile-based indices, the base period for defining
the percentile value was the 30-year climate normal period of

1981–2010. Descriptions of each of the non-extreme and extreme
precipitation indicators are provided in Table 1.

All precipitation indicators were also defined for the
climatological seasons of spring (MAM), summer (JJA), fall
(SON), and winter (DJF). This is in contrast to most previous
studies where precipitation indicators were calculated for
annual time steps, with less attention paid to the seasonal
variations in the precipitation indicators beyond the frequency
of high intensity daily precipitation events (e.g., Mallakpour and
Villarini, 2017). Given the importance of precipitation timing
and sequencing for numerous regional applications, such as soil
moisture and nitrogen movement in agricultural systems (Riha
et al., 1996; Bowles et al., 2018) and plant disease risk (Komoto
et al., 2021), this study extended the precipitation indicators
to the seasonal time step. Additionally, the seasonal analyses
provides greater context to more clearly interpret annual trends.

Following the lead of numerous recent studies (e.g., Alexander
et al., 2006; Pryor et al., 2009; Shulski et al., 2015; Dai
et al., 2016; Roque-Malo and Kumar, 2017), non-parametric
statistical methods were employed to estimate the significance
and magnitude of temporal trends in the precipitation indicators
at the study locations. While a number of potential non-
parametric methods were available (e.g., Sneyers, 1990; Sen, 2015;
Onyutha, 2021), we chose the two-tailedMann-Kendall trend test
(Mann, 1945; Kendall, 1955, 1975) to test for the significance
of potential temporal trends due to its prevalence in previously
mentioned studies across the region to allow for intercomparison
of results. A strength of the Mann-Kendall method is its ability
to assess the significance of trends that are monotonic but
not necessarily linear in character. For those locations with
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significant trends as identified by theMann-Kendall test, the non-
parametric Kendall’s tau-based slope estimator (Sen, 1968) was
used to obtain a numerical estimate of the temporal trend. All
analyses were conducted using three significance levels (p≤ 0.05,
p ≤ 0.10, and p ≤ 0.20) to examine how significance level affects
the number of significant trends and their spatial representation.
The equations describing the Mann-Kendall test are as follows:

S =

n
∑

i=1

i−1
∑

j=1

sgn(xi − xj)

where n is the total length of data, xi and xjare two generic
sequential data values, and the following function assumes
the values:

sgn
(

xi − xj
)

=







1, if
(

xi − xj
)

> 0

0, if
(

xi − xj
)

= 0

−1, if
(

xi − xj
)

< 0

The mean of S is E[S]= 0 and the variance σ2 is

σ 2
=

1

n

[

n (n− 1) (2n+ 5) −
∑

t

t(t − 1)(2t + 5))

]

where n is the length of the time series and t is the extent of any
given ties andΣt denotes the summation over all tied values. The
statistic S is approximately normally distributed provided that the
following Z-transformation is employed:

Z =







S−1
σ

if S < 0
0 if S = 0
S+1
σ

of S > 0

The Sen’s (1968) slope was calculated as follows: first, a set of
linear slopes is calculated

dk =
Xj − Xi

j− i

for (1 ≤ i < j ≤ n), where d is the slope, X denotes the variable, n
is the sample length, and i, j, and k are indices. Sen’s slope is then
calculated as the median from all slopes (dk).

Total Precipitable Water
Daily values of total precipitable water (TOTPRCPWAT) were
obtained from the NCEP/NCAR I Reanalysis (Kalnay et al., 1996)
at a 2.5 x 2.5◦ spatial resolution. The daily values were used to
calculate mean daily annual and seasonal total precipitable water
for each year during the 1951–2019 study period for a bounding
box ranging from 106 to 69◦W longitude and 34–54◦N latitude.
Only grid cells that contained observing sites used in our analyses
were subjected to analysis. Pearson correlation coefficients (r)
and non-parametric Kendall rank correlation coefficients (τ )
were calculated between the trend value of four representative
precipitation indicators (WW, PRCPTOT, R1.26mm, R95pTOT)
at each station considered previously and the trend of total
precipitable water of the nearest reanalysis grid cell. Pettitt tests

were conducted on the NCEP NCAR time series of precipitable
water for each grid cell to examine for potential heterogeneities
prior to the satellite era (e.g., Kunkel et al., 2020b). Significant
breakpoints (p < 0.01) were evident at some grid cells, however
they were not clustered in time. Given the noted strength of the
NCEP-NCAR reanalysis in areas where radiosonde observations
are available (Trenberth et al., 2005), as in our study region, we
deemed the data appropriate for our analyses.

RESULTS

Trends in Precipitation Indicators
Annual Indicators

For the annually-derived precipitation indictors, the number of
stations with statistically-significant (p ≤ 0.10) trends varied
substantially among the different indicators, ranging from 67%
of the station sites for annual total precipitation (PRCPTOT) to
only 20% of the stations for the maximum number of consecutive
wet days per year (CWD) (Table 2). With the exception of
the maximum number of consecutive dry days (CDD) and the
number of dry-dry day sequences (DD), more than 90% of the
statistically significant trends over time when summed across
the indicator variables are positive, indicating a generally wetter
climate. The negative trends observed for CDD and DD are
also indicative of a wetter climate. In addition to PRCPTOT, the
majority of the locations display significant upward trends for
the simple intensity index (PRCPTOT divided by the number
of days with precipitation ≥ 1mm; SDII), the number of days
per year with precipitation ≥ 10mm (R10mm), the number
of days per year with precipitation ≥ 20mm (R20mm), and
the total precipitation on days with daily precipitation ≥ 95th

percentile (R95pTOT). A majority (54%) of stations also have
statistically significant negative trends for DD, whereas only
39% of the locations have statistically significant positive trends
in the annual number of wet-wet day sequences (WW). A
considerably smaller number of stations displayed significant
trends for several of the other indicators, with the fraction of
stations with significant trends falling below 30% for CDD,
CWD, total precipitation on days with daily precipitation ≥

99th percentile (R99pTOT), maximum one-day precipitation
amount (Rx1day) and maximum consecutive 5-day precipitation
(Rx5day). With the exception of CDD and DD, statistically
significant negative trends were infrequent for the various
indicators, ranging from no significant negative trends for CWD,
SDII, R95pTOT, R99pTOT, SDII, Rx1day, and Rx5day to 6%
of the locations for WW. The number of stations exhibiting
significant breakpoints was greatest for PRCPTOT (14) and
R.126MM (17). Rx1day, Rx5day, CDD, and CWD showed no
significant breakpoints.

A subset of indicators that encompass the range of
precipitation characteristics included in the analysis, namely
PRCPTOT, WW, the number of wet days with precipitation ≥

1.26mm (R1.26mm), and R95pTOT, is used to illustrate the
spatial variability across the study region in the temporal trends
for the annual indicators (Figure 3). For all four indicators,
statistically significant positive trends are distributed across the
study region, although the magnitude of these trends is generally
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TABLE 2 | Number of stations exhibiting statistically significant trends (Mann Kendall, p ≤ 0.05 two-tailed, p ≤ 0.10 two-tailed, p ≤ 0.20, two-tailed) from 1951 to 2019 in

the annual precipitation indicators.

Precipitation

indicator

Total number of

stations after

breakpoint

analysis

Number of

stations with

significant positive

trends (p ≤ 0.05)

Number of

stations with

significant

positive trends

(p ≤ 0.10)

Number of

stations with

significant

positive trends

(p ≤ 0.20)

Number of

stations with

significant

negative trends

(p ≤ 0.05)

Number of

stations with

significant

negative trends

(p ≤ 0.10)

Number of

stations with

significant

negative trends

(p ≤ 0.20)

PRCPTOT 100 47 75 79 1 1 1

R1.26mm 97 42 53 61 1 3 5

SDII 112 42 52 62 0 0 3

CWD 114 17 23 36 0 0 0

CDD 113 0 2 2 16 28 44

WW 105 27 44 51 5 7 9

DD 107 2 3 3 41 61 65

R10mm 104 42 60 72 0 1 1

R20mm 101 35 58 59 1 1 1

R95pTOT 104 38 62 63 0 0 0

R99pTOT 108 11 33 39 0 0 0

Rx1day 114 13 29 43 0 0 0

Rx5day 114 23 33 47 0 0 2

Indicators where more than 50% of stations analyzed showed a significant trend are shown in bold. See Table 1 for definition of the abbreviations for the precipitation indicators.

larger in the eastern two-thirds of the study area, including in
the vicinity of the Great Lakes. In the western third of the study
region, although the trends in the selected indicators are generally
positive, the magnitude of the trends is smaller with relatively
fewer stations meeting the threshold for statistical significance.
Regardless of precipitation indicator, negative trends are evident
for only a few stations and are insignificant. Significance of
the same indicators but with a weaker significance threshold
(p ≤ 0.20) is shown in Supplementary Figure 1. When the
significance level is lowered, the number of significant positive
trends increases substantially with no or very little increase in
the number of significant negative trends and the stations with
significant positive trends are more spatially coherent. When
a stricter (p ≤ 0.05) threshold is used, the number of stations
exhibiting significant trends decreases when compared to the
moderate (p ≤ 0.10) and weak (p ≤ 0.20) thresholds. Spatially,
when the strict threshold is used, the largest groupings of sites
with significant trends are in the central and eastern portions
of the study region (Supplementary Figure 2). The number and
spatial coherence of significant positive trends in the western
areas of the study region are reduced under the strict criterion.

We also evaluated the ratio of the trend estimates for the
annual indicators of R95pTOT and PRCPTOT for stations
with a significant positive trend in PRCPTOT, as an indicator
of the relative contribution of precipitation on very wet days
to trends in total precipitation (Supplementary Figure 3). In
general, precipitation on very wet days has contributed the
most (ratios >0.60 and at some locations >1.0) to annual
total precipitation in eastern New York/Pennsylvania, Indiana,

southern Wisconsin/eastern Iowa, and eastern Nebraska/Kansas,

compared to elsewhere in the study region. The modest

(<0.60) ratios at many locations elsewhere suggest that the
overall increase in total precipitation is not exclusively, or even

primarily, tied to increases in the frequency of higher intensity
events. Rather, changes in the frequency of lighter accumulations
are also contributing to the trends in total precipitation.

To better understand the consistency at individual locations
of the trends across precipitation indicators, a four-sided Venn
diagramwas used to plot the number of significant positive trends
and the percentage of significant positive trends for all possible
combinations of the four representative precipitation indicators,
PRCPTOT, WW, R1.26mm, and R95pTOT, recognizing that
the number of available stations varies among indicators due to
differing frequency of breakpoints identified in the time series
(Figure 4). The number of locations with significant positive
trends for multiple indicators is substantial, with 16.3% of the
stations with positive trends for all the indicators considered and
19.8% stations with positive trends for the two accumulation
indicators PRCPTOT and R95pTOT. The number of stations
with significant trends for the three variable combinations and
the other two variable combinations is relatively small.

Seasonal Indicators

For brevity, seasonal results are shown only for PRCPTOT,
R95pTOT, WW, and R1.26mm, which capture the breadth
of the different precipitation indicators. As for the annual
precipitation characteristics, we observe that in all seasons the
number of significant positive trends at all significance thresholds
considered substantially exceeds the number of significant
negative trends for the selected indicators (Table 3). However, the
proportion of stations with significant trends varies by season.
The seasonal trends for PRCPTOT indicate that no single season
is solely responsible for the annual increase in precipitation
observed at the majority of the stations. Significant (p ≤ 0.10)
positive trends are observed at over 35% of the stations in fall
and winter, 30% of the stations in summer, and 20% of stations
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FIGURE 3 | Trends for 1951–2019 in representative annual indicators of precipitation characteristics at locations in the Midwest and Great Lakes region that passed

the quality control checks described in the methods section: (A) annual counts of wet-wet day sequences (ANN WW; days; count year−1; upper left), (B) annual total

precipitation on wet days (PRCPTOT; mm year−1; upper right), (C) number of days with precipitation ≥ 1.26mm (R1.26mm; days year−1; lower left), and (D) total

precipitation on days when precipitation is ≥ 95th percentile (R95pTOT; mm year−1; lower right).

in spring. With the exception of one location in winter, no
significant negative trends in seasonal PRCPTOT are evident.
For R95pTOT, significant positive trends are evident at 33% of
the stations in fall but at only approximately 20% of stations
in the other seasons. For WW, over 24% percent of the station
locations have significant positive trends in summer, fall, and
winter, whereas only 15% of all stations observed in spring
have positive trends. When the threshold for significance is
weaker (p < 0.20), the number of significant trends increases
substantially for most indicators in most seasons. Almost all of
the additional significant trends that emerge by lowering the
threshold are positive in sign. The number of significant trends
in any one season is typically less than the number of significant
trends for the corresponding annual indicator. Under the weak
(p ≤ 0.20) threshold, no individual seasonal indicator presents
significantly positive trends at more than 50% of stations,
with the exception of R1.26mm in fall Similar to the annual
indicators, when the threshold for significance is stricter (p ≤

0.05), fewer stations exhibit statistically positive trends, while

the number of statistically significant negative trends remains
largely unchanged.

Seasonal variations in the spatial patterns in trends over
time are shown for PRCPTOT, R95pTOT, and WW. The
spatial distributions for R1.26mm are not shown as they are
similar to those for WW. Large between season differences in
the spatial variability of the temporal trends are evident. For
instance, locations with significant (p ≤ 0.10) positive trends
in seasonal PRCPTOT are distributed across the study area in
fall but are largely confined to the vicinity of the Great Lakes
(Wisconsin, the Lower Peninsula of Michigan, northeastern
Ohio, western Pennsylvania, western New York) in winter
(Figure 5). In spring, most of the significant positive trends are
found in the western two thirds of the study region with few
significant trends in New York, Pennsylvania, and Ohio, whereas
in summer the greatest density of significant trends along with
the largest trend magnitudes are found in the eastern and
central portions of the study region. For most stations, significant
positive trends are observed in only one or two seasons. A
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FIGURE 4 | Venn Diagram of the number of stations with significant positive

trends for all possible combinations of four representative annual precipitation

indicators: the probability of wet-wet days (WW), total annual precipitation

(PRCPTOT), the number of wet days (R1.26mm), total precipitation on days

with precipitation ≥ 95th percentile (R95pTOT). Percentages are relative to

largest number of significant positive trends which was 86. Percentage of

significant (p ≤ 0.10) positive trends falling in each category is shown in

parentheses.

significant negative trend across all seasons is observed at only
one location.

The seasonal trends of R95pTOT display less spatial
coherence when compared to seasonal PRCPTOT and to
annual R95pTOT, with locations with significant positive trends
often surrounded by locations with insignificant positive, and
sometimes insignificant negative, trends (Figure 6). The number
of locations in winter with significant positive trends is relatively
small and these locations are mostly found in the vicinity of the
western Great Lakes. The spatial extent of significant positive
trends expands in spring to include most of the southern and
eastern portions of the study area, with few significant trends
evident in the northwestern portion of the study area. In summer,
locations with significant positive trends are clustered in New
York/Pennsylvania, Ohio/Indiana, and southern Wisconsin. The
largest magnitude trends in R95pTOT are generally observed
during the summer months. Significant positive trends are
evident in fall across much of the area except for the extreme
western portion of the study region and in the Lower Peninsula
of Michigan. Although negative trends are evident for a number
of locations in all seasons for R95pTOT, these trends are
significant at only one location in spring and two locations
in winter.

Significant trends in seasonal WW are less spatially coherent
than the annual WW indicator (Figure 7). As with seasonal
R95pTOT, significant positive trends are often surrounded
by insignificant trends or in a few cases significant negative
trends. In general, stations with significant positive trends
are more clustered for WW than for seasonal R95pTOT but
less so than for seasonal PRCPTOT. The number of stations
with significant positive trends is small in spring, and there

are several (5) significant negative trends. The stations with
significant positive trends are relatively dispersed, although some
clustering is evident near the center of the study region. A
more distinct spatial pattern is present in summer. Stations with
significant positive trends are concentrated in Iowa, Indiana,
Wisconsin, Ohio, Pennsylvania, and New York. In contrast,
mostly insignificant trends are evident throughout the Plains
states and east across Minnesota and northern Wisconsin, and
the few significant trends in this area are negative. In fall,
significant positive trends in WW are found across the northern
half of the study region, whereas mostly insignificant trends of
mixed sign are observed for the southern half of the region with
the exception of Illinois. Little spatial coherence is evident in
the wintertime trends of WW, other than some clustering of
significant positive trends in the central and extreme northeast
sections of the study region.

When compared to annual indicators, the Venn diagrams of
seasonal indicators show that the groupings of indicators are
more dispersed among the possible combinations of the four
representative indicators (Supplementary Figure 4). In fall and
winter the three-indicator combination of PRCPTOT, WW, and
R1.26MM and the two-indicator combination of PRCPTOT and
R95pTOT aremore frequent, while in summer themost common
combination is PRCPTOT and R1.26MM. In spring, locations are
less likely compared to the other seasons to experience significant
positive trends for two ormore of the representative precipitation
indicators, in part a reflection the smaller number of significant
trends. For all seasons except spring a substantial number of
stations display a significant trend only for R95pTOT. Venn
diagrams can also be used to assess whether individual locations
are likely to experience significant trends in a particular indicator
duringmore than one season. Our results indicate that, regardless
of the indicator type, significant positive trends are most likely to
be observed during only one season (Supplementary Figure 5).

Total Precipitable Water
Trends in annual daily mean TOTPRCPWAT during the 1951–
2019 study period are positive in sign and significant over
the southern two-thirds of the study region (Figure 8). The
largest trends are in the south-central portion of the study
region with the smallest trends located over the central and
western Great Lakes. A significant increase in TOTPRCPWAT
is also evident over the Great Plains, with the magnitude of
the trend decreasing from south to north. Correlations between
the trends in annual TOTPRCPWAT and the trends in the
annual values of the four representative precipitation indicators
are weak to moderate (Table 4 and Supplementary Figure 6),
as indicated by the parametric Pearson’s r and non-parametric
Kendall’s τ correlation coefficients. Correlations for the annual
trends are insignificant (p ≤ 0.05) and negative for WW and
R1.26mm, and insignificant but positive for PRCPTOT. Only the
correlation between the annual trends in TOTPRCPWAT and
those in R95pTOT is significant, with the sign of the correlation
indicating a positive association between the annual trends of
these two variables.

Assessment of the possible contribution of seasonal trends
in TOTPRCPWAT to seasonal trends in the representative
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TABLE 3 | Number of stations exhibiting statistically significant trends (Mann Kendall, p ≤ 0.05 two-tailed, p ≤ 0.10 two-tailed, p ≤ 0.20, two-tailed) from 1951 to 2019 in

four representative seasonal indicators: total seasonal precipitation (PRCPTOT), the number of wet days (R1.26mm), the count of wet-wet days (WW), and the total

precipitation on days with precipitation ≥ 95th percentile (R95pTOT).

Precipitation

indicator

Season Total number of

stations after

breakpoint

analysis

Number of

stations with

significant

positive trends

(p ≤ 0.05)

Number of

stations with

significant

positive trends

(p ≤ 0.10)

Number of

stations with

significant

positive trends

(p ≤ 0.20)

Number of

stations with

significant

negative trends

(p ≤ 0.05)

Number of

stations with

significant

negative trends

(p ≤ 0.10)

Number of

stations with

significant

negative trends

(p ≤ 0.20)

PRCPTOT

Annual 100 47 75 79 1 1 1

Spring 112 12 21 31 0 0 5

Summer 111 20 31 49 0 0 2

Fall 114 34 42 50 0 0 0

Winter 104 22 32 44 0 0 1

R1.26mm

Annual 97 42 53 61 1 3 5

Spring 114 10 15 21 4 6 12

Summer 113 21 31 37 0 1 3

Fall 111 25 33 66 0 0 1

Winter 110 23 27 35 1 2 5

WW

Annual 105 27 44 51 5 7 9

Spring 113 8 17 26 4 5 9

Summer 111 16 24 35 4 6 9

Fall 111 18 27 41 0 1 1

Winter 106 18 25 39 0 0 1

R95pTOT

Annual 104 47 62 63 0 0 0

Spring 111 12 22 37 0 0 0

Summer 114 15 22 37 0 0 3

Fall 114 28 38 56 0 0 0

Winter 111 15 22 37 0 0 0

Indicators where more than 50% of stations analyzed showed a significant trend are shown in bold.

precipitation indicators is complicated by seasonal variations
in the significance of the TOTPRCPWAT trends, although in
general correlation coefficients at the seasonal time scale are
larger than those at the annual scale. Significant (p ≤ 0.05)
positive trends in TOTPRCPWAT (Supplementary Figure 7)
are evident during spring, summer, and fall for portions of
the study area, although insignificant trends are observed
for a substantial number of the reanalysis grid cells, with
the location of the insignificant trends varying by season.
In contrast, trends in TOTPRCPWAT are insignificant for
all grid cells in winter. Most of the significant (p = 0.05)
correlations between the seasonal trends in TOTPRCPWAT
and the season trends in the precipitation indicators are
positive, although the significance of the trends varies by season
and indicator. Correlations between the seasonal trends are
significant in spring (PRCPTOT, R1.26mm, R95pTOT), summer
(WW, PRCPTOT, R1.26mm, R95pTOT), and winter (PRCPTOT
and R95pTOT), although the significant winter trends should
be treated cautiously given the weak trends in TOTPRCPWAT
at this time of year. No significant correlations were observed
in the fall under Pearson’s r. When Kendall’s τ is used,

correlations for fall are significant and negative for PRCPTOT
and R95pTOT.

DISCUSSION/CONCLUSION

The impact of the additional quality control measures on the
number of stations available for precipitation trend analysis is
striking. Of the 317 stations in the Midwest and Great Lakes
region that met the initial criterion of 90% completeness, 203
stations were removed at the second step because they failed
the tests for observer bias (underreporting of precipitation ≤

1.26mm and over-reporting of precipitation amounts divisible
by 5 or 10 when precipitation is recorded in inches). In contrast,
the breakpoint analyses, which were conducted separately for
each precipitation indicator in recognition that discontinuities
can impact the indicators differently, removed only a small
portion of the remaining stations (17 or fewer, depending
on the indicator). This is a somewhat surprising result given
the well-documented discontinuities in observations from the
United States Cooperative Observer Network (Karl et al., 1987;
Winkler, 2004; Menne et al., 2010), which is the largest source
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FIGURE 5 | Trends (mm year−1) in seasonal total precipitation (PRCPTOT) for: (A) spring, (B) summer, (C) fall, and (D) winter.

of precipitation data for the United States in the GHCN-D
database (Menne et al., 2012). One interpretation is that many
of the precipitation time series were affected by both observer
bias and discontinuities and were removed following the tests
for observation bias. The number of stations with breakpoints
was largest for the “accumulation” and “threshold” precipitation
indicators, suggesting the tests for observation bias did not
remove all afflicted time series for these indicators. The final
suite of quality-controlled time series has a much coarser station
density than the datasets used in previous studies, and, while not
suitable for investigating local-scale variations in precipitation
trends, provides high confidence in the estimation of regional-
scale variations. The quality-control routines implemented here
also allow for more confidence in trends across the range of
indicators from high frequency light events to low frequency
extreme events, as observer bias affects various indicators
differently and may not be captured in studies relying solely on
data completeness and documented changes for data screening.

One finding from the use of the carefully quality-controlled
time series is that the estimated trends for 1951–2019 in the
Midwest and Great Lakes region are predominantly positive
for all the “wet” precipitation indicators and negative for the

“dry” precipitation indicators. In fact, there is a near absence of
significant negative trends across the region for all indicators,
with the exception of DD and CDD, and for all seasons and at
all three significance levels included in the analysis. On the other
hand, the proportion of stations with significant positive trends
varies by precipitation indicator, season, and significance level. In
general, significant trends at the moderate (p≤ 0.10) significance
level are most likely for the indicators involving precipitation
accumulation and counts of days with precipitation above
specified thresholds, and less likely for indicators of maximum
reported precipitation and the indictors defined in terms of the
sequencing of precipitation. Thus, users need to be cautious
of inferring from significant trends in common precipitation
characteristics, such as total precipitation, that significant trends
are also occurring in other precipitation characteristics at a
particular location. The larger number of significant positive
trends for the “wet” indicators under the weak (p ≤ 0.20)
significant level obviously need to be interpreted cautiously
because of the greater probability of a Type I error (rejecting the
null hypothesis of no trend when it is true). However, the greater
spatial coherence of the locations with significant trends for the
weak significance level compared to the moderate and stringent

Frontiers in Water | www.frontiersin.org 11 February 2022 | Volume 4 | Article 817342150

https://www.frontiersin.org/journals/water
https://www.frontiersin.org
https://www.frontiersin.org/journals/water#articles


Baule et al. Trends in Quality Controlled Precipitation

FIGURE 6 | Trends (mm year−1) in the seasonal amount of total precipitation falling on days with precipitation ≥ 95th percentile (R95pTOT) for (A) spring, (B) summer,

(C) fall, and (D) winter.

levels is consistent with a regional-scale trend toward a wetter
climate that is emerging from interannual variability.

Our results also confirm that precipitation indicators that
are defined annually often mask strong seasonal variations in
the temporal trends of both high frequency, low magnitude
events and low frequency, high magnitude events. For almost
all locations, one cannot assume based on the trends in an
annual precipitation indicator that a location is experiencing
similar trends seasonally. Instead, a significant trend in a
particular precipitation indicator typically is observed during
only one season.

While the low spatial density of the stations that met
all three of the quality control criteria somewhat constrains
inferences regarding subregional variations in precipitation
trends, our results, especially those using the weaker and
moderate significance levels, suggest that the character of
precipitation is not changing uniformly across the Midwest
and Great Lakes region. In terms of the annual values of four
representative precipitation indicators (PRCPTOT, R1.26mm,
WW, R95pTOT), significant positive trends are observed across
the central and eastern portions of the study region for all

four indicators, whereas in the west there is a notable absence
of significant positive trends for R1.26mm events. Seasonal
differences in the spatial distribution of significant trends are
also evident, particularly for winter when significant trends for
the four representative indicators are largely confined to western
Great Lakes portion of the study region. The smaller number of
significant trends present under the strict criteria, highlights the
strength and relative cohesiveness of trends in precipitation in
the central and eastern portions of the region, where most of the
significant (p ≤ 0.05) trends are located.

The quality-controlled time series are also useful for
evaluating relationships between trends in the precipitation
characteristics and physical processes potentially contributing to
these trends. Expanding on the intriguing findings of Kunkel
et al. (2020b) who found a significant positive correlation
between regionally-averaged trends in extreme precipitation and
trends in precipitable water for the contiguous United States,
we correlated, at annual and seasonal temporal scales, the
trends in PRCPTOT, R1.26mm, WW, and R95pTOT for the
quality-controlled station time series with trends in average
daily precipitable water at a 2.5◦ latitude x 2.5◦ longitude
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FIGURE 7 | Trends (days year−1) in the seasonal count of wet-wet-day sequences (WW) for (A) spring, (B) summer, (C) fall, and (D) winter.

FIGURE 8 | (A) Significance (p ≤ 0.05) and (B) Sen’s slope (kg m−2 yr-1) of the trend in annual mean daily total precipitable water for the study region from 1951 to

2019. The stations with quality-controlled precipitation time series are shown on both maps as dots.

resolution from the NCEP/NCAR reanalysis (Kalnay et al., 1996).
The correlations for R95pTOT support for the Midwest and
Great Lakes region the coarser-scale findings from Kunkel et al.
(2020a) that the trend in extreme precipitation increases with
an increasing trend in precipitable water, but also point to
a more complex interpretation of the relationship between in

trends in precipitation characteristics and trends in precipitable
water for the study region. In particular, significant (p ≤

0.05) correlations are evident during spring and summer for
PRCPTOT and R1.26mm and in summer for WW, suggesting
that increases in precipitable water may also contribute to
positive trends in high frequency precipitation events and even
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TABLE 4 | Pearson correlation coefficients (r) and Kendall rank correlation

coefficients (τ ) between annual and seasonal trends from 1951 to 2019 in

precipitation indicators and total precipitable water.

Indicator Season r pr τ pτ

WW Spring 0.11 0.26 0.062 0.33

Summer 0.37 <0.01 0.23 <0.01

Fall −0.18 0.06 −0.10 0.13

Winter 0.036 0.71 0.03 0.68

Annual −0.089 0.37 −0.023 0.73

PRCPTOT Spring 0.33 <0.01 0.21 <0.01

Summer 0.4 <0.01 0.26 <0.01

Fall −0.14 0.15 –0.13 0.05

Winter 0.25 0.01 0.18 0.01

Annual 0.13 0.20 0.097 0.15

R1.26MM Spring 0.2 0.04 0.15 0.02

Summer 0.42 <0.01 0.27 <0.01

Fall −0.086 0.36 −0.04 0.55

Winter 0.058 0.55 0.01 0.85

Annual −0.076 0.45 −0.015 0.82

R95pTOT Spring 0.19 0.05 0.06 0.33

Summer 0.26 0.01 0.17 0.01

Fall −0.13 0.16 –0.16 0.014

Winter 0.32 <0.01 0.22 <0.01

Annual 0.21 0.03 0.15 0.03

Significant correlations (p ≤ 0.05) are noted in bold. P-values for Pearson’s r are noted in

pr and Kendall’s τ are noted under pτ .

to the sequencing of wet days. Also, the correlation between the
trend in R95pTOT and that for precipitable water is insignificant
in fall for the parametric correlation coefficient and significant
but negative for the non-parametric correlation coefficient,
suggesting that changes in atmospheric lifting mechanisms (e.g.,
fronts, extratropical cyclones) rather than increased atmospheric
humidity may be more important for explaining the positive
trend in R95pTOT in the Midwest and Great Lakes region in
fall. Our findings of insignificant trends in precipitable water
for large portions of the study area, especially in winter when
the precipitable water trends are insignificant for the entire
NCEP/NCAR grid over the study area, point to the need for
cautious interpretation of the relationship between trends in
precipitable water and trends in precipitation characteristics.

We have demonstrated the usefulness of quality-controlled
precipitation time series for evaluating trends in precipitation
characteristics and for investigating their relationship with
processes. However, the limitations of the quality-controlled
dataset should also be considered in interpreting the findings
presented here and when applying the time series in future work.
A key limitation is the coarse spatial resolution of the quality-
controlled time series, limiting their usefulness in investigating
potential contributions of local-scale features such as lake
surfaces or topography on trends in precipitation characteristics.

Another concern is that identified breakpoints in the time series
that are attributed to changes in instrumentation, station moves
or observation protocols may instead be caused by changes in
circulation regimes. Also, some types of precipitation indicators
may be less sensitive to observer bias than others, and a less
stringent protocol for removing time series for consideration
would be appropriate. Moreover, for any quality control routine
that is not manual, there are almost always time series with
data issues relevant to a particular analysis that pass through
filters and checks and those without data issues that are
incorrectly removed.

In sum, our analysis focused on quality control of station
time series to improve the quality of data prior to analysis.
As a result of this effort, the trends in our study tended to
exhibit a more cohesive spatial and temporal similarities
when compared with studies with different quality control
criteria, illustrating the importance of quality control of
observations in climatic studies. Also, our results indicate,
at least for the Midwest and Great Lakes region, that not
only is extreme precipitation increasing but the entire
distribution of precipitation has been shifting upward
over time.
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The moistening of cold air passing over the Great Lakes of North America has a profound

impact on the cool season climate of regions downwind, from relatively benign air mass

modification to highly-impactful snowfall events. The importance of lake effects has led

to the development of varying techniques for systematically identifying lake-effect days.

The results of two such methods are merged here to yield a more thorough record of

lake-effect days for the eastern Great Lakes. Comparative analysis of the data sets

illustrates the different objectives of the two methodologies, where one identifies days

with a synoptic setup conducive to lake-effect snowfall, and the other identifies days

with lake-effect modification of the overlying air mass. A smaller population of “absolute”

lake-effect days are those identified by bothmethods, while a larger population of “hybrid”

lake-effect days are absolute days plus those identified by one method but not the other.

For a 51-year study period ending with the 2014–15 cool season, the absolute data set

yields a mean of about 15 lake-effect days per year, or 8% of the November through

April season, while the hybrid data set yields a mean of 56 lake-effect days per year,

or 31% of the season. The frequencies of absolute, air mass modification-defined, and

hybrid lake-effect days decreased through the study period, with days within the hybrid

data set declining at a statistically significant rate of 2.8 days per decade, although

most obviously from the late 1970s through the early 2000s. The result is a general

drying of the cool-season lake-effect hydroclimate. The merged data set offers a more

thorough historical record of days available for atmospheric and hydroclimatic study of

the lake-effect phenomenon within the eastern Great Lakes region.

Keywords: Great Lakes, lake-effect, cool season, Synoptic Classification, hydroclimate

INTRODUCTION

Like a number of water bodies globally, the Great Lakes of North America (Figure 1) are capable of
modifying the thermal and moisture characteristics of the lower atmosphere, altering the weather
and climate of areas downwind (Andresen, 2012; Notaro et al., 2013). Great Lakes “lake effects”
are most distinct early within the cool season, when energy that has accumulated within the lakes
during the warmth of the year interacts with southward moving cold air. The vertical stability of
the deeply cold atmosphere is reduced with low-level warming and moistening, initiating upward
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FIGURE 1 | The North American Great Lakes and the locations of GHCN-Daily precipitation stations (red squares within red boundary), the location of Buffalo, New

York (large open circle) for which Suriano and Leathers (2017a) constructed a Temporal Synoptic Index, and the three sets of four locations for which Spatial Synoptic

Classification data were applied by Ellis et al. (2021), with black-filled circles representing lake-effect stations, and black-filled squares and triangles representing

northern and eastern non-lake-effect stations.

motion that is often enhanced by friction above the land surface
downwind to yield clouds and lake-effect precipitation (Scott and
Huff, 1996). The result is an acute impact on the weather and
hydroclimate of areas generally east and southeast of each lake.
The advection of cold air across the lakes is typically associated
with a rather distinct weather pattern, most often involving some
variation of a surface low-pressure center to the east and surface
high-pressure to the west (Ellis and Leathers, 1996; Suriano
and Leathers, 2017a). The integrated portrayal of atmospheric
pressure centers and the air masses arranged around them is
referenced as the synoptic atmosphere; thus, the cool season
effect of the Great Lakes, with distinct cold air advection between
opposing pressure centers, is a phenomenon that lends itself to
synoptic atmospheric classification techniques.

The Temporal Synoptic Index (TSI) has been used effectively
to identify cool season synoptic atmospheric patterns conducive
to lake-effect precipitation within the historical record (Ellis
and Leathers, 1996; Suriano and Leathers, 2017a). The TSI
method (Kalkstein and Corrigan, 1986) involves using principal
components analysis (PCA) on 24 daily weather observations
(six variables, four times per day) to determine primary modes
of variability seasonally. Average linkage clustering is then
used to cluster PCA component scores with large eigenvalues
to yield clusters of days, or synoptic types, with a similar
surface meteorological profile. Most recently, Suriano and
Leathers (2017a) applied the TSI methodology to daily data
for Buffalo, New York (Figure 1) to identify synoptic patterns
conducive to lake-effect snowfall downwind of the eastern Great
Lakes Erie and Ontario. The TSI was constructed using data
for the autumn (September–November), winter (December–
February), and spring (March–May) seasons separately. Suriano
and Leathers (2017a) identified seven TSI types conducive

to lake-effect snowfall based on composites of their sea-level
pressure pattern, lower-atmospheric wind direction and speed,
vertical wind direction shear through the lower atmosphere,
and temperature difference between the lake surface and lower
atmosphere. The latter is predicated on the lake-850 hPa
temperature difference threshold of about 13◦C necessary to
initiate convection (Holroyd, 1971). As with any classification,
variability exists within the population of days that comprise each
TSI type. Undoubtedly, there are individual days for which the
sea-level pressure pattern, winds, or the lake and air temperatures
may not have met the criteria that Suriano and Leathers (2017a)
applied to the mean values calculated for each TSI type.

Recently, Ellis et al. (2021) used historical daily weather
type data to detect cool season modification of cold, dry air
upwind of the Great Lakes to cool, moist air downwind of
the lakes. The work was predicated on the Spatial Synoptic
Classification (SSC) database (Sheridan, 2002). In contrast to the
fully-automated TSI, the classification of daily weather within
the SSC methodology is guided by sets of manually-selected
days from the historical record that best represent six weather
types for that location. An automated discriminant analysis then
assigns each day in the historical record to the weather type it
most resembles based on twelve daily meteorological variables.
Weather types are defined by their humidity and air temperature
characteristics: dry-polar (DP), dry-moderate (DM), dry-tropical
(DT), moist-polar (MP), moist-moderate (MM), moist-tropical
(MT). The SSC methodology includes a seventh classification for
days exhibiting changes in the weather variables symbolic of a
transition from one weather type to another—the transition (TR)
classification. Ellis et al. (2021) used a spatial arrangement of
weather types across the Great Lakes and surrounding regions to
identify days within the historical record for which modification
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FIGURE 2 | Seasonal number of lake-effect days for the eastern Great Lakes

as determined by the TSI (black) and SSC (gray) methodologies.

by the lakes seems apparent. Using an array of SSC stations
(Figure 1), their method identified days for which the dry-polar
(DP) weather type predominantly surrounds the lakes (northern
and eastern station locations in Figure 1), but the moist-polar
(MP) weather type is evident within the traditional lake-effect
regions (lake-effect locations in Figure 1). The method of Ellis
et al. (2021) is obviously dependent on classification accuracy
within the SSC database, but also on a limited SSC station density,
both of which are important in the nuanced identification of the
sometimes-subtle lake effect phenomenon. For example, while an
SSC station east of the long axis of Lake Ontario is desirable, Ellis
et al. (2021) noted that the daily records of the two candidate
stations within the SSC database (Watertown and Fort Drum,
New York) are marred by 10- and 35-year gaps and otherwise
poor data completeness through the record. Clear evidence of air
mass modification within the regional array of weather type data
is possibly restricted to the purest or most recognizable cases of
lake effects, possibly eliminating less clearly-defined days that are
no-less impactful.

Each of the TSI and SSCmethodologies yields a daily calendar
of lake-effect days. As the SSC calendar begins in November 1964,
and the TSI calendar, available only for the eastern Great Lakes,
ends in 2015, a 51-year period of cool seasons for which the
databases overlap extends from November 1964 through April
2015. The SSC methodology identifies fewer lake-effect days for
the eastern lakes than does the TSI method (Figure 2), which is
logical, as the SSC-based approach is necessarily more particular
in its daily discernment of a sometimes-subtle lake effect (air
mass modification) using an array of stations across the region.
In contrast, the TSI approach uses daily synoptic types at one
location as a generalization for the region, and then generalizes
all days within certain synoptic types as conducive to lake-effect
snowfall. This likely passes a wider net through the historical
record than does the SSCmethodology. Neithermethod is viewed
as superior; rather, the twomethods simplymeet slightly different
objectives. Merging the two data sets may yield a more thorough
history of lake-effects for the eastern Great Lakes region to
support atmospheric and hydroclimatic research.

Aside from TSI-based classifications (Ellis and Leathers, 1996;
Karmosky, 2007; Suriano and Leathers, 2017a; Suriano et al.,
2019), automated identification of regional lake-effect days to
yield a usable historical data set is rare. Most recently, Hartnett
(2021) identified snowstorms within the daily snowfall record
of stations east of Lake Ontario, and used a manual scheme
to classify each storm as directly associated with a mid-latitude
cyclone or not. Storms not directly related to a cyclone, including
lake-effect storms, were identified for the period 1985–2015.
Given the manual nature of the classification methodology, the
results are necessarily for a relatively small region of central New
York state, and the storm classification data are not publicly
accessible. Classification data from the two TSI-based studies that
focus on lake-effect snowfall (Ellis and Leathers, 1996; Suriano
and Leathers, 2017a) are not publicly accessible, nor are the
data from the two studies that include lake-effect snowfall as
an element of their classification results—study of the Catskill
Mountains region of south-central New York state (Suriano
et al., 2019) and study of the broader northeastern United States
(Karmosky, 2007). At the opposite end of the temporal spectrum,
case-study analyses of individual lake-effect storms or seasons
abound (e.g., Kristovich et al., 2017).

The primary objective of this study is to present justified
blends of the results of the TSI and SSC methodologies for
identifying lake-effect days within the eastern Great Lakes region.
Complementary analysis of the two lake-effect products aims to
illustrate their differences, but rationalize their integration. The
secondary purposes of the study are to characterize the lake-
effect hydroclimate of the region through the study period using
the blended datasets, and to render the full hybrid data set of
historical lake-effect days accessible.

MATERIALS AND METHODS

Comparative Analysis
The daily lake-effect calendars generated using the TSI and SSC
methodologies were provided by the authors of the prior studies
(Suriano and Leathers, 2017a; Ellis et al., 2021) and were aligned
for comparison. Three groups of days are analyzed—the 742 lake-
effect days identified as such by both methods, the 1,330 TSI
lake-effect days unsupported by the SSCmethod, and the 794 SSC
lake-effect days unsupported by the TSI method. TSI-only days
are those for which the synoptic atmospheric flow suggests lake-
effect, but air mass modification does not, while the opposite is
the case for SSC-only days. From the TSI methodology, we chose
not to include days from what Suriano and Leathers (2017a)
deemed the “lake-enhanced” synoptic pattern, when moisture
input from the lakes may have enhanced a mid-latitude weather
system that produced precipitation on a broader scale.

We examined the 51-year time series of the annual fraction of
lake-effect days for which the two methods agree and disagree
for changes in the relationship between the two data sets
through time, using Sen’s slope estimator to calculate trend
magnitude and the Mann-Kendall test to establish significance.
We also segregated lake-effect days by month to identify
dataset differences intra-seasonally. As the TSI yields multiple
synoptic pattern types conducive to lake-effect precipitation, we
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determined the distribution of conflicting lake-effect days by TSI
synoptic pattern to identify any obvious outlier in the level of
agreement with the SSC methodology.

To assess disagreement between the two lake-effect data sets
in terms of the synoptic atmosphere, we generated composites
of sea-level pressure and 850 hPa air temperature from lake-
effect days identified by both methods, and from lake-effect
days identified by each method that were uncorroborated by
the other method. North American Regional Reanalysis (NARR)
data (Mesinger et al., 2006) were used to create gridded regional
composites (∼0.3◦ latitude × 0.3◦ longitude). The data were
accessed through the United States Earth System Research
Laboratory Physical Sciences Division’s compositing platform
(https://psl.noaa.gov/cgi-bin/data/narr/plotday.pl). We used the
gridded composite data to create contour maps, focusing on
the sea-level pressure pattern as the most distinct synoptic-scale
variable associated with cool season lake effects (Ellis et al., 2021),
but supplemented by 850 hPa air temperature when prudent,
given its importance in the TSI-based methodology of Suriano
and Leathers (2017a). A caveat is that NARR data extend back
only to 1979, but we believe that the ∼37-year record (January
1979 through April 2015) is of sufficient length for depicting
mean atmospheric conditions, particularly given the advantage
of a finer spatial resolution compared to other similar products
of longer record.

We further evaluated the three sets of lake-effect days
(TSI+SSC, TSI-only, and SSC-only) by portraying themagnitude
and spatial pattern of precipitation frequency derived from
the station-level Global Historical Climate Network (GHCN)-
Daily database of the National Centers for Environmental
Information (NCEI) (https://www.ncei.noaa.gov/products/land-
based-station/global-historical-climatology-network-daily). All
data within the GHCN-Daily database are subject to a suite
of NCEI reviews before inclusion, forming one of the most
complete repositories of in-situ precipitation data available
(Menne et al., 2012). To focus on the area around the eastern
Great Lakes, we identified 403 United States and Canadian
stations within a region from 74◦ to 84◦ west longitude and
from 39◦ to 46◦ north latitude (Figure 1). Requiring 90% data
completeness for each of the three sets of lake-effect days
reduced the number of stations to 298 (Figure 1). For each set
of lake-effect days, the percentage of days with precipitation
was calculated for each station, and the resulting station-
level data were gridded to a resolution of ∼0.5◦ latitude ×

0.5◦ longitude grid to create mapped contours. The spatial
pattern of precipitation frequency is most relevant for synoptic
setup-defined lake-effect days (i.e., TSI-defined days), as the
synoptic patterns are characterized as conducive to precipitation
(Suriano and Leathers, 2017a). Still, a lake-effect spatial pattern
depicted by the frequency of precipitation occurrence, even if
weak, is anticipated to be evident for air mass modification-
defined lake-effect days (i.e., SSC-defined days), despite their
representation of air mass modification by the lakes rather than
precipitation generation. The spatial pattern of precipitation
frequency for each set of lake-effect days allows for an
objective verification of lake effects across the different sets
of days.

Hybrid Data Set Analysis
Results of the comparative analysis of the TSI- and SSC-based
data sets supported their blending to create two hybrid data
sets for analysis and dissemination. The “absolute” data set
consists of days for which the methods agree are lake-effect
days. The “hybrid” data set includes the days of agreement
plus all days identified by one method but not the other, or
what we term synoptic-defined (TSI, not SSC) and air mass
modification-defined (SSC, not TSI). Replicating the approach
of Ellis et al. (2021), we analyzed time series of lake-effect day
occurrence graphically and with computation of the Sen’s Slope
estimator and Mann-Kendall significance test, while also testing
the difference in the populations of lake-effect day frequency for
the early and late halves of the record using a two-sample t-test.
To portray the cool-season lake-effect hydroclimate across the
region, we characterized station-level precipitation on lake-effect
days using the array of GHCN-Daily stations. For each station,
we computed mean seasonal lake-effect values of precipitation
amount, precipitation frequency, and the percentage of seasonal
precipitation and precipitation frequency attributed to lake-
effect days. As outlined earlier, we gridded the derived data
and generated mapped contours. Replicating the method of Ellis
et al. (2021), we created mean regional values for each of the
hydroclimate variables using 45 of the GHCN-Daily stations. The
stations are within 160 km (100 mi) downwind of each of the
lakes, and represent the 47 years 1968–69 through 2014–15 so
to maximize station density per Ellis et al. (2021). To analyze
hydroclimate change, we created time series of the mean regional
values (annual seasonal means from the 45 stations) of each
of the hydroclimatic variables and applied the aforementioned
statistical tests for trend through the record and for difference
between the temporal halves of the record.

RESULTS

General Dataset Comparatives
When combined, the two methods yield 2,866 lake-effect days
across the 51-year study period, for an average of about 56 per
year, or about 31% of the 6-month season. The TSI method
identified 2,072 lake-effect days, or an average of about 41 per
year with a standard deviation of 9 days. The SSC method
identified 1,536 days, or an average of about 30 days per year
with a standard deviation of 9 days. The two methods agree
on 742 days, or 35.8% of TSI lake-effect days and 48.5% of
those identified by the SSC method. The annual frequencies of
lake-effect days from the two methods covary, with a Pearson
pairwise correlation value of 0.51 (p < 0.01). The percentage of
annual lake-effect days (n = 2,866) for which the methods agree
(n = 742) does not exhibit a statistically significant trend. The
same is true when segregating the data into the sub-seasonal
periods November (early-season), December through February
(mid-season), and March/April (late-season), which align with
the TSI seasons of Suriano and Leathers (2017a). Likewise, the
percentage of TSI-defined lake-effect days (n= 2,072) supported
by the SSC methodology (n = 742) is not characterized by a
statistically significant trend, either seasonally or sub-seasonally.
However, the percentage of SSC-defined lake-effect days (n =
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TABLE 1 | For lake-effect days identified by the TSI method, SSC method, and the methods combined (TSI/SSC), the monthly distribution, the percentage of seasonal

days occurring within each month, and the percentage of days each month that are supported by the other method (TSI, SSC), or by both methods (TSI/SSC), 1964–65

through 2014–15.

Month TSI SSC TSI/SSC

nDays Percent of total Percent agree nDays Percent of total Percent agree nDays Percent of total Percent agree

November 466 22.5 19.1 145 9.4 61.4 522 18.2 17.0

December 381 18.4 41.5 317 20.6 49.8 540 18.8 29.3

January 614 29.6 42.7 427 27.8 61.4 779 27.2 33.6

February 517 24.9 38.7 331 21.6 60.4 648 22.6 30.9

March 80 3.9 35.0 196 12.8 14.3 248 8.7 11.3

April 14 0.7 35.7 120 7.8 4.2 129 4.5 3.9

Total 2,072 100.0 35.8 1,536 100.0 48.3 2,866 100.0 25.9

1,536) supported by the TSI methodology (n = 742) exhibits
a statistically significant positive trend, indicating increasing
validation of SSC days by the TSI methodology. The magnitude
of the trend is not large at +0.27 percent year−1 (p = 0.02),
amounting to approximately a 13% change over the course of
the 51-year period. While a positive trend in early-season is
somewhat evident (p = 0.10), the seasonal trend is largely a
product of a positive trend of 0.24 percent year−1 (p = 0.04) in
mid-season. There is not a statistically significant trend for the
late-season period.

Lake-effect days within one dataset uncorroborated by the
other are temporally isolated within the lake-effect calendar. For
the 1,330 TSI-defined lake-effect days that do not appear within
the SSC data, 68.1% are not preceded or followed by another lake-
effect day from either data set, and for only 8.2% of days is there
an SSC-only day before or after. For the SSC data set, 77.8% of the
794 SSC-only lake-effect days do not have a lake-effect day from
either data set preceding or following, and for only 6.3% of days
is there a TSI-only day before or after. Thus, it does not appear
that uncorroborated lake-effect days within either data set are
commonly associated with a timing difference between data sets.
Generally, the days of disagreement appear to be rather uniquely
defined by each method.

Intra-seasonal differences between the TSI and SSC data
sets are evident within the monthly climatology of lake-effect
day frequency. While the percentage of seasonal lake-effect
days occurring in mid-season are comparable between the two
methods, the TSI method yields a much greater percentage
of seasonal lake-effect days in the early-season period than
does the SSC method (Table 1). The opposite is the case for
the late-season period (March–April), when the percentage
of seasonal lake-effect days generated by the SSC method is
much greater than that for the TSI method (Table 1). So,
while the TSI method yields more lake-effect days across all
months than does the SSC, the two methods fundamentally
differ in the shoulder periods of early- and late-season. This
is made clear by the fraction of monthly lake-effect days
within each data set that are corroborated by the other data
set. For the TSI data, ∼40% of lake-effect days in mid-
season appear within the SSC data set, and about 35% for
the late-season period, but only 19% during the early-season

(Table 1). For the SSC data, about 60% of lake-effect days in
November, January, and February appear in the TSI data set,
50% in December, but only 14% in March and 4% in April
(Table 1). When the data sets are combined into one record,
the percentage of days for which the methods corroborate
one another ranges from about 30 to 34% in mid-season, but
declines to 17% in early-season, and 11% and 4% in the late-
season months of March and April (Table 1). Of the 742 lake-
effect days upon which the two methods agree, 620 (84%) are
within mid-season.

Uncorroborated TSI Data
The greatest number of uncorroborated TSI-defined lake-effect
days is in mid-season (December–February), when the rate of
corroboration is actually greatest, but the frequency of lake-effect
days is also greatest. Conversely, the early-season (November)
has the lowest rate of corroboration, yielding a relatively large
number of days not supported by the SSC data. There are few
TSI-defined lake-effect days in late-season (March–April), with
a corroboration rate rivaling that of mid-season, possibly owing
simply to a high frequency of SSC-defined lake-effect days in
spring relative to the low frequency within the TSI dataset.

There is very little difference in the mean sea-level pressure
pattern for TSI-defined lake-effect days corroborated by SSC
data (Figures 3A–C) and those uncorroborated (Figures 3D–F).
The classic lake-effect pattern, with a high-pressure center over
the central United States and a low-pressure center along the
northeastern coastline of North America, is evident for the early-
and mid-seasons. In late-season, the high-pressure center is
located farther north, while the low-pressure center is farther
south, imparting a more north-to-south flow across the eastern
Great Lakes than the northwest-to-southeast orientation earlier
in the season. However, this pattern is specific to the single
TSI synoptic atmospheric setup judged by Suriano and Leathers
(2017a) as conducive to lake-effect snowfall in spring. Across
the 6-month season it does not appear that uncorroborated TSI-
defined lake-effect days are associated with a mean sea-level
pressure pattern that is noticeably different from that associated
with corroborated days. A feature more subtle than synoptic-
scale sea-level pressure, such as lower-atmospheric temperature,
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FIGURE 3 | For TSI-defined lake-effect days in early-season (left column), mid-season (middle column), and late-season (right column), mean sea-level pressure (hPa)

for days corroborated by SSC data (A–C), mean sea-level pressure for uncorroborated days (D–F), and difference in mean 850 hPa air temperature (◦C) on

uncorroborated and corroborated days (uncorroborated minus corroborated) (G–I), 1964–65 through 2014–15. Isobars are in 2-hPa intervals, and air temperature

differences are in 1◦C intervals.

appears to prevent the SSC methodology from matching these
TSI-defined lake-effect days.

In their identification of TSI synoptic patterns conducive
to lake-effect snowfall, Suriano and Leathers (2017a) based
their decisions on several characteristics, the most fundamental
being mean sea-level pressure pattern and mean lake surface-
to-850 hPa air temperature. By using mean values of variables
such as air temperature, it is possible that a synoptic type
deemed conducive to lake-effect snowfall includes days that
are more marginal than others, enough so that they could
be days that the SSC methodology failed to identify. Lending
some credence to this is the difference in 850 hPa air
temperature between TSI-defined lake-effect days that are
corroborated and uncorroborated by SSC data. For November,
the mean 850 hPa air temperature for uncorroborated days
is more than 4◦C warmer than for corroborated days,
while for December through February the difference is
>2◦C (Figures 3G,H). The greater mean temperatures on
uncorroborated TSI-defined lake-effect days suggest that they
are the warmer days within the population of days of each
of the lake-effect TSI types for November and December

through February. This is not the case for March and
April, as there is little difference in mean 850 hPa air
temperature for corroborated and uncorroborated TSI-defined
lake-effect days (Figure 3I).

The element of the SSC definition that prevents corroboration
of TSI-defined lake-effect days supports the idea that the intensity
of cold air across the region may be a source of methodological
disagreement during the early-season. There are three geographic
regions for which SSC weather types are examined, together,
for determination of a lake-effect day (Ellis et al., 2021). Using
four stations immediately east (downwind) of the eastern lakes
(Figure 1), at least one station must be of the moist-polar (MP)
or transition (TR) (onset or demise of lake-effects) weather type,
and all others of the dry-polar (DP) type. Within a region north
(upwind) of the eastern lakes (Figure 1), at least two of four
stations must be of the dry-polar (DP) weather type. Lastly,
within a region along the northeastern United States coastline
(well-downwind) (Figure 1), at least two of four stations must
be of the dry-polar (DP) or transition (TR) (cold front passage)
weather type. If the criterion of any one region fails, the day
is identified as a non-lake-effect day. For the 1,330 TSI-defined
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lake-effect days not identified as such by the SSC methodology,
there are a total of 2,124 causes of failure among the three
regions used to define an SSC lake-effect day, of which 39.5%
stem from the lake-effect region, 31.2% from the northern region,
and 29.3% from the eastern region. While a polar weather type
is a requirement for all three regions (expansive cold air), the
lake-effect region also requires evidence of a lake influence on
humidity [moist-polar (MP)], whereas the presence of cold, dry
air is the primary criterion in the northern and eastern regions.
When segregating the causes of failure to corroborate a TSI-
defined lake-effect day by month, the proportion attributed to
the lake-effect region increases through the season, while that for
the northern and eastern regions decreases through the season.
This pattern is even more pronounced when focusing on the
instances for which the criterion in only one region caused the
failure of the SSC to corroborate a TSI-defined lake-effect day,
which is to say, those days that were very close to meeting the
SSC definition. Out of 586 such cases (44.1% of 1,330 TSI-only
lake-effect days), 47.1% stemmed from the lake-effect region,
29.9% from the northern region, and 23% from the eastern
region. The attribution of monthly instances to the lake-effect
region increases through the season, while those attributed to the
northern and eastern regions decrease through the season.

It appears that violating the cold air requirement within the
eastern and northern regions of the SSC methodology on TSI-
defined lake-effect days is more likely during the first half of the
season, becoming much less likely in late-season. The lack of
sufficiently cold air is also likely the case for definition violations
stemming from the lake-effect region, but lack of a lake-effect
in the form of increased humidity contributes, likely producing
the greater fraction of definition violations later in the season.
These patterns are logical, as marginally-cold air masses passing
over the lakes are more likely in the warmer early portion of
the season, and marginally-humidified air through interaction
with the lakes is more likely late in the season due to reduced
lake temperatures and ice cover. However, the propensity for
more early-season violations of the SSC methodology on TSI-
defined lake-effect days may also stem from the humidity aspect
of the cold, dry air requirement at the SSC stations north of
the lakes.

For lake-effect days identified by bothmethods, the percentage
of days with precipitation across the region is greatest, spatially,
to the lee of the eastern lakes in early-season (60–70%)
(Figure 4A), mid-season (60–70%) (Figure 4B), and late-season
(50–70%) (Figure 4C). For TSI-defined days uncorroborated by
SSC data, slightly smaller percentages (50–60%) are evident to
the lee of the lakes in early-season (Figure 4D) and mid-season
(Figure 4E). The contrast is greater for uncorroborated days in
late-season—only about 30–40% of the days are characterized
by precipitation to the lee of the lakes (Figure 4F). For the
TSI-defined days that are uncorroborated by SSC data, slightly
higher percentages of days with precipitation are evident in
the region north of the eastern Great Lakes in early-season
(Figure 4D) and mid-season (Figure 4E), compared to days
corroborated by SSC data (Figures 4A,D). This is not the
case in late-season (Figure 4F). Days with precipitation in
this area north of the lakes, possibly associated with the

departing low-pressure center to the northeast (Figures 3D,E)
or sourced from the western lakes, are likely classified as
something other than the dry-polar (DP) weather type by
the SSC methodology, violating the SSC-based definition of a
lake-effect day.

As the TSI methodology generalizes the atmospheric pattern
for the region using conditions at one station, and also generalizes
the conduciveness for lake-effect snowfall based on the mean
lower-atmospheric characteristics of each synoptic pattern type
and mean monthly lake temperature, it is reasonable to believe
that some days within a TSI synoptic type do not satisfy the
criteria established by Suriano and Leathers (2017a). This is not
to say that these are exclusively the days that lack corroboration
by the SSC method, as the SSC method is limited and aims at
a slightly different objective. Further, of the 1,330 TSI-defined
lake-effect days that do not appear in the SSC data for the
eastern lakes, 454 (34%) were classified as western lakes lake-
effect days within the SSC methodology (Ellis et al., 2021),
adding credence to those TSI-defined lake-effect days. While
the results here help to rationalize the uncorroborated TSI-
defined lake-effect days, they neither explicitly confirm nor
deny that they should be included in the TSI-defined lake-effect
data set.

Uncorroborated SSC Data
While the TSI methodology yields a greater number of lake-
effect days than are within the SSC data set, there are 794
SSC-defined days that do not appear in the TSI data set. Most
(455 days, or 57.3%) are in mid-season (December–February),
while the fewest are in early-season (November) (56 days, or
7.1%), when the SSC method yields a much smaller proportion
of seasonal lake-effect days than does the TSI method. The
opposite is true in late-season (March–April), when a much
greater fraction of seasonal SSC-defined days occurs relative to
the TSI dataset. As such, 35.6% (283 days) of the SSC-defined
lake-effect days not corroborated by TSI data occur during
the late-season.

While Suriano and Leathers (2017a) defined only seven
TSI synoptic atmospheric patterns as conducive to lake-effect
snowfall, the 794 SSC-defined lake-effect days uncorroborated
by TSI data are distributed across 28 other TSI types. Of the
six types that each account for at least 5% of the 794 days,
four are mid-season TSI types and two are spring types. Of
the other 22, nine each account for <1% of the days. The
mean sea-level pressure patterns from the 56 SSC-defined lake-
effect days in early-season that are uncorroborated by TSI data
(Figure 5A) and the 455 days in mid-season (Figure 5B) are
broadly typical of that for lake effects (e.g., Figures 3A,B), except
that the center of high-pressure is not optimally positioned
to foster strong low-level cold-air advection across the Great
Lakes region. This is evident in the weak sea-level pressure
gradient across the eastern lakes within the composites. The
patterns apparently support the necessary expanse of the dry-
polar (DP) weather type required by the SSC methodology, but
lake-effects are likely subtler under these patterns—enough to
yield the moist-polar (MP) and/or transition (TR) weather types
within the lake-effect region, but likely not enough to generate
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FIGURE 4 | Percentage of lake-effect days with precipitation in early-season (left column), mid-season (middle column), and late-season (right column) for days

identified by both TSI and SSC methods (A–C), and for TSI-defined days uncorroborated by SSC data (D–F), 1964–65 through 2014–15. Contours are in 10%

intervals.

FIGURE 5 | Mean sea-level pressure (hPa) (A–C) and percentage of days with precipitation (D–F) for SSC-defined lake-effect days in early-season (left column),

mid-season (middle column), and late-season (right column) uncorroborated by the TSI data set, 1964–65 through 2014–15. Isobars are in 2-hPa intervals, and

percentage contours are in 10% intervals.

snowfall per the objective of the TSI method. For the 283 SSC-
defined lake-effect days in late-season not supported by the TSI
data, the mean sea-level pressure pattern (Figure 5C) closely
resembles that for days in which the methods agree (Figure 3C),
although with a weaker gradient across the eastern lakes. Given

the similar pattern, and the lack of lake-effect days generated
by the TSI method in late-season, it is most likely that cooler
lakes and greater ice coverage is enough to limit lake-effect
snowfall (TSI) despite some modification of the passing lower-
atmosphere (SSC).
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FIGURE 6 | Time series of seasonal lake-effect frequency (days) for absolute lake-effect days (a), synoptic setup-defined days (b), air mass modification-defined days

(c), and for the three classes combined (hybrid) (d) for the period 1964–65 through 2014–15. The red line is a 5-year running mean. The period of record annual mean

for each is indicated.

Aligning with the sea-level pressure patterns are the
percentages of uncorroborated SSC-defined lake-effect days with
precipitation. For early-season (Figure 5D) and mid-season
(Figure 5E), values west of the eastern lakes, while relatively
small, are comparable to those to the east of the lakes. This
is presumably due to the relatively weak flow of cold air
across the region (Figures 5A,B), yielding a subtler lake effect
(modified air) without the unidirectional nature of classic lake-
effect precipitation. The more typical lake-effect pressure pattern
in late-season (Figure 5C) aligns with higher precipitation
percentages in the traditional lake-effect areas south and east of
the eastern lakes (Figure 5F), although values to the west of the
lakes remain relatively high compared to SSC days corroborated
by TSI data (Figure 4C).

As with uncorroborated TSI-defined lake-effect days, there
is not convincing evidence for declassifying the lake-effect days
within the SSC data set that are not among those in the TSI data.
Rather, their intra-seasonal distribution and the combination
of their mean synoptic-scale atmospheric pressure pattern and
predominant precipitation pattern seem to illustrate the different
objective of the SSC method compared to the TSI method.
This makes integration of their results for a more thorough
representation of historical daily lake-effects reasonable.

Merged Data
In combining the two lake-effect data sets, we chose to honor the
objective of each of themethodologies by retaining all days within
each, creating one “absolute” and one “hybrid” data set. Absolute
data are only days identified by both methods, or what are likely
the most obvious occurrences of lake-effects. Supporting the idea
that absolute days are most robust is the lesser degree to which
they are temporally isolated. Whereas, only 31.9 and 22.2% of
TSI-only days and SSC-only days, respectively, are preceded or
followed by a lake-effect day of any type, 54.8% of absolute lake-
effect days are preceded or followed by a lake-effect day. Added to
the absolute lake-effect days to create the hybrid data set are days
identified by one method that are uncorroborated by the other
method. In other words, the hybrid data set consists of days of
agreement, TSI-only days, or what we term “synoptic setup” days,
and SSC-only days, or what we term “airmassmodification” days.

Seasonally, absolute lake-effect days average 14–15 per year,
exhibiting an insignificant decline of −0.8 days decade−1 (p
= 0.09) (Figure 6a), and averaging nearly 16 days per season
through the first 25 years of the record and about 13 days per
season over the final 25 days of the record. On average, 26
synoptic setup-defined days occur each season (Figure 6b), while
only 15–16 air mass modification-defined days occur each year,
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FIGURE 7 | Station-level values of mean seasonal precipitation (liquid; mm; 20mm intervals) (A), precipitation frequency (days; 5-day intervals) (B), percentage of

seasonal precipitation (liquid; 5% interval) (C), and percentage of seasonal precipitation frequency (5% interval) (D) associated with the lake-effect days of the hybrid

data set, 1964–65 through 2014–15. Red dots indicate locations of stations used to calculate regional values.

but with a statistically significant decline of 2.3 days decade−1

(p < 0.01) (Figure 6c). Two-sample t-test results illustrate a
significant difference (p < 0.01) between the occurrence of air
mass modification days during the first 25 years (mean = 18
days) and final 25 years (13 days) of the record. The cumulative
expression of the three sets of data, the hybrid data set, averages
about 56 days per year, but with a statistically significant decline
in frequency over the study period of 2.8 days decade−1 (p <

0.01) that appears most pronounced from the late-1970s through
the early-2000s (Figure 6d). Over the first 25 years of the record,
the hybrid data set averages about 60 days per year, while
averaging only 52 days per year over the final 25 years of the
record (two-sample t-test p < 0.01).

Focusing on the hybrid data set, the mean amount of
seasonal precipitation attributed to lake-effect days ranges from
about 120–160mm east of Lake Erie, and 120–220mm east
of Lake Ontario (Figure 7A). The mean seasonal frequency
of precipitation follows a similar spatial pattern, with values
from 25 to 30 days east of Lake Erie and 30–35 days east
of Lake Ontario (Figure 7B). The mean percentage of total
seasonal precipitation attributed to lake-effect days ranges
from 25 to 30% east of Lake Erie, and is about 30% to
the north, east of Lake Ontario (Figure 7C). Similarly, the
mean percentage of total seasonal precipitation frequency

attributed to lake-effect days is about 35% to the east of each
of the lakes (Figure 7D). Values attributed to the absolute
data set (not shown) follow the same spatial patterns, but
obviously of much smaller magnitudes, given the much
smaller population of absolute lake-effect days compared to
hybrid days.

Calculated from the 45 lake-effect stations to the lee of the
lakes (Figure 7), regional mean seasonal values of precipitation
characteristics attributed to days within the hybrid data set
generally exhibit a decline over the 47-year period 1968–69
through 2014–15 (Figure 8). This is despite no change in total
seasonal precipitation (all days, regardless of lake effect)—
small, statistically insignificant increases in both precipitation
and precipitation frequency. For the region, mean seasonal
precipitation (liquid amount) on days within the hybrid data set
declined at a rate of 7.8mm decade−1 (p = 0.02), while also
appearing to become more variable in recent years (Figure 8a).
However, a two-sample t-test reveals no statistically significant
difference in seasonal precipitation during the first (mean =

124mm year−1) and last (mean = 119m year−1) 23 years of
the record. So, while a trend is present, the broad change in
precipitation is not significant. Likewise, a decline in regional
mean seasonal precipitation frequency within the hybrid data
set (−1.3 days decade−1) (Figure 8b) is statistically significant
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FIGURE 8 | For the 45 precipitation stations (Figure 7), regional mean seasonal values of precipitation (a), precipitation frequency (b), percent of seasonal

precipitation (c), and percent of seasonal precipitation frequency (d) attributed to days within the hybrid and pure data sets for the period 1968–69 through 2014–15.

(p = 0.04), but the frequency for the early years (mean = 29
days year−1) is not statistically significantly different than the
frequency for the late years (mean = 26 days year−1). More
evident are changes in the percentage of seasonal precipitation
and precipitation frequency attributed to days within the hybrid
data set. The mean regional fraction of seasonal precipitation
(Figure 8c) decreased at a rate of 2.2 percent decade−1 (p <

0.01), but values from the early and late portions of the record
are not statistically significantly different [mean = 26% year−1

early, 23% year−1 late (p = 0.10)]. However, for the percent
of seasonal precipitation frequency (Figure 8d), both the trend
(−2.0 percent decade−1, p < 0.01) and the difference in early
and late values [mean = 33% year−1 early, 29% yr−1 late (p =

0.03)] reflect statistically significant declines. Within the absolute
data set, none of the variables exhibited a statistically significant
change. This is not surprising, given the rather small values and
limited variability within the data (Figure 8).

DISCUSSION

The two methods for identifying lake-effect days within the
historical record differ in the degree of the lake-effect that
they aim to recognize. The TSI method is designed to find

days with a broad synoptic-scale pattern that yields strong,
cold flow across the Great Lakes region conducive to lake-
effect snowfall. The SSC-based method aims to identify days
with a signature of air mass modification by the lakes, such
that a broad cold, dry air mass across the greater region
contains cold, moist air specifically within the traditional lake-
effect areas. While the methods overlap, the TSI method
likely finds additional days with stronger atmospheric dynamics
that yield a regional arrangement of air masses that may
not fit the ideal lake-effect model, while the SSC method
likely finds additional days with weaker dynamics and a
subtler lake effect that may not yield a profound weather
impact. We submit that combining the two data sets yields
a more thorough record of daily instances of lake-effects
from Lakes Erie and Ontario for the cool seasons 1964–65
through 2014–15.

Two main caveats accompany the merged data. The first
is the trend toward increasing validation of SSC-defined lake-
effect days by the TSI method, particularly in mid-season. This
coincides with a trend toward fewer SSC-defined lake-effect
days in recent decades (Ellis et al., 2021), possibly indicating
that the frequency trend partly reflects a decline in more
marginal lake-effect days as defined by the SSC method—those
not supported by the TSI method. Otherwise, there is not
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an obvious explanation for the trend, as neither methodology
was applied differently through the record, and the quality
of the input data for each methodology should not have
changed gradually through time. While merely speculative,
it is possible that the pervasive warming of recent years is
enough for the SSC methodology to increasingly classify a
day as of a moderate weather type rather than a polar type
(i.e., dry-moderate/moist-moderate rather than dry-polar/moist-
polar). This would impact the methodology for establishing
SSC-defined lake-effect days, possibly shedding marginal days
(moderate rather than polar) so to increase the fraction validated
by the TSI method. To investigate this theory would require
intensive analysis of the mechanics of the SSC methodology,
which is beyond the scope of this study. However, this
is a caution, or possibly a limitation, accompanying the
data set.

The second caveat with the merged data is the greater
discrepancy between the two contributing data sets within the
shoulder periods of the November through April season than
during mid-season. The rationale for the greater frequency
of SSC-defined lake-effect days in late-season (March/April)
relative to the few TSI-defined days is rather clear. By late-
season, lake temperatures have lowered and ice-coverage has
increased, making the generation of lake-effect snowfall more
difficult, which is realized in fewer TSI-defined lake-effect days.
However, lake-influence is quite possibly great enough to raise
the humidity of the passing cold, dry air and influence the
weather type within the SSC data set to yield an SSC-defined
lake-effect day. Less clearly rationalized is the greater frequency
of TSI-defined lake-effect days in early-season (November)
relative to the fewer SSC-defined days. As indicated by the
comparative analysis of the data sets, it seems probable that
while a synoptic flow pattern in November suggests lake-effect
(TSI), the cold air may be more marginal (i.e., moderate,
rather than dry-polar or moist-polar), in magnitude and/or
spatial extent, so to not satisfy the SSC definition. Ellis
et al. (2021) considered the possibility of the lakes modifying
air temperature enough to alter the dry-polar weather type
upstream to the moist-moderate weather type downstream,
rather than the moist-polar type, as required by the SSC
methodology. However, they did not choose to implement
weather type modification based on air temperature within
their methodology.

The hybrid data set produced here yields seasonal values
of lake-effect frequency and precipitation that align well with
previously published estimates. As a merger of the data sets
produced by Suriano and Leathers (2017a) and Ellis et al.
(2021), there is greater meaning from a comparison with the
results of other studies. In developing a method for classifying
snowstorm types for an area east of Lake Ontario, Hartnett
(2021) found lake-effect snowstorms to account for 35% of
snowstorms, yielding ∼24 lake-effect snowfall days per year
and 39% of seasonal snowfall for the period 1985–2015. This
compares well with mean regional values from the hybrid

data set – 30-35 lake-effect precipitation days per year that
account for about 30% of seasonal liquid total precipitation
(in all forms), the latter of which maximizes at about 35%
across the area of Hartnett’s study. Karmosky (2007) attributed
∼35% of seasonal snowfall immediately east of eastern lakes to
lake effects, declining to <25% when ∼100 km inland. Suriano
et al. (2019) determined that an average of 28 lake effect days
per year produce 38% of seasonal total snowfall farther east
in the Catskill Mountains region well to the east of Lake
Ontario. The declining trend in lake effects from the late
1970s through the early 2000s portrayed by the hybrid data
set matches the findings of several studies (e.g., Hartnett et al.,
2014; Suriano and Leathers, 2017b; Ellis et al., 2021). Given
the historical prominence of lake-effect precipitation within the
cool-season hydroclimate of the region, a continued decline in
the frequency of lake effects, or even the establishment of the
lower frequency as a new normal, has acute implications for the
regional hydroclimate.

The merged data, we believe, can serve further research
efforts focused on the lake effects of the eastern Great Lakes.
Forecasting lake-effect precipitation, either seasonally or for
individual events, remains challenging, and the impact of
a changing climate on the role of lake-effects within the
regional hydroclimate is complex. The calendars of hybrid and
absolute lake-effect days merged from the two methodologies
provide a more comprehensive collection of lake-effect days
for analysis of any form. To serve pursuit of a better
understanding of lake effects in the region, the hybrid,
absolute, synoptic setup-defined, and air mass modification-
defined lake-effect calendars are available through the University
Libraries data portal of Virginia Tech (https://doi.org/10.7294/
16712872).
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In the Great Lakes region, total cold-season snowfall consists of contributions from both

lake-effect systems (LES) and non-LES snow events. To enhance understanding of the

regional hydroclimatology, this research examined these separate contributions with a

focus on the cold seasons (October–March) of 2009/2010, a time period with the number

of LES days substantially less than the mean, and 2012/2013, a time period with the

number of LES days notably greater than the mean, for the regions surrounding Lakes

Erie, Michigan, and Ontario. In general, LES snowfall exhibited a maximum contribution

in near-shoreline areas surrounding each lake while non-LES snowfall tended to provide

a more widespread distribution throughout the entire study regions with maxima often

located in regions of elevated terrain. The percent contribution for LES snowfall to the

seasonal snowfall varied spatially near each lake with localized maxima and ranged in

magnitudes from 10% to over 70%. Although total LES snowfall amounts tended to be

greater during the cold season with the larger number of LES days, the percent of LES

snowfall contributing to the total cold-season snowfall was not directly dependent on the

number of LES days. The LES snowfall contributions to seasonal totals were found to be

generally larger for Lakes Erie and Ontario during the cold season with a greater number

of LES days; however, LES contributions were similar or smaller for areas in the vicinity

of Lake Michigan during the cold season with a smaller number of LES days.

Keywords: snowfall, Great Lakes, lake-effect, mesoscale, climatology

INTRODUCTION

A large variety of agriculture, transportation, and tourism operations are directly linked to the
large freshwater lakes and the weather systems that occur within the Great Lakes region of
North America. Cold-season lake-effect system (LES) snowfall is a phenomenon that greatly
affects both the weather and climate in the vicinity of each lake and occurs when a cold
airmass is modified as it passes over one or more of the Great Lakes. The sensible and
latent heat fluxes from the surface of the lake lead to instability within the atmospheric
boundary layer, typically below 1–3 km during LES situations. This instability often leads to
the development of LES clouds over and downwind of the Great Lakes creating a greater
possibility for precipitation and substantial amounts of snowfall (e.g., Jiusto and Kaplan,
1972). In addition to many favorable benefits to the region, these substantial snowfalls can
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lead to significant societal impacts, such as traffic accidents,
property damage, and disrupted air travel (e.g., Schmidlin, 1993;
Burow and Atkinson, 2019).

Numerous studies have examined the spatial distribution of
total cold-season snowfall to infer which areas near the Great
Lakes have the greatest LES snowfall amounts (e.g., Muller,
1966; Eichenlaub, 1970; Jiusto and Kaplan, 1972; Strommen and
Harman, 1978; Norton and Bolsenga, 1993; Scott andHuff, 1996).
Estimating the proportion that LES snowfall contributes to the
cold-season snowfall for different areas is a complex task and has
been approached using a variety of methods (e.g., Eichenlaub,
1970; Wilson, 1977; Braham and Dungey, 1984, 1995; Kelly,
1986; Scott and Huff, 1996; Yeager et al., 2013; Suriano et al.,
2019; Ellis et al., 2020; Hartnett, 2021; Suriano and Wortman,
2021). However, this remains a challenge, especially for studies
examining the long-term trends of snowfall within the Great
Lakes region (e.g., Burnett et al., 2003; Ellis and Johnson, 2004;
Kunkel et al., 2009; Bard and Kristovich, 2012; Hartnett et al.,
2014; Clark et al., 2016, 2018; Suriano and Leathers, 2017;
Baijnath-Rodino et al., 2018; Ellis et al., 2020).

Many past studies have primarily used one of three
approaches for determining LES contribution to total cold-
season snowfall. These include: (1) comparing measured total
cold-season snowfall at locations nearer the lake (i.e., in
snowbelt areas) to locations further inland from the lake
(e.g., Scott and Huff, 1996), (2) comparing total cold-season
snowfall measured at locations upwind of the lake to downwind
locations (e.g., Braham and Dungey, 1984), or (3) using
synoptic pattern classification to infer LES occurrence and
comparing snowfall during LES synoptic patterns to snowfall that
occurred during non-LES synoptic patterns (e.g., Eichenlaub,
1970; Suriano and Leathers, 2017; Suriano, 2019; Suriano
and Wortman, 2021). A recent study by Ellis et al. (2020)
utilized synoptic pattern classification in combination with
comparing surface airmass attributes upwind and downwind
of different lakes to identify likely LES days and investigate
the long-term trends in both LES occurrence and snowfall.
Each of these approaches used in past studies infer LES
snowfall without knowledge of the occurrence of observed
mesoscale LES cloud or precipitation patterns. For example,
Suriano and Leathers (2017), Suriano (2019), and Suriano
and Wortman (2021) acknowledge that synoptic patterns
classified as LES are not directly linked with observed LES
precipitation or mesoscale LES processes, but rather identify
days where environmental conditions were favorable for possible
LES development.

Using these varied approaches, past studies have arrived
at differing conclusions about the LES contribution to total
cold-season snowfall. For example, Dewey (1970) concluded
that some areas in the LES snowbelt east of Lake Michigan
received 200% more snow than further inland Michigan stations.
Eichenlaub (1970) estimated that at least 30% of seasonal snowfall
in this same snowbelt region came from lake-atmospheric
interactions. Strommen and Harman (1978) concluded that LES
snowfall in this same area contributed to a 50–300% increase
in mean cold-season snow totals. Braham and Dungey (1984)
estimated the effect of Lake Michigan on total cold-season

snowfall was an increase of 10% for the southern Wisconsin
shoreline region and an increase of 60% for the snowbelt
area east of Lake Michigan. Analyses by Clark et al. (2016,
2018) suggested that LES led to an increase of cold-season
snowfall between 170 and 315% when comparing areas east
and west of Lake Michigan. Wilson (1977) found LES led
to precipitation increases of ∼25% near Lake Ontario, and
over 50% in regions of higher terrain east of the lake, such
as the Tug Hill Plateau. Suriano and Wortman (2021) found
that snowfall that occurred in the Lakes Erie and Ontario
regions comprised ∼48% of total cold-season snowfall. When
considering snowfall throughout the Great Lakes region, Scott
and Huff (1996) estimated increases of winter precipitation
from LES in areas near the downwind shorelines to have
maxima ranging from 35 to 100%, with much variability in the
spatial distribution.

The authors are aware of only a few previous studies
that have used a combination of radar, satellite, and surface
weather observations to identify LES occurrences and provide
information about the contribution of LES snowfall to seasonal
totals. Veals and Steenburgh (2015) used radar and assimilated
snowfall data to find that LES days accounted for 61–76% of the
mean cool-season snowfall and 24–37% of the mean cool-season
liquid precipitation for a region surrounding the KTYX National
Weather Service radar located near Montague, New York on the
Tug Hill Plateau east of Lake Ontario. In a study examining a
variety of snowstorm types impacting a region east and southeast
of Lake Ontario, Hartnett (2021) found that LES snowstorms
accounted for∼39% of the total seasonal snowfall.

The current research provides new insight and knowledge
of the hydroclimatological contribution of LES snowfall to
cold-season snowfall totals using information of observed
LES occurrences determined from satellite imagery and high-
resolution assimilated snowfall data in the vicinity of Lakes Erie,
Michigan, and Ontario for two cold seasons. The application
of these results thereby provide an enhanced understanding of
LES snowfall contributions to seasonal snowfall totals, how those
contributions differ spatially in the vicinity of three different
lakes, and whether the frequency of LES days in a winter is likely
to influence the LES snowfall contributions.

DATA AND METHODS

The study focuses on two cold seasons with the aim of
comparing LES snowfall contribution for a cold season with
the number of LES days substantially less than the mean to
a cold season with the number of LES days notably greater
than the mean for each lake. The two cold seasons were
determined using a daily LES database created by Laird et al.
(2017). Using Geostationary Operational Environmental Satellite
(GOES) visible imagery, Laird et al. (2017) documented when
LES clouds were present over each of the Great Lakes for
each day during the 17 cold-seasons (October–March) from
1997/1998 through 2013/2014. The mean number of LES days
per cold season for Lakes Erie, Michigan, and Ontario were
50.8, 77.9, and 62.0, respectively. Examination of the daily LES
database was used to identify the cold season of 2009/2010 as
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TABLE 1 | Ranking of cold seasons based on the number of LES days for Lakes

Erie, Michigan, and Ontario from the 17 cold-season database of Laird et al.

(2017).

Rank Erie LES Michigan LES Ontario LES

1 2004–2005 2013–2014 2013–2014

2 1999–2000 2002–2003 2008–2009

3 2012–2013 2008–2009 2000–2001

4 2005–2006 2012–2013 2012–2013

5 1998–1999 2000–2001 2004–2005

6 2008–2009 1999–2000 2003–2004

7 2000–2001 2005–2006 2002–2003

8 2006–2007 1998–1999 2010–2011

9 1997–1998 2003–2004 1998–1999

10 2003–2004 2006–2007 2006–2007

11 2013–2014 2007–2008 2005–2006

12 2001–2002 2010–2011 1999–2000

13 2010–2011 2004–2005 2007–2008

14 2011–2012 1997–1998 2001–2002

15 2007–2008 2001–2002 1997–1998

16 2002–2003 2009–2010 2009–2010

17 2009–2010 2011–2012 2011–2012

Grey highlighted cold seasons are those used in this study.

one of the least active in terms of LES with 32, 52, and 42 LES
days over Lakes Erie, Michigan, and Ontario, respectively. The
2012/2013 cold season was identified as an active LES time period
with 63, 88, and 70 LES days over Lakes Erie, Michigan, and
Ontario, respectively.

The ranking of cold seasons based on the number of LES
days for the 17 cold seasons from Laird et al. (2017) is shown in
Table 1. The annual variation and distribution attributes of the
number of LES days for the 17 cold seasons in each lake region
is shown in Figure 1. The 2009/2010 cold season was the only
cold season in the lowest quartile of LES days for each of the
three lake regions and the 2012/2013 cold season was the only
cold season in the highest quartile of LES days for each of the
three lake regions. Identifying a cold season with all three lakes
having the number of LES days substantially less than the mean
and a second cold season with all three lakes having the number
of LES days notably greater than the mean allowed for a more
directed examination of whether the LES snowfall contribution
to total seasonal snowfall differed based on the number of LES
days by attempting to limit influence from variation in frequency,
strength, and track of synoptic systems over different lakes. An
examination of intraseasonal and interannual variations of LES
snowfall contribution to monthly snowfall totals across multiple
decades, different lake regions, and differing regional synoptic
and mesoscale atmospheric conditions is beyond the scope of the
current study and is an area of future investigation.

To determine the LES contribution to total cold-season
snowfall, days in the two cold seasons were sorted into two
categories based on the cold-season LES database described by
Laird et al. (2017). Each day was designated as a day with LES
observed over the specified lake or a day with no LES observed
over the specified lake. The single designation of snowfall, as LES

or non-LES, for each day does lead to some uncertainty of the
snowfall totals in each category since a small number of days
each cold season may have both non-LES and LES snowfall. For
example, this approach would not capture LES snowfall that may
have occurred in the vicinity of a cyclone passing over a specific
lake where widespread synoptic cloud cover and precipitation
may have occurred with embedded LES snowfall (i.e., a lake-
enhanced snowfall situation) (e.g., Owens et al., 2017). With the
synoptic overcast cloud cover inhibiting the ability to observe the
presence of LES clouds, this type of situation would be classified
as a non-LES snowfall day and lead to an underestimate of
LES snowfall. Additionally, if LES snowfall occurred only during
nighttime periods, the methodology from Laird et al. (2017) of
using GOES visible satellite imagery to identify LES days would
lead to an underestimate of LES snowfall. Alternatively, a day that
had a transition from non-LES snowfall to LES snowfall during
the time of day when LES clouds were identified from the GOES
visible imagery would result in this day being classified as a LES
snowfall day and lead to an overestimate of LES snowfall.

To examine the amount of snowfall in each geographic area,
SNOw Data Assimilation System (SNODAS) solid precipitation
(i.e., snowfall) data was analyzed using Geographic Information
Systems (GIS). SNODAS assimilates satellite, airborne, and
ground-based observations into a snow mass and energy balance
model to create an estimation of snow water equivalent and snow
pack thickness at 1-km horizontal resolution over the continental
United States (Barrett, 2003). Daily gridded data, as used in this
study, are available from the National Weather Service’s National
Operational Hydrologic Remote Sensing Center (NOHRSC)
from September 2003 to the present. These data are available
for only the continental United States for most of the archive,
therefore our analyses and investigation focused on Lakes Erie,
Michigan, and Ontario—Great Lakes with extensive shoreline
regions within the continental United States. SNODAS snowfall
data have been used for several past LES snowfall studies (e.g.,
Veals and Steenburgh, 2015; Lang et al., 2018) and are archived
as liquid water equivalent (LWE) amounts. Total LWE daily
snowfall for LES days and non-LES days, as well as summed
across each cold season, were used to determine the contribution
to the total cold-season snowfall in areas surrounding Lakes Erie,
Michigan, and Ontario.

RESULTS

Comparing Total Cold-Season Snowfall
Lake Erie
The total cold-season snowfall for both winters in areas to the
west and south of Lake Erie were very similar (Figures 2A,D).
Generally, areas to the west and southwest of Lake Erie had
LWE snowfall amounts of 4.0–19.3 cm. In both cold seasons,
areas to the southeast of Lake Erie had larger snowfall amounts
with LWE totals in the range of 19.3–34.6 cm. The maximum
snowfall occurred in counties of northwestern Pennsylvania and
southwestern New York where elevation rises quickly from lake
level to a height of 430m within about 10 km from the lake
shoreline. The cold-season snowfall patterns and totals in this
area for the two cold seasons studied are consistent with findings
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FIGURE 1 | The annual variation (A) and distribution attributes (B) of the number of LES days for the 17 cold seasons from Laird et al. (2017) in the Lake Michigan

(M-LES; triangles), Lake Erie (E-LES; circles), and Lake Ontario (O-LES; squares) regions. The number of LES days for cold seasons of 2009/2010 and 2012/2013 are

identified on the box-plots in panel (B) using symbols within the lowest and highest quartiles, respectively.

from past studies reporting on mean climatological cold-season
(O-M) or winter (DJF) snowfall distribution across the Great
Lakes region. For example, Scott and Huff (1996) showed that the
30-year mean LWE winter snowfall for the region southeast of
Lake Erie was 22.5–30.0 cm. Norton and Bolsenga (1993) found
the 30-year mean annual snowfall depth for this Lake Erie region
ranged from 100 to 400 cm.

Lake Michigan
In both 2009/2010 and 2012/2013 cold seasons, the Upper
Peninsula (UP) ofMichigan and the region east of LakeMichigan
(in particular the northern half of the lake) received the largest
amounts of snowfall (Figures 2B,E). During 2009/2010, seasonal
LWE snowfall totals in the UP region ranged from about 9.1
to 34.6 cm. LWE snowfall east and west of Lake Michigan had
values in the range of 14.2–24.4 cm and 4.0–19.3 cm, respectively.
In the 2012/2013 cold season, total LWE snowfall amounts in
the UP of Michigan were notably larger with values ranging
from about 24.4 to 50.0 cm. Total cold-season LWE snowfall
amounts east and west of Lake Michigan were also greater than
observed during the 2009/2010 cold season with values between
14.2–39.7 cm and 14.2–24.4 cm, respectively. Long-term mean

snowfall for this region from Scott and Huff (1996) showed that
LWE winter snowfall north and east of Lake Michigan were
12.5–17.5 cm and totals west of Lake Michigan were 7.5–10.0 cm.
Norton and Bolsenga (1993) found the 30-year mean annual
snowfall depth for these regions near LakeMichigan ranged from
a maximum of about 400 cm in Upper Michigan to upwards of
300–350 cm east of Lake Michigan and ∼100–150 cm west of
Lake Michigan.

Lake Ontario
Total snowfall was similar during both cold seasons for areas
south of Lake Ontario; however, the areas east of Lake Ontario
had noteworthy differences between 2009/2010 and 2012/2013
(Figures 2C,F). In 2012/2013, maxima of total LWE snowfall
occurred over the TugHill Plateau and the AdirondackMountain
regions east of Lake Ontario. Totals in the highest elevations
of the Tug Hill Plateau (i.e., 512m above lake level) were
50.0–55.1 cm. During 2009/2010, the largest total LWE snowfall
amounts occurred in the Catskill Mountain and Southern
Adirondack Mountain regions that are east and southeast of
Lake Ontario. These totals ranged from about 24.4 to 44.8 cm
with slightly larger amounts occurring in the Catskill Mountain
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FIGURE 2 | The total cold-season LWE snowfall (cm) during the 2009/2010 season for the (A) Lake Erie, (B) Lake Michigan, and (C) Lake Ontario regions and during

the 2012/2013 season for the (D) Lake Erie, (E) Lake Michigan, and (F) Lake Ontario regions.
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region. The total LWE snowfall amounts south of Lake Ontario
ranged from 9.1 to 29.5 cm during both cold seasons. Norton and
Bolsenga (1993) found the 30-year mean annual snowfall depth
had maxima in similar areas of the Tug Hill Plateau, Adirondack
Mountains, and Catskill Mountains east of Lake Ontario. They
found long-term mean snowfall depths in these regions ranging
from 200 to >400 cm. Scott and Huff (1996) showed that 30-year
mean LWE winter snowfall for the regions east and southeast of
Lake Ontario had totals of 22.5–32.5 cmwhile areas south of Lake
Ontario had winter totals of 15.0–20.0 cm.

Comparing LES and Non-LES Snowfall
Lake Erie
The spatial patterns of LWE snowfall from Lake Erie LES
days during both cold seasons (Figures 3A,C) clearly denote
the primary LES snow region positioned near the southeastern
shoreline. This region of accumulated cold-season LES snowfall
stretches westward from southeast of Buffalo, NY to Erie,
PA. This region is typically located downwind of the lake
during LES situations and has substantial elevation rise
inland from the lake shore. During 2009/2010, most of the
LES snow region received LWE totals of 3.8–10.3 cm. The
2012/2013 cold season had similar LWE snowfall totals of
3.8–13.6 cm in this region. Small cold-season LES snowfall
amounts (<3.8 cm) occurred to the west and southwest of
the lake.

The LWE snowfall spatial patterns from non-LES days in the
vicinity of Lake Erie that occurred during both cold seasons
showed larger totals to the southeast of Lake Erie (Figures 3B,D),
as well as larger accumulated snowfall within all counties in the
study region. In the 2009/2010 cold season, maximum snowfall
accumulations from non-LES days were slightly >20.2 cm. Areas
to the west and southwest of the lake received amounts ranging
from 7.1 to 16.9 cm. For the 2012/2013 cold season, themaximum
was located near the lake with a value near 23.4 cm. Snowfall
totals outside of the region of largest non-LES snowfall were
generally less than non-LES snowfall during 2009/2010 and
ranged from 3.8 to 13.6 cm.

While the location of the larger non-LES snowfall has
some similarity to the LES snowfall region, the larger
snowfall amounts accumulated across non-LES days cover
a more expansive area. The higher terrain and steep rise
above lake level of near-shoreline areas to the southeast of
Lake Erie clearly have an influence on snowfall amounts
during both LES and non-LES days. The analyses shown
in Figure 3 suggest that studies that have only examined
total cold-season snowfall to infer the contribution of LES
snowfall without considering information of observed LES
occurrences or variation of terrain have likely overestimated
the percentage of LES snowfall for this region and perhaps
other regions where substantial elevated terrain exists in
near-shore regions.

Lake Michigan
The spatial distributions of LES snowfall for the two cold seasons
are similar with the largest cold-season totals located in the
UP of Michigan and east of Lake Michigan (Figures 4A,C).

The large snowfall totals in the UP of Michigan on Lake
Michigan LES days likely resulted from coincidental LES activity
occurring in association with Lake Superior. Cold-season LES
snowfall totals east of Lake Michigan ranged from 7.1 cm
in the region southeast of the lake to 13.6 and 16.9 cm
northeast of the lake during the cold seasons of 2009/2010
and 2012/2013, respectively. LES snowfall totals west of Lake
Michigan were generally <3.3 and 7.1 cm during 2009/2010 and
2012/2013, respectively.

The seasonal snowfall totals from non-LES days were more
evenly distributed over regions east and west of Lake Michigan
for both cold seasons (Figures 4B,D). For both cold seasons
the patterns suggest that the track of extratropical cyclones
through the Great Lakes region, as well as elevated terrain
in the UP of Michigan and the northern portion of Lower
Michigan, may have contributed to the location of larger
snowfall totals from non-LES days. During the cold season
of 2009/2010, maximum non-LES snowfall totals (16.9 cm)
occurred over central Wisconsin and near the Porcupine
Mountains in the UP of Michigan. The maximum non-LES
snowfall totals in the cold-season of 2012/2013 (30.0 cm)
also occurred near the Porcupine Mountains in the UP of
Michigan with LWE snowfall values >13.6 cm extending across
northeastern Wisconsin, the UP of Michigan, and the northern
portion of Lower Michigan.

Lake Ontario
In both the active and less active LES cold seasons, the region to
the east of Lake Ontario received the largest amounts of snowfall
from LES days. For 2009/2010, LES amounts east of Lake Ontario
ranged from 3.3 to 10.3 cm (Figure 5A). The LES snowfall totals
east of Lake Ontario during the 2012/2013 cold season were
greater and ranged between 3.3 and 16.9 cm (Figure 5C). During
both cold seasons the maximum LES snowfall occurred over
the Tug Hill Plateau with larger values extending eastward into
the central Adirondack Mountains. The large snowfall totals in
southwestern New York on LES days for Lake Ontario likely
resulted from coincidental LES activity occurring in association
with Lake Erie. This suggests that on Lake Ontario LES days,
there were favorable atmospheric and lake conditions supportive
of LES systems across a widespread portion of the eastern Great
Lakes region. When conditions are supportive of LES over a large
area, LES snow bands can develop on an upwind lake, extend over
the intervening land area, and continue their development over
a downwind lake (e.g., Rodriguez et al., 2007; Laird et al., 2017;
Kristovich et al., 2018; Lang et al., 2018).

Snowfall from non-LES days was widespread across the
Lake Ontario study region during both cold seasons. The
largest snowfall totals occurred in the Catskill Mountains and
southern Adirondack Mountains during 2009/2010 (Figure 5B)
and over the Tug Hill Plateau and across the entire Adirondack
Mountain region during 2012/2013 (Figure 5D). The snowfall
totals associated with non-LES days were notably greater
than the seasonal totals resulting from LES days. Maximum
LWE snowfall totals in both cold seasons from non-LES days
approached 40.0 cm.
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FIGURE 3 | The 2009/2010 cold-season LWE snowfall (cm) for (A) LES days and (B) non-LES days and the 2012/2013 cold-season LWE snowfall for (C) LES days

and (D) non-LES days in the vicinity of Lake Erie.

LES Contribution to Total Cold-Season
Snowfall
Lake Erie
Snowfall from LES days comprised 20–30% of total cold-season
snowfall in most of the near-shore area southeast of Lake Erie
for the 2009/2010 cold season (Figure 6A). A small area located
mostly in two counties of western NY (i.e., Erie and Chautauqua)
had LES snowfall contributions of 30–40%. Throughout the
remainder of the study area, LES snowfall consisted of roughly
10–20% of total cold-season snowfall. In 2012/2013, LES snowfall
comprised a larger percentage of total cold-season snowfall, 30–
40%, in the region southeast of Lake Erie and 20–30% in most
other areas (Figure 6D).

Lake Michigan
East of Lake Michigan LES snowfall comprised 40–70% of the
total cold-season snowfall in 2009/2010 with the maximum
percentages occurring near the Traverse Bay region (Figure 6B).

In 2012/2013, these values ranged from 30 to 60%withmaximum
percentages occurring to the southeast of Lake Michigan and
were slightly less than LES contributions across this region in
2009/2010 (Figure 6E). Since 2012/2013 had a greater number of
LES days and higher LES snowfall totals in general, areas with
smaller contributions to seasonal totals compared to 2009/2010
might not be expected. Greater LES snowfall contributions to
total cold-season snowfall during 2009/2010 demonstrate that
the relationship is not directly dependent on the number of
LES days during a cold season. For most regions west of
Lake Michigan, the contribution of LES snowfall to total cold-
season snowfall was between 10 and 20%, except along the
southwestern shoreline near Chicago, IL where LES snowfall
comprised 30–40%.

Lake Ontario
During the two cold seasons, the amount of LES snowfall
contributing to the total cold-season snowfall was different in
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FIGURE 4 | The 2009/2010 cold-season LWE snowfall (cm) for (A) LES days and (B) non-LES days and the 2012/2013 cold-season LWE snowfall for (C) LES days

and (D) non-LES days in the vicinity of Lake Michigan.

both magnitude and spatial distribution. The maximum LES
snowfall contribution in 2009/2010 was located east of Lake
Ontario over the Tug Hill Plateau region and had values ranging
from 30 to 40% (Figure 6C). In 2012/2013, the largest LES
percentages of total cold-season snowfall ranged from 40 to
50% and were positioned to the south and southeast of Lake
Ontario (Figure 6F). This difference in location of maximum

LES contribution between the two cold seasons may reflect
differences in the seasonal mean wind directions during LES
days, as well as possible differences in the overall frequency of
different types of LES snow bands. The location of the maximum
east of Lake Ontario in 2009/2010 suggests greater occurrence of
westerly wind directions and long lake-axis parallel snow bands
during LES days compared to the location of the 2012/2013
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FIGURE 5 | The 2009/2010 cold-season LWE snowfall (cm) for (A) LES days and (B) non-LES days and the 2012/2013 cold-season LWE snowfall for (C) LES days

and (D) non-LES days in the vicinity of Lake Ontario.

maximum south and southeast of the lake that suggests north or
northwesterly wind directions and wind parallel snow bands or
LES days with an upwind connection to Lake Huron.

CONCLUSIONS AND DISCUSSION

A unique approach was taken to determine the LES contribution
to total cold-season snowfall. Different from most past LES

studies, the current study incorporates information of observed
LES occurrences on each lake thereby directly linking snowfall
on those days to mesoscale LES clouds and circulations in
each lake region. Additionally, the study uses a high-resolution
assimilated snowfall dataset that allows for representation of
snowfall patterns that are consistent with the mesoscale nature of
LES. Two cold seasons were examined with a purposeful choice of
seasons differing in the number of LES days. A cold season with
the number of LES days notably greater than themean (i.e., upper
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FIGURE 6 | The percentage contribution of LES snowfall (cm) to cold-season snowfall during 2009/2010 for the (A) Lake Erie region, (B) Lake Michigan region, and

(C) Lake Ontario region and during 2012/2013 for the (D) Lake Erie region, (E) Lake Michigan region, and (F) Lake Ontario region.
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quartile for all three lakes) and a second cold season with the
number of LES days substantially less than the mean (i.e., lowest
quartile for all three lakes).

The primary conclusions drawn from the results of this
research include:

• LES snowfall contribution to total cold-season snowfall in
near-shore areas in the vicinity of Lakes Erie, Michigan, and
Ontario do not appear to be directly dependent on the number
of LES snowfall days during a cold season. During the two
different cold seasons and in different areas surrounding each
of the lakes, LES snowfall contributions were found to have
a direct, an inverse, or no relationship to the number of
cold-season LES days.

• Across the two cold seasons examined, the LES snowfall
contribution to total seasonal snowfall ranged from
about 10% to upwards of 70%. The spatial patterns LES
snowfall contribution exhibit the mesoscale nature of LES
snowstorms with a dependence on atmospheric conditions
influencing mean LES snow band position during an
individual cold season.

• When comparing the two cold seasons, differences of LES
snowfall contributions to total cold-season snowfall for any
one location in the vicinity of Lakes Erie, Michigan, and
Ontario were as large as 20% (e.g., southeast of Lake
Ontario); however, in most near-shore areas the differences
were typically smaller than 10%. Although methodologies
differed, this result seems to be consistent with the interannual
variation of LES snowfall contribution that Suriano and
Wortman (2021) found when examining a larger number
of cold seasons. The larger differences in LES snowfall
contribution between the two winters investigated in the
current study may have resulted from differences of (a)
extratropical cyclone frequency and cyclone tracks through
the Great Lakes region, (b) the presence and distribution of
ice cover on a lake, (c) the variation of snow-to-liquid water
content during LES and non-LES snowfall events, and (d)
the seasonal mean wind direction. The seasonal mean wind
direction would have a direct relation to the mean fetch over
a lake during LES atmospheric conditions. This is known to
influence the mesoscale structure of the LES snow bands, the
likelihood of a multiple lake connection, and the shoreline
regions impacted by different LES band types.

• The location of maxima in both LES and non-LES snowfall
suggest a notable influence by the terrain in the Great Lakes
region, especially in near-shore areas where substantial rise
in elevation exists. The enhancement of non-LES snowfall in
these areas may suggest an overestimation of LES snowfall
contributions to total cold-season snowfall for past approaches
that (1) compare measured total cold-season snowfall at
locations nearer the lake (i.e., in snowbelt areas) to locations
further inland from the lake or (2) compare total cold-
season snowfall measured at locations upwind of the lake to
downwind locations.

Several recent studies have investigated LES snowfall
contribution to winter/cold season snowfall with different

TABLE 2 | LES snowfall contributions to seasonal snowfall for different regions

downwind of the Great Lakes reported by recent studies.

Lake

Ontario

Lake Erie Lake

Michigan

Lake

Superior

This study: current

study

10–60% 10–40% 30–70%

Veals and

Steenburgh (2015)

61–76%

24–37%

Hartnett (2021) 40%

Suriano and

Wortman (2021)

47.2%

(σ = 11.3%)

48.2%

(σ =10.2%)

Ellis et al. (2020) 10–20% 10–20% 16–32% 16–32%

Table cells with gray shading represent contributions reported from LWE and all others

represent contributions reported from snowfall depth.

approaches to distinguish LES and non-LES snowfall days for
areas downwind of Lake Ontario (Veals and Steenburgh, 2015;
Hartnett, 2021), Lakes Erie and Ontario (Suriano and Wortman,
2021), and Lakes Superior, Michigan, Erie and Ontario (Ellis
et al., 2020). Each study incorporated different data sets and
different time periods, as well as different analysis techniques, so
a direct comparison of results is difficult. The data sets used in
these studies have incorporated high-resolution spatial data sets,
such as satellite or radar, and assimilated snowfall data (current
study, Veals and Steenburgh, 2015), examined courser-resolution
regional snowfall data sets (Suriano and Wortman, 2021), or
analyzed snowfall recorded at individual surface station locations
(Ellis et al., 2020; Hartnett, 2021). However, each study offers
information directed at the same research question. Table 2

provides summary information about the results from each study
for the region(s) included in their investigation.

Future research on this topic should consider examining
the interannual and intraseasonal variations of LES snowfall
contribution to monthly snowfall totals across multiple decades,
as well as investigating how the frequency of LES storm types
over a lake may influence the seasonal LES contributions and the
location of maxima. High-resolution assimilated snowfall data
sets (e.g., SNODAS) seem to capture the local spatial variation of
LES snowfall and even the mesoscale variation embedded within
widespread snowfall from synoptic systems. The use of these data
sets for future studies would likely provide expanded information
on the large spatial variation of snowfall and therefore capture the
extremes that may exist in spatial variations of LES contributions
to seasonal snowfall totals. Snowfall information of this nature
would be of great benefit to enhancing understanding of the cold-
season hydrology within smaller watersheds across the Great
Lakes region.
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The Laurentian Great Lakes have substantial influences on regional climatology,

particularly with impactful lake-effect snow events. This study examines the snowfall,

cloud-inferred snow band morphology, and environment of lake-effect snow days along

the southern shore of Lake Michigan for the 1997–2017 period. Suitable days for study

were identified based on the presence of lake-effect clouds assessed in a previous

study and extended through 2017, combined with an independent classification of

likely lake-effect snow days based on independent snowfall data and weather map

assessments. The primary goals are to identify lake-effect snow days and evaluate

the snowfall distribution and modes of variability, the sensitivity to thermodynamic

and flow characteristics within the upstream sounding at Green Bay, WI, and the

influences of snowband morphology. Over 300 lake-effect days are identified during the

study period, with peak mean snowfall within the lake belt extending from southwest

Michigan to northern Indiana. Although multiple lake-effect morphological types are often

observed on the same day, the most common snow band morphology is wind parallel

bands. Relative to days with wind parallel bands, the shoreline band morphology is

more common with a reduced lower-tropospheric zonal wind component within the

upstream sounding at Green Bay, WI, as well as higher sea-level pressure and 500-hPa

geopotential height anomalies to the north of the Great Lakes. Snowfall is sensitive

to band morphology, with higher snowfall for shoreline band structures than for wind

parallel bands, especially due south of Lake Michigan. Snowfall is also sensitive to

thermodynamic and flow properties, with a greater sensitivity to temperature in southwest

Michigan and to flow properties in northwest Indiana.
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INTRODUCTION

The Great Lakes have a significant impact on the climatology
of downwind locations, most notably through the presence
of wintertime lake-effect snowfall. Many lake-effect events
have modest snowfall, but multi-day, high impact events with
substantial snowfall also occur (Niziol et al., 1995; Schmidlin and
Kosarik, 1999; Kristovich et al., 2000, 2017). Large events bring
greater societal costs, including dangerous road conditions, snow
removal expenses, damage to trees and buildings, and power
outages (Schmidlin, 1993; Schmidlin and Kosarik, 1999). These
impacts have motivated a substantial body of research focused
on lake-effect snow climatology (e.g., Braham and Dungey,
1995; Suriano and Leathers, 2017b), trend assessments (e.g.,
Burnett et al., 2003; Bard and Kristovich, 2012), field experiments
(e.g., Kristovich et al., 2000, 2017), forecasting (e.g., Rothrock,
1969; Niziol, 1987), numerical simulations (e.g., Lavoie, 1972;
Ballentine et al., 1998) and morphology (e.g., Hjelmfelt, 1990;
Laird et al., 2017).

Some of the earliest papers provided a physical paradigm
that continues to inform the present, often gleaned from case
studies (e.g., Mitchell, 1921; Sheridan, 1941). This early paradigm
is summarized nicely by Lavoie (1972) and highlighted the
frictional difference between land and lake surfaces (Remick,
1942), as well as the role of instability and associated heat and
moisture fluxes (e.g., Sheridan, 1941; Petterssen and Calabrese,
1959). Studies utilizing numerical simulations subsequently have
illustrated the importance of boundary layer growth, latent
heat release, topography, mesoscale circulations, and snow band
morphology (e.g., Lavoie, 1972; Ballentine, 1982; Hjelmfelt, 1990;
Laird et al., 2003).

Large turbulent fluxes are driven by strong vertical gradients
in temperature and moisture and are common during lake-effect
snow events (e.g., Agee and Hart, 1990), with additional diurnal
modifications (Kristovich and Spinar, 2005) and reductions for
lake ice exceeding 70% coverage (Gerbush et al., 2008). The
surface sensible heat flux is critical for boundary layer growth
over the lake, along with entrainment from the top of the layer
(Kelly, 1982; Agee and Gilbert, 1989; Kristovich et al., 2000)
and deepening associated with the mesoscale circulation (Niziol
et al., 1995). The latent heat flux is critical for subsequent
cloud development, latent heat release, and strengthening of
the mesoscale circulation (e.g., Ballentine, 1982; Hjelmfelt and
Braham, 1983).

Many forecasting parameters date back to some of the

earliest research, as well as local event climatology and forecaster

experience (Niziol et al., 1995), although these parameters have

been reinforced and confirmed by recent studies (e.g., Baijnath-
Rodino et al., 2018). These include horizontal and vertical
temperature gradients, fetch over the lake and flow properties,

inversion characteristics, and synoptic-scale considerations (e.g.,
Sheridan, 1941; Remick, 1942; Rothrock, 1969). Adding to the
complexity, small-scale orographic features (Hjelmfelt, 1992;
Niziol et al., 1995), substantial lake ice concentrations (e.g.,
Niziol et al., 1995; Cordeira and Laird, 2008), and multiple lake
interactions (Sousounis and Mann, 2000; Mann et al., 2002) can
affect snowfall. Based on published work and forecast experience,

detailed methodologies have evolved for specific regions (e.g.,
Niziol, 1987).

Particularly pertinent to the present study, Rothrock (1969)
presented forecasting guidelines for the Lake Michigan basin,
largely determined from sounding-based parameters and based
on cases from a 2-year period. Findings indicated that snowfall
is primarily dependent on the lake to 850-hPa temperature
difference and the fetch across the lake. The chief inhibiting
factor was inversion base height, with snowfall reduced for
heights below ∼900m. This inhibition has been supported by
numerical simulations (Hjelmfelt, 1990), although an upstream
inversion may be substantially altered as the boundary layer
deepens across the lake (Agee and Gilbert, 1989; Chang and
Braham, 1991; Niziol et al., 1995; Kristovich et al., 2003). Strong
wind shear (Rothrock, 1969; Niziol, 1987) and low upstream
relative humidity (Rothrock, 1969; Hjelmfelt, 1990) can also
inhibit snowfall.

Climatological evaluations of lake-effect snowfall have been
extensive in the literature, including satellite-based climatology
(Laird et al., 2017), lake-effect contribution to seasonal snowfall
(e.g., Chagnon, 1968; Braham and Dungey, 1995), trend
assessments (e.g., Burnett et al., 2003; Kunkel et al., 2009;
Bard and Kristovich, 2012; Clark et al., 2016), 21st century
projections (Kunkel et al., 2002; Notaro et al., 2015; Suriano and
Leathers, 2016), sensitivity to teleconnection patterns (Kluver
and Leathers, 2015; Clark et al., 2016, 2018; Suriano and
Leathers, 2017a), and seasonal prediction (Kluver and Leathers,
2015). For trend assessments and the influences of canonical
teleconnections, a challenge is posed by the difficulty isolating
the lake-effect contribution to seasonal snowfall, with estimates
sensitive to methodology (Braham and Dungey, 1995). This
uncertainty has been addressed by using transects to estimate
the lake contribution to snowfall (Bard and Kristovich, 2012), or
employing daily-scale classification to estimate synoptic patterns
(Leathers and Ellis, 1996; Suriano and Leathers, 2017a) and
snowfall (Clark et al., 2020) associated with lake-effect events.

The morphology of lake-effect snow bands has been explored
through analyses of satellite data (Kristovich and Steve, 1995;
Laird et al., 2017), field experiments (e.g., Kristovich et al., 2017;
Mulholland et al., 2017) and numerical simulations (Hjelmfelt,
1990; Laird et al., 2003; Laird and Kristovich, 2004). Laird and
Kristovich (2004) demonstrated that the ratio of wind speed
(U) to maximum fetch distance (L) is useful in separating
morphology, with a higher U/L exceeding ∼0.09m s−1 km−1

for wind-parallel events (Laird et al., 2003). These wind-parallel
events are the most common in the western Great Lakes
(Kristovich and Steve, 1995; Laird et al., 2017), with cross-lake
winds generating multiple bands (Braham, 1983) associated with
horizontal rolls and cellular structures (Kelly, 1984; Kristovich
and Steve, 1995). While not as common in the western Great
Lakes (e.g., Laird et al., 2017), mid-lake and shoreline bands are
associated with a lower U/L (Laird et al., 2003), while mesoscale
vortices occur with weak flow (Forbes and Merritt, 1984; Laird
and Kristovich, 2004) and are comparatively rare (Hjelmfelt,
1990; Laird et al., 2017). In addition to these primary band
types, smaller misovortices have been observed within other
band structures (Kristovich and Steve, 1995; Mulholland et al.,
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FIGURE 1 | Map of stations included in the analysis of lake-effect snowfall along the southern shore of Lake Michigan. Dots, pluses, and triangles denote stations in

IL, IN, and MI, respectively.

2017). Herein, the sensitivity of snowfall to band morphology
is examined.

The present study combines the satellite-inferred cloud data
from Laird et al. (2017), an update to the cloud data set
through December 2017, and the classification approach from
Clark et al. (2020) in order to examine the lake-effect snow
day climatology along the southern shore of Lake Michigan.
Based on these lake-effect snowfall days from 1997 to 2017, the
present study examines the climatology in order to address the
following questions:

1. What is the sensitivity of lake-effect snowfall along the southern
shore of Lake Michigan to lake band morphology?

2. What large-scale meteorological pattern across North America
is associated with lake-effect days along the southern shore of
Lake Michigan?

a. What is the sensitivity of lake band morphology to the
large-scale pattern?

3. What is the sensitivity of snowfall to thermodynamic and wind
characteristics from the upstream sounding at Green Bay,WI?

a. How does this sensitivity vary spatially within the region?

b. What is the sensitivity of lake band morphology to the
sounding variables?

DATA AND METHODS

Snowfall Data
Precipitation data from the National Weather Service
Cooperative Observer Program (COOP) sites were retrieved
from the National Centers for Environmental Information
(NCEI). The study region surrounds the southern shore of Lake
Michigan, as defined by the southern sub-regions of the Clark
et al. (2016, 2018) Lake Michigan basin snowfall climatology.
As described in detail within Clark et al. (2016), stations were
selected in order to represent six subregions surrounding the lake
during a 1950–2013 study period and screened for missing data.
In addition to the southern subregions within the previous study,
LaPorte and Wanatah, IN, are included in the present study in
order to better resolve the snowfall sensitivity to wind direction
and morphology along the southern shore. The region for the
present study is shown in Figure 1, with station information
provided in Table 1.
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TABLE 1 | Information on snowfall locations, including the identification number,

missing data indicator, and sub-region from Clark et al. (2016).

Station ID Missing data % Sub-region

Aurora, IL 110338 0.6 SW

De Kalb, IL 112223 0.0 SW

Midway, IL 14819 0.0 SW

O’Hare, IL 94846 0.0 SW

Peotone, IL 116725 5.4 SW

Rockford, IL 94822 0.0 SW

Battle Creek, MI 14815 8.5 SE

Bloomingdale, MI 200864 3.6 SE

Coldwater, MI 201675 4.8 SE

Eau Claire, MI 202445 12.7 SE

Goshen, IN 123418 0.0 SE

LaPorte, IN 124837 0.3 SE

Niles, MI 205892 0.0 SE

South Bend, IN 14848 0.3 SE

Valparaiso, IN 128999/128992/US1INPT0063 3.3 SE

Wanatah, IN 129222 6.0 SE

Winamac, IN 129670 0.6 SE

For missing data, values refer to the percentages of missing snowfall during LE days of

the study period. Data are not available starting in the fall of 2014 for Eau Claire, MI. The

Valparaiso, IN, station change-overs occurred in the fall of 2005 and 2014. The latest is

from the Community Collaborative Rain, Hail, and Snow Network (CoCORAHs), which

was carefully selected among several CoCORAHs based on data availability. All station

data were acquired through the National Centers for Environmental Information (NCEI).

Morphology
Lake-effect snow band morphology was obtained from the 17-
cold season lake-effect cloud climatology described by Laird et al.
(2017). This climatology was recently updated through the end
of 2017, creating a nearly 21-cold season climatology of lake-
effect cloud events used herein. In short, visible satellite imagery
for each cold-season day spanning October through March was
visually inspected using stepwise animation to identify the lake-
effect snow band type present over each lake on each day. For a
given day, each lake could feature wind-parallel bands (WPB),
shoreline bands (SPB), mesoscale vorticies (MSV), or unclear
lake-effect organization along with synoptic cloudiness. Each lake
could receive multiple band-type characterizations on a single
day as the cloud structure often evolved on a given day or
multiple cloud types were routinely identified simultaneously.
For more detail on the cloud-band climatology, see Laird et al.
(2017) and Section Data and Methods.

Independent Identification of Likely
Lake-Effect Snow Days
Since the cloud-inferred lake-effect days (LE_cloud) frequently
have synoptic clouds observed on the same day, a complementary
identification of likely lake-effect snowfall days (LE_envsnow)
was completed following the approach within Clark et al. (2020)
for the classification of November snow days in the Lake
Michigan region. The process is summarized here, with examples
and comparison with a cluster-based approach provided in Clark
et al. (2020). For each of the October through March days within

the October 1997 to December 2017 study period during which
peak snowfall was at least 2 cm, the identification of likely lake-
effect days was based on the snowfall distribution and visual
inspection of the surface map depiction from the Daily Weather
Map online archive [from the National Oceanic and Atmospheric
Administration (NOAA) Central Library Data Imaging Project]
and upper-level maps available through the online archive
through the NOAA Storm Prediction Center and/or maps
produced using NOAA/National Center for Environmental
Prediction/National Center for Atmospheric Research Reanalysis
1 (Kalnay et al., 1996). Although this study is concerned
with locations along the southern shore of Lake Michigan, the
precipitation map within the Daily Weather Map and snowfall
from the other four Clark et al. (2016) sub-regions was sometimes
helpful in isolating lake-effect days (station information for these
supplementary locations is provided in Supplementary Table 1).

Likely LE_envsnow days were indicated by a lack of a
synoptic-scale disturbance as a probable forcing for precipitation
in the region, as well as the spatial snowfall distribution. Since
the timing of snowfall is important for interpretation and the
reporting time of 24-h snowfall measurements varies among
the stations, Monthly Record of Climatological Observations
Form reports from COOP observers were consulted in many
instances; these were especially helpful in cases for which
the observer noted the time period over which the snowfall
occurred. To minimize error, there were three independent sets
of evaluations for each day. Two were completed by co-authors,
with an additional evaluation from the lead author. Cases with
disagreement between the evaluations were re-considered. For
cases in November, the identified days within Clark et al. (2020)
through 2012 were utilized.

LE_envsnow days herein are intended as “pure” lake-
effect days, with significant (≥2 cm) snowfall entirely or
primarily confined to downwind locations and a lack of
substantial map-based, synoptic-scale forcing for precipitation.
For days with a broad pattern of significant snowfall
through the region, then LE_envsnow is not the deemed
designation. Although lake enhancement can occur as
synoptic-scale disturbances impact the region, the focus in
this study is pure lake-effect days and their sensitivity to
the environment.

Many of the days with snowfall in the region are not identified
as LE_envsnow days; these are not the focus of the current study,
but are briefly described here and with more detail in Clark
et al. (2020). For most of these non-LE_envsnow days, denoted
as system (SYS) snow days in Clark et al. (2020), there is map-
based evidence of synoptic-scale forcing from migrating mid-
latitude cyclones in the region. There is also typically a broad
pattern of snowfall through the region, although the progression
of synoptic disturbances through the region can result in snowfall
in locations west or east of the lake. Other non-likely lake-effect
days are delineated as Both (system snow days with substantial
likely lake augmentation), Remnant (snowfall of at least 2 cm
actually occurred the previous calendar day based on archived
monthly observer reports of timing), Unclear (for days with
unclear forcing and timing issues, if not error), and Insignificant
(the peak snowfall report is <2 cm).
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Evaluation of Upstream Sounding
Characteristics and Large-Scale
Environment
The days with both LE_cloud and LE_envsnow designations are
evaluated in the present study and denoted as lake-effect (LE)
days. For an assessment of the sensitivity of LE day snowfall to
variables gleaned from the sounding at Green Bay, WI, sounding
data were retrieved from online archives at the University of
Wyoming. Thermodynamic and flow variables were extracted
at mandatory levels in order to examine their correlations
with snowfall. In order to create sounding composites, the
radiosonde data were linearly interpolated to every millibar and
analyzed using the MetPy library (May et al., 2021). For the
assessment of inversion characteristics, the lowest non-surface-
based temperature inversion through 700 hPa was examined,
with the strength defined as the amount of warming from
the base of the inversion to the top. Surface-based inversions
weren’t included, since these nocturnal near-surface inversions
may be quickly obviated by the sensible heat flux from the warm
lake. In order to examine the temperature difference between
mandatory levels and Lake Michigan, the daily Lake Michigan
temperature was provided through the Great Lakes Surface
Environmental Analysis and acquired online through the Great
Lakes Environmental Research Laboratory.

Sounding data at 00 and 12 UTC were evaluated; the
sensitivity of snowfall to the 12 UTC sounding variables was
stronger and is shown herein. An alternative “best time” approach
was also considered, based on a comparison of 00 and 12 UTC
conditions each day, but this introduces a bias regarding which
thermodynamic or flow property is prioritized. The sensitivities
of LE day snowfall to sounding variables were assessed using
data visualization and Pearson correlation coefficients (with
reported significance based on a 95% confidence interval). Since
independent observations cannot be assumed with instances
of neighboring lake-effect days, a bootstrapping approach was
also used for these significance assessments. Specifically, 10,000
realizations of 100-member sub-samples were generated, with
the correlation calculated for each; if the resulting 95% of the
correlation distribution doesn’t include zero, then the correlation
is deemed significant.

For visualization of large-scale patterns associated with
the LE snow days, maps of the NOAA/National Center for
Environmental Information/National Center for Atmospheric
Research Reanalysis 1 data were generated. Daily anomalies at 12
UTC were calculated for sea level pressure, 850-hPa temperature
and 500-hPa geopotential height for each case, based on the
30-year climatology baseline from 1980 to 2010 for each of
the days.

RESULTS AND DISCUSSION

Comparison of Daily Cloud Data With
Identified Likely Lake-Effect Snow Days
System and lake-effect cloud structures were observed frequently
during the study period, although many lacked accumulating
snowfall along the southern shore of Lake Michigan (Table 2).

TABLE 2 | Comparison of classification and satellite-inferred cloud data.

No clouds SYS clouds SYS and LE

clouds

LE clouds

Both 0 11 38 15

INS 0 150 116 45

LE 2 68 174 157

None 63 1,514 471 144

Remnant 1 0 1 0

SYS 4 322 265 62

Unclear/error 1 1 0 1

Cloud data are available for the months of October through March, from October 1997

through December 2017. Satellite estimates were not available for 111 days during the

study period. Classifications were completed for days during this period in which the peak

snowfall in the region was ≥2 cm.

Roughly 82% of the days identified as likely lake-effect days
had lake-effect cloud structures observed, while ∼89% of the
days identified as likely system snow days had synoptic cloud
structures. An evaluation of mismatches reveals the key role of
snowfall timing; for most of these days, 24-h snowfall reports
influenced the classification of likely precipitation forcing, while
the cloud data is effectively “ground truth” for the daytime hours
of the date in question. For example, a day may have observed
lake-effect cloud structures and a clearly favorable environment
for lake-effect processes, yet not be classified as a lake-effect snow
day due to a broad region of synoptically-induced snowfall from
the previous night (which is reported in the morning for multiple
locations). The study herein utilizes the 331 days which have
observed lake-effect cloud structures and were also identified as
likely lake-effect snow days. These will subsequently be referred
to as lake-effect snow (LES) days. Although it is not uncommon
for LE days to occur sequentially, individual days are evaluated in
this study in order to evaluate the sensitivity to cloudmorphology
and environmental factors.

Climatology of LE Days
The peak snowfall varies substantially among LE days; the mean
peak snowfall is a modest 9.7 cm, yet the top 5 days exceed 30 cm
and the peak snowfall day was an impressive 66 cm (not shown).
The highest mean snowfall occurs within the belt extending
from southwest Michigan into adjacent northern Indiana, with
a reduction in mean snowfall for western stations and the
easternmost locations in Michigan (Figure 2). The peak snowfall
region also has much more frequently observed LES, although
there were ∼10 days with LES west of Lake Michigan (not
shown). Seasonally, the LE days span the October throughMarch
study season, with a peak of nearly one-third of the LE days
in January.

On LE days, the most common lake-effect cloud type is
WPB, followed by SPB, Unclear morphology, andMSV (Table 3).
Although many of the WPB days lack other LE morphological
types, a substantial fraction of days with other morphologies
have multiple types observed. Nearly three-quarters of the SPB
days have multiple cloud structures observed, while nearly half
of the Unclear days have other structures observed and only
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FIGURE 2 | Map of mean snowfall (cm day−1) for LE snow days. These days include the 331 days for which there is a combination of LE_cloud and LE_envsnow

designations. These LE days occurred from October (7 days) to March (27 days), with 36 in November, 71 in December, 110 in January, and 80 in February.

TABLE 3 | Number of LE days with each morphological cloud type during the

study period.

WPB SPB MSV Unclear

Total 286 61 4 39

With WPB (236) 38 0 11

With SPB 38 (15) 2 5

With MSV 0 2 (1) 1

With Unclear 11 5 1 (22)

WPB, SPB, MSV 1 1 1

These include wind parallel bands (WPB), shoreline parallel bands (SPB), mesoscale

vortices (MSV), and Unclear structures. Combinations of morphological styles on the

same day are also indicated. The numbers in parentheses indicate the days with a solitary

observed lake-effect cloud morphology.

one MSV day lacks another morphology (Table 3). Despite this
notable amount of concurrent snowband morphologies, WPB
and SPB days are of great interest herein, since they are the most
common. Furthermore, the less common SPB days are associated
with different snowfall patterns and environments.

The mean snowfall on SPB days is higher for westernmost
locations than on the more common WPB days, with a peak in

northwest Indiana (Figure 3). In contrast, the far more plentiful
WPB days have peak snowfall near the shoreline in southwest
Michigan, and since these days are more common, they dominate
the overall LE snowfall distribution (as in Figure 2). However,
the impact of the less common SPB days is often substantial. In
addition to the difference in spatial snowfall patterns (Figure 3),
it is noteworthy that four of the top five LE day accumulations
had SPB structures observed (although the WPB morphology
was also documented). These four large SPB-associated snowfalls
(all exceeding 30 cm) occurred at different locations within the
region, including Eau Claire, Michigan, and Valparaiso, La Porte,
and South Bend, Indiana.

During lake-effect snow days, negative 500-hPa geopotential

height anomalies are present in the Great Lakes, with a trough

axis in the eastern Great Lakes (Figure 4A). Cold anomalies at

850-hPa are also present over Lake Michigan, with northwest

flow (Figure 4B). Higher than average sea-level pressure (SLP)
is present over the Central United States, while lower SLP is
found to the northeast (Figure 4C). Comparing the patterns per

morphology, SPB days have higher 500-hPa geopotential heights
and warmer 850-hPa temperatures northwest of the Great Lakes
(Figures 5A,B). The difference in SLP anomalies reveals higher
SLP within and to the north of the Great Lakes (Figure 5C). The
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FIGURE 3 | Mean snowfall (cm day−1) associated with WPB (A) and SPB (B) lake-effect snow days.
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FIGURE 4 | Composite 12 UTC anomaly maps of Reanalysis I (A) 500-hPa geopotential height, (B) 850-hPa temperature, and (C) sea-level pressure for LE days.

Filled contours represent anomalies of geopotential height (upper), temperature (middle) and sea-level pressure (lower), while solid contours represent mean

geopotential height (upper, middle) and sea-level pressure (lower). Wind barbs are also included. There are 331 days represented within the composite. NCEI reanalysis

data provided by the NOAA Earth System Research Laboratory/Physical Sciences Division, Boulder, CO from their web site (http://www.esrl.noaa.gov/psd/).
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FIGURE 5 | Composite 12 UTC Reanalysis I (A) 500-hPa geopotential height (upper), (B) 850-hPa temperature (middle) and (C) sea-level pressure (lower) differences

between days with SPB and WPB cloud classifications. Differences are indicated by filled and solid contours. Dots indicate regions for which the null hypothesis of

equal mean SPB and WPB 500-hPa geopotential height, 850-hPa temperature and sea-level pressure can be rejected, respectively. This assessment is based on

bootstrap simulations using 10,000 50-member sub-samples.
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FIGURE 6 | Composite 12 UTC Green Bay, WI, sounding temperature for WPB (solid black) and SPB (dashed black) days. Composite dew point temperature is

indicated by gray lines for WPB (solid) and SPB (dashed) days, and the wind profiles for WPB (black) and SPB (gray) days are also provided. Thirteen soundings were

unavailable.

wind direction over Lake Michigan on the surface and 850-hPa
SPB day composites (Figures 5B,C) suggests a longer fetch than
for the LE day composite (Figures 4B,C), which is consistent
with Laird et al. (2003).

Consistent with this environment in the Great Lakes, the
sounding composite from Green Bay, WI, indicates a cold
lower troposphere with northwesterly flow (Figure 6). The lower
tropospheric winds on SPB days are lighter and more northerly
than on WPB days. Interestingly, the morphology is more
sensitive to the zonal component of the wind than to the
meridional component, with a much weaker zonal component

at 850-hPa on SPB days (Table 4). The lower tropospheric
temperature is also modestly warmer on SPB days, although
the difference is not significant at 850-hPa. Other modest
thermodynamic differences are also insignificant based on the
bootstrap-based assessments, including differences in inversion
characteristics and relative humidity.

Sensitivity of Snowfall to Sounding
Parameters
Based on the 12 UTC sounding data from Green Bay,
WI, the peak daily snowfall per LE day is significantly

Frontiers in Water | www.frontiersin.org 10 March 2022 | Volume 4 | Article 826293191

https://www.frontiersin.org/journals/water
https://www.frontiersin.org
https://www.frontiersin.org/journals/water#articles


Clark et al. Which Morphology Is Most Impactful?

TABLE 4 | Mean sounding variables per-lake band morphology.

WPB SPB Bootstrap

significance

850-hPa wind direction 318◦ 345◦

850-hPa wind speed 22.9 knots 17.3 knots *

850-hPa u 13.1 knots 2.1 knots *

850-hPa v −14.1 knots −13.7 knots

700-hPa temperature −20.6◦C −19.5◦C

Inversion height 1,044m 1,021m

Inversion strength 2.5◦C 2.0◦C

850-hPa relative humidity 64% 61%

A bootstrap approach was used to infer whether the null hypothesis of equal population

mean could be rejected, with ‘*’ indicating significance at the 95% confidence threshold,

respectively. (Although theWelch t-test would also allow the rejection of the null hypothesis

of equal population means for the 850-hPa wind speed and zonal wind component (u),

independent observations cannot be assumed in the present study.) The wind direction

variable is adjusted for cases with an easterly wind component by adding 360 degrees,

such that NE wind of 45 degrees is converted to 405 degrees. Inversion strength is defined

as the amount of warming from the base of the inversion to the top.

TABLE 5 | Correlation coefficients between peak snowfall and several variables

from the upstream sounding at Green Bay, WI, during lake-effect snow days.

Variable Correlation

coefficient

Bootstrap

significance

850-hPa wind direction 0.21

850-hPa wind speed 0.02 .

850-hPa u −0.26

850-hPa v −0.16 *

850-hPa temperature −0.25 *

Lake to 850-hPa Delta T 0.25 *

700-hPa temperature −0.29 *

Lake to 700-hPa Delta T 0.28

Inversion height −0.04

Inversion strength −0.07

850-hPa relative humidity 0.08

A bootstrap approach was used to infer the significance of correlations, with “*” and “.”

indicating significant correlations at the 95 and 90% confidence thresholds, respectively.

anticorrelated with the 850-hPa zonal wind component, but
not significantly correlated with the meridional component
(Table 5). Spatially, the sensitivity to the 850-hPa zonal wind
component peaks in northwest Indiana and is weaker in
southwest Michigan (Figure 7A). This stronger sensitivity to
the zonal wind component in northwest Indiana is consistent
with the morphological results noted previously, with increased
likelihood of SPB structure as the zonal wind becomes weaker.
There is also a significant anticorrelation of snowfall with the
850-hPa meridional wind component in some locations, with
the peak impact in north-central Indiana (Figure 7B). Other
wind characteristics were considered as well. The sensitivity to
the wind direction is consistent with the zonal and meridional
wind results (not shown), while correlation of peak snowfall
with wind speed is effectively non-existent (Table 5). Although

there is some evidence of a non-linear snowfall reduction
for very high wind speeds, the sample size encumbers this
analysis (not shown).

There is a significant dependence of peak LE day snowfall
on lower tropospheric temperature, as well as the associated
lake to 850 and 700-hPa temperature differences (Table 5).
The relationship appears strongest with 700-hPa temperature
and peaks in southwest Michigan, where the sensitivity to
the wind is somewhat weaker (Figure 7C). Interestingly, other
thermodynamic factors lack a meaningful linear relationship
with peak snowfall; these include inversion base height and
strength, as well as 850-hPa relative humidity (Table 5). The
lack of a significant correlation with inversion characteristics
is surprising, but may simply be indicative of the capacity
of boundary layer growth across the lake to erode the
inversion. Furthermore, as with high wind speeds, there
is some visual evidence that very strong inversions tend
to reduce peak snowfall; however, the sample size of this
small subset does not foster robust hypothesis testing or
related confidence.

CONCLUSIONS

The southern shore of Lake Michigan frequently experiences
lake-effect snow events, some of which produce heavy snowfall in
the region. The most common snow band morphology is WPB,
which is fostered by a cold environment and relatively strong
zonal wind component in the lower troposphere. The resulting
snowfall typically has a peak in southwest Michigan, consistent
with northwest flow. Since these LE days are most plentiful in the
Lake Michigan region, this snowfall mode determines much of
the spatial distribution of lake-effect snow.

A very different mode of snowfall occurs during SPB days,
although WPB structures are often present during the same day.
These SPB days are primarily fostered by a weaker zonal wind
component and typically produce greater snowfall than WPB
in northwest Indiana. Although not every SPB day produces
prolific snowfall, they account for four of the five largest
snowfalls (at four different locations- ranging geographically
from Valparaiso, IN, to Eau Claire. Michigan). This makes
SPB particularly impactful, especially when they occur in
locations which experience less frequent lake-effect snowfall (e.g.,
Valparaiso, IN). These two modes of snowfall in the region are
identifiable within the leading principal components of daily
snowfall in the region, while other statistical modes are more
localized (not shown).

In general, greater LE snowfall in the region is associated
with colder conditions, weak zonal wind flow, and a
northerly meridional wind component in the lower
troposphere. Snowfall is not significantly correlated with
inversion characteristics, likely due to the impacts of
Lake Michigan on boundary layer growth across the lake.
There is some visual evidence that very strong inversions
and high wind speeds tend to reduce peak snowfall;
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FIGURE 7 | Map of correlation coefficients of snowfall and variables from the upstream sounding at Green Bay, WI, during lake-effect snow days. Sounding variables

include the 850-hPa zonal (u; A) and meridional (v; B) wind components and 700-hPa temperature (C). A bootstrap approach was used to infer the significance of

correlations at the 95 and 90% confidence thresholds, respectively.
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however, the sample size of this subset is too small for a
robust evaluation.

It is noteworthy that none of the relationships with snowfall
herein explain a large fraction of the snowfall variance. The
variance of snowfall is substantial, with a great deal of internal
variability beyond the signal associated with environmental
characteristics and snow band morphology. Additionally, the
intraday changes to the environment may be substantial, yet
this is not captured here; even if it were, the snowfall data
represents 24-h totals. In any case, the sensitivity to 00 UTC
sounding characteristics was also considered, but the sensitivity
to the 12 UTC environment was greater. Although a “best time”
approach was also considered, it leads to an unintentional bias
as the role of flow properties and temperature are subjectively
weighted. An alternative approach could also analyze multi-day
events, rather than individual LE days. Although this option
was explored, a daily data approach was ultimately used in
order to better assess the sensitivity to the environment and
snowband morphology.

The region of study was chosen to highlight the importance
of snowband morphology and associated environmental factors
along the southern shore. Northern regions of the Lake Michigan
basin are also worthy of study (as are regions surrounding other
Great Lakes), with likely different sensitivity to thermodynamic
and flow characteristics. It may also be beneficial to evaluate the
environments of LE_cloud days in which snowfall accumulation
did not occur, although this is beyond the scope of the
current study. Lastly, although the cloud data would not
be available, the analysis could be extended to earlier years
in order to increase the sample size for other aspects of
the analysis.
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Understanding impacts of climate change on water level fluctuations across Earth’s large

lakes has critical implications for commercial and recreational boating and navigation,

coastal planning, and ecological function and management. A common approach

to advancing this understanding is the propagation of climate change scenarios

(often from global circulation models) through regional hydrological models. We find,

however, that this approach does not always fully capture water supply spatiotemporal

features evolving from complex relationships between hydrologic variables. Here, we

present a statistical approach for projecting plausible climate-related regional water

supply scenarios into localized net basin supply sequences utilizing a parametric vine

copula. This approach preserves spatial and temporal correlations between hydrologic

components and allows for explicit representation and manipulation of component

marginal and conditional probability distributions. We demonstrate the capabilities of our

new modeling framework on the Laurentian Great Lakes by coupling our copula-derived

net basin supply simulations with a newly-formulated monthly lake-to-lake routing model.

This coupled system projects monthly average water levels on Lake Superior, Michigan-

Huron, and Erie (we omit Lake Ontario from our study due to complications associated

with simulating strict regulatory controls on its outflow). We find that our new method

faithfully replicates marginal and conditional probability distributions, as well as serial

autocorrelation, within and among historical net basin supply sequences. We find that

our new method also reproduces seasonal and interannual water level dynamics. Using

readily-available climate change simulations for the Great Lakes region, we then identified

two plausible, transient, water supply scenarios and propagated them through our model

to understand potential impacts on future water levels. Both scenarios result in an

average water level increase of <10 cm on Lake Superior and Erie, with slightly larger

increases on Michigan-Huron, as well as elevated variability of monthly water levels

and a shift in seasonal water level modality. Our study contributes new insights into

plausible impacts of future climate change on Great Lakes water levels, and supports

the application and advancement of statistical modeling tools to forecast water supplies

and water levels on not just the Great Lakes, but on other large lakes around the world

as well.
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1. INTRODUCTION

The Laurentian Great Lakes watershed is home to more than
40 million inhabitants (MacKay and Seglenieks, 2013) and has a
surface area of roughly 244,000 km2 (Moukomla and Blanken,
2016), the largest of any lake system on Earth (Gronewold
et al., 2013b). Regional ecological health and economic security
are closely interwoven with this system, in large part because
of the capacity of the Great Lakes to support diverse habitats

(Cvetkovic and Chow-Fraser, 2011), commerce (Millerd, 2011;
Meyer et al., 2016), and recreation (Nevers and Whitman, 2011;
Gronewold et al., 2013c). The capacity of the Great Lakes to
support these activities is, in turn, dependent on historical and
future water quantity and quality dynamics (Mortsch and Quinn,
1996), including (but not limited to) those associated with coastal
water level variability (Mortsch andQuinn, 1996; Gronewold and
Stow, 2014a). Given the great economic and ecological value of
the Great Lakes, and recognizing the potential risks associated
with ongoing climate change (Pryor et al., 2014), understanding
plausible future water level dynamics on the Great Lakes is

paramount. Indeed, Great Lakes scientists have undertaken this
very endeavor for decades (Quinn, 1978; Croley, 1990; Angel and
Kunkel, 2010).

Previous attempts to quantify shifts in the Great Lakes

hydrologic cycle reflect the role that climate change has
already been playing across the region (Marchand et al., 1988;
Quinn, 2002). Some of these historical projects, many of which
have come under scrutiny (Lofgren and Gronewold, 2013),
focused on translating that understanding into seasonal and
interannual water supply forecasting systems using a “change-
factor” method (Croley, 1990) based on output from a chain
of lake thermodynamics and rainfall-runoff models collectively
known as the Advanced Hydrologic Prediction System, or AHPS
(Gronewold et al., 2011). This modeling framework (Croley,
1990) was subsequently adopted in a range of climate impact
studies (Hartmann, 1990; Hayhoe et al., 2010). Importantly, some
of these studies employed a perturbed time series of historical
data (using either a multiplication factor, or ratio, based on
separate climate modeling results) as future forcings. These
forcings were intended to be representative of a future climate.

The perturbed climate data became input for the AHPS,
which translated climate variables such as daily temperatures,
precipitation, and humidity into water supply components (also
commonly referred to as a “net basin supply,” or NBS). More
specifically, NBS in the Great Lakes is typically defined as the sum
of terrestrial runoff into each lake, and net atmospheric water
supply (precipitationminus evaporation) over the surface of each
lake (Mailhot et al., 2019). This value is typically expressed as a
height of water over each lake surface (Music et al., 2015). Due to
the large surface area of the Great Lakes relative to basin size,
overlake precipitation, overlake evaporation, and runoff have
similar annual magnitudes, but very different seasonal dynamics
(Lenters, 2001; Gronewold et al., 2013a).

Despite variation in emission scenarios considered across
previous studies (Music et al., 2015), those (most of which
were published prior to 2010) that employed the Croley (1990)
methodology predicted substantial decreases in both NBS and

water levels on the Great Lakes (Lofgren, 2004). Lofgren et al.
(2011) and Lofgren and Rouhana (2016) subsequently identified
methodological flaws in the estimation of evapotranspiration
in the AHPS core runoff model (the large basin runoff model,
or LBRM), leading to arguably biased formulations of runoff
and NBS resulting from the use of near-surface air temperature
as a proxy for potential evapotranspiration (Milly and Dunne,
2017). Furthermore, application of the change-factor method
only represents shifts in mean, and later variance, of hydrological
components. This method does not fully account for the
full probability distribution underlying each water balance
component (Music et al., 2015). Correctly representing evolving
solar radiation dynamics in relatively simplemodels that simulate
the hydrologic impacts of climate change (Lofgren et al., 2013)
is just one challenge facing the Great Lakes water resources
planning community.

There are other challenges, however, associated with more
contemporary methods that utilize hydrological output directly
from global circulation models (GCMs). Manabe et al. (2004),
for example, utilized a GCM to demonstrate that water rich
regions of North America, such as the Great Lakes basin,
would experience a significant increase in runoff and outflow,
suggesting a parallel increase in water level. However, GCMs
typically lack the regional specificity necessary to reflect climate
interactions at the scale of a lake system (Music et al., 2015;
Briley et al., 2021); some models grossly misrepresent or even
simply don’t include critical lake-atmosphere interactions that
affect the regional climate and propagate into meteorological
phenomena (Wright et al., 2013; Bryan et al., 2015; Fujisaki-
Manome et al., 2017). Other regional processes such as soil and
vegetation interactions and rainfall over small watersheds can
have a significant cumulative effect on water availability, but are
similarly misrepresented, or even neglected, in GCMs (MacKay
and Seglenieks, 2013).

An alternative approach that has gained popularity in recent
years is downscaling GCM results with regional climate models
(RCMs), often coupled to a lake-atmosphere model (Gula and
Peltier, 2012; MacKay and Seglenieks, 2013; Music et al., 2015;
Notaro et al., 2015; Mailhot et al., 2019). Studies utilizing RCMs
have demonstrated the possibility for much more varied results
than had previously been considered under the “change-factor”
method (Winkler, 2015). MacKay and Seglenieks (2013), for
example, projected single digit centimeter declines in water levels,
while Notaro et al. (2015) projected both large increases in
water level (+42 cm on Michigan-Huron) using one regional
model (RCM-CNRM), as well as significant decreases (−29.6 cm
on Michigan-Huron) using a different regional model (RCM-
MICROC5). These findings underscore the substantial variability
that either different RCMs, or that different parameterizations
within a given RCM, can introduce. In contrast, studies using
ensembles of multiple RCMs to project hydroclimate scenarios
resulted in less extreme changes in average water supply. Most
recently, a study of 28 climate simulations under five RCMs
predicted only small increases in average NBS across the basin,
but projected an amplification of the seasonal NBS cycle driven
by increases in both precipitation and evaporation (Bartolai et al.,
2015; Mailhot et al., 2019).
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To provide more robust simulations of plausible NBS
time series under climate change scenarios, we introduce a
methodology utilizing a parametric regular vine copula to predict
monthly NBS component values given a hypothesized change
or trend in each component. Copulas are multidimensional
cumulative distribution functions (CDFs) that originate from
marginal CDFs (Schölzel and Friederichs, 2008; Laux et al.,
2011; Lee and Salas, 2011; Maity, 2018). More specifically,
copulas encode relationships between some number (e.g., d) of
marginal probability distributions (in our case, for d hydrological
variables) and a new d-dimensional joint probability distribution
that preserves serial and cross-correlation.

As such, copulas represent an efficient tool for simulating
long-term environmental variables that are highly correlated
across space and time. Previous studies have shown that
copula models have the potential to successfully represent these
dependencies (Pouliasis et al., 2021). Other conventional (and
perhaps more common) statistical models in water resources
research, such as autoregressive, fractional Gaussian noise, and
non-parametric models, have the potential to misrepresent (or
even not represent at all) them (Lee and Salas, 2011). Here,
we utilize a specific type of copula, referred to as a “vine”
copula, which constructs the multivariate joint distribution using
a series of bivariate relationships (rather than a single dependence
structure across all variables simultaneously).

Prior studies have also, more specifically, evaluated the efficacy
of copulas in capturing hydroclimate phenomena on other large
bodies of water, suggesting that hydrologic behavior can plausibly
bemodeled using copulas (Lee and Salas, 2011; Latif andMustafa,
2020; Pouliasis et al., 2021; Zaerpour et al., 2021). However, many
conventional copulas (such as Frank, Clayton, and Gumbel)
are prohibitively complex at higher dimensions (Lee and Salas,
2011). While Gaussian and student’s-t copulas can accommodate
joint distributions of many dimensions, we focus our attention
on vine copulas to allow for uniquely structured bivariate
dependencies such as heavy tail weighting, multimodality, and
physical boundary conditions.

Likewise, it is advisable to use regular vines under certain
circumstances in which the dependence structure of the variables
is unclear, a condition reflected in the high number of monthly
NBS component variables across the Great Lakes (Latif and
Mustafa, 2020). With this in mind, we are able to use vine copulas
to capture overarching variable interactions while simultaneously
managing all constituent pairwise dependencies.

Therefore, the approach we introduce intends to leverage
the strength of regular vine copulas to capture spatial and
temporal distributional dependencies between monthly NBS
components for large lakes and, in particular, for each of the
Laurentian Great Lakes. We couple these statistically robust
NBS simulations with a lake-to-lake routing model utilizing
monthly stage-fall discharge equations. Monthly outflow models
(as opposed to annual-scale models often used in multi-
decadal simulations) allow us to represent seasonal variability
in water supplies evolving from factors such as ice cover and
vegetation. We demonstrate the utility of this methodology
by simulating historical and future water levels under two
plausible hydroclimate scenarios that represent a continuation

of observed NBS component trends, and a blending of existing
trends with RCM NBS change projections. We use these water
level simulations to assess three metrics of water level behavior:
long-term average, seasonality, and frequency of extreme values.

2. METHODS

2.1. Copula Calibration
We began by extracting historical water balance data for the
Great Lakes using archived output (Do et al., 2020a) from
the Large Lake Statistical Water Balance Model (L2SWBM)
(Gronewold et al., 2020). The L2SWBM utilizes a Bayesian
framework (Press, 2003; Gelman et al., 2004) to assimilate
independent hydrological data products across the Great Lakes
and subsequently infer the “true” monthly value for each
water balance component. Although these monthly values are
ultimately unknown, the L2SWBM is constrained by a traditional
water balance equation, and uses multiple data sources to develop
prior and likelihood functions for each component. Thus, the
posterior estimates of the L2SWBM reconcile observed (or
simulated) values from independent data products to close the
water balance of the entire hydrologic system (Gronewold et al.,
2016).

For this study, we specifically extracted median NBS
component values from the L2SWBM to calibrate the copula. We
calibrated the copula model as a “Regular Vine” copula within
the RVineStructureSelect() function in the VineCopula package
(Nagler et al., 2021) in the R statistical software program (R
Core Team, 2017). We converted our 70 year NBS component
observations into pseudo-observations which are both readable
by the RVineStructureSelect() function, and rank-normalized
to the interval [0,1]. The RVineStructureSelect() function then
optimally generates a maximum spanning tree with edge weights
as the correlation of pairs of variables amongst the 108 variables
(3 lake systems × 3 water balance components × 12 months).
Likewise, the RVineStructureSelect() function assigns them to the
most appropriate bivariate copula family.

We then used the RVineSim() function to generate simulated
values for each lake water balance component. We used
quantile functions to map component values from [0,1]
space into “real” values. The marginal distributions for each
water balance component were, following previous protocols
established in developing the L2SWBM (Gronewold et al., 2016,
2020; Do et al., 2020b), prescribed as three-parameter gamma,
Gaussian, and log-normal for precipitation, evaporation and
runoff, respectively. The three-parameter gamma distribution is
parameterized using the same shape and scale parameters as a
conventional gamma distribution along with an additional shift
parameter. As described in the following sections, this approach
allows us to propagate plausible climate change scenarios through
changes in the parameters of each probability distribution.

2.2. Outflow and Routing Model
To propagate the monthly water balance components generated
by the copula into simulated monthly water levels, we developed
an outflow model to capture flow dynamics between the lakes.
Specifically, we encoded a conventional stage-fall discharge
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(SFD) equation, which simulates lake outflow as a function of
water surface elevation in an upstream and (in some cases,
depending on the extent of backwater effects) downstream
lake (Gessler et al., 1998; Schmidt and Yen, 2008; Westerberg
et al., 2011; Apps et al., 2020). SFD models are particularly
prevalent in the Laurentian Great Lakes, where they have been
used for decades in long-term water level simulation studies
and operational forecasting systems (Brunk, 1968; Quinn, 1978;
Labuhn et al., 2020; Quinn et al., 2020; Thompson et al., 2020).

To simulate outflow (Q) from Lake Michigan-Huron, we
used the following SFD formulation with both stage and fall
components to accommodate the effects of backflow through the
Detroit and St. Clair Rivers.

Q = am(z2 − z1)
b(z2 − zsill)

c

where z2 and z1 represent upstream and downstream lake
elevations, respectively, and zsill represents a constant lake “sill”
elevation (roughly analogous to the elevation of the channel
bottom). Model coefficients are represented by a, b, and c,
where a subscript m indicates that a coefficient is allowed to
vary seasonally. This approach allows our models to account for
monthly changes in the relationship between water levels and
channel flowwhich result from factors such as channel vegetation
and ice cover (Derecki and Quinn, 1986; Lu et al., 1999).

To simulate outflow from Lake Superior and Lake Erie, we
used (following conventional protocols) the following simplified
SFD model (superscripts are added to differentiate flow values
and coefficients derived from the simplified SFD model;
subscripts differentiating models for Lake Superior and Lake Erie
are removed for clarity):

Q′

= am
′(z2 − zsill)

c′

Taking the logarithm of each formulation leads to the following
linear models:

ln(Q) = ln(am)+ b ∗ ln(z2 − z1)+ c ∗ ln(z2 − zsill)+ ǫ

ln(Q′) = ln(am
′)+ c′ ∗ ln(z2 − zsill)+ ǫ′

where ǫ and ǫ′ are model error terms.
We then conducted a Bayesian analysis to estimate

model coefficients using historical Great Lakes beginning-
of-month water level measurements, and monthly average flow
measurements, as data (i.e., for z2, z1, and Q). We obtained this
data from publicly-available archives maintained by the National
Oceanic and Atmospheric Administration (NOAA) Great Lakes
Environmental Research Laboratory (Smith et al., 2016), and
originally developed by the Coordinating Committee on Great
Lakes Basic Hydraulic and Hydrologic Data (Gronewold et al.,
2018).

2.3. Climate Scenario Selection
To demonstrate the utility of our water level forecasting
framework, we evaluated three 50-year water supply scenarios.
The first scenario is a “baseline” scenario, executed without any
perturbation of the original copula water balance component

parameters. We then developed and evaluated two additional
50-year water supply projections, each developed under
different climate-perturbed water supply conditions. The
historical baseline simulation will hereafter be referred to as
SC1. After comparing our baseline scenarios and historical
observations to ensure a minimal bias, we then base our
analysis on an intercomparison between our three model
simulations. This approach minimizes the impacts of any
potential biases (which we attempt to minimize through
model calibration) in our historical simulations (Frigon et al.,
2010).

While most multidecadal Great Lakes water level forecasts
acknowledge the impact of climate change on future water
level regimes, there has not been a focus on identifying and
propagating existing climate change signals directly into future
water supply scenarios (Notaro et al., 2013, 2015; Lofgren and
Rouhana, 2016). Instead, water levels are typically simulated
under future emissions or temperature change scenarios, but
those scenarios are sometimes inconsistent with observed
trends in NBS components. To address this shortcoming in
conventional regional water supply forecasting, we identify
significant trends in NBS components from 1950 to 2019 to
inform our first plausible climate scenario. This approach, in
effect, reflects a continuation of existing water supply trends.

More specifically, we identified and quantified trends in
monthly L2SWBM NBS component data from 1950 to 2019 for
Lake Superior, Michigan-Huron, and Erie. For each combination
of month, lake, and component (108 total), we developed a linear
model to represent historical trends. Following similar climate
studies (Hu et al., 2019; Daba et al., 2020; Banda et al., 2021),
the linear model was developed using the conventional Theil-
Sen statistical test (Sen, 1968). To simplify our prescription of a
linear trend, we did not utilize seasonal decomposition thatmight
reflect impacts of teleconnections such as El Niño, the Pacific
Decadal Oscillation, or the Arctic Oscillation (Trenberth, 1997;
Ghanbari and Bravo, 2008) that could impose a cyclical effect.
We calculated model residuals using the Sen slope linear model,
and analyzed them for trends that might reflect either model bias
or heterostochasticity (Cook and Weisberg, 1983).

We utilized the Theil-Sen test to quantify existing trends
in all components without regard to the significance of the
trend. However, we only incorporated the linear model for
components with trends that were significant at p <0.05 for
either a sieve bootstrapped student’s t-test or Mann-Kendall test
of significance. Sieve bootstrapping (Bühlmann, 1997) allowed
us to correct for the possibility of serially correlated or non-
normally distributed data in these significance tests, and has
been previously employed for detection of hydrometeorological
trends (Noguchi et al., 2011; Wang et al., 2020). Miller and
Piechota (2008) demonstrate the utility of using multiple
tests of significance to more robustly capture trends in
hydroclimate data. The Mann-Kendall test, in particular, has
been widely coupled with Theil-Sen slope estimations (Chen
and Grasby, 2009; Gyamfi et al., 2016; Banda et al., 2021).
Given a detection of significance by either test, the Theil-Sen
slope (mm*month-1*year-1) was retrieved and incorporated
into our first transient climate scenario, hereafter referred
to as SC2.
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While few historical monthly NBS components exhibit
statistically significant trends, Lake Superior’s historical water
balance can be characterized by increased precipitation and
runoff throughout the winter months. Evaporation demonstrated
much weaker and often slightly negative trends across the
hydrologic year and lake system. These observed trends
(summarized in the Supplementary Figure 1) depict a tendency
toward a “wet” future that are ultimately reflected in SC2.

We then evaluated existing literature to inform a second
transient climate scenario (SC3) that represents a blend of
our observed trends with RCM predictions of NBS component
supply. Mailhot et al. (2019), for example, utilize an ensemble
of five NA-CORDEX RCMs to simulate NBS components under
two emissions scenarios and identify trends in the components
using the Theil-Sen test. We utilized statistically significant
biweekly trends, propagated to a monthly time frame, from the
RCP-8.5 emissions scenario in this study, which represents high
greenhouse gas emissions and, consequently, comparatively high
mean temperature increase (Van Vuuren et al., 2011). The trends
derived from Mailhot et al. (2019) were then added to a baseline
trend, which we calculated as a fractional (0.3) proportion of
observed trends. It is informative to note that SC3 is characterized
bymuch greater increases in evaporation, andmoderate increases
in precipitation and runoff, relative to SC2. Both SC2 and SC3
are plausible, transient water supply scenarios represented by
slope factors (mm/month*year) for each combination of month,
lake, and NBS component. A summary of the changes in water
balance components encoded in both SC2 and SC3 can be found
in Supplementary Figure 1.

2.4. Developing and Evaluating Water Level
Projections
For each of our three scenarios (i.e., SC1, SC2, and SC3), we
generated 1,000 water level sequences across a 50-year horizon
with SC1 beginning in 1951, and SC2 and SC3 each beginning
in 2000. Using observed initial water levels in each time period
as a starting point, we iteratively simulated outflow for each
subsequent month from each lake using the previously described
SFD outflow models (Quinn et al., 2020; Thompson et al.,
2020). We combined simulated outflows and water balance
components for eachmonth to calculate the total monthly change
in water level on each lake. This change in water level consists
of four parts: inflow, NBS, diversions, and outflow. Inflow was
determined using the outflow from the upstream lake which,
in our case, applies only to Lakes Michigan-Huron and Erie.
We generated NBS component predictions using our copula.
Our simulations also include average monthly interbasin water
supplies into Lake Superior from the Long Lac and Ogoki
diversions, out of Lake Michigan-Huron through the Chicago
canal system, and out of Lake Erie through the Welland Canal
(Quinn and Edstrom, 2000; Hunter et al., 2015).

2.4.1. Change Analysis and Validation

We analyzed long-term average, seasonality, and frequency of
extreme values in water levels in our 1,000 50-year sequences
from each model simulation. Given the probabilistic nature of
our model, each plausible sequence (i.e., ensemble member)

has a different mean water level. These long term averages
were aggregated to one simulation average. We also analyzed
probability distributions to fully illustrate any shift in mean water
level outcomes.

We captured potential changes in the seasonal water level
cycle bymeasuring the likelihood that the annual water level peak
or trough falls within a given month. Therefore, any shift in the
timing of yearly water level highs and lows was reflected in a shift
in the probability distribution of highs and lows across months.
Seasonal trends were quantified by comparing the average day
that an annual high or low occurs. We compared the zero
centered probability density function of all future water levels to
historical water levels to identify if any change in the likelihood
of extreme values has occurred, which would be reflected by
variations in the tails of a distribution. Changes in occurrence
patterns of these extreme values is quantified by measuring the
percent of occurrences that fall outside of two standard deviations
from the zero-centered mean of the baseline simulation.

3. RESULTS

3.1. Validation
3.1.1. Copula-Simulated Historical NBS Sequences

We find that the marginal distributions simulated by the
copula for each lake and component reasonably match
observational distributions in both mean and shape
(Supplementary Figures 5–7). We do find, however, that
bimodality of some water balance components is not reflected
clearly in the copula simulations. This result is not particularly
surprising, given that our copula simulates a large number
of samples (1,000) from a parametric and smoothed joint
distribution, while the historical data is based on 50 values.

We also find that the copula simulations also capture
autocorrelation in each water balance component (see
Supplementary Figures 2–4). Minor disparities between
simulated and observed autocorrelation could be the result
of our selected parameterization of component distributions.
Similarly, spatial correlation among different components
and lakes is sufficiently reproduced in our copula (see
Supplementary Figures 8–13). These findings collectively
suggest that our long-term simulations of NBS components for
the Great Lakes, using a newly-developed copula, are relatively
robust. Aggregating monthly NBS component values to lakewide
NBS totals, we find that bias in long term NBS is roughly 2%.

3.1.2. SFD Historical Outflow Simulations

A comparison between simulated and observed historical
monthly water levels on, and outflows from, Lakes Superior,
Michigan-Huron, and Erie (Figure 1) indicates that our
simulation framework provides a reasonable representation not
only of marginal and multivariate distributions for precipitation,
evaporation, and runoff, but also of the water level and flow
water balance components as well. More specifically, we find that
our simulated water levels have a long-term bias of roughly 1 cm
for Lake Superior, 4 cm for Lake Michigan-Huron, and about
12 cm for Lake Erie. The bias in simulated outflows is roughly
2% for Lake Superior, 1% for Lake Michigan-Huron, and 4% for
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FIGURE 1 | Comparison between simulated and observed historical time series of water levels (left) and lake outflows (right) for Lakes Superior (top),

Michigan-Huron (middle), and Erie (bottom) from January 1951 through December 2000. Gray lines represent 100 ensemble members from our model simulation

(randomly sampled from 1,000 to facilitate reproducibility and clarity). Black lines represent observed values, and red lines represent a single ensemble member (same

member for all panels) to reflect individual simulation variability.

TABLE 1 | Comparison of long-term average water levels (in meters) for each lake

based on a historical simulation of the observed data period, and two future

climate change scenarios.

Lake Superior Lake Michigan-Huron Lake Erie

Baseline (Scenario 1) 183.42 176.54 174.18

Scenario 2 183.50 176.66 174.27

Scenario 3 183.45 176.60 174.24

Lake Erie. These values are well within the range of reasonable
tolerance for historical simulations, particularly in light of the
fact that most historical RCM-based simulations have biases that
are either not reported, or well-exceed those presented here.

3.1.3. Water Level Change Analysis

Mean water levels for observed data, our historical model run,
and two future water supply scenarios are summarized inTable 1.

Scenarios SC2 and SC3 indicate a slight net increase in average
water level on Lake Superior, with increases of 8 cm (SC2) and
3 cm (SC3), respectively. Similar changes are expected on Lake
Michigan-Huron (increases of 12 and 6 cm for SC2 and SC3,
respectively) and on Lake Erie (increases of 9 and 6 cm for
SC2 and SC3, respectively). Importantly, both future scenarios
suggest an increase in long-term average water levels across
all of the Great Lakes. These findings are consistent with the
RCM-CNRMmid-century water level projections in Notaro et al.
(2015) and are a plausible consequence of slight to moderate
NBS increases projected by Mailhot et al. (2019) and Music et al.
(2015).

All three of our model runs yield comparable marginal
distributions for mean water level, as shown in Figure 2.
Overlapping distributions between the baseline simulation
and future scenarios indicate that any individual model
run (i.e., ensemble member) may fall within the range of
simulated historical values and, in some cases, even indicate
a decline in water levels. Therefore, our findings indicate
that while an increase in water levels is likely across the
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FIGURE 2 | Probability distribution of all (600) simulated water level sequences for SC1 (red), SC2 (green), and SC3 (blue) for Lakes Superior (top), Michigan-Huron

(middle), and Erie (bottom).

Great Lakes, our range of plausible water supply scenarios
includes both the possibility of a rise or fall in long-
term water levels. We notably find that continuation of
observational trends in NBS components alone, via scenario SC2,
results in greater water level rise than is demonstrated when
RCM-based NBS component projections are incorporated via
scenario SC3.

The seasonality of annual water level highs and lows is
included in Figure 3. Scenario SC2 causes only slight shifts in
the timing of annual maximum and minimum water levels,
with changes of <1 week across all lakes. Peak water levels
occurred an average of 3 days earlier on Lake Superior and
Michigan-Huron relative to the baseline simulation, while
water levels on Lake Erie peaked an average of 7 days later.
The average date of annual minimum water levels did not

change significantly for any lake under scenario SC2. In
contrast, scenario SC3 results in a more significant shift in the
seasonality of water levels across all three lakes. Water levels
peak an average of 14 and 24 days sooner on Lake Superior,
and Michigan-Huron, respectively, while Lake Erie remains
unchanged. Lake Michigan-Huron displays the greatest shift in
timing of the annual low water level, with this trough occurring
an average of 11 days earlier under scenario SC3 than baseline
simulations indicate.

While experiencing an insignificant shift in overall timing,
Lake Superior does undergo an intensification of annual lows
that occur during the month of March, indicating that a
temporal concentration of this seasonal inflection point may
occur. Our findings are consistent with both observational
trends and climate projections that annual water level rises
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FIGURE 3 | Frequency of occurrences of annual water level maximums (above the x-axis) and minimums (below the x-axis) for SC1 (red), SC2 (green), and SC3 (blue)

for Lakes Superior (top), Michigan-Huron (middle), and Erie (bottom).

and falls are occurring earlier, particularly annual maximum
levels on Lake Superior (Lenters, 2001; Gronewold and Stow,
2014a). However, we find this shift in water level seasonality
to be significantly greater in annual maximums than in annual

minimums. The most apparent plausible change in the seasonal
cycle of water levels is a shift earlier in the year, while there
is relatively little compelling evidence for amplification or
dampening effects.
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FIGURE 4 | Comparison of zero-centered probability distributions of all simulated water levels between SC1 and SC2 (top) and SC1 and SC3 (bottom) for Lakes

Superior, Michigan-Huron, and Erie.

Figure 4 displays the zero-centered probability density
function of water levels for each simulation.While all threemodel
simulations yield similar water level distributions, differences are
evident in the tails of the distributions, representing a change in
the occurrence of extreme water levels. Two standard deviations
from the zero-centered mean of the historical simulation on
each lake is used as a threshold to measure the frequency of
extreme values. This results in a threshold of 0.3, 0.47, and 0.45
m deviations from the mean for Lake Superior, Michigan-Huron,
and Erie, respectively.Water levels fall outside of these thresholds
an average of 3.0% more frequently across lakes under scenario
SC2 than is historically simulated, while frequency increases
by an average of 2.1% under scenario SC3. Our findings also
demonstrate that the increased frequency of extreme water levels
is of comparable magnitude at both the high and low ends
of the distribution, and that water levels are less concentrated
around the mean under both scenarios. This indicates that future
water levels may demonstrate greater dispersion from the mean
in both directions relative to the historical record, supporting
ongoing speculation about future increased variability of Great
Lakes water levels (Gronewold and Rood, 2019). Increased

dispersion of water levels is also consistent with the possibility
of an enhancement in the annual cycle of water supply (Manabe
et al., 2004; Mailhot et al., 2019), though we do not find
compelling evidence of an overall amplification of seasonal
water level dynamics in this study. Increasing magnitudes of
both precipitation and evaporation provide another plausible
explanation for greater water level variability, as imbalances in
these competing hydrologic forces can result in significant water
level deviations from the long-term average (Gronewold et al.,
2021).

4. CONCLUDING REMARKS

Great Lakes hydroclimate studies prior to 2011 widely used the
“change-factor” method and consistently simulated significant
declines in future water levels (Croley, 1990; Hartmann, 1990;
Angel and Kunkel, 2010; Hayhoe et al., 2010). These findings
led to a regional narrative reflecting a future of drought, aridity,
and chronic low water levels (Gronewold and Stow, 2014b).
The low water levels in many of these simulations, however,
was a consequence of misguided modeling assumptions based
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on the use of air temperature as a proxy for solar radiation
(Lofgren et al., 2013). A response to this narrative was catalyzed
through a shift to the use of state-of-the-art downscaled RCM
outputs to drive NBS and water level simulations. We have built
upon this body of research by using a statistical model that
maintains spatial and temporal correlation among water balance
components, while allowing manipulation of the water balance
component marginal distributions to reflect plausible climate
change scenarios. Our results indicate that this approach (based
primarily on the use of copulas) presents a promising alternative
to regional water supply forecasting.

Our results indicate a slight to moderate increase in
average water levels on all lakes under both plausible water
supply scenarios. SC2 demonstrates greater increases than SC3,
indicating that current trends in NBS components alone, if
continued, could result in greater water level rise than would
occur if RCM-predicted climate trends also take place. In
contrast, SC3 results in greater shifts in the timing of the annual
water level cycle, most notably demonstrated by the annual
maximum occurring earlier in the year on Lake Superior and
Michigan-Huron. Both plausible future water supply scenarios
indicate an increased dispersion of water levels from the long
term average. This finding indicates that, despite a rise in average
levels, extreme low water levels are still likely to occur in
the future.
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Trends in extreme precipitation and their causes were analyzed for events within the

Laurentian Great Lakes for several periods: 1908–2020, 1949–2020, 1980–2019, and

1980–2020. Upward trends in extreme precipitation were found for multiple metrics,

including the number of exceedances of return period thresholds for several durations

and average recurrence intervals (ARI), the number of extreme basin-average 4-day

precipitation totals, and the annual maximum daily station precipitation. The causes of

extreme events were classified into 5 meteorological categories: fronts of extratropical

cyclones (ETC-FRT), extratropical cyclones but not proximate to the fronts (ETC-NFRT),

mesoscale convective systems (MCS), tropical cyclones (TC), and air mass convection

(AMC). For daily events exceeding the threshold for 5-yr ARI, ETC-FRTs account for

78% of all events, followed by ETC-NFRTs (12%), MCSs (6%), TCs (2%), and AMC (1%).

Upward trends in the number of events by cause were found for all categories except

AMC. An examination of basin-wide 4-day extreme events (40 largest events during

1980–2019) found that all events were caused by ETC-FRTs (85%) or ETC-NFRTs (15%).

Keywords: Great Lakes (North America), extreme precipitation, weather fronts, meteorology, trends

INTRODUCTION

The Laurentian Great Lakes represent the largest freshwater resource in North America. They are
utilized in many ways, including as a municipal water supply source, a transportation waterway,
a major commercial fishery, and a recreational destination for fishing, boating, and skiing.
Fluctuations in water levels and available water quantity can have major impacts on these uses.
For example, on Lakes Michigan-Huron over the period 2010 to 2020, annual average water levels
ranged from 175.9m above sea level in 2013 to 177.31m in 2020. These fluctuations are sufficiently
large in magnitude to have contrasting impacts on lake uses. For example, anomalously high lake
levels increase the risk of shoreline damage during storms but increase the maximum load that
cargo ships can carry through shallow portions of navigation channels. Anomalously low levels
reduce maximum loads but reduce shoreline damage during storms (Wuebbles et al., 2019).

A major question is the impact of future anthropogenically forced climate change on the
hydroclimatology of the Great Lakes Basin (GLB). Most global climate model (GCM) simulations
under increased future greenhouse gas (GHG) concentrations show an increase in both mean
annual precipitation and extreme precipitation frequency and intensity over the GLB (Easterling
et al., 2017). However, accurate simulation of precipitation remains a challenge for GCMs because
of the complexity of precipitation physics and the coarse resolution of GCMs (Seneviratne et al.,
2021).
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To address such issues, a growing research area is a focus on
the meteorological causes of extreme precipitation events, trends,
and variations. Such causes can be broadly categorized into
thermodynamic and dynamic components (Emori and Brown,
2005; Nie et al., 2018). The former accounts for atmospheric
moisture content, q, the saturated value of which, according
to the Clausius–Clapeyron relationship, increases at a rate of
∼7%/K (Trenberth et al., 2003). In addition to its obvious
effect through supply of moisture, the atmospheric moisture
content can also indirectly affect potential extreme precipitation
magnitudes through changes in atmospheric convective stability.
The dynamic component accounts for atmospheric motion,
specifically the vertical velocity (VV), and is associated with
specific weather system types.

Quantifying how changes in these components affect the
local extreme precipitation distribution is complicated. While
progress is expected in the future using convection-permitting
models (Kendon et al., 2021), the capability to observe and
model changes in small-scale convective processes affecting
local extreme precipitation is still limited (Prein et al., 2017)
because the spatial resolution of both global and regional climate
models remains too coarse to directly simulate the small-scale
circulations and associated micro-physical processes in clouds.
On the other hand, important progress has been made on
linking regional changes in extreme precipitation to large-
scale processes. Barlow et al. (2019) state that global climate
models “are generally better at capturing synoptic-scale features
associated with extreme precipitation than extreme precipitation,
itself.” A study of the northeast US, including the eastern part
of the GLB, found that a set of models from the Coupled
Model Intercomparison Project Phase 6 (CMIP6) exhibited
mixed results in their simulation of extreme precipitationmetrics
with slightly better performance for the circulation patterns
associated with heavy precipitation (Agel and Barlow, 2020).
Kunkel et al. (2020a) found concurrent increasing trends in
extreme precipitation and precipitable water (PW; the column
integrated q) aggregated in large regions of the US. Similar results
have been found in Australia by Roderick et al. (2020). Kunkel
et al. (2020b) examined the relationship of individual station
extreme precipitation event magnitudes with associated values of
PW and VV and found a strong positive correlation.

In this study, we examine trends in extreme precipitation and
the relationship of those trends to large-scale weather systems.
Such systems are generally simulated adequately by GCMs. This
analysis provides the basis for an alternate approach to future
projections that uses the large-scale weather factors causing
extreme precipitation rather than precipitation itself.

Previous analyses of extreme precipitation that included
the Great Lakes generally indicate upward trends. For the
United States, Easterling et al. (2017) found upward trends
over the northeastern quadrant of the US for several extreme
metrics for both 1901–2016 and 1958–2016. The metrics include
the number of daily precipitation events exceeding an average
recurrence interval (ARI) of 5 years, the 5-yr maximum daily
precipitation, and the total amount of precipitation falling on
days exceeding the 99th percentile of daily precipitation. Kunkel
et al. (2020a) found upward trends in the number of extreme

events for the northeast US for 35 combinations of duration
(1, 2, 3, 5, 10, 20, and 30 days) and ARI (1, 2, 5, 10, and 20
years) over the period 1949–2016. Vincent et al. (2018) analyzed
trends over 1901–2016 for Canadian stations in the GLB. For
the number of days exceeding the 90th percentile threshold
of daily precipitation, most stations indicated upward trends.
However, for the annual maximum daily precipitation, they
found a mix of upward and downward trends, with most not
statistically significant.

Some of the above studies presented composite analyses
that included portions of the GLB, but they do not include
results specifically for the basin. This study builds upon
previous regional studies by focusing on both trends and
meteorological causes of extreme precipitation events exclusively
for the GLB.

DATA AND METHODS

Station Observations of Precipitation
The Global Historical Climatology Network—Daily (GHCN-
D) was used as the source of station observations of daily
precipitation (Menne et al., 2012). A set of United States stations
with <10% missing daily precipitation data for 1895–2009 from
Kunkel et al. (2012) was screened for those within the boundaries
of the GLB; a total of 57 stations were identified. To enhance
spatial coverage, two additional sets of stations from GHCN-
D were identified, meeting the criterion of <10% missing daily
precipitation observations for 1949–2020 and 1980–2020; these
included available Canadian stations. Geospatial analysis was
performed on these subsets of stations to determine those within
the boundaries of the Great Lakes basin. A total of 171 (188)
stations were identified for the period 1949–2020 (1980–2020),
including 42 stations common to all three sets. The locations of
these three sets of stations are shown in Figure 1.

The 1895–2020 long-term set of 57 stations had been analyzed
by Kunkel et al. (2012) to identify daily precipitation events
exceeding the threshold for a 1-in-5-yr average recurrence
interval (ARI). In that study, they restricted the analysis of
meteorological causes to the period 1908–2009 because of
inadequacies in the data needed to identify causes before that
period. For this current study, we used the events and causes
for that shorter period of 1908–2009. The data for 2010–2020
were also analyzed to identify additional events exceeding the
threshold, creating a data set for 1908–2020. For this additional
analysis period of 2010–2020, the number of stations meeting
the minimum data availability threshold (300 or more days in a
year) for analysis varied from 45 to 51. Three annual resolution
time series were constructed. For each year, based on the events
exceeding the station-specific 1-in-5-yr threshold in that year,
three metrics were computed: (1) the total number of station
events; (2) the mean precipitation for those daily station events;
and (3) the single largest (maximum) precipitation value for
those daily station events. The annual values were normalized by
the number of stations meeting the data availability criterion for
that year. The resulting three annual time series were analyzed
for trends.
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FIGURE 1 | Locations of the stations used in (A) the trends and causes analysis for 1908–2020, (B) the trends analysis for 1949–2020, and (C) the trends analysis for

1980–2020. The white area indicates water bodies and the dark gray area indicates land area within the Great Lakes drainage basin.

The 1949–2020 and 1980–2020 sets of 171 and 181 stations
were analyzed following Kunkel et al. (2020a) for trends in the
number of events exceeding thresholds of extreme precipitation
accumulation for 35 combinations of duration (1, 2, 3, 5, 10, 20,
and 30 days) and ARI (1, 2, 5, 10, and 20 years). The analysis
of this large range of combinations addresses the question of
whether the results are sensitive to a perhaps-fortuitous choice
of extreme precipitation metric. By examining this large set, we
can assess the robustness of the observed trends.

Reanalysis Precipitation
Precipitation extremes at individual stations can have substantial
local impacts. We were also interested in examining basin-wide
extremes because they potentially can have sizeable effects on
Great Lakes water levels. However, the variations in station
density, particularly the lack of long-term stations in the northern
portions of the basin (Figure 1), limit the suitability of station
averages to infer basin-wide extremes. For this reason, we used
a reanalysis product, the Modern-Era Retrospective analysis for
Research and Applications, Version 2 (MERRA-2; Gelaro et al.,
2017), to investigate extreme precipitation events of large areal
extent. Meteorological reanalyses use weather forecast models
that assimilate observations to provide 3-dimensional fields of
the atmospheric state that evolve temporally in a manner that
is consistent with physical laws and the observations. Unlike
some reanalyses, the MERRA-2 reanalysis assimilates in situ
precipitation observations and has been shown to produce
superior estimates of precipitation (Bosilovich et al., 2017).
The MERRA-2 spatial resolution is 0.5◦ latitude by 0.625◦

longitude. Daily values of precipitation accumulations were
obtained covering the period 1980–2019. The MERRA-2 grid
points within the GLB boundaries were identified (281 grid
points), and the data for these grid points were averaged to
produce a daily basin-average time series of precipitation. The
basin-average mean annual precipitation from this dataset is
1,067mm. Four-day rolling precipitation totals were calculated
(days 1–4, 2–5, 3–6, etc.). The 40 largest non-overlapping events
of 4-day duration were identified and used for climatological
analysis. The selection of the 40 largest events in a 40-yr record

is equivalent to choosing all events exceeding the 1-yr ARI
threshold. The duration of 4 days was chosen to be consistent
with the results of Kunkel and Champion (2019).

Meteorological Causes
Kunkel et al. (2012) identified station-specific values for the
1-in-5 yr threshold of daily precipitation by first ranking
daily precipitation amounts. The 1-in-5 yr threshold was then
calculated empirically as the rank N value where N = (number
of available years of data)/5. For a station with 100 years of
data, this is the rank 20 daily precipitation value. The station
thresholds calculated in Kunkel et al. (2012) were used here to
identify additional station events for 2010–2020. These additional
daily extreme precipitation events were assigned ameteorological
cause using manual expert judgment, resulting in a dataset of
causes covering the period of 1908–2020. In their study, the
categories relevant to the GLB included extratropical cyclones
(ETCs), tropical cyclones (TCs), mesoscale convective systems
(MCSs), and air mass convection (AMC). The ETC category was
subdivided into 2 categories: events near one of the ETC fronts
(ETC-FRT) and events not near the fronts (ETC-NFRT).

MCSs are organized areas of thunderstorms that persist
for several hours and can produce heavy rainfall and severe
weather. They can be classified as internally or externally driven
(Schumacher and Rasmussen, 2020). Externally driven MCSs are
triggered by another weather feature, such as a front. Internally
driven MCSs develop and maintain their character primarily
through self-generated features. In the Kunkel et al. (2012) study,
extending back to 1908, the necessary data (e.g., satellite cloud
cover, radar) to definitively identify MCSs, whether externally-
or internally-driven, was not available for the entire period.
Therefore, extreme events associated with organized areas of
precipitation, which possibly could be classified as MCSs if the
necessary data were available, were instead classified by the
large-scale trigger, typically a front, in the case of externally-
driven MCSs. Extreme events associated with organized areas
of precipitation, but with no large-scale weather system trigger,
were classified into the MCS category. Thus, our MCS category is
restricted to the internally-driven type. It should be noted that we
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FIGURE 2 | Weather maps including (A) map of daily precipitation (mm) and (B) map of weather features, for a day (August 28, 2018) with two extreme events

caused by a front (ETC-FRT). The red dots in (A) and the white-on-purple numbers in (B) indicate the locations of the two events.

could have identified externally-driven MCSs for the additional
2010–2020 events, but we maintained the same procedures as
the original study to maintain temporal consistency in the
causes data.

For the 2010–2020 addition to the causes data, the manual
expert identification of the cause for each extreme precipitation
event at each station was assigned based on several data sources.
Weather analyses charts from the NOAA National Weather
Service (NWS) National Centers for Environmental Prediction
(NCEP) (https://www.ncei.noaa.gov/data/ncep-charts/access/)
were used to identify synoptic scale features. A 1◦ latitude by
1◦ longitude gridded dataset, described in Kunkel et al. (2012),
was used to create daily maps of temperature and precipitation
for use in identifying precipitation clusters and temperature
gradients. Written material, such as event-related scientific
papers, technical notes, news reports, and historical observations
from nearby stations, supplemented the information provided
by the maps.

Figures 2–5 show examples of two of the maps used in the
causes evaluation for 4 different causes: ETC-FRT, ETC-NFRT,
MCS, and TC, respectively. The maps display the precipitation
distribution and surface weather features on the day of the event.
Similar maps for the day before and after the event as well
as surface temperature and 500 hPa geopotential height were
also generated to illustrate temporal evolution; this aided in the
station event cause classification. In the ETC-FRT example for
August 28, 2018 (Figure 2), the two extreme precipitation events
on that day (one located in Wisconsin and the other in the
Michigan Upper Peninsula) are near a front that extends across
the western part of the basin. In the ETC-NFRT example for April
30, 2020 (Figure 3), the event is located in northern Michigan, to
the north of the ETC center moving across the southern portion
of the basin. In the MCS example for July 19, 2020 (Figure 4),

the event in eastern Michigan is within a larger area of heavy
precipitation; the front to the west is too far from the event to
be considered as the trigger. In the TC example for October 30,
2012 (Figure 5), the six events occur along the path of Hurricane
Sandy while it was transitioning into an extratropical system; this
case illustrates that we categorized events as TCs whether they
occurred while the system was tropical or in a post-tropical stage.

The causes of the 40 highest basin-average 4-day total
precipitation events were determined following Kunkel and
Champion (2019) using a manual expert judgment process
similar to that used for evaluating daily extreme events at
individual stations but adjusted to account for the evolution
of the atmospheric state during these multi-day events and the
availability of sources to identify weather features. An initial
assessment of the meteorological cause was done by referencing
historical surface weather charts from the NOAACentral Library
Data Imaging Project (n.d) for the dates and locations of the
events. For events suggesting proximity to a named TC, the
assignment of TC as the cause was confirmed through further
research matching the dates and locations of the precipitation
event with the International Best Track Archive for Climate
Stewardship set of TC track data (Knapp et al., 2010). As needed
to confirm the cause, maps of atmospheric fields (including mean
sea level pressure, 500 hPa geopotential height, 2m temperature,
precipitation, 2m specific humidity, and vertical motion) were
produced using the NCEP/National Center for Atmospheric
Research (NCAR) reanalysis (Kalnay et al., 1996). The resolution
of the reanalysis is 2.5◦ x 2.5◦. Maps of surface weather features,
500 hPa height contours, and 24-hr precipitation were assembled
side-by-side for each day of an event. These daily composites
were then assembled so that they could be looped to show the
daily evolution of patterns. The sequence of these daily patterns
was effective in revealing the coincidence of atmospheric features
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FIGURE 3 | Weather maps including (A) map of daily precipitation (mm) and (B) map of weather features, for a day (April 30, 2020) with one extreme event caused by

an extratropical cyclone (ETC-NFRT). The red dot in (A) and the white-on-purple number in (B) indicate the location of the event.

FIGURE 4 | Weather maps including (A) map of daily precipitation (mm) and (B) map of weather features, for a day (July 19, 2020) with one extreme event caused by

a mesoscale convective system (MCS). The red dot in (A) and the white-on-purple number in (B) indicate the location of the event.

and surface precipitation locations and amounts. Maps of 4-day
average and anomalies of selected atmospheric state variables
(1,000 hPa temperature, 500 hPa geopotential height, and 500 hPa
vertical velocity) were produced to identify persistent features.
These maps effectively revealed the upper-level troughs, surface
gradients, and large-scale forcing patterns. A common situation
was day-to-day variability in the causal mechanisms, particularly
between ETC-FRT and ETC-NFRT. In such situations, the
amount of precipitation on each day served as a weighting
function to decide on the primary mechanism. Three of the

co-authors performed the expert judgment. Each of the experts
reviewed the work of the others.

Water Vapor and Vertical Velocity Analysis
Following Kunkel et al. (2020b), maximum daily 3-hr values of
PW and VV were derived from the NCEP/NCAR reanalysis.
For each station used in the 1949–2020 period analysis, each
daily 1-yr ARI event was assigned PW and VV values from
the NCE/NCAR grid box containing the station. The individual
station event values were aggregated into PW and VV bins.
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FIGURE 5 | Weather maps including (A) map of daily precipitation (mm) and (B) map of weather features, for a day (October 30, 2012) with 6 extreme events caused

by a tropical cyclone (TC; Hurricane Sandy). The red dots in (A) and the white-on-purple numbers in (B) indicate the locations of the 6 events.

FIGURE 6 | Annual time series of the overall number of extreme events per station (“All Type”; black line), events caused by one of the ETC fronts (“ETC-FRT”; blue),

events caused by an ETC not near a front (“ETC-NFRT”; orange), and events caused by all other types (“Others”; green). Dashed lines indicate linear least-squares fits

to the annual data. The trend values and p-values of the trend lines are displayed in the legend.

RESULTS

Temporal Trends
Figures 6–8 show the results of our 3 types of trend analyses and

illustrate that extreme precipitation exhibits an upward trend by

several metrics. For the 1908–2020 long-term set of stations for
which causes were analyzed, there is a statistically significant (at
the p=0.01 level) upward trend in the number of 1-in-5 yr events
over the period 1908–2020 (Figure 6) of 8.8% decade−1. The time
series of the annual maximum precipitation value among the
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FIGURE 7 | Annual time series (1908–2020) of two metrics of the precipitation amounts for those events exceeding the station-specific thresholds for daily 5-yr ARI

events: the average precipitation for the extreme events (“Average Annual Event Precipitation”; teal color) and the single largest precipitation value among the extreme

events (“Max of Annual Event Precipitation”; orange color). These time series are based on data from the 57 long-term stations. The trend values and p-values of the

trend lines are displayed in the legend.

FIGURE 8 | Trends (% decade−1) in the frequency of occurrences for the Great Lakes basin of the 35 duration–ARI combinations for the periods of (A) 1949–2020

and (B) 1980–2020. Statistically significant trends are shown in red. All trends are upward. For the 1949–2020 analysis period, all trends are statistically significant (p

= 0.05 significance level for a two-tailed test). For the 1980–2020 period, all trends are statistically significant for the 1, 2, 3, and 5 day durations, but not for the 10,

20, and 30 day durations.

extreme events shows a sizable upward trend of about 30% per
century (Figure 7). However, the average precipitation per event
for all events in a year shows no trend (Figure 7).

The larger set of stations analyzed over the two shorter
periods of 1949–2020 and 1980–2020 show upward trends for
all 35 ARI-duration combinations (Figure 8). All trends are

statistically significant (p = 0.05) for the 1949–2020 period
of analysis (Figure 8A). Higher percentage trends were found
for the larger (rarer) ARI values. For the shorter period of
1980–2020, all the trends are statistically significant for 1, 2,
3, and 5 day durations, but not for all of the 10, 20, and
30 day durations (Figure 8B). The temporal distribution of
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the 40 largest 4-day basin-wide average precipitation totals
also shows an upward trend (Figure 9). Almost half (45%)
of those events occurred during the most recent decade
(2010–2019).

Meteorological Causes of Station Events
The predominant cause of the station extreme events is ETC-
FRT (78%). This is similar to what was found by Kunkel
et al. (2012) in regions that include parts of the GLB. The
second largest category is ETC-NFRT, causing 12% of the events.
Smaller contributions are made by MCSs (6%), TCs (2%), and
AMC (1%). There is strong seasonality in the distribution of
station extremes (Figure 10). The majority of events occur in the
summer (60%), while 25% occur in the fall. Only 2% of events
occur in the winter, while 13% occur in the spring. ETC-FRT is
the dominant category in all seasons. ETC-NFRT events are the
second most common. Events caused by the minor categories of
MCS and AMCmostly occur in the summer, while the few events
associated with TCs are evenly distributed between summer
and fall.

There are upward trends in the number of events for the
ETC-FRT (0.131 events 100 yr−1 or 7.6% decade−1) and ETC-
NFRT (0.048 events 100 yr−1 or 18.5% decade−1) categories
(Figure 6). There are also upward trends in the total of MCS
and TC categories (“Others”; 0.013 events 100 yr−1 or 5.9%
decade−1). All of these trends are statistically significant at the
p= 0.05 level.

Meteorological Causes of Extreme
Basin-Wide Average Events
Figure 11 shows the distribution over time of the 40 largest
4-day basin-average total precipitation events, along with
their meteorological causes. The event with the highest
total precipitation occurred on September 10–13, 1986, with
59.2mm. The seasonal distribution of basin-wide extreme events
(Figure 9) indicates nearly equal numbers in the summer and fall
(16 and 14, respectively). Seven and three basin-wide extreme
events occurred in the spring and winter, respectively. The
category of ETC-FRT is the primary meteorological cause for
85% of these events, slightly higher than the 78% for the station
events. The primary cause for the remaining 15% is ETC-NFRT.
ETC-NFRT is a secondary cause in 10 of the events, and a TC
makes a contribution to one of the events. A study by Kunkel
and Champion (2019), demonstrated that ETC-FRTs were also
the dominant category (59%) of the top 100 events in the
coterminous US, however none of those events were located
in the Great Lakes basin. Most were located in the Gulf Coast
region and along the Pacific Coast. The TC category (25%) and
West Coast atmospheric rivers (15%) were the other dominant
categories. The TC category contributed to one of the GLB
events.

Water Vapor and Vertical Velocity
Relationships
Figure 12 shows the boxplot statistics of the distribution of
event precipitation amounts as a function of PW. At values
of PW <30mm, precipitation amounts vary little and even

FIGURE 9 | Number of the 40 largest basin-wide 4-day precipitation events

by decade from 1980–1989 to 2010–2019 delineated by season. Precipitation

is calculated from the MERRA-2 reanalysis and averaged over the Great Lakes

Basin.

FIGURE 10 | Seasonal distribution of the number of extreme station events

categorized by meteorological cause.

slightly decrease with PW. For PW >30mm, precipitation
amounts increase with PW consistent with the overall results of
Kunkel et al. (2020b). If extreme precipitation amounts scaled
with the Clausius-Clapeyron (C-C) relationship, the fractional
change in precipitation amounts would be the same as the
fractional change in PW. For PW values between 30 and 60mm,
precipitation amounts increase but at a smaller fractional rate
than PW. At about 60mm, the change in precipitation amounts
is similar to the fractional change in PW, or close to the C-C
relationship. The results for VV (not shown) did not indicate
a robust relationship between precipitation amounts and the
magnitude of VV, again similar to the results of Kunkel et al.
(2020b).

The strong seasonality (summer-fall maximum) in the
occurrence of extreme precipitation amounts is explained by the
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FIGURE 11 | Scatter plot of the 40 largest basin-wide events showing precipitation amounts and year of occurrence. The symbols indicate the meteorological

cause(s). The open symbols indicate events with both a primary (ETC-FRT) cause and a secondary cause (either ETC-NFRT or TC). The dates of the 5 largest events

are indicated next to the symbols.

high correlation between water vapor and extreme precipitation
amounts. While weather systems are needed to force upward
vertical motion, the actual amount of precipitation is determined
mainly by available atmospheric water vapor, which is maximized
in the warm season.

DISCUSSION

Most regional studies that include the Great Lakes basin have
found an upward trend in extreme precipitation. The analysis
herein focused solely on stations within the basin, most of them
within the US, and found upward trends for most extreme
precipitation metrics. An analysis of basin-wide events using
precipitation from the MERRA-2 reanalysis identified the 40
largest 4-day precipitation events since 1980. There is a large
upward trend in the decadal count of these basin-wide events,
with the last decade (2010–2019) accounting for 45% of all events.
These results are similar to other studies that analyzed regions
which included all or portions of the Great Lakes basin.

Fronts are the dominant cause of extreme precipitation at
individual stations. For daily extreme events exceeding the 5-yr
ARI, 78% of all events are caused by fronts. For the 40 basin-
wide average extreme events, fronts are an even more dominant
cause, representing 85% of all events. These results are similar to
those of Kunkel et al. (2012). In that study, the defined regions
included the U.S. portion of the Great Lakes, but did not focus
specifically on the basin. The additional 11 years analyzed in this
study indicates a continuation of fronts as the dominant cause.

FIGURE 12 | Boxplot distributions for the 1-yr, 1-dy partial duration series

events of precipitation event amount vs. the same-day 3-h maximum PW

sorted into 10mm interval bins. Boxplots display mean (green diamonds),

median (orange horizontal lines), 25th and 75th percentiles (box limits), and 5th

and 95th percentiles (whiskers).

The water vapor and vertical velocity analysis results are
similar to the findings of Kunkel et al. (2020b) in showing
a positive correlation between precipitation amounts and PW
at PW values above 30mm, but no correlation between
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precipitation amounts and vertical velocity. The relationship
between precipitation amounts and PW is less than Clausius-
Clapeyron for PW values <60mm. This is the same threshold
as found in Kunkel et al. (2020b).

The dominant role of fronts as the cause of extreme events has
implications for assessing future changes in extreme precipitation
if global warming continues. The identification of meteorological
phenomena in global climate model simulations is advancing
(Mudigonda et al., 2021). Biard and Kunkel (2019) developed a
method using a deep learning neural network to automatically
identify fronts in reanalysis fields. A similar approach was used
by Lagerquist et al. (2019). Such methods applied to GCM
simulations can be used to provide a meteorological basis
for potential future changes. Such approaches can provide an
alternative to direct use of model-generated precipitation.

Priestley et al. (2020) provide an analysis of GCM simulation
of ETCs in the CMIP6 suite of simulations. They find that the
simulation of ETCs has improved in CMIP6 relative to CMIP5.
Furthermore, higher resolution CMIP6 models show superior
performance compared to lower resolution CMIP6 models. Over
the Great Lakes, the CMIP6 models exhibit a low bias of 10–20%
in the number of ETCs in the winter and a high bias of 10–20%
in the summer.

The positive correlation between precipitation amounts
of water vapor, equaling the C-C relationship at higher
PW amounts, provides a strong foundation for application
to the planning and design of structures that have multi-
decadal lifetimes. One of the most confident projections of
global warming is continued increases in global mean column
integrated water vapor and near-surface specific humidity over
land (Douville et al., 2021; Lee et al., 2021). Thus, it would be
prudent to plan for higher extreme precipitation amounts in
the future.

There are a few limitations in this study. Firstly, while the
trend analysis of the available station data is robust, there is
a low number of Canadian stations with available long-term
data in the GHCN-D dataset. Thus, there is uncertainty as to
whether upward trends have occurred in the northern portion
of the basin. It is not known to us whether there are sources of
long-term station data that are not available in GHCN-D.

Secondly, the study was limited to daily and multi-day
extreme precipitation amounts. At these time scales, it is not
surprising that large-scale meteorological systems are principally
responsible for the events. At sub-daily timescales, it is likely
that local intense convection arising from mesoscale convective
systems and air mass convection would play a more important
role in the mix of meteorological systems responsible for
precipitation extremes. Simulation of such systems by current
generation climate models is challenging (Feng et al., 2021)
compared to extratropical cyclones and associated fronts. A
recommended future study is to analyze long-term hourly
precipitation data and, as in the present study, determine the
causes of extreme sub-daily precipitation events.
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The freshwater resources of the Laurentian Great Lakes basin contribute significantly

to the environment and economy of the region. With the impacts of climate change

becoming more evident, sustainable management of the freshwater resources of the

Laurentian Great Lakes basin is important. This study uses 36 simulations from 6 regional

climatemodels to quantify trends and changes in land-area precipitation and temperature

in two future periods (mid-century, 2035–2064 and end-century, 2065–2094) with

reference to a baseline period (1951–2005) for two emission scenarios (RCP4.5 and

RCP 8.5). Climatic forcings from these 36 simulations are used as input to a calibrated

and validated hydrological model to assess changes in land snowpack and actual

evapotranspiration, and runoff to lake. Ensemble results show wetter (7 to 15% increase

in annual precipitation) and warmer (2.4–5.0
◦

C increase in annual mean temperature)

future conditions on GL land areas. Seasonal and monthly changes in precipitation and

mean temperature are more sporadic, for instance although precipitation is projected

to increase overall, in some scenarios, summer precipitation is expected to decrease.

Projected increases in highest one-day precipitation and decreases in number of wet

days indicate possible increases in extreme precipitation in future. Minimum temperature

is expected to increase in a higher rate than maximum temperature. Ensemble results

from the hydrological model show projected decrease in snowpack (29–58%). Similarly,

actual evapotranspiration is projected to increase, especially during summer months (up

to 0.4 mm/day). Annually, runoff is expected to increase (up to 48% in Superior, 40% in

Michigan-Huron, 25% Erie and 28% in Ontario). Seasonal and monthly changes in runoff

are more sporadic (e.g., projected decrease up to 17% in Erie subdomain in October).

Such contrasting patterns of changes in land hydroclimatology of the GL basin will pose

challenges to sustainable management of the water resources of the basin in future.

Keywords: Laurentian Great Lakes, climate change, land hydroclimatology, water resources management, RCM

INTRODUCTION

The Laurentian Great Lakes (GL) basin (Figure 1) is one of North America’s largest water resources
systems with an area of approximately 766,000 km2 (USEPA-GoC, 1995; Quinn, 2003). About
one-third of the basin area (about 244,200 km2) comprises five interconnected freshwater lakes
(Superior, Michigan, Huron, Erie and Ontario), and together they make the largest unfrozen
freshwater lake on Earth in terms of surface area (Larson and Schaetzl, 2001). These GLs are large
enough to affect the regional climate system (Notaro et al., 2013).
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FIGURE 1 | The Laurentian Great Lakes with their respective drainage basin.

The fresh water resources of the GL basin contributes
significantly to the environment and economy of the region
(ELPC, 2019). More than 30 million people live in the GL basin
which includes part of the Canadian province of Ontario and
eight United States (U.S.) states; Minnesota, Wisconsin, Illinois,
Indiana, Michigan, Ohio, Pennsylvania, and New York. This is
about 10 and 30% of the U.S. and Canada’s total population,
respectively (USEPA, 2021). Many of these people rely on the
freshwater resources of the GLs for drinking water, agricultural
activities and industrial manufacturing, recreational activities,
fisheries, among others (ELPC, 2019). About 20 tribal lands such
as Algonkin, Fox, Ho-chunk, Huron, Illinois, Ioway, Iroquois,
Kickapoo, Mascounten, Menominee, Miami, Neutral, Nipissing,
Ojibwe, Ottawa, Petun, Potawatomi, Santee Dakota, Sauk and
Shawnee are also part of the GL basin and the surrounding
regions (MPM, 2022). The GLs support several key shoreline
wetlands (Mortsch, 1998). Similarly, fisheries in the basin are
valued at 7 billion US dollars and recreational activities are
estimated to generate about 16 billion US dollars (ELPC, 2019).
Hence, sustainable management of the freshwater resources of
the GLs is of paramount importance to the people living in the
basin (Valiante, 2008).

As a result of the fact that management of the freshwater
resources of the GLs is a matter of concern for both Canada
and the U.S. (Valiante, 2008), the 1909 Boundary Waters
Treaty (BWT) was established with the aim of resolving any
water management conflicts between the two states (Whorley,
2020). The International Joint Commission (IJC) was thus
established by both governments to make decisions and provide
recommendations related to the any projects affecting flows

and water levels across the boundary (IJC, 2021). The IJC can
issue orders of approval such as Plan 2012 for the regulation
of outflow from Lake Superior into Lake Michigan-Huron, and
Plan 2014 for the regulation of outflows from Lake Ontario to
the St. Lawrence River (IJC, 2021). Through the IJC, coordinated
and consistent approaches are being taken to manage the water
resources of the GL basin. However, these approaches should also
foresee various stressors (e.g., climate change) which are expected
to pose a challenge to interests within the GL basin.

Overwhelming evidence suggests that the increase in
greenhouse gas concentrations in the atmosphere are
unequivocally caused by human activities (IPCC, 2014, 2021).
This has led to (a) increase in global surface temperature, (b)
increase in frequency and magnitude of extreme precipitation,
(c) accelerated glacier retreat, (d) rapid sea level rise, among
others. Regional changes in the GL basin could be more extreme
than that observed in the global level (IPCC, 2021) and have
been driver of various changes in the GL basin (Bartolai et al.,
2015). It is thus of paramount importance that an assessment of
the impacts of climate change is conducted in the GL basin.

We found about 50 studies that have quantified the impacts
of climate change in water resources of the GL basin. The
earliest climate change studies in the GL basin used global
climate models (GCMs) projections for certain atmospheric CO2

sensitivity experiments such as doubling of the atmospheric
CO2 compared to pre-industrial levels to quantify impacts on
hydrology (Smith, 1991), net basin supply (NBS) (Cohen, 1986;
Croley, 1990), lake level (Marchand et al., 1988; Smith, 1991),
lake outflow (Hartmann, 1990), shoreline wetland (Mortsch,
1998) and navigation (Marchand et al., 1988). The NBS is the
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over-lake precipitation added to the runoff into the lake from
its drainage area minus the over-lake evaporation, generally
groundwater flow from or into the lake is considered negligible
(Fry et al., 2020). During the early years of 21st century, the use of
GCM projections with transient climate conditions becamemore
prevalent to quantity the impacts on hydrology (Smith, 1991;
Mortsch et al., 2000), ice cover (Lofgren et al., 2002), NBS (Chao,
1999), lake level (Smith, 1991), shoreline community (Schwartz
et al., 2004), navigation (Quinn, 2003) and hydroelectric power
production (Buttle et al., 2004).

The newer GCMs included earth system feedbacks (e.g.,
changes in ice sheet, vegetation cover distribution) to project
future climate for different Intergovernmental Panel on
Climate Change (IPCC) emission scenarios such as the SRES
(Special Report on Emissions Scenarios) introduced in the
4th Assessment Report (AR4) (IPCC, 2007) and the RCPs
(Representative Concentration Pathways) introduced in the
AR5 (IPCC, 2014). Respective Coupled Model Intercomparison
Project (CMIP) experiments, the CMIP3 (Meehl et al., 2007)
using the SRES and the CMIP5 (Taylor et al., 2011) using
the RCPs, provided GCM projections from climatic modeling
centers around the world. Some of the climate change studies
in the GL basin using IPCC AR4 scenarios quantified impacts
on hydrology (Kutzbach et al., 2005; Cherkauer and Sinha,
2010; Rahman et al., 2010), lake level (Angel and Kunkel, 2010;
Hayhoe et al., 2010), water quality (Bosch et al., 2014; Hall
et al., 2017), ecosystem (Hellmann et al., 2010), infrastructure
(Wuebbles et al., 2010) and commercial navigation (Millerd,
2005). Similarly, some of the climate change studies in the
GL basin using IPCC AR5 scenarios quantified impacts on
hydrology (Wang et al., 2016; Basile et al., 2017; Byun et al.,
2019), NBS (Music et al., 2015), lake level (Notaro et al., 2015),
fluvial flood risk (Xu et al., 2019), water quality (Cousino et al.,
2015; Verma et al., 2015; Wallace et al., 2017) and fisheries
industry (Collingsworth et al., 2017).

The impact of GLs on regional climate dynamics is well
documented (Notaro et al., 2013). However, the latest GCMs,
for example, those participated in the CMIP5 experiments
don’t explicitly simulate GLs as dynamic lakes (Briley et al.,
2021) which may not realistically represent region specific
meteorological phenomena such as the lake-effect snowfall
(Wright et al., 2013). Therefore, recent studies have used
either statistically (Byun et al., 2019) or dynamically (using
regional climate models, RCMs) downscaled GCM projections
(Notaro et al., 2015; Grady et al., 2021). Furthermore,
downscaled projections require bias-correction to remove
systematic errors (Cannon, 2018). Downscaled and bias-
corrected RCM projections are increasingly being used in the
GL basin to quantify impacts on hydrology (Zhang et al., 2018),
NBS (Mailhot et al., 2019) and lake level (Mackay and Seglenieks,
2012), among others.

For the North American region encompassing the GL basin,
a suite of high resolution downscaled and bias-corrected RCM
projections are available through North American component
of the Coordinated Regional Downscaling Experiment (Mearns
et al., 2017; NA-CORDEX, 2022). It is not a straightforward
task to select a set of suitable climate models (Lutz et al., 2016).

Cannon (2015) provided guidance on selecting RCMs which can
reflect the range of changes in amulti-model ensemble while Lutz
et al. (2016) introduced an advanced-envelop based approach.
Others argue the use of multi-model ensemble (Crosbie et al.,
2011; Acharya et al., 2014) to deal with different sources of
uncertainties (e.g., climatic model uncertainty) inherent in RCM
projections (Hawkins and Sutton, 2009). Furthermore, the use of
a small number of projections in impact analysis may sometimes
lead to contrasting results (Smith, 2002). In the GL basin, using
projections from 2 GCMs, Lofgren et al. (2002) reported large
drops in lake levels when using one GCM input to a hydrological
model and moderate increases when using another GCM input.
In such cases, inference made through the use of a multi-model
ensemble might be more reliable (Krysanova et al., 2018). While
using a suite of climate models with different emission scenarios,
it is also desirable to estimate the relative contribution of climate
model and scenario uncertainty to the total uncertainty in the
projected hydrological variable (Lee et al., 2017).

Traditionally, downscaled and bias corrected future
projections are used as input to hydrological models to
understand the hydrological impacts of climate change (Lofgren
et al., 2011). Statistical approaches such as the use of a parametric
regular vine copula (VanDeWeghe et al., 2022) are also being
advocated as an alternative to the traditional approach. Using
the traditional approach, some studies in the GL basin (Lofgren
et al., 2011, 2013; Lofgren and Rouhana, 2016; Milly and
Dunne, 2017) argued that the use of temperature index (TI)
methods such as Thornthwaite (1948) to calculate potential
evapotranspiration (PET) in hydrological models creates a
hydrological drying bias as TI methods tend to overestimate PET
as compared to the methods which respect the surface energy
balance. The comparison was based on the PET calculated
by hydrological models using input from GCMs to the PET
directly simulated by the GCMs. It would be interesting to
see if the same holds for bias-corrected downscaled projection
from high resolution RCMs. Furthermore, the use of the energy
balance approach to estimate PET in a hydrological model is
often constrained by the availability of all the incoming and
outgoing energy terms in RCM projections. Another issue is
that most of the hydrological models are not fully evaluated
against all the variables of interest. Assessing the hydrological
model performance against a single variable (e.g., streamflow)
is more prevalent and it does not guarantee robust simulation
of additional variables (e.g., snow water equivalent, SWE;
evapotranspiration, ET) (Mai et al., 2021). Similarly, particular
to the GL basin, most of the hydrological models don’t explicitly
consider the impacts of numerous small lakes. The cumulative
hydrological impact of these smaller lakes can be substantial in
the GL basin (Han et al., 2020).

In this study, we used climatic projections from several
RCMs, driven by different GCMs participating in the NA-
CORDEX for two IPCC AR5 representative concentration
pathways (RCP4.5 and RCP8.5). The RCM projections were bias-
corrected using multivariate quantile mapping bias correction
technique (Cannon, 2018) using DayMet data (Thornton et al.,
2020) as a reference. In total, 36 projections (15 historical, six
future for RCP4.5 and 15 future for RCP8.5) at 0.44◦ (∼50 km)
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spatial resolution were used into a hydrological model. The
hydrological model is a coupled model between WATFLOOD
(Kouwen, 1988) and RAVEN (Craig et al., 2020) which explicitly
considers all lakes with an area more than 5 km2 (Han et al.,
2020). Such a coupled model greatly improves the simulation of
runoff from the GL basin (Shrestha et al., 2021). Furthermore,
the coupled hydrological model is calibrated and validated for
daily streamflow, and evaluated against daily SWE and actual
ET (Mai et al., 2022). We then quantity the future changes in
land hydroclimatic variables such as precipitation, temperature,
snow water equivalent (SWE), actual evapotranspiration (AET)
and runoff into the lakes.

We presume that quantification of the impacts of climate
change on hydroclimatic variables including SWE and AET for
the entire GL land basin would be helpful to understand the
future hydroclimatic conditions of the GL basin. This may also
help to formulate a coordinated effort to address the adverse
effects of climate change in the GL basin.

MATERIALS AND METHODS

Hydrological Model Set-Up
Estimation of vertical hydrological fluxes and their horizontal
transfer are two basic processes in a hydrological model (Singh,
1995). The later process is also referred as routing. We used the
hydrological modelWATFLOOD (Kouwen, 1988) to estimate the
vertical fluxes as driven by climatic forcings (e.g., precipitation)
and a recently developed lake and river routing product (Han
et al., 2020), which has been integrated in the RAVEN modeling
framework (Craig et al., 2020). The WATFLOOD model is
coupled with the lake and river routing product to realize a
functional hydrological model of the GL basin.

Watflood Model
WATFLOOD is a physically-based, distributed hydrological
model. In WATFLOOD, a basin is divided into uniform grid
cells. Several hydrological processes such as snow accumulation
and melt, precipitation interception and infiltration, evaporation
and transpiration, surface runoff, interflow and baseflow, etc.
are considered for water balance calculations (Kouwen, 1986,
1988; Mai et al., 2021). These calculations are made on grouped
response unit (GRUs) which aggregates land cover of similar
hydrological response characteristics (Kouwen et al., 1993).
WATFLOOD is widely used in hydrological modeling and
forecasting of several watersheds in the GL basin and beyond
(Cranmer et al., 2001; Seglenieks et al., 2004; Kouwen et al., 2005;
Bingeman et al., 2006).

The Lake and River Routing Product
Integrated in RAVEN
The GL basin is characterized by the presence of numerous
small to large lakes. While larger lakes are usually considered in
hydrological modeling, smaller lakes are often neglected. Smaller
lakes, when present in a high number as in the GL basin, will
impact the streamflow simulations (Han et al., 2020). A lake
and river routing product with explicit consideration of all lakes
with area more than 5 km2 has become available (Han et al.,

2020). Recently, the routing product is integrated into RAVEN
modeling framework (Craig et al., 2020), thereby allowing it to
run in routing-only mode (RAVEN-ro).

Model Inputs
A 3 arc seconds HydroSHEDS digital elevation model (DEM)
(Lehner et al., 2008) and a 30m North American Land
Change Monitoring System (NALCMS) (Homer et al., 2017)
landuse/landcover map were used to create the land surface
database for the WATFLOOD model. Then hourly precipitation
and temperature from a 10 kmRegional Deterministic Reanalysis
System (RDRS) (Gasset et al., 2021) were used as input into the
WATFLOOD model at a 10 km spatial resolution. For modeling
purposes, we divided the GL basin in five subdomains: Superior
(SUP), Huron (HUR), Michigan (MIC), Erie (ERI) and Ontario
(ONT). All input data were obtained in the scope of an on-
going project, the Great Lakes Runoff Inter-comparison for
Great Lakes, GRIP-GL (Mai et al., 2022). The GRIP-GL is a
part of Integrated Modeling Program (IMPC) for Canada under
Global Water Future (GWF) program. Related information of
the project can be found in http://www.civil.uwaterloo.ca/jmai/
projects.html.

We coupled WATFLOOD and RAVEN-based lake and river
routing product using the so-called loose coupling scheme
(Argent, 2004). Hence, the coupling is one directional in which
WATFLOOD simulated runoff (surface and interflow) and
recharge to lower zone storage (LZS) are stored in separate
netCDF files. These netCDF files then serve as inputs to
the RAVEN-ro model. The RAVEN-ro is run to simulate the
streamflow at selected locations.

In WATFLOOD, we chose the Hargreaves method
(Hargreaves and Samani, 1985) to estimate the rate of potential
evapotranspiration. In RAVEN-ro, we chose the Gamma unit
hydrograph (RAVEN, 2021) for in-catchment routing and
non-linear storage approach for base flow estimation. Outflow
from lakes/reservoirs are simulated with a broad-crested weir at
their outlet.

In large-scale modeling, it is not always possible to include
all the basin complexities (De Scheer et al., 2015). Generally, a
compromise in representing these complexities has to be made
owing to computation time, data availability, among others.
In this study, we also made several simplifying assumptions
while setting up the model. In the GL basin, there exist several
water bodies which are regulated. Depending on the extent of
regulation, these water bodies can have significant downstream
impact. The RAVEN-based lake and river routing product
incorporates all the significant water bodies and the outflow
from these water bodies is simulated using the broad-crested
weir equation (Han et al., 2020). Best estimates of all related
routing parameters (e.g., weir width, Manning’s coefficient,
etc.) are already provided in the routing product. During the
model calibration, we further fine-tuned some of the important
parameters such as the weir width (refer Section Calibration
and Validation) to reproduce observed streamflow at immediate
downstream gauging stations.We are aware that this (controlling
outflow using the broad-crested weir equation) may be too
simplified for some of the highly regulated reservoirs in the
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GL basin, and more detailed approaches such as the use of
Dynamically Zoned Target Release (DZTR) (Yassin et al., 2019)
may be better suited. A further investigation is needed to
confirm this. Another important feature of agricultural water
management in the GL basin is the provision of tile drains
to quickly drain excess soil moisture after spring snowmelt.
Owing to the fact that the tile drainage facilitates the drainage
soil moisture in excess of field capacity, we increased relevant
parameters (e.g., infiltration coefficient) in agricultural areas to
mimic the behavior. This is indeed a simplistic approach and
more detailed approaches, such the use of the Hooghoudt and
Kirkham drainage equations as incorporated in the Soil and
Water Assessment Tool (SWAT) (Neitsch et al., 2011) for explicit
consideration of the effect of tile drainage in agricultural areas,
may be needed. This issue also needs a detailed investigation.
Furthermore, some agricultural areas, especially in the Michigan
subdomain, are irrigated. Devoid of detail information regarding
the irrigation command area, type, frequency, and amount of
irrigation, we did not distinguish irrigated and non-irrigated
agricultural areas while setting up the model.

Calibration and Validation
While WATFLOOD was run in an hourly timestep, RAVEN-ro
was run in a daily timestep to match the timestep of streamflow
observations. The coupled model was calibrated against daily
streamflow for a 10-year period (2001–2010) at 134 gauging
stations across five subdomains of the GL basin. The model was
then validated in another time period (2011–2017) at 59 separate
gauging stations (Mai et al., 2022). A total of 17 (11WATFLOOD
and 6 RAVEN-ro related, Supplementary Table S1) parameters
were considered during model optimization in the OSTRICH
platform (Matott, 2017). We chose dynamically dimensioned
search (DDS) (Tolson and Shoemaker, 2007) as an optimization
algorithm and Kling-Gupta Efficiency (KGE) (Gupta et al., 2009)
as an objective function during optimization. The optimization
process resulted in a median KGE of 0.63 during calibration and
a median KGE of 0.50 during validation (Mai et al., 2022). For
illustration purposes, observed and simulated daily streamflow
during calibration and validation periods at two selected gauging
stations are shown in Supplementary Figure S1.

We also evaluated the model’s robustness in simulating two
auxiliary variables, snow water equivalent (SWE) and actual
evapotranspiration (AET) (Mai et al., 2022). The Canadian
historical SWE station data (CanSWE) (Vionnet et al., 2021)
at four selected locations (one station at each sub-domain)
were used to compare simulated SWE at the grid exactly over
the corresponding CanSWE station. Supplementary Figure S2

shows the resultant plots and it is evident that the model is
able to represent the dynamics of SWE at selected stations.
The calculated KGE values for daily SWE ranged from 0.48
to 0.70. Similarly, Eddy flux measurements for AET at three
AMERIFLUX stations, US-UMB (Gough et al., 2021), US-
KM1 (Robertson and Chen, 2021) and US-Oho (Chen et al.,
2021) and one FLUXNET Canada Research Network station
(Fluxnet Canada, 2016) were used to comparemodel simulations.
The resulting plots for the selected stations are shown in
Supplementary Figure S3. The calculated KGE values for daily

SWE ranged from 0.52 to 0.73. The median KGE values for SWE
and AET are fairly comparable to the KGE values for streamflow.
Hence, it is evident that model is equally robust to simulate the
SWE and AET dynamics.

Future Climate Data
Future climatic data (precipitation, andmaximum andminimum
temperature) were downloaded from the National Center for
Atmospheric Research (NCAR) climate data gateway (Mearns
et al., 2017). These data are projections from different RCMs,
driven by several GCMs that participated in the North
American component of the Coordinated Regional Downscaling
Experiment (NA-CORDEX, 2022). In light of the findings of
Briley et al. (2021), it is worth mentioning that only two GCMs
(GFDL-ESM2M and HadGEM2-ES, Supplementary Table S2A)
simulate GLs as dynamic water bodies, as such, their projections
can be considered as “credible”. The remaining 4 GCMs
(Supplementary Table S2A) have inconsistency in the treatment
of GLs and it mainly arose from “competing or lacking spatial
coverage between a model’s land and ocean component for grid
cell”. As for the RCMs (Supplementary Table S2B), two RCMs
(CRCM5-UQAM and RCA4) have the FLake model (Mironov
et al., 2009) while one RCM (RegCM4) has the lake model of
Hostetler et al. (1993). The two remaining RCMs don’t have a
standard lake model but they are driven by interpolated and
lapse-rate corrected nearby sea-surface temperatures (SSTs) at
the lower boundary. It should be noted that the future projections
from GCM-RCMs which don’t have dynamic representation
of GLs might not be as “credible” (Briley et al., 2021). Since
the RCM projections were bias-corrected using multivariate
quantile mapping bias correction technique (Cannon, 2018)
using DayMet data (Thornton et al., 2020) as the reference
dataset, the systematic errors are addressed. However, this
issue needs further investigation. We used all available RCM
projections in both historical (1951–2005) and future (2006–
2099) periods at 0.44◦ (∼50 km) spatial resolution. A total
of 15 RCM-GCM projections were available in the historical
period while 6 future projections were available for RCP4.5
and 15 future projections were available for RCP8.5 emission
scenario (Table 1).

The finest temporal resolution of the RCM projections is daily
(Table 1), while WATFLOOD needed hourly climatic forcings.
Therefore, the daily RCM projections needed to be disaggregated
into hourly timestep (Requena et al., 2021). Devoid of a well-
accepted procedure to perform such temporal disaggregation, we
assumed the total daily rainfall volume to occur in five pulses.
With a peak pulse occurring at 8 AM (40% weightage) and
another four pulses in 6-hour intervals on either side (at 4 AM
and 12 PM both having 20% weighting, and at 12 AM and 4 PM
both having 10% weighting). As for temperature, we assumed a
linear increase and decrease with daily maximum and minimum
temperature occurring at 3 PM and 3 AM, respectively.

For the climate change impact analysis, the entire historical
period (1951–2005) was taken as a baseline period. As for the
future, a 30-year period (2035–2064) was considered as a mid-
century period and another 30-year period (2065–2094) was
considered as an end century period.
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TABLE 1 | Details of the different RCM projections, as driven by different GCMs, used in this study.

Driver (GCM*) Model (RCM*) Experiment Remarks

Historicala RCP 4.5b RCP 8.5b

CanESM2 CanRCM4 x x x • Variables: Precipitation, and Maximum,

Mean, and Minimum Temperature

• Frequency: Annual, Seasonal, Monthly,

Daily

• Grid: NAM-44i

• Bias-correction: mbcn-Daymet

CRCM5-UQAM x x x

RCA4 x x x

EC-EARTH HIRHAM5 x x x

RCA4 x x x

GEMatm-Can CRCM5-UQAM x - x

GEMatm-MPI x - x

GFDL-ESM2M RegCM4 x - x

WRF x - x

HadGEM2-ES RegCM4 x - x

WRF x - x

MPI-ESM-LR CRCM5-UQAM x - x

RegCM4 x - x

WRF x - x

MPI-ESM-MR CRCM5-UQAM x x x

*Abbreviated for space.

We refer to Supplementary Tables S1A, S1B for more details.
aAvailable data period: 1951–2005.
bAvailable data period: 2006–2099.

With regards to the use of hydrological models in climate
change impact assessment involving a large number of climate
models, Krysanova et al. (2018) detailed two “main” approaches.
The first approach advocates using a multi-model ensemble
disregarding individual climate model’s performance. The
proponents of this approach consider every participating climate
model as “equal” and argue that an unweighted multi-model
approach should be followed (Christensen et al., 2010). The
proponents of the second approach advocate in assessing
performance of climate models and possibly disregarding poor-
performing models. Krysanova et al. (2018) argue that while both
approaches have merits and demerits and they are useful in the
right context, evaluating performance of a hydrological model in
historical period may increase confidence in projected results.

In this study, as we used a hydrological model that was
calibrated and validated for streamflow, and evaluated for other
auxiliary variables of interests (SWE and AET), we aimed at
assessing performance of the hydrological model in representing
long-term monthly average streamflow in the historical period.
For illustration purpose (Supplementary Figure S4), we selected
several gauges (one in each sub-domain) which: (a) are non-
regulated, (b) are located closer to the draining lake, and (c)
showed a good performance (KGE value more than 0.60) in the
calibration period, and (d) have median KGE value more than
0.60 for historical RCM runs for long-term average monthly
streamflow. Historical RCM runs are obtained using bias-
corrected meteorological forcings in the coupled hydrological
model. Furthermore, KGE value for each historical RCM run for
long-term average monthly streamflow at all calibration gauges
were calculated, and median KGE of the gauges in a specific
modeling domain is presented in Supplementary Table S3. For

comparison purpose, Supplementary Table S3 also shows the
median KGE value obtained in the calibration period.

It is evident from the Supplementary Figure S4, Table S3
that the performance of the model slightly degraded in the
historical RCM runs as compared to the performance in the
calibration period. A lower performance of the model in another
period and for historical RCM runs is indeed expected. While
a slight drop in median KGE (calculated from individual
KGE values of 21 gauging stations) value for each historical
RCM run as compared to a median KGE value obtained
during calibration period, is observed in HUR, MIC, ERI
and ONT subdomains, a significant drop in performance is
observed in Superior sub-domain (SUP) for which median
KGE value for each historical RCM run is <0.50 while a
median KGE value of 0.77 is obtained during calibration
period. The historical RCM runs seem to mimic the seasonality
of streamflow, especially the timing and magnitude of the
spring peak, in the GL domain as evident in the long-
term average monthly plots for selected stations. However,
discrepancies are evident in Autumn months. This could be
related to several factors such as effectiveness of bias-correction
in these months, difference in spatial resolution of the climate
forcing (∼50 km) and model grids (∼10 km) and temporal
disaggregation (from daily to hourly, as detailed above) of
forcing data.

However, it is evident from the plot
(Supplementary Figure S4) and table
(Supplementary Table S3) that there is not an obvious poor-
performing RCM so that it should be disregarded. Hence, we
believe that there is no need to disregard a certain RCMs and all
the RCMs were considered for impact assessment.
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Uncertainty Analysis
Different sources of uncertainties such as climate model
uncertainty and scenario uncertainty are inherent in future
climate data (Hawkins and Sutton, 2009). To capture the
variability in the future projections, different emission scenarios
and several GCM-RCM combinations are often used in climate
change impact studies. Relative contribution of different sources
of uncertainties to the total uncertainty in the projected
hydrological variable is often desirable (Lee et al., 2017). In
literature, several approaches are evident. Established approach
such as Bayesian decomposition (Ohn et al., 2020) may be
more comprehensive but is very time intensive as tens of
thousands of iterations may be required which may hinder
its application in a large scale physically-based hydrological
modeling. A simple yet robust method, based on Maximum
Entropy (ME) principle was suggested by Gay and Estrada
(2010). Lee et al. (2017) made its first application in hydrological
modeling to assess relative contribution of different sources of
uncertainty in future streamflow projection in a river basin of
South Korea. Because of its robustness and time effectiveness,
we also used it to quantify relative contribution of emission
scenarios (representative concentration pathways) and climate
models uncertainties in total uncertainty of projected SWE, AET
and runoff (to the lake). We refer Gay and Estrada (2010) and
Lee et al. (2017) for further details of the ME theory and its
application in hydrological modeling.

RESULTS AND DISCUSSION

Projected Changes in Precipitation
The time series plot of the GL over-land averaged annual
precipitation in the historical/baseline period (1951–2005) shows
marked variability as indicated by the wide ensemble range
(Figure 2). Similar variabilities during a similar historical period
were also reported in Do et al. (2020). A Mann-Kendall test
(Mann, 1945; Kendall, 1975) shows an increasing trend (p =

0.0003) at 5% significance level. The rate of the increasing trend
(0.9 mm/year) is lower than the rate (2.1 mm/year) reported by
Bartolai et al. (2015). As for the future periods (mid-century,
2035–2064 and end-century, 2065–2094), a higher variability
in annual precipitation is observed for RCP8.5 as compared
to RCP4.5, which may be partly due to a higher number of
RCM-GCM projections for the RCP8.5 emission scenario. The
ensemble mean annual precipitation in both mid- and end-
century periods for RCP4.5 shows no trend (p = 0.18, p = 0.35,
respectively) at 5% significance level. However, the ensemble
mean annual precipitation shows an increasing trend in both
mid- and end-century periods for RCP8.5 (p = 0.04, p = 0.03,
respectively) at 5% significance level.

While GL over-land ensemble mean annual precipitation do
not show any trend (except in the end-century period for RCP
8.5), spatial variability in precipitation trend in different parts of
the GL basin is evident in Figure 3. For instance, northern parts
of the Lake Huron basin show a decreasing trend of about 2.5
mm/year in the mid-century period for RCP4.5. However, the
same region shows an increasing trend of about 3 mm/year in the
end-century period for RCP4.5. Similarly, a majority of the Lake

Superior subdomain shows a decreasing trend (up to 4 mm/year)
in the end-century period for RCP4.5 while the same region in the
same period but for RCP8.5 shows an increasing trend (up to 4
mm/year). Such marked spatial variability in future precipitation
and contrasting trends in different parts of the GL basin certainty
pose challenges to water resources planners and managers and
may warrant to focus on sub-basin wise adaptation measures
rather than the entire GL basin wide measures.

Compared to the baseline annual average precipitation, the
projected changes in over-land precipitation can be seen in
Figure 4 for both RCP4.5 and RCP8.5 emission scenarios.
Besides the spatial variability in future precipitation trends,
we observe marked variability in projected annual over-
land precipitation amongst the RCM-GCM combinations. For
instance, the WRF projections driven by HadGEM2-ES show
rather high increases (up to 40%) in future annual precipitation
for RCP8.5 scenario while RegCM4 projections driven by MPI-
ESM-LR for RCP4.5 seem to indicate decreases for majority of
years in both future periods.

On average, the GL land basin is expected to be wetter in
future (Figure 5), with annual increases in precipitation range
between 7 and 15%. The winter, spring and autumn seasons are
expected to have substantial increases (up to 25%). The summer
season in contrast, is expected to have a slight decrease (up to
1%) for RCP4.5 emission scenario in the end-century period,
due to mild decreases (up to 6%) in August precipitation. The
summer precipitation for RCP8.5 scenario is expected to have a
slight increase in both future periods (up to 4%). The month of
April is expected to have the highest increases (up to 33%). In
general, RCP8.5 projections showwetter conditions than RCP4.5,
and the same holds for the end-century period as compared to the
mid-century period (Figure 5). The general trend in subdomain
precipitation changes (Supplementary Figure S5) are almost the
same as observed for the entire GL basin except in some months.
For instance, in September, the future precipitation is expected to
increase in the Superior, Huron and Michigan subdomains while
it is expected to decrease in the Erie and Ontario subdomains.

While a similar result—an overall increase in annual,
winter, spring and autumn precipitation and variable summer
precipitation was also reported in several studies (Smith, 1991;
Cherkauer and Sinha, 2010; Hayhoe et al., 2010; Wuebbles et al.,
2010; Byun et al., 2019; Bukovsky and Mearns, 2020; Grady
et al., 2021), the magnitude of change is evidently different
due to differences in emission scenarios, climate models, bias
correction techniques, baseline as well as future periods, and
region of interest. For example, Bukovsky and Mearns (2020)
used the same dataset (NA-CORDEX, 2022) to analyze seasonal
and annual precipitation changes in several regions including
the GL basin for RCP8.5 and found very similar results with
slight differences in the magnitude of change. For RCP8.5,
in mid-century (end-century) period, Bukovsky and Mearns
(2020) reported a projected increase in ensemble mean annual
precipitation of about 8%(17%) while we found the projected
increase to be 8%(15%). Despite the difference in baseline period
(1971–1999 in their study vs. 1951–2005 in our study), future
periods (mid-century: 2041–2068 in their study vs. 2035–2064
in our study, and end-century: 2071–2099 in their study vs.
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FIGURE 2 | Time series of GL over-land annual precipitation in historical (1951–2005) and future (mid-century: 2035–2064 and end-century: 2065–2094) periods for

two emission scenarios (RCP4.5 and 8.5).

FIGURE 3 | Trend in annual over-land precipitation for RCP4.5 and RCP8.5 scenarios in mid- and end-century periods.

2065–2094 in our study), region of interest (entire GL basin in
their study vs. only land portion of GL basin in our study) and
climate models (28 in their study vs. 15 in our study), the results
are very similar.

Projected increases in spring precipitation are certainty
concerning as the topsoil in these times of the year will generally
be at or near saturation level and any extra precipitation will

mostly end up as surface runoff. Similarly, projected decreases
in precipitation in the summer months is also concerning
from a drought point of view. With expected increases in
temperature and higher evaporative demand, future decreases
in summer precipitation will only worsen the water stress
condition of vegetation, especially, agricultural crops grown in
summer. Consequently, crop yield could decrease unless water
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FIGURE 4 | Change in annual over-land precipitation with respect to baseline average precipitation for RCP4.5 and RCP8.5 scenarios in mid- and end-century

periods.

is supplied to the crops by external means (e.g., surface or
sub-surface irrigation).

Further causes of concern are evident in
Supplementary Figure S6, which shows projected increases
in the frequency of precipitation with daily amounts of more
than 5, 10, and 20mm, and in Supplementary Figure S7, which
shows projected increases in highest one-day precipitation. As
an example, the highest one-day precipitation in the baseline
period is 83mm (range: 80–93mm) which is projected to be
more than 101mm (range: 95–112mm) in the end-century
period for RCP8.5. The wider range in projected highest one-day
precipitation is also concerning. Furthermore, despite the
projected wetter conditions in the GL basin, projected decreases
in number of wet days and consecutive wet days indicate that the
GL basin is expected to receive more intense precipitation in the
future. This increase in intensity could be a concern in regard to
flash flooding.

Projected Changes in Temperature
The spread in annual mean temperature from different RCM-
GCM combinations in both historical and future periods is
narrower (Figure 6) than the spread of annual precipitation
(Figure 2). Annual mean temperature of GL basin in the

historical period shows a significant (p = 4x10−9) increasing
trend at 5% significance level. The increasing trend persists
in mid-century period for RCP4.5 scenario (p = 7 x 10−3).
The annual mean temperature in the end-century period for
RCP4.5 scenario seems to stabilize and shows no-trend (p =

0.20). However, the increasing significant trend persists in both
mid-century (p = 1 x 10−9) and end-century (p = 1 x 10−10)
periods for RCP8.5 scenario. The magnitude of the increasing
trend in historical period is 0.02◦C/year, which increases to 0.03,
0.07, and 0.06◦C/year, in mid-century for the RCP4.5 scenario,
in mid-century for RCP8.5 and in end-century for the RCP8.5
scenario, respectively.

Spatially, the trend in annual mean temperature is higher
for northern parts of the GL basin (e.g., Superior) than in
southern parts (e.g., Ontario) (Figure 7). For instance, in the
mid-century period and for RCP4.5 emission scenario, the
annual mean temperature in Superior subdomain is expected to
increase by 0.04◦C/year while for the same period and emission
scenario, the Ontario subdomain increase is just 0.02◦C/year.
While looking at the spatial trends in minimum and maximum
temperature (Supplementary Figure S8), the rate of increasing
trend of minimum temperature in the GL basin is higher than the
rate of increasing trend of maximum temperature in both future
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FIGURE 5 | Percentage change in monthly, seasonal, and annual over-land precipitation with respect to the baseline average precipitation for RCP4.5 and RCP8.5

scenarios in mid- and end-century periods.

FIGURE 6 | Time series of GL basin annual mean temperature in historical (1951–2005) and future (mid-century: 2035–2064 and end-century: 2065–2094) periods

for two emission scenarios (RCP4.5 and 8.5).

periods and for both emission scenarios. Similar findings have
been reported by Bartolai et al. (2015) and Kling et al. (2003) in
the GL basin.

Relative to the ensemble annual mean temperature in the
baseline period, different RCM-GCM projections show a wide
range of increases in future annual mean temperature for RCP4.5
and RCP8.5 emission scenarios (Figure 8). In general, future
projections for RCP8.5 indicate warmer conditions over the GL
basin than for RCP4.5. The same is true for the end-century
period as compared to the mid-century period.

On average, annual mean temperature in the GL basin is
expected to increase by 2.4 and 2.9◦C, respectively, in mid-
and end-century period for RCP4.5 scenario. For the RCP8.5
scenario, the increase is about 3.0 and 5.0◦C, in the mid- and
end-century periods respectively (Figure 9). In one of the earliest
climate change impact assessments of the GL basin, Smith (1991)

reported an increase of up to 6.4 oC in annual temperature which
is higher than our finding for RCP8.5 in end-century period.
However, the estimate made by the study was based on 3 GCMs
and for a double (as compared to the preindustrial level) CO2

scenario. However, such a scenario is highly unlikely to occur
even at the end of the century. A more direct comparison of our
results can be made with the findings of Bukovsky and Mearns
(2020) due to the common data source (NA-CORDEX, 2022)
and region of interest. For RCP8.5, the study reported the annual
ensemble mean temperature changes of about 3.1 and 5.0◦C,
respectively in mid- and end-century period, which are almost
identical to our estimates.

Relative to other seasons, the winter season is expected to
experience the greatest change, with mean temperature increases
reaching up to 5.8◦C in end-century period for RCP8.5 scenario.
The increase in mean temperature during the spring season is

Frontiers in Water | www.frontiersin.org 10 July 2022 | Volume 4 | Article 801134229

https://www.frontiersin.org/journals/water
https://www.frontiersin.org
https://www.frontiersin.org/journals/water#articles


Shrestha et al. Future Great Lakes Land Hydroclimatology

FIGURE 7 | Trend in annual mean temperature of GL basin for RCP4.5 and RCP8.5 scenarios in both mid- and end-century periods.

generally less. A similar finding—higher seasonal changes being
obscured in annual averages was also reported in several studies
(Kling et al., 2003; Kunkel et al., 2009; Hayhoe et al., 2010;
Wuebbles et al., 2010;Winkler et al., 2012; Bukovsky andMearns,
2020). Our estimates suggest that the winter season is likely to
have the greatest increases (up to 5.8◦C) which is in line with
the finding of Winkler et al. (2012) who reported increase of
7◦C and Bukovsky and Mearns (2020) who reported ensemble
increase of about 5.6◦C. However, some studies, e.g., (Wuebbles
et al., 2010) suggest that the greatest increase is likely to be in
summer season (up to 6◦C). It is important to note that this study
used older scenarios (e.g., A1F1) and downscaled projection from
substantially lower number of GCMs (3), and this may have led
to the difference. At a monthly timescale, increases up to 6◦C are
observed in January in the end-century period for the RCP8.5
scenario. Similar increases (up to 5.0◦C) are also observed in the
summer months.

Resulting from the projected decrease in precipitation in
August (Figure 5) and higher evaporative demand driven by
elevated temperature, there is a high probability of increased
water stress condition in plants, especially in northern parts of
GL basin where the projected increase in mean temperature
is relatively higher than in southern parts of the GL basin

(Supplementary Figure S9). For instance, the mean January
temperature in the Superior subdomain is expected to be 6.8◦C
higher than the baseline condition, while for the same month,
the increase in the Erie subbasin is only about 5.3◦C. Based on
four GCM projections, downscaled for the GL basin (Bartolai
et al., 2015), reported similar observations; higher increases
in northern parts of the GL compared to the southern parts
during winter season. In line with our finding, Hayhoe et al.
(2010), based on statistically downscaled future projections from
3 GCMs, also reported a higher increase in winter temperature in
northern parts than in southern parts of the US GL basin.

Such increases in temperature are reflected in substantial
decreases in the ice day index of the GL basin, which is calculated
as the number of days in a year withminimum temperature<0◦C
(Supplementary Figure S10). In the baseline condition, the ice
day index is 76 days which is projected to be decrease by 17
and 21 days in the mid- and end-century periods, respectively
for RCP4.5, and by 21 and 36 days in the mid- and end-
century periods, respectively for RCP8.5. Based on dynamically
downscaled projections from 22 RCMs, Winkler et al. (2012)
reported 22 fewer days in a year with minimum temperature
<0◦C which is within the range (17–36 days) of our estimates.
These results indicate that the GL basin will experience reduced

Frontiers in Water | www.frontiersin.org 11 July 2022 | Volume 4 | Article 801134230

https://www.frontiersin.org/journals/water
https://www.frontiersin.org
https://www.frontiersin.org/journals/water#articles


Shrestha et al. Future Great Lakes Land Hydroclimatology

FIGURE 8 | Change in annual mean temperature of GL basin with respect to baseline mean temperature for RCP4.5 and RCP8.5 scenarios in both mid- and

end-century periods.

FIGURE 9 | Absolute change in monthly, seasonal, and annual mean temperature of GL basin with respect to baseline mean temperature for RCP 4.5 and RCP 8.5

emission scenarios in both mid- and end-century periods.
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FIGURE 10 | Percentage change in monthly, seasonal, and annual snow water equivalent (SWE) with respect to the baseline value for RCP 4.5 and RCP 8.5

scenarios in both mid- and end-century periods.

frost-free days, accelerated snowmelt and earlier thawing of
frozen soil. Furthermore, the proportion of rainfall to total
precipitation may also increase which can lead to increased rain-
on-snow events, and such events are reported to substantially
increase flood risk of the GL basin (Musselman et al., 2018) and
similar other regions of the world (Marks et al., 1998; Pomeroy
et al., 2016; Sobota et al., 2020).

Conversely, the summer day index, calculated as the number
of days in a year with maximum temperature exceeding 25◦C,
is projected to increase significantly in future. In the baseline
period, the summer day index is about 49, which increases to
77 and 86 in the mid- and end-century periods, respectively
for RCP4.5, and 85 and 108 in the mid- and end-century
periods, respectively for RCP8.5 (Supplementary Figure S10).
Such significant increases may lead to heat stress to plants which
in turn could negatively affect their growth and yield (Fahad et al.,
2017).

Projected Changes in Internal Variables
Snowpack
The GL basin is expected to lose a significant portion of
its snowpack (expressed as snow water equivalent) in the
future (Figure 10), which is mainly due to projected changes
in temperature and rain-on-snow events. As evident in the
projected change in temperatures, snowpack depletion in the
end-century period is expected to be higher than in the

mid-century period. Similarly, snowpack depletion for the
RCP8.5 scenario is also likely to be higher than for the
RCP4.5 scenario. At an annual time scale, snowpack depletion
in southern parts of the GL basin will be higher than in
northern parts of the GL basin (Figure 10). As the projected
increases in annual temperature in all parts of the GL basin
are almost uniform (Supplementary Figure S9), the higher
snowpack depletion in southern parts of the GL basin is due
to the North-South temperature gradient that exists. For any
given time period, temperatures in northern parts of the GL
basin are relatively lower than in southern parts of the GL
basin, consequently the snowpack in the northern parts of
the GL basin is generally higher than in the southern parts.
The shallower snowpacks in the southern parts of the GL
basin are projected to melt earlier, this is in line with the
observations made by Musselman et al. (2017) in western
North America.

In the spring months (e.g., March and April), southern
parts of the GL basin (e.g., Erie) are expected to lose almost
100% of its snowpack while northern parts (e.g., Superior) are
expected to only retain only about 75% of the snowpack. For
the winter season, during the end-century period using the
RCP8.5 scenario, the Superior subdomain is expected to lose
about 35% of the snowpack which increases to ∼55% in Huron,
∼60% in Michigan, ∼70% in Erie, and ∼65% in the Ontario
subdomain (Figure 11).
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FIGURE 11 | Percentage change in annual mean snow water equivalent (SWE) of GL basin for RCP 4.5 and RCP 8.5 scenarios in both mid- and end-century periods.

Actual Evapotranspiration
Projected increases in temperature of the GL basin will result
in overall increase in annual AET (Figure 12). However, in
the winter season, despite projected increases in temperature,
slight decreases in AET are projected, especially during end-
century period for RCP8.5 scenario. While it is evident that
projected increases in temperature will increase potential
evapotranspiration, the AET depends on several factors
such as availability of soil moisture and vegetation type.
Substantial projected decreases in snowpack (Figures 10,
11) and projected increases in high intensity rainfall (e.g.,
highest one-day precipitation, Supplementary Figure S7),
would allow for more surface runoff and less infiltration,
leading to lowered soil moisture conditions. Lowered soil
moisture levels might be causing the decrease in AET in
the winter season. Across all GL subdomains, projected
increases in the summer AET are the highest, mainly driven
by significant projected increases in summer temperature
(Figure 9). Furthermore, substantial projected increases in
summer day index (Supplementary Figure S10) would also
result in projected increases in summer AET. Spring season AET
also shows moderate increases across the GL basin. Autumn
season AET in Ontario subdomain, unlike that observed in other
subdomains, are projected to decrease in both future periods

and for both emission scenarios. The overall autumn season
AET decreases in the subdomain are mainly driven by projected
decreases in AET in September.

Spatially, the highest of increases (∼15%) in annual AET are
fromwater bodies such asman-made lake/reservoirs (Figure 13),
this could be expected as AET from water bodies will be
at the potential rate (PET). This is unlike the case in other
landcover types such as agriculture or forest where AET may be
limited by several factors such as availability of moisture in soil.
Furthermore, it should be noted that we used Hargreaves method
(Hargreaves and Samani, 1985) to estimate the rate of potential
evapotranspiration. The use of such a simplified method for the
estimation of AET from a dynamic system as the GL is subject
to various forms of uncertainties and could reduce the accuracy
of hydrological models. As stated in the Introduction section,
the use of a hydrological model which utilizes temperature index
(TI) methods such as the Hargreaves method in climate change
impact studies has been questioned (Lofgren et al., 2011, 2013;
Lofgren and Rouhana, 2016; Milly and Dunne, 2017). As such,
projected increases (∼15%) in annual AET around the Lake
Nipigon (Figure 13) can thus be questioned. The use of an energy
balance method to calculate PET would be preferred in such a
lake (Finch and Calver, 2008), however, all the incoming and
outgoing energy terms required to close the energy balance are
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FIGURE 12 | Absolute changes in monthly, seasonal, and annual actual evapotranspiration (AET) with respect to the baseline values for RCP 4.5 and RCP 8.5

scenarios in both mid- and end-century periods.

not the outputs of the RCMs of the NA-CORDEX experiment.
Hence, this should be considered as one of the limitations of
the study.

Projected Changes in Runoff Into the
Lakes
In the context of this study, the term runoff refers to the amount
of water entering each lake through the stream network. This
is the amount of water that comes from the land area (through
overland flow, interflow, and baseflow) into the stream network,
which is then routed downstream into the lakes. For operation
purposes such as seasonal water level forecasting (Fry et al., 2020)
or net basin supply (NBS) calculation (Do et al., 2020), runoff
into each GL needs to be converted into equivalent effect on lake
level. A ratio of land area to lake area of each GLs, as agreed
by Coordinating Committee on Great Lakes basic hydraulic and
hydrologic data, is used for this purpose (GLCC, 2021). As Lakes
Huron and Michigan are hydrologically connected, runoff from
land areas of both lakes (MHG) are aggregated and converted
into their equivalent effect on lake level. While it is evident that
the “runoff component of the NBS (or the effect of the runoff
on lake level)” and the “runoff into the lakes from surrounding
land areas” are two different quantities, for simplicity, we are
referring the “runoff component of the NBS” as the “runoff”
from hereafter.

Annual average runoff for Lakes Superior, Michigan-Huron,
Erie and Ontario is projected to increase by 25–48, 18–40,

4–25, and 11–28%, respectively (Figure 14). Higher increases
are projected for the RCP8.5 emission scenario and in the
end-century period. It should be noted that both future
annual precipitation and mean annual temperature (and as
a result AET) are expected to increase in all subdomains
(Supplementary Figures S5, S9). An equal increase in these

factors may result in a net zero change in runoff. However, the
overall increase in annual runoff is most likely a result of a

greater change in the annual precipitation (Figure 5). On the
other hand, accelerated melt of the snowpack can also lead to the
overall increase. Amongst the seasons, the increase in runoff is

projected to be the highest in the winter. For instance, in Superior

subdomain, the winter runoff is expected to increase by 146%,
which is significantly higher than the annual projected increase.

The same trend is evident in other subdomains. spring season

runoff is expected to have moderate increase due to already
depleted snowpack, especially in southern subdomains (e.g.,

Ontario, 6–16%). The same behavior is evident in summer and
autumn seasons across all subdomains except for Erie. In the Erie

subdomain, runoff is expected to decrease in both future periods
for the RCP4.5 emission scenario in summer and autumn. This is
due to projected decrease in August and September precipitation
in the subdomain (Supplementary Figure S5). At a monthly
timescale, in the northern subdomains (e.g., Superior), the
highest increases in runoff are observed in March (216%) while
in southern subdomains (e.g., Ontario), the highest increases
are, as expected, observed earlier (February, 111%). Availability
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FIGURE 13 | Percentage changes in annual mean actual evapotranspiration (AET) of GL basin for RCP 4.5 and RCP 8.5 scenarios both mid- and end-century periods.

of higher snowpack and higher increases in temperature in the
northern subdomains (Figure S9) may have resulted in such
significant increases, as compared to the southern subdomains.

Probability exceedance plots of runoff
(Supplementary Figure S11) further confirm the projected
rise in the runoff and show the severity of changes: high (at 10%
exceedance probability), mid (between 10 and 90% exceedance
probability) and low (90% exceedance probability), following
(USEPA, 2007) classification. In the Superior and Michigan-
Huron subdomains, projected increases are evident for almost
all exceedance probabilities. For instance, the ensemble mean
of high runoff into Lake Superior is projected to increase up to
95mm (in end-century period for RCP8.5 scenario) which is
about 20% increase from its baseline value (80mm). A similar
increment (∼30%, in end-century period for RCP8.5 scenario)
is observed in runoff into Lake Michigan-Huron. In Lakes Erie
and Ontario, projected changes in low runoff are minimal. In
these southern subdomains, mid and high runoff are however
projected to increase significantly. For instance, median runoff
into Lakes Erie and Ontario are projected to increase by∼35 and
∼20%, respectively.

Without analyzing the other components (over-lake
precipitation and over-lake evaporation) of the net basin
supply (NBS), it is impossible to determine whether future lake

level will rise or drop. However, from the results of this study, it
is quite evident that runoff component of the NBS is projected
to increase in future. A recent analysis of the future changes of
GL levels (Seglenieks and Temgoua, in review), indicated that
under a changing climate more extreme highs and lows would be
experienced, as well as a gradual increase in average lake levels.
Such fluctuations in lake level may cause flooding and erosion
along shoreline communities of the GL basin. Furthermore, key
shoreline wetlands may experience detrimental effects of the
projected fluctuations in water level of GLs, as also highlighted
by Mortsch (1998).

Uncertainty Quantification
As there are 2 emission scenarios (ES) (RCP4.5 and RCP8.5),
and 6 common regional climate models (RCM) between them,
there were a total of 12 projections, of which 6 simulations
and 2 simulations were considered at each stage of ES and
RCM, respectively, to estimate their contribution to the total
uncertainty. Relative contribution of ES and RCM into total
uncertainty in future SWE, AET and runoff estimates are shown
in Supplementary Tables S4A–C, respectively. It is quite evident
that ES is by far the largest contributor to the total uncertainty.
The contribution of ES to the total uncertainty is higher in
end-century period as compared in mid-century period. As an
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FIGURE 14 | Change in monthly, seasonal, and annual runoff with respect to the baseline values for RCP4.5 and RCP8.5 scenarios in both mid- and end-century

periods.

example, in mid-century period, 68% of total uncertainty in SWE
estimates is due to ES which increases to 85% in end-century
period (Supplementary Table S4A). It indicates that the choice
of the RCM is not so important, as far as the uncertainty in future
projection of SWE is concerned. Rather, future SWE estimates
will be highly dependent on the choice of an ES. While a similar
trend is also observed for AET and runoff, the choice of RCM is
still quite important for these variables as 35% (28%) and 36%
(28%) of the total uncertainty is still contributed by RCM in
mid-century (end-century) period. The use bias-corrected and
high-resolution RCMs to derive future estimates of SWE, AET
and runoff, may be one the reasons that the choice of a particular
RCM may not constitute a significant source of uncertainty. A
similar observation, ES being the largest contributor was also
reported by Lee et al. (2017).

SUMMARY AND CONCLUSIONS

Freshwater resources of the Laurentian Great Lakes basin
contribute significantly to the environment and economy of
Canada and the United States. Sustainable management of the
freshwater resources is thus very important. However, several
stressors such as climate change will pose serious threats to

these water resources in the future. Hence, an assessment of
the impacts of climate change on land hydroclimatology is
appropriate. This study uses a set of 36 simulations from 6
RCMs in historical (or baseline, 1951–2005) and two future (mid-
century, 2035–2064 and end century, 2065–2094) periods, and
for two emission scenarios (RCP4.5 and RCP8.5), to quantify
trends and changes in land precipitation and temperature. As
well as using the RCM projections as input to a calibrated and
validated hydrological model, this study also assesses the impacts
of climate change on snowpack, actual evapotranspiration and
runoff into the lakes.

Results show that the GL land area will experience a wetter

and warmer future with projected mean annual precipitation
increases up to 15% and projected mean annual temperature
increases up to 5◦C. Seasonal (up to 25% increase in precipitation
and up to 5.8◦C increase in mean temperature) and monthly
(up to 33% increase in precipitation and up to 6.0◦C increase
in mean temperature) changes are greater than the annual
changes. Some scenarios even show projected decreases (∼6%
in August during mid-century period for RCP4.5 scenario) in
summer precipitation. Projected increases in highest-one day
precipitation and projected decreases in both wet days and
consecutive wet days indicate occurrence of more future extreme
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precipitation in the GL basin. Similarly, results show that the GL
basin will experience a lower number of ice days and a higher
number of summer days in future.

The future snowpack in the GL basin is expected to decrease
substantially (up to 76% in Erie subdomain). The highest
decreases in snowpack are expected in the spring season,
including up to 88% in the Erie subdomain for some scenarios.
On the other hand, actual evapotranspiration is projected to
increase in future with the highest projected increases in the
summer (up to 0.4 mm/day). Results show consistent increases
in runoff (up to 48%), with higher increases in the northern lakes
(Superior and Michigan-Huron) than in the southern lakes (Erie
and Ontario). By contrast, in the autumn season, some scenarios
even show projected decreases (up to 16%) in runoff.

Uncertainty analysis showed that the use of different emission
scenarios is the largest contributor to the total uncertainty and
the choice of a particular RCM is not as important as far as the
uncertainty in the future estimates of the snow water equivalent,
actual evapotranspiration and runoff (to the lakes) are concerned.

A wetter and warmer future with more extreme precipitation,
compounded by a substantial decrease in snowpack and an
increase in actual evapotranspiration, will surely pose challenges
to water resources managers and planners in the GL basin. Such
a challenge due to competing forces in a future hydrological cycle
of the GL basin was also corroborated by several other studies
including Brown et al. (2011), Carter and Steinschneider (2018)
and Gronewold and Rood (2019). Also of note, is that a majority
of the most extreme effects are seen under the “business as usual”
RCP 8.5 emission scenario particularly at the end of the century.
There is of course more uncertainty in these results, as not only
are they for many years in the future, but they will be highly
dependent on future carbon emissions and thus how society
adapts. Thus, these results should be seen as a guide to possible
changes in the GL hydroclimate variables, but not as a forecast of
the exact future conditions.

Amongst all the other GL basin (and surrounding region)
historical climate change studies, it is hard to state whether
the results of this study are more robust. We believe that
the ensemble results that we obtained with the use of a set
of high-resolution bias-corrected RCM forcings to a coupled
hydrological model with explicit consideration of smaller lakes,
evaluated not only for streamflow but also for other variables
of interests (SWE and AET) are relatively reliable. The reader
should also be aware of some studies (Lofgren et al., 2011, 2013;
Lofgren and Rouhana, 2016; Milly and Dunne, 2017) questioning
the use of a hydrological model utilizing temperature index
(TI) method, rather than an energy-balance method, to project
future changes in PET. The Hargreaves method (Hargreaves and
Samani, 1985) is also a TI method that our hydrological model
employs to calculate PET. However, the performance of the
Hargreaves method as evident in some studies is encouraging.
For example, of the four TI methods that Milly and Dunne,
(2017) used to estimate the relative changes in future annual

PET, the estimates when using the Hargreaves method were
closest to the estimates of the energy-only method. Similarly,
Xu and Singh (2001) evaluated the performance of seven TI
methods in estimating evaporation at two climatological stations
in Northwestern Ontario, Canada and recommended the use
of the Hargreaves method. However, the use of an energy
balance method in hydrological methods to estimate future
changes in PET should be preferred if all the incoming and
outgoing energy terms become outputs of high-resolution bias-
corrected RCMs. Furthermore, this study quantifies the relative
contribution of climate model and scenario uncertainties to the
total uncertainty in considered hydrological variables which also
provides a guidance to new studies.

We presume that better quantification of impacts of climate
change on land-hydroclimatic variables will be helpful to
understand the future conditions of the GL basin. This may also
help formulate a coordinated effort to address the adverse effects
of climate change in the basin.
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