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Editorial on the Research Topic

Translating artificial intelligence into clinical use within cardiology

Introduction

In the foreword to “The Seeds of Artificial Intelligence,” Gregory Freiherr sets out

a vision for artificial intelligence in medicine (1): “..the intelligent machine, a device

that mimics the expert’s reasoning power and can retain in retrievable power much of the

knowledge currently available to experts in a given specialty.” He also set out a timetable

for when these systems could reach clinical practice: “Most systems of this type are still

immature. But some are already moving into the real world and others will make the

transition within the next few years.” The book was written in 1980 and the “next few

years” has extended to “40 years” but we have now, arguably, reached that threshold,

where artificial intelligence is at a stage of development when it could transition into

routine application in medicine (2).

Throughout this period cardiology, and in particular cardiovascular imaging, has

been at the forefront of understanding how to apply computational approaches to

common medical tools such as an ECG recording or an ultrasound image (3). Now there

is a final hurdle to overcome to ensure these solutions impact clinical practice. How do

we translate them effectively into regular clinical use? This Research Topic was designed

to provide an opportunity for authors to present their solutions to this problem. The

topic was kept broad to attract submissions about both innovations and applications

and, across the wide variety of papers submitted, several themes have emerged. These

reflect the most active academic areas in the application of artificial intelligence to

cardiovascular medicine.
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Cardiovascular imaging and
cardiovascular magnetic resonance

Cardiovascular imaging has been an exemplar area of

cardiovascular research for adoption of artificial intelligence

(3). The volume of data and natural collaborations between

academic centers internationally have allowed testing and

development of different approaches using large scale patient

datasets. Research efforts such as UK Biobank, with hundreds of

thousands of freely available cardiovascular magnetic resonance

image datasets have also accelerated development of solutions

(4). The analysis of images using artificial intelligence is

also central to many of the secular applications of artificial

intelligence during for example internet searches. Therefore,

the technology solutions are well-advanced. In this Research

Topic, Sanchez-Martinez et al. provide a review that brings

together understanding of how machine learning can be applied

to decision making in cardiac imaging. Furthermore, four new

technical approaches to segment and analyse cardiovascular

magnetic resonance scans for different disease states are

presented. Approaching the problem from a more generalized

angle, Vergani et al. present a deep learning approach for

classification of images while Huellebrand et al. provide a holistic

analysis of methods for disease classification. More focused on

specific cardiovascular magnetic resonance sequences, Sharma

et al. present a method for classification of myocardial scar

identified with late gadolinium imaging, a stalwart of the

modality for the last 20 years. In comparison Gonzales et al.

present a new way to manage automation of T1 mapping, an

emerging option for gadolinium-free scar imaging. Together

these manuscripts describe innovations across the whole

pipeline of image handling from image sorting and classification

to disease identification.

Signal processing in cardiovascular
medicine

Technological solutions using artificial intelligence,

however, clearly extend beyond image handling. Intelligent

signal processing is an area of rapid development and this

has been effectively presented in several papers within the

Research Topic. Electrophysiology is well-known for its analysis

of ECG signals and Herrero Martin et al. present a framework

for characterization of signals to define cardiac disease. Three

others paper approach another well-known signal processing

problem, the characterization of cardiac and vascular pressures.

Yamanaka et al. have tackled a problem with a very large

potential application footprint. Blood pressure measurement

is relevant to both the assessment of health and for the

identification or monitoring of disease. The ability to do this

without the need of an inflatable cuff would transform daily

practice and their early data shows new ways for cuffless blood

pressure estimation. Westphal et al. take a different approach

to understanding pressures within the cardiovascular system,

with a similarly widespread potential clinical footprint. Heart

sounds are readily accessible with a stethoscope but the ability

to estimate left ventricular pressure based off heart sounds is

a novel application of machine learning. The other region of

the cardiovascular system in which pressures and stresses can

have important clinical implications is the aorta. Increased

aortic shear stress has been implicated in aortic remodeling as

well as dissection and atheroma development. Ferdian et al.

present new data on technological approaches to estimate aortic

shear stress from simply acquired parameters. These solutions

provide new approaches to extract information from clinical

signals. Several of these measures are not in routine clinical use

but if these methods increase availability they may encourage

translation into practice.

Heart failure diagnosis and
management

With regard to disease areas, heart failure has proved

to be the most popular for application of new artificial

intelligence management approaches within our Research

Topic. Heart failure represents the end stage of most cardiac

conditions and has a heterogenous pathology with numerous

potential management approaches. Identifying the type of

heart failure is critical and identifying the disease process

early is important to prevent irreparable damage. Identification

of heart failure has been addressed in three papers in this

Research Topic. Two focus on imaging with Fletcher et al.

having reviewed the possibility for artificial intelligence to

augment the power of echocardiography for identification

of heart failure with preserved ejection fraction, while,

Asher et al. present a review covering the possibility for

imaging classification of dilated cardiomyopathy phenotypes.

In contrast, Alkhodari et al. have explored whether deep

learning based on patient records is effective for classification

of heart failure profiles. Finally, Kenig et al. have tackled

the question of management approaches and present an

algorithm for assessment and titration of diuretic treatment

in heart failure. Heart failure is an increasing problem within

healthcare and the reviews suggest there remains a huge

untapped potential for applications of artificial intelligence in

this space.

Disease characterization, prognosis,
and prediction

In a final theme of the Research Topic four papers address

the ongoing question of how artificial intelligence can be

applied to characterize disease and predict outcomes. These
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papers cover an extensive range of topics and provide some

of the most challenging potential applications. The ability

to predict the future and identify patients at high risk is

hugely difficult but may be tractable with artificial intelligence

processing techniques. Zhou et al. have simply modeled using

existing data what happens to patients who have pulmonary

hypertension to try and understand who may be most at

risk of frailty-related problems. Wang et al. have also used

patient-related data to look at outcomes from Coronary Care

Units and Jiang et al. have adopted the same approach to

look at outcomes after mitral valve surgery. These papers

show promise for predictive algorithms based on patient

acquired data but further clinical validation is required in

independent datasets.

Conclusion

When we proposed this Research Topic we had a vision

to present a broad range of papers promoting real world

clinical applications of artificial intelligence in medicine.

We were unsure of what would emerge from the clinical

and academic community but the spread of topics and

technical solutions is impressive. Interestingly, many are not

yet ready for clinical application and there is clearly still

some way to go to achieve our goal of clinically translatable

artificial intelligence in cardiology. However, the first steps

are being made and we look forward to a time when, in

Eric Topol’s words (2): “Eventually, doctors will adopt AI

and algorithms as their work partners. This leveling of the

medical knowledge landscape will ultimately lead to a new

premium: to find and train doctors who have the highest level of

emotional intelligence.”
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Calibration-Free Cuffless Blood
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Syunsuke Yamanaka 1, Koji Morikawa 2, Hiroshi Morita 1, Ji Young Huh 3 and

Osamu Yamamura 4*
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Tokyo, Japan, 3 Emergency and Critical Care Center, Kobe City Medical Center General Hospital, Kobe, Japan, 4 Second
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This study presents a new blood pressure (BP) estimation algorithm utilizing machine

learning (ML). A cuffless device that can measure BP without calibration would be

precious for portability, continuous measurement, and comfortability, but unfortunately,

it does not currently exist. Conventional BP measurement with a cuff is standard, but

this method has various problems like inaccurate BP measurement, poor portability,

and painful cuff pressure. To overcome these disadvantages, many researchers have

developed cuffless BP estimation devices. However, these devices are not clinically

applicable because they require advanced preparation before use, such as calibration,

do not follow international standards (81060-1:2007), or have been designed using

insufficient data sets. The present study was conducted to combat these issues. We

recruited 127 participants and obtained 878 raw datasets. According to international

standards, our diverse data set included participants from different age groups with a

wide variety of blood pressures. We utilized ML to formulate a BP estimation method

that did not require calibration. The present study also conformed to the method

required by international standards while calculating the level of error in BP estimation.

Two essential methods were applied in this study: (a) grouping the participants into

five subsets based on the relationship between the pulse transit time and systolic

BP by a support vector machine ensemble with bagging (b) applying the information

from the wavelet transformation of the pulse wave and the electrocardiogram to the

linear regression BP estimation model for each group. For systolic BP, the standard

deviation of error for the proposed BP estimation results with cross-validation was

7.74 mmHg, which was an improvement from 17.05 mmHg, as estimated by the

conventional pulse-transit-time-based methods. For diastolic BP, the standard deviation

of error was 6.42 mmHg for the proposed BP estimation, which was an improvement

from 14.05mmHg. The purpose of the present study was to demonstrate and evaluate

the performance of the newly developed BP estimation ML method that meets the

international standard for non-invasive sphygmomanometers in a population with a

diverse range of age and BP.
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INTRODUCTION

Non-invasive blood pressure (BP) measurement with cuff-based
devices is widely used, and these devices are necessary for various
medical situations (1). However, there are some disadvantages of
the cuff-based BP measurement methods: (i) a study showed that
three out of 10 home cuff-based BP measurement devices were
inaccurate (2); (ii) the measurement is usually intermittent and
does not capture all the BP changes occurring throughout the
measurement period; (iii) the current cuff-based BP devices are
still bulky, and are not portable or practical for daily or long-term
use (3, 4); (iv) cuff pressure can be painful for some patients; it
can also interrupt their state of rest. The cuff pressure results in
difficulty for measuring BP during sleep or everyday life or, even
worse, may affect the BP measurement itself (5).

Many researchers have developed cuffless BP estimation
devices to overcome these disadvantages, allowing patients to
monitor BP continuously (6–8). Pulse transit time (PTT) is the
pulse wave propagating time from two separate arterial sites on
the same cardiac cycle (9, 10), which usually needs to be examined
using a continuous electrocardiogram (ECG) (11). The PTT
indirectly depends on blood pressure; the higher the pressure,
the faster the PTT (11). This phenomenon has been used
for non-invasive BP estimation. However, many conventional
cuffless PTT-based BP estimation studies have some drawbacks,
divided into four categories: (1) analysis of biased, (2) small
datasets, (3) studies with devices that required calibration, and
(4) insufficient accuracy as required by international standards.
Some studies analyzed biased data that included only young
participants with a narrow blood pressure range (12, 13), while
others had insufficient participants (13–18). Other studies needed
additional advanced preparations such as frequent calibrations
(19–21), required additional parameters (22, 23), or used devices
that needed to be anchored to the body, resulting in annoyance
for some users (24). Besides, some studies either had a wide gap
of means and standard deviations from the reference (25, 26), or
a low regression coefficient (R²) (27, 28), resulting in the need
for more precise mathematical models (29). Table 1 shows the
previous studies for non-invasive cuffless BP estimation. Poon
and Zhang’s cuffless BP measurement was the only study that
had handled a large variety of participants’ blood pressures (39
with hypertension), range of age (57 ± 27 years old), and large
participant number (85 participants) (21). The estimated SBP and
DBP in the Poon and Zhang’s method differed from the reference
BP by 0.6 ± 9.8 mmHg and 0.9 ± 5.6 mmHg, respectively.
However, the BP estimation method in Poon and Zhang’s study
had major shortcomings to need a calibration procedure for each
participant, and the accuracy of BP estimation was not precise.

An international standard has already been formulated
for cuffless sphygmomanometers (ISO 81060-1:2007) (31).
ISO standard is an international standard that must be met
when releasing the cuffless, non-invasive blood pressure
estimation model as a medical device to the market in
the future. However, to the best of our knowledge, a
cuffless BP estimation model that meets the international
standard does not currently exist. The purpose of the present
study was to demonstrate and evaluate the performance

of the newly developed ML method for BP estimation
that meets the international standard for non-invasive
sphygmomanometers in a population with a diverse range
of age and BP.

METHODS

Participants
We recruited 127 participants (73 males and 54 females) at
the University of Fukui Hospital and its affiliated institutions.
The study was conducted with the approval of the Research
Ethics Committee of the University of Fukui (Approval Number:
20148035). Written informed consent was obtained from all the
participants. All participants were asked to fill out a medical
form that included sex, date of birth, past medical history,
and current medications before measuring participant BP. We
excluded those participants who were either pregnant, <18 years
old, or had a persistent arrhythmia. We recruited participants
with a specified range of BP, as required by a protocol of the
International Standard of Non-invasive Sphygmomanometers
(ISO 81060-1:2007) (31).

Experimental System
A biopotential sensing system was developed to measure ECG
and pulse wave simultaneously, as shown in Figure 1. The
system consisted of (A) a biopotential amplification device and
data transmitter, (B) an ECG electrical potential electrode, (C)
a pulse wave sensor and the second ECG electrical potential
electrode, (D) a receiving dongle, and (E) a personal computer for
data recording. The personal computer recorded and analyzed
the waveform of the ECG and the pulse wave. Participants
held one of the two ECG sensor electrodes with their thumb
and index finger of the left hand (B in Figure 1). Another
sensor electrode that could sense the ECG and the pulse wave
simultaneously was attached to the index finger of the right hand
in the sitting position (C in Figure 1). The sampling frequencies
and the resolution of these waveforms were 1024Hz and 12
bits, respectively.

Data Collection Protocol
We collected the reference and analyzed datasets according to the
protocol of ISO81060-1:2007 (31).We acquired the reference and
analyzed datasets from the participants in the sitting position at
room temperature without disturbing influences. The left arm of
the participants was used for the reference measurement. The
protocol for collecting data is shown in Figure 2. After a 5-
min rest to stabilize the BP, the first reference BP measurement
was taken. Then, the participants took a 1-min rest after the
first reference measurement to avoid venous congestion. The
measurement was then taken with the device being tested, after
the first reference measurement but before the second reference
measurement. Participants retook a 1-min rest after the test
device data acquisition. After the rest, the second reference
measurement was taken.We took themeasurement using the test
device in each participant at least three times.
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TABLE 1 | Prior non-invasive cuffless blood pressure estimation studies.

References Source # of participants Range of age Methods MAE SBP MAE DBP

Gao et al. (30) PPG 65 22–65 W

SVM

5.1 ± 4.3 4.6 ± 4.3

Chen et al. (25) BCG

ECG

51 20–74 AS 9.0 ± 5.6 1.8 ± 1.3

Chan et al. (26) ECG

PPG

PTT

/ / AS 7.5 ± 8.8 4.1 ± 5.6

Ding et al. (13) PTT

PPG

27 21–29 AS −0.4 ± 5.2 −0.1 ± 4.0

Chen et al. (15, 16) PTT 23/26 19–60 AS 2.2 ± 6.2 −1.5 ± 6.5

Poon and Zhan (21) PTT 85 / (57 ± 27) AS 0.6 ± 9.8 0.9 ± 5.6

MAE, mean absolute error; SBP, systolic blood pressure; DBP, diastolic blood pressure; PPG, photoplethysmogram; ECG, electrocardiogram; PTT, pulse transit time; BCG,

ballistocardiograph; AS, analytical solution; SVM, support vector regression machine; W, wavelet.

FIGURE 1 | Biopotential sensing system. (A) Biopotential amplification device and data transmitter, (B) First ECG electrical potential electrode, (C) Pulse wave sensor

and the second ECG electrical electrode, (D) Receiving dongle, (E) Personal computer for data recording.

FIGURE 2 | Protocol for collecting data. We took the measurement using the test device in each participant at least three times.

Reference Data
Two medically trained observers measured the reference BP
simultaneously with one reference mercury sphygmomanometer
using a “Y” connector that lets two observers measure one
participant’s BP. The systolic blood pressure (SBP) and diastolic
blood pressure (DBP) were determined by phase 1 and phase 5 of
Korotkoff sounds, respectively. All measurements were recorded
to the nearest 2 mmHg. If the values of SBP and DBP as measured
by the two observers were <4 mmHg apart, the mean value of
the BP was calculated from the observed values and used as the

reference data. If the difference in the measured BP between the
two observers was more significant than 4 mmHg, we excluded
both the reference and the test device data. These reference BP
acquisition methods were stipulated by the ISO standard (31).

Preparation of the Data Set for Machine
Learning
Due to the quality of the measurement, some data were not
suitable for data analysis, included either poor ECG, poor
pulse wave signals, significant blood pressure changes between
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the reference measurements taken before and after the test
device BP measurement. We applied several structured criteria
to the dataset for the preprocessing of machine learning, as
shown below:

Exclusion Criteria Based on Reference Data
We excluded the data according to exclusion criteria, as
designated by the ISO standard for the reference dataset (31);
(a) if the difference between the reference measurements taken
by the two observers was more than 4 mmHg, (b) if the
difference between the reference measurements before and
after the test device measurement was more than 12 mmHg
for SBP or more than 8 mmHg for DBP, (c) if three valid
datasets could not be acquired from one participant due to any
reason (e.g., unstable BP).

Exclusion Criteria Based on Waveform
We excluded the following cases from the data analysis: (a) the
amplitude of the ECG or the pulse waveform was too low due to
the dryness of the participant’s hands, (b) the crest of the ECG and
the pulse waveform was not clear, (c) steady noise (mainly caused
due to power supply noise) interfering with the waveform due
to unstable electrode holding, and (d) a wavelet calculation error
occurring either in the ECG or the pulse waveformmainly caused
due to measurement errors. A specific cutoff value was set for
each exclusion criteria so that data could be excluded objectively.

Data Selection to Satisfy the ISO Protocol
The proportion of participants with high blood pressure and
those with low blood pressure was designated according to
the protocol of ISO80601-1:2007 (31). ISO requests a wide
range of blood pressure proportions to demonstrate the device’s
applicability to a wide range of participants with various blood
pressures. Since we acquired many datasets within the normal
range of blood pressure, we needed to exclude some of these
datasets from the other datasets for an accurate analysis. The
datasets containing large PTT fluctuations and low signal quality
of ECG were excluded in descending order until the datasets met
the ISO standard protocol.

Final Data Set for Training and Evaluation
One hundred and twenty-seven participants with 878 datasets
remained in the study. We excluded 21 participants with 423
datasets because of the exclusion criteria based on reference
BP data. Nineteen participants with 127 datasets were excluded
because of the exclusion criteria based on waveform. Among
the 85 patients with 328 datasets, 68 datasets were excluded
(66 datasets were normal BP range and 2 datasets were
SBP ≥140 mmHg) in descending order of PTT fluctuation
and exclude one participant for meeting BP distribution of
the ISO standard. Finally, we acquired 260 datasets from 84
participants. The ISO protocol requiresmore than 85 participants
with more than 255 datasets. In this study, we prioritized
the distribution of BP values with a certain proportion of
participants with high and low BP participants because we
aimed to confirm the ability of the device to apply to a wide
variety of BP values. The participant’s BP distributions are
shown in Table 2. We also intended that the device should

TABLE 2 | Blood pressure distribution of participants.

ISO standard Acquired data

Participant 85 84

Valid data set 255 260

Gender ratio Each ≥30% Female 54 (64.3%)

SBP ≤ 100 mmHg ≥13 data/5% 39 data (15.0%)

SBP ≥ 160 mmHg ≥13 data/5% 16 data (6.2%)

SBP ≥ 140 mmHg ≥52 data/20% 52 data (20.0%)

DBP ≤ 60 mmHg ≥13 data/5% 43 data (16.5%)

DBP ≤ 100 mmHg ≥13 data/5% 13 data (5.0%)

DBP ≤ 85 mmHg ≥52 data/20% 71 data (27.3%)

SBP, systolic blood pressure; DBP, diastolic blood pressure.

TABLE 3 | Age distribution of participants.

Age (years) 58.1 ± 16.1

20∼24 2 (2.4%)

25∼29 2 (2.4%)

30∼34 5 (6.0%)

35∼39 5 (6.0%)

40∼44 4 (4.8%)

45∼49 5 (6.0%)

50∼54 7 (8.3%)

55∼59 8 (10.0%)

60∼64 13 (15.5%)

65∼69 12 (14.3%)

70∼74 7 (13.0%)

75∼79 7 (13.0%)

80∼84 3 (3.6%)

85∼ 4 (4.8%)

apply to diverse age groups. The ISO protocol requires the
participants’ age to range from 18 years old to 65 years old.
We collected datasets from young and older participants, and
our age range was more expansive than the requirements
of the ISO protocols. Table 3 shows the age distribution of
the participants.

Implementation of the BP Estimation
Algorithm
The proposed algorithm consists of four steps: (i) waveform
preparation, (ii) participant group classification, (iii) feature
extraction, and (iv) BP value estimation according to the selected
participants’ group.

Waveform Preparation
The ECG and the pulse waveforms were averaged to a single
waveform in a 10-s window to decrease the difference between
each pulse. Due to the heart rate fluctuations, the pulse intervals
were normalized and extended to 1 s. Normalization was also
applied to the amplitude of the wave due to the amplitude
fluctuation for each pulse. By multiplying the amplitude peak
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FIGURE 3 | Example of normalized ECG and pulse wave. The ECG and the pulse waveforms were averaged to a single waveform in a 10-second window. The pulse

intervals were normalized and extended to one second. Normalization was also applied to the amplitude of the wave.

FIGURE 4 | Five groups were divided by group estimator in the PTT-reference plot. The participants were distributed 1:1:3:3:2 in the five areas surrounded by the four

curves.

by the multiplication coefficient, the amplitude peak of the
waveform is calculated. The R wave peak was defined as the
largest peak of the ECG wave from the baseline before and after
its generation. As the T wave in ECG is also a big positive
wave and we needed to recognize the R wave and the T wave
correctly, the threshold was set to 0.7 from the baseline in the
normalized amplitude width. The wave that was bigger than 0.7
was recognized as the R wave, and the wave that was smaller than
0.7 just after R wave was recognized as the T wave. The similar
procedure was also performed for the pulse waveform. Examples
of the normalized ECG and the normalized pulse waveforms are
shown in Figure 3.

Participants’ Group Classification
We divided the entire data into five categories (group 1, group
2, group 3, group 4, and group 5.) at a ratio of 1:1:3:3:2 with
four curved borders. Figure 4 shows the distribution of sample
data divided by the four curved borders. The four curved
borders divide the entire data into five subgroups, such as
group 1 for the very high BP subgroup, group 2 for the high

BP subgroup, group 3 for the moderate BP subgroup, group
4 for the low BP subgroup, and group 5 for the very low
BP subgroup at the ratio of 1:1:3:3:2. We noticed that even
with almost the same PTT, the BP differed significantly among
participants through data collection. However, BP was mainly
stable in the same participant. The group classification formula
was derived from the relationship between the BP tendency and
the waveform features. We expected the classified groups to
function as rough BP estimators from waveform features and
PTT alone. The ratio of the number of samples was determined
as 1:1:3:3:2 while shifting the coefficient term of the 1/PTT line
for SBP and PTT. Since we drew four curved borders evenly
spaced, subgroup 1(very high BP subgroup) contains very few
participants. Hence, we drew the bottom three curves evenly
spaced and the top curved border 50% nearly to the second one.
As a result, the participants were distributed 1:1:3:3:2 in the five
areas surrounded by the four curves.

A support vector machine ensemble with bagging was selected
as a group estimator (32, 33). The support vector machine is
one machine learning and constructs a hyperplane or set of
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TABLE 4 | Selected feature values.

Selected features Waveform Normalized time** Normalized frequency**

1 * 1/ PTT - - -

2. The square root of body weight - - -

3. Wavelet coefficients Pulse wave 11 7

4. Wavelet coefficients ECG 14 3

5. Bodyweight - - -

6. Wavelet coefficients Pulse wave 19 1

7. Heart rate - - -

8. Wavelet coefficients Pulse wave 1 2

9. Wavelet coefficients ECG 1 2

10. Wavelet coefficients Pulse wave 17 1

11. Pulse transit time - - -

12. Wavelet coefficients ECG 19 2

13. Wavelet coefficients Pulse wave 13 1

14. Wavelet coefficients Pulse wave 14 1

15. Wavelet coefficients Pulse wave 20 1

16. Wavelet coefficients Pulse wave 5 1

17. Wavelet coefficients ECG 5 1

18. Wavelet coefficients ECG 8 1

19. Wavelet coefficients ECG 19 1

20. Peak of ECG ECG - -

21. Wavelet coefficients ECG 20 4

22. Wavelet coefficients Pulse wave 10 1

23. Wavelet coefficients Pulse wave 8 1

24. Wavelet coefficients Pulse wave 8 2

PTT, pulse transit time, ECG, electrocardiogram.

*Numbers are assigned in order of the effectiveness of features.

**Wavelet coefficients of ECG/pulse wave: The time indicates the number from the beginning of the normalized time axis divided into 20 equal parts. The frequency indicates the number

from the beginning of the normalized frequency axis divided into 8 equal parts.

FIGURE 5 | Examples of the wavelet transformation of the ECG and pulse waveforms. The ST-segment and the baseline between the T wave and the P wave had

frequently used the wavelet coefficient features in both the wavelet coefficients of the ECG and pulse waveforms.
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hyperplanes in a high- or infinite-dimensional space, which can
be used for classification, regression, or other tasks like outlier
detection. We applied 10-fold cross-validation for learning.
Cross-validation is a technique for assessing how the results
of a statistical analysis generalize to an independent data
set (34). Even the support vector machine (SVM) has been
proposed to provide a good generalization performance; if we
use only one SVM, the classification result of the practically
implemented SVM is often far from the theoretically expected
level. To improve the limited classification performance of the
one SVM estimator, we prepared 35 support vector machine
estimators with bagging (bootstrap technique). Each SVM was
trained independently using the randomly chosen training
samples via a bootstrap technique. Then, they were aggregated
into to make a collective decision for participants’ group
clarification (32, 33).

Feature Extraction
The candidate features for machine learning consisted of the
following features: participants basic information (age, body
weight, height, etc.), PTT, basic information of second derivative
photoplethysmogram (a, b, c, etc.), wavelet features from the
ECG, and wavelet features from the pulse wave. The continuous
wavelet transform was adopted for waveform analysis. We
obtained the wavelet features from each cell by dividing the
normalized wave of both the ECG and the pulse wave into 20
bands in the horizontal and eight bands in the vertical direction.
In this way, we prepared 320 features (20 [the horizontal
direction] × 8[the vertical direction] × 2[ECG, pulse wave])
as wavelet features from the ECG and the pulse wave. These
features were used to create a BP estimation linear regression
model for each group. Table 4 shows the specific features that
were used in machine learning in descending order. Although
some traditional features such as 1/PTT, the square root of
body weight, heart rate, PTT, and the peak of ECG were used,
many newly-developed features such as wavelet coefficients of
the ECG/pulse waveforms were also used in the models. The ST-
segment and the baseline between the T wave and the P wave
had frequently used the wavelet coefficient features in both the
wavelet coefficients of the ECG and pulse waveforms. Figure 5
shows one example of the wavelet transformation of the ECG and
pulse waveforms.

BP Value Estimation From the Selected Participants’

Group
The present study’s model comprises two steps: grouping
estimation by the SVM ensemble with bagging (mentioned
above) and the BP estimation linear regression model for each
group. The estimation formula for BP value was derived from
the relationship between the feature values and the reference
BP values. Since the BP estimation model was prepared for
each group, five BP estimation models were learned from the
5-grouped datasets. Linear regression was used for the BP
value estimator. The incremental feature value selection was
applied to select useful features only. Feature value candidates
consisted of the wavelet transformation of the ECG and the

TABLE 5 | Comparison of conventional PTT-based methods and the proposed

method.

Standard deviation of

error in SBP

Standard deviation of

error in DBP

*Measured BP 21.34 mmHg 14.65 mmHg

PTT-based

methods

17.05 mmHg 14.05 mmHg

Proposed method 7.74 mmHg 6.42 mmHg

BP, blood pressure; SBP, systolic blood pressure; DBP, diastolic blood pressure; PTT,

pulse transit time.

*Measured BP is the overall distribution of the BP data without any data treatment.

pulse waveforms, weight, height, body mass index (BMI), PTT,
and 1/PTT.

Primary Outcome
The primary outcome in this study was the evaluation of
the models formulated with the standard deviation of the
error between the estimated BP value and the reference value.
The 10-fold cross-validation was adopted for evaluating the
model performance. The original sample was partitioned into
10 subsamples. Of the 10 subsamples, a single subsample was
retrained as the validation data for testing the model, and the
remaining nine subsamples were used as training data. The cross-
validation process was repeated 10 times, with each of the 10
subsamples used exactly once as the validation data. The 10
standard deviation error results were averaged for the evaluation
result (34).

RESULTS

Comparison of Conventional PTT-Based
Method and the Proposed Method
Table 5 shows a comparison of the conventional PTT-
based methods and the proposed method for the primary
outcome. For SBP, the error of the standard deviation of the
proposed BP estimation results with cross-validation was
7.74 mmHg, which was an improvement from 17.05 mmHg,
as estimated by the conventional PTT-based methods. For
DBP, the error of the standard deviation of the proposed
BP estimation results with cross-validation was 6.42 mmHg,
which was an improvement from 14.05 mmHg, as estimated
by the conventional PTT-based methods. The association
between the estimated BP by the proposed method and
the measured reference BP for SBP and DBP are shown in
Figures 6, 7, respectively. The proposed method had small-range
prediction values closer to the reference values compared to the
PTT-based methods.

DISCUSSIONS

Comparison to Prior Work
This study aimed to propose a new BP estimation method that
did not require calibration based on a wide range of age and
BP distribution while assessing the participants according to the

Frontiers in Medical Technology | www.frontiersin.org 7 July 2021 | Volume 3 | Article 69535614

https://www.frontiersin.org/journals/medical-technology
https://www.frontiersin.org
https://www.frontiersin.org/journals/medical-technology#articles


Yamanaka et al. New Cuffless BP Estimation Model

FIGURE 6 | (A) Proposed method reference-prediction plot (Systolic blood pressure). (B) PTT-based method reference-prediction plot (Systolic blood pressure). The

proposed method had small-range prediction values closer to the reference values compared to the PTT-based methods.

FIGURE 7 | (A) Proposed method reference-prediction plot (Diastolic blood pressure). (B) PTT-based method reference-prediction plot (Diastolic blood pressure). The

proposed method had small-range prediction values closer to the reference values compared to the PTT-based methods.

ISO standard protocol. To the best of our knowledge, the present
study is the only one that has met most of the protocols of
the ISO standard in reference BP acquire method, the number
of participants, BP distribution, and the standard deviation of
the error for prediction model (<8mm SBP). Table 1 shows
prior studies performed for BP estimation using PTT and ECG
analysis. It presents a comparison of the signal source, number of
participants, range of age, estimation methods, and error.

Implementing Wavelet Transformation,
Grouping, and Used Features
As shown in Table 4 and Figure 5, the characteristics of the
features used in the present models were divided into two:

traditional features and newly developed features. Traditional
features such as 1/PTT, the square root of body weight, heart
rate, and PTT were well-studied, and they were also effective
in improving the accuracy in the present study (29). Besides,
newly developed features such as wavelet transformation of the
ECG and the pulse waveforms were as effective as traditional
features (17, 18). The cells of frequently used wavelet coefficient
features in both ECG and pulse wave were the ST-segment and
the baseline between the T wave and P wave in the ECG (shown
in Figure 5). The ST segment represents the interval between
ventricular depolarization and repolarization and pumps blood
to blood vessels during the ST segment (35). Since the P
wave represents the depolarization of the left and right atria
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and corresponds to atrial contraction, blood moves from the
circulatory system to the heart during the baseline between the
T wave and P wave (36). Because the arteriosclerosis of the
blood vessel wall plays a significant role in determining blood
pressure, it seems to be consistent with themany essential wavelet
coefficients in the ST segment and the baseline between the T and
P waves.

Another feature of the present study was the grouping of
the datasets into 5 subgroups. Since the arterial walls are
composed of the proteoglycans, endothelium, elastin, collagen,
and smooth muscles in varying quantities depending on
individuals and vessel size, grouping participants into five
subgroups was considered effective (37). By grouping the
datasets, the participants’ BP estimation model can be accurately
selected for each participant that matches the stiffness of the
vessel wall.

The Merit of the Cuffless
Sphygmomanometer
We adopted a data collection and evaluation method in line with
the ISO standard for non-invasive sphygmomanometers (31). If
the estimation accuracy is sufficiently improved, it is possible to
implement a cuffless sphygmomanometer that predicts the trends
of BP instead of using cuff-based BP devices in the near future.
A cuffless sphygmomanometer has many potential advantages.
Considerable fluctuations in BP trends can be used as a warning
signal by medical practitioners. Most vital parameters in today’s
operating rooms are measured continuously, except for BP.

Physicians are always concerned about the deterioration of
a patient’s vital signs in the emergency departments, especially
for BP. When we use the model in actual clinical settings in
the future, we can use a watch-type pulse wave sensor for 24/7
monitoring. Blood pressure estimates are calculated within 1 s
from pulse wave detection, and we can know blood pressure
estimates for each pulse, resulting in improved patient safety.
In the intensive care unit, invasive arterial blood pressure
monitoring is routinely used to monitor seriously ill patients.
For these patients, this is not only painful but, more seriously,
can cause life-threatening infections or bleeding. However,
since the device is non-invasive, the present BP estimation
method has no risk of these complications. As it can record BP
changes at every beat, it may also contribute to ensuring patient
safety by retrospective investigation when incidents occur in
a hospital.

A cuffless sphygmomanometer can bring various benefits
to ordinary households as well. BP fluctuations are essential
in monitoring systems for older patients, like the ones present
in smart homes. By installing a cuffless sphygmomanometer in
places where sudden changes in the BP of an older individual are
likely to occur, such as in beds, chairs, toilets, and bathrooms,
the healthcare provider can respond swiftly to these changes.
Accumulation of daily blood pressure data can be utilized in
outpatient treatment, leading to the improved prescription of
appropriate antihypertensive medications and compliance.
Furthermore, machine learning with other parameters
can lead to the prediction of sudden events in daily life.

Therefore, the development of a cuffless sphygmomanometer
is expected to impact an aging society’s social security
system significantly.

Limitations of the Present Study
First of all, the present study results were data-dependent,
and different datasets might create different BP estimation
models. The characteristics used in the present study may
differ depending on the datasets. In machine learning, 260
data sets in this study are relatively small, and it is desirable
to perform sensitivity analysis with more data. However, to
our knowledge, this study is one of the largest studies in the
field of non-invasive BP estimation. This study also meets the
requirements of ISO standards that demanding more than 255
datasets. We have a plan for a validation study with more
participants in ICU/ER settings. Secondly, it can be challenging
to interpret the created algorithm. As shown in Figure 5, it is
challenging to determine precisely why this frequency during
the specific period in the ECG and the pulse waveforms were
related to the BP. However, these limitations are generally found
in ML, and despite these challenges, applying the ML model
to clinical practice is rapidly progressing (38–40). Third, we
performed waveform measurements on motionless participants
and excluded participants in arrhythmias in the present study.
Since the current model averages pulse waveforms, patient’s
movement and arrhythmias can cause the poor performance of
BP estimates. Finally, we did not validate the present model with
a new dataset in the settings where BP change can be bigger, such
as ICU/ER, further validation in ICU/ER settings is needed in
the future.

CONCLUSIONS

Based on the participants with a wide age range and BP
distribution, we proposed a novel cuffless BP estimation method
by grouping participants and applying wavelet features. The
standard deviation of error improved from 17.05 to 7.74
mmHg for SBP and from 14.05 to 6.42 mmHg for DBP
compared to the PTT-only estimation methods. We plan to
increase the number of datasets in ICU and ER settings
and improve the accuracy of the estimation methods in
future studies.
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Cardiac diastolic dysfunction is prevalent and is a diagnostic criterion for heart failure with

preserved ejection fraction—a burgeoning global health issue. As gold-standard invasive

haemodynamic assessment of diastolic function is not routinely performed, clinical

guidelines advise using echocardiography measures to determine the grade of diastolic

function. However, the current process has suboptimal accuracy, regular indeterminate

classifications and is susceptible to confounding from comorbidities. Advances in artificial

intelligence in recent years have created revolutionary ways to evaluate and integrate

large quantities of cardiology data. Imaging is an area of particular strength for the

sub-field of machine-learning, with evidence that trained algorithms can accurately

discern cardiac structures, reliably estimate chamber volumes, and output systolic

function metrics from echocardiographic images. In this review, we present the emerging

field of machine-learning based echocardiographic diastolic function assessment. We

summarise how machine-learning has made use of diastolic parameters to accurately

differentiate pathology, to identify novel phenotypes within diastolic disease, and to grade

diastolic function. Perspectives are given about how these innovations could be used to

augment clinical practice, whilst areas for future investigation are identified.

Keywords: artificial inteligence, echocardiogaphy, diastolic dysfunction, machine learning, heart failure preserved

ejection fraction

INTRODUCTION—DIASTOLIC ASSESSMENT IN CLINICAL
PRACTICE

Left-sided cardiac diastolic dysfunction can lead to patients developing debilitating symptoms
such as dyspnoea and fatigue, as well as conferring worse survival and increased morbidity (1–
3). Prevalence estimates of diastolic dysfunction vary widely depending upon the population
studied and the definition used, but a recent review of community studies suggests it is in the
range of 20-30% in the general population (4). In studies of thousands of patients in clinical
settings, prevalences of 5.0% (5) to 9.2% (3) have been reported when accompanied by a normal
left ventricular (LV) ejection fraction (EF) > 50%. Diastolic dysfunction is a criterion for the
diagnosis of heart failure (HF) with preserved EF (HFpEF) (6), which represents about a third of
all hospitalised heart failure in the United Kingdom (7) and about half of community heart failure
in North America (8).

The gold standard for assessing diastolic function is invasive pressure-volume loop analysis,
which directly measures ventricular compliance and relaxation, but is seldomly performed
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clinically as the process and analyses are technically challenging.
The next best assessment technique is direct measurement of
cardiac pressures with catheterisation, because diastolic pressures
rise with advanced dysfunction. Cardiac catherisation can either
be performed via left heart catheterisation (LHC), where an
end diastolic pressure (LV-EDP) or pre-A wave pressure are the
common benchmarks, or by right heart catheterisation (RHC),
where a pulmonary capillary wedge pressure (PCWP) is recorded
which approximates the LA pressure from across the pulmonary
capillary bed. These invasive procedures are also not routinely
performed in most patient cohorts as they are resource intensive
whilst exposing the patient to radiation and possible discomfort.
Therefore, echocardiography is often preferred for diastolic
function assessment.

Echocardiography is the primary imaging tool used for
assessing diastology and HFpEF in routine clinical practice
because it is non-invasive and widely available. There are
over 20 different variables of diastolic relevance that can be
measured using routine transthoracic echocardiography (9), as
well as variables emerging from the research domain such as
speckle-tracking strain parameters (10). Unfortunately, no single
echocardiographic parameter adequately captures the complexity
of diastolic function, given the different structural and functional
changes which can manifest at different time points during the
cardiac cycle. Routine variables, commonly derived from pulse-
wave Doppler and tissue Doppler techniques, at best modestly
correlate with invasively measured diastolic pressures (11–13).

Diastolic function is therefore classified echocardiographically
by combining multiple parameters. The most widely adopted
method for this comes from the American Society of
Echocardiography and European Association of Cardiovascular
Imaging (ASE/EACVI) guideline (9). The method uses a series
of decision steps in the form of two algorithms, one screening
for the presence of diastolic dysfunction and the other to grade
diastolic dysfunction if it is found to exist (or is assumed to
exist based upon defined clinical and structural observations),
however there are a number of caveats which complicate matters.
Classification outcomes are either that the guideline cannot
be applied due to insufficient requisite information, that the
diastolic function is indeterminate or normal, or that diastolic
function is graded as mild, moderate, or severely impaired.
Filling-pressure, which refers to left atrial (LA) and/or LV
diastolic pressures, is often dichotomously described as “normal”
or “raised.” Moderate and severe ASE/EACVI guideline graded
diastolic dysfunction correspond to raised filling-pressures (9).

LIMITATIONS OF ROUTINE DIASTOLIC
ASSESSMENT

There are a number of barriers to widespread and robust diastolic
evaluation with echocardiography, particularly with following
guideline suggestions, which include: accuracy uncertainties,
unclassifiable and indeterminate situations, and confounding
from comorbidities. These introduce clinical uncertainty, which
can lead to inappropriate treatment decisions, and are explored
in more detail below.

Clinical Guideline Accuracy
Dual echocardiographic and invasive-catheterisation validation
studies show suboptimal accuracy of the current ASE/EACVI
guideline method to identify patients with raised filling-
pressures. Sato et al. demonstrated that guideline classified
moderate or severe diastolic dysfunction predicted raised
invasively measured filling-pressures with an accuracy of 66%
in an all-comers clinical population receiving echocardiography
and LHC within 24 h (1). Lancellotti et al. found an accuracy
of 56% of the guideline for predicting raised filling-pressures
in patients receiving LHC for known or suspected coronary
artery disease (14). Balaney et al. reported an accuracy of 68%
in patients attending for LHC for a variety of clinical indications
(15). Andersen et al. demonstrated accuracy of 87% in patients
having either LHC or RHC for any valid clinical reason in a
multi-institutional study (16).

It is worth noting that all of these studies excluded
patients with confounding factors before recruitment or analysis,
so they may not represent “real-world” accuracies in all-
comer populations. Unfortunately, varying methodologies of
researchers also limits our ability to compare these results.
For the invasive validation studies above, different definitions
of raised filling-pressures were used [LV-EDP > 14 mmHg
(14), LV-EDP > 15 mmHg (17), LV-EDP > 16 mmHg (1),
pre-A pressure > 12 mmHg (15, 16), PCWP > 12 mmHg
(16), and PCWP > 15 mmHg (17)]. Furthermore, whilst the
ASE/EACVI guideline recommends using an average of medial

and lateral mitral annular e
′

values to calculate an average E/e
′

ratio in the majority of pathologies (9), some institutions have
historically only acquired one or the other, or only report one
in publications, again limiting clinical applicability of results
(18, 19).

Unclassifiable and Indeterminate Diastolic
Grading
Unclassifiable diastolic function can arise from key parameters,
needed to follow the guideline decision steps, being missing. A
frequent cause of this is a suboptimal acoustic window which
precludes measurements. One author reported unclassifiable
diastolic function in 8% of consecutive echocardiograms due
to poor image quality and missing data (20), whilst another
study found this in 22% of scans (3), showing that this situation
occurs regularly.

Indeterminate diastolic grading also creates uncertainty
and may result in additional resource intensive or higher
risk investigations, like exercise echocardiography or
cardiac catheterisation. In the guideline approach, it occurs
because parameters required in the decision-steps are
contradictory/inconclusive. This too is frequent—a report
from the National Echocardiography Database of Australian (3)
found 27% of 344,646 scans were labelled as indeterminate, whilst
a study of consecutive Canadian tertiary centre echocardiograms
found 36% indeterminate (5).

Further real-world clinical data from Europe (1,000
individuals), Britain (189 individuals), Asia (57,630 individuals),
America (866 individuals), and Canada (71,727 individuals),
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show that even after excluding patients with diastology-
confounding factors, between 11 and 22% of scans are labelled
indeterminate (5, 18, 19, 21, 22). A pertinent limitation of the
literature base collectively is that a breakdown of reasons for
indeterminate grading is often not presented.

For data acquired under stricter research study protocols
or during dual invasive validation studies, the indeterminate
proportion is not too dissimilar at 7-24% (1, 14–16, 23, 24).
However, in the setting of pulmonary hypertension,
indeterminate classification may be as high as 53% (17)
suggesting that confounding factors may magnify the
indeterminate issue.

Factors Confounding Diastolic Assessment
Pulmonary hypertension (PH), arrhythmias, tachycardia,
and valvular pathologies can all complicate the assessment
of diastolic function by confounding associations between
individual diastolic parameters and filling-pressures, thus
reducing diagnostic accuracy and sometimes even precluding
the measurement of parameters altogether. Such situations
are common and were found to occur in 52% of consecutive
echocardiograms (20).

Atrial fibrillation not only causes technical problems
concerning parameter measurement, due to variability in cardiac
cycle length and potentially misleading LA dilation, but it also
prevents any meaningful late-diastolic atrial pumping of blood
into the LV. This removes key diastolic parameters like the E/A
ratio. Between 48 and 57% of HFpEF patients have confounding
atrial fibrillation (25, 26), highlighting the pressing need to
overcome this obstacle. The routine diastolic parameter E/e’
has suboptimal association with invasively measured filling-
pressures in patients with atrial fibrillation (27), whilst a range
of common diastolic parameters are known to be altered in
atrial fibrillation when compared in the same patients to sinus
rhythm (28), showing how difficult assessment is in the presence
of arrhythmias.

Pre-capillary PH, that is PH not of a left-sided aetiology,
results in left heart preload reduction, which creates a disconnect
between the intrinsic left-sided diastolic state, its filling pressures
and hence its echocardiographic parameters. It is not always clear
at the time of echocardiography whether the PH aetiology is pre-
capillary, post-capillary, or mixed, and hence diastolic assessment
is often confounded. This situation may arise regularly given
that PH occurs in 50-80% of HFpEF patients (29, 30). Leung
et al. investigated patients referred for suspected PH with
echocardiography and both LHC/RHC (17). The ASE/EACVI
algorithm accuracy for identifying raised or normal filling-
pressures was only 29 and 23%, respectively, although it must
be noted that the guideline recommends emphasis of different
parameters in situations such as PH, which are not applied in the
same algorithmic way.

Left sided valvular disease is also known to confound
traditional diastolic assessment due to variable influences upon
individual parameters. Mitral stenosis and mitral annular
calcification both reduce the e’ velocity and uncouple themeasure
(and therefore E/e’) from the underlying diastolic state and
filling-pressure (31, 32). Significant mitral regurgitation raises

the e’ velocity, again uncoupling it from the intrinsic state and
rendering it unreliable (31). Analysis of 161,468 echocardiograms
excluded from diastolic classification due to confounding factors
showed that mild or more mitral stenosis was present in 1.6% of
these scans, moderate or greater mitral annular calcification in
1.2% and more than moderate mitral regurgitation in 3.3% (33).
Given the huge quantity of echocardiograms performed annually
globally, this represents confounding of a significant number
of scans.

Confounding factors tend to be become more prevalent as
diastolic function deteriorates and often coexist with HFpEF.
For example, atrial fibrillation may develop within 4 years in a
third of HFpEF patients who originally present in sinus rhythm
(34). Echocardiographers are hence in need of techniques to
better assess diastolic function in the presence of confounding
factors, and more robust tools which reduce indeterminate and
unclassifiable situations.

MACHINE LEARNING APPLICATION TO
DIASTOLIC ASSESSMENT

Machine-Learning in Echocardiography
Machine-learning (ML), a domain of artificial intelligence
born from advanced computer science, mathematical and
statistical techniques, holds huge potential for improving
echocardiographic analysis in terms of streamlining workflow,
automating feature quantification and accurately identifying
pathology (35). The term “supervised ML” refers to algorithms
that are trained using data labelled with an important feature,
outcome, or diagnosis. Supervised ML aims to perform a
task which could be of a regression type, such as predicting
an exact value of left atrial pressure, but in cardiology is
often a classification type, for example to state whether a
particular disease is present or not. Support vector machines,
random forests, and artificial neural networks (deep-learning) are
examples of supervised ML, where heart-failure hospitalisation
or invasively measured left heart pressures could be suitable
training labels.

Unsupervised ML refers to analyses which learn from
unlabelled input data to perform the required task. Cluster
analysis is such an algorithm, which for example can group
patients with similar echocardiographic variable values to create
novel stages of a disease process or can unearth homogeneous
subgroups within a larger heterogeneous cohort. Another
class of unsupervised ML is dimensionality reduction, where
the input data is projected onto a lesser number of new
variables, thus reducing complexity, increasing interpretability
and visualisation, and making the dataset better primed for other
ML techniques. Principle component analysis is an example of
this, where original variables are mapped to a smaller number of
new “principal component” variables, which retain as much of
the original data variance as possible.

ML is thus a powerful tool able to process large high-
dimensional datasets, such as those obtained with genomics,
metabolomics, and imaging. It can learn not only from the
acquired variables presented to it, but also by discerning novel
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FIGURE 1 | Machine learning augmented diastolic function assessment with echocardiography.

features and latent data relationships (35, 36). Echocardiographic
data, with its many parameters of diastolic function, combined
with detailed clinical and demographic features is therefore
well-suited as training material for ML models which could
augment traditional diastolic assessment techniques (Figure 1).
ML is particularly well-suited to detect and describe non-linear
relationships (37), which is pertinent to diastolic assessment
where, for example, the E/A ratio has a U-shaped relationship
with dysfunction.

Much of the application of ML to echocardiography thus
far has concerned automation and accuracy improvement of
tasks such as image structure segmentation, left-sided chamber
size calculation and estimation of systolic function metrics like
ejection fraction (38–40). Prediction of the development of
relevant pathology from images, such as clinically significant
coronary artery disease, is also a focus of efforts given the
prognostic implications (41). Attention is now increasingly
being afforded to diastolic function, given the aforementioned
challenges of contemporary assessment methodology, diastolic
dysfunction prevalence, and suitability of echocardiographic data
for training ML models.

ML Integration of Diastolic Parameters
There are various applications of ML to echocardiographic
diastolic function assessment—the key illustrative studies
of which are summarised in Table 1. The first concerns the
integration of diastolic parameters, whether collectively or
alongside non-diastolic and/or non-echocardiographic variables,
with ML to assist with disease diagnosis. Hubert et al. (42)

report a new method for assessing diastolic function using
strain-volume loops (SVL) derived from speckle-tracking
strain imaging. SVL area differentiated between amyloidosis
and HFpEF with an area under the receiver operator curve
(AUC) of 0.76. However, when supervised linear discriminant
analysis ML was applied to integrate the SVL with routine
diastolic related echocardiographic parameters, the AUC
increased to 0.91, showing the added value of individual
diastolic variables.

ML’s ability to effectively combine diastolic information to
improve disease identification is also demonstrated by Sengupta
et al. (43) who used an associative memory classifier–based ML
algorithm to differentiate constrictive pericarditis from restrictive
cardiomyopathy. The AUC of 0.89 for speckle-tracking strain
variables increased to 0.96 when just four routine diastolic
pertinent variables were included in theirmodel (septal thickness,
posterior wall thickness, e’ and E/e’).

Further evidence comes from Choi et al. (44) who tested
a range of different ML algorithms for their ability to
diagnose both HFpEF and systolic HF with a range of clinical,
blood, electrocardiographic and echocardiographic variables.
The diastolic pertinent variables combined included EF, indexed
mass, septal E/e’ and tricuspid regurgitation maximum velocity
(TR-Vmax). When compared to physician diagnosis, ML
diagnosed HFpEF with 99.6% concordance.

Novel parameters of diastolic dysfunction, relevant to
breathless patients, hypertensives and those with HFpEF, have
been elucidated through ML. Sanchez-Martinez et al. (36)
obtained tissue Doppler data during exercise echocardiography,
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TABLE 1 | Summary of key publications demonstrating application of machine-learning to the echocardiographic assessment of diastolic function.

References Application category ML technique(s) Training data types Key finding(s)

Choi et al., (44) Integration of diastolic

parameters

Five techniques: “classification

and regression tree”

performed best.

1. Echocardiographic

routine variables

2. Electrocardiogram variables

3. Clinical/haematological variables

When compared to physician

diagnosis, ML diagnosed HFpEF with

99.6% concordance

Sanchez-Martinez et al., (36) Novel diastolic variable

discovery

Unsupervised agglomerative

hierarchical clustering

1. Exercise echocardiography

tissue-doppler variables

Premature fusion of early and late

diastolic waves, increased variability in

the onset of atrial contraction (a
′

wave)

and a blunted response in atrial

velocities during exercise were novel

diastolic variables for assessing HFpEF

with ML.

Segar et al., (49) Phenotyping,

prognostication

Unsupervised penalized finite

mixture model-based

clustering

1. Echocardiographic

routine variables

2. Electrocardiogram variables

3. Clinical/Haematological variables

ML derived three phenogroups of

HFpEF which varied in diastolic

dysfunction, hospitalisation, and

mortality.

Omar et al., (56) Diastolic function grading Random forest, artificial neural

network, and support vector

machine

1. Echocardiographic strain

variables

ML predicted invasively measured

PCWP ≥ 18 mmHg with AUC = 0.88.

ML correctly identified 80% of patients

with raised PCWP, with no

indeterminate classifications.

Lancaster et al., (19) Diastolic function

grading, prognostication

Unsupervised hierarchical

clustering

1. Echocardiographic routine

variables

ML found two distinct clusters in those

who would normally be ‘screened’ for

diastolic dysfunction with the guideline

(9); one cluster was mostly (72%)

guideline-normal whilst the other cluster

was mostly (also 72%)

guideline-defined dysfunction or

indeterminate grading.

Tokodi et al., (57) Diastolic function

grading, prognostication

Unsupervised topological data

analysis and clustering

1. Echocardiographic

routine variables

2. Major adverse cardiac event

hospitalisation records

Continuous ‘patient similarity networks’,

derived with ML and later split into

segments, vary in diastolic function,

mortality, and morbidity, with no

indeterminate classifications.

Cho et al., (59) Diastolic function

grading, phenotyping

Unsupervised topological data

analysis, supervised decision

tree, ensemble and deep

neural network

1. Echocardiographic routine

diastolic variables

2. Echocardiographic

strain variables

3. Vector flow mapping variables

ML produced a patient similarity

network with four regions and no

indeterminate classifications—regions

linearly progressed in terms of diastolic

variables, heart failure stages A-D and

New York Heart Association functional

classes.

Pandey et al., (60) Diastolic function

grading, phenotyping,

prognostication

Unsupervised topological data

analysis, agglomerative

hierarchical clustering and

supervised deep neural

network

1. Echocardiographic routine

diastolic variables

ML was superior to ASE 2016 diastolic

guideline grades for predicting

invasively-measured elevated left

ventricular filling pressure (AUC = 0.88

vs. 0.67). Two clusters of patients were

found—the high-risk phenogroup

showed higher rates of heart failure

hospitalization and/or death than the

low-risk phenogroup in multiple external

validation cohorts.

ML, machine-learning; HFpEF, heart failure with preserved ejection fraction; AUC, area under the receiver operator curve; PCWP, pulmonary capillary wedge pressure.

and via unsupervised agglomerative hierarchical clustering ML
identified premature fusion of early and late diastolic waves,

increased variability in the onset of atrial contraction (a
′

wave)

and a blunted response in atrial velocities (a
′

wave peak) during
exercise as novel diastolic variables for assessing those with, or at
risk of, HFpEF. The importance of these in other populations and
their potential clinical utility remains unknown.

ML for Diastolic Phenotyping and
Prognostication
Over the last 5 years or so a rapidly growing body of evidence
has accumulated where ML has been applied to phenotype
patient’s diastology based upon clinical and echocardiographic
data. Most often for this purpose, unsupervised ML cluster
analysis has been used, which groups patients in a potentially
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novel way based upon input data similarities. Commonly
the disease of interest has been HF, with different authors
finding two (45, 46), three (47–49), four (50) and even six
(51) phenogroups of HFpEF when applying ML clustering to
echocardiographic variables.

For example, Nouraei et al. (51) found six clusters of
HFpEF which varied in diastolic dysfunction, endpoints
and clinical features. Echocardiographic diastolic variables
they used included indexed LA volume, indexed mass,
E/A ratio, average E/e’, tricuspid regurgitation maximum
velocity and grade of diastolic dysfunction. Segar
et al. (49) found three phenogroups of HFpEF which
varied in diastolic dysfunction, BNP, comorbidities,
mortality and hospitalisations. E/A ratio and LA area
were among the optimal 20 variables for predicting
phenogroup membership.

Hedman et al. (45) found two HFpEF clusters based upon 32
echocardiographic variables, which was possible despite>50% of
the patients being in atrial fibrillation at the time of the scan.
This supports the notion that ML does not necessarily need
individual parameters like E/A ratio all of the time to grade
diastolic function, hence offering a more flexible approach than
the current clinical methodology.

Among acute HF admissions Horiuchi et al. (52) undertook
cluster analysis which yielded three phenogroups that varied in
diastolic function, risk of death and subsequent hospitalisation.
This highlights the ability of ML to create novel groupings,
or classifications, that are not only diagnostically important,
but that are also prognostically important. ML can provide
clinically useful results in conditions other than HF as shown
by Mishra et al. (53), who performed cluster analysis of
clinical and echocardiographic data from stable coronary
artery disease patients with seven years mean follow-up. Four
phenogroups resulted, which varied in diastolic dysfunction and
hospitalisation risk.

Unique insights about non-cardiac chronic conditions are also
possible with ML of diastolic variables. The relationship between
diastolic function and renal function, in the setting of type 2
diabetes, was the subject of investigation by Pecková et al. (54).
Unsupervised ML clustering found two subgroups of those with
impaired renal function: when there was an early diastolic tissue
velocity e’ ≤ 7.1 cm/s there was a significant correlation between
the echocardiographic ratio E/e’ and renal function, whereas
when e’ > 7.1 cm/s then there was no significant correlation.
This highlights the aforementioned potential for ML to unearth
associations whichmay not be obvious to the human eye nor with
traditional statistics.

Grading Diastolic Function With ML
Another application of ML is for grading of diastolic function.
Evidence exists suggesting that ML can overcome some
of the confounding factor, indeterminate classification and
accuracy barriers surrounding the routine clinical guideline
grading of diastolic function with echocardiography. Omar
et al. (55) investigated whether ML of LV and LA speckle-
tracking strain (STS) variables could assess LV diastolic function
independently of routine Doppler parameters. They undertook

cluster analysis using nine STS variables from 130 patients with
heart failure symptoms. This produced three clusters which
varied concordantly in diastolic Doppler indices and LAmaximal
volume, with no indeterminate classifications. The clusters were
invasively validated in a further 44 patients, where PCWP
and LV-EDP increased concordantly across their three pre-
identified clusters.

These findings show that ML can identify discrete phenotypes
of diastolic function which vary in severity, much like the current
grading system, but which do not rely upon the acquisition of
standard diastolic variables. This could greatly assist healthcare
professionals in identifying those with diastolic dysfunctionwhen
technical limitations or missing Doppler variables may preclude
following the guideline grading algorithms. How these novel ML
results relate to clinical markers of diastolic dysfunction and heart
failure, like symptoms and b-type natriuretic peptides, is unclear.

In an extension of their work, Omar et al. published further
analysis from the same patient cohort (56). Using 14 STS
parameters they trained three separate ML algorithms (random
forest, artificial neural network, and support vector machine) in a
supervised fashion to diagnose raised filling-pressures, with E/e’
or PCWP as a label and a majority voting system to decide the
outcome. Taking the best 11 STS parameters, an AUC= 0.85 was
obtained for predicting E/e’ ≥ 13 in the derivation group, with
AUC = 0.88 for predicting PCWP ≥ 18 mmHg in the invasive
validation group. ML of the echocardiographic parameters
correctly identified 80% of patients with raised PCWP, with
no indeterminate classifications, exceeding the performance of
the guideline grading algorithm in most invasive studies of its
accuracy (as per section Clinical guideline accuracy). A limitation
of this work is that referral for heart failure symptoms created a
biased population in terms of diastolic function.

Lancaster et al. (19) analysed routine diastolic parameters in
a retrospective analysis of 866 consecutive patients referred for
myocardial function assessment. Scans were grouped according
to which ASE/EACVI guideline algorithm (9) would be applied
clinically: screening or grading. Unsupervised ML cluster
analysis in the screening group found two clusters with no
indeterminate classifications. The first larger cluster (n = 460,
82% of 559) contained mostly guideline classified “normal”
diastolic function (72%), whilst the second smaller cluster
(n = 99, 18%) contained mostly guideline classified diastolic
dysfunction or “indeterminate” (72% of 99). Agreement between
ML and guideline classification of diastolic dysfunction was poor
(kappa= 0.41).

In the grading group, ML again found two clusters: one
(n= 236, 61%) comprised mainly guideline graded “mild” (44%)
and “moderate” (50%), with little “severe” (6%). In contrast,
the second (n = 151, 39%) contained mostly “moderate” (78%)
with some “severe” (15%) and infrequently “mild” (7%). Using
binary classification of mild vs. moderate/severe, the agreement
between ML and guideline grading was better than for screening
(kappa= 0.62). Given the known guideline limitations, a modest
agreement metric should not discourage the notion of a more
effective ML grading system.

This evidence leads to some interesting questions. There
was a lot of overlap between their two clusters for those who
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the guideline grades as having moderate diastolic dysfunction.
Does the traditional “moderate” category perhaps contain
two phenotypes, one with normal filling-pressures and one
with raised? Furthermore, given the convention of associating
moderate/severe with raised filling-pressures, is binary grading
(normal/raised filling-pressures) clinically more useful than the
historic four grades (normal/mild/moderate/severe)?

Additionally, the authors found their ML clusters to
show improved prognostication compared to the ASE/EACVI
guideline. Their ML diastolic dysfunction screening algorithm
better predicted event-free survival and rehospitalisations whilst
their grading algorithm was better at predicting mortality but
was indifferent to the guideline for rehospitalisations. Again,
this hints that a dichotomous classification system may better
correspond to patient outcomes.

Placing patients onto a continuous spectrum from normality
to disease, rather than aggregated into categorical boxes,
represents an achievable aspiration for ML and would facilitate a
major leap towards personalised medicine for diastology. Tokodi
et al. (57) applied “Topological Data Analysis” and unsupervised
clustering ML to the same cohort of 866 patients used by
Lancaster et al. (19). The TDA technique is well-suited for
detecting subtle geometric patterns in high dimensional data
(57, 58). The authors studied nine echocardiographic parameters
used for diastolic classification (EF, indexed LV mass, E, A, E/A,
e’, E/e’, LA indexed volume and TR velocity). Their initial analyses
created a “patient similarity network” (57) which cluster analysis
divided into four regions. These varied in cardiac structure,
LV systolic/diastolic function, mortality, morbidity, and diastolic
dysfunction risk-factors, with no indeterminate classifications.

The authors also tested the prognostic ability of their loop in
n= 96 completely new patients with two serial echocardiograms
each. A supervised random-forest ML algorithmwas trained with
the derivation cohort data with loop region as a label. In the
unseen validation cohort, the ML loop region was associated
with major adverse cardiac event hospitalisation (MACE-h).
Upon comparing the first and second echocardiograms, an
improvement to (or remaining within) a lower risk region was
associated with lower MACE-h rates. These results support the
notion that ML can identify patients with different stages of
diastolic dysfunction in a personalised fashion, with fidelity for
linking diastolic changes to outcomes. How their loop-regions
correspond to guideline diastolic grades, and to invasive filling-
pressures, would be of interest.

Whilst the other pieces of evidence concerning ML
classification of diastolic dysfunction have used either STS
or routine Doppler diastolic parameters exclusively, added
benefit may be realised by simultaneously applying ML to novel
variables emerging from the research setting. Cho et al. (59)
prospectively recruited n = 247 consecutive patients and n =

50 healthy control participants. All routine parameters needed
to perform guideline classification of LV diastolic function were
obtained, apart from lateral e’. LV and LA deformation, plus
vector flow mapping (VFM) parameters were also measured.

Topological Data Analysis produced a patient similarity
network with four regions and no indeterminate classifications—
regions linearly progressed in terms of diastolic parameters,

heart failure stages A-D and New York Heart Association
functional classes I-IV. Three supervised ML techniques were
then individually trained with the label of network region. A
Deepnet neural network performed best at classifying scans into
regions when given all 42 variables (AUC between 0.83-0.99 for
the four regions). Of the 25 most important variables, 44% were
VFM, 40% routine and only 16% STS. A high dependency of the
model upon niche VFM variables, which most cardiologists and
echocardiographers are not skilled in measuring, perhaps limits
the potential for adoption of these findings into current clinical
practice. Interestingly and reassuringly in this study though, the
regions of the patient similarity network appeared to mimic the
four-grade system of the guidelines.

Pandey et al. (60) are the first to have applied deep learning
to the assessment of diastolic function from echocardiography
data. As in the work of Tokodi et al. (57) and Cho et al.
(59), a patient similarity network was firstly derived with
Topological Data Analysis of the routine parameters needed to
follow guideline diastolic assessment. Two network regions were
defined with the help of clustering; high-risk and low-risk for
heart-failure hospitalisation or cardiac death. Supervised deep
learning with a neural network model then classified phenogroup
membership before further evaluations were undertaken in
multiple independent datasets with invasive haemodynamic,
outcome, cardiac biomarker, and exercise performance metrics.

The model of Pandey et al. (60) showed better prediction
than the guideline diastolic grades for elevated LV filling-pressure
> 15 mmHg (AUC = 0.88 vs. 0.67; p < 0.01). Tellingly, most
of the outperformance was driven by guideline “indeterminate”
subjects, as when removed the AUC were similar between
the deep-learning model and guideline method. Furthermore,
the high-risk phenogroup showed higher rates of heart failure
hospitalisation and/or death than the low-risk group in multiple
HFpEF trial datasets. As such, these results further support a
clinically meaningful augmentation of diastolic assessment with
ML of echocardiographic variables.

Requisites for ML Translation to Clinical
Practice
Several important steps are required to effectively use ML for
echocardiographic diastolic function analysis, and subsequently
translate the results into clinical practice (Figure 2). Firstly, high
quality structured datasets, with sufficient granularity to describe
the system of interest, are required. These are traditionally
obtained through clinical trials, however, clinical archives are
now often mined due to the lower resource costs and need for
large quantities of training data that reflects real life practice (38).
Care must be taken to ensure that the raw data is still acquired
following high-quality protocols, is in a suitable format for ML
ingestion (e.g., normalised, standardised), and consideration of
missing data and outliers is paramount.

Secondly, a choice of suitable ML algorithm(s) to train should
be made by considering the research aims. For classification,
where labelled data is available and the so called “ground-
truth” is known, a supervised algorithm such as a support
vector machine or decision tree would be considered. If the
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FIGURE 2 | Key steps required for using machine-learning for

echocardiographic diastolic analysis.

aim is to derive novel groupings or phenotypes, and the data
is unlabelled, then unsupervised methods such as clustering
algorithms or principal component analysis are better suited.
Some aims may require several algorithms in combination, i.e.,
an ensemble.

Training of the ML model with the data, tuning of model
hyperparameters, and performance testing form the next stage
of the process. Validation with independent external datasets
is recommended to assess performance of the model, however
investigators often do not have access to such data and hence
frequently use cross-fold validation. This entails splitting data
into sections (known as folds), using some folds to train and
some folds to test the model, before rotating the folds around the
whole dataset (61). Traditional statistical analysis methodologies
are normally applied to the resulting outputs where, for example,
well-known metrics such as sensitivity, specificity, and accuracy,
allow appreciation of performance and a comparison of models
for a classification task. These hence permit identification of the
optimal model or ensemble.

Variations in equipment, protocols, staff, and patients between
datasets may influence the performance of a model. Validation
with independent external datasets hence allows appreciation of
the real-world applicability or generalisability of the findings,
which is especially important if the training dataset was from
a clinical trial. Overfitting, where the performance of the
model is high in the training dataset but lower in other
data, suggests that the model has leant the training data
well but lacks generalisability. Underfitting can be found
where the training data was too small and/or of too low a
dimensionality to allow the model to accurately perform the

TABLE 2 | Challenges and potential benefits of machine-learning augmented

echocardiography for diastolic analysis.

Machine-Learning Augmented Echocardiography for Diastolic Analysis

Potential benefits Challenges

• Improved diagnostic accuracy

• Enhanced prognostication

• Reduced indeterminate

classifications

• Assessment in presence of

confounding factors

• Personalised diastolic assessment

• Use all scan information collected

• Discover novel diastolic parameters

• Automated assessment

• Track serial changes

• Lack of echocardiographic data with

simultaneous invasive haemodynamics

• Quality of clinical datasets for training

• Quantity of records in training datasets

• To be robust to changes in pre-load /

after-load

• “Black-box” perception

• Regulatory approval

• How to best integrate into

clinical practice?

desired task. Validation thus helps to check for over/under-
fitting of the ML model, which is particularly relevant if the
data came from a specific cohort, demographic, or location
for example.

Once a ML algorithm has been trained, tested, and validated,
and there is confidence that the model can positively impact
clinical care, regulatory approval should be sought to enable
widespread adoption or commercialisation. Regulatory approval
by the Food and Drug Administration in America, or with
the Conformité Européene (CE) mark in Europe has been
increasingly sought in recent years for devices incorporating
ML (62). Given the potential impact upon patient care, ML
algorithms should be certified as a medical device to make
sure that they are safe and fit for purpose, and to provide
reassurance of quality to purchasers, users, and patients. The
risk category being assessed under by the regulatory body, and
transparency of the submitted information, are the subject of
debate (63).

The final step of introducing a produced ML tool into
clinical care then requires some more considerations. Regular
audit must be undertaken to ensure safety and effectiveness of
decisions made as a result of the tool introduction. The outcome
data produced by the ML tool, such as a predicted diagnosis,
should be regularly compared to a reference standard or clinical
diagnosis. The ML output(s) could then feedback into the entire
development cycle of another ML tool, because of this potential
alteration in patient care.

POTENTIAL BENEFITS, CHALLENGES,
AND FUTURE DIRECTIONS

With the applications of ML augmented echocardiography
now stepping out of the shadows for diastolic assessment,
a number of potential benefits and challenges can be
seen (Table 2). From the healthcare system perspective,
improved prognostication of cardiology patients with
ML may facilitate efficient resource allocation, meaning
that the right care is available to the right patient at the
right time.
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In the clinical echocardiographic laboratory, healthcare staff
may benefit from automated assessment tools which could save
them time, reduce inter- and intra-rater variability and allow for
subtle serial changes to be monitored. ML may be able to negate
the influence of confounding factors and reduce the impact of
a missing routine diastolic parameter, creating a more robust
and widely applicable technique. Use could also be made of all
the rich detail collected in an echocardiogram, which alongside
detection of latent data relationships and novel parameters could
vastly improve diagnostic accuracy for diastolic dysfunction. All
of these aspects are likely to be the focus of future research.

From the perspective of the physician, a personalised diastolic
assessment with ML would allow tailored investigations and
patient management. A reduction or complete elimination of
indeterminate diastolic grading would reduce clinical uncertainty
and lessen the need for additional complex or invasive
investigations, such as cardiac catheterisation. This would also
facilitate better decision making in high-risk groups where
diastolic status may alter risk-benefit balances of interventions.

Several challenges are apparent though for ML augmented
diastolic assessment. Firstly, the thirst of ML algorithms for
high-quality, large-volume, high-dimensionality training data is
a problem in a world where healthcare systems are still struggling
to digitalise and integrate electronic systems. Significant progress
has been achieved thus far with modest sample sizes, but a truly
“big-data” approach to diastolic assessment seems warranted
to validate existing findings, to unlock new insights, and to
increase the clinical applicability of results. Limitations of the
current evidence are that often patients with missing data, or
indeterminate guideline classification, are excluded from studies.
Where these patients fit on the spectrum of diastology would be
of great interest given their prevalence.

Secondly, a lack of direct invasively measured diastolic data,
to use as a “ground truth,” also limits ML research about diastolic
function in many populations, as patients simply do not receive
such a test routinely. Given ethical and resource considerations,
it is unlikely that this can be overcome. A third challenge is
that a ML diastolic assessment tool would require resilience
to changes in preload, afterload, and heart rate, etc. Given
oscillatory patterns of, for example, de-compensated heart failure

and subsequent treatment, the field should aim to not only
categorise diastolic dysfunction, but also to assign a personalised
“live” diastolic status, which could then be used to track temporal
changes in diastolic function. This would greatly advance the field
towards precise and personalised medicine.

Fourthly, a perception that ML represents a “black box”
technology, where healthcare professionals do not understand
how it is arriving at a decision, is also a problem for
ML augmented echocardiography. Input parameter feature
weightings, and heat maps of image areas being used by the
machine, offer ways for researchers to dispel this perception.
Finally, regulatory approval also acts as a potential obstacle for
ML innovators.

The field of echocardiography is moving towards a more
automated, data-driven, and analytical approach. Diastolic
function is not something that can be readily eyeballed—it needs
expert clinical insight to meet rigorous science to improve its
assessment. How to best integrate a ML diastolic assessment tool
into clinical practice should form the basis of future debate.

CONCLUSIONS

Evidence shows that ML can use diastolic parameters to
differentiate diseases, improve the accuracy of disease diagnoses,
and identify diastolic phenotypes within heterogeneous
conditions such as HFpEF. There is also evidence to suggest
that ML can improve identification of raised filling-pressures,
classify or grade diastolic function in novel ways, and improve
upon the prognostic ability of the current diastolic clinical
standard. Although there are numerous potential benefits,
many challenges stand in the way of progress for the field.
ML augmented echocardiography for diastolic assessment is
here, but real-world applicability and its relationship to clinical
decision making remains to be seen.
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Heart failure is a major public health problem, which is associated with significant

mortality, morbidity, and healthcare expenditures. A substantial amount of the morbidity

is attributed to volume overload, for which loop diuretics are a mandatory treatment.

However, the variability in response to diuretics and development of diuretic resistance

adversely affect the clinical outcomes. Morevoer, there exists a marked intra- and

inter-patient variability in response to diuretics that affects the clinical course and

related adverse outcomes. In the present article, we review the mechanisms underlying

the development of diuretic resistance. The role of the autonomic nervous system

and chronobiology in the pathogenesis of congestive heart failure and response

to therapy are also discussed. Establishing a novel model for overcoming diuretic

resistance is presented based on a patient-tailored variability and chronotherapy-guided

machine learning algorithm that comprises clinical, laboratory, and sensor-derived inputs,

including inputs from pulmonary artery measurements. Inter- and intra-patient signatures

of variabilities, alterations of biological clock, and autonomic nervous system responses

are embedded into the algorithm; thus, it may enable a tailored dose regimen in a

continuous manner that accommodates the highly dynamic complex system.

Keywords: heart failure, diuretic resistance, chronobiology, variability, digital systems

INTRODUCTION

Heart failure (HF) is a staggering clinical and public health problem with high morbidity and
mortality burden, affecting more than 6 million individuals in the United States where ∼670,000
individuals are diagnosed with HF each year (1). Patients with HF are frequently hospitalized with
HF exacerbation and have reduced quality of life and increased mortality rates. HF exacerbation is
the leading cause of hospitalization among patients aged >65 years (2).

HF is associated with high rates of morbidity and reduced quality of life which are related
to symptoms of volume overload resulting from sodium retention and volume overload. Loop
diuretics are commopnly used for the teratment of volume overload resulting from HF. There
is a marked inter and intra-patient variability that characterizes the response to diuretics at
different stages. These variations may alter patients’ clinical course and adversely affect their clinical
outcomes (3, 4). A diminished response to loop diuretics is a well-recognized clinical challenge,
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which limits their clinical use (5, 6). Current methods for
dose adjustment are somewhat arbitrary and do not take
into consideration patients’ resistance to diuretics (6). A
continuous increase in the diuretic doses may further worsen
diuretic resistance.

In the present article, we review the common mechanisms
underlying the development of diuretic resistance and discuss
current methods to overcome this devastating phenomenon. The
role of the autonomic nervous system (ANS) and chronobiology
in the pathogenesis of congestive heart failure (CHF) are
discussed. The implementation of a patient-tailored variability
and chronotherapy-guided algorithm for the treatment of these
patients is presented as a potential strategy for alleviating drug
resistance and improving their long-term beneficial effects.

DIURETIC RESISTANCE IS A MAJOR
DIFFICULTY IN THE TREATMENT OF HF

The effects of loop diuretics on systemic and renal hemodynamics
are driven by multiple factors, including the dose, route of
administration, concomitant diseases, and medications and
chronicity of their use (7). Furosemide is a potent prototypic
loop diuretic that exerts its effect by binding to the translocation
pocket at the extracellular surface of sodium-potassium-chloride
symporters (NKCCs). It blocks ion transport directly by
inhibiting NKCCs at the apical surface of the thick ascending
loop of Henle (7, 8). The half-life of loop diuretics is generally
shorter than typical dosing intervals of twice daily. Additionally,
as they inhibit solute transport at only a single segment out
of the numerous sodium-reabsorbing nephron sections, their
impacts on extracellular fluid volume are multifaceted. Loop
diuretics cause renal vasodilation through direct vascular dilation
of the afferent arterioles and inhibition of the tubuloglomerular
feedback (9).

Definition of Diuretic Resistance
Diuretic resistance is defined as the failure to achieve effective
decongestion with low urine sodium concentration despite the
use of appropriate or escalating diuretic doses (10). When
diuretic resistance develops, the response to diretics is reduced
before the achieving the goal of treatment, leading to poor

Abbreviations: CHF, congestive heart failure; HF, heart failure; ANS, autonomic
nervous system; NKCC, sodium-potassium-chloride symporter; RASS, renin-
angiotensin-aldosterone system; CKD, chronic kidney disease; OAT, organic anion
transporter; SNS, sympathetic nervous system; ADHF, acute decompensated
heart failure; PA, pulmonary artery; QALY, quality-adjusted life years; SCN,
suprachiasmatic nucleus; CLOCK, circadian locomotor output cycle kaput;
BMAL1, brain and muscle ARNT-like 1; Per, period; Cry, cryptochrome; BP,
blood pressure; HR, heart rate; L/D, light/dark; HFrEF. heart failure with reduced
ejection fraction; MI, myocardial infarction; SCD, sudden cardiac death; HRV,
heart rate variability; MAP, mean arterial pressure; ACEi, angiotensin converting
enzyme inhibitors; Klf15, kruppel-like factor 15; SNS, sympathetic nervous
system; LF, low frequency; HIF, high frequency; BRS, baroreflex sensitivity; OSA,
obstructive sleep apnea; CVHR, cyclic variation of heart rate; FMD, flow-mediated
dilation; SA, sleep apnea; LVAD, left ventricular assist device; SDANN, standard
deviation of averages of normal R-R intervals; AT1R, angiotensin II type 1 receptor;
RA, renin activity; Una, fe, fractional excretion of sodium in the urine; UK,
fe, fractional excretion of potassium in the urine; CANA, cardiac autonomous
nervous activity; CSA, central sleep apnea.

prognosis. Resistance (or tolerance) to diuretic therapy can
develop over time, making volume reduction in HF more
challenging. There are two forms of diuretic tolerance, namely,
short- and long-term resistance. Short-term tolerance occurs
when the effect of the diuretic is weakened after the first
dose. It may be prevented by reestablishing diuretic-induced
loss of volume. Long-term tolerance is observed following
administration of a loop diuretic for prolonged periods of time,
which is associated with sodium reabsorption at the distal
sites (10).

Factor That Are Associated With Diuretic
Resistance
Multiple factors can explain non-responsiveness to diuretics,
including inadequate doses, lack of adherence, advanced
age, high sodium intake, impaired secretion into the tubule
lumen, chronic kidney disease (CKD), gut edema, use of
non-steroidal anti-inflammatory agents, hypoproteinemia,
hypotension, nephrotic syndrome, reduced renal blood flow, and
neurohormonal activation (7, 11).

Tolerance at the receptor- or post-receptor points may
be associated with diuretic tolerance or resistance (11). In
the circulation, loop diuretics are bound to various proteins
(mainly albumin) and secreted into the tubules by the organic
anion transporters (OAT1 and OAT2) located at the basolateral
membrane andmultidrug resistant protein-4 located at the apical
membrane. As diuretics compete with chloride for binding to
NKCC2, increased salt absorption in the proximal tubules limits
the diuretic-sensitive transport (7).

In patients with HF, RAAS activation results in sodium
retention. These patients may manifet with renal dysfunction
assciated with additional activation of neurohormones. As HF
progresses, persistent activation of these neurohormonal systems
enhances sodium retention and contributes to the development
of diuretic resistance (12–14). Worsening renal function in
HF reduces the usefulness of loop diuretics by reducing their
secretion into the renal tubules, a process mediated by increased
organic ions competing for organic ion transporter binding (15).

Compensatory Responses to Diuretics
Compensatory responses to diuretics may increase drug
resistance. The diuretic-associated increase of the plasma
renin activity promotes angiotensin II while blocking the
tubuloglomerular feedback for increasing the glomerular
filtration rate (16). Angiotensin II stimulates proximal tubular
sodium reabsorption, thereby reducing distal sodium delivery
and leading to diuretic resistance (11). Elevated plasma levels of
both angiotensin II and aldosterone activate sodium transporters
in the distal nephron (17). Post-diuretic sodium retaining may
occur once the loop diuretic concentration drops below a certain
threshold in the renal tubules. Sodium reabsorption is increased
in the distal tubules and collecting ducts. This effect counters the
loop diuretic effects (14). Adding of a second or third daily dose
of loop diuretic may overcome this effect but may be associated
with further long-term tolerance.
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Distal Nephron Remodeling
An additional contributing factor to diuretic resistance is
the “braking phenomenon.” Chronic use of high dosages
of loop diuretics leads to distal nephron remodeling, which
involves hypertrophy and hyperplasia of the distal convoluted
and connecting tubules and the collecting duct. This process
augments the reabsorption capacity of the distal nephron
and results in enhanced sodium reabsorption that negates the
anticipated beneficial effects of these diuretics (18–20). This
process is partially mediated by the RAAS (21) and activation of
the sympathetic nervous system (SNS) (22). Adding a thiazide
diuretic that blocks sodium reabsorption in the distal tubules
This occurrence can overcome this effect; thus, it augments
the net loss of sodium. Activation of baroreceptors in the
arterial system triggers the SNS and RAAS, nephron remodeling,
and extracellular volume depletion, thereby resulting in sodium
retention (23). Extracellular volume contraction, which occurs
with prolonged diuretic use in the setting of persistent
congestion, contributes to the development of drug resistance (7).

CURRENT MEASURES FOR OVERCOMING
DIURETIC RESISTANCE

Several pharmacologic and non-pharmacologic interventions are
being used in an attempt to improve the diuretic response,
including intravenous administration, increasing diuretic doses,
and changing diuretic agents (7, 11). Several of these are directly
or indirectly related to continuous daily administration of similar
or higher dosages of diuretics. However, despite the prevalence
of diuretic resistance, there remains a paucity of clinical trials
to provide evidence on how to mitigate the resistance and guide
therapy when patients develop this phenomenon (24).

Increasing dosages of loop diuretics may lead to a plateau
in their effect, suggesting that raising doses beyond a “ceiling”
will not further augment response (7). High diuretic doses,
which stimulate the RAAS and SNS, are associated with worse
outcomes, raising the possibility that they should be avoided
in patients with severe decompensated HF (25). However, the
Diuretic Optimization Strategies Evaluation study demonstrated
that patients with acute decompensated HF on higher diuretic
doses showed more favorable outcomes, including significant
relief of dyspnea, reduction in weight, and higher net fluid
loss, although they had a higher incidence of worsening renal
function. Notably, the initial elevation in serum creatinine levels
was associated with improved clinical outcomes (26).

Combined diuretic therapy is increasingly used to overcome
high sodium retention. A common way to overcome diuretic
resistance is to combine a diuretic with other medications
including mineralocorticoid receptor antagonists, acetazolamide,
or metolazone (6). The sequential nephron blockade by
combining loop and thiazide diuretics in patients with
inadequate response to optimal doses of loop diuretics was
reportedly effective in some studies (27). Dopamine can improve
renal perfusion and exert a diuretic effect (28). Hypertonic saline
transiently increases the intravascular volume and improves
sodium delivery to the tubules of the nephron (28). Additionally,

metalazone (zaroxylin) in combination with loop diuretics or
ultrafiltration is also being used in patients with resistance
(29, 30).

The CardioMEMS HF System was designed for monitoring
and measuring pulmonary artery (PA) pressure in patients
with CHF. It transmits daily sensor readings from patients to
their healthcare providers, allowing for personalized diuretic
management in order to reduce the likelihood of hospitalization.
In a retrospective analysis, PA pressure-guided management
reduced HF hospitalization by 43% and mortality by 57% (31–
33). The CHAMPION trial was a controlled, single-blind study
of 550 patients with New York Heart Association class III HF
and an HF hospitalization in the previous year. After 6 months
of follow-up, the PA sensor-actively monitored patients who
experienced an increased frequency of medication adjustments,
higher dosages of diuretics, and diuretics intensification (34).
Compared with the standard of care, its use was cost-effective,
with an incremental cost-effectiveness ratio per quality-adjusted
life year (31). However, dose adjusting is marginally arbitrary and
does not consider patients developing resistance to diuretics.

Taken together, similar mechanisms are responsible for both
the resistance and adaptation to diuretics. Several measures taken
for overcoming diuretic resistance may further enhance the
vicious cycle of inducing resistance and jeopardizing the clinical
condition. Continuous administration on a regular basis of the
same or higher dosages of diuretics is associated with a vicious
cycle of actually augmenting the resistance.

DISRUPTION OF THE CIRCADIAN
RHYTHM IN HF

Chronobiology describes the control of multiple biological
functions by the circadian rhythm. Many cellular and
physiological processes exhibit a circadian rhythm, oscillating
approximately once in 24 h. These endogenous cycles enable
the organism to optimally arrange its patterns of behavior in
synchronization with the predictable changes in environmental
conditions (35, 36). The central pacemaker is loated in the
suprachiasmatic nuclei (SCN) and is synchronized with multiple
peripheral clocks in various cells (37). In the cellular level,
four genes—circadian locomotor output cycle kaput (clock),
brain and muscle ARNT-like 1 (bmal1), period 1 and 2 (Per1,2),
and Cryptochrome (Cry)—form a transcriptions-translation
feedback loop that cycles approximately every 24 h, providing
the periodicity of the cellular circadian rhythm.

Daily Oscillations in Heart and Blood
Vessels
The heart and blood vessels are characterized by marked
daily oscillations in gene expression, metabolism, growth, and
remodeling. The circadian clocks within the cardiomyocytes are
linked to the regulation of myocardial function and metabolism
(38). A proper response of the heart to its diurnal environment
is mandatory for survival. It involves response to changes
in workload, nutrients, neurohumoral stimuli, and metabolic
alterations. Blood pressure (BP), heart rate (HR), coagulation
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activity, and endothelial function manifest in a day/night
pattern (39).

Chrono Disruption of the Circadian Rhythm
Chronodisruption is an alteration of circadian rhythms
associated with diverse diseases, including cardiovascular
diseases and malignancy. Night-shift workers, who are exposed
to artificial light disrupting the endogenous circadian rhythm,
have a higher risk of all-cause and cardiovascular mortality (40).
Obesity, high triglycerides, and low high-density lipoprotein
cholesterol levels are more common in night-shift workers (41).
Brachial artery endothelial function is determined as the reaction
to reactive hyperemia (flow-mediated dilation [FMD]) and was
irregular in residents following a 24-h shift, including night
duty. A marked decrease in FMD was noted in physicians with a
history of night-shift duty and in those reporting fewer sleeping
hours during the shift (42).

Chronodisruption was described with acute and chronic
cardiovascular events. Intramyocellular circadian clock and
diurnal variations in fatty acid responsiveness were noted in
the rat cardiomyocytes. Reversal of the 12-h/12-h light/dark
(L/D) cycle led to re-entrainment of the circadian clock in
the heart. Disruption of the circadian clock within the heart
via the expression of a dominant negative CLOCK mutant
lowered the promotion of myocardial fatty acid-responsive
genes during fasting (43). Under pathologic conditions, the
endogenous circadian phase corresponds to 10 a.m., the peak
time for adverse cardiac events. Diurnal rhythm disruption
after myocardial infarction (MI) hinders cardiac healing and
exacerbates pathological cardiac remodeling. In a mouse model
of MI, a short-term diurnal disruption adversely affected
metabolism while altering innate immune responses shown
by differences in cytokines, cardiac myeloperoxidase, and
macrophage and neutrophil infiltration. Clock mutant mice
showed changed infiltration after MI, which is linked to
the innate immune responses required for scar formation
and associated with reduced blood vessel formation in the
infarct region, increased left ventricular dilation, and infarct
expansion (44).

In an animal study, the likelihood of ventricular fibrillation
(VF) was assessed by the time of the day during which acute
coronary failure occurred. A coronary failure between 15.30
and 18.00 led to irreversible VF and death while modeling a
similar condition from 11.00 to 15.00 was not associated with VF
(45). In a study of 268 consecutive healthy subjects, FMD was
diminished in early compared to late morning post-waking hours
and predicted long-term cardiovascular events in healthy subjects
with no known heart disease (46). FMD of the brachial artery
analyzed three times a day (6:30 a.m., 11:30 a.m., and 9 p.m.)
in patients with idiopathic dilated cardiomyopathy was lower
during the day, manifesting reduction of the normal circadian
variation in endothelial function (47).

A meta-analysis encompassing more than 2 million people,
described a moderately increased risk for MI and ischemic
stroke among shift workers (48). Another chronobiological
characteristic of cardiovascular diseases is exhibited in the
varying prevalence of adverse cardiovascular events throughout

the day. MI, ischemic strokes, and sudden cardiac death (SCD)
have higher incidences in the morning hours, corresponding
with an increase in the sympathetic tone, peripheral arteries
resistance, platelet aggregability, decreased parasympathetic tone,
and endothelial function (39).

Chrono Disruption Is Associated With
Heart Failure
Disruption of the circadian rhythm contributes to the
pathogenesis of HF (49). In HF, the dynamics are associated with
an increased parameter of the scaling exponent of the inter-beat
interval. In these patients, the peak in the scaling exponent at
the circadian phase corresponds to the time of increased heart
vulnerability. The endogenous circadian-mediated effects on
cardiac regulation are linked to a day/night pattern of adverse
cardiac events (50). The heart rate variability (HRV) and mean
arterial pressure (MAP) variability were decreased in rats
with HF; this decrease was accompanied by disturbances in
the normal circadian pattern of HR and BP (51). Differences
were demonstrated in the circadian outcome of angiotensin
converting enzyme inhibitors (ACEis) on BP in rats with
HF (52). The circadian clock contributes to regulation of the
mitochondrial metabolism andmaintaining the cardiac function.
Ablation of the Bmal1circadian clock gene is associated with
mitochondrial defects in the heart including morphological
changes and reduced enzymatic activities within the respiratory
complex, reduced expression of cardiac genes associated with
the tricarboxylic acid cycle, fatty acid oxidative pathway, and
mitochondrial respiratory chain. These changes were associated
with the development of HF. Similar changes were noted in mice
exposed to the chronic reversal of the L/D cycle and disrupted
circadian rhythmicity (53). In a study of 1,401 asymptomatic
subjects in the Cardiovascular Health Study with interpretable
24-h baseline Holter recordings, irregular HRV parameters
were related with CHF. Combined with higher incidence of
PVCs, HRV enhanced the predictive power of the Health
ABC score (54). Autonomic dysfunction quantified HRV
parameters characterized subjects with no benefits from cardiac
resynchronization treatment, suggesting that pre-implant HRV
study helps in improving qualifications for this treatment. In
a study of 719 subjects with normal sinus rhythm enrolled in
MADIT-CRT (Multicenter Automatic Defibrillator Implantation
Trial-Cardiac Resynchronization Therapy), followed for over 3
years, 124 patients reached the primary end point of heart failure
or death and 47 died. In multivariate analysis, low SDNN or
low VLF was related to a significantly increased risk of HF and
mortality (55).

A blunt BP circadian rhythm in HF was documented in
humans and linked to the disappearance of circadian variation
in atrial natriuretic peptide (56) and in normotensive patients,
with the degree of left ventricle function impairment (57). A
narrower decrease in the nocturnal systolic BP correlated with a
lower ejection fraction. Respiratory function also varies between
the light and dark periods, and these L/D variations were shown
in HF. In an animal model, HF was associated with blunted
L/D differences in resting and chemoreflex breathing, suggesting
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that the HF disrupts cardiovascular and respiratory circadian
rhythms. Cyclic variation of heart rate (CVHR) is linked
with sleep-disordered breathing reflecting cardiac autonomic
responses to apneic/hypoxic stress. Blunted CVHR in a night-
time Holter ECG predicts increased mortality risk in patients
with post-MI, end-stage renal disease, and HF. In a study of
717 patients after MI, decreased cyclic variation amplitude was a
predictor of mortality (58). Diurnal variations in respiration and
arterial BP were abolished in HF with reduced ejection fraction
(HFrEF) (59). Circadian oscillations in calcineurin-dependent
activities in the left ventricle of normal mice showed that
calcineurin-dependent transcript levels and nuclear occupancy of
the nuclear factor of activated T-cells fluctuate over the course
of a day, peaking in the morning when mice enter a period of
rest (60).

SCD, a prominent cause of death in patients with HF,
exhibits diurnal variation and is linked to irregularities in
the duration (short or long QT syndromes and HF) or
pattern (Brugada’s syndrome) of myocardial repolarization.
Cardiac ion-channel expression and QT-interval duration,
which reflects myocardial repolarization, manifest endogenous
circadian rhythmicity controlled by a clock-dependent oscillator,
Krüppel-like factor 15 (Klf15). Klf15 transcriptionally regulates
a rhythmic expression of the Kv channel-interacting protein
2, which is necessary for the transient outward potassium
current (61).

Overall, these data suggest a possible association between HF
and alteration in the normal circadian rhythms, implying that
novel treatment strategies for HF must take into consideration
the timing of treatment administration, adjusting it to the
individualized circadian rhythm of patients.

THE AUTONOMIC NERVOUS SYSTEM
REGULATES THE CIRCADIAN
DISRUPTION IN HF

The ANS underlie some mechanisms associated with CHF. The
sympathetic nerve fibers travel alongside the coronary arteries
and terminate in the sub-epicardium. Its activation results in
accelerated HR, augmented contractility, and increased afterload.
In contrast, the parasympathetic system, which branches from
the vagal nerve to the sub-endocardium, slows the HR (62).
Chronic sympathetic overactivation was described in HF and
diuretic resistance and is related to components of the metabolic
syndrome, such as obesity, dyslipidemia, BP elevation, and
reduced fasting glucose with hyperinsulinemia (63, 64).

Figure 1 describes the interfaces between the circadian
rhythm and the autonomic nervous system, contributing to the
pathogenesis of congestive heart failure.

The Role of Sodium in Circadian Rhythm
Dietary sodium affects the circadian oscillators downstream
of the master light-dark-adjusted pacemaker in the SCN. The
chronobiology of renin activity (RA), BP, and fractional excretion
of renal sodium (UFENa) and potassium (UFEK) handling in
relation to meal timing was studied in dogs. Data showed that

RA, UFENa, UFEK, diastolic and systolic BP fluctuate with a
circadian periodicity in dogs fed at 07:00 h with a regular diet.
Modeling using a fixed 24-h period reflected the variations of
UFEK, RA, and BP, and cyclic changes in UFENa suggested a
postprandial sodium excretion and a monotonous decay. A delay
in the feeding schedule by 6- or 12-h was associated with a shift of
comparable magnitude in the rhythm of these biomarkers (65).

Diurnal Rhythm of the ANS Affect Cardiac
Parameters
The diurnal rhythm in the standard deviation of the averages of
normal R-R intervals (SDANN) and LF/HIF ratio is disrupted in
MI. L/D differences in the LF/HIF ratio change from negative to
positive values along with a decrease in SDANN, HR, LF/HIF
ratio in the dark phase, and elevated plasma norepinephrine
levels (66). These data suggest that the timing of the disturbance
of diurnal rhythm in SDANN and the LF/HIF ratio are
different from those in HR and in the plasma norepinephrine
levels (67). In patients with HF, arterial underfilling caused
by decreased cardiac output or peripheral arterial vasodilation
activates the SNS, RAAS, and non-osmotic vasopressin release
(68). Excess activation of the SNS, which aims to maintain
cardiac output, has deleterious effects on the heart in the long
run. Activation of the SNS in HF results from interactions
between the appropriate compensatory reflexes to pathologic
excitatory stimuli associated with the depressed systolic function
and additional comorbidities. These interactions elicit adrenergic
activation in excess to homeostatic requirements (62). To
counteract the increased SNS activation, vagal nerve stimulation
was suggested as a novel strategy. However, although profound
anti-arrhythmic effects were exerted and cardiac function in HF
models was improved (69), this method failed to reducemortality
and disease progression in HFrEF patients in the INOVATE-HF
trail (70).

The Circadian Rhythm of ANS Affects
Heart Rate and Blood Pressure
The circadian pattern of HR and BP, which are affected by the
ANS, is disrupted in patients with HF. In an animal model of MI,
the association between vagal nerve activity and stellate ganglion
nerve activity was documented. A circadian variation following
MI reached a peak at a time when sympathetic activation was
the uppermost and vagal activity was the lowest (71). The
circadian and short-term regulation of BP and HR were shown
to be preserved in young, non-failing beta1-transgenic mice,
suggesting that the loss of blood pressure and HRV in HF
cannot be attributed to over activity of the sympathetic system.
However, it reveals loss of adrenergic responsiveness to changes
in the activity of the ANS (72). Angiotensin II participates
in abnormal autonomic cardiovascular control, which occurs
during HF progression. In a model of post-MI, HR increased
with the severity of HF, loss of circadian HR, MAP, and BRS
rhythms were noted, along with an upregulation in the central
angiotensin II type 1 receptors (AT1R) and gp91 proteins in the
brainstem. Losartan reduced AT1R expression in daytime but
failed to restore circadian variability (73). HF is associated with
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FIGURE 1 | The interfaces between the circadian rhythm and the autonomic nervous system, contributing to the pathogenesis of congestive heart failure.

increased LF constituents of diastolic BP variability, an index
of sympathetic tone, during the awakening period compared
to during the sleeping period. Amiodarone suppressed this
transient increase in LF power during the awakening period
(74). Circadian changes in ANS function were also observed at
the molecular level. Rats with coronary artery ligation-induced
HF showed a shift in the adrenoreceptor beta 1:beta 2 ratio
toward beta 2 and decreased beta 1 adrenergic stimulation
by adenylyl cyclase. These findings were in association with
disturbed circadian patterns in BP and HR (75).

Heart Rate Variability as a Measure of the
Association Between ANS and Heart
Failure
HRV is a method to visualize the link between ANS and
circadian dysfunction to the development of HF. It measures
irregularity of intervals between adjacent heartbeats, representing
a neurocardiac function and ANS regulation state (76).
Normal HRV presents a circadian pattern with parasympathetic
parameters peaking at night-time and shows sleep-stage
dependence (77, 78). HRV alteration is associated with numerous
disease states and correlates with cardiovascular and all-cause
mortality, mainly in patients with established cardiovascular
disease (79). A decrease in the HRVwas associated with increased
mortality and was a better predictor of death than conventional
clinical management (80). HRV parameters are altered in both
animal models of HF and in humans. In a study determining
autonomic parameters 3 and 7 weeks after left coronary artery
ligation in rats, LF and HF parameters of HRV were reduced

in CHF 3 weeks after infarction, in addition to the prolonged
loss of baroreflex sensitivity (BRS). Correlation between HRV
and MAP variability in the LF domain was reduced in HF
(81). HRV and BRS are severely affected in patients with ADHF
and improve with clinical stabilization (77–80, 82). In addition,
HRV parameters are abnormal in stable patients with HF.
HRV parameters were linked to the incidence of CHF in 1,401
asymptomatic, older adults (54). Increased sympathetic activity
in CHF is associated with obstructive and central sleep apnea
(SA). In a study of patients with CHF and SA, a lowered cardiac
autonomic modulation across the 24-h period was documented.
The RR variance, LF, HIF parameters of HRV, and spontaneous
BRS were reduced in subjects with SA. The HIF power, a marker
of vagal activity, elevated during sleep in patients without SA,
whereas it did not alter across the 24-h period in subjects
with SA. In a study of 167 patients with CHF with central
sleep apnea (CSA) and obstructive sleep apnea (OSA), morning
premature ventricular contractions and non-sustained VT were
more frequent in CSA. CSA was linked to the occurrence of VT
irrespective of sleep/wake status (83–85).

Patients with CHF manifested with lower RR interval
complexity and loss of its circadian rhythm, along with reduced
frequency-domain RR interval variability and its irregular
circadian rhythm (86). The circadian variability of RR and QT
intervals is altered in CHF due to neurohumoral activation and
functional and structural remodeling of the heart. In a study of
121 patients with HF in the sinus rhythm, all subjects showed
marked circadian rhythms in the QT, RR, and QTc intervals and
the QT/RR slope by cosine-curve fitting. The increased HR was
associated with longer QT interval, and steeper QT/RR slope,
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lowered circadian variability of QT interval and later maximum
RR interval were related to increased cardiac mortality (87).

As sympathetic activation underlies the pathogenesis of HF
and diuretic resistance, the selective reduction of the renal
afferent and sympathetic efferent nerves was proposed to
improve diuretic resistance, CHF, and cardio renal disorders
(63). Treatments directed against neurohormonal compensatory
mechanisms, such as losartan, spironolactone, and beta-blockers,
resulted in an improved HRV profile (88, 89). The favorable effect
of spironolactone on the ANS showed a circadian pattern and
was limited to the morning hours. Patients with decompensated
HF on beta-blockers had a higher power in all HRV frequency
bands but were significantly associated with low circulating
norepinephrine levels (90). Altering effect of these drugs on the
circadian pattern of HRV is known in ischemic heart disease (91).

Implantation of a left ventricular assist device (LVAD) can
increase the reduced HRV, which correlates with the degree of
ventricular dysfunction. HRV was lower in LVAD patients early
after device implantation, suggesting that cardiac dysautonomia
is still evident in the first 2 months (92). The algorithm provided
by LVADs shows circadian variation. In a study of 18 patients
with fixed rotation speed continuous-flow LVAD support, the
motor current was lower during the night and higher during the
day (93).

Despite these supportive data, other studies failed to support
circadian variation in patients with HF. Analysis of data from
the PRAISE trial showed that SCD in HF did not show an a.m.
peak, signifying that circadian sympathetic activation did not
affect these events (94). A study of eight patients with mild-
to-moderate HF showed that circadian variation of the cardiac
autonomic nervous activity (CANA) was preserved. The CANA
was affected by patient position and the time of day. Circadian
variation was noted in the recumbent position. The HIF power
was lower and LF/HIF was higher in the morning than at
night (95).

Overall, the currently available data support the role of the
ANS in regulating the heart function under circadian rhythm
in health and disease. As many of the effective treatments
in HF aim to antagonize the neurohormonal compensatory
mechanisms, a personalized approach based on understanding
the ANS characteristics and circadian rhythm changes may
confer clinical benefits.

CHRONOTHERAPY-BASED THERAPY FOR
CHF

Chronobiology impacts the effectiveness and toxicity of drugs
and is linked to the pharmacodynamics and pharmacokinetics of
medications. Chronotherapy is based on linking the absorption,
metabolism, and elimination of medications to the circadian
patterns (96) and involves the use of a specific drug at
the most optimal time, pattern, and dose possible, with the
goal of maximizing efficacy and minimizing toxicity. The
ideal timing is based on circadian-rhythm-dependent biological
systems, which alter drugs bioavailability, pharmacokinetics, and
pharmacodynamics (97, 98). Identification of a rhythmic marker

for selecting the dosing time has been suggested to improve the
response to drugs (99).

Table 1 summarizes examples of the linkage between
administration time and effect in cardiovascular drugs.

Chronotherapeutic benefits of antihypertensive medications
have been demonstrated (107). A study of 19,084 hypertensive
patients treated with BP-lowering drugs at bedtime, as
opposed to upon wakening, reported improved BP control and
cardiovascular outcomes, including MI, HF, and cardiovascular
death (101). Low-dose aspirin administered at bedtime compared
with during the awakening hours can improve platelet inhibition
during the critical morning hours (102). Several studies have
supported the chronotherapeutic attributes of loop diuretics.
Administration of furosemide to rats at 10 a.m. showed greater
urine volume and urinary excretion of sodium and furosemide
than that at 10 p.m. A correlation between the urinary output
of furosemide and urinary volume of sodium, representing the
known mechanism of furosemide, has been described (104).

Pretreatment with clorgyline, a monoamine-oxidase inhibitor
that alters circadian variations in the SNS, diminished the
variability in furosemide effect (108). Pretreatment with
propranolol also caused a loss of variability, while atenolol
did not cause the same effect, suggesting the involvement of
the beta2-adrenergic receptor (109). In two additional studies,
continuous infusion of norepinephrine and denervation of the
kidneys caused the same influence of diminished variability
(110, 111). In humans, the efficacy of furosemide was improved
by bedtime dosing as compared to dosing upon awakening. The
fraction of patients with controlled ambulatory BP following
therapy was also increased after bedtime treatment (105).

Chronotherapy can control the RAAS overactivation in
HF. The efficacy of ACEi in HF depends on the time of
administration. ACEis were more effective in preventing heart
remodeling when administered during sleep (103). Dosing of
ACEi in the evening, at an inactive period, was associated
with an improved protective effect against heart hypertrophy in
hypertensive rats and also proposed to reduce the severity of the
drug-related dry cough of hypertensive subjects treated in the
morning (100). Bedtime administration of valsartan normalizes
the circadian rhythm and protects the kidneys and heart
in patients with CKD (106). An integrated pharmacokinetic-
pharmacodynamics model was designed based on the kinetics of
the drug and time-varying changes of RAAS, showing that the
optimal efficacy of ACEis is achieved with bedtime dosing (112).

Melatonin determines the circadian physiology, and its
circulating levels vary on a daily cycle, allowing the regulation
of circadian rhythms of multiple biological systems. It was
shown to exert cardioprotective effects impacting the clinical
course of HF. In a study of 32 patients with CHF, nocturnal
melatonin secretion negatively associated with N-terminal pro-
brain natriuretic peptide (NT-proBNP). Higher melatonin levels
were noted at 02:00 than at 07:00 (113).

Rev-erb alpha, which is the nuclear receptor 1D1, is a
circadian rhythm regulator that controls inflammation and
glucose and lipid metabolism. Administration of SR9009,
a Rev-erb, in a mouse model of MI and HF improved
the survival rates and reduced the left ventricular function.
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TABLE 1 | Examples of the linkage between administration time and effect in cardiovascular drugs.

Druga Timing Effect References

ACEi Evening vs. morning Reduction in treatment-related cough (100)

Antihypertensives Bedtime vs. awakening Improved blood pressure control and decrease in major cardiovascular

events

(101)

Aspirin Bedtime vs. awakening Decrease in early morning platelet activity (102)

Captopril (rats) Sleep vs. wake time Effect on cardiovascular remodeling was achieved only when administered

during sleep

(103)

Furosemide (rats) 10 a.m. vs. 10 p.m. Increased urinary volume and sodium exertion (104)

Torsemide Bedtime vs. awakening Improved blood pressure control and 24-hour therapeutic duration (105)

Valsartan Bedtime vs. awakening Greater reduction in proteinuria, delayed decline in GFR and reduced risk of

MI

(106)

aAdministered to human subjects unless otherwise stated. ACEi, angiotensin converting enzyme inhibitors; GFR, glomerular filtration rate; MI, myocardial infarction.

These effects were associated with reduced BNP levels and
reduced expression of inflammatory-related molecules, such
as matrix metallopeptidase 9, Ly6g, Cd11b, IL-6, Mcp1, and
phosphorylated NF-kappaB p65, phosphorylated extracellular
signal-regulated ligand, and phosphorylated p38. This treatment
also reduced neutrophil and pro-inflammatory macrophage
infiltration (114). SR9009 improved the long-term cardiac repair
post-myocardial ischemia-reperfusion injury in animals. A single
therapy decreased cardiac NLRP3 inflammasome, fibroblast, and
immunocyte infiltration, in turn augmenting the MI healing
process (115).

Taken together, these studies suggest that chronotherapy,
including the targeting of ANS activation, exerts a beneficial
effect on HF and diuretic resistance-related parameters.

INTER- AND INTRA-PATIENT VARIABILITY
AFFECT THE RESPONSE TO
MEDICATIONS

Variability is inherent to biological systems and has been
proposed to be part of the normal function of cells and organs
(116–119). Variability at the genome and cellular level (118, 120),
HRV (121), respiratory variability (122, 123), and gate variability
(124) are some examples. The loss or alteration in the physiologic
variability is associated with disease states and poor prognoses
(125–127). At the cellular level, the cell is packed with a non-
uniform spreading of macromolecules that interact specifically
and nonspecifically with a drug. This leads to a high degree
of variability between individual cells in the response to drugs
(128). Many of these variabilities do not follow specific patterns
or rules and are characterized by marked inherent intra- and
inter-patients unpredictability.

Variability in the heart function was the basis for the
development of the heart-slowing medication ivabradine. The
sinus node is the central cardiac pacemaker, and its function is
associated with several ionic transporter circuits that can produce
a rhythm. If one apparatus fails, another one can take over the
task. Eliminating a transporter that could carry as much as 80%
of the ionic current required for producing the rhythm alters
the incidence by only around 10–15%, and this is due to a

substitution mechanism. This supports the concept of a high
degree of molecular-level variations as a protective mechanism
(129, 130).

High degrees of both inter- and intra-patient variability are
described for the response to many drugs. There are marked
intra- and inter-patient variabilities in drug pharmacodynamics
associated with the loss of an effective response to drugs (119,
131–136). For example, high tacrolimus intra-patient variability
was associated with graft rejection (134), and intra-patient
variability in many antiepileptic circulatory levels in stable
patients was described with observed differences of tens of
percentages in the serum levels (137).

Regular dosing regimens for diuretics are not compatible
with physiological variability and may further increase drug
resistance. Taking a constant dose of diuretics on a regular basis,
or continuously increasing the dose, may increase the serum
drug levels reaching a peak level and its subsequent gradual
decrease. This process is observed to repeat on a daily basis.
It is a monotonic cyclic pattern associated with adaptation to
the effect and results in the partial or complete loss of the
response to the diuretic (12–14). Part of the loss of the effect is
associated with augmentation of the compensatory responses to
diuretics as a result of a continous increase in doses, which further
reduces their effect. For several drugs, a regular dosing regimen
or continuous increase of a dose was proposed to contribute to
drug resistance, compared with the irregular consumption of the
same dose or with altering the daily dose (117, 138).

A model for heartbeat was developed built on a noise
titration assay, which provides a time-resolved and quantitative
degree of the chaos. It uses the HIF and LF parameters
of HRV for determining whether they reflect stochastic or
chaotic phenomenon (139). Noise titration of the running
short-segment Holter tachograms from healthy people showed
circadian sleep/wake-dependent heartbeat chaos that linked with
the HF parameter (respiratory sinus arrhythmia). In contrast,
in patients with HF, a near-regular heartbeat was non-chaotic
and resulted in transient chaotic rhythms. HRV alterations
in HF were accompanied by little changes in approximate
entropy, a measure of signal irregularity, which reflects
an autonomic, cardiac, respiratory, and circadian/sleep-wake
changes (139).

Frontiers in Cardiovascular Medicine | www.frontiersin.org 8 August 2021 | Volume 8 | Article 69554737

https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/cardiovascular-medicine#articles


Kenig et al. Variability-Based Diuretic Treatment for Heart Failure

FIGURE 2 | A suggested scheme of the closed loop machine learning system for improving the response to diurectis in patients with HF. Inputs from various sensors

are being incorporated in a dynamic manner for determining the timings of administration and dosages in a personalized approach. In a dynamic changing system

with multiple alternating parameters, a continuously changing dosing regimen is generated based on the individualized-variability pattern that comprises data from the

ANS (e.g., HRV), heart, and kidney. Cardiac, renal, and ANS, along with numerous other physiological and biological processes, exhibit intrinsic randomness. These

variations in their activity are also contributed from the generalized circadian rhythm and from intrinsic biological rhythms. Randomized treatment administration within

the preset limits augmented with personalized signature from the clinical status, echocardiographic, HRV, pulmonary artery pressure monitoring, biomarkers, and

more can improve outcomes of the diuretic treatment. In addition, randomization might prevent renal adaptivity involved in the development of diuretic resistance.

ANS, autonomic nervous system; HRV, heart rate variability.

A model using time irreversibility analysis was developed for
the analysis of the short heart period sequences derived from
24 h Holter recordings. Irreversible dynamics over short time
scales were noted, while the irreversibility of longer time scales
was marginal. In healthy subjects, the percentage of irreversible
dynamics was higher during the daytime than during the night-
time, suggesting augmented non-linear dynamics during the
daytime. In healthy subjects, the non-linear behavior reflected
that bradycardic ones run shorter than the tachycardic ones
during the daytime. In contrast, patients with HF demonstrated
an increased percentage of irreversible series along with a reverse
pattern, showing the tachycardic ones run shorter than the
bradycardic ones (140).

ESTABLISHING A CHRONOTHERAPY AND
VARIABILITY-BASED ALGORITHM FOR
IMPROVING THE RESPONSE TO
EFFECTIVENSS OF DIURETICS

Using treatment regimens based on aperiodic intervals and at
irregular strengths has been suggested to improve response to
diuretics. For maximum benefits, irregular, pulsed, or multiple
intervals-based administration of a chronic drug at continually
changing dosage strengths may improve the overall effect,
thereby reducing the likelihood of drug resistance (117, 119, 141).
Manipulating the conditions of living organs using rhythmic

administration of altered feeding schedules or several drugs
appears successful (99, 142).

Establishing a novel model for overcoming diuretic resistance
was proposed based on a closed loop system, which comprises
clinical, laboratory, and sensors-derived inputs, including PA
pressure sensors. Alteration of rhythmicity may adversely affect
homeostatic regulation and lead to deleterious effects. These
changes in therapeutic regimens should take into account the
inter- and intra-patient variability, alterations of the biological
clock, and ANS responses.

This model has been developed at four levels. In the first step,
random alterations in the dosing and timing of administration
are introduced into the regimens. The implementation of
irregular regimens is expected to improve the response to
diuretics by lowering the harmful effects of compensatory
mechanisms (117, 138, 143, 144). The physician is asked to
register the patient and to enter into the systme the ranges for the
dosages and for the times of administration. Patients receive daily
reminders for taking the drug. The algorithm randomly alters the
dosages and times of administration on a daily basis (143, 144).

In the second step, an increase in the efficiency of diuretics
is achieved by administering drugs that are at times the
best tolerated by synchronizing medication concentrations to
rhythms in disease activity. Technologies for drug delivery
precisely in a time-modulated mode by bedside or ambulatory
pumps can improve both the safety and efficacy of the chronic
use of diuretics (99).
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In the third stage, machine learning is introduced to
regulate the variability and chronotherapy-based regimens using
closed loop systems that control the dosing and timing in
an individualized manner. This enables the overcoming of
intra- and inter-patient variability, which prevents the “single
bullet for all” concept from being applicable to the majority
of patients. This concept is being introduced for overcoming
drug resistance in several chronic diseases (142, 143, 145–156).
In the last step, signatures based on parameters relevant to the
pathogenesis of HF, mechanisms of action, and the cardio renal
axis are introduced in a personalized approach for tailoring
the appropriate dosing in a continuous and consistent manner
(143, 144) (Figure 2).

In summary, CHF remains a major clinical problem with an
enormous morbidity and mortality burden. Diuretic resistance
is a major obastacle for the effective long-term treatment of HF

with considerable inter- and intra-patient variability, in addition
to the implication of both the ANS and chronobiology in the

pathogenesis and progression of HF. A personalized machine
learing algorithm, which comprises continously changing
parameters derived from clinical, laboratory, and sensors-derived
inputs, including inputs from PA measurements, is suggested
as an effective tool for improving the resposne to duretics.
Ongoing trials will determine if these platforms are efficacious
in reducing the adverse clinical outcomes and improving long-
term prognoses.
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Contrast-enhanced cardiac magnetic resonance imaging (MRI) is routinely used to

determine myocardial scar burden and make therapeutic decisions for coronary

revascularization. Currently, there are no optimized deep-learning algorithms for the

automated classification of scarred vs. normal myocardium. We report a modified

Generative Adversarial Network (GAN) augmentation method to improve the binary

classification of myocardial scar using both pre-clinical and clinical approaches. For

the initial training of the MobileNetV2 platform, we used the images generated from

a high-field (9.4T) cardiac MRI of a mouse model of acute myocardial infarction (MI).

Once the system showed 100% accuracy for the classification of acute MI in mice, we

tested the translational significance of this approach in 91 patients with an ischemic

myocardial scar, and 31 control subjects without evidence of myocardial scarring. To

obtain a comparable augmentation dataset, we rotated scar images 8-times and control

images 72-times, generating a total of 6,684 scar images and 7,451 control images. In

humans, the use of Progressive Growing GAN (PGGAN)-based augmentation showed

93% classification accuracy, which is far superior to conventional automated modules.

The use of other attention modules in our CNN further improved the classification

accuracy by up to 5%. These data are of high translational significance and warrant

larger multicenter studies in the future to validate the clinical implications.

Keywords: cardiac MRI, generative adversarial networks, data augmentation, myocardial scarring, deep learning

INTRODUCTION

Acute myocardial infarction (MI), commonly known as a heart attack, is an unpredictable
complication of coronary artery disease (CAD). The location, size, density and heterogeneity of
myocardial scarring provides both diagnostic and prognostic information for patient management.
Such information is critical to manage patients at risk for heart failure (HF) and lethal cardiac
arrhythmias (1, 2). HF and cardiac arrhythmias usually result from diseased myocardium and
electrically unstable scars (3–5). Therefore, myocardial scar classification using emerging data
augmentation methods is of great clinical significance.
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Deep learning and artificial intelligence are rapidly gaining
importance in the field of medical imaging. The development of
newer generation cardiac MRI scanners with a higher signal-to-
noise ratio and better edge definition has enabled us to better
characterize myocardial scar tissue. However, we still lack smart
decision-making tools to accurately classify the “scar tissue” in
an objective and reproducible manner. Fortunately, there are
major enhancements in the Graphics Processing Unit (GPU)
development that enable us to train a large dataset in a relatively
short time span.

A promising approach to improve the accuracy and
consistency of myocardial scar detection lies in artificial
intelligence – the use of a machine to perform deep cognitive
analysis based on data input. The availability of such platforms
has the potential to improve clinical workflow, enhance
diagnostic accuracy, and offer options for early interventions.
Furthermore, integrating preclinical and clinical analytical
algorithms will allow us to directly examine the clinical
implication of scar tissue after acuteMI in humans, which has the
potential to have an immediate impact on patient management.

Since its inception in 2012, the ImageNet classification
platform with convolutional neural networks (CNNs) has been
developed as the most efficient data analytical platform (6). Well-
designed CNNmodels, such as VGG, Inception v3, and Resnet 50
have shown exceptional performance for image classification, and
now deep learning applications are frequently used in medical
image analysis (7–9). To enhance accuracy, multiple applications
including feature detection, segmentation, classification, and
image reconstruction are being integrated into various data
platforms (10, 11).

In this translational study, we generated the first proof-of-
concept data in a pre-clinical model of acute MI induced by
ligating the left anterior descending coronary artery. The mice
then underwent contrast-induced cardiac MRI and confirmatory
histology analysis of the infarct and remote regions. After
preclinical testing, we studied over 7,000 augmented images
generated from patients with a history of CAD and known
myocardial scar development.

METHODS

Mouse Model of Acute MI
All preclinical procedures and protocols conformed to
institutional guidelines for the care and use of animals in
research and were reviewed and approved by the University
at Buffalo Institutional Animal Care and Use Committee
(IACUC). Acute MI was induced in mice (age 14–15 weeks,
C57B1/6 background) by using our study protocol described
previously (12–14). Mice underwent permanent ligation of the
left anterior descending (LAD) coronary artery producing an
infarct in the anterior/anteroseptal walls of the LV. Concisely,
mice were anesthetized with ketamine (1 mg/kg intramuscular)
and xylazine (5 mg/kg subcutaneous) and were intubated to
undergo a ligation procedure (9-0 nylon) of the LAD. Our
laboratory performs AMI experiments on a routine basis with
70–80% post-MI survival. We studied 12 survivor mice (6 MI
and 6 controls) for 2 weeks. On day 14, mice underwent cardiac

MRI with gadolinium contrast infusion. To minimize pain and
distress, all studies were performed on anesthetized (1.5% of
isoflurane) animals. Upon completion of cardiac MRI, mice were
sacrificed using the CO2 euthanasia protocol approved by the
IACUC. The euthanasia procedure conformed to the guidelines
from the Panel on Euthanasia of the American Veterinary
Medical Association.

Myocardial Histology
Myocardial histology was performed to provide a gold-standard
(tissue) validation of myocardial infarction. Since Human
subjects are not required to undergo cardiac biopsy for tissue
validation of myocardial scar, pre-clinical studies were performed
for the conclusive evidence of myocardial infarction, along with
cross-validation with cardiac MRI in mice.

To visualize the extent of MI in mice, an Evans
Blue/tetrazolium chloride (TTC) method was employed.
For the TTC assays, 0.5mL of a 2% Evans blue solution (Sigma)
devoid of bubbles was slowly perfused, turning the heart blue
except for the risk regions. The heart was then removed, rinsed
with KCl and PBS, and chilled at -20◦C for 5min prior to
sectioning the LV into 7–8 transverse rings of 1mm thickness
using a heart slicer matrix (Zivic Instruments). Sections were
subsequently incubated in a 1% TTC solution (Sigma) in a 37◦C
incubator for 15min until a red stain developed to assess infarct
size. The sections were placed between two clamped pieces of
plexiglass with a 2mm spacer and digital images were taken of
both sides of each slice as described previously by our group
(15). The total area and left ventricular (LV) area were calculated
using Fiji. Using a color thresholding technique, we classified
the blue regions of the heart as viable and the bright red as the
risk regions.

Hematoxylin and eosin (H&E)-stained myocardial tissue
sections were used to examine the infarct zone using the
whole heart tissue, covering both ventricles and interventricular
septum. Whole heart images were obtained from Leica Aperio
VERSA whole slide imaging System at 63× magnifications
(Multispectral Imaging suite, University at Buffalo). The extent
of total myocardial fibrosis was visualized by trichrome
staining (Thermo ScientificTM Richard-Allan ScientificTM Masson
Trichrome Kit/22110648). The total myocardial area and the
area of positive staining for fibrosis were quantified using color
deconvolution algorithms as described previously (16).

Preclinical Cardiac MRI
Based on our study protocol explained previously (14), we used a
20 cm diameter horizontal-bore 9.4 Tesla magnet (Biospec 94/20
USR, Bruker Biospin) equipped with a gradient coil supporting
440 mT/m gradient strength and 3,440 T/m/s maximum linear
slew rate (BGA-12S HP; Bruker Biospin). A series of three
orthogonal gradient echo (GRE) scout images of the heart
were acquired. For the tagged images, we acquired ECG and
respiration-gated axial views of the heart in cine mode with 2D
SPAMM tagging (0.1mm thickness; 0.5mm grid distance) using
a single-slice fast low-angle shot (FLASH) sequence with the
following parameters: 2ms Gaussian pulse for slice selection; 30
flip angle; TE/TR = 2.2/15ms; 50 kHz readout bandwidth; fat
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suppression; 1mm slice thickness; 30 × 30 mm2 field of view;
256 × 256 matrix; 8 averages; 8 cardiac movie frames. The scan
time was between 10 and 15min, depending on respiration and
heart rate.

For late gadolinium enhancement (LGE), we discharged the
syringe and acquired late contrast enhancement data at 20min
after the injection using an ECG and respiration-gated inversion-
recovery T1-weighted FLASH sequence with the following
parameters: 60◦ flip angle; TE/TR= 2.1/1200ms; 65 kHz readout
bandwidth; TI= 200ms; 8 axial slices with 0.8mm thickness and
0.2mm gap; 25 × 25 mm2 field of view; 256 × 256 matrix; no
averages. The scan time was between 3 and 5min, depending
on respiration and heart rate. Cardiac MRI images were taken
both before and after the MI induction procedure (median time
= 2 weeks), which were denoted as pre-MI and post-MI images,
respectively, as described previously by our group (14). We
selected 272 images from the MI group and 383 images from the
normal control mice. After an initial quality review, 392 images
were chosen as the training dataset.

Contrast-Enhanced Cardiac MRI Protocol
in Patients
Human experimental protocols were approved by an institutional
review board (IRB) committee from University at Buffalo and
all methods involving human/human data were performed
in accordance with the relevant guidelines and regulations.
Since the MRI database was accessed retrospectively and no
direct patient contact was involved, the informed consent was
waived by the IRB committee. Patient identifiers were securely
processed using our existing Health Insurance Portability and
Accountability Act (HIPAA) guidelines. A GE 1.5-T scanner
with technical parameters recommended by the manufacturer
was used. LGE sequence was obtained after intravenous (IV)
gadolinium injection with an inversion recovery prepared T1
gradient echo and manually adapted inversion time. Typically,
the images taken after 7–10min after gadolinium injection were
used for the current data analysis algorithms. Further details on
cardiac MRI protocols were reported previously (17).

Clinical MRI Dataset
We first obtained 1,447 images from 91 patients with a
history of coronary artery disease. Most of these patients were
referred for contrast-enhanced cardiac MRI after visualization
of coronary artery disease on the invasive coronary angiogram
(44% had a prior history of stent placement and 13%
had previously undergone surgical revascularization). Patients
underwent a comprehensive MRI protocol including gadolinium
contrast injection. The presence of abnormal LGE signal
after optimal inversion recovery in the contrast-enhanced
MRI was considered as the presence of myocardial scar.
Additionally, 313 MR images from 31 control subjects were
used for comparison. The controls included age-matched
subjects with identical myocardial function, but no evidence
of myocardial scar. Only 660 images with abnormal LGE,
and 207 control images passed the initial image quality
review. The DCM image format was then transformed
into JPG format using MicroDicom viewer before further
processing of the datasets. Representative examples are shown

in Supplementary Figure 1. The model was first tested with 206
images (103 randomly split from each category) to precisely
evaluate the model classification accuracy. Next, 557 images
from patients with ischemic scars and 104 control images
were used for training. Since there were discrepancies between
the number of MI and control images, we augmented the
control data size to match the myocardial scar data size.
To ensure a balanced comparative dataset, we adjusted the
training sample size from both classes as demonstrated in data
Supplementary Figure 2.

MobileNetV2
MobileNet/MobileNetV1 was first proposed by a Google
researcher team in 2017 (18). In this modified CNN model,
a convolutional layer is replaced by a depthwise-separable
convolution layer to reduce the parameters and speed-up the
training process. The main refinement of MobileNetV2 is to
improve the precision by the introduction of inverted residual
blocks. The basic idea of residual blocks is derived from Resnet
(9, 19). The inverted residual in MobileNetV2 reverses the
residual block sequence in Resnet. Considering the accuracy
and training speed, we used MobileNetV2 as the fundamental
model in our experiment. To improve this model performance,
Finetune (initialization by a pre-trained classification network,
and then training for a different task) was used. Since pretrained
parameters provide an excellent initiation point, Finetuning
is widely employed in medical image analysis for a faster
convergence of the model (10, 20, 21). The comparison of
random initialization and pretrained parameter initialization is
shown in Supplementary Figure 3.

Attentional Units
To further enhance the MobileNetV2 classification accuracy,
squeeze-and-excitation block (22) is considered as a channel
attention (CA) unit to embed into MobileNetV2. The first layer
in the squeeze-and-excitation block is a convolutional step. The
remaining structure is similar to the residual block. First, a global
average pooling is used to obtain individual channel information
U. The key formulation is defined as S = σ (g(z,W)) =

σ (W2δ(W1z)), where σ is a sigmoid activation and δ refers
to a ReLU activation. These two activation layers learn non-
linear interactions between the channels and generate a mask
(S) of multiple channels to emphasize features. The output
is the channel-wise multiplication from mask S and feature
map U. Spatial attention (SA) is derived from convolution
block attention module (23). The difference is that we only
use the average pooling layer followed by a convolutional layer
and a sigmoid layer, and mix attention (MA) adds these two
attentions together to shift the parameters. Because of the highest
performance of CA, in a later experiment, we only focused on the
performance of MobileNetV2 with or without CA.

Traditional Data Augmentation
A single flip shift scale is used for the images in the training set.
To ensure comparable dataset size, we rotated scar images 8 times
and control images 72 times. Finally, 6,684 MI augmentation
images and 7,451 control augmentation images were generated.
These augmented images formed an image pool, which was
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sampled randomly in different TA scales. In these experiments,
we used 4x augmentation.We first sampled 453 control images to
match the MI image size of 557. Upon sampling randomly from
the image pool, we generated 2,228 MI and 2,228 control images
as the training dataset.

GAN Augmentation
PGGAN, a generative adversarial network (GAN) variant, has
greater power in generating 1,024× 1,024 high-resolution image
platform from a randomnoise (24). Different from the traditional
GAN training process, PGGAN trains with progressive growth
resolution. The training starts with a low spatial resolution
of 4 × 4 pixels. As the training advances, the generator
and discriminator layers increase to match the spatial image
resolutions, and hyperparameter α continues to update for a
smooth transition to a higher resolution. In our experiments, we
generated 256 × 256 scar and control MR images. The overview
of PGGAN architecture is shown in Supplementary Figure 4.
To quantitatively analyze the shift effect to PGGAN, ImageNet
pretrained MobileNetV2 is used again to calculate Frechet
inception distance (FID) in equation 1:

FID = ‖ µr − µg ‖
2
+ Tr(

∑

r

+
∑

g

−2(
∑

r

∗
∑

g

)
1
2 ) (1)

where µr , µg are feature mean of real images and generated
images, and

∑
r,

∑
g, are feature covariance matrix of real images

and generated images. Low FID means a low distance from real
image distribution to generated image distribution.

Different from PGGAN, CycleGAN generates a fake image
from the real image. In CycleGAN, two-cycle consistency
losses are introduced to enforce the generated image (G) and
reconstructed image (F) from G to be consistent with each other
(25). Since CycleGAN uses actual images as an input, we expect
the stable generated images to have better classification accuracy
with CycleGAN. Because GAN needs a large dataset for training,
TA image pool is used to train a GAN. For better GAN training
results, we generate images from each category separately.

Filtration of the Unusual-Looking Images
Principal component analysis (PCA) is a typical technique to
reduce data dimensions and visualize data structure. K-means is
a classical unsupervised algorithm to cluster data by calculating
individual sample distance. We used MobileNetV2 pretraining
by ImageNet to extract 1000-dimension features of each image.
Next, we used PCA to map the 1000-dimension embedding
features into one-dimensional latent space. We assumed that
nearly 30% of the values, one standard deviation σ away from the
mean, could be considered as unusual images (outliers), which
were filtered out from the algorithm.

Gradient-Weighted Class Activation
Mapping
Because the last convolutional layers contain detailed spatial
information, Grad-CAM uses the gradient information flowing
into the last convolutional layer of the CNN to look for semantic
class-specific information in the images (26).We generated a heat

map of all the test images by this method to visualize the region
of interest for CNN and implement the quantitative analysis.

Results
Cardiac MRI Showed Anterior Wall Thinning and

Scarring in Mice With Coronary Artery Ligation
Acute MI led to regional changes in myocardial morphology as
demonstrated by histology and cardiac MRI. Evans Blue/TTC
method was employed to assess infarct size as shown in
Figure 1A. The severity of myocardial injury following LAD
ligation was calculated as the ratio of the area at risk (AAR)
to left ventricular area (LV) (AAR/LV: 32.18% ± 13.32, n
= 6), assessed across the heart at 1mm intervals from
base to apex. Representative images illustrating the TTC-
based histological confirmation of myocardial infarction, and
an abnormal gadolinium enhancement on contrast-enhanced
cardiac MRI are shown in Figure 1. Most of the anterior wall
contained the myocardial scar. The remaining regions that had
no scar were considered viable remote regions.

The Principal Component Analysis Showed
a Gaussian Distribution of the Data
Dimensions
We used the PCA method to reduce the dimensionality of
large data sets by transforming data variables into a smaller
one, but preserving most of the information of the larger set.
The PCA analysis of feature distribution is shown in Figure 2.
Figures 2A,B show the normal distribution of the features
generated from PGGAN. Therefore, we used k-means of one
to calculate the Euclidean metric between each data point with
a mean. Figures 2C,D demonstrate that the data features are
subjected to binary-variate Gaussian distribution. This algorithm
enabled us easier data exploration, and thus making data analysis
much easier and faster for k-means without extraneous variables
to process.

MobileNetV2 With Heatmap Generation
Had 100% Accuracy to Classify Acute MI in
Mice
After multiple epochs in the training dataset with a stabilized
training model, we generated the learning curves to determine
the suitability fit to the training dataset. The MobileNetV2
classification accuracy curve demonstrated 100% accuracy in
mice as illustrated in Figure 3. Because the accuracy was so
high, further data augmentation algorithm was not applied. The
heatmap of MobileNetV2 was focused on the whole thoracic
cavity, which also includes the ventricles with acute MI.

Compared to the Spatial or Mixed
Attention Modules, the Channel Attention
Module Had the Highest Accuracy
Different attention modules were tested based on 4x traditional
augmentation. Compared to spatial or mixed attention training
modules, CA showed the highest accuracy with the most
stable system, as illustrated in Figure 4. The combined module
might have been less efficient than the original CA, since the
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FIGURE 1 | Representative images from the mouse model of acute myocardial infarction (MI). (A) TTC stained mouse heart sections at 1mm after myocardial

infraction. The viable myocardium appeared in blue and the area at risk (AAR) in bright red. (B) Histological demonstration of a thinned myocardium (shown by an

arrow) in a mouse that underwent left anterior descending artery ligation. (C) Comparative histology from a normal control mouse. (D) Contrast-enhanced cardiac MRI

showing anterior wall scar and wall thinning in a mouse model. (E) Cardiac MRI showing normal left ventricular morphology.

summation of the attentionmodules in different axes could partly
counterbalance the original features.

PGGAN Shifted by K-Means Removed the
Data Outliers, CycleGAN Improved the
Data Outline
Compared to the original images (Figures 5A,F), Many PGGAN
generated images are of unusual shape as demonstrated in
Figures 5B,G. Since the original training dataset is relatively
small, a small raw dataset does not provide sufficiently high
variance information for stable image generation. Table 1 shows
that k-means selection reduces FID, and therefore should be
an effective method to remove unusually shaped images. Some
typical PGGAN generated images with k-means are shown in
Figures 5C,H. Although some images are still of unusual shape,
k-means filters the outliers and reduces the number of unusually
shaped images.

Figures 5D–J show CycleGAN generated images. CycleGAN
translates images from the real images in different source
domains. Unlike the images generated by PGGAN, all
CycleGAN-generated images represent a clearer tissue outline.
The main problem associated with CycleGAN is that scar
tissue images are imperfectly translated from the normal image
domain. In our study, this resulted in the overestimation of
the scar size (green circle, Figures 5D,E) with a hollow (black)
core. This semantic difference would be hard to be shifted by
k-means. The classification results also showed that k-means is
more effective for PGGAN generation shift than for CycleGAN
generation shift.

Combination of GAN Augmentation and
Kmeans Selection Was a Reliable Method
to Improve CNN Performance
All classification results of different augmentation methods
are presented in Table 2. The performance accuracy (high-
to-low) is determined to be PGGAN augmentation, TA
and CycleGAN. In particular, 4x PGGAN-k-means based
augmentation shows the best accuracy (92.7%). We infer that
perhaps the inferior performance of CycleGAN was due to
unthorough translation from source image domain. The GAN
augmentation classification results without k-means are shown
in Table 3. Taken together, k-means selection enhances PGGAN
augmentation accuracy removing the unusually-shaped images.
Images generated by CycleGAN have a better edge definition.
Additionally, the ROC (receiver operating characteristic) curves
are shown in Supplementary Figure 5.

Higher Accuracy Was Correlated With a
Smaller Region of Interest
As shown in Figures 6D,G, the myocardial scar was correctly
localized through Grad-CAM. The ROI (marked red) represents
the scar-bearing myocardial segment. However, Grad-CAM was
not sensitive enough to locate the myocardial scar at the
border zones. One possible explanation for this caveat could
be that without pixel-level labeling of myocardial scar, the self-
localization of CNN from a small Grad-CAM training set is
limited. Further augmentation results with smaller ROI and
higher accuracy as shown in Figures 6A–F and Table 2.

Higher accuracy is likely derived from a precise location of
the ROI. A similar heatmap generated from TA (Figure 6D)
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FIGURE 2 | PCA plots of GAN-generated images from each category. (A) Visualization of ischemic scar image set generated from PGGAN. (B) Visualization of control

image set generated from PGGAN. (C) Visualization of ischemic scar image set generated from CycleGAN. (D) Visualization of control image set generated from

CycleGAN.

and from PGGAN augmentation (Figure 6E) reveals that ROI
generated from PGGAN+k-means is the same as in TA, and the
classification accuracies from PGGAN+k-means augmentation
(92.7) and TA (92.2) are similar. This also suggests that attention
shift could be the reason for inferior training results from
CycleGAN (91.7). Since CycleGAN (Figure 6F) provides higher
emphasis to the subdominant features around the ventricles, this
can lead to attention shift.

DISCUSSION

Despite recent advances in the field of deep learning to
predict cardiovascular outcomes (27, 28), there are limited data

examining the accuracy of myocardial scar classification. This is
the first multidisciplinary study that combines the preclinical and
clinical approaches to develop a tissue-validated classification
and augmentation algorithms in subjects with an ischemic
myocardial scar. Our CNN model introduces an attentional
block-based data processing approach to improve MobileNetV2
classification of myocardial scar. We also report that GAN is an
effective method to mitigate the data imbalance and present a
comparative data analysis algorithm to show which GAN-type is
must suitable to augment myocardial scar imaging. Finally, we
combine k-means and PCA to identify abnormal images with the
goal of improving the augmentation effects in advance.

Quantitative interpretation of myocardial scar
has remained a challenging task despite the use of
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FIGURE 3 | Mouse MRI heatmaps and training curves generated by MobileNetV2. (A) Classification accuracy curve. The test accuracy was at 100% after several

epochs that stabilized the model. (B,C) Heatmaps generated by Gcam from acute myocardial infarction (MI) and control mice, respectively.

FIGURE 4 | Different attention unit MobileNetV2 training results of 4x traditional augmentation. (A) Spatial attention (SA) accuracy curve (89.8% testset accuracy). (B)

Channel attention (CA) accuracy curve (92.2% testset accuracy). (C) Accuracy curve without any attention (89.8% testset accuracy). (D), Mix attention (MA) accuracy

curve (89.3% testset accuracy). The accuracy curve fluctuate more violently without any attention module and the final accuracy is the lowest.
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FIGURE 5 | Images generated by PGGAN and CycleGAN. (A) MI image from original data. (B) MI image generated form PGGAN. (C) MI image shifted by kmeans

after PGGAN generation. (D) MI image generated from CycleGAN. (E) MI image shifted by kmeans after CycleGAN generation. (F) Control image from original data.

(G) Control image generated form PGGAN. (H) Control image image shifted by kmeans after PGGAN generation. (I) Control image generated from CycleGAN. (J)

Control image shifted by kmeans after CycleGAN generation. Green circle in (D,E) is manually added so as to mark the abnormal morphology of the generated image.

TABLE 1 | Generation of FID score from PGGAN.

FID

PGGAN (MI) 289.208

PGGAN + kmeans (MI) 285.746

PGGAN (control) 323.129

PGGAN + kmeans (control) 322.873

PGGAN, the FID score of PGGAN; PGGAN+kmeans, FID of kmeans sift of original PGGAN

generation; MI, myocardial infarction; Control, normal images from the control group.

automated edge-detection techniques (29, 30). The manual
segmentation is time-consuming and subjective, which
can lead to high intra- and inter-observer variations.
To date, there were no studies that attempted the gold
standard approaches of myocardial scar classification
using a histological validation in an acute MI model,
and clinical validation in patients with chronic ischemic
myocardial remodeling.

Our initial data classification algorithm tested in a mouse
model of acute MI demonstrated 100% accuracy for the
classification of acute MI. Although this approach was highly
promising and did not require additional data filtration or
augmentation algorithms, there can be limitations of fully
extrapolating the mouse data into the clinical scenario. First,
the mouse model of acute MI was developed by irreversible
occlusion of the left anterior descending coronary artery, which
is not entirely representative of our patient population with
chronic CAD. Second, the mouse model of acute MI was studied
within the first two weeks of MI induction. Nevertheless, mice
MRI data showed smaller variance and higher interpretation

TABLE 2 | Comparative analysis of various classification approaches.

Acc (%)

MobilenetV2 (raw) 55.8

MobilenetV2 (raw) (CA) 50.5

TA base MobilenetV2 83.5

TA base MobilenetV2 (CA) 88.8

4x TA MobilenetV2 90.3

4x TA MobilenetV2 (CA) 92.2

PGGAN+kmeans base MobilenetV2 84.5

PGGAN+kmeans base MobilenetV2 (CA) 88.3

4x PGGAN+kmeans MobilenetV2 89.8

4x PGGAN+kmeans MobilenetV2 (CA) 92.7

CycleGAN+kmeans base MobilenetV2 83.5

CycleGAN+kmeans base MobilenetV2 (CA) 88.3

4x CycleGAN+kmeans MobilenetV2 87.4

4x CycleGAN+kmeans MobilenetV2 (CA) 91.7

Acc (accuracy), kmeans (k = 1, removes PGGAN generative images. K = 2, removes

CycleGAN generative images), base (augmentation applied to increase normal set size

same as acute set size so as to mitigate the imbalance). TA, traditional augmentation; CA,

channel attention. Bold means highest accuracy.

accuracy compared to the human data. This preclinical training
model provided additional intimations to advance classification
performance and improve accuracy.

Generally, our results show the classification accuracy
obtained from combined PGGAN and k-means is comparable to
traditional data augmentation. The inferior data augmentation
from CycleGAN is likely due to unsupervised image-to-image
translation generated without prior restriction. For image-to-
image augmentation, training from more powerful translation
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GAN like UGATIT platforms may enhance performance and
improve accuracy (31). As for noise-to-image augmentation,
newer approaches with layer normalization instead of
pixel norm in PGGAN could be attempted to improve the
semantic understanding.

Although channel attention has shown the highest model
stability in our experiments, other attention modules could also
be utilized to fulfill additional tasks. Powerful spatial attention
modules such as the non-local layer or graph reasoning layer
could be optimized and then applied to our system for the
accurate classification of myocardial scar in different coronary
artery territories (32, 33). Since the image-shifting is a commonly
encountered challenge, newer outlier detection algorithms could
be utilized to shift the generated images more effectively. The
unusual-looking images pose a semantic difference with well-
looking images. In particular, for CycleGAN generated images,
an unthorough translation of the myocardial scar leads to a
high-level of semantic difference.

In contrast with CycleGAN-based image generation, k-
means outlier selection is based on the Gaussian distribution
rule. Although the feature extraction step from the pretrained
MobileNetV2 involves image semantic information, this has a

TABLE 3 | GAN augmentation classification results without kmeans.

Acc (%)

4x PGGAN MobilenetV2 81.1

4x PGGAN MobilenetV2 (CA) 87.9

4x CycleGAN MobilenetV2 82.5

4x CycleGAN MobilenetV2 (CA) 90.7

limited utility for our imaging processing. This advantage of
PGGAN over the CycleGAN could be the reason for the higher
accuracy of PGGAN data augmentation after k-means selection.
Our data suggest that the use of an algorithm with an integrated
medical image semantic extraction module can extract outliers,
and enhance classification performance.

LIMITATIONS

Our study has a few limitations which can be overcome with
future research. This study has a small image dataset size as
described above. However, we have, at least in part, addressed
this issue by rotating the scar images 8 times and control
images 72 times, followed by scaling, shifting and flipping images
one time, so that ∼7,000 images with balanced augmentation
were obtained. In addition, this study was not designed to
study the in-depth mechanisms of ischemic remodeling in mice.
Since the image classification was our main goal, the clinical
data were not tailored to study the long-term cardiovascular
outcomes. Nevertheless, this is the first step toward the training a
validation of the myocardial scar classification algorithm using a
multidisciplinary approach.

CONCLUSIONS AND FUTURE
IMPLICATIONS

We have shown that the channel attention is the most effective
attention unit to improve CNN performance. We conclude that
the data performance can be improved by utilizing a min-max
contrast between the discriminator and generator models of
GAN. K-means has a strong ability to remove unusually-shaped

FIGURE 6 | (A) Original ischemic scar image. (B) Heatmap of base model. (C) Heatmap of CA embedded to base model. (D) Heatmap of CA embedded to base

model with 4x traditional augmentation. (E) Heatmap of CA embedded to base model with 4x PGGAN augmentation. (F) Heatmap of CA embedded to base model

with 4x CycleGAN augmentation. (G) Heatmap of CA embedded to base model with 4x traditional augmentation of image in the control group.
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generated images and thus amplifying the accuracy training from
PGGAN augmentation (17).

In the future, besides image interpretation, this model could
be applied in several medical applications, including a GAN-
based data augmentation anonymization tool for large-scale
data sharing, and a clinical training tool to educate medical
practitioners. One promising approach is to use this method to
augment the size and variability of myocardial scar, which can
predict clinical outcomes, including heart failure and sudden
arrhythmic events.
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Introduction: Deep learning demonstrates great promise for automated analysis of

CMR. However, existing limitations, such as insufficient quality control and selection of

target acquisitions from the full CMR exam, are holding back the introduction of deep

learning tools in the clinical environment. This study aimed to develop a framework for

automated detection and quality-controlled selection of standard cine sequences images

from clinical CMR exams, prior to analysis of cardiac function.

Materials and Methods: Retrospective study of 3,827 subjects that underwent CMR

imaging. We used a total of 119,285 CMR acquisitions, acquired with scanners of

different magnetic field strengths and from different vendors (1.5T Siemens and 1.5T

and 3.0T Phillips). We developed a framework to select one good acquisition for each

conventional cine class. The framework consisted of a first pre-processing step to

exclude still acquisitions; two sequential convolutional neural networks (CNN), the first

(CNNclass) to classify acquisitions in standard cine views (2/3/4-chamber and short axis),

the second (CNNQC) to classify acquisitions according to image quality and orientation;

a final algorithm to select one good acquisition of each class. For each CNN component,

7 state-of-the-art architectures were trained for 200 epochs, with cross entropy loss and

data augmentation. Data were divided into 80% for training, 10% for validation, and 10%

for testing.

Results: CNNclass selected cine CMR acquisitions with accuracy ranging from

0.989 to 0.998. Accuracy of CNNQC reached 0.861 for 2-chamber, 0.806 for

3-chamber, and 0.859 for 4-chamber. The complete framework was presented

with 379 new full CMR studies, not used for CNN training/validation/testing, and

selected one good 2-, 3-, and 4-chamber acquisition from each study with

sensitivity to detect erroneous cases of 89.7, 93.2, and 93.9%, respectively.
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Conclusions: We developed an accurate quality-controlled framework for automated

selection of cine acquisitions prior to image analysis. This framework is robust and

generalizable as it was developed on multivendor data and could be used at the

beginning of a pipeline for automated cine CMR analysis to obtain full automatization

from scanner to report.

Keywords: cardiac magnetic resonance, deep learning, quality control, cardiac function, view-selection,

multivendor

INTRODUCTION

Cardiac magnetic resonance (CMR) is the state-of-the-art
clinical tool to assess cardiac morphology, function, and
tissue characterization (1), and both European and American
guidelines advocate its use to diagnose and monitor a large
number of cardiovascular diseases (2, 3). The role of CMR
continues to grow due to the technical advances that allow
increasingly detailed analysis of the cardiovascular system.

However, systematic manual analysis of the different CMR
sequences which are acquired during a typical CMR exam is
highly time consuming, where the bulk of the time is taken up
by repetitive tasks, such as image identification, selection, and
segmentation, which are at the basis of CMR post-processing.

Deep learning (DL), a branch of artificial intelligence (AI), is
securing an emergent role in the field of CMR, as it provides
for automatization of repetitive tasks, significantly reducing the
time required for image analysis, while maintaining a high degree
of accuracy (4, 5). Physicians’ time can thus be optimized and
targeted for critical review of clinical and imaging information to
reach a correct diagnosis. Moreover, automated analysis allows
access to biomarkers of cardiac function that would normally be
too labor intensive to obtain, such as peak ejection and filling
rates from ventricular volume curves (6, 7) or atrioventricular
valve planar motion (8) from long-axis segmentations.

Several groups have shown promising results on the
implementation of DL in the analysis of CMR, including
segmentation of cine images to derive cardiac function (5),
analysis of perfusion defects to detect inducible ischemia (9), and
assessment of late gadolinium enhancement and T1 mapping to
aid tissue characterization (10, 11).

However, some limitations still need to be addressed before a
widespread clinical adoption of DL tools, such as steps to perform
automated selection of target images from the full CMR exam,
as well as robust systems to flag inadequate quality of image or
of analysis, which are the necessary steps that precede analysis
of CMR sequences in the clinical setting. We have previously
shown that comprehensive quality-control can be introduced
into a DL pipeline for accurate, automated analysis of cine CMR
images that adheres to clinical safety standards (5). On the other

Abbreviations: 2Ch, 2-Chamber view; 3Ch, 3-Chamber view; 4Ch, 4-Chamber
view; ACHD, adult congenital heart disease; AI, artificial intelligence; CMR,
cardiac magnetic resonance; CNN, convolutional neural network; DL, deep
learning; GE, General Electrics; GSTFT, Guy’s and St. Thomas’ NHS Foundation
Trust; LVOT, left ventricular outflow tract; QC, quality control; SAX, short axis.

hand, DL has not yet been systematically implemented for image
recognition and selection prior to analysis in CMR.

This study aimed at developing a framework for automated
identification and quality-controlled (QC) selection of cine
images used for cardiac function analysis from routine clinical
CMR exams. This framework was then implemented as the first
step of a larger pipeline for QC CMR analysis of cine images
previously developed by our group (5).

MATERIALS AND METHODS

The framework we present is composed of a set of algorithms
combined with two convolutional neural networks (CNN) aimed
at identifying conventional cine views (CNNclass) and at sorting
these images according to quality into “correct” and “wrong”
(CNNQC). This construction allows for the framework, presented
with a full CMR exam, to perform a selection of one good quality
acquisition for each conventional cine class, which is then used
for analysis of cardiac function, and to flag exams when no image
of sufficient quality could be identified (see Figure 1).

The developed pipeline was implemented in Python using
standard libraries such as Numpy and Pandas as a dedicated deep
learning library Pytorch.

Study Population
This is a retrospective multivendor study conducted on a large
CMR dataset. 3,445 CMR exams were included: 1,510 from
UK Biobank and 1,935 from Guy’s and St. Thomas’ NHS
Foundation Trust (GSTFT), London, comprising of a total of
119,285 individual CMR acquisitions. Images were acquired on
1.5T Siemens and 1.5T and 3.0T Phillips CMR scanners using
a large variety of protocols, with variable voxel- and image-size,
acquisition techniques and under-sampling factors.

Our dataset was randomly selected from the pool of available
studies in the UK Biobank and GSTFT databases. All exams
were acquired between 2004 and 2020. The random selection
was used to obtain a heterogeneous population, including
both healthy and pathological hearts, with a variety of cardiac
pathologies (ischemic heart disease, dilated and hypertrophic
cardiomyopathy, valvular heart disease, adult congenital heart
disease (ACHD), and others). In the case of grossly disruptive
artifacts (e.g., device artifacts covering the majority of the
chambers), or grossly distorted anatomy (e.g., patients with
single-ventricle morphology or Ebstein’s disease), CMR exams
were excluded from the dataset.
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FIGURE 1 | Complete framework. The framework consisted of a first pre-processing step to exclude still images; two sequential convolutional neural networks (CNN),

the first to classify images in standard cine views (2/3/4-chamber and short axis), the second to classify images according to image quality and orientation; a final

algorithm to select one good image of each class. This construction allows for the framework, presented with a full CMR exam, to perform a quality-controlled

selection of one good image for each conventional cine class, which is then used for analysis of cardiac function. Ch, chamber; CNN, convolutional neural network;

LAX, long axis; SAX, short axis; QC, quality control.
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Identification of Conventional Cine Classes
The first part of our framework aimed to identify the standard
cine views used for analysis of cardiac function from the complete
exam. These were the 2-Chamber view (2Ch), 3-Chamber view
(3Ch), 4-Chamber view (4Ch), and the short-axis stack (SAX).

First, all single-frame acquisitions were excluded from the
exams based on the dicom-header information. This allowed to
reduce the bulk of acquisitions available in a complete CMR exam
to a set of multi-frame acquisitions. The 2Ch, 3Ch, 4Ch, and
SAX sequences were subsequently selected from the remaining
acquisitions using our view selection algorithm. To identify the
class of the cine acquisitions, only a single frame of the acquisition
is needed. Therefore, the first frames of each of the remaining
data was used for training. All data was manually classified into
the conventional cine classes by an expert physician (2,905 2Ch,
1,171 3Ch, 2,963 4Ch, 9,112 SAX images) and a class of “other”
(4,043). In case of doubt, a second opinion was sought, and
a decision was made by consensus. Prior to CNN training, all
images were cropped to a standard size of 256 × 256 pixels and
converted to numpy arrays.

The manually classified data were divided as follows: 80%
was used for training, 10% was used for validation, and 10%
for testing. The training, validation and test data cohorts
had a mutually exclusive subject pool, i.e., acquisitions from
the same subject could only be used in one of the three
cohorts. We trained seven state-of-the-art CNN architectures:
AlexNet (12), DenseNet (13), MobileNet (14), ResNet (15),
ShuffleNet (16), SqueezeNet (17), and VGG (18). Each network
was trained for 200 epochs with cross entropy loss, to
classify end-diastolic images into the five classes described. For
training data, data augmentation was performed on-the-fly using
random translations (±30 pixels), rotations (±90◦), flips (50%
probability) and scalings (up to 20%) to each mini-batch of
images before feeding them to the network. The probability of
augmentation for each of the parameters was 50%. Augmentation
is the only technique we use to prevent over-fitting, as other
techniques were not found to improve performance and their
omission contributed to a simpler network architecture.

An additional algorithm was used after CNNclass to check
complete classification of the short axis acquisition. An image
classified as SAX was confirmed to belong to a short axis
acquisition if the following two criteria, screened by the
algorithm, were met: (1) the image belonged to a stack composed
of a minimum of 8 slices, (2) at least 2 out the 3 central images of
the stack were classified as short axis by CNNclass.

Quality Control of Selected Images
The second part of our framework aimed to scrutinize the
quality of the identified long-axis cine images. QC of short axis
acquisitions was not performed in this step, as our downstream
pipeline for automated CMR analysis already includes short-axis
QC (5).

To train the networks for QC (CNNQC), a set of 2Ch
(1,937), 3Ch (1,591), 4Ch (2,003) images from our database
were reviewed by an expert physician and classified as
“correct” or “wrong” based on whether image quality was
satisfactory for subsequent analysis. Images that included

mis-triggering, breathing, implant or fold-over artifacts were
classified as “wrong” if the detection of myocardial borders was
hindered. Moreover, all off-axis orientations (i.e., presence of
left ventricular outflow tract (LVOT) in 4Ch, fore-shortening
of the apex, absence of any of the valves in 3Ch) were also
classified as “wrong.” In case of doubt, a second opinion was
sought, and a decision was made by consensus. The resulting
database consisted of 1,444 “correct” and 493 “wrong” 2Ch, 1,098
“correct” and 493 “wrong” 3Ch images and 1,393 “correct” and
610 “wrong” 4Ch images.

The manually classified data were used to train QC networks
for each class (2Ch-CNNQC, 3Ch-CNNQC, 4Ch-CNNQC). The
data were divided as follows: 80% training, 10% for validation,
10% for testing. We trained the same seven CNN architectures
as described in the previous section. We used the same
training process as described for training of CNNclass, with
the difference that CNNQC was trained as binary classifiers,
i.e., a two-class classification problem as opposed to five,
and therefore used binary cross entropy with a logit loss
function. Additionally, we implemented an adaptive learning
rate scheduler, which decreases the learning rate by a constant
factor of 0.1 after 5 epochs stopping on plateau on the
validation/test set (commonly known as ReduceLRonPlateau).
This step was added as it improves CNN training when
presented with unbalanced datasets. The CNNQC’s output was
a binary classification (“correct” vs. “wrong”), as well as the
probabilities (i.e., certainty) associated with the classification for
each case.

Complete Framework: From Full Study to
Selection
To complete the framework, the CNNclass and CNNQC were
combined with a final selection algorithm. This algorithm
selected one good quality acquisition of each standard cine
view for image analysis, when multiple acquisitions of a single
class were present in the exam. For long axis data, it did so
by identifying the case with the highest probability of being
scored “correct” by the CNNQC. For short axis, the stack
with the highest probability of belonging to SAX (obtained
from the output of the CNNclass) was selected. If any of the
classes was absent in an exam, or the framework did not
identify an image of sufficient quality, the case was flagged for
clinician review.

As the individual components act in series in the complete
framework, their sequential action will yield an overall
performance that is different from the sum of the individual
ones. To find the best combination of components, each
possible combination of the trained CNN architectures trained
in the previous steps was tested using an additional test-
set of 379 scans randomly selected from the database,
not previously used for CNN training. For each exam,
a manual operator selected the best cine long and short
axis acquisitions. To determine the intra- and inter-observer
variability present in the manual analysis, 100 randomly selected
scans were re-analyzed by the same operator and by a
second operator.
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TABLE 1 | Population characteristics.

CNN training Complete framework

Number 3,445 379

Age (years) 57 ± 16 49 ± 19

Sex (males) 1,911 (55) 228 (60)

Height (cm) 176 ± 32 171 ± 18

Weight (kg) 79 ± 18 80 ± 19

BMI (kg/m2 ) 27 ± 5 27 ± 7

Ethnicity Caucasian 2,401 (69.7) 231 (60.9)

Afro-Caribbean 172 (5.0) 54 (14.2)

Asian 85 (2.5) 10 (2.6)

Other 21 (0.6) 7 (1.8)

Not stated 766 (22.2) 77 (20.3)

Cardiac pathology Healthy 1,886 (54.7) 68 (17.9)

IHD 315 (9.1) 43 (11.3)

DCM 167 (4.8) 27 (7.1)

HCM 77 (2.2) 16 (4.2)

ACHD 185 (5.4) 59 (15.6)

Valvular 133 (3.9) 37 (9.8)

Vascular 104 (3.0) 32 (8.4)

Arrhythmic 159 (4.6) 26 (6.9)

Other 419 (12.2) 71 (18.7)

Age, sex, height, weight, and cardiac pathology of subjects used for training of CNNs,

framework and full pipeline validation. All continuous values are reported as mean ±

standard deviation, while categorical variables are reported as number (percentage).

ACHD, adult congenital heart disease (excluding valvular and vascular abnormalities);

CNN, convolutional neural network; HCM, hypertrophic cardiomyopathy; IHD, ischaemic

heart disease; SD, standard deviation.

Statistics
Class Identification CNN
Precision, recall, and F1-score of each class (“4Ch,” “3Ch,” “2Ch,”
“SAX,” “other”) and overall accuracy were computed at test-time
to evaluate the performance of each trained CNNclass.

Quality Control CNNs
Precision, recall, and F1-score of each class (“correct,” “wrong”)
and overall accuracy were assessed to evaluate the performance
at test-time of each trained 2Ch/3Ch/4Ch-CNNQC.

Complete Framework
Sensitivity (defined as: the percentage of incorrect cases
identified as incorrect), specificity (defined as: the percentage of
correct cases identified as correct), and balanced accuracy were
computed for each framework. Cohen kappa coefficient was used
to assess intra- and inter-observer variability.

Full Pipeline: From Scanner to Report
Finally, we added the complete framework as the first step
of our previously validated pipeline for quality-controlled AI-
based analysis of cardiac function from CMR (5). Broadly, this
pipeline consists of quality-controlled image segmentation and
analysis of cine images to obtain LV and RV volumes and mass,
LV ejection and filling dynamics, and longitudinal, radial and
circumferential strain. T
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We present the feasibility and importance of a fully automated
multi-step QC pipeline by (1) running 700 new CMR exams cases
(not earlier seen during training) through the pipeline, and (2)
presenting a video (Supplementary Video 1) of the full analysis
for a good-quality case. For the 700 cases we ran through the
pipeline we report the average time for selection and complete
cine analysis from a full CMR study, and again report sensitivity,
specificity and balanced accuracy of error detection.

RESULTS

Study Population
Of the 3,827 CMR exams used for this study 3,448 were used
for the training and validation of CNNclass and CNQC [1,026
acquisition of 16,151 (6.4%) were excluded because of grossly
disruptive artifacts or grossly distorted anatomy]. These included
patients undergoing clinical scans at GSTFT as well as subjects
voluntarily enrolling onto the UK BioBank project, yielding
a heterogeneous population in terms of sex (55% male) and
clinical presentation (43% healthy, the remaining displaying a
wide variety of cardiovascular pathologies, as shown in Table 1).

The remaining 379 CMR scans were used to test the complete
framework. These were all selected from the GSTFT database to
obtain a population representative of routine clinical practice.
Demographic characteristics are comparable to the training
population, but clinical presentation wasmore variable, with only
18% of patients having no cardiovascular pathology.

Population characteristics are summarized in Table 1.

Class Identification CNN
Precision, recall, F1-score, accuracy for all CNNclass are
presented in Table 2. All trained architectures showed excellence
performance, with accuracy ranging from 0.989 to 0.998.
DenseNet and ResNet reached highest accuracy, i.e., 0.988.
DenseNet showed best precision, recall and F1-score for
conventional cine classes: 0.998, 1.00, 0.999 for 2Ch, 1.00, 1.00,
1.00 for 3Ch, 1.00, 0.998, 1.00 for 4Ch, and 0.996, 0.999, 0.998
for SAX.

Quality Control CNN
Precision, recall, F1-score, and accuracy for all CNNQC are shown
in Table 3. Accuracy was variable for different architectures and
ranged from 0.751 to 0.861 for 2Ch, from 0.690 to 0.806 for
3Ch, and from 0.705 to 0.859 for 4Ch. Precision, recall and F1-
score were consistently lower for the “wrong” class compared to
the “correct” class for all trained architectures and across the 3
different chamber views.

Complete Framework
Sensitivity, specificity, and balanced accuracy of each constructed
framework to identify and select one good quality 2Ch, one good
quality 3Ch, and one good quality 4Ch image for each exam
are shown in Table 4. For the sake of brevity, we present the
results of one CNNclass, i.e., DenseNet, given the very high and
similar performance of all different architectures, combined with
all possible CNNQC’s.
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TABLE 4 | Framework validation.

Framework for image identification and selection

DenseNet CNNclass+

2Ch-CNNQC 3Ch-CNNQC 4Ch-CNNQC

Network SEN SPE BACC SEN SPE BACC SPE SEN BACC

AlexNet 79.4 89.8 84.6 84.4 85.8 85.1 70.3 90.9 80.6

DenseNet 75.0 91.1 83.0 93.2 85.3 89.2 88.2 90.9 89.5

MobileNet 78.1 92.4 85.2 88.9 85.9 87.4 72.2 91.9 82.1

ResNet 77.8 91.4 84.6 88.9 85.1 87.0 83.3 90.9 87.1

ShuffleNet 89.7 91.5 90.6 88.9 85.9 87.4 93.9 89.2 91.6

SqueezeNet 55.3 88.2 71.8 51.8 91.0 71.4 23.3 95.5 59.4

VGG 84.4 91.8 88.1 84.8 85.1 84.9 79.4 91.4 85.4

SEN, Sensitivity; SPE, Specificity; and BACC, balanced accuracy of each constructed framework for image identification and selection. Best performing framework per class is highlighted

in blue.

The best performing framework was: DenseNet CNNclass

+ ShuffleNet 2Ch-CNNQC (sensitivity = 89.7%, specificity =

91.5%, balanced accuracy = 90.6%), DenseNet 3Ch-CNNQC

(sensitivity = 93.2%, specificity = 85.3%, balanced accuracy =

89.2%), ShuffleNet 4Ch-CNNQC (sensitivity = 93.9%, specificity
= 89.2%, balanced accuracy= 91.6%).

Cohen’s k for intra- and inter-observer agreement for the same
manual operator and between the two different operators were
0.79 and 0.60, respectively.

Full Pipeline: From Scanner to Report
The sensitivity, specificity and balanced accuracy of the
integrated view selection and quality-controlled cardiac analysis
pipelines was 96.3, 85.0, and 90.6%, respectively. Performance
was also assessed for healthy and pathological cases separately.
Results are summarized in Table 5.

The average time for selection and complete cine analysis
from a full CMR study was between 4 and 7min for a clinical
CMR exam.

Supplementary Video 1 portrays how implementing the new
framework prior to segmentation results in good quality analysis.

DISCUSSION

In this study we present a DL-based framework to identify all
conventional cine views from a full CMR exam, and subsequently
select one image per class of good quality for further automated
image analysis. To the best of our knowledge, this is the first
automated framework developed for this purpose.

The framework was trained on a large database, a prerequisite
to develop DL tools of good quality. It was also trained on
multivendor and clinically heterogeneous data, which makes
it generalizable to be implemented as the first step for other
existing tools for image analysis. Moreover, the framework was
developed through training and testing of 7 state-of the art CNN
architectures for each step. In DL, several network variants are
available, each exhibiting different strengths and weaknesses.
Studies often focus on a single highly individualized network,

TABLE 5 | Full pipeline performance.

Full pipeline

BACC SEN SPE

Healthy 92.3 96.5 88.1

Pathological 87.3 95.7 78.9

Global 90.6 96.3 85.0

SEN, Sensitivity; SPE, Specificity; and BACC, balanced accuracy of full pipeline, global,

and for left (LV) and right ventricle (RV), and healthy and pathological hearts.

tailored for a task through multiple trial-and-error experiments.
This makes reproduction of the methods and appreciation of
its performance in the context of other datasets challenging. In
our work, we present the data of all trained CNN architectures,
thus displaying our selection process in a reproducible, fair, and
meaningful way.

Finally, we integrated the new framework as the first step
of a larger pipeline we had previously developed (8), and we
demonstrated that it could produce highly accurate, rapid, and
fully-automated cine analysis from a complete collection of
images routinely acquired during a clinical study.

Class Identification CNN
Class identification is the first necessary step for image
analysis, making algorithmic classification of standard views a
fundamental step for true automatization of analysis (19). DL
has been used to meet this need for automated analysis of echo
images (20, 21), but not in the field of CMR.

Identification of conventional cine classes can be seen as
a trivial task. Nonetheless it is time consuming, especially
in long CMR studies, where a multitude of sequences are
acquired. Moreover, view recognition cannot rely on the name
of the sequences, as these are not replicated across groups and
misnaming is common, especially when images are repeated
due to insufficient quality or slight errors in view-planning,
or added during acquisition. These characteristics make the
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problem of class identification well-suited for automation. In
computer vision tasks in particular, DL has shown excellent
performance (22). This is reflected by the high performance
of all trained CNNclass architectures, which had an accuracy
approaching 100%. Precision, recall and F1-scores were mostly
between 0.99 and 1 for all classes.

Quality Control CNN
The second DL component of our framework was trained to add
a quality-control step to our framework by identifying images
of insufficient quality or inadequate planning to inform the
automated image analysis process.

Quality control is crucial to transfer DL research tools to the
clinical reality in a safe manner, and its importance is increasingly
recognized (5, 10, 23, 24). The performance of our CNNQC was
lower compared to the CNNclass with highest recorded accuracy
of 0.86 for 2Ch and 4Ch, and 0.80 for 3Ch. This is explained
by several reasons. First, the input data were highly unbalanced,
which is a natural consequence of the fact that radiographers
aim to acquire good quality images, resulting in the poor quality
class being significantly underrepresented. This is reflected by
the significantly lower precision, recall and f1-scores for the
identification of “wrong” images compared to that of “correct”
ones. To reduce the bias of unbalanced data, we used cross
entropy loss, adaptive learning rate scheduler, and balanced
accuracy, but such bias can never be fully controlled. Second,
images to be considered of insufficient quality have a wide
range of problems, from motion artifacts to off-axis planning of
different types, making their grouping into one class difficult for
the CNN. In particular, when evaluating 3Ch views, the quality of
both the cardiac chambers and the aorta were considered, which
might explain the lower performance compared to 2Ch and 4Ch
views. On the other hand, separation into different classes would
have resulted in further imbalance of the data, with insufficient
numbers in each hypothetical poor-quality class. Therefore, we
decided to group them together. Last, there is a degree of
subjectivity in this task, as the same problem can be present
to a varying degree of severity; for example, off-axis planning
of the 4Ch view can result in the presence of a clear LVOT,
or just a small disruption of the basal septum. The subjectivity
of QC is reflected in the intra- and inter-observer variability
during manual assessment. Consequently, it is both unlikely and
unnecessary for any algorithm to reach 100% accuracy in this
task. The cases with low degree of severity were the most likely
to be misclassified, as well as the most frequent source of inter-
and intra-observer disagreement, as displayed in Figure 2.

Complete Framework
For the complete framework, we selected the CNNclass and
CNNQC that performed best in combination with a selection
algorithm, rather than the networks that performed best in the
validation of the individual steps. This was done for two reasons.
First, a sequential process can leverage individual strengths and
weaknesses to obtain the best combined result. Second, the
addition of the selection algorithm after the two CNNs aimed at
achieving a more complex and possibly more clinically relevant
task: selection of images for further analysis, which can be highly

time-consuming, especially in long exams containing several
acquisitions. It was therefore our intent to test the integrated
framework and select the one with the best overall performance.

The integration of the three steps of the framework yielded
an accurate and rapid system to select images of interest
for analysis. The best combination was DenseNet CNNclass,
ShuffleNet 2Ch-CNNQC, DenseNet 2Ch-CNNQC, ShuffleNet
4Ch-CNNQC, which had a 90% sensitivity for 2Ch, 93% for
3Ch, and 94% for 4Ch acquisitions. This is achieved at the cost
of a small proportion of good quality images being mistakenly
labeled as erroneous, thus requiring clinician review. However,
we believe this is a reasonable compromise to ensure clinical
safety within an automated process. Moreover, the process of
review is fast in case of data falsely labeled as erroneous, which
only requires a visual check from the clinician to accept the
analysis results.

Full Pipeline: From Scanner to Report
Using the image-processing steps developed in this paper, we
were able to present the first pipeline for analysis of cardiac
function from cine CMR that automates the complete process
from scanner to report, offering an automated system that
reproduces manual analysis in current clinical practice. This
pipeline is characterized by a high degree of QC (one step
in the new framework, two steps in the previously published
one). Sequential QC steps focusing on different quality problems
ensures a “Swiss cheese” framework, where if a poor-quality
image slips through a first barrier, it will likely be flagged up in a
later stage. Supplementary Video 1 displays how the new quality
control step aids in selecting images where segmentation can be
performed at high standards by subsequent pipeline steps.

Moreover, the addition of the new framework offers
automated selection of all standard cine views, which can be
further exploited for analysis of parameters beyond conventional
ones, such as longitudinal strain and atrioventricular valve
systolic excursion, expanding the role of CMR for the assessment
of systolic and diastolic function.

The full pipeline is highly accurate, with a focus on high
sensitivity, showing an improvement compared to our previously
published work (5). The pipeline is also significantly time-
efficient, producing outcome measures in about 4min for
standard scans, and in up to 7min for longer research scans. This
is faster than the time reported for the initial pipeline (5), due to
changes in the previously developed code.

In the future, we aim to extend our framework to identify
and analyze other CMR sequences, including late gadolinium
enhancement, flow and T2 mapping. Moreover, with an
expanding data set we will be able to train quality control CNNs
to recognize specific types of quality and planning errors. In order
to decrease subjectivity of this task, a collaborative initiative to
build a consensus across a vast number of operators, similar
to a recent one developed in the field of echo and AI (25),
would be of great value. Lastly, our method now requires post-
processing and is separated from the CMR scanner. In the
future, effort should be made for direct implementation on the
scanner console. In particular, the implementation of CNNQC

at the time of image acquisition would aid radiographers by
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FIGURE 2 | Manual vs. automated classification. Visual representation of: (first line) cases classified as “correct” both by manual assessment (both operators) and

CCNQC; (second line) cases classified as “wrong” both by manual assessment (both operators) and CCNQC; (third line) cases classified as “wrong” by manual

assessment (with disagreement between operators for 2-chamber) and as “correct” by CCNQC. 0, correct; 1, wrong; Ch, chamber; GT, ground truth; R1, first

operator; R2, second operator.

promptly detecting images of unsatisfactory quality. This would
improve image quality upstream and yield a greater accuracy of
downstream image analysis (26).

Study Limitations
Our dataset did not include CMR studies acquired with General
Electrics (GE), thus limiting our framework’s generalizability.
However, using Philips and Siemens granted a high degree
of variability, which would facilitate further training with
GE data.

DL algorithms inherently are black boxes. Therefore,
interpretation of decisions remains challenging. In this paper we
used a stepwise approach of classification and QC algorithms
instead of a fused algorithm to allow at least some interpretation
of the DL-based decisions.

Moreover, although we included a large number of patients
with ACHD to train and test the model, exclusion of grossly

distorted anatomy limits the use of this framework in patients
with severe ACHD.

The framework presented in this paper performs limited
quality control for short axis. We decided not to train a further
CNN for this view as already present in the previously validated
pipeline, and it would have therefore been redundant.

CONCLUSIONS

We developed and validated a framework to select cine
acquisitions and perform QC of the selected images prior
to automated cine CMR image analysis. We show that our
network is able to select cine CMR from a full clinical CMR
exam accurately and screen for image quality with a high
rate of detecting erroneous acquisitions. We implemented our
developed framework as the first step of a wider quality-
controlled pipeline to obtain automated, quality-controlled
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analysis of cardiac function from short and long axis cine images
from complete CMR clinical studies.
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Background: Left ventricular ejection fraction (LVEF) is the gold standard for evaluating

heart failure (HF) in coronary artery disease (CAD) patients. It is an essential metric in

categorizing HF patients as preserved (HFpEF), mid-range (HFmEF), and reduced (HFrEF)

ejection fraction but differs, depending on whether the ASE/EACVI or ESC guidelines are

used to classify HF.

Objectives: We sought to investigate the effectiveness of using deep learning as

an automated tool to predict LVEF from patient clinical profiles using regression

and classification trained models. We further investigate the effect of utilizing other

LVEF-based thresholds to examine the discrimination ability of deep learning between

HF categories grouped with narrower ranges.

Methods: Data from 303 CAD patients were obtained from American and Greek

patient databases and categorized based on the American Society of Echocardiography

and the European Association of Cardiovascular Imaging (ASE/EACVI) guidelines into

HFpEF (EF > 55%), HFmEF (50% ≤ EF ≤ 55%), and HFrEF (EF < 50%). Clinical

profiles included 13 demographical and clinical markers grouped as cardiovascular

risk factors, medication, and history. The most significant and important markers

were determined using linear regression fitting and Chi-squared test combined

with a novel dimensionality reduction algorithm based on arc radial visualization

(ArcViz). Two deep learning-based models were then developed and trained using

convolutional neural networks (CNN) to estimate LVEF levels from the clinical

information and for classification into one of three LVEF-based HF categories.
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Results: A total of seven clinical markers were found important for discriminating

between the three HF categories. Using statistical analysis, diabetes, diuretics

medication, and prior myocardial infarction were found statistically significant (p< 0.001).

Furthermore, age, body mass index (BMI), anti-arrhythmics medication, and previous

ventricular tachycardia were found important after projections on the ArcViz convex hull

with an average nearest centroid (NC) accuracy of 94%. The regression model estimated

LVEF levels successfully with an overall accuracy of 90%, average root mean square

error (RMSE) of 4.13, and correlation coefficient of 0.85. A significant improvement

was then obtained with the classification model, which predicted HF categories with

an accuracy ≥93%, sensitivity ≥89%, 1-specificity < 5%, and average area under the

receiver operating characteristics curve (AUROC) of 0.98.

Conclusions: Our study suggests the potential of implementing deep learning-based

models clinically to ensure faster, yet accurate, automatic prediction of HF based on the

ASE/EACVI LVEF guidelines with only clinical profiles and corresponding information as

input to the models. Invasive, expensive, and time-consuming clinical testing could thus

be avoided, enabling reduced stress in patients and simpler triage for further intervention.

Keywords: heart failure, coronary artery disease, left ventricular ejection fraction, clinical profiles, demographical

and clinical information, radial visualization, machine and deep learning

INTRODUCTION

Heart failure (HF) is a chronic and progressive pathologic
state characterized by the inability of the heart to pump an
adequate amount of blood to supply tissues with nutrients via
the systemic circulation (1). Several conditions, such as coronary
artery disease (CAD) and arterial hypertension, are considered
major causes of HF progression (2, 3). According to the European
Society of Cardiology (ESC), more than 26million people around
the world suffer from HF caused by CAD (4). Furthermore, the
World Health Organization (WHO) estimates that HF accounts
for more than 7.2 million deaths annually worldwide (3).

The systolic function of the heart, as indicated by the left
ventricular ejection fraction (LVEF), is significantly decreased
in HF. LVEF refers to the amount (%) of oxygenated blood
pumped out of the left ventricle at each contraction of the
heart (5, 6). It is considered an important diagnostic metric in
evaluating the progression of HF, especially at early stages. Based
on the LVEF, HF can be classified according to the American
Society of Echocardiography and the European Association of
Cardiovascular Imaging (ASE/EACVI) (7–9) into three main
categories: heart failure with preserved ejection fraction (HFpEF)
with an EF above 55%, heart failure with mid-range ejection
fraction (HFmEF) with an EF between 50 and 55%, and heart
failure with reduced ejection fraction (HFrEF) with an EF below
50%. The narrower range for the HFmEF category is considered
as a variable criteria for this group in accordance to the etiology
of HF. Other guidelines including the ESC (10) recommend
different cut-off values for classification of HF, with a cut-off for
HFrEF as low as 40%. The literature suggests that there are no
strict rules and that the treatment is loosely associated with LVEF
and clinical presentation. However, patients in the mid-range

group between 40 and 49% based on the ESC guidelines show
that 90% of patients either improved or deteriorated, whilst only
10% of cases remained unchanged (11).

Accurate LVEF-based assessment of HF therefore poses
substantial challenges to clinicians (8, 9, 12). HFpEF, despite
covering half of all patients with HF, is not yet well-understood
and remains frequently undetected due to similarities in
symptoms and adverse outcomes with HFrEF and, to a lesser
extent, HFmEF (12, 13). Furthermore, HFmEF represents one-
fifth of the HF population and remains ambiguous, as its
pathogenesis was observed to be more similar to that of
HFrEF and rather different from HFpEF depending on the
guidelines applied. This raises the question of whether it should
be considered a transient entity between HFpEF and HFrEF
or a distinct entity on its own (14–16). Therefore, additional
research is needed to investigate the effectiveness of LVEF-based
categorization of HF patients. According to recently published
studies, clinical profiles of patients allow for the discrimination
between the three HF categories, especially the presence of
comorbidities and quality of life based on the ESC guidelines
(16–21). Based on these clinical results, HFmEF patients were
found to fall between HFpEF and HFrEF while more closely
resembling HFpEF (22, 23). Additionally, they were more likely
to be younger than HFpEF and more prone to diabetes and
hypertension than HFrEF (20, 24). Thus, further studies on a
larger cohort of patients are still required to understand how
demographical and clinical characteristics are associated with
eachHF category defined by clinicallymeasured ejection fraction,
especially in terms of optimizing treatment options to improve
stratification and risk management of patients.

Most recently, machine learning has beenwidely implemented
in medical research to assist in HF assessment through clinical
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information (25–30). In addition, several studies have employed
machine learning, including unsupervised clustering, to identify
and characterize sub-groups of HFpEF from patient clinical
profiles (31–34). However, there is still a limited knowledge on
the complex relationship between demographical and clinical
information and the three LVEF-based HF categories. In
addition, it would be highly appreciated to offer a promising
alternative tool to echocardiography for LVEF assessment which
does not require the highly specialized knowledge and expensive
equipment. In this vein, machine learning, including deep
learning, can be essential in understanding the complicated
clinical characteristics included in patient records leading to a
better HF assessment. Therefore, in this study, we sought to
investigate the ability of deep learning-based trained models in
estimating LVEF levels as well as predicting HF categories from
patient demographic and clinical information only in line with
the ASE/EACVI guidelines. No previous studies have employed
deep learning for analyzing HF categories associated with
clinical profiles and LVEF. Thus, we developed trained models
that could be capable of automatically providing assistance in
clinical decision making in HF assessment based on LVEF
levels. To prevent training the models using arbitrary or biased
clinical variables, we ensured the following two steps: first,
we investigated the statistical significance of each variable in
discriminating between the three categories, and second, we
followed a novel dimensionality reduction technique based on
radial visualization to observe the best variables in characterizing
and separating each LVEF-based HF category. We report the
performance of the developed models that were trained based on
the most important clinical variables to discuss the importance
of deep learning in HF analysis based on LVEF as well as to
elaborate on the significance of these clinical variables within
patient profiles in differentiating between the threeHF categories.

MATERIALS AND METHODS

Dataset and Patients Enrollment
Two datasets that contain clinical information of American and
Greek patient cohorts were included in this study. Both datasets
included patients with HF, more specifically CAD, with ages
between 33 and 88 years (n = 303). These patients were divided
into 129 HFpEF, 92 HFmEF, and 82 HFrEF according to the
ASE/EACVI guidelines.

The American patient cohort was obtained from the archives
of the Intercity Digital Electrocardiography (ECG) Alliance
(IDEAL) study of the University of Rochester Medical Center
Telemetric and Holter ECG Warehouse (THEW) (35). The
database enrollment protocol was conducted according to Title
45, U.S. Code of Federal Regulations, Part 46, protection
of human subjects (revised: November 13, 2001–effective:
December 13, 2001) and in accordance with the Declaration
of Helsinki. Furthermore, the research subject review board of
the University of Rochester approved the IDEAL protocol (36).
All patients provided a signed consent before participating in
the study. The eligibility criteria to enroll in the IDEAL study
included: (1) having either an evidence of previous MI or an
exercise induced ischemia; (2) being in stable phase of ischemic

heart disease at least 2 months after the last event; (3) not
diagnosed with a congenital heart failure; and (4) being in sinus
rhythm. Furthermore, all patients with dilated cardiomyopathy
(left ventricular diameter (LVD) > 60mm and EF < 40%),
congenital heart failure (CHF), coronary artery bypass grafting
(CABG) surgery, non-sinus rhythm, and any cerebral, severe
hepatic, or malignancy diseases were excluded from the study. A
total of 199 patients were included from the IDEAL study. Out of
these patients, HFpEF (n = 106), HFmEF (n = 46), and HFrEF
(n = 47) categories were grouped based on the aforementioned
ASE/EACVI guidelines.

The Greek patient cohort was obtained from the PRESERVE
EF study with patients enrolled across seven cardiology
departments in Greece (37). The protocol of the study was
approved by the ethics committee at each cardiology department
and was endorsed by the Hellenic Society of Cardiology. A
database was created and is maintained by the Hellenic Society
of Cardiology (38). All patients signed a consent form prior
to enrollment in the study at each cardiology department.
The eligibility criteria for patient enrollment included: (1)
having a post-angiographically proven MI of at least 40 days
after the event or 90 days after any CABG surgeries, if
applicable; (2) being revascularized; (3) being not revascularized
but without evidence of any active ischemia in previous the
6 months; and (4) following optimal and tolerated medical
therapy. Furthermore, any patient with a secondary prevention
indication for implantable cardioverter defibrillator (ICD)
implantation, permanent pacemaker, persistent, long-standing
persistent, and permanent atrial fibrillation, any neurological
symptoms of syncope or pre-syncope within the last 6 months,
and presence of any systemic illnesses such as liver failure, renal
diseases, rheumatic diseases, thyroid dysfunction, and cancer was
excluded from the study. Overall, a total of 104 patients were
obtained from the PRESERVE EF study. These patients were
distributed as 23 HFpEF, 46 HFmEF, and 35 HFrEF based on the
ASE/EACVI guidelines.

Demographic and Clinical Markers
Both datasets included demographic and clinical information.
Provided information was initially grouped into cardiovascular
risk factors, cardiovascular medication, and cardiovascular
history. As cardiovascular risk factors, age (years), sex (male—
female), body mass index (BMI, kg/m2), smoking (yes—
no), diabetes (yes–no), and hypertension (yes—no) were the
recorded markers. As cardiovascular medication, beta-blockers
(yes—no), angiotensin-converting enzyme inhibitors (ACE-
inhibitors, yes—no), anti-arrhythmics (yes—no), and diuretics
(yes—no) were selected. Lastly, cardiovascular history included
the presence of any previous angina pectoris (AP, yes—
no), ventricular tachycardia (VT, yes—no), and myocardial
infractions (Prior MI, yes—no).

Statistical Data Analysis
The statistical analysis was carried out using Student’s t-test
based on linear regression fitting (39), where the significance of
each variable was evaluated based on the corresponding p-value
measurement, with a p-value below 0.05 indicating significance.
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A chi-squared (χ2) test (40) was applied to examine which
clinical variables were most important and highly dependent on
individual LVEF categories. In this test, an important feature
with a high score indicates a significant difference (p < 0.05) in
discriminating between the three LVEF categories.

Multivariate Data Visualization
Patient information, being high-dimensional data, requires
further projections into a low-dimensional space (dimensionality
reduction) for multivariate visual inspection, and for clustering
and pattern recognition purposes. A modified version of
the original radial visualization (RadViz) algorithm (41, 42)
proposed by Van Long (43), based on arc representation of
variables (ArcViz) rather than point or line representations,
was utilized. In ArcViz, a non-linear mapping into a two-
dimensional plane is performed on the high-dimensional data
(clinical information) by considering variables as arcs. Each
multi-dimensional data point that includes clinical information
of each patient is mapped as a point inside a circular convex
hull. The arcs of this circle represent each variable, and new
dimensional anchors (points) are calculated between these arcs
to determine the location of the mapped point as well as the
covering area of each arc. All points are normalized on the axes
between the center [(x, y) = (0, 0)] and each calculated anchor
point that is located on the arcs. The projection of the clinical
variables was then optimized using a genetic algorithm based
on linear discriminant analysis (LDA) fitting and the nearest
centroid (NC) accuracy of the fitting was calculated accordingly.

Three properties are associated with the mapping process
in ArcViz: (1) the larger the value of a variable inside the
multi-dimensional data point, the closer the mapped point will
be toward the anchor point located on the arc representing
this variable; (2) the mapped point gets closer to the center
if its data point values across the variables are similar; and
(3) the mapped point is determined from a combination of
anchor points calculated on the arcs and mapped within their
convex hull.

Deep Learning Models
To provide a complete prediction approach (Figure 1), two
deep learning-based models for regression (level estimations)
and classification (category labels) of LVEF were developed.
The input of these models was 303 patient clinical information
(Figure 1A) including the previously mentioned demographic
and clinical markers (Figure 1B). The results of the statistical
analysis as well as dimensionality reduction based on ArcViz
were used as feature selection approaches to assist in determining
the most important markers for a maximized performance
within the proposed deep learning models (Figure 1C). Both
models for regression and classification were structured as a
deep learning network (Figure 1D) with convolutional neural
networks (CNN). Two convolutional layers were utilized, each
followed by batch normalization (BN) and rectified linear unite
(ReLu), to extract characteristics contaminated within patients’
clinical markers of every LVEF category. The two consecutive
convolutional layers were with kernel sizes of (1, 3) and (1, 2),
respectively, and with 32 filters and 64 filters, respectively. The

development of the models included training and prediction
phases (Figure 1E). In the training phase, both models were
trained for 300 epochs with a mini-batch size of 64. The adaptive
moment estimation (ADAM) was selected as the optimizer with a
learning rate of 0.001, L2-regularization of 0.0001, and decay rate
of 0.90. For the prediction phase, a leave-one-out scheme, where
each subject is held out as the testing subject on each training
iteration, was adopted. This scheme provides a prediction for
every subject in the dataset, while at the same time maximizing
the amount of data included within the trained models. It allows
for treating each patient as a completely hidden testing set to
the trained models, thus, slightly addressing any issues on the
generality in the training and testing phases due to the lack of
any external patient testing sets.

The performance of the regression model was evaluated
based on the overall accuracy level, which was calculated as
the agreement between the estimated and original LVEF with
an accepted error of ±5%. Furthermore, the average root
mean square error (RMSE) and correlation coefficient, alongside
the Bland-Altman (44) (with mean ± 2 std) and correlation
plots of the estimation process were determined. To evaluate
the performance of the classification model, analysis of the
confusion matrix of predictions as well as the receiver operating
characteristic (ROC) curves and the corresponding area under
the ROC (AUROC) was applied. Additional performance
evaluation metrics including accuracy, sensitivity, specificity,
precision, and F1-score.

RESULTS

Clinical Characteristics of Patients
Patients included in this study had a median age of 58 years
with an interquartile range of 50–65 years. Two hundred
and fifty-eight patients were male (85.15%). Diabetes, diuretics
medication, and prior MI showed significant differences in
discriminating between the three LVEF categories (p < 0.001).
Furthermore, for patients with diabetes, a significant difference
was observed between HFpEF and HFrEF, whereas for diuretics
medication and prior MI the significant differences were
observed for HFpEF vs. HFrEF and HFpEF vs. HFmEF (p <

0.001). The complete clinical characteristics of the patient cohort
is shown in Table 1 alongside the p-value calculations using
linear regression fitting. The three aforementioned markers had
the highest normalized importance scores using the Chi-squared
(χ2) test as illustrated in Figure 2 (diuretics: 1.0, Prior MI:
0.63, and diabetes: 0.32). Additionally, VT and AP had relatively
high scores with 0.24 and 0.23, respectively, with the remaining
clinical markers being below 0.1.

ArcViz Representations of Clinical Markers
The projection of clinical markers on the ArcViz convex hull
(Figure 3) yielded an average NC accuracy of 93.73%, distributed
as 99.01, 90.43, and 91.75% for cardiovascular risk factors,
cardiovascular medication, and cardiovascular history categories,
respectively. For cardiovascular risk factors (Figure 3A), the
three LVEF categories were perfectly separated with a large arc
area for diabetes. This indicates the strong impact of diabetes on
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FIGURE 1 | Workflow of developing deep learning-based regression and classification models for the prediction of left ventricular ejection fraction (LVEF) levels and

categories in heart failure patients. The procedure goes through: (A) dataset collection (n = 303 patients), (B) patient information and demographic/clinical markers

categorization, (C) statistical analysis of markers and dimensionality reduction using ArcViz (feature selection), (D) designing deep learning network structure, and

(E) development of regression and classification models with leave-one-out training and predicting scheme.

discriminating the three categories. Furthermore, although the
centroids of HFpEF and HFmEF were located within diabetes,
the centroid for HFrEF was located in the BMI region, which
matches with the p-value observations of HFpEF vs. HFrEF in
diabetes (Table 1—p < 0.001). It is worth noting that age had
a greater effect on some HFpEF and therefore it was found to
be significantly different for HFpEF vs. HFmEF as shown in
Table 1 (p = 0.034). For cardiovascular medication (Figure 3B),
a fair separation was obtained between the three LVEF categories
associated with anti-arrhythmics and diuretics medication use.
Both centroids of HFmEF and HFrEF were located within
the diuretics arc region, with p < 0.001 (Table 1) observed
between HFmEF and HFrEF compared to HFpEF, which was
located mostly within the anti-arrhythmics arc region. Lastly, for
cardiovascular history (Figure 3C), the stronger impact was due
to the prior MI marker that had the lowest (p < 0.001; Table 1)
for differences betweenHFpEF andHFmEF as well as HFpEF and
HFrEF. The centroid of the HFpEF was located within the VT
arc region, whereas both centroids of HFmEF and HFrEF were

located within the prior MI arc region. The slight shift of the
HFrEF category toward the VT biomarker arc area is reflected
by the low (p= 0.005; Table 1) when compared to patients in the
HFmEF group.

Deep Learning Prediction of LVEF
Both deep learning models (regression and classification)
were trained on the NVIDIA GeForce GTX 1070 graphics
processing unit (GPU) of 8 GB display memory (VRAM).
Training of each model required <1min, while the prediction
per-patient took <3 s. Both models were trained using
the most important clinical markers (age, BMI, diabetes,
anti-arrhythmics, diuretics, VT, and Prior MI) based on
statistical significance and location of ArcViz centroids.
The developed regression model (Figure 4A) successfully
estimated patient LVEF levels with an overall accuracy of
90.43% (error: ±5%). Furthermore, the estimated LVEF
levels had an average RMSE of 4.13 relative to the original
LVEF levels. The Bland-Altman plot (Figure 4B) had a mean
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TABLE 1 | Clinical characteristics of the heart failure patients based on their left ventricular ejection fraction categories.

Clinical variables Overall

subjects

(n = 303)

LVEF categories p-value

HFpEF

(n = 129)

HFmEF

(n = 92)

HFrEF

(n = 82)

HFpEF

HFrEF

HFpEF

HFmEF

HFmEF

HFrEF

HFpEF

HFmEF

HFrEF

LVEF, % 55 (46.5–63) 63 (60–70) 52.5 (50–55) 45 (40–47) <0.001 <0.001 <0.001 <0.001

Cardiovascular risk factors

Age, years 58 (50–65) 57 (38–64.5) 58.5 (52–68) 60.5 (50–66) 0.155 0.034 0.533 0.110

Male 258 (85.15) 108 (83.72) 76 (82.61) 74 (90.24) 0.181 0.828 0.147 0.237

BMI, kg/m2 27.28

(24.91–29.41)

27.12

(24.39–28.95)

27.22

(25.35–29.92)

27.68

(25.31–29.74)

0.159 0.166 0.945 0.133

Smoking 203 (67.00) 87 (67.44) 62 (67.39) 54 (65.85) 0.752 0.928 0.831 0.757

Diabetes 43 (14.19) 10 (7.75) 13 (14.13) 20 (24.39) <0.001 0.127 0.086 <0.001

Hypertension 154 (50.83) 64 (49.61) 46 (50.00) 44 (53.66) 0.569 0.955 0.632 0.587

Cardiovascular medication

Beta-Blockers 245 (80.86) 101 (78.30) 77 (83.70) 67 (81.71) 0.551 0.320 0.731 0.478

ACE-Inhibitors 113 (37.29) 47 (36.43) 33 (35.87) 33 (40.24) 0.555 0.932 0.580 0.611

Anti-Arrhythmics 12 (3.96) 3 (2.33) 4 (4.35) 5 (6.10) 0.164 0.400 0.605 0.166

Diuretics 114 (37.62) 24 (18.61) 51 (55.44) 39 (47.56) <0.001 <0.001 0.302 <0.001

Cardiovascular history

AP 186 (61.39) 89 (68.99) 46 (50.00) 51 (62.20) 0.311 0.004 0.107 0.189

VT 21 (6.93) 8 (6.20) 2 (2.17) 11 (13.42) 0.078 0.158 0.005 0.088

Prior MI 223 (73.60) 77 (59.69) 76 (82.61) 70 (85.37) <0.001 <0.001 0.624 <0.001

All values are represented as median (interquartile range) or n (%). Bold p-values show statistically significant differences (p < 0.050) amongst the selected categories. LVEF, Left

ventricular ejection fraction; HFpEF, Heart failure with preserved ejection fraction; HFmEF, Heart failure with mid-range ejection fraction; HFrEF, Heart failure with reduced ejection

fraction; BMI, Body mass index; ACE, Angiotensin-converting enzyme; AP, Angina pectoris; VT, Ventricular tachycardia; MI, Myocardial infarction.

FIGURE 2 | Normalized importance scores for the clinical markers used in the study in differentiating between the three LVEF categories. Importance scores were

calculated using the Chi-squared (χ2) statistical test.

difference of 0.39 ± 11.61 between the estimated and original
LVEF levels. Additionally, the correlation plot was skewed
positively with an overall coefficient of 0.85 (Figure 4C). The
classification model developed for this project (Figure 5A)
efficiently predicted each LVEF category with a precision

level of 93.00, 89.10, and 95.10% for HFpEF, HFmEF, and
HFrEF, respectively.

The model resulted in an average AUROC of 0.975
(Figure 5B) distributed as 0.986 for HFpEF, 0.955 for HFmEF,
and 0.983 for HFrEF. Furthermore, the model achieved high
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FIGURE 3 | Arc visualization (ArcViz) and dimensionality reduction for: (A) cardiovascular risk factors, (B) cardiovascular medication, and (C) cardiovascular history

clinical markers. The nearest centroid (NC) accuracy was calculated after optimizing linear discriminant analysis (LDA) fitting.

levels of performance (Figure 5C) in accuracy, sensitivity,
specificity, precision, and F1-score (more than 89%).

To elaborate on the generality and performance of the
proposed deep learning models, support vector machines (SVM)
based on a radial basis function (RBF) kernel and generalized
linear model (GLM) were used to estimate LVEF (regression) and
predict HF categories (classification). The performance of both
models are compared with the aforementioned deep learning
results in Table 2. LVEF estimation accuracies using SVM and

GLM models have reached 87.46% and 84.82%, respectively,
which was outperformed by deep learning (90.43%). In addition,
the RMSE had its lowest levels for deep learning (4.13) compared
with SVM (4.38) and GLM (5.11). In predicting HF categories,
the overall accuracy reached 88.45 and 84.14% for SVM and
GLM, respectively, whereas it reached 90.10% in deep learning.
It is worth noting that both models had high precision levels
in HFrEF prediction with a 94.12% using SVM and 96.34%
using GLM. However, they both had lower performance metrics
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FIGURE 4 | The overall performance of the deep learning-based regression model in estimating left ventricular ejection fraction (LVEF) levels in heart failure patients:

(A) estimation of LVEF relative to the original levels alongside the overall accuracy and average root mean square error (RMSE), (B) Bland-Altman plot for the average

vs. difference between the estimated and original LVEF levels with the mean ± 2 std difference level, and (C) correlation plot between estimated and original LVEF

levels with the corresponding correlation coefficient.

(sensitivity, 1-specificity, and precision) than deep learning in
discriminating between HFpEF and HFmEF.

DISCUSSION

In this study, we demonstrated the significance of utilizing deep
learning as a tool to estimate LVEF levels in HF patients as
well as to categorize HF patients in accordance with their LVEF
levels, offering an easily used and automated assistive tool for
everyday clinical practice. The adopted narrower band for the
HFmEF highlights that even slightly reduced values of LVEF

can have an effect on heart rhythm and hence change in patient
condition. Therefore, it was essential to employ versatile criteria
for various cohorts in order to enable the adaptive analysis of the
collected patient data. In addition, the ability to use automated
deep learning-based trained models could save crucial time in
clinical circumstances. In addition, these models may be able of
aiding in the clinical decision making in HF assessment by going
through available patient information with less dependence on
medical experts. Only few studies have identified and discussed
clinical information that may be capable of classifying HFpEF,
HFmEF, and HFrEF patients statistically as well as from a
machine learning-based perspective. To fill this gap, in the
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FIGURE 5 | The overall performance of the deep learning-based classification model in predicting left ventricular ejection fraction (LVEF) categories in heart failure

patients: (A) confusion matrix of the predictions for the output and target classes, (B) receiver operating characteristics (ROC) curves for each LVEF category with the

corresponding area under the ROC curves, and (C) evaluation metrics including accuracy, sensitivity, specificity, precision, and F1-score.

current study important clinical markers were first statistically
identified and then projected into a novel arc radial visualization
(ArcViz). Furthermore, a complete deep learning approach
was developed that ensures higher levels of performance for
automatic estimation of LVEF levels and differentiation between
the three HF categories from clinical profiles only.

Clinical Markers Significance
Thirteen clinical markers often found in patient profiles were
evaluated statistically as well as through a new dimensionality
reduction approach (ArcViz). Among these markers, 7 were
found to be important in classifying HF patients based on LVEF.

For cardiovascular risk factors, age was found to be
an important marker in differentiating between HFpEF and
HFmEF. However, HFpEF patients were more skewed toward the
age region in ArcViz analysis in agreement with previous studies
that have found that HFmEF patients were younger in age and
closer to HFrEF in comparison to the HFpEF patients (24, 45,
46). Furthermore, BMI, although not significantly different, was
better in differentiating HFrEF from the other two groups when
applying ArcViz. Of interest and in agreement with our study,
several previous studies (47, 48) suggested that higher BMI often
associated with HFrEF patients (was beneficial to this patient
group), as higher BMI may counteract catabolism inflammation
and stress hormone activation in the HFrEF group. However, a
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high body weight in HFpEF patients is usually strongly associated
with HF, causing this patient group to be at higher risk of
developing further adverse cardiac events. Additionally, it was
shown that BMI does not play a critical role in HF progression
apart from the HFrEF category which has a higher 30-day
mortality (49). In this study, the minimum-maximum range for
BMI of HFpEF patients was 19.7–36.3 kg/m2 with 21 obese
patients (>30 kg/m2). For HFmEF patients, the range was 18.0–
37.7 kg/m2 with 23 obese patients. For HFrEF patients, the
range was 20.8–37.9 30 kg/m2 with 17 obese patients. These
ranges fit with the usual BMI range (20–40 kg/m2) reflecting
normal spread of BMI values across the included patients in the
three LVEF categories. This could elaborate on the insignificance
found using statistical analysis considering the narrow LVEF
ranges in the three categories. Lastly, diabetes was found to be
significantly different as well as the best in characterizing the
three LVEF categories in ArcViz. Our findings show that the
three LVEF categories can be better discriminated according
to patients’ diabetes diagnosis. All-cause mortality rates are
reported to increase in diabetic HFrEF relative toHFpEF (50–52).
However, patients within HFpEF and HFmEF groups showed
higher burden of diabetes than HFrEF patients (53).

Important markers associated with cardiovascular medication
included anti-arrhythmics and diuretics medication. Patients
with HFpEF had a higher intake of both medications followed
by HFrEF and lastly HFmEF. This shows a distinct medication
procedure between the three LVEF categories using these two
medications. The literature reports that HFpEF patients are more
prone to atrial fibrillation, and thus, anti-arrhythmics medication
is usually needed. Further, they were more likely to undergo
repeated ablations compared to the HFrEF group (54, 55).
This elaborates on the high number of patients taking anti-
arrhythmics medication observed in this study for the HFpEF
category with a better representation between HFpEF and HFrEF
in the ArcViz analysis. In addition, use of diuretics medication
was found to be highly discriminant between HFpEF and the
other two LVEF categories. Previous studies reported that the
prevalence of diuretics intake among HFmEF patients was found
to be less than the prevalence in the HFpEF and HFrEF in
agreement with the current study (45). Furthermore, diuretics
are widely used in HFpEF and HFrEF patients to prevent
symptoms of congestion in HF (56). This information supports
the findings of this study by considering diuretics as a highly
favored clinical marker in classifying patients into one of the
three LVEF categories.

Lastly, in cardiovascular history, the best marker was the
occurrence of prior MI. In a few previous studies (14, 57), a
greater number of prior MI was observed in HFrEF compared
to HFpEF. However, this could be due to the drop of LVEF levels
in the HFrEF patients included in these studies, as a higher rate of
prior MI is usually recorded if LVEF levels are <40% (58), which
was found in very few cases in our study. In addition, VT was
found to be the second most important cardiovascular history
marker in characterizing the three LVEF categories using ArcViz
analysis, especially the HFpEF, as well as being significant in
discriminating HFrEF from the two other categories. This relates
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to the higher burden of VT observed in patients with HFpEF over
patients in the other LVEF categories (59, 60).

It is worthmentioning that sex (male/female) was not found to
be significant nor effective in characterizing any LVEF category in
ArcViz analysis. However, this could be due to the high number
of male patients enrolled in this study and needs to be further
investigated as sex has been shown to be a factor in the prevalence
of HF (60–63).

Deep Learning as an Assistive Tool
Our study suggests deep learning as an assistive tool that could
be capable of automatically reading and extracting characteristics
from the clinical records of HF patients. In comparison with
machine learning, our trained models allow for training on
deeply extracted attributes between patients of each LVEF
category. Thus, it was less biased than feature engineering
techniques often used in conventional machine learning
algorithms. Our novel deep learning models may assist clinicians
based on the automated estimation of LVEF as well as the
accurate classification into one of the three main HF categories
(64). Furthermore, the models estimate and predict LVEF based
on the cardiovascular risk factors, medication, and history.
Additionally, the high levels of performance achieved in our deep
learning models suggest the potential of relatively simple, yet
effective, artificial intelligence algorithms in identifying certain
clinical characteristics that differentiate between LVEF categories
that may not be possible in conventional approaches. Although
deep learning has outperformed other machine learning models
in this work including SVM and GLM, further testing on external
patient cohorts are still needed to elaborate further on the general
validity of the achieved performance.

Limitations
Although our study shows that deep learning-based models have
performed efficiently in LVEF predictions, it has a number of
shortcomings. First, we have utilized 13 features (the 7 most
important ones were selected later) that were available in the
databases used in this study. However, additional markers need to
be further investigated, especially echocardiographic attributes,
i.e., left ventricular diastolic and systolic dimensions (LVDD
and LVDS), to provide more information on their effects on
LVEF predictions. Moreover, even though the dataset used in this
study combined patients from American and Greek populations,
the trained models should be tested further on wider sets of
patients to ensure additional generality of the performance.
Future studies should focus on using external validation sets
from different patient cohorts to imply general validity of the
trained models. In addition, the proposed models were trained
and tested on a specific range for each LVEF category as
recommended by the ASE/EACVI guidelines. Despite having
a narrower border-line for the HFmEF (50% ≤ EF ≤ 55%),
further studies of other LVEF guidelines and recommended LVEF
category ranges may enhance the effectiveness of deep learning in
LVEF predictions. Furthermore, validation on longitudinal data
needs to be undertaken to identify efficacy of intervention over
time based on the current models. Lastly, patients cohort in this
study includes a much higher percentage of males compared to

females. In addition, the median BMI of the included patients
was 27.28 kg/m2 indicating overweight but not obese subjects
with a narrow BMI range between the three LVEF categories.
Future studies with cohorts differing with reference to all
demographic categories including BMI are needed in order to
demonstrate the efficacy of the proposed methods in all possible
populations/clinical scenarios with narrow or wide ranges for
clinical information across LVEF categories.

Conclusions
Overall, our novel deep learning-based models showed high
levels of performance in automatically estimating LVEF levels
as well as classifying HF patients into one of the three
LVEF categories, suggesting it as a promising assistive tool
in clinical settings. The developed approach may lead to
a better understanding, from a machine learning (or deep
learning) perspective, of the clinical variables most suitable
for discriminating HFpEF, HFmEF, and HFrEF. The proposed
study is to extend the applicability of use of LVEF to
communities where the required instruments are not available
due to economic hardship or lack of clinical expertise.
Future research can add additional demographic and clinical
information to the deep learning models alongside clinical
profiles for an even better performance and understanding of
the differences between each LVEF category. Our outcomes
may also facilitate the development of a model for the
prediction of the HF phenotype or its changes during the
followed therapy of HF, offering a versatile tool for the
further exploration of disease pathophysiology or the objective
assessment of the different therapeutic schemes in future patients
with HF.
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Werys K, Lukaschuk E, Popescu IA,

Burrage MK, Shanmuganathan M,

Ferreira VM and Piechnik SK (2021)

MOCOnet: Robust Motion Correction

of Cardiovascular Magnetic

Resonance T1 Mapping Using

Convolutional Neural Networks.

Front. Cardiovasc. Med. 8:768245.

doi: 10.3389/fcvm.2021.768245

MOCOnet: Robust Motion Correction
of Cardiovascular Magnetic
Resonance T1 Mapping Using
Convolutional Neural Networks
Ricardo A. Gonzales 1†, Qiang Zhang 1†, Bartłomiej W. Papież 2,3, Konrad Werys 1,
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Background: Quantitative cardiovascular magnetic resonance (CMR) T1 mapping has

shown promise for advanced tissue characterisation in routine clinical practise. However,

T1 mapping is prone to motion artefacts, which affects its robustness and clinical

interpretation. Current methods for motion correction on T1 mapping are model-driven

with no guarantee on generalisability, limiting its widespread use. In contrast, emerging

data-driven deep learning approaches have shown good performance in general image

registration tasks. We propose MOCOnet, a convolutional neural network solution, for

generalisable motion artefact correction in T1 maps.

Methods: The network architecture employs U-Net for producing distance vector fields

and utilises warping layers to apply deformation to the feature maps in a coarse-to-fine

manner. Using the UK Biobank imaging dataset scanned at 1.5T, MOCOnet was trained

on 1,536 mid-ventricular T1 maps (acquired using the ShMOLLI method) with motion

artefacts, generated by a customised deformation procedure, and tested on a different

set of 200 samples with a diverse range of motion. MOCOnet was compared to a

well-validated baseline multi-modal image registration method. Motion reduction was

visually assessed by 3 human experts, with motion scores ranging from 0% (strictly no

motion) to 100% (very severe motion).

Results: MOCOnet achieved fast image registration (<1 second per T1 map) and

successfully suppressed a wide range of motion artefacts. MOCOnet significantly

reduced motion scores from 37.1±21.5 to 13.3±10.5 (p < 0.001), whereas the baseline

method reduced it to 15.8±15.6 (p < 0.001). MOCOnet was significantly better than the

baseline method in suppressing motion artefacts and more consistently (p = 0.007).

Conclusion: MOCOnet demonstrated significantly better motion correction

performance compared to a traditional image registration approach. Salvaging

data affected by motion with robustness and in a time-efficient manner may enable

better image quality and reliable images for immediate clinical interpretation.

Keywords: cardiovascular magnetic resonance, deep learning, image registration, ShMOLLI, T1 mapping
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1. INTRODUCTION

Quantitative T1 mapping is a novel approach in cardiovascular
magnetic resonance (CMR) for myocardial tissue
characterisation (1). Native and post-contrast T1 mapping
offer quantitative, pixel-wise measures to detect tissue changes
in myocardial composition (2) and have been used in the
assessment of myocardial inflammation (3), oedema (4, 5),
infiltration (6), diffuse fibrosis (7), and other pathologies
(8). Stress T1 mapping has the potential to assess coronary
artery disease without the need for gadolinium-based contrast
agents (9–11).

T1 mapping is obtained from pixel-wise exponential recovery
curve fitting of multiple T1-weighted images. With advances
made from the original Look-Locker spectroscopic method
(12), current mapping techniques employ intermittent image
acquisition using electrocardiographic gating during multiple
heartbeats (2). The shortened modified Look-Locker inversion
recovery (ShMOLLI) (13) allowed shorter breath-holds with 9
heartbeats with high precision and reproducibility. Although
acquiring multiple T1-weighted images at the same cardiac
phase largely reduces the influence of cardiac motion, undesired
respiratory motion still poses significant challenges (14).
Uncorrected and unrecognised respiratory motion artefacts may
cause errors in T1 estimation and incorrect diagnoses (13).

Retrospective motion correction (MOCO) on the multiple
T1-weighted images can significantly improve the robustness
and clinical utility of mapping techniques (15). Such correction
is accomplished by aligning the T1-weighted images before
reconstruction. The main challenge is the variation in image
contrast and signal nulling of the multiple T1-weighted images
acquired at different inversion times. Model-driven registration
methods for MOCO were developed to circumvent this
limitation with promising results (16–19). However, careful
inspection for uncorrected residual motion or distortions from
failures in motion correction is still needed (20). Although
visual assessment in CMR is still the clinical standard for image
interpretation (21), constant and long manual labour is prone to
error due to inconsistency and operator fatigue, as well as slow
clinical workflow if handling a large volume of images.

With the advent of deep learning, convolutional neural
networks (CNN) have enabled unprecedented progress in image
processing, shifting the paradigm from predefined, hand-crafted
rules to automated learning procedures aided by large data.
The rapid adaptation of deep learning approaches within CMR
provides fast, consistent, and accurate pipelines primarily for
image segmentation and analysis (22) significantly reducing
physician labour hours. The field of clinical image registration
with deep learning is also primed to replace iterative registration
methods, with potential to improve accuracy, time efficiency
and quality control (23), and applicability to cover the unmet
need of MOCO in T1 maps. We hypothesised that a data-
driven method for myocardial motion correction would suppress
motion artefacts with more robustness and generalisability to
serve large clinical datasets.

In this work, we present MOCOnet, a novel deep learning
approach for myocardial motion correction developed using

CMR T1 mapping from the UK Biobank (24). We adapted
an encoder-decoder architecture with warping layers to aid
the learning of such deformation in a coarse-to-fine manner.
Given a set of T1-weighted images, MOCOnet can predict the
deformation required to correct any present motion artefacts
in a time-efficient manner. MOCOnet was tested for its
motion correction performance against a well-validated multi-
modal image registration method, using multiple blinded expert
observers to validate the motion correction effectiveness.

2. MATERIALS AND METHODS

2.1. Cardiac T1 Mapping and Motion
Artefact
Cardiac ShMOLLI T1 mapping is calculated by fitting
exponential recovery curves to 7 inversion recovery-weighted
(IRW) images with multiple inversion times (Figure 1A) and
acquired within a short 9-heartbeat single breath-hold (13).
The reconstructed T1 map (Figure 1B) enables pixel-wise
quantification of T1 values. The associated map of coefficient
of explained variance (R2 map; Figure 1C) allows quality
monitoring of the curve fitting in reference to a mono-
exponential T1 relaxation recovery model. A closer proximity
to the reference displays a uniform white appearance of
relevant regions of interest in the R2 map, whereas motion
in the IRW images (Figure 1D, arrowed) decreases the T1
map interpretability (Figure 1E, arrowed), corresponding to
the dark bands at the motion-affected areas in the R2 map
(Figure 1F, arrowed). Besides motion artefacts, the R2 map is
also sensitive to off-resonance, fat inclusion, mistriggering, and
other artefacts (5, 25).

2.2. Non-rigid Registration Approach
Given that a T1 map with motion artefacts is composed of
7 unaligned IRW images, a motion-corrected T1 map can be
achieved by aligning the IRW images. The motion artefact can
be synthesised as a deformation of aligned IRW images with
a displacement vector field (DVF). The non-rigid registration
problem is then solved by estimating the inverse DVF of a given
set of unaligned IRW images.

2.3. Multi-Scale Registration Neural
Network
The proposed learning-based model corrects a T1 map by
estimating the inverse DVF in each of its 7 IRW images
to enable a non-rigid registration between them, before the
T1 map reconstruction. The multi-scale registration CNN
(Figure 2) adopts an encoder-decoder U-Net-like structure (26)
and employs warping layers (27) between the contracting and
expansive paths at each scale. The feature maps are down-
sampled with a series of 3 × 3 convolutional layers followed by
a batch normalisation layer, a leaky rectified linear unit and a
max-pooling layer, and similarly up-sampled with a transposed
convolutional layer. The warping layers speed up the training by
imposing a loss function on a multi-scale manner and increase
the registration accuracy by correcting motion starting from
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FIGURE 1 | Illustration of T1 maps with good quality (top row) and with motion artefact (bottom row). (A,D) Two examples out of seven of inversion-recovery weighted

(IRW) images required for T1 map reconstruction are shown, time-stamped with their corresponding inversion times (TI) and overlaid by identical manual myocardial

contours for identifying motion. (B,E) ShMOLLI T1 maps. (C,F) R2 quality control maps. A good quality T1 map is indicated by (A) myocardium in same position and

(C) “all white” in the left ventricular myocardium indicating high T1 fitting confidence. A T1 map with motion artefact is evident by misalignment in IRW images (yellow

arrow), suspicious features in T1 map (white arrow) and dark bands in R2 map in the left ventricular myocardium as evidence of poor T1 fitting (red arrow).

coarse levels and passing the residual motion to higher resolution
layers for fine motion correction.

The IRW images are first fed in a sequence of convolution
and downsampling operations to produce features at multiple
scales on a per-channel basis. The features, from low to high
resolutions, are then used as input of convolution modules to
produce DVFs. Each convolution module takes as input the
features from the previous step, the DVF at the previous scale,
and the warped features from the downsampling stage. Applying
warping at each of the 4 scales enables the use of residual
motion information to be corrected and refined in the next scale.
Hence, the neural network generates the DVFs in a coarse-to-
fine manner and adds more details with higher resolution in each
subsequent level, with a loss function defined at each scale to
further supervise the learning manner.

2.4. Imaging Data and Inclusion Criteria
The imaging data comprised of over 5,000 CMR native T1 maps
from the UK Biobank Imaging Component (24), acquired at the
mid-ventricular short-axis view using the ShMOLLI T1 mapping
sequence (13). For quality control, a trained human operator
(EL), with over 10 years of experience in CMR image analysis,
assessed the presence of any artefact in the left ventricular
myocardium in the 7 IRW images for each T1 map. A total
of 1,536 T1 maps were scored strictly as good quality with no
artefact. The remaining data were marked to have either mild
to severe motion or other imaging artefacts and were excluded
from the training dataset. This strict quality control ensured that

the neural network learnt to align the images accurately with no
distraction from residual motion artefacts in the training data,
i.e., with images that did not require any motion correction.

2.5. Training Procedure
The quality-controlled imaging data were used to generate a
training dataset with 10% of the data preserved for validation.
Artificial DVFs were generated as previously described (28) and
applied to the IRW images without motion artefacts to synthesise
random non-rigid motion without requiring segmentations (28).
Specifically, 7 DVFs were generated with random parameters
preserving anatomical topology. Mean displacement value at
each pixel was calculated and removed from all 7 DVFs to focus
on relative displacement between images. The generated DVFs
were applied to each of the IRW images, respectively to produce
deformed IRW images. The proposed model was trained to
predict 7 inverse DVFs from 7 deformed IRW images with the
synthetic, inverse DVFs as ground truth (Figure 3A).

2.6. Testing Procedure
Once trained, MOCOnet reads a given set of 7 IRW images
with or without motion artefacts and estimates the deformation
required to correct any present motion (Figure 3B), without
ground truth. The T1 map is then reconstructed offline using
motion-corrected images with an open source library for CMR
parametric mapping (29).
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FIGURE 2 | Structure of the proposed motion correction convolutional neural network (MOCOnet). A stack of seven inversion recovery-weighted (IRW) images is input

into the encoder-decoder structure on a per-channel basis. The warping layers estimate the optical flow from all the channels in a coarse-to-fine manner at each scale.

The last warping layer generates the inverse distance vector field (DVF), i.e., the deformation required to correct the motion artefacts, in a groupwise manner.

2.7. Implementation Specification
All images were zero-padded to the same size of 384 × 384
pixels and image intensities were pre-processed with quantile
normalisation to ensure generalisability (30). The multi-scale
loss was calculated as the average mean square errors of the
predicted DVFs at each scale and resolution. The neural network
was optimised using the Adam method (31) with an initial
learning rate of 0.001 and a learning rate scheduler to reduce
the learning rate during the training, and mini-batch size of 4.
Training was stopped once the validation loss did not decrease
for 50 epochs. The network was trained for approximately
48 h until the training curve converged with low bias and
variance using a NVIDIA TITAN XP GPU and implemented
in TensorFlow (32). After the training, correcting motion for
each set of 7 IRW images took less than 1 s on GPU or a
modern CPU.

2.8. Validation
2.8.1. Baseline Deformable Image Registration

Method
The proposed method’s performance was compared against a
well-validated multi-modal image registration algorithm (33)
as the baseline method. The registration method alleviated
the problem of artificial motion discontinuities by combining

a bilateral filter with an additional deformation field-based
filter and a diffusion regularisation algorithm, serving as an
excellent registration approach without requiring a prior
image segmentation task as conventional methods. The
baseline method, implemented in C, used the first IRW
image as a reference image for all subsequent pairwise
registrations and took approximately 30 s per T1 map on a
modern CPU.

2.8.2. Test on Respiratory Motion With Human

Observer Scores
A multi-observer experiment was designed to evaluate the
effectiveness and robustness of motion correction, and potential
noise introduced to cases originally with no motion. From the
UK Biobank, a test set of 200 real acquired T1 maps with various
degree of motion artefacts was selected based on the existing
quality scores by an experienced human observer. Specifically,
50 samples presented severe motion artefacts affecting all
myocardial segments, 100 presented moderate motion affecting
individual segments, and 50 presented mild to no motion.

The extent of motion on the test set was assessed in a 5-point
categorical scale: ‘no motion’, ‘mild motion’, ‘moderate motion’,
‘severe motion’, and ‘very severe motion’, with a numerical
scale between 0 to 100% behind the interface, to ensure both
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FIGURE 3 | Development workflow of the proposed motion correction convolutional neural network (MOCOnet) for myocardial ShMOLLI T1 mapping. (A) MOCOnet

was trained on 1,536 sets of seven inversion recovery-weighted (IRW) images with no motion artefacts which were synthetically deformed with displacement vector

fields (DVFs), to predict the inverse DVF required to correct the motion. (B) MOCOnet was tested on 200 T1 maps with a varied degree of motion artefacts. Each stack

denotes a set of seven images; each junction denotes the DVFs application to the IRW images; the box with DVF loss represents the weight adjustment during training.

intuitiveness for human operators and practicality for statistical
analyses. The baseline and proposed methods were applied to
all samples unselectively, giving in total 400 motion-corrected
samples. One hundred and twenty only samples (20%) were
randomly chosen from the mixed 600 samples and duplicated
to evaluate intra-observer variability. Three trained human
observers (IP, MB and MS) were instructed to score the resultant
720 samples for the extent of motion. All observers were blinded
to the original artefact scores and which motion correction
method was applied. To reduce the variance of the human scores
Xi, the weighted average score X of the three observers (i = 3)
was calculated as X =

∑
WiXi/

∑
Wi. The weights Wi were

calculated by the inverse of intra-observer variance σi (34, 35)
based on the duplicated 20% cases, i.e., Wi = 1/σ 2

i for the i-th
observer. The expected standard error of the weighted average

scores was SE(X) =
√∑

Wi
−1

.

2.8.3. Statistical Analysis
Quality scores were reported as mean ± standard deviation.
Non-parametric Wilcoxon signed-rank test was used to assess
the statistical difference between the data with and without
motion correction by the baseline and proposed methods.
Given the modest number of repeated comparisons within each
group the statistical significance threshold was kept at standard

p< 0.05 (36). Statistical analysis was performed using the Python
programming language.

3. RESULTS

The results of human observer validation on the 200 cases
from the UK Biobank are reported in Table 1. Intra-observer
variabilities of the three observers on the 20% duplicated cases
were 10.6, 17.3 and 21.9, respectively. Standard error of the
final weighted-average scores that were used to compare the
motion correction methods was 8.3 at a scale from 0 to 100%.
Overall, both methods significantly reduced the motion artefacts,
from an average motion score of 37.1 ± 21.5 to 15.8 ± 15.6
(baseline method) and 13.3 ± 10.5 (MOCOnet; both p < 0.001).
MOCOnet was significantly more effective at reducing motion
artefacts than the baseline method for the subgroups with
severe motion (N = 50, p = 0.006) and moderate motion
(N = 100, p = 0.04). For the subgroup with mild to no
motion (N = 50), both methods significantly further reduced the
motion artefacts (both p < 0.001), and neither added noise, nor
was significantly different from each other (p = 0.2). Overall,
MOCOnet suppressed motion artefacts to a higher extent and
in a more consistent way compared to the baseline method, as
evidenced by its lower maximum score and variability (N = 200,
p = 0.007). The boxplot of motion scores (Figure 4) further
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TABLE 1 | Human observer assessment of motion extent (%) on 200 T1 maps before motion correction, and after the baseline and proposed method (MOCOnet) for

motion correction.

All data (N = 200) Group 1 (N = 50) Severe motion Group 2 (N = 100) Moderate motion Group 3 (N = 50) Mild to no motion

Before MOCO 37.1 ± 21.5 55.8 ± 18.7 (99.3) 35.5 ± 18.9 (80.5) 21.7 ± 13.8 (62.1)

Baseline method 15.8 ± 15.6 25.8 ± 19.8 (93.4) 14.7 ± 13.9 (65.7) 8.1 ± 6.5 (34.2)

MOCOnet 13.3 ± 10.5 18.6 ± 14.3 (86.9) 12.7 ± 9.2 (46.4) 9.4 ± 6.4 (19.8)

The quality scores are inverse variance-weighted scores of three human observers and reported in mean ± SD (maximum value). The best results are highlighted in bold.

FIGURE 4 | Motion correction (MOCO) performance of the baseline and the proposed deep learning-based motion correction (MOCOnet) methods. Box and whisker

plot of motion scores in non-parametric terms of three data groups, before (blue) and after motion correction by the baseline (orange) and proposed MOCOnet (green)

methods. Reported values are inverse variance-weighted scores of three human observers. MOCOnet achieved the best results and significantly reduced the motion

artefacts. *p = 0.04; **p < 0.01; ***p < 0.001; ns = not significant.

illustrates the above dependencies in non-parametric terms. This
demonstrates thatMOCOnet achieved a tighter span of perceived
motion estimates, with better perceived robustness to outliers.

MOCOnet successfully learnt from synthetic random motion
to predict the required DVFs to correct the motion of IRW
images ensuring a motion-corrected T1 map in real acquired
data. Figure 5 exemplifies the robustness of the method. One
training sample was falsely considered to have no motion
artefacts, as evidenced by the overlaid contours of both
myocardium and stomach but this did not overfit the learning or
affect the final results. The data-driven process aided the learning
of the general rule, as MOCOnet managed to correct the error in
this training sample, instead of replicating it.

4. DISCUSSION

In this work, MOCOnet, a novel end-to-end motion correction
neural network for CMR T1 maps, was developed using a
large-scale dataset and validated with expert human analysts.

MOCOnet was able to automatically predict the deformation
required to correct real motion artefact cases. The proposed
method has a fast-processing speed of <1 s per T1 map and does
not require modification of image acquisition sequences, external
hardware, or user intervention, enabling direct implementation
to clinical practise.

Although the principle of estimating the required DVFs
on a given set of images to correct their mutual alignment
was tested on myocardial ShMOLLI T1 maps, the problem
formulation and solution are not limited to this mapping method
or region of interest. The deformation estimation is alleviated by
considering the images ‘as is’ with a data-driven procedure (37)
without heavily relying on the differences in contrast, the specific
inversion recovery times or a prior user input. This principle
can be directly applied to other T1 mapping methods that
require multiple T1-weighted images to be aligned in a groupwise
manner to ensure an accurate exponential recovery curve fitting
(38), to other organs that are evaluated with parametric mapping,
such as the brain (39) and liver (40), and to other imaging
modalities with varied image contrast (41).
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FIGURE 5 | Robustness of the proposed motion correction convolutional neural network (MOCOnet) for myocardial ShMOLLI T1 mapping from a noisy training

sample. (A) Training sample falsely considered free of motion (1 in 1,536) as manually depicted with unaligned myocardium (orange) and stomach (blue) with yellow

arrows throughout the inversion recovery-weighted images. (B) Applied deformation to the training sample used for training. (C) Sample corrected by MOCOnet after

training demonstrating the successful learning of the general rule without replicating the data.

The potential clinical impact of the method is promising. A
large portion of the UKBiobank T1mapping data analysed in this
study presented mild to severe motion, hampering the diagnostic
utility of T1 mapping. Although recent progress on automated
motion artefact detection methods (42) may alleviate the quality
monitoring process, rescanning to ensure a free-of-motion T1
map would increase scan times and reduce patient throughput.
The presented data-driven MOCOnet approach provides an
attractive solution to retrospectively suppress the motion using
most of the acquired data to enhance T1 map quality, which is
expected to salvage data corrupted by motion, reduce the need
for rescanning and improve diagnosis. MOCOnet also holds
promise for stress T1 mapping applications (9–11, 38) which
may be subject to greater motion artefact. With the rapidly
evolving field of deep learning, further research can be done
to assess potential benefits of incorporating a more diverse
variety of learning-based registration methods (23, 43) into a
quality-control driven pipeline (44–46) to verify the registration
accuracy on-the-fly including the R2 maps. With further work,
MOCOnet together with T1 protocol quality assurance (47, 48)
and automated myocardial segmentation (45) could ultimately
lead to a comprehensive framework for robust T1 mapping for
clinical use.

Despite a good performance in motion correction, as
evidenced with the large improvement in the motion

score, it is revealed by human observer experiments
that MOCOnet could still fail in correcting images with
severe motion. The challenge is not only due to difficulty
in motion correction, but also through-plane motion,
resulting in fitting of T1 values using signals at different
tissue location. Breath holding remains crucial in acquiring
good quality T1 maps. Future work will include validation
on a multi-vendor, multi-centre population, expansion to
other regions of interest, and direct implementation onto
the scanner for robust inline motion artefact correction to
generate good quality and reliable images for immediate
clinical interpretation.

5. CONCLUSION

MOCOnet is an effective and robust convolutional neural
network for correction of artefacts from myocardial
motion. The technique can be readily deployed for
post-processing of T1 mapping to restore T1 values
in images affected by motion artefacts. This non-rigid
registration solution can be further extended to other
mapping methods, for generating good quality and reliable
images for immediate clinical interpretation. MOCOnet
can eventually enhance parametric mapping methods
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paving the way towards more reliable quantitative CMR
medical imaging.
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Background: This study intended to use a machine learning model to identify

critical preoperative and intraoperative variables and predict the risk of several severe

complications (myocardial infarction, stroke, renal failure, and hospital mortality) after

cardiac valvular surgery.

Study Design and Methods: A total of 1,488 patients undergoing cardiac valvular

surgery in eight large tertiary hospitals in China were examined. Fifty-four perioperative

variables, such as essential demographic characteristics, concomitant disease,

preoperative laboratory indicators, operation type, and intraoperative information,

were collected. Machine learning models were developed and validated by 10-fold

cross-validation. In each fold, Recursive Feature Elimination was used to select key

variables. Ten machine learning models and logistic regression were developed. The area

under the receiver operating characteristic (AUROC), accuracy (ACC), Youden index,

sensitivity, specificity, F1-score, positive predictive value (PPV), and negative predictive

value (NPV) were used to compare the prediction performance of different models. The

SHapley Additive ex Planations package was applied to interpret the best machine

learning model. Finally, a model was trained on the whole dataset with the merged key

variables, and a web tool was created for clinicians to use.

Results: In this study, 14 vital variables, namely, intraoperative total input, intraoperative

blood loss, intraoperative colloid bolus, Classification of New York Heart Association

(NYHA) heart function, preoperative hemoglobin (Hb), preoperative platelet (PLT), age,

preoperative fibrinogen (FIB), intraoperative minimum red blood cell volume (Hct),

body mass index (BMI), creatinine, preoperative Hct, intraoperative minimum Hb, and

intraoperative autologous blood, were finally selected. The eXtreme Gradient Boosting

algorithms (XGBOOST) algorithm model presented a significantly better predictive

performance (AUROC: 0.90) than the other models (ACC: 81%, Youden index:

70%, sensitivity: 89%, specificity: 81%, F1-score:0.26, PPV: 15%, and NPV: 99%).
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Conclusion: A model for predicting several severe complications after cardiac valvular

surgery was successfully developed using a machine learning algorithm based on

14 perioperative variables, which could guide clinical physicians to take appropriate

preventive measures and diminish the complications for patients at high risk.

Keywords: machine learning, cardiac valvular surgery, complications, predict, model

INTRODUCTION

The prevalence of unhealthy lifestyles, such as long-term high-
fat diet and lack of exercise, has caused the higher and higher
incidence of cardiac diseases. Patients with cardiac diseases
will suffer serious morbidity and mortality without reasonable
interventions, which increased the number of cardiac surgery
significantly. It was discovered that more than 1 million patients
with heart disease need to be treated with cardiac surgery every
year worldwide (1). There has also been a sharp increase in
the number of patients with valvular diseases, many of which
are severe and must be treated with cardiac surgery to replace
insufficient valves (2, 3). A large number of cardiac patients
always along with various of complications after cardiac valvular
surgery, these postoperative complications mainly including
myocardial infarction, stroke, acute renal failure, death, and so
on (4).

The high incidence of postoperative complications in cardiac
surgery plays an important role in the exacerbation of hospital
stay and hospitalization cost, reducing the quality of life and even
elevating mortality after cardiac surgery (5). An eligible surgical
treatment involves not only a smooth operation but also the early
prediction of risks, provision of appropriate recommendations,
and timely adoption of effective medical measures to avoid
postoperative complications (6).

The most important process for a qualified medical treatment
is the early prediction of postoperative complications (7).
Clinicians generally give judgments whether patients have
postoperative complications mainly based on the tests of clinical
laboratory and examinations, or their clinical experiences, when
patients have corresponding clinical indications after cardiac
surgery (8). On the one hand, the tests or examinations for
postoperative complications are time-sensitive; on the other
hand, clinical experience is subjective, andmany young clinicians
do not have mature clinical experience. Based on the above
situation, patients who underwent cardiac surgery always miss
the optimal treatment window for postoperative complications.
Thus, it is urgent to construct a risk predictive system that could
implement the best outcome for patients.

Previous studies on predicting postoperative risks after
cardiac surgery mainly on account of traditional stastics
methods, such as linear models or logistic regression (9).
However, these traditional methods usually focus on one or few
clinical indicators. More and more studies have found that the
preoperative and intraoperative indicators of a patient have an
impact on the outcome of the patient (10). Meanwhile, many
studies have proved that a prediction model based on machine
learning has high accuracy in predicting clinical outcomes (11,

12). Therefore, we aim to construct a model based on machine
learning to predict the postoperative outcomes of patients using
various preoperative and intraoperative indicators, so as to
provide theoretical guidance for clinical practice.

The purpose of this study was to determine the preoperative
and intraoperative risk factors associated with postoperative
complications in patients undergoing cardiac valvular
surgery and to develop a machine learning model to predict
postoperative complications.

MATERIALS AND METHODS

Study Subjects
Participants were patients aged more than 18 years but
<75 who underwent cardiac valvular surgery (mitral valve
replacement, mitral valvuloplasty, and tricuspid valvuloplasty)
from January 2016 to December 2018 at one of the following
eight tertiary hospitals: the Second Xiangya Hospital of Central
South University, the Third Xiangya Hospital of Central
South University, Beijing Aerospace General Hospital, Qilu
Hospital of Shandong University, Fuwai Hospital National
Center for Cardiovascular Diseases, Zhejiang Provincial People’s
Hospital, the AffiliatedHospital of SouthwestMedical University,
and Xiamen Cardiovascular Hospital Xiamen University. We
collected 38 cases of biological valve replacement from the Third
Xiangya Hospital from 2019 to 2020 for verification.

The types of surgery for cardiac valvular surgery in our
study include the classical mitral valve replacement, mitral
valvuloplasty, and tricuspid valvuloplasty. Since the four types
of surgery account for the majority of the population, only these
three procedures were included in this study.

Patients who underwent other types of surgery (coronary
artery bypass grafting, CABG, atrial septal defect repair, etc.), re-
cardiac surgery, or emergency surgery, and those whose missing
rates of data were more than 80% were excluded.

Postoperative myocardial infarction, postoperative stroke,
postoperative renal failure, and postoperative hospital mortality
that occurred 48 h after the initial surgery were defined as
relevant outcomes; Then we labeled patients who had at least one
complication as “complication occurred” and patients who did
not have any complication as “complication did not occur.”

Approval was obtained from the institutional review board
of the Third Xiangya Hospital of Central South University for
this study (NCT03885570). The study was reported according
to the recommendations of the Transparent Reporting of a
multivariable prediction model for Individual Prognosis Or
Diagnosis (TRIPOD) statement. No written consent was required
in view of the purely observational nature of the study.
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FIGURE 1 | (A) Workflow of the study. (B) Flow chart of patient selection.
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TABLE 1 | Preoperation and intraoperative information.

Variable All (n = 1,488) None complication

group (n = 1,433)

Complication group

(n = 55)

p-value

n 1,488 1,433 55

Gender, n (%) Female 907 (60.95) 873 (60.92) 34 (61.82) 0.994

Male 581 (39.05) 560 (39.08) 21 (38.18)

Age, mean (SD) 52.69 (10.36) 52.44 (10.24) 59.00 (11.44) <0.001

BMI, mean (SD) 22.84 (3.39) 22.85 (3.39) 22.55 (3.45) 0.541

Blood group, n (%) A 494 (33.20) 474 (33.08) 20 (36.36) 0.436

AB 125 (8.40) 123 (8.58) 2 (3.64)

B 350 (23.52) 334 (23.31) 16 (29.09)

O 519 (34.88) 502 (35.03) 17 (30.91)

Atrial fibrillation, n (%) 1 765 (51.41) 734 (51.22) 31 (56.36) 0.541

LV dilatation, n (%) 1 653 (43.88) 633 (44.17) 20 (36.36) 0.314

Hypertension, n (%) 0 1,259 (84.61) 1,217 (84.93) 42 (76.36) <0.001

1 100 (6.72) 88 (6.14) 12 (21.82) <0.001

2 60 (4.03) 59 (4.12) 1 (1.82) <0.001

3 69 (4.64) 69 (4.82) 0 (0.00) <0.001

Diabetes, n (%) 0 1,433 (96.30) 1,378 (96.16) 55 (100.00) 0.334

I type 14 (0.94) 14 (0.98) 0 (0.00) 0.334

II type 41 (2.76) 41 (2.86) 0 (0.00) 0.334

Anemia, n (%) 1 481 (32.33) 460 (32.10) 21 (38.18) 0.424

Drug for anemia, n (%) 1 5 (0.34) 4 (0.28) 1 (1.82) 0.172

Cerebrovascular disease, n (%) 1 1,485 (99.80) 1,430 (99.79) 55 (100.00) 1

Mechanical valve, n (%) 1 1,082 (72.72) 1,056 (73.69) 26 (47.27) <0.001

Mitral valvuloplasty, n (%) 1 160 (10.75) 155 (10.82) 5 (9.09) 0.854

Biological valve, n (%) 1 235 (15.79) 211 (14.72) 24 (43.64) <0.001

NYHA, n (%) 1.0 24 (1.70) 23 (1.66) 1 (3.23) <0.001

2.0 286 (20.21) 282 (20.38) 4 (12.90) <0.001

3.0 971 (68.62) 955 (69.00) 16 (51.61) <0.001

4.0 134 (9.47) 124 (8.96) 10 (32.26) <0.001

ASA, n (%) 1 22 (1.48) 5 (0.35) 17 (30.91) <0.001

2 75 (5.04) 62 (4.33) 13 (23.64) <0.001

3 1,046 (70.30) 1,030 (71.88) 16 (29.09) <0.001

4 345 (23.19) 336 (23.45) 9 (16.36) <0.001

Op time (min), median [Q1,Q3] 225.00

[190.00, 265.00]

221.00

[190.00, 263.00]

291.50

[240.00, 350.00]

<0.001

CPB time (min), median [Q1,Q3] 93.00

[74.00, 118.00]

93.00

[73.75, 117.00]

117.00

[89.50, 149.50]

<0.001

Aortic cross clamp time (min), median [Q1,Q3] 59.00

[43.25, 80.00]

58.00

[43.00, 79.00]

72.00

[59.00, 95.00]

<0.001

Cardiopulmonary bypass precharge (ml), median [Q1,Q3] 1600.00

[1505.00, 1762.50]

1600.00

[1505.00, 1800.00]

1600.00

[1600.00, 1600.00]

0.103

Blood loss op (ml), median [Q1,Q3] 600.00

[420.00, 600.00]

600.00

[450.00, 600.00]

400.00

[300.00, 600.00]

<0.001

Crystal infusion volume op (ml), median [Q1,Q3] 2100.00

[1025.00, 2650.00]

2165.00

[1100.00, 2660.00]

1500.00

[1000.00, 2000.00]

0.008

Colloid bolus op (ml), median [Q1,Q3] 300.00

[0.00, 850.00]

320.00

[0.00, 1000.00]

0.00

[0.00, 0.00]

<0.001

Urine output op (ml), median [Q1,Q3] 700.00

[400.00, 1000.00]

700.00

[420.00, 1000.00]

450.00

[300.00, 752.50]

0.001

Total output op (ml), median [Q1,Q3] 2555.00

[1100.00, 3400.00]

2600.00

[1200.00, 3420.00]

0.00

[0.00, 1500.00]

<0.001

(Continued)
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TABLE 1 | Continued

Variable All (n = 1,488) None complication

group (n = 1,433)

Complication group

(n = 55)

p-value

Total input op (ml), median [Q1,Q3] 2916.68

[2400.00, 3650.00]

2950.00

[2410.00, 3700.00]

2000.00

[1500.00, 2570.00]

<0.001

Autologous blood op (ml), median [Q1,Q3] 0.00

[0.00, 250.00]

0.00

[0.00, 250.00]

0.00

[0.00, 0.00]

<0.001

Machine blood, median [Q1,Q3] 800.00

[500.00, 1000.00]

800.00

[500.00, 1000.00]

500.00

[400.00, 925.00]

0.017

SO2min op (%), median [Q1,Q3] 97.70

[94.00, 99.70]

97.50

[94.00, 99.70]

98.15

[95.95, 99.18]

0.706

RBC (1012/l), mean (SD) 4.50 (0.67) 4.51 (0.67) 4.32 (0.71) 0.054

WBC (109/l), mean (SD) 6.61 (3.38) 6.64 (3.42) 5.82 (1.79) 0.002

HB (g/l), mean (SD) 130.18 (20.85) 130.34 (20.69) 126.16 (24.62) 0.220

HCT (/l), mean (SD) 40.37 (5.60) 40.40 (5.56) 39.54 (6.56) 0.345

Hb min op, mean (SD) 84.58 (16.63) 84.45 (16.70) 87.91 (14.57) 0.092

HCT min op, mean (SD) 24.75 (4.97) 24.66 (4.98) 27.03 (4.23) <0.001

PLT (109/l), median [Q1,Q3] 193.50

[155.00, 241.00]

194.00

[156.00, 241.25]

160.00

[116.50,234.00]

0.002

Creatinine (µmol/l), median [Q1,Q3] 71.80

[60.80, 85.00]

71.50

[60.60, 85.00]

76.90

[69.22, 92.67]

0.002

TP (g/l), median [Q1,Q3] 68.10

[63.80, 72.80]

68.10

[63.80, 72.72]

68.95

[65.82, 73.42]

0.275

Albumin (g/l), mean (SD) 39.88 (4.56) 39.92 (4.54) 38.86 (4.94) 0.126

Globulin (g/l), median [Q1,Q3] 28.00

[25.10, 31.50]

27.90

[25.00, 31.50]

29.85

[27.70, 33.35]

0.002

ALT (IU/l), median [Q1,Q3] 19.85

[13.00, 31.00]

19.90

[13.00, 31.22]

19.00

[14.00, 26.75]

0.508

AST (IU/l), median [Q1,Q3] 22.75

[18.00, 29.48]

22.70

[18.00, 29.33]

25.00

[20.00, 30.85]

0.095

PT (s), median [Q1,Q3] 13.10

[12.00,14.40]

13.20

[12.00,14.40]

11.75

[10.90,13.40]

<0.001

INR, median [Q1,Q3] 1.06 [1.00, 1.18] 1.06 [1.00, 1.18] 1.13 [1.06, 1.79] <0.001

FIB (g/l), median [Q1,Q3] 2.90 [2.44, 3.49] 2.91 [2.44, 3.48] 2.86 [2.48, 3.71] 0.924

LVEF (%), median [Q1,Q3] 62.00

[57.00, 67.00]

62.00

[57.00, 67.00]

61.00

[56.00, 65.25]

0.152

Trans RBC before (u), median [Q1,Q3] 0.00 [0.00, 0.00] 0.00 [0.00, 0.00] 0.00 [0.00, 0.00] 0.048

Trans FFP before (ml), median [Q1,Q3] 0.00 [0.00, 0.00] 0.00 [0.00, 0.00] 0.00 [0.00,0.00] 0.603

Trans PLT before, median [Q1,Q3] 0.00 [0.00, 0.00] 0.00 [0.00, 0.00] 0.00 [0.00, 0.00] 0.001

Trans cryoprecipitate before (U), median [Q1,Q3] 0.00 [0.00, 0.00] 0.00 [0.00, 0.00] 0.00 [0.00, 0.00] 0.845

Trans RBC op (U), median [Q1,Q3] 0.00 [0.00, 0.00] 0.00 [0.00, 0.00] 0.00 [0.00, 1.75] 0.065

Trans FFP op (ml), median [Q1,Q3] 0.00 [0.00, 0.00] 0.00 [0.00, 0.00] 0.00 [0.00, 290.00] 0.010

Trans PLT op, median [Q1,Q3] 0.00 [0.00, 0.00] 0.00 [0.00, 0.00] 0.00 [0.00, 0.00] 0.628

Trans cryoprecipitate op (U), median [Q1,Q3] 0.00 [0.00, 0.00] 0.00 [0.00, 0.00] 0.00 [0.00, 0.00] 0.842

SD, standard deviation; RBC, red blood cell; WBC, white blood cell; Hb, hemoglobin; Hct, red blood cell volume; PLT, platelet; TP, total protein, ALT, alanine aminotransferase;

AST, aspartate aminotransferase; PT, prothrombin time; INR, international normalized ratio; FIB, fibrinogen; LVEF, left ventricular ejection fractions; FFP, fresh frozen plasma; CPB,

cardiopulmonary bypass precharge; SaO2, oxygen saturation; NYHA, New York Heart Association; ASA, The American Society of Anesthesiologists; op means the intraoperative variable.

Study Design and Data Collection
A total of 54 preoperative variables (within 24 h before the day
of surgery), intraoperative variables, and postoperative variables
(occurred 48 h after the initial surgery) were collected. For
some preoperative variables with multiple measurements, the
values closest to the start time of the surgery were assessed. The
collected preoperative information included the demographic
characteristics of the patients (gender, age, and body mass index,

BMI), clinical characteristics (blood group, atrial fibrillation,
LV dilatation), concomitant disease (hypertension, diabetes,
anemia, cerebrovascular disease), history of drug use (drug for
anemia), preoperative laboratory indicators (red blood cell,
RBC, white blood cell WBC), hemoglobin (Hb), red blood
cell volume (Hct), platelet (PLT), creatinine, total protein
(TP), albumin, globulin, alanine aminotransferase (ALT),
aspartate aminotransferase (AST), prothrombin time (PT),
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international normalized ratio (INR), fibrinogen (FIB), left
ventricular ejection fractions (LVEF), preoperative transfusion
of RBC, preoperative transfusion of fresh frozen plasma (FFP),
preoperative transfusion of PLT, preoperative transfusion of
cryoprecipitate, operation type (mitral valve replacement,
mitral valvuloplasty, and tricuspid valvuloplasty), intraoperative
information (operation time; cardiopulmonary bypass precharge
CPB, time; aortic cross clamp time; cardiopulmonary bypass
precharge; blood loss; crystal infusion volume; colloid
bolus; urine output; total output; total input; autologous
blood; machine blood; minimum oxygen saturation, SaO2;
minimumHb; minimumHct; intraoperative transfusion of RBC;
intraoperative transfusion of FFP; intraoperative transfusion
of PLT; intraoperative transfusion of cryoprecipitate), and
others (Classification of New York Heart Association, NYHA,
heart function; The American Society of Anesthesiologists, ASA,
classification). All the variables were obtained from the electronic
health record systems of the eight hospitals. Two authors (LL
and HJ) had access to the systems and collected the data.

The data collected by different hospitals were converted and
unified. For example, 1 mg/dl of creatinine is equal to 88.4
µmol/l. The three main types of operation were transformed into
ordinal variables: mitral valve replacement, mitral valvuloplasty,
and tricuspid valvuloplasty.

Statistical Analysis
Continuous variables between complication and non-
complication groups were compared by either the Student
t-test or the rank-sum test as appropriate. The chi-square test or
Fisher’s exact test was performed to compare the differences in
the categorical variables.

Then, the recursive feature elimination (RFE) algorithm was
used to identify crucial variables, and we developed a machine
learning model named eXtreme Gradient Boosting (XGBOOST)
(13–15). In brief, RFE is a feature selection way that recursively
fits a model derived from smaller feature sets until a specified
termination criterion is reached. In each loop, features are
graded by their importance in the trained model. By recursively
eliminating one feature with the lowest importance, RFE intends
to eliminate dependencies and collinearity that maybe existing in
the model. Lastly, the most important features were screened out,
and the XGBOOST model was developed based on the feature
set. Other features were not included, because they only brought
a small increment in AUROC but significantly increased the
difficulty of model applications. The proposed prediction model
was built in the XGBoost package in Python language, and it was
carried out using the 10-fold cross-validation method, and then
the AUROC was calculated.

Besides, 10 other models, CatBoost, LightGBM, MLP, SVM,
LR, Random Forest, Gradiant Boosting, KNN, AdaBoost, and
Naive Bayes, were developed and compared with the proposed
machine learning model. These models were also developed
and validated by 10-fold cross-validation, and then the AUCs
were calculated. The accuracy (ACC), Youden index, sensitivity,
specificity F1 score, positive predictive value (PPV), and negative
predictive value (NPV) were also analyzed.

Finally, the key variables identified by REF in each fold were
merged, and the 15 most important variables were selected.
The XGBOOST model was trained on the whole dataset using
the merged variables. After the model was established, the
SHapley Additive exPlanations (SHAP) package in Python was
used to explain the model by analyzing two cases. The SHAP
package interpreted the output of the machine learning model
using a game-theoretic approach (16). For each prediction
sample, the model connected optimal credit allocation with local
explanations. Besides, a web tool was created for clinicians to use
our model.

RESULTS

Study Population
As Figure 1 demonstrates, 1,488 patients were finally included
in this study, and the preoperative information of the cohort is
described in Table 1. The average age of the patients was 52.59
years, men accounted for 39.05%, and the average BMI was 22.84.
In the complication occurred cohort, 12.73% of the patients died
in the hospital, 61.82% of the patients had amyocardial infarction
after the operation, 30.91% of the patients had a stroke, and
74.55% of the patients had renal failure after the operation.

Key Variables
Fifteen variables, namely, intraoperative total input,
intraoperative blood loss, intraoperative colloid bolus, NYHA,
preoperative Hb, preoperative PLT, age, preoperative FIB,
intraoperative minimum Hct, BMI, preoperative creatinine,
preoperative Hct, intraoperative minimum Hb, intraoperative,
and autologous blood were selected as crucial variables using the
RFE algorithm. As expected, the patients had less intraoperative
total output, hypertension, higher preoperative FIB, less
intraoperative total input, higher preoperative creatinine, less
intraoperative autologous blood, higher NYHA score, older
age, higher intraoperative minimum HCT, lower preoperative
Hb, lower preoperative PLT, lower intraoperative infusion
volume, higher intraoperative minimum Hb, lower preoperative
HCT, higher BMI, and lower intraoperative blood loss. After
identifying the 15 variables, machine learning was used to
predict several severe complications after cardiac valvular
surgery. As shown in Figure 2, the AUC of the proposed
model is 0.9. The proposed model significantly outperformed
the conventional LR (AUC: 0.74) and seven other machine
learning models. As described in Table 2, ACC, Youden
index, sensitivity, specificity, F1-score, PPV, and NPV of the
XGBoost model is 81, 70, 89, 81, 0.26, 15, and 99%, respectively.
These indicators of LR were 67, 40, 69, 71, 0.15, 8, and
98%, respectively.

Application of the Model
The SHAP package analyzed the entire cohort, and showed the
impact of each variable on predicting complications (Figure 3).
The preoperative and intraoperation information of a patient
was inputted into the model: age 61 years, BMI 23.44 kg/m2,
NYHA 2, intraoperative blood loss 360ml, intraoperative
colloid infusion 3,000ml, intraoperative total input 4,350ml,
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FIGURE 2 | Receiver operating characteristic curves for the machine learning model and logistic regression. XGBOOST, eXtremely Gradient Boosting; CatBoost,

Categorical Boosting; LightGBM, Light Gradient Boosting; MLP, Multi-Layer Perceptron; SVM, Support Vector Machine; LR, Logistic Regression; KNN, K-Nearest

Neighbor; AdaBoost, Adaptive boosting.

TABLE 2 | Performance of machine learning models.

Model AUC ACC (%) Youden index (%) Sensitivity (%) Specificity (%) F1 score PPV (%) NPV (%)

XGBoost 0.90 81 70 89 81 0.26 15 99

CatBoost 0.88 80 65 86 80 0.24 14 99

LightGBM 0.85 84 57 73 85 0.25 15 99

MLP 0.80 80 47 67 80 0.19 11 98

SVM 0.78 74 47 73 74 0.17 10 99

LR 0.74 67 40 73 67 0.14 8 98

Random forest 0.74 71 40 69 71 0.15 8 98

Gradient boosting 0.71 37 34 100 34 0.10 5 100

KNN 0.66 74 29 55 75 0.13 8 98

AdaBoost 0.61 85 27 40 87 0.16 10 97

Naive Bayes 0.59 38 21 86 36 0.09 5 98

XGBOOST, eXtremely Gradient Boosting; CatBoost, Categorical Boosting; LightGBM, Light Gradient Boosting; MLP, Multi-Layer Perceptron; SVM, Support Vector Machine; LR, Logistic

Regression. KNN, K-Nearest Neighbor; AdaBoost, Adaptive boosting; ACC, accuracy, PPV, positive predictive value; NPV, negative predictive value.

intraoperative autologous blood collection 120ml, preoperative
Hb 143 g/l, intraoperative minimum Hb 57 g/l, preoperative
Hct 43.1%, intraoperative minimum Hct 17%, preoperative PLT
85∗109/l, preoperative creatinine 80.21, and preoperative FIB
2.82 g/l. The model analyzed that the risk of adverse events
in this patient was 92.4%, indicating that the probability of
severe complications for the patients was high (Figure 4A,
Example 1). The preoperative and intraoperation information
of another patient was inputted into the model: age 42
years, BMI 22.89 kg/m2, NYHA 4, intraoperative blood loss
800ml, intraoperative colloid infusion 300ml, intraoperative
total input 2,400ml, intraoperative autologous blood collection
0ml, preoperative Hb 88 g/L, intraoperative minimum Hb
81 g/l, preoperative Hct 31%, intraoperative minimum Hct
81%, preoperative PLT 258∗109/l, preoperative creatinine 65.2
µmoI/l, and preoperative FIB 2.6 g/l. The predicted probability

of adverse events in this patient was 5.3%, indicating that
the patient had a good outcome (Figure 4B, Example 2).
Furthermore, a website was established for clinicians to use
the proposed model, http://www.aimedicallab.com/tool/aiml-
valvecomp.html. As shown in Supplementary Figure 1, the
predicted probabilities are significantly different between the
positive and negative groups. If we use 50% as a cut off, ourmodel
will achieve a 100% accuracy.

DISCUSSION

As being mentioned above, the incidence of postoperative
complications can be declined with an eligible medical
treatment, including a smooth operation, the early
prediction of postoperative risks, the provision of appropriate
recommendations, and the timely adoption of effective medical
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FIGURE 3 | SHAP analysis of the proposed model on the whole cohort. This figure described data from the whole cohort, with each point representing one patient.

The color represents the value of the variable; blue represents the smaller value, and red represents the larger value; the horizontal coordinates represent a positive or

negative correlation with severe complications risk, with a positive value indicating a good outcome and a negative value indicating a risk of severe complications. The

absolute value of the horizontal coordinate indicates the contribution of variables; the greater the absolute value of the horizontal coordinate, the greater the

contribution of the variables.

measures, which has been explored by many researches (6).
In our study, the incidence of mortality in patients with
postoperative complications was 7%, and the incidence
of mortality in all cardiac surgery patients was 0.4%. The
incidence of postoperative complications in all patients
was 6.7%.

Based on previous studies, there is a general convergence of
the incidence of postoperative complications among different
hospitals. Some high-turnover institutions have low mortality
rates and may be associated with higher complication rates
(17). In other words, surgical patients in high-turnover facilities
may experience one or more postoperative complications,
but they have a low mortality rate, because these facilities
have a higher rate of rescue success (18). Based on the
above research studies, the ability to predict, identify, prepare,
and implement the management of postoperative risks are
vitally important to improve the outcomes of patients. In
previous investigations, several kinds of statistic means have
been discovered to figure out outcomes, analyze manifestation,
and construct models for improving the outcomes of cardiac
surgery (19, 20). Researchers who constructed these models
were primarily interested in postoperative mortality and rarely
predicted other alternative outcomes, such as postoperative
complications, so it is really vital to develop an effective
measuring system to predict postoperative outcomes. In
this study, we introduced machine learning to build the
prediction model.

One of the most significant aspect is increasing the area
under the receiver operating characteristic (AUROC) curves of
predictive models. The AUROC of traditional predictive models
is no more than 0.8 or even lower (21, 22). In our research,
the model based on machine learning exhibited a perfect
performance. Different methods were used to prove that our
prediction model has a good predictive effect on several different
postoperative complications, all of the AUROCs were more than
0.8, some of which even reached 0.9. This proved that our model
has a fantastic predictive effect on postoperative complications.

We also implemented two examples into our predictive
model to confirm what variables were important to the
predictive model, which can provide guidance for clinicians
in making medical decisions, such as how to manage the
cardiac surgery. In this study, we identified 14 key indicators
that had a significant impact on clinical outcomes, suggesting
that clinicians should take care changes in some important
variables, such as NYHA, blood loss, and creatinine (23, 24).
This research also found that clinicians should pay close
attention to changes in blood clotting function and kidney
function of cardiac surgery patients. Most importantly, it
can indicate to clinicians how likely a patient is to develop
complications after cardiac surgery. Based on the above model,
we also built an online open website. We can easily obtain the
incidence of postoperative complications for a particular patient
by entering several important variables in the corresponding
column of this website. It is proved that the accuracy of our
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FIGURE 4 | Two examples of website tool usage. Enter the values of 14 key variables to predict the risk of severe complications and show the contribution of each

value to the outcome. Example 1 has a higher risk of severe complications, and example 2 may have a better prognosis.

prediction model is very high, which can provide guidance
for clinicians.

Inevitably, our research still leaves some to be desired.
On the one hand, this study was a retrospective study with
selection bias and confounding factors. We have enhanced
the reliability of our results by incorporating multicenter data
and performing robust cross-validation. At the same time, we
will add prospective studies to our future studies to reduce
these errors. A randomized controlled trial associated with
this research should be conducted. However, the design of
this type of RCT remains unclear. On the other hand, the
entire process of machine learning to complete tasks operates
in a black box, lacks interpretability, and is not as intuitive
and clear as traditional linear models. Our results showed
that the machine learning model had incomparable prediction
efficiency compared with traditional linear model prediction.
This study did not include patients undergoing minimally
invasive mitral valve replacement, and this algorithm is not
applicable to such patients. Because of the increasing use
of this surgical procedure, we will include such patients in

subsequent studies. Meanwhile, we have implemented a web page
to promote clinical application, which is actually very meaningful
and convenient.

In this study, a postoperative complication prediction
model after cardiac surgery was exploited based on a
machine learning algorithm, with a splendid prediction
performance and convenient implementation. This model
has the ability to recognize minimal risk of postoperative
complications. Meanwhile, the best outcomes of patient
prognosis can be achieved through an individualized
assessment system. To reduce selection bias, a prospective
management database for surgery patients should be built.
Based on preoperative and intraoperative variables, machine
learning models can be constructed and validated by the
variables of surgery patients in the future. Last but not
least, to measure the performance of machine learning
models, a randomized controlled trial associated with this
research should be conducted. It can provide suggestions for
clinical work, and reduce the risk of patients and improve
patient outcomes.
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Dilated Cardiomyopathy is conventionally defined by left ventricular dilatation and

dysfunction in the absence of coronary disease. Emerging evidence suggests many

patients remain vulnerable to major adverse outcomes despite clear therapeutic success

of modern evidence-based heart failure therapy. In this era of personalized medical

care, the conventional assessment of left ventricular ejection fraction falls short in fully

predicting evolution and risk of outcomes in this heterogenous group of heart muscle

disease, as such, a more refined means of phenotyping this disease appears essential.

Cardiac MRI (CMR) is well-placed in this respect, not only for its diagnostic utility, but

the wealth of information captured in global and regional function assessment with the

addition of unique tissue characterization across different disease states and patient

cohorts. Advanced tools are needed to leverage these sensitive metrics and integrate

with clinical, genetic and biochemical information for personalized, and more clinically

useful characterization of the dilated cardiomyopathy phenotype. Recent advances in

artificial intelligence offers the unique opportunity to impact clinical decision making

through enhanced precision image-analysis tasks, multi-source extraction of relevant

features and seamless integration to enhance understanding, improve diagnosis, and

subsequently clinical outcomes. Focusing particularly on deep learning, a subfield of

artificial intelligence, that has garnered significant interest in the imaging community,

this paper reviews the main developments that could offer more robust disease

characterization and risk stratification in the Dilated Cardiomyopathy phenotype. Given

its promising utility in the non-invasive assessment of cardiac diseases, we firstly highlight

the key applications in CMR, set to enable comprehensive quantitative measures of

function beyond the standard of care assessment. Concurrently, we revisit the added

value of tissue characterization techniques for risk stratification, showcasing the deep

learning platforms that overcome limitations in current clinical workflows and discuss

how they could be utilized to better differentiate at-risk subgroups of this phenotype.

The final section of this paper is dedicated to the allied clinical applications to imaging,

that incorporate artificial intelligence and have harnessed the comprehensive abundance

of data from genetics and relevant clinical variables to facilitate better classification and

enable enhanced risk prediction for relevant outcomes.

Keywords: dilated cardiomyopathy, cardiac magnetic resonance, late gadolinium enhancement, artificial

intelligence, deep learning
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INTRODUCTION

Dilated Cardiomyopathy (DCM) merely describes a dilated
and dysfunctional left ventricle (LV) in the absence of
significant coronary disease, valvular dysfunction, or poorly
controlled hypertension. Documentation of LV size and
ejection fraction (EF) are the established measurements by
echocardiography or CMR that define phenotype and determine
risk stratification. CMR is considered the gold standard, as it
provides accurate volume assessment, morphology, function,
and tissue characterization all within a single assessment to better
describe underlying cardiac pathology.

It is increasingly appreciated that DCM is not simply the
single disease entity of “non-ischemic” heart failure, but rather,
represents a unique family of heart muscle diseases with complex
interactions between genetic predisposition and environmental
precipitants (see Figure 1) (1–3).

As such a clinical spectrum of DCM exists, with variable
expression of arrhythmic and functional changes over time
(4). Genetic testing clearly provides a fundamental insight into
discriminating part of these diverse DCM subtypes; however,
the complex interplay of genetics and environmental influences
dictates for a deeper characterization of the DCM phenotype
through advanced imaging techniques. This would also be
warranted in the matter of risk stratification, which to date,

FIGURE 1 | Complex interplay of environment with genetic factors contribute to the DCM phenotype. Commonly overlooked acquired factors that are either reversible

factors for those with “idiopathic” DCM or can contribute to the clinical expression or progression of those with underlying genetic predisposition.

remains particularly challenging for this cohort and appears to
be inadequate when focused on the single parameter of LVEF (5).
Evidently, a non-negligible proportion of DCMpatients suffering
from sudden cardiac death have much milder reductions in
LVEF that do not meet consensus criteria for primary prevention
implantable cardioverter-defibrillator (ICD) (6). Furthermore, at
least a third of adverse events can occur later in the course of
the disease, negating some of the reliability of static, solitary
measures of systolic function in predicting long-term outcomes
in DCM cohorts (7). There remains a relative lack of robust
markers for stratifying patients with the DCM phenotype, and
this is highlighted in the DANISH study, suggesting a limited
benefit of primary prevention ICD on overall mortality in
patients with non-ischaemic heart failure (8). By extracting a
multitude of information generated from images and clinical
datasets, Artificial Intelligence (AI) potentially holds the essential
link to uncovering some of the complex associations between
clusters of DCM patients in a fully automated manner. By
shifting toward better characterization, it may be ultimately
possible to integrate these disease characteristics and multiple
novel markers, thereby advancing the refined risk stratification
needed in DCM cohorts. This capability does not replace,
but rather should augment the clinical decision process in a
more efficient, user-friendly way, that hopefully translates into
improved patient care.
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The rest of the article is organized as follows, firstly, we
provide a summary of current methods for diagnosis and
characterization of DCM utilizing CMR techniques, followed by
recent and key applications of AI within this scope. Subsequently,
we highlight the use of AI for risk prediction in DCM and
methods that combine imaging and genetic information in
DCM characterization. Finally, we provide relevant discussions
on current research efforts and future work towards more
comprehensive and personalized imaging stratification of this
heterogenous phenotype.

CURRENT DIAGNOSIS AND
CHARACTERIZATION OF DCM

DCM is a heterogenous myocardial disease characterized by
several degrees of reduced LVEF. Whilst the majority with this
phenotype benefit from outcomes that improve year on year
with up to 90% alive and well at 10 years from diagnosis,
the natural history remains variable, with often unidentified
initiating triggers, and some individuals unfortunate enough to
succumb to unheralded life-threatening arrhythmias and sudden
cardiac death at the onset of their clinical presentation (9–13).

Understanding the characteristics, evolution and long-term
prognosis are key challenges to enabling proper etiological
classification, customized surveillance and initiation of
appropriate, effective treatment in a timely fashion. Although
evaluation in practice rarely deviates from the protocol-driven
investigation of heart failure, the heterogenous nature of the
disease that directly results in variable clinical and phenotypic
expression, dictates for a comprehensive, DCM-focused
investigation strategy. Furthermore, risk stratification based on
the simplistic evaluation of LV dimensions and LVEF is clearly
inadequate across the phenotypic spectrum and our current
grasp of suitable predictors of outcomes is still limited.

The Role of Imaging in DCM
Following detailed history, clinical examination,
electrocardiogram (ECG) and laboratory tests that may
elucidate features of a specific underlying etiology or secondary
organ dysfunction, imaging techniques play a crucial role in
confirming the diagnosis, ruling out other competing causes for
LV dysfunction, further evaluation of the etiology and in guiding
treatment strategies.

Whilst two-dimensional echocardiography is often first line
in the diagnostic imaging pathway and has an additional role in
both early and follow up function assessment in DCM patients,
its role in defining an underlying etiology is limited, particularly
with the compromise that occurs in light of inadequate acoustic
windows and poor endocardial border definition. Furthermore,
due to the inherent geometric assumptions that perform well in
healthy individuals with normal sized hearts, volume assessment
in those with distorted ventricular size and shape is less reliable,
with significant intra- and interobserver variability.

CMR is well-placed in this respect, with unrestricted field of
view and high spatial resolution to capture global and regional
changes in structure and function irrespective of ventricular

geometry or patient habitus (14). As there is less operator
dependence for endocardial delineation, the interobserver
reproducibility variability for volume and EF quantification is
less for CMR than it is in echocardiography (14). This is ideal
for both the initial evaluation, where decisions on initiation
of medical therapy are based on LVEF thresholds, but also to
carefully monitor progression of the disease and the appropriate
selection of those who require device implantation. The
integration of perfusion and whole heart angiography enables the
exclusion of significant coronary disease with a high accuracy,
thereby reducing the need for separate ischaemia assessment by
computed tomography (CT) or invasive coronary angiography
in the initial work up of DCM (15). Thus far, routine use of
CMR for diagnosis alone has not been shown to significantly
improve the clinical identification of non-ischaemic heart failure
causes (16). However, complementary information is offered
with tissue characterization and parametric mapping sequences
that enable assessment of changes to intrinsic myocardial
properties correlating with altered biological pathways. These
additional features offer the potential to aid the differentiation
of the underlying etiology, enable prognostic assessments and
guide treatment options. Although there remains a lack of
data from large randomized controlled trials asserting the role
of contemporary CMR on impacting patient outcomes, the
evolving landscape of techniques and applications for in-depth
phenotyping paired with advanced analytics pave an important
path toward CMR-guided precision care in the DCM population.

CMR for Dynamic Cardiac Assessment
Standard CMR provides the gold standard for biventricular
volume assessment, further allowing for accurate documentation
of systolic function, which is imperative for the investigation of all
comers with heart failure. Even though current clinical practice
focusses on these static measures obtained from only two end
time points of the cardiac cycle, due to real time acquisition over
multiple phases, cine-CMR possesses additional information
on dynamic volumetric changes. Consequently, it is feasible
to generate volume/time profile curves that allow evaluation
of continuous ventricular volume changes and extraction of
more sensitive parameters of cardiac function such as peak
filling rates (see Figure 2) (17). From this, additional indices
of filling and ejection are possible to obtain simultaneously,
with the potential for more detailed analysis of both systolic
and diastolic function (18). Differing LV filling patterns have
already been suggested to exist amongst DCM patients with
direct implications on the classification of functional status and
predicting adverse outcomes (19, 20). However, most studies
that assessed these parameters in the DCM phenotype were
significantly limited in the diversity of structural and functional
heterogeneity seen in most contemporary DCM cohorts, thus
hindering full exploration into the evolutions of filling and
ejection patterns in different subgroups and their varied clinical
outcomes (18, 21). Such studies are warranted but the current
tools for obtaining these parameters are limited by the extent
of user-interface involved in semiautomatic processing, whereby
contours are determined not only at each slice level but also at
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FIGURE 2 | LV volume (LVV) curve for a cardiac cycle, in blue end diastole (ED)

and end systole (ES) frames, in red peak ejection rate (PER), peak filling rate

(PFR), atrial contribution (AC), and peak atrial filling rate (PAFR) parameters.

each time point or phase prior to the computation of volumes
needed to produce the curves for each patient.

CMR Tissue Characterization
Unique tissue characterization sequences add a further
dimension to the investigative prowess of CMR in the evaluation
of the DCM phenotype. The ability to non-invasively assess
and quantitate myocardial tissue properties makes CMR well-
suited to unravel the onset and extent of pathogenic processes
occurring within the myocardium, that could only previously be
determined through high-risk invasive cardiac biopsy.

Late Gadolinium Enhancement- CMR
Tissue characterization using the late gadolinium enhancement
(LGE)-CMR technique enables the identification and
quantification of regional areas of replacement fibrosis; this
refers histologically to a process of reparative microscopic
scarring occurring in response to myocyte necrosis (21). It has
been found to be a clinically useful tool for distinguishing DCM
from other important differentials of LV dysfunction such as
coronary disease or sarcoidosis, subtyping the etiology of DCM,
as well as for predicting the trajectory of the disease (Figure 3)
(22, 23). Up to 45% of DCM patients are affected, usually in a
mid-wall distribution, with <15% showing an ischaemic pattern
that crucially, would not be sufficient to explain the degree of
ventricular dysfunction (22, 24).

There is substantial clinical evidence that the presence of
fibrosis and its detection via LGE-CMR heralds a strong and
independent predictor of adverse outcomes in patients with non-
ischaemic cardiomyopathy even in the absence of heart failure
symptoms (24–32). This is a powerful parameter in the era of
personalized risk stratification, especially when current criteria
for prophylactic ICD implantation on the basis of significant LV
dysfunction has low sensitivity for identifying some high risk
patients whose clinical outcomes are not consistently related to
LVEF (5).

The identification and extent of LGE at an early stage of
the cardiomyopathic disease provides additional information

beyond LVEF, thus enabling earlier prognostic characterization
and drawing attention to those who might benefit from closer
surveillance or earlier consideration of advanced therapies (25,
30). In the study by Gulati et al. (25), mid-wall fibrosis detected
by LGE-CMR imaging in a longitudinal study of 472 patients with
DCM, was incrementally associated with all-cause mortality and
cardiovascular death or transplantation across the entire range
of LVEF. In another study of 150 patients, up to 30% with the
mutation PLN (phospholamban) p.Arg14del had LGE on CMR
with a normal LVEF, suggesting this to be an early feature and
higher risk of arrhythmias in carriers of this mutation, but also
attesting to the phenotypic insights CMR offers for those with
underlying genetic substrate (33).

The identification of LGE in clinical practice and certainly
demonstrated in the majority of studies evaluating LGE-CMR in
DCM, occurs mostly by visual analysis which is clearly subject
to inter-observer variability (24). Elucidating the extent of LGE
is apparently complementary to detecting its presence in terms
of the additional risk stratification beyond conventional criteria.
Neilan et al. (31) assessed the extent of LGE using quantitative
methods in 162 patients with non-ischaemic cardiomyopathy
and assessed for the annual major adverse cardiac events
(MACE), including cardiovascular death and appropriate ICD
therapy. Over a follow up period for a mean of 29 ± 18 months,
quantified LGE extent demonstrated the strongest predictor of
MACE over age, sex and LVEF in multivariate analyses with an
adjusted HR 7.61, p < 0.0001.

Although quantitative methods might provide more
consistent validation for the presence of LGE and a
measure of the extent of fibrosis, there are also a number
of practical limitations; these include the lack of universal
access to quantitative software packages, variable extent of
fibrosis quantified by different methods and dependence on
supplementary, time-consuming contouring of LGE areas
(34, 35). Moreover, LGE which relies on differences in signal
intensity between healthy myocardium and focal fibrotic areas,
appears to be limited in its ability to assess and quantitate
diffuse (non-focal) myocardial injury and interstitial fibrosis
(36, 37). From a technical perspective, LGE is also affected
by inconsistencies in acquisition parameters, such as choice
inversion time (TI), and in post-processing when signal intensity
thresholds may be arbitrarily applied to distinguish normal
myocardium from fibrotic tissue. Finally, despite the strong
prognostic value in identifying high risk patients, randomized
controlled trials evaluating LGE-based risk stratification are still
warranted prior to any guideline recommendation on its use in
managing non-ischaemic heart failure cohorts.

T1 Mapping
Refined methods in quantitative assessment of tissue
characteristics enable routine measurement of diffuse fibrosis,
without the reliance on regional differences in tissue contrast
intensity (38). Novel techniques comprising of native (non-
contrast) and contrast-enhanced T1 mapping represent advances
in CMR that enable detection of pathological changes occurring
within myocytes and the interstitium in a number of disease
states (38). Native T1 is additionally helpful in those unable to
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FIGURE 3 | Short-axis late-gadolinium-enhanced CMR images demonstrating hyperenhancement (arrows) indicative of scar. The differing patterns help characterize

various myocardial diseases. (A,B) Represent typical ischaemic scar pattens involving subendocardium. (C,D) Represent non-ischaemic scar patterns which typically

involve epicardium to mid wall.

have contrast due to contraindications such as pregnancy or
severe renal failure. The acquisition of relaxation times during
the same cardiac phase enables T1 values to be displayed as a
pixelwise map, which can be used to directly quantify myocardial
T1 values globally and at specific regions. As this process is not
reliant on tissue contrast differences, T1 mapping overcomes
the limitations of LGE imaging in detecting diffusely diseased
myocardium but has the potential to detect and track myocardial
structural alterations throughout the clinical course of disease
expression (39, 40).

In DCM, the feasibility of T1 mapping as a surrogate of
diffuse fibrosis has been demonstrated at different stages of
the clinical phenotype, suggesting a potential biomarker role
for non-hazardous follow up in the progression of different
DCM cohorts (36, 41–43). This notion is further upheld in
the multicenter study of over 600 DCM patients, where T1
indices both regionally and globally showed significant predictive
associations with all-cause mortality and likelihood of heart
failure-related mortality or hospitalization over a median follow
up of 22 months, p < 0.001 (44). In a recent study of DCM
patients affected by complex ventricular arrhythmias, events
thought to be attributable to pathologic remodeling and the

inter-related process of diffuse fibrosis, global native T1 time
was found to be independently associated with ventricular
arrhythmias even after adjustment for LVEF and scar on LGE-
imaging (odds ratio 1.14, 95% confidence interval 1.03–1.25; p
= 0.008) (45). Whilst these studies demonstrate the incremental
value T1 mapping may provide in the evaluation of DCM,
substantial overlap in T1 values is apparent between those with
adverse outcomes and those without (44–46). Accounting for
this precise continuum of T1 values with pixel-to-pixel mapping
may more reliably differentiate higher and lower risk groups of
patients but would be technically difficult and laborious with
current manual techniques.

Pre- and post-contrast T1 mapping can also be adjusted
for haematocrit, i.e., correcting for the blood volume of
distribution, and this introduces an additional technique known
as the extracellular volume fraction (ECV), for more focused
examination of alterations occurring specifically within the
extracellular interstitial compartments (40). ECV appears to have
direct relationship with the extent of diffuse fibrosis with good
correlation to histopathological quantification and therefore
offers a non-invasive, quantifiable assessment of interstitial
disease that shows significant promise in prediction of heart
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failure related outcomes in DCM patients (36, 44, 47). Currently,
ECV still has a limited role in differentiating DCM from other
causes of non-ischaemic heart failure, due to the significant
overlap of values seen across various myocardial diseases (48).
However, its particular advantage appears to lie in its reduced
sensitivity to variation in scanner field strength, which lends
itself applicable toward multi-center and vendor evaluations to
assess the extent of its usefulness over LGE-CMR in future DCM
studies (47).

T2 and T2∗ Mapping
T2 weighted sequences exploit the biological parameter of T2
relaxation times associated with tissue water content. As such,
T2 images and subsequently quantitative T2 mapping can be
used for the assessment of myocardial oedema, adding to the
aetiological evaluation of active myocardial inflammation as
occurs in acute myocarditis (49). The clinical application of
T2 mapping to provide additional diagnostic information in
distinguishing DCM from healthy myocardium, with the former
showing larger and more progressive myocardial water content,
was recently supported in a meta-analysis (standardized mean
difference 1.90, p < 0.01) (50, 51). This could have a pivotal
role in the evaluation and differentiation of those who have
the functional appearance of DCM due to athletic training
from those with pathological myocardial disease (52). However,
differentiation of DCM from other forms of non-ischaemic
cardiomyopathy is limited in this respect, due to similar changes
in T2 values, and due to differences in the sequence acquisition
these values may vary from center to center (50, 53). Further
research is needed in regards to standardization, verification of
its usefulness and timing in the diagnostic pathway, and to better
understand the pathophysiological basis for an increase in T2
values in DCM without preceding myocarditis.

T2∗(star) relaxation mapping is a parameter that shortens
due to the local magnetic field homogeneity that occurs with
progressive iron deposition. This is useful for the assessment
and quantification of iron loading within the myocardium,
which can occasionally be associated with a DCM-like phenotype
(54). It is a clinically validated tool, with better predictive
capability than serum iron biochemistry and can detect the effects
of myocardial iron loading earlier than conventional cardiac
function assessments (54, 55). As a result, rapid hematological
diagnostic pathways can be primed without delay and the
response to treatment serially monitored non-invasively using
this tool (55).

CMR for Prognostication in DCM
CMR can confirm and reproduce the assessment of LV mass,
volumes, and LVEF, all of which are important indicators for a
worse prognosis in severe DCM and other causes of heart failure;
the latter two markers being key targets for reverse remodeling
and myocardial recovery (56–59). The main limitation of these
measures for predictive outcomes is that they are often assessed
at initial evaluation, failing to account for the dynamic nature of
the disease with favorable response to therapy for a significant
proportion of patients; concurrently, they are less sensitive for

those with mild-moderate dysfunction who are still prone to
significant risk of sudden cardiac death (25, 26, 60).

Risk stratification in this setting is difficult and the current
focus of this has shifted toward a multiparametric, dynamic
approach, which attempts to incorporate potential biomarkers
from biochemistry, ECG signals and imaging (12).

There is increasing evidence for applications within CMR
to guide prognostication and subsequent clinical management
in DCM. Whilst the majority of these applications for
risk prediction are captured through routine assessment, the
additional tools, and longitudinal follow-up capability is still
regarded as an investigational field of interest within the setting of
CMR (14). These current and potential clinical CMR applications
in the risk assessment of DCM are outlined in Table 1.

Much of the current CMR tools for characterization and
predicting outcomes in DCM rely on multiple dedicated imaging
sequences, followed by significant time devoted to qualitative
post-processing in the evaluation of structure, function and tissue
characterization. Despite their feasibility and utility, they are
often not fully exploited in clinical practice due to these time
constraints on clinical workflow. Even if employed, this often
occurs ad-hoc and limited to one or two additional parameters
evaluated in uniform manner, rather than assimilated in multi-
parametric fashion for personalized characterization and risk
stratification. Fully integrated analysis of all these features and
metrics could aid better selection of patients who might benefit
from earlier medical intervention, need closer surveillance
regardless of LVEF, and those who we can more confidently
discharge or halt medical therapies following improvement in
their cardiac status (5, 13, 66).

The Role of Genetics in DCM
Characterization
It is increasingly appreciated that DCM has a genetic basis, with
disease causing variants identified in up to 40% of families of
DCM and 25% of presumed sporadic cases (67). Some of these
genetic mutations can predispose carriers toward significant
brady- or tachy-arrhythmias, or in the presence of environmental
factors such as alcohol, can be the driver for a more severe
phenotype, and there is a suggestion that a genetic basis
could explain the higher prevalence of DCM seen in particular
ethnic groups (67–69). There has been an expansion in the
reported breadth of genes associated with the DCM phenotype,
particularly in recent times with the arrival of next generation
sequencing methodology (70, 71). However, robust genotype-
phenotype correlations are not always feasible as the genes
implicated encode proteins with a variety of different functional
properties, making it challenging to harmonize the extent of
genetic influence on the spectrum of structural and functional
changes in those with DCM (71). Furthermore, it is challenging
to clinically define and manage the large number of variants of
uncertain significance (VUS), inadvertently arising as a result of
the high throughput of current genetic testing.

Being able to discern the full scope of genetic influence in
those with DCM will further help tease underlying drivers of
disease manifestation and offer the opportunity to establish a
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TABLE 1 | The current and potential clinical CMR applications for predictive outcomes in DCM.

CMR

Biomarker

Current use Studies supporting

biomarker for

prognostication in

DCM cohorts

No. of

patients

studied

Median F/U HR/OR for primary end point (95% CI) p<0.05

LV volume and

LVEF

Clinical use Masci et al. (30) 125 1.2 years Primary endpoint = CV death and HF hospitalization. LVEDVi HR

1.02 (1.00–1.03), LVEF HR 0.94 (0.90–0.99).

Gulati et al. (25) 472 5.3 years Primary endpoint = ACM, cardiac transplantation. LVEF per 1%

HR 0.95 (0.93–0.96). LV-EDV index per 10 ml/m2 HR 1.09

(1.05–1.13), LVMi per 10 g/m2 1.12 (1.04–1.19).

Masci et al. (26) 228 1.9 years Primary endpoint = CV death, congestive heart failure, aborted

SCD. LVEDVi HR 1.008(1.000–1.016), LVEF HR 0.962

(0.934–0.990), LVMi HR 1.018 (1.006–1.030).

Buss et al. (60) 210 5.3 years Primary endpoint = aborted SCD, CV death, cardiac

transplantation. LVEDi HR 1.02 (1.01–1.03), LVEF HR 0.91

(0.88–0.94), LVMi HR 1.11 (1.04–1.18).

RV volume and

RVEF

Clinical use Alpendurada et al. (61) 60 2.2 years Primary endpoint = ACM, CV hospitalization. RVEF HR 0.96

(0.94–0.99) TAPSE HR 0.88 (0.80–0.96).

Gulati et al. (62) 250 6.8 years Primary endpoint = ACM, cardiac transplantation. RVEDVi per 10

ml/m2 HR 1.14 (1.05–1.25), RVEF HR 0.95 (0.93–0.97).

Becker et al. (63) 168 2.2 years Primary endpoint = ACM, cardiac transplantation, sustained

ventricular arrhythmia, appropriate ICD therapy. RVEF per 10% HR

0.74 (0.57–0.95).

LA volume and

dimension

Clinical use Gulati et al. (64) 483 5.3 years Primary endpoint = ACM or cardiac transplantation. LAVi per 10

ml/m2 HR 1.08 (1.01–1.15).

LGE Clinical use Assomull et al. (28) 101 1.8 years Primary endpoint = ACM, hospitalisations for CV event. LGE HR

3.4 (1.4–8.7).

Cho et al. (32) 79 1.6 years Primary endpoint = rehospitalisation, cardiac transplantation or

death. LGE HR 8.06 (1.03–63.41).

Masci et al. (30) 125 1.2 years Primary endpoint = CV death and HF hospitalization. LGE HR

3.96 (1.53–10.3).

Leyva et al. (27) 97 2.8 years Primary endpoint = CV death and transplantation. LGE HR 22.0

(4.73–102).

Neilan et al. (31) 162 2.4 years Primary endpoint = MACE, which included composite of

cardiovascular death and a ventricular arrhythmia, terminated by

the ICD. LGE presence HR 14.5 (6.06–32.61).

Gulati et al. (25) 472 5.3 years Primary endpoint = ACM, cardiac transplantation. LGE per 1%

increment 1.11 (1.06–1.17).

Masci et al. (26) 228 1.9 years Primary endpoint = CV death, congestive heart failure, aborted

SCD. LGE extent HR 5.104 (2.783–9.361).

Perazzolo Marra et al.

(29)

137 3 years Primary endpoint = SCD, sustained ventricular arrhythmia,

appropriate ICD intervention. LGE presence HR 4.17 (1.56–11.2).

Puntmann et al. (44) 637 1.8 years Primary endpoint = ACM. LGE presence HR 2.9 (1.4–6.3).

T1 Mapping Research tool Barison et al. (43) 89 2 years Primary endpoint = composite of cardiovascular death,

hospitalization for heart failure, and appropriate defibrillator

intervention. ECV HR 8.59 × 107 (1,503–4.80 × 1,012).

Puntmann et al. (44) 637 1.8 years Primary endpoint = ACM. Native T1 HR 1.1 (1.06–1.15), ECV per

% change HR 1.1(1.05–1.14).

Nakamori et al. (45) 107 Retrospective

events

Primary endpoint = ventricular arrhythmia. Native T1 each 10-ms

increment OR 1.14 (1.03–1.25).

FT-CMR: LV

strain

Research tool Buss et al. (60) 210 5.3 years Primary endpoint = combination of CV death, heart

transplantation, and aborted SCD. GLS HR 1.33 (1.21–1.47),

GCS HR 1.23 (1.13–1.34), GRS HR 0.89 (0.84–0.95).

Romano et al. (65) 507 4.4 years Primary endpoint = all-cause death. GLS HR 1.402 (1.299–1.513).

LV, left ventricular; LVEF, left ventricular ejection fraction; HF, heart failure; LVEDVi, indexed left ventricular end diastolic volume; ACM, all-cause mortality; LV-EDV, left ventricular end

diastolic volume; LVMi, indexed left ventricular mass; SCD, sudden cardiac death; CV, cardiovascular; RV, right ventricular; RVEF, right ventricular ejection fraction; TAPSE, tricuspid

annular plane systolic excursion; RVEDVi, indexed right ventricular end diastolic volume; ICD, implantable cardioverter defibrillator; LA, left atrial; LAVi, indexed left atrial volume; LGE,

late gadolinium enhancement; MACE, major adverse cardiac events; ECV, extracellular volume; FT-CMR, feature tracking-cardiac magnetic resonance imaging; GLS, global longitudinal

strain; GCS, global circumferential strain; GRS, global radial strain.
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FIGURE 4 | Visual example of the differences between machine learning (ML) and deep learning (DL) methods.

deeper characterization of the phenotype. Coupled with the
challenge to examine genetic influence on the spectrum of
structural and functional changes, the addition of mutation
status to clinical and imaging parameters may improve risk
stratification and potential treatment strategies beyond the
consensus management for heart failure with reduced ejection
fraction (HFrEF) (72).

AI APPLICATIONS IN THE CMR
CHARACTERIZATION OF DCM

AI is the division of computer science that deals with the ability
of computer systems to use algorithms in order to interpret
and learn from data, and successfully perform tasks that would
normally require human intellect and input. Over time, we have
seen AI gaining popularity in medicine, having applications
within medical record mining, predictive clinical application
systems, virtual patient care and, its widest application, medical
imaging (73, 74). In short, AI has the potential to perform
routine tasks more efficiently or provide new insights into disease
processes, that were previously not achievable by manual review
and analysis due to time and labor constraints (75).

AI, machine learning (ML), and deep learning (DL) are three
terms often used interchangeably but are essentially hierarchical.
AI is the overarching concept aiming to develop computers with
human intelligence. ML is the subfield of AI that gives computers
the ability to learn without being explicitly programmed (76).
DL is a subset of ML algorithms called neural networks. Neural
networks are algorithms that mimic the human brain’s behavior
in decision-making and try to find the most optimal path
to a solution. Traditionally, ML methods contain a feature
engineering phase, where experts propose a set of hand-crafted
features to facilitate the learning from examples. This phase
is very important and affects the overall performance of the
learning system. In a DL pipeline, feature extraction is embedded

in the learning algorithm where features are extracted in a fully
automated way and without any intervention of a human expert
(see Figure 4 for visual example of the ML and DL method). A
number of fundamental neural network architectures lie at the
basis of DL models, and we provide a basic introduction to their
concepts. However, for a more comprehensive overview of these
architectures and DL algorithms for cardiac image segmentation,
we refer the interested reader to Chen et al. (77), Convolutional
neural networks (CNN) are the most popular class of DL
network, widely applied in CMR, utilizing a patch-based image
extraction approach (see Figure 5A for an example of a CNN
network). As opposed to this conventional neural network, a fully
convolutional neural network (FCNN) performs more efficient
and accurate pixelwise segmentation by leveraging upsampling
layers to concatenate multi-scale features obtained through a
series of convolutions applied to the entire image (see Figure 5B
for an example of a FCNN) (77). Finally, another emerging
class of DL algorithms are the Generative adversarial networks
(GAN). These consist of a pair of neural networks, contesting
one against another (“adversarial”), in order to generate new,
synthetic instances of data that can pass for real data (see
Figure 5C for an example of GAN architecture).

There are three important types of AI algorithms: (1)
Supervised learning algorithms try to model relationships and
dependencies between the target prediction output and the input
features or observations such that we can predict the output
values for new data based on the learnt relationships. This is the
most partial and widely adopted form of AI, but it requires a large
amount of labeled training datasets; (2) Unsupervised learning
is where there are no corresponding output variables, and the
goal is to discover relationships between the input features
or reveal the latent variables behind the observations; and (3)
Reinforcement learning aims to learn a mapping from situations
to actions so as to maximize a scalar reward or reinforcement
signal. A key difference with supervised learning is that the
reinforcement learning agent is never told the optimal action,
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FIGURE 5 | (A) Example of a convolution neural network (CNN) where first section corresponds to the feature extraction and second section to classification; (B)

Example of a generic fully convolutional neural network (FCNN) with feature map volumes that are color-coded by size. Figure adapted from Bai et al. (78); (C)

Example of a generative adversarial networks (GAN) that comprises two networks (generator and discriminator).

instead it receives an evaluation signal indicating the goodness
of fit for the selected action.

Medical image analysis involves the use of images generated
in clinical practice, that can be interpreted to improve our ability
to solve clinical problems and make treatment decisions more
effective (79). As the increasing wealth of digital data becomes

more accessible, clinicians need to be able to find more efficient
ways of meaningfully combining this data to boost precision-
based healthcare.

Due to the spatial and temporal pathologic heterogeneity
of particular clinical phenotypes, such as DCM, the ability to
accurately identify and extract relevant imaging biomarkers in
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routine clinical practice is prone to subjective errors and has
low reproducibility when carried out by hand. Over the last
decade, AI has made significant progress in the field of medical
imaging, improving techniques involved in acquisition, analysis,
and interpretation with gradually less human oversight involved
in the process (74). These efforts reduce the variability associated
with subjective image interpretation, and moreover, enable
feature extraction around regions of interest. It has the potential
to provide quantifiable features that relate more objectively and
in more detail with relevant clinical information (80).

Overcoming the Barriers to Fully
Automated Image Segmentation
The opening act to CMR characterization involves image
acquisition and segmentation, prior to feature extraction. The
quality of this step is essential to the outcome of further
downstream analysis and provides baseline cardiac parameters
as well as the untapped features that might better describe
cardiac function in specific cohorts. Assessment of the anatomical
features following cine acquisition includes assessment of
myocardium, pericardium, all 4 cardiac chambers, valves and
vascular connections. Typically, a visual quality assessment is
needed first to ensure the signal-to-noise ratio is enhanced
by adequate positioning and breath-holding technique, limited
blurring by cardiac gating, and appropriate planning for each
subsequent image plane acquisition. Following the anatomical
review, long and short axis cines are acquired that enable
dynamic views of the global heart function. Segmentation
by manual planimetry, or by semi-automated methods with
clinician oversight enables the reproducible 3-dimensional (3D)
assessment of atrial and ventricular volumes, LV mass and
EF quantification.

Studies have shown that DL methods can outperform
conventional ML, and in some cases, even better in both
detection and segmentation tasks analyzed by human expertise
(80, 81). CNNs are the technique of choice and the most
successful type of models for image analysis (82, 83). Efficacy
of the DL models is often assessed in the form of pixel
classification accuracy. Although different methods for assessing
this exist, the preferred evaluation metric for DL-based
segmentation approaches is the Dice metric, which evaluates the
overlap between automated segmentation and the ground truth
segmentation. The Dice metric has values between 0 and 100%,
where 0 denotes no overlap and 100% denotes perfect agreement.

One of the main challenges to implementation of CNNs in
medical imaging is the lack of high-quality expert annotated
data, available for training the DL network. Furthermore, these
datasets often suffer from class imbalances due to certain
conditions being encountered less frequently, thereby making
it more difficult for a CNN to generalize and limiting large
scale CMR evaluations. As highlighted in Table 2, whilst
the segmentation performance of state-of-the-art DL methods
is commended, it is evident that the number of DCM
cases encountered in these evaluations has significantly low
representation. Given the heterogeneity of this condition with
many individuals at presentation subject to highly remodeled

ventricles and rotated cardiac axes, these current automated
segmentation methods may not yet be robust enough for the
deployment and evaluation of this phenotype.

To ensure any of these methods can translate into clinically
useful tools in the evaluation of DCM, it is essential they
are complemented by high quality datasets, that help improve
the accuracy of segmentation and classification tasks, whilst
providing large variability in terms of the clinical phenotype
and image acquisition modules, thus enabling generalizability
(87, 91). However, manual annotations of large datasets that are
able to encompass this scale of heterogeneity is no easy feat,
being costly and requiring extensive expert time for good quality
annotation. This could be partly overcome with data sharing
initiatives and collaborations between CMR centers to obtain
large repositories of images with associated clinical information.
This is not inevitably a seamless solution, as there are often ethical
and legal requirements to satisfy within all participating sites,
with limits set on how and where specific data can be utilized
during the development and deployment of the pipeline.

Encouragingly, over the years open technical challenges
and several publicly available datasets have been made
available, helping to unravel this generalizability issue
(93, 94). The UK Biobank (UKBB), although limited to a
single CMR vendor, provides one of the largest imaging
datasets facilitating the exploration of DL capabilities in a
large general population whilst solving issues relating to
ethics and clinical data aggregation. This was harnessed
recently in a genome-wide association study of CMR-
derived LV measurements in ∼36,000 participants from
the UKBB to study the relationship between genetic variants
associated with LV structure and function, and risk of incident
DCM (95).

Another way of improving the generalizability during training
and take advantage of the limited amount of high-quality labeled
data is the strategy of data augmentation. It is possible to
artificially increase the variation of examples encountered by
applying random transformations such as image rotation by
certain degrees, image scaling to increase variations in organ
size, changing image orientation with random horizontal or
vertical flips and even inclusion of random “noise” to images
(94, 96, 97). Whilst this option effectively enables the acquisition
of more labeled data, the diversity in practice may still be
limited in terms of reflecting the full spectrum of the DCM
phenotype and the pixel-level differences of images obtained
from different CMR vendors. The breakthrough in improving
this generalization of networks to reliably segment heterogenous
phenotypes acquired from different CMR vendors and clinical
sites was demonstrated recently by Chen et al. (94). Unlike
the efforts to solely re-train or fine tune networks to improve
the performance on a specific dataset, they explored the pre-
processing step of data normalization enabling their network to
deal with the distribution changes amongst input features from
multi-source images. This overcomes the small differences in
features arising from images obtained from different scanners
and the overfitting to distribution changes that occurs with
network development from a single source. Along with data
augmentation strategies, their approach achieved encouraging
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TABLE 2 | State of the art DL architecture on CMR datasets and number of DCM cases encountered in test datasets.

Selected Work,

References

DL

Architecture

and type of

images

Structures

Segmented

No. subjects in

total used for

training/validation/

testing

Dice metric

between AS and

MS: LV cavity

Dice metric

between AS

and MS: LV

myocardium

Dice metric

between AS and

MS: RV cavity

No. of DCM

test cases

Bai et al. (78) 2D FCNN, SAX

images

Biventricular

and atria

Training 3,975

Validation 300

Testing 600

Mean 0.94 (SD

0.04)

Mean 0.88 (SD

0.03)

Mean 0.90 (SD

0.05)

142

Tran (84) 2D FCNN with

transfer training,

SAX images

Biventricular Training 131

Validation 100

Testing 115 (LV),

32 (RV)

Mean 0.92 (SD

0.03)

Mean 0.96 (SD

0.01)

Mean 0.84 (SD

0.21)

Unspecified;

mix of cardiac

conditions

Isensee et al.

(85)

Ensemble FCNN

(2D and 3D

U-net), SAX

images over full

cardiac cycle

Biventricular Training 100

Testing 50

Mean 0.945 Mean 0.905 Mean 0.908 10

Tao et al. (86) 2D FCNN, SAX

images from

multivendor

dataset

LV/Myocardium Training 400

Testing 196

Mean 0.92 (SD

0.06)

Mean 0.94 (SD

0.05)

46

Khened et al.

(87)

2D Densenet

(FCNN), SAX

images

Biventricular Training 700

Validation 300

Testing 490

Mean 0.93 (SD

0.05)

Mean 0.89 (SD

0.03)

Mean 0.91 (SD

0.05)

10

Jang et al. (88) 2D M-net

(FCNN),

weighted cross

entropy loss,

SAX images

Biventricular Training 80

Testing 20

Mean 0.938 (SD

0.05)

Mean 0.879 (SD

0.04)

Mean 0.890 (SD

0.07)

10

Fahmy et al. (89) 2D FCNN with

alignment and

T1 estimation,

SAX images

LV/Myocardium Training 63

Testing 147

Mean 0.85 (SD

0.07)

Unspecified;

mix of cardiac

conditions

Avendi et al. (90) 2D CNN for

localizing LV,

stacked

autoencoders for

shape inference.

Deformable

model for

segmentation,

SAX images

LV Training 45

Validation 30

Testing 30

Mean 0.94 (SD

0.02)

Unspecified;

mix of cardiac

conditions

Avendi et al. (91) 2D CNN for

localizing RV,

stacked

autoencoder for

automatic

initialization.

Deformable

model for

segmentation.

RV Training 16

Testing 16

Mean 0.83 (SD

0.14)

Unspecified;

mix of cardiac

conditions from

dataset of 48

patients

Oktay et al. (92) 2D FCNN with

anatomical

shape priors,

SAX images

LV/Myocardium Training 900

Validation 100

Testing 200

Mean 0.939 (SD

0.02)

Mean 0.81 (SD

0.03)

0

DL, deep learning; AS, automated segmentation; MS, manual segmentation; LV, left ventricle; RV, right ventricle; FCNN, fully convolutional neural network; CNN, convolutional neural

network; SAX, short axis.

results in terms of reliable segmentation accuracy across test
images from multi-scanner and site domains (mean Dice metric
of 0.91 for the left ventricle, 0.81 for the myocardium, and

0.82 for the right ventricle from a single site dataset; and 0.89
for the left ventricle, 0.83 for the myocardium from a multi-
site dataset).
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DL-Based Global Assessment of Function
Recent DL techniques have enabled rapid expansion in
the CMR domain to achieve robust contour identification
and accurate classification performance, whilst significantly
minimizing the extent of post-processing involved in volumetric
data calculations (98). Emerging approaches that have recently
become commercially available, have further demonstrated
the feasibility and precision of fully automated dynamic
measurement of LV volumes (99, 100). Utilizing anatomical
localization methods to determine relevant boundaries between
structures, contours are created in consecutive frames of the
cardiac cycle with LV volume/time curves derived at no extra
time expense and with high correlation to the manual reference
technique (99). Whilst such applications show promise for
the application to evaluating DCM cohorts, the development
and training of this technique has been based on very limited
representation from such patients, with less accuracy seen in
those with significantly dilated ventricles and whose impaired
breath-holding technique can lead to significantly more artifacts,
reducing image quality. Furthermore, the details of the DL
pipeline are not disclosed by the manufacturer and this lack
of transparency will make it difficult to optimize the current
algorithm in order to generalize to other scanners and more
diverse patient cohorts.

Motivated by these limitations, Ruijsink et al. (17) developed a
robust, accurate and fully automated framework for CMR cardiac
function analysis which included comprehensive quality control
detection using a CNN to limit erroneous output. Segmentation
of both ventricles in all frames was then executed utilizing a
17-layer 2D-FCNN, prior to an iterative alignment process to
correct for any differences in breath-holding and motion. After
validating their framework that presented with high correlation
to manual analysis, biventricular volume curves were generated
for over 2,000 healthy individuals to obtain a more detailed
description of cardiac function, inclusive of diastolic parameters
such as peak early filling rate, atrial contribution, and peak
atrial filling rate. These parameters stratified healthy patients
by age categories, with lower filling rates correlating with
older age–a relationship consistent with the known increase
in ventricular stiffness with age (101). Considering that these
LV filling patterns also appear capable of distinguishing the
different categories of diastolic dysfunction characterized on
echocardiography, it is anticipated that this method could
enable within DCM subgroups detection of those with persistent
diastolic impairment despite LV systolic recovery on medical
therapy, and identify patients with subclinical disease who will
require closer surveillance (102). These parameters are feasible
with no additional imaging outside routine care and can occur at
no extra time-cost whilst the routine clinical analysis is ongoing.
In terms of the potential clinical application to evaluation of the
DCM phenotype, it is significant that the method employed by
Ruijsink et al. (17) performed similarly well in unseen patients
with cardiomyopathy as well as those without cardiac disease.
It has been reported from studies on emerging 4D flow CMR,
that DCM patients have altered and heterogenous diastolic flow
patterns that occur due to abnormal filling kinetics and varying
degrees of pathological geometrical configuration of the LV (103).

This highlights the potential role offered by fully automated LV
filling assessment in differentiating those with persistent altered
filling patterns and abnormal diastolic flow, thereby remaining
at risk of relapse compared to those who have truly achieved
recovery and remission. Based on this promising AI tool, current
work by this group is also exploring the innovative use of
GANs to generate realistic CMR images from any domain in
order to advance the generalization of the network and robustly
deal with clinical CMR data from multiple centers, vendors,
and field strengths (104). Given the feasibility to evaluate both
ventricular filling profiles, and the suggested prognostic role of
serial revaluation of RV function in the follow up of DCM, the
characteristics and clinical utility of RV filling patterns over time
will be another area of application in the DCM population (105).

DL-Based Tissue Characterization
State-of-the-art algorithms utilized in scar segmentation are
commonly semi-automated, fixed-model approaches where the
pixel intensities of scar regions are exploited through a process
of thresholding (106). This requires a user-selected area of
interest and knowledge of the nearby intensities of healthy nulled
myocardium, prior to operating a region growing process to
segment the scar region. These methods are currently popular
for segmenting contiguous regions of scar, and are highlighted
for their reproducibility, with encouraging performance against
consensus segmentation by experts (106). Whilst simple to
implement, they remain heavily user dependent for pre-
processing with respect to definition of the myocardial borders,
activating the boundaries of interest, initialization for region
growing in each slice, and the subjective baseline selection of
remote healthy myocardium as well as the perceived extent
of scar. More automated approaches have been developed to
help minimize the degree of user interaction whilst maintaining
reproducible performance (106). These methods mostly utilize
clustering techniques to fit data of different tissue signal
intensities in order to characterize the voxels belonging to
scar regions (106). Whilst they show good correlation with
the fixed-model approaches in accurately identifying LGE, they
unfortunately are not robust enough for clinical translation due
to failure to accurately segment scar where CMR-LGE images
are affected by noise or share homogenous signal intensity
distributions within myocardial boundaries and other nearby
tissues (106–109). This limitation is particularly important
as most of these traditional methods have been validated
on CMR-LGE images obtained from patients with coronary
disease, where the pattern of scar is subendocardial as
opposed to that seen, if present, in DCM and other non-
ischaemic cohorts, occurring in the mid to epicardial wall
segments, where tissue intensity homogeneities are more likely
to be encountered.

As the attention of CMR segmentation transitions toward
more DL-based approaches, it is hoped that these innovative
techniques will also facilitate a more practical and reliable means
of achieving standardized quantification of LGE. This is highly
desirable, given the suggestion that even after adjustment of
LVEF, the proportion of LGE assists the clinical stratification
of DCM patients who are prone to a higher risk of death and

Frontiers in Cardiovascular Medicine | www.frontiersin.org 12 December 2021 | Volume 8 | Article 787614112

https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/cardiovascular-medicine#articles


Asher et al. AI in Characterizing DCM

hospitalization (28). Not to mention, the ability to efficiently
characterize border zone tissue–areas of variable transition
between scar and normal tissue that have arrhythmogenic
potential, thereby helping to identify those at risk of malignant
arrhythmias and more likely to benefit from ICDs (110).

A successful FCNN architecture, the ENet was recently
harnessed to deal with the task of scar segmentation (111).
Several variants of this popular architecture have been adapted
to enhance the accuracy of different cardiac segmentation tasks
(see Table 2). However, the pursuit of scar segmentation is a
relatively new concept. In this work by Moccia et al. (111),
the ENet was adapted and evaluated to see if pre-identified
LV regions could enable more accurate scar segmentation than
current methods, and furthermore whether a fully automated
output of scar segmentation was feasible and maintained a
similar or improved accuracy. As a proof of concept, this
method showed both protocols were able to identify scar on
the CMR-LGE images without the need for pre-processing
extraction steps. However, it was the semi-automated method
with a priori knowledge of the restricted myocardial boundary
in which to search for scar, that outperformed state of the art
CMR-LGE segmentation algorithms and was closest to expert
annotation (with a sensitivity of 0.88 and Dice coefficient
of 0.71). This is still an important breakthrough, holding
advantages over current efforts to quantify scar by minimizing
subjective evaluation, user interaction and any parameter tuning
prior to implementation. Expanding the training datasets to
incorporate the variability of scar seen in those with a sole
DCM phenotype and those with accompanying embolic sub-
endocardial scar, could be an encouraging start to help encode the
high variability of scar dimensions seen in this population. This
study provides an important step forward in the clinical practice
of scar quantification, and by enhancing the pixel classification
through training, the ENet would not only acquire improved
segmentation performance, but would be more generalizable to
the DCM population.

In conjunction with acquiring diverse DCM datasets, image
data augmentation is another common method to artificially
boost training datasets in order to improve performance
and generalizability of a deep learning model. This may be
particularly relevant with regards to the DCM population, where
a disconnect exists between high demand for sufficient training
images and the variability of scar presence across the spectrum of
patients, in essence, limiting the real-world availability of training
examples (24). This was recently explored in the simulation
of scar tissue on the LGE-CMR images of healthy patients
(112). Lau et al. (112) utilized their GAN framework which
could additionally incorporate domain-specific knowledge, to
simulate various scar tissue shapes in different positions. These
images were highly realistic as demonstrated by the improved
segmentation prediction of scar tissue pixels correctly identified
during testing from 75.9 to 80.5% and the qualitative assessment
that imaging experts were unable to reliably distinguish between
simulated and authentic scar.

A stream of work has focused on extending the use of a trained
FCNN to assist analysis of myocardial tissue characterization
by means of automated native T1 mapping (89). With good

agreement to manual calculations, this showed promise for
an automated pipeline to minimize the workflow involved in
quantifying global T1 characteristics. This was validated on
a single scanner, with further study needed to see if this
method can be applied to other mapping sequences such
as the modified Look-Locker inversion recovery (MOLLI) or
the contemporary shortened modified Look-Locker inversion
(shMOLLI) method, that is more acceptable and compatible with
typical limits for end-expiration breath-holding in patients (113).
Puyol-Antón et al. (114) evaluated an automated framework
for tissue characterization using the shMOLLI method at 1.5
Tesla using a Probabilistic Hierarchical Segmentation (PHiSeg)
network. This method models the probability distribution of
pixel-wise segmentation samples from the input image and
generates an uncertainty map to quantify the degree of error in
segmentation, so that erroneous representations are not utilized
for T1 mapping. A morphological operation was then applied to
detect the LV-RV intersection and delineate LV free wall from
the interventricular septum. T1 ranges were obtained from the
uncovered myocardial regions of interest with correction for
T1 from the ventricular blood pools to improve discrimination
between healthy subjects and those with cardiovascular disease
(115). Using this proposed method, they characterized global and
regional T1 values from over 10,000 subjects from the UKBB
dataset which included a significant proportion of non-ischaemic
cardiomyopathies. In line with present comprehension, they
demonstrated that for those conditions in which diffuse fibrosis
is more prevalent such as DCM, hypertrophic cardiomyopathy
(HCM), and cardiac sarcoidosis, they found significantly higher
T1 values (all p < 0.05). The quality control process is
an important feature for clinical scalability of this tool and
would enable this supplementary prognostic information to
be added to each DCM case in a uniform manner with no
added time-expense. Furthermore, it would enable large scale
application to assess the role that native T1 analysis may have in
deriving enhanced prediction of adverse outcomes for particular
subgroups of DCM, particularly those who remain at risk despite
having only mild or moderately impaired LV function. In order
to be more generalizable, the proposed model requires validation
on datasets acquired from the various different vendors available
currently in clinical practice.

CLINICAL RISK PREDICTION AND THE
ROLE FOR AI

Whilst clinical risk prediction models for prognostic assessment
exists for heart failure populations in general, these tend to
be below par when utilized in DCM patients (116). For the
most part, these models are derived mostly from heart failure
due to ischaemic etiology, which on average is associated with
a higher mortality risk, and tends to affect older individuals
who have other associated cardiovascular risk factors (116).
DCM tends to affect younger patients with the vast majority
having mild dysfunction remaining stable for many years.
Alternatively, they can also be characterized by incidences of
sudden progressive dysfunction, or by those without severe LV
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dysfunction who remain susceptible to ventricular arrhythmias
and sudden cardiac death; both of which would not be accounted
for by conventional risk prediction models (1, 117, 118).

Emerging techniques in AI pertaining to the exploration
of informative clinical biomarkers potentially offers a better
appreciation of the phenotypic heterogeneity underlying DCM,
with refined clinical implications in risk stratification, earlier
detection and personalized treatment strategies (116). In this
section, we provide an overview of these AI-based clinical
applications that are primed to advance the field of clinical risk
prediction in DCM.

Chen et al. (119) recently evaluated their ML model based on
32 features obtained from baseline patient characteristics, bloods,
ECG, echocardiography and CMR, and assessed its performance
in predicting cardiovascular events in a group of severe DCM
patients. Feature selection occurred with Information Gain, an
attribute selection technique that enables rapid classification of
the most relevant features to the cardiovascular events. Although
a number of MLmodels performed well in terms of accuracy and
ability to discriminate between an event and non-event for each
feature, a naïve Bayes classifier was selected as themodel of choice
due to the additional transparency offered with the generation
of conditional probabilities associated with each outcome. This
was the most meaningful in terms of clinical translation, as the
relevant significant features could form part of the clinician’s
probabilistic reasoning in the decision aid for guiding a patient’s
treatment. This would need further exploration in subsequent
iterations of the model and prospective clinical trials in order
to evaluate the capability to assign risk to particular patients.
Nonetheless, by handling most of these features that are often
used variably in practice for risk prediction such as LGE extent,
degree of mitral regurgitation, and QRS duration, this model
outperformed current scoring systems and LVEF alone for the
prediction of cardiovascular events in each patient [AUC, 0.887
(95% confidence interval, 0.813–0.961)].

By integrating longitudinal clinical, biochemical and
echocardiography imaging data from over 4,000 patients with
cancer, Zhou et al. (120) built predictive supervised ML models
for applicable cardiovascular outcomes such as heart failure and
de novo cancer therapy-related cardiac dysfunction (CTRCD).
Based on a number of model iterations from five different
classification methods, logistic regression provided the optimal
classification performance, with an area under the receiver
operating characteristic curve of 0.882 (95% CI, 0.878–0.887)
for heart failure and 0.802 (95% CI, 0.797–0.807) for de novo
CTRCD. They identified a combination of 9 clinically relevant
variables that were strong predictors for these outcomes (p <

0.05) and maintained this high performance even when tested
on data from separate time points to the training dataset. As one
of the potentially reversible causes of DCM, this generalizability
and high performance in predicting CTRCD over time makes
ML models such as this a potentially promising tool for real-
world cardiac risk assessment in cancer patients throughout
their treatment journey. As these models are evaluated in larger
cohorts with fine-tuning and model-specific variable selection
to enhance performance, this group are also collaborating with
clinicians to develop integrated risk calculators with outcomes in

order to test the prospective potential of ML-derived biomarkers
in cardio-oncology practice.

Treatment of DCM is predominantly as part of the
management of heart failure with reduced ejection fraction.
This is directed at reversal of adverse LV adaptive mechanisms
that occur in progressive LV dysfunction, so called LV reverse
remodeling (LVRR), and is a key determinant of prognosis in
DCM (1). Up to 40% of patients are reported to experience
this within two years, due to removal of the precipitating
factor or induced through medical therapies and/or cardiac
resynchronization therapy (CRT) in those who have left
bundle branch block and subsequent dyssynchronous ventricular
activation (1, 121). Beyond medical therapy, CRT in this setting
has clear efficacy in terms of improving symptoms and reducing
mortality (122). However, determining those who will “respond”
to this therapy moving toward and maintaining remission in the
long-term, as opposed to those who may be non-responders, is
still a current challenge in the clinical setting (1, 123). Whilst
multiple clinical, imaging, and even device implant factors are
associated with the likelihood of positive response to CRT, gaps
of knowledge still remain regarding timing of this evaluation and
how to leverage this information to identify evidence of early
remodeling (121, 123).

A number of ML algorithms have explored the combined
assessment of different clinical variables in predicting response
to CRT and recovery of myocardial function. Multiple kernel
learning (MKL) has been used by different groups as it offers the
possibility of combining data from different sources as different
kernel matrices, and it learns the importance of each kernel. For
example, a framework was developed by Peressutti et al. (124),
which captured LV motion information from spatio-temporal
atlases deployed in CMR imaging from a mixed cardiomyopathy
cohort. They then applied a supervised MKL to combine and
evaluate the relationship between the rich motion descriptors
and selected clinical information derived from clinical reports,
ECG and data from echocardiography. Although applied to a
limited cohort of 34 patients selected for CRT, this coupling
of electro-mechanical LV data to clinical metrics achieved an
accuracy of 94% in predicting super-responders and 91% for
non-responders, at 6 months post CRT implant. Future work
incorporating anatomical descriptors into the atlases could
potentially inform ofmechanistic differences between responders
and non-responders.

Cikes et al. (125) utilized an unsupervised MKL algorithm
in a heart failure cohort of over 100 patients recruited from
the Multicenter Automatic Defibrillator Implantation Trial with
Cardiac Resynchronization Therapy (MADIT-CRT trial). This
trial had previously demonstrated the added benefits CRT
added to ICD in terms of decreased risk of heart failure
events in those with a low LVEF and wide QRS duration on
ECG (126). In order to provide meaningful classification of
this phenotypically heterogenous cohort, this algorithm was
used to cluster patients by clinical characteristics, biochemical
biomarkers, ECG, and echocardiography-derived patterns. They
observed specific phenogroups with characteristics predictive
of best volume reduction, CRT response, and overall better
treatment effect on heart failure outcomes [hazard ratio (HR)
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0.35; 95% confidence interval (CI) 0.19–0.64; P = 0.0005 and HR
0.36; 95% CI 0.19–0.68; P = 0.001].

Although most of the examples above come from more
diverse heart failure cohorts, ML within these settings clearly
has the potential for novel integration of the readily available
and extensive clinical, biochemical, and imaging parameters to
phenotype heterogenous diseases, such as DCM. They offer the
added advantage of exploiting this information as biomarker
data to unearth and compare the similarities between subgroups,
and importantly provide a degree of interpretability for the
associations identified (125). Understanding the value and
accuracy of this output is not only relevant to understanding how
to improve the ML algorithm’s operation, but is fundamental for
bridging the gap to advances in the clinical application of these
tools. This has been a need particularly for DL algorithms, which
havemade impressive leaps in performance and accuracy in some
image classification tasks, but are often depicted as “black boxes,”
offering little understanding to the prediction of their results.

Puyol-Antón et al. (127) offered in the first of its kind,
an interpretable approach to a DL model for the prediction
of CRT response. This framework was based around a DL-
based generative model known as a variational autoencoder
(VAE) which encodes the segmented biventricular data
into a low dimensional latent space, followed by a primary
task classifier of predicting those who would respond to
CRT utilizing pre-treatment CMR images. A secondary
classifier which follows a similar structure to the first, and
then incorporates clinical domain knowledge to provide an
explanatory concept within the encoded space. By example,
they utilized the concept of septal flash–an identified pattern
of early septal contraction and a marker of interventricular
dyssynchrony (128). The classifiers enabled the separation of
CRT responders and non-responders in the image domain
with visualization of where the learned features of CRT
responders corresponded to the clinical domain knowledge.
This has important implications beyond predicting CRT
response in DCM, with the potential ability of DL models
to explore multiple validated clinical parameters involved in
arrhythmia prediction and reverse remodeling as explanatory
concepts, thus granting a better understanding of the disease
process pathways and the varying responses of different
subgroups (129).

AI TOOLS FOR INTEGRATED
IMAGING-GENETICS IN DCM

Supervised ML approaches improved the prediction of DCM
patients mostly likely to experience LV reverse remodeling
following the novel therapeutic approach of immunoadsorption
and immunoglobulin substitution (130). The integration of
overlapping myocardial gene expression patterns, using a
support vector machine and random forest analysis, enabled
the development of a robust classifier that helped distinguish
responders to therapy, and enhanced predictions beyond clinical
parameters and antibody response levels alone [sensitivity of

100% (95% CI 85.8–100%); specificity up to 100% (95% CI
79.4–100%); cut-off value:−0.28].

Similarly, Schmitz et al. (131) demonstrated that ML
algorithms could be applied to identify predictive combinations
of clinical and genetic markers that could enhance the
classification of heart failure patients likely to respond to CRT
treatment. This work proposed the concept of underlying genetic
substrates that may exclusively or through interaction with
other factors contribute to the remodeling phenotype of certain
heart failure cohorts. This additional predictive information may
provide some understanding of the variable responses to CRT
therapy and help improve outcomes.

High fidelity ML models incorporating genetic sequencing,
2D and 3D CMR, explored the complexities surrounding the
molecular mechanisms of DCM pathogenesis, mediated by
titin-truncating variants (TTN) (132). These variants frequently
associate with the DCM phenotype in sporadic and familial
forms, and are also reported to occur in just under 1% of
the general population, where their clinical significance is less
clear (133, 134). However, following mass univariate analyses
in healthy individuals, integrating multiple cardiac parameters
obtained through CMR imaging, anthropometric variables and
their relationship to detailed sequencing of the TTN genotype,
Schafer et al. (132) demonstrated association between TTN status
and higher LV volume due to eccentric remodeling. In leveraging
this high-resolution phenotyping, this study highlighted the
feasibility and benefits of ML in estimating the effect size of
candidate pathogenic mutations on multiple metrics of cardiac
morphology and function that are applicable to a deeper
characterization of the DCMphenotypic spectrum. Furthermore,
such studies are needed to help define the clinical indicators of an
inherited DCM and the mechanistic interactions between genetic
variants and other conditions that share some clinical features
such as peripartum cardiomyopathy (135).

The potential of AI for rapid, purposeful extraction of high-
quality imaging-derived phenotypes assimilated with genetics is
also a promising arena for DL methods. Following rapid LV
analysis in ∼17,000 individuals by a FCNN highly optimized
to automatic segmentation, the largest genome wide association
study (GWAS) of image-derived phenotypes identified 14
significant loci for different LV traits that related to cardiac
morphogenesis and risk of heart failure development (136).
Furthermore, there were distinct loci that associated with LV
remodeling, and others that were causal genes for multiple
LV traits such as BAG 3 and TTN; two genes that also
share implications in the pathogenesis of DCM. These findings
emphasize a potential genetic basis underlining many of the
structural and functional LV imaging traits routinely acquired
through CMR imaging. With the unparalleled performance of
fully automated imaging analysis by DL, it may be feasible to
integrate this information and enrich our understanding of the
pathogenic evolution of heart failure syndromes occurring in
some DCM subtypes.

These promising applications highlight the unrivaled
capability of AI to integrate complex structural, functional
and genetic characteristics of DCM to better understand and
characterize the phenotype. However, in order to universally
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translate to the clinical setting, they warrant validation and
replication across the spectrum of LV dysfunction in order to
tease the different pathways that are involved in the evolution
of DCM.

FUTURE PERSPECTIVES AND
CONCLUSIONS

Advances in the applications of AI based medical innovations
are rapidly increasing with a particular surge of interest within
the specialties of Radiology and Cardiology (137, 138). Even
now, across Europe and America, a number of innovations have
already received Conformité Européenne (CE) marked or Food
and Drug Administration (FDA) approval for the introduction
of AI based solutions to simplify detection of cardiovascular
risk and enable efficient, personalized disease prediction across
a range of imaging modalities and clinical platforms (137, 138).

Despite this rapidly evolving landscape for AI opportunities in
cardiac healthcare, there are still some limitations that need to be
addressed before such applications can be successfully deployed
into clinical practice. Firstly, the generalization of themethods, as
most are only validated with high-quality data from standardized
research environments which don’t necessarily generalize well
to external databases. To overcome this limitation, we think
that AI models need to be validated in external databases that
reflect real-world, heterogenous populations, and tested using
decentralized techniques such as federated learning in order
for them to be relevant and personalized to specific cohorts. A
pioneer example of such initiative is the partnership between
the British Heart Foundation and the Health Data Research
UK (HDRUK), enabling access to the UK’s large-scale and
diverse cardiovascular data resource, where population-wide data
analysis can be utilized to extract valuable information from
unstructured data and investigate novel insights into cardiac
disease pathways.

Another well-known pitfall of AI models is that they are
“black boxes,” being difficult to gauge how they reach their output
decisions and predictions. Explainable AI is a new branch of
AI that aims to add interpretability to the models. From our
point of view, this is likely to facilitate faster adoption of AI
systems into the clinical healthcare setting and will help foster
vital transparency and trust with their users.

For the DCM population, this further research from AI tools
is welcomed and needed to find meaningful insights that are able

to enhance the rapid, reliable automation of all relevant imaging
indices for characterizing the phenotype. If these could help
define the relationships between imaging phenotypes, genomic
features and the impact of specific precipitant factors, then
it may be possible to generate biomarker profiles to discover
clusters of DCM patients that have similar outcomes, to better
understand their similarities and furthermore, understand the
influence of different treatment strategies. These biomarker
indicators would be important in redefining risk stratification
beyond LVEF, enabling a multi-parametric approach that can
feasibly assess dynamic changes in cardiac status and help
tailor treatments to the needs of a specific subtype and more
specifically, the individual.
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The use of machine learning (ML) approaches to target clinical problems is called

to revolutionize clinical decision-making in cardiology. The success of these tools

is dependent on the understanding of the intrinsic processes being used during

the conventional pathway by which clinicians make decisions. In a parallelism

with this pathway, ML can have an impact at four levels: for data acquisition,

predominantly by extracting standardized, high-quality information with the smallest

possible learning curve; for feature extraction, by discharging healthcare practitioners

from performing tedious measurements on raw data; for interpretation, by digesting

complex, heterogeneous data in order to augment the understanding of the patient

status; and for decision support, by leveraging the previous steps to predict clinical

outcomes, response to treatment or to recommend a specific intervention. This paper

discusses the state-of-the-art, as well as the current clinical status and challenges

associated with the two later tasks of interpretation and decision support, together with

the challenges related to the learning process, the auditability/traceability, the system

infrastructure and the integration within clinical processes in cardiovascular imaging.

Keywords: artificial intelligence, machine learning, deep learning, clinical decision making, cardiovascular

imaging, diagnosis, prediction

INTRODUCTION

Artificial intelligence (AI) systems are programmed to achieve complex tasks by perceiving their
environment through data acquisition, interpreting the collected data and deciding the best
action(s) to take to achieve a given goal. As a broad scientific discipline, AI includes several
approaches and techniques, such as machine learning, machine reasoning, and robotics (1).
Machine learning (ML) is the subfield of AI that focuses on the development of algorithms that
allow computers to automatically discover patterns in the data and improve with experience,
without being given a set of explicit instructions. Among ML techniques, Deep Learning (DL) is

121

https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org/journals/cardiovascular-medicine#editorial-board
https://www.frontiersin.org/journals/cardiovascular-medicine#editorial-board
https://www.frontiersin.org/journals/cardiovascular-medicine#editorial-board
https://www.frontiersin.org/journals/cardiovascular-medicine#editorial-board
https://doi.org/10.3389/fcvm.2021.765693
http://crossmark.crossref.org/dialog/?doi=10.3389/fcvm.2021.765693&domain=pdf&date_stamp=2022-01-04
https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/cardiovascular-medicine#articles
https://creativecommons.org/licenses/by/4.0/
mailto:emilia.gomez-gutierrez@ec.europa.eu
https://doi.org/10.3389/fcvm.2021.765693
https://www.frontiersin.org/articles/10.3389/fcvm.2021.765693/full


Sanchez-Martinez et al. Machine Learning for Clinical Decision-Making

the subfield concerned with algorithms inspired by the structure
and function of the brain called artificial neural networks. Unlike
otherML techniques, DL bypasses the need of using hand-crafted
features as input, automatically figuring out the data features
that are important for solving complex problems. This is the
main reason why DL stands out as the current state-of-the-art
in virtually all medical imaging related tasks.

In the particular case of clinical decision-making in
cardiology, ML methods would perceive an individual by
collecting and interpreting his/her clinical data and would
reason on them to suggest actions to maintain or improve that
individual’s cardiovascular health. This mimics the clinician’s
approach when examining and treating a sick patient, or
when suggesting preventive actions to avoid illness. Therefore,
in order to assess the challenges and opportunities of ML
systems for clinical decision-making in cardiology, an in-depth
understanding of this process, when performed by cardiologists,
is paramount.

Figure 1 summarises a typical paradigm for clinical decision-
making. It starts by data acquisition, including the clinical history
of the patient, demographics, physiological measurements,
electrocardiogram, imaging and laboratory tests, and the relevant
indices collected from these data. Next, clinicians construct
and interpret the state of the patient by comparison with
population-based information learned during their education
or daily practice, or information derived from guidelines.
This interpretation is based on reasoning on the data using
the human innate capability of contextualizing information
through pattern recognition. Furthermore, clinicians assess the
uncertainty associated with measurements and the completeness
of the available information to estimate how much they can
rely on the data. Finally, they consider the knowledge from the
(natural as well as treated) expected evolution of populations
related to the patient’s status to make decisions. The resulting
actions can be to either collect more data to minimize the
uncertainty associated with the decision, to make an intervention
(drug/device therapy, surgery, etc.) to improve the patient’s
outcomes, or to send the patient home (whether or not with
planned observation follow-up).

In the era of evidence-based, personalised medicine (2),
millions of individuals are carefully examined, which results in
a deluge of complex, heterogeneous data. The use of algorithmic
approaches to digest these data and augment clinical decision-
making is now feasible due to the ever-increasing computing
power, and the latest advances in the ML field (3). Indeed,
big data leveraged by ML can provide well-curated information
to clinicians so they can make better informed diagnoses and
treatment recommendations, while also estimating probabilities
and costs for the possible outcomes. ML-augmented decisions
made by clinicians have the potential to improve outcomes, lower
costs of care, and increase patient and family satisfaction.

ML analyses have, to date, demonstrated human-like
performance in low-level tasks where pattern recognition or
perception play a fundamental role. Some examples are data

acquisition, standardization and classification (4, 5), and feature
extraction (6, 7). For higher-level tasks involving reasoning,
such as patient’s status interpretation and decision support,

ML allows for the integration of complex, heterogenous data in
the decision-making process, but these are still immature and
need substantial validation (8). In parallel to Figure 1, which
illustrated the process of making clinical decisions, Figure 2
describes the tasks involved in this process according to how ML
could contribute, and highlights how the risks to a patient from
erroneous conclusions increase with each step.

There exist other review papers that cover the topic of
AI in cardiovascular imaging from a broader perspective (9),
or that highlight the synergy between machine learning and
mechanistic models that enable the creation of a “digital twin”
in pursuit of precision cardiology (10). Complementarily, this
paper focuses on ML as a subfield of AI and on clinical decision-
making as an essential part of cardiovascular medicine. Although
cardiovascular imaging only constitutes a limited portion of the
data spectrum in cardiology, we emphasize the imaging field
in our literature review given that it is one of the areas to
which ML has contributed the most (11). In the following, we
discuss the higher-level tasks related to clinical decision-making
that involve reasoning on clinical data, namely interpretation,
and decision support. For each of these tasks, we review the
ML state-of-the-art (indicating whether the implementation was
based on DL or other ML technique), comment on the current
penetration of ML tools into clinical practice (see Clinical status
subsections), and elaborate on the current challenges that limit
their implementation in clinical practice. Finally, we discuss the
general challenges that may appear when tackling any clinical
problem with ML approaches.

This paper addresses potential questions arising from data
scientists, industrial partners and funding institutions, helping
them understand clinical decision-making in cardiology and
identify potential niches for their solutions to be helpful. At
the same time, the paper aims at informing cardiologists about
which ML tools could target their problems and what are their
current limitations.

STATUS
INTERPRETATION—COMPARISON TO
POPULATION

Let us assume that the clinical data of a patient have been
properly acquired and relevant features are readily available.
The next stage in the decision process consists in interpreting
his/her status by comparison to populations. This comparison
requires data normalization. When complex data are involved,
such as cardiac images, the traditional approach to normalization
is to build a statistical atlas–a reference model that captures the
variability associated to a population (12). To build the atlas,
the training data must be transformed into a common spatio(-
temporal) framework, which can be achieved by registration.
In this sense, registration appears as a crucial step for status
interpretation toward diagnosis, and deep learning has emerged
as a suitable tool to register 3D cardiac volumes (13), 3D pre-
operative cardiac models to 2D intraoperative x-ray fluoroscopy
to facilitate image-guided interventions (14), or cardiac MRI
sequences (15).
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FIGURE 1 | Clinical decision-making flowchart, from data acquisition and extraction, to patient’s status interpretation and associated decision.

FIGURE 2 | Different tasks where ML can support clinical decision-making.

The ML interpretation of the state of the patient can augment
the diagnosis made by clinicians. Indeed, a recently published
meta-analysis highlighted the promising potential of ML and DL
models to predict conditions such as coronary artery disease,
heart failure, stroke, and cardiac arrhythmias using data derived
from routinely used imaging techniques and ECG (16). Based
on imaging, ensemble ML models, which group the prediction
of different weak learners, have demonstrated higher accuracy
than expert readers for the diagnosis of obstructive coronary
artery disease (17); a DL model automated the diagnosis of
acute ischemic infarction using CT studies (18); and another DL
model achieved 92.3% accuracy for left ventricular hypertrophy
classification analysing echocardiographic images (19). Different
ML models have also operated on electronic health records
(EHR) for triaging of low-risk vs. high-risk cardiovascular
patients, grading findings as requiring non-urgent, urgent or
critical attention, as a strategy to improve efficiency and

allocation of the finite resources available in the emergency
department (20). Lastly, a ML ensemble model combined
clinical data, quantitative stenosis, and plaque metrics from CT
angiography to effectively detect lesion-specific ischemia (21).

Another data-driven example of status interpretation is
unsupervised machine learning for dimensionality reduction;
a label-agnostic approach that orders individuals according to
their similarity, i.e., those with a similar clinical presentation
are grouped together, whereas those showing distinct
pathophysiological features are positioned far apart (22).
This allows identifying different levels of abnormality, or
assessing the effect of therapies and interventions, as these are
aimed to restore an individual toward increased “normality.”
An implementation of unsupervised dimensionality reduction
provided useful insight into treatment response in large patient
populations (23), and quantified patient changes after an
intervention using temporally dynamic data (24).
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Clinical Status
ML approaches for interpreting a patient’s status enhance
discovery in massive databases by offering the possibility to
identify similar cases, build normality statistics, and spot outliers.
Whether these approaches are intended for diagnosis or risk
assessment, they could contribute to deliver better healthcare.

Unfortunately, many current ML applications for interpreting
clinical data present a technically sound contribution, but do
not address real clinical needs, and they often focus on binary
classification of normal vs. abnormal (19), which strongly limits
their use in routine clinical practice. Furthermore, studies
showing impact on hard clinical endpoints rather than on
surrogate measures are still needed. The way forward is through
further integration of technical and clinical contributions, and
through the elaboration of consensus recommendations on how
to tackle a clinical necessity using ML.

DECISION-MAKING (PREDICTION)

Based on the interpretation of the patient’s status, clinicians
should decide on whether: (1) observe the patient and wait until
an event triggers the need for a decision; (2) collect more data to
improve the odds of making the right decision; or (3) perform an
intervention and monitor the outcome (see Figure 1). Machine
learning methods can help clinicians to decide which pathway to
follow (25), in a way that is cost-effective (26).

Several studies have assessed the predictive power of
ML techniques based on imaging. An echocardiography-
based DL model was shown to improve the prediction
of in-hospital mortality among coronary heart disease and
heart failure patients as compared to traditionally used
prediction models (27). An ensemble ML approach interrogating
SPECT myocardial perfusion studies demonstrated superior
performance at predicting early revascularization in patients
with suspected coronary artery disease as compared to an
experienced reader (28), or in combination with clinical and
ECG data outperformed the reading physicians at predicting the
occurrence of major adverse cardiovascular events (29). Lastly, a
DL implementation fed with CT scans from asymptomatic as well
as stable and acute chest pain cohorts demonstrated the added
clinical value of automated systems to predict cardiovascular
events (30). Leaving imaging aside, deep learning based on
clinical, laboratory and demographic data, ECG parameters,
and cardiopulmonary exercise testing estimated prognosis and
guided therapy in a large population of adults with congenital
heart disease (31).

The interplay between different a priori non-related
imaging tests has recently been discovered by DL through
the identification of previously unnoticed associations. For
example, breast arterial calcifications and the likelihood of
patients at a high cardiovascular risk was sorted out using a
DL model that operated with mammograms (32). Similarly,
the power of ML in combination with the non-invasiveness of
retinal scanning has been used to predict abnormalities in the
macrovasculature based on the microvascular features of the eye.
One such example is the DL model that predicted cardiovascular

risk factors using retinal fundus photographs, thus allowing
for an easier and cost-effective cardiovascular risk stratification
(33), or the DL implementation that inferred coronary artery
calcium (CAC) scores from retinal photographs, which turned
out to be as accurate as CT scan-measured CAC in predicting
cardiovascular events (34).

Clinical Status
The few examples of FDA-cleared cutting-edge ML applications
to cardiovascular imaging that are thus suitable for routine use,
focus on the low-level tasks of data acquisition and feature
extraction, both in cardiac MRI (35) and echocardiography (36,
37), although the latter contribution did actually prove useful
to predict a poor prognosis in acute COVID-19 patients based
on DL-enabled automated quantification of echocardiographic
images. However, the use of these ML applications for prediction
and decision-making is still in its early days, as most models
are still incapable of making predictions at the individual level
(8, 38). More effort is needed toward integration in a clinical
environment, interpretability, and validation if we want to see
these models embedded in routine patient care.

CHALLENGES COMMON TO STATUS
INTERPRETATION & DECISION-MAKING

Applications concerning patient’s status interpretation and
decision-making, which entails learning what is the risk
associated with each possible clinical decision, imply a much
higher risk as compared to the low-level tasks of data acquisition
and feature extraction, since decisions derived from them could
harm patients. Accordingly, ML outcomes need to be intuitively
interpretable by the cardiologist and validated in a much more
exhaustive way (as required by medical device regulators; e.g.,
class IIa or IIb routes to commercialization), ultimately with the
launch of randomized prospective trials.

One of the main challenges for ML approaches to status
interpretation lies in the extraction of meaningful concepts
from raw data. This challenge entails many others, related
to the data themselves. The first concerns the reliability
and representativeness of training and outcome data. If
representative, ML models need to find a reliable metric to
compare heterogeneous data, which is not trivial. Furthermore,
for a successful interpretation, data collection protocols should
be designed to cover gender-, ethnicity- and age-related changes,
and capture the rare outliers (39). On top of this, ML systems
should be designed to consider longitudinal data, as to assess a
patient over time, e.g., during a stress protocol (40) or disease
progression (41). Finally, ML models are trained on three
different kinds of data; ranging from higher to lower quality
and completeness: (1) randomized clinical trials, (2) cohorts, and
(3) clinical routine real-world data. The exchange of knowledge
throughout these collections of data is challenging, since what
was learned from highly curated data (e.g., randomized clinical
trials) may not generalize to routinely collected data.

Another crucial problem associated to currently available
data is bias, i.e., when the training sample is not representative
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of the population of interest (see section “General challenges”
for more details). Accordingly, caution is needed when testing
a trained model in new clinical centres. As ML users can
attest, there will always be a trade-off between improving the
system performance locally and having systems that generalize
well (42). Automation bias, defined as the human tendency
to accept a computer-generated solution without searching
for contradictory information (43), may also affect clinical
interpretation and decision-making. As shown by Goddard et
al. (44), when the ML solution is reliable it augments human
performance, but when the solution is incorrect human errors
increase. Thus, who is to blame if a diagnostic algorithm
fails? The further we move along the clinical decision-making
flowchart (Figure 2), the more ethical and legal barriers the ML
practitioner/company faces. To mitigate some of these issues,
the training data should be accessible, and the learning systems
equipped with tools that allow reconstructing the reasoning
behind the decision taken.

Table 1 organizes the ideas discussed for status interpretation
and decision-making in the form of a SWOT analysis.

GENERAL CHALLENGES

We have previously described the specific challenges that may
arise when ML models are given the tasks of interpreting
the patient’s status or making predictions to guide the clinical
decision. In the following, we discuss the general challenges
that may appear when tackling any clinical problem with
ML approaches. These are divided into different sections,
depending on whether they relate to the learning itself, the
auditability/traceability aspects, the system/infrastructure, or the
integration within clinical processes.

Learning
(Non-standardized) Data
Medical data are normally kept in many separate systems, which
hampers accessibility and makes comparisons at a population
level nearly impossible. Electronic health records mostly contain
unstructured data, and so they are underutilized by care
providers and clinical researchers. Machine learning systems
can help organize and standardize information, or can be
designed to directly integrate unstructured complex data for
high-throughput phenotyping to identify patient cohorts (45).

Bias and Confounding
As discussed in the previous section, bias is another risk
that arises with the use of ML. Indeed, a recent review
of cardiovascular risk prediction models revealed potential
problems in the generalizability of multicentre studies that often
show a wide variation in reporting, and thus these models may
be biased toward the methods of care routinely used in the
interrogated centres (46). For example, in the case of cardiac
MRI, protocols are not standardised, varying by institution and
machine vendor (47). This bias may amplify the gap in health
outcomes between the dominant social group, whose data are
used to train algorithms, and the minorities (8). Luckily enough,
there are studies thatmake sure that all minorities are represented

in the training data (12, 39), but this should be the rule, not
the exception. Another challenge when applying ML models that
are designed to recognise patterns lies in the tendency of these
to overfit the dataset because they fail at distinguishing a true
contributing factor to the clinical outcome from noise (48).

ML solutions can similarly inherit human-like biases (49),
such as the model whose recommendation of care after a heart
attack was unequal among sex groups (50), as a consequence
of a biased training dataset. This bias may also appear in ML-
powered echocardiography, where studies are dependent on both
the operator performing the study and the interpreter analysing
it (47). This bias occurs because we ask ML solutions to predict
which decisions the humans profiled in the training data would
have made, thus we should not expect the ML method to be
fair. The effect of human cognitive biases in ML algorithms
have already been addressed and different “debiasing” techniques
have been proposed (51), but this is a topic that certainly needs
more attention.

Similar to bias, the learning process can be undermined by
confounding, i.e., the finding of a spurious association between
the input data and the outcome under study. Such is the case of
the deep learning model that attempted at predicting ischaemia
by looking at ECG records, but rather learnt at detecting the
background electrical activity noise present in the ischaemic
ECG examples, which was not present in the control cases (52).
Unsupervised learning can be beneficial to avoid confounding,
as it does not force the output of the model to match a given
label but rather finds natural associations within the data (53).
Similarly, randomization of experiments is highly recommended
to avoid confounding (54).

Validation and Continuous Improvement
Even if an algorithm proves to outperform humans in prediction
tasks, systematic debugging, audit and extensive validation
should be mandatory. For ML algorithms to be deployed in
hospitals, theymust improve patient as well as financial outcomes
(8). Validation should be through multi-centre randomized
prospective trials, to assess whether models trained at one site can
be applied elsewhere. Examples of prospective ML trials assessed
in a “real world” clinical environment are scarce–only 6% of
516 surveyed studies performed external validation, according to
(55). Among these rare examples, finding prospective validation
studies to prove the suitability of ML-enabled applications in
cardiovascular imaging is even rarer. In (56), a prospective
study concluded that a ML model that integrates clinical and
quantitative imaging-based features outperforms the prediction
of myocardial infarction and death as compared to standard
clinical risk assessment. Attia et al. (57) conducted a prospective
study to validate a DL algorithm that detected left ventricular
systolic dysfunction. Another pivotal prospective multicentre
trial was launched to demonstrate the feasibility of aML-powered
image guided acquisition software that helps novices to perform
transthoracic echocardiography studies (58). Lastly, a validation
study was performed to prove the feasibility of using DL to
automatically segment and quantify the ventricular volumes in
cardiac MRI (35).
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TABLE 1 | SWOT analysis—status interpretation and decision-making.

Strengths Weaknesses

• Allow objective and thorough comparison to populations

• Allow the integration of complex, heterogenous features

• May enhance the prediction of clinical outcomes, or the prediction of response to a

given treatment or intervention.

• Need well-curated, representative databases for training

• Affected by data reliability, representativeness, and bias

• Need to extract meaningful, interpretable concepts

• Need thorough validation–prospective trials

• Need to integrate longitudinal data

• Ensure transference of knowledge across populations

• Need to prove clinical benefit

• Need to be integrated within clinical systems

• Need to prove cost-effectiveness

Opportunities Threats

• Stimulate the man/machine collaboration

• Reach diagnosis in a shorter time

• Separate ambiguous cases that deserve more attention from clear cases–triaging

• Help in the organization of healthcare—diagnosis, risk assessment and urgency

assessment

• Lower cost of healthcare by suggesting cost-effective decisions

• Harm patients if wrong decisions are taken—high-risk

• Disappoint users, especially after all the striking news on ML failures

• Affect human decisions in a negative way—automation bias

• Make decisions for the average patient, not at the individual level

One of the greatest benefits of ML models resides in their
ability to improve their performance as more data become
available. However, this might be challenging particularly for
neural networks, which are prone to “catastrophic forgetting”—
to abruptly forget previously learned information upon learning
from new data. Furthermore, re-training on the whole database is
time and resource consuming. To solve these problems, federated
learning, a novel de-centralized computational architecture
where machines runmodels locally to improve themwith a single
user‘s data (59), could be helpful. Given the evolving nature of
ML models, medical device providers are obliged to periodically
monitor the performance of their programs, using a continuous
validation paradigm (60).

Auditability/Traceability
Interpretability vs. Explainability
Interpretability is understood as the ability to explain or to
present in understandable terms to a human (61). In a strictly-
regulated field such as cardiovascular medicine, the lack of
interpretability of ML models is one of the main limitations
hindering adoption (62). Indeed, from the example of predicting
ischaemia by looking at ECG records discussed above (52),
it is evident that the non-intelligible use of ML outputs can
lead to controversial results and therefore translation to clinical
practice should be done cautiously. Unfortunately, many ML
implementations available do not comply with the European
General Data Protection Regulation (GDPR), which compels ML
providers to reveal the information and logic involved in each
decision (63).

When reasoning on the data to make decisions, the human
brain can follow two approaches (64): the fast/intuitive (Type
1) vs. the slow/reasoned (Type 2) one. Type 1 is almost
instantaneous and based on the human ability to apply heuristics
to identify patterns from raw information. However, it is prone
to error and bias, as it can lead to an incomplete perception of
the patient due to low quality or lack of relevant data (65, 66). In
contrast, Type 2 is deductive, deliberate, and demands a greater

intellectual, time and cost investment, but often turns out to be
more accurate.

The above is highly relevant for both “traditional” and ML-
based clinical decision-making, as ML systems ultimately mimic
different aspects of human reasoning and can lead to the same
errors. For the sake of explaining ML decisions, researchers
provide attention maps (67), reveal which data the model
“looked at” for each individual decision (68), provide estimates
of feature importance (69), or explain the local behaviour of
complex models by changing the input and evaluating the
impact on the prediction (70). However, caution is needed
with this entire research trend, as explainability is not a
synonym of interpretability (71). Explainable models tend to
reach conclusions by fast/intuitive black-box reasoning (Type 1,
see also causal vs. predictive learning in the following subsection),
while interpretable models demand a slow/reasoned (Type 2)
approach throughout the entire learning path. In this sense,
explainable models that follow a fast/intuitive reasoning might
incur more diagnostic errors than interpretable models, which
follow an analytical reasoning (64). The research field that focuses
on enhancing models’ interpretability is still in its infancy.
Generative synthesis (69), which uses ML to generate a simplified
version of a neural network, or mathematical attempts to explain
the inner working of neural networks (72) could provide key
insight into why and how a network behaves the way it does, thus
unravelling the black-box enigma (73).

For MLmodels to be applied in clinical decision-making, they
cannot merely be interpretable, but they also must be credible.
A credible model is an interpretable model that: (1) provides
arguments for its predictions that are, at least in part, in-line with
domain knowledge; (2) is at least as good as previous standards
in terms of predictive performance (74). For ML models to
achieve credibility, the medical expert must be included in the
interpretation loop (75).

Together with models, we should also develop strategies to
objectively evaluate their interpretability. This can be done by
assessing fairness; privacy of data; generalizability; causality, to
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prevent spurious correlations; or trust, to make sure the model is
right for the right reasons (61). Depending on the application,
the interpretability needs might be different. For cardiology
applications in particular, ML for status interpretation and
decision-making should be equipped with the most-advanced
interpretability tools.

Causal ML Rather Than Predictive ML
Predictive ML based on correlations of input data and outcomes
may not be enough to truly impact the healthcare system. Indeed,
this form of learning can be misleading if important causal
variables are not analysed. For auditability reasons, we should
probably shift toward finding the root causes ofwhy that decision
was made, and interpreting the process followed by the algorithm
to reach that (diagnostic) decision, i.e., how the diagnosis was
made. These two questions are addressed by causal ML, a
powerful type of analysis aimed at inferring the mechanisms of
the system producing the output data. In practice, causal models
provide detailed maps of interaction between variables, so the
users can simulate cause and effect of future actions (76).

System-Related
Security
Machine learning raises a handful of data security and privacy
issues, as DL models require enormous datasets for training
purposes. The most secure way to transfer data between
healthcare organizations is still unclear, and stakeholders no
longer underestimate the hazards of a high-profile data leakage.
Hacking is even more harmful, as hackers could manipulate a
decision-making model to damage people at a large scale.

The European GDPR compels to adopt security measures
against hacking and data breaches. A potential solution that
has been largely discussed is Blockchain, a technology that
enables data exchange systems that are cryptographically secured
and irrevocable, by providing a public and immutable log
of transactions and “smart contracts” to regulate data access.
The downsides of Blockchain’s technology are that it is slow,
costly to maintain, and hard to scale (77). As an alternative,
federated learning could guarantee the security of patient data
(see “Validation and continuous improvement subsection”), as
this model-training paradigm allows updating a learning model
locally without sharing individual information with a central
system (78).

Regulatory
The use of ML for clinical decision-making unavoidably brings
legal challenges regarding medical negligence derived from
learning failures. When such negligence arises, the legal system
needs to provide guidance on what entity holds liability, for
which recommendations have been developed (79). Furthermore,
the evolving nature of ML models poses a unique challenge to
regulatory agencies, and the best way to evaluate updates remains
unclear (60). Policymakers should generate specific criteria
for demonstrating non-inferiority of algorithms compared to
existing standards, specially emphasizing the quality of the
training data and the validation process (80). Regulatory bodies
must also ensure that algorithms are used properly and for

people’s welfare. In summary, forML technology to be adopted by
cardiology departments within the next years many legal aspects
still need to be addressed, and decision- and policy-makers
should join efforts toward this end.

Integration (Man/Machine Coexistence)
The scenario of ML tools replacing humans in clinical medicine
is highly unlikely (81). Besides the formidable challenges for
ML solutions discussed above (8), cardiologists will still be
needed to interact with the patients and perform physical
examinations, navigate diagnostic procedures, integrate and
adapt ML solutions according to the changing stages of disease
or patient’s preferences, inform the patient’s family about therapy
options, or console them if the disease stage is very advanced.

Accordingly, instead of a human-machine competition, we
should rather think of a cooperation paradigm, where ML
is used to augment human intelligence–targeting repetitive
sub-tasks to assist physicians to reach a more informed
decision, more efficiently. Indeed, ML and humans possess
complementary skills: ML stands out at pattern recognition
on massive amounts of data, whereas people are far better at
understanding the context, abstracting knowledge from their
experience, and transferring it across domains. Human-in-the-
loop approaches facilitate cooperation by enabling users to
interact with ML models without requiring in-depth technical
knowledge. However, understanding where ML models can be
used and at which level is crucial to avoid preventable errors
attributed to automation bias (43). Examples of human-machine
collaboration already exist. Indeed, a ML algorithm cleared
by the FDA improved the diagnosis of wrist fractures when
clinicians used it, as compared to clinicians alone (82). In
diabetic retinopathy diagnosis (83), model assistance increased
the accuracy of retina specialists above that of the unassisted
reader or model alone. In cardiovascular imaging, most examples
of human-machine collaboration thus far focus on segmentation,
and detection-classification of imaging planes (84).

In light of this, the current clinical workflow could be
rethought: the ML system would propose a diagnosis, the human
operator then revises the data on which the conclusions are
drawn, informing the system of potential measurement errors
or confounders, and finally accepts or rejects the diagnosis.
Thus, the human operator preserves the overall control, while
machines perform measurements and integrate and compare
data at request (75). Ultimately, this human-machine symbiosis
will be beneficial to release physicians from low-level tasks such
as cardiac measurements, data preparation, and standardization,
to give them more time on higher-level tasks such as patient care
and clinical decision-making (85).

ML Applied to Real Clinical Data
In human decision-making, a clinician would explore all available
data and compare them to patients they have seen before
or were trained to recognize. Once an individual is put into
context with regards to expected normality and typical cases,
previous knowledge on treatment effect is used to manage this
individual patient. This ‘eminence-based’ approach is only within
reach of very experienced clinicians. For standardization, many
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professional organizations provide diagnostic guidelines based
on data from large cohorts or clinical trials (86–88). Although
guidelines have significantly contributed to improve medical
care, they do not consider the full data available. In this sense,
the use of ML seems amply justified.

Most ML models are trained with data collected following
strict input criteria and well-defined protocols used in
randomized clinical trials (89, 90), but routinely collected
data is often much noisier, heterogeneous and incomplete.
ML techniques need to deal with incompleteness, either by
performing imputation or by adopting formulations that
explicitly consider that the data can be incomplete. Furthermore,
patients often lie outside the narrow selection criteria of
cardiology trials (including co-morbidities, ethnicity, gender,
age, lifestyle, etc.), may have been differently treated before the
investigation, may present at a different stage of disease, and
most importantly, may undergo different decision pathways
during the study. On top of this, obtaining a hard outcome to
train an algorithm is often difficult, e.g., to register death, the
study would need to be conducted until everybody dies, which
is unfeasible both for time and economic constraints. Even if
registered, often the outcome is scarce, and when appearing, the
reason for experiencing it may be different among patients (91).

All these aspects make it extremely challenging to associate
input descriptors to outcomes using supervised predictive
ML/DL techniques, which may fail to understand the context
from which data have been drawn, and thus yield unwanted
results that might harm patients. A more promising approach
could be based on unsupervised dimensionality reduction, a
label-agnostic approach where input descriptors are used to
position individuals according to their similarity and combined
with previous knowledge this similarity can be used to infer
diagnosis or to predict treatment response (23).

FUTURE PERSPECTIVES

The foreseeable application of ML in the short to mid-term
is to perform specific and well-defined tasks relating to data
acquisition, predominantly by extracting standardized, high-
quality information with the smallest possible learning curve. In
this sense, DL solutions already help extracting information with
minimal or even without the need of human intervention (8, 92),
or aid selecting the images that are good enough for subsequent
clinical interrogation (93). Another evident application of ML
that will soon be ubiquitous in clinical practice is that of image
analysis, which will discharge cardiologists from monotonous
activities related to feature extraction from images (94), thus
freeing them up to dedicate more time to higher-level tasks
involving interpretation, patient care, and decision-making.

For the topics covered in this paper, i.e., the higher-level
tasks involving reasoning, such as patient’s status interpretation
and decision support, ML applications are still immature and
need substantial validation. A modest number of ongoing
clinical trials have been conceived to tackle these drawbacks.
One such example is the current investigation aiming at
validating a DL model that diagnoses different arrhythmias
(AF, supraventricular tachycardia, AV-block, asystole, ventricular
tachycardia and ventricular fibrillation) on 12-lead ECGs and

single-lead Holter monitoring registered in 25,458 participants
(95). Another example is the clinical study that will interrogate
stress echocardiography scans with ML models to discriminate
normal hearts from those at risk of a heart attack in a prospective
cohort of 1,250 participants (96). Considering the above, we do
not expect to see a vast penetration of ML-enabled applications
for patient’s status interpretation and decision support in clinical
practice in the foreseeable future.

Whatever the application, the penetration of ML models into
routine practice will be subject to their seamless integration into
the clinical decision pathway used by cardiologists. Furthermore,
we consider that the upcoming policies for ML research in
healthcare should address the challenges described in the
previous section, which can only be achieved bymultidisciplinary
teams. On the algorithmic side, more attention should be
dedicated to dealing with longitudinal data, and how to
relate the ML conclusions with pathophysiological knowledge.
Data integration and what is the best approach for dealing
with incomplete data and outliers should be also surveyed.
On the validation side, generalization performance should be
systematically reported, and uncertainty quantification methods
should be developed to establish trust in the (predictive) models.
Finally, the practical considerations that will affect adoption
of the ML technology, such as how ML software should be
integrated with the archiving and communication system of
the hospital or how it would be paid for by facilities, should
be explored. For these, a clear demonstration of the cost-
effectiveness of ML technology in healthcare systems and its
positive impact on patients’ outcomes is needed.

CONCLUSION

ML algorithms allow computers to automatically discover
patterns in the data and improve with experience. Together
with the enormous computational capacities of modern servers
and the overwhelming amount of data resulting from the
digitalization of healthcare systems, these algorithms open
the door for a paradigm shift in clinical decision-making in
cardiology. However, their seamless integration is dependent
on the understanding of the intrinsic processes being used
during the conventional pathway by which clinicians make
decisions, which in turn helps identifying the areas where
certain types of ML models can be most beneficial. If the
obstacles and pitfalls that have been covered in this paper can
be addressed satisfactorily, then ML might indeed revolutionize
many aspects of healthcare, including cardiovascular medicine.
For the promise to be fulfilled, engineers and clinicians will need
to engage jointly in intensive development and validation of
specific ML-enabled clinical applications.
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Wall shear stress (WSS) is an important contributor to vessel wall remodeling

and atherosclerosis. However, image-based WSS estimation from 4D Flow MRI

underestimates true WSS values, and the accuracy is dependent on spatial resolution,

which is limited in 4D Flow MRI. To address this, we present a deep learning algorithm

(WSSNet) to estimate WSS trained on aortic computational fluid dynamics (CFD)

simulations. The 3D CFD velocity and coordinate point clouds were resampled into a

2D template of 48 × 93 points at two inward distances (randomly varied from 0.3 to

2.0mm) from the vessel surface (“velocity sheets”). The algorithm was trained on 37

patient-specific geometries and velocity sheets. Results from 6 validation and test cases

showed high accuracy against CFD WSS (mean absolute error 0.55 ± 0.60Pa, relative

error 4.34 ± 4.14%, 0.92 ± 0.05 Pearson correlation) and noisy synthetic 4D Flow MRI

at 2.4mm resolution (mean absolute error 0.99 ± 0.91Pa, relative error 7.13 ± 6.27%,

and 0.79 ± 0.10 Pearson correlation). Furthermore, the method was applied on in

vivo 4D Flow MRI cases, effectively estimating WSS from standard clinical images.

Compared with the existing parabolic fitting method, WSSNet estimates showed 2–3×

higher values, closer to CFD, and a Pearson correlation of 0.68 ± 0.12. This approach,

considering both geometric and velocity information from the image, is capable of

estimating spatiotemporal WSS with varying image resolution, and is more accurate than

existing methods while still preserving the correct WSS pattern distribution.

Keywords: 4D Flow MRI, computational fluid dynamics, deep learning, wall shear stress (WSS), aorta

INTRODUCTION

Wall shear stress (WSS) is an important contributor to vessel wall remodeling and atherosclerosis
(1–3). WSS is defined as the shear force produced by tangential blood flow on the vessel wall as a
result of blood viscosity and is related to the gradient of velocity in the surface normal direction.
Previous studies suggest that wall shear stress is an important biomarker for atherosclerosis
formation (4, 5). Both low and high time-averaged WSS (TAWSS) have been suggested to be
associated with pathology. Moreover, recent studies also found that a high oscillatory shear index
(OSI) plays an important role in causing wall thickening (6). Early detection of these biomarkers
may provide useful information for clinical practice. However, despite recent findings on the
importance of WSS and related measures, there is yet no practical method to accurately measure
WSS from clinical data.
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Magnetic resonance imaging (MRI) phase contrast imaging
methods enable non-invasive quantification of the three-
dimensional time varying velocity field (4D Flow MRI) (7, 8).
However, the spatiotemporal resolution of 4D Flow MRI is
limited. Several existing methods have employed curve fitting
to estimate WSS from velocity derivatives near the vessel
wall (9–11). Stalder et al. (9) introduced a velocity-based
method using B-spline interpolation. A later study investigated
several approaches based on velocity mapping, Fourier velocity
encoding, and intravoxel velocity SD mapping (12). Overall, all
these methods are dependent on spatial resolution, segmentation
accuracy, velocity encoding (VENC), and voxel position relative
to the wall, with each method being more sensitive to different
parameters. These methods show consistent reproducibility
when the comparison between methods was performed relative
to each other. However, the WSS obtained using these methods
were consistently lower compared to the values obtained
from computational fluid dynamics (CFD) (13, 14). This
underestimation is likely due to the limited resolution of 4D
Flow MRI, as hemodynamic parameters may be biased due to
partial volume effects and temporal blurring. The need to have
a higher resolution MRI is constrained by the limited amount of
examination time.

Computational modeling enables physics-based simulation of
clinical data at high resolution, constrained only by computation
resources. While it is possible to achieve accurate estimates
for hemodynamic variables, CFD simulations require patient-
specific parameters. These boundary conditions are not always
obtainable and often rely on assumptions such as vessel rigidity,
incompressible fluid, and pressure estimations. Moreover, the
amount of computation required to solve the numerical problem
is often not feasible in a clinical setting.

Recent developments in medical imaging and deep learning
have enabled the use of physics-based simulations as surrogates
to train a deep learning model (15–18). These approaches
offer high accuracy compared to the CFD ground truth by
learning spatial representation of geometric features. Liang et al.
(18) used a shape decoding technique to train a network to
estimate aortic stress distributions based on the input mesh.
Similarly, Acebes et al. (16) presented a CNN-based network
to estimate endothelial cell activation potential (ECAP) using
an unwrapped model of the left atria. Gharleghi et al. (15)
also presented a deep learning method to estimate TAWSS in
left main coronary bifurcations by using geometric information
as the input. Conversely, conventional curve fitting methods
have used velocity information at constant spatial locations
(equidistant inward normal). By combining the use of CFD
simulations, variable geometric features, velocity information,
and deep learning, a fast and accurate method that can be applied
to in vivo data can be developed.

This study proposes a deep learning approach to estimate
WSS based on patient-specific aortic vessel geometries and
velocity information. To achieve this, CFD simulations were
generated for patient-specific geometries in order to extract a
uniform grid sampling of spatial and velocity information at two
inward distances from the aortic vessel wall. The locations of
the sampled velocity sheets were encoded as coordinate flatmaps

and varied over a range of values, enabling the network to learn
the relationships between geometry, sampling distance, velocity,
and WSS. WSS vectors were output as a uniform-grid flatmap,
predicted at any given time frame, enabling the calculation of
other WSS measures, such as TAWSS and OSI. The method was
validated on synthetic 4D Flow MRI data derived from the CFD
simulations. Additionally, the method was applied to clinical in
vivo cases in comparison with the parabolic fitting method.

METHODS

The following section provides a detailed description of the
methodology used in this study. First, the data generation
process is described, including the geometry extraction from 4D
Flow MRI, CFD simulation setup, and input data preparation
step. Second, the description of WSSNet is presented, including
the network architecture, loss function definition, and training
hyperparameters setup. Finally, the performance of the network
is evaluated with respect to the estimated WSS magnitudes,
WSS distribution, time-averaged WSS (TAWSS), and OSI, with
quantifications performed in the CFD dataset, synthetic MRI
from CFD, and actual in vivo cases.

Geometry Extraction
Clinical cardiac 4D Flow MRI were obtained for a total of
59 volunteers and patients using a prototype sequence. Data
were acquired using a 1.5T scanner (MAGNETOM Avanto fit,
Siemens Healthcare, Erlangen, Germany). 4D Flow images were
acquired with retrospective gating, encoding velocities of 150
cm/s (VENC) at 2.375mm grid spacing, 2.75mm slice thickness,
covering the entire heart and great vessels. Other parameters
included repetition and echo time (TR/TE) of 38.3 and 2.3ms,
respectively, and flip angle 7o, with 38–58ms temporal resolution
and∼20 reconstructed frames.

Sixteen cases were excluded due to low image quality, leaving
43 cases for this study (34 healthy, 9 left ventricular hypertrophy).
Patient-specific aortic geometries were extracted from the 43
in vivo cases. Phase contrast magnetic resonance angiography
(PC-MRA) images (temporal mean) were constructed to define
the anatomical structure. For each case, two segmentations were
performed, one with aortic branches, and another one without.
We refer to the segmentation without branches as the “aorta-
only-segmentation.” For consistency, the branch segmentations
contained 3 aortic branches: brachiocephalic artery (BCA), left
common carotid artery (LCCA), and left subclavian artery (LSA).
For the aorta-only-segmentation, these branches were simply
excluded. Segmentations were performed semi-automatically
using the ITK-SNAP (19) active contour method. The resulting
segmentations were exported as a surface mesh.

The 3D aortic segmentations (ones with the aortic branches)
were truncated at the ascending aorta distal to the aortic
root and at the distal end of the thoracic aorta to obtain
flat inlet and outlet surfaces to be used for CFD simulations.
The aortic branches were also truncated ∼2 cm from their
bases. An additional smoothing operation (10–12 iterations of
vertices’ distance averaging) was applied to smooth out the
rough surface obtained from the segmentation. All these steps
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FIGURE 1 | Some examples of the aortic geometry in the dataset. The first and third columns show the corresponding aorta (left) and the registered surface template

mesh (right). The first column (A) shows aorta geometries for normal volunteers. Third column (C) show aorta geometries from left ventricular hypertrophy cases. The

middle column (B) shows the aortic segmentation with branches (left) and aorta-only-segmentation (right), shown with white wireframes. Light blue geometries show

the processed segmentation for the use of computational fluid dynamics (CFD) simulation and mesh registration. The cross-sectional planes show the truncation lines

for the geometry marking the inlet and outlets.

were performed using Blender 2.8 (20). Finally, Instant Meshes
(21) was utilized to retopologize the complex meshes to more
structured quad surfaces. This set of geometries was used to
perform the CFD simulations.

The same steps were also applied for the aorta-only-
segmentations (ones without the branches), except that they
were truncated at around the mid-thoracic level of the
descending aorta. This second set of geometries was used for
the registration step using a surface template mesh, as explained
below. Figure 1 shows the two geometries and the locations of
the truncation-lines.

CFD Simulations
The branched aortic geometries were imported to Ansys 19.2
(Canonsburg, PA, USA). A mesh independence study was
performed on one of the geometries from the training set
(case 12), over four grid resolutions (1.5, 1.0, 0.75-, and
0.5-mm tetrahedral elements) using a steady-state simulation.
For all the four grid resolutions, the same boundary layer
setup was used (1mm total thickness, 10 prism layers with
increasing thickness, the growth rate of 1.2). Inlet and outlets
were refined with 0.3mm tetrahedral elements. The selected
meshing strategy (1mm elements, 589k nodes, 1.5M elements)
compared to the finer mesh (0.75mm elements, 746k nodes,
1.9M elements) resulted in differences of <4% for average WSS,

<3% for average velocity, and <2% for flow rate at three cross-
sectional planes measured at the ascending aorta, aortic arch,
and descending aorta. Accordingly, this meshing strategy was
selected considering the computation cost, file export size, and
computational resource availability.

All 43 geometries were discretized using the selected
meshing strategy, with additional local refinements applied when
necessary. This results in a mesh containing between 500k and
800k nodes for each geometry.

We imposed rigid and no-slip boundary conditions at the
wall. Blood was modeled as a Newtonian fluid with a density
of 1,060 kg/m3 and a viscosity of 4 × 10−3 Pa.s. A plug flow
profile was prescribed at the inlet. Two different variations
of outlet boundary conditions were prescribed: (1) constant
pressure (0 Pa) was set at all outlets, (2) flow percentage ratio,
with 70% flow going to the descending aorta, and 15/5/10% going
to BCA, LCCA, and LSA, respectively. Due to time and resource
constraints, the different outlet boundary conditions (1) and (2)
were applied separately for 25 and 18 geometries, respectively.

Time-varying patient-specific inflow velocity was extracted
from one case (case 1) over a cardiac cycle (710ms). All
simulations were performed for two cardiac cycles, using the
same time-periodic velocity profile. The simulations were run
with a time step of 1ms. Velocity and wall shear stress vectors
were extracted from the last cardiac cycle of the simulation to
avoid transient initialization effects. The data were obtained for
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every 10th time step (dt = 10ms), resulting in 72 time frames
(71 from the last cycle and 1 from the last time frame of the
previous cycle).

It is important to note in this study that while patient-
specific velocity profiles could be acquired, the rationale of
running these CFD simulations was to generate a dataset with
sufficient flow variations to enable the network to learn the
local relationships between velocity and WSS, mainly through
the different geometries and temporal variation. Hence, the
same boundary conditions were applied for all geometries.
Consequently, the resulting CFD simulations were not compared
against the actual measurements from 4D Flow MRI. As a result,
the WSS obtained from CFD simulations were different from
the in vivo cases, which was expected. Therefore, the network
applicability in predicting unseen data can be tested.

Essentially, WSS can be formulated as

τw = µ

∂u

∂y

which is a product of the dynamic viscosity of the fluid (u) and the
velocity gradient near the wall (wall shear rate). While in general,
blood flow in the aorta is laminar and during peak systole, the
flow can become turbulent, specifically at the ascending aorta
(22). In turbulent flow, the velocity gradients near the wall
become very steep and, hence, also the wall shear stress, as the
velocity follows a logarithmic profile. The use of the laminar
model for aortic flow is known to underestimate WSS (23). For
this reason, the use of a turbulence model helps to improve WSS
calculations through the use of turbulence (eddy) viscosity, which
is a part of turbulence computations.

The realizable k-ε turbulence model (24) was chosen to
account for possible turbulence effects during the peak systolic
phase, where the Reynolds number reached >5,000. The
incompressible Navier-Stokes equations were solved iteratively in
ANSYS Fluent 19.2, with convergence criteria of scaled residual
value to be less than 10−5 for mass and momentum. Each
simulation took between 40 and 50 core hours to solve on a high-
performance parallel computing environment (1.5 GB/core).

Data Preparation
Due to the complex relationship between flow and velocity
gradients, it is important to incorporate both the velocity and
spatial information as inputs to the network. Node coordinates,
velocity, and WSS vectors from CFD were processed to create
pairs of input-output data for the network.

To have a standardized data structure, we utilized the surface
template mesh representation from Liang et al. (18, 25), which
wasmodified into a 48× 93 quadrilateral mesh. The quadrilateral
mesh was then unwrapped into a UV map, and a 2D flatmap
representation with 48 and 93 corresponding to the size of the
circumference (U) and longitudinal (V) directions, respectively.
The template mesh extends from the ascending aorta, aortic
arch, and proximal section of the descending aorta. Note that
the template mesh did not model the branching vessels. The
template mesh was unwrapped using Blender, with the shortest
distance from ascending to descending aorta selected as the cut-
line. Subsequently, the UV map was aligned to form rectangular

elements. To speed up the mesh registration step, a coarse
version of the template (12 × 24) was also constructed and
paired with subdivision matrices to convert it back to its
actual size (48 × 93) using subdivision surface (26). These two
template meshes were used for registration. Figure 1 shows the
variations of geometry used to build the training dataset and each
geometry is shown in pairs: the aortic geometry with branches
used for the CFD simulations, and the registered mesh on
the aorta-only-geometry used for the WSSNet. Comprehensive
visualization of the template mesh and registration steps are
shown in Figure 2.

Registrations were performed first on the coarse template to all
the 43 aorta-only-geometries using Coherent Point Drift (CPD)
(27, 28) using rigid, affine, and deformable transformations (α =

3, β = 15). After the initial registration of the coarse mesh, the
mesh was subdivided using the subdivision matrices. A second
deformable transformation (α = 3, β = 7) was performed to
ensure the small details in the geometry were aligned properly
and to correct the deflation effect of the subdivided surface. The
two parameters α and β represent the trade-off between goodness
of maximum likelihood fit and regularization, and the width of
smoothing Gaussian filter, respectively (27).

Note that the coarse template is optional and was used
to speed up the mesh registration process. Without a coarse
template, the registration process would be performed directly
using the normal template mesh with all 3 transformations (rigid,
affine, and deformable) and no subdivision surface is necessary.
However, different parameters for the deformable transformation
may be required. The two step registrations were performed in
this study to tune the parameters quickly on the coarse template
mesh while ensuring they have sufficient registration accuracy for
all geometries.

Finally, the registered surfaces were used to extract the wall
shear stress vectors and magnitude from the CFD simulations.
The spatial coordinates (x, y, z) of each mesh node were stored
as a “flatmap” with 3 channels (1 for each axis), with the
Cartesian coordinate system. The KDTree algorithm was used
to obtain WSS vectors for every point on the registered surface
by searching for the closest point in the CFD surface mesh,
with a search radius of 5mm from each surface node. Template
nodes corresponding to the aortic branches were masked as
“invalid” by applying a distance threshold of >1.2mm radius.
Manual inspection and corrections were performed subsequently
to ensure other aortic surface regions were included, and only
the aortic branches regions were invalid. Despite how the CFD
simulations included branching vessels, the registered surfaces
did not. On the base of the branching vessels on the registered
surfaces, there were no actual WSS values, which renders these
regions invalid. These invalid regions were not optimized during
the loss calculation.

Additionally, velocity vectors were extracted in varying
inward distances (0.3, 0.5, 0.6, 0.8, 1.0, and 2.0mm) normal to
the surface points. Each velocity vector corresponded to each
point with a predefined distance from the registered surface,
forming a layer of velocity values, which we call a “velocity
sheet.” Alongside this, the spatial coordinates of the internal
surface were also stored as flatmaps. Due to the no-slip-wall
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FIGURE 2 | Top: Coarse and fine template meshes used for registration. UV unwrapping was performed on the fine template mesh, with a light blue line showing the

cut line. Bottom: An overview of the registration process using Coherent Point Drift. Registration was performed on the coarse template mesh, followed by a

subdivision surface operation, followed by another registration step on the refined mesh.

boundary condition, the velocity sheet at the vessel surface was
assumed to be 0 and, thus, was not extracted nor included as
part of input data. The input data consisted of the registered
surface mesh coordinates and the internal coordinates (points
with variable inward distances normal from the surface) with
their corresponding velocity vectors, while the ground truth
label consisted of the 3D wall shear stress vectors at the
registered surfacemesh coordinates. An overview of the extracted
information is shown in Figure 3.

Network and Training
With the input and output data effectively represented as 2D
images, we could leverage the convolutional neural network
(CNN) capability in learning spatial relationships. The input of
the network was a 15-channel tensor, consisting of the Cartesian
wall coordinates (x0, y0, z0), two internal surface coordinates
(x1, y1, z1, and x2, y2, z2), and two velocity sheets (vx1, vy1,
vz1, and vx2, vy2, vz2). The output of the network is a 3-channel
tensor, depicting the wall shear stress vectors (wssx, wssy, wssz).
A U-Net-like structure was used for the network architecture.
The network consisted of 3 encoder and decoder blocks, with
each block consisting of 2 convolutional layers with Rectified
Linear Unit (ReLU) activation function, followed by batch
normalization at the end of the block. Max pooling was applied
on each of the encoder blocks, while bilinear interpolation was

utilized to upsample each of the decoder blocks. The network
architecture is shown in Figure 4.

The network was trained using a patch-based approach, with
a 48 × 48 patch, which matched the size of the template
mesh’s circumference. The patches were selected randomly
through the length of the vessel, acting as a sliding window.
To ensure the network learned about the circular nature
of the patch, we introduced periodic/circular padding. This
is done by padding the top-most row within the patch
with the bottom-row and vice-versa, and by duplicating the
value of the left or right most column in the longitudinal
direction. Periodic padding was applied before the first two
convolutional layers.

Several augmentation strategies were applied to the dataset:

1. Distance to wall: to ensure that the network learns the
spatial features, v1 and v2 are a combination of the available
sheets, with the v1 sheet closer to the wall than v2. The
combination of different velocity sheets was random within a
pre-defined range.

2. Translation: to simulate translation to the training dataset, we
selected a random node within the wall coordinate patch, and
subtract that node position from all the coordinates, effectively
setting it as the origin.

3. Rotation: random 3D rotations on a randomly selected plane
were applied to the coordinate flatmaps and velocity sheets.
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FIGURE 3 | Overview of the extraction process performed on the CFD point clouds dataset. Extraction was performed on the wall coordinates and several inner

surface coordinates. Wall shear stress (WSS) vectors and velocity vectors were extracted at the wall and inner coordinates, respectively. The extracted information

was transformed into 2D flatmaps based on the template mesh.

FIGURE 4 | WSSNet architecture. The network is based on U-Net architecture, which receives an input of 15 channels of 48×48 patches, consisting of coordinate

flatmaps and velocity sheets, and outputs Cartesian wall shear stress vector patches.
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FIGURE 5 | Top: Overview of augmentation strategies. Velocity sheets were extracted at various distances from the surface (0.3–2.0mm). During training, two velocity

sheets were chosen randomly, with the first one closer to the vessel than the other. Bottom: a global overview of the input and output of WSSNet. Input consists of

15 channels, consisting of 3 coordinate flatmaps and 2 velocity sheets. The output consists of 3 channels, correspond to wall shear stress vectors in Cartesian

coordinates.

4. Shift (sliding window): with the patch based approach, we
shifted the patch in the longitudinal direction allowing the
network to learn geometric and flow features on different
regions of the vessel. This acts similar to the random selection
of the patch.

5. Rolling-shift: with the cut-line of the template mesh
predefined at the inner side of the aortic curve, the network
might be fixated on the same geometric features (i.e., center
rows having aortic branches). To introduce variation during
the training, we perform a periodic-shift in the circumferential
direction (U) by a maximum of 5 pixels.

6. Random noise: A 50% chance of adding Gaussian-smoothed
Gaussian noise with an SD between 1 to 4% venc was added
(venc = 1.5 m/s). The normally distributed noise was added
to simulate the noise characteristics in the fluid domain. The
Gaussian smoothing operation was added to simulate the
interpolation that occurs when resampling CFD point clouds
to a uniform grid.

The first 3 pixels from the inlet were excluded during training
to avoid overestimated WSS caused by CFD boundary
values. Nodes outside the mask (the base of the aortic
branches) were also excluded because the WSS obtained
are not true WSS and are basically obtained from the

aortic branches. Figure 5 summarizes the augmentation
strategies, alongside a global overview of the network input
and output.

The network was trained using Adam optimizer for 100
epochs, with a batch size (m) of 16. Cosine annealing learning
rate was used on a repeating cycle for every 10 epochs, with a
learning rate set between 10−4 and 10−7. Tensorflow 2.0 (29) was
used as the backend of the training. The network was trained on
a Titan X GPU with 16GB memory.

From the 43 CFD simulations, 37 simulations were used
for training, 3 for validation, and 3 simulations reserved for
testing. The datasets were split randomly, with 8 left ventricular
hypertrophy cases ending up in the training set, 1 case in the
test set. It is worth noting that the data generated using CFD
simulations do not represent the actual in vivomeasurements.

The training set consisted of flatmaps extracted directly from
the CFD point clouds. To ensure that the network can generalize
well to 4D Flow MRI data, the validation and test sets consisted
of flatmaps extracted from the following data representations:
(1) CFD point clouds, (2) downsampled 2.4 mm3 uniform grid
(to mimic the MRI resolution), and (3) 2.4 mm3 grid with
noise (normal distribution, SD of 2% venc to simulate 4DFlow
data). More detailed explanations on the sampling process
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from CFD point clouds to simulate MRI are explained in the
next section.

The training set comprised 46,676 unique flatmap
combinations (mainly due to the combinations of velocity
sheets with different distances), and the validation set consists
of 3,996 unique flatmap combinations. Additionally, the sliding
window strategy ensures the network “sees” different parts of the
flatmap during the training process.

Loss Function Definition
A combination of loss functions was utilized, to ensure minimum
difference of the WSS vectors and distributions (pattern
similarity) between the predicted and reference values. First, we
minimized the mean absolute error (MAE) between each of the
predicted wall shear stress vector components and the reference
values. Additionally, as wemodeled theWSS flatmap as an image,
we could optimize the pattern similarity between the predicted
WSS magnitude and the ground truth WSS. Finally, an L2
regularization term was added to the network that can generalize
to the new dataset, which was controlled by regularization weight
(λ) scaled to the batch size (m). The complete loss function is
given as

loss = lMAE + ω lSSIM +
λ

2m

N∑

i=1

w2
i

with ω = 1.5 and λ = 10−2 to balance each of the loss terms to
the same scale.

The Structural Similarity (SSIM) index, commonly used to
measure the similarity of two images x and y, was added as a loss
term to ensure WSS pattern similarity. SSIM is calculated based
on three components: luminance (l), contrast (c), and structure
(s). The luminance can be measured from the local average (µ)
image values, while contrast is measured from the local SD (σ),
and the structure index is measured using Pearson correlation (r).

Luminance comparison function l
(
x, y
)
can be defined as

l
(
x, y
)
=

2uxuy + C1

u2x + u2y + C1

while contrast comparison function c
(
x, y
)
is defined by

c
(
x, y
)
=

2σxσy + C2

σ 2
x + σ 2

y + C2

and structural comparison function s
(
x, y
)
is used to measure the

linear correlation between the two images:

s
(
x, y
)
= r =

σxy + C3

σxσy + C3

with σxy being the covariance of the two images, denoted as

σxy =
1

n

n∑

i=1

(xi − ux)(yi − uy)

C1, C2, and C3 are constants added for numerical stability. C1 =

(K1 L)
2, C2 = (K2 L)

2, and C3 = C2/2 are defined with K1 = 0.01
and K2 = 0.03 as in the original article (30), with L being the
maximum true WSS within a patch.

Overall, SSIM is a combination of all the terms above:

SSIM
(
x, y
)
= l

(
x, y
)α

. c
(
x, y
)β

. s
(
x, y
)γ

where α, β, and γ are positive numbers, denoting the relevance of
each term, with α = β = γ = 1. With that definition, SSIM loss is
described as

lSSIM = 1− SSIM(x, y)

A built-in SSIM implementation from Tensorflow was used
for the training process, with the default local region of 11 ×

11 pixels.

Evaluation
Overall, evaluation of the network was performed in three
different stages:

1. Evaluation on CFD simulation data (point cloud data) The
network was validated on 6 CFD simulations with each of
72-time frames (n = 432). The input flatmaps were extracted
directly from CFD point clouds.

2. Evaluation of CFD simulation data (synthetic MRI grid) The
network was validated on 6 CFD simulations with each of
20 time frames (n = 120). The CFD point clouds were
first interpolated into 3D grid representation (synthetic MRI)
before extracting the flatmaps. The network was validated on
two different grid resolutions (2.4 and 1.2mm isotropic) and
with/without noise, resulting in four sets of validations.

3. Evaluation on in vivo 4D FlowMRI The network was validated
on all 43 in vivo cases, with each of 20 time frames (n = 860).
These 43 cases were utilized previously for the aortic geometry
extraction only. The flow information obtained from these in
vivo cases does not resemble the generated CFD simulations.

Evaluation Metrics
For quantitative assessment, performance was evaluated with
respect to the difference in point-to-point WSS magnitude per
time frame, reported as mean absolute error (MAE) and relative
error. Relative error was calculated as the ratio of absolute WSS
difference and peak reference WSS value at the specified time
frame. In addition, Pearson correlation (r) was also reported
to evaluate the pattern similarity or WSS distribution for every
time frame.

For quantitative and qualitative assessment, TAWSS and OSI
were also calculated at each point in the template. TAWSS
represents the average WSS over a cardiac cycle, while OSI
represents the oscillation of the WSS direction over a cardiac
cycle, computed as follows:

TAWSS =
1

T

∫ T

0

∣∣−→wss
∣∣ dt

OSI = 0.5 ×

(
1 −

|
∫ T
0
−→wss dt|

∫ T
0 |

−→wss | dt

)
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where T is the span of time for a cardiac cycle. OSI ranges
from 0 to 0.5, with 0 describing no change in WSS during a
cardiac cycle, and 0.5 where there is a change of direction of 180o

during a cardiac cycle. Additionally, a single-measure intraclass
correlation coefficient (ICC) based on a two-way mixed-effects
model was independently calculated for each measured TAWSS
value to assess the degree of absolute agreement betweenWSSNet
and ground truth CFD.

Surface Extraction Error
The registration step was performed to align and deform the
template mesh to the aorta-only geometry, which is not without
error. This imprecision of the vessel wall causes the inward
points where velocity sheets were extracted to not be at the
exact distance from the wall. While this imprecision introduces
error to the training data, it also simulates actual inaccuracy in
segmentation, where it is hampered by spatial resolution and
partial volume effects. To measure the inaccuracy of the mesh
registration step, we evaluated the surface distance for every node
in the template mesh.

Validation on CFD Point Clouds
To evaluate the performance of WSSNet to reproduce CFDWSS
estimations, the evaluation metrics were computed using the
velocity data obtained directly from the CFD point clouds, on the
3 validation and 3 test cases, with each case consisting of 72 time
frames (dt = 10ms). For this validation, we evaluate the results
by measuring MAE, relative error, Pearson correlation, TAWSS,
and OSI compared to the ground truth WSS from CFD.

Finally, linear regression analysis was performed against
reference values derived from CFD, assessing TAWSS and OSI,
separately. Bland-Altman plots of the same data were also
extracted to assess potential network bias. ICC was evaluated to
assess the absolute agreement between the TAWSS values from
the network against the ground truth CFD.

Validation on Synthetic MRI From CFD Point Clouds
To evaluate the capability of the network in predicting WSS
fromMR image resolution data, we first sampled the point cloud
CFD dataset into a voxelized uniform image grid. To match the
commonly acquired MRI spatial resolution, data were generated
with isotropic spatial sampling of dx = 2.4. Furthermore, spatial
sampling of dx = 1.2mm was also performed to see how
the network performs in different resolutions. Both resolutions
were sampled at temporal resolution (dt) of 40ms, within the
range of common MRI acquisition. Additionally, noise (normal
distribution, the SD set to 2% of the venc; venc = 1.5 m/s) was
added to evaluate the performance of the network in the presence
of noise. Thus, the evaluation set consisted of noise-free and noisy
data at both resolutions.

Afterward, we performed the same procedures to extract the
coordinate flatmaps and interpolate the velocity sheets from the
synthetic MRI grid. Velocity sheets were extracted using linear
interpolation at 1.0 and 2.0mm at the inward direction normal to
the surface. Subsequently, these coordinate flatmaps and velocity
sheets were then used as input to the network.

As a comparison, the parabolic fitting method (9, 11) was
selected as it is commonly employed and requires similar input.
The method requires 3 velocity points, where the velocity at the
wall is assumed as 0, due to the no-slip boundary condition. With
the given resolution (dx = 2.4 and 1.2mm), the parabolic fitting
method is expected to underestimate the WSS values. For this
validation, we performed the same quantification with the CFD
point clouds dataset (MAE, relative error, Pearson correlation,
TAWSS, and OSI) because the ground truth WSS was known.

Linear regression analysis was performed for both methods
against reference values derived fromCFD, assessing TAWSS and
OSI at different resolutions: noise-free 2.4mm, noisy 2.4mm,
noise-free 1.2mm, and noisy 1.2mm. Bland-Altman plots were
extracted to assess potential network bias for the noisy 2.4mm
dataset. Additionally, Bland-Altman plots were extracted to
assess the agreement between the parabolic fitting method and
WSSNet predictions for the noisy 2.4mm dataset. For each of
the resolutions, ICC was evaluated for both methods to assess the
absolute agreement between the TAWSS values from the network
against the ground truth CFD.

Validation on in vivo Cases
To assess WSS on in vivo data, the method was applied to the in
vivo 4D Flow data from the same 43 cases used in the patient
specific CFD simulations. The same registered surface meshes
were used to extract the coordinate flatmaps and velocity sheets.
Velocity sheets were extracted with inward distances of 1.0 and
2.0mm due to the inherent MRI resolution at approximately dx
= 2.4mm. Figure 6 shows an overview of the analysis pipeline
for 4D Flow MRI to WSS flatmap.

For these in vivo cases, the WSS reference values are not
available. Due to the expected difference in WSS magnitudes
(between WSSNet and parabolic fitting), only Pearson
correlation was evaluated between the two methods. In
addition, TAWSS and OSI were also visualized.

Linear regression analysis was performed against WSSNet
predictions as reference values, assessing TAWSS and OSI,
separately. Bland-Altman plots of the same data were also
extracted to assess bias between the two methods.

RESULTS

Surface Extraction Error
The WSS ground truth was obtained from the CFD point
closest to the registered template mesh nodes. Surface
distance errors for the aortic vessel wall were 0.32 ±

0.14mm, rising to 2.38 ± 1.08mm at the base of the
aortic branches where there was no true wall. Nevertheless,
the error was small relative to the current MRI resolution
(2.4 mm).

Validation on CFD Point Cloud Dataset
A complete evaluation was performed on the 3 validation
and 3 test cases, with each case consisting of 72 time
frames (dt = 10ms). Overall, WSS estimates were accurate
(MAE 0.55 ± 0.60 Pa, relative error 4.34 ± 4.14%) and
showed excellent Pearson correlation with CFD WSS
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FIGURE 6 | Complete overview of the inference workflow for 4D Flow MRI. All the steps are fully automated, except for the segmentation and mesh truncation steps

(marked with blue text).

TABLE 1 | Wall shear stress (WSS) magnitude and pattern similarity

measurements for the validation and test cases from the CFD simulations.

Case (characteristics) MAE (Pa) Rel error (%) Pearson correlation

Val #1 (normal) 0.44 ± 0.41 5.97 ± 4.82 0.92 ± 0.06

Val #2 (normal) 0.44 ± 0.50 3.70 ± 4.03 0.93 ± 0.03

Val #3 (normal) 0.49 ± 0.43 4.67 ± 4.22 0.92 ± 0.02

Test #1 (normal) 0.57 ± 0.75 2.87 ± 3.43 0.91 ± 0.04

Test #2 (LVH) 0.93 ± 1.04 5.76 ± 5.24 0.88 ± 0.09

Test #3 (normal) 0.44 ± 0.48 3.09 ± 3.12 0.94 ± 0.03

Overall 0.55 ± 0.60 4.34 ± 4.14 0.92 ± 0.05

For each case, results were measured from all time frames (n = 72, dt = 10ms). MAE,

mean absolute error; LVH, left ventricular hypertrophy. Average values are shown in bold.

(0.92 ± 0.05). More detailed quantitative measures per
case are given in Table 1. Figure 7 shows the qualitative
results for each of the cases, represented by the TAWSS
and OSI.

Figure 8 shows linear regression plots and Bland-Altman
representations for the calculated TAWSS and OSI. In general,
very high correlations are observed between TAWSS and OSI
estimated by WSSNet and ground truth CFD, with linear
regression slopes and coefficients of determination of k = 0.88
and R2 = 0.90, and k = 0.88 and R2 = 0.91 for TAWSS and
OSI, respectively. Bland-Altman analysis shows a minimal bias
(0.08 Pa) and limits of agreement of ± 1.29 Pa for TAWSS,
and no bias for OSI with limits of agreement of ± 0.04. ICC
shows excellent agreement (0.95) between TAWSS calculated
fromWSSNet and ground truth CFD.

Validation on CFD Synthetic MRI Dataset
Velocity sheets were extracted from the synthetic MRI dataset on
the same 6 validation/test cases. Compared with the prediction
on the sheets extracted from the CFD point clouds, a decrease in
performance was observed when inference was performed on dx
= 2.4mm (MAE 0.94 ± 0.87 Pa), while Pearson correlation was
still highly maintained (r = 0.82 ± 0.08). The addition of noise
slightly decreased the performance further (MAE 0.99± 0.91 Pa,
r = 0.79 ± 0.10). ICC showed good agreement with similar
values, 0.86 and 0.85, for noise-free and noisy data, respectively.

At twice the resolution (dx= 1.2mm),WSSNet showed better
performance in predictingWSS (MAE= 0.65± 0.67 Pa, r= 0.89
± 0.06) compared to the base resolution (dx = 2.4mm). The
addition of noise at 1.2mm resolution impacted the performance
slightly (MAE = 0.71 ± 0.71 Pa, r = 0.85 ± 0.10), showing
reduced error and Pearson correlation. ICC went back up to 0.92
for both noise-free and noisy data at 1.2mm resolution, getting
closer to the CFD validation counterpart (0.95).

On the other hand, the parabolic fitting method showed
much larger differences (MAE 2.89 ± 1.85 Pa and 2.33 ±

1.67 Pa at dx = 2.4mm and 1.2mm, respectively). The values
were underestimated, mostly at regions of peak WSS. In terms
of Pearson correlation, the parabolic fitting results showed
moderate correlation with the CFD ground truth (r= 0.65± 0.12
and 0.69± 0.11, at dx= 2.4 and 1.2mm, respectively).

Qualitative assessments are shown in Figure 9, represented
as TAWSS and OSI. WSSNet predictions show good pattern
similarity at both resolutions, with less detail recovered at dx =

2.4mm. The parabolic fitting method showed WSS magnitude
roughly 3 times lower than the CFD magnitude. For both
algorithms, the OSI pattern appeared similar at both resolutions.
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FIGURE 7 | Time-averaged WSS and oscillatory shear index (OSI) comparison between WSSNet and ground truth CFD. Time-averaged WSS (TAWSS) and OSI were

calculated from all time frames (n = 72). 3D representations of the TAWSS from WSSNet are shown on the left side of each flatmap.

Table 2 shows a complete overview of the metrics for both
methods on different resolutions.

Figure 10 shows linear regression plots and Bland-
Altman representations for both methods. In general, good
correlations are observed for TAWSS between WSSNet and
CFD ground truth, with linear regression slopes and coefficients
of determination of k = 0.79 and R2 = 0.75 reported for the
noise-free 2.4mm resolution, and k = 0.78 and R2 = 0.74 for
the noisy 2.4mm resolution. Slightly higher values are seen
for WSSNet at 1.2mm (k = 0.82 and R2 = 0.87 for noise-free;
k = 0.81 and R2 = 0.85 for noisy). As a comparison, the
parabolic fitting method shows poor correlations with CFD
ground truth (k = 0.14 and R2 = 0.43 for noise-free and noisy
2.4mm; k = 0.18 and R2 = 0.56 for noise-free and noisy
1.2mm).

In terms of OSI, WSSNet shows moderate correlation at
2.4mm (k = 0.67 and R2 = 0.73 for noise-free; k = 0.64 and
R2 = 0.70 for noisy) and good correlation at 1.2mm (k = 0.83
and R2 = 0.86 for noise-free; k = 0.80 and R2 = 0.82 for

noisy). Similarly, the parabolic fitting method shows moderate
correlation at 2.4mm (k = 0.65, R2 = 0.66 for noise-free; k =

0.66 and R2 = 0.64 for noisy) and slightly better correlation at
1.2mm (k = 0.74, R2 = 0.71 for noise-free; k = 0.74, R2 = 0.68
for noisy).

Bland-Altman plots were assessed at noisy 2.4mm resolution
to show the quality of results at commonMRI resolution without
any preprocessing. Bland-Altman plot indicated minimal
TAWSS bias (0.32 Pa) with limits of agreement of 2.19 Pa
betweenWSSNet and reference CFD. For OSI, the Bland Altman
plot indicated minimal bias (−0.02) with limits of agreement
of 0.08.

To compare the agreement between the parabolic fitting
method and WSSNet, the Bland-Altman plot was also assessed
at noisy 2.4mm resolution. For TAWSS, Bland-Altman indicated
a bias of −3.34 Pa, with higher TAWSS values showing larger
differences (underestimation) by parabolic fitting method than
WSSNet. Conversely, the Bland-Altman plot for OSI shows only
a minimal bias (0.01) with narrow limits of agreement (0.05).
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FIGURE 8 | Top: Regression plot for TAWSS and OSI between estimated values from WSSNet and ground truth CFD. TAWSS and OSI have computed over 6 cases

(3 validation and 3 test) averaged over 72 time frames (dt = 10ms). Bottom: Bland-Altman plots for TAWSS and OSI. The plots show a point-wise comparison within

the flatmap. The plots show 20% of the data points, randomly selected.

Validation on in vivo 4D Flow MRI Cases
For the in vivo dataset, validation was performed on all 43 cases at
the base resolution (2.375mm x 2.375 × 2.75mm) as is without
any denoising. WSS was computed for all the cases with both
the parabolic fitting method and WSSNet at every time frame.
The resulting TAWSS and OSI were then compared between
both methods.

Figure 11 shows linear regression and Bland-Altman plots
for TAWSS and OSI comparing both methods, using WSSNet
predictions as reference values. Relative toWSSNet, the parabolic
fitting method shows poor correlation (k = 0.20 and R2 = 0.65)
for TAWSS but excellent OSI correlation (k = 0.91 and R2 =

0.71). Bland-Altman plot of TAWSS shows a bias of −2.05 Pa
with a similar downward trend observed in the synthetic
MRI, with higher TAWSS showing more underestimations.
Conversely, the Bland-Altman plot of OSI shows minimal bias
(−0.02) with limits of agreement < 0.08.

Figure 12 shows visual comparisons of some of the cases
using both methods. Visual inspection confirms the similarity
between the computed TAWSS pattern, even though a clear

difference in magnitude can be seen from the visualization.
The spatiotemporal average WSS was 2.95 ± 1.57 Pa and
0.95 ± 0.46 Pa, for WSSNet and parabolic fitting method,
respectively. Visual pattern similarity in OSI between both
methods can be seen, which was observed in the synthetic MRI
cases before. To quantify the similarity between WSS patterns,
Pearson correlation was computed at every time frame, resulting
in 0.68± 0.12.

DISCUSSION

This study demonstrates the feasibility of estimating WSS from
low-resolution 4D Flow MR images using a deep learning
method trained on a synthetic dataset acquired from CFD.
Inference speed was 9 frames per second (26 cases per min)
on a CPU for a typical 4D Flow MR image. The preprocessing
step, which consisted of mesh registration and velocity sheet
extraction, took ∼10min. Currently, aortic curve segmentation
remains a manual process, which can be improved in the
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FIGURE 9 | Time-averaged WSS and OSI comparison between WSSNet and parabolic fitting method at a different spatial resolution of synthetic MRI (dx = 2.4mm,

2.4mm with noise and 1.2mm). For reference, TAWSS and OSI flatmaps from ground truth CFD are provided in the left-most column. TAWSS derived from the

parabolic method were much lower and showed different dynamic ranges (0–4Pa) to highlight pattern similarity between methods. 3D representations of the TAWSS

from WSSNet2.4+noise are shown on the left side of each flatmap.

TABLE 2 | WSS magnitude and pattern similarity measurements for the validation

and test cases of the CFD simulations.

Method (resolution) MAE (Pa) Rel error (%) Pearson

correlation

ICC(A,1)

WSSNetCFD 0.55 ± 0.60 4.34 ± 4.14 0.92 ± 0.05 0.95

WSSNet2.4mm 0.94 ± 0.87 6.35 ± 5.67 0.82 ± 0.08 0.86

WSSNet2.4mm+noise 0.99 ± 0.91 7.13 ± 6.27 0.79 ± 0.10 0.85

WSSNet1.2mm 0.65 ± 0.67 4.80 ± 4.47 0.89 ± 0.06 0.92

WSSNet1.2mm+noise 0.71 ± 0.71 5.66 ± 5.13 0.85 ± 0.10 0.92

Parabolic2.4mm 2.89 ± 1.85 14.63 ± 6.83 0.65 ± 0.12 0.09

Parabolic2.4mm+noise 2.89 ± 1.85 14.63 ± 10.69 0.59 ± 0.11 0.09

Parabolic1.2mm 2.33 ± 1.67 11.23 ± 5.82 0.69 ± 0.11 0.13

Parabolic1.2mm+noise 2.65 ± 1.75 13.07 ± 9.76 0.68 ± 0.11 0.13

The table shows the comparison of WSSNet and parabolic fitting on different spatial

resolutions (dx = 2.4 and 1.2mm isotropic) with and without noise (n = 120 each). The

result from the CFD point clouds (WSSNetCFD) is included for comparison (n= 432). Intra-

class correlation (ICC) is computed from time-averaged WSS. Baseline values (WSSNet

on CFD data) are shown in bold.

future. This workflow is several orders of magnitude faster than
computational simulations while still offering good accuracy,
which is not attainable using conventional methods at standard
MRI resolution.

Spatial and Velocity Informed Neural
Network
Previous studies have shown neural network’s capability to
estimate hemodynamic variables from geometric features
(15–18). While these methods were able to estimate
hemodynamic variables with sufficient accuracy, the estimated
values produced were time-averaged or specific to a static
boundary condition, as no other quantities (i.e., pressure,
velocity) were provided as input values. Consequently, these
methods learned strictly from spatial features and were agnostic
to flow. In practice, clinical data contains temporal information,
for instance, flow velocity, which can be used to derive other
hemodynamic variables, such as pressure and WSS.

The aortic template mesh utilized in this study is based on
Liang et al. (18) which consisted of 5,000 nodes, which when
unwrapped into a UV map, becomes a 50 × 100 quadrilateral
mesh. We adapted the template into a 48 × 93 grid to
accommodate the circumferential direction in fitting the U-Net
input size (48 × 48) and the longitudinal direction to enable
compatibility with applying subdivision matrices on the coarse
template (12 × 24). The subdivision matrices are equivalent
to applying subdivision surfaces two times, which increased
the number of nodes to 2n and 2n-1 in a single pass, for
circumferential and longitudinal direction, respectively. While
the size of the circumference is fixed (48), different templates
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FIGURE 10 | Top: Linear regression plots of TAWSS for synthetic MRI using WSSNet (black) and parabolic fitting method (brown) at different resolutions (dx = 2.4 and

1.2mm) with and without noise, compared with ground truth CFD. Middle: linear regression plots for OSI at different resolutions (dx = 2.4 and 1.2mm) with and

without noise, compared with ground truth CFD. Bottom left: Bland-Altman plots of TAWSS and OSI between WSSNet and ground truth CFD at 2.4mm noisy

synthetic MRI. Bottom right: Bland-Altman plots of TAWSS and OSI between parabolic fitting method and WSSNet at noisy 2.4mm synthetic MRI. The plots show

20% of the data points, randomly selected.

with different longitudinal axis lengths can be used (i.e., 48 ×

N template). As previously mentioned, the coarse mesh and
subdivision surfaces were optional and were used to speed up the
registration process. Because the network was trained on a patch-
basis, a template that contains an extension of the aorta (e.g.,
more distal part of the descending aorta) may still be predicted
by the network, and simply assumed as another patch. With this
approach, the network is not fixated on specific markers across
the aortic vessels but is more general in predicting WSS, as long
as the vessel can be unwrapped into a UV map with the specified
circumference size (U= 48).

In this study, we extended on these previous works by adding
velocity sheets and coordinate flatmaps, which are crucial to
calculate spatial velocity gradients at the vessel wall. We were
motivated by previous widely used velocity-based methods, such
as the linear extrapolation method, velocity-based-with-wall-
position method, and the parabolic fitting method (11, 31). The
idea of these methods is to calculate spatial velocity gradients
from several inward distance velocities normal to the wall. Potters
et al. (10) further implemented the velocity-based method using
spline fitting for volumetric image with a similar approach using
3 or more velocity points (including wall point, which is assumed
to be 0). While it is possible to use more than 3 points, Potters

et al. showed that using 3 points resulted in more accuracy, given
enough voxels were available across the diameter.

To ensure the network learns different distances of velocity
sheets, the training data contained various predefined distances
from the wall surface. To mitigate zero values at the velocity
sheets caused by the registration error, the first velocity sheets
were extracted at a 0.3mm inward distance from the surface.

From the aforementioned studies, spatial hemodynamic
variables (i.e., WSS, ECAP, pressure) can be derived from
geometric features alone. Conversely, conventional velocity-
based methods are already used for in vivo cases resulting in
spatiotemporal WSS. By combining these two concepts, we were
able to train a network capable of estimating spatiotemporalWSS
more accurately, by using geometry and velocity information.

It is noteworthy that WSSNet returns the WSS vectors at
the vessel surface, which is useful for deriving other variables,
such as TAWSS, OSI, and different WSS components (i.e.,
circumferential and longitudinalWSS). Previous studies explored
the importance of this directional WSS (2, 32) and WSS angle
(33). Increased axial WSS can be an indicator of the presence
of high-risk plaque (32) and another study suggested that axial
WSS might explain different morphologies in ascending aorta
dilatation (2). WSS angle was suggested to be an independent
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FIGURE 11 | Top: Linear regression comparing the TAWSS and OSI derived from the estimation of WSSNet and parabolic fitting method from in vivo 4D Flow MRI.

WSSNet estimates are used as the reference values. Bottom: Bland-Altman plots of TAWSS and OSI between the parabolic fitting method and WSSNet for in vivo

cases (n = 43). The plots show 5% of the data points, randomly selected.

predictor for proximal aortic dilatation for patients with bicuspid
aortic valves (33).

Validation of WSS in CFD Point Clouds vs.
Uniform Grid
Similar to other studies using deep learning, our training
dataset was generated using CFD. While our target data is
represented using a grid structure, we opted to train the network
from the velocity sheets extracted directly from point clouds.
Extracting velocity sheets from CFD point clouds allowed us
to obtain smoother and velocity-rich information at flexible
inward distances, unaffected by spatial sampling and any partial
volume effect.

To showcase the generalizability of the network, we validated
the network using a synthetic MRI dataset. The synthetic dataset
was generated by sampling the CFD point clouds into MRI grid
resolutions (dx= 2.4 and 1.2mm). Additionally, we evaluated the
robustness of the network in the presence of noise in the dataset.
Subsequently, velocity sheets were extracted from the synthetic

MRI, to simulate partial volume and discretization effects
within the velocity sheets. Using WSSNet, reduced accuracy was
identified at the velocity sheets acquired at a low resolution
grid (dx = 2.4mm). However, similar accuracy was observed
with noise, showing the network is robust to noise. On the
other hand, the parabolic fitting method shows much lower WSS
values, and the values increase slightly with the presence of noise,
which has been described previously (34). Increased accuracy
was observed at higher spatial resolution (dx = 1.2mm) for
both methods. This is in agreement with previous studies that
higher spatial resolutions lead to a higher average WSS (9–11).
Nevertheless, WSSNet performance on low resolution synthetic
MRI (dx = 2.4mm) shows good accuracy and robustness to
noise. Based on this validation on the synthetic MRI dataset,
we can expect similar performance on the in vivo dataset with
similar resolution.

To demonstrate the viability of our approach for 4D Flow
MRI, we further tested the network in in vivo cases on base
resolution (dx = 2.4mm), similar to the test performed in the
synthetic MRI. While there are no reference WSS values for in
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FIGURE 12 | Time-averaged WSS and OSI comparison between WSSNet and parabolic fitting method in 4 cases of in vivo 4D Flow MRI. TAWSS derived from the

parabolic method were much lower and shown using different dynamic ranges (0–4Pa) to highlight pattern similarity between methods 3D representations of the

TAWSS and OSI from WSSNet are shown on the left side of each flatmap.

vivo cases, based on the previous validation on the synthetic
MRI data (Figure 10), the regression and Bland-Altman plots in
Figure 11 show similar trends. Moreover, visual observation and
structural similarity (Pearson correlation) also show adequate
results in terms of the WSS distribution.

In addition, Bland-Altman plots in Figures 10, 11 show
similar trends with a previous study conducted by Cibis et al. (14),
with ours showing a much larger bias. While their comparison
shows the WSS difference between MRI and CFD resolution at
the carotid arteries using the smoothing-spline fitting method,
we show the difference between parabolic fitting and WSSNet at
MRI resolution. This result demonstrates the network’s capability
to perform at a similar level of accuracy as CFD, with evaluation
performed at MRI resolution only.

Compared with other factors (i.e., segmentation accuracy,
venc), the spatial resolution had the most significant impact on
WSS estimation, as shown by Petersson et al. (11), with WSS
in MRI typically underestimating true WSS. In their study, the
relationship between WSS estimation methods with voxel size,
venc, and segmentation accuracy has been assessed extensively.
Other non-velocity-based methods were also assessed but were
outside the scope of this study.

Our average WSS in in vivo cases, using the parabolic fitting
method (0.95± 0.46 Pa), are relatively similar to previous studies
(1, 10). The differences are probably related to the different fitting
methods (parabolic vs spline fitting). WSSNet shows a higher
spatiotemporal averageWSS of 2.95± 1.57 Pa. As we have shown
in the synthetic MRI dataset, the accuracy of WSSNet is similar
to CFD.

For the parabolic fitting method, despite the regression
coefficients for TAWSS being low (at 2.4 and 1.2mm), the
correlations for OSI are much higher. It can be observed from
Figure 10 that the systematic WSS underestimations (9) lead
to a low correlation. However, OSI is a dimensionless metric
measuring the changes in WSS direction, relative to its own
magnitude. Therefore, it is independent of the WSS magnitude.
As a result, the correlation of OSI between different methods can
be compared independently from the magnitudes. This can be
observed from the visualization of TAWSS and OSI (Figure 9)
where both methods show TAWSS in different scales, but show
OSI at the same scale and have a similar distribution.

Consistent regression coefficients for both methods compared
to CFD reference values, in terms of TAWSS and OSI can be
seen on the synthetic MRI dataset, with the higher resolution
data showing a slight increase in correlation. The addition of
noise to the data only affected the results slightly. Similar to the
syntheticMRI, we also observed a similar correlation between the
two methods for both TAWSS and OSI (Figure 11). This further
verifies thatWSSNet can be applied to in vivo cases, and exhibited
similar behavior as when it was applied to synthetic MRI cases.

Additionally, Figures 10, 11 also show that the TAWSS
estimates were higher in synthetic MRI (0–12 Pa) compared to
the in vivo cases (0–8 Pa). These differences are likely caused
by the choice of simplified boundary conditions (constant
pressure at the outlet, outflow ratio) which produced different
flow characteristics. However, despite the fact that the in vivo
predictions are lower, the network can adapt to different flow
patterns and still estimate WSS values accurately, since it is
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trained on a variety of patient-specific geometries and boundary
conditions with the time-varying flow.

The choice of turbulence model also affects the CFD
simulations and estimated WSS as ground truth data. Different
turbulence models might produce different results, but the effect
is likely to be small. The use of a laminar model is also an option,
however, the WSS computed by a laminar model is known to
be underestimated in the turbulent regime. Also, as observed
in previous studies (35, 36), laminar models give rise to lower
WSS estimates than turbulence models, which are less accurate
for peak WSS estimates. Additionally, while the estimates might
introduce differences in values, the WSS patterns are similar.

Importance of WSS Distribution Pattern
Time-averaged WSS (TAWSS) and OSI patterns have been
suggested as disease risk indicators, such as for atherosclerosis
and aortic dilatation (1, 5, 37). Callaghan et al. (1) presented
a normal pattern and range of WSS from 4D Flow MRI
across a large population. Higher WSS was observed in the
descending aorta compared with the aortic arch. In addition,
this study suggested that WSS values are highly dependent
on velocity, vessel diameter, and the aortic arch curvature. As
previously mentioned, other studies have shown high accuracy
in estimating hemodynamic variables, such as ECAP, based only
on geometric information (spatial coordinates and curvature)
(16, 17). While the presented results are accurate in in silico
cases, pattern distribution and similarity were moderate. Liang
et al. (18) also leveraged a geometric approach, with the predicted
results showing similar aortic stress distributions, though it
was not quantified and was only tested against finite element
models. Another study combined vessel diameter and curvature
information, showing good time-averaged WSS predictions in
coronary arteries, with pattern similarities compared through
visual inspection (15). Pattern matching is typically performed
by checking areas of overlap using bins, categorizing WSS
magnitudes from low to high (14).

In our study, we chose to use both velocity and geometric
information, which is not only able to predict averaged or spatial
results but can also predict spatiotemporal WSS. Moreover, our
method is optimized using SSIM loss to ensure the network
is able to recognize patterns based on spatial and velocity
information. SSIM is a commonly used metric for image
processing and computer vision, which can be applied to image
data representation. Our results showed that WSSNet is able to
recover finer WSS pattern details only by a two-fold resolution
increase, which by no means is sufficient to accurately estimate
WSS values. A much higher resolution is typically necessary to
resolve the high gradient changes near the wall.

Overall, recent studies have suggested that WSS is a potential
biomarker for atherosclerosis, aortic dilatation, and aneurysm
(1, 5, 37). WSS measurement also has improved risk stratification
in patients with carotid and coronary artery disease (38). Despite
its clinical relevance, the available methods mostly rely on CFD
analysis, which is computationally costly and not practical for a
clinical setting (39). Therefore, by developing this method, we
aim to extract the implicit knowledge from the CFD simulations,
reducing a great deal of computation cost, while improving

the applicability to a clinical setting. However, a more rigorous
evaluation of patients is needed to ensure this approach can be
applied for clinical applications.

Limitations and Future Study
Our study has several limitations. First, a modest number of
geometries were used to run the CFD simulations. Additional
geometries could be used to improve the generalizability of the
network. Furthermore, different boundary conditions may help
to generate more variations in the training dataset.

Second, WSS computed using CFD are dependent on several
assumptions, which may introduce errors. The choice of a
turbulence model may also affect the calculation of WSS,
due to how the CFD software approaches the calculation of
wall viscosity (with the contribution of turbulence viscosity).
Although there may be differences in WSS magnitudes
introduced by different turbulent models, these differences are
small and the WSS patterns are relatively similar. Furthermore,
our approach relies on the dataset, where physical properties were
inherently derived from the CFD simulations. The simplification
of boundary conditions (e.g., plug profile, constant pressure)
might have a significant impact on the patient-specific flow and
WSS values (40). However, the impact onWSSNet results is likely
to be small, as it learns from local velocities and spatial features.

Third, WSSNet requires a large amount of data to train. While
it is possible to generate more data through CFD simulations, a
more sustainable solution is needed. An alternative for CFD, such
as Physics Informed Neural Network (PINN), enables physics-
informed solutions to generate surrogate solutions faster than
CFD (41). This approach may speed up the data generation
process tremendously. Additionally, this method also allows
direct estimation of WSS, which may solve this problem in
one single step. However, this method requires retraining
for each new geometry. In our case, where 4D Flow MRI
datasets are already available, an algorithm like WSSNet offers a
direct estimation of WSS using the available measurements and
geometry information.

Finally, while representing the data as flatmaps saves
computation power, and can be considered as a strength
of this model, it is not a flexible representation. Using this
representation, more complex geometries (including the aortic
branches) cannot be represented as a rectangular grid using
UV mapping. A more flexible data representation (i.e., mesh or
graph) or a different network structure (i.e., SplineCNN, Graph
Convolutional Networks) may open a lot more possibilities
for more complex geometries (17, 42, 43). Graph data
representations have the potential to remove completely the
registration step from this workflow, which will improve the time
and may be more readily applicable for a clinical setting.

To summarize, several future directions can be taken to extend
the capability of this method, namely the addition of data to
expand the network generalization capability, a more flexible
data representation, and robustness to noise. Nevertheless, our
study highlights the potential of combining geometric and
velocity information in training deep neural networks to infer
hemodynamic variables for 4D Flow MRI.
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CONCLUSION

In conclusion, we have presented a method to estimate WSS
from 4D Flow MRI, with accuracy close to CFD. Our method
is based on principles of similar previous WSS estimation
methods, without being constrained by spatial resolution. More
importantly, it is applicable to existing clinical MRI without any
adjustments. We have shown accurate estimations for both CFD
and in vivo cases regarding WSS magnitude and distribution
throughout the aortic vessel.
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Accurately inferring underlying electrophysiological (EP) tissue properties from action

potential recordings is expected to be clinically useful in the diagnosis and treatment

of arrhythmias such as atrial fibrillation. It is, however, notoriously difficult to perform. We

present EP-PINNs (Physics Informed Neural Networks), a novel tool for accurate action

potential simulation and EP parameter estimation from sparse amounts of EP data. We

demonstrate, using 1D and 2D in silico data, how EP-PINNs are able to reconstruct

the spatio-temporal evolution of action potentials, whilst predicting parameters related

to action potential duration (APD), excitability and diffusion coefficients. EP-PINNs are

additionally able to identify heterogeneities in EP properties, making them potentially

useful for the detection of fibrosis and other localised pathology linked to arrhythmias.

Finally, we show EP-PINNs effectiveness on biological in vitro preparations, by

characterising the effect of anti-arrhythmic drugs on APD using optical mapping data.

EP-PINNs are a promising clinical tool for the characterisation and potential treatment

guidance of arrhythmias.

Keywords: cardiac electrophysiology, arrhythmia (any), Physics Informed Neural Network (PINN), atrial fibrillation,

parameter estimation, optical mapping, biophysical modelling, artificial intelligence

1. INTRODUCTION

Cardiac arrhythmias are extremely common pathologies caused by disturbances in the generation
or propagation of electrical signals across the heart. Atrial fibrillation (AF), the most common
sustained arrhythmia, affects 0.5% of the world’s population and accounts for 1% of the NHS’s total
budget through its large impact on patient mortality and morbidity, especially stroke (1). Catheter
ablation of atrial myocardium believed to host the sources of the arrhythmia is the mainstay of AF
treatment, but its long-term efficacy is disappointing (54%), especially in patients with persistent
forms of the disease (43%) (2).

The mechanisms behind AF are very complex, involving the interplay of several factors at
different scales, from changes in membrane proteins to alterations in cardiac tissue composition
and organ shape (3). To characterise the arrhythmia, information about cardiac activity can be
acquired by recording electrical potentials using electrodes placed on the chest (electrocardiogram,
ECG) or, in a catheter lab, placed in direct contact with the myocardium (contact electrograms,
EGMs). Expert analysis of these signals is extremely successful in the clinical diagnosis of

151

https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org/journals/cardiovascular-medicine#editorial-board
https://www.frontiersin.org/journals/cardiovascular-medicine#editorial-board
https://www.frontiersin.org/journals/cardiovascular-medicine#editorial-board
https://www.frontiersin.org/journals/cardiovascular-medicine#editorial-board
https://doi.org/10.3389/fcvm.2021.768419
http://crossmark.crossref.org/dialog/?doi=10.3389/fcvm.2021.768419&domain=pdf&date_stamp=2022-02-03
https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/cardiovascular-medicine#articles
https://creativecommons.org/licenses/by/4.0/
mailto:marta.varela@imperial.ac.uk
https://doi.org/10.3389/fcvm.2021.768419
https://www.frontiersin.org/articles/10.3389/fcvm.2021.768419/full


Herrero Martin et al. EP-PINNs

arrhythmias and other types of cardiovascular disease (1).
However, as sparse measurements of the combined electrical
activity of large areas of the myocardium, electrical signals
provide little direct information about local EP properties.

The ability to perform a detailed EP characterisation in
the clinical setting could lead to improved treatments for
arrhythmias. For example, evidence suggests that areas with
abnormal EP properties (such as fibrotic or ischaemic regions)
and their border-zone are often the sites of the abnormal
electrical activity driving arrhythmias (3). Cardiac regions
characterised by EP changes such as low conduction velocity,
heightened excitability or shortened action potential duration
(APD) could be prime targets for localised therapies such as
catheter ablation, likely improving their efficacy. So far, ablation
strategies that target these EP heterogeneities have not been
successful (4), partly due to the difficulty in identifying suitable
ablation sites.

In this study, we present EP-PINNs, a Physics-Informed
Neural Network, as an artificial intelligence tool capable
of inferring EP properties from sparse measurements of
transmembrane potential, V, in cardiac tissue. We test EP-PINNs
using in silico data from EP biophysical simulations in several
conditions and also in vitro optical mapping data. EP-PINNs
are deployed in forward mode, as high-resolution solvers of
the biophysical equations that control EP systems, and also
in inverse mode, as estimators of EP parameters. Tests are
performed in 1D and 2D for single waves and spiral waves
in homogeneous and heterogeneous conditions. We further
demonstrate a pharmacological application of EP-PINNs, as a
tool to characterise the effect of two different channel blockers
in in vitro optical mapping data.

In the next section, we will introduce the EP biophysical model
used and the PINNs technique, as applied to the EP problem. We
will contextualise our work within the available techniques for
parameter estimation in EP and other cardiovascular applications
of PINNs.

2. BACKGROUND

2.1. Biophysical Models of Cardiac
Electrophysiology
Biophysical models of cardiac electrophysiology (5) are an
important tool to understand how cardiac tissue properties
affect the generation and propagation of cardiac electrical signals
(action potentials, APs). They also offer an ideal means for
the training and development of computational tools that may
aim to infer EP properties from electrical and optical mapping
measurements, such as EP-PINNs.

Several biophysical EP models have been proposed (see
models.cellml.org/electrophysiology), each with varying degrees
of detail aiming to reproduce different EP features, cardiac
regions or animal/human experimental findings.Mathematically,
these EP models usually take the form of a reaction-diffusion
system where a diffusion term or equivalent (6) models the
propagation of the electrical signal across the cardiac tissue. In the
monodomain formulation, a partial differential equation (PDE)

describes the spatio-temporal variations in the electrical potential
across a myocyte cell membrane (V). This PDE is usually coupled
to one or more ordinary differential equations (ODEs) describing
how, at each point in time and space, V and other local state
variables both determine and are determined by the flux of ions
across the cell membrane (5).

The most parsimonious model of the action potential
describes it as a travelling excitation wave followed by a non-
excitable (refractory) region. This representation requires at
least two state variables: V , which spreads (diffuses) across
neighbouring regions, and a non-observable, non-diffusible
recovery variable W which effectively controls the refractoriness
and restitution properties of the model. One of the simplest
models that captures these properties is the 6-parameter
canine ventricular Aliev-Panfilov model (7), which models the
transmembrane ionic currents (V − W relationship) using
smooth, differentiable functions. Furthermore, the diffusion of V
across the cardiac tissue can be described by the monodomain
equation (5), which, when combined with the Aliev-Panfilov
model gives:

∂V

∂t
= E∇ .(D E∇V)− kV(V − a)(V − 1)− VW (1)

dW

dt
= (ǫ +

µ1W

V + µ2
)(−W − kV(V − b− 1)) (2)

The diffusion term E∇ .(D E∇V) reduces to D∇2V in the
case of homogeneous and isotropic conduction, i.e., when
the diffusion tensor D is approximated by the same scalar
throughout. Intuitively, this term quantifies how fast V is able
to spread to its immediate neighbourhood to become more
spatially homogeneous. D is determined mostly by the electrical
conductivity of the myocardium and is a strong determinant
of the propagation velocity of the AP. To prevent a leakage of
V to regions outside the heart domain, the system described
by Equations (1, 2) usually obeys no flux Neumann boundary
conditions: ∂V

∂En = 0 in the boundary of the heart tissue.
The −kV(V − a)(V − 1) − VW term in Equations (1, 2)

models the rapid changes in V caused by ionic fluxes across
the cell membrane. a is related to the excitation threshold (i.e.,
the minimum V value that leads to the onset of an AP). The
model’s APD and refractoriness can, in turn, be controlled using
b. The values for each of the model parameters are typically
chosen empirically to reproduce observed electrical signals -
we use the values listed in Supplementary Table 1. The Aliev-
Panfilov model uses rescaled units: V is adimensional (typically
in the [0, 1] AU interval) and time is measured in temporal units,
referred to as TU throughout this study. 1 TU corresponds to
approximately 13ms (7).

Other more complex EP models exist, through which it is
possible to model individual membrane ionic currents and other
biological components relevant for the AP and its propagation.
One example used in the current study is a 14-current 30-variable
canine atrial model that incorporates different degrees of EP
remodelling caused by atrial fibrillation (8).

By assigning different sets of parameters and/or initial
conditions to EP mathematical models, they can represent the
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FIGURE 1 | Numerical solutions to the Aliev-Panfilov monodomain system for: (a) Planar wave. (b) Centrifugal wave. (c) Spiral wave. (d) Centrifugal wave in the

presence of a square heterogeneity in D. (e) Spiral wave in the presence of a square heterogeneity in D.

electrical behaviour of the heart in both healthy and arrhythmic
conditions. Healthy conditions are usually represented as
unidirectional smooth propagation from a single source
(Figures 1a,b). Large sources produce wave fronts which are
close to planar, whereas point-like wavefronts lead to centrifugal
(convex) wavefronts. Arrhythmias are usually modelled as
one or more re-entrant waves (called spiral waves or rotors in
2D–Figure 1c). Moreover, the wavefronts and/or wavebacks
of spiral waves can, in some instances, fragment (break-up),
leading to complex activation patterns (9). These models can also
consider localised pathology such as fibrosis, scar or ischaemia
as heterogeneities in one or more model parameters. Localised
reductions in D, for instance, can be used to reproduce the
slow-down of AP propagation in fibrotic lesions (10). These
heterogeneities can lead to local changes in the curvature of the
activation wavefront (Figures 1d,e).

2.2. Parameter Estimation in Cardiac
Electrophysiology
Biophysical models are usually employed in forward mode,
with the aim of reproducing the system’s behaviour assuming
that all model parameters are perfectly known. In many
circumstances, such as the identification of pathology from EP
measurements, it is more desirable to use these biophysical
models in inverse mode, inferring the tissue parameters that
underlie an observed system behaviour. This task, often called
parameter estimation (or systems identification), is extremely
challenging for several reasons.

The observed data are typically insufficient to identify a
unique parameter value, since the observations are usually sparse,
incomplete and polluted by noise. This can be handled by

optimisation methods, such as least squares, that fit data and
model in an optimal way, combined with problem-dependent
regularisation terms to stabilise the estimate (11). Typically,
the optimisation requires many forward runs of the underlying
model. Unfortunately, in physical systems that are described by
PDEs such as in EP, the forward runs are very computationally
expensive in realistic 2D and 3D settings. These difficulties are
exacerbated by the fact that the parameters in many EP models
are heterogeneous. Hence, we often do not infer a scalar quantity
but a (discrete) function in space and/or time. This increases the
cost and complexity of the inverse mode even further.

Modern inverse problem solvers such as ensemble Kalman
filters (12) sequential Monte Carlo (13) and parameter estimation
based on Markov chain Monte Carlo (14) are often combined
with reduced order models (15) or multi-fidelity approaches
(16) to decrease the computational complexity of parameter
estimation. These very complex methods typically make
strong assumptions about the statistical distribution of
model parameters and require dedicated problem-specific
parameterisation. It is not clear how well they can generalise
when applied to a different EP model or task.

2.3. Physics Informed Neural Networks
(PINNs)
Physics Informed Neural Networks (PINNs) (17) are an exciting
new tool for the study of physical systems modelled by PDEs
and/or ODEs. PINNs have been shown to both efficiently
find high-resolution solutions (forward problem) and perform
parameter estimation (inverse problem) in a variety of systems
(18). As opposed to most types of neural networks (NNs), whose
inputs are exclusively empirical data, PINNs incorporate explicit
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knowledge about the physical laws that govern a system. This
allows PINNs to compute solutions to initial and/or boundary
value problems with comparatively less training data than
conventional NNs.

Very briefly, PINNsmake use of automatic differentiation (19)
to rewrite the differential equations that a system obeys as the
minimisation of a functional f . For example, for Equations (1, 2),
this functional would be defined as:

fV = −
∂V

∂t
+ E∇ .(D E∇V)− kV(V − a)(V − 1)− VW (3)

fW = −
dW

dt
+ (ǫ +

µ1W

V + µ2
)(−W − kV(V − b− 1)) (4)

PINNs are trained tominimise a hybrid loss function, L, which
ensures the system obeys known physical laws (described by fV
and fW), whilst simultaneously fitting known empirical system
measurements. L thus includes terms to account for:

• agreement with the experimental measurements, Ldata;
• consistency with the physical laws of the system, LfV + LfW ;
• consistency with boundary LVBC and initial value conditions

LVIC .

Mathematically:

L = Ldata + LfV + LfW + LVBC + LVIC (5)

L =
1

N

N∑

i=1

(V(xi, ti)− VGTi)
2
+

1

Nf

Nf∑

j=1

(fV (xj, tj)
2
+fW(xj, tj)

2)+

1

Nb

Nb∑

k=1

(
∂V

∂En
(xk, tk))

2
+

1

N0

N0∑

l=1

(V(xl, t0)− V0)
2 (6)

Each of the terms of the loss function is typically computed in
different domains:

• (xi, ti) are the N measurement points, where ground truth
(GT) experimental measurements,VGT , are known and should
be reproduced as closely as possible.

• (xj, tj) are the Nf residual points, where the fulfilment of the
biophysical equations is tested.

• (xk, tk) are the Nb boundary points, where the network aims to
fulfil the Neumann boundary condition for V .

• (xi, t0) are the N0 initial points, where the known initial
condition, V0, is replicated as closely as possible.

There is an asymmetry in L between measurable (V) and latent
(W) variables: only experimental measurements (and initial
conditions) for V are usually available. Moreover, as W does
not diffuse across the tissue, it does not obey any boundary
conditions.

PINNs have typically been used for two main purposes
(18). In the so-called forward mode, the NN’s parameters are
optimised to provide a representation of the physical system of
interest consistent with observations. Using this representation,
the system’s differential equations can subsequently be solved at
an arbitrarily high spatial or temporal resolution, bypassing the
constraints (e.g., small temporal and spatial steps) of traditional
numerical solvers. In inverse mode, PINNs additionally perform

parameter inference (systems identification) by having the NN
optimise one or more of the equation parameters (which here
represent tissue EP properties) during the training process.

2.4. Cardiovascular Applications of PINNs
PINNs have recently been used in several areas of cardiovascular
medicine, especially for applications related to blood flow.
Examples include the estimation of myocardial perfusion
and related physiological parameters from dynamic contrast
enhanced MRI (20) and the estimation of haemodynamic
parameters from microscopic images of aneurysms-on-a-chip
(21).

In the field of cardiac EP, Sahli-Costabal et al. (22) used
PINNs in forward mode to estimate activation time maps (ATs,
i.e., the arrival times of the action potential) and conduction
velocity (CV) maps in the left atrium at high spatial resolution.
Sahli-Costabal’s method uses PINNs to solve the (isotropic
diffusion) eikonal equation, a simple relationship between ATs
and the spatial gradient of CV. This effectively interpolates AT
and CV across the left atrial surface. Although their PINNs
implementation was exclusively deployed on simulated data, the
proposed application is very clinically relevant, as it aims to
mitigate the low spatial resolution of clinical AT measurements.
Grandits et al. (23) subsequently extended this PINNs-eikonal
equation framework to anisotropic conduction, using it to
estimate high-resolution AT maps and fibre directions from in
silico and patient data. The PINNs method performance was
nevertheless lower than that of a traditional (variational) inverse
solver (24). As they rely on the eikonal equation, these tools are
not well suited to the study of arrhythmic conditions or to the
inference of EP parameters other than AT and CV.

2.5. Optical Mapping for Experimental
EP-PINNs Testing
Maps of transmural electrical potential (V), similar to those
simulated using the Aliev-Panfilov model, can be experimentally
recorded using optical mapping. Optical mapping is a technique
in which voltage-sensitive fluorescent dyes are added to
cardiomyocyte preparations before imaging at high spatio-
temporal resolution (25). It can be used to effectively obtain
uncalibrated measurements of V(Ex, t) in cardiac tissue across
time. Although optical mapping can be challenging in vivo, in
vitro experiments can provide very detailed insights into AP
properties and cellular-level EP properties and gain insights
into arrhythmic mechanisms (26). In particular, optical mapping
can be used to study the effect of anti-arrhythmic drugs on
cardiomyocyte preparations (27). These data were used to test
EP-PINNs in an experimental setting.

3. MATERIALS AND METHODS

In this section, we provide details about the finite differences
(FD) model used, in a variety of settings, to generate training
and test data for EP-PINNs. We then introduce the EP-PINNs
architecture, before giving details about each of the in silico
experiments in which EP-PINNs were deployed. We end this
section by introducing the experimental data (in vitro optical
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mapping) used for testing EP-PINNs. The code used for EP-
PINNs implementation and the generation of in silico GT data
is freely available from github.com/martavarela/EP-PINNs.

3.1. Generation of in silico EP Data
We use an FD solver to generate in silico cardiac EP data, VGT ,
which we use to train and evaluate the performance of EP-PINNs.
Simulations were carried out in two different geometries: in 1D,
in a 2-cm 1D domain cable; and in 2D, in a square with a 1-cm
side. We use in-house code written in Matlab 2020b (Mathworks,
Natick, MA, USA) that relies on central FD and an explicit 4-
stage Runge-Kutta method to solve the isotropic monodomain
Aliev-Panfilov model, as defined in Equations (1, 2) and model
parameters listed in Supplementary Table 1. All simulations use
Neumann boundary conditions and set dt = 5 × 10−3 TU and
dx = 100µm as temporal and spatial steps. All simulations were
run for 300 TU, with the calculated VGT(Ex, t) field saved at every
1TU and at every spatial step (every 100µm).We thus generate in
total 1.4×104 and 7.0×105 data points forVGT(Ex, t), respectively
in 1D and 2D.

Figure 1 shows example time frames of the generated V
maps in 2D. All APs were initialised by adding an external
stimulus current Vstim = 0.12 AU to the right-hand side
of Equation (1) for 1 TU in a sub-domain of the studied
geometry (Figure 1). In 2D simulations, this includes both planar
(Figure 1a) waves (emanating from a rectangular stimulus) and
centrifugal waves (from a point-like excitation) (Figure 1b).
Spiral waves were also created using the cross-field protocol:
as an initial planar excitation propagates, a second planar
excitation wave, orthogonal to the first, is initiated. When timed
appropriately (42 TU after the first stimulus, in our model),
the second planar wave continuously curves as it moves to
non-refractory tissue, giving rise to a sustained spiral wave
(Figure 1c).

The data generated by the FD model is treated as GT data
and is used to both train and test EP-PINNs. As in past studies
(18, 28), we train EP-PINNs on a case-by-case basis, with a small
subset of the data for which parameter inference is going to be
performed. This is in contrast to most supervised NNs, which
are usually trained with large amounts of data acquired in varied
circumstances.

Training data for EP-PINNs, VGT(Ex, t), are provided to the
network as an input and used to minimise the data discrepancy
loss function, Ldata in Equation (6). They amount to 10–20% of
the total generated data, corresponding to a variable number of
data points as detailed below and in Supplementary Table 2. The
remaining data are withheld from EP-PINNs and used, in a post-
processing step, to assess EP-PINNs’ ability to reproduce cardiac
APs, as detailed below.

3.2. Architecture and Training of EP-PINNs
EP-PINNs are designed, trained and deployed using the Python
DeepXDE library (28). As in past successful implementations of
PINNs (18, 28), we use a fully connected network architecture.

As detailed in Figure 2, EP-PINNs take as inputs the spatio-
temporal points, (Ex, t), where they will estimate the main outputs:
V (and W). Experimental measurements of V , VGT(Ex, t), are
also provided to EP-PINNs as inputs in a (training) subset

of (Ex, t). EP-PINNs minimise the hybrid physics-informed loss
function described before (see Equations 5 and 6), by adjusting
the network’s weights and biases (collectively named θ in
Figure 2). In inverse mode, EP-PINNs additionally adjust one
or more parameters of the Aliev-Panfilov model (generically
λ in Figure 2). The number of layers and neurons used by
EP-PINNs is adjusted to the domain size and the complexity
of the problem at hand, as described below and detailed in
Supplementary Table 2.

The optimisation approach used for EP-PINNs also depends
on problem size. For 1D problems, we use Adam optimisation
(29)—see Figure 2C. We empirically determined that, in 2D,
EP-PINNs’ performance improved when initially using Adam
optimisation for only the data agreement term (Ldata in Equation
6), followed by Adam optimisation for the full loss function
and ending in a final phase of L-BFGS optimisation (30)—
see Figure 2C. The initial Adam training phases are used to
rapidly approach the desired minimum and the final L-BFGS
optimisation phase helps the network converge faster towards it
(28).

In the presence of spatially-varying EP parameters (D in the
current study), we use network architecture B (see Figure 2B).
Here, D(Ex, t) is estimated by a parallel NN, NND, with the same
number of layers and neurons as the main NN. In this setup,
D is treated as a system variable (on par with V and W) and
its estimates directly contribute to the loss term that ensures the
agreement with the EP equations: LfV in Equation (6).

The hyperbolic tangent function (tanh) is used throughout
as the differentiable activation function and Glorot initialisation
from a uniform distribution is used for all weights (31).
Additionally, to minimise convergence problems caused by
explosive gradients (28) and enhance the NN’s stability, we
implemented an automatic reset of the training process when
the losses at the first epoch of the training exceeded a predefined
threshold.

EP-PINNs were trained on a high performance machine
with 1 RTX6000 GPU and 4 AMD EPYC 7742 CPUs. Typical
training times varied between 15 min (for 1D problems) and
16h (for heterogeneous spiral wave problems), as detailed in
Supplementary Table 2.

3.2.1. Assessment of EP-PINNs Performance
To assess the performance of EP-PINNs, we calculate, across
all test points Ntest , the root mean squared error (RMSE) for
estimates of V :

RMSE =

√√√√ 1

Ntest

Ntest∑

i=1

(V(i)− VGT(i))2 (7)

The RMSE is, by construction, adimensional and in the same
scale range as V . All experiments were repeated at least 5 times to
probe the variability in RMSE. In inverse mode, we additionally
calculate the precision of the estimated model parameters using
the standard deviation of the parameters estimated by EP-PINNs
in these 5 different runs.
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FIGURE 2 | Network architectures and training schemes for EP-PINNs used in this study. Neurons are represented by σ . In forward simulations only network

parameters θ were estimated, whereas in the inverse setting one or more EP parameters (λ) were also calculated. (A) Architecture used in all forward simulations and

all inverse simulations (1D and 2D) with homogeneous EP parameters. (B) Architecture used in all 2D forward simulations and all inverse simulations where D was a

spatially-varying field. (C) Used training schemes. 1 was used in in silico 1D problems, whereas training scheme 2 was used in 2D problems and for optical mapping

experimental data. The number of NN neurons and layers varied across different experiments, as did the learning rates (lr) and number of iterations (iter) in training

scheme 2. Further details about the architecture and parameterisation of the NNs and training schemes can be found in Supplementary Table 2.

3.3. Forward Solution of EP Models
3.3.1. 1D Cable Geometry
We assessed the accuracy of EP-PINNs when solving the
monodomain equation with the Aliev-Panfilov ionic model
(forward problem) in the 20-cm cable during 70 TU
(corresponding to 903 ms). We divided the GT data from
the FD solver, VGT , into test and training datasets using a
90–10% split. This corresponds to 140 randomly chosen points
across the temporal and spatial domains for training EP-PINNs
and 1,260 points for testing. As for inverse 1D problems, EP-
PINNs were implemented in this instance using architecture A
and training scheme 1 (see Supplementary Table 2).

We used two different training setups:

1. using only in silico experimental VGT measurements as GT, as
in Equation (6).

2. using in silico experimental points for VGT and WGT in
the loss function, by adding an extra term: LWGT =
1
N

∑N
i=1(W(xi, ti)−WGTi)

2 to Equation (5).

Setup 1 more closely resembles an experimental setup, as the
latent variableWGT is not usually measurable.

To gauge whether EP-PINNs performance depended on
model parameter choice, we used EP-PINNs on GT data
synthesised with two different sets of model parameters, as

detailed in Supplementary Table 1.
We additionally evaluated the performance of EP-PINNs in in

silico data corrupted by noise. For this, we added to VGT zero-

mean Gaussian noise with standard deviations of 0.05, 0.10, 0.50

or 1.00 AU (with 1 AU being the approximate amplitude of an
AP).

We also tested the performance of EP-PINNs in the presence

of a reduced number of training data points. For this, we

provided the network with VGT at 1× 104, 5× 103, 1× 103

or 100 random training points within the 1D space-time
domain (compared to 1.40×107 in usual conditions). We used
architecture A with training scheme 1 in all 1D problems (see
Supplementary Table 2).
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3.3.2. 2D Rectangular Geometry
We solved the forward problem in 2D, using the Aliev-Panfilov
model in an isotropic and homogeneous 10-cm side square
over 70 TU. We used 1.4× 105 randomly chosen data points
(across the temporal and spatial domains) from the FD solver
for the training of EP-PINNs (corresponding to 20% of the total
generated points) and reserved the remaining 5.6× 105 points
to assess EP-PINNs’ performance. Simulations were carried out
in three scenarios: planar wave (Figure 1a), centrifugal wave,
emanating from point-like excitation in a corner (Figure 1b) and
a spiral wave (Figure 1c). Here and in the equivalent inverse
setup, EP-PINNs were implemented using architecture A and
training scheme 2 (see Supplementary Table 2).

The point-like excitation and spiral wave scenarios were
also simulated in heterogeneous conditions, where a 2-mm side
square within the spatial domain was assigned a permanent
diffusion coefficient (Dlesion = 0.02 mm2/TU) lower than
that of background tissue (D0 = 0.1 mm2/TU). Architecture
B with training scheme 2 was used for all (forward and
inverse) heterogeneous problems (see Supplementary Table 2).
A sigmoid function was used in the NN dedicated to estimating
D(Ex, t) (NND in Figure 2B) to account for the fact that D(Ex, t)
follows a binomial distribution: D0 in healthy tissue and
Dlesion otherwise.

3.4. Inverse Estimation of EP Parameters
We withheld the value of one or more of the model
parameters from EP-PINNs, which were instead estimated by it.
These parameters were chosen for their comparatively simple
biophysical interpretation, known susceptibility to both disease
remodelling and pharmacological action, and the limited degree
of mathematical coupling between them. They were:

• a, which is related to the tissue excitation threshold (see
Equation 1);

• D, the scalar diffusion coefficient (proportional to the electrical
conductivity of the tissue, see Equation 1);

• b, which controls APD, see Equation 2.
• a and D simultaneously;
• b and D simultaneously.

3.4.1. Homogeneous 1D and 2D Geometries
We solved the inverse problem in the same (1D or 2D)
setup, architecture and training scheme as for the forward
problems and using a similar division of randomly chosen data
points for training and testing. We assumed that none of the
selected parameters varied across time or space (except for D,
in the heterogeneous problem described below) and used the
values listed in Supplementary Table 1 as GT values. In 1D,
we additionally investigated how EP parameter estimation was
affected by experimental noise. For this, Gaussian noise (σ =

0.05 or 0.10 AU) was added to the in silico data as described for
the forward mode in section 3.3.

In addition to EP-PINNs robustness in the presence of
experimental noise, we are also interested in its ability to
cope with model uncertainty. Therefore, to assess EP-PINNs’
ability to generalise beyond the model it is trained on, we

additionally tested it on APs generated on a much more complex
canine atrial EP model (8). These atrial APs are markedly
different from those of the Aliev Panfilov model the EP-
PINNs assumes, both in morphology and restitution properties.
The canine atrial model data were synthesised using Matlab
(https://models.cellml.org/workspace/47c) with central FD and
explicit forward Euler schemes (dt = 5µs and dx = 100µm),
with data saved at every spatial step and at every ms. Using this
model, we created GT data for left atrial cells at 3 stages of AF-
induced remodelling, which differed in APD. We tested, using
the 1D model in inverse mode, whether EP-PINNs could identify
the reduction in APD (detected as an increase in parameter b) in
left atrial APs caused by increasing amounts of AF remodelling.

3.4.2. Estimation of EP Parameter Heterogeneities
We assessed EP-PINNs’ ability to recognise spatial
heterogeneities in model parameters in 2D, as a test for EP-
PINNs potential for identifying spatially-varying lesions such
as fibrosis. For this, we used the same setup as in section 3.3.2,
with D0 = 0.1 mm2/TU reduced to Dlesion = 0.02 mm2/TU
in a similar square region. As before, we estimated D(Ex, t)
on its own and simultaneously with either the a or b global
model parameters.

3.5. Parameter Estimation Using Optical
Mapping Data
We tested EP-PINNs performance on in vitro datasets using
optical mapping data from neonatal ventricular rat myocyte
preparations stained with a voltage-sensitive dye, as described in
detail by Chowdhury et al. (27). Briefly, we used four time series
(movies) of optical mapping images (field of view: 4.1 × 0.1mm,
spatial resolution: 1.2 µm, temporal resolution: 2 ms, duration:
300 ms). In two of these image series, ionic channel modulating
drugs (E-4031 or nifedipine) had been administered at half
maximal inhibitory concentration (IC50): 772.2 nM for nifedipine
and 243.4 nM for E-4031. The other two temporal image series
consisted of matched control (baseline) preparations, to which
no drug had been given.

We manually selected two square regions of interest (ROIs)
with a side of 2.3 µm and with their centres 0.7 mm apart, in the
same image location for each time series. We spatially averaged
the optical signal over each ROI to obtain a signal trace across
time. From this signal, we manually selected two consecutive APs
and normalised the signal to the [0, 1] interval for consistency
with the Aliev-Panfilov model. To improve the signal to noise
ratio (SNR) of this trace, we applied a mean average filter twice,
aligned and averaged the two APs over time to obtain a single
higher-SNR AP. These pairs of post-processed APs were used as
inputs to 1D EP-PINNs in inverse mode, with b as the variable to
be estimated. All model parameters were unchanged from those
in Supplementary Table 1. We used EP-PINNs’ architecture A
with training scheme 2 to estimate b 10 times for each setting.
116-200 points were used for training EP-PINNs and 29–50 to
test it, as detailed in Supplementary Table 2.

We investigated in particular whether EP-PINNs could detect
the effect on APD of E-4031 and nifedipine, which, respectively,
block the hERG voltage-gated potassium channel (IKr current)
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and the L-type calcium channel (ICaL current). Whereas, E-
4031 will extend APD (and thus shorten b in the Aliev-Panfilov
model—see Equations 1, 2), nifedipine will have the opposite
effect, decreasing APD (increasing b).We compared EP-PINNs’ b
estimates for i) E-4031 vs. baseline and ii) nifedipine vs. baseline
and assessed, using a t-test, whether the administered drugs
significantly changed b values.

4. RESULTS

EP-PINNs successfully solved the monodomain equation
coupled with the Aliev-Panfilov model in 1D and 2D, including
in the presence of heterogeneities in D. In inverse mode, the
proposed setup could also successfully perform EP parameter
estimation from in silico and in vitro data, as described below.

4.1. Forward Solution of EP Models
4.1.1. 1D Cable Geometry
EP-PINNs accurately reproduced the features, morphology and
conduction properties of the APs generated by the Aliev-
Panfilov model (Figure 3A). We found that EP-PINNs could
accurately simulate APs even in the absence of GT values for
the latent variable W. Although the error was slightly increased
in the absence of WGT (RMSE = 6.0× 10−3 ± 2.0× 10−3 vs.
9.0× 10−3 ± 4.0× 10−3), the RMSE was still minimal (see top
left inset in Figure 3A) and the estimated V(Ex, t) were visually
indistinguishable fromGT traces in both cases. As a consequence,
in all other experiments described in this study, GT data for W
was not used to train EP-PINNs, whose training relied solely
on VGT .

We found that EP-PINNs could solve the model accurately
in the presence of even small numbers of VGT points for
training, with RMSE ≤ 2.5× 10−2 even when trained with
only 100 points (Figure 3A). As expected, increasing noise
in VGT led to increasing levels of error in V estimates
(Figure 3B), but EP-PINNs were able to converge in the presence
of Gaussian noise with a standard deviation below 0.5 AU
(approximately 0.5 times the amplitude of an AP). When using
a different set of parameters for the Aliev-Panfilov model (see
Supplementary Table 1), EP-PINNs’ accuracy was comparable,
suggesting that the obtained EP-PINNs performance is robust to
different biophysical model settings.

4.1.2. 2D Rectangular Geometry
In homogeneous conditions, EP-PINNs were also able to
reproduce AP propagation in 2D for planar, centrifugal and
spiral waves (see Figures 4a–c), with excellent accuracy (RMSE <

3.0× 10−2 throughout). In the presence of heterogeneities in
D, EP-PINNs were also able to accurately simulate APs with an
RMSE of 5.6× 10−3 ± 6.6× 10−4 for centrifugal waves, which
increased slightly to 2.7× 10−2 ± 4.3× 10−3 for spiral ones
(Figures 4a–c). In the spiral wave scenario, EP-PINNs found it
most difficult to reproduce V in the high wavefront curvature
regions close to the spiral wave tip.

Movies showing the propagation of APs in the 2D rectangular
domain across time (for both GT and EP-PINNs solvers) can be
seen in Supplementary Videos 1–5.

4.2. Inverse Estimation of EP Parameters
4.2.1. Homogeneous 1D and 2D Geometries
EP-PINNs were able to estimate global model parameters in 1D
the presence of varying degrees of noise, as detailed in Figure 5.
As for the forward problem (Figure 3), AP morphology and
main properties were well reproduced even in the presence
of large amounts of noise, with RMSE < 9.0× 10−3 overall.
Example plots of V(t) in inverse mode in 1D are shown in
Supplementary Figure 1.

When estimating only one model parameter, relative errors
(RE) did not exceed on average 27%, even in the presence
of noise. Estimates of b, which determines AP duration,
were the most accurate (|RE| < 3%), followed by D
(|RE| < 35%), which EP-PINNs tended to underestimate.
a estimation was considerably more difficult. Joint estimation
of two parameters led in general to less accurate parameter
estimates (Figure 5), with an error as high as 100% for
a when estimated jointly with D in the presence of noise
(see Figure 5). When performing simultaneous estimation
of two parameters, no evidence of coupling between them
was observed.

EP-PINNs were additionally able to perform robust parameter
estimation on synthetic experimental data generated by a
different EP model (8). When estimating b in APs generated
by a different atrial EP model, it correctly inferred that APD
is reduced (i.e., b is increased) for increasing degrees of AF
remodelling, as shown in Figure 6. Moreover, the main AP
features were well reproduced, with small discrepancies related to
the differences between the two models (Figure 6). Interestingly,
the solution proposed by EP-PINNs consistently shows a less
steep depolarisation than expected from either Aliev-Panfilov
model and the detailed canine model. This mismatch is likely
to be a consequence of the EP-PINNs’ adjustment to slightly
different AP morphologies from those in the Aliev-Panfilov
model in its loss function. This suggests that the cross-model
estimation of parameters related to excitability (e.g., a) may
not be as successful as parameters related to APD (such
as b).

Global parameter estimation in 2D was again successful,
for both unidirectional propagation and spiral wave
conditions, as demonstrated in Figure 7. As in 1D, V
was also correctly reproduced in the different analysed
conditions (Figures 7b–d), with RMSE < 2.3 × 10−2

throughout. Across all experiments, parameter estimation
and V reconstruction were most successful for planar wave
conditions followed by centrifugal waves and less accurate for
spiral waves, as shown in Figure 7a. The comparatively worse
performance of EP-PINNs in spiral wave conditions may be
caused by the spatial dependency of wave front curvature in
this setting.

Errors were largest when estimating two parameters
simultaneously, with EP-PINNs again struggling to estimate
a, especially when in conjunction with D (|RE|a < 100%).
Estimates of b were once again the most accurate (|RE|b < 8%)
and, as in 1D, EP-PINNs tended to underestimate D across
all settings and to underestimate all parameters in the spiral
wave scenario.
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FIGURE 3 | Effect of the number of sampled experimental points (A) and experimental noise (B) on EP-PINNs V estimates. The error in estimation is measured using

the root mean square error (RMSE, see Equation 7) in forward mode in 1D. Representative V (t) plots sampled at a random spatial location are shown as insets for

some of the probed conditions.

FIGURE 4 | EP-PINNs 2D forward solutions to the Aliev-Panfilov monodomain system for the same conditions as the GT data depicted in Figure 1. (a) Planar wave.

(b) Centrifugal wave. (c) Spiral wave. (d) Centrifugal wave in the presence of a square heterogeneity in D. (e) Spiral wave in the presence of a square heterogeneity in

D.

4.2.2. Estimation of EP Parameter Heterogeneities
EP-PINNs were able to estimate D on a pixel-by-pixel basis with

remarkable accuracy, as demonstrated in Figures 8c,d, accurately
identifying the lowD region.RMSED was consistently below 3.5×
10−2 (Figure 8e) and was lower for the centrifugal wave case than
the spiral wave one. As before, V was similarly well reproduced

(Figures 8a,b), especially in the centrifugal wave scenario (see
Figures 8b,d), with RMSE < 3.0 × 10−2. In the spiral wave
scenario, EP-PINNs found the estimation of D hardest near the

spiral tip (see Figure 8d), where the high wavefront curvature
may resemble the wavefront bending caused by low D regions.

Using architecture B, global estimation of a and b was also
possible in the presence of the heterogeneous D field, keeping the
same trends as in the 1D and 2D homogeneous cases (Figure 8e).
As before, no evidence of coupling between the simultaneously
estimated parameters was found. In detail:

• b was very accurately estimated (|RE| < 10%), whereas a
estimates had a larger error (|RE| < 100%);
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FIGURE 5 | Error in global EP parameter estimates by EP-PINNs in the inverse

setting in 1D in the presence of different amounts of experimental noise. We

show the relative error for a, b and D, when estimated separately and in pairs.

• estimating a and b simultaneously with the D field led to small
decreases in accuracy overall;

• estimatingV andD in the spiral wave setting wasmore difficult
than in the presence of a centrifugal wave.

4.3. Parameter Estimation using Optical
Mapping Data
Using optical mapping signals, EP-PINNs were able to
accurately reproduce experimental APs and identify the
actions of nifedipine and E-4031, correctly estimating that they,
respectively, reduce and increase APD (Figure 9). The reduction
in APD caused by nifedipine, an ICaL blocker, was detected by
EP-PINNs as a significant increase in b in the Aliev-Panfilov
model [1b = (2.7±0.9)×10−2, p < 10−5]. The E-4031-induced
increase in APD was more subtle [1b = (−2.1 ± 3.0) × 10−2]
and non-significant (p = 0.38). The reduced effect of E-4031
in these data is consistent with the modest role IKr , the current
blocked by E-4031, is expected to play in rodent APs (32).

5. DISCUSSION

We present EP-PINNs, a successful framework to estimate EP
parameters from measurements of trans-membrane potential
V . We demonstrate EP-PINNs ability to accurately reproduce
AP propagation in 1D and 2D in the presence of very
sparse experimental measurements, experimental noise and
model uncertainty. EP-PINNs can also estimate, for 1D and
2D in silico and in vitro data, global markers of APD,
excitation threshold and/or conductivity (diffusion coefficient,
D). We additionally show that EP-PINNs are further capable of
identifying heterogeneities in EP parameters, such as D, even in
arrhythmic conditions, showcasing their potential for clinically
useful applications.

5.1. Forward Solution of EP Models
EP-PINNs offer a flexible and easy to implement framework
for parameter estimation in EP. Sahli-Costabal et al. (22) and
Grandits et al. (23) had already demonstrated PINNs’ potential
in cardiac EP by estimating high-resolution left atrial AT and
CV maps in sinus rhythm conditions using a simple activation-
only biophysical model. We extend PINNs’ applications in EP
by applying them to a more complex biophysical model, the
monodomain Aliev-Panfilov model (7), which also captures
restitution properties through the inclusion of a latent (non-
measurable) variable, W. For the first time, we use a PINNs
framework for the simulation of arrhythmic conditions, such as
spiral waves, and for the estimation of parameters unrelated to
the AT of V .

Importantly, we show EP-PINNs’ are able to reproduce APs
and perform parameter estimation in the absence of any data
forW, which is not available experimentally. This bodes well for
the deployment of PINNs for even more complex EP models,
which use a higher number of latent variables to model individual
ionic channels. This possibility is also supported by the work of
Yazdani et al. (33), who successfully used PINNs for parameter
estimation across several biological systems described by large
sets of coupled ODEs.

We demonstrate PINNs’ ability to describe AP dynamics
in several circumstances. In 1D, EP-PINNs were able to
reproduce APs even in the presence of very reduced amounts
of experimental data (Figure 3A) and large amounts of
noise (Figure 3B). PINNs’ incorporation of explicit biophysical
equations in the NN’s loss function acts as an effective regulariser
in EP problems, as demonstrated before in many other physical
systems (17, 18). We note that these inherent regularisation
properties allow PINNs to be trained with much lower amounts
of training data than conventional NNs. The main drawback is
the need for a comparatively time-intensive training on a case-
by-case basis, compared to the global training usually employed
with supervised NNs.

In 2D, we were able to accurately replicate AP dynamics
for planar, centrifugal and planar waves, even in the presence
of heterogeneities in the diffusion coefficient (see Figures 4, 8).
We found that a more sophisticated training scheme and, for
spiral waves, an increased NN capacity (5 layers of 64 neurons
vs. 4 layers of 32 neurons, see Supplementary Table 2) were
necessary for convergence in these large and complex problems.
This more complex setup could, of course, have been used to
solve the simpler 1D problems, through a trade-off between
computational time and the convenience of a one-size-fits-all
EP-PINNs approach.

5.2. Inverse Estimation of EP Parameters
It is in inverse mode, when estimating model properties from
sparse measurements of V , that the EP-PINNs framework
showcases its usefulness. Parameter estimation is an important
topic in EP, as it is essential for both the personalisation of models
and for the understanding of the effect of pathology and drugs on
APs. Although parameter estimation in EP has been extensively
discussed as a means of reducing the uncertainty associated with
current biophysical models (34), NNs had not yet been used
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FIGURE 6 | 1D inverse EP-PINNs solution for a detailed canine left atrial model in the conditions of: (A) no remodelling. (B) moderate AF remodelling. (C) severe AF

remodelling. Representative V (t) plots are shown throughout, accompanied by the models 90% APD and EP-PINNS estimates for b, a parameter inversely

proportional to APD.

FIGURE 7 | EP-PINNs inverse solution in homogeneous conditions in 2D. (a) Relative error for global estimates of: a and D and b and D, when estimated separately

or simultaneously. (b–d) Corresponding representative V maps for: planar wave (b), centrifugal wave (c), and spiral wave (d). Compare (b–d) to the corresponding GT

in Figures 1a-c and the forward solutions in Figures 4a–c.

for dedicated model parameter estimation in EP. This contrasts
with the more common use of NNs as efficient solvers of EP
systems (in a similar fashion to the EP-PINNs forward mode in
the current study) (15, 35, 36).

Using EP-PINNs, we were able to estimate, with different
degrees of accuracy, three different biophysical parameters,
each controlling, in an almost uncoupled manner, different
observable properties of the system: APD (through b), excitability
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FIGURE 8 | EP-PINNs 2D inverse solution in the presence of heterogeneities in D. Maps showing representative V and D estimates for: (a,c) centrifugal wave and

(b,d) spiral wave. (e) Error for global estimates of a and b and RMSE for estimates of D across the 2D domain, for all estimated parameter combinations. Compare

(a,b) to the corresponding GT in Figures 1d,e and the forward solutions in Figures 4d,e.

FIGURE 9 | 1D inverse EP-PINNs solution for experimental optical mapping data, in the presence of (A) ICaL channel blocker nifedipine and (B) IKr channel blocker

E-4031. (1b refers to the change in model parameter b in the presence of the drug when compared to the baseline value. Each AP was acquired in separate datasets

and juxtaposed in the figure to allow visual comparisons.

(through a) and conduction velocity (through D). In both
1D and 2D (homogeneous and heterogeneous) problems, the
network was highly successful at estimating b, but struggled
with a, especially when estimating it in tandem with D. This is
likely to reflect a dependency between EP-PINNs’ inverse mode
effectiveness and the solution type that is probed experimentally.
Indeed, when compared to b, the experimental inputs to the
network (VGT(Ex, t)), depend little on a providing the initial
stimulus is supra-threshold. An exception could have been
the spiral wave scenario, whose properties (e.g., the distance
between spiral arms) depend strongly on model parameters
such as a. Model parameters are more strongly coupled in
the properties of spiral solutions, however, explaining the

consistently lower accuracy of EP-PINNs’ estimates in this
scenario (Figures 7a,d). Parameter estimation in the spiral wave
scenario may be improved when EP-PINNs are trained in longer
time series, in which the spiral wave tip samples more of the
spatial domain.

These issues underlie the difficulties of finding a single
experimental design that allows for simultaneous accurate
estimation of several EP parameters. A solution for this problem
may be the training of PINNs using data from the same
system acquired in different experimental conditions, perhaps by
training separate NNs in parallel with a combined loss function,
in an analogous manner to architecture B in this study (see
Figure 2).
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EP-PINNs were additionally able to identify heterogeneities
in D across the 2D domain (see Figure 8), by estimating D in
a separate parallel NN which shared terms of the loss function
(Ldata, see Equation 5) with the main NN. Characterising
heterogeneities in EP parameters from electrical measurements
is an interesting problem from a clinical point of view, as
arrhythmias such as AF are often accompanied by heterogeneous
changes in EP properties. Of these, regions of dense fibrosis
[often modelled as areas with a reduced D (10)] are a promising
candidate for personalised ablation sites (37), whichmay increase
the overall efficacy of these procedures. EP-PINNs are thus well
placed to help locate these putative ablation sites by identifying
spatial heterogeneities in EP parameters such as D.

The inputs to the current EP-PINNs implementation, V(Ex, t)
are not, however, measurable clinically. Future work will
modify EP-PINNs to instead perform parameter inference
from extracellular electrical potentials, φe, which are regularly
measured during clinical procedures using contact electrodes.
φe can be interpreted as a weighted spatial convolution of the
E∇ .(D E∇V) term in Equation (2) (38, 39), making the identification
of localised EP changes more difficult. To take this into account,
EP-PINNs designed for φe analysis may benefit from amove away
from the current fully-connected architecture to incorporate, for
example, convolutional layers.

5.3. Parameter Estimation Using Optical
Mapping Data
An important point for future clinical applications of EP-
PINNs is its ability to generalise beyond the details of the
setup it is trained on. We showed that the proposed EP-PINNs
implementation is model-agnostic, as it was able to perform
robust parameter inference on in silico data generated by a much
more complex atrial EP model (8) than the 2-variable ventricular
one used in its loss function. In particular, EP-PINNs were able to
correctly identify the decrease in APD (manifest as an increase
in b) that is associated with increasing degrees of AF-induced
remodelling in this model (see Figure 6).

In contrast to most previous PINN studies (17, 22, 28, 33,
40), we complemented the in silico studies with an assessment
of the EP-PINNs performance on experimental biological data.
Despite requiring a proportionally higher amount of training
data than in silico experiments, EP-PINNs were able to cope well
with the noise and artefacts unavoidably present in experimental
data to identify the effect on APD of two different drugs: an
IKr blocker and an ICaL blocker. As for the data generated by
a different mathematical model (Figure 6), EP-PINNs coped
well with differences between the experimental data and the
Aliev-Panfilov model, namely in resting membrane potential (see
Figure 9). This ability to generalise well to data with different
characteristics could be due to the use of PDE as a soft constraint
(a term in the loss function) in the EP-PINNs framework, as well
as the lack of assumptions about the distributions from which
data come from.

As demonstrated for the in silico tests, the EP-PINNs
framework can easily be extended to simultaneously infer
the effect of drugs on more than one EP parameter,

which may be useful for the characterisation and safety
assessments of anti-arrhythmic drugs. These applications
may further benefit from the training of EP-PINNs on
more complex biophysical models, to obtain a more fine-
grained characterisation of potential pharmacological (or
pathological) effects.

5.4. Limitations and Future Plans
The current study aims to demonstrate the potential of
PINNs within EP, as an initial necessary step towards
clinical applications of this method. As such, we only
trained EP-PINNs using one comparatively simple EP
model, in 1D and 2D scenarios and for the estimation of
a small number of EP parameters. We additionally did not
test EP-PINNs in the chaotic or pseudo-chaotic scenarios
of spiral wave break-up (9), which may be relevant for
some arrhythmias.

Generalisations of the proposed framework to 2D/3D
geometries representative of cardiac chambers, anisotropic
conditions and more detailed EP biophysical models
can be achieved by further increasing the capacity of
the deployed EP-PINNs, with a concurrent increase in
computational resources. However, promising and less
resource-intensive applications for EP-PINNs may be the
characterisation of pharmacological effects on AP or the
identification of heterogeneities in EP properties from
EGM signals.
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The quality and acceptance of machine learning (ML) approaches in cardiovascular

data interpretation depends strongly on model design and training and the interaction

with the clinical experts. We hypothesize that a software infrastructure for the training

and application of ML models can support the improvement of the model training and

provide relevant information for understanding the classification-relevant data features.

The presented solution supports an iterative training, evaluation, and exploration of

machine-learning-based multimodal data interpretation methods considering cardiac

MRI data. Correction, annotation, and exploration of clinical data and interpretation

of results are supported through dedicated interactive visual analytics tools. We test

the presented concept with two use cases from the ACDC and EMIDEC cardiac MRI

image analysis challenges. In both applications, pre-trained 2D U-Nets are used for

segmentation, and classifiers are trained for diagnostic tasks using radiomics features

of the segmented anatomical structures. The solution was successfully used to identify

outliers in automatic segmentation and image acquisition. The targeted curation and

addition of expert annotations improved the performance of the machine learning

models. Clinical experts were supported in understanding specific anatomical and

functional characteristics of the assigned disease classes.

Keywords: visual analytics, co-learning, machine learning, CMR, human in the loop (HITL), cardiovascular

phenotyping, artificial intelligence, classification

1. INTRODUCTION

In recent years publications and product developments have shown the potential of artificial
intelligence systems in cardiovascular medicine (1–4). Especially data-driven machine learning
models can support automatic interpretation of complex spatio-temporal information such as ECG
or image data, and the integrated analysis of complementary data from electronic health records,
sensor systems, etc. Two factors that are essential for the successful deployment of AI solutions
for image-based and multi-modal data interpretation are the model design and training and the
interaction with the users (3, 5).
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1.1. Integration of Image-Based
Information in Multi-Modal Cardiac
Disease Classification
Integrating complementary data of different types such as
demographic information and laboratory and image data
requires complex models that filter the densely sampled image
information appropriately. Many approaches for phenotyping
or predictive modeling using multi-modal data integrate image
information via conventional clinical parameters such as the
stenosis degree or the ejection fraction (6, 7). Thereby valuable
feature information of contained in the comprehensive image
data might be neglected. In contrast to the traditional features,
which describe the heart chamber volumes and myocardial
motion patterns of the left and right ventricle, so-called radiomics
features describe shape and texture properties of segmented
regions context-independently based on image intensities and
voxel classification (8). Radiomics features extracted from non-
contrast cine MRI have successfully been used to differentiate
between patients with myocardial infarction (MINF), dilated
cardiomyopathy (DCM), hypertrophic cardiomyopathy (HCM),
and an abnormal right ventricle (RV) (9–12). Further approaches
used features describing the myocardial texture in MRI-based
T1 and T2 maps (13) or delayed enhancement MRI (14) to
differentiate myocardial pathologies.

Standard radiomics features, which can be calculated with
freely available libraries such as pyradiomicswere designed for the
assessment of compact structures such as tumors (15). To better
consider the complex structure of the heart, further features
have been suggested. The Minkowski-Bouligand dimensions,
as described by Captur et al. (16) assesses how the length or
complexity of a contour increases while increasing the scale
or detail at which it is measured and is used to assess the
trabecularization of myocardium. Further features specifically
describing the cardiac anatomy such as the septum thickness have
been suggested by Tautz et al. (17, 18).

1.2. Expert Annotations for Cardiac Image
Interpretation
Quantitative and radiomics analysis of cardiac MRI image
data usually requires segmentation of the relevant anatomical
structures (19). Recent publications demonstrate the potential of
deep learning models such as the U-net for the segmentation
and interpretation of typical imaging sequences such as short-
axis cine MRI (20). However, the performance of these models
depends on the quality of the training data, and previous studies
showed that the annotation performance of clinical experts
is influenced by the annotation framework (21). The “Society
for Cardiovascular Magnetic Resonance” (SCMR) recommends
analyzing image frames in end-diastole (ED) and end-systole
(ES) (19) for assessing the global cardiac function. Therefore,
clinical datasets are often only sparsely annotated, and interactive
intelligent annotation and correction tools are required to extend
and improve the data so that they can be used to train machine
learning models. Commercial medical products might be used
if the software offers the export of the expert segmentation in
an open format. Open-source application such as 3D Slicer (22),

MITK Workbench (23) also provide generic tools for interactive
(24, 25), semi- and fully-automated segmentation algorithms.
These software tools integrate open-source libraries such as
MONAI Label1 to support an efficient interaction between the
annotation and machine learning environment (26). Specialized
research software tools such as Segment (27) and CAIPI (28)
provide dedicated solutions for the annotation and processing
of four-dimensional cardiac data, which can be used to generate
training data. The International Radiomics Platform (IRP) (29)
supported by the German Radiological Society2 further enables
the combination of annotated image data with clinical data
and questionnaires.

1.3. Clinical Integration of AI-Based
Solutions for Cardiac Image Interpretation
Modern deep learningmodels can classify several cardiac diseases
directly from image data (30, 31), but the inference process is
hardly understandable for most clinical experts. Explainability
approaches for convolutional neural networks support the
identification of image regions, which contribute to classification
results (32) and provide information for plausibility checks as
demonstrated for the interpretation of echocardiograms (33).
Explainability methods have been suggested for enhancing the
classification of cardiac diseases. Interpretability methods such
as Discovering and Testing with Concept Activation Vectors
(D-TCAV) can be used to show underlying features of the
classification (34). Especially in cardiovascular research, it can
be highly beneficial for hypothesis generation to understand
the shape and tissue characteristics, which determine the
assignment of a patient to a particular class. Working with well-
defined features, as suggested in Radiomics (8), might enable a
compromise between the optimal consideration of the complex
image information and a classification that is understandable
for clinical experts (35). However, the complex multi-modal
data used in phenotyping are difficult to interpret for humans
with classical approaches such as heatmaps and two-dimensional
diagrams (36, 37). When omics or image data is involved there
is a lack of backtracking within these tools, which links the
classification to specific relevant locations or time frames of the
underlying data.

Integrating AI training setups into clinical environments faces
several ethical and legal challenges. The management of health
record data is defined by the General Data Protection Regulation
(GDPR)3. These regulations define how and for what purpose
health data can be accessed. Platforms for federated AI training
such as JIP (38) and QuantMed (39) provide interfaces for
loading data from the Picture archiving and communication
system (PACS) and sharing fully trained models in a secure and
compliant way.Moreover, JIP implements an interface to connect
open-source deep learning libraries and permits the integration

1Medical Open Network Artificial Intelligence. Available online at:
https://monai.io
2https://www.drg.de/de-DE/3601/radiomics/
3https://www.eu-patient.eu/globalassets/policy/data-protection/data-protection-
guide-for-patients-organisations.pdf
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of other image processing frameworks like MITK or platforms
like IRP (29).

The FDA guidelines address the problem of the need for
AI model adaptation and improvement through retraining,
and suggest an efficient dynamic process for the development
and quality assurance of DL/ML methods in medical image
processing (40). The document describes how to manage data,
re-train, evaluate, and update AI methods in clinical settings
in such a way that newly trained models fulfill the regulatory
requirements for a medical product.

1.4. Goals
We hypothesize that a dedicated setup for the training and
application of machine learning methods with an expert-in-the-
loop approach can speed up and improve the training of the
AI models for image processing and multi-modal classification.
Furthermore, it can support the clinical expert in exploring and
understanding the analyzed datasets.

The existing infrastructure and tool solutions presented in the
previous paragraphs address all aspects required to set up an
environment that supports the development and application of
machine learning methods for the integrated usage of cardiac
MRI data in multi-modal data classification. Based on these
building blocks, we present a concept for a central environment
that supports dynamic machine learning with experts in the
loop. This central infrastructure should manage data and
the training and inference of machine learning models for
multi-modal cardiac data interpretation. We envision central
modules for cardiac structures segmentation, an automated
pre-processing and features extraction process, and a multi-
modal cardiovascular disease classification. To integrate clinical
experts into the loop we suggest an interactive exploration of
the extracted data and a disease hypotheses generation method.
Furthermore, this module should provide an interactive data
correction and data integrity check, as well as dynamic updates of
machine learning models. We test the presented setup with two
use-cases and publicly available data from MICCAI challenges

on image-based disease classification: the ACDC challenge for
the classification of cardiomyopathies (41) and the EMIDEC
challenge for the detection pathologies (49) using cardiac MRI
and non-image information.

2. MATERIALS AND METHODS

We propose a modular web-based software environment
to support co-learning and comprehensive analysis of
cardiovascular imaging data (Figure 1). The architecture of
our solution contains the following main components: a data
model; a semi-automated tool for efficient labeling; extraction of
cardiovascular and radiomics features; visual analytics interface.

For integration into the clinical infrastructure, DICOM
network services (42) are used to receive imaging data from PACS
systems. On arrival of new data, automated processes import,
classify, and, depending on the type of data, automatically pre-
process, segment datasets, and extract radiomics features. A web-
based application is provided for semi-automated segmentation
correction as described in Section Data Correction, Data
Integrity, and Dynamic Updates of Machine Learning Models.
Cases that the users correct can be directly used to improve
the segmentation algorithm by re-training. Figure 1 shows
the workflow for refining the segmentation and classification
solution. Study data can be analyzed in a web-based visual
analytics application Section Interactive Multi-modal Data
Exploration with Visual Analytics.

2.1. Data Model
The data model is essential for the traceability of the origin
of classification results. Figure 2 shows the major entities and
their hierarchical organization. Our data model follows a similar
structure described by the DICOM standard (42) using patients
and studies as entities to describe a patient cohort. Each patient
entity can have one or more studies. Each study can contain
several cases containing one or more 3- or 4-dimensional
images. For each case, deformation fields, clinical parameters,

FIGURE 1 | Concept of an iterative process for the training and evaluation of the ML-based segmentation and classification models. On import, image data is

automatically segmented, pre-processed, and features are extracted. The results of the automatic segmentation and classification is displayed in the visual exploration

interface. In addition clinical experts can manually correct the segmentation results of detected outliers. These corrections can be used to refine the segmentation

model.

Frontiers in Cardiovascular Medicine | www.frontiersin.org 3 March 2022 | Volume 9 | Article 829512168

https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/cardiovascular-medicine#articles


Huellebrand et al. Collaborative AI in CMR

FIGURE 2 | Schematic representation of the data model.

and annotations, such as image type, or classification labels are
stored. Automatic segmentation results and landmarks for the
definition the 17-segment model defined by the American Heart
Association (AHA) are stored in sessions so that it is always
traceable on which data the calculated parameters are based.
Furthermore, this data handling allows an evaluation of several
readers or repeated measurements and thus supports inter- and
intra-observer or ML model comparisons.

2.2. Machine Learning for Multi-Modal
Disease Classification
2.2.1. Automatic Segmentation, Pre-processing, and

Feature Extraction
The image processing part of the application is developed with
MeVisLab (43). For data pre-processing and the training of
models for the slice-wise segmentation of cardiac structures,
we use the Redleaf framework, which allows the integration of
inference methods directly in the MeVisLab based applications.
U-nets are trained for the segmentation of the relevant structures
such as RV, LV, and myocardium (44). These segmentations
form the basis for the extraction of typical radiomics features
and image-based cardiac biomarkers as suggested in Section
Introduction. For 4D image data we generate radiomics feature
curves that provide dynamic changes and motion patterns.
These time-resolved features are aggregated using minimum,
maximum, median, and (arithmetic) mean.

2.2.2. Multi-Modal Cardiovascular Disease

Classification
The classifications are based on features describing local and
global cardiac function, and radiomics features. We apply eight-
fold nested cross-validation to select relevant feature classes.
Moreover, during the cross-validation, we perform a model
selection of five classifiers and their respective hyperparameters
and train a classifier as described in Ivantsits et al. (45).

We perform a feature importance analysis as (46) proposed.
This analysis can be performed on any fittedmodel by calculating
a base score produced by the training or test set model. This is
followed by a random shuffle to one of the features and compared
to the baseline’s predictive power. This procedure is then repeated
and applied to all features to come up with an importance score.
This importance analysis gives insights into the decision made
by a classifier and can further be used to discover potential data
integrity issues.

2.3. Interactive Multi-Modal Data
Exploration With Visual Analytics
The interactive visualization is designed to support the
evaluation, validation, and hypothesis generation. It is provided
as a web-based tool for the clinical experts (Figure 3).

The interface provides an overview of relevant features for
a given patient cohort. These features are identified by the
feature importance analysis of the machine learning module. In
order to be sure that features such as, e.g., gender are always
considered, users can also select features to be included in the
exploration view. The parallel coordinate plots (PCP) visualize
the multi-dimensional data as line sets with points representing
the datasets’ parameters. Each y-axis represents the relevant
value range of one parameter. Each line corresponds to one
patient dataset. Time-resolved parameters are represented by the
aggregated minimum, maximum, or mean values.

Further chart types support an advanced exploration of
relationships between different parameters. Scatter plots
with regression lines visualize linear relationships between
parameters. Histograms show the distribution of different
parameters. Box plots give a standardized overview of the data
set. Pie charts visualize how frequently individual values or cases
of the disease class occur in the study. This can also be used to
visually identify unbalanced data sets, for which appropriate
measures can be taken in the case of subsequent training.

The exploration tool is designed as a hierarchical tool with
different interlinked views. The linking of the data is based
on the data model described in Section Data Model. Cases
can be selected interactively in the PCP by a technique called
brushing (47). The selected parameter range specifies the subset
of patients considered for the dependent diagram and curve
views. Images can be selected in the 2D viewer from this subset
by a drop-down menu above the viewer. The line corresponding
to the image selected in the 2D viewer is highlighted in the PCP
and the curve diagram by changing thickness and alpha value.

A curve diagram enables the analysis of temporal dynamics
of individual parameters. As shown in Figure 3, the curve color
corresponds to the class assigned to the underlying dataset to
enable a comparison of feature dynamics.

The image viewer shows the image data of a selected case
with segmentation contours and an overlay of the segmentation
uncertainty. Schematic visualization of the heart shows the
position of the displayed image slice with regard to the
cardiac anatomy. This approach supports the identification and
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FIGURE 3 | The parallel coordinates plot in the top row shows multi-dimensional data as line sets. Each y-axis represents a specific parameter. The diagrams in the

center row show distributions and correlations of selected parameters. The curve view on the bottom left supports the exploration of the temporal dynamics of a

selected parameter over the cardiac cycle The image data, the curve parameter of the selected timepoint is based on is displayed in the image viewer on the bottom

right. Contours and overlay show the segmentation as well as the local certainty of the segmentation model.

exploration of outliers as shown in Figure 4 and thereby the data
curation. Furthermore, via the aggregation of time-resolved data
in the PCP the user can backtrack information from a specific
feature to the relevant regions within the underlying image. This
can further be used to identify any data integrity issues.

2.3.1. Data Correction, Data Integrity, and Dynamic

Updates of Machine Learning Models
A second tool supports the correction and extension of ML-
based segmentation results (Figure 5). The image viewer allows
to delineate and correct contours defining the anatomical
structures (left and right endocardium, left epicardium) using
spline, freehand, and brush tools. The overview table indicates
the segmentation status of the image slices. When analyzing
time-resolved data, such as cine MRI, area and volume as
segmentation certainty curve diagrams support the identification
of mis-segmented timeframes to reduce the manual interactions.
Sparse corrections by the users can be transferred in 3D using
shape-based interpolation (25). To transfer segmentation results
motion-compensated onto adjacent time frames, we use the
deformation field generated by a Morphon-based method (48).
In the timepoint widget users can specify which timepoints to
consider (Figure 6). To help the users to generate consistent
segmentation results, an optional tool can enforce that the LV
epicardial contour encloses the LV endocardial contour, and that
left epicardial and right endocardial contour do not intersect,
using spatial set-theoretical boolean operations (Figure 6C). For

each individual contour, we store whether it was manually
corrected. Thereby, the quality of the automatic segmentation
algorithms can be assessed. This information can also identify
new cases to improve the AI-based segmentation approach via
fine-tuning or re-training.

3. RESULTS/APPLICATION

We test the presented setup with two use-cases and publicly
available data from MICCAI challenges on image-based disease
classification: the ACDC challenge for the classification of
cardiomyopathies (41) and the EMIDEC challenge for the
detection of myocardial pathologies (49) using cardiac MRI and
non-image information.

3.1. Classification of Cardiovascular
Disease Based on Cardiac Cine MRI
Cardiac cine MRI provides information on the anatomy
and the function of the heart and can help to differentiate
between cardiovascular diseases. In this study, we use the
freely available dataset from the ACDC challenge (41) to
demonstrate how our software environment can be used
to support experts in improvement and understanding of
cardiomyopathy classification. The dataset comprises normal
subjects and patients with one of the following cardiovascular
diseases (CVD): previous myocardial infarction (MINF), dilated
cardiomyopathy (DCM), hypertrophic cardiomyopathy (HCM),
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FIGURE 4 | Exemplary case of a segmentation outlier (represented by the red line) in the total EMIDEC study consisting of 100 cases. It can be identified in the PCP

by three blue brushes. In the image viewer the erroneous segmentation is clearly visible.

FIGURE 5 | The expert segmentation correction tool shows the segmentation results as contour overlay in the image viewer. The brush tool is visualized as a circle.

The table in the upper displays the segmentation status per image slice and anatomical structure. The curve diagrams on the bottom left show the area curves and

the segmentation algorithms’ probability of the segmentation results on the current slice.

and an abnormal right ventricle (RV). The dataset contains
the same number of cases in each subgroup. Clinical experts
delineated the left epicardial and endocardial borders in end-
systole and end-diastole and assigned the CVD class. The data

was acquired on Siemens MRI scanners on 1.5T (Aera) and 3T
(Trio Trim); the in-plane resolution was between 1.37 × 1.37
and 1.68 × 1.68mm2, the slice thickness was between 5 and
8mm, distance between slices was 5–10mm, and 28–40 phases
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FIGURE 6 | (A) Shape-based interpolation: manual contours (yellow) are defined on two slices. The blue contours represent the interpolated results. (B) Temporal

correction: top row shows a series of time frames of a cine MRI dataset. The solid contour shows the manually corrected contours. The dotted contours represent the

incorrect segmentation results. The time-point widgets show the range the user selected for correction via contour propagation. (C) Correction with logical conditions:

the contour of the right endocardium was originally drawn into the septal wall (blue dotted contour). The solid contour represents the corrected segmentation.

covered each cardiac cycle. In this study a pre-trained 2D U-Net
was retrained on 75 cases from the challenge’ training set. The
optimal classifier obtained by the described grid search on the
ACDC challenge dataset yields a random forest classifier with
230 estimators, the Gini criterion, a maximum depth of six, a
minimum of samples per leaf of six, and a minimum sample split
of nine. This classifier is built with 112 shape- and texture-based
features plus the patients height and weight. For the random
forest classifier 80 cases were used for training and 20 cases for
testing. Figure 10A shows the confusion matrix of this classifier
before the correction. This results in an overall accuracy of 0.85,
with a precision of 1.0 and recall of 0.75 on RV cases, a precision
of 0.75 and recall of 0.75 on normal cases, a precision of 0.67 and
recall of 1.0 on MINF cases, a precision of 1.0 and recall of 1.0
on HCM cases, and a precision of 1.0 and recall of 0.75 on DCM
cases. Additionally, Figures 10C,D illustrate the AUC scores for
each individual class plus the macro AUC score of 0.94 before
the correction and an AUC score of 0.98 after the correction.
After correcting segmentation outliers that were identified via
the PCP, the accuracy of the classifier improved from 0.85
to 0.9 (Figure 10B). Furthermore, Figure 10E exemplifies the
feature importance of the random forest classifier. We observe
the patients’ left myocardium sphericity to be the most crucial
variable in detecting pathological cases, closely followed by
the left blood pool volume and the interventricular septum

thickness parameter.
Figure 7 shows the visual exploration interface for the

complete ACDC dataset. Cases of all patients are shown in the
PCP. The rightmost y-axis shows the patients’ CVD, which is
also visualized in the pie chart on the top right. One can see
an equal distribution of the diseases in the dataset. Multiple
clusters and outliers can be observed. As a first step, clear outliers
were removed by deselecting outliers by the averagemyocardium

intensity cluster tendency, average septum thickness, and
average left ventricle tortuosity. After removing these outliers,
one can differentiate between HCM and DCM patients based on

the left blood pool coarseness and relative septum thickness. This
can also be seen in the corresponding box plots in the second row.
When only selecting patients with HCM and DCM, this becomes
even more prominent as shown in Figure 8.

While outliers were excluded in this first analysis of the
study cohort, it is also possible to select and analyze these
individual outlier cases. Figure 9 shows cases with strong motion
artifacts that could be detected by the left blood pool surface
area parameter. The crosshair in the images in the second row
shows the center of the left blood pool in the basal slice. The
misalignments in the slices can also be depicted in the 3D
visualization of the segmentation.

In outlier cases where the segmentation had failed, it was
manually corrected using our labeling interface. After correcting
the outlier cases, parameters were extracted again, and the cases
were classified again. Figure 10B highlights the classification
performance after the correction of the cases as described in
Section Interactive Multi-modal Data Exploration with Visual
Analytics. We observer an improvement in accuracy from 0.72
to 0.8.

3.2. Classification of Normal and
Pathological Cases From Late-Gadolinium
Enhanced MRI in the Left Myocardium
The EMIDEC challenge (49) provided benchmarking data
to assess the performance of segmentation and classification
algorithms using clinical parameters and late gadolinium
enhancement (LGE) MRI data (50). The dataset consists of 150
cases: 100 diseased patients and 50 normal cases. Patients were
split into 100 training and 50 testing sets, containing 1/3 normal
and 2/3 pathological cases, which roughly corresponds to real-
life observations in the clinical settings. The data was acquired
on Siemens MRI scanners on 1.5T (Aera) and 3T (Skyra); the
in-plane resolution was 1.25 × 1.25 and 2 × 2mm2, the slice
thickness was 8mm and the distance between slices 8–13mm. In
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FIGURE 7 | Visual analytics of complete ACDC dataset, which consists of 100 cases. The lines in the PCP represent the patients of the underlying cohort. The color

of the lines visualizes the classification result and corresponds to class color in the pie chart. The selection via the blue brushes in the PCP includes patients without

outliers for features such as septum thickness, myocardium intensity cluster tendency, and left ventricle tortuosity. The scatter plot in the second row shows the EDV

vs. avg. myocardium intensity cluster tendency for this cohort. In the box-plots, the distributions of max. myocardial sphericity, max. LV volume and left ventricular

diameters in each disease subgroup are shown. The curve diagram shows the LV blood pool curve of each patient over the cardiac cycle.

a post-processing step, the image slices were realigned to prevent
any effects of breathing motions.

Analogously to the previous case study, the dataset from
the EMIDEC challenge was integrated into our classification
and exploration environment. A 2D U-Net was used to
generate segmentations of the LV endocardial and epicardial
border trained on data from 100 patients with myocarditis
and cardiomyopathy to segment the myocardium in the LGE
MRI data. As no cases with no-reflow areas were included
in the patient data, we also included the 50 unlabeled cases
from the challenge’s test set. Initial segmentations for these
cases were generated by a pre-trained model. An expert used
the tools described in Section Data Correction, Data Integrity,
and Dynamic Updates of Machine Learning Models to correct
these segmentations. Next, the segmentation results were added
to the internal cases with expert segmentation, and the final
segmentation model was trained. This final model segmented
the LV endocardial and epicardial contours and extracted the
radiomics parameters on the 80 cases from the challenge’s
training set. A classifier was trained to differentiate between
normal and pathological cases with 25 shape- and texture-
based features. We applied a similar strategy as in the ACDC
case study. An eight-fold nested CV was used for model and
hyperparameters selection. Essential image-based features for the
classifiers are shown in the PCP.

The optimal classifier identified by our grid-search on the
EMIDEC challenge dataset turned out to be an extra tree classifier

with 190 estimators, the Gini criterion, a maximum depth of
six, a minimum of samples per leaf of six, and a minimum
sample split of nine. Figure 11A illustrates the confusion matrix
of this classifier before the interactive correction. This results in
an overall accuracy of 0.75, with a precision of 0.79 and a recall of
0.85 on pathological cases, a precision of 0.67, and a recall of 0.57
on normal cases. Additionally, Figures 11C,D illustrate the AUC
scores for each individual class of 0.85 before the correction and
an AUC score of 0.87 after the correction. Figure 11E represents
the feature importance, where the importance is defined by the
difference of the models’ baseline and the score after a feature
permutation. We observe the patients left blood pool surface

area to be the most crucial variable in detecting pathological
cases, closely followed by left myocardium difference entropy

and left myocardium contrast parameter.
Outliers could be disabled via brushing on myocardial

contrast, myocardial cluster tendency, myocardial complexity,

left blood pool coarseness in the PCP analogous to the analysis
of the ACDC dataset in Figure 7. After correcting segmentation
outliers that were identified via the PCP, the accuracy of the
classifier improved from 0.75 to 0.8 (Figure 11B).

4. DISCUSSION

To test our hypotheses, we applied the presented software
environment to two multi-modal machine learning tasks: the
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FIGURE 8 | Comparison of features of HCM (green) and DCM (red) patients from the complete dataset. The upper diagram shows dynamics of the left bloodpool

coarseness over the cardiac cycle. The lower diagram display the changes of the relative septum thickness. The viewers on the right show the time frames

corresponding to the orange line for an example case of a DCM and HCM patient. The solid blue line indicates the septum thickness. The dashed line shows the

diameter heart diameter, that is used for normalization of the septum thickness. The coarseness of the selected timepoint is shown on top of the left blood pool. The

example cases differ strongly in the anatomical relations as well as in the blood pool intensity distribution.

FIGURE 9 | Outlier with motion artifacts. Changes in the left endocardial and epicardial surface area indicate the presence of an outlier. The 3D rendering of the

segmentation surface highlights the misaligned slices. The green crosshair in the image viewers was placed in the center of the left blood pool in a basal slice, giving

an impression of the motion of the blood pool center.
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FIGURE 10 | Illustration of the ACDC classifier performance on the test dataset consisting of 20 cases. (A,B) Highlights the confusion matrix for the ACDC classifier

before and after the correction of image segmentations via our described visual outlier detection. Similarly, (C,D) show the AUC score improvement of the classifier.

(E) Depicts the 10 most important features for this classifier.

FIGURE 11 | An illustration of the EMIDEC classifier performance on the test dataset consisting of 20 cases. (A,B) Show the confusion matrix for the EMIDEC

classifier before and after the correction of image segmentations via our described visual outlier detection. (C,D) Illustrate the AUC score before and after the

correction. (E) Depicts the importance of the top 10 features for this classifier.

classification of patients with cardiomyopathies considering
cardiac cine MRI data and the detection of myocardial
pathologies considering late gadoliniumMRI data. Via our visual
analytics tools experts could identify erroneous segmentations
as outliers in the PCP as illustrated in Figure 10. In both use
cases, the performance of the classifier could be improved. The
classification accuracy on the test set was improved for pathology
detection from 0.75 to 0.8. The accuracy for cardiomyopathies
was improved from 0.85 to 0.9. This was achieved by correcting
the training dataset and thus the input parameters for the
classifier. Consistent with Demirer et al. (21), we found that
providing annotation tools with familiar interactions to their

routine clinical tools assisted experts with manual corrections.
The expert corrections improved the input parameters of single
cases, which could then be classified correctly. The suggested
visual analytics interface can thus be used to extend approaches,
which support retraining models with user-corrected image
annotations such as the setup suggested by Dikici et al. (51).
Related approaches for the application of visual analytics tools
in the exploration of multimodal study data including image
information as suggested by Bannach et al. (52) and Angulo
et al. (53) strongly focus on the visualization of parameter
distributions and have not been applied in a data curation
context. However, our solution could also be used for cohort
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exploration and enhanced bymore context-specific visualizations
of the cardiac anatomy as suggested e.g., by Meuschke et al. (54).
Furthermore, the classification and visualization environment
could be used not only for the interpretation of the patient data,
but also for a comparison with characteristic cohorts to support
the assessment of the certainty and underlying features of the
disease classification.

The visualization of the certainty maps produced by the
DL-based segmentation, which were displayed as overlays
in the image viewers (see Figure 7), did not influence the
expert corrections. In future work, we could introduce more
sophisticated DL-based outlier detections via Bayesian inference
as proposed by Gal and Ghahramani (55). This method casts
dropout training in DL methods and produces a distribution
of outcomes. Unfortunately, this method increases in inference
time and can hardly be included in real-time applications. As an
additional layer for outlier detection, these certainty maps can
be aggregated and displayed in the PCP to give medical experts
insights into corrupt results produced by DL models.

The combination of the feature importance analysis and
the link to the underlying data model enabled the exploration
essential anatomical and functional disease properties in both use
cases. Figure 10C illustrates that the most significant parameters
for the classification of cardiomyopathies were mostly shape-
based parameters. Whereas, the classification of myocardial
infarctions was a combination of shape- and texture-based
features, as highlighted in Figure 9C. Furthermore, Figure 7
shows that the temporal dynamics of features can also be
important for the classification and the understanding of
disease types.

Our proposed local and specialized cardiovascular software
environment could be successfully applied within a clinical
software environment and was used collaboratively by three
experts. In order to support multi-centric collaborations, it
could be integrated into federated learning platforms such as
JIP via Docker. This leverages the capabilities of our proposed
solution to be applied to federated learning environments that
are compliant with GDPR suggestions on health records.

The organization of the training setup follows the suggestions
by the FDA (40). However, quality assured model development
requires a private validation set to detect model degeneration.
This could be added for future applications.

4.1. Limitations
The datasets used to test our solution are publicly available
and thereby readers can reproduce the described machine
learning setup. However, both datasets are relatively small,
and the available clinical information is limited. The labels
of the EMIDEC dataset are solely based on the inspection of
the image data, so that they mean infarction visible in LGE
MRI and no infarction visible in LGE MRI (49). The second
label does exclude myocardial pathologies. Therefore the clinical
parameters were not included for the interactive optimization of
the classifier as described in Section Classification of Normal and

Pathological Cases from Late-Gadolinium Enhanced MRI in the
Left Myocardium and only integrated for the dataset exploration.
Future work with larger datasets will help to further evaluate and
improve the presented solution.

5. CONCLUSIONS AND OUTLOOK

We have presented a conceptual design for a software
environment that supports the development and application of
machine learning methods for multi-modal disease classification
using MRI data. We tested the potential of an expert-in-the-loop
approach based on visual analysis tools for accelerating algorithm
training and for making the learned features understandable with
promising results. In future work, we will further quantify the
potential of our solution for improving the usage of multi-modal
imaging and proteomics data. In addition, we plan to add the
monitoring module for an FDA-compliant training setup to offer
quality-assured AI solutions. Further clinical studies will have
to assess whether an improved disease classification achieved
through our setup will have and impact patient outcomes
through improved treatment personalization.
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Background: Early prediction and classification of prognosis is essential for patients

in the coronary care unit (CCU). We applied a machine learning (ML) model using the

eXtreme Gradient Boosting (XGBoost) algorithm to prognosticate CCU patients and

compared XGBoost with traditional classification models.

Methods: CCU patients’ data were extracted from the MIMIC-III v1.4 clinical database,

and divided into four groups based on the time to death: <30 days, 30 days−1 year, 1–5

years, and ≥5 years. Four classification models, including XGBoost, naïve Bayes (NB),

logistic regression (LR), and support vector machine (SVM) were constructed using the

Python software. These four models were tested and compared for accuracy, F1 score,

Matthews correlation coefficient (MCC), and area under the curve (AUC) of the receiver

operating characteristic curves. Subsequently, Local Interpretable Model-Agnostic

Explanations method was performed to improve XGBoost model interpretability. We also

constructed sub-models of each model based on the different categories of death time

and compared the differences by decision curve analysis. The optimal model was further

analyzed using a clinical impact curve. At last, feature ablation curves of the XGBoost

model were conducted to obtain the simplified model.

Results: Overall, 5360 CCU patients were included. Compared to NB, LR, and SVM, the

XGBoost model showed better accuracy (0.663, 0.605, 0.632, and 0.622), micro-AUCs

(0.873, 0.811, 0.841, and 0.818), and MCC (0.337, 0.317, 0.250, and 0.182). In

subgroup analysis, the XGBoost model had a better predictive performance in acute

myocardial infarction subgroup. The decision curve and clinical impact curve analyses

verified the clinical utility of the XGBoost model for different categories of patients. Finally,

we obtained a simplified model with thirty features.

Conclusions: For CCU physicians, the ML technique by XGBoost is a potential

predictive tool in patients with different conditions, and it may contribute to improvements

in prognosis.

Keywords: MIMIC-III, coronary care unit (CCU), machine learning, multi-category, prognosis, XGBoost
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INTRODUCTION

Cardiovascular disease (CVD), the leading cause of global
mortality and disability, causes ∼18.6 million deaths annually.
China has the highest mortality worldwide (1). Coronary care
units (CCU), which concentrate on the treatment of patients with
critical cardiovascular diseases, reduce mortality and prolong
life expectancy in patients (2–6). To further improve survival
outcomes, early evaluation and classification of prognosis are
vital, as this can provide significant information for evaluating
a patient’s condition and deciding on appropriate treatments
in advance. However, despite the availability of many clinical
indicators such as the anion gap (AG) and serum osmolarity
(7, 8), for assessing prognosis, the modest prognostic value of a
single indicator and individual differences in the curative effect
and toxicity of treatments make it difficult for clinicians to
estimate the prognosis of CCU patients accurately and quickly.

The rapid development of medical artificial intelligence (AI)
supported by big data and cloud computing makes it possible
to improve the efficiency and accuracy of individual prognosis
evaluation (9). AI has good adaptability in assessing disease
prognosis given its abilities, including non-linear processing,
high tolerance, intelligence, and self-learning. Machine learning
(ML) has been widely applied in the field of disease prognosis
assessment in recent years (10–13). The traditional ML models
mainly include logistic regression (LR), naïve Bayes (NB), and
support vectormachine (SVM). Compared with serum indicators
or clinical scores, these models can comprehensively evaluate
patient status for accurate prognosis classification. However,
these models still have many limitations. Recently, novel ML
models have demonstrated improved performance compared to
traditional ML models.

The eXtreme Gradient Boosting (XGBoost) model is an ML
algorithm with excellent features, such as the efficient processing
of missing data, flexibility, and assembly of weak prediction
models to build an accurate model (14). It is an up-and-
coming, widely favored algorithm in the field of ML. Besides,
the establishment of specialized medical databases, such as the
Medical Information Mart for Intensive Care III (MIMIC-III
database), helps ML models extract data easily and enables
further analysis. XGBoost (15), submitted by Tianqi Chen in
2016, is an integrated learning algorithm based on gradient
boosting. It has been improved on the basis of the gradient
boosting decision tree algorithm (16), with inclusion of the
ability to customize the loss function, normalize the regular term,
sparse feature processing, missing data processing, and parallel
algorithm design, to name a few. These features allow the model
to use variables with different degrees of flexibility in different
areas of the output space, thereby realizing automatic feature
selection and fitting of high-order interactions.

ML has made breakthroughs in the prognostic evaluation
of diseases, and ML prediction models established for different
diseases have achieved good prediction results. Hou et al. (17)
used 4,559 sepsis patients from the MIMIC-III database and
constructed XGBoost, LR, and SAPS-II score models to predict
the 30-day mortality after admission in the intensive care unit
(ICU). The areas under the curve (AUCs) of the three models

were 0.857, 0.819, and 0.797, respectively. Li et al. (18) extracted
1,244 acute myocardial infarction (AMI) patients and built
Gaussian naïve Bayes, LR, K-nearest neighbor, decision tree,
random forest, and XGBoost models to predict 1-year mortality.
The AUCs of the sixmodels ranged from 0.709 to 0.942. Similarly,
D’Ascenzo et al. (19) enrolled 19,826 patients diagnosed with
acute coronary syndrome and constructed a risk prediction
model based on ML algorithm to predict the 1-year mortality,
recurrent acute myocardial infarction and bleeding risk of
patients. However, most existing prognostic evaluation models
use only two categories to predict the prognosis of patients, by
prediction of 30-day morality and 1-year morality, which have
limited clinical applications due to the lack of precision.

Therefore, we extracted CCU patients’ data from the MIMIC-
III database. Fifty-six clinical features were selected as inputs for
the model, based on clinical experience and the completeness
of prognostic indicators. Further, we attempted to construct an
XGBoost model to prognosticate the time to death of CCU
patients and used traditional ML models, such as LR, BN, and
SVM, as benchmark comparisons. Finally, we established sub-
models of each model to assess the clinical value and utility of the
models. To our knowledge, this is the first study to apply a multi-
category prediction approach in prognostic evaluation of CCU
patients, and its findings will be of great significance to clinicians
and patients.

MATERIALS AND METHODS

Data Source
We used the MIMIC III version 1.4 for the study. MIMIC-
III, an openly usable critical care database, includes data of
46,520 patients admitted to multifarious ICUs of the Beth Israel
Deaconess Medical Center (BIDMC) in Boston, Massachusetts,
from 2001 to 2012 (20, 21). The database contains general

FIGURE 1 | Screening flowsheet of the study population. CCU, coronary care

unit; MIMIC-III, Medical Information Mart for Intensive Care III.
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information (such as demographics, the dates of birth and
death, ICU admission, and discharge information), laboratory
parameters, vital signs, body fluid analyses, medication use, and
nursing records. Permission to use the MIMIC-III database was

TABLE 1 | Predictor variables used in this study.

Predictor

Demographic data Serum osmolarity*

Age Urine output*

Gender Diagnosis of heart disease

Ethnicity Coronary heart disease (CHD)

Height Acute myocardial

infarction (AMI)

Weight AMI_ anterior wall

Body mass index (BMI) Atrial fibrillation

Acute physiology (first 24h

in the CCU)

Ventricular arrhythmias†

Vital signs Third-degree

atrioventricular block

Heart rate* (HR) Congestive heart failure (CHF)

Systolic blood pressure* (SBP) Primary cardiomyopathy‡

Diastolic blood pressure* (DBP) Valve disease

Mean blood pressure*(MAP) Endocarditis

Respiratory rate* (RR) Cardiogenic shock

Temperature* (TEMP) Comorbidity and medical

history

blood oxygen saturation*

(SpO2)

Diabetes

Laboratory parameters Chronic obstructive pulmonary

diseases (COPD)

Anion gap* (AG) Hypertension

Bicarbonate* Respiratory failure

Glucose* Hypercholesterolemia

Sodium* Chronic liver disease

Potassium* Chronic kidney disease

Calcium* Prior myocardial infarction

Chloride* Medication use

Creatinine* Antiplatelet

Blood urea nitrogen* (BUN) Anticoagulants

White blood cell* (WBC) Beta-blocks

Hemoglobin* ACEI/ARB

Platelet* Statin

Mean corpuscular volume*

(MCV)

Vasopressin

Mean corpuscular hemoglobin*

(MCH)

Other

Red blood cell volume

distribution width* (RDW)

Sequential organ failure

score (SOFA)

*Each predictor marked with * means that it is a time-stamped variable, and its

corresponding average values within the first 24 h in the CCU were used as inputs in

model development.
† Includes ventricular tachycardia, ventricular flutter, and ventricular fibrillation.
‡ Includes disorders of mitral, aortic, pulmonary, and tricuspid valve; rheumatic diseases of

valves and congenital diseases of valve. CCU, coronary care unit; ACEI/ARB, angiotensin-

converting enzyme inhibitor/angiotensin receptor blocker.

acquired from the institutional review boards of BIDMC and
the Massachusetts Institute of Technology. Moreover, the user
must pass an examination to gain access to the database and be
authorized by the MIMIC-III institute. Our certificate number is
9648065. All patient data from MIMIC-III were extracted using
Structured Query Language (SQL).

Study Population
CCU patients registered in the MIMIC-III database were
included. Only the first admission of each patient was included.
The exclusion criteria were (a) age <18 years, (b) ≥20% missing
individual data, and (c) length of CCU stay <1 day. Eventually,
5,360 patients were included (Figure 1).

Data Collection
All data were extracted from the MIMIC-III database using
SQL. The following data were extracted: demographics, acute
physiology (vital signs and laboratory parameters), diagnoses
of heart disease, comorbidities and prior myocardial infarction,
medication use, and sequential organ failure score. As shown
in Table 1, 56 clinical features were selected as inputs for the
model, based on clinical experience and the completeness of
prognostic indicators. In addition, although viral myocarditis
may lead to heart failure or cardiac arrest (22), this indicator was
excluded because of the lack of sufficient samples in the MIMIC-
III database. Serum osmolarity was calculated using the equation
(2 × Na+ + K+) + (glucose/18) + (urea nitrogen/2.8) (7). Only
values of the three variables measured at the same time were used
for calculations. All laboratory parameters and vital signs were
extracted within 24 h of CCU admission; we calculated the mean
of each indicator separately.

Outcome and Statistical Analysis
The outcome was time to death, defined as the time from CCU
admission to death. Fatality information was extracted from the
file named “Patients” in the MIMIC-III database. Based on the
time to death, we divided patients in this study into four groups:
<30 days (class 0), 30 days−1 year (class 1), 1–5 years (class 2),
≥5 years (class 3), and variables were displayed and compared
between the groups. Normally and non-normally distributed
continuous variables were, respectively, summarized as the mean
± SD and the median (interquartile ranges, IQR). One-way
analysis of variance or the Kruskal-Wallis test was used to analyse
differences. Categorical variables were summarized as a number
(percentage) and were compared between groups using the chi-
square test or Fisher’ exact test. All analyses were performed using
the STATA 15 software, and statistical difference was defined as
p-value < 0.05.

Model and Metrics
In the model-construction phase, we employed an ML model
using XGBoost to predict the time to death, while using LR,
NB, and SVM models as benchmark comparisons. For XGBoost,
we set the reduction rate to 0.3, the maximum tree depth as 2,
while other parameters were set to the default parameters of the
scikit-learn library. In the model-comparison phase, we tested
and compared the performances of the four predictive models for
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FIGURE 2 | Areas under the receiver operating characteristic curves for evaluating the classification performance of the different models. (A) XGBoost model; (B)

naïve Bayes model; (C) logistic regression model; (D) support vector machine model; (E) a comparison of four models. Class 0: time to death < 30 days; Class 1: 30

days ≤ time to death < 1 year; Class 2: 1 year ≤ time to death < 5 years; Class 3: time to death ≥5 years. XGBoost, eXtreme Gradient Boosting.

their accuracy (ACC), F1 score, Matthews correlation coefficient
(MCC), and AUCs of the receiver operating characteristic curves
(ROC). The AUCs and F1 score were calculated bymicro-average
and macro-average methods (23). For classification tasks with
imbalanced data, AUCs, the F1 score, and MCC have better
adaptability (24). Thus, these three indicators were included
in the performance evaluation of the model. Subsequently, we
performed the Local Interpretable Model-Agnostic Explanations
(LIME) algorithm to obtain the direction in which the features
change. LIME places emphasis on training local surrogate models
to explain individual predictions (25). Besides, to further assess

the clinical practicability of the model, we divided patients into
four two-class data sets according to the time of death (for
example, class 1 is for one group, classes 0, 2, and 3 are for
another group) and sequentially established sub-models of each
model. Decision curve analysis (DCA) was used to calculate
the net benefit and compare differences between these four
sub-models. The optimal model was further analyzed using a
clinical impact curve (CIC) to assess the clinical practicability
and net benefit of the model with the best prognostic predictive
value. Finally, the feature ablation curves (excluded one by
one according to the feature importance score from low to
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TABLE 2 | Performance of the four prediction models.

XGBoost NB LR SVM

Accuracy (%), 95% CI 0.663 (0.655–0.671) 0.605 (0.594–0.617) 0.632 (0.621–0.642) 0.622 (0.618–0.627)

AUC-micro, 95% CI 0.873 (0.867–0.879) 0.811 (0.802–0.820) 0.841 (0.833–0.849) 0.818 (0.812–0.825)

AUC-macro, 95% CI 0.795 (0.782–0.808) 0.758 (0.745–0.772) 0.741 (0.727–0.756) 0.691 (0.678–0.711)

F1-micro, 95% CI 0.663 (0.655–0.671) 0.605 (0.594–0.617) 0.632 (0.621–0.642) 0.622 (0.618–0.627)

F1-macro, 95% CI 0.416 (0.395–0.434) 0.441 (0.424–0.455) 0.343 (0.326–0.360) 0.275 (0.262–0.287)

MCC, 95% CI 0.337 (0.318–0.357) 0.317 (0.295–0.340) 0.250 (0.224–0.276) 0.182 (0.166–0.198)

NB, Naive Bayes; LR, logistic regression; SVM, support vector machine; CI, confidence interval; AUC, area under the curve; MCC, Matthews correlation coefficient.

high) of the XGBoost model were conducted to obtain the
simplified model.

For all the models above, we used a 10-fold cross validation
method to obtain the performance of the model for the whole
data set. For cross validation, the dataset was divided into 10-
folds, of which 1-fold was used as the test set and the remaining
were used as the training set; all results of the 10 repetitions were
averaged as the overall performance. In the XGBoost model, we
used 20% of the training set as the validation set to perform the
early stopping strategy. All experiments of the XGBoost model
and other models were constructed using the scikit-learn of the
standard ML software package in the Python 3.8 software.

RESULTS

Baseline Characteristics
In total, 5,360 patients admitted to the CCU were included
(Figure 1). The baseline characteristics of patients stratified
by time to death are displayed in Supplementary Table S1.
Except for the ethnicity, third-degree atrioventricular block,
primary cardiomyopathy, chronic liver disease, prior myocardial
infarction, and blood oxygen saturation (SpO2), other clinical
features showed a statistically significant difference between the
groups (p < 0.05).

Model Comparisons and Validations
In the model-construction and validation phase, ML models had
different recognition and classification capabilities for different
classes. These capabilities had some consistency, that is, the
model had better classification capabilities for classes 0 and 3,
while the classification performance for classes 1 and 2 was poor.
If the XGBoost model is taken as an example, the micro-AUCs of
classes 0 and 3 were 0.88 and 0.836, respectively; those of classes
1 and 2 were 0.764 and 0.7, respectively (Figures 2A–D). All
four models (XGBoost model, NB model, LR model, and SVM
model) showed good discriminatory power with micro-AUCs
of 0.873 (95% CI 0.867–0.879), 0.811 (95% CI 0.802–0.820),
0.841 (95% CI 0.833–0.849), and 0.818 (95% CI 0.812–0.825),
respectively, and macro-AUCs of 0.795 (95% CI 0.782–0.808),
0.758 (95% CI 0.745–0.772), 0.741 (95% CI 0.727–0.756), and
0.691 (95% CI 0.678–0.711), respectively. The accuracy and F1-
micro of themodels were 0.663 (95%CI 0.655–0.671), 0.605 (95%
CI 0.594–0.617), 0.632 (95% CI 0.621–0.642), and 0.622 (95%
CI 0.618–0.627), respectively. The MCCs of models were 0.337

(95% CI 0.318–0.357), 0.317 (95% CI 0.295–0.340), 0.250 (95%
CI 0.224–0.276), and 0.182 (95% CI 0.166–0.198), respectively.
These indicators showed that the XGBoost model was the most
optimal option, although its F1-macro was not the largest among
the four models (Figure 2E; Table 2).

The performance indicators of the validation set and test set
under the 10-fold cross validation test of the XGBoost model are
shown in Table 3. There was no significant difference between
the two sets. Subsequently, we applied the XGBoost model to the
subgroup analysis of the four major heart diseases. The results are
shown in Table 4, and the models all showed good performance.
The coronary heart disease subgroup was the best.

Features Assessed Using XGBoost
As shown in Figure 3, according to the results of each feature’s
analysis in the XGBoost model, age was most important
feature of the data set. The remaining top 10 features were
temperature, mean arterial pressure (MAP), SpO2, systolic blood
pressure (SBP), chloride, red blood cell volume distribution
width urine_24 h, hemoglobin, and body mass index, in that
order. However, traditional prognostic-related indicators, such
as diabetes and hypercholesterolemia, showed poor importance
contribution scores.

Interpretability of the Prediction Model
Figure 4 shows the decision process for the single-sample
prediction of class 0, which is a local interpretation of the
XGBoost model based on LIME. This sample was correctly
classified as class 0 by the model, where the features in green
allowed the model to identify the sample as class 0, and the
features in red allowed the model to identify the sample as
not class 0. The LIME results of classes 1–3 are shown in
Supplementary Figure S1.

Sub-models Comparisons
According to DCA of four prediction sub-models, the net
benefit for the XGBoost model was all greater than that of the
traditional models for the threshold probabilities of different
outcomes, meaning that the XGBoost model was the most
optimal (Figures 5A–D). Thus, the XGBoost model was further
analyzed using CIC. The CIC is shown in Figures 6A–D, and
clearly shows that the XGBoost model had an excellent clinical
net benefit within the general range of threshold probabilities
and impacted patient outcomes, which verifies that the XGBoost
model had better clinical decision-making performance than
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the other models for different categories of patients. Table 5
shows the quantitative results of the DCA and CIC curves of the
XGBoost sub-model. For example, for class 0, the risk probability
threshold of 0.15 (cost-benefit ratio 15:85) corresponds to at least
75% of the population. This means that <25% of patients were
classified as positive by the model (245 patients). Among these,
99 patients had a positive outcome. The calculated net benefit is
as follows: 99/1,000–(245–99)/1,000× 0.15/(1–0.15)= 0.07.

Simplified Model
As presented in Figure 7, When the number of features of the
XGBoost model is reduced from 56 to 30 one by one, the MCC
remains basically constant, that is, TOP30 in Figure 3 is the
input feature of the simplified model. The detailed information
of Figure 7 is listed in Supplementary Table S2.

DISCUSSION

In this study based on the need for clinical applications, we
pioneered the multi-category ML model for predicting time to
death, rather than the traditional two-category model, for the
first time. We found that the XGBoost model, when compared
with some traditional classification models, showed obvious
superiority in classification performance and clinical utility for
different categories of patients.

In previous ML model studies, predictive performance was
evaluated and compared. However, clinical applicability and
clinical consequences were not investigated. These models,

TABLE 3 | Performance of the validation set and test set under the 10-fold

cross-validation test of the XGBoost model.

Validation set Test set

Accuracy, 95% CI 0.661 (0.654–0.667) 0.663 (0.655–0.671)

AUC-micro, 95% CI 0.870 (0.867–0.874) 0.873 (0.867–0.879)

AUC-macro, 95% CI 0.789 (0.783–0.795) 0.795 (0.782–0.808)

F1-micro, 95% CI 0.661 (0.654–0.667) 0.663 (0.655–0.671)

F1-macro, 95% CI 0.420 (0.410–0.430) 0.416 (0.395–0.434)

MCC, 95% CI 0.336 (0.320–0.352) 0.337 (0.318–0.357)

CI, confidence interval; AUC, area under the curve; MCC, Matthews

correlation coefficient.

including XGBoost (17, 18, 26, 27), were applied to patients
diagnosed with AMI, those who underwent open-heart surgery,
or those admitted to the ICU. All of them had a two-
category pattern, that is, they focused on identifying high-risk
populations for early intervention. However, this type of model
is limited by the fact that patients outside the high-risk category
are not accurately classified. Therefore, some intermediate-risk
groups of patients do not receive clinicians’ full attention. In
our study, we divided patients into four categories according
to the time to death. We further optimized the XGBoost
micro-parameters, making it more suitable for multi-category
prediction. Consequently, our ML model could assist CCU
physicians in developing treatment strategies and determining
the follow-up intensity according to different risk levels. For
example, when patients enter the CCU, their baseline data, vital
signs, and laboratory data on the first day will be inputted into
the model for analysis. According to the analysis results, the
patient’s prognosis can be stratified. Those predicted to die within
30 days are classified in the high-risk group. Improved vital sign
monitoring and continue hospitalization are recommended for
such patients. Those predicted to die between 30 days and 1 year
belong to the medium-risk group. Increased follow-up frequency
after discharge is recommended, and the attending physician
should pay attention to these patients’ potential risks. Those
predicted to die 1 year later are categorized as the low-risk group
and should be followed up regularly after discharge. However,
these are only approximate clinical decisions. Moreover, specific
treatment measures also depend on the immediate state of the
individual. This study has not discussed this in depth.

An important finding of this study was that the ML model
had a different classification performance for different classes, but
still had a few commonalities. All models had better classification
capabilities for classes 0 and 3, and classification performance for
classes 1 and 2 was poor. This phenomenon may be explained
as follows. First, the grouped data set was unbalanced. More
than 3,000 patients survived for more than 5 years. The models
we built were all supervised ML models. When the samples are
unbalanced, the model tends to ignore the small sample loss
to reduce the overall loss (28). Due to the model’s intrinsic
characteristics, the classification results are often influenced
several categories, resulting in the overestimation of classification
performance. Therefore, the model had a higher classification
accuracy for survival over 5 years. Further, the scales of classes

TABLE 4 | Performance of the XGBoost model in the four major types of heart disease.

CHD AMI CHF VA

Accuracy (%), 95% CI 0.703 (0.691–0.715) 0.751 (0.725–0.777) 0.571 (0.551–0.592) 0.666 (0.628–0.704)

AUC-micro, 95% CI 0.897 (0.888–0.906) 0.917 (0.903–0.931) 0.811 (0.797–0.826) 0.873 (0.855–0.891)

AUC-macro, 95% CI 0.812 (0.791–0.834) 0.815 (0.782–0.849) 0.755 (0.733–0.777) 0.806 (0.773–0.838)

F1-micro, 95% CI 0.703 (0.691–0.715) 0.751 (0.725–0.777) 0.571 (0.551–0.592) 0.666 (0.628–0.704)

F1-macro, 95% CI 0.428 (0.401–0.456) 0.394 (0.348–0.439) 0.414 (0.392–0.435) 0.409 (0.357–0.461)

MCC, 95% CI 0.343 (0.310–0.375) 0.371 (0.294–0.448) 0.306 (0.279–0.333) 0.384 (0.310–0.458)

CHD, coronary heart disease; AMI, acute myocardial infarction; CHF, congestive heart failure; VA, ventricular arrhythmia; CI, confidence interval; AUC, area under the curve; MCC,

Matthews correlation coefficient.
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FIGURE 3 | Feature importance score ranking for 56 clinical features of the four-group XGBoost predictor. The information reflects the contribution of different features

to the classification performance of XGBoost model (from top to bottom). Green, demographic data; Blue, vital signs; Yellow, laboratory parameters; Gray, others.

TEMP, temperature; MAP, mean arterial pressure; SpO2, oxygen saturation; SBP, systolic blood pressure; RDW, red blood cell volume distribution width; BMI, body

mass index; DBP, diastolic blood pressure; WBC, white blood cell; BUN, blood urea nitrogen; MCH, mean corpuscular hemoglobin; HR, heart rate; RR, respiratory

rate; MCV, mean corpuscular volume; AG, anion gap; SOFA, sequential organ failure score; CKD, chronic kidney disease; AMI, acute myocardial infarction; CHF,

congestive heart failure; CHD, coronary heart disease; COPD, chronic obstructive pulmonary diseases.
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FIGURE 4 | The local interpretation of the XGBoost model for class 0. The features of the green column make the model identify the sample as class 0, while the

features of the red column allow the model to identify the sample as non-class 0. Since the sum of green column score exceeded red, the model finally identifies this

sample as class 0.

Frontiers in Cardiovascular Medicine | www.frontiersin.org 8 May 2022 | Volume 9 | Article 764629186

https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/cardiovascular-medicine#articles


Wang et al. A Multi-Category Prognostic Prediction Model

FIGURE 5 | Decision curve analysis (DCA) of the four prediction sub-models. (A) class 0 (<30 days); (B) class 1 (30 days−1 year); (C) class 2 (1–5 years); (D) class 3

(≥5 years). The net benefit curves for the four prognostic sub-models are shown. The lateral-axis shows the threshold probability for different class outcomes, and the

direct-axis shows the net benefit. The horizontal dashed line represents no intervention in all patients, with a net benefit of 0, and the sloping gray line represents

intervention in all patients. The four colored curves represent the four schemes (prediction models) with a larger net benefit to XGBoost compared to the other models

for the threshold probabilities of different outcomes.

0, 1, and 2 were very similar and they all had about 700 patients.
This may have attributed to the immediacy of the clinical
indicators. The patients’ physiological state changes all the time.
Over time, the predictive performance of the indicator collected
early may decline. Three studies published previously, in fact,
have predicted the short-term prognosis of patients based on this
feature (17, 18, 26).

Additionally, many studies applied statistical methods
to initially screen predictors and then, incorporated the
screened factors into the model. However, we did not pre-
process the input factors for the following reasons: firstly,
in the initial selection process, we screened out these 56
predictors from hundreds of clinical factors in the database
based on the literature and clinical practical applications.
Secondly, for the first time, we innovatively divided the patient’s
time to death into multiple intervals for prediction. We do
not know whether predictors with or without significant
differences in traditional two-category studies are applicable to
multi-category situations. Furthermore, traditional statistical
screening methods may have limitations in case of multiple
classifications. This may have led to over-screening or
meaningless screening of predictors. Finally, the XGBOOST
algorithm model used can automatically screen the importance

of predictive variables while ignoring the interference of
irrelevant variables, which greatly improved the effectiveness of
our research.

The AUCs, accuracy, F1 score, and MCC testified for the
excellent performance of the XGBoost model. The XGBoost
model builds a host of sub-models for classification, and finally
assembles the classification results. Since the sub-model only uses
a few indicators for model construction, some of the outliers and
missing values will have a smaller impact on the performance of
the model, thus making the model more robust (15). This feature
has good suitability for the MIMIC-III database. Moreover, the
XGBoost algorithm can standardize the regularization term to
prevent the model from overfitting. Thus, these features enable
the model to have a stronger classification performance for
retrospective data. However, accuracy, AUCs, and the F1 score
focus solely on the predictive accuracy of the model, without the
results caused by the prediction information. For improvement
in purely mathematical metrics, DCA is widely used in clinical
analysis (17, 29). DCA is based on a decision-making theoretical
framework that considers both the benefit of the intervention
and the cost of the intervention for patients who cannot benefit
(30). Therefore, DCA can compare the clinical application value
of different models and tell us which model is worth using.
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FIGURE 6 | Clinical impact curve (CIC) of the XGBoost model. (A) class 0 (<30 days); (B) class 1 (30 days−1 year); (C) class 2 (1–5 years); (D) class 3 (≥5 years).

The red curve (number of high-risk individuals) indicates the number of people classified as positive (high risk) by the model at each threshold probability; the blue

curve (number of high-risk individuals with outcome) is the number of true positives at each threshold probability.

However, DCA is used to evaluate the clinical value of the two-
category model. To make it suitable for multi-category models,
we divided the patients into binary data sets in turn, for example,
group 1: class 2 and group 2: classes 0, 1, and 3, and built
sub-model of each model. Then, DCA was used to evaluate
the clinical practicability and decision-making performance of
different models for patients with different outcomes.

The relationship between the contribution features of the
XGBoost model and death cannot be fully explained. Thus,
further research is needed to investigate the specific relationship
between these features and death. The following is a brief
summary of the important results obtained by the XGBoost
model. Among these features, the weight of age was the greatest,
meaning that it was the most significant predictor for the time
to death of CCU patients. This result is consistent with those of
previous clinical studies. Albanese et al. (31) reported that for
CCU patients after percutaneous coronary intervention, older
age was associated with major endpoints such as ventricular
fibrillation, tachycardia, and sudden cardiac or arrhythmic death.
Al-Ghamdi et al. (32) concluded that age >50 years was an
independent predictor of death in CCU patients. Ruiz-Bailén
et al. (33) enrolled 17 761 CCU/ICU patients with AMI, and
indicated that age was an important independent predictive
variable for mortality. This may be due to the following

potential mechanisms: first, older patients tend to have more
complications and infection risks (33); second, older patients,
despite the higher mortality risk, are treated with less aggressive
therapies than younger patients (34); finally, older patients show
poor adaptability and tolerance under stressful conditions such
as hypoxia, myocardial ischaemia, and so on. Besides, we find
that the top 2–4 important features of the XGBoost model
are temperature, MAP, and SpO2, which are all clinically vital
signs. This reminds clinicians to focus on the modest change
in patients’ vital signs at an early stage. Vital signs have been
shown to be the most accurate predictors of clinical deterioration
(35). In the CCU, hyperthermia often indicates infection and
hypothermia indicates shock, both of which are predictors of
poor prognosis; body temperature is thus a good prognostic
factor. Similarly, MAP, SBP, and SpO2 reflect the respiratory
and circulatory state of the patients, and their abnormalities
may indicate early physiological duress. However, traditional
prognostic indicators, such as diabetes, hypercholesterolemia,
had poor contribution scores. On one hand, these indicators
may display lower performance in predicting death in multi-
class classification. In contrast, due to them being categorical
variables, the model may reduce its prognostic classification
weight while simultaneously dealing with categorical and
continuous data.
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TABLE 5 | Critical prediction accuracy under different XGBoost sub-model risk thresholds.

Model risk percentile RPT Cost-benefit

ratio

NHR

(out of 1,000)

NHR with event

(out of 1,000)

Sensitivity

(%)

Specificity

(%)

NB

<30 days (class 0)

≥0 0.00 1: ∞ 1,000 130 100 0 0.13

≥25 0.03 3: 97 710 127 97 33 0.11

≥50 0.06 6: 94 497 121 93 57 0.10

≥75 0.15 15: 85 245 99 76 83 0.07

≥90 0.36 36: 64 99 62 48 96 0.04

30 days−1 year (class 1)

≥0 0.00 1: ∞ 1,000 128 100 0 0.13

≥25 0.04 4: 96 738 124 97 30 0.10

≥50 0.10 1: 9 480 105 83 57 0.06

≥75 0.19 19: 81 239 70 55 81 0.03

≥90 0.29 29: 71 91 28 22 93 0.00

1–5 years (class 2)

≥0 0.00 1: ∞ 1,000 136 100 0 0.14

≥25 0.06 6: 94 740 126 93 29 0.09

≥50 0.12 12: 88 498 103 76 54 0.05

≥75 0.20 20: 80 225 58 43 81 0.02

≥90 0.27 27: 73 90 26 19 93 0.00

≥5 years (class 3)

≥0 0.00 1: ∞ 1,000 606 100 0 0.61

≥25 0.40 2: 3 750 550 91 49 0.42

≥50 0.66 66: 34 494 422 70 82 0.28

≥75 0.85 85: 15 246 230 38 96 0.14

≥90 0.93 93: 7 84 81 13 99 0.04

RPT, risk probability thresholds; NHR, number high risk; NB, net benefit.

FIGURE 7 | Feature ablation curves of XGBoost model. MCC, Matthews

correlation coefficient; CI, confidence interval.

Our study has several limitations due to its retrospective
design. First, a few patients had small amounts of missing data.
Although statistical methods were used to compensate, they
could also have led to data bias and inaccurate prediction results.
Second, measurement bias within calculations is possible, as the
methods were based on specialists’ individual opinion. Finally,
as patient data were extracted from the MIMIC-III database,

clinically common prognostic indicators of cardiovascular
disease, such as troponin, creatine kinase-MB, and lactate,
were excluded because the measurement volume was too small.
Nonetheless, the XGBoost model is an efficient and robust
method for multi-categorically predicting patients’ time to death.

CONCLUSIONS

In summary, our study indicates that the XGBoost model does
outperform traditional models. It has the potential to assist
physicians in the CCU to perform optimal clinical interventions
quickly and accurately, and may thus improve the prognosis of
CCU patients.
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Objective: A method to estimate absolute left ventricular (LV) pressure and its maximum

rate of rise (LV dP/dtmax) from epicardial accelerometer data and machine learning

is proposed.

Methods: Five acute experiments were performed on pigs. Custom-made

accelerometers were sutured epicardially onto the right ventricle, LV, and right atrium.

Different pacing configurations and contractility modulations, using isoflurane and

dobutamine infusions, were performed to create a wide variety of hemodynamic

conditions. Automated beat-by-beat analysis was performed on the acceleration

signals to evaluate amplitude, time, and energy-based features. For each sensing

location, bootstrap aggregated classification tree ensembles were trained to estimate

absolute maximum LV pressure (LVPmax) and LV dP/dtmax using amplitude, time, and

energy-based features. After extraction of acceleration and pressure-based features,

location specific, bootstrap aggregated classification ensembles were trained to estimate

absolute values of LVPmax and its maximum rate of rise (LV dP/dtmax) from

acceleration data.

Results: With a dataset of over 6,000 beats, the algorithm narrowed the selection of

17 predefined features to the most suitable 3 for each sensor location. Validation tests

showed the minimal estimation accuracies to be 93% and 86% for LVPmax at estimation

intervals of 20 and 10 mmHg, respectively. Models estimating LV dP/dtmax achieved

an accuracy of minimal 93 and 87% at estimation intervals of 100 and 200 mmHg/s,

respectively. Accuracies were similar for all sensor locations used.

Conclusion: Under pre-clinical conditions, the developed estimation method,

employing epicardial accelerometers in conjunction with machine learning, can reliably

estimate absolute LV pressure and its first derivative.

Keywords: heart sound, hemodynamics, cardiac resynchronization therapy, artificial intelligence, machine

learning, animal, epicardial acceleration
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INTRODUCTION

Heart failure is a major public health concern for healthcare
systems that struggle to treat the∼37 million patients worldwide
(1). The Western world alone experiences more than 1 million
hospitalizations each year, a number that rapidly increases due
to the aging population groups (2–4). Cardiac decompensation
results in more frequent/prolonged hospitalization of patients,
causing treatment costs to increase while reducing the quality
of life and life expectancy (5, 6). Therefore, tools that may
prevent hospitalizations in patients with heart failure would be
beneficial (7).

Continuous hemodynamic monitoring improves the
conventionally static behavior of current treatment methods,
reducing the need for follow-up visits or hospitalization. Several
implantable devices have been developed to optimize therapy
and identify decompensation episodes in an early stage (7, 8).

For this purpose, the measurement of left ventricular pressure
(LVP) or its first derivative would be the first choice. However,
the required invasive intervention and potential complications
like drift, sensor overgrowth, leakage, and embolizationmake this
approach less suitable for chronic applications (9). As a surrogate
for LV function, the ChronicleTM system measures RV pressure.
Clinical studies show promise in reducing readmission rates due
to congestive heart failure (10). Similarly, the CardioMEMSTM

system consists of a small pressure-sensing device that is
implanted directly into the pulmonary artery (11). However,
these systems are expensive, stand-alone devices and it is unclear
how right-sided measurements are related to LV function (10).

An alternative method is the use of accelerometers. These
are small mechano-sensors that can easily be integrated with,
for example, devices and catheters. The best-known example is
currently the Peak Endocardial Acceleration (PEA, later renamed
as SonR) system that uses an accelerometer integrated into an
implantable right atrial or RV pacing lead (12) to measure the
amplitude of the first heart sound (13, 14). The RESPOND-
CRT trial demonstrated that this automatic, SonR sensor-guided
optimization of pacemaker therapy was safe and slightly superior
to the conventional Echo-guided optimization (15). However, the
SonR system does not provide absolute pressures.

In recent years machine learning (ML) has rapidly developed.
ML is a computational discipline focused on building algorithms
that model or recognize (complex) patterns or characteristics
within large amounts of data. It is used increasingly in the
heart failure space either prognostically or as in this article
diagnostically (16). A previous study has indicated successful
classification of heart sounds for valvular diseases via machine
learning-based methods (17). We hypothesized that machine
learning may improve the analysis of accelerometer data to the
extent that also absolute values of hemodynamic parameters can
be estimated.

Abbreviations: AV, atrio-ventricular; BiV, biventricular; DOB, dobutamine;
ECG, electrocardiogram; ISO, isoflurane; LV, left ventricle; LVP (max), left
ventricular (maximal) pressure; LV dP/dtmax, maximum rate of rise of LVP; VV,
intraventricular.

For this purpose, animal experiments were performed, where
gold standard pressure and accelerometer measurements were
recorded under widely varying hemodynamic conditions and at
different cardiac anatomic positions. Automatic accelerometer
classification was facilitated via beat-by-beat segmentation
of accelerometer and pressure signals. After extraction of
acceleration and pressure-based features, a model was trained
using machine learning to estimate absolute values of LVPmax
and its maximum rate of rise (LV dP/dtmax).

METHODOLOGY

Study Overview
A total of five acute open chest (weighing 60–65 kg) experiments
in pigs were performed in accordance with Dutch Law on Animal
Experimentation and the European Directive for the Protection
of Vertebrate Animals used for Experimental andOther Scientific
Purposes. The protocol was approved by the Central Committee
for Animal experiments (CCD) in the Netherlands and the
Animal Experimental Committee of Maastricht University.

Experimental Setup
The animals were premedicated with Zoletil (5–8 mg/kg)
whereafter anesthesia was induced using thiopenthal (5–15
mg/kg IV). Propofol (2.5–10 mg/kg/h), sufentanyl (4-8 µg/kg/h),
and rocuronium (0.1 mg/kg/h) were given at regular intervals
to maintain the anesthesia. Heparin was given throughout the
experiment as an anticoagulant to suppress blood clotting.

Data acquired during the experiments consisted of
electrocardiogram (ECG), LVP, and epicardially measured
acceleration signal. An overview of the experiment and the data
analysis are depicted in Figure 1.

ECG measurements were acquired using the limb-leads.
Pressures were measured using 7F catheter-tip manometers
(CD-Leycom, Zoetermeer, the Netherlands). Under fluoroscopic
guidance, pressure catheters were inserted via the carotid artery
and the jugular vein into both the right and left ventricles as well
as the right atrium. In addition, a pressure catheter was placed in
the aorta.

Pacing leads were inserted transvenously into the right atrium
and right ventricle (RV), while an LV lead was placed epicardially
on the LV free wall, using a plunge electrode introduced into the
thorax through a small incision. Pacing thresholds were evaluated
on an individual basis for each electrode.

Radiofrequency ablation of the atrioventricular node was
used to an create atrio-ventricular block (AVB). The process
made use of an ablation catheter (MarinR, Medtronic plc.) and
a radio frequency power generator (Atakr, Medtronic plc.)was
performed under fluoroscopic guidance. After the creation of
AVB, ventricular pacing was initiated for hemodynamic stability.

Mechanical data was acquired via custom-made epicardial
mechano-sensors, designed to facilitate recordings of high
acquisition resolution and sampling rate while keeping the
overall size of the sensor to a minimum dimension of 3.3mm
(X) ∗ 5mm (Y) ∗ 1.6mm (Z). Each sensor package consisted
of 3∗ Hall-effect-based accelerometers, perpendicularly aligned
to each other, sensing at a resolution of 16-bit at a sampling
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FIGURE 1 | Experimental setup as well as the post-processing pipeline used to extract training data for machine learning based estimation models.

rate of 1,000Hz. Each sensor was paired with a single analog
to digital converter (ADC) (a total of 3), allowing synchronous
capture of data. The data were recorded in a range of ±4 g to
accommodate a minimum range of ±3 g when accounting for
gravity with a 16-bit digitization resolution. A custom device was
made to facilitate the simultaneous acquisition of the mechano-
sensors and to allow simple integration into existing systems via
a shared synchronization pulse.

Alignment
Alignment of the datasets recorded from the ECG, pressure and
mechano-sensors was performed via a shared synchronization
pulse that is broadcasted by the acquisition device. Each
system/device connected to the synchronization pulse generated
a tracing on a separate channel and was contained within
each of the datasets at the end of the experiment. Using this
signal, dropped/duplicate samples or mixed sampling frequency
systems can be recognized, and the section of the signal was
resampled automatically.

Embedded in a silicone suturing fixture, the mechano-
sensors were sutured onto the epicardium through a small
thoracic incision. The dimensions of the fixture allowed
only for one-sided mounting of the sensor and enforced
correct/consistent orientation to maintain signal uniformity
between the experiments by aligning the sensor’s Z-axis
perpendicular with the tissue surface. The thorax was partially
closed to minimize the effect on the animal’s hemodynamics after
the placement of the sensors. A small hole was retained for the

cabling without hermetic sealing and therefore the experiments
remained “open chest.”

A total of five sensors were attached to the tissue at the
locations shown in Figure 1, being the LV and RV apex, RV and
LV free wall close to the mitral and tricuspid valves, as well as the
right atrium.

Experimental Protocol
Pacing protocols consisted of RV and biventricular (BiV) pacing
with incrementally increasing atrioventricular (AV) pacing
delays, ranging from 50 to 300ms, and incrementally increasing
interventricular (VV) delays ranging from −150 to +150ms.
The pacing protocol was performed in DDD mode and repeated
under different hemodynamic loading conditions. Dobutamine
(DOB) was used to increase cardiac function and its dose was
adjusted to reach approximately twice the baseline LV dP/dt max
value. After a sufficient weaning period from the dobutamine,
the animals were ventilated with the cardiovascular depressant
isoflurane (ISO) to decrease the baseline LV dP/dt(max) value to
around half of the baseline value. Pacing protocols were repeated
during both dobutamine and isoflurane administration. Each
settingmaintained a 60 s recording time unless the applied pacing
setting appeared detrimental to the animal’s hemodynamic state.

Data Analysis
Please note that more details regarding the data analysis can be
found in the Supplementary Material. The experimental setup
made use of multiple standalone recording devices with different
sampling rates which shared an auxiliary synchronization pulse
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as shown in Figure 1. Matching the pulse between devices
allowed for precise temporal alignment of the ECG, pressure, and
mechanosensory data.

The automated post-processing pipeline segmented the input
signals into individual cardiac cycles. Training features were
extracted from the ECG and acceleration signals, while reference
features were extracted from the LVP signals. A morphological
cross-correlation analysis was performed within each pacing
setting to identify the largest coherent group of cardiac cycles
and remove deviating beats containing artifacts or non-typical
paced beats.

ECG analysis employed a band-pass filter to remove the DC-
offset and the effects of respiration drift. Individual cardiac cycles
were segmented by identification of atrial pacing spikes after
which training features were extracted from the signal.

As acceleration signal’s energy, during occurrences of the heart
sounds, of S1 and S2 was found to be negligible for frequencies
above 250Hz, a (10–250Hz) bandpass filter was used to remove
DC-offset and high-frequency noise.

The atrial pacing spike was used to segment each beat of the
acceleration signal post-alignment. Features reflecting amplitude,
timing, and energy of S1 and S2 were extracted from the signals
for the machine learning process. A selection of the 17 (based
upon literature) predefined training features extracted from the
acceleration signal are shown in Table 1. Figures 2, 3 depict
examples of the features shown in Table 1.

The pressure analysis segmented the pressure signal during
the center of the diastolic phase and extracted the largest,
morphologically coherent, group of beats to account for
morphology changes caused by factors such as respiration, prior
systolic pressures, and independency from the ECG annotation
algorithm. This allowed complete morphological assessment of
the pressure curve during the cross-confirmation stage.

Following the segmentation of each heartbeat, reference
features were extracted from the LV signal being LVP max and
LV dP/dt max.

Only the acceleration-based features from each Z-axis sensor
were retained because this direction is the most reproducible,
being perpendicular to the epicardium, resulting in better
interpretable signals, and reducing computational overhead.

The automated morphological assessment was performed on
all input signals to remove irregular heartbeats. All cardiac
cycles within each pacing configuration were resampled to
match the most reoccurring number of samples per segment to
improve the comparison of the individual beats. For each pacing
configuration, the largest group of beats, providing the greatest
amount of coherence were evaluated using the cross-correlation
coefficient for each beat permutation (18). This comparison
was performed on the ECG, pressure, and acceleration signal
separately to ensure that each beat’s mechanic and electronic
response conform with each other. Beats that displayed large
morphological deviations from the rest of the beats within each
pacing setting were excluded from further processing.

Cardiac Function Modeling
A decision tree (19–22) based machine-learning model was
employed to estimate cardiac function in form of absolute LVP

and/or its first derivative. The model structure consists of a
multi-class classification system facilitated by decision trees. To
reduce the high amount of variance demonstrated by individual
decision trees, a bootstrap aggregated ensemble was used, for
which several subsets of training data were used in the training
of individual trees.

During the training process, acceleration feature-based rules
were generated to allow optimal estimation of the absolute
maximum LVP and/or its derivative. The Gini’s diversity index
(Equation 1) aids in maximizing information gain for each
decision tree by identifying splits in the training data that
reduce the probability of misclassification and hence maximize
estimation performance.

Gini index
(
Dp, f

)
= I

(
Dp

)
−

∑m

j= 1

Nj

N
I(Dj) (1)

Gini index= identifier used to reduce misclassification probability;
f = analyzed feature (subset); Dj = samples at the child node; Dp

= samples of the parent node; I = current node;
Nj = total number of samples available at the current node; N

= total number of samples.
This process iteratively refined each decision tree by

subdividing the training dataset into smaller sub-categories until
themaximumnumber of splits was reached or the remaining data
did not require any more subdivisions.

Feature selection consisted of an iterative process that
generated multiple competing estimation models. Each of
these models was based on a unique permutation of the
available feature sets for their training. This result allowed
investigation into the estimation potential of individual features
and their potential to be complementary with secondary and/or
tertiary features.

To prevent over-fitting, the number of features used in
each permutation was limited to a total of three. To reduce
the number of permutations, the process started with a single
feature and optimized estimation accuracy or loss by selectively
adding and/or replacing features until the maximum potential
was reached.

Performance metrics applied in the model training process
were estimation –accuracy/–loss (Equations 2 and 3). Both
metrics were evaluated during 10 × k-fold cross-validation,
using the mean value of all folds. The mean accuracy evaluates
the number of correctly against incorrectly estimated values.
Alternatively, the K-fold validation loss was used. Validation loss
penalizes larger discrepancies in misclassifications significantly
higher than small discrepancies. While this study primarily
focused on estimation accuracy, estimation loss was used as
validation to confirm model performance.

Loss
(
y, ŷ

)
=

1

N

∑N

i=0

(
y− ŷi

)2
(2)

Validation accuracy =
1

N

∑N

i= 0
yp (3)

N = total number of classification attempts; yp = correctly
estimated classification; Loss(y, ŷ) = validation loss for single
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TABLE 1 | Training features that are extracted from regions of interest (Figure 3) located around S1 & S2 of the acceleration and ECG signals.

Features Code Details

Amplitude Amplitude (max) A1 or A2 The maximum – minimum amplitude of S1 & S2 derived from the acceleration signal.

Differential maxima B1 or B2 The maximum – minimum differential amplitude of S1 & S2 derived from the

acceleration signal.

Envelope C1 or C2 Integral of the heart sound signal.

Energy Shannon energy D1 or D2 Attenuates high amplitude signals and provides higher weight toward low intensity

content. E = −x2 log(x2). (E=Energy||x=Signal).

Shannon energy integral E1 or E2 Integral of Shannon Energy.

Shannon entropy F1 or F2 Emphasizes medium strength amplitudes while attenuating low & high intensity

amplitudes E = −|x| log |x|.

Shannon entropy integral G1 or G2 Integral of Shannon Entropy.

Temporal S1 abs max to S2 max interval H Interval between maximum positive rectified S1 & S2 of the acceleration signal.

S1 & S2 max to Vpace interval I The maximum amplitude location with respect to the left ventricular pacing spike was

measured.

S1 & S2min to Vpace interval J The minimum amplitude (-ve peak) location with respect to the left ventricular pacing

spike was measured. Interval between maximum negative rectified S1 & S2 of the

acceleration signal.

FIGURE 2 | Examples of the training features extracted from the accelerations signal (black) and its rectified version (red). Features depicted are the maximum

amplitude of the signal; its integral and the location time duration between the rectified S1 and S2 maximum of the rectified (negative and positive as positive) signals.

Gray area = region of feature extraction.

sample; N = total number of classification attempts; y = true
classification; ŷ= estimated classification.

Model validation was addressed by using the above described
k-fold validation method in addition to holdout validation, to
address potential issues that may arise from over/underfitting.
In addition, each feature permutation used to generate an
estimation model was limited to a maximum of three to

prevent the chance of overfitting. Before the training of the
estimation model, for the personalized model, 5% of the
dataset was removed for illustrative purposes via holdout
validation of the final model. Depending on the availability
of data in each pressure category, the selection of validation
samples was reduced to retain a robust training dataset. The
model’s performance was evaluated using the average k-fold
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FIGURE 3 | Examples of the recorded baseline acceleration signal (Bi-Ventricular (BIV) pacing, Atrio-Ventricular (AVd): 150ms) and its Shannon energy from which

training features are derived. (Top) acceleration during two cardiac cycles in proximity to the mitral valve. (Center) Shannon energy of the original signal, pronouncing

low intensity amplitudes over high intensity amplitudes. (Bottom) Displays the envelope based on the Shannon energy. Blue line = raw signal; Yellow area = signal

integral; Gray area = region for feature extraction.

validation whose results are shown in Table 2. The “Leave one
out”/generalized method used k-fold validation to find the most
performant model, while one animal was completely removed
from the training set. The model was then validated with holdout
estimation whose results are given in Table 3.

During the modeling process, each feature permutation
underwent k-fold validation which ensured that rules generated
on subsets of data were applicable to the remaining dataset.

Statistics
We have performed a one-way analysis of variance (ANOVA) for
testing significance (p < 0.05) between bin-size (low-medium-
high) as well as between personalized and generalized models in
both accuracy and loss estimations.

RESULTS

Figure 4 displays an example of the acquired signals
during the 3 hemodynamic steady states: baseline,
isoflurane, and dobutamine. The profound negative
and positive effects on hemodynamics can be seen in
isoflurane and dobutamine, respectively. Also, the specific

acceleration signals of the 5 anatomic sensors and their
response to changing hemodynamics are illustrated
in Figure 4.

Post-experiment segmentation processing resulted in a dataset
of over 6,000 cardiac cycles that consisted of a complete
annotated set of training and reference data. The final selection
of the best-performing models is listed in Table 4. Of all
initially proposed features in Table 1, acceleration amplitude
and/or energy-based features proved to correlate best to the
hemodynamic variables; with S1/S2 maximum amplitude and
S1/S2 integral appearing most frequently in the final models. In
contrast, time-based features were widely neglected and only the
feature expressing the duration between themaximum amplitude
of S1 and S2 acceleration signals showed any re-occurrence in
high-performing models.

Examples of the model performances are depicted in
Figure 5 which shows the result of four models tested under
holdout validation with data extracted from the sensor in
the accelerometer in the proximity of the mitral valve. Each
row represents the holdout validation results of two models,
with increasing resolution, estimating LVPmax and LV dP/dt
max, respectively.
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TABLE 2 | Accuracies for estimating LVP and LV dP/dtmax at different levels of resolution and for all sensor locations.

Mitral valve (%) LV apex (%) RV apex (%) Right atrium

(%)

Tricuspid valve (%)

Optimization method Acc Loss Acc Loss Acc Loss Acc Loss Acc Loss

Left ventricular absolute maximum pressure (range 60–130 mmHg)

Resolution (Interval)

20 mmHg 96 94 93 93 93 93 94 90 94 91

10 mmHg 87 87 88 87 88 87 87 86 89 87

5 mmHg 81 78 83 79 84 80 82 75 83 82

Left ventricular dP/dt max pressure (range 600–1,600 mmHg/s)

Resolution (Interval)

200 mmHg/s 93 90 94 94 94 89 94 92 96 94

100 mmHg/s 90 90 90 88 88 88 88 88 87 86

50 mmHg/s 86 85 86 85 85 84 86 85 86 84

Optimization methods: (Acc): accuracy optimization || (Loss): loss optimization. All values are evaluated using average 10×k-fold validation results from the respective estimation models.

LV, left ventricular; RV, right ventricular.

TABLE 3 | Accuracy optimization using holdout validation results generated by the “Leave one out” method.

LV dPdt(max)

200 mmHg/s

Mitral valve (%) Left ventricular apex (%) Right ventricular apex (%) Right atrium (%) Tricuspid valve (%)

Leave out

Animal 1

83 81 80 81 82

Leave out

Animal 2

90 85 81 83 87

Leave out

Animal 3

82 79 82 80 82

Leave out

Animal 4

71 69 67 73 74

Leave out

Animal 5

81 84 78 79 77

Each row indicates a model that excludes and was validated on the animal listed in the first column.

Table 2 displays the results obtained for all sensor locations
for both estimation accuracy and loss optimization and three
levels of resolution for LVP and LV dP/dtmax. Accuracies for
LVP with bin-size of 20 mmHg ranged between 90 and 96%,
for bin-size of 10 mmHg between 86 and 89%, and for bin-size
of 5 mmHg between 75 and 83%, with small non-significant
differences between the sensor locations. Similar results were
obtained for LV dP/dtmax using differences of 200, 100, and 50
mmHg/s, wherein accuracy ranges of 89–96%, 86–90%, and 84–
86%, were achieved respectively. An overview of the results is
given in Table 2.

Bin-size significantly (p < 0.001) affected both accuracy
and loss estimations, indicating increased accuracy/loss at
larger bin-size.

An additional investigation was performed using the “Leave
one out” method, which validates estimation models, that are
trained on N-1 participating subjects, against the remaining
subject. Using the lowest estimation resolution for the estimation
of LV dP/dtmax, an average estimation accuracy evaluated

across all sensing locations was 80% with an SD of 5.4%
(Table 3). “As expected, there was a significantly (P< 0.01) lower
estimation accuracy in the “leave-one-out”/generalized model
than the personalized model, comparing both at a bin-size of
200 mmHg/s.”

The holdout validation figures (in Table 3) indicated about
a 15-percentage point lower accuracy than the k-fold validation
results listed in Table 2.

DISCUSSION

This study provides the proof of principle for a novel method
for estimating absolute LVPmax (and LV contractility) using
machine learning analysis of epicardial accelerometer signals.
The majority of features that contributed to our prediction
models were related to the amplitude and energy of the
accelerometer signal and very few related to the timing of them.
Accuracies were similar for all five sensor locations.
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FIGURE 4 | Recorded signals of Left ventricular pressure, ECG and all acceleration recording sites under the influence of cardiovascular modifiers. All signals were

recorded @BIV | AVd = 150ms | VVd = 0. Acceleration signal show the result of the X, Y and Z axis magnitude filtered between 1-150Hz. AVd = atrio-ventricular

delay, VV = intra-ventricular delay.

TABLE 4 | Most relevant features according to their re-occurrence when generating accuracy optimized models.

LV Pressure (max) LV dP/dt (max)

Sensing location Feature 1 Feature 2 Feature 3 Feature 1 Feature 2 Feature 3

Mitral valve C2 B1 C1 G1 C1 C2

Left ventricular apex A1 C1 C2 C2 A1 C1

Right ventricular apex E2 A1 C1 A1 G1 G2

Right atrium C1 G2 A1 G2 H C1

Tricuspid valve C2 C1 A1 A1 C1 C2

Feature explanations are given in Table 1. 1 and 2 designations refer to the acceleration-based equivalent to the occurrences to S1 and S2 heart sounds.

Comparison to Other Studies
These results significantly extend the application of mechano-
sensors in estimating cardiac function, which is so far largely
limited to optimization of pacemaker settings by the SonR
system (15, 23), without the knowledge of absolute values of
pressures. Another study on pigs showed that an epicardially
placed accelerometer can be used to assess changes in preload,
and so filling status, using the frequency of myocardial
acceleration (24). In preclinical studies, Thakur et al. showed
that analysis of S1 and S3 amplitude signals from accelerometers
integrated into an implanted pacemaker device was able
to monitor the change of absolute left atrial pressure over
time (25). While these studies showed the relation between
accelerometer signals and hemodynamic status, this study, to
the best of our knowledge, is the first to show that absolute
LV pressure and contractility levels can be derived from
accelerometers. Moreover, the finding that such estimations can

be obtained from various (atrial, right, and left ventricular)
locations is novel. Potentially, the introduction of additional
features derived from, e.g., frequency components or gyroscopic
signals (easily imbedded in current accelerometer sensors)
may contribute positively to our developed pressure estimation
model (25, 26).

Possible Need for Personalization
Two ways of model development were used, namely, a
personalized model (including all available subjects’ data) and a
generalized model (leave-one subject’s data out). In the former
approach, k-fold validation from all 5 individuals was used
while holdout validation was used for the latter. The approach
clearly shows the proof of concept. However, when applying this
approach to the clinical situation it would require a period of
validation/calibration with a gold-standard measurement before
continuing with the mechano-sensor information only (see
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FIGURE 5 | Confusion matrices that illustrate the correctly and incorrectly estimation results for each given beat via holdout validation from the Mitral valve sensor. The

row of the matrix corresponds to the true class while columns correspond to the predicted class. Diagonal entries correspond to correct estimates while off-diagonal

entries represent incorrect estimates. The beats selected for holdout validation were selected at random. At low prevalence of cardiac cycles in any given category, the

number of selected samples is reduced in favor of the training dataset. Examples are shown for LVPmax [(A,B) Interval bins of 20 and 10 mmHg respectively] and LV

dP/dt(max) (C,D) interval bins of 200 mmHg/s, (D) 100 mmHg/s.

below). Because such an approach may not always be possible or
desirable, the second option shows that using the information of,
in our case four individuals, the mechano-sensor information of
the fifth individual is still quite reliable. In the clinical situation,
such a development-set is likely to be considerably larger than
four, which can be expected to significantly increase the accuracy
of the leave-out approach in the clinical setting. With either
approach, it may also be required to create different prediction
models for the various sensor locations. While accuracy was
comparably high for all sensor locations, the optimal three
features to reach this result differed to some extent. This “location
independence” is reflected in the results wherein differences in
recording locations showed only minute changes in estimation
performance while selecting dissimilar features (see Table 4).

Further Possible Applications/Integration
The proposed method may be used in general hemodynamic
monitoring applications at low-to-moderate resolution (e.g.,
intensive care unit). Secondly, it may be used to track cardiac

function to detect decompensation in an early stage. The
currently developed method allows for simple integration into
embedded software of monitoring and other (e.g., pacemaker,
ICD) devices (27). With respect to the latter, our method may
assist in identifying life-threatening arrhythmias by adding the
hemodynamic analysis on top of the current electrophysiological
analysis in these devices to prevent unnecessary defibrillatory
interventions (28, 29).

While the present study used epicardial sensors, the approach
used in this studymay also be applied to less invasive acceleration
measurements, such as heart sounds measured on the skin, or
microphones or accelerometers mounted on or inside implanted
devices or pacing/defibrillation leads. Calibration steps can be
either procedure-related or added to the procedure and can
be either invasive (like in the current study) or non-invasive,
e.g., using a common pressure cuff or finger plethysmography
as shown for CRT patients (30, 31). Different calibration
circumstances can also be envisioned such as rest/exercise/pacing
intervention in case of an implantable pulse generator placement
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used in CRT. Supplementary data of patients, with similar
conditions and equipment setup, can be used to improve the
robustness of the model during implantation or any follow-
up session.

The processing pipeline, used for an automated beat and
feature selection, may be of clinical use. The implemented
method for synchronization of acceleration signals and ECG
accounts for differences in sampling rates and standardizes the
acquisition process before analysis. The prerequisite for this
integration was limited to a single auxiliary recording channel
with a synchronization pulse. This pipeline may also be useful
for the rapid generation of estimation models with new data,
including those in patients during a period of monitoring or
the implantation of pacemakers or other monitoring devices.
Scalability of estimation models allows accommodation of device
constraints such as processing overhead, battery life, and cost.
A tradeoff exists between model complexity and its estimation
accuracy, wherein a reduction in complexity may cause a
reduction in estimation accuracy and vice versa [i.e., the use of
neural networks (17, 32)].

For specific clinical applications, the method of feature
acquisition post-implantation may have to be altered in case
ECG, which is used as the reference signal, is not available.
Alternative sources of reference can be used post-implantation
as long as they include timing information about the cardiac
cycle. Preferred alternatives would be the use of “surrogate
ECG” provided by a defibrillator, EGM feedback, or timed
pacing intervals.

Limitations of the Study
Some limitations of the study should be noted. First of all,
the acquisition of mechanosensory data was performed under
preclinical conditions in normal porcine hearts with an open
chest. Clinical application in patients with compromised heart
function should be considered with caution because several
differences may apply, like differences in cardiac contractile
force, the influence of the open- or closed-chest as well as
differences in sources of noise. These noise sources were kept to a
minimum in the controlled experimental environment, whereas
in the real-life situation, environmental noise and movement
artifacts may be higher because in patients with heart failure
also lung sounds may become stronger. In addition, while
an extensive experimental protocol with a generous variety of
interventions was performed, only five animals of similar weight
and dimensions were used in this trial. This may reduce the signal
variability in comparison to the amount experienced in a clinical
setting. Finally, the personalized model may learn to identify the
animal instead of the pressure-derived estimates, therefore risk
mitigation methods such as k-fold validation and ensembling
are employed. In addition, the numerous (pacing) configurations
provided a considerable range in LV max pressure and LV
dP/dt max values. To further reduce this known phenomenon of
machine learning, it is recommended that future investigations
increase the number and physiological conditions of the subjects
in the training set.

To adhere to the processing limitations of (cardiac) pacing
devices, only features requiring little computational overhead
were used. This limited feature selection to the temporal
domain wherein only amplitude, timing, and energy-based
features was considered. Expansion of potential features
with more complex acquisition processes may further
improve results.

CONCLUSION

The use of epicardial accelerometer data in combination with
a bootstrapped decision tree ensemble algorithm can reliably
estimate absolute hemodynamic statuses, such as intracardiac left
ventricular pressure and its derivative in a controlled preclinical
setting. The algorithm is simple enough to be scaled with low
computational requirements to be used for monitoring cardiac
function by a simple computer, microcontroller, or dedicated
integrated circuitry.
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Background: The long-term prognosis of the cardio-metabolic and renal complications,

in addition to mortality in patients with newly diagnosed pulmonary hypertension, are

unclear. This study aims to develop a scalable predictivemodel in the form of an electronic

frailty index (eFI) to predict different adverse outcomes.

Methods: This was a population-based cohort study of patients diagnosed with

pulmonary hypertension between January 1st, 2000 and December 31st, 2017, in

Hong Kong public hospitals. The primary outcomes were mortality, cardiovascular

complications, renal diseases, and diabetes mellitus. The univariable and multivariable

Cox regression analyses were applied to identify the significant risk factors, which were

fed into the non-parametric random survival forest (RSF) model to develop an eFI.

Results: A total of 2,560 patients with a mean age of 63.4 years old (interquartile

range: 38.0–79.0) were included. Over a follow-up, 1,347 died and 1,878, 437,

and 684 patients developed cardiovascular complications, diabetes mellitus, and

renal disease, respectively. The RSF-model-identified age, average readmission, anti-

hypertensive drugs, cumulative length of stay, and total bilirubin were among the

most important risk factors for predicting mortality. Pair-wise interactions of factors

including diagnosis age, average readmission interval, and cumulative hospital stay

were also crucial for the mortality prediction. Patients who developed all-cause

mortality had higher values of the eFI compared to those who survived (P <

0.0001). An eFI ≥ 9.5 was associated with increased risks of mortality [hazard ratio

(HR): 1.90; 95% confidence interval [CI]: 1.70–2.12; P < 0.0001]. The cumulative

hazards were higher among patients who were 65 years old or above with eFI

≥ 9.5. Using the same cut-off point, the eFI predicted a long-term mortality over
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10 years (HR: 1.71; 95% CI: 1.53–1.90; P < 0.0001). Compared to the multivariable

Cox regression, the precision, recall, area under the curve (AUC), and C-index were

significantly higher for RSF in the prediction of outcomes.

Conclusion: The RSF models identified the novel risk factors and interactions for the

development of complications and mortality. The eFI constructed by RSF accurately

predicts the complications and mortality of patients with pulmonary hypertension,

especially among the elderly.

Keywords: pulmonary hypertension, electronic frailty index, random survival forest (RSF), diabetes mellitus,

cardiovascular disease, renal complications

INTRODUCTION

Pulmonary hypertension (PHTN) was defined in the First World
Symposium on Pulmonary Hypertension as having a mean
pulmonary arterial pressure >25 mmHg at resting by right
heart catheterization (1, 2). PHTN was traditionally classified
as either primary or secondary PHTN (3). The epidemiology
and prognosis of the PHTN vary with different causes, but
generally, PHTN can progress to a severe stage and ultimately
cause death if left untreated (4). Therefore, it is essential to
evaluate the prognosis of patients with PHTN as early as possible.
Nevertheless, the prognostic risk factors to predict the risks of
complication development and mortality are unclear.

Currently, the PHTN mortality is predicted using the
dynamic risk stratification strategy suggested in the European
Society of Cardiology/European Respiratory Society pulmonary
hypertension guidelines. The strategy utilizes the clinical
features and laboratory results to predict the mortalities
and stratify the risk of death according to the one-year
mortality expectations (5, 6). However, the model requires
extensive clinical investigations, such as echocardiography and
cardiopulmonary exercise testing (7). Calculating the risks of
death by simply using the demographics and the laboratory
testing results allows the determination of the treatment
objectives to be more readily accessible.

PHTN can result in serious complications involving the
cardiovascular, renal, and metabolic systems (8). Conversely,
patients with pre-existing comorbidities have a poorer
prognosis (9, 10). For example, acute right heart failure
is one of the most important causes of mortality among
patients with PHTN (11). PHTN can also co-exist with
chronic renal disease owing to altered fibroblast growth
factor-23 signaling (12, 13). The presence of diabetes
mellitus can induce pulmonary endothelial dysfunction,
and patients with PHTN may also develop diabetes mellitus
and metabolic syndrome as complications due to the chronic
pro-inflammatory states (14, 15). The concurrence of the
above conditions increases the complexity of the PHTN
clinical profile.

Frailty is a geriatric syndrome that results in age-associated
functional limitations across multiple systems. Older people
with frailty are prone to poorer health outcomes such as falls
and disability. This contributes to frequent hospitalization and
premature death (16–19). The development of an electronic

frailty index (eFI) through the random survival forest (RSF)
model allows the analysis of the survival data using electronic
health data (20). RSF can approximate complex survival
functions while maintaining low prediction error (21). This study
aims to construct a scalable eFI with improved predictability
for complications and short-term mortality among patients with
PHTN through the application of the RSF model.

METHODS

Study Design and Population
The retrospective population-based cohort was designed to
investigate long-term clinical prognostic risk factors that predict
the survival of patients with newly diagnosed PHTN. This cohort
included patients diagnosed with PHTN between January 1st,
2000 and December 31st, 2017 at centers managed by the
Hong Kong Hospital Authority. The patients were identified
from the Clinical Data Analysis and Reporting System (CDARS),
a territory-wide database that centralizes patient information
from individual local hospitals to establish comprehensive
medical data. This system has previously been used by local teams
to conduct population-based epidemiological studies (22, 23),
including the development of eFIs (24, 25).

Demographics, comorbidities, hospitalization characteristics,
drug prescriptions, and laboratory examinations at the baseline
were extracted. Drug prescriptions following the diagnosis of
PHTN were determined. The calculated mean daily prescribed
drug dosage of medications was noted. The mean daily
dose of each drug class is derived from multiplying the
daily dose frequency by the drug dose then averaged by
the cumulative duration. Details regarding the International
Classification of Diseases, Nineth Edition (ICD-9) codes for
identifying the comorbidities and PHTN drugs are provided
(Supplementary Tables 1, 2).

Statistical Analysis
The study outcomes were the development of cardiovascular
and renal complications, diabetes mellitus, and mortality after
diagnosing PHTN. The mortality data were obtained from
the Hong Kong Death Registry, a population-based official
government registry with the registered death records of all
Hong Kong citizens. Continuous variables were represented as
median (95% confidence interval [CI] or interquartile range
[IQR]), and categorical variables were presented count (%).
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Continuous variables were compared using the Mann-Whitney
U test. The χ2 test with Yates’ correction was utilized for 2 × 2
contingency data. The Pearson’s χ2 test was applied for variables
with over two categories of contingency data.

The univariable Cox model was used to uncover the
significant prognostic risk factors associated with the outcomes
via adjustments based on baseline characteristics. Significantly
predictive factors are used as input of the multivariable Cox
regression and the RSF analysis model for the complication
prediction. Hazard ratios (HRs) with corresponding 95% CIs
and P-values were reported. All significance tests were two
tailed and considered significant if P < 0.05. Data analyses were
performed using the RStudio software (Version: 1.1.456) and
Python (Version: 3.6).

Development of a Tree-Based Mortality

Prediction Model
The eFI was developed to use the primary electronic health
record to predict the frailty status of the patients, based on the
principle that it reflects the health deficit accumulation (26, 27).
Our team has previously developed an eFI for heart failure
(24). A survival analysis was utilized to estimate the probability
of mortality after diagnosing PHTN. It identifies the most
influential prognostic risk factors that efficiently predict mortality
outcomes. The RSF model was used to conduct a supervised
survival learning analysis with the electronic health data. We
used 20% of the data as a test set for a model performance
evaluation and comparisons while using the remaining 80% for a
model training. The parameters that gave the highest value of the
Concordance Index (C-index) on the test set were chosen as the
final model. The RSF was employed to learn the distribution of
survival times based on the observed preoperative symptom data.

Variable Importance Measure
The variable importance value of each factor was calculated to
investigate the predictive strength. We leave out about 40% of
instances whenever a bootstrap sample is down with replacement
from the training data set. These left-out instances are referred
to as out-of-bag (OOB) ones and the instances in the bootstrap
sample as in bag ones. To calculate the variable importance
value, we dropped each OOB instance down its in-bag competing
risk tree and assigned a child node randomly whenever a split
for the variable is encountered. The event-specific cumulative
probability function from each such tree is calculated and
averaged. The importance value is the prediction error for the
original ensemble event-specific cumulative probability function
(obtained when each OOB instance is dropped down its in-
bag competing risks tree) subtracted from the prediction error
for the new ensemble obtained using randomizing assignments
of the variable (28, 29). The prediction errors are computed
using squared loss. A higher importance value indicates higher
predictive strength of the variable, whereas zero or negative
values indicate non-predictive variables.

Minimal Depth Approach
Minimal depth (30) ranks the variables through the inspection
of the forest construction process under the assumption that

variables with high impact on the prediction are those that
most frequently split nodes nearest to the root node, where they
partition the largest samples. Within each split tree, minimal
depth approaches numbers of node levels according to their
relative distance to the root of the tree (with the root node at 0). In
such a way, the minimal depth approach can identify important
variables by averaging the depth of the first split for each variable
over all trees within the final forest.

The minimal depth approach was used to capture the variable
interactions. We calculate the importance measures of pairwise
interactions among variables since the minimal depth measure
is defined by averaging the tree depth of the variable of interest
relative to the root node. To compute the interaction strength for
prediction, this calculation is modified to measure the minimal
depth of a variable xi with respect to the maximal subtree for
variable xj.

In general, to select the most influential variables with
a variable importance approach, we examine the calculated
variable importance values. The minimal depth approach is a
non-event-specific criterion, whereas the variable importance
approach can be both event specific and non-event specific.
In the following analysis, we used the mortality-specific and
time-to-event-specific variable importance.

Performance Evaluation
The 5-fold cross validation approach is adopted to evaluate
the prediction performance of the RSF model. The metrics of
precision and recall are as follows:

Precision =
TP

TP + FP
, Recall =

Tp

Tp+ FN
,

and the area under the receiver operating characteristic curve
(AUC) and the C index are used for performance evaluation.
TN, TP, FP, and FN represent true positive, true negative,
false positive, and false negative rates in the confusion matrix,
respectively. Conventional non-parametric survival models
primarily select the best analysis model that maximizes the C
index (31). C index quantifies the degree to which the predicted
outcomes in the pairwise orderings are consistent with the
observed outcomes and can be regarded as a generalization of
the AUC. That is, any survival analysis model that properly
estimates the ordered but proportional event times can score
high in terms of C index. C index can be used as a global
assessment of the model’s discrimination power: the ability to
correctly provide a reliable ranking of the survival times based
on the individual risk scores. In this study, we compare the RSF
model with the traditional Cox analysis to predict the mortality
and complications after diagnosis of PHTN.

RESULTS

Basic Characteristics
The study cohort included 2,560 patients (37% men) with an age
of 63.4 (IQR: 38.0–79.0) (Figure 1). The baseline characteristics
of the PHTN patients are detailed in Tables 1, 2. Over the follow-
up, 38% of patients died; those who died were older (median:
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FIGURE 1 | Illustration of the study procedures. PN, Pulmonary hypertension.

75.2, IQR: 60.0–83.0) than those who survived (median: 44.6,
IQR: 1.0–65.0).

The Risk of Adverse Outcomes With Cox

Analysis
A univariable Cox regression analysis identified the predictors of
mortality after the diagnosis of PHTN (Supplementary Table 3).
Patients with past comorbidities, such as cardiovascular diseases
(HR: 1.947, 95% CI: 0.8132–2.102), respiratory diseases (HR:
1.295, 95% CI: 0.646–2.595), endocrine disease (HR: 1.524,
95% CI: 1.127–2.059), and hypertension (HR: 1.362, 95%
CI: 1.172–2.7618) were associated with higher mortality risks.
The univariable Cox regression analysis also identified the
predictors for the complications (Supplementary Table 4). The
diagnosis age was an important predictor (all P < 0.0001).
The multivariable Cox regression predictors of mortality were
also identified (Supplementary Table 5A). The age of diagnosis
(HR: 1.822; 95% CI: 1.815–1.829), cumulative hospital length
of stay (LOS) (HR: 1.0007; 95% CI: 1.00040–1.0009), prior
cardiovascular diseases (HR: 1.266; 95% CI: 1.064–1.507), kidney
diseases (HR: 1.279; 95% CI: 1.125–1.454), diabetes mellitus (HR:
1.208; 95% CI: 1.032–1.415), and hypertension (HR: 1.549; 95%
CI: 0.665–3.608) were predictive of mortality. The Kaplan-Meier
survival curves demonstrated the mortality of the patients in
Figure 2A.

Machine Learning Survival Analysis
The RSF model identified the influential prognostic risk factors
by capturing the non-linearity and interactions. The predicted
events for all-cause mortality with the RSF model are shown
in Figure 2B. Most deaths occurred at age equal or above 75.
The predictions for the time to event of the complications are
shown in Figure 3. The RSF provided better discrimination
performance in predicting the mortality risk, given its ability

to capture the non-linearity and the interaction patterns
(Supplementary Figures 4–7).

Age was the most important for the mortality risk
prediction, followed by average readmission, antihypertension
drugs, cumulative LOS, and total bilirubin level
(Supplementary Figure 8). The risk factors that predicted
the three complications were also identified. Age was the most
important predictor for cardiovascular complications, followed
by lymphocyte count and mean readmission interval. Age
also showed the highest prediction strength for kidney and
diabetic complications.

Important interactions with the demographics included the
interactions of PHTN age and sex with average readmission
interval, cumulative hospital stay, and total bilirubin level
(Supplementary Figure 4). The interactions of the variables
with past comorbidities (Supplementary Figure 5), drug
prescriptions (Supplementary Figure 6), and laboratory
examinations (Supplementary Figure 7) were also derived.
An interaction importance ranking pattern could be observed:
interactions formed by a variable with the influential individual
risk factors demonstrated high predictive strength.

Predictors of Adverse Events Risk With eFI
Correspondingly, an eFI was developed for predicting the all-
cause mortality (Supplementary Table 5B). The calculated eFI
for patients with/without mortality was significantly different
(median: 9.0, IQR: 8.0–10.0 vs. median: 8.0, IQR: 6.0–9.0, P
< 0.0001) (Table 3A, Supplementary Figure 9). The eFI was
significantly associated with higher mortality risk (HR: 1.25, 95%
CI: 1.22–1.29, P < 0.0001) (Table 3B). The marginal effects of
eFI also demonstrated that higher eFI was associated with higher
risks of mortality (Supplementary Figure 10).

The binarized eFI also predicted mortality risk based on the
Youden cut-off of 9.5 (HR: 1.90, 95% CI: 1.70–2.12, P < 0.0001)
(Table 3B). Patients with eFI > 9.5 had a higher cumulative
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TABLE 1 | The characteristics of patients with pulmonary hypertension stratified by mortality outcomes.

Characteristics All patients (n = 2,560)

Median (IQR) or count (%)

Mortality (n = 1,347)

Median (IQR) or count (%)

No mortality (n = 1,213)

Median (IQR) or count (%)

P-value

Demographics

Male sex 955 (37.30%) 513 (38.08%) 442 (36.43%) <0.0001***

Age at diagnosis 63.4 (38.0–79.0) 75.2 (60.0–83.0) 44.6 (1.0–65.0) <0.0001***

Hospitalization before PHTN

Total number of hospital admissions 13.0 (7.0–23.0) 16.0 (8.0–26.0) 11.0 (5.0–20.0) <0.0001***

Number of emergency readmissions 3.0 (1.0–6.0) 4.0 (2.0–8.0) 2.0 (1.0–4.0) 0.0115*

Mean readmission interval (days) 223.7 (105.0–435.0) 221.3 (115.0–387.0) 225.4 (95.0–509.0) 0.1725

Cumulative length-of-stay 80.0 (34.0–162.0) 110.0 (58.0–191.0) 48.0 (21.0–118.0) <0.0001***

Comorbidity before PHTN

Respiratory disease 2,537 (99.10%) 1,330 (98.73%) 1,207 (99.50%) 0.2782

Hypertension 2,511 (98.08%) 1,313 (97.47%) 1,198 (98.76%) 0.0617

Cardiovascular disease 1,916 (74.84%) 1,150 (85.37%) 766(63.14%) <0.0001***

Gastrointestinal disease 1,014 (39.60%) 601 (44.61%) 413 (34.04%) 0.0016**

Kidney disease 768 (30.00%) 534 (39.64%) 234 (19.29%) <0.0001***

Endocrine disease 88 (3.43%) 44 (3.26%) 44 (3.62%) 0.0916

Diabetes mellitus 337 (13.16%) 218 (16.18%) 119 (9.81%) <0.0001***

Obesity 71 (2.77%) 29 (2.15%) 42 (3.46%) <0.0001***

Drug prescriptions after PHTN

Alpha blockers n = 224 n = 159 n = 65

Daily dosage, mg/day 1.7 (1.0–3.0) 1.7 (0.9, 3.0) 1.9 (1.1, 3.5) p = 0.2443***

Cumulative dosage, mg 377.5 (84.0, 1165.0) 258.5 (49.5, 924.5) 543.5 (177.0–2319.5) 0.0016**

Cumulative duration, days 260.5 (62.0–753.5) 237.0 (40.0–696.0) 396.0 (112.0–1141.0) 0.0648

Anti-arrhythmias drugs n = 238 n = 179 n = 59

Daily dosage, mg/day 225.0 (46.5–636.5) 225.0 (48.0–661.5) 117.0 (20.0–584.5) 0.2261

Cumulative dosage, mg 227.86 (36.0–1524.11) 255.0 (37.4–1660.55) 182.81 (24.0–1023.75) 0.1277

Cumulative duration, days 4.0 (2.0–17.5) 4.0 (2.0–12.5) 5.0 (2.0–35.0) 0.582

Beta blockers n = 670 n = 402 n = 268

Daily dosage, mg/day 15.76 (6.25–31.41) 13.26 (6.23–26.36) 18.99 (6.26–41.97) 0.0611

Cumulative dosage, mg 784.0 (125.0–4948.44) 575.0 (76.5–3966.0) 1599.5 (187.0–8473.44) 0.0001***

Cumulative duration, days 178.0 (37.0–499.0) 133.0 (26.0–397.0) 280.0 (54.0–867.0) <0.0001***

Cardiac glycosides n = 491 n = 362 n = 129

Daily dosage, mg/day 62.5 (42.85–144.34) 63.14 (48.28–148.2) 57.34 (25.79–125.0) 0.0111*

Cumulative dosage, mg 4437.5 (371.0–23625.0) 5181.25 (562.5–19250.0) 2662.5 (155.0–45562.5) 0.7103

Cumulative duration, days 172.0 (24.0–551.5) 154.0 (21.0–473.0) 252.0 (30.0–954.5) 0.0228*

Centrally acting antihypertensive drugs n = 63 n = 48 n = 15

Daily dosage, mg/day 75.0 (25.0–524.7) 100.0 (27.81–524.7) 38.5 (25.0–556.46) 0.5393

Cumulative dosage, mg 525.0 (42.0–7945.0) 920.0 (79.5–7945.0) 175.0 (26.5–9175.0) 0.5291

Cumulative duration, days 135.0 (28.0–387.5) 139.5 (37.0–371.5) 28.0 (8.5–459.0) 0.4433

Loop diuretics n = 1,636 n = 1,042 n = 594

Daily dosage, mg/day 27.39 (9.15–72.58) 27.76 (11.26–64.57) 25.66 (7.54–144.78) 0.5814

Cumulative dosage, mg 525.0 (76.0–2673.5) 577.0 (114.0–2721.75) 388.5 (48.0–2538.0) 0.0109*

Cumulative duration, days 158.0 (38.0–467.0) 184.0 (45.5–516.5) 128.0 (31.0–372.5) 0.0014**

Phosphodiesterase type-3 inhibitors n = 13 n = 7 n = 6

Daily dosage, mg/day 7.7 (1.67–45.0) 16.0 (5.02–60.06) 2.97 (0.9–15.67) 0.1336

Cumulative dosage, mg 74.0 (3.84–171.0) 171.0 (15.05–296.88) 38.92 (2.73–104.5) 0.1336

Cumulative duration, days 3.0 (2.0–6.0) 3.0 (2.0–6.0) 4.5 (2.5–6.0) 0.9416

Potassium-sparing diuretics and

aldosterone

n = 664 n = 359 n = 305

Daily dosage, mg/day 21.37 (8.09–29.17) 25.0 (12.5–35.69) 13.86 (6.36–25.0) <0.0001***

Cumulative dosage, mg 568.0 (88.0–3676.88) 475.0 (75.0–4625.0) 654.0 (125.0–2975.0) 0.6552

Cumulative duration, days 98.5 (31.0–330.0) 87.0 (24.5–334.5) 117.0 (39.0–322.0) 0.1124

(Continued)
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TABLE 1 | Continued

Characteristics All patients (n = 2,560)

Median (IQR) or count (%)

Mortality (n = 1,347)

Median (IQR) or count (%)

No mortality (n = 1,213)

Median (IQR) or count (%)

P-value

Thiazides and related diuretics n = 215 n = 145 n = 70

Daily dosage, mg/day 3.26 (1.77–9.65) 2.99 (1.67–5.62) 5.0 (2.5–17.08) 0.0322*

Cumulative dosage, mg 83.0 (15.0–531.25) 42.0 (7.0–231.0) 461.5 (70.75–922.0) <0.0001***

Cumulative duration, days 43.0 (7.0–219.5) 21.0 (4.0–112.0) 116.0 (35.0–344.0) <0.0001***

Vasodilator antihypertensive drugs n = 346 n = 202 n = 144

Daily dosage, mg/day 35.48 (6.33–62.32) 39.22 (6.87–67.1) 33.85 (6.0–56.46) 0.0144*

Cumulative dosage, mg 474.0 (90.0-3040.5) 285.5 (73.0–1789.0) 966.0 (160.0–4419.0) 0.0033**

Cumulative duration, days 126.0 (22.5–419.0) 58.0 (14.0–269.0) 237.0 (42.5–724.5) <0.0001***

Laboratory examinations on PHTN

Hemoglobin, g/dL 12.1 (10.0–14.0); n = 2,515 11.6 (10.0–13.0); n = 1,340 12.4 (11.0–14.0); n = 1,175 0.0115*

Hematocrit, L/L 0.4 (0.0–0.0); n = 2,511 0.4 (0.0–0.0); n = 1,339 0.4 (0.0–0.0); n = 1,172 0.5656

Lymphocyte, x10∧9/L 1.3 (1.0–2.0); n = 2,506 1.0 (1.0–2.0); n = 1,339 1.7 (1.0–3.0); n = 1,167 0.1625

Neutrophil, x10∧9/L 5.3 (4.0–7.0); n = 2,506 5.4 (4.0–8.0); n = 1,339 5.0 (4.0–7.0); n = 1,167 0.0615

Platelet, x10∧9/L 197.0 (147.0–256.0); n = 2,508 178.0 (130.0–232.0); n = 1,336 221.5 (170.0–278.0); n = 1,172 <0.0001***

APTT, secs 32.9 (29.0–38.0); n = 2,352 33.3 (29.0–38.0); n = 1,299 32.7 (29.0–38.0); n = 1,053 0.0016**

INR 1.2 (1.0–1.0); n = 2,364 1.2 (1.0–2.0); n = 1,303 1.2 (1.0–1.0); n = 1,061 0.0166*

Prothrombin time, sec 13.4 (12.0–17.0); n = 2,333 13.8 (12.0–18.0); n = 1,292 13.1 (12.0–16.0); n = 1,041 0.6319

Red cell count, x10∧12/L 4.1 (4.0–5.0); n = 2,510 4.0 (3.0–5.0); n = 1,339 4.2 (4.0–5.0); n = 1,171 0.2716

Total protein, g/L 68.0 (62.0–74.0); n = 2,465 67.7 (62.0–73.0); n = 1,330 69.0 (62.0–75.0); n = 1,135 0.7112

Total bilirubin, umol/L 13.0 (8.0–22.0); n = 2,453 14.6 (9.0–24.0); n = 1,326 11.4 (7.0–20.0); n = 1,127 <0.0001***

Alkaline phosphatase, U/L 49.5 (34.0–73.0); n = 2,463 51.5 (35.0–74.0); n = 1,329 47.0 (32.0–72.0); n = 1,134 0.1625

Red cell distance width, % 15.1 (14.0–17.0); n = 2,472 15.7 (14.0–18.0); n = 1,317 14.5 (13.0–16.0); n = 1,155 0.0317*

Mean cell volume, fL 89.9 (85.0–95.0); n = 2,512 91.0 (86.0–96.0); n = 1,339 89.0 (84.0–93.0); n = 1,173 <0.0001***

Mean cell hemoglobin concentration, g/dL 34.2 (33.0–35.0); n = 2,512 34.2 (33.0–35.0); n = 1,339 34.3 (33.0–35.0); n = 1,173 0.0815

APTT, activated partial thromboplastin time; INR, international normalized ratio; IQR, interquartile range; LOS, length of stay; PHTN, pulmonary hypertension.
* for P ≤ 0.05, ** for P ≤ 0.01, *** for P ≤ 0.001.

hazard for all-cause mortality. The cumulative hazards were
especially higher among patients who were 65 years old or above
with eFI ≥ 9.5 (Figure 4). Within 2 years of follow-up, the
eFI predicted the mortality (HR: 1.15, 95% CI: 1.02–1.28; P =

0.0169). The HR of the eFI increased with a longer duration of
follow-up. Upon 10 years of follow-up, the eFI was associated
with higher risks of mortality (HR: 1.71, 95% CI: 1.53–1.90; P <

0.0001); meanwhile, upon 20 years of follow-up, the HR was even
higher (HR: 1.90; 95% CI: 1.70–2.12; P < 0.0001) (Table 3C).

The RSF model showed a better performance in terms of
precision (0.9263 vs. 0.8382), recall (0.9058 vs. 0.8992), AUC
(0.9478 vs. 0.9051), and C index (0.9361 vs. 0.9240) compared to
the Coxmodel in the 5-fold cross-validation. Similarly, compared
to multivariate Cox regression, the precision, recall, AUC, and
C index were significantly higher for RSF in predicting the
cardiovascular, kidney, diabetic complications, and mortality
(Table 4).

DISCUSSION

The Principal Findings of the Study
The main findings of this study include (i) risk factors including
admission interval, cumulative LOS, and total admissions times
were predictive of the complications and mortality; (ii) the

RSF-identified non-linear relationship between the predictors
and outcome was predictive of mortality; (iii) the RSF model
performed better in mortality and complication predictions than
the Cox regression; (iv) the eFI predicted the risks of all-cause
mortality accurately, especially among patients whowere 65 years
old or above.

Strength and Limitations of the Study
To the best of our knowledge, this is the first study using the
eFI in predicting the PHTN outcomes. The usage of the cohort
from a real-world clinical database to derive the RSF analysis was
shown to have performed better than the multivariable logistic
regression to predict the PHTN mortality and complications.
This would allow better clinical management based on the eFI.
However, there are certain limitations to this study. Firstly,
given this is a local study conducted in Hong Kong, the PHTN
results should be validated using the data from other databases
in other countries. Secondly, medical history, such as smoking,
asbestos, and family history, and clinical parameters such as
partial pressure of oxygen (PaO2) and N-terminal pro-brain
natriuretic peptide (NT-proBNP), which are associated with
PHTN in other literature, were not included in this predictive
model given the lack of the codes in CDARS (32). Thirdly, given
the retrospective nature of this study, the results may be subjected
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TABLE 2 | The characteristics of patients who developed complications after the diagnosis of pulmonary hypertension.

Characteristics Cardiovascular

complications (n = 1,878)

Median (IQR) or

count (%)

Renal complications (n =

684)

Median (IQR) or count

(%)

Diabetes (n = 437)

Median (IQR) or

count (%)

P-value

Demographics

Male sex 710 (37.80%) 283 (41.37%) 162 (37.07%) 0.0017**

Age at diagnosis 69.2 (48.0–81.0) 72.0 (54.0–82.0) 75.8 (66.0–83.0) 0.0008***

Baseline hospitalizations

Total number of hospital admissions 15.0 (8.0–25.0) 19.0 (11.0–34.0) 19.0 (11.0–33.0) <0.0001***

Number of emergency readmissions 2.0 (0.0–5.0) 3.0 (1.0–7.0) 2.0 (1.0–7.0) 0.0216*

Mean readmission interval (days) 211.3 (102.0–388.0) 188.0 (98.0–315.0) 219.1 (128.0–405.0) <0.0001***

Cumulative length-of-stay 93.0 (44.0–170.0) 137.0 (74.0–236.0) 120.0 (63.0–226.0) <0.0001***

Baseline comorbidities

Respiratory disease 1,878 (100.00%) 684 (100.00%) 437 (100.00%) 0.5816

Hypertension 1,872 (99.68%) 682 (99.70%) 437 (100.00%) 0.2671

Cardiovascular disease - 593 (86.69%) 382 (87.41%) <0.0001***

Gastrointestinal disease 792 (42.17%) 377 (55.11%) 253 (57.89%) 0.0002***

Kidney disease 645 (34.34%) - 242 (55.37%) <0.0001***

Endocrine disease 56 (2.98%) 24 (3.50%) 14 (3.20%) 0.0017**

Diabetes mellitus 275 (14.64%) 190 (27.77%) - <0.0001***

Obesity 55 (2.92%) 30 (4.38%) 34 (7.78%) <0.0001***

Drug prescriptions for PHTN

Cardiac glycosides 466 (24.81%) 166 (24.26%) 98 (22.42%) <0.0001***

Phosphodiesterase type-3 inhibitors 9 (0.47%) 5 (0.73%) 0 (0.00%) 0.0031**

Thiazides and related diuretics 190 (10.11%) 109 (15.93%) 73 (16.70%) <0.0001***

Loop diuretics 1,377 (73.32%) 525 (76.75%) 323 (73.91%) 0.0211*

Potassium-sparing diuretics and aldosterone 579 (30.83%) 204 (29.82%) 108 (24.71%) 0.0022**

Anti-arrhythmias drugs 224 (11.92%) 98 (14.32%) 48 (10.98%) <0.0001***

Beta blockers 567 (30.19%) 271 (39.61%) 192 (43.93%) <0.0001***

Vasodilator antihypertensive drugs 232 (12.35%) 89 (13.01%) 44 (10.06%) 0.0012**

Centrally acting antihypertensive drugs 56 (2.98%) 30 (4.38%) 22 (5.03%) <0.0001***

Alpha blockers 184 (9.79%); n = 184 116 (16.95%); n = 116 83 (18.99%); n = 83 <0.0001***

Laboratory tests

Hemoglobin, g/dL 11.9 (10.0–14.0); n = 1,862 10.8 (9.0–13.0); n = 679 11.3 (10.0–13.0); n = 432 0.0035**

Hematocrit, L/L 0.4 (0.0–0.0); n = 1,861 0.3 (0.0–0.0); n = 679 0.3 (0.0–0.0); n = 432 0.6241

Lymphocyte, x10∧9/L 1.3 (1.0–2.0); n = 1,858 1.0 (1.0–2.0); n = 679 1.1 (1.0–2.0); n = 432 0.042*

Neutrophil, x10∧9/L 5.2 (4.0–7.0); n = 1,858 5.3 (4.0–7.0); n = 679 5.4 (4.0–7.0); n = 432 0.0071**

Platelet, x10∧9/L 191.5 (144.0–249.0); n =

1,858

180.5 (135.0–240.0); n =

678

191.0 (144.0–238.0); n =

431

0.0063**

APTT, secs 33.0 (30.0–38.0); n = 1,781 33.8 (30.0–39.0); n = 665 31.7 (28.0–36.0); n = 426 0.0163*

INR 1.2 (1.0–1.0); n = 1,789 1.2 (1.0–2.0); n = 668 1.2 (1.0–1.0); n = 425 0.0166*

Prothrombin time, sec 13.6 (12.0–17.0); n = 1,766 13.8 (12.0–17.0); n = 658 12.9 (12.0–15.0); n = 423 <0.0001***

Red cell count, x10∧12/L 4.1 (4.0–5.0); n = 1,861 3.8 (3.0–4.0); n = 679 4.0 (3.0–5.0); n = 432 0.0714

Total protein, g/L 68.0 (62.0–74.0); n = 1,831 68.0 (62.0–73.0); n = 671 70.0 (64.0–74.0); n = 430 0.5312

Total bilirubin, umol/L 14.0 (9.0–23.0); n = 1,834 13.0 (8.0–22.0); n = 668 11.4 (8.0–18.0); n = 431 <0.0001***

Alkaline phosphatase, U/L 49.0 (34.0–71.0); n = 1,826 53.6 (35.0–78.0); n = 668 48.5 (33.0–68.0); n = 431 <0.0001***

Red cell distribution width, % 15.2 (14.0–17.0); n = 1,844 15.7 (14.0–18.0); n = 670 15.0 (14.0–17.0); n = 431 0.0615

Mean cell volume, fL 90.1 (85.0–95.0); n = 1,861 90.5 (86.0–95.0); n = 679 89.8 (86.0–94.0); n = 432 <0.0001***

Mean cell hemoglobin concentration, g/dL 34.2 (33.0–35.0); n = 1,861 34.2 (33.0–35.0); n = 679 34.0 (33.0–35.0); n = 432 0.0915

APTT, activated partial thromboplastin time; INR, international normalized ratio; IQR, interquartile range; LOS, length of stay; PHTN, pulmonary hypertension.
* for P ≤ 0.05, ** for P ≤ 0.01, *** for P ≤ 0.001.
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FIGURE 2 | Kaplan-Meier curves for all-cause mortality and the predicted mortality. The Kaplan-Meier survival curves demonstrate the moralities of the patients with

pulmonary hypertension (PHTN) (A) and the predicted mortalities using the random survival forest (RSF) prediction (B). Each line represents a single patient in the

training data set, where censored patients are colored blue, and patients who have experienced the mortality event are colored in red. The median survival (black) with

a 95% shaded confidence band (gray) are indicated.

FIGURE 3 | Predicted survivals of cardiovascular, kidney, and diabetes complications with RSF model.

TABLE 3A | Descriptive statistics of electronic frailty index for all-cause mortality risk prediction.

Characteristics Cut-off All Median (IQR); All-cause mortality Median (IQR); Alive (N = 1,213)

(N = 2,560) N or Count (%) (N = 1,347) N or Count (%) Median (IQR); N or Count (%) P-value

Electronic frailty index 9.5 8.0 (7.0–10.0); n = 2,560 9.0 (8.0–10.0); n = 1,394 8.0 (6.0–9.0); n = 1,166 <0.0001***

Electronic frailty index≥9.5 - 722 (28.20%) 527 (39.12%) 195 (16.08%) <0.0001***

* for P ≤ 0.05, ** for P ≤ 0.01, *** for P ≤ 0.001.

TABLE 3B | Prediction strength of electronic frailty index for all-cause mortality risk prediction.

Characteristics HR[CI]; P-value Precision Recall AUC C-index

Electronic frailty index 1.25 [1.22–1.29]; <0.0001*** 0.8234 0.8867 0.9015 0.9109

Electronic frailty index≥9.5 1.90 [1.70–2.12]; <0.0001*** 0.8351 0.8909 0.9105 0.9202

* for p ≤ 0.05, ** for p ≤ 0.01, *** for p ≤ 0.001.

to instabilities of the laboratory results, including the equipment
modifications and blood samples artifacts, and changes in the
clinical criteria for the diagnosis of the PHTN. Furthermore,
clinical information suggested in the European PHTN guidelines,

such as the clinical courses and syncope episodes, is also lacking.
Furthermore, in our predictive model, the number of patients
on centrally acting antihypertensive drugs and phosphodiesterase
type-3 inhibitors was relatively small. Lastly, due to the lack of
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FIGURE 4 | Cumulative incidence curves for all-cause mortality stratified by the constructed electronic frailty index and age.

TABLE 3C | Prediction strength of the constructed electronic frailty index for

mortality risks within 2-year follow-up, 5-year follow-up, 10-year follow-up,

15-year follow-up, and 20-year follow-up.

Characteristics All-cause mortality HR [95% CI]; P-value

Within 2-year follow-up

Electronic frailty index 1.03 [1.00–1.07];0.0459*

<9 1.0 [Reference]

(9, 10) 1.15 [1.02–1.28];0.0183*

>12 1.15 [0.64–2.09];0.6394

High vs. low 1.15 [1.02–1.28];0.0169*

Within 5-year follow-up

Electronic frailty index 1.15 [1.11–1.18];<0.0001***

<9 1.0 [Reference]

(9, 10) 1.50 [1.34–1.67];<0.0001***

>12 1.86 [1.03–3.38];0.0409*

High vs. low 1.51 [1.35–1.68];<0.0001***

Within 10-year follow-up

Electronic frailty index 1.21 [1.17–1.24];<0.0001***

<9 1.0 [Reference]

(9, 10) 1.70 [1.52–1.90];<0.0001***

>12 1.98 [1.09–3.59];0.0244*

High vs. low 1.71 [1.53–1.90];<0.0001***

Within 15-year follow-up

Electronic frailty index 1.22 [1.18–1.25];<0.0001***

<9 1.0 [Reference]

(9, 10) 1.76 [1.58–1.96];<0.0001***

>12 2.09 [1.15–3.79];0.0153*

High v.s. low 1.77 [1.58–1.97];<0.0001***

Within 20-year follow-up

Electronic frailty index 1.25 [1.22–1.29];<0.0001***

<9 1.0 [Reference]

(9, 10) 1.89 [1.70–2.11];<0.0001***

>12 2.23 [1.23–4.04];0.0085**

High vs. low 1.90 [1.70–2.12];<0.0001***

* for P ≤ 0.05, ** for P ≤ 0.01, *** for P ≤ 0.001.

High: Electronic frailty index≥9.5; Low: Electronic frailty index<9.5.

TABLE 4A | Performance comparisons between multivariable and random

survival forest with five-fold cross validation.

Model Precision Recall AUC C-index

Multivariable Cox analysis 0.8382 0.8992 0.9051 0.9240

Random survival forests 0.9263 0.9058 0.9478 0.9361

the relevant diagnostic codes, the PHTN cases were not classified
according to the World Health Organization (WHO) PHTN
classification (2). Nevertheless, frailty models with the lack of
enlisted information are still strong predictors of mortality and
mortality (33).

Comparing the Findings With the Other

Studies
Our data presented different risk factors that contributed to
the development of the PHTN complications. Older patients
and male patients showed a higher mortality risk. Patients
with a higher comorbidity burden, including cardiovascular,
hypertension, and renal conditions, had a lower survival rate
and were more likely to develop complications (34). The variable
importance and minimal depth approach indicated that the age
of PHTN diagnosis had the highest predictive strength. This is
in accordance with the previous predictive model (REVEAL),
indicating that old male patients would have a worse prognosis,
even though PHTN is a predominantly female disorder. This
is worrying given the average age of patients diagnosed is
shifting toward an older population (35). In agreement with
previous studies, the hospitalization characteristics and drugs
are also associated with the survival outcome in a pattern (36,
37). Compared to other predictive models, our study does not
involve the use of the hemodynamic data nor lung function and
radiological test results (38). However, our study demonstrated
a higher AUC compared to the previous studies (39, 40).
Nevertheless, the PHTN diagnosis in our study was not classified
according to the WHO classification owing to the lack of the
CDARS code.
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TABLE 4B | Performance comparisons between multivariable Cox and random survival forest with five-fold cross validation.

Cardiovascular Kidney Diabetes Mortality

Metric Multivariable Cox RSF Multivariable Cox RSF Multivariable Cox RSF Multivariable Cox RSF

Precision 0.84 0.92 0.83 0.92 0.84 0.92 0.84 0.93

Recall 0.83 0.91 0.78 0.91 0.87 0.91 0.83 0.91

AUC 0.90 0.95 0.85 0.94 0.85 0.95 0.76 0.94

C-index 0.88 0.94 0.87 0.93 0.90 0.94 0.79 0.91

Our results demonstrated that eFI significantly predicts the
risks of complications and mortality among elderlies. Compare
to the traditional Cox models, prediction models based on
RSF have improved prediction performance across diseases
such as heart failure (41), Brugada syndrome (42), congenital
(43, 44) and acquired (45) long QT syndromes, diabetes
mellitus (46, 47), metabolic diseases (48), stroke (49), and
cancer (50). It improved the risk prediction in the context
of PHTN for disease onset (51) and pressure prediction
based on echocardiographic parameters (52). However, few
studies have examined the long-term prognosis of patients with
PHTN. In our study, the RSF model had a higher predictive
accuracy with 5-fold cross-validation than the Cox model
since it does not have a strong assumption about individual
proportional hazard functions. Furthermore, the model can
capture the interactions, reducing the prediction variances and
bias (20, 53). The interactions formed by a variable with
the influential individual risk factors demonstrated a high
predictive strength.

The Implications for the Clinicians and

Future Research Directions
The eFI derived from the significant variables allows
predicting the risks of mortality and complications of
the patients with PHTN, especially among elderlies.
Clinicians can make use of the electronic medical records
to estimate the outcome of the patients with PHTN without
using any hemodynamic and radiological investigation
modalities. The eFI can be further translated into a risk
diagnosis tool to be deployed in the computer for real-time
clinical applications.

CONCLUSION

The RSF model identified the influential prognostic risk factors
and their interaction from the clinical accessible data. The
usage of this RSF-derived eFI would allow stratifying the
risks of complication and mortality and optimizing the PHTN
management among elderlies.
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