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Editorial on the Research Topic

Human-centered AI: Crowd computing

1. Introduction

Human computation (HCOMP) and crowdsourcing (Law and von Ahn, 2011; Quinn

and Bederson, 2011; Kittur et al., 2013; Lease and Alonso, 2018) have been instrumental

to advances seen in artificial intelligence (AI) and machine learning (ML) over the past

15+ years. AI/ML has an insatiable hunger for human labeled training to supervise models,

with training data scale playing a significant (if not dominant) role in driving the predictive

performance ofmodels (Halevy et al., 2009). The centrality of such human-labeled data to the

success and continuing advancement of AI/ML is thus at the heart of today’s data-centric AI

movement (Mazumder et al., 2022). Moreover, recent calls for data excellence (Aroyo et al.,

2022) reflect growing recognition that AI/ML data scale alone does not suffice. The quality of

human labeled data also plays a tremendous role in AI/ML success, and ignoring this can be

perilous to deployed AI/ML systems (Sambasivan et al., 2021), as prominent, public failures

have shown.

HOMP and crowdsourcing have also enabled hybrid, human-in-the-loop,

crowd-powered computing (Demartini et al., 2017). When state-of-the-art AI/ML

cannot provide sufficient capabilities or predictive performance to meet practical needs

for real-world deployment, hybrid systems utilize HCOMP at run-time to deliver last-mile

capabilities where AI/ML fall short (Gadiraju and Yang, 2020). This has enabled a new

class of innovative and more capable applications, systems, and companies to be built (Barr

and Cabrera, 2006). While work in HCOMP is centuries old (Grier, 2013), access to an

increasingly Internet-connected and well-educated world population led to the advent of

crowdsourcing (Howe, 2006). This has allowed AI/ML systems to call on human help at

run-time as “Human Processing Units (HPUs)”(Davis et al., 2010), “Remote Person Calls

(RPCs)” (Bederson and Quinn, 2011), and “the Human API” (Irani and Silberman, 2013).

Across both data labeling and run-time HCOMP, crowdsourcing has enabled AI/ML

builders to tap into the “wisdom of the crowd” (Surowiecki, 2005) and harness collective

intelligence from large groups of people. As AI/ML systems have grown both more powerful

and ubiquitous, appreciation of their capabilities has also been tempered by concerns of

prevalence and propagation of biases, lack of robustness, fairness, and transparency as well as
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ethical and societal implications. At the same time, crowdsourced

access to a global, diverse set of contributors provides an

incredible avenue to boost inclusivity and fairness in both AI/ML

labeled datasets and hybrid, human-in-the-loop systems. However,

important questions remain about the roles and treatment of

AI/ML data workers, and the extent to which AI/ML advances are

creating new economic opportunities for human workers (Paritosh

et al., 2011) or exploiting hidden human labor (Bederson and

Quinn, 2011; Fort et al., 2011; Irani and Silberman, 2013; Lease

and Alonso, 2018; Gray and Suri, 2019). This has prompted the

development of ethical principles for crowd work (Graham et al.,

2020) and calls for responsible sourcing of AI/ML data (Partnership

on AI, 2021).

As the above discussion reflects, HCOMP and crowdsourcing

reflects a rich amalgamation of interdisciplinary research. In

particular, the confluence of two key research communities—

AI/ML and human-computer interaction (HCI)—has been central

to founding and advancing HCOMP and crowdsourcing. Beyond

this, related work draws upon a wide and rich body of diverse

areas, including (but not limited to) computational social science,

digital humanities, economics, ethics, law / policy / regulation, and

social computing. More broadly, the HCOMP and crowdsourcing

community promotes the exchange of advances in the state-of-the-

art and best practices not only among researchers but also engineers

and practitioners, to encourage dialogue across disciplines and

communities of practice.

2. Call for papers: Aim and scope

Our organization of this Frontiers Research Topic called for new

and high-impact contributions in HCOMP and crowdsourcing.We

especially encouraged work that generates new insights into the

collaboration and interaction between humans and AI, enlarging

understanding about hybrid human-in-the-loop and algorithm-in-

the-loop systems (Green and Chen, 2020). This includes human-AI

interaction, algorithmic and interface techniques for augmenting

human abilities to AI systems. It also spans issues that affect how

humans collaborate and interact with AI systems such as bias,

interpretability, usability, and trustworthiness. We welcomed both

system-centered and human-centered approaches to human+AI

systems, considering humans as users and stakeholders, or as active

contributors and an integral part of the system.

Our call for papers invited submissions relevant to theory,

studies, tools and/or applications that present novel, interesting,

impactful interactions between people and computational systems.

These cover a broad range of scenarios across human computation,

wisdom of the crowds, crowdsourcing, and people-centric AI

methods, systems and applications.

The scope of the Research Topics included the following

themes:

• Crowdsourcing applications and techniques.

• Techniques that enable and enhance human-in-the-loop

systems, making them more efficient, accurate, and human-

friendly.

• Studies about how people perform tasks individually, in

groups, or as a crowd.

• Approaches to make crowd science FAIR (Findable,

Accessible, Interoperable, Reproducible) and studies assessing

and commenting on the FAIRness of human computation

and crowdsourcing practice.

• Studies into fairness, accountability, transparency, ethics,

and policy implications for crowdsourcing and human

computation.

• Methods that use human computation and crowdsourcing to

build people-centric AI systems and applications, including

topics such as reliability, interpretability, usability, and

trustworthiness.

• Studies into the reliability and other quality aspects of human-

annotated and -curated datasets, especially for AI systems.

• Studies about how people and intelligent systems interact

and collaborate with each other and studies revealing the

influences and impact of intelligent systems on society.

• Crowdsourcing studies into the socio-technical aspects of AI

systems: privacy, bias, and trust.

3. Partnership with AAAI HCOMP

For over a decade, the premier venue for disseminating the

latest research findings on HCOMP and crowdsourcing has been

the Association for the Advancement of Artificial Intelligence

(AAAI) Conference on Human Computation and Crowdsourcing

(AAAI HCOMP).1 Early HCOMP workshops at KDD and AAAI

conferences (2009-2012) led to the genesis of the AAAI HCOMP

conference in 2013. To further strengthen this Frontiers Research

Topic, we partnered with AAAI HCOMP to invite submissions;

papers accepted to HCOMP 2021 were offered a streamlined

process for publication in this topic (e.g., maintaining the same

reviewers when possible). We accepted four such submissions that

extend earlier HCOMP 2021 papers (Samiotis et al., 2021; Welty

et al., 2021; Yamanaka, 2021; Yasmin et al., 2021).

4. Managing conflicts-of-interest (COI)

“The Frontiers review system is designed to guarantee the

most transparent and objective editorial and review process, and

because the handling editor’s and reviewers’ names are made public

upon the publication of articles, conflicts of interest will be widely

apparent” (Frontiers, 2023). For this Frontiers Research Topic, two

submissions from topic editors were routed by Frontiers staff to

other editors not otherwise associated with this Research Topic

and had no COI with the topic editors. Both submissions were

ultimately accepted (Pradhan et al.; Samiotis et al.), after which

the identity of each handling editor became publicly available.

We thank these additional editors for their contributions to this

Research Topic.

5. Research Topic contributions

A total of nine articles were accepted, contributing studies

into factors of human computation and crowdsourcing, to their

1 https://humancomputation.com/
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applications to human-AI collaborative systems and large-scale

behavioral studies. In the following, we very briefly summarize

these works.

5.1. Quality in crowdsourced data
annotation

Annotation quality is often a key concern in crowdsourced

labeling. Pradhan et al. introduce a three-stage FIND-RESOLVE-

LABEL workflow to reduce ambiguity in annotation task

instructions. Their workflow allows workers to provide feedback

on ambiguous task instructions to a requester. Another aspect of

annotation quality is worker disagreement, for which a number

of methods have been developed. Drawing from the observation

that the effectiveness of annotation depends on the level of noise

in the data, Uma et al. investigate the use of temperature scaling to

estimate noise. Yasmin et al. investigates the effect of different forms

of input elicitation to improve the quality of inferred labels in image

classification, suggesting that more accurate results can be achieved

when labels and self-reported confidence are used as features for

classifiers.

5.2. Human-centered computation and
interaction in AI

Tocchetti et al. study the effect of gamified activities to

improve crowds’ understanding of black-box models, addressing

the intelligibility issue of explainable AI. They consider gamified

activities to educate crowds by AI researchers. Yamanaka

investigates the effectiveness of crowdsourcing for validating user

performance models, especially the error-rate prediction model in

target pointing tasks, which requires data from many repetitive

experiments by participants for each task condition to measure

the central tendency of the error rate. Welty et al. studies crowd

knowledge creation for curating class-level knowledge graphs.

Their three-tier crowd approach to elicit class-level attributes

addresses the label sparsity problem faced by AI/ML systems.

5.3. Human factors in human computation

Vinella, Hu et al. focuses the effect of human agency in

team formation on team performance. They found that in open

collaboration scenarios, e.g., hackathon, teams formed by workers

themselves are more competitive, compared to those formed by

algorithms. Samiotis et al. explore the possession of musical skills in

the worker population. Their study shows that untrained workers

possess high perception skills that can be useful in many music

annotation tasks. Vinella, Odo et al. study the effect of personality

on task performance by ad-hoc teams composed of strangers,

especially in solving critical tasks that are often time-bounded

and high-stress, e.g., incident response. Their results identify

personality traits that affect team performance and in addition to

that, relevant communication patterns used by winning teams.

Author contributions

All authors listed have made a substantial, direct, and

intellectual contribution to the work and approved it for

publication.
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Successful knowledge graphs (KGs) solved the historical knowledge acquisition

bottleneck by supplanting the previous expert focus with a simple, crowd-friendly one:

KG nodes represent popular people, places, organizations, etc., and the graph arcs

represent common sense relations like affiliations, locations, etc. Techniques for more

general, categorical, KG curation do not seem to have made the same transition: the

KG research community is still largely focused on logic-based methods that belie the

common-sense characteristics of successful KGs. In this paper, we propose a simple

yet novel three-tier crowd approach to acquiring class-level attributes that represent

broad common sense associations between categories, and can be used with the

classic knowledge-base default & override technique, to address the early label sparsity

problem faced by machine learning systems for problems that lack data for training.

We demonstrate the effectiveness of our acquisition and reasoning approach on a pair

of very real industrial-scale problems: how to augment an existing KG of places and

offerings (e.g. stores and products, restaurants and dishes) with associations between

them indicating the availability of the offerings at those places. Label sparsity is a general

problem, and not specific to these use cases, that prevents modern AI and machine

learning techniques from applying to many applications for which labeled data is not

readily available. As a result, the study of how to acquire the knowledge and data needed

for AI to work is as much a problem today as it was in the 1970s and 80s during the

advent of expert systems. Our approach was a critical part of enabling a worldwide local

search capability on Google Maps, with which users can find products and dishes that

are available in most places on earth.

Keywords: map, knowledge graph, crowdsourcing, class-level attributes, common sense, knowledge acquisition

1. INTRODUCTION

From the outset, knowledge graphs (KGs) have prominently used crowdsourcing
for knowledge acquisition, both from the perspective of scaling out graph creation
and long-term maintenance, solving the historical knowledge acquisition bottleneck
by revisiting the expert systems assumption that knowledge should be acquired
from experts. As a result, popular KGs like Freebase (Bollacker et al., 2008)—now
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Google’s Knowledge Graph—and WikiData (Vrandečić and
Krötzsch, 2014) are composed primarily of popular “common
sense” entities and relations in the world that people are exposed
to regularly and that can be acquired from and validated by
the crowd.

Similarly, today Google Maps overlays data on maps about
the different places or establishments (stores, restaurants,
hospitals, etc.) worldwide, and crowdsourcing plays a central
role in the acquisition and maintenance of this information,
as discussed in Lagos et al. (2020). Users contribute opening
hours, locations, reviews, etc., as well as categorical information
about places such as whether it is a supermarket, department
store, etc., which makes KGs a natural representation for this
information.

Despite such heavy and widespread success of KGs for
representing entities in the world and their properties, Taylor
(2017) points out that there has not been much attention paid
in the research community to class-level attributes in KGs:
graph edges between nodes that represent categorical terms,
what they might mean and how to acquire them. For the
purposes of this paper we use the words type, category, class
interchangeably, as well as attribute, property, relation. Practical
and industrial KG edges remain almost exclusively at the
instance level (e.g., McDonalds serves Big Mac), and a few
KGs may encode class-level domain/range constraints (e.g.,
Restaurants serve Food), but no KG includes attributes of
classes that represent our common-sense knowledge about them
(e.g., Burger Joints serve burgers). There has certainly been
a lot of research published in the sub-fields of Knowledge
Representation on axiomatic knowledge acquisition, for example
Ji et al. (2020), but these methods are not well-suited for
crowdsourcing and have not made the transition to any industrial
KG settings.

In this paper we explore the question of acquiring common
sense class-level attributes from the crowd and applying those
attributes effectively with other sources of information to solve a
knowledge-base completion (KBC) problem, as defined in Bordes
et al. (2013), where success is measured by the precision and
recall of graph edges. We take a particular problem, that of
understanding what is offered at each establishment on earth.
Such a KG could be used to answer questions like, “Where can
I buy an umbrella nearby?” (see Figure 1), “Where can I eat
lamyun?”, or “Where can I get a flu shot?”, etc. We call this
problem local offerings and it is one that is of interest to search
engines like Google.1

Local offerings, compared to on-line, poses a significant
practical knowledge acquisition problem because real-world
transactions do not occur on-line or the data is heavily siloed,
and therefore data about what products are being sold at what
stores, or what dishes are served at what restaurants, is not
broadly available; it is a sort of “dark matter” of the web—
we know it’s there but can’t directly observe it. Although it
may seem familiar to us—e.g., brick and mortar shops that
support on-line ordering and in-store pickup—such exceptions
are actually quite rare, by the numbers. Less than 30% of stores

1https://support.google.com/merchants/answer/9825611?hl=en

worldwide having a website and even fewer that include a product
catalog.2

Indeed, our data shows that web pages and merchant feeds
account for less than 0.001% of the total matrix of products at
stores. To address this shortage of web information, we harness
the crowd in three tiers: users around the world who have visited
stores and voluntarily provide instance-level product availability
(e.g., Ajay Mittal Dairy sells Milk); a much smaller set of paid
raterswho curate class-level attributes connecting common sense
store and product categories (e.g., Grocery Stores sell Milk); and
a very small set of paid operators who call stores to confirm the
instance-level associations as evaluation ground-truth labels. The
intuition behind this combination is that a lot of the instance-
level associations are obviously true or false at the categorical
level, and that acquiring knowledge at that level can jump-start
the instance-level acquisition and help it be more productive:
don’t waste a user’s efforts answering about milk or asphalt at an
individual grocery store when simple common sense tells us the
answer. Due to the prominence of common sense curation in our
approach, we call the project CrowdSense (CS).

To our knowledge, acquiring class-level attributes from the
crowd in order to jump-start a KBC problem has not been
attempted before, and there are very few examples of KBC
problems at this scale (tens of millions of stores wordwide and
more than 10k products). The project and approach led to a
successful worldwide launch of local shopping results overlaid on
Google Maps, and involved many complexities beyond the scope
of this paper, including more than 2 years of data collection at a
worldwide scale. Due to this complexity and scope, we focus here
on the real-world knowledge acquisition aspect of the work, and
present a few simplified experiments that demonstrate how the
acquired knowledge can be used for KBC. The contributions of
this paper are primarily:

• To demonstrate that class-level bipartite knowledge
acquisition can be effective in approximating instance-level
knowledge (Section 5.5) as a solution to label sparsity;

• A crowdsourcing approach to acquire such class-level
knowledge for the local shopping problem (Section 5.4);

• Experimental results that show the effective combination of
class- and instance- level knowledge from various sources used
in the launched system (Section 6.3).

The approach has generalized to other bipartite relations between
places and types of entities that are organized in a taxonomy,
such as dishes at restaurants, services at professional offices, etc.,
as well as a wide range of other bipartite graph problems where
common sense or categorical knowledge prevails as defaults,
such as ingredients for dishes, linnean taxonomies of living
creatures, etc.

2. FORMALIZATION

We start with an initial knowledge graph G′(IP ∪ C,RT ∪

RSC), where C = CP ∪ CO forms the set of all categories,

2https://www.forbes.com/sites/jiawertz/2018/05/17/how-brick-and-mortar-

stores-can-compete-with-e-commerce-giants/#2019f5a23cc0
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FIGURE 1 | Google Maps local shopping search results for umbrellas in NYC shows stores that sell them.

partitioned into place {cp ∈ CP} and offering {co ∈ CO}

categories (e.g., hardware-store, power-tools, resp.), and {ip ∈

IP} the set of all place instances (i.e., the establishments such as
stores and restaurants themselves). The edges of the graph are
the class/instance (also known as type) relation between place
instances and place categories {〈ip, cp〉 ∈ RT}, and the subclass
relation {〈cp, c

′
p〉 ∈ RSC} with a disjointness constraint

〈x, y〉 ∈ RSC H⇒ {x, y} ⊂ CP ⊕ {x, y} ⊂ CO

so that the relation is only defined over pairs of categories
belonging to the same type. Lastly each of these primitive sets are

disjoint IP∩CP = IP∩CO = CP∩CO = ∅, making G′ tripartite. As
usual,RSC forms a partial order within each (place and offering)
category partition, and is transitive over the subcategory relation
so that 〈x, y〉 ∈ RT ∧ 〈y, z〉 ∈ RSC → 〈x, z〉 ∈ RT . This is meant
to capture a traditional kind of knowledge-graph scenario.

Problem 1. The local offerings problem is the extension of G′ to
G(IP ∪ C,RT ∪ RSC ∪ RI ∪ RC) through the addition of the
class-level offering availability relation {〈cp, co〉 ∈ RC} and the
instance-level offering availability relation {〈ip, co〉 ∈ RI}.

The place instances {ip ∈ IP} represent individual physical
places like Trader Joe’s at 142 14th St. (TJ142), each of which
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FIGURE 2 | Example subset of graph G with a place instance ip, a place

category cp, its parent category c′p, a offering category co, its parent c′o and

the class- and instance- level offering availability relations between them.

is typed with some number of place categories {cp ∈ CP} like
Supermarket. The offering categories {co ∈ CO} represent the
types of offerings at all places, such as Milk or Dairy, so that
{〈TJ142,Milk〉 ∈ RI} means that particular Trader Joe’s sells
Milk. Note that a more complete definition of the local shopping
problem would include the extension of CO to instances (i.e.,
place inventory), but we do not have access to that data, and use
this definition as a simplification that serves to answer most local
offering queries. A simple example is shown in Figure 2, showing
four categorical graph nodes and one instance node, with each of
the relation types shown as edges.

This simplification is best understood as a matrix R : IP × CO

representingRI , where Ri,j are observations (or predictions) that
place i offers j. With enough observed Ri,j, collaborative filtering
methods (e.g., matrix factorization) can be exploited to predict
unobserved values from observed ones. Moving between matrix
and graph representation can be done in a variety of ways, such
as thresholding matrix values into discrete edges in RI , or using
a graph formalism that supports confidence values on edges, as
described in Noy et al. (2006).

We argue that the real world grounding of the RI association
in people’s everyday experience allows us to exploit meaningful
common sense categorical knowledge for the problem of
acquiring the edges in RC, and use simple defeasable methods
to then infer the edges in the graph for the relationRI .

3. VOCABULARY

The local offerings system and all the experiments described in
this paper use the open Google My Business (GMB) categories3,4

for place categories (CP) and Google Product Taxonomy5,6 for
the offering categories (CO). Each set comes with a taxonomic
structure that we encode as theRSC relation, every category has at

3https://support.google.com/business/answer/3038177/#categories
4https://bayareawebsitedesigner.com/gmb-categories/
5https://www.google.com/basepages/producttype/taxonomy.en-US.txt
6https://feedonomics.com/google_shopping_categories.html

least one parent category with the exception of the top-level (most
general) categories, and a few categories have multiple parents.

This project began with shopping and was extended to dining
by adding a number of dishes to CO. These dishes are from
Google’s KG, and most of them can be found in Freebase under
the type /food/dish. The restaurant categories are already
part of the GMB set.

There are roughly 15k products categories in CO, that are
similar in semantics to UPCs (Universal Product Code, the bar
codes on most packaged products), grounding out in 19 top-level
categories. There are roughly 10k dishes in CO, that are similar
to menu items, with very little taxonomic structure. The GMB
categories that comprise in CP include many that are unrelated to
local shopping or dining, so we restrict (CO) to those below store
and restaurant, resulting in roughly 3k with those two roots.

These taxonomies have different graphical structure: the
product taxonomy is fairly deep, and the place taxonomy is fairly
shallow, yet they align surprisingly well. For example, there is a
deep taxonomy of products under “Grocery,” and a store category
“Grocery Store.” There are a few misalignments, for example
“Batteries” are under “Electronics” but are sold at “Drugstores.” A
few of these misalignments are ameliorated by hybrid categories
like “Household products,” which is an additional ancestor for
“Batteries.” The food taxonomy we used from Freebase is nearly
flat, making for an interesting comparison on the usefulness of a
good taxonomy. Note that we do not change the taxonomies or
memberships; as defined in Section 2, we treat the initial graph G′

as given.
Finally, Google Maps has tens of millions of establishments

worldwide that form the set of places IP; each has a category label
which is displayed in the maps UI under the place name and user
rating, giving us the edges in RT . A large part of these labels are
assigned by merchants, some by users, some by operators and
others by machine automation. These labels are generally high
quality, with precision over 0.8. The largest source of inaccuracies
are store labels that are more general than they need to be, when
a more appropriate category exists. The labeling infrastructure
requires a single “primary” category, while many places could be
categorized in several ways. A Glossary of terms defined in this
paper has been provided in Table 1.

4. A THREE-TIERED CROWD

The system for which we performed the crowdsourcing described
in this paper is quite large and complex, and is launched and
available to users worldwide through search. It uses a DNNmodel
to predict RI pairs from many signals that include information
extraction (IE) from store web pages, direct merchant feeds,
store type, and dozens of other features that include a significant
amount of user-generated content (UGC).

The well-known bipartite problems that have been solved by
machine learning have the advantage that the organizations that
solved them had a lot of labeled data for those problems. For
example, Netflix has millions of 〈user, movie〉 pairs, and can use
this massive data to seed big machine learning systems to better
predict what movies a user make like. A vast number of practical
bipartite problems, however, have very little data, resulting in
label sparsity.
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TABLE 1 | Glossary of terms.

Terms

Place An establishment (store or restaurant) on Google Maps

Offering A product or dish available at a place

KBC Knowledge Base Completion

GMB Google my Business (source store categories)

GPT Google Product Taxonomy (source product categories)

UGC User Generated Content–user responses to yes/no questions

CS Crowd Sense, our approach

WebIE Information extraction of offering names from place web pages

WALS Matrix factorization using WALS to predict 〈ip, co〉 pairs

Knowledge graph

{ip ∈ IP} Set of place instances

{cp ∈ CP} Set of place categories

{co ∈ CO} Set of offering categories

〈cp, c
′
p〉 ∈ RSC Place subclass/superclass relation

〈co, c
′
o〉 ∈ RSC Offering subclass/superclass relation

〈ip, cp〉 ∈ RT Place instance/class type relation

〈cp, co〉 ∈ RC Class-level offering @ place availability relation

〈ip, co〉 ∈ RI Instance-level offering @ place availability relation

G ′ Base KG of place/offering classes and place instances

G G ′ extended with RC and RI

Ri,j Likelihood that place instance i sells offering class j

Crowd task

wx,o Rater score for place (class or instance) x and offering class o

αc,o Number of “always” answers for class-level pair 〈c, o〉

νc,o Number of “never answers for class-level pair 〈c, o〉

yi,o Number of “yes” answers for instance-level pair 〈i, o〉

ni,o Number of “no” answers for instance-level pair 〈i, o〉

Label sparsitymeans thatmachine learning systems don’t have
enough data to make reasonable predictions, and the only way
to move forward is to acquire it. Acquiring the data needed to
seed large scale AI systems is as much a problem today as it
was during the bygone era of expert systems, where, according
to Shortliffe and Buchanan (1975) and many others, the bulk
of the research focus was on algorithmic solutions to rule-based
reasoning problems, but the bulk of the difficulty and work was
in knoweldge acquisition. This history continues to repeat itself;
Sambasivan et al. (2021) point out that knowledge acquisition is
viewed as less glamorous than inventing new neural algorithms
and architectures. As noted above, for the local shopping and
dining problems, existing sources gave us less than 0.001% of the
total matrix R, leaving a huge knowledge acquisition problem.
We developed a novel three-tiered crowd to gather the data
discussed in this paper:

• CrowdSense (CS): We collected 25k class-level 〈cp, co〉 ∈ RC

pairs for shopping and 20k for dining, from a pool of paid
raters. Though a relatively small crowd effort, this ends up
being the largest source of instance-level 〈ip, co〉 ∈ RI pairs
through default inference (full details in Section 5), yielding
billions of instance-level pairs.

• UGC: Google Maps provides the facility for users to
voluntarily add reviews, photos, venue categorization, and

FIGURE 3 | Example question used to gather UGC.

attributes (e.g., “has Wi-Fi”) to places they’ve visited. Through
the UGC framework, users answer yes/no questions about
product and dish availability at places they’ve visited, shown
in Figure 3. While Google’s deployed local search system does
use all the UGC data, including reviews and photos, etc., in this
paper we only describe and analyze the impact of the yes/no
questions, which comprise the largest crowdsourcing element
of the system, at millions of answers per day. Each user is
given a set of 〈ip, co〉 pairs to answer, giving us a distribution
of yes and no answers for each pair. In the experiments shown
in Section 6, we show the growth in coverage over time as
more answers are collected, yielding hundreds of millions of
instance-level pairs over the course of this study (2 years for
shopping and 15 months for dining).7

• Gold: We collected 40k gold standard 〈ip, co〉 pairs for
shopping, and 20k for dining, by having paid operators call
each place ip and ask them if they sold or served co. The places
were selected from among more than 50 countries with the
top-5 countries beingUS (20%), JP (5%), IN (5%), GB (5%), BR
(4%); places within each country were sampled uniformly to
provide a microcosm of representative demographics. Clearly
the highest fidelity and most expensive data, it is by far
the smallest.

One of the critical obstacles to gathering this data from people
in all tiers is the class imbalance: less than 4% of the possible
store-offering pairs are positive. Gathering 96% negative results
is a waste of human labeling resources and, far more critical,
makes for an unsatisfactory user experience—users want to feel
helpful and answering 9/10 negative questions is frustrating.
Moreover, particularly obvious negative questions, like fish heads
at a hardware store, confuse some users into saying they are
unsure—the questions are so obvious they feel they must be
missing something. Finally, a few of these obvious negatives end
up on social media as jokes, which is embarassing.

Active learning (AL) is a known method for dealing with
class imbalance—sampling near the classifier boundary typically

7Collection continues, these windows were used for this paper.
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yields a good balance between positives and negatives and,
thus, provides utility for training the model. Unfortunately for
problems where there is also label sparsity, there is not enough
data to train a model and so nothing to base AL on. Our class-
level approach offers a solution to this problem as well. As
described in more detail in Section 5, we gather a distribution
of judgements on class-level pairs, and the resuling pairs fall
into three categories: obviously available (e.g., grocery store,
milk), obviously unavailable (e.g., hardware store, fish heads), and
possible (e.g., hardware store, 9 inch nails). The possible category
of class-level pairs captures products that are available at some,
but not necessarily all, stores in the class, and provide excellent
guidance for selecting instance-level pairs to ask users.

Even after we’d acquired enough data to begin training a
model and use AL, the possible category offered an additional
benefit. In the early stages of acquiring training data, known
as the explore (vs. exploit) stage, 〈ip, co〉 pairs with enough
evidence to be close to the classifier boundary are very likely to
be positive, so much so that the class balance of margin sampling
was 80% positive. Clearly a 50% class balance could then be
achieved by up-sampling pairs that are further below the classifier
boundary, however such an approach is very likely to choose
these problematic obvious negatives discussed above. A mix of
possibles with margin sampling was able to achieve a 50% class
balance with high utility and no embarassment.

For the Gold data, class imbalance presents as much of a
problem as for UGC, however since this data set is used to
measure the quality of the CS data, we did not want to bias our
evaluations by using CS as a guide. Instead, to achieve better class
balance, the WebIE baseline data (q.v. below) was used to guide
the collection toward pairs that had an increased chance of being
true; for example, if a places’s webpage mentioned an offering
we would try to call places of the same type and ask about that
offering. We enforced a positive/negative class balance of 50%,
and targeted a stratification of the sampling that preserved the
30/70 balance of places with and without websites.

5. CROWD SENSE

The obvious way to gather the edges in RI would be to use
store inventory or transaction records. The problem with this
approach is that local offerings is still mostly an off-line or
highly siloed process worldwide, and we did not have access
to transactional data that gives us these observations. Google
provides merchants a free way to share their menus or inventory
on-line, but much fewer than 1% of places worldwide had made
use of it. Our data showed that web pages and merchant feeds
together accounted for less than 0.001% of the space of the matrix
R, giving us the label sparsity problem. Filling the cells of matrix
Rmeans acquiring the edges inRI , andwe propose to accomplish
this by starting with the acquisition of edges inRC, the class level
attributes, and inferring those values as defaults forRI .

5.1. Crowd Hypothesis
The intuition driving our approach is that the crowd can provide
the class-level knowledge (RC) by appealing to their common
sense experience; everybody knows that, e.g., “All supermarkets

sell milk.” Reality is more complicated, and since the problem
space is sparse, the class-level data is also dominated by what
offerings are obviously not available. Far behind the obvious
negatives are, as discussed above, the possibles—offerings that are
usually, but not always, available at some type of establishment.
Wasabi Peas, while they are found almost exclusively in grocery
stores, are not found in all of them. What we really aim for the
crowd to provide is a distribution of the offerings available at
places of a given type. This is where a lot of existing knowledge
graph methods fail, especially at the class-level, as they rely on an
assumption of discreteness.

It may seem that we could ask individual people to answer a
question like, “What percent of stores of type cp sell product co?”
However, research in human computation such as Surowiecki
(2005) has shown that individuals cannot reliably answer such
questions. Using (Welty et al., 2012; Aroyo and Welty, 2014,
2015) as a starting point, we hypothesized:

Hypothesis 1. Asking multiple raters about the same categorical
pairs would produce a distribution of answers that approximate
the real world distribution ofRI .

In other words, if 70% of raters say that oat milk is sold at grocery
stores, then 70% of grocery stores will sell oat milk.

Before testing our hypothesis, we ran numerous pilots to tune
the hyper-parameters of the crowd task in the shopping domain,
asking raters questions about 11k 〈cp, co〉 pairs from 154 store
types and 3600 products in five countries.We experimented with:
the number of raters per pair, testing between 5 and 25 raters
per pair; the size of the rater pool, ranging from 100 to 500;
the question phrasing; and the answer options. Based on manual
analysis of the cost and quality, we settled on these task hyper-
parameters: five raters per pair, randomly selected from a pool
of 130 raters in six countries, sourced from contracted operators
through an in-house crowdsourcing platform, and the question,
“Would you expect to find co products in stores of the category
cp?” with four answer options (“Always Available,” “Sometimes
Available,” “Never Available,” “I don’t know”). For dishes, the
question was rephrased, “Would you expect to find co dishes in
restaurants in the category cp?”

Under these settings, our final PRODCAT task (see below)
gathered 25k class-level (〈cp, co〉) pairs with 5 labels per country,
that through inference (q.v. Section 6.1) resulted in billions
of 〈ip, co〉 pairs, 99% of which were negative. It took 6 weeks
to run and analyze the pilots, and 2 weeks to run the final
task. For dishes, the MATRIX task collected 15k class level
pairs from 5 raters per pair in 2 weeks, resulting in billions of
instance-level pairs.

Raters were supplied by a set of contractors who are obligated
to follow Google’s Code of Conduct, and were managed by an
administrator outside our group. The MATRIX and PRODCAT
task designs (q.v. below) grouped between 200 and 400 pairs in a
single matrix, raters were assigned a matrix by the administrator
based primarily on availability. Many raters were assigned
multiple matrices over time, but in our analysis we did not
account for individual characteristics of raters (such as expertise),
even though we know from Aroyo and Welty (2014) this can
yield improvements.
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5.2. Data Collection Tasks
Another way to state our hypothesis is that the categorical
crowd disagreement should reflect the real world distribution,
but disagreement can have many causes that are not related to the
desired distribution. The various pilot tasks we ran represented a
gradual refinement of the data and task descriptions to eliminate
disagreement from other causes. We report here on four different
approaches for the shopping domain:

5.2.1. RANDOM

To confirm the sparsity of RC, we randomly and independently
selected category pairs from CP × CO, weighing the selection
from CP proportionally to the number of stores belonging to each
category (i.e., larger categories are more likely to be selected).
Pairs were presented to 5 raters from the same country. This
RANDOM task confirmed that the vast majority of pairs are
“obvious” negatives (asphalt at grocery stores, cars at violin shops,
etc.), as more than 95% of the pairs resulted in 5 “Never” ratings.

5.2.2. SINGLETON

To address the sparsity shown in RANDOM, we leveraged web
signals (see Section 6.1) to select pairs with more likelihood to
be available at places within a given category, and presented
one pair at a time to 5 raters from the same country. This
resulted in a distribution of rating scores ranging from all-5
“Always Available” to all-5 “Never Available” skewing toward
the positive (always) side. The SINGLETON task results showed
disagreement from other causes, described in Section 5.3.

5.2.3. MATRIX

To address the disagreement due to ambiguity (Section 5.3), we
designed a novel matrix presentation of class-level pairs, with
four {co ∈ CO} as the columns and a set of 100–200 {cp ∈

CP} as the rows, depending on our ability to match offerings
to the place categories using web signals. Figure 4 shows the
matrix presentation (with data sampled through the PRODCAT
method below). The advantage of this presentation is that raters
familiarized themselves with a category and answered many
questions related to it, rather than having to understand one
pair at a time. This approach still produced some unwanted
disagreements due to difficulty understanding some of the
products, esp. very specific ones, and we were concerned that the
web signals were biasing our sample toward availability patterns
of online places, rather than our target class of establishments
without web pages. Most importantly, the amount of time the
raters spent per 〈cp, co〉 dropped by 50%.

5.2.4. PRODCAT

The final crowdsourcing task used the MATRIX presentation but
changed to a dynamic method that sampled the 〈cp, co〉 pairs
starting at the top of the product taxonomy, and working down
the RSC relation from most general to most specific. It was not
useful to treat the store taxonomy this way, as it is very shallow,
and we did not have a dish taxonomy. When a pair was given
an overall negative label, we did not sample any subcategories of
co and inferred a negative label for all descendents. For example,

since Auto parts stores do not sell Grocery and 〈Dairy,Grocery〉 ∈
RSC, we did not ask 〈Auto parts stores, Dairy〉.

The product taxonomy is not a strict tree, but a DAG,
and when reconciling conflicting ratings from multiple parents,
we retained the most positive rating. Electronics are not sold
at Pharmacies, whereas HouseholdProducts are sometimes sold
there, and Batteries are a subcategory of both Electronics and
HouseholdProducts, so we do ask about 〈Batteries, Pharmacies〉.

This top-down taxonomic pruning eliminated any need for
the web signals, and accounted for the sparsity at a very high level,
since (by accident or ontology) the store and product categories
were well aligned: e.g., Auto parts stores sell Auto parts and do
not sell Groceries. Higher level categories also made a lot more
sense to raters when presented with a sub-category, e.g., Sports
and Outdoor Electronics with Fitness Trackers, and since our
rater pool did not vary much, they became familiar with the
taxonomic distinctions as they progressed down the taxonomy,
which was evidenced by a reduction in visits to the taxonomy
element descriptions over time.

5.2.5. Dish MATRIX

To gather the class-level pairs 〈cp, co〉 for the dining domain, we
were not able to fully reuse the PRODCAT method, since the
dishes in our KG did not have taxonomic organization, which
was the key to the improvements of PRODCAT over MATRIX.
Instead, we used the MATRIX method, presenting the class-level
pairs in a matrix, selected by their popularity in web signals. As
with singleton, this approach favored positive pairs, indeed our
raters appear to have been overly positive in their answers.

5.3. Ambiguity
In the pilot experiments run for shopping we observed
disagreement in the results that did not support our crowd
hypothesis, but were caused by ambiguity such as:

• product is a material, substance (e.g., plastic, starch, arugula)
or some product aspect (e.g., color, size)

• product is a brand (e.g., Avian, Kleenex) or contains a brand
name (e.g., Nike Sneakers, Todd’s boots)

• place or offering is too specific (e.g., duck sauce, goat meat,
vanilla orchids, banner store)

• place or offering is too generic (e.g., gift, organic food,
chicken, restaurant)

• offering is regional (e.g., Harissa, Jajangmyeon)
• offering is seasonal (e.g., christmas trees, flip-flops)
• offering is polysemous in a way that is resolved by the store

type, e.g., “fish” in a grocery store vs. a pet store
• flashy menu item (e.g., nacho fries bellgrande, del

monde delux).

In MATRIX and SINGLETON, for example, raters seem more
willing and able to answer the question, “Is milk sold here?”
compared to “Is dairy sold here?” In the latter case, there is
uncertainty over what minimum set of dairy items (milk, cheese,
butter, yogurt, etc.) would be needed for “sells dairy” to be true,
yet the equally rich sub-categories of milk (whole milk, skim
milk, organic milk, etc.) did not cause the same uncertainty.
When presented with the categories in a top-down fashion, raters
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FIGURE 4 | Partial view of the PRODCAT data collection template with example answers from one rater.

first dealt with their uncertainty about “dairy” and applied it to
the subcategories as well, and this handled most of the general
and specific ambiguity, and for many store types, raters were
willing to give definite answers about the other sub-types in
subsequent tasks.

We specifically addressed the material, aspect and brand
problems by removing them from the product set, their treatment
is the subject of future work. We instructed the raters to treat
seasonal products as “year round,” after confirming that users
are less likely to search for such products out of season. We
updated the task design to allow raters to explore the two
taxonomies to help with polysemy, but we found that grouping
store categories by taxonomic (sibling and parent) relations in
PRODCAT obviated this exploration.

Regional products produced disagreement esp. across
countries, where for the final tasks we sourced raters in six
countries (US, IN, BR, FR, JP, IN). Often this showed up merely
as “I Don’t Know” answers which were not used in predicting
RI , but do show up in IRR. More interesting cases included
when a product had a slightly different meaning, or was sold
in different types of stores, in different regions. For example,

“syrup” in France is sold in drug stores, and raters in other
countries did not agree. This is because in France “syrup” is

cough syrup, and this association did not exist elsewhere that we
tested. We had many expectations for the role of, and differences

between, raters in different countries, described in more detail
in Section 5.6. Despite these anectdotal examples, class-level

ratings from one country were generally worse at predicting

instance-level availability within the same country, and better at

predicting other countries. In the final system, we ignored the

country of the class-level ratings, treating all raters as equal.

Flashy menu items, in which superlatives and other postive-

sentiment modifiers are added to dish names, were an additional

problem in dining that we did not observe in the shopping
domain. This is in part due to the taxonomy curation of the

shopping data, in which such modifiers had been removed to
create a fairly neutral set of categories. For dining, which lacked
the taxonomy, some raters were able to identify the superlatives
as meaningless, or were familiar with the dish names because
they came from well-known chains, while other raters didn’t
have that knowledge and would answer either negatively or
uncertainly. Our scoring method effectively neutralizes such dish
names (see Section 5.5), as the disagreement moves the score
close to zero, and we did not choose to address it otherwise.
Our current work seeks to address this problem through the
automatic development of a taxonomy.

5.4. PRODCAT Data Collection Task
The final design of the PRODCAT task, which was only used
in the shopping domain, presented a matrix of 〈cp, co〉 pairs to
raters in six countries, five raters per country, and consisted of
several elements:

• a list of store categories, cp ∈ CP

• a list of product categories, co ∈ CO

• cp, co pairs presented in an n×4 matrix, where each cp is a row
and each co is a column; n ranged from 40 to 200 depending
on our ability to find suitable products
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TABLE 2 | Example CrowdSense ratings on RC pairs.

Category Product Always Some Never

Auto parts store Pita 0 0 5

Bakery Longline Vests 0 0 5

Beauty supply store Aromatherapy 5 0 0

Bicycle store Home furnishings 0 0 5

Butcher shop Quicklime 0 0 5

Chinaware store Watches 0 0 5

Clothing store Women’s shirts 5 0 0

Clothing store Petite negligee 5 0 0

Clothing store Truck tailgate caps 0 0 5

Clothing store Chameleon 0 0 5

Clothing store Typewriter ribbon 0 0 5

Coffee store Instant coffee 4 0 1

Cosmetics store Non-dairy milk 0 0 5

Drugstore tarragon 0 0 5

Electronics store Canister vacuums 5 0 0

Feed store cybex 0 0 5

Fresh food market Work dresses 0 0 5

Fruits and vegetables Turkey sausage 0 1 4

Furniture store Canopy beds 4 1 0

Furniture store Box springs 4 0 1

Grocery store Smart light bulbs 0 0 5

Grocery store Frozen clams 5 0 0

Grocery store Soy nuts 4 1 0

Home goods store Storage baskets 4 1 0

• the matrix was prefaced with: “Would you expect to find in
country the products (in the columns) in stores of the types (in
the rows)?”

• each cell in the matrix connected one pair with four possible
answers: “Always available,” “Sometimes available,” “Never
available,” and “I Don’t Know”

• the row and column headers co and cp included links to
an image, a short description, and the position in the
respective taxonomy

• raters were encouraged to explore the taxonomies in order to
better understand categories

• The column product types were chosen such that three were
taxonomy-related (sibling or more-specific child) and one
was not, e.g., “aspirin,” “notebooks,” “paper supplies,” and
“lined paper.”

The final matrix PRODCAT crowd template is shown in Figure 4
with an example of answers provided by one rater. Based on
rater feedback andmetrics shown in Section 5.5, this presentation
helped resolvemany forms of polysemymentioned in Section 5.3.

5.5. Error of Class-Level Ratings
Table 2 shows a small sample of the CS task results forRC pairs;
we have intentionally downsampled the “5-never” pairs to show
a mixture of different vote ratios.

In Welty et al. (2021) we showed that inter-rater reliability
(IRR) cannot reflect the quality of ratings where disagreement

is the desired result, so we report the error of different RC

pairs in predicting the distribution of RI pairs, by comparing
ratings-based scores onRC pairs against UGC scores onRI pairs
obtained from users (see Section 4). Each class and instance level
pair has a score:

wx,o =

{

(αx,o +
1
2σx,o)/(αx,o + νx,o + σx,o) if x ∈ CP

yx,o/(yx,o + nx,o) if x ∈ IP

where αx,o is the number of “always” answers for class-level pairs
〈x, o〉, σx,o the number of “sometimes,” and νx,o the number of
“never” answers; and yx,o is the number of “yes” answers for store
instance-level pairs 〈x, o〉 and nx,o the number of “no” answers.

Next let Ic = {i :〈i, c〉 ∈ RT} be the instances of place category
c under RT . The mean absolute error of class-level pair 〈c, o〉 is:

MAE(〈c, o〉 ∈ RC) =

∑

i∈Ic
|wi,o − wc,o|

|Ic|

The idea is that if the class-level scores (wc,o) are an accurate
prediction of the availability distribution at the instance level,
then they should model user observations at individual stores
(wi,o), averaged over the size of the store category (|Ic|). Figure 5
shows the distribution of MAE scores per category pairs for the
three shopping and one dining data collection tasks. Despite
PRODCAT being a harder task for raters due to the sampled
pairs, it performs much better than the other shopping tasks,
with nearly half of its categories scoring in the lowest error
range, clearly supporting our crowd hypothesis: the disagreement
on 〈cp, co〉 pairs approximates the distribution of 〈ip, co〉 when
〈ip, cp〉 ∈ RT , according to user observations. For Dining, we
only ran the MATRIX task, to replicate as much as possible the
results from Shopping. As expected, the MAE is lower than for
PRODCAT on shopping, but considerably better than MATRIX
for shopping. One explanation for this is that our raters were
more familiar with dining around the world than shopping, and
there was less disagreement caused by not understanding the pair.

5.6. Error of International Ratings
Another hypothesis we formed early on was that raters in our
class-level rating pool, which was international, would know their
own countries better than other countries, and the initial design
of the system called for increasing the weight of in-country class-
level ratings over out-of-country ratings when calculating wx,o

(see above). In our analysis of CrowdSense errors in the pilot
studies, we certainly saw examples of raters misunderstanding
dishes and products from other countries (see Section 5.3).

This hypothesis was mostly supported by our analysis of the
shopping data, but it turned out to be largely false for dining,
to our great surprise, as shown in Figure 6; as with Figure 5,
the charts show the distribution of the normalized MAE from
CrowdSense predictions, but in each chart we’ve restricted the
actual restaurants to those within the indicated country, and
calculated the wx,o scores for CrowdSense for raters in the
country (solid blue bars) and for raters not in the country (hashed
red bars). With the exception of Japan, outside raters have a lower
error rate, as their distributions are shifted significantly to the left.
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FIGURE 5 | Histogram of Normalized-MAE on CrowdSense pairs for three shopping and one dining (Section 5.5) class-level crowd task designs. Bins to the left

indicate the relative number of pairs with lower error, making Shopping-PRODCAT the clear leader. Dining-MATRIX performs better than shopping MATRIX.

FIGURE 6 | Distribution of CrowdSense errors (Normalized-MAE) for ratings in four countries, comparing CrowdSense predictions from raters in each country to

raters outside that country. A shift of scores to the left indicates lower overall error; surprisingly, for all countries except Japan, out-of-country CrowdSense raters are

more accurate than those within the country.

In Brazil, the effect is small, in the US it is large and in India
the largest. In Japan, the expected effect is dramatic—Japanese
CrowdSense raters were far better at predicting the distribution

of dishes at Japanese restaurants than non-Japanese raters. We
ran the experiment for Germany and Indonesia (not shown) with
similar results as the US and India.
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For the US, this may be explained by the fact that there are
far more chain restaurants that dominate the numbers when
calculating the MAE, and many of these chains are familiar
abroad, so while US raters are making their decisions based on a
broader perspective of chains and non-chains, non-US raters are
making their decisions based only on chains, and these capture a
larger piece of the US restaurant landscape. In addition, the US
has far more restaurants serving international cuisines than any
other country, making it possible for international raters to know
something about more US restaurants. For Japan, more than any
other country, there are many restaurants that serve only a very
specific kind of food, and this is well known in Japan and not as
much outside it. A possible explanation for the counter-intuitive
results in the other countries is that the restaurant taxonomy
does not cover those regions very well, leaving more restaurants
mis-categorized.

6. INSTANCE-LEVEL PREDICTION
EXPERIMENTS

6.1. Data Sources
We compare and contrast several approaches for acquiring and
predicting the relations inRI :

CrowdSense (CS): Class-level associations 〈cp, co〉 ∈ RC

and an associated score for each pair wcp ,co , collected through
PRODCAT (as described above) for shopping, and MATRIX for
dining. In our experiments, we treated the CS data as a static
set, although in practice it could grow or change over time like
UGC. We collected 25k pairs in the shopping domain and 20k
for dining.

User Responses (UGC): As described in Section 4, we
collected more than 100M instance-level pairs for shopping from
volunteer users around the world over a 2 year period, and
roughly half that amount over a 15-month period for dining.
Most of the UGC pairs have a distribution of yes and no
answers, and more sophisticated processing of the answers is
possible, but for simplicity we use the majority vote as the label
in the experiments below, where we break the data into sets
representing the first n ∈ [1, 24]months of collection, to illustrate
the growth of the data over time.

Web baseline (WebIE): The baseline approach to supporting
local queries is the Web: using product or dish names mentioned
on each place’s registered web site as part of an inverted index that
are matched to search queries for those products. As discussed
above, this approach for local shopping is limited by the coverage
of local (aka brick and mortar) stores and restaurants on the
web, which was under 30% (60% for the US) at the start of this
project in 2017, and has not increased substantially in the years
hence. We used a named entity recognizer to extract instance-
level pairs (RI : IP × CO) for places with a web site that mention
offerings on any of the site’s pages, and used the extraction
confidence probability threshold yielding 80% precision. WebIE
is only able to obtain positive labels, leaving negatives to be
inferred from the complement. We chose the 80% precision
threshold as this is roughly the precision of the CS inferred
data (see Figures 7, 8), which we compare to this and other

data sources. While other Web sources (user reviews, coupons,
photos, search keyword click-throughs, etc.) and more advanced
entity extraction techniques such as Wang et al. (2020) might
improve the recall, for most places this information simply is not
available. We treated the Web as a single unchanging dataset; for
our experiments, the change over time was not significant enough
to measure.

WALS(UGC): Since predictions of the instance-level pairs
form a matrix, R, an obvious approach is to use matrix
factorization on the matrix formed from data gathered using the
above methods. We used an off-the-shelf WALS implementation
based on Koren et al. (2009) trained on the UGC scores discussed
below. SinceWALS does not use “features,” but rather a matrix of
real values, we did not include other inputs to WALS in Figure 7

or Figure 8.

6.2. Evaluation
Ultimately our goal is to enable offering queries like, “where
can i buy a raincoat?” or “where can i get sesame chicken?” to
return nearby places on maps as well as (web) search results;
however, direct application impact metrics from our system,
which launched in mid-2020, are proprietary. Here we focus on
the knowledge acquisition part of the system using metrics of
knowledge-based completion, see for example (McNamee and
Dang, 2009; Welty et al., 2012).

We collected 40k gold standard 〈ip, co〉 pairs for shopping, and
20k for dining, by having paid operators call each place ip and
ask them if they sold or served co (see Section 4). We used these
pairs as a test set in the experiments below. When evaluating
against the gold standard, any instance-level pairs that are present
in the gold set but missing in the evaluated data are counted as
false negatives toward recall. Table 3 shows a small sample of the
shopping gold standard pairs, and Figures 7, 8 show the results
on 24 and 15 months of UGC data, resp. Note that since WebIE
was used to guide the collection of the gold standard, it has a
slight advantage in the evaluation.

6.3. Results
6.3.1. WebIE

Since the values on the WebIE data for each 〈ip, co〉 ∈ RI are
fractional in [0, 1], we determined the lowest threshold with at
least 0.80 precision and computed recall based on that, resulting
in a recall of 0.136 at 0.80 precision for shopping, and a near-
identical 0.139 for dining. This recall reflects the fraction of places
with web pages, the fraction of offerings (products or dishes)
mentioned on those pages, and the recall of the named entity
recognition. We did not independently measure these other
factors, as Web performance was merely a baseline. WALS on
WebIE data was not able to show very significant improvement,
and the results are not shown.

6.3.2. CS

The primary hypothesis of this paper is that the acquisition of
class-level associations in RC from the crowd is an effective way
of rapidly jump-starting instance-level associations in RI . As
described in Section 5, we acquired 25k class-level pairs from a
paid crowd for shopping and 20k for dining, each with a score
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FIGURE 7 | Precision, Recall, and F-measure for different ways of predicting RI for shopping.

FIGURE 8 | Precision, Recall, and F-measure for different ways of predicting RI for dining.

wx,o (see Section 5.5), and chose the following simple procedure
to infer the instance level pairs:

wx,o > 0.5 ∧ x ∈ CP H⇒ 〈x, o〉 ∈ RC

〈x, o〉 ∈ RC ∧ 〈y, x〉 ∈ RT H⇒ 〈y, o〉 ∈ RI

In other words, for class level pair 〈x, o〉, if x is a place category,
and the majority of raters (wx,o > 0.5) answered that you can
find o at places of that type, add a class-level edge to G, and an
instance-level edge to every instance of place category x.

We then measured the effectiveness of the CS by comparison
of the inferred edges in RI to the Gold set, achieving a recall
of 0.238 with a precision of 0.788 for shopping, and 0.214 with
a precision of 0.788 for dining. While this shows a distinct
improvement over WebIE, of interest is the combination, which
improves recall to 0.351—near perfect complementarity—while
slightly losing precision at 0.782 (for simplicity we do not show
this in Figure 7 or Figure 8). The combination uses the WebIE
or CS signal if the other is not present, and the CS signal if they
are both present, since the CS data includes negatives andWebIE
does not. (WALS inference was ineffective here; see below).

6.3.3. UGC

The UGC dataset grows over time as more users visit places
and answer questions, while we treat the Web and CS data as
constant (see above). We expect that, given enough time, UGC
will overtake CS and WebIE in recall, so an important question
is how much time the CS data is worth compared to UGC, and
whether it continues to show value. In Figures 7, 8, the blue
line shows the precision, recall, and F1 score of the UGC data

using the majority vote as the label, and the red line shows the
CS performance, which, as noted above, doesn’t change. In both
shopping and dining, the UGC line crosses the CS line at around
11 months, indicating that CS is worth about 11 months of UGC
collection in both domains.

6.3.4. WALS(UGC)

We populated the matrix Rp,o from UGC wp,o scores, factorized
R using WALS, and measured the resulting dot-products against
the Gold Standard dataset, shown in Figures 7, 8 in green. Since
WALS produces real-valued predictions, we chose the 0.8 prec.
threshold, the comparable precision of the CS andUGCmethods,
and measured the recall at that threshold with increasing UGC
over time.

Note that some of the 〈p, o〉 pairs in the Gold set were in the
training set, however the labels used in the training matrix may
be different than Gold, making it a fair comparison. As in the
previous experiments we broke the dataset into sets representing
the first n ∈ [1, 24] months of collected user responses. WALS
clearly improves over UGC.

6.3.5. CS+UGC

While 11 months is the intersection point of the metric values
for CS and UGC independently, the CS data is supposed to
complement as well as jump-start the knowledge acquisition. We
tested the role of CS over time using a simple “CS as default”
combination, shown in Figures 7, 8 as CS+UGC, in which the
UGC label is used if present, and the CS label is used if not.
This line tracks the improvement in recall over time from UGC
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TABLE 3 | Example gold standard RI pairs.

Store Category loc Product Available

7-Eleven Convenience store US Distilled water FALSE

ALDI Grocery store US Fruitcake TRUE

AURORA MKT Store US Men’s Gloves FALSE

Adams Pharmacy Pharmacy US Kool aid TRUE

Ag construcciones Building materials PY Blinds TRUE

Alanyurt Gıda General store TR Razor blades TRUE

Amorino Ice cream shop FR Meat FALSE

Barnes and Noble Book store US Blankets FALSE

Barstow Buick Car dealer US Crown victoria TRUE

Barstow Buick Car dealer US Gears TRUE

Bazar bazar BR Mary kay FALSE

collection, while jump starting at the recall of CS. This is a clear
demonstration of our core research hypothesis.

Of particular interest is the comparison of WALS(UGC)
with CS+UGC. The former does eventually surpass the latter
for shopping after roughly 18 m (Figure 7), but the CS+UGC
combination is a strong contender from an extremely simple
method. This is again clear evidence of our core hypothesis.
However, for dining the story is not so clear, as the WALS(UGC)
very quickly reaches near-parity with CS+UGCafter only 5
months, and starts to improve over it in the 11th month of
UGCcollection (Figure 8). The reason for this is not entirely
clear, the dining matrix is smaller than shopping—the number
of restaurants and the number of dishes are both smaller—
meaning the same amount of data collection is a higher part of
the total matrix. There may be something slightly easier about the
restaurant problem as well—restaurant menus tend to be much
smaller than the number of products sold in most stores. Perhaps
most importantly, for the early part of gathering shopping UGC,
we did not have the crowd sense data to guide the collecting, that
was available after 6 months, whereas for dining we collected the
crowd sense data first and it guided the collection from the start.

Other ways of filling the initial trainingmatrixR by combining
CS, UGC, and WebIE signals in various ways were tried but not
included as they do not outperformWALS(UGC). Of note is that
the CS signal does not work well with WALS, since it effectively
does what WALS itself should do with enough data - filling in
giant portions of the matrix with default values. Other machine
learning approaches are certainly possible, indeed the launched
local search system uses a deep neural network with many more
features that are beyond the scope of this paper, and measured
at the scale of the web. The three signals reported here are very
signifant features of that system, and the full system improves
significantly over search alone.

7. RELATED WORK

The core of this work is overcoming a knowledge acquisition
bottleneck in acquiring data reflecting the availability of products
at millions of brick and mortar stores worldwide. The approach
of harnessing class-level knowledge to infer instance-level

knowledge is based on a long standing idea in knowledge
engineering, dating back at least as far as Minsky (1974). Other
methods in the formal knowledge representation (KR) field have
never scaled to the level necessary for our problem, nor have they
considered the problem of how to acquire distributions instead
of discrete facts.

Information Extraction (IE) methods perform knowledge
acquisition of real-world entities fromweb text, and are discussed
in Zang et al. (2013). Martínez-Rodríguez et al. (2020) present
a survey of IE techniques for populating semantic structures,
e.g., entity extraction and linking. In the context of shopping,
research has mainly focused on product information extraction,
e.g., crawling the Web for offers to maintain product catalogs
as in Nguyen et al. (2011) and Qiu et al. (2015a), extracting
product specifications and attributes as with Kannan et al. (2011),
Qiu et al. (2015b), Zheng et al. (2018), and Wang et al. (2020),
and IE methods for building product knowledge graphs such as
Dong (2020) and Xu et al. (2020). Our paper defines a method
for linking these already defined entities similar to Dong (2020),
incorporating product and store taxonomy knowledge.

Knowledge Base Completion (KBC) is the problem of inferring
missing entities and/or relations in an existing knowledge graph
based on existing ones, such as via link prediction as in
Bordes et al. (2013) or from a combination of sources such
as Riedel et al. (2013). Our product × store category matrix
(Figure 4) is inspired by the item-based collaborative filtering
matrix introduced in recommender systems found in Sarwar et al.
(2001) and Ekstrand et al. (2011), and we leverage a well-known
collaborative filtering approach introduced in Koren et al. (2009)
for KBC to demonstrate the additional power of inference on our
knowledge graph.

We use a knowledge graph as the basic representation and, like
most well known KGs, employ no general-purpose reasoning;
hence, any inference we do must be defeasible. The most
relevant KR area would be reasoning with defaults (e.g., Reiter,
1978; Lang, 2000), as our CS+UGC baseline mechanism for
combining 〈cp, co〉 with 〈ip, co〉 pairs treats the first as a default
and the second as an override. Beyond this simple combination
strategy, which was first proposed in Quillian (1967), more
sophisticated combinations of CS+UGC with other forms of
evidence are done using optimizations from machine learning.
The full local shopping system uses many signals, of which we’ve
described only three, that are combined using a deep neural
network that optimizes the prediction of observed labels for
many billions of 〈ip, co〉 pairs. While we exploit the taxonomies
in CP and especially CO to optimize the selection of class-
level pairs to acquire from workers as discussed in Lees et al.
(2020), taxonomy-based reasoning was only used for negative
associations. This negative inheritance was first observed by
Deng et al. (2014).

IE and KBC techniques have advanced the state-of-the-art
in capturing human knowledge in machine-readable form, but
there is still the need for human curation and crowdsourcing.
Important milestones for crowdsourcing knowledge acquisition
at scale are Wikidata (Bollacker et al., 2008) and Freebase
(Vrandečić and Krötzsch, 2014), where the crowd defines or
curates real world entities and some relationships between
them, typically driven by Wikipedia. With respect to KBC,
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Revenko et al. (2018) propose a method for crowdsourcing
categorical common sense knowlegde from nonexperts for
adding new relationships between nodes in the graph and
ensuring consistencey with existing relations. However in all
these sources, Taylor (2017) has pointed to the sparsity of graph
edges expressing relations between the class-level nodes. Our
work focuses directly on that problem by acquiring both class-
level and instance level graph edges, and scaling the latter from
the former.

The crowdsourcing approach we propose in this paper is
grounded in the theoretical framework of Aroyo and Welty
(2013) and Aroyo andWelty (2014), which breaks the constraints
of typical methodologies for collecting ground truth, showing
disagreement is a necessary characteristic of annotated data;
when interpreted correctly, Dumitrache (2019) showed it can
make evaluation of machine learning models more attuned to
real-world data.

The immense body of research on common sense and
crowdsourcing has directly influenced our work. The UGC and
Crowd Sense tasks drew on our knowledge of Games-with-a-
purpose such as Verbosity for collecting common sense facts (von
Ahn et al., 2006), Common Consensus for gathering common
sense goals (Lieberman et al., 2007), GECKA for common sense
knowledge acquisition (Cambria et al., 2016), Concept Game for
verifying common sense knowledge assertions (Herdagdelen and
Baroni, 2010), the FACTory Game for facts verification (Lenat
and Guha, 1989) and many others. Rodosthenous and Michael
(2019) refer to common sense as “knowledge about the world"
and propose a hybrid (machine and human tasks) workflow to
gather general common sense knowledge rules.

Active learning investigates efficiency for acquisition and
learning when acquiring training data for ML models. In
essence, the early stages of KG acquisition strongly represent
the exploration side of the exploration vs. exploitation tradeoff
introduced by Bondu et al. (2010). MLmodels during exploration
do not have enough knowledge of the space to be able to offer
reliable judgements as to which items (in this case, 〈ip, co〉 pairs)
to acquire labels for. As noted in the Section 6.1, class-level pairs
can serve as a guide for recognizing obvious 〈ip, co〉 pairs that
likely do not need labels, and conversely, high-disagreement pairs
are very likely to have instances that do. Thus the 〈cp, co〉 pairs
can serve to stratify the 〈ip, co〉 space, and make the job of active
learning easier by narrowing down their targets. In Section 4 we
discussed using these possible class-level pairs to guide sampling
for UGC.

The problem ofmining “interesting” negative statements from
Wikidata was investigated in Karagiannis et al. (2019), Arnaout
et al. (2020), and Arnaout et al. (2021), which in principle could
be used to supplement our active learning strategies for selecting
difficult training examples to improve the model. Specifically,
these could be combined with the obvious (positive and negative)
class-level pairs to find exceptions at individual stores, e.g., a
grocery store that does not sell milk or that sells certain tools.
Our approach would be slow to find such exceptions, since we
don’t ask users and would need other sources of evidence used
by the larger production syste (e.g., a web page, a user review,
etc.). Peer-based detection, which compares triples with other
triples that share entities in the same category, is similar in

spirit to collaborative filtering (CF) though they did not compare
experimentally against a CF method such as WALS. Pattern-
based detection, presented in Karagiannis et al. (2019) and
Arnaout et al. (2020) seems better suited for mining (negative)
trivia than for product availability, since it is unlikelymany online
users write about e.g., why supermarkets don’t sell asphalt.

Perhaps the most similar crowdsourcing work to ours studies
the problem of approximating aggregation queries presented in
Trushkowsky et al. (2013), such as “How many restaurants in
San Francisco serve scallops?” While this approach works well
for estimating counts, clearly it does not scale for KBC.

8. CONCLUSIONS

The CrowdSense approach was an integral part of a successful
worldwide launch of local search results to queries for products
or dishes, overlaid on Google Maps, as shown in Figure 1.
Due to the complexity and scope of the deployed project,
we focused on the real-world knowledge acquisition aspect
of the work, and presented a few simplified experiments that
demonstrate how the acquired class-level knowledge can be used
for KBC at the instance level. These experiments may seem
over-simplified, but they accurately capture the impact of the
three-tiered crowdsourcing approach on the deployed product,
in particular the rapid jump-start of the place-offering edges in
the knowledge graph.

To achieve these results, we augmented an existing knowledge
graph of most stores and restaurants on earth, their categories,
dishes and a product taxonomy, by adding place to product
and place to dish edges. We combined web-based information
extraction (WebIE) and direct user observations collected over 2
years (UGC) with a novel collection of class-level 〈store, offering〉
pairs from the crowd (CS), which were inferred to the instance-
level based on class membership. In 2 weeks of data collection
we achieved a recall of 0.24 at 0.80 precision against gold
standard instance-level labels for shopping, and 0.21 for dining.
The class-level data for shopping combined with WebIE to
achieve 0.35 recall, which was the recall of a WALS model with
18 months of UGC input. For dining the same combination
also produced 0.34 recall, which was the WALs recall for 11
months of UGC. We conclude that the Crowd Sense approach
uses human common sense knowledge to rapidly jump start
the kind of generalization that ML systems are good at with
a lot of data. This has implications for practical ML and
Human Computation.

Our class-level crowdsourcing results show that the
disagreement in categorical knowledge collected from the
crowd can indicate the distribution of that knowledge at the
instance level, rather than assuming the class-level associations
are universally true: in other words, if 80% of raters say “Grocery
stores sell oat milk,” then ∼ 80% of grocery stores sell oat milk.
These results held also for dishes at restaurants.

The taxonomy of products was used to guide the sampling of
class-level pairs in a way that helped us address the sparsity of the
CP × CO space, and only the negative class-level attributes were
accurate when inferred to more specific categories, as in Deng
et al. (2014), as opposed to the more traditional view that positive
attributes are “inherited.”
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FIGURE 9 | CrowdSense search results in NYC for knapsacks.

We found the categorical pairs which were rapidly acquired
were extremely useful in guiding the collection of instance-
level labels, since we did not have to ask users about obviously
available or unavailable products—this has implications for active
learning, and held also for dining.

We expected the class-level ratings we acquired from a small,
international, pool of paid raters, to show bias toward ratings
coming from the same country of a restaurant. In other words, we
expected class-level ratings from Indian raters to have lower error
for restaurants in India than class-level ratings from raters in
other countries. This turned out to only be true for Japan, and for
all other countries it was the opposite. This may tell us something
about the way the place categories model the real world, more
investigation is required.

We believe Crowd Sense is a general technique for knowledge
acquisition that can provide a rapid jump-start to the process
by acquiring more general, common-sense defaults as a first
step, while more precise but time-consuming acquisition (i.e., at
the instance level) proceeds over time. We have shown that the
original local shopping idea, first presented inWelty et al. (2021),
can generalize to other establishment domains with similar gains,
in this case dining, and we have considered many other bipartite
problems that meet the basic requirement that there is a strong,
common-sense understanding of the relation at the categorical
level, for example:

• Dish contains ingredient. Dishes have associated recipes and a
strong notion of taxonomy8, andmany ingredient associations
are ridiculous at a class level, such as Apple Pie and Curry.

• Cuisine includes dish. Dishes are also associated with
cuisines, a pairing that could be useful for recipe datasets,
and understanding menus. Many cuisines are regional,
introducing a different kind of partial order (containment
rather than generalization, see Guarino and Welty, 2009) on
one side of the bipartite relation.

• Wildlife inhabiting a region. Several NGOs track wildlife
populations through remote cameras and citizen science
collection of photos, and identify animals using automatic
methods.9 Such methods would benefit from large scale
understanding of obvious negatives (tigers are not found
in Africa). Like cuisines, this involves treating locations as
a partial order based on containment, and the Linnaean
taxonomy for animals is well established.

• Animal has body part. In the early days of AI, much ink
was spilled on modeling defaults and exceptions such as
“Elephants have trunks” and “Humans have two legs.” This
work was summarized nicely in Brachman (1985). Modern
AI systems do not use this information and rely on the

8e.g., https://www.wikidata.org/wiki/Wikidata:WikiProject_Food/Taxonomy.
9Examples include wildlifeinsights.org and inaturalist.org.
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formation of embeddings that bely human understanding, but
such systems have been shown in Aroyo and Paritosh (2021)
to make “silly” categorical mistakes. An approach that forces
large models to formmeaningful intermediate representations
such as parts of the body, as described by Hinton (2021),
could avoid silly mistakes with this form of common
sense curation.

• Company owns patent. Finding patents is a difficult search task
that continues to be a focus of AI systems. While these systems
do not generally lack data, they do often suffer from silly
mistakes, as image understanding systems do, which reflect a
lack of common sense. Adding categorical associations such as,
“Tech companies do not own pharmaceutical patents” would
eliminate some of these mistakes.

To see CrowdSense at work, type the name of a product or
dish into Google Maps (or Google Search). Results that say “Sold
here: product” come from the data we published (see Figure 9,
as opposed to “In stock” (merchant feeds) and “Webpage says.”
Anyone with a Google account can participate in UGC (user
generated content) acquisition. Users with location tracking
turned on (so that maps knows what places the user has visited10)

10See https://support.google.com/local-guides/answer/6225846.

can navigate to the “contribute” tab that allows them to rate
and leave reviews, as well as review facts and answer the yes/no
questions regarding locations they have visited.
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Utility of Crowdsourced User
Experiments for Measuring the
Central Tendency of User
Performance: A Case of Error-Rate
Model Evaluation in a Pointing Task
Shota Yamanaka*

Yahoo! JAPAN Research, Yahoo Japan Corporation, Tokyo, Japan

The usage of crowdsourcing to recruit numerous participants has been recognized as

beneficial in the human-computer interaction (HCI) field, such as for designing user

interfaces and validating user performance models. In this work, we investigate its

effectiveness for evaluating an error-rate prediction model in target pointing tasks. In

contrast to models for operational times, a clicking error (i.e., missing a target) occurs

by chance at a certain probability, e.g., 5%. Therefore, in traditional laboratory-based

experiments, a lot of repetitions are needed to measure the central tendency of error

rates. We hypothesize that recruiting many workers would enable us to keep the number

of repetitions per worker much smaller. We collected data from 384 workers and found

that existing models on operational time and error rate showed good fits (both R2 >

0.95). A simulation where we changed the number of participants NP and the number of

repetitions Nrepeat showed that the time prediction model was robust against small NP

and Nrepeat, although the error-rate model fitness was considerably degraded. These

findings empirically demonstrate a new utility of crowdsourced user experiments for

collecting numerous participants, which should be of great use to HCI researchers for

their evaluation studies.

Keywords: crowdsourcing, graphical user interface, Fitts’law, user performance models, error-rate prediction

1. INTRODUCTION

In the field of human-computer interaction (HCI), a major topic is to measure the time needed
to complete a given task for (e.g.,) evaluating novel systems and techniques. Examples include
measuring a text-entry time (Banovic et al., 2019; Cui et al., 2020), a time to learn a new keyboard
layout (Jokinen et al., 2017), and a menu-selection time (Bailly et al., 2016). In these studies,
generally, laboratory-based user experiments have been conducted. That is, researchers recruit ten
to 20 students from a local university and ask them to use a specified apparatus to perform a task
in a silent room. However, researchers are aware of the risk of conducting a user experiment with a
small sample size; e.g., the statistical power is weak (Caine, 2016). Therefore, using crowdsourcing
services to recruit numerous participants has recently become more common, particularly for user
experiments on graphical user interfaces (GUIs), e.g., (Komarov et al., 2013; Matejka et al., 2016;
Findlater et al., 2017; Yamanaka et al., 2019; Cockburn et al., 2020).
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There are two representative topics for research involving
GUIs. The first is designing better GUIs or interaction
techniques. In typical user experiments, researchers would
like to compare a new GUI or technique with a baseline to
demonstrate that a proposed one is statistically better. For this
purpose, recruiting numerous participants is effective in finding
statistical differences.

The other topic involving GUI experiments is deriving
user performance models and empirically validating them.
Conventionally, there are two representative metrics for GUI
operations to be modeled: time and error rate (Wobbrock et al.,
2008). A well-known model in HCI is Fitts’ law (Fitts, 1954) to
predict the operational time for target pointing tasks, or referred
to as Fitts’s law in some papers (MacKenzie, 2002). In lab-based
user experiments to evaluate the model fitness in terms of R2,
university student participants typically join a study and are
asked to point to a target repeatedly. For example, researchers
set three target distances and three target sizes (i.e., nine task
conditions in total), and the participants repeatedly click a target
15 times for each task condition. The average time for these 15
clicks is recorded as the final score for a participant (Soukoreff
and MacKenzie, 2004).

In addition to operation times, the importance of predicting
how accurately users can perform a task has recently been
emphasized (Bi and Zhai, 2016; Huang et al., 2018, 2020; Park
and Lee, 2018; Yamanaka et al., 2020; Do et al., 2021). In
contrast to measuring the target-pointing times, where the time
to click a target can be measured in every trial, the error rate
is computed after repeatedly performing a single task condition
(15 trials in the above-mentioned case). For example, if a
participant misses a target in one trial, the error rate is recorded
as 1/15 × 100% = 6.67%; if there are ten participants, one
miss corresponds to 0.667% in the end. Because errors can
occur by chance, evaluating error-rate models often requires
more data (repetitions) for each task condition to measure the
central tendency of the error rate. To evaluate the model’s
prediction accuracy more precisely, researchers have asked
participants to perform more repetitions, as it is often difficult
to collect numerous participants for lab-based experiments. For
example, a previous study on touch-based error-rate models
set 40 repetitions for each task condition collected from 12
participants. In this case, one miss corresponded to a 0.208%
error rate (Yamanaka and Usuba, 2020).

However, for crowdsourced user experiments with GUIs,
researchers cannot set a large number of repetitions per task
condition. To enable crowdworkers to concentrate on a given
task, it is recommended to set short task completion times, as
workers switch to other tasks every 5 min on average (Gould
et al., 2016). Hence, forcing a routine GUI operation task that
takes, e.g., 40 min (Huang et al., 2018) or 1 h (Park and Lee, 2018;
Yamanaka et al., 2020) would be harmful in terms of accurate
measurement of the error rates. This could be considered a
disadvantage of crowdsourced GUI study. An alternative to
increasing the number of repetitions per task condition is simply
to recruit more workers. This would enable the error rates to be
measured more precisely, which would lead to a good prediction
accuracy by the error-rate model (our research hypothesis). Even

if the number of repetitions is only ten, utilizing 300 workers
would mean that one miss corresponds to 0.033%. This is much
more precise than the above-mentioned examples with error
rates such as 0.208%.

However, there are several crowdsourcing-specific
uncertainties that might affect the user performance results. For
example, crowdworkers use different mice, displays, operating
systems, cursor speed configurations, and so on; these factors
significantly affect the target pointing performance in terms
of both time and accuracy (MacKenzie et al., 2001; Casiez
and Roussel, 2011). In addition, while studies have shown
that the performance model on time (Fitts’ law) is valid for
crowdsourced data, crowdworkers tend to be more inaccurate
than lab-based participants in target pointing tasks (Komarov
et al., 2013), where error rates approximately two times higher or
more have been observed (Findlater et al., 2017). Therefore, we
would avoid claiming that user-performance models validated
in crowdsourced studies are always applicable to lab-based
controlled experiments. Also, it is not reasonable to interpret
that the results such as error rates and operational times are
directly comparable with lab-based participants.

Nevertheless, if an error-rate model we test exhibits a good fit
(e.g., R2 > 0.9), HCI researchers would have access to a powerful
tool, crowdsourcing, to evaluate their newly proposed error-rate
prediction models. Such a result stands to expand the application
range of crowdsourcing in HCI; this motivated us to conduct this
work. Our contributions are as follows.

• We conducted a crowdsourced mouse-pointing experiment
following the Fitts’ law paradigm. In total, we recorded 92,160
clicks performed by 384 crowd workers. Our error-rate model
showed a good fit with R2 = 0.9581, and cross-validation
confirmed that the model can predict new (unknown) task
conditions, too. This is the first study that demonstrates a GUI
error-rate model holding to crowdsourced user data.

• We simulated how the number of participants NP and the
number of repetitions per task condition Nrepeat affected the
model fitness. We randomly sampled a limited portion of the
entire workers (NP from 10 to 320), and while each worker
performed ten trials per task condition, we used only the data
for the first Nrepeat trials (from 2 to 10). After testing the
model fitness over 1,000 iterations, we found that increasing
NP improved the prediction accuracy as well as increasing
Nrepeat could. The effect of NP and Nrepeat on the fitness was
more clearly observed for the error-rate model than the time
model, which suggests that crowdsourcing services are more
suitable for evaluating novel error-rate models.

This article is an extended version of our previous work presented
at the AAAI HCOMP 2021 conference (Yamanaka, 2021b).
The points of difference are mainly twofold. First, to analyze
the empirical data in more detail, this article newly shows
figures that visualize statistically significant differences for the
main and interaction effects of independent variables on the
outcomes (operational time, click-point variability, and error
rate) (see Figures 3, 5, 7). Second, we re-ran the simulation
in which the random-sampling was repeatedly performed over
1,000 iterations, while in the conference-paper version we did
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FIGURE 1 | (A) We use the Fitts’ law paradigm in which users point to a

vertically long target. A clicked position is illustrated with an “x” mark. (B) It has

been assumed that the click positions recorded in many trials distribute

normally, and its variability would increase with the target width. (C) An error

rate is computed based on the probability where a click falls outside the target.

it over 100 iterations. This larger number of iterations gives us
more reliable, less noisy data. We also newly added the standard
deviation SD values of the model fitness for the 1,000 iterations
for the sake of completeness (see Figure 9). Several discussions
on these new results, such as comparisons with previous studies
regarding model fitness, are also added in this revision.

2. RELATED WORK

2.1. Time Prediction for Pointing Tasks
For comparing the sensitivity of time and error-rate prediction
models against NP and Nrepeat, we examine a robust time-
prediction model, called Fitts’ law (Fitts, 1954). According to this
model, the time for the first click, or movement timeMT, to point
to a target is linearly related to the index of difficulty IDmeasured
in bits:

MT = a+ b · ID = a+ b ·

(

A

W
+ 1

)

, (1)

where a and b are empirical regression constants, A is the target
distance (or amplitude), and W is its width (see Figure 1A).
There are numerous formulae for calculating the ID, such as
using a square root instead of the logarithm or using the
effective target width (Plamondon and Alimi, 1997), but previous
studies have shown that Equation 1 yields excellent model
fitness (Soukoreff and MacKenzie, 2004). Using this Fitts’ law,
researchers can measure MTs for several {A,W} conditions,
regress the data to compute a and b, and then predict theMT for a
new {A,W} condition by applying the parameters of {a, b,A,W}

to Equation 1.

2.2. Error-Rate Prediction for Pointing
Tasks
Researchers have also tried to derive models to predict the error
rate ER (Meyer et al., 1988; Wobbrock et al., 2008; Park and Lee,
2018). In practice, the ER should increase as participants move
faster, and vice versa (Zhai et al., 2004; Batmaz and Stuerzlinger,
2021). In typical target pointing experiments, participants are
instructed to “point to the target as quickly and accurately as
possible,” which is intended to balance the speed and carefulness
to decrease both MT and ER (MacKenzie, 1992; Soukoreff and
MacKenzie, 2004).

In pointing tasks, as the target size decreases, users have to
aim for the target more carefully to avoidmisses. Accordingly, the
spread of click positions should be smaller. If researchers conduct
a pointing experiment following a typical Fitts’ law methodology,
in which two vertically long targets are used and participants
perform left-right cursor movements, the click positions would
follow a normal distribution (Figure 1B) (Crossman, 1956;
MacKenzie, 1992). Formally speaking, a click point is a random
variable X following normal distribution: X ∼ N(µ, σ 2), where
µ and σ are the mean and standard deviation of the click
positions on the x-axis, respectively. The click point variability
σ is assumed to proportionally relate to the target width, or to
need an intercept, i.e., linear relationship (Bi and Zhai, 2016; Yu
et al., 2019; Yamanaka and Usuba, 2020):

σ = c+ d ·W, (2)

where c and d are regression constants. The probability density
function for a normal distribution, f (x), is

f (x) =
1

σ
√
2π

e−(x−µ)2/(2σ 2). (3)

If we define the target center as located at x = 0 with the
target boundary ranging from x1 to x2 (Figure 1C), the predicted
probability for where the click point X falls on the target, P(x1 ≤
X ≤ x2), is

P(x1 ≤ X ≤ x2) =

∫ x2

x1

f (x)dx

=
1

2

[

erf

(

x2 − µ

σ
√
2

)

− erf

(

x1 − µ

σ
√
2

)]

, (4)

where erf(·) is the Gauss error function:

erf(z) =
2

√
π

∫ z

0
e−t2dt. (5)

Previous studies have shown that the mean click point is located
close to the target center (µ ≈ 0), and σ is not significantly
affected by the target distance A (MacKenzie, 1992; Bi and Zhai,
2016; Yamanaka and Usuba, 2020). Given the target width W,
Equation 4 can be simplified and the ER is predicted as

ER = 1− P

(

−
W

2
≤ X ≤

W

2

)

= 1

−
1

2

[

erf

(

W/2

σ
√
2

)

− erf

(

−W/2

σ
√
2

)]

= 1− erf

(

W

2
√
2σ

)

.

(6)

Similarly to the way Fitts’ law is used, researchers measure σ for
several {A,W} conditions, regress the data to compute c and d in
Equation 2, and then predict the σ for a new {A,W} condition.
In this way (i.e., using the predicted σ based on a newW), we can
predict the ER with Equation 6 for a new task condition. While
there are similar but more complicated versions of this model
tuned for pointing tasks in virtual reality systems (Yu et al., 2019)
and touchscreens (Bi and Zhai, 2016), to our knowledge, there
has been no report on the evaluation of this model for the most
fundamental computer environment, i.e., PCs with mice.
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2.3. Crowdsourced Studies on User
Performance and Model Evaluation for
GUIs
For target pointing tasks in PC environments, Komarov et al.
(2013) found that crowdsourced and lab-based experiments led
to the same conclusions on user performance, such as that
a novel facilitation technique called Bubble Cursor (Grossman
and Balakrishnan, 2005) reduced the MT compared with the
baseline point-and-click method. Yamanaka et al. (2019) tested
the effects of target margins on touch-pointing performance
using smartphones and reported that the same effects were
consistently found in crowdsourced and lab-based experiments,
e.g., wider margins significantly decreased the MT but increased
the ER. Findlater et al. (2017) showed that crowdworkers
had significantly shorter MTs and higher ERs than lab-based
participants in both mouse- and touch-pointing tasks. Thus,
they concluded that crowdworkers were more biased towards
speed than accuracy when instructed to “operate as rapidly and
accurately as possible.”

Regarding Fitts’ law fitness, Findlater et al. reported that
crowdworkers had average values of Pearson’s r = 0.926 with
mice and r = 0.898 with touchscreens (Findlater et al., 2017).
Schwab et al. (2019) conducted crowdsourced scrolling tasks
and found that Fitts’ law held with R2 = 0.983 and 0.972 for
the desktop and mobile cases, respectively (note that scrolling
operations follow Fitts’ law well Zhao et al., 2014). Overall, these
reports suggest that Fitts’ law is valid for crowdsourced data
regardless of the input device. It is unclear, however, how the
NP affects model fitness, because these studies used the entire
workers’ data for model fitting.

The only article that tested the effect of NP on the fitness
of user-performance models is a recent work by Yamanaka
(2021a). He tested modified versions of Fitts’ law to predict MTs
in a rectangular-target pointing task. The conclusion was that,
although he changed NP from 5 to 100, the best-fit model did not
change. However, because he used allNrepeat clicks, increasingNP

always increased the total data points to be analyzed, and thus the
contributions of NP and Nrepeat could not be analyzed separately.
We further analyze this point in our simulation.

In summary, there is a consensus that a time prediction model
for pointing tasks (Fitts’ law) shows a good fit for crowdsourced
data. However, ER data have typically been reported as secondary
results when measuring user performance in these studies.
At least, no studies on evaluating ER prediction models have
been reported so far. If we can demonstrate the potential of
crowdsourced ERmodel evaluation, at least for one example task
(target pointing in a PC environment), it will motivate future
researchers to investigate novel ER models with less recruitment
effort, more diversity of participants, and less time-consuming
data collection. This will directly benefit the contribution of
crowdsourcing to the HCI field.

3. USER EXPERIMENT

We conducted a traditional cyclic target-pointing experiment
on the Yahoo! Crowdsourcing platform (https://crowdsourcing.

FIGURE 2 | Task stimuli used in the experiment. (A) Participants clicked

alternately on each target when it was red. (B) At the end of a session, the

results and a message to take a break were shown.

yahoo.co.jp). Our affiliation’s IRB-equivalent research ethics
team approved this study. The experimental system was
developed with the Hot Soup Processor programming
language. The crowdworkers were asked to download and run an
executable file to perform the experimental task.

3.1. Task, Design, and Procedure
In the task window (1200×700 pixels), two vertically long targets
were displayed (Figure 2A). If the participants clicked the target,
the red target and white non-target rectangles switched colors,
and they successively performed this action back and forth. If
the participants missed the target, it flashed yellow, and they
had to keep trying until successfully clicking it. We did not give
auditory feedback for success or failure, as not all the participants
would have been able to hear sound during the task. A session
consisted of 11 cyclic clicks with a fixed A × W condition. The
first click acted as a starting signal as we could not measure the
MT, and thus the remaining ten trials for each session were used
for data analysis. After completing a session, the participant saw
the results and a message to take a break (Figure 2B).

The experiment was a 3×8 within-subjects repeated-measures
design with the following independent variables and levels: three
target distances (A = 300, 460, and 630 pixels) and eight widths
(W = 8, 12, 18, 26, 36, 48, 62, and 78 pixels). These values
were selected so that the values of ID ranged widely from 2.28
to 6.32 bits, which sufficiently covered easy to hard conditions
according to a survey (Soukoreff and MacKenzie, 2004). Each
participant completed 24 (= 3A × 8W) sessions. The order of
the 24 conditions was randomized. Before the first session, to
allow the participants to get used to the task, they performed a
practice session under a condition with A = 400 and W = 31
pixels, i.e., parameters that were not used in the actual 24 data-
collection sessions. This experimental design was tuned with
reference to the author’s pilot study; without having a break, the
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task completion time was 3 min 40 s on average, which meets
the recommendation for crowdsourced user experiments (Gould
et al., 2016).

The MT was measured from when the previous target was
successfully clicked to when the next click was performed
regardless of the success or failure (MacKenzie, 1992; Soukoreff
and MacKenzie, 2004). Trials in which we observed one or more
clicks outside the target were flagged as an error. The first left
target acted as a starting button, and the remaining ten trials’
data were measured to compute MT, σ , and ER. After finishing
all sessions, the participants completed a questionnaire on their
age (numeric), gender (free-form to allow non-binary or arbitrary
answers), handedness (left or right), Windows version (free-
form), input device (free-form), and history of PC use (numeric
in years).

3.2. Participants and Recruitment
We recruited workers who usedWindows Vista or a later version
to run our system. We requested no specific PC skills, as we
did not wish to limit our collection to only high-performance
workers’ data. Also, we did not use any a-priori filtering options,
such as the approval-rate threshold, which require additional cost
for the crowdsourcing service. We made this decision because, if
our hypothesis is supported with a less costly method, it would
be more beneficial for future research to recruit many more
participants with low cost for obtaining the central tendency of
error rates. Still, clear outlier workers who seemed not to follow
our instructions (such as performing the task too slowly) were
removed when we analyzed the data. As we show later in the
simulation analysis, this decision was not problematic because
Fitts’ law held well even if we analyzed only ten workers’ data over
1,000 iterations (i.e., they exhibited typical rapid-and-accurate
pointing behavior).

On the recruitment page, we asked the workers to use a mouse
if possible. We made this request because, in our simulation
analysis, we randomly selected a certain number of participants
(e.g., NP = 10) to examine if the model fitness was good or
poor. If these workers used different devices (e.g., six mice, two
touchpads, and two trackballs), wemight have wondered if a poor
model fit was due to the device differences. Nevertheless, to avoid
a possible false report in which all workers might answer they
used mice, we explicitly explained that any device was acceptable,
and then removed the non-mouse users from the analysis.

Once workers accepted the task, they were asked to read the
online instructions, which stated that they should perform the
task as rapidly and accurately as possible. This was also always
written at the top of the experimental window as a reminder
(Figure 2A). After they finished all 25 sessions (including a
practice session) and completed the questionnaire, the log data
was exported to a csv file. They uploaded the file to a server and
then received a payment of JPY 100 (∼USD 0.92).

In total, 398 workers completed the task, including 384
mouse users according to the questionnaire results. Hereafter,
we analyze only the mouse-users’ data. The mouse users’
demographics were as follows. Age: 16 to 76 years, withM = 43.6
and SD = 11.0. Gender: 300 male, 79 female, and 5 chose not

to answer. Handedness: 24 were left-handed and 360 were right-
handed. Windows version: 1 used Vista, 27 used Win7, 8 used
Win8, and 348 used Win10. PC usage history: 0 (less than 1 year)
to 45 years, withM = 21.8 and SD = 7.82.

In this study, we do not analyze these demographic data
in detail. For example, it has been reported that participants’
handedness (Hoffmann, 1997), gender and age (Brogmus, 1991)
affect Fitts’ law performance. In our simulation, it is possible that
the data may be biased; e.g., when we select NP = 10 workers,
they are all males in their 60s. If researchers want to investigate
this point, controlling the sampled workers’ demographics before
executing the simulation is needed.

For mouse users, the main pointing task took 3 min 45 s on
average without breaks. With breaks, the mean task completion
time was 5 min 42 s, and thus the effective hourly payment was
JPY 1,053 (∼USD 9.69). Note that this effective payment could
change depending on other factors such as the times for reading
the instructions and for uploading the csv file.

4. RESULTS

4.1. Outlier Data Screening
Following previous studies (MacKenzie and Isokoski, 2008;
Findlater et al., 2017), we removed trial-level spatial outliers if
the distance of the first click position was shorter than half of
target distance A/2 (i.e., clicking closer to the non-target than the
target) to omit clear accidental operations such as double-clicking
the previous target. Another criterion used in these studies was to
remove trials in which the click position was more than twice of
target width 2W away from the target center. We did not use this
criterion, as we would like to measure error trials even where a
click position was≥ (2W + 1) pixels away from the target center.

To detect trial-level temporal outliers to remove extremely
fast or slow operations, we used the inter-quartile range (IQR)
method (Devore, 2011), which is more robust than the mean-
and-3σ approach. The IQR is defined as the difference between
the third and first quartiles of the MT for each session for each
participant. Trials in which theMT wasmore than 3×IQR higher
than the third quartile or more than 3× IQR lower than the first
quartile were removed.

For participant-level outliers, we calculated the mean MT
across all 24 conditions (3A × 8W) for each participant. Then,
using each participant’s mean MT, we again applied the IQR
method and removed extremely rapid or slow participants. The
trial- and participant-level outliers were independently detected
and removed.

As a result, among the 92,160 trials (= 3A×8W×10repetitions×
384workers), we identified 1,191 trial-level outliers (1.29%). We
also found two participant-level outlier workers. While the
mean MT of all participants was 898 ms and the IQR was 155
ms, the outlier workers’ mean MTs were 1,462 and 1,533 ms.
Accordingly, the data from all 480 trials of these twoworkers were
removed (= 3A×8W×10repetitions×2workers). They also exhibited
seven trial-level outliers (i.e., there were overlaps). In total, the
data from 1,664 trials were removed (1.81%), which was close to
the rate in a previous study (Findlater et al., 2017). As a result, we
analyzed the remaining data from 90,496 trials.
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FIGURE 3 | Main effects of (A) target distance A and (B) target width W on MT . (C) The interaction effect of A×W on MT. Error bars indicate 95% confidence

intervals.

4.2. Analyses of Dependent Variables
After the outliers were removed, the data from 90,496 trials
(98.2%) were analyzed. The dependent variables were theMT, σ ,
and ER.

4.2.1. Movement Time
We used the Shapiro-Wilk test (α = 0.05) and Q-Q plot
to check the normality assumption required for parametric
ANOVAs. The MT data did not pass the normality test,
and thus we log-transformed the data to meet the normality
assumption. The log-transformed data passed the normality
test, and we used RM-ANOVAs with Bonferroni’s p-value
adjustment method for pairwise comparisons. For the F statistic,
the degrees of freedom were corrected using the Greenhouse-
Geisser method when Mauchly’s sphericity assumption was
violated (α = 0.05).

We found significant main effects of A (F1.909,727.1 = 2674,
p < 0.001, η2p = 0.88) and W (F4.185,1595 = 6813, p < 0.001,

η2p = 0.95) on MT. A significant interaction was found for

A × W (F13.01,4955 = 14.23, p < 0.001, η2p = 0.036). Figure 3

shows that the MT increased as A increased or W decreased.
Regarding Fitts’ law fitness, Figure 4 shows that the model held
well with R2 = 0.9789. Previous studies using mice have reported
that Fitts’ law held with R2 > 0.9 (Plamondon and Alimi,
1997; MacKenzie, 2013), and our dataset was consistent with
these results.

FIGURE 4 | Model fitness results for Fitts’ law.

4.2.2. Click Point Variability
The σ data and its log-transformed data did not pass the
normality test, and thus we used a non-parametric ANOVA with
aligned rank transform (Wobbrock et al., 2011) with Tukey’s p-
value adjustment method for pairwise tests. We found significant
main effects of A (F2,762 = 3.683, p < 0.05, η2p = 0.0096) andW

(F7,2667 = 6043, p < 0.001, η2p = 0.94) on σ . An interaction
of A × W was not significant (F14,5334 = 0.8411, p = 0.62,
η2p = 0.0022). Figure 5 shows that the σ increased as A or W
increased. The model fitness of Equation 2 (σ = c + d ·W) was
quite high (R2 = 0.9966), as shown in Figure 6. This fitness was
greater than the results in previous studies, e.g., R2 = 0.9756 (Bi
and Zhai, 2013) and R2 = 0.9763 (Yamanaka and Usuba, 2020)
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FIGURE 5 | Main effects of (A) target distance A and (B) target width W on σ . Error bars indicate 95% confidence intervals.

FIGURE 6 | Model fitness results for click point variability.

using touchscreens, and R2 = 0.9931 using a virtual-reality input
device (Oculus Touch wireless controller) (Yu et al., 2019).

Our model assumes that σ is not affected by A, but the
result showed that A significantly affected σ . This statistical
significance likely comes from the large number of participants.
When we checked this in more detail, we found that the effect
size of A was quite small compared with W (η2p = 0.0096
vs. 0.94, respectively), and the mean σ values for A = 300,
460, and 630 pixels were 7.258, 7.293, and 7.309 pixels, which
fall within a 0.051-pixel range (<1%). In contrast, the σ values
varied from 2.168 to 14.25 pixels due to W (i.e., a 557%
difference). While we plotted 24 points (3A × 8W) in Figure 6,
it looks as though there were only eight points, as the three
σ values for the three As were almost the same and thus
they overlapped.

4.2.3. Error Rate
The ER data and its log-transformed data did not pass the
normality test, and thus we again used a non-parametric ANOVA
with aligned rank transform.We found significant main effects of
A (F2,762 = 6.732, p < 0.01, η2p = 0.017) andW (F7,2667 = 96.90,

p < 0.001, η2p = 0.20) on ER. An interaction of A × W was not

significant (F14,5334 = 1.627, p = 0.064, η2p = 0.0043). Figure 7

shows that the ER decreased as W increased, while A did not
exhibit a clear tendency to increase/decrease the ER.

Using Equations 2 and 6, we can predict the ERs based on
given W values. The predicted and actually observed ERs are
shown in Figure 8. The worst prediction error was 4.235 points
in the case of (A,W) = (300, 8). As a comparison, previous
studies on touch-based pointing tasks have reported that the
prediction error forW = 2.4-mm targets was 9.74 points (Bi and
Zhai, 2016) and that for 2-mm was 10.07 points (Yamanaka and
Usuba, 2020). While a direct comparison with touch operations
is not particularly fruitful, the tendency that prediction errors
increase for smallerWs is consistent between the previous studies
and ours.

To formally evaluate our model’s prediction accuracy, we
computed the following three fitness criteria. The correlation
between predicted vs. observed ERs was R2 = 0.9581. The
mean absolute error MAE was 1.193%. The root mean square
error RMSE was 1.665%. In addition, to evaluate the prediction
accuracy for new (unknown) task conditions, we ran a leave-
one-(A,W)-out cross-validation. The three criteria for the ER
prediction were R2 = 0.9529, MAE = 1.272%, and RMSE =

1.814. The worst prediction error was 4.805 points. These results
indicate that, even for researchers who would like to predict the
ER for a new task condition based on previously measured data,
the prediction accuracy would not be considerably degraded.

5. SIMULATION

Although our Nrepeat (10) was not large compared with previous
studies on error-rate predictionmodels due to the time constraint
for crowdsourcing, we hypothesized that increasing NP would
improve themodel fitness.We also wonder how themodel fitness
changes when Nrepeat is much smaller, which further shortens
the task completion time for workers. For example, if it were 5,
the average task completion time would be 2 min 51 s including
breaks (i.e., half of 5 min 42 s). Note that Nrepeat must be greater
than 1 to compute the standard deviation σ .

We randomly selected NP workers’ data from the 384 mouse
users by changing NP from 10 (typical lab-based experiments) to
320 by doubling it repeatedly. The Nrepeat changed from 2 to 10;
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FIGURE 7 | Main effects of (A) target distance A and (B) target width W on ER. Error bars indicate 95% confidence intervals.

FIGURE 8 | Comparison of the predicted vs. observed ERs. Error bars indicate 95% confidence intervals.

if it was 2, we used only the first two repetitions’ data and the
subsequent eight trials were removed. Outlier detection was run
in the same manner as if we had conducted an experiment newly
withNP workers. Then, we analyzed the R

2 values for Equations 1
(Fitts’ law), 2 (click point variability σ ), and 6 (ER). To handle the
randomness to select NP workers, we ran this process over 1,000
iterations and computed the mean and SD values of the R2s for
each of NP × Nrepeat.

The results are shown in Figure 9. First, we can visually
confirm that the time prediction model (A) showed the flattest
fitness compared with the other two models (C and E). The
R2 values were consistently over 0.92, and after we collected
20 participants or measured four repetitions, R2 was over 0.95
(B). This result supports the decision of previous studies’ lab-
based experiments that recruited ten to 20 participants to
examine Fitts’ law. While repeating 15 to 25 trials per task
condition has been recommended (Soukoreff and MacKenzie,
2004), our results show that amuch smaller number of repetitions
will suffice.

For the click point variability, as (C) shows, the model fitness
was relatively worse only when bothNP andNrepeat are small. The
increase in either NP or Nrepeat can resolve this. For example,

by collecting NP ≥ 80 workers or repeating ten trials, we
obtain R2 > 0.95.

Lastly, for the error-rate model, the fitness was affected by
NP and Nrepeat most drastically, as shown in (E). Particularly for
small NP values such as 10 and 20, the R2 values were less than
0.70 (F), which is a unique result compared with the other two
models that always showed much greater R2 values in (B) and
(D). If we fully use ten repetitions and would like to obtain a
certain value of the model fitness (such as R2 > 0.9), collecting
160 participants is sufficient—more precisely, when we tested NP

from 80 to 160 (step: 1), NP = 96 achieved mean R2 = 0.9017 >

0.9 for the first time (SD = 0.03208).
Figures 9E,F demonstrates that increasing NP can be a viable

alternative to increasing Nrepeat to obtain a higher prediction
accuracy for this error-rate model. Suppose we have a case where
researchers want to set a smaller Nrepeat such as 3 instead of
10 due to (e.g.,) asking workers to answer more questionnaire
items after the task. Even for this case, by collecting NP = 320
workers, the model would fit to the data with R2 > 0.9 in our
data. Hence, although the task completion time for crowdsourced
user experiments should not be too long (Gould et al., 2016),
the easy recruitment for crowdsourcing enables researchers to
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FIGURE 9 | Simulation results on mean (and SD) model fitness in R2 by changing NP and Nrepeat over 1,000 iterations. Error bars indicate 1SD.

measure the central tendency of error rates. This benefit of
crowdsourcing is more critical for error-rate models than time-
prediction models, as we demonstrated here, which has never
been empirically reported before.

When NP or Nrepeat was large, the error bars for model fitness
(the SD values of R2 over 1,000 iterations) were small for all
models we examined (see Figure 9). This is because the same
workers’ data were more likely to be selected as the number of
measured data points increased, and thus the variability in model
fitness became small. In other words, when the number of data
points was small, the model fitness depended more strongly on
the choice of worker group and their limited trials. This effect of
smallNP orNrepeat values on the large fitness variability was more
clearly observed for the ER model (Figures 9E,F). Therefore, it
is possible that the ER model will exhibit a quite low R2 value
when NP or Nrepeat was small, and at the same time, a much
higher R2 value might also be found by chance. This result shows
that the ER is relatively not robust against the small number of
data points.

In comparison, even when NP or Nrepeat was small, the error
bars of the MT and σ models were smaller (Figures 9A,C). In
particular, because the mean R2 values of the MT model were
already high (>0.92), there remains a limited space to exhibit
much lower or higher R2s, and thus the SD values could not be
large. This demonstrated the robustness of the operational time
prediction using Fitts’ law.

6. DISCUSSION

6.1. Benefits and Implications of Using
Crowdsourcing for Error-Rate Model
Evaluation
In this study, we explored the potential of crowdsourcing for
evaluating error-rate prediction models on GUIs. As one of the
most fundamental operations, we utilized a Fitts’ law task for
its well-structured methodology. The results obtained from 384
crowdworkers showed that the models on Fitts’ law and the click
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point variability fit well to the empirical data with R2 = 0.9789
and 0.9966, respectively, as shown in Figures 4, 6. Using the
predicted σ values based on W, we then predicted the ERs for
each A × W condition, which yielded the correlation between
predicted vs. observed ERs of R2 = 0.9572. The other metrics
(MAE and RMSE) and the cross-validation also showed the
good prediction accuracy of the model. On the basis of these
results, in addition to the time-prediction model, we empirically
demonstrated the first evidence that an error-rate model held
well even for crowdsourced user experiments, even though it has
been cautioned that crowdworkers are more error-prone in GUI
tasks (Komarov et al., 2013; Findlater et al., 2017).

The simulation to alter NP and Nrepeat showed that the
prediction accuracy of the error-rate model became better when
either of these values was larger. This effect was more clearly
observed for the error-rate model than the time- and click-
point-variability models. In particular for the time model, the
prediction accuracy reached close to the upper limit (R2 = 1)
even when the NP and Nrepeat were not large, such as the
R2 > 0.95 exhibited by ten workers performing four repetitions
(Figure 9B). This suggests that the advantage of crowdsourcing
in terms of its easy recruitment of numerous workers is not so
critical. In comparison, for the error-rate model, increasing the
NP was still effective for NP ≥ 160.

Because the error rate is computed on the basis of occasionally
occurring operations (clicking outside the target), researchers
need more data to measure the theoretical value. Thus, our
result, i.e., that collecting more data would lead to the theoretical
value that a model estimates, is intuitive, but it has never
been empirically demonstrated until now. Finally, our research
hypothesis, “instead of increasing the number of repetitions per
task condition, recruiting more workers is another approach to
measure the error rates precisely, which will lead to a good
prediction accuracy by the error-rate model,” was supported. This
is a motivating finding for future studies on evaluating novel
error-rate models through crowdsourced user experiments.

Note that, we compared the sensitivity of time and error-
rate models against NP and Nrepeat, but our purpose here was
not to claim that (e.g.,) Fitts’ law is a better model than the
error-rate model. As described in the introduction, an MT is
measured in every trial and then averaged after completing
a session consisting of Nrepeat trials, but an ER is computed
after each session. Due to this difference, surmising that the
error-rate model is inferior is not appropriate. Although more
participants are needed to obtain a good fitness comparable
with Fitts’ law, which could be a limitation of the error-
rate model, it does not necessarily mean that the model is
wrong or inaccurate. Collecting numerous participants can avoid
reaching such a mistaken conclusion. This point about making
a conclusion based on an experiment with small sample size has
been made before (Kaptein and Robertson, 2012; Caine, 2016),
and our results again support the importance of a large sample
size. Using crowdsourcing for error-rate model evaluation is a
straightforward way to enable the recruitment of hundreds of
participants with a reasonable time period, cost, and effort by
researchers, which enhances the contribution of crowdsourcing
to an undeveloped use application.

6.2. Limitations and Future Work
Our claims are limited to the task we chose and its design. We
emphasized the usefulness of crowdsourced user experiments for
error-rate model evaluation, but we only tested a GUI-task model
implemented withmice following the Fitts’ law paradigm.Within
this scope, we limited the task design to horizontal movements
where the effect of target height was negligible. We assume that
modified models can predict ERs for more realistic targets such
as pointing to circular targets (Bi and Zhai, 2016; Yamanaka and
Usuba, 2020), but this needs further investigation in the future.

The model we examined was for selecting static targets, while
recently models for more complicated tasks have been proposed,
including those for pointing to automatically moving targets (Lee
et al., 2018; Park and Lee, 2018; Huang et al., 2019), temporally
constrained pointing such as rhythm games (Lee and Oulasvirta,
2016; Lee et al., 2018), and tracking a moving target (Yamanaka
et al., 2020). We assume that the benefit of using crowdsourcing
services to recruit numerous participants can be observed in
these complicated tasks more clearly than our 1D pointing task.
For example, pointing to a circular moving target needs more
task parameters, such as the initial target distance A, its size
W, movement speed V , and movement angle θ (Hajri et al.,
2011; Huang et al., 2019). Because there are more task-condition
combinations than 1D-target pointing, it is difficult to ask the
participants to perform many repetitions per task condition,
while recruiting numerous workers is easy in crowdsourced user
studies. Investigating error rates in text input tasks is another
important topic in the HCI field (Banovic et al., 2019; Cui
et al., 2020) and would be a potential objective for crowdsourced
user experiments.

A technical limitation specifically for our GUI-based
experiment was that we could not check if workers really
followed the given instruction, such as using mice and
operating as rapidly and accurately as possible. For example,
we fully trust the questionnaire results on the workers’
devices. However, some mouse-users might use touchpads in
actuality, as we had instructed to use mice. Similar concerns
have been reported before: for touch pointing tasks with
smartphones, researchers could not confirm whether workers
tapped a target with their thumb as instructed (Yamanaka
et al., 2019). Some other crowdsourcing platforms support
an option that task requesters can ask workers to shoot
a video when they perform a task, e.g., UIScope (http://
uiscope.com/en). Still, this would create heavier workloads
for both the workers and the experimenters. While these
issues could not be completely removed at this time, if they
were resolved in the future, the contribution to HCI would
be significant.

7. CONCLUSION

We ran a crowdsourced user experiment to examine the benefits
of recruiting numerous participants for evaluating an error-
rate prediction model in a target pointing task, which is one
of the most fundamental operations in PC usage. By analyzing
the data obtained from 384 workers, we found that our model
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held well with R2 > 0.95. Cross-validation also supported
the good prediction accuracy to the unknown task conditions.
In addition, when we randomly selected a limited portion of
the entire workers from NP = 10 to 320 and used only a
limited number of trial repetitions from Nrepeat = 2 to 10,
we found that the time prediction model (Fitts’ law) reached
R2 > 0.95 even if both of these values were small, while the
error-rate model showed quite low fitness in that case. Thus,
we empirically demonstrated that using crowdsourcing services
for recruiting many participants is more clearly beneficial
for evaluating the error-rate prediction model. Our findings
should enhance the contribution of crowdsourcing in the
HCI field.

DATA AVAILABILITY STATEMENT

The datasets presented in this article are not readily available
because the dataset used in this article is allowed to be open
only in its statistically analyzed state (e.g., mean and standard
deviation), and thus the raw dataset is not publicly available.

Requests to access the datasets should be directed to SY,
syamanak@yahoo-corp.jp.

ETHICS STATEMENT

The studies involving human participants were reviewed and
approved by Yahoo JAPAN Research’s IRB-equivalent research
ethics team. The participants provided their written informed
consent to participate in this study.

AUTHOR CONTRIBUTIONS

SY has done all tasks required for preparing this article,
including software development, data analyses, figure creation,
and writing manuscript.

ACKNOWLEDGMENTS

The author would like to thank the anonymous reviewers of the
AAAI HCOMP 2021 conference.

REFERENCES

Bailly, G., Lecolinet, E., and Nigay, L. (2016). Visual menu techniques. ACM

Comput. Surv. 49, 1–41. doi: 10.1145/3002171

Banovic, N., Sethapakdi, T., Hari, Y., Dey, A. K., andMankoff, J. (2019). “The limits

of expert text entry speed onmobile keyboards with autocorrect,” in Proceedings

of the 21st International Conference on Human-Computer Interaction with

Mobile Devices and Services, MobileHCI ’19 (New York, NY: Association for

Computing Machinery), 1–12.

Batmaz, A. U., and Stuerzlinger, W. (2021). “The effect of pitch in auditory

error feedback for fitts’ tasks in virtual reality training systems,” in

Conference on Virtual Reality and 3D User Interfaces, VR’21 (Lisbon),

1–10.

Bi, X., and Zhai, S. (2013). Bayesian touch: a statistical criterion of target selection

with finger touch. In Proceedings of the ACM Symposium on User Interface

Software and Technology (UIST ’13), 51–60.

Bi, X., and Zhai, S. (2016). “Predicting finger-touch accuracy based on the dual

gaussian distribution model,” in Proceedings of the 29th Annual Symposium

on User Interface Software and Technology UIST ’16 (New York, NY: ACM),

313–319.

Brogmus, G. E. (1991). Effects of age and sex on speed and accuracy of hand

movements: and the refinements they suggest for fitts’ law. Proc. Hum. Factors

Soc. Annu. Meeting 35, 208–212. doi: 10.1177/154193129103500311

Caine, K. (2016). “Local standards for sample size at chi,” in Proceedings of the

SIGCHI Conference on Human Factors in Computing Systems CHI ’16 (New

York, NY: Association for Computing Machinery), 981–992.

Casiez, G., and Roussel, N. (2011). “No more bricolage!: methods and tools to

characterize, replicate and compare pointing transfer functions,” in Proceedings

of the 24th Annual ACM Symposium on User Interface Software and Technology

UIST ’11 (New York, NY: ACM), 603–614.

Cockburn, A., Lewis, B., Quinn, P., and Gutwin, C. (2020). “Framing effects

influence interface feature decisions,” in Proceedings of the 2020 CHI Conference

on Human Factors in Computing Systems CHI ’20 (New York, NY: Association

for Computing Machinery), 1–11.

Crossman, E. R. F. W. (1956). The Speed and Accuracy of Simple Hand Movements.

Ph.D. thesis, University of Birmingham, Birmingham.

Cui, W., Zhu, S., Zhang, M. R., Schwartz, H. A., Wobbrock, J. O., and Bi, X. (2020).

“Justcorrect: intelligent post hoc text correction techniques on smartphones,” in

Proceedings of the 33rd Annual ACM Symposium on User Interface Software and

Technology UIST ’20 (New York, NY: Association for Computing Machinery),

487–499.

Devore, J. L. (2011). Probability and Statistics for Engineering and the Sciences,

8th Edn. Boston, MA: Brooks and Cole publishing. Available online

at: https://faculty.ksu.edu.sa/sites/default/files/probability_and_statistics_for_

engineering_and_the_sciences.pdf

Do, S., Chang, M., and Lee, B. (2021). “A simulation model of intermittently

controlled point-and-click behaviour,” in Proceedings of the 2021 CHI

Conference on Human Factors in Computing Systems CHI ’21 (New York, NY:

Association for Computing Machinery), 1–17.

Findlater, L., Zhang, J., Froehlich, J. E., and Moffatt, K. (2017). “Differences in

crowdsourced vs. lab-based mobile and desktop input performance data,” in

Proceedings of the 2017 CHI Conference on Human Factors in Computing

Systems CHI ’17 (New York, NY: ACM), 6813–6824.

Fitts, P. M. (1954). The information capacity of the human motor system in

controlling the amplitude of movement. J. Exp. Psychol. 47, 381–391.

Gould, S. J. J., Cox, A. L., and Brumby, D. P. (2016). Diminished control in

crowdsourcing: an investigation of crowdworker multitasking behavior. ACM

Trans. Comput. Hum. Interact. 23, 1–29. doi: 10.1145/2928269

Grossman, T., and Balakrishnan, R. (2005). “The bubble cursor: enhancing target

acquisition by dynamic resizing of the cursor’s activation area,” in Proceedings

of the SIGCHI Conference on Human Factors in Computing Systems, CHI ’05

(New York, NY: Association for Computing Machinery), 281–290.

Hajri, A. A., Fels, S., Miller, G., and Ilich, M. (2011). “Moving target selection in 2d

graphical user interfaces,” in Human-Computer Interaction – INTERACT 2011,

eds P. Campos, N. Graham, J. Jorge, N. Nunes, P. Palanque, and M. Winckler

(Berlin: Springer), 141–161.

Hoffmann, E. R. (1997). Movement time of right- and left-handers using their

preferred and non-preferred hands. Int. J. Ind. Ergon. 19, 49–57.

Huang, J., Tian, F., Fan, X., Tu, H., Zhang, H., Peng, X., and Wang, H. (2020).

“Modeling the endpoint uncertainty in crossing-basedmoving target selection,”

in Proceedings of the 2020 CHI Conference on Human Factors in Computing

Systems, CHI ’20 (NewYork, NY: Association for ComputingMachinery), 1–12.

Huang, J., Tian, F., Fan, X., Zhang, X. L., and Zhai, S. (2018). “Understanding the

uncertainty in 1d unidirectional moving target selection,” in Proceedings of the

2018 CHI Conference on Human Factors in Computing Systems CHI ’18 (New

York, NY: Association for Computing Machinery), 1–12.

Huang, J., Tian, F., Li, N., and Fan, X. (2019). “Modeling the uncertainty in 2d

moving target selection,” in Proceedings of the 32nd Annual ACM Symposium on

User Interface Software and Technology UIST ’19 (New York, NY: Association

for Computing Machinery), 1031–1043.

Jokinen, J. P. P., Sarcar, S., Oulasvirta, A., Silpasuwanchai, C., Wang, Z., and Ren,

X. (2017). “Modelling learning of new keyboard layouts,” in Proceedings of the

Frontiers in Artificial Intelligence | www.frontiersin.org 11 March 2022 | Volume 5 | Article 79889235

mailto:syamanak@yahoo-corp.jp
https://doi.org/10.1145/3002171
https://doi.org/10.1177/154193129103500311
https://faculty.ksu.edu.sa/sites/default/files/probability_and_statistics_for_engineering_and_the_sciences.pdf
https://faculty.ksu.edu.sa/sites/default/files/probability_and_statistics_for_engineering_and_the_sciences.pdf
https://doi.org/10.1145/2928269
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org
https://www.frontiersin.org/journals/artificial-intelligence#articles


Yamanaka Utility of Crowdsourced User Experiments

2017 CHI Conference on Human Factors in Computing Systems (New York, NY:

Association for Computing Machinery), 4203–4215.

Kaptein, M., and Robertson, J. (2012). “Rethinking statistical analysis methods for

chi,” in Proceedings of the SIGCHI Conference on Human Factors in Computing

Systems CHI ’12 (New York, NY: Association for Computing Machinery),

1105–1114.

Komarov, S., Reinecke, K., and Gajos, K. Z. (2013). “Crowdsourcing performance

evaluations of user interfaces,” in Proceedings of the SIGCHI Conference on

Human Factors in Computing Systems, CHI ’13 (New York, NY: ACM),

207–216.

Lee, B., Kim, S., Oulasvirta, A., Lee, J.-I., and Park, E. (2018). “Moving target

selection: A cue integration model,” in Proceedings of the 2018 CHI Conference

on Human Factors in Computing Systems, CHI ’18 (New York, NY: ACM),

230:1–230:12.

Lee, B., and Oulasvirta, A. (2016). “Modelling error rates in temporal pointing,”

in Proceedings of the 2016 CHI Conference on Human Factors in Computing

Systems, CHI ’16 (New York, NY: ACM), 1857–1868.

MacKenzie, I. S. (1992). Fitts’ law as a research and design tool in human-computer

interaction. Hum. Comput. Interact. 7, 91–139.

MacKenzie, I. S. (2002). Bibliography of Fitts’ Law Research. Available online at:

http://www.yorku.ca/mack/RN-Fitts_bib.htm(accessed August 24, 2021).

MacKenzie, I. S. (2013). A note on the validity of the shannon formulation for fitts’

index of difficulty.Open J. Appl. Sci. 3, 360–368. doi: 10.4236/ojapps.2013.36046

MacKenzie, I. S. and Isokoski, P. (2008). “Fitts’ throughput and the speed-accuracy

tradeoff,” in Proceedings of the SIGCHI Conference on Human Factors in

Computing Systems CHI ’08 (New York, NY: ACM), 1633–1636.

MacKenzie, I. S., Kauppinen, T., and Silfverberg, M. (2001). “Accuracy measures

for evaluating computer pointing devices,” in Proceedings of the SIGCHI

Conference on Human Factors in Computing Systems, CHI ’01 (New York, NY:

ACM), 9–16.

Matejka, J., Glueck, M., Grossman, T., and Fitzmaurice, G. (2016). “The effect

of visual appearance on the performance of continuous sliders and visual

analogue scales,” in Proceedings of the 2016 CHI Conference on Human Factors

in Computing Systems, CHI ’16 (New York, NY: Association for Computing

Machinery), 5421–5432.

Meyer, D. E., Abrams, R. A., Kornblum, S., Wright, C. E., and Smith, J. E. K.

(1988). Optimality in human motor performance: ideal control of rapid aimed

movements. Psychol. Rev. 95, 340–370.

Park, E., and Lee, B. (2018). Predicting error rates in pointing regardless of target

motion. arXiv [Preprint]. arXiv: 1806.02973. Available online at: https://arxiv.

org/pdf/1806.02973.pdf (accessed April 24, 2020).

Plamondon, R., and Alimi, A. M. (1997). Speed/accuracy trade-offs in target-

directed movements. Behav. Brain Sci. 20, 279–303.

Schwab, M., Hao, S., Vitek, O., Tompkin, J., Huang, J., and Borkin, M. A. (2019).

“Evaluating pan and zoom timelines and sliders,” in Proceedings of the 2019 CHI

Conference on Human Factors in Computing Systems, CHI ’19 (New York, NY:

Association for Computing Machinery), 1–12.

Soukoreff, R. W., and MacKenzie, I. S. (2004). Towards a standard for pointing

device evaluation, perspectives on 27 years of fitts’ law research in hci. Int. J.

Hum. Comput. Stud. 61, 751–789. doi: 10.1016/j.ijhcs.2004.09.001

Wobbrock, J. O., Cutrell, E., Harada, S., and MacKenzie, I. S. (2008). “An error

model for pointing based on fitts’ law,” in Proceedings of the SIGCHI Conference

on Human Factors in Computing Systems, CHI ’08 (New York, NY: ACM),

1613–1622.

Wobbrock, J. O., Findlater, L., Gergle, D., and Higgins, J. J. (2011).

“The aligned rank transform for nonparametric factorial analyses using

only anova procedures,” in Proceedings of the SIGCHI Conference on

Human Factors in Computing Systems,CHI ’11 (New York, NY: ACM),

143–146.

Yamanaka, S. (2021a). “Comparing performance models for bivariate pointing

through a crowdsourced experiment,” in Human-Computer Interaction

– INTERACT 2021 (Gewerbestr: Springer International Publishing),

76–92.

Yamanaka, S. (2021b). “Utility of crowdsourced user experiments for measuring

the central tendency of user performance to evaluate error-rate models on guis,”

in AAAI HCOMP 2021 (Palo Alto, CA: AAAI), 1–12.

Yamanaka, S., Shimono, H., and Miyashita, H. (2019). “Towards more practical

spacing for smartphone touch gui objects accompanied by distractors,” in

Proceedings of the 2019 ACM International Conference on Interactive Surfaces

and Spaces, ISS ’19 (New York, NY: Association for Computing Machinery),

157–169.

Yamanaka, S., and Usuba, H. (2020). Rethinking the dual gaussian distribution

model for predicting touch accuracy in on-screen-start pointing tasks. Proc.

ACM Hum. Comput. Interact. 4, 1–20. doi: 10.1145/3427333

Yamanaka, S., Usuba, H., Takahashi, H., and Miyashita, H. (2020). “Servo-gaussian

model to predict success rates in manual tracking: Path steering and pursuit of

1d moving target,” in Proceedings of the 33rd Annual ACM Symposium on User

Interface Software and Technology, UIST ’20 (New York, NY: Association for

Computing Machinery), 844–857.

Yu, D., Liang, H.-N., Lu, X., Fan, K., and Ens, B. (2019). Modeling endpoint

distribution of pointing selection tasks in virtual reality environments. ACM

Trans. Graph. 38, 1–13. doi: 10.1145/3355089.3356544

Zhai, S., Kong, J., and Ren, X. (2004). Speed-accuracy tradeoff in fitts’ law tasks:

on the equivalency of actual and nominal pointing precision. Int. J. Hum.

Comput.Stud. 61, 823–856. doi: 10.1016/j.ijhcs.2004.09.007

Zhao, J., Soukoreff, R. W., Ren, X., and Balakrishnan, R. (2014). A model of

scrolling on touch-sensitive displays. Int. J. Hum. Comput. Stud. 72, 805–821.

doi: 10.1016/j.ijhcs.2014.07.003

Conflict of Interest: SY is employed by Yahoo Japan Corporation.

Publisher’s Note: All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated organizations, or those of

the publisher, the editors and the reviewers. Any product that may be evaluated in

this article, or claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

Copyright © 2022 Yamanaka. This is an open-access article distributed under the

terms of the Creative Commons Attribution License (CC BY). The use, distribution

or reproduction in other forums is permitted, provided the original author(s) and

the copyright owner(s) are credited and that the original publication in this journal

is cited, in accordance with accepted academic practice. No use, distribution or

reproduction is permitted which does not comply with these terms.

Frontiers in Artificial Intelligence | www.frontiersin.org 12 March 2022 | Volume 5 | Article 79889236

http://www.yorku.ca/mack/RN-Fitts_bib.htm
https://doi.org/10.4236/ojapps.2013.36046
https://arxiv.org/pdf/1806.02973.pdf
https://arxiv.org/pdf/1806.02973.pdf
https://doi.org/10.1016/j.ijhcs.2004.09.001
https://doi.org/10.1145/3427333
https://doi.org/10.1145/3355089.3356544
https://doi.org/10.1016/j.ijhcs.2004.09.007
https://doi.org/10.1016/j.ijhcs.2014.07.003
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org
https://www.frontiersin.org/journals/artificial-intelligence#articles


ORIGINAL RESEARCH
published: 01 April 2022

doi: 10.3389/frai.2022.818451

Frontiers in Artificial Intelligence | www.frontiersin.org 1 April 2022 | Volume 5 | Article 818451

Edited by:

Matt Lease,

University of Texas at Austin,

United States

Reviewed by:

Christopher Welty,

Google, United States

Alexander Braylan,

University of Texas at Austin,

United States

*Correspondence:

Alexandra Uma

alexandra.uma2@gmail.com

Specialty section:

This article was submitted to

Machine Learning and Artificial

Intelligence,

a section of the journal

Frontiers in Artificial Intelligence

Received: 19 November 2021

Accepted: 01 March 2022

Published: 01 April 2022

Citation:

Uma A, Almanea D and Poesio M

(2022) Scaling and Disagreements:

Bias, Noise, and Ambiguity.

Front. Artif. Intell. 5:818451.

doi: 10.3389/frai.2022.818451

Scaling and Disagreements: Bias,
Noise, and Ambiguity

Alexandra Uma 1*, Dina Almanea 1 and Massimo Poesio 1,2,3

1Computational Linguistics Lab, School of Electronic Engineering and Computer Science, Queen Mary University of London,

London, United Kingdom, 2Digital Environment Research Institute, Queen Mary University of London, London,

United Kingdom, 3 Turing Institute, London, United Kingdom

Crowdsourced data are often rife with disagreement, either because of genuine item

ambiguity, overlapping labels, subjectivity, or annotator error. Hence, a variety of methods

have been developed for learning from data containing disagreement. One of the

observations emerging from this work is that different methods appear to work best

depending on characteristics of the dataset such as the level of noise. In this paper, we

investigate the use of an approach developed to estimate noise, temperature scaling,

in learning from data containing disagreements. We find that temperature scaling works

with data in which the disagreements are the result of label overlap, but not with data in

which the disagreements are due to annotator bias, as in, e.g., subjective tasks such as

labeling an item as offensive or not. We also find that disagreements due to ambiguity

do not fit perfectly either category.

Keywords: overlapping labels, annotation disagreement, observer disagreement, temperature scaling, model

calibration, cost-sensitive loss

1. INTRODUCTION

Crowdsourced data are often rife with disagreements between coders. Hence, a variety of methods
have been developed for learning from data containing disagreement. In a previous study, the focus
was on developingmethods for removing items onwhich annotators disagreed (Beigman-Klebanov
and Beigman, 2009), or aggregation methods able to learn “ground truth” from such data (Dawid
and Skene, 1979; Smyth et al., 1994; Carpenter, 2008; Whitehill et al., 2009; Hovy et al., 2013) (see,
e.g., Sheshadri and Lease, 2013; Paun et al., 2018, 2022; Uma et al., 2021b for review). More recent
work however suggests that better results are obtained by methods training directly from data
containing disagreements (Raykar et al., 2010; Rodrigues and Pereira, 2017; Peterson et al., 2019;
Uma et al., 2020; Fornaciari et al., 2021; Uma et al., 2021b). But another finding emerging from
this recent work is that different methods for learning from data containing disagreements work
best depending on the dataset (Uma et al., 2021b). One possible explanation for this difference in
performance is disagreements can be due to a number of causes, ranging from annotator error
to problematic annotation schemes (e.g., with overlapping labels) to genuine item ambiguity to
more general item difficulty. An early proposal regarding distinguishing between different types of
disagreement was made by Reidsma and Carletta (2008), who showed that disagreements due to
(random) noise—random annotator errors—affect model training differently from disagreements
due to bias—annotator-dependent patterns. Such work raises the question of whether it is possible
to distinguish between these two types of disagreement (or other types perhaps) so as to decide
which method for learning from disagreement is more appropriate for a given dataset.
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In early work (Uma et al., 2021b), we considered a number
of approaches to identify the type of disagreement that was
most typical in a dataset. However, the objective of the measures
used in that work is to identify the type of disagreement in
a dataset prior to training a model. In this paper, we report
on an investigation of the use of an approach inspired by the
idea of temperature scaling developed by, e.g., Platt (1999) and
Guo et al. (2017) to allow a model to automatically adapt in
the presence of disagreement in the data. We use a range of
datasets known to contain disagreements arising from different
sources (Uma et al., 2021b) to train models using the state-
of-the-art soft-loss approach for learning from disagreement
(Peterson et al., 2019; Uma et al., 2020, 2021b) and test
whether adding automatic temperature scaling improves model
performance. We find that the datasets used can be divided
into three groups on the basis of the results obtained with the
proposed approach. Automatic temperature scaling works well
with datasets in which disagreement is mostly due to substantial
overlap between the labels such that annotators have to choose
a label more or less randomly. By contrast, the approach does
not work at all with data in which the disagreements are due
to a clear bias, as in, e.g., subjective tasks such as labeling an
item as offensive or not, which is known to be affected by the
annotators’ political views. Finally, with datasets where most
or part of the disagreement arises from linguistic ambiguity lie
in between these extremes, suggesting that ambiguity may not
sit perfectly within a binary distinction such as the distinction
between bias and noise proposed by Reidsma and Carletta
(2008).

2. METHODOLOGY:
TEMPERATURE-SCALED SOFT LOSS

In this section, we introduce the temperature-scaled soft

loss approach, which combines the soft loss approach to
learning from disagreement we developed in previous work
with our own approach to adding temperature scaling in a
deep learning model, which we call automatic temperature

scaling. We first review the soft-loss approach proposed by
Peterson et al. (2019) and Uma et al. (2020) and extend
soft-loss by including exploration of the suitability of various
standard loss functions for soft-loss training. Next, we discuss
the (automatic) temperature-scaled soft-loss methodology which
involves weighting the soft loss for each item by a learned
temperature parameter.

2.1. Soft Loss Learning
The soft-loss functions approach to training from data containing
disagreement combines using a standard loss function with
a probabilistic soft label generated from crowd annotations
(Peterson et al., 2019; Uma et al., 2020). To train a model using
the soft-loss function approach, a standard loss function such as
cross-entropy or squared error is used; but instead of targeting
the ground truth viewed as a one-hot label, a soft label—a
probability distribution over the labels—is generated from the

distribution of crowd labels and used as a target for training the
machine learning model. We discuss each step in turn.

2.1.1. Generating Probabilistic Soft Labels
While experimenting with a variety of datasets standardly used
for learning from disagreement, Uma et al. (2020) showed that for
a soft-loss function, the quality of the predictions is dependent on
the method used in generating the probabilistic soft labels, which
in turn is dependent on the characteristics of the annotation
for the dataset. They evaluated two standard label generation
functions—the softmax function and the standard normalization
function—finding which is best depends on the dataset. Soft
labels obtained through standard normalization were found to
be preferable for datasets like CIFAR-10H (Peterson et al., 2019),
which were annotated by a large number of expert annotations
with high observed agreement among them. Soft labels produced
using softmax proved instead more suitable for datasets that do
not meet these criteria, such as Gimpel et al.’s POS dataset (Plank
et al., 2014a) and the LABELME dataset (Rodrigues and Pereira,
2017). Uma et al. (2021b) further showed that the best soft label
for mixed quality datasets, such as PDIS (Poesio et al., 2019),

were obtained by using the posterior distribution of a
probabilistic aggregation model such as MACE (Hovy et al.,
2013). For our novel misogyny dataset ArMIS (Almanea and
Poesio, 2022), we found that the normalized distribution of the
annotators was the best-performing label.

2.1.2. A Suitable Loss Function
Peterson et al. (2019) only used the cross-entropy loss function,
hypothesizing that it was uniquely suitable for the task. Uma
et al. (2021b) tested a variety of other loss functions, including
Kullback-Leibler (henceforth: KL) and (Summed) Squared Error
(henceforth: SE)1. Malinin and Gales (2019) argued that for
datasets with high noise due to overlapping labels and resulting
in a multi-modal label distribution2 reverse KL-divergence is
most appropriate if the goal is to maximize prediction accuracy.
They tested their hypothesis on synthetic data, comparing reverse
KL-divergence as a loss function with (forward) KL divergence,
and showed that while KL-divergence is a sensible loss function
for datasets with low data uncertainty and target distributions
where “correct” labels are available, reverse KL-divergence is
more suitable when this is not the case.

Thus, as a preliminary experiment, we tested the hypothesis
of Malinin and Gales (2019) with our (non-artificial) data by
training soft-loss functions for each task using the best soft label
and each of the divergence functions. We additionally tested the
other two well-known probability-comparing loss functions—
the cross-entropy loss function (CE) already used in Peterson
et al. (2019) and Uma et al. (2020, 2021b) and the Squared error
function (SE) used in Uma et al. (2021b). Soft-loss functions
using each of the stated functions can be expressed using the
simplified notation:

1After some experimentation, and in keeping with the other loss function, we

decided to use the sum of the squared errors as opposed to the mean.
2Malinin and Gales (2019) use the term data uncertainty for this type of noise, but

as far as we know their notion of data uncertainty is the same as what Reidsma and

Carletta (2008) call random noise.
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• Cross-Entropy Soft loss:

CE(yhum, yθ ) = −

n
∑

i=1

yihum log yiθ (1)

• KL Soft loss:

DKL(yhum || yθ ) = −

n
∑

i=1

yhum log(
yiθ
yihum

) (2)

• Reverse KL Soft loss3:

DRKL(yθ || yhum) =

n
∑

i=1

yiθ log(
yihum
yiθ

) (3)

• SE Soft loss:

MSE(yhum, yθ ) =

n
∑

i=1

(yihum − yiθ )
2 (4)

where yihum is the target label for an item i, the best soft label; yiθ is
the model’s predicted probability distribution for that item; and
n is the number of items in the training set.

We experiment with these variations of the soft loss function
and note the prediction accuracy of the trainedmodels, especially
in reaction to Malinin and Gales’s (2019) hypothesis. The
best soft loss function is used for experiments in automatic
temperature scaling.

2.2. Item Weighting Through Automatic
Temperature Scaling
One of the most widely adopted approaches to learning
from disagreement involves developing methods for identifying
difficult items–items on which there is an unexpected degree
of disagreement among annotators. Such methods typically
use statistical inference to infer the difficulty of an item, and
then use such difficulty to weigh or filter items classified as
intrinsically difficult (refer to, e.g., Carpenter, 2008; Beigman
and Beigman Klebanov, 2009; Whitehill et al., 2009) and the
discussion of item difficulty approaches in Paun et al. (2022). In
the deep learning literature, a number of methods of this type
were developed, for which the term temperature scaling is often
used.

In this paper, we introduce a method of this type, which
we called automatic temperature scaling, and combine ideas
from both temperature scaling and Platt scaling. Platt scaling
was proposed as a way to calibrate a logistic regression model,
i.e., adjust its parameters to reflect uncertainty (Platt, 1999). To
calibrate a model, Platt proposes that two scalar parameters, a
and b ∈ R, be learned by optimizing the negative log-likelihood
function over the validation set while keeping the model’s
parameters fixed. The learned parameters are used to rescale the
logits of the model, zi resulting in outputs, f (xi) = σ (azi + b).

3In reverse KL, the target human-derived soft label and the predicted soft label are

swapped.

Temperature scaling is a single parameter variant of Platt
scaling (Guo et al., 2017), where a single scalar parameter, T,
called the temperature, is used to rescale logit scores for all the
classes, zi, before applying the softmax function. This way, the
model’s recalibrated probabilities are given as:

f (xi) = σ (zi/T) (5)

where σ (·) is the softmax function. When T > 1, the entropy of
the output probabilities increases, hence “softening the softmax”
and evening out the probability distribution. T < 1 hardens
the softmax, resulting in a peakier (more modal) probability
distribution. Finally, T = 1 recovers the unscaled probabilities
(Guo et al., 2017). The value of T is obtained by minimizing the
negative log-likelihood on a held-out validation dataset. Because
T is independent of the class, j, and the item, i, temperature scaling
does not affect which class is predicted and hence does not affect
prediction accuracy.

Automatic temperature scaling, which we propose here,
is a natural extension of temperature scaling. It differs from
standard temperature scaling in three key ways. First, automatic
temperature scaling learns a parameter vector Ti jointly as it
learns to predict the classes. It does this by learning a network
of weights wTi and biases bTi such that

Ti = softplus(WTixi + bTi) (6)

This network of weights is disjoint from the network of weights
for learning to map inputs to targets. By using Softplus as the
squashing the function (as opposed to sigmoid, ReLu, or Tanh)
we apply non-linearity to the network without overly limiting the
bounds of Ti

4.
The reason for moving from a single scalar parameter to a

vectorial parameter, and from a single value for the whole corpus
to an item dependent parameter, is that difficulty is very much
item dependent—e.g., not all images are equally easy or difficult—
and also class dependent: some classes are more easily confused
than others, as discussed in more detail in the next section. The
vectorial expression of temperature is similar to the one used in
matrix scaling, an alternative temperature scaling also proposed
by Guo et al. (2017)5. But unlike in matrix scaling (or Platt
scaling, in which more than one parameter is also learned), the
parameters are not tuned on a held-out validation set; rather,
the model jointly learns classifier and scaling parameters. During
training, the model’s outputs, ŷi = f (xi) are computed as follows:

f (xi) = σ (zi ∗ Ti) (7)

The model’s loss is computed using the appropriate soft loss
function.

The second key difference is practical in nature but has notable
implications. Unlike in temperature scaling, where the logits are
divided by temperature T, in automatic temperature scaling,

4Sigmoid, ReLu, and Tanh outputs are bounded between [0, 1], [0,1], and [–1, 1]

respectively, while Softplus outputs are only lower bounded are zero.
5Guo et al. (2017) propose the use of themax(·) function, rather than softplus(·).
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the logits are multiplied by the temperature; we found this to
work better in practice. The consequence is that in automatic
temperature scaling, a warmer temperature (higher values of
Ti) indicates lower uncertainty resulting in peakier probabilities,
while colder temperatures indicate higher uncertainty resulting
in amore even distribution–the opposite to temperature scaling6.

The third key difference can be observed from the definition
of Ti in Equation (6). Unlike in standard temperature scaling, in
automatic temperature scaling, the model does not have a single
temperature value; rather, the temperature of any given item is
a function of the input vector for the item and the temperature
weights of the model, WTi—the logits for each instance are
scaled to a different temperature, determined by the model and
learned as a function of the input features of the instance. In
this way, if the model is able to identify uncertainty for an input
item, it will respond by producing a lower temperature value for
that item. The converse is also true. Thus, by considering each
instance separately, the model is able to produce temperature
values depending on how much data uncertainty it perceives for
each item.

This third aspect is vital to understanding the anticipated
improvement in predictive accuracy using automatic
temperature scaling. In datasets with overlapping labels,
because the modal class for affected items is arbitrary, models
(much like annotators) are likely to disagree with the modal
class of the target labels, predicting a different (and possibly
equally plausible) modal class for perceived noisy inputs. The
temperature lowering for such items results in a flatter predicted
probability distribution and has the added effect of decreasing the
loss contribution of that item to the overall loss. Consequently,
the model penalizes itself less for such items and reduces the loss
contribution of the item to the total loss. In this way, automatic
temperature scaling can be comparable to cost-sensitive loss
(Plank et al., 2014a).

3. THE EXPERIMENTS

In this section, we present our experimental design and discuss
the datasets and models used for the experiments conducted in
this study.

3.1. Experiment Design
We conducted the experiments in two phases. First, we
experimentally compared the suitability of various standard loss
functions for soft loss training as outlined in Section 2.1.2
on several tasks. Then, we extended the best-performing loss
function into an automatic temperature-scaled soft loss. For
both experiments, we evaluated the models using two evaluation
metrics, one hard and one soft.

3.1.1. Hard Evaluation
As a hard evaluation metric, we used accuracy, as done by
Peterson et al. (2019) and Uma et al. (2020). We calculated the

6As such, it would be more appropriate to name Ti “confidence” or “certainty”—

but we will stick with the original name to acknowledge the intellectual debt of our

proposal to temperature scaling.

accuracy of each model’s prediction with respect to a standard:
the majority vote aggregate of the expert annotators for ArMIS 7

and gold labels for the other datasets.

3.1.2. Soft Evaluation
As noted in previous work (Dumitrache et al., 2018; Peterson
et al., 2019; Uma et al., 2020; Basile et al., 2021; Uma et al.,
2021b), as the realization that gold labels are an idealization
growth, so does the awareness that hard evaluation is not
sufficient to compare machine learning models on tasks in which
disagreements are extensive, and extremely questionable for tasks
in which the labels are subjective and therefore it does not
make sense a “gold label” exists that the disagreements can be
reconciled to. A particularly obvious illustration of this last point
is the misogyny detection task, related to hate speech detection.
In this task, the labels assigned by annotators are very much
dependent on their background, i.e., text found misogynistic by
a female annotator or a more liberal annotator may not be found
misogynistic by a male annotator or an annotator from a more
conservative background.

When evaluating tasks containing disagreements, or in which
disagreements may be intrinsic, it would seem insightful not
to evaluate models against a questionable gold label only, but
also against soft labels in the sense discussed above (probability
distributions over the labels derived from crowd annotations) in
which disagreements are preserved. Consequently, in this paper,
our models are also evaluated using a soft evaluation metric,
cross-entropy. Like Peterson et al. and Uma et al., we compute
the cross-entropy between the probability distribution produced
by each model and the best soft label produced from the crowd
distribution (The label that is most appropriate for that dataset,
as discussed above). This form of evaluation provides insight into
how well the models are able to capture possible disagreements in
labeling resulting from the crowd.

3.2. Data
We used in this study four disagreement-preserving datasets that
have been previously used in research into learning to classify
from disagreement (Jamison and Gurevych, 2015; Plank et al.,
2014a,b; Uma et al., 2020, 2021a; Fornaciari et al., 2021) and
that exemplify different sources of disagreement (An in-depth
analysis of the disagreements in these datasets has been carried
out by Uma et al., 2021b). In addition, we used an entirely
new dataset, ArMIS (Almanea and Poesio, 2022), illustrating a
different type of disagreement not considered by Uma et al.
(2021b): disagreement due to subjectivity.

3.2.1. The Gimpel et al. pos Corpus
The first example of a corpus containing disagreements due to
ambiguity (Plank et al., 2014b) is Gimpel et al.’s (2011) POS

dataset (henceforth, POS), which has been often used in research
into developing disagreement-aware NLP models (Plank et al.,
2014a; Jamison and Gurevych, 2015; Fornaciari et al., 2021; Uma
et al., 2021b). The dataset consists of 14k Twitter posts annotated
with ground truth POS tags collected by Gimpel et al. (2011) from

7Ties were broken by making a random selection.
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expert annotators and crowdsourced tags collected by Plank et al.
(2014b)—at least five crowdsourced labels per token from 177
annotators.

The workers annotating this corpus often disagree with the
ground truth label; the observed agreement (Ao, Artstein and
Poesio, 2008) for the dataset is 0.73, as computed using the
multi-annotator version of Fleiss Kappa (Fleiss et al., 2004).

A typical example of the disagreements found in this corpus is
shown below (the token to be tagged is in bold):

(8)
Noam likes social media
Noun Verb Adj/Noun Noun

in the context, the category Noun would seem to be just as
appropriate as the category Adj for the token social.

Plank et al. (2014b) conducted an analysis of the easy and
hard cases in this dataset, finding that the vast majority of
inter-annotator disagreements are due to genuine linguistic

ambiguity, as in this example, although the POS categories Adj
and Noun are clearly distinct, in some cases, it is not possible
to tell what is the “right” category (Plank et al., 2014b). In
fact, an analysis of the POS dataset carried out by Uma et al.
(2021b) showed that the average observed agreement on an
“easy” category such as nouns (particularly for name tokens like
Twitter handles) is much higher than for other categories.

For experiments using this dataset, we split the 14k tokens into
training (12k) and testing (2k) and use the development dataset
released by Plank et al. (2014a) for validation.

3.2.2. The PDIS Corpus
The second corpus we used contains disagreements in part
due to ambiguity, in part to annotator carelessness. The Phrase
Detectives 2 corpus (Poesio et al., 2019) is a crowdsourced
anaphoric reference corpus collected with the Phrase Detectives
game-with-a-purpose (Poesio et al., 2013)8. Anaphoric reference
is another aspect of linguistic interpretation in which ambiguity
is rife (Poesio et al., 2006; Versley, 2008; Recasens et al., 2011). For
example, Poesio et al. (2006) discussed examples such as (3.2.2).

(9) 3.1 M: can we .. kindly hook up
3.2 : uh
3.3 : engine E2 to the boxcar at ..

Elmira
4.1 S: ok
5.1 M: +and+ send \textcolor{red}

{\textbf{it}} to Corning
5.2 : as soon as possible please
6.1 S: okay

[2sec]
7.1 M: do let me know when it gets

there
8.1 S: okay it’ll /
8.2 : it should get there at 2 AM
9.1 M: great
9.2 : uh can you give the
9.3 : manager at Corning instructions

that
9.4 : as soon as it arrives
9.5 : it should be filled with

8https://github.com/dali-ambiguity

oranges
10.1 S: okay
10.2 : then we can get that filled

In this exchange, it is not clear whether the pronoun it in 5.1 (in
red) refers to the engine E2 that has been hooked up to the boxcar
at Elmira or to the boxcar itself or indeed whether the distinction
matters at all. It is only at utterance 9.5 that we get evidence that it
probably refers to the boxcar at Elmira since only boxcars can be
filled with oranges. The two interpretations are clearly distinct–
the pronoun cannot refer to both–but it is not possible to decide
which is the intended one from the context.

The Phrase Detectives 2 corpus consists of 542 documents, for
a total of 408K tokens and 107K markables, annotated by slightly
less than 2,000 players producing a total of 2.2M judgments—
about 20 judgments per markable on average. In total, 64.3%
of the markables received more than one distinct interpretation
from the players. Some of the disagreements are due to annotator
error/carelessness, others to interface issues; but for about 10%
of markables, disagreement is again due to genuine linguistic

ambiguity.
In this study, we used PDIS, a simplified version of the corpus

containing only binary information status labels: discourse new
(DN) (the entity referred to has never been mentioned before)
and discourse old (DO) (it has been mentioned). PDIS still
consists of 542 documents, for a total of 408K tokens and over
96K markables; an average of 11.87 annotations per markable are
preserved9.

Forty-five of the documents (5.2K markables), collectively
called PDgold, additionally contain expert-adjudicated gold labels.
This subset of PDIS was designated as the test set. The training
and development datasets consist of 473 documents (and 86.9K
markables) and 24 documents (4.2K markables), respectively10.

3.2.3. The LabelMe Corpus
The most widely used corpus for learning to classify images
from crowds is the LabelMe dataset11 (Russell et al., 2008). It
classifies outdoor images according to 8 categories: highway,
inside city, tall building, street, forest, coast, mountain, or open
country. Using Amazon Mechanical Turk, Rodrigues and Pereira
(2017) collected an average of 2.5 annotations per image from 59
annotators for 10K images in this dataset.

The observed agreement for this dataset, also computed using
the multi-annotator version of Fleiss et al.’s (2004) Kappa, is 0.73,
which is the same level of average observed agreement seen in the
POS dataset. However, it can be argued that the source and nature
of the disagreement in this dataset are different, consider Figure 1
for an illustration. The ground truth label for the example image
is inside city, and one annotator chose that label as well, but two
other annotators chose tall building. Notice the difference from
the ambiguity cases in POS and PDIS: there, two interpretations
are possible, but a word can only have one—it is just that it is

9DO judgments with different antecedents are considered identical, and the

judgments other than DN or DO are removed.
10Another example of corpus were the disagreement is due to linguistic ambiguity

is Dumitrache et al. (2019).
11http://labelme.csail.mit.edu/Release3.0
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FIGURE 1 | An example of disagreement from LabelMe Ground truth label:

insidecity, crowd annotations: [insidecity:1, tallbuilding:2].

not possible to know which from the context. Here, both labels
can be applied at the same time. Uma et al. (2021b) carried out
an analysis of this dataset, finding that examples like Figure 1

are prevalent. That is, the disagreement for this dataset is largely
due to an imprecise annotation scheme where label categories
are not necessarily mutually exclusive but may overlap. As a
consequence, an annotator forced to choose one among the
overlapping categories which apply to a particular image will
likely make a random choice.

In our experiments, we randomly split the 10K images into
training and test data (8,882 and 1,118 images respectively) to
allow for ground truth and probabilistic evaluation. A total of
500 images from the dataset with gold labels were used as a
development set.

3.2.4. The CIFAR-10H Corpus
As an example of a crowdsourced corpus containing very little
disagreement and that primarily due to item difficulty, we
used Krizhevsky’s (2009) CIFAR-10H dataset, which consists of
60K tiny images from the web, carefully labeled, and expert-
adjudicated to produce a single gold label for each image
in one of 10 clearly distinct categories: airplane, automobile,
bird, cat, deer, dog, frog, horse, ship, and truck. Peterson et al.
(2019) collected crowd annotations for 10K images from this
dataset (the designated test portion) using Amazon Mechanical
Turk, creating the CIFAR-10H dataset12, which we use for
our experiments.

The observed agreement for this dataset is 0.92, the highest
among all the datasets. Clearly, the 2,457 annotators (about 51
annotators per item) found the annotation scheme to be clear
and mostly agree with the expert opinion on what the label for
each item would be. Notice that unlike in LABELME, there is no
overlap: it is not possible for an object to belong to multiple
categories. Cases of disagreement among annotators do occur,

12https://github.com/jcpeterson/cifar-10h

FIGURE 2 | An example of disagreement from CIFAR10H Ground truth label:

deer, crowd annotations: [dog:33, deer:13, horse:4].

but they are primarily of the kind illustrated by Figure 2, which
is because of the poor quality of the image, it is not possible to
decide from the picture which animal is illustrated. Yet, there
is no question that only one category can apply. We consider
such cases as proper examples of difficult to classify items—
items to which only one category from the scheme applies, yet
problematic to classify because of noise.

We used the CIFAR-10H dataset for training and testing using a
70:30 random split, ensuring that the number of images per class
remained balanced as in the original dataset. We also use a subset
of Krizhevsky (2009) CIFAR-10 training dataset (3k images) as our
development set.

3.2.5. The ArMIS Corpus
Finally, to exemplify an important source of disagreement—the
fact that certain judgments are intrinsically subjective—we used
our own ArMIS corpus (Almanea and Poesio, 2022). ArMIS is an
Arabic misogyny dataset. It consists of 1K tweets each annotated
with binary labels: 1 if the tweet expresses a misogynistic behavior
according to the annotator’s subjective point of view, 0 if the
annotator believes that the tweet is not misogynistic. The tweets
were collected using the Twitter API in October 2020, using a
keywords list which was manually created specifically for this
task, including specific slang words, phrases, and hashtags in
order to get the related tweets, such as “Feminist,” “Deficient
mind and religion.” The important aspect of this dataset is
that it was annotated by three experts” annotators, carefully
chosen to reflect different political views: liberal, moderate, and
conservative. The annotators were asked to annotate the tweets
based on their perspective.

The observed agreement of the annotators is 0.77, higher
than the observed agreement of both POS and LABELME datasets
(0.73), lower than the 0.92 observed agreement of CIFAR-10H,
and equal to the observed agreement of PDIS. It is important to
note while PDIS and ArMIS have the same level of disagreement,
the nature and source of the disagreement for the ArMIS dataset
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differs from that of PDIS and indeed from the others. While Uma
et al. (2021b) show that PDIS disagreements can be attributed
to noise from spammers, the ambiguity of labels, or interface
problems, an analysis of the disagreement in ArMIS showed the
nature of the disagreements to be largely due to the subjective

viewpoints of the diverse annotators.
For these experiments, we split the 964 tweets in ArMIS into

674 for training, 145 for validation, and 145 for testing. Gold
labels were not obtained, as is fitting for a task of such as divisive
nature, where annotator background plays a substantial role in
how they label. However, as a compromise, we use majority
voting to produce a hard label for hard evaluation purposes.

3.3. Base Models
The base models used in these experiments are the state-of-the-
art or near state-of-art models used in previous work (Uma et al.,
2020; Almanea and Poesio, 2022), many of which were made
available to the participants to the 2021 SEMEVAL shared task
on learning from disagreement (Uma et al., 2021a). We briefly
summarize these models in this subsection.

3.3.1. The POS Tagging Model
For POS tagging, we used the bi-LSTM model (Plank et al., 2016)
used by Uma et al. (2020). The model we used is improved
from Plank et al. (2016) by using attention over the input
token and character embeddings to learn contextualized token
representations.

3.3.2. The PDIS Information Status Model
The model for this task was also developed by Uma et al.
(2021a). Uma et al. combined the mention representation
component of Lee et al.’s (2018) coreference resolution system
with the mention sorting and non-syntactic feature extraction
components of the IS classification model proposed by Hou
(2016)13 to create a novel IS classificationmodel that outperforms
(Hou, 2016) on the PDIS corpus. The training parameters were set
following Lee et al. (2018).

3.3.3. The LabelMe Image Classification Model
For the LabelMe image classification, we replicated the model
from Rodrigues and Pereira (2017). The images were encoded
using pre-trained CNN layers of the VGG-16 deep neural network
(Simonyan et al., 2013) and passed to a feed-forward neural
network layer with a ReLU activated hidden layer with 128 units.
A 0.2 dropout is applied to this learned representation which
is then passed through a final layer with softmax activation to
produce the model’s predictions.

3.3.4. The CIFAR-10H-10 Image Classification Model
The trained model provided for this task is the ResNet-34A
model (He et al., 2016), one of the best performing systems for
the CIFAR-10 image classification. The publicly available Pytorch
implementation of this ResNet model was used14.

13This model was developed for fine-grained information status classification on

the ISNOTES corpus (Markert et al., 2012; Hou et al., 2013).
14https://github.com/KellerJordan/ResNet-PyTorch-CIFAR10

TABLE 1 | The effect of different loss functions for soft loss training on accuracy.

POS PDIS LABELME CIFAR-10H ArMIS

SE Soft loss 79.20 92.90 84.21 63.49 76.83

CE Soft loss 79.80 92.86 84.66 66.54 77.79

KL Soft loss 79.96 92.86 84.73 66.58 76.41

Reverse KL Soft loss 79.81 92.95 84.92 63.71 75.59

The bold values indicate the best results for each model (indicated in the first column)

using a given metric (indicated in the column header).

TABLE 2 | Results showing the accuracy (higher is better) and cross-entropy

(lower is better) of soft loss models with and without temperature.

Task Model Accuracy↑ Cross-entropy ↓

LABELME Reverse KL soft loss 84.97 1.671

LABELME Reverse KL soft loss + Ti 86.29* 1.656

POS KL soft loss 79.96 1.268*

POS KL soft loss + Ti 80.01 1.547

PDIS Reverse kl soft loss 92.95 0.467

PDIS Reverse kl soft loss + Ti 93.00 0.395*

CIFAR-10H KL soft loss 66.58* 1.109*

CIFAR-10H KL soft loss + Ti 63.89 1.223

ArMIS CE soft loss 77.79 0.586*

ArMIS CE soft loss + Ti 76.83 0.636

An asterisk is used to indicate significantly better results.

The bold values indicate the best results for each model (indicated in the first column)

using a given metric (indicated in the column header).

3.3.5. The ArMIS Arabic Misogyny Classification

Model
For this task and dataset, we fine-tuned the state-of-the-art
AraBERT base model (Antoun et al., 2020) with a maximum
sequence length of 128, learning rate of 1e-5, batch size of 8, and
training for 10 epochs.

4. RESULTS

Table 1 compares the effectiveness of different probability-
comparing loss functions for making gold predictions,
identifying the best soft loss function for each dataset. Table 2
presents the results obtained for each task by models using the
best soft loss function from Table 1 with and without automatic
temperature scaling, evaluated using both hard and soft metrics.

To account for non-deterministic model training effects, each
model was trained and tested several times: (i) 30 times each for
POS and LABELME (ii) 10 times each for PDIS, CIFAR-10H, and
ArMIS owing to the complexity of the base models. We measure
significance via bootstrap sampling, following Berg-Kirkpatrick
et al. (2012) and Søgaard et al. (2014). The rest of this section
discusses the results from these tables, highlighting significant
results. The best result for each dataset is highlighted in bold.

4.1. Choosing the Loss Function
The aim of this preliminary experiment was to investigate
Malinin and Gales’s (2019) hypothesis that Reverse KL divergence
is the most appropriate loss function for training models on
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datasets with high data uncertainty.We found that the Reverse KL

soft loss function outperforms the other soft loss functions by a
noticeable margin (0.19) for one dataset only, LABELME—though
this margin is not significant15. This is the dataset for which we
observe themost disagreement due to an annotation scheme with
overlapping labels, as opposed to linguistic ambiguity (as in POS),
or a combination of linguistic ambiguity and random noise (as in
PDIS), or item difficulty (as in CIFAR-10H), or annotator biases
(as in ArMIS). For CIFAR-10H, the dataset with the least amount
of disagreement (and noise), as discussed by Uma et al. (2021b),
we observe that Reverse KL soft loss falls nearly 3 significance
points below either CE or KL soft loss. The SE loss function also
performs poorly on this dataset, likely because SE optimizes the
loss for non-modal classes, and this is an undesirable trait for
a dataset like CIFAR-10H where the modal class is usually the
gold class.

Following this experiment, we determine the best soft loss
function for each dataset to be used as the starting point for
the automatic temperature-scaled soft loss is as follows: CE for
ArMIS, KL for POS and CIFAR-10H, and reverse KL for PDIS

and LABELME.

4.2. Temperature Scaling Soft-Loss
Learning
The first observation emerging from Table 2 is that automatic
temperature scaling only significantly improves results in one
task: LABELME. In other words, our results would suggest that
automatic temperature scaling only works when a disagreement
arises from overlapping labels, resulting in the arbitrariness of
ground truth.

In the next two datasets, POS and PDIS, the effect of
temperature scaling on the performance of the models are
mediocre or non-existent. These are the datasets for which
we and Plank et al. (2014b) and Poesio et al. (2019) have
shown that although a certain amount of noise is present, the
disagreements are largely due to linguistic ambiguity and/or
interface limitations.

At the other extreme, we have two datasets in which
temperature scaling hurts performance. One of these is CIFAR-
10H. This is a dataset with a very high observed agreement,
0.92. We also showed that the very few disagreements in this
dataset are due to difficulty experienced by annotators when
labeling blurry images. In other words, these disagreements are
not systematic or a result of an imprecise annotation scheme
but are due to the characteristics of the input. The other dataset
for which automatic temperature scaling leads to a reduction
in model performance is ArMIS. In this case, there is lower
agreement than in CIFAR-10H, but this is not a reflection of
systematic noise or data uncertainty, but of annotator uncertainty
due to subjective biases.

5. INTERPRETING TI

Our results show that among the datasets we considered in
this study, automatic temperature scaling is effective for the

15Significance was computed using bootstrap sampling, following

Berg-Kirkpatrick et al. (2012) and Søgaard et al. (2014).

FIGURE 3 | Graph showing the correlation of Ti with observed agreement and

entropy.

one dataset in which disagreements are primarily due to what
we may call label arbitrariness: the randomness in judgments
originating from the fact that annotators have to choose one
between multiple labels all of which could apply to an image and
do so without appealing to any theory (given the vagueness of the
annotation scheme). In this section, we examine the temperature
predictions of the model for this dataset to understand what the
model learns about label arbitrariness.

One way to do this is to measure the correlation
of the temperature values to known measures of item
agreement/uncertainty/difficulty. Figure 3 shows the Pearson
correlation (Pearson, 1896) between the temperature parameter
and two such metrics of uncertainty/difficulty: observed
agreement and normalized entropy. The results show that for
LABELME, the only dataset for which our method produces
a significant improvement over the soft-loss baseline, the
model’s Ti predictions have the strongest positive correlation
to the observed agreement. This means that the model tended
to make higher Ti predictions for items with a high observed
agreement and lower Ti predictions for items with a low observed
agreement. The model also has the strongest negative correlation
to entropy. These two results suggest that for this dataset (but
not for others), Ti is a moderately good predictor of uncertainty
for this dataset as measured by observed agreement and entropy.
What is it about the type of disagreement due to annotation
schemes in which labels overlap that explains why temperature
scaling improves performance with this kind of dataset, but not
with others?

As mentioned earlier, in the one study of the differences
between types of disagreement we are aware of, Reidsma and
Carletta (2008) proposed a distinction between two types of
disagreement between annotators and argued that they affect the
performance of machine learning models in different ways. One
kind is disagreements due to random noise, not conforming
to any theorizable pattern. A second type is disagreements
due to bias, which are identifiable through the occurrence of
patterns of disagreement. The fact that automatic temperature
scaling works best for disagreement due to overlap, which is
the type of disagreement among those we studied that most

Frontiers in Artificial Intelligence | www.frontiersin.org 8 April 2022 | Volume 5 | Article 81845144

https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org
https://www.frontiersin.org/journals/artificial-intelligence#articles


Uma et al. Scaling and Bias

resemble random noise because the annotators have to choose
randomly; and it works worst for the clearest case of bias among
our datasets, the misogyny data might suggest that automatic
temperature scaling is a good method for adjusting model
weights when the disagreements are due to random noise, but not
when disagreement is due to bias. The mediocre results with PDIS

and POS suggest that disagreements due to linguistic ambiguity
sit somewhere in the middle, or do not fit this distinction at all.
Of course, more research is needed to verify if this hypothesis also
holds with other datasets in which disagreement is due to noise.

An alternative explanation can be found in the experiments
conducted by Malinin and Gales (2019), who posit that
overlapping labels (due to imprecise annotation schemes)
introduce data uncertainty, resulting in multi-modal
distributions16. The key characteristic of data uncertainty
disagreement is that it is fully observable given the inputs and
targets, without the need to appeal to linguistic theory (as in
linguistic ambiguity) or annotator background (as in subjectivity
disagreement). As such, a network of weights and biases (a
machine annotator if you will), given the inputs and label
distribution would also experience uncertainty predicting the
targets for such images as human annotators do. In fact, an
examination of the model’s output distribution for the instances
with the lowest temperature predictions shows that the model
assigned the lowest temperatures (= highest uncertainty) to
images belonging to the categories tall building, street, or inside
city, the categories for which the annotators most disagree with
the gold (Figure 4 shows the class proportions of images 1st
quartile range of temperature while Figure 5 shows the confusion
matrix between the majority and the gold). By calibrating its
predictions by its level of certainty for each item, the model was
able to fine-tune and improve its performance. Again, more
research with other datasets characterized by data uncertainty
will be required.

6. CONCLUSION AND FUTURE WORK

Not all disagreements are the same, and it has been shown that
not all approaches for learning from disagreement work equally
well with datasets containing different types of disagreement
(Uma et al., 2021b). In this paper, we reported on experiments
on the use of automatic temperature scaling in a learning-
from-disagreements setting as a way for automatically adjusting
a model to take into account the peculiarities of a particular
dataset. Our results show that model calibration via automatic
temperature scaling can be a simple yet effective approach to
improvingmodel performance, particularly with learning ground
truth predictions, but only with high disagreement datasets
where the disagreements are due to overlapping labels.

We analyzed the temperature values of the successful model
in a dataset of this type, to find that the temperature values
have some correlation with two known measures of item
disagreement/uncertainty—a positive correlation of about 0.3
with an observed agreement and a negative correlation of about

16The results from Table 1 while not significant do suggest that of the datasets

examined in this work, LABELME has the most data uncertainty.

FIGURE 4 | Bar chart showing the gold label distribution of the images with

the lowest temperature (images in the 1st quartile range of temperature), i.e.,

the lowest certainty.

FIGURE 5 | Confusion matrix between gold labels and majority voting

consensus for LabelMe.

0.3 with entropy. We also observed that the model assigns the
lowest temperature to instances with one of the three categories
inside city, street, tall building shown by Uma et al. to be
overlapping. We also found, however, that in datasets where
disagreement is due to different reasons, the approach does not
work so well.

We provide two possible explanations: automatic
temperature scaling provides a good model of uncertainty
when disagreements are due to random noise, but not when
they are due to biases and automatic temperature scaling is a

Frontiers in Artificial Intelligence | www.frontiersin.org 9 April 2022 | Volume 5 | Article 81845145

https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org
https://www.frontiersin.org/journals/artificial-intelligence#articles


Uma et al. Scaling and Bias

good indicator of data uncertainty. Further research is however
needed to test these explanations with other datasets with the
same characteristics.
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The spread of AI and black-box machine learning models made it necessary to explain

their behavior. Consequently, the research field of Explainable AI was born. The main

objective of an Explainable AI system is to be understood by a human as the final

beneficiary of the model. In our research, we frame the explainability problem from the

crowds point of view and engage both users and AI researchers through a gamified

crowdsourcing framework. We research whether it’s possible to improve the crowds

understanding of black-box models and the quality of the crowdsourced content

by engaging users in a set of gamified activities through a gamified crowdsourcing

framework named EXP-Crowd. While users engage in such activities, AI researchers

organize and share AI- and explainability-related knowledge to educate users. We

present the preliminary design of a game with a purpose (G.W.A.P.) to collect features

describing real-world entities which can be used for explainability purposes. Future

works will concretise and improve the current design of the framework to cover specific

explainability-related needs.

Keywords: explainability, crowdsourcing, gamification, game with a purpose, Explainable AI

1. INTRODUCTION

Over the last decades, the development of new Artificial Intelligence (AI) technologies brought
forth the necessity of improving their understandability. In Explainable AI (XAI), most researchers
develop algorithms to either explain models or improve their intrinsic explainability. The main
problem associated with the understandability of an AI system is the gap between the explanation
and the level of understanding of non-expert people. Such a gap is mainly influenced by the shape
of the explanation (i.e., textual, visual, low-level details, etc.), its complexity, the persons level of
knowledge, and many other factors associated with both the model and human side. In particular,
while sometimes it is possible to re-shape the explanation to improve its understandability for non-
experts, it is challenging to leverage people’s knowledge as they are usually engaged in validation
and data collection activities.

Alongside the development of AI systems, the need for training and labeled data has grown as
well. Therefore, resorting to crowdsourcing has become essential to collect knowledge at scale. As
such processes can sometimes be tedious and repetitive, researchers developed strategies to improve
their design and effectiveness. In particular, Von Ahn (2006) proposed a human computation
paradigm influencing the design of crowdsourcing activities, the so-called “GamesWith A Purpose”
(G.W.A.P.). Such a paradigm enhances crowdsourcing endeavors through Gamification (Hamari,
2019), making them more entertaining for the people to partake.

Our research longs for envisioning an open gamified crowdsourcing framework with the final
aim of (1) improving the capability of the crowd to understand black-box AI models explanations,
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(2) improving the quality of the explanations provided by a
black-box model by engaging the crowd to provide helpful
content to AI practitioners, and (3) evaluating whether providing
structured AI-related knowledge and engaging the crowd in
explainability-related activities is an efficient way to achieve
these objectives. As a first use case, our research covers image
classification models. We explore user engagement, gamification,
and knowledge collection and structuring to answer our research
questions. Ultimately, we strive to create an open community
through which users learn to understand the behavior of black-
box models, therefore, providing value for both the developers
and themselves.

The rest of this article is structured as follows. Section
2 provides an overview of explainability, crowdsourcing, and
gamification. Section 3 outlines the preliminary framework
design we envision, including a use case of a gamified activity
for data collection and structuring and some use cases. Section 4
discusses the main advantages and limitations of the framework
and explains how to overcome such restraints. A discussion
on the gamified activity is also provided. Finally, Section 5
summarizes the critical contributions featured within this article
and discusses the following research steps.

2. RELATED WORKS AND BACKGROUND

2.1. Explainability
One of the most well-known Artificial Intelligence (AI) branches
is Machine Learning (ML). In ML, algorithms train models to
perform predictions, classifications, groupings, and other tasks
by learning from data. The development of Deep Learning
(DL) and Deep Neural Networks (DNN) increased Machine
Learning models’ accuracy and performance at the expense of
their interpretability. Indeed, most DNNs are referred to as
“black-box” (or opaque) models. The input and output of a black-
box model are known, while it is complex to understand its
internal logic. They are opposed to “white-box” models, in which
the internal logic is either known or easily understandable.

As of today, there is no unique definition of model
explainability (Vilone and Longo, 2020). Despite the ongoing
research efforts to define the fundamentals of an explainable
AI system, most definitions are either domain- or problem-
specific and are usually used interchangeably across different
research fields (Guidotti et al., 2018). In the definitions provided
by Barredo Arrieta et al. (2020), the notion of “human
understandability” is the most important concept associated
with Explainable AI. At the same time, other scholars consider
different concepts depending on their research focus, like
transparency (Belle and Papantonis, 2020) and explainability
(Guidotti et al., 2018, Hu et al., 2021). In their definition of
Explainable AI, (Barredo Arrieta et al., 2020) highlight that the
understandability of an explanation is influenced by the ones to
whom it is provided, i.e., the audience. In particular, depending
on the person’s knowledge about AI and ML, an explanation
can be shaped differently. For example, an AI expert would
probably prefer a detailed model description. On the other side,
an inexperienced user would favor a small set of examples
describing the system’s behavior. Moreover, the authors state that

an AI must generate an explanation “clear or easy to understand,”
even though the concept of being easy to understand is not the
same for everyone.

Regardless of the variety of explainability-related definitions
provided in the literature, the researchers’ community agreed
that the main objective of an Explainable AI system is to be
understood by a human as the final beneficiary of the model.
Despite such an objective, XAI studies mainly approach the
problem from a model-centric perspective rather than a user-
centric one, overshadowing the level of users’ understanding of
the model. In particular, end-users and experts are frequently
engaged in the later validation stages to evaluate the level
of understandability of the model either directly or through
simulated user experiments (Ribeiro et al., 2016; Lundberg and
Lee, 2017).

2.2. Crowdsourcing and Gamification

Artificial Intelligence methods—especially Deep Learning
approaches—require a large amount of high-quality data, whose
collection is demanding and challenging. The widespread use
of the internet allows researchers to engage virtually unlimited
people to cover their data needs. Indeed, crowdsourcing has
become common and encompasses academic studies and
private companies’ interests. Crowdsourcing can be defined as
a participative online activity in which a group of individuals
with varying features is engaged in undertaking a task as part of
a process mutually benefiting participants and crowdsourcers
(Estellés-Arolas and de Guevara, 2012). This methodology’s
advantages include lower costs, greater speed, and a higher
degree of diversity by engaging a large and heterogeneous pool
of people. This open-source practice either allows the collection
of a wide variety of data, including peoples ideas and preferences
(Balayn et al., 2021b), or the accomplishment of a task (e.g.,
labeling a large number of images) (Mishra and Rzeszotarski,
2021).

Sometimes, crowdsourcing is enhanced with gamification
(Hamari, 2019) to make such a process more engaging, drive
users’ behaviors, and structure the collected data. Gamification
uses people’s motivations to achieve such objectives. Ryan and
Deci (2000) accurately describe the influence of motivations on
human decisions, mainly distinguishing between intrinsic and
extrinsic motivations. Their definitions can be summarized as
“the motivation to perform a behavior or engage in an activity
for our own sake rather than the desire for some external
reward” and “the motivation to perform a behavior or engage
in an activity due to a separable outcome” (Lee et al., 2016),
respectively. Following such a dichotomy, gamified approaches
can be organized based on the kind of motivation they leverage.
For example, pointification, leaderboards, etc. affects extrinsic
motivation while receiving feedback (Hamari and Koivisto, 2013)
and learning (Cerasoli et al., 2014) influence the intrinsic one.
Moreover, an extrinsic-oriented design results in a good initial
level of engagement, while it is necessary to apply an intrinsic-
oriented design to achieve a long-lasting engagement (Rapp,
2015).
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Gamification and G.W.A.P. have also been widely applied in
computer science. Lu et al. (2021) developed a Peek-a-boom-
based XAI evaluation, demonstrating the presence of differences
between crowd-based and automatic assessment. Balayn et al.
(2021a) developed FindItOut, a game with a purpose based
on the GuessWho game with the final aim of collecting and
organizing knowledge for researchers and AI practitioners. Speer
et al. (2009) presented a gamified interface to acquire common
sense knowledge through a 20 Questions game which motivates
contributions and improves the throughput of new knowledge.
Other than contributing to data collection, it has also been
demonstrated that Gamification can be effective in education
and learning (Buckley and Doyle, 2016, Welbers et al., 2019).
In particular, leveraging intrinsic motivation through feedback
cycles is an effective way to enhance learning (Lee and Hammer,
2011).

3. METHODS

The main actors engaged within our explainability-oriented
crowdsourcing framework fall into two categories: users,
who get involved by playing gamified activities, and AI
practitioners/researchers, who set up games and share knowledge
about AI, ML, and explainability, since they exhibit a high level
of understanding of these fields. Figure 1 provides a simple
overview of the interaction flow proposed within the framework.

The following sections describe each part of the framework
and provide some use cases to clarify their structure. These will
be mainly associated with the researcher side since most of the
activities described for the user side are simple. We use a persona
named “Bill” to represent our researcher. We will illustrate how
he explores and interacts with the final implementation of our
framework, i.e., a web-based platform.

3.1. Knowledge Assessment
As one of the main objectives of our framework is to improve
the capability of the crowd to understand black-box models’
explanations, educating users on AI-related topics is essential.
Therefore, the first step is an assessment questionnaire through
which their knowledge about AI and explainability will be
assessed. Users will be asked to answer a series of multiple-choice
questions. Depending on their results, they will be assigned a
category representing their level of expertise. Users can improve
their category by engaging with the proposed activities and
enhancing their skills.

The research community will be requested to build a collection
of multiple-choice questions employed in the assessment
questionnaire and within the activities. Each question is made
of (1) a set of texts through which the question is asked, (2) a
set of correct answers, (3) the explanation associated with each
correct answer, (4) a set of incorrect answers, (5) a difficulty
score, and (6) a category. Questions must receive the approval of
the community to guarantee the quality of the content provided.
Therefore, each question must undergo a period of evaluation in
which the community members can improve them by suggesting
updates and proposing new answers and explanations. After this
period, it is approved if the question received enough positive

evaluations. Approved questions will be openly available to the
whole research community as researchers may want to re-assess
the users’ knowledge as they engage with one of their activities.
After a question is approved, researchers can still improve it by
providing new content for elements (1–4).

Use Case—Researcher. Bill is a researcher who needs data
about real-world entities for his research. When exploring the
platform, Bill discovers a picture-based activity that would fit
his needs. Even though he would like to set it up immediately,
he also wants to evaluate the knowledge of the users who will
perform his activity beforehand. Therefore, he explores the section
dedicated to creating multiple-choice questions about AI, looking
for questions that fit the context of his research. Unable to find
questions that suit his needs, he submits new questions. A few days
after his submission, he noticed that the researcher community
proposed some improvements for the questions (e.g. by providing
new answers). Bill approves a few of them. After a few more days,
the question is approved.

3.2. Education
Following the initial assessment, users will be schooled while
engaging with the framework. In particular, knowledge will be
provided in different shapes. The following list describes how
knowledge about AI, ML, and explainability will be provided to
users.

• Questionnaire: Researchers may set up a small quiz before
their activity made of an arbitrary number of approved
questions. For each question, they choose its text, the list of
answers, and the explanation of the correct answer. Such a
quiz would provide knowledge to users through the questions’
explanations while allowing researchers to evaluate the level of
education of the people playing the activity.

• Knowledge Sharing: Researchers can summarize, organize,
and share knowledge by setting up tailored content for the
users to read and study (i.e., the summary of a paper, the
outline of the knowledge related to a specific AI topic, etc.).
Each publication is made of a title, the topic it discusses,
a brief description of the content, and the content itself.
Researchers can also share scientific articles for the users to
read. Only minimal information will be collected and shared
like title, authors, and DOI. Users should access such articles
by themselves.

• Debating: Researchers and users can discuss subjects of
interest in a forum-like fashion. We argue that debating with
knowledgeable people would improve the users’ knowledge.

Use Case—Researcher. Bill would like users to understand
how machine learning models learn so that users performing his
activity can provide better inputs. Therefore, he collects knowledge
from scientific documents, summarizes it, and shares it in the
“Education” section. Bill achieves his first publication entitled
“Understanding the way ML models learn from pictures: A
simplified overview.” He also provides a custom picture and a few
references to the articles he used to write it within the publication.
Bill reads an exciting article about his research topic a few days
later. As it may improve the users’ knowledge even further, he
shares it by providing the necessary information.
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FIGURE 1 | Interaction flows of researchers (dashed cyan arrows) and users (orange plain arrows) with the activities devised within our framework, as described in

Section 3. Researchers organize users’ knowledge and set up activities to collect data. As users engage with such activities, they provide Content to researchers. In

turn, researchers give the user feedback about the activity they performed. Such feedback aims to improve users’ understanding of the activity itself, the knowledge

and the context provided within it.

3.3. Gamification
Gamified activities are the core elements of our framework. The
following sections discuss the steps a researcher must accomplish
to set up and evaluate the outcomes of an activity.

Activity Setup. AI practitioners can pick between pre-
defined activities and set up the necessary content depending
on their needs. These activities range between data collection,
explainability evaluation, etc.

Setting up an activity involves a set of passages, depending on
the activity. In general, all setup processes share a questionnaire
setup step, a context setup step, and an activity setup step.
In the first setup step, researchers decide whether to include
a Questionnaire (as described in “Education”) and potentially
organize its questions. In the second step, the researcher
is asked to set up the content provided to the users to
understand the context of their research, relevant concepts
to know while carrying out the activity, etc. Finally, they
have to provide all the necessary material to set up the
actual activity. Practitioners can include additional control
questions to the questionnaire and the actual activity to
keep track of the user’s level of attention. Practitioners
can also select an advised knowledge level to provide an
overview of the complexity of the concepts presented within
the activity.

Use Case—Researcher. Bill is finally ready to set up his first
activity. In the questionnaire setup step, he picks the questions
(including the ones he got approved before), their answers and their
explanations. In the context setup step, he provides the context of

its research, describing what it consists of. Bill also provides some
of the content from the knowledge summary he shared for those
who didn’t read it. As the last step, he gives the pictures, labels, and
necessary content for the picture-based activity.

Activity Evaluation. Users are only asked to play gamified
activities while researchers perform many different tasks
regarding the gamified activities. In particular, they can visualize
relevant statistics about the users that partook in the activity they
set up, including the answers to the questionnaire (if present), the
outcome of the activity, whether the user successfully answered
the questions, the knowledge level of the users, etc. The role
of the researcher in this final step is to evaluate the users and
potentially provide feedback. They have to identify those users
who stood out, like those who answered correctly to a high
number of questions (compared to their level of knowledge),
those who carried out a high-quality activity, etc. These users
will be consequently awarded. In particular, these users will be
awarded status-based awards that will make them distinguished
community members.

Use Case—Researcher. After a few weeks from publishing his
activity, Bill overviews its outcomes. He notices that most users
performed well while others outlined the pictures improperly. He
picks the users who performed outstandingly and awards them.
These users will be notified, and the award will be exhibited on
their profiles. As one of the users answered most of the questions
incorrectly and provided poor activity outcomes, Bill wrote them
some advice on how to carry out the activity, also explaining some
details related to how ML is applied in his research.
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FIGURE 2 | The setup step of the gamified activity. Player 1 is provided with

the category of the entity they have to guess (in this case, they have to guess

an animal). Player 2 is supplied with a picture of the entity and its name (in this

case, they are provided with the picture of a zebra).

3.4. Gamified Activity: A Case Study
Finally, we describe a case study on image classification
and understanding, which we use as proof of concept of a
gamified activity to collect data to be employed in the field
of explainable AI.

When addressing the explainability of image classification
models, the crowd is usually engaged to highlight, label, and
detail pictures. We assert that the outcome of such a task strictly
depends on the images supplied, i.e., a person describing different
pictures of the same entity may provide different details. In
particular, we argue that the description of a subject, provided its
picture, may be limited to or by the features displayed. Therefore,
we claim it would be possible to improve the collected features
by unbinding the images from the process since the person won’t
be limited by the representation of the entity they describe. In
particular, we would like to answer to the following questions

• (Q1) Is the picture displayed to the annotator causing bias

when asked to describe the entity in the image?

• (Q2) Are we able to collect more features with respect to the

standard annotation methods?

Therefore, we design and evaluate the effectiveness of a Game
With A Purpose (G.W.A.P.) to collect knowledge in terms of
relevant features and descriptions of the analyzed content. Such
features are organized in three categories, namely “abstract”
(identified with “A,”) “not represented in the picture” (identified
with “NR,”) and “represented in the picture” (identified with
“R.”) “R” features and “NR” features both represents “concrete
features.”

Inspired by Ahn et al. (2006), we designed a gamified activity
where a pair of people play a guessing game. The game involves
the following steps.

• Initial Setup step (Figure 2). Player 1 is provided with the
entity category they have to guess. Player 2 is shown the picture
of the entity and its name.

• Basic Turn (Figure 3, on the left). Player 1 asks closed
questions about the features of the entity to guess. Player 2
answers the questions. Player 1may either ask questions freely
or fill in predefined question templates (i.e., “Does it have ...?,”
“Does it ...?,” etc.). If the answer is affirmative, Player 2 is asked
to carry out the Annotation Step.

• Annotation Step (Figure 3, on the right). Whenever the
answer to a question is affirmative, Player 2 is asked to perform
a series of simple tasks to identify the guessed feature in the
picture they were provided with, if possible. First, they are
asked whether the element is displayed in the image. If so, they
are requested to outline them in the picture. Otherwise, they
are asked whether the feature is an abstract one.

• Hint Step. If Player 1 guessed no features of the unknown
entity in the last few questions, Player 2 provides a bit of advice
by providing a feature of the entity to Player 1. If possible,
Player 2 should provide a feature that Player 1 already tried
to guess. Therefore, Player 1 will be able to proceed with the
activity. Player 2 is still required to carry out the Annotation
Step for the hinted feature as it will still be considered in the
final set of features.

• Game Conclusion. Finally, after Player 1 has collected enough
clues on the entity they are trying to guess, they can provide
their final answer. If the answer is correct, the game is over;
otherwise, the game moves on. When the game ends, Player
1 is shown both the original picture and the ones with the
outlined features to check that Player 2 performed their task
correctly. If any element has been improperly outlined or
any question has been incorrectly answered, Player 1 can
provide their solution (i.e., answer and annotation). Such an
action generates a conflict the researcher will resolve when the
outcomes of the activity are provided.

Such an activity can be set up to have players mainly
focus their questions on concrete features, abstract features or
both. Moreover, such a gamified activity could be extended
by applying the following changes, enhancing various steps of
the activity:

• It would be possible to introduce a further step at the end of
the activity where Player 2 provides an additional picture of
the same entity and outline the missing features on the new
image.

• It would also be possible to introduce a further Annotation
Step for Player 1 at the end of the game to improve the
reliability of the results, allowing the comparison of both
players’ annotation to identify inconsistencies in the provided
outcomes.

4. PRELIMINARY EVALUATION

In this section, we report on a preliminary study on the
effectiveness and impact of our approach. The experiments have
been performed by selecting one entity category and by asking
participants to interact over it. In particular, we picked “animals”
as a category. We selected parrots and crocodiles as relevant
representatives, and we collected a picture from Google Images
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FIGURE 3 | On the left, the Basic Turn of the gamified activity is displayed. Player 1 asks yes or no questions about the entity. Player 2 answers such questions. On

the right, the Annotation Step is summarized. Player 2 is asked to complete a series of simple tasks to identify the guessed feature by answering questions and

potentially annotating the picture.

for each of them. We purposely selected an image partially
representing the crocodile (i.e., only its head was visible) and a
complete one for the parrot. We engaged 30 people aged between
24 and 30, mostly (60%) employed in IT-related sectors. Most of
them (75%) achieved an educational level superior or equal to a
bachelor’s degree. The participants were randomly organized into
three groups:

• The “annotation” group (comprising 6 people), focusing on
outlining features on images;

• The “gamified activity (concrete)” group (comprising 12
people) focusing their questions on concrete features (i.e., “R”
and “NR” features);

• And the “gamified activity (generic)” group (comprising 12
people), where members were allowed to ask questions about
any features.

Depending on such a division, each person was provided with
a document describing their activity. The members of each of
the gamified activity groups have been internally organized in
pairs to carry out the game, thus generating 6 pairs per group.
Each player was given one picture to play with. Players were
asked to follow the same procedure described in subsection 3.4,
depending on their role and group. Each member of the
pairs alternately played both roles. Overall, each group carried
out 12 matches, (i.e., 6 matches per picture). Additionally,
we asked people to keep track of each question and answer
when playing as Player 1, and keep track of the suggestions
provided when playing as Player 2. On the other hand, each
of the 6 members of the “annotation” group was given two
documents containing the chosen figures. They were appointed
to describe the represented animal by providing a clear and short
description of their features, its possible outline on the image, and
its category.

5. RESULTS AND DISCUSSION

5.1. Gamified Activity
Following the preliminary experiment, we discuss the outcomes
and the feedback we collected, concerning the research questions
we wanted to address.

With respect to (Q1), aiming at assessing the role of the
specific picture used in generating bias in the player describing
the displayed object, we observed that (as expected) most of the
concrete details reported by each “annotation” group member
were represented in the picture, 73% for the crocodile and 97%
for the parrot (Table 1A). Within the same group, we outlined
a clear tendency to report “R” features first and forget about
features not represented within the picture. Indeed, 50% of the
participants provided no “NR” features for the partial image.
These observations are aligned with our initial thoughts and
expectations. When a person is asked to describe an entity, it
mainly attains to the particular representation provided in the
picture rather than the actual entity, even when it is well-known.
Moreover, we observed a significant difference in the ratio
between the amount of “NR” and concrete features collected for
the partial picture among the different experiments. In particular,
such proportion grew from 27% in the “Annotation” task to
34% in the “Gamified Activity (concrete).” Such a difference
is even more emphasized in the “Gamified Activity (general)”
experiment. We also identify a 50% increase in the total amount
of “NR” features collected by the “Gamified Activity (concrete)”
group with respect to the “annotation” one. Therefore, we may
argue that creating a sharp separation of roles and hiding the
picture from the gamified activity contributes to reducing the bias
it induces.

Regarding (Q2), we argue that our methodology is able to
identify more features w.r.t. a state of the art annotation method.
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TABLE 1 | The table represents the average and the sample m.s.e. per participant

for each feature type and for each picture.

(A) “Annotation” Group

Picture “R” Features “NR” Features “A” Features

Crocodile 3.6.7± 0.51 1.33± 1.63 1.5± 1.38

Parrot 5± 2 0.17± 0.48 2.17± 1.72

(B) “Gamified Activity (concrete)” Group

Picture “R” Features “NR” Features “A” Features

Crocodile 3.83± 1.94 2± 0.63 0.17± 0.41

Parrot 6± 0.89 0± 0 0.83± 0.41

(C) “Gamified Activity (generic)” Group

Picture “R” Features “NR” Features “A” Features

Crocodile 0.5± 0.55 1.17± 0.75 3.33± 0.81

Parrot 1.5± 0.55 0± 0 2.67± 1.51

The table is organized depending on the groups described in Section 4.

Indeed, when the participants were asked to focus on concrete
features (Table 1B), we observed a 20% increase in the number
of “R” features for the picture of the parrot and a 33% increase
in the number of “NR” features for the crocodile one, with
respect to the features identified by the “annotation” group by
using traditional methods. When analysing the outcomes of
the “gamified activity (general)” group, we identified a clear
tendency to ask questions about abstract features (e.g., “Is it
carnivorous?,” “is it oviparous?,” “Does it live in the Jungle?,”
“Is it able to speak?,” etc.) resulting in a 55% increase of
abstract features collected with respect to the “Annotation” task
(Table 1C). We believe such a behavior is strictly related to
humans’ capability to abstract concrete concepts and distinguish
similar entities through peculiar and selective features, which
(sometimes) are abstract. Questions on such selective features
even played a fundamental role in the “Gamified Activity
(concrete)” group, in which most people who had already
collected a lot of concrete features, at the end of the process
expressed the need to ask a few abstract questions to consolidate
and finalize the identification of the animal. Furthermore, we
believe that several descriptive dimensions, e.g., the selectivity
of the features, and the category of the entity affect such
behaviors.

We also collected some comments from the participants,
whose feedback would lead to a significant improvement of the
gamified activity. In particular, the following changes could be
applied

• Player 2 won’t provide annotations for the collected features
during the activity but only at the end. Such a change would
smooth the flow of the activity, making it quicker and even
more enjoyable for both players.

• At the end of the activity, both Player 1 and Player 2 will carry
out the Annotation Step, improving the consistency of the
results and the amount of data collected.

• At the end of the activity, both players will be shown the
picture of the entity to further enrich the collection of the
features they already identified by describing those they can
derive from the entity’s image.

In conclusion, we argue that our methodology extends
gamified visual annotation and labeling methods, like the ones
proposed in Runge et al. (2015) and Balayn et al. (2021a),
mitigating the bias caused by pictures by hiding them, allowing
an even more complete collection of features. Furthermore, our
methodology can be easily extended by introducing further rules
to shape and enhance its outcomes. Such an activity can be
employed to collect data about what the model should know
or should have learned about the entity. Such knowledge can
be compared with the outcomes of other explainability methods
to evaluate the difference between what the model knows and
what it should know. Such a comparison can be carried out both
for models learning from pictures of the entity - by comparing
the heat maps derived from the model and the annotated “R”
(and optionally “NR”) features—and textual descriptions of the
entity—comparing the outcomes of saliency-based analyses and
the collected features. Moreover, the collected knowledge could
be further combined to enhance the outcomes of non-textual,
local explainability methods or improve the textual description
of textual ones. In particular, non-abstract features annotated by
the crowd would be useful to describe pictures in which the same
feature is detected by other methods (e.g., heat maps, etc.), while
abstract details would be useful to complete textual descriptions,
making them more human-understandable and human-like.

5.2. Framework
We argue that our framework would facilitate and structure the
exchange of knowledge between the research community and
the crowd, leading to an overall improvement of the content
provided and the level of understanding of the engaged users.
Moreover, the presented crowdsourcing framework engages the
users on a different level with respect to other platforms mainly
based on extrinsic rewards. In particular, user education would
improve users’ awareness of what kind of knowledge an AI
system needs, learns, and produce, enhancing their efficiency and
shaping their mindset. Such a statement would also be amplified
when a long-term engagement of the users is achieved.

We are aware of the limitations implied by our framework,
namely the initial engagement gap, the necessity of keeping
the users and the researchers engaged, and the high level of
flexibility required to cover all the explainability-related aspects.
Gamification will be helpful to compensate for the first two
aspects, while the last one will be covered through an accurate
design of the proposed activities. In particular, the design will
include both extrinsic and intrinsic design elements to account
for both the initial and long-term engagement, respectively.
In particular, users’ side extrinsic design elements will consist
of points, activity leaderboards, achievements (i.e., status as a
reward), etc. Intrinsic design elements will be mainly associated
with the education aspect as it is strictly related to one of the
three innate psychological needs (Ryan and Deci, 2000), namely
Competence (i.e., people are wishful to learn new skills and
mastery tasks). On the other hand, we expect researchers to be
engaged as they trade their scientific knowledge for data for
their research. Moreover, developing a cooperative framework
is challenging, especially when users and researchers must be
engaged.We plan to engage users using renowned crowdsourcing
platforms for testing purposes, while the initial engagement on

Frontiers in Artificial Intelligence | www.frontiersin.org 7 April 2022 | Volume 5 | Article 82649954

https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org
https://www.frontiersin.org/journals/artificial-intelligence#articles


Tocchetti et al. EXP-Crowd: A Gamified Crowdsourcing Framework for Explainability

the final release will be performed through the university and
researchers’ network.

6. CONCLUSIONS AND FUTURE WORKS

We presented the preliminary design of a crowdsourcing
framework to create a cooperative cycle in which the crowd is
taught about explainability-related topics and provides valuable
content to AI practitioners. Gamification is applied to empower
engagement and drive user behavior. The design and the
preliminary evaluation of a gamified data collection activity
is also provided. We argue that our research would improve
the quality of the data collected to evaluate and enhance the
explainability of black-box models. Future work will involve the
improving of the design of both the presented activity—following
the discussed changes—and the framework. We plan to execute
further experiments to generalize the results on effectiveness
and efficiency of our method, and to release an opensource
crowdsourcing platform, which may be adopted by the broader
research community.
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We propose a novel three-stage FIND-RESOLVE-LABEL workflow for crowdsourced

annotation to reduce ambiguity in task instructions and, thus, improve annotation quality.

Stage 1 (FIND) asks the crowd to find examples whose correct label seems ambiguous

given task instructions. Workers are also asked to provide a short tag that describes the

ambiguous concept embodied by the specific instance found. We compare collaborative

vs. non-collaborative designs for this stage. In Stage 2 (RESOLVE), the requester selects

one or more of these ambiguous examples to label (resolving ambiguity). The new label(s)

are automatically injected back into task instructions in order to improve clarity. Finally, in

Stage 3 (LABEL), workers perform the actual annotation using the revised guidelines with

clarifying examples. We compare three designs using these examples: examples only,

tags only, or both. We report image labeling experiments over six task designs using

Amazon’s Mechanical Turk. Results show improved annotation accuracy and further

insights regarding effective design for crowdsourced annotation tasks.

Keywords: crowdsourcing, annotation, labeling, guidelines, ambiguity, clarification, machine learning,

artificial intelligence

1. INTRODUCTION

While crowdsourcing now enables labeled data to be obtained more quickly, cheaply, and easily
than ever before (Snow et al., 2008; Sorokin and Forsyth, 2008; Alonso, 2015), ensuring data
quality remains something of an art, challenge, and perpetual risk. Consider a typical workflow
for annotating data on Amazon Mechanical Turk (MTurk): a requester designs an annotation task,
asksmultiple workers to complete it, and then post-processes labels to induce final consensus labels.
Because the annotation work itself is largely opaque, with only submitted labels being observable,
the requester typically has little insight into what if any problems workers encounter during
annotation.While statistical aggregation (Hung et al., 2013; Sheshadri and Lease, 2013; Zheng et al.,
2017) and multi-pass iterative refinement (Little et al., 2010a; Goto et al., 2016) methods can be
employed to further improve initial labels, there are limits to what can be achieved by post-hoc
refinement following label collection. If initial labels are poor because many workers were confused
by incomplete, unclear, or ambiguous task instructions, there is a significant risk of “garbage in
equals garbage out” (Vidgen and Derczynski, 2020).
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In contrast, consider a more traditional annotation workflow
involving trusted annotators, such as practiced by the Linguistic
Data Consortium (LDC) (Griffitt and Strassel, 2016). Once
preliminary annotation guidelines are developed, an iterative
process ensues in which: (1) a subset of data is labeled
based on current guidelines; (2) annotators review corner cases
and disagreements, review relevant guidelines, and reach a
consensus on appropriate resolutions; (3) annotation guidelines
are updated; and (4) the process repeats. In comparison to the
simple crowdsourcing workflow above, this traditional workflow
iteratively debugs and refines task guidelines for clarity and
completeness in order to deliver higher quality annotations.
However, it comes at the cost of more overhead, with a
heavier process involving open-ended interactions with trusted
annotators. Could we somehow combine these for the best of
both worlds?

In this study, we propose a novel three-stage FIND-
RESOLVE-LABEL design pattern for crowdsourced annotation
which strikes a middle-ground between the efficient
crowdsourcing workflow on one hand and the high quality
LDC-style workflow on the other. Similar to prior study
(Gaikwad et al., 2017; Bragg andWeld, 2018; Manam and Quinn,
2018), we seek to design a light-weight process for engaging the
workers themselves to help debug and clarify the annotation
guidelines. However, existing approaches typically intervene
in a reactive manner after the annotation process has started,
or tend to be constrained to a specific dataset or refinement of
textual instruction only. By contrast, our approach is proactive
and open-ended. It leverages crowd workers’ unconstrained
creativity and intelligence to identify ambiguous examples
through an Internet search on the Internet and enriches task
instructions with these concrete examples proactively upfront
before the annotation process commences. Overall, we envision
a partnership between the requester and workers in which
each party has complementary strengths and responsibilities
in the annotation process, and we seek to maximize the
relative strengths of each party to ensure data quality while
preserving efficiency.

Figure 1 depicts our overall workflow. In Stage 1 (FIND),
workers are shown initial guidelines for an annotation task and
asked to search for data instances that appear ambiguous given
the guidelines. For each instance workers find, they are also asked
to provide a short tag that describes the concept embodied by
the specific instance which is ambiguous given the guidelines.
Next, in Stage 2 (RESOLVE), the requester selects one or more of
the ambiguous instances to label as exemplars. Those instances
and their tags are then automatically injected back into the
annotation guidelines in order to improve clarity. Finally, in Stage
3 (LABEL), workers perform the actual annotation using the
revised guidelines with clarifying examples. The requester can
run the LABEL stage on a sample of data, assess label quality,
and then decide how to proceed. If quality is sufficient, the
remaining data can simply be labeled according to the guidelines.
Otherwise, Stages 1 and 2 can be iterated in order to further refine
the guidelines.

To evaluate our three-stage task design, we construct six
different image labeling tasks with different levels of difficulty and

intuitiveness. We construct a test dataset that contains different
ambiguous and unambiguous concepts. Starting from simple
and possibly ambiguous task instructions, we then improve
instructions via our three-stage workflow. Given expert (gold)
labels for our dataset for each of the six tasks, we can evaluate
howwell-revised instructions compare to original instructions by
measuring the accuracy of the labels obtained from the crowd.

1.1. Contributions
We provide initial evidence suggesting that the crowd can find
and provide useful ambiguous examples which can be used
to further clarify task instructions and that these examples
may have the potential to be utilized to improve annotation
accuracy. Our experiments further seem to suggest that workers
can perform better when shown key ambiguous examples as
opposed to randomly chosen examples. Finally, we provide an
analysis of workers’ performance for different intents of the same
classification task and different concepts of ambiguity within
each intent.

Our article is organized as follows. Section 2 presents
Motivation and Background. Next, section 3 details our 3-Stage
FIND-RESOLVE-LABEL workflow. Next, section 4 explains our
experimental setup. Section 5 then presents the results. Finally,
section 6 discusses conclusions and future directions.

2. MOTIVATION AND BACKGROUND

Consider the task of labeling images for object detection. For
example, on MTurk one might post a task such as, “Is there a
dog in this image?” Such a task appears to be quite simple, but is
it? For example, is a wolf a dog? What about more exotic and
unusual wild breeds of dogs? Does the dog need to be a real
animal or merely a depiction of one? What about a museum
model of an ancient but extinct dog breed, or a realistic wax
sculpture What if the dog is only partially visible in the image?
Ultimately, what is it that the requester really wants? For example,
a requester interested in anything and everything dog-related
might have very liberal inclusion criteria. On the other hand,
a requester training a self-driving car might only care about
animals to be avoided, while someone training a product search
engine for an e-commerce site might want to include dog-style
children’s toys (Kulesza et al., 2014).

As this seemingly simple example illustrates, annotation tasks
that seem straightforward to a requester may in practice embody
a variety of subtle nuances and ambiguities to be resolved. Such
ambiguities can arise for many reasons. The requester may have
been overly terse or rushed in posting a task. They may believe
the task is obvious and that no further explanation should be
needed. They likely also have their own implicit biases (of which
theymay be unaware) that provide a different internal conception
of the task than others might have. For example, the requester
might be ignorant of the domain (e.g., is a wolf a type of dog?) or
have not fully defined what they are looking for. For example, in
information retrieval, users’ own conception and understanding
of what they are looking for often evolve during the process
of search and browsing (Cole, 2011). We describe our own
experiences with this in section 5.1.1. Annotators, on the other
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FIGURE 1 | Our Three-Stage FIND-RESOLVE-LABEL workflow is shown above. Stage 1 (FIND) asks the crowd to find examples whose correct label seems

ambiguous given the task instructions (e.g., using external Internet search or database lookup). In Stage 2 (RESOLVE), the requester selects and labels one or more of

these ambiguous examples. These are then automatically injected back into task instructions in order to improve clarity. Finally, in Stage 3 (LABEL), workers perform

the actual annotation using the revised guidelines with clarifying examples. If Stage 3 labeling quality is insufficient, we can return to Stage 1 to find more ambiguous

examples to further clarify instructions.

hand, also bring with them their own variety of implicit biases
which the requester may not detect or understand (Ipeirotis et al.,
2010; Sen et al., 2015; Dumitrache et al., 2018; Geva et al., 2019;
Al Kuwatly et al., 2020; Fazelpour and De-Arteaga, 2022).

2.1. Helping Requesters Succeed
2.1.1. Best Practices
A variety of tutorials, surveys, introductions, and research articles
offer how-to advice for successful microtask crowdsourcing with
platforms such as MTurk (Jones, 2013; Marshall and Shipman,
2013; Egelman et al., 2014; Kovashka et al., 2016). For example, it
is often recommended that requesters invest time browsing and
labeling some data themselves before launching a task in order to
better define and debug it (Alonso, 2015). Studies have compared
alternative task designs to suggest best practices (Grady and
Lease, 2010; Kazai et al., 2011; Papoutsaki et al., 2015; Wu and
Quinn, 2017).

2.1.2. Templates and Assisted Design
Rather than start task design from scratch, MTurk offers
templates and has suggested that requesters share successful
templates for others’ use (Chen et al., 2011). Similarly, classic
research on software design patterns (Gamma et al., 1995)
has inspired ideas for similar crowdsourcing design patterns
which could be reused across different data collection tasks.
For example, FIND-FIX-VERIFY (Bernstein et al., 2010) is a
well-known example that partially inspired our study. Other
researchers have suggested improved tool support for workflow

design (Kittur et al., 2012) or engaging the crowd itself in task
design or decomposition (Kittur et al., 2011; Kulkarni et al.,
2012a).

2.1.3. Automating Task Design
Other researchers have gone further still to propose new
middleware and programmable APIs to let requesters define tasks
more abstractly and leave some design and management tasks to
the middleware (Little et al., 2010b; Ahmad et al., 2011; Franklin
et al., 2011; Barowy et al., 2016; Chen et al., 2016).

2.2. Understanding Disagreement
2.2.1. Random Noise vs. Bias
Since annotators are human, even trusted annotators will
naturally make mistakes from time to time. Fortunately, random
error is exactly the kind of disagreement that aggregation
(Hung et al., 2013; Sheshadri and Lease, 2013) can easily
resolve; assuming such mistakes are relatively infrequent and
independent, workers will rarely err at the same instance, and
therefore, techniques as simple as majority voting can address
random noise. On the other hand, if workers have individual
biases, they will make consistent errors; e.g., a teenager vs. a
protective parent might have liberal vs. conservative biases in
rating movies (Ipeirotis et al., 2010). In this case, it is useful to
detect such consistent biases and re-calibrate worker responses
to undo such biases. Aggregation can also work provided that
workers do not share the same biases. However, when workers do
share systematic biases, the independence assumption underlying
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aggregation is violated, and so aggregation can amplify bias rather
than resolve it. Consequently, it is important that task design
annotation guidelines should be vetted to ensure they identify
cases in which annotator biases conflict with desired labels and
particularly establish clear expectations for how such cases should
be handled (Draws et al., 2021; Nouri et al., 2021b).

2.2.2. Objective vs. Subjective Tasks
In fully-objective tasks, we assume each question has a single
correct answer, and any disagreement with the gold standard
reflects error. Label aggregation methods largely operate in this
space. On the other extreme, purely-subjective (i.e., opinion)
tasks permit a wide range of valid responses with little
expectation of agreement between individuals (e.g., asking about
one’s favorite color or food). Between these simple extremes,
however, lies a wide, interesting, and important space of partially-
subjective tasks in which answers are only partially-constrained
(Tian and Zhu, 2012; Sen et al., 2015; Nguyen et al., 2016). For
example, consider rating item quality: while agreement tends
to be high for items having extremely good or bad properties,
instances with more middling properties naturally elicit a wider
variance in opinion. In general, because subjectivity permits a
valid diversity of responses, it can be difficult to detect if an
annotator does not undertake a task in good faith, complicating
quality assurance.

2.2.3. Difficulty vs. Ambiguity
Some annotation tasks are more complex than others, just as
some instances within each task are more difficult to label
than other instances. A common concern with crowdsourcing is
whether inexpert workers have sufficient expertise to successfully
undertake a given annotation task. Intuitively, more guidance
and scaffolding are likely necessary with more skilled tasks
and fewer expert workers (Huang et al., 2021). Alternatively,
if we use sufficiently expert annotators, we assume difficult
cases can be handled (Retelny et al., 2014; Vakharia and Lease,
2015). With ambiguity, on the other hand, it would be unclear
even to an expert what to do. Ambiguity is an interaction
between data instances and annotation guidelines; effectively, an
ambiguous instance is a corner-case with respect to guidelines.
Aggregation can helpfully identify themajority interpretation but
that interpretation may or may not be what is actually desired.
Both difficult and ambiguous cases can lead to label confusion.
Krivosheev et al. (2020) developed mechanisms to efficiently
detect label confusion in classification tasks and demonstrated
that alerting workers of the risk of confusion can improve
annotation performance.

2.2.4. Static vs. Dynamic Disagreement
As annotators undertake a task, their understanding of work
evolves as they develop familiarity with both the data and
the guidelines. In fact, prior study has shown that annotators
interpret and implement task guidelines in different ways as
annotation progresses (Scholer et al., 2013; Kalra et al., 2017).
Consequently, different sorts of disagreement can occur at
different stages of annotation. Temporally-aware aggregation
can partially ameliorate this (Jung and Lease, 2015), as can

implementing data collection processes to train, “burn-in,”
or calibrate annotators, controlling, and/or accelerating their
transition from an initial learning state into a steady state
(Scholer et al., 2013). For example, we emphasize identifying key
boundary cases and expected labels for them.

2.3. Mitigating Imperfect Instructions
Unclear, confusing, and ambiguous task instructions are
commonplace phenomena on crowdsourcing platforms
(Gadiraju et al., 2017; Wu and Quinn, 2017). In early study,
Alonso et al. (2008) recommended collecting optional, free-form,
task-level feedback from workers. While Alonso et al. (2008)
found that some workers did provide example-specific feedback,
the free-form nature of their feedback request elicited a variety
of response types, which is difficult to check or to invalidate
spurious responses. Alonso et al. (2008) also found that requiring
such feedback led many workers to submit unhelpful text that
was difficult to automatically cull. Such feedback was, therefore,
recommended to be kept entirely optional.

While crowd work is traditionally completed independently
to prevent collusion and enable statistical aggregation of
uncorrelated work (Hung et al., 2013; Sheshadri and Lease, 2013;
Zheng et al., 2017), a variety of work has explored collaboration
mechanisms by which workers might usefully help each other
complete a task more effectively (Dow et al., 2012; Kulkarni
et al., 2012b; Drapeau et al., 2016; Chang et al., 2017; Manam
and Quinn, 2018; Schaekermann et al., 2018; Chen et al., 2019;
Manam et al., 2019).

Drapeau et al. (2016) proposed an asynchronous two-stage
Justify-Reconsider method. In the Justify task, workers provide a
rationale along with their answer referring to the task guidelines
taught during training. For the Reconsider task, workers
are confronted with an argument for the opposing answer
submitted by another worker and then asked to reconsider (i.e.,
confirm or change) their original answer. The authors report
that their Justify-Reconsider method generally yields higher
accuracy but that requesting justifications requires additional
cost. Consequently, they find that simply collecting more crowd
annotations yields higher accuracy in a fixed-budget setting.

Chang et al. (2017) proposed a three-step approach in which
crowd workers label the data, provide justifications for cases
in which they disagree with others, and then review others’
explanations. They evaluate their method on an image labeling
task and report that requesting only justifications (without
any further processing) does not increase the crowd accuracy.
Their open-ended text responses can be subjective and difficult
to check.

Kulkarni et al. (2012b) provide workers with a chat feature that
supports workers in dealing with inadequate task explanations,
suggesting additional examples to be given to requesters, teaching
other workers how to use the UI, and verifying their hypotheses
of the underlying task intent. Schaekermann et al. (2018)
investigate the impact of discussion among crowd workers on
the label quality using a chat platform allowing synchronous
group discussion. While the chat platform allows workers to
better express their justification than text excerpts, the discussion
increases task completion times. In addition, chatting does not
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impose any restriction on the topic, limiting discussion from
unenthusiastic workers and efficacy. Chen et al. (2019) also
proposed a workflow allowing simultaneous discussion among
crowd workers, and designed task instructions and a training
phase to achieve effective discussions. While their method yields
high labeling accuracy, the increased cost due to the discussion
limits its task scope. Manam and Quinn (2018) evaluated both
asynchronous and synchronous Q&A between workers and
requesters to allow workers to ask questions to resolve any
uncertainty about overall task instructions or specific examples.
Bragg and Weld (2018) proposed an iterative workflow in
which data instances with the low inter-rater agreement are
put aside and either used as difficult training examples (if
considered resolvable with respect to the current annotation
guidelines) or used to refine the current annotation guidelines (if
considered ambiguous).

Other study has explored approaches to address ambiguities
even before the annotation process commences. For example,
Manam et al. (2019) proposed a multi-step workflow enlisting
the help of crowd workers to identify and resolve ambiguities
in textual instructions. Gadiraju et al. (2017) and Nouri et al.
(2021a) both developed predictive models to automatically score
textual instructions for their overall level of clarity and Nouri
et al. (2021b) proposed an interactive prototype to surface the
predicted clarity scores to requesters in real-time as they draft
and iterate on the instructions. Our approach also aims to
resolve ambiguities upfront but focuses on identifying concrete
visual examples of ambiguity and automatically enriching the
underlying set of textual instructions with those examples.

Ambiguity arises from the interaction between annotation
guidelines and particular data instances. Searching for ambiguous
data instances within large-scale datasets or even the Internet
can amount to finding a needle in a haystack. There exists
an analogous problem of identifying “unknown unknowns”
or “blind spots” of machine learning models. Prior study has
proposed crowdsourced or hybrid human-machine approaches
for spotting and mitigating model blind spots (Attenberg
et al., 2011; Vandenhof, 2019; Liu et al., 2020). Our study
draws inspiration from these workflows. We leverage the scale,
intelligence, and common sense of the crowd to identify
potential ambiguities within annotation guidelines and may,
thus, aid in the process of mitigating blind spots in downstream
model development.

2.4. Crowdsourcing Beyond Data Labeling
While data labeling represents the most common use of
crowdsourcing in regard to training and evaluating machine
learning models, human intelligence can be tapped in a much
wider and more creative variety of ways. For example, the crowd
might verify output from machine learning models, identify, and
categorize blind spots (Attenberg et al., 2011; Vandenhof, 2019)
and other failure modes (Cabrera et al., 2021), and suggest useful
features for a machine learning classifier (Cheng and Bernstein,
2015).

One of the oldest crowdsourcing design patterns is utilizing
the scale of the crowd for efficient, distributed exploration or
filtering of large search spaces. Classic examples include the

search for extraterrestrial intelligence1, for Jim Gray’s sailboat
(Vogels, 2007) or other missing people (Wang et al., 2010), for
DARPA’s red balloons (Pickard et al., 2011), for astronomical
events of interest (Lintott et al., 2008), and for endangered
wildlife (Rosser and Wiggins, 2019) or bird species (Kelling
et al., 2013). Across such examples, what is being sought must
be broadly recognizable so that the crowd can accomplish the
search task without the need for subject matter expertise (Kinney
et al., 2008). In the 3-stage FIND-FIX-VERIFY crowdsourcing
workflow (Bernstein et al., 2010), the initial FIND stage directs
the crowd to identify “patches” in an initial text draft where more
work is needed.

Our asking the crowd to search for ambiguous examples given
task guidelines further explores the potential of this same crowd
design pattern for distributed search. Rather than waiting for
ambiguous examples to be encountered by chance during the
annotation process, we instead seek to rapidly identify corner-
cases by explicitly searching for them.We offload to the crowd the
task of searching for ambiguous cases, and who better to identify
potentially ambiguous examples than the same workforce that
will be asked to perform the actual annotation? At the same
time, we reduce requester work, limiting their effort to labeling
corner-cases rather than adjusting the textual guidelines.

3. WORKFLOW DESIGN

In this study, we propose a three-stage FIND-RESOLVE-
LABEL workflow for clarifying ambiguous corner cases in
task instructions, investigated in the specific context of a
binary image labeling task. An illustration of the workflow is
shown in Figure 1. In Stage 1 (FIND), workers are asked to
proactively collect ambiguous examples and concept tags given
task instructions (section 3.1). Next, in Stage 2 (RESOLVE),
the requester selects and labels one or more of the ambiguous
examples found by the crowd. These labeled examples are then
automatically injected back into task instructions in order to
improve clarity (section 3.2). Finally, in Stage 3 (LABEL), workers
perform the actual annotation task using the revised guidelines
with clarifying examples (section 3.3). Requesters run the final
LABEL stage on a sample of data, assess label quality, and then
decide how to proceed. If quality is sufficient the remaining data
can be labeled according to the current revision of the guidelines.
Otherwise, Stages 1 and 2 can be repeated in order to further
refine the clarity of annotation guidelines.

3.1. Stage 1: Finding Ambiguous Examples
In Stage 1 (FIND), workers are asked to collect ambiguous
examples given the task instructions. For each ambiguous
example, workers are also asked to generate a concept tag. The
concept tag serves multiple purposes. First, it acts as a rationale
(McDonnell et al., 2016; Kutlu et al., 2020), requiring workers to
justify their answers and thus nudging them toward high-quality
selections. Rationales also provide a form of transparency to help
requesters better understand worker intent. Second, the concept
tag provides a conceptual explanation of the ambiguity which

1https://setiathome.berkeley.edu/.
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FIGURE 2 | In the Stage 1 (FIND) task, workers are asked to search for examples they think would be ambiguous given task instructions. In this case, “Is there a dog

in this image?” In collaboration conditions (section 3.1.1), workers will see additional ambiguous examples found by past workers.

can then be re-injected into annotation guidelines to help explain
corner cases to future workers.

Figure 2 shows themain task interface for Stage 1 (FIND). The
interface presents the annotation task (e.g., “Is there a dog in this
image?”) and asks workers: “Can you find ambiguous examples for
this task?” Pilot experiments revealed that workers had difficulty
understanding the task based on this textual prompt alone.
We, therefore, make the additional assumption that requesters

provide a single ambiguous example to clarify the FIND task
for workers. For example, the FIND stage for a dog annotation
task could show the image of a Toy Dog as an ambiguous seed
example. Workers are then directed to use Google Image Search
to find these ambiguous examples. Once an ambiguous image is
uploaded, another page (not shown) asks workers to provide a
short concept tag summarizing the type of ambiguity represented
by the example (e.g., Toy Dog).
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3.1.1. Exploring Collaboration
To investigate the potential value of worker collaboration in
finding higher quality ambiguities, we explore a light-weight,
iterative design in which workers do not directly interact with
each other, but are shown examples found by past workers (in
addition to the seed example provided by the requester). For
example, worker 2 would see an example selected by worker 1,
and worker 3 would see examples found by workers 1 and 2,
etc. Our study compares three different collaboration conditions
described in section 4.4.1 below.

3.2. Stage 2: Resolving Ambiguous
Examples
After collecting ambiguous examples in Stage 1 (FIND), the
requester then selects and labels one or more of these examples.
The requester interface for Stage 2 (RESOLVE) is shown in
Figure 3. Our interface design affords a low-effort interaction in
which requesters toggle examples between three states viamouse
click: (1) selected as a positive example, (2) selected as a negative
example, (3) unselected. Examples are unselected by default. The
selected (and labeled) examples are injected back into the task
instructions for Stage 3 (LABEL).

3.3. Stage 3: Labeling With Clarifying
Examples
Best practices suggest that along with task instructions, requesters
should include a set of examples and their correct annotations
(Wu and Quinn, 2017). We automatically append to task
instructions the ambiguous examples selected by the requester in
Stage 2 (RESOLVE), along with their clarifying labels (Figure 4).
Positive examples are shown first (“you should select concepts like
these”), followed by negative examples (“and NOT select concepts
like these”). Note that this stage does not require additional effort
(e.g., instruction drafting) from the side of the requester because
it merely augments the pre-existing task instruction template
with the resulting list of clarifying examples.

4. METHODS

Experiments were conducted in the context of binary image
classification. In particular, we designed six annotation tasks
representing different variations of labeling for the presence
or absence of dog-related concepts. Similar to prior study
by Kulesza et al. (2014), we found this seemingly simplistic
domain effective for our study because non-expert workers bring
prior intuition as to how the classification could be done, but
the task is characterized by a variety of subtle nuances and
inherent ambiguities. We employed a between-subjects design in
which each participant was assigned to exactly one experimental
condition to avoid potential learning effects. This design was
enforced using “negative” qualifications (Amazon Mechanical
Turk, 2017) preventing crowd workers from participating in
more than a single task. For the purpose of experimentation,
authors acted as requesters. This included the specification of task
instructions and intents and performing Stage 2 (RESOLVE), i.e.,
selecting clarifying examples for use in Stage 3 (LABEL).

4.1. Participant Recruitment and Quality
Control
We recruited participants on Amazon’s Mechanical Turk using
workers from the US who had completed at least 1,000 tasks
with a 95% acceptance rate. This filter served as a basic quality
assurance mechanism to increase the likelihood of recruiting
good-faith workers over “spammers.” No further quality control
mechanism was employed in our study to emulate imperfect,
yet commonplace crowdsourcing practices for settings where
definitive gold standard examples are not readily available for
quality assessment. For ecological validity, we opted to not
collect demographic information about participants prior to the
annotation tasks.

4.2. Dataset
All experiments utilized the same set of 40 images. The image
set was designed to encompass both easy, unambiguous cases
and a range of difficult, ambiguous cases with respect to the
question “Is there a dog in this image?” We first assembled a
set of candidate images using a combination of (1) an online
image search conducted by the authors to identify a set of clear
positive and clear negative examples, (2) the Stage 1 (FIND)
mechanism in which crowd workers on Amazon’s Mechanical
Turk identified difficult, ambiguous cases. Similar to Kulesza et al.
(2014), we identified a set of underlying, dog-related categories
via multiple passes of structured labeling on the data. From this
process, 11 categories of dog-related concepts emerged: (1) dogs,
(2) small dog breeds, (3) similar animals (easy to confuse with
dogs), (4) cartoons, (5) stuffed toys, (6) robots, (7) statues, (8)
dog-related objects (e.g., dog-shaped cloud), (9) miscellaneous
(e.g., hot dog, the word “dog”), (10) different animals (difficult to
confuse with dogs), and (11) planes (the easiest category workers
should never confuse with dogs). Each image was assigned to
exactly one category.

4.3. Annotation Tasks
When users of a search engine type in the query “apple,” are
they looking for information about the fruit, the company, or
something else entirely? Despite the paucity of detail provided
by a typical terse query, search result accuracy is assessed
based on how well results match the user’s underlying intent.
Similarly, requesters on crowdsourcing platforms expect workers
to understand the annotation “intent” underlying the explicit
instructions provided. Analogously, worker accuracy is typically
evaluated with respect to how well-annotations match that
requester’s intent even if instructions are incomplete, unclear,
or ambiguous.

To represent this common scenario, we designed three
different annotation tasks. For each task, the textual instructions
exhibit a certain degree of ambiguity such that adding clarifying
examples to instructions can help clarify requester intent
to workers.

For each of the three tasks, we also selected two different
intents, one more intuitive than the other in order to assess the
effectiveness of our workflow design under intents of varying
intuitiveness. In other words, we intentionally included one
slightly more esoteric intent for each task hypothesizing that
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FIGURE 3 | For Stage 2 (RESOLVE), our interface design lets a requester easily select and label images. Each mouse click on an example toggles between

unselected, selected positive, and selected negative states.

these would require workers to adapt to classification rules in
conflict with their initial assumptions about requester intent. For
each intent below, we list the categories constituting the positive
class. All other categories are part of the negative class for the
given intent.

For each of our six binary annotation tasks below, we
partitioned examples into positive vs. negative classes given the
categories included in the intent. We then measured worker
accuracy in correctly labeling images according to positive and
negative categories for each task.

4.3.1. Task 1: Is There a Dog in This Image?
Intent a (more intuitive): dogs, small dog breeds

Intent b (less intuitive): dogs, small dog breeds, similar
animals. Scenario: The requester intends to train a machine
learning model for avoiding animals and believes the model may
also benefit from detecting images of wolves and foxes.

4.3.2. Task 2: Is There a Fake Dog in This Image?
Intent a (more intuitive): similar animals. Scenario: The
requester is looking for animals often confused with dogs.

Intent b (less intuitive): cartoons, stuffed toys, robots, statues,
objects. Scenario: The requester is looking for inanimate objects
representing dogs.

4.3.3. Task 3: Is There a Toy Dog in This Image?
Intent a (less intuitive): small dog breeds. Scenario: Small dogs,
such as Chihuahua or Yorkshire Terrier, are collectively referred
to as “toy dog” breeds2. However, this terminology is not
necessarily common knowledge making this intent less intuitive.

Intent b (more intuitive): stuffed toys, robots. Scenario: The
requester is looking for children’s toys, e.g., to train a model for
an e-commerce site.

4.4. Evaluation
4.4.1. Qualitative Evaluation of Ambiguous Examples

From Stage 1 (FIND)
For Stage 1 (FIND), we evaluated crowd workers’ ability to
find ambiguous images and concept tags for Task 1: “Is there
a dog in this image?”. Through qualitative coding, we analyzed
worker submissions based on three criteria: (1) correctness; (2)
uniqueness; and (3) usefulness.

Correctness captures our assessment of whether the worker
appeared to have understood the task correctly and submitted a
plausible example of ambiguity for the given task. Any incorrect
examples were excluded from consideration for uniqueness
or usefulness.

Uniqueness captures our assessment of how many distinct
types of ambiguity workers found across correct examples. For

2https://en.wikipedia.org/wiki/Toy_dog.
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FIGURE 4 | For Stage 3 (LABEL), we combine the ambiguous instances and/or tags collected in Stage 1 (FIND) with the requester labels from Stage 2 (RESOLVE)

and automatically inject the labeled examples back into task instructions.

example, we deemed “Stuffed Dog” and “Toy Dog” sufficiently
close as to represent the same concept.

Usefulness captures our assessment of which of the unique
ambiguous concepts found were likely to be useful in the
annotation. For example, while an image of a hot dog is valid
and unique, it is unlikely that many annotators would find it
ambiguous in practice.

Our study compares two different collaboration conditions for
Stage 1 (FIND). In both conditions, workers were shown one or
more ambiguous examples with associated concept tags and were
asked to add another, different example of ambiguity, along with
a concept tag for that new example:

1. No collaboration. Each worker sees the task interface seeded
with a single ambiguous example and its associated concept
tag provided by the requester. Workers find additional
ambiguous examples independently from other workers.

2. Collaboration. Workers see all ambiguous examples and
their concept tags previously found by other workers. There
is no filtering mechanism involved, so workers may be
presented with incorrect and/or duplicated examples. This
workflow configuration amounts to a form of unidirectional,
asynchronous communication among workers.

For both collaboration conditions, a total of 15 ambiguous
examples (from 15 unique workers) were collected and evaluated
with respect to the above criteria.

4.4.2. Quantitative Evaluation of Example

Effectiveness in Stage 3 (LABEL)
To evaluate the effectiveness of enriching textual instructions
with ambiguous examples from Stage 1 (FIND) and to assess the
relative utility of presenting workers with images and/or concept
tags from ambiguous examples, we compared the following five
conditions. The conditions varied in how annotation instructions
were presented to workers in Stage 3 (LABEL):

1. B0: No examples were provided along with
textual instructions.

2. B1: A set of randomly chosen examples were provided along
with textual instructions.

3. IMG: Only images (but no concept tags) of ambiguous
examples were shown to workers along with
textual instructions.

4. TAG: Only concept tags (but no images) of ambiguous
examples were shown to workers along with
textual instructions.

5. IMG+TAG: Both images and concept tags of
ambiguous examples were shown to workers along with
textual instructions.

Each of the five conditions above was completed by nine unique
workers. Each task consisted of classifying 10 images. Workers
were asked to classify each of the 10 images into either the positive
or the negative class.
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FIGURE 5 | Ambiguous examples and concept tags provided by workers in Stage 1 (FIND) for the task “Is there a dog in this image?” We capitalize tags here for

presentation but use raw worker tags without modification in our evaluation.

5. RESULTS

5.1. Can Workers Find Ambiguous
Concepts?
In this section, we provide insights from pilots of Stage 1
(FIND) followed by a qualitative analysis of ambiguous examples
identified by workers in this stage.

5.1.1. Pilot Insights

5.1.1.1. Task Design
Initial pilots of Stage 1 (FIND) revealed two issues: (1) duplicate
concepts, and (2) misunderstanding of the task. Some easy-
to-find and closely related concepts were naturally repeated
multiple times. One type of concept duplication was related
to the seed example provided by requesters to clarify the task
objective. In particular, some workers searched for additional
examples of the same ambiguity rather than finding distinct
instances of ambiguity. Another misunderstanding led some
workers to submit generally ambiguous images, i.e., similar to
Google Image Search results for search term “ambiguous image,”
rather than images that were ambiguous relative to the specific
task instruction “Is there a dog in this image?” We acknowledge
that our own task design was not immune to ambiguity, so we

incorporated clarifications to instruct workers to find ambiguous
examples distinct from the seed example and specific to the task
instructions provided.

5.1.1.2. Unexpected Ambiguous Concepts
However, our pilots also revealed workers’ ability to identify
surprising examples of ambiguous concepts we had not
anticipated. Some of these examples were educational and helped
the paper authors learn about the nuances of our task. For
example, one worker returned an image of a Chihuahua (a small
dog breed) along with the concept tag “toy dog.” In trying to
understand the worker’s intent, we learned that the term “toy
dog” is a synonym for small dog breeds (see text footnote 2). Prior
to that, our interpretation of the “toy dog” concept was limited
to children’s toys. This insight inspired Task 3 (“Is there a toy
dog in this image?”) with two different interpretations (section
4.3). Another unexpected ambiguous example was the picture
of a man (Figure 5). We initially jumped to the conclusion
that the worker’s response was spam, but on closer inspection
discovered that the picture displayed reality show celebrity “Dog
the Bounty Hunter”3 These instances are excellent illustrations of

3http://www.dogthebountyhunter.com.
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TABLE 1 | Percentage of correct, unique, and useful examples from Stage 1

(FIND).

Correct Unique Useful

No collaboration 60.0 26.7 26.7

Collaboration 93.0 40.0 33.3

The bold value indicates the largest values per column.

the possibility that crowd workers may interpret task instructions
in valid and original ways entirely unanticipated by requesters.

5.1.2. Qualitative Assessment of Example

Characteristics
We employed qualitative coding to assess whether worker
submissions met each of the quality criteria (Correctness,
Uniqueness, and Usefulness). Table 1 shows the percentage
of ambiguous examples meeting these criteria for the two
conditions with and without collaboration, respectively. Our
hypothesis that collaboration among workers can help produce
higher quality ambiguous examples is supported by our results.
Results show that, compared to no collaboration, a collaborative
workflow produced substantially greater proportions of correct
(93 vs. 60%), unique (40 vs. 27%), and useful (33 vs. 27%)
ambiguous examples. A potential explanation for this result
is that exposing workers to a variety of ambiguous concepts
upfront may assist them in exploring the space of yet uncovered
ambiguities more effectively.

5.2. Can Ambiguous Examples Improve
Annotation Accuracy?
Next, we report quantitative results on how ambiguous
examples—found in Stage 1 and selected and labeled in
Stage 2—can be used as instructional material to improve
annotation accuracy in Stage 3. We also provide an analysis of
annotation errors.

5.2.1. Effectiveness of Ambiguous Examples
Our hypothesis is that these examples can be used to help
delineate the boundary of our annotation task and, hence, teach
annotation guidelines to crowd workers better than randomly
chosen examples. Table 2 reports crowd annotation accuracy for
each of the six tasks broken down by experimental condition.

5.2.1.1. Using Examples to Teach Annotation Guidelines
Intuitively, providing examples to workers helps them to better
understand the intended labeling task (Wu and Quinn, 2017).
Comparing designs B0 and B1 in Table 2, we clearly see that
providing examples (B1) almost always produces more accurate
labeling than a design that provides no examples (B0). In addition
to this, the IMG design performs better than B1. This shows that
the kind of examples that are provided is also important. Showing
ambiguous examples is clearly superior to showing randomly
chosen examples. This supports our hypothesis: ambiguous
examples appear to delineate labeling boundaries for the task
better than random examples.

5.2.1.2. Instances vs. Concepts
Best practices suggest that requesters provide examples when
designing their tasks (Wu and Quinn, 2017). We include this
design in our evaluation as B1. An alternate design is to show
concepts as examples instead of specific instances; this is our
design TAG, shown in Table 2. For example, for the task “Is
there a Dog in this image?”, instead of showing a dog statue
image, we could simply provide the example concept “Inanimate
Objects” should be labeled as NO. Results in Table 2 show that
TAG consistently outperforms IMG, showing that teaching via
example concepts can be superior to teach via example instances.

5.2.1.3. Concepts Only vs. Concepts and Examples
Surprisingly, workers who were presented shown only the
concept tags performed better than workers who were shown
concept tags along with an example image for each concept.
Hence, the particular instance chosen may not represent the
concept well. This might be overcome by better selecting a more
representative example for a concept or showing more examples
for each concept. We leave such questions for future study.

5.2.2. Sources of Worker Errors

5.2.2.1. Difficult vs. Subjective Questions
Table 3 shows accuracy for categories “Similar Animal” and
“Cartoon” for Task 1b (section 4.3). We see that some concepts
appear more difficult, such as correctly labeling a wolf or a fox.
Annotators appear to need some world knowledge or training
of differences between species in order to correctly distinguish
such examples vs. dogs. Such concepts seem more difficult to
teach; even though the accuracy improves, the improvement is
less than we see with other concepts. In contrast, for Cartoon
Dog (an example of a subjective question), adding this category
to the illustrative examples greatly reduces the ambiguity for
annotators. Other concepts like “Robot” and “Statue” also show
large improvements in accuracy.

5.2.2.2. Learning Closely Related Concepts
To see if crowdworkers learn closely related concepts without
being explicitly shown examples, consider “Robot Dog” and
“Stuffed Toy” as two types of a larger “Toy Dog” children’s
toy concept. In Task 1b, the workers are shown the concept
“Robot Dog” as examples labeled as NO, without being shown an
example for “Stuffed Toy.” Table 3 shows that workers learn the
related concept “Stuffed Toy” and accurately label the instances
that belong to this concept. The performance gain for the
concept “Toy Dog” is the same as the gain for “Robot Dog,”
when we compare design IMG+TAG and B1. Other similarly
unseen concepts [marked with an asterisk (*) in the table] show
that workers are able to learn the requester’s intent for unseen
concepts if given examples of other, similar concepts.

5.2.2.3. Peer Agreement With Ambiguous Examples
It is not always possible or cost-effective to obtain expert/gold
labels for tasks, so requesters often rely on peer-agreement
between workers to estimate worker reliability. Similarly,
majority voting or weighted voting is often used to aggregate
worker labels for consensus (Hung et al., 2013; Sheshadri and
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TABLE 2 | Worker accuracy [%] for all six tasks by condition.

Design Task 1a Task 1b Task 2a Task 2b Task 3a Task 3b

B0 75.6 70.1 47.8 78.7 69.1 92.9

B1 83.0 66.4 59.0 85.5 78.7 96.0

IMG 88.0 89.5 68.5 85.8 89.2 93.5

TAG 91.0 91.0 79.0 87.0 91.0 96.9

IMG+TAG 91.4 87.0 81.8 86.4 88.3 96.6

The bold value indicates the largest values per column.

TABLE 3 | Worker accuracy [%] on Task 1b, broken down by concept category.

Design
Similar

animal

Stuffed

toy*
Robot Statue Cartoon · · ·

B0 37.0 22.2 33.3 18.5 62.2

B1 14.8 22.2 25.9 29.6 57.8

IMG 44.4 100.0 100.0 92.6 100.0

TAG 74.1 100.0 88.9 88.9 97.8

IMG+TAG 48.1 88.9 92.6 77.8 97.8

Design Objects*
Unseen

ambiguity*

Small

breed
Plane Dog

Another

animal

B0 74.1 88.9 88.9 100.0 100.0 100.0

B1 59.3 82.2 94.4 100.0 100.0 100.0

IMG 100.0 75.6 88.9 100.0 95.6 100.0

TAG 100.0 80.0 94.4 100.0 91.1 100.0

IMG+TAG 96.3 77.8 91.7 96.3 95.6 88.9

We see that some hard concepts cannot be easily disambiguated, e.g., Similar Animal. Concepts for which workers were not shown any examples are marked with an asterisk (*).

The bold value indicates the largest values per column.

TABLE 4 | Worker accuracy [%] on ambiguous vs unambiguous categories with

baseline B1.

Task Unambiguous Ambiguous

1a 96.1 72.2

1b 98.6 41.7

2a 86.8 42.2

2b 98.5 82.5

3a 82.5 75.8

3b 98.6 93.8

For Tasks 1b and 2a, the majority vote (among nine workers) on ambiguous examples is

wrong.

The bold values indicate substantially lower than the other values in the table.

Lease, 2013). However, we also know that when workers have
consistent, systematic group biases, the aggregation will serve
to reinforce and amplify the group bias rather than mitigate it
(Ipeirotis et al., 2010; Sen et al., 2015; Dumitrache et al., 2018;
Fazelpour and De-Arteaga, 2022).

While we find agreement often correlates with accuracy, and
so have largely omitted to report it in this study, we do find
several concepts for which the majority chooses wrong answers,
producing high agreement but low accuracy. Recall that our
results are reported over nine workers per example, whereas
typical studies use a plurality of three or five workers. Also
recall that Tasks 1b and 2a (section 4.3) represent two of our
less intuitive annotation tasks for which requester intent may be

at odds with worker intuition, requiring greater task clarity for
over-coming worker bias.

Table 4 shows majority vote accuracy for these tasks for the
baseline B1 design which (perhaps typical of many requesters)
includes illustrative examples but not necessarily the most
informative ones. Despite collecting labels from nine different
workers, the majority is still wrong, with majority vote accuracy
on ambiguous examples falling below 50%.

6. CONCLUSION AND FUTURE WORK

6.1. Summary and Contributions
Quality assurance for labeled data remains a challenge today.
In chasing the potential advantages crowdsourcing has to offer,
some important quality assurance best practices from traditional
export annotation workflows may be lost. Our work adds to the
existing literature on mechanisms to disambiguate nuanced class
categories and, thus, improve labeling guidelines and, in effect,
classification decisions in crowdsourced data annotation.

In this study, we presented a three-stage FIND-RESOLVE-
LABEL workflow as a novel mapping of traditional annotation
processes, involving iterative refinement of guidelines by expert
annotators, onto a light-weight, structured task design suitable
for crowdsourcing. Through careful task design and intelligent
distribution of effort between crowd workers and requesters, it
may be possible for the crowd to play a valuable role in reducing
requester effort while also helping requesters to better understand
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the nuances and edge cases of their intended annotation
taxonomy in order to generate clearer task instructions for the
crowd. In contrast to prior work, our approach is proactive
and open-ended, leveraging crowd workers’ unconstrained
creativity and intelligence to identify ambiguous examples
online through an Internet search, proactively enriching task
instructions with these examples upfront before the annotation
process commences.

While including illustrative examples in instructions is known
to be helpful (Wu and Quinn, 2017), we have shown that
not all examples are equally informative to annotators and
that intelligently selecting ambiguous corner-cases can improve
labeling quality. Our results revealed that the crowd performed
worst on ambiguous instances and, thus, can benefit the most
from help for cases where requester intents run counter to
annotators’ internal biases or intuitions. For some instances
of ambiguity, we observed high agreement among workers on
answers contrary to what the requester defines as correct. Such
tasks are likely to produce an incorrect label even when we
employ intelligent answer aggregation techniques. Techniques
like ours to refine instruction clarity are particularly critical in
such cases.

Finally, we found that workers were able to infer the correct
labels for concepts closely related to the target concept. This
result suggests that it may not be necessary to identify and clarify
all ambiguous concepts that could potentially be encountered
during the task. An intelligently selected set of clarifying
examples may enable the crowd to disambiguate labels of unseen
examples accurately even if not all instances of ambiguity are
exhaustively covered.

6.2. Limitations
In this study, we propose a novel workflow for addressing
the issue of inherent ambiguity in data classification settings.
However, our study is not without limitations. First, our
study focuses on a specific type of annotation task (image
classification). While our workflow design targets data
classification tasks in general, further study is needed to
empirically validate the usefulness of this approach for other data
annotation settings.

Second, our approach is based on the assumption that
characteristics of ambiguous instances contributed by the crowd
via external Internet search will match those of the dataset being
evaluated. However, this assumption may not always be met
depending on the domain and modality of the dataset. Certain
datasets may not be represented via publicly available external
search. In that case, additional building blocks would be needed
in the workflow to enable effective search over a private data
repository. Existing solutions for external search may already
cluster results based on representative groups or classes. Our
empirical results leave open the question of to what extent this
feature could have influenced or facilitated the task for workers.

Third, our evaluation is limited in terms of datasets, task types,
and the size of our participant sample. Caution is warranted in
generalizing our results beyond the specific evaluation setting,
e.g., since characteristics of the dataset can influence the results.
Given the limited size of our participant sample and the fact that

crowd populations can be heterogeneous, our empirical data was
amenable only to descriptive statistics but not to null hypothesis
significance tests. In conclusion, our results should be considered
indicative of the potential usefulness of our approach rather than
being fully definitive. Further study is needed to validate our
approach in a more statistically robust and generalizable manner
via larger samples.

6.3. Future Study
While we evaluate our strategy on an image labeling task, our
approach is more general and could be usefully extended to other
domains and tasks. For example, consider collecting document
relevance judgments in information retrieval (Alonso et al.,
2008; Scholer et al., 2013; McDonnell et al., 2016), where user
information needs are often subjective, vague, and incomplete.
Such generalization may raise new challenges. For example,
the image classification task used in our study allows us to
point workers to online image searches. However, other domains
may require additional or different search tools (e.g., access to
collections of domain-specific text documents) for workers to be
able to effectively identify ambiguous corner cases.

Alonso (2015) proposes having workers perform practice tasks
to get familiarized with the data and thus increase annotation
performance for future tasks. While our experimental setup
prevented workers from performing more than one task to
avoid potential learning effects, future study may explore and
leverage workers’ ability to improve their performance for certain
types of ambiguity over time. For example, we may expect that
workers who completed Stage 1 are better prepared for Stage 3
given that they have already engaged in the mental exercise of
critically exploring the decision boundary of the class taxonomy
in question.

Another best practice from LDC is deriving a decision tree
for common ambiguous cases which annotators can follow
as a principled and consistent way to determine the label of
ambiguous examples (Griffitt and Strassel, 2016). How might
we use the crowd to induce such a decision tree? Prior
design study in effectively engaging the crowd in clustering
(Chang et al., 2016) can guide design considerations for
this challenge.

In our study, Stage 2 RESOLVE required requesters to select
ambiguous examples. Future study may explore variants of Stage
1 FIND where requesters filter the ambiguous examples provided
by the crowd. There is an opportunity for saving requester effort
if both of these stages are combined. For instance, examples
selected in the filtering step of Stage 1 can be fed forward
to reduce the example set considered for labeling in Stage 2.
Another method would be to have requesters perform labeling
simultaneously with filtering in Stage 1, eliminating Stage 2
altogether. Finally, if the requester deems the label quality of Stage
3 insufficient and initiates another cycle of ambiguity reduction
via Stages 1 and 2 those stages could start with examples already
identified in the prior cycle.

A variety of other directions can be envisioned for further
reducing requester effort. For example, the crowd could be called
upon to verify and prune ambiguous examples collected in the
initial FIND stage. Examples flagged as spam or assigned a low
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ambiguity rating could be automatically discarded to minimize
requester involvement in Stage 2. Crowd ambiguity ratings could
also be used to rank examples for guiding requesters’ attention
in Stage 2. A more ambitious direction for future study would be
to systematically explore how well and under what circumstances
the crowd is able to correctly infer requester intent. Generalizable
insights about this question would enable researchers to design
strategies that eliminate requester involvement altogether under
certain conditions.
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Critical, time-bounded, and high-stress tasks, like incident response, have often been

solved by teams that are cohesive, adaptable, and prepared. Although a fair share of

the literature has explored the effect of personality on various other types of teams and

tasks, little is known about how it contributes to teamwork when teams of strangers

have to cooperate ad-hoc, fast, and efficiently. This study explores the dynamics

between 120 crowd participants paired into 60 virtual dyads and their collaboration

outcome during the execution of a high-pressure, time-bound task. Results show that

the personality trait of Openness to experience may impact team performance with

teams with higher minimum levels of Openness more likely to defuse the bomb on

time. An analysis of communication patterns suggests that winners made more use of

action and response statements. The team role was linked to the individual’s preference

of certain communication patterns and related to their perception of the collaboration

quality. Highly agreeable individuals seemed to cope better with losing, and individuals

in teams heterogeneous in Conscientiousness seemed to feel better about collaboration

quality. Our results also suggest there may be some impact of gender on performance.

As this study was exploratory in nature, follow-on studies are needed to confirm these

results. We discuss how these findings can help the development of AI systems to aid

the formation and support of crowdsourced remote emergency teams.

Keywords: crowdsourcing, collaboration, social computing, personality, emergency response

1. INTRODUCTION

Situations that require working together, fast, and efficiently under pressure are on the
rise, especially in an increasingly fragile global ecosystem (Schneider, 2011; Kretzschmar
et al., 2022). From handling widespread geopolitical conflicts (Friede, 2022) to mitigating
environmental disasters (Gay-Antaki, 2021), several organizations are investing in crowdsourcing
intervention to aid large-scale mobilization of resources including emergency shelters and
disaster-event detection (Pettet et al., 2022; Stephens and Robertson, 2022; Zhang, 2022).
Likewise, virtual teamwork enacted in high-urgency, high-stress tasks is on demand. Grassroots
social engagement [i.e., Covid-19 pandemic hackathons (Colovic et al., 2022)], incident
response squads (Palen et al., 2007), community response teams, and on-call software
solution teams (Anderson, 2020) are all examples of ongoing large-scale collaborative
efforts. Emergency teams are devolving into technology, and the internet, in particular, to
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enforce the timely resolution of complex problems within limited
time frames, often under stress, and potentially with collaborators
who have never worked together in the past. The benefits of
working virtually and remotely are evident as shown by the
thriving field of telemedicine with remote surgical teams aiding
medical centers in coping with widespread pandemics (Etheridge
et al., 2022). Nevertheless, little is known about the factors that
can make or break such teams. In this study, we attempt to
answer questions such as:What are the personality characteristics
that render high-stake online teams successful? Which skills,
abilities, or socio-cultural elements are essential to consider while
forming these teams? Are there any particular communication
patterns that can serve as early signals of effective teamwork under
stress? Answering these questions is crucial to leverage available
resources and intellect in critical situations. Although group
research has since long investigated the effect of factors including
personality, knowledge, skills, or socio-cultural facets on virtual
teamwork (Kichuk and Wiesner, 1997; Krumm et al., 2016), few
studies examine these characteristics on the specific problem
of online collaboration strained by external—psychological or
time-related—aspects.

Teams performing in rapid response environments do not
perform similarly to “normal” teamwork settings. They are
under pressure from the high-demand context under which
they operate. The time-bounded nature of the task increases
the chances of failure (Driskell et al., 2018). Characteristics
of team performance in rapid-response, high-stress contexts
are team members’ ability to work in a team and personality
traits (McManus et al., 2004; Subramaniam et al., 2010).
However, to date, studies on high-stake teams focus either on
emergency professional teams, crowd participation in emergency
response, or the collaboration between these two groups without
considering the aspect of team formation at the crowd level.
Our study observes remote, ubiquitous, online, and ad-hoc

crowd teams instead of traditional emergency response offline
teams with specialized individuals (Chen et al., 2008). We deem
the crowd, alongside teamwork emergency response, as the
two most relevant aspects of this research, as we analyze and
report properties contributing to successful outcomes under
situations of stress and ambiguity. Furthermore, we examine
the relationship between personality, socio-cultural elements,
and communication patterns on the one hand, with team
performance and satisfaction on the other, in the context of
ad-hoc online teams in rapid-response, high-pressure tasks.

1.1. The Task: A Virtual Maze for Remote
Crowdsourcing Emergency Teamwork
To study participant interactions in ad-hoc teams of strangers
under pressure, we turn to crowdsourcing, and a custom-made
task. Our task is inspired by the “Keep Talking Nobody Explodes”
(Knuth, 2021) puzzle video game. Participants work in dyads, and
their common mission is to defuse a bomb that is placed within
a maze, by combining information that is unique to each one of
them. One participant is assigned the role of the “Defuser”: they
can “walk" inside the maze toward the bomb and defuse it, but
they do not know where the maze walls are. The other participant

is assigned the role of the “Lead Expert”: they have the map of the
maze but they cannot walk in it. The Defuser and the Lead Expert
must exchange information and actions, to defuse the bomb
within a limited amount of time. The task has been designed
to have the same critical characteristics as actual emergency
response tasks, namely a high-demanding environment, enforced
role division, performance pressure and stress.

1.1.1. High-Demanding Environment
Instances of crisis constitute a large part of what emergency
teams have to deal with and radically define their functional
and structural properties. Demanding environments have critical
requirements with tangible consequences for poor performance
(e.g., accidents, errors, stress). By portraying the element of
urgency in the form of a virtual bomb and increased time
pressure (Bell et al., 2018) we focus on a single objective—
reaching the bomb on time—and deliver the results of a
study task that is critically cooperative and built for productive
communication. In our setting, virtual crowd teams must
deliver innovative solutions and deliver them quickly. The
typical environmental constraints of high-demanding tasks
(time, urgency, risks) command for independent, stable, role-
defined teams sharing mutual trust, values, and focus. As we
reduce and inter-mediate communication through digital means,
we impose an even further reliance on mutual objectives, well-
defined roles and obligations, effective communication, and
commitment.

1.1.2. Enforced Role Division
During cases of emergency, each team member has a distinct
and specific role to play (Baldwin and Woods, 1994), which
is typically a-priori and externally defined. Emergency and
periods of crisis often create the need for established protocols
of interaction respective to each part (Harrison and Connors,
1984). Although role division is typically fixed for these response
units (e.g., medical, logistic, security, public relations, etc.),
it must nonetheless be adaptable when facing unpredictable
outcomes. By assigning strangers to pre-defined roles, we
replicate a scenario where team roles are agreed upon yet flexible
and interposed. Through well-defined roles and responsibilities,
we evaluate the matching capabilities of crowd workers and
investigate what are the constituents that fundamentally
determine the execution of role-based virtual teamwork
emergency response.

1.1.3. Performance Pressure and Stress
Prior work has shown that users involved in games such as
the crowdsourcing task exhibit various forms of stress (Sabo
and Rajčáni, 2017) and heightened emotional states (Hart et al.,
2018). These teams are more susceptible to allostatic load, i.e.,
the process of “wear and tear” experienced by team players
facing stressful conditions (Davaslioglu et al., 2019). Regarding
the definition of stress, there are two kinds of stressful conditions
and stressors (Ma et al., 2021). One definition follows the general
assumption that a stressor (the triggering factor) negatively
affects the person by degrading performance; the other sees
stress as a challenge that improves performance and individual
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TABLE 1 | Positive and negative facets of the BIG-5 personality traits (Neuman

et al., 1999).

Big five traits Positive facets Negative facets

Extraversion Social, talkative,

assertive, active

Retiring, sober, reserved,

cautious

Agreeableness
Good-natured, gentle, irritable, suspicious,

Cooperative, hopeful uncooperative, inflexible

Conscientiousness
Self-disciplined,

responsible,

lacking self-discipline,

irresponsible,

Organized, scrupulous Disorganized, unscrupulous

Emotional stability
Calm, enthusiastic, Anxious, depressed,

Poised, secure Emotional, insecure

Openness to experience
Imaginative, sensitive down-to-earth, insensitive,

Intellectual, curious simple, narrow

gains (Zhang and Lu, 2009). In this research, we stripped the
task from several elements of the original video game with
the intent to transverse from multiple sources of hindering
stressors [that increase environmental demands and exceed the
available resources (Salas et al., 1996; Gardner, 2012)] to a unique
challenge to inspire and motivate collaborators. Finally, virtual
teams experience stress differently than offline ones as they tend
to experience lessened social support (Su et al., 2012) which
exacerbates predispositions to stress and anxiety (Tarafdar and
Stich, 2021). For this reason, even though we adjusted the task
to limit encumbrance, we still regard the individual and team
response to a stressful task as the determining factor for whether
personal characteristics and/or team compositions help handle
the challenge successfully.

By engaging the players in this high-pressure challenge, we
examine whether personality characteristics (Conscientiousness,
Extraversion, Neuroticism, Agreeableness, and Openness) may
make individuals more prone to cooperation under time
pressure. We further evaluate which, if any, combination of
personalities results in better than average team performance.
Similarly, we examine whether additional factors such as
the participants’ socio-cultural background affect their actual
ability to work together and their satisfaction with teamwork.
Understanding the crowds perception of the collaboration (and
not only performance) will help the development of AI agents
to support their needs—and not only effectiveness—in times
of crisis. Additionally, perceptions on the collaboration may
provide insights into why certain teams are more effective than
others, and what teams may be willing to work together again
on the next task. Thanks to the heterogeneous data gathered
during the experiment, we look at the dyadic communication
to unravel indicators of a given team’s potential to cope with a
high-demanding task under time pressure.

A focus of this research is the impact of participants’
personality on ad-hoc online teamwork, that is crowd-sourced,
brief, and under pressure. We use the Big Five personality
model (Goldberg, 1990), also known as the Five-Factor model, to
model and comprehend the relationship between crowd workers’
personality traits and their disposition for online teamwork in
emergency contingencies. We selected the Big Five model as it

is most commonly used for personality analysis [e.g., Highhouse
et al., 2022; Ikizer et al., 2022; Mammadov, 2022] and for artificial
intelligence systems that automatically adapt to personality
[see (Smith et al., 2019) for a review of personality models
used for personalization in persuasive technology, intelligent
tutoring systems and recommender systems]. Additionally, many
validated instruments exist to measure the Big Five traits,
including the brief version of the Big Five Personality Inventory
(Rammstedt and John, 2007) which we use in this paper. The
Big Five model distinguishes between 5 traits1, each of which has
multiple facets (see Table 1)

1.2. Research Scope: Human Factors for AI
Intervention in Crowdsourcing Emergency
Response Teams
As work shifts to increasingly digitized spaces and connections
between collaborators are made broader by mobile and
ubiquitous computing, we consider evaluating ways to channel
these resources to help remote, crowdsourced emergency teams.
Identifying attributes and interactions used in emergency crises
can help organizations and research improve upon methods for
remote communication. Our knowledge of characteristics that
contribute to virtual emergency response teamwork can inform
artificial intelligent systems in assessing whether and how an
individual can be part of a response unit with limited time and
resources, and also, if multiple possible workers and tasks exist,
who to use for the emergency response teams.

The rest of the paper is organized as follows. Section 2 presents
and discusses related work, including an overview of traditional
teams under pressure and crowdsourcing efforts in this domain,
as well as the study hypotheses. Section 3 describes the study
design, including participant sample and task design. Section 4
describes the metrics used to capture participants’ demographic
characteristics, Big Five personality traits, and ability (prior
experience and self-perceived ability), as well as the metrics of
teamwork, namely: collaboration quality and communication
patterns. Section 5 presents the results. In Section 6 we discuss the
implications of this work, its limitations, and possible extensions
for the future. Finally, section 7 concludes the paper with key
findings and closing remarks.

2. RELATED WORK

2.1. Teams in Classical High-Demand,
Time-Pressing Settings
2.1.1. Operational Setting and Problem Scope
Significant research effort has been placed over the years on teams
that need to perform in situations that require spontaneous,
ad-hoc decisions and short-term planning, to resolve ambiguous
or uncertain events, and where the consequences of failure are
significant (Reuter et al., 2014). The scope of the problems
that such teams are called to deal with is broad. It can
include responding to natural disasters, like floods, hurricanes,
and fires, but also managing crises (King, 2002), such as

1Emotional Stability is often replaced in literature by its opposite Neuroticism.
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terrorism events (Longstaff and Yang, 2008), events occurring
in long-duration spaceflights (Salas et al., 2015), nuclear plant
control rooms (Stachowski et al., 2009), or situations taking
place in a military context (Driskell et al., 2014). It can also
include more benign everyday workplace settings, such as on-
call software teams dealing with organizational incidents, like
security or service failure events (for example the recent Google
outage (Bergen, 2020), journalist teams for the immediate
coverage of unexpected events (Archibold, 2003), but also short-
term project teams (Galbraith and Lawler, 1993) and task
forces (Hackman, 1990). Their size can vary, from dyads and
triads (Foushee, 1984), to dozens (Helmreich, 1967), to twenty
or more (Stuster, 2011).

2.1.2. Differences From Normal Teams
What separates these teams from teams in “normal” settings, is
the extreme, atypical environment within which they operate,
which overall entrails time pressure, high levels of risk,
increased consequences for poor performance (Driskell et al.,
2018), no previous work experience with one another, and
the need to perform their task almost immediately on team
formation (Mckinney et al., 2005; Mendonça, 2007). Harrison
and Connors (1984) use the term exotic environment to describe
a work setting that is marked by hostile environmental demands,
restricted working conditions, isolation from those outside the
setting, and confinement and enforced interactions for those
inside it. Using the related term extreme environment, Bell
et al. (2018) add that these settings are also characterized by
limited time to finish the task. Performance pressure and severe
consequences for ineffective performance are also characteristic
of these settings, and this pressure can act as a double-edged
sword that can lead the team to outstanding performance,
or cripple it Gardner (2012). The tasks that teams in these
settings must solve are usually characterized by ambiguity and
urgency (Yu et al., 2008; Stachowski et al., 2009).

2.1.3. Factors Affecting the Success of Emergency

Teams
Which factors determine team success in this high-demand,
high-stress environment? Skill and expertise are the primary
factors. Teams traditionally trained as emergency response units
rely on the specialized expertise of the stages of the incident
response and carry insider knowledge of the organizational
policies, their obligations, the communication channels, and
the tools supplied by the hiring organization. Thereof, the
effectiveness of traditionally formed emergency response teams
relies to a great extent on the level of preparedness and
competence of the hiring body (or authority) that trained and
assembled them, with multiple historical incidents providing
evidence for the need for precise training programs and hiring
criteria (Alexander, 2003). Examining command and control
teams, Ellis et al. (2005) find that team members with higher
training demonstrated greater proficiency in planning and task
coordination activities, as well as in collaborative problem-
solving, and communication. The study also found that it is the
knowledge competencies of the team member with the most
critical position that benefited the team the most.

The second factor of interest is the allocation of roles
and authority. A prominent characteristic of typical high-
stake teams, such as STAts (swift-starting action teams), is
that they comprise experts (Mckinney et al., 2005) with
specific roles and responsibilities. Multiple studies confirm the
value of stable role structure in the division of labor and
in enhancing the predictability of team interactions, allowing
each team member to know what to expect from their
teammates in critical situations (Hackman and Morris, 1975;
Stachowski et al., 2009). The reason is that misunderstandings or
disagreements about authority and role accountability (especially
non-desirable roles like clean-up) may lead to team conflict,
especially in the presence of unprecedented emergency response
tasks (Quarantelli, 1988; Weick, 1993). The meta-analysis
of DeWit et al. (2012) further confirms the negative relationships
between process and role conflict, and team results such as
cohesion, commitment, and performance. On the other hand,
flexibility, the ability to improvise, and entrusting functional
requirements to determine roles, rather than relying on titles
may also be of benefit (Briggs, 2005; Mendonça, 2007). A highly
defined role structure with clear roles seems to benefit more
tasks that are structured. On the contrary, a flatter structure may
be better for ambiguous tasks for which no apparent solution
can be easily found (Worchel and Shackelford, 1991) (such
as the task of responding to the 2001 World Trade Center
attack Mendonça, 2007).

Personality is another prominent factor affecting the success
of high-stakes teams, in line with the broader personnel selection
literature which indicates that if relevant personality factors are
identified for a specific job, future performance can be predicted
(Borman et al., 1980). Using the occupational personality
questionnaire to study the emergency command ability of
offshore installation managers, Flin and Slaven (1996) finds
significant correlations between command abilities in critical
situations and certain personality elements. From their results,
it appears that the highest-rated performance came from those
who (a) like to take charge and supervise others (high score on
controlling), (b) consider themselves to be fun-loving, sociable,
and humorous (high score on outgoing), (c) are less interested
in analyzing human behavior (low score on behavioral), (d) are
more interested in practical than abstract problem solving (low
score on conceptual), and (e) prefer to make decisions quickly
rather than take time to weigh up all the evidence (high score on
decisive).

Flin and Slaven (1996) contribution, however modest in
size, is only pertinent to emergency command responsibilities
and applicable only within a specific type of organization
(offshore installation managers). Other researchers have focused
on the possible existence of a “rescue personality,” in multiple
additional domains where emergency services and occupational
stress are pivotal. Kennedy et al.’s (2014) research on how
personality influences the workforce decisions of emergency
nurses reveals that certain traits matter more than others. High
Extraversion, Openness to experience, and Agreeableness were
especially common amongst emergency nurses. Extraversion
was also present among emergency department senior medical
staff (Boyd and Brown, 2005) as part of the controversial
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ENTJ (Extrovert, Intuitive, Thinking, Judging) personality
type2 (Myers, 1962).

Partially supporting these findings is the work ofWagner et al.
(2009) on the personality traits of paid professional firefighters.
Although high Conscientiousness was not a determinant factor
in this vocational role, Extraversion had significance. Certain
personality traits seem to cluster under particular types of
emergency professions; the differentiation between correlation
and causality between these two variables is not always easy to
untangle. Feelings of anxiety and insecurity, as well as heightened
levels of Neuroticism and Openness, were seen to be most
likely the results, and not the cause, of the repetitive exposure
to experiences of loss and distress (Pajonk et al., 2011). By
broadening the sample to the general public (virtual crowd), we
aim at decoupling the effects that a specialized profession could
have on one’s propensity to emergency response.

Finally, certain interaction patterns are useful predictors of
whether an ad-hoc team that has been brought together for
immediate task performance will succeed or not, in classical
emergency response teams. Although swift-start teams have little
time to build their group processes before starting to work on the
task, it is also known that team routines get established early in
the team’s lifecycle. The same initial interactions have an effect on
subsequent communication and norms (Gersick and Hackman,
1990). The study of Zijlstra et al. (2012) reveals that there
are certain early patterns of communication that distinguish
effective from less effective teams. Specifically, they find that
effective teams engage in communication that is more stable in
duration and complexity, more balanced, and less monopolized
by a single participant compared to inefficient teams that
exhibit frequent mono-actor patterns, consisting of a single team
member posing and answering their questions and commenting
on their observations. They also found that efficient teams exhibit
more reciprocity and trust, with the team members engaged
and in the same direction of action toward the task goal. The
presence of trust as a crucial factor is also highlighted (Wildman
et al., 2012). The study of Waller et al. (2004) reveals that
efficient teams in non-routine situations focused their actions
on information collection and task prioritization. Finally, Kanki
et al. (1991, 1989) complement the above by showing that the
communication of effective swift-start two-person crews focuses
on immediate task execution, expressed as low-complexity,
straightforward action statements, and is less focused on other
non-standard communication.

Although classical rapid-action teams are widely studied, these
literature findings do not necessarily translate to online crowd
rapid-action teams. Traditional emergency teams comprise
highly trained professionals with a shared understanding of the
crisis domain, and often a shared loyalty to an organization. In
contrast, crowd teams mainly consist of non-experts, and they
are more volatile and heterogeneous regarding the motivators

2studies have been conducted on construct MBTI validity and test-retest reliability

(including a meta-study by Capraro and Capraro (2002) which showed good

results), others have argued that there are scientific limitations to these studies,

the use of MBTI, and its underlying theory (e.g., Boyle, 1995; Pittenger, 2005; Stein

and Swan, 2019).

that draw their members to the particular task. Considering the
multiplication and globalization of the events that require swift
action, it is likely that in the future, we will need to turn more
andmore to crowd workers and volunteers to form ad-hoc online
teams that can deal with high-stake situations under pressure.
In this light, the extensive study of classical rapid-action teams
can provide us with the first grounded indications of specific
parameters to look at to identify predictors of successful team
formation in online crowd action teams. Given that in a crowd
setting, the allocation of roles is likely to take place based on
arrival and availability, in this work, we focus on the parameters
of personality and communication patterns as predictors of
forming a successful crowd team to tackle unforeseen situations
under time pressure.

2.1.4. Onsite and Offsite Emergency Response Teams
The history of emergency response teams—and more broadly
of emergency preparedness—is essentially as old as societal
and humanitarian threats. For as long as emergencies have
affected human lives, societies have found collective ways to
organize efforts to mitigate, prepare, respond, and recover from
the aftermaths of crises. Emergency preparedness programs
have evolved along with societal changes and technological
advancements. Notable historical events such as the first world
war brought national societies to unify and strengthen their
approaches to natural, intentional, and accidental disasters
(Herstein et al., 2021). The International Federation of Red Cross
and Red Crescent Societies is one of themost prominent products
of global pursuits unifying volunteer networks, community-
based expertise, and independent advisers into standardized
practices (London, 1998). As emergency response evolves,
emergency response teams reshape ways to communicate and
function in an era of accelerated technological progress.

Formerly, emergency teams operated face-to-face and on-site
in response to environmental disasters (Brennan and Flint, 2007),
war conflicts (Abdul-Razik et al., 2021), and epidemics (Leach
et al., 2022). With the broadening digitization of services, society
is increasingly reliant on technology for its functioning. The so-
called information era entails the vast market of the internet of
things, software, and the worldwide web to enable widespread
financial and data transactions (Stehr, 2001). Technological
dependency is making us faster and smarter and, at the same
time, more vulnerable to novel threats (e.g., malware attacks,
identity theft, financial fraud, security breaches, etc.). Emergency
response teams not only must face novel and extensive digital
threats but must also learn to leverage the resourcefulness
of recent technology [ubiquitous computing (Smirnov et al.,
2011), robotics (Kawatsuma et al., 2012), simulations (Kincaid
et al., 2003), smart sensors (Abu-Elkheir et al., 2016), and
social media networks Potts, 2013] to strengthen their outreach
and preparedness.

Overall, the vast majority of emergency response teams
operate in a hybrid fashion combining onsite support with
online offsite communication. Some others divide efforts between
online and face-to-face tasks depending on the phase of the
response (i.e., mitigation, preparedness, response, and recovery
Brennan and Flint, 2007). Relevant to our research is the
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pertinence of virtual communication channels in the large-
scale crowdsourced emergency response domain that is typically
remote, collaborative, and online. To define our target group, we
firstly identify general characteristics that, in the classical sense,
differentiate between onsite and offsite emergency response
teams. Although the two domains share very similar objectives
and attributes such as organizational culture, expertise, team
structure, communication, and teamwork (Leach and Mayo,
2013), since their capabilities and duties differ, some of these
attributes are more imperative than others. In the following
subsections, we introduce two representative attributes critical
for each teamwork domain.

2.1.4.1. Onsite Emergency Response Teams
Two prominent attributes of onsite teams are experience

and coordination. Teams working onsite are usually part of
rescue operations (Chen and Miller-Hooks, 2012) and disaster
relief (Bjerge et al., 2016) that require the participation and
coordination of experts. These include fire and rescue services
and police forces, commercial entities, volunteer organizations
such as the Red Cross, media organizations, and the public
(Yang et al., 2009). The need for distinct expertise requires
teams to develop and apply specialized knowledge. Onsite
emergency response experts can hold intelligence on chemical
properties, procedures for reporting emergencies, fire and
protective equipment, decontamination, and evacuation gained
through training, experience, and/or formal education.

Without qualified knowledge and standardized procedures,
onsite emergency response teams would fall short of promptly
and accurately addressing ongoing crises. Equally important
is coordination among experts as onsite emergency must
successfully distribute superintendence and responsibilities
between diverse professionals for effective prevention,
preparedness, and response to emergencies. In their work
on coordination in emergency response management, Chen
et al. (2008) developed a life-cycle approach with three distinct
sets of activities on the timeline continuum (pre-incident phase,
during incident phase, and recovery phase). The cycle closes
after de-briefing and when actionable items are learned from
the intervention and incorporated into the plan to affect future
preparedness (Chen et al., 2008). The same authors identified
several elements of coordination such as activities, coordination
objects, and constraints that differ between phases and between
cultural, political, regulatory, and infrastructural properties of
emergency response.

2.1.4.2. Offsite Emergency Response Teams
Two distinguishing attributes of offsite remote emergency
response teams are communication and sensemaking. While
onsite teams converge in rescue operations and disaster relief,
remote offsite emergency response teams outreach and distribute
resources. Known crises overseen by offsite emergency response
teams are air-traffic control (Hughes et al., 1992), subway crisis
management (Heath and Luff, 1992), and emergency response
call centers (Normark, 2002; Pettersson et al., 2004). Although
clear roles are important in these teams, clear communication
is of the essence. Depending on the kind of interaction (e.g.,

serendipitous, inbound, and outbound Landgren and Nulden,
2007), and the referent (e.g., non-experts’ communication,
situation update, situational awareness, services access assistance
Velev and Zlateva, 2012), clear communication and interaction
protocols fundamentally determine the interaction mediated by
computer systems for offsite rescue teams.

Through clear communication, offsite emergency response
teams can harvest sensemaking. This is the collection of actions
that make the situation understandable and that prevent an
escalation of the emergency (Landgren and Nulden, 2007).
Sensemaking has properties such as identity construction,
retrospection, enactment, social reactions, dynamism,
environmental cues, and plausibility (Muhren et al., 2010).
The importance of sensemaking in a remote emergency context
is ever so apparent due to the practical constraints that teams
experience as they communicate remotely. According to Weick
(1993), most shortcomings from failed emergency responses are
due to a deficiency in sensemaking (or contextual rationality).
Weick (1993)’s work uncovers four potential sources of resilience
that make ad-hoc groups less vulnerable to disruption of
sensemaking. These sources are (i) improvisation, (ii) virtual
role systems, (iii) the attitude of wisdom, and (iv) norms of
respectful interaction. Weick (1993) analyses the dynamics of
role structure and sense-making occurring in the historical
Mann Gluch disaster. The incident served as an example
of what needs to be re-examined about temporary systems,
structuration, non-disclosed intimacy, inter-group dynamics,
and team building (Weick, 1993), especially important for offsite
emergency response operations.

The design of computer-mediated emergency response
also needs to be informed by an understanding of the
cognitive processes involved in responding to unanticipated
contingencies (Mendonça, 2007). These cognitive factors, defined
by Mendonça (2007), are directly linked to the specificity
of emergence management and its characteristics of rarity,
time pressure, uncertainty, high and broad consequences,
complexity, and multiple decision making. Besides, computer-
mediated emergency response teams are much more predisposed
to incorporate the output of citizen convergence (Schmidt
et al., 2018) into their work than traditional onsite rescue
teams. However, as developments in online informational
convergence change the remote domain of rescue operations,
citizens and crowds are bringing novel paradigms. These
include unfamiliar team members, ill-defined tasks, fleeting
membership, multiple and conflicting goals, and geographically
distributed collaboration (Majchrzak and More, 2011). In the
following section, we explore the topic of crowdsourcing for
emergency response.

2.2. Crowdsourcing for Emergency
Response
2.2.1. Emergency Response Through Individual

Crowd Contributions
Crowds are increasingly involved in response to emergencies.
The characteristic of emergency response crowdsourcing is the
short-lived engagement in the task. Crowds’ contributions consist
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of primarily individual, one-time, and remote interactions. This
“long-tail” of contributions is a well-observed phenomenon in
most content-oriented online communities (Shirky, 2008). The
role of these one-time crowd users is important when it acts
as a fast and ubiquitous response to urgent, environmental and
social crises (hurricanes, terrorist attacks, widespread fires, large
oil spills, etc.) (Heinzelman and Waters, 2010; Yuan and Liu,
2018; Chau, 2020), protest movements (Elsafoury, 2020), but
also activism (Farkas and Neumayer, 2017; Lee, 2020) and civic
participation (Hemphill and Roback, 2014; Mitchell and Lim,
2018). In critical scenarios of this kind, the crowd is intended as
a manifold social tool by servicing as a reporter, social computer,
sensor, and executor of both micro and macro-tasks.

Several theoretical studies propose systemmodels and features
designed to facilitate the positioning of the crowd as the
leading resource for emergency management. In the domain of
communication technologies for health care Hossain et al. (2017)
suggest benefiting from the users’ social contacts to trigger a faster
response, or to make the most of crowdsourcing attributes—
such as collaboration and tournaments—to attract the right
crowd for the job. From a complex systems perspective, Song
et al. (2020) propose harnessing the self-organizing operation
mechanisms of crowdsourcing for efficient disaster governance.
In the context of natural disaster management, Ernst et al. (2017)
propose hybrid systems that rely on the remote coordination of
volunteers to collect location-dependent information, which in
turn can support emergency managers making quick but solid
decisions. Elsafoury (2020) propose another hybrid feature, this
time combining machine learning with crowdsourcing to rapidly
detect protest repression incidents through social media.

Specific crowdsourcing tools and platforms address
emergencies. Poblet et al.’s (2013) review indicates that
these platforms belong to two main categories, namely: (i) data-
oriented, and (ii) communication-oriented. The first category
concerns tools developed for the intensive aggregation, mining,
and processing of data gathered through the crowd. The second
category aims at supporting communication between crowd
users and disaster management systems by allowing seamless
interaction between them. The platform “Ushahidi” (Okolloh,
2009) is one example of a crowd application designed to
decentralize the support of volunteers for the report of violence
in Kenya, by collecting sensitive reports, organizing rapid
response actions across multiple agencies, documenting ongoing
changes, generating automatic alerts from under updates and
visualizing data streams in real-time.

In another example, several digital volunteer organizations
(Standby Task Force, Humanity Road, and Open Crisis) have
integrated social media monitoring in their systems when
cooperating with other humanitarian bodies in disaster relief
operations (Poblet et al., 2013) Poblet et al.’s (2013) review of
crowdsourcing tools for disaster management offers an extensive
list of crowdsourcing tools, including online platforms and
mobile applications across the globe. Aside from those tools that
support response and recovery-based only efforts, others, such
as ArcGIS (Allen, 2011), Sahana (Careem et al., 2006), OpenIR
(Ducao, 2013), and CrisisTracker (Rogstadius et al., 2013),
provide support for mitigation and crisis preparedness. These
tools pivot around the crowd for achieving great humanistic

and environmental causes while leveraging the strength of
geographically dispersed collaboration.

However, despite the growth of several initiatives and
digital platforms designated to facilitate crowd intervention
in emergency response, these initiatives are primarily based
on individual contributions, without taking advantage of team
dynamics that can arise among the crowd participants. This
lack of communication, either due to team conflict (Yeo et al.,
2018), or unfitness of the tools (Dilmaghani and Rao, 2006),
makes crowdsourcing efforts less efficient, which often fail to
address the event at hand, either as standalone initiatives or as
supporting capacity to expert emergency management (Heath
and Palenchar, 2000). Beyond the subject of crowdsourcing for
emergency response, other team categories are also relevant to
our research on ad-hoc crowd team formation. Action teams,
rapid response teams, and citizen science, to name a few, are
groups formed through the crowd and behave similarly to ad-hoc
teams. Similar entities could benefit from system improvements
addressing better team formation and communication strategies
adopted from a better understanding of team dynamics in
stressful situations. In the following subsection, we elaborate on
existing—albeit early—efforts that seek to involve the crowd in
formations and groups.

2.2.2. Crowd Cooperation for Emergency Response
Aside from individual crowd contributions, a few studies have
looked into facilitating communication among crowd members
to respond to and manage unexpected events. Providing people
with communication channels can help them gain a broader
view of the event they need to deal with (Perez and Zeadally,
2019), and better coordinate their efforts (Martella et al., 2017).
Song et al. (2020) analyzed a total of twelve international case
studies of crowdsourcing and natural disaster governance. They
denote that, across all of these instances, the crowdmanifested (at
least at some level in their response mechanisms) self-organizing
properties that lead its individuals to form collaborative ties
spontaneously. It suggests that the multi-directional relationship
between the crowdsourcing platforms, the initiators, and the
contractors, while not strictly guided, triggers the formation
of functional teams that act as active response units. Under
this instance, the crowd forms ad-hoc groups as the emerging
outcome of community disaster resilience (Song et al., 2020). As
long as collaboration is advantageous in emergency response and
time management remains vital in real-life crises, boosting the
efficacy of crowd participation starting from the level of team
formation can get teams closer to their desired outcomes.

Many combinations of individual traits add up as building
blocks for the entire social entity that is the team. Assuming that
the single characteristic is, at least in principle, an optimal fit
for the task, the way it interacts with the rest of the teammates’
features is equally relevant. Personality clashes are present in
virtual team interactions just as in traditional face-to-face cases.
Following Van de Ven et al. (1976) definition of teams as “groups
becoming more effective over time,” Salehi et al.’s (2017) work
on stable crowd teams recognizes familiarity as the utmost
important factor that enhances team performance. However,
familiarity is a variable that cannot always be factored in when
teaming up with individuals part of a virtual crowd, who are
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often sporadic contributors. Therefore, while familiarity in crowd
teams has its tangible benefits (Salehi et al., 2017) for more
stable tasks (like creative ones), relying on team familiarity to
form effective crowd teams is not always feasible for short-lived,
unpredictable, and mutable tasks.

For relatively short-lived assignments, the distribution of
personality types matters more for the success and the
establishment of trust in crowd teams than the pervasiveness of
one specific type. Lykourentzou et al.’s (2016) work on crowd
teams shows that balancing personality traits not only leads
to significantly better performance on collaborative tasks but
also reduces conflict and heightens the levels of satisfaction
and acceptance. Holistically, when considering the impact of
personality distribution in crowd teams, aspects other than
personality traits play an often overlooked yet fundamental
role. As Lykourentzou et al.’s (2016) noted: test Personality
could also be examined with regards to task type. For example,
competitive tasks (like ideation contests among competing crowd
teams) may amplify clashes within imbalanced teams, more
than collaborative tasks.” We aim to uncover the relevance
of personality, communication, and other factors in a virtual
emergency response task. Unlike other studies (Floch et al., 2012;
Vivacqua and Borges, 2012; Ernst et al., 2017) evaluating crowd
emergency response as a collective and self-organized effort, we
propose a team-specific approach to the formation of crowd
emergency units that strongly connects with theories and models
of teams composition, and assembly and team science (National
Research Council, 2015).

Closing, most crowdsourced initiatives for high-stake, high-
pressure tasks rely on individual contributions. Few works use
some form of teamwork to coordinate crowd participants’ efforts
spontaneously and not according to a systematic approach or
criteria. The formation of crowd emergency teams according
to a set of characteristics with known expected effects could
help these teams experience less interpersonal conflicts, establish
team cohesion faster, and increase the teams’ chances of
success. In this work, we systematize online team formation
for high-pressure tasks. We closely investigate the effects of
personality and communication patterns, contributing to such
teams’ success and helping harness the crowd’s potential better
in emergency response.

3. STUDY DESIGN

Many factors may impact whether teams collaborate well and
achieve their goals in an emergency response task. These include
the demographics and personality of team members (both at
the level of individuals and aggregated over the team), and the
communication patterns used. This study explored which factors
matter for team success and perceptions of collaboration quality.
Given the many factors and output measures considered, the
study was exploratory in nature, with the aim to gain initial
insights into what matters and in which way, to be tested further
in follow on studies.

3.1. Sample
120 Amazon Mechanical Turk workers (41 female, 78 male,
1 prefer not to say) participated. The task duration was

approximately 20 min. Most participants were of U.S. (67 users)
and Indian nationalities (51 users), one participant was Irish
and another one was British. The majority had College (87) or
Postgraduate degrees (15), while some had either some college
education (9) or High School (9). Most were between 30 and
49 years of age. For an overview of the demographic data of the
sample see Table 7.

3.2. Compensation
The participants received a base reward of $3, and a bonus reward
of $3 if the challenge was completed successfully. The base pay
was based on current fair crowd work compensation practices,
whereas the bonus paymatched the base pay to double the reward
for those teams that defused the bomb on time. The payment
was weighted against the hourly rate or AMTworkers as reported
in Hara et al. (2018). In selecting the payment amount, we took
into account three considerations from the literature (Olson and
Kellogg, 2014; Lykourentzou et al., 2016). First, the payment had
to conform to the community standards of the crowdsourcing
platform so as not to bias the quality through workers who
would accept low wages or workers who would only choose the
task purely for its high compensation. Second, this payment had
to cover the task duration. Thirdly, it took into account the
demographics of the target worker population (minimum wage).

We recruited through the Amazon Mechanical Turk (AMT)
Human Intelligent Task (HIT) platform. AMT was chosen for
its breadth of crowd workers and its abundant labor availability,
which is estimated to be no less than 2K workers at any given
time, and over 100K workers overall (Difallah et al., 2018)3. No
pre-selection was required to participate in the task. We intended
to attract a large variety of participants, regardless of differences
in background. The absence of pre-selection criteria may have
influenced participants’ written English, a limitation discussed in
Section 6.2.3. Finally, the HIT itself contained information about
the reward, the duration of the task, and a short description of the
cooperative game.

3.3. Task Design and Setting
Although the task was artificial it was designed as an analog
setting enacting the key characteristics of the high-demand, high-
pressure environments that we are interested in. These include:

1. Simulated element of physical danger. The consequence of
the team failing to navigate the maze is a bomb exploding.
Although participants were aware that they are playing a
game, the element of physical danger, even an enacted
one, alters their perception, with possible effects on the
way they process information, coordinate their efforts, and
discuss (Kamphuis et al., 2011).

2. Pre-determined team roles. The presence of these roles
enables stable and predictable group interactions (McMichael
et al., 1999) instead of relying upon the slower and

3AMT worker’s population is composed primarily of Indian and American

nationalities, followed by Chinese, British, and Philippino (Difallah et al., 2018).

The gender is slightly predominantly female within the American sample andmore

male in other countries (Difallah et al., 2018). Its population average age is less than

the world population average, as most AMT workers were born after the 1990’s

(Difallah et al., 2018).
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FIGURE 1 | System overview with the five steps of the study design. After registration, users arrive at an introductory page with relevant information about the task,

and then they are matched in dyads on a first-in-first-out basis. Each team then proceeds to their dedicated virtual room where they cooperate to defuse the bomb in

the maze within a given time frame. Finally, they fill out a questionnaire about their abilities and perceived collaboration quality.

autonomous differentiation of team roles (Belbin, 2012),
which cannot always happen in circumstances of emergency.
Predefined role-playing exercised control over one’s
limited access to information, which symbolizes the
relationship between an overseeing entity (in our case,
the Lead Expert) and an operative agent (in our case, the
Defuser). Furthermore, similar to real-life action teams,
team membership symbolizes work shifts (Zijlstra et al.,
2012). It represents the random assignment of roles on a
first-come-first-served basis. Similar to emergency response
teams, this approach creates teams with little time to explore
personal similarities and differences or to go through classical
team development processes (Tuckman and Jensen, 1977;
Lacoursiere, 1980).

3. Stress and increased consequences of failure. The novelty
of the task, alongside its short duration, positions the

crowd participants in a situation similar to emergency
management scenarios. Here, the users need to act decisively

within tight time schedules, often only with access to
incomplete or difficult to decode information (Carver and

Turoff, 2007). It means that the participants (a) absorb
information rapidly, (b) judge by doing, (c) decide on the

spot, (d) deal with the event with little preparation. Users
are aware that their actions, if wrong, will cost them (and
their teammate) reasonably significant retribution (in this

case monetary) (Driskell et al., 2018). The combination of

elements, namely: high-stake, time-constrained, fractional
information, and role inter-dependency, makes this particular
task a reasonably stressful one. More so, the original game

“Keep Talking Nobody Explodes” has been utilized as a
tool by past research to assess the effects of realistic stress

on behavioral and physiological responses of participants
(Sabo and Rajčáni, 2017; Lee and Jung, 2020). These studies

confirm that controlled environments of this sort can correctly

reproduce similar stress levels of more realistic scenarios,

thus inducing stimulus-response events—such as temporary
homeostatic changes and speech variations— that signal
increased stress.

To support the task setting, we designed a custom-made web
system. The system pipeline, illustrated in Figure 1, was designed
according to the following steps:

Step 1: Consent form and registration. Participants registered
with a username, AMT IDs (unique identifier needed to reward
them at the end of the task), demographic information (gender,
age, nationality, and education level), and Big-Five personality
traits (Table 3). By registering, the participants agreed with the
terms of service and gave their informed consent.
Step 2: Introduction and game instructions. After logging in,
the “dangerous and challenging world of bomb defusing” (Knuth,
2021), the introductory page offered example screenshots of the
two roles, instructions about the gameplay, plus information
about the countdown and the end-of-task survey. The short
info gave participants a broad idea of the task and focused on
the platform functionalities (e.g., chat, game console, manual
instructions, etc.).
Step 3: User matching and admin assistance. Participants
entered the waiting room (i.e., matchmaking room) and were
personally greeted by the system administrator while waiting
for their teammates to join. If no other participants were
present, they waited until a match would become available.
The administrator also served as moderator and user support.
The system allocated participants to teams in a first-in-first-out
(FIFO) manner. As soon as two participants were present in
the matchmaking room, they were placed together and asked to
proceed to the main task (after first answering any questions they
may have had).
Step 4: Maze challenge and chat box. After matching,
participants joined a private virtual room where they could see
the maze game and chat to communicate with one another.
Figure 2 shows what the Defuser saw. On the left-hand side, the
Defuser saw a blind maze with their position (yellow square) and
the bomb (red triangle). They could not see the walls as only the
Lead Expert saw them. On the right-hand side, the Defuser saw
the chatbox and, below it, a reminder to use the arrow keys to
navigate the maze. Upon finishing the task, the blue bar at the
bottom of the screen would take them to the final questionnaire.
Figure 3 shows what the Lead Expert saw. The Lead Expert’s view
of the maze differed from that of the Defuser: they saw only the
walls of the maze (gray squares) and the path to the bomb (white
sections). The Lead Expert could neither see the Defuser in the
maze nor the bomb. Both the Lead Expert and Defuser could see
the same countdown and Cartesian coordinates of the maze, as
well as the chatbox and the link to the final questionnaire.
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FIGURE 2 | Defuser’s view of the maze. The maze did not indicate the path to the bomb (red triangle), nor the walls. The participant was prompted to get directions

from the Lead Expert through a chatbox (top-right of the screen).

FIGURE 3 | Lead Expert’s view of the maze. The participant could see the map, but did not know where the bomb and the Defuser were placed in the map.
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TABLE 2 | Summary of variables.

Variable Type Range

Input

Personality5

Extraversion Interval 2–10

Agreeableness Interval 2–10

Conscientiousness Interval 2–10

Emotional stability Interval 2–10

Openness to experience Interval 2–10

Team Personality (for each

trait)

StDev Ratio 0–5.66

Min Interval 2–10

Max Interval 2–10

Mean Interval 2–10

Demographics

Gender Nominal Male, Female, Other, not-disclosed

Age group Ordinal <20, 20–29, 30–39, 40–49, 50+

Nationality6 Nominal USA, India, UK, Ireland

Education level Ordinal Less than High School, High School (HS),

Some College (SC), College degree (Col),

Postgraduate (PG)

Communication patterns

Uncertainty, Action, Response, Planning,

Factual, Non task-related
Ratio ≥0

Chat length (# Words) Ratio ≥0

Chat total (# Posts) Ratio ≥0

Output

Performance Nominal Won, Lost

Perceived

collaboration

quality

Performance Ordinal 1–5

Cohesion Ordinal 1–5

Communication quality Ordinal 1–5

Balance Ordinal 0–2

Satisfaction Ordinal 0–2

The Maze module was inspired by the video game “Keep
Talking Nobody Explodes” (Knuth, 2021). It consisted of a 25 x
25 grid of squares with one square containing a yellow element
(the position of the Defuser), one square containing a red triangle
(the position of the bomb), and walls. Neither of the two players
had access to all the information of the maze; they needed to
cooperate. The Defuser could move inside the maze, by means of
the four arrow keys, but they did not know where the walls were.
The Lead Expert had the map, but could not navigate the maze.
The Defuser’s role was to navigate the maze, with the help of the
Lead expert, and defuse the bomb in time. Finally, a countdown
timer was included, at the end of which the bomb exploded,
unless it had been defused. The countdown started the moment
both players entered the room. For this specific study, the timer
was set to 400 s. After finishing the game, the participants
received a validation code to submit to the AMT HIT for getting
their base pay and bonus reward (for those teams that completed
the challenge successfully). We deliberately excluded aspects of
the original video game to reduce the number of variables and
increase the controllability of the study environment. We wanted
participants to focus on reaching the bomb on time without
spreading themselves thin among the multi-modalities present
in the original game (e.g., clues, strikes, wires, sequences, etc.).
Besides, implementing most features of the original game would
have added to the task complexity4. Hence, we did not include

4Also requiring considerably longer instructions and the introduction of

manipulation checks to ensure instructions were read which further adds to task

complexity.

penalties for the Defuser colliding with a wall. The only penalty—
and end of game—was determined by the time running out
before reaching the bomb. Furthermore, to ensure task brevity,
we considered the bomb defused as soon as the Defuser stepped
inside its cell. The simplification of the game has some limitations
discussed in Section 6.2.
Step 5: End of task questionnaire. Participants rated the
perceived collaboration quality on multiple aspects (see below),
and also their abilities.

4. METRICS

We grouped the multilevel approach into two distinct classes
referring to input and output variables (Table 2 provides a
summary of all variables, their type and range.). Here the input
metrics serve as the independent variables and the output ones as
dependent variables.

4.1. Input Variables
4.1.1. Big Five Personality Traits
To acquire a measure of the Big Five traits within the context
of large-scale assessment under limited time and resources, we
used the Big Five Inventory-10 (BFI-10) (Rammstedt and John,
2007). The inventory consists of ten questions (see Table 3).

5as the BFI-10 uses 5-point Likert scales one could argue that the data is ordinal,

but given a total is calculated per trait we will regard it as interval.
6Free text entry, values provided here are those used by participants.
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TABLE 3 | BFI-10 instrument used, and its scoring: the trait for which each item was used and whether it was reverse scored (R)7.

I see myself as someone who … Disagree Disagree Neither agree Agree A gree Trait Reverted

strongly a little nor disagree a little strongly

1. … is reserved (1) (2) (3) (4) (5) Extraversion R

2. … is generally trusting (1) (2) (3) (4) (5) Agreeableness

3. … tends to be lazy (1) (2) (3) (4) (5) Conscientiousness R

4. … is relaxed, handles stress well (1) (2) (3) (4) (5) Neuroticism R

5. … has few artistic interests (1) (2) (3) (4) (5) Openness to Experience R

6. … is outgoing, sociable (1) (2) (3) (4) (5) Extraversion

7. … tends to find faults with others (1) (2) (3) (4) (5) Agreeableness R

8. … does a thorough job (1) (2) (3) (4) (5) Conscientiousness

9. … gets nervous easily (1) (2) (3) (4) (5) Neuroticism

10. .. has an active imagination (1) (2) (3) (4) (5) Openness to Experience

Derived from the shortening of its lengthier predecessor (the
Big Five Inventory (BFI-44) Rammstedt and John, 2007), it
focuses on the psychometric characteristics of the BFI-44’s
most representative items and reduces each Big Five dimension
to 2 BFI items. The BFI-10 measures the personality traits
of Extraversion, Agreeableness, Conscientiousness, Emotional
Stability (Neuroticism), and Openness to experience (Rammstedt
and John, 2007)8. For each trait, the BFI-10 score is calculated as
the total score of the two statements associated with that trait,
after reversing the score of some statements (see mapping of
statements to traits and which statements’ scores are reversed in
Table 3)9.

4.1.2. Personality Traits of Groups
There is no straightforward process for aggregating metrics
such as personality traits for groups. However, the group
recommender community has dealt with a similar issue namely
the aggregation of group members preferences (Masthoff, 2004)
and uses aggregation strategies from Social Choice Theory (Sen,
1986). Senot et al. (2010) distinguishes between (1) majority-
based strategies that use the most popular values, (2) consensus-
based strategies that consider the profiles of all group members,
and (3) borderline strategies that only consider a subset. In our
case, majority strategies do not apply given a group size of two.
Of the consensus-based strategies, we use Average (which is also
the most popular strategy in Group Recommender research). Of
the borderline strategies, we use Minimum and Maximum10,11.
Minimum is used as one may expect that team performance is
strongly affected by the weakest member in the team, in line

7Reverse scored means that a 1 is changed into 5, 2 into 4, 4 into 2, and 5 into 1.
8Test-retest correlations suggest acceptable reliability on a Likert scale of 1

(Disagree strongly) to 5 (Agree strongly). As prior studies have shown, the

correlations of this instrument with other Big Five instruments, its correlations

with self-and peer-ratings, and its associations with socio-demographic variables

suggest good validity of the BFI-10 inventory (Rammstedt and John, 2007).
9Reversed means that a score of 1 is changed into 5, 2 into 4, 4 into 2, and 5 into 1.
10which in the Group Recommender community are called, respectively, Least

Misery and Most Pleasure.
11Personality traits likely differ on whether a high (or low) trait level positively

or negatively impacts team performance. Using both minimum and maximum

ensures this is no longer an issue.

with the popular saying “a chain is as strong as its weakest link”.
Maximum is used as one may also expect that a strong member
could make up for the weakness in another member (e.g., if one
person is highly conscientious, theymay entice the team to get the
work done in time), particularly when the team is small. Finally,
we used Standard Deviation (in line with the Cohesion metric
introduced by Odo et al., 2019b), as the literature indicates the
impact of diversity within teams12.

4.1.3. Demographics
Participants provided information about their gender, age
group, nationality, and educational background. Socio-
demographic measures identify characteristics that often
influence the respondent’s opinions that could condition one’s
behavior, culture, and experiences (Lavrakas, 2008). These
socio-demographic factors provide further insight into the
composition of teams, and what other characteristics—aside
from personality traits—influence the collaboration. These
socio-demographic factors that make someone distinct can
turn into assets for group work. Therefore, by being aware
of those characteristics, organizations and hiring bodies can
better assemble and coordinate geographically dispersed teams
(Muethel et al., 2012).

Multiple studies (Ruef et al., 2003; O’Leary and Mortensen,
2010; Akman et al., 2011) have identified various aspects of the
teammates’ social backgrounds and demographic characteristics
that condition teamwork. For example, members of similar
demographic profiles have greater chances to kindle stronger
affinity ties (Ruef et al., 2003). Other demographic differences,
such as race, sex, age, and nationality, have also been found
(Martins and Shalley, 2011) to affect the collective creativity of
virtual teams. Age differences condition the creative processes of
teams and intensify differences in technical experience (Martins
and Shalley, 2011). Differences in nationality have a negative
effect by interacting—however indirectly—with the technical
experience of the teammates (Martins and Shalley, 2011).

12For teams of two, the use of standard deviation is equivalent to the use of

numerical difference. We opted for standard deviation to build on the work by

Odo et al. (2019b) and for generalizability to larger groups.
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4.1.4. Communication Patterns
The methodology by Bowers et al. (1998) introduced a new
approach to communication analysis prompted by a prior
research gap in metrics that missed to analyze the more fine-
grained interaction patterns other than simple frequency counts
of words. They proposed the implementation of the categories of:
(a) uncertainty statements, which included direct and indirect
questions; (b) action statements, which required a particular
member to perform a specific action; (c) acknowledgments,
which were one-bit statements following uncertainty of action
statements, such as "yes," "no," "roger"; (d) responses, which
differed from acknowledgments only in that they conveyed
more than one bit of information; (e) planning statements; (f)
factual statements, which verbalized readily observable realities
of the environment; and (g) non task-related statements. These
categories quantified the performance of crews during simulated
flight tasks, which improved the make-up of communication
sequences analysis.

Based on Bowers et al. (1998) contribution, Davaslioglu
et al. (2019) developed the Collective Allostatic Load Measurers
system (CALM), which collected, aggregated, and analyzed
data from individuals to make assessments on team situation
awareness, performance, and resilience. The study used the
virtual-reality game “Keep Talking Nobody Explodes” that we
too used as inspiration for our experiments. Davaslioglu et al.’s
(2019) study demonstrated that some teams exhibited patterns of
communication, namely, action-response, uncertainty-response-
action, and factual-uncertainty-response-action while working
together under high-stress conditions. Acknowledgment
statements, for instance, were seen to predominate more
amongst high-performing teams, while low-performing teams
had higher portions of non-task-related-statements. Similar
studies on team communication analysis (Pfaff, 2012; Zijlstra
et al., 2012) have identified patterns of communication. Given
the proximity of our methodology to the studies of Bowers
et al. (1998) and Davaslioglu et al. (2019), we implemented the
same communication classes as they did. These communication
patterns, or categories, are the following:

• Uncertainty. Uncertainty statements comprise questions
(either direct or indirect) about the task (e.g., “Where are you
at?,” “Where is the bomb?”).

• Action. Action statements indicate that one or both of the
team members are taking action inside the game, or they are
a direction to take action (e.g., “Move two steps down, then
one right.” “I am moving to position x,” or “Go up for three
blocks, then turn right”).

• Responses. Response statements can accompany either
uncertainty or action statements and suggest that a
communication, or feedback loop (e.g., “yes,” “no”), is
ongoing.

• Planning. Planning statements that give the users a feeling that
they are working together toward achieving a common goal.
Planning statements can indicate the user’s ability to reassess
the situation, clarify the work, or plan the next actions.

• Factual. Factual statements are situational and describe the
reality, for instance, by giving cues about how the maze looks

TABLE 4 | Example of an annotated chat sequence between a Lead Expert and a

Defuser.

Text Annotation Role

Okay? Response Defuser

Got it? Response Lead Expert

I don’t see bomb on my screen, do you know? Uncertainty Defuser

I’m the yellow square Factual Defuser

czzan’t see bombs Factual Lead Expert

where r u? Uncertainty Lead Expert

16C Factual Defuser

go to 12x Action Lead Expert

where should I go? Uncertainty Defuser

One step at a time Planning Lead Expert

As a lead expert, I request you to guide me Planning Lead Expert

Both of us should use the code Planning Lead Expert

even I can’t see the bomb Factual Lead Expert

there is a triangle on L3 Factual Defuser

ok Response Lead Expert

wait Action Lead Expert

can you move? Take turns moving maybe? Uncertainty Defuser

follow my steps Action Lead Expert

How is your family members? Non-Related Defuser

like from the viewpoint of the Lead Expert, or at which
coordinates the bomb is located.

• Non task-related.Non-task-related statements are parts of the
chats that are categorized as non-related when they do not
contribute to the achievement of the goal (e.g., “What is the
weather like?”).

Table 4 illustrates an extract of the annotated chat between
the Lead Expert and the Defuser. The patterns were labeled for
each participant’s text entry and annotated by two independent
evaluators. The inter-rater agreement of the annotation was
sufficiently high to be utilized in the study (Cohen’s κ = 0.998, p
= 0.000). In addition to counting how often each communication
category was used, we also counted the total number of posts
made (chat total) and the number of words used (chat length).

4.2. Output Variables
4.2.1. Team Performance
Ancona and Caldwell’s (1992) definition of team performance
is the extent to which a team can meet its output targets (e.g.,
quality, functionality, and reliability of outputs), the expectations
of its members, or it’s cost and time goals (Ancona and Caldwell,
1992). For this study, the team performance metric consisted of
the binary mapping of the task outcome (winning/losing). The
team performance metric has been used as a dependent variable
in our functional analysis of the collaboration to illustrate the
role of the input factors (personality traits and communication
patterns) and allow us to evaluate the constitution of those teams.

4.2.2. Perceived Collaboration Quality
To measure perceived collaboration quality, we use five metrics
of team dynamics, which evaluated the participants’ perceptions
of their teams.
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4.2.2.1. Perceived Performance
The perceived performance metric addresses the question “How
well, in your opinion, did your team perform?.” It was measured
on a five-point Likert-scale from “Very poorly” (1) to “Very well”
(5) The perceived performance variable defines the subjective
layer of teamwork capability at the given task. The notion
has been conceptualized as a multilevel process arising as the
teammate engages in their individual and team-level task-work
and teamwork processes (Kozlowski and Klein, 2000).

4.2.2.2. Perceived Cohesion
The perceived cohesion metric addresses the question: “How
cohesive was your team?,” measured using a similar 5-point
Likert-scale. Perceived team cohesion, as a fringe term covering
social relations, task relations, perceived unity, and emotions
(Beal et al., 2003), contributes to our understanding of the
emotional dimension of the teams, which is a rather subtle
corollary facet of teamwork alongside other subjective measures.
The study proposes that group members’ perceptions of their
cohesion to a particular group are essential in the sense of
belonging and feelings of morale (Bollen and Hoyle, 1990).
More so, the meta-analysis by Beal et al. (2003) clarifying the
construct relation between this particular subjective metric and
team performance has denoted a high correlation between these
factors across several studies on teams. This work has further
established the importance of cohesion (including the subjective
measurement) in team performance.

4.2.2.3. Perceived Communication Quality
The perceived communication quality metric addresses the
question: “How well did your team communicate?,” measured
using a similar 5-point Likert-scale. Collecting the perception
of the communication quality can help us encode important
information about the participant’s beliefs toward how a team
should function. It can also help disclose the way that the
respective individuals engage in communication with the other
team members and the way they perceive the communication
ties (Cook et al., 2020). Differences in perception might uncover
discrepancies between teammates’ viewpoints that can lead to the
establishment of complex team interventions that intervene at
multiple levels of the team formation and interaction processes
(Wauben et al., 2011).

4.2.2.4. Perceived Balance
The metric addresses the question: “Did both members of your
team contribute equally in your opinion?” measured using a 3-
point Likert-scale. The variable links with the staging of roles
and responsibilities within a team, including how they distribute
between teammates and the ways they get carried out against
the team’s objectives (van de Water et al., 2008). To understand
the relevance of the metric within the present study design,
remember how entirely different the two roles are and how
diametrically determinant they can contribute to teamwork.
The top-down allocation of roles was, by itself, not a sufficient
guarantee that the teammates’ behavior aligned with the given
role. By assessing the aspect of perceived balance, through the
lenses of the teammates, we could better understand what the

participants, and whether it was indeed a balanced act or whether
a role was considered more demanding and accountable for the
outcome than the other.

4.2.2.5. Satisfaction
The metric addressed the question: “Would you play with the
same teammate again?” measured using a 3-point Likert-scale.
Satisfaction helps predict whether a combination of participants
will more likely prefer to work with similar teammates in the
future.

5. RESULTS

We divide our results into two themes: 1. performance, and 2.
perceived collaboration quality.

1. Team performance:

• Section 5.1 analyzes the effect of personality at team level
13, comparing winning to losing teams to see if there may
be a relationship between personality and performance. It
reports the results of a Mann-Whitney U test and perform
a regression to investigate the relationship between team
traits and the likelihood of a team winning.

• Section 5.2 analyzes the communication patterns using a
one-way ANOVA to compare winners and losers, but also
to compare the differences in behavior between the team
roles.

• Section 5.3 evaluates the impact on team performance of
the participants’ socio-demographic characteristics, using
Chi-square tests and regression analysis.

2. Perceived collaboration quality:

• Section 5.4 assesses the relationship between personality
traits and perception of collaboration quality, using
correlation analysis for the individual traits.

• Section 5.5 assesses the relationship between personality
traits and perception of collaboration quality, using
correlation analysis for the team traits.

• Section 5.6 examines whether individual demographic
characteristics played any role in people’s perception of
their collaboration, using one-way ANOVAs.

• Section 5.7 analyzes the relationship between the
communication patterns and the collaboration quality
metrics, also considering the roles of the Defuser and Lead
Expert, using correlation analysis.

Given the many factors considered (e.g., considering 5
personality traits with 4 different aggregation metrics for team
personality already results in 20 factors) and the many outcome
measures, many statistical tests were performed. This may
lead to Type I errors. Using Bonferroni corrections14 to avoid
Experiment wide Type I errors would reduce the power of

13Team, rather than individual level was used since it is usually the combination

and interaction among individuals’ personalities that affects the team outcome, as

evidenced bymultiple studies [e.g., see Gilley et al.’s (2010) comprehensive review].
14Less conservative corrections such as Tukey are not possible due to the data often

not meeting normality assumptions.
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the statistical tests to such an extent that Type II errors
would be highly likely and few insights would be gained15. We
have therefore not applied such corrections (except in post-hoc
pairwise comparisons). The study is exploratory in nature, and
the statistical results presented provide initial insights that lead
to hypotheses for follow-on studies.

5.1. Impact of Personality on Team
Performance: Minimum Openness May
Matter
Since there is no universally accepted way of aggregating
team member personality traits into team personality traits,
we used multiple, namely the average, minimum, maximum,
and standard deviation. Each of these metrics was examined in
isolation, as they are not independent. Table 5 shows the mean
(and standard deviation) of these four metrics for the winning
and the losing teams. Minimum Openness was significantly
better in winning teams (Mann-Whitney U = 485, p = 0.02).
There were no other significant results16.

A binary logistic regression with the minimum metric17

considered the effects of the teams personality on the likelihood
of winning18. Given only 16 out of 60 teams won, the basic
model only uses a constant with an accuracy of 73.3% (obtained
by always predicting the team will lose). The logistic regression
model was statistically significant, χ2

(6) = 13.60, p = 0.034. The
model explained 30% (Nagelkerke R2) of the variance in winning
and correctly classified 77% of cases, including 38% of wins.
Increasing minimumOpenness andminimumNeuroticism were
associated with an increased likelihood of winning [Openness:
Exp(B) = 1.52, Wald = 4.61, p = 0.032; Neuroticism: Exp(B) =
1.58, Wald = 4.20, p= 0.041] .

Our results indicate that in this kind of task (high-pressure,
high-demand), minimum Openness to experience seems the
most important factor among the Big-5 traits in helping the
team to effectively manage the ad-hoc collaboration to find
a winning solution within a limited time. This means that a
crowdsourced, ad-hoc, and remote emergency response team will
likely be more successful at executing a time-bounded novel task
if both collaborators share high levels (minimum) of Openness to
experience. The minimum level of this trait indicates that teams
with individuals with low Openness are expected to hamper the
collaboration regardless of whether the counterpart has very high
levels of Openness and this is reasonably determined by the
interdependence between roles.

15Additionally, as many measures were not independent, Bonferroni corrections

would also have been less appropriate.
16Including no impact of Neuroticism or differences of standard deviation.
17We only performed the logistic regression with the minimum metric as

minimum Openness was the only variable that was significant in the Mann-

Whitney test, hence avoiding runningmultiple tests increasing the chances of Type

I error.
18Hosmer and Lemeshow test was not significant, thus, the model assumptions

were met.

5.2. Impact of Communication Patterns on
Team Performance: Action and Response
Help Teams Win
Table 6 shows the number of posts per chat category for winners
and losers, for winning and losing teams, and for Defusers
and Lead Experts. As the role likely affects how participants
communicate, we analyzed the communication pattern usage
data at the individual level, with an output variable whether
these people belonged to winning or losing teams. We analyzed
the six chat categories (Uncertainty, Action, Response, Planning,
Factual, Non-related), the chat length (in words) and the total
number of chat posts between winners and losers using a one-way
ANOVA. Winners used significantly more Action and Response
statements [Faction(1,118) = 4.426, p = 0.038, Fresponse(1,118) =
4.983, p= 0.027].

A binary logistic regression model to predict whether a
participant would win or lose was statistically significant [χ 2

(7)

= 14.86, p = 0.038]. The model explained 17% (Nagelkerke
R2) of the variance in winning and correctly classified 78% of
cases (25% wins). Increasing the Action and Response categories
was associated with an increased likelihood of winning [Exp(B)
= 1.28, Wald = 5.35, p = 0.021; Exp(B) = 1.21, Wald =
3.92, p = 0.048, respectively]. Increasing the chat length was
associated with a decreased likelihood of winning [Exp(B) =
0.97, Wald = 4.04, p = 0.044]. These results seem to indicate
that participants who gave feedback to one another and focused
on discussing which action to take—rather than other types of
communication—were able to finish the task and win the game.
We also understand that the amount of chat is not a sufficient
measure for success in online emergency response team settings
since we could not find neither correlation nor causality between
these variables.

Lead Experts used the Action category significantly more than
Defusers [Faction(1,118) = 14.736, p< 0.001] whilst Defusers used
the Factual category significantly more [Ffactual (1, 118) = 5.273, p
= 0.023]. The Lead Experts are the ones with the map and would
direct the Defusers to the appropriate path to defuse the bomb.
Meanwhile, the Defusers may need to tell the Lead Experts where
they are. There is a statistically significant difference in the chat
categories, with Defusers on winning teams using a significantly
higher proportion of Factual messages in their chat than those on
losing teams (53 vs. 33%, p = 0.043) and a lower proportion of
Uncertainty messages (8 vs. 22%, p = 0.041).

5.3. Impact of Socio-Demographic
Characteristics on Performance
Table 7 shows the demographics of winners vs. losers, excluding
cases with very low frequency19. Pearson Chi-square tests show a
significant association between gender and winning [χ2

(1,N = 119)

= 4.78, p = 0.029] and age and winning [χ2
(3, N = 120) = 8.09,

p = 0.044]. Men were more likely to win. A binary logistic
regression model to predict whether a participant would win or
loose based on gender was statistically significant [χ 2

(1) = 5.12,

19Namely prefer not say for gender, and British and Irish for nationality, all with

frequency 1.
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TABLE 5 | Mean (Stdev) of standard deviation, average, minimum, and maximum for personality traits for winning and losing teams.

Openness Conscientiousness Extraversion Agreeableness Neuroticism

StDev 1.06 (0.68) 1.41 (1.46) 1.15 (1.36) 1.50 (1.59) 1.10 (1.00)

Winning Average 8.13 (1.51) 7.75 (1.53) 5.75 (2.32) 6.94 (1.53) 4.22 (2.33)

Teams Min 7.38 (1.71) 6.75 (2.24) 4.94 (2.65) 5.88 (2.25) 3.44 (2.42)

Max 8.87 (1.46) 8.75 (1.34) 6.56 (2.37) 8.00 (1.46) 5.00 (2.45)

StDev 1.72 (1.36) 1.11 (1.32) 1.66 (1.52) 1.46 (1.25) 1.96 (1.88)

Losing Average 7.26 (1.60) 8.24 (1.41) 5.01 (1.55) 6.40 (1.26) 3.82 (1.74)

Teams Min 6.05 (2.22) 7.45 (1.95) 3.84 (1.80) 5.36 (1.79) 2.43 (1.37)

Max 8.48 (1.42) 9.02 (1.39) 6.18 (1.97) 7.43 (1.25) 5.20 (2.78)

TABLE 6 | Mean (Stdev) of number of times chat categories were used by winners and losers, by winning and losing teams, by Defusers and Lead Experts, and total

usage by each.

Uncertainty Action Response Planning Factual Non-related Total

Winners 2.03 (3.10) 2.91 (4.85) 3.41 (3.77) 0.28 (0.58) 2.34 (2.89) 0.03 (0.18) 11.00 (11.15)

Losers 1.94 (2.30) 1.45 (2.60) 2.14 (2.29) 0.17 (0.49) 2.13 (2.49) 0.52 (2.82) 6.71 (11.00)

Winning teams 4.06 (4.71) 5.81 (6.66) 6.81 (7.08) 0.56 (1.09) 4.69 (4.47) 0.06 (0.25) 22.00 (20.41)

Losing teams 3.89 (3.27) 2.91 (3.67) 4.27 (4.01) 0.34 (0.77) 4.25 (4.21) 1.05 (4.08) 16.70 (11.55)

Defusers 1.62 (2.29) 0.72 (1.29) 2.32 (2.70) 0.27 (0.58) 2.72 (2.87) 0.07 (0.41) 7.70 (6.88)

Lead experts 2.32 (2.72) 2.97 (4.35) 2.63 (2.92) 0.13 (0.43) 1.65 (2.18) 0.72 (3.39) 10.42 (9.14)

p = 0.024]. However, it only explained 6% of the variance in
winning and correctly classified 73.1% of cases only by always
predicting losing. Being female was associated with a slightly
decreased likelihood of winning [Exp(B) = –1.07, Wald = 4.53,
p = 0.033]).

We also investigated whether adding gender to the model
that uses personality to predict winning would improve the
model. A binary logistic regression model to predict whether a
participant would win or loose based on gender as well as team
personality (in terms of minimum Openness and Neuroticism
given the results from Section 5.1) was statistically significant
[χ2

(3) = 27.97, p< 0.001]. The model explained 31% (Nagelkerke
R2) of the variance in winning and whilst correctly classifying
78.2% of cases. Being female was associated with a decreased
likelihood of winning [Exp(B) = –1.31, Wald = 4.97, p = 0.026].
Similar to our earlier results, increases in minimum Openness
and Neuroticism were associated with an increased likelihood of
winning [Exp(B) = 0.47, Wald = 11.92, p = 0.001; Exp(B) = 0.52,
Wald = 11.94, p = 0.001, respectively]. A similar model without
Gender explained only 25% of the variance in winning, and
reduced correct classification to 76.5%. Thus, gender mattered
but less than personality. When age, nationality or education are
added to the binary logistic model instead of gender, they are not
significant.

5.4. Impact of Individuals Personality Traits
on Perceived Collaboration Quality:
Agreeableness May Be Helpful to Cope
With Losing
Unfortunately, only 44 out of 120 participants (23 Lead Experts
and 21 Defusers) completed the survey at the end of the

task, concerning their perception of their team’s Cohesion,
Performance, Communication, Balance, and Satisfaction. All
perceived collaboration metrics were positively correlated (see
Table 8), overall and for winners. In contrast, for losers the
correlations with Satisfaction were not significant (see Table 8),
and Performance and Balance were also not correlated. So,
losers may not always have attributed the bad performance to
a poor balance in the team, nor always have been unwilling
to keep working with a person even though the collaboration
was not going well (according to the other metrics and the fact
they lost).

Agreeableness significantly correlated with perceived
Performance, Cohesion, and Balance. Neuroticism significantly
correlated with only Balance (see Table 9). Considering
only winners, there were no significant correlations between
the personality traits and any metric. In contrast, losers
had a significantly positive correlation on Agreeableness
with Performance, Cohesion, and Communication.
Furthermore, losers had a significant negative correlation
on Conscientiousness with Communication. Agreeableness
may have helped people to see their loss in a more positive
light, making them feel more positively about their teams
performance, communication and cohesion20,21. We do
not know whether being more conscientious made losers
feel worse about their teams communication, or whether

20This also means that Agreeableness needs to be considered when interpreting

indirect measures of team collaboration quality as it maymake them a less accurate

reflection of actual collaboration.
21This seems more likely than that Agreeableness influenced the performance,

communication, and cohesion itself, certainly given the lack of correlations for

winners.
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TABLE 7 | Demographics overall and of winners vs. losers (excluding prefer not to say for gender and nationality) and also for teams that include the same or different

genders and nationalities.

Gender Nationality Age Education

Men Women Same Differs USA India Same Differs 20–29 30–39 40–49 50+ HS SC Col PG

N 78 41 33 27 67 51 33 27 23 56 26 15 9 9 87 15

Winners 33% 15% 30% 22% 19% 35% 27% 26% 22% 36% 27% 0% 11% 33% 28% 27%

Losers 67% 85% 70% 78% 81% 65% 73% 74% 78% 64% 73% 100% 89% 67% 72% 73%

TABLE 8 | Spearman correlations between perceived collaboration quality metrics, **p < 0.01, *p < 0.05.

Performance Cohesion Communication Balance Satisfaction

All (N = 44)

Performance 1 0.751** 0.593** 0.449** 0.525**

Cohesion 0.751** 1 0.649** 0.528** 0.502**

Communication 0.593** 0.649** 1 0.506** 0.508**

Balance 0.449** 0.528** 0.506** 1 0.389**

Satisfaction 0.525** 0.502** 0.508** 0.398** 1

Winners (N = 24)

Performance 1 0.732** 0.648** 0.486* 0.568**

Cohesion 0.732** 1 0.725** 0.512* 0.579**

Communication 0.648** 0.725** 1 0.530** 0.646**

Balance 0.486* 0.512* 0.530** 1 0.484*

Satisfaction 0.568** 0.579** 0.646** 0.484* 1

Losers (N = 20)

Performance 1 0.734** 0.523* 0.302 0.299

Cohesion 0.734** 1 0.514* 0.419 0.319

Communication 0.523* 0.514* 1 0.470* 0.283

Balance 0.302 0.419 0.470* 1 0.261

Satisfaction 0.299 0.319 0.283 0.261 1

the team communication was influenced negatively by their
Conscientiousness. The lack of a significant correlation
for winners points toward the first explanation, with
Conscientious people perhaps being more honest in assessing
team communication quality.

5.5. Impact of the Teams Personality Traits
on Perceived Collaboration Quality: The
Positive Role of openness and Surprising
Need for Conscientiousness Differences
We determined values for a teams perceived collaboration
quality metrics by taking the average of its members, or
only one member had provided their ratings by using
that members ratings. Average and minimum Openness
positively correlated with perceived performance22 in line with
earlier findings that Openness had a positive impact on the
likelihood of a teamwinning. MaximumAgreeableness positively
correlated with perceived performance23, in line with our
earlier observations regarding the impact of Agreeableness on
individuals opinions.

22Spearman correlations average Openness: r = 0.398, p = 0.02; minimum

Openness r = 0.410, p = 0.02.
23Spearman correlation: r = 0.400, p = 0.02.

The most interesting result is the significant positive
correlation of all perceived quality metrics with
Conscientiousness standard deviation24,25.

A lower Conscientiousness standard deviation correlated with
negative team’s feelings. In a dyad, the lowest Conscientiousness
standard deviation is when two people work together who
are very similar in Conscientiousness. For example, two
highly conscientious people or two lowly conscientious
people. Two lowly conscientious people working together
may not result in a good collaboration. However, two highly
conscientious people working together are likely to yield good
performance. It seems that the best performance—from the
team members’ point-of-view—for this particular type of task
comes from two people differing in Conscientiousness working
together.

5.6. Impact of Socio-Demographic
Characteristics on Perceived Collaboration
Quality: No Significant Result
Tables 10, 11 show the perceived collaboration quality metrics
for the different genders, age groups, nationalities, and education

24Spearman correlations Performance: r = 0.644, p < 0.0001; Communication

quality: r = 0.492, p = 0.003; Cohesion r = 0.403, p = 0.02; Balance: r = 0.448, p

= 0.008; Satisfaction: r = 0.417, p = 0.01.
25There was also a significant Spearman correlation for minimum

Conscientiousness: r = –0.423, p = 0.01.
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TABLE 9 | Correlations between perceived collaboration quality metrics and personality traits, **p < 0.01, *p < 0.05.

OPEN CONS EXTRO AGR NEUR

All (N = 44)

Performance 0.062 –0.187 0.044 0.434** 0.106

Cohesion 0.050 –0.181 –0.088 0.319* 0.160

Communication –0.111 –0.256 –0.217 0.221 0.159

Balance –0.029 –0.203 –0.196 0.317* 0.318*

Satisfaction –0.003 –0.035 –0.074 0.032 –0.031

Winners (N = 24)

Performance 0.081 –0.099 0.064 0.289 –0.023

Cohesion 0.053 –0.148 –0.006 0.241 0.013

Communication –0.068 –0.098 –0.239 –0.074 0.044

Balance –0.319 –0.302 –0.345 0.354 0.285

Satisfaction –0.086 0.144 –0.009 –0.072 –0.098

Losers (N = 20)

Performance 0.013 –0.336 0.017 0.761** 0.330

Cohesion 0.021 –0.226 –0.162 0.456* 0.388

Communication –0.178 –0.551* –0.159 0.547* 0.397

Balance 0.315 –0.053 0.004 0.338 0.361

Satisfaction 0.025 –0.233 –0.112 0.242 0.050

TABLE 10 | Mean (standard deviation) of collaboration quality metrics by gender and age, and also for teams that include the same or different genders.

Collaboration

Gender Age

Men (32) Women (12) Same (20) Differs (14) 20–29 (11) 30–39 (25) 40–49 (6) 50+ (2)

Performance 3.75 (1.27) 3.17 (1.53) 3.68 (1.17) 3.21 (1.53) 3.82 (0.87) 3.56 (1.50) 3.50 (1.64) 3.00 (1.41)

Cohesion 3.50 (1.19) 3.00 (1.28) 3.53 (1.09) 3.00 (1.32) 3.55 (1.04) 3.36 (1.22) 2.83 (1.72) 4.00 (0.00)

Communication 3.78 (1.24) 3.25 (1.29) 4.00 (1.06) 2.93 (1.27) 4.27 (0.65) 3.48 (1.33) 3.00 (1.67) 4.00 (0.00)

Balanced 1.03 (0.90) 1.08 (0.67) 1.10 (0.84) 0.89 (0.79) 1.09 (0.83) 1.12 (0.83) 0.33 (0.52) 2.00 (0.00)

Satisfied 1.38 (0.83) 1.08 (0.79) 1.23 (0.83) 1.32 (0.72) 1.27 (0.91) 1.20 (0.82) 1.83 (0.41) 1.00 (1.41)

levels. One-way ANOVAs showed no significant effect of
socio-demographic variables on perceived team performance,
cohesion, communication, balance, and satisfaction26. The
averages on all metrics except for balance were a bit higher
for men (which would make sense given the men had more
often won), but this was not statistically significant, which is not
surprising given the high variance and the sample size.

5.7. Impact of Communication Patterns on
Perceived Collaboration Quality
We carried out a Spearman correlation test between the
communication patterns (the number of occurrences of each
communication category for the individual and their team) and
the perceived collaboration quality (by individuals27).

Satisfactionwas positively correlated with the Factual category
(r = 0.308, p = 0.042, for both the individual and team), also
for Defusers (r = 0.457, p = 0.037, for the individual), but not
Lead Experts. So, members seemed more pleased when their
team shared more facts, and Defusers particularly when they

26There was a significant difference for education level on balance, but given the

small numbers in all groups.
27Given the low number of teams were both members responded, we used the

perceived collaboration quality at the individual level only.

shared more facts. Satisfaction was also positively correlated with
Planning but only for Defusers (r = 0.437, p = 0.047, for the
team). It suggests that Defusers were more pleased when the team
planned toward the common goal (i.e., defusing the bomb on
time).

Performance was positively correlated with the Factual
category only for Defusers (r = 0.504, p = 0.020, for the team).
The more cues were shared among the team members the better
Defusers seemed to perceive the team performance.

Balance was negatively correlated with the Uncertainty
category (r = –0.378, p = 0.011, for the individual), also for Lead
Experts (r = –0.440, p = 0.036; r = –0.524, p = 0.010, for the
individual and team respectively), but not for Defusers. Themore
questions the Lead Expert asked, and the more questions were
asked in the team, the less balanced the Lead Experts seemed to
perceive the collaboration.

Finally, Communication was positively correlated with the
individual Response category for Defusers (r = 0.457, p = 0.028),
so the more responsive the Defuser was (e.g., in acknowledging
actions they were going to perform), the better they regarded the
team communication.

To summarize, several communication categories correlate
with perceived collaboration quality, with the role in the
team impacting which categories matter. For a good perceived
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TABLE 11 | Mean (standard deviation) of collaboration quality metrics by nationality and education level, and also for teams that include the same or different nationalities.

Collab. Metrics

Nationality Education Level

USA (16) India (28) Same (19) Differs (15) High Sch. (1) Some Coll (3) College (34) Postgrad. (6)

Performance 3.19 (1.56) 3.82 (1.19) 3.76 (1.25) 3.13 (1.38) 3.00 (0.00) 4.00 (1.00) 3.62 (1.33) 3.33 (1.86)

Cohesion 3.31 (1.40) 3.39 (1.13) 3.53 (1.17) 3.03 (1.22) 3.00 (0.00) 3.33 (0.58) 3.44 (1.16) 3.00 (1.90)

Communication 3.31 (1.49) 3.82 (1.09) 3.68 (1.11) 3.40 (1.44) 2.00 (0.00) 4.67 (0.58) 3.71 (1.12) 3.00 (1.90)

Balanced 1.06 (0.93) 1.04 (0.79) 1.16 (0.78) 0.83 (0.84) 0.00 (0.00) 1.67 (0.58) 1.15 (0.78) 0.33 (0.82)

Satisfied 1.25 (0.86) 1.32 (0.82) 1.40 (0.76) 1.10 (0.81) 1.00 (0.00) 2.00 (0.00) 1.24 (0.82) 1.33 (1.03)

collaboration quality, it seemed important for Defusers to
provide facts and neither the team nor the Lead Expert to ask
too many questions.

5.8. Post-hoc Analysis on Impact of Culture
Given our participants mainly came from the USA and India,
one may wonder whether there is an impact of culture. Firstly,
whilst there is research to show that personality scales can be
generalized across cultures (Rolland, 2002; Rammstedt and John,
2007), the distribution in cultures of personality traits differs.
Sometimes therefore statine scores (Thorndike, 1982) are used
for personality tests to normalize scores based on participants’
country of origin. We did not do this, but did consider how the
USA and India differ on personality scores, and whether this
difference is visible in our participant sample. Table 12 shows the
personality scores for the USA and India from the literature, and
the scores in our sample. In the literature, the main differences
between these countries are on Extraversion and Agreeableness.
In our sample, there were significant differences in Openness,
Extraversion and Agreeableness between the sample from India
and the USA28. If we had used stanine scoring normalizing
based on the country averages from the literature, the difference
between the scores in our sample would have been even bigger
(given the averages for India where lower than those for the
USA in the literature on these traits, and they already are higher
than those for the USA in our sample). We conclude that crowd
workers recruited through Mechanical Turk do not represent the
average person from their countries. This is not surprising, as for
example Burnham et al. (2018) found that Mechanical Turkers
from the USA are lower in Extraversion than the general USA
population (as was also the case in our sample). To be successful
on Mechanical Turk, a certain level of conscientiousness is
required (as many tasks require a certain success rate on previous
tasks). Similarly, one could imagine that coming from India and
working on an American platform requires a certain level of
Openness to Experience.

There may also be an impact of whether people worked with
somebody from their own culture in the task or another culture.
We therefore considered whether there was a difference between
same nationality teams and teams which differed in nationality
on winning the task and on perceptions of collaboration
quality (see descriptives in Tables 7, 11, respectively). There was

28Post-hoc test, Mann-Whitney U = 811.5, U = 611.0, U = 933,5 respectively, with

p < 0.001 (and still significant if Bonferroni corrected).

clearly no difference on winning or losing. The perception of
collaboration quality seemed slightly better for same nationality
teams (with higher means on all measures), but this difference
was not statistically significant29.

6. DISCUSSION, LIMITATIONS, AND
FUTURE WORK

6.1. Discussion
In this paper, we explored the impact of personality traits,
demographics and communication patterns on a virtual
collaborative task under time constraints for crowdsourced
dyads. Our study observes how the crowd enacts pair-wise roles
under pressure, adjusts its communication via chat, and shares
common objectives while executing an artificial, video-game-
inspired, cooperative time-bound task. Our goal is to use the
knowledge from the observations gathered from the study as
the basis for future work on AI-supported crowdsourcing of
remote emergency response teams. The main results from our
exploration, that will need to be verified in follow-on studies, are
as follows:

• Personality and team performance: minimum Openness to
experience seemed to affect the teams’ ability to perform under
time pressure. Comparatively, teams with higher minimum
Openness levels performed better at the remote cooperative
task.

• Communication and team performance: Communication
patterns seemed to matter for team performance: better-
performing crowd teams had more Action/Response
statements than non-winning teams.

• Demographics and team performance: Gender seemed to
influence performance, with men slightly more likely to win,
however, gender influenced team performance less than the
personality trait Openness to experience (minimum).

• Personality and perception: Crowd workers’ Agreeableness
and Conscientiousness likely shaped their perception of
the collaboration. Furthermore, dyads that combined
people differing in Conscientiousness were perceived by the
participants themselves to perform better.

29Perceived performance was significant at p < 0.05, but not when Bonferroni

correction was applied.
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TABLE 12 | Mean and standard deviation of the Big Five personality traits in the literature (Bartram, 2013) and in our sample data.

Data Openness Conscientiousness Extraversion Agreeableness Emotional stability

Literature
USA 5.29 (2.05) 5.72 (2.03) 5.84 (2.09) 5.34 (1.97) 5.70 (2.05)

Our sample
USA 6.69 (2.19) 8.34 (1.95) 4.13 (2.02) 5.85 (1.83) 5.88 (2.92)

India 8.55 (1.56) 7.80 (1.89) 6.71 (1.89) 7.43 (1.74) 6.35 (2.02)

• Communication and perception: Communication patterns
also seemed to matter for perceived collaboration quality, with
the role in the team impacting which categories mattered.

We weigh up these results and connect them with the broader
teamwork literature in the coming sections.

6.1.1. Minimum Openness May Impact Teamwork in

High-Stress Remote Tasks
Our study demonstrates that the trait of Openness to experience
(specifically, its minimum level in a dyadic crowd team) may
be a crucial feature for collaboration under pressure and time
constraints. This result is novel to the field of team formation
since several other studies (Thoms et al., 1996; Barrick et al.,
1998; Cogliser et al., 2012; Curşeu et al., 2019) have found
that other traits (Conscientiousness first, then Extraversion and
Agreeableness) are the most relevant factors affecting team
performance. There have been other studies on the effects of
personality traits on team performance, such as by O’Neill and
Allen (2011) indicating that the trait of Openness is negatively
linked with performance when the team is stable and long-term,
and when it has to perform large analytical tasks such as software
engineering. In view of O’Neill and Allen’s (2011) study, we read
our results as being strongly conditioned by the chosen task type.
By highlighting the importance of the trait of Openness, our
study helps shed light on the differences that distinguish online
ad-hoc teams for high-pressure, high-stake tasks, from classical
team settings.

Adaptation, as a collateral personality feature of individuals
with high Openness to experience, is indeed considered useful in
teamwork (Gallivan, 2004), especially in situations of high stress,
high-stake and limited time. Moreover, intellectual curiosity with
regards to new circumstances is a characteristic observed in
people with high Openness to experience (McCrae, 1987); this
same trait is closely related to team creativity (Schilpzand et al.,
2010). Substantiated by literature (McCrae, 1987; Schilpzand
et al., 2010), our results suggest that Openness may act as a more
influential factor than task familiarity in determining the success
of the team.

6.1.2. Focused Communication Patterns Get the

Teams Going
From the results of the analysis of the collaboration, patterns
emerge that people who completed the challenge had
substantially more Action/Response statements in their
chat logs. Thus, they were more effective at communicating with
their teammate and promptly came up with clear instructions
that helped solve the task on time. Successful participants
under pressure used the chat to find a solution right away.
Furthermore, winning Defuser predominantly used factual

statements. Winning Defusers paid attention to the directives
given by their paired teammates (Lead Experts) and responded
over the chat by describing where they were at that point in
the maze. These results seem to indicate the importance of
focused communication (with the focus being on efficiency
and action clarity), especially when the stakes are high and
time-bound. The identification of collaboration patterns has
also uncovered tangible clues on how winning individuals
intervene during the novel, high-pressure circumstances. Even
though communication styles were not communicated explicitly
at the start of the task, some participants were more apt at
adopting suitable conversational styles as they cooperated and
learned from the activity. These findings corroborate other
(quasi) longitudinal observations of the long-term impact of risk
communication and emergency response measures (Heath and
Palenchar, 2000) indicating that citizens are willing to become
knowledgeable of emergency response measures and proactively
contribute to community relations.

6.1.3. Agreeableness and Conscientiousness Likely

Shape the Perception of Collaboration
In our study, highly agreeable people seem to deal better with
losing, reflecting more positively on perceived performance,
cohesion, and communication. Agreeableness has a social
orientation (Bradley et al., 2013) and the trait faceted with trust,
altruism, and humility (Matsumoto and Juang, 2016). As highly
agreeable people tend to be more sympathetic toward others
(Thompson, 2008) and more humble, this may have made them
more forgiving toward their teammates and themselves on these
aspects. We also found that individuals in teams heterogeneous
on Conscientiousness felt better toward the collaboration. Hence,
Conscientiousness, at least for high-pressure tasks, is better
distributed across teams to improve the perception of teamwork.
Making such teams that are heterogeneous in Conscientiousness
does not have to be detrimental to actual performance, as shown
by our other results as well as Mohammed and Angell (2003).
Our result conflicts with that of Gevers and Peeters (2009) who
showed that diverse levels of Conscientiousness were negatively
linked with teammates’ satisfaction. It may be due to the nature
of the task since homogeneous high Conscientiousness might
have led both the Defuser and the Lead Expert to be overly
cautious; however, further studies should investigate the extent
of our findings.

6.1.4. Communication Patterns Aligned With Team

Roles Matter for the Perception of Collaboration
Communication patterns seemed to matter for the perceived
collaboration quality, but this depended heavily on team role.
Defusers seemed more satisfied with the collaboration when both
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themselves and the team used more Factual statements, Lead
Experts seemed less satisfied when using Uncertainty statements.
These results indicate the importance of team roles and how they
are enacted and perceived by teammates. In this instance, the
two team roles had distinct and interdependent duties. These
reflected the communication patterns that the participants used
and preferred (or disliked) above all. In the presence of such
distinct team roles, the participants seem to have expected certain
communication patterns from their teammates, and these greatly
depended on what part of the information they had access to.
Defining clear roles is important, as team role clarity improves
collaboration (Aritzeta et al., 2005) and communication styles
aligned with team roles matter for effective and satisfactory
teamwork [as shown in this paper, and in line with (De Vries
et al., 2006)]. It may be even more vital in high-pressure tasks
with high interdependence.

6.1.5. Gender May Impact Collaboration Though Less

Than Personality
Gender seemed to impact team performance, with men slightly
more likely to win than women. We considered whether there
may have been personality differences. We did not find a
statistically significant difference in overall personality traits
between genders in this sample. There is some evidence in the
literature that there may be a difference in sub-facets of Openness
(Weisberg et al., 2011). We also considered whether this is a side
effect of the different proportions of men in the sample. More
men would result in more teams with men being homogeneous
in gender. However, we did not find a significant difference in
performance between homogeneous and heterogeneous genders
(see Table 7 for descriptives for same gender teams and teams
with different genders). Apesteguia et al. (2012) considered the
impact of gender on teamwork in an investment game setting.
They argued that a decreased performance in homogeneous
female teams is explained by differences in decision making,
with women being less aggressive and more focused on social
sustainability.

We also considered whether gender homogeneity
impacted perceptions of collaboration quality (see Table 10

for descriptives). There was a significant impact only on
Communication (post-hoc, Mann Whitney U = 268, p < 0.005,
Bonferroni corrected), with Communication being appreciated
more in same gender teams. As there is a big difference between
India and the USA in gender equality (USA is 30th (out of 156) in
the Global Gender Gap Index (Sharma et al., 2021) compared to
India only being 140th), we also considered the impact of gender
homogeneity when teams were diverse in nationality. For teams
diverse in gender, there was a significant impact of nationality
homogeneity on Cohesion and Balance (post-hoc, MannWhitney
U = 28, p < 0.05, Bonferroni corrected) and similar trends for
Communication and Performance (p = 0.1 after Bonferroni
correction), with all being perceived better for same nationality
teams. We considered whether the impact of gender on winning
we found may be partially due to women being more likely to
have been in diverse gender teams, and collaboration issues
having occurred in such teams when the teams were mixed in
nationality. However, this was not supported by the data. Further

studies are needed to investigate possible cultural factors and
their interaction with gender homogeneity. However, given the
impact gender may have, gender diversity in teams should be
encouraged (Díaz-García et al., 2013).

6.2. Limitations
6.2.1. Exploratory Study
As explained above, the study performed was exploratory in
nature. Follow-on studies are needed to confirm the results
found. The findings from our study can provide the hypotheses
for such studies.

6.2.2. Matchmaking System
One of the primary limitations of this study comes from
the matchmaking part of the system. We paired participants
following a simple first-in-first-out queuing fashion and did not
consider user features. This study design choice matched the
micro-tasking nature of crowdsourcing and its asynchronous
environment, characteristics typical to platforms like Amazon
Mechanical Turk. Random matching proved to be an effective
solution to the problem of pairing virtual users into ad-hoc teams
fast and based on availability, and for this reason easily applicable
in emergencies. However, this matching limited the control over
team formation, rendering the present study observational. For
future studies, we plan to test other types of matchmaking
criteria. For example, using heuristic algorithms similar to Irvin’s
Stable Roommate Problem (Irving, 1985) that would assist the
matchmaking process according to pre-defined criteria. Other
matching systems, such as AI (machine learning and features
extraction), could also be used as baselines.

6.2.3. Metrics and Sample
Another limitation of this study is the one associated with the
dataset generated from the user outputs and their willingness
to give away credible information on their personality traits,
demographic data, and experience in the game. We plan to
strengthen this area of the research by implementing additional
types of secondary data collection systems, such as behavioral,
contextual, and sensor data, to help validate and enrich the
information gathered about the participants. Different user
groups (e.g., students, remote developers, and incident response
volunteers) should partake in future studies.

Additionally, our study design did not implement exclusion
criteria such as required English proficiency levels nor relied
upon pre-screening to filter crowd workers on the basis of
their reputation and/or a number of successful HITs. Varying
levels of English may have impacted the results. However, most
participants reported having completed a College education and
the education language at College in all participants’ countries
(USA, India, UK, Ireland) is English, so we have some confidence
that the English level was sufficient not to inhibit communication.
We also did not notice clear communication issues due to
language in the chats. Nevertheless, future studies will include
a test to ensure an appropriate English proficiency level. The
absence of pre-screening on English also has a positive aspect,
as means our study can be generalized to emergency crises where
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English is not necessarily the native language whilst still being
used for basic virtual communication via chat.

Finally, our sample consisted of predominately male,
American, and Indian AMT workers. The sample used for
the results likely impacted participants’ collaboration and
performance. Although we accounted for some of these socio-
demographic characteristics (of which gender was significant),
we acknowledge the limitations of the dataset derived from
the AMT sample. Other types of remote crowd workers from
other platforms should experiment with the tool to test for
the generalisability of the findings to other portions of the
population.

6.2.4. Task, Timer, and Features
The results gathered from the experiments on a single task
provide a limited range of conclusions and levels of abstraction
to other domains unless other high-stress scenarios could be
tested and compared. We plan to implement several types of
high-stress tasks. For instance, real-time translation or visual
puzzle games would generate more diverse data. They would
also quantify the extent to which the choice of task design
impacts team collaboration. Another limitation is the lack of
manipulation checks for the perceived realism and urgency of
the task. It is possible that those workers who did not approach
the task seriously might have behaved differently in situations of
authentic danger and gravity. Future work should apply similar
methodologies and observations to real-life remote emergency
situations to be able to test the generalizability of our findings30.
As part of the development stage, we ran several pilot studies to
improve the initial task design and make the instructions clear
and understandable for the participating crowd workers.

In the process, we omitted multiple elements present in the
original version of the module. We tested different countdowns
during the pre-study phase with real users. We settled for
a timelimit of 400s as it allowed participants to familiarize
themselves with the task interface, chat with one another, and
execute the task. Time limits can still be the subject of further
testing to evaluate the user’s reaction times. We deliberately
excluded some of the original elements of the maze module from
the video game (i.e., the count of strikes or penalty points for
hitting the invisible blocks when crossing the walls, the view of
the multiple mazes from the Lead Expert manual, etc.). Tweaking
in-game parameters will help uncovering differences in behavior
and collaboration that we could not identify by running a single
study design. In our experiments, the maze’s walls were made
invisible to the Defuser while still detectable through object
collision. In future studies, and as part of the task improvements,
we aim to bring back some of the original features and to assess
their significance.

6.3. Implications and Future Work
6.3.1. AI Support for Team Formation in Emergency

Response
There has been growing research on AI supported team
formation, where AI programs allocate workers or learners

30However, there are clear ethical issues with this.

to teams (Lykourentzou et al., 2013; Odo et al., 2019a).
Clearly, the task impacts what team attributes matter for good
actual and perceived performance and collaboration. For the
emergency task studied in this paper, our primary finding
concerns the importance of the trait of Openness to Experience
(minimum). When developing an AI group formation system,
this can be incorporated (e.g., in the criteria used for automated
team formation), ensuring emergency response team have high
minimum Openness to Experience, and diverting crowd workers
with low Openness to more suitable tasks. Pre-screening and
selection procedures are not new to disastermanagement, but our
findings indicate that certain personality traits affect emergency
teamwork, and this goes beyond the more common filtering
criteria used such as reputation and trust (Javaid et al., 2013).
More so, previous research on the effects of personality traits in
teamwork did not consider the impact of the task type under
stress (Thoms et al., 1996; Barrick et al., 1998; Cogliser et al.,
2012; Curşeu et al., 2019), particularly in cases of emergency
response. The sample of crowd workers used in this study
helped us understand how pairs of non-familiar and dispersed
users act together when presented with an unseen challenge.
By utilizing AI to infer the crowd’s attributes through their
interactions, intelligent systems can learn to adjust to their needs
and capabilities in times of emergency and suggest collaborators
for a better fit.

The results from this specific approach are beneficial to the
crowdsourcing and online work fields that are becoming ever so
relevant due to recent and significant changes in the way we live
and work. In the Ukrainian conflict of 2022, volunteers of remote
rescue operations based in the USA allocated buses to civilians
making requests for help online and helping save countless lives
(Mark et al., 2022). By remote communication and real-life GPS
updates, citizens from far away aided the evacuation of many
citizens by identifying grounds hit by shelling and bombing.
Following tragic examples like this one, researchers and industry
can weigh the power of AI to aid the team formation process of
remote emergency crowd teams and assist with organizing rescue
units during high-stress, life-threatening situations.

6.3.2. Conversational AI Support for Remote

Emergency Response Teams
The analysis of the communication patterns clearly indicated
that not all teams focused on the task execution correctly
since some adopted less-than-optimal communication strategies.
Our results provide insights into which communication acts
may be important which can be used by an AI system to
monitor and moderate remote collaboration and intervene when
needed. With the implementation of machine learning models,
future crowdsourcing tools specialized in emergency response
can augment the chat functionality by deploying conversational
AI (Battineni et al., 2020) (as an example) moderating users’
communication patterns. With the stark improvements in
Natural Language Generation, Understanding, and Processing,
and the increasingly reduced costs of production thanks to open-
source software community (Adamopoulou and Moussiades,
2020), most forms of crowdsourced self-organized teams (e.g.,
neighborhood watch Bakker et al., 2012) could themselves
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incorporate, maintain, and improve machine learning models
for emergency response conversational AI initially trained on
annotations and knowledge such as the one we present.

We note that personality traits seemed to affect the perception
of the collaboration. Although system evaluations usually pursue
metrics similar to ours (e.g., effectiveness, efficiency, and
reliability), team performance is only part of the equation.
While a team can successfully reach a goal on time, the
perception of teamwork is not always directly proportional
to that outcome. What individuals think, interpret, and how
they respond to changes can be conditioned by personality
factors. In this study, we observe the interaction between
personality and communication patterns. With defined team
roles and interdependency, people with certain personality traits
are likely to expect from others certain communication styles.
Further, personality seems to have determined the propensity
for more or less rigor and clarity in the communication.
Considering the numerous variables at play and the increased
reliance on crowdsourcing for rescue operations and emergency
response (Marc Cieslak, 2022), we advocate for the development
of adaptive and personalized intelligent systems. AI-aided
emergency response can provide support and knowledge to
teams according to the individual and group needs to alleviate
stress and improve community participation. Emotional support
could be tailored to the individuals and made accessible and
private in critical emergency settings addressing the lack of
sensemaking and trust emerging from periods of stress, trauma,
and danger.

7. CONCLUSION

In this study, 60 crowd dyads collaborated in a high-pressure,
computer-mediated task. The study required them to play
complementary roles in a time-bounded critical scenario. We
explored the possible impact of the participants’ personality,
socio-demographic factors, and communication patterns on
team performance and perceived collaboration quality. Results
from our exploratory study suggest that teams scoring high on
the personality trait of Openness (meaning that the minimum
Openness of winning teams was higher than in the losing
teams) performed overall better in the execution of this

high-pressure task. The analysis of the team communication
patterns suggest that teams communicating more through
action-response loops weremore likely to win the game. Different
levels of Agreeableness and Conscientiousness likely shaped the
perception of collaboration with highly agreeable people coping
better with losing. Teams heterogeneous on Conscientiousness
seemed to feel better about the teamwork. Communication
patterns seemed to matter for the perceived collaboration
quality, but this was highly role-dependent, showing that
communication styles aligned with team roles matter for effective
and satisfactory teamwork. We can learn from these exploratory
results that the perception of the collaboration may differ
depending on personality traits and the communication patterns
shared among remote teammates. So, intelligent crowdsourcing-
aided emergency response technology may need to consider
individuals’ viewpoints and provide adequate support for the
crowd needs. Our findings support future research on computer-
based collaboration under pressure. It shows ways to tailor
the development of AI as accessible support in crowdsourcing
emergency response aiding with team formation, conversational
support, and adaptation. Future work will confirm the findings
and evaluate other types of high-stress tasks, time limits,
and parameters for team formation to advance the findings
presented here.
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Modern crowdsourcing offers the potential to produce solutions for increasingly complex

tasks requiring teamwork and collective labor. However, the vast scale of the crowd

makes forming project teams an intractable problem to coordinate manually. To date,

most crowdsourcing collaborative platforms rely on algorithms to automate team

formation based on worker profiling data and task objectives. As a top-down strategy,

algorithmic crowd team formation tends to alienate workers causing poor collaboration,

interpersonal clashes, and dissatisfaction. In this paper, we investigate different ways

that crowd teams can be formed through three team formation models namely

bottom-up, top-down, and hybrid. By simulating an open collaboration scenario such as

a hackathon, we observe that the bottom-up model forms the most competitive teams

with the highest teamwork quality. Furthermore, we note that bottom-up approaches

are particularly suitable for populations with high-risk appetites (most workers being

lenient toward exploring new team configurations) and high degrees of homophily (most

workers preferring to work with similar teammates). Our study highlights the importance

of integrating worker agency in algorithm-mediated team formation systems, especially

in collaborative/competitive settings, and bears practical implications for large-scale

crowdsourcing platforms.

Keywords: crowdsourcing, agent based modeling, social computing, self-organization, team formation

1. INTRODUCTION

Online, on-demand, and large-scale work, also called crowd work, is increasingly gaining traction.
For more and more people, this new labor model is no longer used just for side “gigs” but as a
primary source of income. Companies are also shifting toward elastic labor models, increasing their
share of crowd workers in favor of a full-time workforce (LLP, 2020). The pandemic accelerated
this trend, forcing many people to re-skill, up-skill, and to work with unfamiliar and distant
collaborators, especially in the form of crowd work (Barnes et al., 2015; De Stefano, 2015; Manyika
et al., 2016). Besides small, straightforward tasks, also known as micro-tasks (Difallah et al., 2015),
such as image recognition, captcha annotation, and translation, crowds are now increasingly
being involved in generating solutions to difficult or “wicked” problems, such as climate change
mitigation, disease spread prevention, or rapid innovation generation. Tasks of this sort also called
macro-tasks (Khan et al., 2019), tend to be complex and ill-structured, with multiple knowledge
interdependencies and no straightforward solution. Because of their complex and open-ended
character, these tasks typically require collaboration among workers of different skill sets and
knowledge backgrounds. While micro-tasks lend themselves to being solved quickly and are
therefore short-lived and affordable, macro-tasks frequently urge interdisciplinary collaboration,
require more time, and are more challenging due to their breadth of scope.
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Driven by the need to innovate and stay ahead of competition,
companies increasingly make open calls for solving creative
challenges through platforms such as OpenIdeo (Lakhani
et al., 2012) and InnoCentive (Lakhani and Lonstein, 2008),
where teams of crowd workers compete for prizes (Betts and
Bloom, 2014). Another type of commercial task, which highly
depends on the successful collaboration of crowd teams are
online creative hackathons, for example those dedicated to video
game development. Events such as the Global Game Jam gather
thousands of online participants, including artists, developers,
marketers, who form teams to compete for the best game product;
sustainable game production in this case directly depends on the
participants’ ability to find the right group to work with Whitson
et al. (2021). Aside from pure commercial interest, crowd
team formation is also at the core of governmental initiatives.
With the profound societal changes brought by the COVID-19
pandemic, grassroots entrepreneurship efforts have increased to
stimulate economies and slow down infection rates. With 9,000
participants from 142 countries and 49 states, the Massachusetts
Institute of Technology (MIT) COVID-19 Challenge is the most
recent exemplary attempt addressing immediate needs with rapid
innovation through a series of virtual hackathons involving ad-
hoc teams of remote participants (Ramadi and Nguyen, 2021).

To coordinate the efforts of such workforce, crowdsourcing
research has started to look into team formation algorithms
as automated, scalable solutions. Routinely, team formation
algorithms match workers according to objectives such as
interpersonal compatibility (Lykourentzou et al., 2021) and social
network connectivity (Liu et al., 2015; Rahman et al., 2019).
One of the limits of computed team formation solutions—
which we address in this study—is the omission of the workers’
preferences and evolving relationships in the algorithmic
objective function. In other words, workers have no say in
whether they want to stay in a team chosen for them, and
who they will work with. Team formation algorithms usually
collect the workers’ profile features before the task begins (Liu
et al., 2015; Rahman et al., 2019), but then do not adjust
to the workers’ utilities and pay-offs during the collaboration.
Although the workers’ attributes are gathered only once, they
are often assumed to suffice for the formulation of optimal
teams. As a result, algorithms often fail to capture covert features
such as temporal team dynamics information, collaboration
preferences, intra-group compatibility, and individual risk
appetites; features that play a key role in teamwork success
(Degli Antoni et al., 2021). Aside from profiling information,
team formation systems have recently started to factor social
network properties in their objective functions, bringing together
teams based on their network tie strength (Salehi and Bernstein,
2018) mutating as the collaboration evolves. However, in this
case too, the system does not adapt its decisions based on
worker feedback concerning the enforced rotations, and it
does not account for cases where the workers’ ties deteriorate
or even break. In reality, however, individual team member
agency makes up a significant portion of whether a team
will be able to perform successfully or not, and removing it
could mean reducing the adequacy and fairness of the team
formation system.

Concerns about the poor representation of worker agency
in automated team formation solutions are starting to surface.
Recent research shows that purely top-down solutions result
in rigid team structures and workflows that stifle creativity
and initiative-taking, and inhibit workers from adapting their
problem-solving strategy to the task needs, which, in turn,
is detrimental for complex and open-ended tasks (Retelny
et al., 2017). Forcing workers to work with specific people
can also cause psychological fatigue and discomfort, reduce
user autonomy, alienate workers, and lead to less-than-optimal
collaboration (Rasmussen and Jeppesen, 2006; Lawler and
Worley, 2009). A growing number of studies are starting
to propose ways to incorporate worker agency, including
preferences but also unconscious drivers, into crowd work
settings, so as to directly and positively advance teamwork
quality, efficiency, and well-being. Gaikwad et al. (2015, 2017)
and Whiting et al. (2017) show that incorporating elements
of open governance has been found to promote trust between
workers and task providers. Yin et al. (2018) show that trusting
workers with the work schedule increases the number of tasks
completed without compromising quality, with workers actually
willing to forego significant pay to control their working time.
Specifically to the domain of collaborative work, Lykourentzou
et al. (2016b) use a technique known as team dating, where
people meet with candidate teammates in rapid succession
before deciding to settle into teams. Although their solution
integrates agency only indirectly, by forming teams based on peer
evaluations of the intermediate team dates, this study shows that
accounting for worker feedback during team formation can have
a positive effect on team performance and satisfaction. Looking
at research preceding the online crowdsourcing and open
collaboration movements (Jackson, 1983; De Dreu and West,
2001), we also spot fundamental evidence on the importance of
allowing workers’ agency in teamwork such as through minority
dissent and participation in decisionmaking. Granted autonomy,
individuals not only produce improved results (Gilson and
Shalley, 2004; Costa et al., 2018), but also exhibit healthier mental
states associated with self-governance, feelings of empowerment,
reduced stress, sense of ownership over their work and ideas,
and increased group interdependence and cohesion (Carless
and De Paola, 2000; Rasmussen and Jeppesen, 2006; Haas and
Mortensen, 2016). In this study we are interested in exploring
how more worker-centered and bottom-up team formation
compares to the prevalent approach of forming teams in a
top-down and purely algorithm-driven manner. We do so
by modeling and comparing three team formation systems,
namely a (i) fully bottom-up system, where we model algorithm
involvement to be minimal and team formation to lie almost
exclusively on worker decisions, a (ii) fully top-down one,
where we adapt a latest state-of-the-art team formation algorithm
(Salehi and Bernstein, 2018), (iii) and (iv) a hybrid system,
which borrows elements from the previous two. Although the
three system models all aim to tackle team formation, their
difference lies in the level of agency they permit and the degree
of algorithmic mediation they enforce during team formation.

The fully bottom-up system (which we call SOT from Self-
Organized Teams) is represented by two models. The first model,
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called Radical SOT (R-SOT), prioritizes individual worker over
team preferences of new teammates, and dismantles an existing
team if at least one of its members decides to leave. The
model focuses on facilitating novel interactions between the
workers and leads to radical restructures of the collaboration
network. The second model, called Conservative SOT (C-SOT),
facilitates bottom-up team formation in a less radical manner,
since it prioritizes team over solo worker agency. In this model,
teams looking for members have priority over individuals, and
a team remains together as long as two of its members wish
to keep collaborating. This model prioritizes majority consent
over minority dissent. For the top-down model, we adopt Hive,
a community-based team formation algorithm by Salehi and
Bernstein (2018). Hive was chosen as it is a state-of-the-art
algorithm and it represents the latest trend in top-down team
formation approaches which adapt their decisions during the task
rather than making them only once in the beginning. Briefly,
Hive uses social network information to rotate people across
teams so as to balance tie strength and network efficiency, and
computes teamwork quality whilst rotating teams according to
a stochastic search suited to minimize algorithm complexity.
Finally, combining bottom-up and top-down approaches, we
propose and add to the comparison a third hybrid system model
named HiveHybrid. The model combines worker agency with
algorithmic mediation. In this model, the algorithm offers to
rotate workers according to the Hive system’s objective function,
but workers have then the option to accept or decline these
proposals based on whether they are predisposed to break ties
with their teammates or not (depending on their assessment of
team reward and their personal risk appetite). In HiveHybrid, the
workers’ preferences play as much of a role in team formation as
the coordinating algorithm. We run a comparative study, using
agent-based simulations on the scenario of team formation for a
creative game development hackathon, to evaluate differences in
teamwork quality across these three team formation models. We
focus on answering the following research questions:

1. RQ1. How does bottom-up team formation compare with

top-down and hybrid approaches? We first compare the
three team formation system models on the teamwork quality
they yield, since quality is the primary and typical concern
of crowdsourcing research, platforms, and clients. We use
three metrics, namely the best, average, and worst teamwork
quality, which are relevant depending on the requirements
and constraints of the specific crowd work use case one is
interested in.

2. RQ2: How do population behavioral tendencies affect the

outcome of bottom-up online teamwork? Since bottom-up
systems are more influenced by the participating workers’
attributes, tendencies, preferences, and decisions than top-
down ones, we systematically evaluate the effects of certain
worker population’s attributes on team performance. The
objective of this evaluation is to help future crowdsourcing
systems design incentives or countermeasures for different
expected population behaviors, concerning team exploration
tendencies, population size, and tendencies toward teamwork
diversity. To systematically evaluate the effects of each of

these attributes, we break down this research question into the
following three sub-questions:

• RQ2.1: How do different risk appetites affect teamwork

output in bottom-up models? Workers with a high
risk appetite tend to leave teams and rotate more often
(preference for exploration) compared to workers with a
lower risk appetite who tend to form more lasting teams
(preference for exploitation). Risk appetite is expected
to affect teamwork quality as it affects the number and
structure of the self-organized teams. As a personal
attribute, risk appetite is not only to influence the frequency
of changes but also the preference of tasks (i.e., some
workers might prefer tasks that are higher paid but less
likely to be completed successfully), however, for simplicity,
we have focused on one task type for this study.
• RQ2.2: How do different worker population sizes affect

teamwork output in bottom-up models? Evaluating the
effects of changes in the population size helps to understand
how changes in crowdsourcing collaborative participation
affects the workers’ search space, coordination costs, and
teamwork quality.
• RQ2.3: How does homophily, i.e., the tendency to prefer

working with similar teammates, affect teamwork output

in bottom-upmodels?Homophily is known to affect social
interactions as people tend to choose (work with) partners
based on shared physical and cultural cues (Haun and
Over, 2015). Evaluating the effects of different homophily
thresholds of the participating worker population on
quality can facilitate the evaluation of whether certain
explicit system incentives are needed to encourage workers
to join forces with different collaborators or not.

Our results contribute to the development of future
crowdsourcing tools for team formation that can be adapted—
with the introduction of more or less degrees of agency—to
the needs of the particular use case and the characteristics of
the specific worker population involved. For one, we observe
that self-organization supports the formation of competitive

teams. In use case scenarios where innovation is key, a system
capable of preserving worker agency can be a good return-on-
investment for organizations that leverage competitive skills.
Inspiring exploration across a large pool of curious workers
seems to be an adequate strategy for forming competitive
teams in bottom-up settings; so is the emancipation of team
similarity where workers favor teammates of similar cultural
and demographic attributes when workers have full control
over team rotation. On the contrary, usage scenarios where
it is more important to maintain fairness than performance,
could benefit more from algorithmic-mediated team formation
solutions to explicitly moderate the segregating tendencies
we observe in fully bottom-up models. In this case, our
results indicate that a hybrid system such as HybridHive
constitutes an advantage over either fully top-down or fully
bottom-up models, since it balances the global distribution of
resources with worker agency mediating micro behavior through
macro structures.
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The rest of this paper is organized as follows. We first provide
an overview of existing team formation approaches focusing on
the collaborative crowdsourcing domain (Section 2). Afterward,
we dive deeper into the modeling components that make the
three team formation systems examined in this study (Section
3). Next, we present the results of the simulations comparing
the three systems, mapped to the relevant research questions
(Section 4). We then proceed by discussing the applicability and
relevance of the findings (Section 5), followed by reasoning on the
limitations of this study (Section 6). We conclude the paper with
the main findings, key messages, and final remarks (Section 7).

2. RELATED WORK

2.1. Team Formation Algorithms for
Managing Online Work
Broadly speaking, the Team Formation Problem (TFP) is the
problem of allocating a set of people to subsets, referred to as
teams, according to a set of criteria that vary depending on the
application area (Juárez et al., 2021). As illustrated in Juárez
et al. (2021)’s recent review and taxonomy, TFP research has
been persistently increasing over the past ten years. The problem
encompasses a wide variety of applications, ranging from the
assignment of students to study groups, to the distribution
of patients to hospital rooms, and from the assignment of
reviewers to papers, to the composition of teams for collaborative
work purposes. In this paper, we focus on team formation for
online work and, in particular, large-scale crowd participation in
collaborative work. The research community has mostly focused
on designing algorithms that ensure the quality of digital work
by orchestrating people in a top-down manner, mainly with
the objective to optimize costs. A recent extensive bibliometric
analysis of 268 articles on crowd work task recommendation
(Yin et al., 2020), covering the period of 2006–2019 (practically
since the onset of crowd work) confirms the above, revealing
that the largest and most durable research clusters focus on
forming teams to optimize the task’s budget, using methods
such as dynamic programming, routing, and allocation. Similar
methods are standard practice in operational research (Taha,
2013), an area traditionally geared toward optimizing supply
chain management and manufacturing.

2.1.1. Static Team Formation Models: Making

Decisions Only Once
The problem of forming optimal teams is generally NP-hard,
and for this reason the majority of team formation algorithms
make their decisions in a deterministic fashion and only once
at the beginning of the task. The algorithm’s intervention in
these cases ends with one-off team formation decisions, after
which the teams remain stationary, indisputable, and irreversible.
Commonly used team formation systems typically bank on
pre-existing workers profiling data, such as skills, availability,
or hourly wage to estimate teamwork dimensions including
expertise complementary (Rahman et al., 2019), team costs (Liu
et al., 2015), and team roles (Retelny et al., 2014; Valentine et al.,
2017). Subsequently, the algorithms feed this data to machine
learning or combinatorial optimization models to produce

(near-)optimal solutions. An example of such an approach is the
work by Rahman et al. (2019) proposing an algorithm that relies
on worker skills, wage, and pairwise affinity to match workers
with teams and teams with tasks. Other examples include the
work by Yu et al. (2019) using the Hungarian algorithm to
calculate matches based on skill, task complexity, and active time,
and the work by Ahmed et al. (2020) exploring crowdsourcing
sequential arrival with the objective to maximize teams’ utility
and diversity.

Besides handling team formation as a combinatorial
optimization problem, there are other ways that crowdsourcing
team formation problems have been thought of. An example is
the work by Liu et al. (2015) operating through a mechanism
design approach that proposes a task pricing algorithm seeking
to assemble crowd teams on the basis of costs and skills. This
work looks at worker truthfulness in the bidding process as a
desirable property of the model, where incentive compatibility
results in the preferred dominant strategy. Models of this kind
rely on pre-calculated assumptions and deterministic predictions
to make their team formation decisions and are especially
useful in settings where task requirements are well-defined and
known a priori, and worker characteristics are immutable. For
these tasks, the use of pre-calculated teams permits to scale-up
and compute solutions that are both computationally efficient
and high-quality (Avis, 1983). However, static models do not
appraise changes in the collaborative environment, for example,
changes in the workers’ preferences and affinities as they work
together, the evolution of team dynamics, or changes in the
task requirements (e.g., expertise needed) over the course of the
collaboration (Ananny, 2016; Faraj et al., 2018). Consequentially,
they risk creating rigid team structures that cannot optimally
address tasks of evolving complexity.

2.1.2. Dynamic Team Formation Models: Adapting to

Change
Recently, research has started looking into adaptive algorithms
that make their team formation decisions during the task,
as the collaboration unfolds. In this direction, Zhou et al.
(2018) propose an algorithm using multi-armed bandits with
temporal constraints, which explores the trade-offs among
various dimensions of team structure, such as interaction
patterns or hierarchies. By letting each bandit observe team
performance and choose which arm to use next, the algorithm
decides when and how to make changes in the structure of each
team. In another example, Retelny et al. (2014) and Valentine
et al. (2017) propose Foundry, a crowd management system that
assembles workers into role-based teams. Although workers can
request changes in the original teams, the final decision is made
by a small number of experts and the task requester. Aside from
skill sets, budget, and time, a small set of recent studies has
started proposing team formation algorithms that harness social
network qualities such as connectivity (Salehi and Bernstein,
2018), centrality (Hasteer et al., 2015), and marginality (Wang,
2020), as non-trivial parameters affecting teamwork performance
across time. In this direction, Jiang et al. (2019) propose a team
formation algorithm that instead of forming artificial teams,
based on the individual teammates’ skills, cost, or other features,
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utilizes groups that have been naturally organized through social
networks, and allocated them to tasks in a priority-based manner
based on their capacity to address the task. In the same line, Wu
et al. (2021) propose a graph-based algorithm that estimates the
accuracy of allocating a group of workers to a task, by joining the
factorized matrixes of the workers’ social network connections
with their work history of on tasks.

Relevant to this study is the work of Salehi and Bernstein
(2018). It envisages an online model (Hive algorithm) that
balances two competing forces in team formation optimization:
network efficiency and tie strength among the different worker
pairs. It conceives crowdsourcing team formation as a graph
partitioning problem where disjoint subsets (teams) benefit
from strong ties but suffer from a lack of connectivity within
the collaborative environment. This approach is an attempt
to reconcile familiarity (obtained when relationships remain
constant over time) and serendipity (spurred when breaking
old ties and forming new ones). It handles team formation
problems sequentially and in a stochastic fashion, juxtaposing
top-down appointed team rotation with a series of collaborative
stages of crowdsourcing work. It mediates team rotation by
picking probabilistic moves at every round in keeping with a
combination of tie strength and network efficiency. Rotating
teams in crowd open collaboration resulted to be remarkably
successful in connecting diverse perspectives. However, the same
model provoked discomfort as workers could not determine by
themselves the outcome of the match and could not depart from
inefficient teams or decide to remain in the preferred one. We
use Hive as a state-of-the-art representative benchmark of top-
down work coordination in simulated scenarios. Although the
above algorithms adapt to changes in team performance and
task requirements that may occur over time, they are still fully
top-down mechanisms that infer their decisions without actively
engaging workers in the decision-making process.

In summary, relying on top-down coordination to form teams
presents clear limitations. First, it limits the breadth of attainable
work to tasks that the algorithm can decompose and assign to
workers according to predefined criteria. For this reason, top-
down crowdsourcing team formation solutions are ideal for tasks
that are usually well-structured, with known interdependencies,
and clear knowledge boundaries. However, for creative complex
tasks and innovation generation they still tend to ignore
worker self-organizing abilities and under-cater work flexibility.
Subsequently, they fail at empowering crowd workers and
drastically limit personal development opportunities (Roy et al.,
2013; Schriner and Oerther, 2014). Ergo, another major
limitation of top-down solutions—especially in crowdsourcing
collaborative spaces—is the workers’ confinement and isolation
within the collaborative environment where algorithms direct
and workers execute (Berg, 2015; Smith and Leberstein, 2015;
Popescu et al., 2018; Gray and Suri, 2019). Furthermore, the pay-
per-work model leads to the commodification of online work and
online workers (Wood et al., 2019). It also means that workers
must bear “work-for-labor” costs, i.e., costs for activities like
breaks, training, or waiting for work—which are necessary to
perform the task—but they are not part of the work itself (Berg,
2015; Florisson and Mandl, 2018) as they are still treated as

separate entities from the collaboration and the end-result. For
these reasons, ethical issues also arise (Silberman et al., 2018)
concerning the labor conditions of crowd workers, their rights
and legal status (Deitz, 2016), and “lock-in” phenomena where
workers are tied to platform monopolies and non-transferrable
profile information (e.g., performance history). In the last years,
more and more researchers are raising critical voices (Smith and
Leberstein, 2015; Gray and Suri, 2019) regarding the need to
shift away from the canonical top-down crowdsourcing team
formation systems and give workers agency, control, and self-
determination capacity.

2.2. Self-Organization in Team Formation:
Mediating Through Guidance
The term self-organization is present across several managerial
and scientific fields spanning from software development
communities to complex systems and natural science. The
term describes the emergence of spontaneous processes and
interactions between entities of originally disordered systems
(Yates, 2012; Anzola et al., 2017). In team formation, self-
organization usually describes the behavior of individuals as
they form groups and collaborate autonomously and without
pre-defined leadership. In software development, the term self-
organization typically indicates the distribution of workload
among teammates who flexibly shift responsibilities and partake
in decision-making (Highsmith, 2009). Self-organized teams
are known to benefit from transferable authority (Moe and
Dingsøyr, 2008), as well as from robust and adaptable
collaborative networks (Marzo Serugendo et al., 2003). The work
of Lykourentzou et al. (2016b) explores the self-organization
phenomena in the crowdsourcing domain in the way it affects
teamwork. In their study, unfamiliar workers try out potential
teammates before settling into teams, thus self-organizing
into reciprocal work groups. Their results show that handing
decision-making power to crowd workers increases performance
compared to top-down team allocation. Further, as shown in
Rokicki et al. (2015), when applying self-organization to crowd
teams reward systems, ergo when allowing people to decide upon
reward distribution, the self-governing approach results in fairer
compensation than conventional top-down reward systems.

However, simply relying on self-organization as an emerging,
non-controlled property is not enough for digital labor systems.
For one, the need to adhere to financial and quality targets can
suffer from purely self-organized means. Entirely autonomous
teams can risk overspending on resources and coordination
time, two essential aspects of teamwork. Consequently, we
evaluate the efficacy of guided self-organization as a resolution
between central control and self-governance. This relatively
new approach (Prokopenko, 2009) aims to regulate self-
organization in dynamic complex systems by combining task-
independent global goals (e.g., autonomy, fairness, governance)
with task-dependent constraints (e.g., costs, efficiency) on local
interactions. Up to now, this approach has been thoroughly
researched in robotics (Martius and Herrmann, 2012; Nurzaman
et al., 2014). As for crowd work, guided self-organization
is the golden mean between safeguarding worker autonomy
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FIGURE 1 | System architecture displaying the steps taken by the system in accordance with the hackathon design starting from the initialization of the agents and

proceeding to the formation of teams assessed across ten rounds.

and protecting digital work platforms from disintermediation
(Jarrahi et al., 2020). In the past, the principles of guided self-
organization (albeit under a different name) have touched upon
collaborative knowledge production (Lykourentzou et al., 2010)
and crowdsourcing teams (Lykourentzou et al., 2019). These
studies indicate that guided self-organization is a potentially
effective coordinationmodel for crowd collaboration in amanner
that is distributed, efficient, and fair. In our study, guided self-
organization is represented by a hybrid model which combines
bottom-up self-organization with top-down community-based
team formation.

3. METHODOLOGY

In this study, we attempt to re-create and predict emerging
properties of online crowdsourcing collaborative settings where
the actions of multiple workers—and the intervention of team
formation approaches—affect teamwork and team output. Our
simulation consists of three components: the setting (Section
3.1), the agents (Section 3.2), and the modeling of the work

coordination models (Section 3.3). These are fundamental parts
of the simulated scenario and exhibit behavioral properties,
functional objectives, and constraints typically present in real-
world crowd collaborative systems. Figure 1 showcases the
hackhathon system architecture.

3.1. Setting
Our simulation setting is a cycle-based online crowdsourcing
hackathon. Online hackathons represent collaborative scenarios
where several remote crowd workers of different backgrounds
can gather in teams to create projects and compete for prizes.
Even though hackathons have originated from the software
development community (e.g., cybersecurity, game jams, open-
source development, and operating systems) (Nolte et al.,
2018), they are increasingly popular in other domains such as
crowdsourcing innovation (Temiz, 2021; Wang et al., 2021).
Further, as society faces progressively more global challenges,

the help of citizens—and more broadly crowds—is also being
used to find solutions to universal problems such as carbon
emissions, household waste, and deforestation through collective
idea generation (Monsef et al., 2021).

In our scenario, the (hypothetical) company recruits
participants (game developers, marketers, designers, testers)
online from popular crowdsourcing platforms (Amazon
Mechanical Turk, Upwork, etc.) or other venues (e.g., creative
hubs)1 and retains them until the end of the event (Section 3.2).
During the first round, workers are initially grouped randomly
into teams of four and then they are required to collaborate for
a number of consecutive rounds, which for our scenario is set
to ten (Section 3.4). Depending on the approach involved in
the team formation process (Section 3.3) and the level of the
workers’ agency modeled in the system, workers may move to
other teams voluntarily or by top-down means. At the end of
each round, each worker is given a reward (which can be thought
of in monetary terms, e.g., in US Dollars), based on the ranking
of their team’s quality compared with other teams using the
reward function (Equation 1).

reward =
n− j

n− 1
, for team of ranking j, (1)

where n is the number of teams.
The product of each team is evaluated, using a quality function

(described by Equation (2) and introduced in detail in Section
3.2.2, which simulates external evaluation bymeans of an external
jury). At the end of the final (tenth in our simulations) round, the
system automatically identifies the final best, average, and worst
projects computed by means of the teamwork quality function
(Equation 2).

1For this study, we chose AmazonMechanical Turk as the example hiring platform

since its demographics are well-known (Difallah et al., 2018). Nonetheless, we

acknowledge that the population is expected to differ on platforms such as Upwork

and other virtual creative hubs.
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TABLE 1 | Worker attributes observing their mutability, visibility, type, possible value, and distribution.

Attribute Possible attribute Instantiation Mutability Visibility

Knowledge domain Developer; Designer; Marketer; Tester

Random uniform

Immutable

Manifest
Nationality USA; India; Other

Educational level High school; Bachelor; Master or above

Age (years) <20; 21–30; 31–40; 41–50; 51–60; >60 <20 = 2%, [21..30] = 40%, [31..40] = 36%,

[41..50] = 7%, [52..60] = 9%, >60 = 4%

Personality Dominant; Inspiring; Supportive; Cautious D = 50%; I = 10%; S = 20%; C = 20%

LatentRisk appetite [0,1] Beta distribution (β = 2, α = 2)

Expertise [0,1] Beta distribution (β = 2, α = 2)

3.2. Agents
Here we describe the modeling of the two key strategic agents
of the team formation problem, namely the: (i) workers and
their individual characteristics and (ii) the teams, consisting of
multiple workers.

3.2.1. Worker
For the simulation and in line with our working scenario,
we focus on crowd worker profiles that can be involved
in video game development in the context of a hackathon.
We model worker attributes (Table 1) into two categories:
(i) manifest (Section 3.2.1.1) and (ii) latent (Section 3.2.1.2)
properties. Manifest attributes are those worker characteristics
that are straightforwardly noticeable by others and can be
captured into the profiling information of online team formation
systems (Lykourentzou et al., 2021). These attributes are the
workers’ knowledge domain, nationality, educational level, and
age. The latent attributes withhold worker characteristics that
are not directly evident to others but that do affect the
workers’ compatibility, exploratory behavior, and competency.
These latent characteristics are personality, risk appetite, and
expertise. We distribute both manifest and latent attributes in
relation to a set of probability functions based on previous
work and modeled on the likelihood of occurring within a
crowd population.

3.2.1.1. Manifest Attributes
1. Knowledge domain. This attribute captures worker expertise

and is intended for the division of labor within a team.
Following our working scenario on game development,
we model four knowledge domains, namely: (1) Developer
(typically a computer science specialist who creates software
and application), (2) Designer (a game designer invested
in software design, computer graphics, and animation),
(3) Marketer (specialist in charge of monitoring market
trends and creating advertising campaigns), and (4) Tester
(worker in charge of playing the game to find errors and
issues and evaluate the user experience). These domains
are abstract representations of real-world work division in
project-based teams and are relevant to scenarios where
interdisciplinarity is vital to teamwork (Haeussler and
Sauermann, 2020). All four knowledge domains manifest in
the population with a random uniform distribution such that

each trait has an equal probability of being expressed in the
worker pool.

2. Nationality. This attribute imitates cultural differences in
communication style, norms, and customs (Ortu et al., 2017)
and may affect the workers’ likelihood of seeking others
similar to them (Centola et al., 2007). We model three
nationalities as the most common among crowdsourcing
workers (Difallah et al., 2018), namely: (1) USA, (2) Indian,
and (3) Other nationalities. Just like the knowledge domain,
nationalities are distributed randomly and uniformly across
the population.

3. Educational levels. We model the workers’ highest
obtained educational qualification as: (1) High school,
(2) Bachelor, or (3) Master or higher. We include the
educational level in the working model for two main
reasons. The first is that educational background is often
a pivotal factor in hiring processes, including screening in
crowdsourcing platforms such as AMT and Prolific (Prolific
Team, 2021). The second reason is that, like social status,
educational levels affect workers’ preferences for teammates
(McPherson et al., 2001) of similar or higher education. This
attribute is also randomly and uniformly distributed in the
worker pool.

4. Age. We model age in intervals [<20; 21–30; 31–40; 41–50;
51–60;>60] to classify differences in work culture, viewpoints,
and collective identity. Age may also affect worker choice of
teammates, with workers tending to favor collaborators of
similar age with whom they are likely to share similar attitudes
and beliefs (McPherson et al., 2001). The age attribute is
distributed in accordance with crowdsourcing demographic
statistics by Difallah et al. (2018) where<2% are younger than
20 years old,∼40% are between 21 and 30,∼36% are between
31 and 40, over 7% is between 41 and 50, a little over 9% is
between 51 and 60, while the remaining 4% is older than 61.

5. Past average reward. We model past average reward as the
average of the rewards received by the worker through their
previous team collaborations (as a reminder a worker’s past
reward per round is calculated using Equation 1).

3.2.1.2. Latent Attributes
1. Personality. Using the DISC personality model by Marston

(2013), we classify workers’ approaches to leadership roles and
team problems as being: (1) Dominant (D), (2) Inspiring (I),
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(3) Supportive (S), or (4) Cautious (C). DISC was selected as it
is widely used specifically in work-related settings, for example
during hiring processes (Furlow, 2000). Each trait influences
a worker’s attitude to teamwork and mimics interpersonal
factors affecting team processes. Based on the study by
Lykourentzou et al. (2016a), we factor workers’ personalities in
the teamwork quality calculation and bonus teams of equally
balanced personality traits (Equation 2). The aforementioned
study also provides us with the distribution of personalities
in a typical crowd work population, as follows: 50% of the
workers are of personality type D, 20% are of type S, another
20% are of type C, and the remaining 10% are of type I.

2. Risk appetite. This represents to what extent workers are
willing to explore new teams. The concept takes from
the exploration-exploitation trade-off dilemma (Berger-Tal
et al., 2014) concerning the problem of choosing between
conserving a state or exploring new ones. In this case,
a worker’s risk appetite is mutable and determines one’s
tendency to seek collaborators outside their teams. We
model each worker’s risk appetite as value in the [0, 1]
range and distribute it across the population using a beta
distribution probability function (Eugene et al., 2002). The
beta distribution was chosen because it is bounded and can
be easily modeled to illustrate various probability density
functions (e.g., most workers having a low risk level with a
long tail of high risk-workers, or vice versa).

3. Expertise. This attribute concerns the workers’ level of ability
in the knowledge domain in which they belong (Developer,
Designer, Marketer, or Tester). It is not to be confused with
education which is the formal training and schooling of the
worker, which is used for computing the decisions taken by
the workers on the basis of similarity. Expertise is modeled
as a manifest attribute in the sense that, just like in real
conditions, other workers (and the profiling system) can easily
see which knowledge domain each other worker belongs to,
but not how good the worker is in the specific domain. In
our simulation, workers’ expertise is treated as an immutable
parameter and is distributed in the population with a beta
probability distribution function (PDF) similar to a bell curve
(with parameters α = 2 and β = 2), i.e., most workers are of
average expertise in their respective knowledge domains, and
less workers are either complete novices or complete experts.

4. Homophily. This attribute describes the degree to which
workers tend to prefer working with people that are more
or less similar to themselves. We model homophily as it is
one of the most studied motivators for forming social ties
(McPherson et al., 2001). This principle structures human
connections and knowledge exchange as well as restricting
social worlds and interactions through subjective preferences
for similar nationality, age, education, etc. (McPherson et al.,
2001). We model worker’s homphily as a cosine similarity
score between two workers’ vectors consisting of the attributes
knowledge domain, nationality, educational level, and age.

3.2.2. Team
A team is a group of workers collaborating together for the
duration of one or more rounds. Each team is a combination of

the participating workers’ attributes and their interactions, which
affect the team output. Specifically, we model the output of each
team, hereby referred to as teamwork quality, as a weighted sum
of three elements, namely the team’s: (1) skill, (2) interpersonal
compatibility, and (3) size:

Teamwork Quality = π × Team skill+ µ

×Interpersonal compatibility

+(1− π − µ)× Team size, (2)

where:

1. Team skill is modeled as a weighted sum of the team
members’ expertise across the knowledge domains of the
task, adjusted by a diminishing factor for repetitive expertise.
Higher individual levels of expertise and higher coverage of
the task’s knowledge domains lead to higher team skill. We
detail the modeling of the team skill element in Section 3.2.2.1.

2. Interpersonal compatibility is the degree to which the
different teammates can work together harmoniously
according to their work personality attribute. Higher coverage
of the four personality types foreseen by the DISC test (D, I,
S, and C) leads to higher teamwork quality. The presence of
two or more members with personality type D (Dominant)
lowers teamwork quality as it is known to produce clashes
in collaborative crowd work settings (Lykourentzou et al.,
2016a). We detail the modeling of this element in Section
3.2.2.2.

3. Team size. Team size affects teamwork quality, with teams
above or below a certain threshold producing less-than-
optimal results.

All three elements are measured in the [0, 1] range, which also
bounds teamwork quality in the same range. The coefficients π

and µ can vary depending on the desired modeling. For our
specific simulation, we set them to π = 0.4 and µ = 0.4 (see
Section 3.4).

3.2.2.1. Team Skill
Team skill is calculated as the combination of: (1) coverage
of the task’s knowledge domains by the members of the team,
and (2) their expertise levels per domain. We assume that
workers’ expertise contributes positively to teamwork and that
the workers’ skill diversity promotes team interdisciplinarity.
In case there are several teammates with the same knowledge
domain in a team, we apply a diminishing factor to their skill
utility in descending skill order. For example, in a team where
three workers share the same domain, the second most expert in
that domain has their skill utility discounted by a diminishing
factor (which for our simulations is set to 0.10). All other
lesser experienced workers of the same domain have their skill
utility diminished by the same factor squared. We also discount
10% to all first-met teammates to account for the fact that the
process of getting to know others and adjusting to new ways
of working together taxes teamwork. Team skill is therefore
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calculated as follows:

Team skill =
1

st
×

n
∑

d=1

(

cd
∑

i=1

expertised,i × θ i−1), (3)

where st is the size of the team, n is the number of total domains
(four in this study), cd is the number of workers in domain d,
θ = 0.1 is the diminishing factor for multiple expertise, and
expertised,i is the expertise of worker i in domain d.

3.2.2.2. Team Compatibility
We recognize the diversity of personality types as a representative
measure of team interpersonal compatibility. More specifically,
according to the DISC personality model, the more diverse and
balanced a team is in regards to their DISC personalities, the
more performant that team will be. To this end, the best team
in our modeling is one the members of which cover all four
DICS personality types. Such a team is optimal because it avoids
both work disputes (which take place in the event of too many
dominant types) and a lack of cohesion (which happens in case
of missing personality types; resulting e.g., in lack of leadership
and work direction). We apply a penalty of factor 0.2 to teams
that do not have the full DISC personality spectrum and a
penalty of factor 0.4 to teams that have more than one worker
with of Dominant personality type (D type). We bound team
compatibility to a range [0, 1]. Finally, the team compatibility
function looks as follows:

Team Compatibility =

{

0.4+ 0.2× (nper − 1), pD < 2
0.2× (nper − 1), pD ≥ 2,

(4)

where, nper is the number of all unique personality types, and
pD is the number of workers with a Dominant personality type
within the team.

3.2.2.3. Team Size
The team size is the third factor that affects team quality
in our setting. Literature in small groups research (Moreland,
2010) tends to consider that groups of less than three people
do not constitute a team, and that the minimum team size
is three. The reason, is that dyads are more ephemeral than
larger groups, and certain phenomena like majority/minority
relations, coalition formation, and group socialization can only
be observed in larger groups. At the same time, social theories
underscore the importance of also having an upper critical
mass for team collaboration, beyond which the collaboration
effectiveness diminishes due to coordination costs (Marwell et al.,
1988; Kenna and Berche, 2012). In our setting we apply a penalty
factor of 0.1 to teamwork size utility for each additional worker
above a maximum threshold of team size five and to each worker
needed to reach a minimum team size of three. The team size
penalty factor is expected to implicitly guide workers in the self-
organized and hybrid approaches to form teams that are within
an ideal size range between three and five and discourage them to
settle for smaller or larger configurations. The team size function

is calculated as follows.

Team size utility =























max(0, 1− 0.1× (SMIN − steam)),
steam < SMIN

max(0, 1− 0.1× (steam − SMAX)),
steam > SMAX

1, otherwise,

(5)

where steam is the size of this team, and SMIN = 3 and
SMAX = 5 is the minimal and maximal non-penalized size of a
team, respectively.

3.3. Work Coordination Models
We distinguish and compare three work coordination models.

1. The first is a top-downmodel, where the state-of-the-art team
formation algorithm Hive appoints teammates without any
input from the workers. This strategy approaches TFPs in a
controlled, directed, and centralized way. For this model we
use the Hive algorithm (Salehi and Bernstein, 2018) designed
to optimize team formation from a community-based, top-
down approach.

2. The second is a self-organized model, where workers govern
the team formation processes (grouping and dismantling),
with certain rules concerning whether teams should dismantle
in the event of minority dissent or not. This approach
is inspired by the SOT framework (Lykourentzou et al.,
2021) honoring workers’ preferences of teammates through
a voting system combined with a graph cutting algorithm.
We foresee two SOT models called Radical SOT (R-SOT)

and Conservative SOT (C-SOT). While these two systems
share the same bottom-up team formation principles, they
differ in the way they handle team cohesion after changes
in workers’ preferences. Where R-SOT dismantles teams and
constructs new ones each time a teammember leaves (hence it
radically changes team structures), C-SOT preserves teams by
retaining their structure and allowing members to leave and
join (thus conserving team states where possible). We chose
to model two kinds of bottom-up strategies given that certain
tasks favor one model over the other (for example radical vs.
incremental innovation).

3. The third is a hybrid model; this is a mix of top-down
and bottom-up team formation strategies where algorithmic
intervention supports and is driven by worker feedback. In the
hybrid model, network efficiency, tie strength, and workers’
agency are combined into a unified system where teams are
regularly dismantled in the event that at least one teammate
wishes to leave.

3.3.1. Top-Down Model: Hive
For the implementation of the top-down team formation
strategy, we adopt Hive (Salehi and Bernstein, 2018), a
crowdsourcing collaborative hierarchical team formation model
for which community structures dictate network changes. Hive
models workers as part of a collaboration graph, with workers
as the nodes and the edges corresponding to prior worker
collaborations. The objective of the algorithm is to regularly
shuffle teams so as to bring together workers with different

Frontiers in Artificial Intelligence | www.frontiersin.org 9 May 2022 | Volume 5 | Article 818562109

https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org
https://www.frontiersin.org/journals/artificial-intelligence#articles


Vinella et al. Worker-Centered Crowd Team Formation

viewpoints (i.e., far away in the graph), while conserving tie
strength. To do so, Hive groups people in teams with one fixed
leader, and then intermixes the teams by rotating the people
who are not leader. The original Hive paper does not specify
how each leader is appointed, or which is the optimal team
size to be used. To be able to apply Hive on our setting, we
needed to make a decision concerning these two parameters;
in both cases we made the decision that is the most favorable
for Hive. Concerning team size, we used teams of five. This is
the minimum team size for a worker team to have chances to
cover all DISC personalities, plus one for the fixed team leader.
This way, the Hive teams always have a leader and always have
a chance to cover all DISC personality types, i.e., they have a
chance to be optimal. Concerning leadership, we appoint the
fixed (non-movable) leader of each team to be the team member
who has a D personality type, if one such member exists. This
way the Hive teams avoid being leaderless, which would result in
less-than-optimal results.

In the event of too many workers of personality type D within
the worker population, we randomly draw a subset of D-leaders
equal to the number of teams. After all team leaders are assigned
to their teams, we randomly match workers to the teams, in
the same way that Hive randomly initializes the movable team
members in the beginning of the task. With these modeling
decisions in place, we proceed to model the Hive approach for
our simulation. We first introduce the concepts and calculations
of network efficiency and tie strength, which are central to the
Hive algorithm. We then implement these metrics as part of
Hive’s objective function, and finally we describe the modeling
of the stochastic search algorithm used to find possible team
formation moves.

1. Network efficiency: The efficiency of a network describes how
effectively it transports information across its nodes (Latora
and Marchiori, 2001). Network efficiency is usually calculated
as the average of the inverse of the minimal path length
between every two nodes. By applying network efficiency to
the simulation, we attribute the value 1 for all familiar ties
(meaning ties linking workers who have collaborated in the
past) and the value +∞ to those ties that do not share direct
collaborative history. Formally, the network efficiency NE in
the system is calculated as follows:

NE(G) =
1

N(N − 1)

∑

i6=j∈G

1

dij
, (6)

where N is the number of workers in the system and dij is
the minimal path length between node (worker) i and node
(worker) j.

2. Tie strength: Tie strength represents the level of closeness or
affinity between two nodes of a network. In the simulation, tie
strength is intended as the calculation of relationships between
workers, and ties between nodes represent the workers’
collaboration history. Following the Hive computation of
tie strength, we apply a logistic function and dampening
factor to represent incremental familiarly and progressive
detachment, respectively.

Algorithm 1: Stochastic search algorithm. The algorithm
attempts to add as many valid rotations as allowed to the
network graph, as long as the new rotation surpasses the
current state of the objective function (Equation 7) and until
either all moves are exhausted or a local maximum is reached
(Salehi and Bernstein, 2018).

Data: Network graph Godd

Result: Network rotation solution
solution← {};
bad_moves← {};
while true do

candidate, new_move← AddValidMove(solution,
bad_moves);
if candidate is None then

return solution;
end

G′ ← Transform(Gold, candidate);
G← Transform(Gold, solution);
if f (G′) > f (G) then

solution← candidate;
else

UpdateBadMoves(bad_moves, new_move);
end

if random()≤ ǫ then

return solution;
end

end

(a) The logistic function takes two parameters k = 8 and
x0 = 0.2 used to simulate the rapid strengthening of
relationships at the start of new collaborations (where tie
strength is lower) and their slow increment over time.

(b) The dampening factor captures the weakening of tie
strength when workers no longer collaborate and are
therefore not directly exposed to one another. For its
calculation, we adopt the same value as Salehi and
Bernstein (2018) (λ = 0.8).

3. Objective function: The objective function of Hive consists of
combining network efficiency and tie strength; this is since,
in the event of workers changing teams, network efficiency
grows as new collaborations emerge (and information gets
transported across the network) while tie strength decreases as
there are less close relationships. We factor these parameters
in the simulated model with a constant value α = 0.5 as
described in Equation (7). Here, we normalize tie strength by
a constant value c = 0.005.

f(G) = α×TieStrength(G)+ (1−α)×NetworkEfficiency(G)
(7)

4. Stochastic search: As also discussed by the makers of Hive
(Salehi and Bernstein, 2018), effectively rotating teams in
order to reach optimality is an extremely complex and non-
uni-modular task [O(2N)]. We implement the stochastic
search algorithm of Hive as described in the stochastic phase
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Algorithm 2: Add valid move algorithm. This algorithm
loops for every team and for every worker (that are not team
leaders), until it finds a worker and a team (represented by its
leader) to meet the following five conditions: 1. the worker
is not in the team; 2. current team size is within the system
constraints; 3. target team size is within system constraints;
4. this combination is not a badmove; 5. this combination is
new.

Input: Current solution solution, bad moves bad_moves
Result: Candidate solution after adding one move, one valid

move
leader_ids← Shuffle(GetTeamLeaders());
all_teams← Shuffle(GetTeams(solution));
for team t in all_teams do

for worker w in t do
if w NOT in leader_ids then

for leader l in leader_ids do
if l NOT in t AND
Size(t) > SMIN AND

Size(l) < SMAX AND

w, l NOT in bad_movesAND
solution(w) 6= l then
candidate, new_move←
AddOneMove(solution, w, l);
return candidate, new_move;

end

end

end

end

end

1 (Algorithm 1) and phase 2 (Algorithm 2). In essence, the
stochastic search algorithm finds a random valid move, i.e.,
it identifies which worker should move to which team, which
carries greater utility than the previous move considered by
the algorithm. It returns a solution when the search space
has been exhausted or if the ǫ value is reached indicating the
probability of stopping the search.

3.3.2. Bottom-Up Model: SOT
In the bottom-up model, we simulate team formation on the
basis of workers’ preferences and affinities. In this context, teams
strictly depend on what workers prefer and how likely they
are to form effective teams with regards to their personality,
knowledge domain, and team size. The simulation represents an
abstraction of workers’ behavior, performance, and constraints
while they form teams in a self-organized manner. During each
round workers are allowed to change teams after a deciding and
searching phase.

1. Deciding phase: In this phase, workers evaluate the strength
of their risk appetite against the reward they received in the
previous round. The factor with the highest score (being it
either risk appetite or reward Equation 1) determines whether

that worker will decide to remain in the same team in the
following round or whether they will join another team.
A higher risk appetite stirs workers to leave and seek new
coalitions in search for higher future rewards, whilst a lower
risk appetite means that the worker will stay with their existing
team even for lower rewards.

2. Searching phase Workers who decide to change teams
proceed with the search phase, where they perform an
evaluation of compatibility of the teammates and teams
available to them. Specifically, during this phase, workers
assess all possible combinations of teams of four by evaluating
three other available workers based on a cosine similarity
score of the four manifest attributes, i.e., the attributes of
their co-workers that they can readily see (knowledge domain,
nationality, educational level, and age). The cosine similarity
score does not factor in the average past reward of the
workers as it only deals with their manifest profiling attributes.
However, in the event that two workers have the same
similarity score, their average past reward is considered as a
tie breaker. The search phase is further differentiated between
the two bottom-up model variations as described below.

(a) Conservative SOT (C-SOT)According to the conservative
strategy, existing teams are given priority in choosing
whether to admit newmembers or not. The C-SOT strategy
considers existing teams as those that have worked together
in the previous round and have at least two team members
who decided to continue working together, during the
deciding phase. For the rest of the workers and teams
that do not fit into this description, the strategy considers
these workers as available and unassigned entities. Then,
the decision-making process is based on the homophily
score (how similar the candidate team members are)
constrained by a threshold (Section 3.4) determining the
minimum similarity required to form matches. Teams
recruit (are matched to) workers who have a similarity
score higher than the threshold and higher than the rest
of the available workers. If the similarity between existing
teams and available solo workers is below the threshold
(thus candidate teammates do not classify as sufficiently
similar to any given team), the C-SOT model ignores the
previously formed teams and matches available teammates
based on the highest homophily score. The strategy then
puts similar and available teammates into teams of four.
In the case of equal similarity between workers or between
workers and teams, the strategy prioritizes matches of the
highest teamwork quality. Finally, in case that workers still
cannot be matched, the C-SOT strategy puts those workers
on hold until the next searching phase.

(b) Radical SOT (R-SOT)While the C-SOT strategy attempts
to preserve the existing teams’ structures even though one
or more members decide to leave, in the R-SOT strategy,
a team is considered dismantled and all of its members
are made available even if one worker from that team
decides to leave. This means that available workers have
higher chances of forming new teams since they are given
access to more options. Besides this difference in the way
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of handling team deconstruction, the R-SOT follows the
same approach as the C-SOT. It too assesses all possible
combinations of similarities between four available workers
and forms teams of the highest similarity score. In the event
that no three workers are considered sufficiently similar to
be matched, the R-SOT strategy strives to match workers
with existing teams (intended as those that did not lose
teammates in the deciding phase). If workers can still not be
matched neither with a newly formed nor with an existing
team, the team formation model leaves these workers on
hold until the next searching phase.

3.3.3. Top-Down and Bottom-Up Models Combined:

HiveHybrid
Although bottom-up approaches to crowd TFPs—such as the
SOTmodel—have certain advantages over top-down algorithmic
solutions, their spontaneous nature and weak controllability can
result in suboptimal solutions. Workers often cannot access the
full array of options at once, mostly due to external constraints
such as budget, availability, and time. More so, a system that
fully relies on the workers’ choices to form teams is susceptible
to errors of judgment as workers evaluate others subjectively and
cannot possess the same global overview of a centralized system.
This means that workers cannot always judge the optimality of
a match on the basis of both local and global objectives as their
angle of vision is often restricted by what they can experience.
This locality issue is even more present when the pool of workers
is considerably large andworkers are limited by howmany people
they can meet. Under the light of these inherent limitations of
fully bottom-up solutions to crowdsourcing TFPs, we also model
a blended approach inspired by Prokopenko (2009) who point
that self-organization can (and should) be guided by algorithmic
top-down mediation. Similar works (Lykourentzou et al., 2010,
2019; Martius and Herrmann, 2012; Nurzaman et al., 2014;
Jarrahi et al., 2020)—either through conceptualization or real-
life implementations—have proposed guided self-organization

as the ideal strategy linking worker agency with algorithmic
optimization. Our implementation of guided self-organization
differs in the way it is applied to a simulated collaborative
crowdsourcing scenario where workers are recommended by the
algorithm whether to change teams or not. The HiveHybrid
model is designed precisely to combine global objectives with
local constraints in large-scale collaborative crowdsourcing. The
system combines a bottom-up worker-centric SOT model with
a top-down community-based Hive model. In the HiveHybrid,
workers are allowed to decide to leave a team or remain as their
choice is honored and optimized through a community-based
team rotating algorithm. The algorithm identifies possible moves
(rotations that would benefit the global objective function) and
the workers can either accept or reject this offer if their appetite
for exploration (risk appetite) indicates so.

3.4. Experimental Parameterization
Our simulation is designed to run a series of experiments where
different populations and team formation models are tested and
evaluated for their best, worst, and average teamwork quality. The
following are the experimental parameters and corresponding

settings used for this study. For the implementation of the Hive
algorithm both as a baseline for top-down allocation and as part
of the HiveHybrid model, we use the same parameters stated in
the work by Salehi and Bernstein (2018).

1. Experiment rounds (n): By rounds we intend the
collaboration cycles during which workers form teams
and collaborate. For this study, we used a fixed experiment of
10 rounds.

2. Teamwork quality:We calculate teamwork quality as follows.
We first generate a batch of user agents as described in Section
3.2. For this batch, we run the simulation six times, each time
extracting the best, average, and worst teamwork values, and
then calculating the mean of those values to get the best,
average, and worst teamwork quality of the batch. We repeat
the process for thirty independent batch runs and average out
the results. The procedure is designed to smooth out random
fluctuations and yield less noisy simulation results.

3. Population (x): The default population size is set to 20
workers. We consider this to be a rounded estimation
of a basic size of participation required for creative
tasks of this kind (online hackathon, expert crowdsourcing
collaboration, etc.). Then, to examine generalizability, we
gradually increase this number and experiment with larger
populations ([30, 40, 50, . . . , 100]).

4. Team size threshold (SMIN , SMAX): We constrain teams
within a range of three (minimal size) and five (maximal size)
teammates. We apply these threshold since we expect smaller
teams to be hindered by a shortage of knowledge domains and
personalities while larger teams to be taxed by coordination
and communication costs, as explained in Section 3.2.2.3.

5. Risk appetite (β): We represent worker’s risk appetite using
two mirror symmetric distributions. For the explorative
behavior (high risk appetite) we use a beta distribution of
negative parameter range (β ∈ [−5,−2]), while for the
exploitative behavior (low risk appetite) we use its symmetric
positive parameter range (β ∈ [2, 5]). We further model
a neutral risk level to be bounded within a probability
distribution of β = 2.

6. Homophily threshold (θ): The homophily threshold
determines the extent to which people are willing to
accept working with others based on their in-between
attribute cosine similarity. Since we use four dimensions
to determine workers’ similarity (knowledge domain,
nationality, educational level, age), we bound the homophily
threshold within the range [1, 4]. The workers’ default
homophily threshold is set to 2.8 meaning that any similarity
below this value is not considered sufficient to form a match.

7. Teamwork quality coefficients (π , µ): The coefficients π

and µ represent the weights attributed to team skill and
interpersonal compatibility respectively. The default values are
set to 0.4 for both π and µ. While we use these coefficients
to adjust the weights of team skill and interpersonal
compatibility, the same weight is taken off from the team size
(1 - π − µ)2.

2This applies less weight to that factor.
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4. RESULTS

In Section 4.1, we compare teamwork quality across the four
models: Hive, C-SOT, R-SOT, and HiveHybrid and address
the first research question (RQ1: How does bottom-up team

formation compare with top-down and hybrid approaches?).
Next, we address the second research question (RQ2: How

do population behavioral tendencies affect the outcome of

bottom-up online teamwork?) in three Sections, one for each
of RQ2 sub question: Sections 4.2 and 4.3 examine teamwork
quality according to changes in the workers’ risk appetite and
population size distributions, respectively, while The descriptive
statistics report the mean and standard deviation (sd) of the
model’s teamwork quality. The standard deviation indicates the
average amount of variability within a set of experiments. For
example, mean = 0.716 and sd = 0.024 of the R-SOT model’s
best quality indicate, respectively, the mean and the standard
deviation of the best teamwork gathered from thirty independent
batch runs, as explained in the Methodology (Section 3.4).

4.1. Comparing Models: Radical
Bottom-Up Yields the Highest and Lowest
Teamwork Quality
In this Section we address the first research question, namely
RQ1: How does bottom-up team formation compare with top-

down and hybrid approaches? Figures 2–5 shows the results of
running a comparative study with all four models (R-SOT, C-
SOT, Hive, and HiveHybrid) and utilizing the parameters stated
in Section 3.4. We analyse the results below.

4.1.1. Best Teamwork Quality
R-SOT has the highest average best quality (mean=0.716,
sd=0.024), followed by C-SOT (mean = 0.698, sd = 0.022),
HiveHybrid (mean = 0.689, sd = 0.030), and Hive (mean = 0.683,
sd = 0.029) indicating that bottom-up models outperform the
rest in forming the most competitive teams. Although standard
deviations are relatively close across models, the standard error
is greater in HiveHybrid than all other models possibly due to
the unpredictability of combining suggested changes from the
top-down community-based model with workers’ decision.

4.1.2. Average Teamwork Quality
R-SOT still performs better than the rest, although its mean is
only marginally higher than the other models (mean = 0.572, sd
= 0.016) followed by HiveHybrid (mean = 0.572, sd = 0.023),
Hive (mean = 0.567, sd = 0.021), and C-SOT (mean = 0.563, sd
= 0.018). In this comparison analysis, standard deviations are
fairly close, while the standard error of HiveHybrid remains,
by far, the largest in this comparison of the average teamwork
quality. In fact, HiveHybrid’s large standard error is present in all
evaluations of teamwork quality.

4.1.3. Worst Teamwork Quality
HiveHybrid has the least worst teamwork quality as its mean is
above all others (mean = 0.467, sd = 0.024), followed by Hive
(mean = 0.460, sd = 0.019), C-SOT (mean=0.429, sd = 0.018), and
R-SOT (mean = 0.416, sd = 0.020). These final results indicate that

the hybrid model is efficient at reducing the segregating patterns
present in bottom-up systems, which lead to great variations of
teamwork quality. Although the standard deviations are fairly
close across models, HiveHybrid retains the largest standard
error making it less consistent in its team formation.

4.1.4. Statistical Analysis: R-SOT Outperforms in the

Best and Loses at the Worst Teamwork Quality
Running a one-way ANOVA test on the results from the
comparison of the teamwork quality between the four models we
find the following.

• Best teamwork quality: The best teamwork quality is
statistically significant between groups [F(3, 116) = 10.477, p <

0.001]. Specifically, R-SOT performed significantly better than
C-SOT (p=0.003), Hive (p<0.001), and hybrid Hive (p=0.001).
• Average teamwork quality:No statistical difference was found

between models when comparing their average teamwork
qualities [F(3, 116) = 1.394, p < 0.248].
• Worst teamwork quality: We found statistically significant

results between groups with the Worst teamwork quality.
[F(3,116) = 35.122, p < 0.001]. Here, R-SOT performed
significantly worst than C-SOT (p = 0.036), Hive (p <

0.001), and hybrid Hive (p < 0.001). The R-SOT model also
performed significantly poorly compared to Hive (p < 0.001),
and hybrid Hive (p < 0.001). Lastly, Hive and hybrid Hive did
not differ significantly.

4.2. High Levels of Risk Appetite Segregate
Teamwork Quality in Bottom-Up Models
This Section, combined with the two Sections that follow,
dives deeper into the performance of bottom-up large-scale
collaboration, and contributes to answering the second research
question RQ2: How do population behavioral tendencies affect

the outcome of bottom-up online teamwork? Specifically, it
deals with the sub-question RQ2.1: How do different risk

appetites affect teamwork output in bottom-up models?

Looking at the highest teamwork quality (Figure 3) results across
the two bottom-up models (R-SOT and C-SOT) and controlling
for levels of the β value of the risk appetite distribution in the
population, we note the following.

4.2.1. Best Teamwork Quality
The radical self-organization approach (R-SOT) achieves better
results in terms of the best teamwork quality (mean =

0.711, std =7.42e−3) compared to the conservative self-
organized approach (C-SOT) (mean = 0.691, std =8.99e−3).
This result indicates that the overall risk level of a population
directly affects the workers’ chances of forming optimal teams
in bottom-up team formation strategies. Furthermore, high
levels of risk appetite within a crowd population seem to be
particularly beneficial to systems advocating radical changes in
team structure. By lowering the overall risk appetite levels in both
R-SOT and C-SOT, the performance of the best teamwork quality
progressively suffers, dropping from 0.72 to 0.70 for R-SOT, and
from 0.71 to 0.68 for C-SOT.
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FIGURE 2 | Teamwork quality comparison across four models: Hive, C-SOT, R-SOT, HiveHybrid. The boxplot displays the mean, standard deviation, and standard

error of the teamwork quality. Overall, the best teamwork quality (Equation 2) belongs to the bottom-up models R-SOT (mean = 0.716) and C-SOT (mean = 0.698)

followed by hybrid (mean = 0.689) and top-down (mean = 0.683). The average performance is fairly equal between models, with HiveHybrid and R-SOT having a

slightly higher mean (mean = 0.572). The worst teamwork quality comes from the bottom-up models (R-SOT mean = 0.416, C-SOT mean = 0.429), followed by Hive

(mean = 0.460). HiveHybrid performs the best at forming the least worst teamwork quality (mean = 0.467). (A) Best teamwork quality for Hive, C-SOT, R-SOT, and

HiveHybrid. (B) Average teamwork quality for Hive, C-SOT, R-SOT, and HiveHybrid. (C) Worst teamwork quality for Hive, C-SOT, R-SOT, and HiveHybrid.

4.2.2. Average Teamwork Quality
Results for the average teamwork quality are similar across both
bottom-up models with R-SOT (mean = 0.569, std =2.16e−3)
and C-SOT (mean = 0.562, std =3.03e−3) sharing similar
outputs. These results indicate that the risk levels do not
necessarily affect average performance despite of which bottom-
up team formation strategy is used.

4.2.3. Worst Teamwork Quality
Although the radical self-organized approach performed the
highest when it came to the best teamwork quality, we observe
that this approach is also the one that performs the worst
from the two models R-SOT (mean = 0.422, std =2.90e−3)
compared to C-SOT (mean = 0.435, std =2.43e−3). This result
indicates that radically bottom-up approaches may inadvertently
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FIGURE 3 | Comparison of the best and worst teamwork quality between

bottom-up models, namely C-SOT and R-SOT, with varying risk appetite

levels. The x axis illustrates the different risk levels generated according to two

mirroring beta distributions: negative values (β ∈ [−5,−2]) illustrate an

exploratory, risk-prone user behavior (the more negative the more risk-prone);

positive values (β ∈ [2, 5]) illustrate an exploitative, risk-averse behavior (the

more positive the more risk-averse). We observe that the best teamwork

quality is affected by risk appetite, and that it decreases for both models as the

users’ willingness to change teams decreases. The average and worst

teamwork quality remain unaffected by changes in the user population’s risk

levels. (A) Best teamwork quality for C-SOT and R-SOT with different risk

appetite levels. (B) Average teamwork quality for C-SOT and R-SOT with

different risk appetite levels. (C) Worst teamwork quality for C-SOT and R-SOT

with different risk appetite levels.

exacerbate the differences between teams, with the best workers
choosing to team up with the best workers, leaving many of
the average or low-performing workers behind, and causing
segregated quality outputs.

FIGURE 4 | Comparison of the best and worst teamwork quality between two

bottom-up models (C-SOT and R-SOT) with different population sizes. The x

axes show the different simulated population sizes per hackathon in the

∈ [20, 100] range. We observe that the best teamwork quality for both

bottom-up models improves as the population grows from 20 to 90

individuals, and workers have more choice of teammates, reaching stability

with populations of more than 90 and maintaining a best teamwork quality of

≈ 0.77 in both models. However, the worse teamwork quality also decreases

steadily in both models lowering from ≈ 0.43 to ≈ 0.37 as the population

grows indicating that large populations are not always beneficial to the

performance of all teams. (A) Best teamwork quality for C-SOT and R-SOT

with different population sizes. (B) Average teamwork quality for C-SOT

and R-SOT with different population sizes. (C) Worst teamwork quality for

C-SOT and R-SOT with different population sizes.

4.3. Large Populations Strengthen Strong
Teams in Bottom-Up Models
This Section answers the sub-question: RQ2.2: How do different

population sizes affect teamwork output in bottom-up
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FIGURE 5 | Comparison of the best and worst teamwork quality between

bottom-up models (C-SOT and R-SOT) with different homophily thresholds.

The x axes show the workers’ different homophily levels (θ ∈ [1, 4]) where the

lowest θ value represents the highest possible tolerance toward differences

between workers’ attributes, and the highest θ value the lowest tolerance.

Even though the best teamwork quality for the two models improves as the

homophily threshold grows, particularly with thresholds θ >2, the worst

teamwork quality remains overall stable with the exception of R-SOT peaking

around a threshold θ ≈ 1.5 before settling around a worst teamwork quality of

0.42 with θ > 2.5. (A) Best teamwork quality for C-SOT and R-SOT with

different homophily (preference of working with similar teammates)

thresholds (θ ∈ [1, 4]). (B) Average teamwork quality for C-SOT and

R-SOT with different homophily thresholds (θ ∈ [1, 4]). (C) Worst

teamwork quality for C-SOT and R-SOT with different homophily

(preference of working with similar teammates) thresholds (θ ∈ [1, 4]).

models? In the basic experimental setting (Section 3.4), we used
a population size of 20 workers, which is a size that guarantees
that workers can process the information concerning all other
candidate co-workers effectively. However, the population size

is a factor that can critically affect performance, as it is known
to affect the worker collective’s coordination costs. A larger
population means a larger search space of available candidate
teammates, and therefore more effort needed by the workers
to process suitable teammates (Kittur and Kraut, 2008). We
simulate nine separate and increasing population sizes starting
from 20 (our basic simulation setting) and going up to 100
workers per pool to observe how the average best, worse, and
median teamwork quality vary accordingly.

4.3.1. Best Teamwork Quality
With an incremental growth in population size, both R-SOT
and C-SOT improve their best performance shifting from an
average best teamwork quality of 0.70 to one of 0.78. This
result shows that bottom-up approaches particularly benefit from
large scale participation as they rely on the diversity of workers’
backgrounds and skills to form optimal teams.

4.3.2. Average Teamwork Quality
As also observed in the previous Section for the parameter of risk
appetite, we observe that the average teamwork quality neither
benefits nor deteriorates from changes in population size and it
remains relatively constant around 0.568.

4.3.3. Worst Teamwork Quality
Lastly, the worst quality of bottom-up approaches drops from
an average of 0.43 to an average of 0.36. The worst quality of R-
SOT (mean=0.416) is indeed worse than C-SOT (mean= 0.429).
This result may be explained by the fact that the R-SOT strategy
dismantles teams having at least one unsatisfied worker and gives
access to many more available workers of attractive attributes
who can therefore settle for higher payoffs in the next round.
Similarly to the results of the previous Section, here too we
observe that the radical model (R-SOT) is the one yielding the
highest best and the lowest worst quality.

4.4. Similar Workers Produce Higher
Teamwork Quality in Bottom-Up Models
In this section, we address the last sub-question RQ2.3: How

does homophily, i.e., the tendency to prefer working with

similar teammates, affect teamwork output in bottom-up

models? The homophily threshold determines the workers’
tolerance to the diversity of attributes in others. Setting low
homophily thresholds allows workers in the simulation to form
larger teams since they are more open toward diverse team
members. Using higher homophily thresholds pushes workers to
carefully choose their teammates and only be interested in those
who are most similar. Since there are four similarity attributes in
the calculation of the cosine similarity score (knowledge domain,
nationality, educational level, age), we use a homophily range of
[1, 4] with a step of 0.3 allowing us to test ten variations of the
threshold search space.

4.4.1. Best Teamwork Quality
Testing all simulated thresholds we observe that the best
teamwork quality of C-SOT is not affected by changes in
homophily. However, R-SOT’s best teamwork quality rapidly
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grows as the threshold increases from 0.50 with θ = 1.0 to 0.70
with θ = 2.8. After this growth, the best teamwork quality of the
R-SOT model stabilizes and does not improve.

4.4.2. Average Teamwork Quality
Similarly, the average teamwork quality is not significantly
affected by changes in homophily in the C-SOT model while the
R-SOT’s average teamwork quality grows quite rapidly from 0.44
to 0.57 (from θ = 1 to θ = 1.5), and continues to rise before
stabilizing around 0.72 with θ > 2.

4.4.3. Worst Teamwork Quality
The worst teamwork quality is not affected by changes in
homophily threshold for the C-SOT with the worst teamwork
quality remaining stable at around 0.44. R-SOT’s worst teamwork
quality is more drastically affected by an increase in the
homophily threshold, with an increase in quality between θ =

1.0 and θ = 1.6 and then a gradual decrease and stabilization
after θ = 2.5. This is a similar pattern (sharp rise and then
stabilization) like the one we saw R-SOT following in the best and
average teamwork quality results, albeit with less intensity as we
go from best to worst quality.

5. DISCUSSION

5.1. Bottom-Up Models Are Ideal for Large
Scale Crowdsourcing Collaborative
Innovation
We observe that the bottom-up models R-SOT and C-SOT are
more effective than the top-down (Hive) and hybrid solutions
(HiveHybrid) at forming teams with the best teamwork quality.
In these self-organizing systems, workers seek collaborators
based on how likely they are to explore the search space and how
tolerant they are toward diverse teammates. Whether workers
will explore further teammates depends on the reward they
received with their old team, bounded by their risk appetite.
For example, low-risk workers will keep working with the same
teammate even if they did not get a high reward, while high-risk
workers will change more frequently. Although skill is therefore
not explicitly present in the worker’s search function, since it
is a latent feature that workers cannot directly have access to
concerning their teammates, we observe that gradually workers
discover their in-between skills by implicitly evaluating the results
of their existing collaborations against others through the rewards
each team received.

This result shows that bottom-up systems lift the requirement
for intensive skill profiling before they can make good team
formation decisions, and it is important for platforms for multiple
reasons. First, it renders bottom-up models more appropriate
for innovation-related tasks for which the exact skills that will
be needed to solve the task are not easily measurable or even
known a priori to the collaborative platform (Gerber et al.,
1999). Second, by lifting the requirement for designing tailor-
made profiling tests and team formation algorithms, bottom-
up models are more cost-effective than their top-down or hybrid
counterparts, and are also particularly useful for introducing new
tasks in the platform for which no profile information concerning

worker competencies or matching mechanism is yet present. One
important point to make here is that these advantages of bottom-
up models refer to the best teamwork quality achieved, but that,
at the same time, these models also tend to segregate the worst-
performing teams. In other words, bottom-up models help form
principally strong and competitive coalitions which may form at
the expense of other teams. Therefore, self-organization could be
more appropriate and cost-effective for commercial platforms
targeting at the competitive production of tasks, rather than tasks
for which “no worker is left behind” (e.g., in educational settings).
Overall, our comparative analysis of team formation system
models in crowdsourcing collaborative innovation indicates that
platforms can “trust the crowd” to form teams as long as
they favor competition over cooperation and as long as they
prefer competitive teams over a centralized re-distribution of
social capital.

5.2. Hybrid Systems Are Best for
Semi-centralized Social Capital
Redistribution
As we have seen, bottom-up systems are the best at producing
teams of the highest teamwork quality. However, having the
best team is not the sole representative metric of collective
performance in social cooperative scenarios. In fact, in the case
of our bottom-up models, the worse-off teams do not seem
to benefit from a self-organizing system as their teamwork
quality notably suffers compared to the worst teams from
algorithmic-mediated team formation solutions. Especially, the
hybrid approach HiveHybrid is the most effective at bridging
the gap between best and worst teamwork qualities forming
teams that are closer in the way they perform. This ability to
redistribute resources among a population to help all teams
achieve similar teamwork quality is exceptionally favorable in
settings where global objectives are of equal importance to
local interactions as it is in the case of groups of learners.
Massive OpenOnline Courses (MOOCs) are an example of large-
scale collaborative settings that would benefit from fair semi-
centralized clustering to allow all learners to partake in useful
and educational teamwork. It could also help with reducing
drop-outs as learners would be motivated to partake in teams
from which they can learn and share knowledge. Through hybrid
approaches to team formation, online learners would be given
the final decision over algorithmic prompts carrying decisive
advantages over fully top-down implementations that typically
disregard individual preferences.

Control of social capital and resource redistribution is not
the only advantage of hybrid systems. Connecting workers’
decisions—which are by definition local and discrete—with
global utility and centralized coordination could help with
situations where workers can no longer process information
by themselves. Often with online crowdsourcing innovation
projects, several hundred individuals take part in events and
seek collaborators. As much as the team formation system relies
on their ability to self-organize to produce optimal teamwork
outcomes, there is always the looming risk that workers cannot
assess more than a limited amount of possible collaborators at a
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time. Thismeans that workers are likely tomiss out on potentially
better matches as they simply cannot have a comprehensive
view of all options unless they scout the entire pool of workers.
However, with prolonged exploration workers do not have the
time to settle into teams and may discard ideal collaborators to
continue their search. Due to this extraneous cognitive overload
and excessive search space, a system that can fittingly combine
algorithmic mediation and worker agency—such as HiveHybrid—
could be amore suitable alternative to fully self-organized and fully
top-down systems even though they may be less effective at forming
highly competitive teams.

5.3. Generalizing to Other Collaborative
Settings
In this study, we simulated an open collaboration scenario where
crowds gather to collaborate on a complex problem. We chose
a hackathon as an example of a design-sprint-like event for
which crowds compete for prizes while collaborating in teams.
As in reality, our simulations represent workers forming project
teams either through top-down mediation (upon organizers’
decision) or bottom-up negotiation (workers choose their
teammates and self-organize). Although traditionally confined
to software development, hackathons have developed to serve
other scopes, for example, by hosting charity events, public
memorials, professional networking, and more, and are therefore
much broader than their cryptography development ancestor
(Briscoe, 2014). For this reason, hackathons can be used as
general-purpose initiatives to attract crowd participation and
gather expertise and innovation. Online hackathons have also
become attractive mediums for the involvement of citizen crowds
in decision-making processes (Temiz, 2021). For example,
“Hack The Crisis” is, to date, the most popular crowdsourced
global movement connecting crowds to solve complex societal
challenges such as pandemics prevention and emergency
response (Hack the Crisis Team, 2021). The chosen setting could
be applied to large-scale crowd empowerment through open
challenges, open education, and social impact.

Regarding the components of the simulation, we modeled
only an abstract set of worker skills especially since some
hackathons’ organizers filter attendance based on functional
background and expertise with the intent to harvest specialized
knowledge from the crowd. However, the worker model could
be easily expanded to other tasks and settings. For example,
in a scenario where students form teams, their attributes
would represent interests, preferences, and abilities instead
of the functional background, personality, and skill as we
modeled in this study. Furthermore, some hackathons are
characterized by rounds of sprints which we have devoted
to individual/algorithmic decision-making and search space.
Moreover, in real-life hackathons, it is not unusual that these
rounds provide organizers regular opportunities to monitor and
evaluate teamwork as the event unfolds. In our study, we use
the same concept to evaluate teamwork quality and to allow
workers (and algorithms) to rotate teams. From MOOCs to
citizen science, these elements of the system can be adjusted
to correspond with periods of recollection and assessment
that are often present in large-scale crowdsourcing activities.

Finally, hackathons usually end up with a selection of the
best projects and the best teams, which, in this case, is the
main metric for assessing the adequacy of the team formation
system models. Generalizing this setting to other scenarios,
we suggest that the evaluation could be adjusted to whichever
factor the event organizer wishes to assess (e.g., communication,
coordination, the balance of contribution and effort, etc.). For
example, teams of learners will be likely evaluated based on
mutual support, cohesion, and effort, thus differing from software
development teams focused on product quality, team efficiency,
and profitability.

6. LIMITATIONS

In this section, we list and discuss four main system design
choices that could be improved or modified in future studies
as follows.

Modeling worker attributes and recruitment through AMT
may not be comparable to other platforms. In this paper, we
have used AMT as the platform of reference for modeling worker
demographic attributes (Difallah et al., 2015; Lykourentzou et al.,
2016a) and recruitment. This choice allowed us to ascertain
a degree of reliability and applicability since the demographic
distribution adhered to existing statistical records. However, as
crowdsourcing platforms evolve and differentiate, many more
platforms offer like-minded individuals ways to collaborate and
participate in disparate projects. The most prevalent crowd
population on platforms facilitating creative tasks, such as
OpenIDEO, Upwork, Fiverr, or even creative hubs, may have
different demographic attributes than their AMT counterpart,
which is mainly used to serve micro-tasks. We strongly
encourage future studies to consider additional platforms of
reference to model workers’ profiles (such as educational level,
personality, and age) and recruitment, which could be more
relevant to creative hackathons and complex problem-solving.

6.1. Homophily Threshold Modeled on the
Entire Population
Unlike worker risk appetite, homophily was modeled on the
whole population as a shared threshold rather than on an
individual-to-individual case through a non-uniform probability
distribution. This modeling choice also means that it is not
possible to identify how individual homophily might have
affected the behavior of a worker in a pool with diverse
homophily attitudes. In future studies, modeling the personal
preferences of collaborators would help to fine-grain our
assessment of the impact of homophily in team formation. It
would also help with evaluating how different attitudes toward
diversity combined affect the formation of more or less stable
teams and to what extent it influences teamwork quality.

6.2. Risk Appetite Goes Beyond the
Tendency to Explore Collaborators
In our model of the workers, we attributed risk appetite to
the individual tendency to explore novel collaboration. In this
context, risk appetite can be thought of as a behavioral property
encompassing one’s curiosity and extroversion. Nonetheless, risk
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appetite could also determine one’s preference for a particular
task and ways of executing it. Modeling task choices, task
execution, and effort as part of the workers’ risk appetite would
also determine their stress and energy levels and delineate a
finer-grained representation of human behavior (Chiang et al.,
2021). We, therefore, suggest extending the significance and
functionality of the risk appetite attribute in future simulations.

6.3. Sensitivity Analysis Limited to
Bottom-Up Models
After comparing the four models (C-SOT, R-SOT, Hive,
and HiveHybrid) on a set of specific parameters, we have
systematically varied the parameters of risk appetite, population
size, and homophily threshold for the comparison of the bottom-
up models. This analysis permitted us to examine in detail
the models’ response to varying population behavioral patterns,
across the three aforementioned worker attributes. For our
main scenario we have chosen a specific and fixed set of
parameters; although these modeling choices have been based
on the literature, they do limit the applicability of our results to
the specific population characteristics. Performing a systematic
sensitivity analysis for themain scenario can, in the future, permit
to examine whether the current results can be generalized to
scenarios with other demographics or whether there are any
mixed effects, for instance between the team size and the workers’
homophily threshold.

6.4. Teamwork Quality Function Limited in
Scope
Our evaluation of teamwork quality is based on the assumption
that certain attributes together matter most in determining
the probability of success of a team. We identified team skill,
interpersonal compatibility, and team size as the determining
factors. Although these factors have been shown in the
literature to critically affect teamwork performance, there may be
additional aspects of the collaboration that also play a significant
role depending on the real-world task at-hand. For example,
communication quality, the ability to think out-of-the-box as a
team may also affect the final result. Follow-up studies could
therefore examine additional quality metrics and even evaluate
different methods for calculating teamwork quality than the one
used in this study.

6.5. Worker Search Space Unhindered by
Cognitive and Temporal Constraints
Another assumption present in this study is that workers are
not constrained in their search of available teammates. This
means that if a large pool of workers is available, workers can
evaluate all possible team combinations and pick the one with
the highest utility. In real-life settings, this is not always possible
as information may be missing and time and resources may be
lacking to carry out a thorough evaluation of this kind. Future
simulations should take into account the limitations that workers
may face when assessing others, especially as the size of the

worker pool increases, and convey these in their definition of the
search function. It is possible that workers can truly only process
a few candidates at a time, and their judgment can be affected by
presentation or popularity biases.

6.6. Hive Is One of Many Kinds of
Top-Down Models
Our comparison of different team formation models uses only
one top-down approach, namely Hive. Although the Hive
algorithm is a latest state-of-the-art community-based solution,
it does not represent many other kinds of top-down approaches.
Due to this limitation, our comparison cannot be entirely
generalized to other top-down team formation systems, aside
from the acknowledgement that they do not grant worker agency
in decision-making. Testing other approaches, such as bi-partite
graphs and stable matching algorithms will give future studies
more comprehensive knowledge of the effectiveness of these
approaches in collaborative crowdsourcing scenarios and how
they compare to self-organized and hybrid solutions.

7. CONCLUSION

With the rapid growth of crowdsourcing platforms used for
collaborative innovation generation and citizen participation,
team formation among members of a crowd becomes
increasingly pertinent. This study evaluates how different
approaches to crowdsourcing team formation impact teamwork
through bottom-up, top-down, and hybrid models. Using a
simulated hackathon scenario, we gathered results from the
collaboration between strategic worker agents showing that
bottom-up models are convincingly more effective at forming
highly competitive teams but do not succeed at redistributing
equally resources within the crowd population. On the contrary,
the hybrid system which combines bottom-up worker agency
with top-down algorithmic mediation bridged this gap by
forming teams of closer teamwork quality. The purely top-down
approach performed averagely whilst still limiting worker
agency in team formation. We further observe that high-risk
appetite levels, large population sizes, and high homophily
thresholds of the involved crowd worker population positively
affect teamwork quality in bottom-up approaches. This study
furthers our assessment of the impact of self-organization in
large-scale collaborative crowd innovation and helps the design
of systems incorporating agency in algorithmic mediation in
team formation.
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Music content annotation campaigns are common on paid crowdsourcing platforms.

Crowd workers are expected to annotate complex music artifacts, a task often

demanding specialized skills and expertise, thus selecting the right participants is crucial

for campaign success. However, there is a general lack of deeper understanding of

the distribution of musical skills, and especially auditory perception skills, in the worker

population. To address this knowledge gap, we conducted a user study (N = 200) on

Prolific and Amazon Mechanical Turk. We asked crowd workers to indicate their musical

sophistication through a questionnaire and assessed their music perception skills through

an audio-based skill test. The goal of this work is to better understand the extent to which

crowd workers possess higher perceptions skills, beyond their own musical education

level and self reported abilities. Our study shows that untrained crowd workers can

possess high perception skills on the music elements of melody, tuning, accent, and

tempo; skills that can be useful in a plethora of annotation tasks in the music domain.

Keywords: human computation, music annotation, perceptual skills, music sophistication, knowledge

crowdsourcing

1. INTRODUCTION

Several studies have shown the ability of crowd workers to successfully contribute to the analysis
and annotation ofmultimedia content, both based on simple perceptual skill, e.g., for image analysis
(Sorokin and Forsyth, 2008) and domain-specific knowledge, (Oosterman et al., 2015). Musical
content is no exception, and research has shown that the general crowd can be successfully involved
in the annotation (Samiotis et al., 2020) and evaluation (Urbano et al., 2010) processes of music-
related data and methods. Plenty of music annotation tasks, (Lee, 2010; Mandel et al., 2010; Speck
et al., 2011; Lee and Hu, 2012; Lee et al., 2012) can be routinely found on microtask crowdsourcing
platforms, mostly focused on descriptive (Law et al., 2007) and emotional (Lee, 2010) tagging.

Music, as a form of art, often requires a multifaceted set of skills to perform and certain expertise
to analyse its artifacts. There are cases that require advanced music perceptual skills (such as the
ability to perceive changes in melody) and music-specific knowledge. However, both in literature
and in practice, it is rare to encounter such crowdsourcing tasks. Consider, for example, annotation
tasks targeting classical music, e.g., music transcription, performance evaluation, or performance
annotation. Classical music is a genre featuring artworks with high musical complexity; it is no
surprise that corresponding analysis and annotation tasks are often exclusively performed by
musical experts and scholars. This unfortunately hampers current efforts to digitize and open
up classical music archives, as scholars and experts are expensive and not easily available. Here,
the ability to utilize microtask crowdsourcing as an annotation and analysis approach could
bring obvious advantages. But how likely it is to find advanced music-related perceptual skills on

123

https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org/journals/artificial-intelligence#editorial-board
https://www.frontiersin.org/journals/artificial-intelligence#editorial-board
https://www.frontiersin.org/journals/artificial-intelligence#editorial-board
https://www.frontiersin.org/journals/artificial-intelligence#editorial-board
https://doi.org/10.3389/frai.2022.828733
http://crossmark.crossref.org/dialog/?doi=10.3389/frai.2022.828733&domain=pdf&date_stamp=2022-06-14
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org
https://www.frontiersin.org/journals/artificial-intelligence#articles
https://creativecommons.org/licenses/by/4.0/
mailto:i.p.samiotis@tudelft.nl
https://doi.org/10.3389/frai.2022.828733
https://www.frontiersin.org/articles/10.3389/frai.2022.828733/full


Samiotis et al. Crowd Worker’s Music Perception Skills

crowdsourcing platforms? With the goal of answering this broad
research question, in this paper we scope our investigation on the
following two aspects:

• [RQ1] How are different music perception skills and self-
reported music-related knowledge distributed among crowd
workers of different platforms?

• [RQ2] How are music perception skills associated to domain
and demographic attributes?

Studies on human cognition and psychology have shown that
people can possess innate music perception skills without
previous formal training (Ullén et al., 2014; Mankel and
Bidelman, 2018). However, the majority of those studies have
been conducted in labs, under controlled conditions and with
limited amounts of participants.

In our work, we set out to measure the music sophistication
and perception skills of crowd workers operating on the Prolific1

and Amazon Mechanical Turk2 crowdsourcing platforms. We
chose to conduct our study on these two different platforms,
in order to diversify our participant pool and identify potential
differences between them. In its present form, this study expands
the preliminary study as presented in Samiotis et al. (2021), by
diversifying the participant pool and complementing the analysis
with additional methods.

We designed a rigorous study that employs validated tools to
measure themusical sophistication of the users and quantify their
music perception skills: the Goldsmith’s Music Sophistication
Index (GMSI) questionnaire (Müllensiefen et al., 2014) and the
Profile of Music Perception Skills (PROMS) active skill test
(Law and Zentner, 2012), respectively (and more specifically its
shorten version: Mini-PROMS). These tools allow for a general
overview of musical ability characteristics, but also a more
detailed understanding through their subcategories (e.g., musical
training and melody perception skills). By juxtaposing passive
methods of assessment (questionnaire) with the active evaluation
of auditory skills, we aim to gather a better understanding of
workers’ actual skills on musical aspects, beyond their subjective
self-assessment. With GMSI, we are able to evaluate a person’s
ability to engage with music through a series of questions
focusing on different musical aspects. PROMS on the other
hand, allows for a more objective way to measure a person’s
auditory music perception skills (e.g., melody, tuning, accent,
and tempo perception) through a series of audio comparison
tests. To the best of our knowledge, this is the first attempt
to use PROMS in an online crowdsourcing environment and
the measured perception skills can offer valuable insights to the
auditory capabilities of the crowd.

Our findings indicate that pre-existing musical training is not
common among crowd workers, and that music sophistication
aspects are not necessarily predictive of actual music perception
skills. Instead, we observe that the majority of workers show an
affinity with specific sets of skills (e.g., we found a surprising
number of musical sleepers — workers without formal training
but still high music perception skill test results). As a whole,

1https://www.prolific.co
2https://https://www.mturk.com

our study paves the way for further work in worker modeling
and task assignment, to allow a wider and more refined set of
microtask crowdsourcing tasks in the domain of music analysis
and annotation.

2. RELATED WORK

There is a long history of studies on perception and processing
of music by humans; from the analysis of the socio-cultural
variables influencing a person’s musicality amplitude (Hannon
and Trainor, 2007), to the study of musicality from a genetics’
base (Gingras et al., 2015). In all cases, inherent music processing
capabilities have been found in people and they seem to be
connected with basic cognitive and neural processes of language
since early stages of development (Liberman and Mattingly,
1985; Koelsch et al., 2009). Even people with amusia, a rare
phenomenon where a person can’t distinguish tonal differences
between sounds (Peretz and Hyde, 2003), they can still process
and replicate rhythm correctly (Hyde and Peretz, 2004).

In Müllensiefen et al. (2014), we find a large scale study
on musical sophistication through the use of the GMSI survey,
on a unique sample of 147,663 people. GMSI is particularly
calibrated to identify musicality in adults with varying levels of
formal training. It is targeted toward the general public, and can
prove less effective to distinguish fine differences between highly
trained individuals. Musical sophistication in the context of that
study, and ours, encompasses musical behaviors and practices
that go beyond formal training on music theory and instrument
performance. Their findings show that musical sophistication,
melody memory and musical beat perception are related. The
survey has been translated and replicated successfully (on smaller
samples) in French (Degrave and Dedonder, 2019), Portuguese
(Lima et al., 2020), Mandarine (Lin et al., 2021), and German
(Schaal et al., 2014).

Our study draws connections to those findings and aims
to shed light into the musical capabilities of people on
crowdsourcing platforms. The demographics and conditions
of the studies presented so far cannot be easily compared
to those of online markets. Users on those platforms are
participating in such studies through monetary incentives, and
the conditions (equipment, location, potential distractions, etc.)
under which they perform the tasks cannot be controlled as in
a lab environment, as indicated in Totterdell and Niven (2014),
Gadiraju et al. (2017), and Zhuang and Gadiraju (2019).

Currently, crowdsourced music annotation is primarily
utilized for descriptive (Law et al., 2007) and emotional (Lee,
2010) tagging. Large-scale music data creation and annotation
projects such as Last.fm3 andMusicbrainz4, are largely depended
on human annotation, but from users of their respective
online social platforms. A survey on the applicability of music
perception experiments on Amazon Mechanical Turk (Oh and
Wang, 2012), showed that online crowdsourcing platforms have
been underused in the music domain and the status has not
changed radically since then. Through our study, we want to

3https://www.last.fm
4https://musicbrainz.org
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FIGURE 1 | The four steps in the music perception skills study.

examine the capabilities of the crowd on processing music audio
and showcase their capabilities, in an attempt to encourage
further research and utilization of crowdsourcing in the music
domain. Although our focus on audio perception separates
our work from visual-based studies on music perception, it is
meaningful to mention that visualization techniques for music
tasks have proven effective for certain use cases such as music
plagiarism detection in De Prisco et al. (2016) and De Prisco
et al. (2017) but also harmonic structure perception in music, in
Malandrino et al. (2015).

3. EXPERIMENTAL DESIGN

The main focus of this study is to offer insights into the musical
characteristics and perception skills of workers operating on
crowdsourcing platforms. We therefore designed our experiment
to capture these attributes through methods that can be used
online, and that do not require pre-existing musical knowledge.
We used two methods: 1) the GMSI questionnaire to evaluate the
musical sophistication (musical training, active engagement and
other related musical characteristics) (Müllensiefen et al., 2014)
of workers and 2) the Mini-PROMS test battery to evaluate their
auditory music perception skills. We then compare the obtained
results, paying specific attention to the overlapping aspects
of musical sophistication and music perception skills. With
this experiment, we are also interested in identifying “musical
sleepers” and “sleeping musicians”, a notion originally presented
in Law and Zentner (2012). A musical sleeper is a person with
little to no musical training but with high performance in the
perception test, while a sleeping musician indicates the opposite.

3.1. Procedure
After a preliminary step where workers are asked basic
demographic information (age, education, and occupation),
the study is composed of four consecutive steps (Figure 1),
each devoted to collecting information about specific
attributes corresponding to the crowd workers: (1) Musical
Sophistication Assessment (GSMI), (2) Active Music Perception
Skill Assessment (Mini-PROMS) and (3) Post-task Survey
collecting information on workers audio-related conditions, and
perceived cognitive load.

3.2. Questionnaires and Measures
3.2.1. Capturing Musical Sophistication of Workers
Musical behaviors of people such as listening to music, practicing
an instrument, singing or investing on vinyl collections, all

show the affinity of a person toward music. The degree to
which a person is engaged to music through these behaviors,
constitutes themusical sophistication.Musical sophistication can
be measured as a psychometric construct through the GMSI
questionnaire, which collects self-reported musicality through
emotional responses, engagement with music, formal training,
singing capabilities and self-assessed perception skills. It is an
instrument specifically designed to capture the sophistication
of musical behaviors, in contrast to other questionnaires such
as Musical Engagement Questionnaire (MEQ) (Werner et al.,
2006), which measures the spectrum of psychological facets of
musical experiences. More specifically, themusical sophistication
of people based onMüllensiefen et al. (2014), is organized into the
following five facets:

• Active Engagement: this aspect determines the degree to which
a person engages with music, by listening to and allocating
their time/budget to it;

• Perceptual Abilities: this aspect assesses the skill of perceiving
(mainly auditory) elements of music. This is an important
subscale in our study, since the self-assessed perceptual skills
of the workers in GMSI can be directly compared to those we
actively measure in Mini-PROMS;

• Musical Training: this aspect reports the years of training
on aspects of music (e.g., theory, performing an instrument),
which can indicate the formal expertise that a person has in
the domain;

• Emotions: this aspect determines the emotional impact of
music on that person;

• Singing Abilities: this aspect evaluates the ability to follow
along melodies and tempo (beat) of songs.

GMSI offers additional questions outside the subscales,
which capture specific properties of the participant: 1) “Best
Instrument”, which represents which instrument the user knows
to play the best, 2) “Start Age”, which age the participant starting
learning an instrument and 3) “Absolute Pitch”, which indicates
if the person can understand correctly the exact notes of a sound
frequency. Absolute pitch is a very rare trait that develops during
the early stages of auditory processing (Burkhard et al., 2019) but
can deteriorate through the years (Baharloo et al., 1998). As such,
a person with perfect pitch perception, could have an advantage
on a melody perception test, thus we included it with the rest of
the subscales.

The original GMSI questionnaire contains 38 main items
and 3 special questions, and considering the rest of the study’s
parts, we chose to reduce its size while keeping its psychometric
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reliability. For that purpose, we consulted the GSMI online
“configurator”5 which allows to select the number of items
per subscales and estimates the reliability of the resulting
questionnaire based on the questions it selects. We reduced the
size of the questionnaire to 34 questions, and preserved the
special question about “Absolute Pitch”, resulting in 35 questions
in total.

In the GMSI questionnaire each question from the subscales
uses the seven-point Likert scale (Joshi et al., 2015) for
the user’s responses, with most questions having “Completely
Agree”, “Strongly Agree”, “Agree”, “Neither Agree Nor Disagree”,
“Disagree”, “Strongly Disagree” and “Completely Disagree” as
options. Few questions offer numerical options for topics (e.g.,
indicating the time spent actively listening to music, or practicing
an instrument). The workers are not aware of the subscale each
question belongs to. The index of each subscale of GMSI is
calculated with the aggregated results of the relevant questions.
The overall index of “General Music Sophistication” is calculated
based on 18 questions out of the total 34 items of the subscales;
these 18 questions are predefined by the designers of the
questionnaire; the question about “Absolute Pitch” does not
contribute to the total index.

Using the GMSI questionnaire is close to the typical methods
used to assess the knowledge background of annotators in other
domains. Especially the questions of “Musical Training” follow
standard patterns to assess the formal training of a person in
a domain, thus a certain objectivity can be expected (assuming
good faith from the workers). However, the rest of the categories
are based purely on subjective indicators and self-reported
competence, which can potentially misrepresent the true music
behaviors and capabilities of a worker. For this reason, it is
necessary to understand the best practices that could reliably
predict a worker’s performance to a music annotation task. To
that end, we compare the workers’ input in such questionnaires,
and specifically on GMSI, to the music perceptual skills they
might possess, which we measure through an audio-based, music
perception skill-test.

3.2.2. Measuring Music Perception Skills of Workers
The music perception skill test is based on the well-establish
Profile of Music Perception Skills (PROMS) test (Law and Zentner,
2012). Its original version is quite extensive and its completion
can take more than an hour, as it covers several music cognition
aspects like Loudness, Standard rhythm, Rhythm-to-melody,
Timbre, Pitch and more. Considering the possibly low familiarity
of crowd workers with these tasks and its inherent difficulty,
we opted for a shorter version, the Mini-PROMS (Zentner and
Strauss, 2017), which has also been adopted and validate in the
context of online, uncontrolled studies.

Mini-PROMS is a much shorter battery of tests ( 15 min
completion time), which still covers the “Sequential” and
“Sensory” subtests. It can measure a person’s music perception
skills, by testing their capability to indicate differences on the
following musical features:

5https://shiny.gold-msi.org/gmsiconfigurator/

• Melody: A sequence of notes, with varying density
and atonality

• Accent: The emphasis of certain notes in a rhythmic pattern
• Tuning: The certain frequency of notes, when played in

a chord
• Tempo: The speed of a rhythmic pattern.

The musical aspects selected in this test are argued to well
represent the overall music perception skills of a person, only
in a more concise way. This version retains test–retest reliability
and internal consistency values close to the original PROMS test
(Law and Zentner, 2012), validating it for our research purposes.
Note that, although reduced in size, these four skills are required
to enable a broad range of music-related research, such as beat
tracking, tonal description, performance assessment and more.

For each of the 4 musical aspects workers receive a brief
explanation and an example case to familiarize the user with
the test. Each test after the introduction presents a reference
audio sample twice and a comparison sample once. The two
audio samples can differ based on the musical aspect tested
and the worker is asked if the samples are indeed same or
differ. The authors of PROMS have put particular effort on
distinguishing the musical aspects from each other, to make
the skill evaluation as close as possible to the musical aspect
tested. Finally, to minimize cognitive biases due to enculturation
(Demorest et al., 2008) the audio samples have been created using
less popular instrument sounds, such as harpsichord and “rim
shots”. Meanwhile, the structure of audio samples and the aspect
separation allow for a more precise measurement of a person’s
perception skill.

The categories of “Melody” and “Accent” have 10 comparisons
each, while “Tuning” and “Tempo” have 8. After the user
has listened to the audio samples, they are asked to select
between “Definitely Same”, “Probably Same”, “I don’t know”,
“Probably Different”, and “Definitely Different”. The participant
is then rewarded with 1 point for the high-confidence correct
answer, while the low-confidence one rewards 0.5 point. The
subscale scores are calculated through a sum of all items
within the scale and divided by 2. The total score is an
aggregated result of all subscale scores. During the test, the
user is fully aware of the subscale they are tested for, but the
name of “Tempo” is presented as “Speed” (original creators’
design choice).

3.2.3. Self-Assessment on Music Perception Skills
Self-assessment can often misrepresent an individual’s real
abilities (Kruger and Dunning, 1999). For that reason, we
employed a survey to study this effect its manifestation with
music-related skills. After Mini-PROMS test, the worker has to
input how many of the comparisons per subscale they believe
they correctly completed—this information is not known to
them after executing the Mini-PROMS test. Therefore, they
are presented with 4 questions, where they have to indicate
between 0 and the total number of tests per subscale (10 for
“Melody”/“Accent” and 8 for “Tuning”/“Tempo”). Finally, the
results of this survey are compared to the score of workers on
the “Perceptual Abilities” subscale of GMSI, which also relies
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on self-assessment. We expect workers to re-evaluate their own
skills, once exposed to the perception skill test.

3.2.4. Post-task Survey
As a final step of the task, the worker is presented with three
post-task surveys: (1) a survey on the audio equipment and the
noise levels around them, (2) a survey on the cognitive load they
perceived and (3) an open-ended feedback form.

The audio equipment survey consisted of fourmain questions,
to retrieve the type of equipment, its condition and the levels
of noise around them during the audio tests. Insights on these
can help us understand the to what extent the equipment/noise
conditions affected Mini-Proms test, which is audio-based. More
specifically, we asked the following questions:

1. What audio equipment were you using during the music
skill test?

2. What was the condition of your audio equipment?
3. Does your audio equipment have any impairment?
4. How noisy was the environment around you?

The options regarding the audio equipment were: “Headphones”,
“Earphones”, “Laptop Speakers”, and “Dedicated Speakers”. For
the condition questions (2) and (3), we used the unipolar discrete
five-grade scales introduced in ITU-R BS (2003), to subjectively
assess the sound quality of the participants’ equipment. Finally,
for question (4) on noise levels, we used the loudness subjective
rating scale, introduced in Beach et al. (2012).

In the second part of post-task survey, the workers had
to indicate their cognitive task load, through the NASA’s
Task Load IndeX (NASA-TLX) survey6. The survey contains
six dimensions—Mental Demand, Physical Demand, Temporal
Demand, Performance, Effort, and Frustration. Workers use a
slider (ranging from 0 to 20, and later scaled to 0 to 100) to
report their feelings for each of the six dimensions. A low TLX
score represents the music skill test is not mentally, physically,
and temporally demanding, and it also indicates less effort, and
less frustration perceived by the worker, while completing the
entire study.

Finally, we introduced an free-form textual feedback page,
where users were encouraged to leave any comments, remarks,
or suggestions for our study.

3.3. Worker Interface
The worker interfaces of our study is using VueJS7, a JavaScript
framework. The first page of our study contained general
instructions for the study alongside estimated completion times
for each part of it. Each page thereafter, contained an interface for
each of the steps in our study, as seen in Figure 1.

To assist navigation through the GMSI questionnaire, we
implemented the questionnaire interface to show one question
at a time. We added a small drifting animation to show the next
question, when they select their answer in the previous one. We
also added a “back” button, in case they wanted to return to a
previous question and alter their answer. They could track their

6https://humansystems.arc.nasa.gov/groups/tlx/
7https://vuejs.org

progress through the questionnaire from an indication of the
number of the question and the total number of questions (see
Figure 2).

While we retrieved the questions for GMSI and implemented
them in our study’s codebase, for PROMS we wanted to use the
exact conditions and audio-samples as in Zentner and Strauss
(2017). To replicate their test faithfully, the creators of PROMS
(Law and Zentner, 2012) kindly gave us access to their Mini-
PROMS interfaces (example interface in Figure 2). Mini-PROMS
is implemented on LimeSurvey8 and users were redirected to it
after the completion of GMSI.

After the GMSI questionnaire, workers were introduced
to the page seen in Figure 2. There, they had to copy
their Participant ID (retrieved programmatically from the
crowdsourcing platforms) and use it in the Mini-PROMS
interface later, so we could link their test performance (stored
in LimeSurvey), with their entries in our database. At the end
of Mini-PROMS, the users were redirected back to our study
through a provided URL.

In the final stage of our study, the participants were greeted
and provided a “completion code”, which they could submit on
back on their respective platform, to complete the task.

3.4. Participants, Quality Control, and
Rewards
On Prolific, we recruited 100 crowd workers to complete our
study. We applied a participant selection rule for “Language
Fluency”: English, as all of our interfaces were implemented in
English. Only crowd workers whose overall approval rates were
higher than 90% could preview and perform our study. On
Amazong Mechanical Turk, we recruited 100 crowd workers as
well, where we set their approval rate to “greater than 90%”.

To assess the quality of the user input, we included attention
check questions on the GMSI and NASA-TLX interfaces of
the study. More specifically, we included three attention check
questions in GMSI, asking the participants to select a specific item
in the same seven-point Likert scale. In the NASA-TLX survey,
we included a question asking the users to select a specific value
out of the 21 available in the scale of the survey.

We set the reward on Prolific and Amazon Mechanical Turk
for completing our study to 3.75 GBP (5.2 USD). Upon the
completion of our study on both platforms, workers immediately
received the reward. The average execution time was 32.5 min,
resulting in the hourly wage of 7.5 GBP (10.3 USD), rated as a
“good” pay by the platforms.

4. RESULTS

While investigating the data we gathered in our study, we
followed similar analysis steps for both platforms. The data were
first cleaned up based on our attention check questions and
we only kept demographic data that we had actively asked the
participants (dropped platform-based demographics).

We proceeded with identifying the distribution characteristics
of each variable from the different parts of our study (GMSI

8https://www.limesurvey.org
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FIGURE 2 | Interfaces of the study (A, GMSI questionnaire, B, Mini-PROMS, and C, Participant ID prompt).
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TABLE 1 | Prolific participant demographics.

Variables Statistics

Age (years) Range 18–65

Majority 18–25 (70.11%)

Occupation Full-time 30

Part-time 11

Unemployed 44

Voluntary work 2

Education Associate degree 3

Bachelor’s degree 35

Doctorate degree 1

High school/HED 16

Master’s degree 12

Professional degree 1

Some college, no diploma 13

Some high school, no diploma 2

Technical/trade/vocational training 4

and Mini-PROMS subcategories, NASA-TLX and equipment
questions). Combined with the intercorrelations per study part,
we gained important insights on the attributes of each variable
and their relations. These results are compared to those of the
original GMSI andMini-PROMS studies, to assess the differences
between the different participants’ pools. Finally, we run a
Multiple Linear Regression, to assess which factors seem to be the
best predictors for the music perception skills of a crowd worker
(e.g., musical training, equipment quality etc.).

4.1. Prolific
Of the 100 workers recruited from Prolific, 8 of them
failed at least one attention check question(s); 5 of them
provided invalid/none inputs. After excluding these 13
invalid submissions, we have 87 valid submissions from 87
unique workers.

4.1.1. Worker Demographics
Table 1 summarizes workers’ demographic information. Of
the 87 crowd workers who provided valid submissions, 36
were female (41.38%), while 51 were male (58.62%). Age of
participants ranged between 18 and 58 and the majority of
them were younger than 35 (87.36%). The majority of the
workers (51%) were reported to be unemployed, while from
those employed, 73.17% had a full-time job. Most workers
had enrolled for or acquired a degree (78.16%), with 51.47%
of them pointing to Bachelor’s degree. In total, we employed
workers from 15 countries, with most workers (77%) currently
residing in Portugal (25), United Kingdom (16), Poland (13), and
South Africa (13).

4.1.2. Results on Worker Music Sophistication
Table 2 summarizes the results of the GMSI questionnaire on
our workers. We contrast our results to results of the original
GMSI study (Müllensiefen et al., 2014), which covered a large

TABLE 2 | GMSI range, median, mean, and standard deviation.

Range Median Mean Standard

deviation (1σ )

Active engagement 19–45 31 30.91 5.45

Perceptual abilities 16–45 34 33.62 6.65

Musical training 7–45 17 18.52 9.61

Singing abilities 9–41 28 27.41 6.03

Emotions 18–42 33 33.24 4.28

General music sophistication 40–101 69 69.76 14.20

population sample of participants n = 147, 663 that voluntary
completed the questionnaire, on BBC’s How Musical Are You?
online test. Participants were mainly UK residents (66.9%)
and, in general, from English-speaking countries (USA: 14.2%,
Canada: 2.3%, Australia: 1.1%), with 15.9% having non-white
background. The sample contained a large spread on education
and occupation demographics, where only 1.8% claimed working
in the music domain. To some extent, this study is considered
representative for the general population in the UK (but is biased
toward higher musicality due to the voluntary nature of that
study). As such, we can assume a certain disposition and affinity
to music from GMSI’s population sample, compared to ours
where the incentives where monetary.

In our study, the observed General Music Sophistication (µ =

69.76) positions our workers pool at the bottom 28–29% of the
general population distribution found in the GMSI study. We
observe a similar effect also with the individual subscales with
the exception of “Emotions”, for which our workers fare a bit
higher (bottom 32–38%).

The result indicates that the self-reportedmusic sophistication
of crowd workers is strongly below that of the general population.
Most workers had received relatively little formal training in
their lifetime. This finding is important for the rest of the
analysis, as it indicates low formal expertise with music among
the crowd workers.

Most workers indicate relatively high perceptual abilities (µ =

33.62, max = 45). Here, it is interesting that previous studies
(Baharloo et al., 2000) estimate that less than 1% (or 5 people) per
11,000 possess “Absolute Pitch”. In our sample though, 9 workers
indicated having this characteristic, little more than the 10% of
our sample. This could indicate a possible confusion between
quasi-absolute pitch which is related to the familiarity of a person
with an instrument’s tuning and timber (Reymore and Hansen,
2020), or with relative pitch. Relative pitch is trainable through
practice and useful to professional musicians, as they can detect
changes in pitch through the relations of tones (5 out of 9 workers
who indicated “Absolute Pitch” had scored higher than 30 out of
49 in the “Musical Training” category scale, indicating adequate
formal musical training).

Table 3 presents the correlations between GMSI subscales. As
the scores of each GMSI subscale follow a normal distribution
(Shapiro-Wilk test), we applied Pearson’s R test to calculate
correlation coefficients. We observe that Perceptual Abilities
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TABLE 3 | Intercorrelations (Pearson’s R) of subscales of GMSI scores.

Active

engagement

Perceptual

abilities

Musical

training

Emotions Singing

abilities

Active engagement 1.000

Perceptual abilities 0.262* 1.000

Musical training 0.224* 0.442* 1.000

Emotions 0.401* 0.380* 0.178 1.000

Singing abilities 0.142 0.463* 0.465* 0.125 1.000

Statistical significance (p < 0.05) is marked using an asterisk (*).

shows positive correlations with most other subscales (p <

0.05), especially with Music Training (R = 0.442), Emotions
(R = 0.380), and Singing Abilities (R = 0.463). This finding
suggests that the listening skill plays the most important role
in crowd workers’ music sophistication. We also find significant
correlations between Active Engagement and Emotions (R =

0.401), and between Singing Abilities and Musical Training
(R = 0.465). The original GMSI study has shown that different
subscales are strongly correlated (R > 0.486). The difference we
observe could be partly explained by the generally lower musical
sophistication scores of the crowd workers in our pool.

4.1.3. Results on Objective Music Perception Skills
Mini-PROMS categorizes perception skills as “Basic” if the total
obtained score is lower than 18, “Good” if between 18 and 22.5,
“Excellent” for values between 23 and 27.5, and “Outstanding” for
values over 28 (Zentner and Strauss, 2017). The original Mini-
PROMS study covered a total n = 150 sample of participants,
all recruited from the university of Innsbruck, via email. Most of
the participants were students with at least one degree (n = 134),
aged 27 on average.

We observed (see Table 4) an average of “Good” music
perception skills for our workers (µ = 19.53, avg. accuracy
54.25%). Forty-eight out of eighty-seven (55.17%) produced
reasonably high accuracy in music skill tests (belonging to
“Good” and better categories according to Mini-PROMS results).
These figures are lower compared to the results of the original
study (Zentner and Strauss, 2017) (µ = 24.56, 68.2% avg.
accuracy), a fact that we account to the greater representation
of non-musician in our workers pool (67.82%), compared to
the participants of the original Mini-PROMS study (where
only 38.67% identified as non-musicians). However, considering
the low formal training amongst the surveyed workers, we
consider this result an indication of the existence of useful and
somewhat abundant auditory music perception skills among
untrained workers. Especially, in the top 10% of workers, ranked
according to their total Mini-PROMS values, several achieved
quite high accuracy, between 73.6 and 83.3%, which would
indicate perception skills between “Excellent” and “Outstanding”
in Mini-PROMS’s scale. In the following section we will analyse
in greater detail the relationship between the measured music
sophistication and the perception skills.

A similar trend toward lower performance compared to
the original Mini-PROMS study can be observed across the

TABLE 4 | Mini-PROMS range, median, mean, and standard deviation.

Range Median Mean Standard

deviation (1σ )

Melody 1.5–9 5 4.98 1.59

Tuning 1–7.5 4 4.22 1.62

Accent 0–9.5 5 5.19 1.84

Tempo 1–8 5 5.14 1.59

Mini-PROMS total 6–30 19.5 19.53 4.98

other musical aspects: workers correctly identified melody
differences with 49.77% avg. accuracy (original study: 64.3%),
tuning differences with 52.73% avg. accuracy (original: 68%),
accent difference with 51.95% avg. accuracy (original study:
61.5%), and tempo differences with 64.3% avg. accuracy (original
study: 81.25%).

The result of the music skill tests is in-line with the result of
self-reported music sophistication from GMSI, suggesting that
when compared to the populations covered by previous studies,
crowd workers generally possess less music perception skills.
To deepen the analysis, we calculated the intercorrelation of
Mini-PROMS subscales, and made comparison with the original
study (Zentner and Strauss, 2017). Since theMini-PROMS scores
across all the subscales follow normal distributions based on the
Shapiro-Wilk tests (Hanusz et al., 2016), we carried out Pearson’s
R tests to get the correlation coefficients and corresponding p-
values. We find statistical significance on all the intercorrelations.
Especially, we find that workers’ music skills related tomelody are
positively correlated with their accent- and tempo-related skills
(R = 0.551 and R = 0.514, respectively), while accent and tempo
also shows a moderate correlation (R = 0.468). In comparison
with the original study, we do not observe large differences in
the R values, while we did with the GMSI results. The results of
the intercorrelation analysis suggests that worker melody, accent,
and tempo skills are related with each other in our population
too. This is a positive result, that suggests (1) the applicability of
this testing tool also on this population, and (2) the possibility
of developing more compact tests for music perception skills, for
workers’ screening or task assignment purposes.

When focusing on the top 10% of workers, we observed an
accuracy on “Melody” between 75% and 90%, while the top 5%
scored higher than 85%. A person with “Absolute Pitch” would be
expected to achieve high accuracy on this test. Only one person
in the top 10% had indicated “Absolute Pitch”, but their accuracy
was one of the lowest in the group (75%). This could indicate
that the person is more likely to not possess such a characteristic.
For the subcategory of “Tuning”, the top 10% achieved accuracy
between 81.25 and 93.75%, while the top 5% scored higher than
87.5%. On “Accent”, the top 10% reached accuracy between 80
and 95%. Finally, on the subcategory of “Tempo” we measured
accuracy of 87.5 and 100% in the top 10%, while the top 5%
achieved perfect score of 100%.

These results suggest the presence of a substantial fraction of
workers possessing higher music perception skills than expected
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from their training, although differently distributed. For example,
workers who perceived well changes in “Melody”, didn’t perform
equally well on the other categories. This could indicate that
music perception skills do not necessarily “carry over” from
one music feature to the other; other workers will be good
in perceiving changes in tempo, while others on tuning. This
encourages the use of the appropriate set of tests, to identify
potentially high performing annotators. Thus, if we take as
example beat tracking annotation tasks, it would be more
beneficial to focus on testing the rhythm-related perception
skills, as the other categories have lower chance to capture the
appropriate workers for the task.

4.1.4. Post-task Survey: Equipment and Cognitive

Workload
The majority of the workers reported that, during the test, they
used headphones (52.87%) (which is very good formusical tasks),
earphones (29.54%), and laptop speakers (16.09%) (which are not
optimal). All workers reported the quality of their equipment as
“Fair” or better quality (55.17% selected “Excellent” and 34.48%
“Good”). 96.55% argued that their equipment either does not
have any impairment (72.41%) or that the impairment is not
annoying (24.13%). Finally, the majority of workers (58.62%)
reported near silence conditions, while 31.03% of them reported
normal, non-distracting levels of noise. While these conditions
are not comparable to lab setups, we consider them to be
sufficiently good to accommodate the requirements of our study.

In the NASA-TLX questionnaire, 34.48% of crowd workers
reported low “Mental Demand” and 79.31% low “Physical
Demand”. “Temporal Demand” was also reported low for the
72.41% of the participants. This low self-reported demand, is
reflected also to the majority (55.17%), who reported higher
than average “Performance”. Nevertheless, the majority of crowd
workers (70.11%) reported average to very high amounts of
“Effort” while completing the study, which is not reflected
on the perceived mental, physical and temporal demand they
experienced. It is also not evident on their “Frustration” levels,
since the majority (54.02%) reported low levels.

Using Pearson’s R, we found the inter-correlations between
the different categories of NASA-TLX.We found high correlation
between “Physical Demand” and “Mental Demand”, but also
between “Physical Demand” and “Temporal Demand”. Finally,
“Frustration” and “Performance” show high correlation between
them, which is a reasonable effect.

4.1.5. Identifying Factors Influencing Performance in

Mini-PROMS
To better understand factors affecting a participant’s performance
in Mini-PROMS and therefore their perceptual capabilities on
Melody, Tempo, Tuning and Accent, we applied a Multiple
Linear Regression, using Ordinary Least Square (OLS) method.
We split our analysis based on total score on Mini-PROMS
and the individual categories of the test, to study how they are
influenced by the rest of the study’s categories.

To minimize multi-colinearity between the Independent
Variables, we dropped those that showed high correlation
between them in our inter-correlation analysis. Analyzing the

inter-correlations between all categories, we found similar
results to those per part of the study (as analyzed in
previous sections). Therefore, NASA-TLX was the only part
of the study on Prolific, where high inter-correlation was
exhibited between the categories of “Physical Demand” and
“Mental Demand”, “Physical Demand” and “Temporal Demand”,
“Frustration” and “Performance”. We proceeded to apply OLS,
by dropping “Physical Demand” and “Frustration” from the
NASA-TLX factors, to decrease colinearity. Correspondingly,
for the categorical variables “Occupation” and “Equipment
Type”, we only used the “Part Time”, “Voluntary Work”,
“Unemployed” and “Headphones”, “Laptop Speakers” for each
respective variable.

For the total Mini-PROMS score, we found a significant
equation [F(19, 67) = 2.948, p < 0.000, with R2 = 0.455], that
shows “Perceptual Abilities” and “Musical Training” from GMSI,
affect significantly the dependent variable (p < 0.05). For each
unit increase reported under the “Perceptual Abilities”, a worker
showed an increase of 0.2207 point in the total score, while in
“Musical Training”, it resulted to a 0.2417 increase.

Running the regression for the “Melody” of Mini-PROMS
[F(19, 67) = 1.898, p = 0.0289, with R2 = 0.350], we found
that their “Occupation” status affected the dependent variable
significantly (p < 0.05). Their “Part Time” employment seemed
to negatively influence their performance in “Melody” test, by
−1.2234 points. On the other hand, “Perceptual Abilities” and
“Musical Training” from GMSI also affected significantly their
performance (p < 0.05), increasing it by 0.0827 and 0.0570
points, respectively. Their “Singing Abilities” though, seemed to
significantly influence their performance but negatively, where
every reported increase on those abilities, resulted to a decrease
of−0.0672 point.

The significant regression equation that was found for the
“Tuning” category [F(19, 67) = 2.301, p = 0.006, with R2 =

0.395] showed that their “Occupation” status was yet again
affecting their performance significantly (p < 0.05). Those who
reported “Unemployed” showed an increase in their performance
by 0.9205. Finally, “Musical Training” appears to be another
significant factor to their performance in this particular audio
test. Each unit increase in the category, resulted in a 0.0709
increase in their performance.

For “Accent”, the regression [F(19, 67) = 2.580, p = 0.002,
with R2 = 0.422], showed that the “Temporal Demand”
the participants experienced, alongside their “Occupation” and
“Musical Training”, influenced significantly their performance
in this test. An increase in “Temporal Demand” resulted in
decrease by −0.0851 point and in “Musical Training”, an
increase by a 0.0701 point. “Part Time” occupation is negatively
associated with their performance here, leading to a decrease
of−1.2801 points.

Finally, for the “Tempo” category of Mini-PROMS, we
couldn’t find a significant model by applying OLS.

4.2. Amazon Mechanical Turk
Of the 100 workers recruited from Amazon Mechanical Turk
(MTurk), 9 of them failed at least one attention check question(s);
7 of them provided invalid/none inputs. After excluding these
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TABLE 5 | MTurk participant demographics.

Variables Statistics

Age (years) Range 18–65+

Majority 26–35 (52.38%)

Occupation Full-time 71

Part-time 9

Unemployed 3

Retired 1

Education Associate degree 6

Bachelor’s degree 44

Doctorate degree 2

High school/HED 11

Master’s degree 10

Professional degree 0

Some college, no diploma 8

Some high school, no diploma 1

Technical/trade/vocational training 2

16 invalid submissions, we have 84 valid submissions from 84
unique workers.

4.2.1. Worker Demographics
We also conducted the same study on Amazon MTurk, in order
to see if we can observe similar trends as shown in the last section
also on a platform different than Prolific. We gathered 84 crowd
workers who provided valid submissions. As seen in Table 5, the
age range was between 18 and above 65, while the majority was
between 26-35 (52.38%), a relatively older pool compared to the
Prolific’s one. The majority of them were employed (95.23%),
with the 88.75% of them full-time. Most of the participants
hold a degree (86.90%), with Bachelor’s being the most common
(60.27%). Finally, the vast majority of the participants, report the
United States of America (89.28%) as their residence, with the
rest being spread between Brazil (3), India (3), United Kingdom
(1), Netherlands (1), and Italy (1).

Apart from education, we see a clear difference between the
participants from the two platforms on the age, occupation and
country of residence categories. In this study, most of the crowd
workers from MTurk are older than those on Prolific, employed
and residing in USA.

4.2.2. Results on Worker Music Sophistication
In Table 6, we summarize the results of the GMSI questionnaire,
regarding the workers on MTurk. As described in Section 4.1.2,
we compare the results on this platform, with the results of the
original GMSI study (Müllensiefen et al., 2014).

Comparing our collected data to the original GMSI study, we
find that the crowd workers of MTurk exhibit a strongly lower
overall music sophistication, at the bottom 32% of the original
study. They also score low in all sub-categories, with Musical
Training being the only category comparing higher to the 37%
of the original study’s population.

TABLE 6 | GMSI range, median, mean, and standard deviation.

Range Median Mean Standard

deviation (1σ )

Active engagement 12–46 32 30.57 7.92

Perceptual abilities 18–47 32.5 32.82 5.92

Musical training 7–43 23 21.80 9.40

Singing abilities 9–45 32.5 28.29 8.12

Emotions 7–41 30.5 30.34 5.35

General music sophistication 29–113 75 72.19 18.15

TABLE 7 | Intercorrelations (Spearman’s rank) of subscales of GMSI scores.

Active

engagement

Perceptual

abilities

Musical

training

Emotions Singing

abilities

Active engagement 1.000

Perceptual abilities 0.232* 1.000

Musical training 0.595* 0.263* 1.000

Emotions 0.213 0.471* -0.052 1.000

Singing abilities 0.637* 0.340* 0.552* 0.223* 1.000

Statistical significance (p < 0.05) is marked using an asterisk (*). Values in bold indicate

intercorrelations higher than 0.5.

An extremely high number of participants (40.47%), reported
having “Absolute Pitch”, which is a highly unlikely portion
of the sample, as discussed before. Only 9 of them reported
adequate formal musical training, which can indicate a general
misconception on the entailing traits of such a phenomenon. The
reports are much higher than those on Prolific.

With a quick glance at the values on Table 7, we see that
they indicate skewness on the distributions of each category.
When running the Shapiro-Wilk normality test (Hanusz et al.,
2016), we found that all distributions, except that of “Perceptual
Abilities”, are non-normal. For that reason, we used Spearman’s
ranked test to calculate the correlation coefficients between the
GMSI sub-categories.

We find that “Active Engagement”, “Musical Training” and
“Singing Abilities” are highly correlated with each other. The
positive high correlation between these categories, indicates that
crowd workers onMTurk report similarly their aptitude on those
GMSI categories. Notably, although not particularly high, there is
certainly a positive correlation between self-reported “Perceptual
Abilities” and the extent of “Emotions” these crowd workers
experience when listening to music (R = 0.471).

4.2.3. Results on Objective Music Perception Skills
Table 8 shows the results of MTurk’s crowd workers on Mini-
PROMS test. The mean overall score shows that the average
participant in our sample pool, had lower than “Basic” music
perception skills overall (µ = 15.2 42.2% avg. accuracy). This
performance is much lower than both the original Mini-PROMS
work (Zentner and Strauss, 2017) and the results we retrieved
from Prolific. In the Top 10% of the highest performant crowd
workers, we see that they score from 61.1% up to 81.94%, scoring
from “Good” to “Outstanding”, based on the Mini-PROMS scale.
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TABLE 8 | Mini-PROMS range, median, mean, and standard deviation.

Range Median Mean Standard

deviation (1σ )

Melody 1–8 4.25 4.22 1.56

Tuning 1–7.5 3 3.2 1.33

Accent 0–7.5 4 4.04 1.42

Tempo 1–8 3.5 3.75 1.64

Mini-PROMS 6.5–29.5 14.5 15.2 4.77

Per individual categories, we see that the highest performance
that the crowd workers achieved, didn’t reach the max of the
Mini-PROMS scale of every category except “Tempo”. The avg.
accuracy on the “Melody” category, reached 42.2% (original
study: 64.3%, Prolific: 49.77%), while on the “Tuning” category,
the avg. accuracy was 40% (original study: 68%, Prolific: 52.73%).
The participants from MTurk, were able to detect changes on
“Accent” features with avg. accuracy of 40.4% (original study:
61.5%, Prolific: 51.95%), while they scored avg. accuracy 46.87%
on “Tempo” (original study: 81.25%, Prolific: 64.3%).

Running the Shapiro-Wilk normality test on each Mini-
PROMS’ category, we find that only the “Melody” one is
Gaussian. We used once again Spearman’s rank method to
calculate the correlation coefficients per category. We found that
“Tempo” is highly correlated with “Melody”, while “Tuning” is
with “Accent”. These results are not in line with the original
PROMS study (Law and Zentner, 2012), but we observe relatively
strong correlation between “Tuning”-“Melody” and “Tuning”-
“Tempo”, which fall into the PROMS categories of “Sound
perception” and “Sensory” skills, respectively.

4.2.4. Post-task Survey: Equipment and Cognitive

Workload
The majority of the participants from MTurk used headphones
to performMini-PROMS (64.28%), while 20.23% used earphones
and 15.46% used the speakers of their laptops. Most participants
described the condition of their equipment as “Excellent” or
“Good”, while one reported it as “Fair”. The majority (66.66%)
of the crowd workers, reported any impairment of their
equipment as “Impairceptible”, with 15.47% of them describing
it as “Perceptible but not annoying”. The rest of the workers
reported various degrees of annoying impairments. Finally,
65.47% of the crowd workers performed Mini-PROMS with
near silence environmental conditions, while 19.04% reported
extreme levels of noise around them. None of the distributions
passed the Shapiro-Wilk normality test for each equipment-
related category. Running Spearman’s rank method, we found no
notable correlation between the categories.

In the NASA-TLX questionnaire, 29.76% of crowd workers
reported average “Mental Demand”, with 10.71 and 15.67%
reporting low or very high mental strain, respectively.
46.43% reported low “Physical Demand” with 36.9% of the
total not feeling rushed while performing the study. 27.38%
reported average “Performance”, with 22.61% describing their

performance as successful. The majority of participants were
divided between reporting high effort (27.38%) or moderate
difficulty (27.38%). Finally, 34.52% of the crowd workers felt
little to no frustration with 20.24% reporting moderate levels.

Using Spearman’s rank, we found that “Frustration” is highly
correlated with “Physical Demand”, “Temporal Demand” and
“Performance”. This shows that the more physical strain and
hurried they felt, combined with feelings of failing the task at
hand, increased their frustration with the study.

4.2.5. Identifying Factors Influencing Performance in

Mini-PROMS
Following the analysis on the results from Prolific, we applied
Multiple Linear Regression on the Mini-PROMS categories,
using the Ordinary Least Square (OLS) method. For the total
Mini-PROMS score as the dependent variable [F(18, 65) = 4.742,
p < 0.000, with R2 = 0.567], we found that only the “Perceptual
Skills” from GMSI and the “Physical Demand” category from
NASA-TLX, affect significantly the dependent variable (p <

0.05). For each extra point reported under the “Perceptual Skills”,
a worker showed an increase of 0.2 points in the total score. On
the other hand, a single extra point toward “Very demanding” on
the “Physical Demand” category, resulted on a −0.3 decrease of
total performance by the worker.

Running the regression for the “Melody” of Mini-PROMS
[F(18, 65) = 3.443, p < 0.000, with R2 = 0.488], we found
that “Physical Demand” category from NASA-TLX affected
the dependent variable the most (p < 0.05). The effect is
negative toward the performance on “Melody”, where each
point increase on “Physical Demand” translated to −0.12 point
decrease of performance.

The significant regression equation that was found for the
“Tuning” category [F(18, 65) = 1.849, p = 0.0376, with R2 =

0.339] showed that the most significant factor was yet again the
“Physical Demand”. The more physically demanding the study
was perceived, it influenced the final score on “Tuning” by−0.09.

For “Accent”, the regression [F(18, 65) = 2.130, p = 0.0141,
with R2 = 0.371], showed that the “Type” of audio equipment
and its “Impairment” affected the workers’ performance the
most. The “Laptop Speakers” seemed to influenced positively
their performance by 1.2193 points, while the less perceptible
an “Impairment” was, it was increasing their performance
by 0.448 point.

Finally, for the “Tempo” category of Mini-PROMS, we found
a significant regression equation [F(18, 65) = 4.502, p < 0.000, with
R2 = 0.555] that shows that “Physical Demand” and “Perceptual
Abilities” influenced the performance on the category most
significantly. While an increase in “Physical Demand” decreased
the performance by −0.10 point, an increase in the self-reported
“Perceptual Abilities” showed an increase of performance on
“Tempo” by 0.08.

4.3. In Search of Musical Sleepers
Having analyzed each component of our study and using OLS
to understand how individual factors could have influenced the
workers’ performance on the perception skills of Mini-PROMS,
we were still interested to investigate how the highly perceptive
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workers are distributed based on quantifiable expertise. Musical
training is an element that can be quantified by questions
on credentials, years of education etc, all components that
can be retrieved by the respective category in GMSI. It
is an attribute that we experts show high proficiency and
that a platform could potentially easily store and iterate per
worker’s profile.

In this study, following the original studies of PROMS (Law
and Zentner, 2012) and Mini-PROMS (Zentner and Strauss,
2017), we make the comparisons of levels of Musical Training,
against the performance on the categories of Mini-PROMS.
Taking a step further, we used as baselines the amount of
“Musical Training” that 50% of the original GMSI’s population
exhibited (27) and the lowest bound of “Excellent” performance
(63.98%) on perception skills, as established for Mini-PROMS.
We make use of the terms “Musical Sleepers”, to label those who
exhibit high performance but reported low training and “Sleeping
Musicians”, those who reported extensive training but performed
poorly, both terms from Law and Zentner (2012) and Zentner
and Strauss (2017).

Figure 3 shows a scatter plot per platform, that shows how
participants are distributed based on their performance and
“Musical Training”. We witness that on both platforms, there
is a high number of crowd workers who reported low “Musical
Training” [below 50% of original GMSI study in Müllensiefen
et al. (2014)] and had relatively low performance in the Mini-
PROMS tests. This is to be expected, due to the nature of the
domain and the niche skills that are required.

The attention is naturally drawn to the “Musical Sleepers”;
a portion of the population that can exhibit relatively high
music perception skills, but did not have adequate education.
Few people would follow any form of dedicated music studies,
making it even more difficult to find them on a crowdsourcing
platform. With low expertise being the norm, finding crowd
workers with high, untrained, auditory skills among them, is a
rare phenomenon that could greatly benefit systems who would
make use of such skills. In the case of Prolific, we witness
“Musical Sleepers” in a higher number compared to Amazon
Mechanical Turk. We cannot draw platform-based conclusions
though, since our participant pool was quite small relatively to
the actual population of each platform. The presence of these
workers is very encouraging, as it shows that it is possible to
deploy advancedmusic analysis tasks onmicrotask platforms and
finding high-value contributors.

In our study, participants from Amazon Mechanical Turk,
generally reached lower performance compared to the ones from
Prolific. This is an outcome also evident on the high number of
“SleepingMusicians” onMTurk, compared to the smaller portion
of the total Prolific participants. These workers reported relatively
high musical training, but performed lower than expected from a
person of their expertise.

5. DISCUSSION

In this study, we extensively measure the musical sophistication
and music perception skills of crowd workers on Prolific and

Amazon Mechanical Turk. We show that on both platforms,
the self-reported music sophistication of crowd workers is below
that of the general population and that formally-trained workers
are rare. Nevertheless, we found surprisingly refined and diverse
music perception skills amongst the top performers per platform.
These skills though cannot accurately and easily be predicted
by questions.

5.1. On Music Perceptual Skills and
Predictors
Workers on both platforms exhibited quite diverse set of music
perception skills. Among the high performant ones, we found
evidence that supports the existence of workers with high
accuracy and little to no formal training, namely “Musical
Sleepers”, indicating the prospect of high-quality annotations
by non-experts on these platforms. Predicting these skills
though, can prove far from trivial. To promote reproducibility
of our results, we made use of established tools to retrieve
domain sophistication (Müllensiefen et al., 2014), perceptual
skills (Zentner and Strauss, 2017), perceived workload (Hart and
Staveland, 1988), equipment condition (ITU-R BS, 2003) and
ambient noise levels (Beach et al., 2012).

In an analysis of workers’ reports on other parts of the
study, we found per platform, different factors that significantly
correlated to their performance. “Musical Training”, a type
of expertise that could be thought as a strong indicator of
a worker’s perceptual skills, showed low significance on the
performance of Amazon Mechanical Turk workers. These
findings, alongside the high number of “Sleeping Musicians”
among the participants from Amazon Mechanical Turk, indicate
a notable difference between their reported knowledge and
their quantified perceptual skills. On the other hand though,
the self-reported “Perceptual Abilities” proved a reliable factor
of MTurk workers, as they were significantly related to their
performance onMini-PROMS. This is in contrast to the reported
“Perceptual Abilities” of Prolific’s workers, which did not
significantly correlate to their performance. Aspects of perceived
task workload though, as retrieved from NASA-TLX, seemed to
significantly correlate on categories of the Mini-PROMS test, on
both platforms. Finally, while demographic data appear relevant
to aspects of the performance of workers on Prolific, on MTurk
equipment showed to play a more important role on the “Accent”
test of Mini-PROMS.

The “Active Engagement” category of GMSI, which indicates
to what extent a person engages with music as a hobby
(frequenting online forums, buying music albums, etc.), did
not show any significant correlation to the measured music
perception skills of the participants on both platforms.
That shows that we cannot reliably use such questions,
to infer the skills of the worker; the time/effort spent
listening to or discussing about music, can be indifferent
of the range of their skills. The same applies to the
“Emotions” category, where participants report their emotional
response to music. This indicates that music could still
evoke emotions to people, even without them perceiving its
structural elements.
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FIGURE 3 | Musical Training (GMSI) and Performance on Mini-PROMS (acc%).
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5.2. Implications for Design

Self-reportedMusical Sophistication. Themusical sophistication
assessments (GMSI) is a useful tool to evaluate workers’
capability in completing music-related tasks. It is however
a lengthy questionnaire, which could result in extra cost
and worse worker engagement. Reducing the number of
question is possible, but with implication in terms of test
reliability. For instance, the subscale of Musical Training is
positively correlated to their actual music perception skills
(and the correlation coefficient is higher than the general
GMSI). As music perception skills are of primary relevance
when executing music-related tasks, we suggest that in future
task design, requesters could consider using the subscale of
musical training which only contains 7 items. This could be
complemented with novel methods to effectively and precisely
predict worker performance to further facilitate task scheduling
and assignment.

Music Perception Skill Assessment. The Mini-PROMS tool
appears to be an effective mean to evaluate worker quality in
terms of music skills. Yet, it suffers from the same overhead issues
of GMSI. In this case, we suggest to use PROMS orMini-PROMS
as a qualification test, possibly featured by crowdsourcing
platforms. Workers could use this test to get the corresponding
qualification, to obtain the opportunities to access more tasks,
and earn more rewards.

Music Annotation and Analysis Tasks. The results of this
study indicate that knowledge- and skill-intensive musical
tasks could be deployed on microtasks crowdsourcing
platforms, with good expectations in terms of availability
of skilled workers. However, performance on different
skills (Melody, Tuning, Accent, and Tempo) appears to be
unevenly distributed. We therefore recommend to analyse
the capabilities of the selected crowd and tailor the design of
advanced music annotation and analysis tasks to precise music
perception skills.

5.3. Limitations and Future Work
A main limitation of our study is concerned with the size
of the tested population. While we employed workers from
two different platforms, our results cannot be generalized per
platform. A larger participation pool could potentially aid
the generalisability of our findings and lead to more fine-
grained insights. Even though our results are based on a
population of crowd workers that have received less formal
musical training than the average population used in similar
studies (Müllensiefen et al., 2014) the use of standardized
and validated tests, lend confidence to the reliability of
our findings.

Another potential confounding factor in our study is the
motivation for participation. We attracted crowd workers using
monetary rewards, while in other studies people voluntarily
performed their test (e.g., BBC’s main Science webpage,
Müllensiefen et al., 2014). Such a difference could also
explain the differences in observed distributions (musical
training and perception skills). However, monetary incentives

are a feature of crowdsourcing markets, which makes them
appealing in terms of work capacity and likelihood of speedy
completion. In that respect, our findings are very encouraging,
as they show the availability of both musically educated
and/or naturally skilled workers that could take on musically
complex tasks.

As demonstrated in our results, workers who perform
well in a certain perception category (e.g., “Melody”) do not
perform equally well in another (e.g., “Tempo”). In future
studies, we encourage the use of perception tests, adjusted
and adapted for the specific music task at hand by using the
appropriate categories, to accurately select potentially highly
performing workers.

In our analysis, we currently made use of Ordinary
Least Square Regression to identify factors are associated
with the workers’ performance on Mini-PROMS. Although
this method gave us some first insights, further studies are
needed to expand our pool of crowd workers and use
other models that can help us find predictors of perceptual
skills of workers accurately. This could assist in designing
appropriate task assignment methods, to increase the efficiency
and effectiveness of crowdsourcing systems that make use of
such skills.

In this study, we utilized standardized tools to capture
domain-specific characteristics of the workers of a specific
platform. Comparing results from their self-reported
“connection” to the domain, with those from actively
testing their skills, can paint a clear picture of the workers’
demographics on a specific domain. While this work is specific
to the music domain, we believe that similar workflows
can be utilized to study the characteristics of workers on
other domains. This holds especially true, as crowdsourcing
platforms have diverse user-bases and direct comparisons
cannot safely be drawn to studies with highly controlled
population samples.

6. CONCLUSION

In this paper, we have presented a study exploring the
prevalence and distribution of music perception skills of
the general crowd in the open crowdsourcing marketplace
of Prolific and Amazon Mechanical Turk. We measured
and compared self-reported musical sophistication and active
music perception skills of crowd workers by leveraging the
established GMSI questionnaire and Mini-PROMS audio-
based test, respectively. Our analysis shows that self-reported
musical sophistication of crowd workers is generally below
that of the general population and the majority of them
have not received any form of formal training. We observed
differences in the two participant pools, on both their
performance and factors which are significantly correlated to
it. Nevertheless, we identified the presence of musical sleepers
on both platforms. Moreover, our analysis shows worker
accessibility to adequate equipment. Together, these findings
indicate the possibility of further increasing the adoption of
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crowdsourcing as a viable means to perform complex music-
related tasks.
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Computer Science, University of Texas at El Paso, El Paso, TX, United States

This work investigates how different forms of input elicitation obtained from

crowdsourcing can be utilized to improve the quality of inferred labels for image

classification tasks, where an image must be labeled as either positive or negative

depending on the presence/absence of a specified object. Five types of input elicitation

methods are tested: binary classification (positive or negative); the (x, y)-coordinate of

the position participants believe a target object is located; level of confidence in binary

response (on a scale from 0 to 100%); what participants believe the majority of the other

participants’ binary classification is; and participant’s perceived difficulty level of the task

(on a discrete scale). We design two crowdsourcing studies to test the performance of

a variety of input elicitation methods and utilize data from over 300 participants. Various

existing voting and machine learning (ML) methods are applied to make the best use of

these inputs. In an effort to assess their performance on classification tasks of varying

difficulty, a systematic synthetic image generation process is developed. Each generated

image combines items from the MPEG-7 Core Experiment CE-Shape-1 Test Set into

a single image using multiple parameters (e.g., density, transparency, etc.) and may

or may not contain a target object. The difficulty of these images is validated by the

performance of an automated image classification method. Experiment results suggest

that more accurate results can be achieved with smaller training datasets when both the

crowdsourced binary classification labels and the average of the self-reported confidence

values in these labels are used as features for the ML classifiers. Moreover, when a

relatively larger properly annotated dataset is available, in some cases augmenting these

ML algorithms with the results (i.e., probability of outcome) from an automated classifier

can achieve even higher performance than what can be obtained by using any one of the

individual classifiers. Lastly, supplementary analysis of the collected data demonstrates

that other performance metrics of interest, namely reduced false-negative rates, can be

prioritized through special modifications of the proposed aggregation methods.

Keywords: machine learning, input elicitations, crowdsourcing, human computation, image classification
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1. INTRODUCTION

In recent years, computer vision approaches based on machine
learning (ML) and, in particular, those based on deep
convolutional neural networks have demonstrated significant
performance improvements over conventional approaches for
image classification and annotation (Krizhevsky et al., 2012;
Tan and Le, 2019; Zhai et al., 2021). However, these algorithms
generally require a large and diverse set of annotated data to
generate accurate classifications. Large amounts of annotated
data are not always available, especially for tasks where producing
high-quality meta-data is costly, such as image-based medical
diagnosis (Cheplygina et al., 2019), pattern recognition in
geospatial remote sensing data (Rasp et al., 2020; Stevens et al.,
2020), etc. In addition, ML algorithms are often sensitive to
perturbations in the data for complex visual tasks, that to some
extent are even difficult for humans, such as object detection
in cluttered backgrounds and detection of adversarial examples
(McDaniel et al., 2016; Papernot et al., 2016), due to the high
dimensionality and variability of the feature space of the images.

Crowdsourcing has received significant attention in various
domain-specific applications as a complementary approach for
image classification. Its growth has been accompanied and
propelled by the emergence of online crowdsourcing platforms
(e.g., Amazon Mechanical Turk, Prolific), which are widely
employed to recruit and compensate human participants for
annotating and classifying data that are difficult for machine-
only approaches. In general, crowdsourcing works by leveraging
the concept of the “wisdom of the crowd” (Surowiecki, 2005),
with which the judgments or predictions of multiple participants
are aggregated to sift out noise and to better approximate a
ground truth (Yi et al., 2012). Numerous studies over the last
decade have established that, under the right circumstances and
with the proper aggregation methods, the collective judgment
of multiple non-experts is uncontroversially more accurate
than those from almost any individual, including well-informed
experts. This concept of using groups tomake collective decisions
has been successfully applied to a number of visual tasks ranging
from simple classification and annotation (Russakovsky et al.,
2015) to complex real-world applications, including assessment
of damages caused by natural disasters (Barrington et al.,
2012) and segmentation of biomedical images for diagnostic
purposes (Gurari et al., 2015).

Although ML methods have been shown to perform
exceedingly well in various classification tasks, these outcomes
typically depend on relatively large datasets (Hsing et al., 2018).
However, high amounts of richly annotated data are inaccessible
in various situations and/or obtaining them is prohibitively
costly. Yet in such situations where less data is available,
ML methods provide a natural mechanism for incorporating
multiple forms of crowdsourced inputs, since they are tailor-
made for classification based on input features. Previous works
have tended to use a single form of input (i.e., mostly binary
classification labels provided by participants) as a feature for
ML algorithms on visual classification tasks. However, the vast
majority have overlooked other inputs that can be elicitated from
the crowd. Formal studies on the merits and potential impacts
of different types of elicited inputs are also lacking. This work

investigates how the performance of crowdsourcing-based voting
and ML methods for image classification tasks can be improved
using a variety of inputs. In summary, the contributions of this
work stem from the following objectives:

• Analyze the reliability and accuracy of different ML classifiers
on visual screening tasks when different forms of elicited
inputs are used as features.

• Evaluate the performance of the classifiers with these
additional features on both balanced and imbalanced
datasets—i.e., sets of images with equal and unequal
proportions, respectively, of positive to negative images—of
varying difficulty.

• Introduce supplementary crowdsourcing-based methods to
prioritize other performance metrics of interest, namely
reduced false-negative and false-positive rates.

• Analyze the performance of the crowdsourcing-based ML
classifiers when outputs of an automated classifier trained on
large annotated datasets are used as an additional feature.

To pursue these objectives, we design a number of experiments
that elicit a diversity of inputs on each classification task: binary
classification (1 = positive or 0 = negative); the (x, y)-coordinate
of the target object’s location; level of confidence in the binary
response (on a scale from 0 to 100%); guess of what the majority
of participants’ binary classification is on the same task; and
level of the perceived difficulty of the binary classification task
(on a discrete scale). To harness the benefits of both collective
human intelligence and machine intelligence, we use the elicited
inputs as features for ML algorithms. The results indicate
that integrating diverse forms of input elicitation, including
self-reported confidence values, can improve the accuracy
and efficiency of crowdsourced computation. As an additional
contribution, we develop an automated image classification
method based on the ResNet-50 neural network architecture
(He et al., 2015) by training it on multiple datasets of sizes
ranging from 10 k to 90 k image samples. The outputs of this
automated classifier are used as additional features within the
crowdsourcing-based ML algorithms. These additional results
demonstrate that this hybrid image classification approach can
provide more accurate predictions, especially for relatively larger
datasets, than what is possible by either of the two stand-
alone approaches.

Before proceeding, it is pertinent to mention that an
earlier, shorter version of this work and a subset of its
results appeared in Yasmin et al. (2021) and were presented
at the 9th AAAI Conference on Human Computation and
Crowdsourcing. That earlier conference paper considered only
a subset of the crowdsourcing-based ML algorithms featured
herein and that smaller selection was implemented only on
balanced datasets. This present work also introduces a hybrid
image classification approach, and it incorporates additional
descriptions, crowdsourcing experiments, and analyses.

2. LITERATURE REVIEW

In recent years, crowdsourcing has been widely applied to
complete a variety of image labeling/classification tasks, from
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those requiring simple visual identification abilities to those
that rely on domain expertise. Many studies have leveraged
crowdsourcing to annotate large-scale datasets, often requiring
subjective analysis such as conceptualized images (Nowak and
Rüger, 2010), scene-centric images (Zhou et al., 2014), and
general-purpose images from publicly available sources (Deng
et al., 2009; Everingham et al., 2010). Crowdsourcing techniques
have also been successfully tailored to many other complex visual
labeling/classification contexts that require profound domain
knowledge, including identifying fish and plants (He et al., 2013;
Oosterman et al., 2014), endangered species through camera
trap images (Swanson et al., 2015), locations of targets (Salek
et al., 2013), land covers (Foody et al., 2018), and sidewalk
accessibility (Hara et al., 2012). Due to its low cost and rapid
processing capabilities, another prominent use of crowdsourcing
is classification of CT images in medical applications. Such
tasks have included identifying malaria-infected red blood
cells (Mavandadi et al., 2012), detecting clinical features of
glaucomatous optic neuropathy (Mitry et al., 2016), categorizing
dermatological features (Cheplygina and Pluim, 2018), labeling
protein expression (Irshad et al., 2017), and various other tasks
(Nguyen et al., 2012; Mitry et al., 2013).

Despite its effectiveness at processing high work volumes,
numerous technical challenges need to be addressed to
maximize the benefits of the crowdsourcing paradigm. One
such technical challenge involves deploying effective mechanisms
for judgment/estimation aggregation, that is, the combining or
fusing of multiple sources of potentially conflicting information
into a single representative judgment. Since the quality of
the predictions is highly dependent on the method employed
to consolidate the crowdsourced inputs (Mao et al., 2013), a
vast number of works have focused on developing effective
algorithms to tackle this task. Computational social choice is a
field dedicated to the rigorous analysis and design of such data
aggregation mechanisms (Brandt et al., 2016). Researchers in this
field have studied the properties of various voting rules, which
have been applied extensively to develop better classification
algorithms. The most commonly used method across various
types of tasks is Majority Voting (MV) (Hastie and Kameda,
2005). MV attains high accuracy on simple idealized tasks, but
its performance tends to degrade on those that require more
expertise. One related shortcoming is that MV usually elicits and
utilizes only one input from each participant—typically a binary
response in crowdsourcing. Relying on a single form of input
elicitation may decrease the quality of the collective judgment
due to cognitive biases such as anchoring, bandwagon effect,
decoy effect, etc. (Eickhoff, 2018). Studies have also found that
the choice of input modality, for example, using rankings or
ratings to specify a subjective response, can play a significant
role in the accuracy of group decisions (Escobedo et al., 2022)
and predictions (Rankin and Grube, 1980). These difficulties
in data collection and aggregation mechanisms become even
more prominent when the task at hand is complex (e.g., see
Yoo et al., 2020). Researchers have suggested many potential
ways of mitigating these limitations. One promising direction is
the collection of richer data, i.e., using multiple forms of input
elicitation. As a parallel line of inquiry, previous works suggest

that specialized aggregation methods for integrating this data
should be considered for making good use of these different
pieces of information (Kemmer et al., 2020).

A logical enhancement of MV for the harder tasks is
to elicit the participant’s level of confidence (as a proxy of
expertise) and to integrate these inputs within the aggregation
mechanism. In the context of group decision-making, Grofman
et al. (1983) suggested weighing each individual’s inputs based
on self-reported confidence of their respective responses, in
accordance with the belief that individuals can estimate reliably
the accuracy of their own judgments (Griffin and Tversky, 1992).
More recently, Hamada et al. (2020) designed a wisdom of the
crowds study that asked a set of participants to rank and rate 15
items they would need for survival and used weighted confidence
values to aggregate their inputs. The results were sensitive to the
size of the group (i.e., number of participants); when the group
was small (fewer than 10 participants), the confidence values
reportedly had little impact on the results. In a more realistic
application, Saha Roy et al. (2021) used binary classification
and stated confidence in these inputs to locate target objects in
natural scene images. Their study showed that using the weighted
average of confidence values improved collective judgment. It
is important to remark that these and the vast majority of
related studies incorporate the self-reported confidence inputs
at face value. The Slating algorithm developed by Koriat (2012)
represents a different approach that determines the response
according to the most confident participant. For additional uses
of confidence values to make decisions, we refer the reader to
Mannes et al. (2014) and Litvinova et al. (2020).

Although subjective confidence values can be a valid predictor
of accuracy in some cases (Matoulkova, 2017; Görzen et al., 2019),
inmany others theymay degrade performance owing to cognitive
biases that prevent a realistic assessment of one’s abilities (Saab
et al., 2019). Another natural approach is to weigh responses
based on some form of worker reliability. Khattak and Salleb-
Aouissi (2011) used trapping questions with expert-annotated
labels to estimate the expertise level of workers. For domain-
specific tasks where the majority can be systematically biased,
Prelec et al. (2017) introduced the Surprisingly Popular Voting
method, which elicits two responses from participants: their own
answer and what they think the majority of other participants’
answer is. It then selects the answer that is “more popular than
people predict.” Other aggregation approaches include reference-
based scoring models (Xu and Bailey, 2012) and probabilistic
inference-based iterative models (Ipeirotis et al., 2010; Karger
et al., 2011).

In addition to crowdsourcing-based methods, automated
image classification has become popular due to the breakthrough
performances achieved by deep neural networks. Krizhevsky
et al. (2012) used a convolutional neural network called AlexNet
on a large dataset for the first time and achieved significant
performance in image classification tasks compared to other
contemporary methods. Since then, hundreds of studies have
further improved classification capabilities, and a few have shown
human-level performance when trained on large, noise-free
datasets (Assiri, 2020; Dai et al., 2021). However, as the size
and/or quality of training datasets decreases, the performance
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of these networks quickly degrades (Dodge and Karam, 2017;
Geirhos et al., 2017).

A two-way relationship between AI and crowdsourcing can
help compensate for some of the disadvantages associated with
the two separate decision-making approaches. Human-elicited
inputs interact with machine learning for a variety of reasons, but
most are in service of the latter. A wider variety of ML models
use human judgment to improve the accuracy and diversity
in training data sets. For example, Chang et al. (2017) uses
crowdsourcing to label images of cats and dogs since, unlike
machines, humans can recognize these animals in many different
contexts such as cartoons and advertisements. Human-elicited
inputs are given more importance in specialized fields like law
and medicine. For example, a study conducted by Gennatas
et al. (2020) uses clinicians’ inputs to improve ML training
datasets and as a feedback mechanism using what is aptly termed
“Expert-augmented machine learning.” In a similarly promising
direction, Hekler et al. (2019) uses a combination of responses
from a user study and a convolutional neural network to classify
images with skin cancer; the overall accuracy of their hybrid
system was higher than both components in isolation.

Unlike human-AI interaction, human-AI collaboration is
an emerging focus that can lead to the formulation of more
efficient and inclusive solutions. Mora et al. (2020) designed
an augmented reality shopping assistant that guides human
clothing choices based on social media presence, historical
purchase history, etc. As part of this focus, human-in-the-loop
applications seek a more balanced integration of the abilities of
humans andmachines by sequentially alternating a feedback loop
between them. For example, Koh et al. (2017) conducted a study
where a field operator wearing smart glasses uses an artificial
intelligence agent for remote assistance for hardware assembly
tasks. Yet, few studies seek to combine human judgments andML
outputs to form a collective decision. Developing such equitable
human-AI collaboration methods could be particularly beneficial
in situations where the transparency, interpretability, and overall
reliability of AI-aided decisions are of paramount concern.

3. CROWDSOURCING-BASED ML
CLASSIFICATION

This section introduces different forms of input elicitations and
describes how they can be utilized within a crowdsourcing-based
ML classifier. Consider the image label aggregation problem
where a set of images I are to be labeled by a set of participants
P; without loss of generality, assume each image and participant
has a unique identifier, that is, I = {i1, i2, ..., in} and P =

{p1, p2, ..., pm}, where n and m represent the total number of
images and participants, respectively. For each image ik ∈ I,
the objective is to infer the binary ground truth label yk ∈

{0, 1}, where yk = 1 if the specified target object is present
in the image (i.e., positive image) and yk = 0 otherwise (i.e.,
negative image). Since in these experiments each worker may
label only a subset of the images, let P(ik) ⊆ P be the set of
participants who complete the labeling task of image ik ∈ I. In
contrast to most crowdsourced labeling tasks where only a single
label estimate is elicited per classification task, in the featured

experiments each participant is asked to provide multiple inputs
from the following five options. The first input is their binary

response l
j
k ∈ {0, 1} (i.e., classification label) indicating the

presence/absence of the target object in image ik. The second

input is a coordinate-pair (u
j
k, v

j
k) indicating the location of the

target object (elicited only when l
j
k = 1). The third input is a

numeric value c
j
k ∈ [0, 100] indicating the degree of confidence in

the binary response l
j
k. The fourth input is another binary choice

g
j
k ∈ {0, 1} indicating what pj estimates the binary response
assigned by the majority of participants to ik is; this input is
referred to in this study as the Guess of Majority Elicitation
(GME). The fifth input is a discrete rating dkj ∈ {1, 2, 3, 4},

whose values are mapped from four linguistic responses—1:
“not at all difficult,” 2: “somewhat difficult,” 3: “very difficult,”
and 4: “extremely difficult”—indicating, in increasing order, the
perceived difficulty of task ik.

Before proceeding, it is worthmotivating the use of participant
confidence values in the proposed methods. Previous research
has found that participants can accurately assess their individual
confidence in their independently formed decisions (e.g., see
Meyen et al., 2021). However, a pertinent concern regarding
these confidence values is that, even if some participants are
accurate in judging their performance at certain times, humans
are generally prone to metacognitive biases, i.e., overconfidence
or underconfidence in their actual abilities (Oyama et al., 2013).
Hence, self-reported confidence should not be taken at face value,
and specific confidence values should not be assumed to convey
the same meaning across different individuals. In an attempt to

mitigate such biases, the confidence values, {c
j
k}

n
k=1

provided by
participant pj ∈ P are rescaled linearly between 0 and 100, with
the lowest confidence value expressed by pj being mapped to 0
and the greatest to 100. Letting Ij ⊆ I be the set of images
for which pj provides a label, the confidence of participant pj at
classifying image ik is rescaled as

c
j∗
k =

c
j
k −min

iq∈Ij
c
j
q

max
iq∈Ij

c
j
q −min

iq∈Ij
c
j
q

× 100.

The remainder of this section describes how the collected
input elicitations are used as features in ML classifiers to
generate predictions.

3.1. Features for Crowdsourcing-Based ML
Methods
A total of seven features were extracted from the five inputs
elicitations discussed in the beginning of this section for use
with the ML classifiers; these features are described in the
ensuing paragraphs.

• Binary Choice Elicitation: For each image ik ∈ I, the
binary choice elicitation values are divided into two sets: one

containing the participants with response l
j
k = 1 and the

other containing participants with response l
j
k = 0. The

number of participants in each set can be used as an input
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feature within a ML classifier. However, since the number of
participants can vary from image to image in practical settings,
it is more prudent to use the relative size of the sets. Note
that these relative sizes are complements of each other, that is,

the fraction of participants who chose l
j
k = 1 as their binary

choice label can be determined by subtracting from 1.0 the

fraction of participants who chose l
j
k = 0. Therefore, to remove

redundancy and co-linearity within the features, only one of
these values is used as an input and is given as

x1k =

∑

pj∈P(ik)

1(l
j
k = 1)

|P(ik)|
,

where x1k is the fraction of participants who specify that the
target object is present in image ik.

• Spatial Elicitation: A clustering-based approach is
implemented to identify participants whose location

coordinates (u
j
k, v

j
k)—elicited only when they specify that

the target object is present—are close to each other. For each

image ik ∈ I, participants with binary choice label l
j
k = 1 are

divided into multiple clusters using the Density Based Spatial
Clustering of Applications with Noise (DBSCAN) algorithm
(Ester et al., 1996). The reasons for choosing this algorithm
are twofold. First, DBSCAN is able to identify groups of points
that are close to each other but form arbitrary shapes; since the
target images have varying shapes and sizes, this is what one
would expect to see in a single image if all collected data points
were overlaid onto it. Second, this clustering algorithm can
easily mark as outliers/noise the points that are in low density
areas, i.e., coordinate points that have significant distance
from each other. After clustering, the fraction of participants
belonging to the largest cluster is used as an input feature
within the ML classifiers. For image ik, this input feature can
be expressed as

xSEk =

max
r∈Rk

nr

∑

pj∈P(ik)

1(l
j
k = 1)

,

where nr is the number of participants in cluster r and Rk is the
set of clusters identified by DBSCAN for image ik.

• Confidence Elicitation: Although previous works have
explored using confidence scores to improve annotation
quality of crowdsourced data (Ipeirotis et al., 2010), very few
have incorporated this input within a machine learning model.

The confidence values are divided into two sets based on l
j
k,

and the respective averages are used as additional features for
the ML classifier. For image ik ∈ I, these two input features
can be expressed as

x
conf, 1
k =

∑

pj∈P(ik)

c
j∗
k 1(l

j
k = 1)

∑

pj∈P(ik)

1(l
j
k = 1)

; and

x
conf, 0
k =

∑

pj∈P(ik)

c
j∗
k 1(l

j
k = 0)

∑

pj∈P(ik)

1(l
j
k = 0)

.

Here, the confidence values are rescaled linearly between 0 and
100 before incorporating them as the features.

• Guess of Majority Elicitation: Similar to BCE, GME is
converted into a single feature based on the number of

participants whose g
j
k response value is 1 and is written as

xGME, 1
k =

∑

pj∈P(ik)

1(g
j
k = 1)

|P(ik)|
.

• PerceivedDifficulty Elicitation : Previous research has shown
that a task’s perceived difficulty level can be used to some
extent to improve the quality of annotation. In most cases,
the difficulty level is set based on inputs from experts, that
is, participants with specialized knowledge with respect to
the task at hand (Khattak and Salleb-Aouissi, 2011), or it
is estimated from the classification labels collected from
participants (Karger et al., 2011). Unlike these works, the
featured experiments gather the perceived difficulty of each
task directly from each participant to evaluate the reliability of
this information and its potential use withinML classifiers. For

each image ik ∈ I, the difficulty elicitation values d
j
k are divided

into two sets: one for the participants with response l
j
k = 1, and

FIGURE 1 | Object/shape templates from the MPEG-7 core experiment

CE-shape-1 test set.
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the other for the remaining participants with response l
j
k = 0.

The average values from each set are then used as additional
features for the ML classifier; these two input features can be
expressed as

xPDE, 1k =

∑

pj∈P(ik)

d
j
k1(l

j
k = 1)

∑

pj∈P(ik)

1(l
j
k = 1)

; and

xPDE, 0k =

∑

pj∈P(ik)

d
j
k1(l

j
k = 0)

∑

pj∈P(ik)

1(l
j
k = 0)

.

4. EXPERIMENT DESIGN

Prior to introducing the components of the experiment design,
we describe the MPEG-7 Core Experiment CE-Shape-1 Test Set
(Jeannin and Bober, 1999; Ralph, 1999), which is the source
data from which the featured crowdsourcing activities are
constructed. The dataset is composed of black and white images

of a diverse set of shapes and objects including animals, geometric
shapes, common household objects, etc. In total, the dataset
consists of 1, 200 objects/shapes (referred to here as templates)
divided into 60 object/shape classes, with each class containing 20
members. Figure 1 provides representative templates from some
of these classes.

The images used in the crowdsourcing experiment are
constructed by instantiating and placing multiple MPEG-7 Core
Experiment CE-Shape-1 Test Set templates onto a single image
frame. The instantiation of the image template is specified with
six adjustable parameters: density, scale, color, transparency,
rotation, and target object. See Supplementary Material for a
detailed description of these parameters.

4.1. Description of Activities
For the crowdsourcing activities, we designed two studies, each
of which elicits multiple forms of input from participants to
complete a number of image classification tasks. A user interface
was designed and implemented to perform the two studies, which
differ based on the subsets of input elicitations tested and the class
balance ratios of the image datasets (more details are provided
later in this subsection). The interfaces were developed in HTML
and Javascript and then deployed using Amazon Mechanical

FIGURE 2 | Image classification task UI for balanced dataset—image contains bat (lower right).
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FIGURE 3 | Image classification task UI for imbalanced dataset—image contains bat (center left).

TABLE 1 | Summary of experiment image parameters.

Exp. Images Density Scale Color Transparency Target

Set

A

#1

16
{100, 120,

140, 160}
{T (0.2± 0.12), .., T (0.65± 0.12)} Discrete: {4} U(100, 200)

Bat

#2 Butterfly

#3 Apple

#4 Stingray

Set

B

#5

24

{80} {T (0.2± 0.05), T (0.3± 0.05)} Discrete: {1,...,6}

U(140, 170)

Bat

#6 {80,100,120} {T (0.2± 0.05), .., T (0.4± 0.05)} U(10, 255) for R,G,& B Turtle

#7 {100, 150} {T (0.2± 0.05), T (0.3± 0.05)} Various-7

Set

C

#8

40
{90, 100, 115,

150}
{T (0.25, 0.35, 0.40)} Discrete: {4} U(150, 200) Bat

#9

#10

Set

D

#11

#12

#13

Turk (MTurk). Participants were first briefed about the nature
of the study and shown a short walk-through video explaining
the interface. Afterwards, participants proceeded to the image
classification tasks, which were shown in a randomized order.
After completing an experiment, participants were disallowed to
participate in further experiments. Figures 2, 3 provide examples
of the user interfaces, both of which instituted a 60 s time
limit to view each image before it was hidden. If the participant
completed the input elicitations before the time limit, they were
allowed to proceed to the next image; on the other hand, if the
time limit was reached, the image was hidden from view but
participants could take as much time as they needed to finish

providing their inputs. The time limit was imposed to ensure the
scalable implementation of a high number of tasks. In particular,
the goal is to develop activities that can capture enough quality
inputs from participants while mitigating potential cognitive
fatigue. In preliminary experiments, we found that participants
rarely exceeded 45 s. In the featured studies (to be described
in the next two paragraphs), the full 60 s were utilized in only
7% of the tasks, with an average time of around 27 s. The
number of tasks given to the participants varied by experiment
and ranged from 16 to 40 images (see Table 1 for details). We
deemed this number of tasks to be reasonable and not cognitively
burdensome to participants based on findings of prior studies
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with shared characteristics. For instance, Zhou et al. (2018)
performed a visual identification crowdsourcing study where
participants were assigned up to 80 tasks, each of which took
a median time of 29.4 s to complete. The authors found that
accuracy decreased negligibly for this workload (i.e., twice as
large as in the featured studies).

In the first study, seven experiments were completed and
grouped into two sets: Experiment Set A (four experiments)
and Experiment Set B (three experiments). Each experiment
used a balanced set of images, with half containing the target
template (i.e., positive images); target objects were chosen so as
to avoid confusion with other template classes. See Table 1 for
image generation parameters, and see Supplementary Material

for additional related details. The parameter ranges selected for
Experiment Set A were designed to keep the difficulty of the
classification tasks relatively moderate. On the other hand, a
more complex set of parameters was selected for Experiment Set
B to expand the range of difficulty. These differences are reflected
in the individual performance achieved in these two experiment
sets, measured by the respective average number of correct
classifications obtained by participants. For Experiment Set A,
individual performance averages ranged between 59 and 77% for
each of the four experiments, whereas for Experiment Set B, they
were between 54 and 82% for each of the three experiments.

In the second study, six experiments were conducted. These
experiments were also grouped into two sets: Experiment Set C
(three experiments) and Experiment Set D (three experiments).
Each consisted of image sets with an imbalanced ratio of positive-
to-negative images. Experiment Set C had a 20-80 balance,
meaning that 20% of the images were positive, and 80% were
negative; Experiment Set D had a 10–90 balance. The results
of Experiment Sets A and B revealed that scale and density are
the only factors that had a statistically significant impact on
individual performance. Based on this insight, we constructed a
simple linear regression model with these two parameters as the
predictors and proportion of correct participants as the responses;
the model is very significant (p < 0.001), and its adjusted R-
squared value is 0.65. The model was used to generate image sets
with an approximated difficulty level by modifying the scale and
density parameters accordingly. It should be noted that the true
difficulty of each image varies based on the random generation
process. The model was implemented to design experiments
consisting of classification tasks of reasonable difficulty—that is,
neither trivial nor impossible to complete. Images of four levels
of difficulty were generated for Experiment Sets C and D. At each
difficulty level, the density was varied while keeping the other
parameters consistent across images. This resulted in images
that appear similar, but with different amounts of “clutter”. The
four difficulties generated were categorized as “very difficult,”
“difficult,” “average,” and “easy.” See Supplementary Material for
details and sample images of each difficulty. Experiment Sets C
and D use an even split of each difficulty (i.e., 25% of generated
images from each level). For the three respective experiments,
individual average accuracy values ranged between 65 and 73%
for Set C and between 58 and 72% for Set D.

Figures 2, 3 show the user interface presented to participants
in the first and second study, respectively. For each classification

task (i.e., image) in the first study, participants were asked to
provide a binary response indicating whether or not a target
object is present. If they responded affirmatively, they were then
prompted to locate the target object by clicking on it. Then,
participants were asked to rate their confidence in their binary
response on a scale from 0 to 100%. Finally, participants were
asked to guess the binary response of the majority of participants.
The second study asked participants similar questions as the
first study. For each classification task, participants were also
asked to provide a binary responses indicating whether or not
a target object is present and their level of confidence in this
response. If they responded affirmatively, however, they were
then prompted to locate the target object by drawing a bounding
box around it; the centroid of the bounding box was used as the
(x, y)-coordinate gathered from this elicitation. In replacement
to the last question of the first study, participants were asked to
rate the difficulty of the specific image being classified based on
a discrete scale. The rating choices provided were “not difficult
at all,” “somewhat difficult,” “very difficult,” and “extremely
difficult.” These labels were mapped to 1, 2, 3, and 4, respectively,
for use in the aggregation algorithms.

4.2. Participant Demographics and
Filtering of Insincere Participants
A total of 356 participants were recruited and compensated
for their participation using Amazon MTurk. Participants in
Experiment Set A were paid $1.25, those in Experiment Set B
were paid $2.00, and those in Experiment Sets C and D were
paid $3.75. The differences in compensation can be attributed to
the number of questions and the difficulty of image classification
tasks of the respective experiment sets. Participants were made
aware of the compensation amount before beginning the study.
Payment was based only on completion and not on performance.
Before proceeding, it is necessary to delve further into the quality
of the participants recruited via the MTurk platform, and the
quality of data they provide. Because of the endemic presence
in most crowdsourcing platforms of annotators who do not
demonstrate an earnest effort (Christoforou et al., 2021), some
criteria should be defined to detect such insincere participants
and filter out low-quality inputs. This work defined two criteria
for characterizing (and filtering out) an annotator as insincere:

• Criterion 1: The participant answered over 75% of the
questions in no more than 10 s per question.

• Criterion 2: The participant’s binary responses were
exclusively 0 or exclusively 1 over the entire question set.

Criteria 1 was imposed based on the following reasoning.
In general, classification of negative images takes longer than
classification of positive images. Even if it is assumed that
participants can spot the positive images immediately (i.e., within
10 s), it should take more than 10 s to reply to the negative
images that are of moderate to high difficulty. Because each
Experiment Set in this study contained at least 50% negative
images (Experiment Sets C and D contain a higher percentage)
and only a small minority were of low difficulty, a conservative
estimate that participants should take longer than 10 s to answer

Frontiers in Artificial Intelligence | www.frontiersin.org 8 June 2022 | Volume 5 | Article 848056146

https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org
https://www.frontiersin.org/journals/artificial-intelligence#articles


Yasmin et al. Improving Crowdsourcing-Based Image Classification

FIGURE 4 | Distribution of Binary Classification results from crowdsoured data. (A) Balanced dataset. (B) Imbalanced dataset.

at least 25% of the images was set (i.e., to be more lenient
toward the participants). Further analysis of the behavior of the
participants in relation to the task completion times supporting
this observation has been added to Supplementary Material.

From the initial 356 participants, 50 participants were
removed from the four experiment sets using the above criteria.
Among them, 15 fell under criterion 1 and the rest under
criterion 2. As expected, filtering out these data provided less
noisy inputs to the crowdsourcing-based aggregation methods.
From the remaining 306 participants, 276 completed the
demographics survey. Their reported ages ranged from 21 to 71
years old, with a mean and median of 36 and 33, respectively.
156 participants reported their gender as male, 120 as female, and
0 as other. In terms of reported education level, 23 participants
finished a high school/GED, 17 some college, 16 a 2-year degree,
148 a 4-year degree, 70 a master’s degree, 1 a professional degree,
and 2 a doctoral degree.

4.3. Distribution of Crowdsourced Data
Before proceeding to the computational results, it is pertinent to
analyze the data collected from the crowdsourcing experiments.
First, let us analyze the relationship between the perceived
difficulty levels reported by the participants (i.e., input feature
PDE) and the difficulty levels utilized in the proposed image
generation algorithm (see Section 4.1 for details). The average
difficulty values reported by participants for images categorized
by the algorithm as “very difficult,” “difficult,” “average,” and
“easy” were 2.89, 2.73, 2.62, and 2.03, respectively. This evinces
a clear correlation, with the “very difficult” images having
the highest average perceived difficulty values and the rest
reflecting a decreasing order of difficulty, which supports the
ability of the image generation method used in this study to
control the classification task difficulty, according to the four
above-mentioned categories.

Next, let us analyze the correctness of the binary response
values collected from the participants. Figure 4 shows the
percentage of participants who answered each question
accurately; question numbers have been reordered for each of
the four datasets by increasing participant accuracy. The positive
and negative images for the balanced and imbalanced datasets
are presented in separate graphs. The plots show that, for the
balanced datasets (Experiments Sets A and B), the accuracy on
the positive images is significantly lower than on the negative
images. Moreover, in Experiment Set B, nearly half of the
positive images have accuracy values below 0.4, whereas in
Experiment Set A most images have values above 0.4. This is a
good indication of the higher difficulty level of Experiment Set
B. For the imbalanced datasets, in both Experiments Sets C and
D, nearly all negative images have accuracy values above 0.4. In
Experiment Set C, there is an almost even distribution of the
positive images above and below 0.6, whereas in Experiment
Set D nearly 60% of the positive images have accuracy values
below 0.5, indicating that Experiment Set D was comparatively
more difficult.

5. COMPUTATIONAL RESULTS

This section compares the performance of the voting and
crowdsourcing-based ML methods presented in Section 3
on both balanced and imbalanced datasets. As a baseline
of comparison for the proposed crowdsourcing-based ML
methods, three traditional voting methods are used: Majority
Voting (MV), Confidence Weighted Majority Voting (CWMV),
and Surprisingly Popular Voting (SPV). The details of these
methods can be found in Supplementary Material. For the ML
methods, four binary classification approaches were selected: K-
Nearest Neighbor (KNN), Logistic Regression (LR), Random
Forest Classifier (RF), and Linear Support Vector Machines
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(SVM-Linear). These were selected as reasonable representatives
of commonly available methods. The ML classifiers were trained
and evaluated using built-in functions of the Python scikit-
learn library (Pedregosa et al., 2011). The hyper-parameters were
optimized on a linear grid search with a nested 5-fold cross-
validation strategy. However, due to the small size of the datasets,
a Leave-One-Out (LOO) cross-validation strategy was used to
train and evaluate the classifiers.

In the DBSCAN clustering approach used for extracting the
Spatial Elicitation (SE), the maximum distance between two data
points in the cluster (ǫ) and the minimum data points required
to form a cluster (MinPts) was set to 50 and 3, respectively. The
former was set based on the size of the target objects used relative
to the size of the image frame (1, 080 × 1, 080); the latter was set
to ensure a sufficiently low probability of forming a cluster with
random inputs. To obtain a rough estimate of this probability,
consider the case where three participants with binary response

l
j
k = 1 randomly select their location coordinates on an image
with area A. The probability of two points having a maximum
distance of r (i.e., falling within a circle with radius r) is πr2/A
and, therefore, the probability of the three points being identified
as a cluster by DBSCAN is 2(πr2/A)2. Setting r = ǫ = 50 and
A = 1, 080 × 1, 080 for our experiment, this probability value

TABLE 2 | Performance analysis of voting methods for balanced dataset.

MV CWMV SPV

Acc. FNR Acc. FNR Acc. FNR

Experiment Set A 0.73 0.53 0.81 0.34 0.45 0.94

Experiment Set B 0.71 0.53 0.74 0.47 0.53 0.92

becomes 0.01, which is sufficiently small and justifies the use of
the selected parameters.

5.1. Performance of Aggregation Methods
on Balanced Datasets
This section compares the performance of the voting and ML
methods on balanced datasets (Experiment Sets A and B). The
initial study elicits four out of the five inputs listed in Section 3.1:
BCE, GME, CE, and SE. The results are summarized in Tables 2

and 3.
The performance of the ML methods is quantified via

three performance metrics: accuracy (Acc.), false-negative rate
(FNR), and area under the ROC curve (AUC). For the
voting methods, only the first two of these metrics are
reported. For each of the ML classifiers, the best accuracy,
FNR, and AUC values among the different input elicitation
combinations are marked in bold. Before proceeding, it is
worthwhile to mention two additional points regarding the
values presented in the table. First, each row in Table 3

represents a different combination of inputs used as features
for the ML classifiers. For example, BCE-CE indicates that both

binary and confidence elicitation inputs (i.e., x1k , x
conf, 1
k and

x
conf, 0
k ) were used as features for the ML classifiers, whereas
BCE-CE-SE-GME indicates that all four input elicitations (i.e.,

x1k , x
conf, 1
k , x

conf, 0
k , xSEk , and xGME, 1

k ) of Experiment Set A and
B were used as the respective input features. Second, when
calculating the accuracy and FNR values of the voting methods,
images with undecided outcomes (i.e., ties) are considered as a
third separate label.

Let us first discuss the performance of the aggregation
models in terms of accuracy. For Experiment Sets A and

TABLE 3 | Performance analysis of crowdsourcing based ML methods for balanced dataset.

Input KNN LR RF SVM-Linear

Elicitations Acc. FNR AUC Acc. FNR AUC Acc. FNR AUC Acc. FNR AUC

Experiment Set A

BCE 0.83 0.16 0.87 0.89 0.16 0.95 0.83 0.19 0.86 0.89 0.16 0.90

BCE-CE 0.86 0.22 0.89 0.86 0.19 0.89 0.84 0.22 0.93 0.86 0.19 0.91

BCE-SE 0.84 0.22 0.85 0.88 0.16 0.91 0.83 0.22 0.87 0.86 0.19 0.92

BCE-GME 0.86 0.19 0.87 0.86 0.16 0.91 0.83 0.19 0.83 0.88 0.16 0.91

BCE-CE-SE 0.81 0.31 0.86 0.88 0.19 0.88 0.84 0.22 0.91 0.89 0.16 0.91

BCE-CE-GME 0.8 0.25 0.82 0.84 0.19 0.90 0.83 0.22 0.89 0.84 0.19 0.90

BCE-CE-SE-GME 0.86 0.25 0.82 0.83 0.19 0.90 0.83 0.22 0.89 0.86 0.19 0.89

Experiment Set B

BCE 0.75 0.28 0.79 0.81 0.28 0.74 0.75 0.31 0.76 0.74 0.42 0.85

BCE-CE 0.78 0.28 0.85 0.81 0.25 0.88 0.75 0.22 0.82 0.79 0.25 0.85

BCE-SE 0.79 0.19 0.81 0.68 0.42 0.55 0.74 0.31 0.78 0.74 0.44 0.80

BCE-GME 0.75 0.31 0.78 0.76 0.31 0.89 0.68 0.33 0.74 0.72 0.42 0.88

BCE-CE-SE 0.76 0.22 0.79 0.82 0.22 0.89 0.74 0.25 0.80 0.72 0.47 0.85

BCE-CE-GME 0.76 0.31 0.81 0.78 0.28 0.80 0.76 0.22 0.79 0.78 0.31 0.86

BCE-CE-SE-GME 0.72 0.36 0.82 0.78 0.31 0.87 0.72 0.31 0.79 0.74 0.47 0.83

Bold values denote best performance among the different input elicitation combinations for each Crowdsourcing-based ML method.
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B, the average accuracy value of MV was stable at around
72%. The CWMV method performed significantly better than
MV, achieving an average accuracy value of around 77%.
SPV was the worst performer across the board, with an
average accuracy value of <50% (i.e., worse than a purely
random classifier). This low performance can be largely
attributed to the excessive number of tied labels generated
compared to the other methods. In SPV, 18 out of the 136
instances were classified as tied (i.e., participants were undecided
regarding the guess of the majority’s estimate). By comparison,
there were only three tied instances with MV and none
with CWMV.

The results of the ML classifiers in Experiment Set A were
relatively consistent in terms of both accuracy and AUC values
for all seven combinations of the input elicitations. The classifiers
performed particularly well, attaining accuracy values above 83%
for all combinations; this can be partly explained by the fact that
the images in this experiment set were generated using parameter
ranges that were more consistent and less variable in difficulty. In
Experiment Set B, the ML classifiers reached higher accuracy and
AUC values under certain combinations of the input elicitations.
For RF, LR, and KNN, a noticeable increase in AUC values
(from 76 to 85%) results when using the BCE-CE combination
compared to the standalone BCE input; the accuracy values
in these cases either increased or stayed the same. Altogether,
these results suggest that integrating CE into an ML classifier
can help attain more accurate predictions when the sample size
is small and the difficulty level of the images is more varied.
Furthermore, they show that the ML classifiers outperformed
the voting methods, with the LR classifier achieving the highest
values in terms of both accuracy and AUC scores.

Another performancemetric of interest is FNR, which denotes
the fraction of images the methods label as 0 (i.e., negative)
when their true label is 1 (i.e., positive). A high FNR may be
concerning inmany critical engineering andmedical applications
where a false-negative may be more detrimental than a false-
positive since the latter can be easily verified in subsequent steps.
For example, FNR has significant importance in detecting lung
cancer from chest X-rays. If the model falsely classifies an X-ray
as negative, the patient may not receive needed medical care in
a timely fashion. Returning to Table 2, the FNRs of the three
voting methods are high across the board, with SPV again having
the worst performance. The high FNRs of MV and CWMV can
be attributed to the fact that people tend to label the image as
negative whenever they fail to find the target object and that these
methods are unable to extract additional useful information from
the responses.

In Experiment Set A, the accuracy values are the highest
for the BCE-CE combination, whereas the FNR values are
the lowest for the single BCE input. On the other hand, in
Experiment Set B, although the accuracy values are the same for
both input combinations, FNR values decrease for the BCE-CE
combination. Moreover, for SVM, the reduction in FNR values
is significant for Experiment Set B (from 42 to 25%) for the
BCE-CE combination. This outcome reiterates the advantages of
integrating CE into ML classifiers for more complex datasets.

5.2. Performance of Aggregation Methods
on Imbalanced Datasets
This section compares the performance of the voting and
crowdsourcing-based ML methods on imbalanced datasets
(Experiment Sets C and D). Similar to the balanced datasets,
a total of four input elicitations are utilized. However, for this
study, the GME input is replaced by the PDE input (i.e., a rating
value to assess the difficulty of the classification task), which
is explained as follows. Recall from the discussion of Section
5.1 that none of the ML classifiers obtained a performance
improvement when using the GME input relative to the other
elicitation combinations. Moreover, the only method that utilizes
the GME elicitation, SPV, was the worst-performing among
the three voting methods. The inability of the GME input to
provide any additional information during the classification
process prompted its removal from subsequent studies. Due to
this modification, only two voting methods (MV and CWMV)
are explored for the imbalanced datasets.

When the dataset is balanced, accuracy by itself is a good
indicator of the model’s performance. However, when the dataset
is imbalanced, accuracy can often be misleading as it provides
an overly optimistic estimation of the classifier’s performance
on the majority class (“0” in this experiment). In such cases,
a more accurate evaluation metric is the F1-score (Sokolova
et al., 2006), defined as the harmonic mean of the precision and
recall values and can be expressed as, F1-score = 2(Precision ×

Recall)/(Precision + Recall) = TP/[TP + 1
2 (FP + FN)], where,

TP, FP, and FN refers to the number of true-positives (images
the methods label as 1 when their true label is 1), false-positives
(images the methods label as 1 when their true label is 0), and
false-negatives (images the methods label as 0 when their true
label is 1), respectively. Since both Experiment Sets C and D
are highly imbalanced (with an average of 15% of their images
belonging to the positive class) the F1-score is reported instead of
accuracy to better estimate the performance of the classifiers.

The overall results for the voting and machine learning
methods are summarized in Tables 4, 5, respectively. The
performance of the ML methods is quantified via three
performance metrics: F1-score, FNR, and AUC; for the voting
methods, only the first two of these metrics are reported. Let
us first discuss the performance of the aggregation methods in
terms of F1-score. For Experiment Sets C andD,MV and CWMV
have comparable scores, with both having the same value in the
first set and MV outperforming CWMV by a slight margin in
the second set. Moving on to the ML methods, for Experiment
Set C, the ML classifiers displayed comparable F1-scores for

TABLE 4 | Performance analysis of voting methods for imbalanced dataset.

MV CWMV

F1 FNR F1 FNR

Experiment Set C 0.77 0.38 0.77 0.25

Experiment Set D 0.53 0.58 0.52 0.50
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TABLE 5 | Performance analysis of crowdsourcing based ML methods for imbalanced datasets.

Input

Elicitations

KNN LR RF SVM-Linear

F1 FNR AUC F1 FNR AUC F1 FNR AUC F1 FNR AUC

Experiment Set C

BCE 0.73 0.38 0.82 0.78 0.33 0.79 0.73 0.33 0.81 0.73 0.38 0.92

BCE-CE 0.75 0.38 0.89 0.81 0.29 0.90 0.78 0.33 0.86 0.80 0.33 0.90

BCE-SE 0.81 0.29 0.83 0.84 0.25 0.95 0.76 0.29 0.87 0.84 0.25 0.86

BCE-PDE 0.81 0.29 0.83 0.76 0.33 0.94 0.68 0.38 0.81 0.77 0.38 0.9

BCE-CE-SE 0.76 0.33 0.92 0.81 0.29 0.92 0.77 0.29 0.90 0.81 0.29 0.88

BCE-CE-PDE 0.81 0.29 0.90 0.81 0.29 0.86 0.79 0.29 0.86 0.80 0.33 0.90

BCE-CE-SE-PDE 0.81 0.29 0.92 0.81 0.29 0.86 0.81 0.29 0.90 0.81 0.29 0.86

Experiment Set D

BCE 0.53 0.58 0.59 0.55 0.33 0.87 0.36 0.58 0.64 0.61 0.42 0.85

BCE-CE 0.59 0.58 0.76 0.54 0.42 0.83 0.63 0.50 0.79 0.67 0.50 0.87

BCE-SE 0.59 0.58 0.62 0.46 0.50 0.84 0.36 0.58 0.65 0.63 0.50 0.8

BCE-PDE 0.50 0.67 0.67 0.57 0.33 0.85 0.47 0.67 0.78 0.56 0.42 0.86

BCE-CE-SE 0.59 0.58 0.72 0.52 0.42 0.87 0.53 0.58 0.77 0.67 0.50 0.84

BCE-CE-PDE 0.44 0.67 0.68 0.56 0.42 0.73 0.53 0.58 0.79 0.63 0.50 0.87

BCE-CE-SE-PDE 0.56 0.58 0.74 0.52 0.42 0.84 0.44 0.67 0.78 0.67 0.50 0.85

Bold values denote best performance among the different input elicitation combinations for each Crowdsourcing-based ML method.

combinations BCE-CE, BCE-SE, BCE-CE-SE, and BCE-CE-SE-
PDE. In addition, all four of these input combinations performed
better than the standalone BCE input. The RF and KNN
classifiers achieved the highest values with the combination BCE-
CE-SE-PDE. In contrast, the LR and SVM classifiers achieved
the highest values with the BCE-SE combination. Overall, the LR
classifier achieved the best performance for this set with inputs
BCE-SE. In Experiment Set D, the results followed a different
pattern. In this case, the classifiers achieved the same or higher
values when the BCE-CE combination was used compared to
the BCE-SE or BCE-CE-SE combinations, indicating that the
SE input does not provide any additional information for this
experiment set. Because this dataset is highly skewed toward the
negative class (10–90 balance), we conjecture that participants
may have become demotivated to closely inspect difficult images
from the positive class. Whatever the cause, smaller clusters
were obtained from these images, reducing the effectiveness of
the SE input in many cases. In Experiment Set D, the highest
performance was achieved by the SVM classifier for the BCE-CE
input. These results once again indicate that, even though the self-
reported confidence values are not particularly helpful when used
within the traditional voting methods context (Li and Varshney,
2017; Saab et al., 2019)—as can also be seen by the performance
of the CWMV algorithm in this study—incorporating them into
an ML classifier can help attain better performance, specifically
higher F1-scores for highly imbalanced datasets.

In terms of FNR, the performance of the CWMV method

was markedly better than the MV method for both Experiment

Sets. The assigned labels for the positive images in Experiment
Set D for the two voting methods are almost identical, with the
exception of a single image which the latter labeled as a tie (i.e.,
undecided), contributing to the decrease in performance. Note
that none of the images in Experiment Set C was labeled as a

tie by either of the voting methods. Among the ML methods,
LR significantly outperformed all of the other classifiers for
Experiment Set D. Although in Experiment Set C the FNR for
the BCE-SE combination (25%) was lower than for the BCE
combination (33%), in Experiment Set D a significant increase
(33–50%) can be seen between these two combinations. Overall,
ML classifiers outperformed MV; however, CWMV showed
comparable performance for both experiment sets. Note that a
distinctive advantage of CWMV over the ML methods is that it
does not require training data.

5.3. Changing the Threshold of Positive
Classification
This section examines how voting methods can be modified
to emphasize other important metrics of image classification.
In particular, it seeks to prioritize reduced false-negative rates,
which are relevant in various critical applications. The FNRs
can be reduced by lowering the threshold at which a positive
classification is returned by a classificationmethod (i.e., changing
the tipping point for returning a positive collective response).
However, care must be exercised when lowering the threshold
since this implicitly increases false-positive rates (FPRs), which
can also be problematic.

By default, the threshold at which voting methods return a
positive response is fixed; for example, MV requires more than
50% of positive responses to return the positive class. Figure 5
illustrates the impacts of adjusting the thresholds for the voting
methods as well as for theMLmethods; the figure separates FNRs
from FPRs for eachmethod. UsingMV as an example, decreasing
the threshold from 0.5 to 0.3 results in relatively small increases
to the FPR and larger decreases to the FNR; further decreases
cause a disproportionate increase to FPRs. Hence, these inflection
points can help guide how the thresholds can be set for each
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FIGURE 5 | Change in FNR/FPR of different aggregation methods under varying thresholds. (A) Experiment Set A, (B) Experiment Set B, (C) Experiment Set C, (D)

Experiment Set D.

voting method to prioritize FNR. A similar observation can be
made about the FNRs of the ML methods (except for LR) for
the imbalanced datasets. However, this does not hold for the ML
methods for the balanced datasets—for example, reducing the
threshold to 0.3 causes a significant increase in FPRs compared
to the decrease in FNRs. This suggests that caution must be
exercised when changing the threshold of positive classification
of ML classifiers.

6. ENHANCEMENT OF
CROWDSOURCING-BASED ML METHODS
WITH AN AUTOMATED CLASSIFIER

In order to assess the difficulty of the image classification
problem presented to participants and to evaluate the potential
of hybrid human-ML approaches, we developed a deep
learning image classification approach that leverages large

training datasets. Our classifier is based on ResNet-50, a
popular variant of ResNet architecture (He et al., 2015),
which has shown very good performance on multiple image
classification tasks. It has been extensively used by the
computer vision research community and adopted as a baseline
architecture in many studies done over the last few years
(Bello et al., 2021).

For training the classifier, we generated a balanced
dataset of 100 k samples, with 10 k samples set aside
as the validation set and the rest used as the training
set. The images are representative of an even mixture of
the difficulty classes used to generate Experiment Sets
C and D. We trained and evaluated the performance of
the network using training set sizes ranging from 10 k
samples to 90 k samples, increasing the training set size
by 10 k every iteration, totaling nine different training
sessions. Each training session was started from the previous
session’s best-performing checkpoint of the network and the
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corresponding optimization state and continued for 35 epochs.
See Supplementary Material for a complete description of
the ResNet classifier used as well as a detailed analysis of
its performance.

We emphasize that this work does not aim to advance
the state-of-the-art results for automated image classification.
Instead, the focus of the automated classification method is
to explore the benefits and limitations of a hybrid method
introduced herein that integrates the outputs of a well-known
deep neural network into the crowdsourcing-based classification
methods. In particular, the proposed method uses the output of
the automated classifier as an additional feature of the featured
ML methods. Table 6 summarizes the results for the small
imbalanced test sets used in Experiment Sets C and D as the
training set grows larger. Due to the imbalanced nature of
these test sets, this table and the rest of the analysis focus on
F1-score, false-negative rate (FNR), and area under the ROC
curve (AUC). Before proceeding, it is worthwhile to mention
two additional points regarding the values presented in the
table. First, the input elicitation RC represents the probability
value of positive classification obtained from the automated
classifier when used as a feature. For example, BCE-RC indicates
that both the binary elicitation inputs and the probability
scores from the ResNet-50 were used as features for the ML
classifiers. Second, the Combined Set C&D is created by merging
the data from Experiment Sets C and D, thereby effectively
doubling the size of the training set relative to the individual
experiment sets.

Table 6marks in bold those cases in which the performance of
the hybrid method according to a given metric is better than both
the completely automated approach (ResNet-50) and the results
achieved by the crowdsourcing-based ML methods (according to
the best input combination). As expected, when the ResNet-50
performance is poor, using its output as a feature hurts the overall
results. Conversely, when the ResNet-50 performance is near
perfect, it is difficult to improve upon its performance by adding
information obtained from the crowd. However, apart from those
extremes, exploiting the output of the ResNet-50 is beneficial in
most cases, particularly regarding F1-score and AUC.

The proposed hybrid methods, which use the results from
the automated classifier as an additional input feature for
the crowdsourcing-based ML methods, exhibited a robust
performance. They attained maximum F1-scores of 0.98, 0.96
0.97 and minimum FNRs of 0.04, 0.08, 0.06 for Experiment
Set C, D, and Combined Set C&D, respectively, all of which
represent significant improvements over what crowdsourcing-
based methods achieved on a standalone basis. While these top
results were associated with the automated classifier training set
of 90k samples, impressive results were obtained using smaller
datasets for Combined Set C&D, compared to Experiment Set
C and D separately. As an example, incorporating the output
of the automated classifier trained on 50k samples with the
crowdsourcing-based methods for Combined Set C&D improved
the F1-score significantly (see Tables 5, 6). However, the hybrid
approach did not show better results for Experiment Sets C andD
separately over the same training set size in some cases. This can
be explained by the fact that Experiment Sets C and D have fewer

data points than Combined Set C&D. This attests that, while
crowdsourcing-based methods supplemented with the outputs
of the automated classifier perform very well on small datasets,
too few data points can negatively affect the performance of the
hybrid approach.

7. DISCUSSION

This section highlights key observations related to the research
questions, along with the limitations of the study. The experiment
results demonstrate that supplementing binary choice elicitation
with other forms of inputs can generate better classifiers. When
the training sets is small, incorporating binary labels along with
confidence values regarding these responses within any of the
fourML classifiers tested in this work generatedmore dependable
results for datasets of varying levels of difficulty. These diverse
inputs also helped improve other performance metrics such
as AUC values, which measure an ML model’s capability to
distinguishing between labels.While votingmethods had a rather
poor performance with respect to FNRs, a simple parametric
modification (i.e., changing the threshold value) was shown
to significantly reduce these values with comparatively small
increases to FPRs. When the training sets is larger, integrating
the inputs from the automated classifier with the crowdsourcing-
based MLmethods decreased FNRs even further. Those methods
achieved near-perfect FNRs thanks to a large dataset that was
used to train the automated classifier. The F1-score was also
improved significantly through this hybrid approach. Although
smaller training sets of 50k samples slightly reduced the
performance of the automated classifier, the numbers were still
better than those obtained by standalone crowdsourcing-based
methods. Altogether, the results demonstrate that including
diverse inputs as features within an ML classifier, it is possible
to obtain better classifications at a relatively low cost.

The methodology for aggregating crowd information to
improve image classification outcomes presented in this
paper could have wide-ranging applications. Through suitable
adaptations and enhancements, it could be applied for various
types of real-world screening tasks, such as inspecting luggage
at travel checkpoints (e.g., airports, metro), X-ray imaging for
medical diagnosis, online image labeling, AImodel training using
CAPTCHAs, etc. Moreover, the image classification problem
featured herein is a special case of the overall participant
information aggregation problem; therefore, the findings in
this paper could be extended to various other classification
applications that utilize the wisdom of the crowd concept.

The presented studies admittedly have some limitations. For
starters, the approach used to filter “insincere participants" was
relatively simple. To obtain a better quality dataset, future studies
will seek to deploy more sophisticated quality control techniques
for filtering out unreliable or poor quality participants, e.g.,
using Honeypot questions (Mortensen et al., 2017). A second
limitation is that the synthetic images generated for this work
have certain characteristics that may overly benefit automated
classification methods but may not generalize to various real-
world situations. It is possible, for example, that the images might
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TABLE 6 | Performance analysis of Crowdsourcing-based ML methods with expanded inputs from ResNet-50.

Input

Elicitations

Size of

dataset

ResNet50 KNN LR RF SVM-Linear

F1 FNR AUC F1 FNR AUC F1 FNR AUC F1 FNR AUC F1 FNR AUC

Experiment Set C

BCE-CE-SE-PDE∗ – – – – 0.81 0.29 0.92 0.81 0.29 0.86 0.81 0.29 0.90 0.81 0.29 0.86

RC

10k

0.36 0.21 0.67 – – – – – – – – – – – –

BCE-RC – – – 0.73 0.38 0.85 0.82 0.25 0.93 0.70 0.38 0.89 0.75 0.38 0.92

BCE-CE-RC – – – 0.70 0.42 0.89 0.77 0.25 0.88 0.74 0.33 0.86 0.80 0.33 0.91

RC

30k

0.71 0.29 0.92 – – – – – – – – – – – –

BCE-RC – – – 0.77 0.38 0.83 0.75 0.25 0.92 0.78 0.33 0.89 0.76 0.33 0.92

BCE-CE-RC – – – 0.75 0.38 0.81 0.73 0.25 0.91 0.78 0.33 0.88 0.80 0.33 0.93

RC

50k

0.87 0.04 0.99 – – – – – – – – – – – –

BCE-RC – – – 0.80 0.25 0.95 0.90 0.04 0.97 0.84 0.21 0.97 0.88 0.13 0.98

BCE-CE-RC – – – 0.82 0.25 0.92 0.90 0.04 0.98 0.84 0.21 0.97 0.88 0.13 0.97

RC

70k

0.90 0.08 0.99 – – – – – – – – – – – –

BCE-RC – – – 0.91 0.13 0.98 0.92 0.04 0.99 0.93 0.13 0.98 0.94 0.04 0.99

BCE-CE-RC – – – 0.91 0.13 0.98 0.88 0.04 1.00 0.93 0.13 0.98 0.94 0.04 0.99

RC

90k

0.96 0.00 1.00 – – – – – – – – – – – –

BCE-RC – – – 0.98 0.04 0.98 0.94 0.04 0.96 0.98 0.04 0.97 0.98 0.04 0.99

BCE-CE-RC – – – 0.98 0.04 0.98 0.9 0.04 0.97 0.98 0.04 0.97 0.98 0.04 0.99

Experiment Set D

BCE-CE∗ – – – – 0.59 0.58 0.76 0.54 0.42 0.83 0.63 0.50 0.79 0.67 0.50 0.87

RC

10k

0.17 0.33 0.62 – – – – – – – – – – – –

BCE-RC – – – 0.59 0.58 0.67 0.44 0.25 0.87 0.44 0.67 0.73 0.11 0.42 0.78

BCE-CE-RC – – – 0.56 0.58 0.69 0.43 0.33 0.84 0.63 0.50 0.78 0.63 0.50 0.86

RC

30k

0.50 0.42 0.87 – – – – – – – – – – – –

BCE-RC – – – 0.50 0.67 0.67 0.43 0.33 0.87 0.59 0.58 0.74 0.63 0.50 0.85

BCE-CE-RC – – – 0.50 0.67 0.64 0.47 0.42 0.88 0.56 0.58 0.8 0.67 0.50 0.87

RC

50k

0.79 0.08 0.96 – – – – – – – – – – – –

BCE-RC – – – 0.74 0.42 0.90 0.71 0.17 0.91 0.70 0.42 0.88 0.80 0.17 0.96

BCE-CE-RC – – – 0.70 0.42 0.91 0.69 0.17 0.90 0.74 0.42 0.86 0.80 0.17 0.91

RC

70k

0.83 0.17 0.98 – – – – – – – – – – – –

BCE-RC – – – 0.91 0.17 0.96 0.88 0.08 0.92 0.91 0.17 0.94 0.96 0.08 0.92

BCE-CE-RC – – – 0.91 0.17 0.96 0.88 0.08 0.92 0.91 0.17 0.93 0.96 0.08 0.92

RC

90k

0.96 0.08 0.98 – – – – – – – – – – – –

BCE-RC – – – 0.96 0.08 0.96 0.92 0.08 0.94 0.91 0.17 0.94 0.96 0.08 0.95

BCE-CE-RC – – – 0.96 0.08 0.96 0.92 0.08 0.95 0.91 0.17 0.94 0.96 0.08 0.92

Combined Set C&D

BCE-CE∗ – – – – 0.68 0.47 0.83 0.73 0.33 0.9 0.72 0.42 0.85 0.76 0.39 0.9

RC

10k

0.27 0.25 0.65 – – – – – – – – – – – –

BCE-RC – – – 0.67 0.5 0.83 0.64 0.25 0.88 0.67 0.39 0.86 0.71 0.39 0.91

BCE-CE-RC – – – 0.69 0.44 0.86 0.68 0.25 0.9 0.69 0.44 0.84 0.76 0.39 0.91

RC

30k

0.63 0.33 0.90 – – – – – – – – – – – –

BCE-RC – – – 0.71 0.42 0.87 0.66 0.25 0.92 0.79 0.31 0.94 0.72 0.42 0.91

BCE-CE-RC – – – 0.72 0.42 0.84 0.64 0.28 0.92 0.75 0.39 0.91 0.72 0.42 0.93

RC

50k

0.84 0.06 0.98 – – – – – – – – – – – –

BCE-RC – – – 0.87 0.19 0.96 0.86 0.08 0.97 0.91 0.11 0.96 0.85 0.14 0.97

BCE-CE-RC – – – 0.86 0.22 0.94 0.86 0.08 0.96 0.86 0.22 0.96 0.85 0.14 0.98

RC

70k

0.88 0.11 0.99 – – – – – – – – – – – –

BCE-RC – – – 0.96 0.08 0.97 0.92 0.06 0.94 0.96 0.08 0.96 0.93 0.06 0.97

BCE-CE-RC – – – 0.93 0.08 0.97 0.89 0.06 0.97 0.96 0.08 0.96 0.92 0.06 0.97

RC

90k

0.96 0.03 0.99 – – – – – – – – – – – –

BCE-RC – – – 0.97 0.06 0.97 0.93 0.06 0.98 0.97 0.06 0.96 0.97 0.06 0.98

BCE-CE-RC – – – 0.97 0.06 0.97 0.92 0.06 0.94 0.97 0.06 0.97 0.97 0.06 0.98

*Denotes the input combinations that achieved the best performance among the Crowdsourcing-based ML methods. Bold values denote cases where hybrid method outperforms both

the Resnet-50 classifier and the Crowdsourcing-based ML methods.
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have tiny consistent details that are not visible to human eyes
due to the nature of the image generation process. In that case,
the automated classification method had an unfair advantage
of exploiting those details to improve performance effectively.
Future studies will assess the featured methods on more realistic
datasets drawn from other practical contexts.

8. CONCLUSION

Although crowdsourcing methods have been productive in
image classification, they do not tap into the full potential
of the wisdom of the crowd in one important respect. These
methods have largely overlooked the fact that difficult tasks
can be amplified to elicit and integrate multiple inputs from
each participant; an easy-to-implement option, for example,
is eliciting the level of confidence in one’s binary response.
This paper investigates how different types of information can
be utilized with machine learning to enhance the capabilities
of crowdsourcing-based classification. It makes four main
contributions. First, it introduces a systematic synthetic image
generation process that can be used to create image classification
tasks of varying difficulty. Second, it demonstrates that while
reported confidence in one’s response does not significantly raise
the performance of voting methods, this intuitive form of input
can enhance the performance of machine learning methods,
particularly when smaller training datasets are available. Third, it
explains how aggregation methods can be adapted to prioritize
other metrics of interest of image classification (e.g., reduced
false-negative rates). Fourth, it demonstrates that under the right
circumstances, automated classifiers can significantly improve
classification performance when integrated with crowdsourcing-
based methods.

The code used to generate the synthetic images can be found at
https://github.com/O-ARE/2D-Image-Generation-HCOMP. In
addition, the code used to train and evaluate the automated
classifier can be found at https://github.com/O-ARE/2d-image-
classification.
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