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Editorial on the Research Topic

Stem Cell-Derived Exosome Therapy of Microbial Diseases: From Bench to Bed

Exosomes are nano-sized vesicles that play a mediator role in cell-to-cell communication. They are
composed of unique proteins, lipids and nucleic acids, which replicate the composition of producer
cells and can be used as cell-free therapeutics. Exosomes derived from stem cells have attracted
great attention due to their immunomodulatory, regenerative and antimicrobial capabilities. These
characteristics have been demonstrated in various in vitro and in vivomodels. Furthermore, recent
developments in the field of exosome therapy have resulted in elaboration of specific quality control
methods and guidelines, which will facilitate the use of exosomes in clinical settings.

The leading cause of death in intensive care units (ICUs) is sepsis, with a mortality rate as
high as 25% in severe cases (Fleischmann-Struzek et al., 2020). Microbial infections, which cause
sepsis, involve complex interactions between microbial pathogens and the host immune system.
Excessive induction of endogenous pro-inflammatory cytokines and coagulation pathways during
the early phase of sepsis result in adverse effects in patients. Stem cells can modulate the expression
of the corresponding genes in sepsis (Huang et al., 2017). Stem cells also enhance the clearance of
pathogens and repair of injured tissues in sepsis. There are new insights for treatment of microbial
disease using stem cell-derived exosomes which have been discussed in this Research Topic.

The researchers who contributed to this Research Topic presented 10 themed articles that
highlighted the knowledge from recent advancements in the field of exosome therapy of microbial
infections. For example, in the work by You et al., we learnt that the various mechanisms of
stem cells-derived extracellular vesicles (MSC-EVs) treatment for infectious diseases in detail.
The authors described MSC-EVs mechanisms for treatment of intestinal infections, sepsis, and
respiratory infections. The authors also demonstrated challenges for implementingMSC-EVs from
bench to bedside. In addition, Keshavarz Alikhani et al. verified biogenesis and the fate of EVs.
They demonstrated EV-based therapy and current developments in understanding the potential
application of stem cell-derived EVs on pathogenic microorganisms. They also highlighted the
mechanisms by which EVs were exploited to fight against infectious diseases and the deriver
challenges in translation of stem cell-derived EVs into the clinical arena. On the other hand,
Keshtkar et al. described that most published studies on stem cell derived-exosomes are preclinical
and are under way to reach clinical applications. They emphasized the challenges ahead of
this cell-free therapeutic method that might be applied as a treatment alternative to stem cells.
By the way, Wu et al. highlighted the latest progress in the clinical translation of the MSCs-
derived exosomes therapy, by summarizing related clinical trials, routes of administration and
exosome modifications.
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Four articles focused on the treatment of specific infectious
diseases using MSCs-derived exosomes. Izadi et al. evaluated the
studies about the potential therapeutic roles of MSCs-derived
exosomes on sperm abnormalities and male infertility caused
by sexually transmitted diseases (STDs) including Chlamydia
infection. These investigators described that exosomes have
potential properties for preventing the consequences of infection,
such as reducing cell damage, preventing inflammation, and
reducing scar formation by inhibiting fibrogenesis. The second
review article by Zohrabi et al. discussed how MSCs-derived
exosomes secrete different bioactive factors. These secretions can
prevent infection and modulate the immune system. Thus, they
reviewed the possible application of MSCs-derived exosomes in
female reproductive system bacterial diseases. Furthermore, the
other review by Raghav et al. summarized recent findings on the
application of the cargo-loaded stem cell-derived exosomes in the
treatment of diabetic foot ulcers (DFUs). They also categorized
the different approaches for loading the desired cargo/drug inside
exosomes. On the other hand, Jafari et al. described the ability of
MSCs-derived exosomes as a therapeutic choice for controlling
and treatment of orodental infectious diseases.

Considering to fungal disease, Ghasemian discussed
applications of stem cell derived exosomes in in fungal diseases.
In her review, the probable role of exosomes, limitations for

clinical studies and mechanisms of action of exosomes in treating
fungal diseases was explored. In a novel insight into exosome
therapy of infectious diseases, Bayat et al. presented the first
description that algae derived stem cells can produce EVs. They
described properties of EVs extracted from this marine derived
source and their antimicrobial effects.

In conclusion, this themed collection enhances our
knowledge of exosome isolation methods from stem cell
for anti-bacterial, antifungal, antiviral, or anti-parasitic
applications. The papers particularly highlighted potential
targets and methods for stem cell genome manipulation for
improved production of antimicrobial agents and release-
through exosomes and also summarized in vitro and in vivo
studies evaluating stem cell-derived exosomes on pathogenic
microbes. Nevertheless, introducing quality control measures
and guidelines for production of stem cell-derived exosomes
as antimicrobials in clinical settings needs further research
and development.
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Exosomes are nano-vesicles of endosomal origin inherited with characteristics of drug
delivery and cargo loading. Exosomes offer a diverse range of opportunities that can
be exploited in the treatment of various diseases post-functionalization. This membrane
engineering is recently being used in the management of bacteria-associated diabetic
foot ulcers (DFUs). Diabetes mellitus (DM) is among the most crippling disease of
society with a large share of its imposing economic burden. DM in a chronic state
is associated with the development of micro- and macrovascular complications. DFU
is among the diabetic microvascular complications with the consequent occurrence
of diabetic peripheral neuropathy. Mesenchymal stromal cell (MSC)-derived exosomes
post-tailoring hold promise to accelerate the diabetic wound repair in DFU associated
with bacterial inhabitant. These exosomes promote the antibacterial properties with
regenerative activity by loading bioactive molecules like growth factors, nucleic acids,
and proteins, and non-bioactive substances like antibiotics. Functionalization of MSC-
derived exosomes is mediated by various physical, chemical, and biological processes
that effectively load the desired cargo into the exosomes for targeted delivery at specific
bacterial DFUs and wound. The present study focused on the application of the cargo-
loaded exosomes in the treatment of DFU and also emphasizes the different approaches
for loading the desired cargo/drug inside exosomes. However, more studies and clinical
trials are needed in the domain to explore this membrane engineering.

Keywords: exosomes, diabetes foot ulcers, diabetes mellitus, customized exosomes, bacterial infection
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INTRODUCTION

Extracellular vesicles (EVs), including exosomes, apoptotic
bodies, and microvesicles, are secreted by various cell types.
EVs showed diverse characteristics in size, function, indigenous
cargo, and secretion pathway (Raghav et al., 2021). Exosomes
are small-sized EVs formed by the process of inward budding
in early endosomes and later form multivesicular bodies (MVBs)
of average 100-nm dimensions (Raghav et al., 2021). These later
released into the extracellular matrix/environment to deliver
their indigenous cargo/components fulfilling their fate (Raghav
et al., 2021). Cellular exosomes release involves various steps,
i.e., formation of early endosomes, followed by fusion of
the MVBs containing intraluminal vesicles (ILVs), with the
plasma membrane by exocytosis and release of exosomes in the
extracellular space (Than et al., 2017). Exosomes are present in all
bodily fluids secreted by cells, including blood (Lewis et al., 2018),
urine (Cavallaro et al., 2019), plasma (Yan et al., 2019), breast milk
(Adriano et al., 2021), saliva (Kurian et al., 2021), bile, synovial
fluid, semen, amniotic fluid, ascites fluid (peritoneal cavity), and
bronchoalveolar and gastrointestinal lavage fluid (Kumar et al.,
2019). The exosomal indigenous cargo is mostly rich in proteins,
lipids, sugars, and nucleic acids [messenger RNAs (mRNAs),
microRNAs (miRNAs), and mitochondrial DNA (mtDNA), etc.]
(Jan et al., 2021; Figure 1). Exosomes’ functions encompass
an elaborative list depending on the origin of cell/tissue. Such
functions include immune-modulatory, regeneration, antigen
presentation programmed cell death (APPCD), inflammation,
angiogenesis, and coagulation. The cargo imparts functionality
to the exosomes for different cellular communications like
paracrine, autocrine, endocrine, and/or juxtacrine signaling,
while surface proteins provide identity to the exosomes for cargo
delivery (Wei et al., 2021).

Authors of past studies exploited the exosomes as delivery
vehicles for drugs and other desired cargo of interest (Bertrand
and Leroux, 2012; Lai and Breakefield, 2012; El Andaloussi
et al., 2013). These inbuilt characteristics of exosomes allow for
tailoring “cargo of interest” for therapeutics and imaging purpose
with an additional feature of prolonged circulation time, specific
target cell recognition due to the presence of cell surface markers,
negligible toxicity, and immune tolerance. Exosomes can be
manipulated with more than one type of deliverables like drugs,
proteins, and coding/non-coding nucleic acids, simultaneously.
However, further studies are required to evaluate whether there
exists any sort of allogeneic immune rejection among exosomes
from different donors and recipients (Zhuang et al., 2011; Lee
et al., 2012).

In one of the recently published studies, the protective
effect of adipocyte stem cell (ADSC)-derived exosomes was
investigated in a diabetic animal in vitro model and found
that exosomes promoted angiogenesis and proliferation of cells
in the hyperglycemic environment (Li et al., 2018). The study
showed a significant reduction in diabetic ulceration/wound
area in the animal group receiving the exosomes from ADSCs
overexpressing the Nrf2 factor (Li et al., 2018). The study
laid the foundation that the exosomes can be exploited for
the healing of diabetic foot ulcers (DFUs). An et al. (2021)

showed the therapeutic role of mesenchymal stem cell (MSC)-
derived exosomes in the treatment of diabetes-induced ulcers and
lower limb ischemia.

Diabetic foot ulcers are a severe complication associated
with diabetes mellitus (DM) that impose economic burden
ranges from US$9 to US$13 billion in the United States,
along with additional cost for the management of DM (Raghav
et al., 2018). DFUs are the cause of various complications
including peripheral neuropathy, deformity in the foot, and
peripheral arterial diseases’ poor extremity perfusion (Noor
et al., 2018). DFUs are characterized by the presence of
bacterial pathogens that are responsible for wound microbiology
and the development of the infection. Several microorganisms
(fungi, aerobic, and anaerobic species) are responsible for the
etiology of the DFUs, including Staphylococcus, Streptococcus,
Proteobacteria, and Pseudomonas aeruginosa (Noor et al., 2015).
In this review, first, we comprehensively focused on exosome
biogenesis and factors affecting the biogenesis. In addition, we
discussed the methods of isolation of exosomes and fabrication
of the customized exosomes using various modification methods.
This study discusses the idea that MSC-derived exosomes post-
tailoring hold promise to accelerate the diabetic wound repair
in DFU associated with bacterial inhabitant, along with the
application of the cargo-loaded exosomes in the treatment of
DFU, and this study also emphasizes the different approaches for
loading the desired cargo/drug inside exosomes.

BIOGENESIS OF EXOSOMES

Biogenesis of exosomes is a constitutive mechanism that is
initiated with plasma membrane inward invagination within
cytosol generating early and late endosomes. These late
endosomes further give rise to MVBs followed by ILV
formation. It seems that during the ILV formation by inward
budding, several essential proteins, growth factors, cytoskeleton
components, nucleic acids, lipids, and other necessary cellular
components get wrapped into it (Raghav et al., 2021). The key
feature of biogenesis pathways includes internalization, fusion,
and release (Figure 2). ILVs formed from MVBs fuse with the
plasma membrane of the cells and released as exosomes into the
extracellular environment by the mechanism of exocytosis.

In one of the recently published studies, it was quoted
that the budding of the exosomes and their sorting are
either endosomal sorting complex required for transport
(ESCRT)-dependent or -independent (Raghav et al., 2021).
The ESCRT-mediated exosomes sorting process involves
screening, identification, and sequestration of ubiquitinated
proteins specific for endosomal proteins. This ESCRT-mediated
mechanism showed an association between subunits I, II, and III
of ESCRT that terminate the exosome budding process (Raghav
et al., 2021). Moreover, the ESCRT-independent mechanism
of exosome budding involves proteins and lipids such as
tetraspanins and ceramides (Raghav et al., 2021). The exosomes
play a crucial role in intercellular communication via the transfer
of the biomolecules loaded within them. Their biogenesis
mechanism is governed by various factors including ESCRT
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FIGURE 1 | Schematic structure and contents of exosome. ATPase, adenosine triphosphatase; CD, cluster of differentiation; GAPDH, glyceraldehyde 3-phosphate
dehydrogenase; HSP, heat shock protein; ICAM-1, intercellular adhesion molecule-1; LAM 1/2, lysosomal-associated membrane protein 1/2; MHC, major
histocompatibility complex; miRNA, microRNA; mRNA, messenger RNA; MVB, multivesicular body; PGRL, PG regulatory-like protein; pgk1, phosphoglycerate
kinase 1. [Adopted from Jan et al. (2021) distributed under the Creative Commons Attribution Licens].

proteins, STAM1, VPS4, CHMP4, the Syndecan–syntenin–
ALIX complex, nSMase2, CD9, and PLD2 (Gurunathan
et al., 2021). Similar to the sorting mechanism, the exosome
uptake process is mediated by either the clathrin-dependent
or clathrin-independent events that involve micro-pinocytosis,
phagocytosis, and lipid raft-mediated internalization. The
exosomes are composed of several biomolecules including heat
shock proteins, cell adhesion proteins, cell signaling proteins,
tetraspanin membrane proteins, phosphatidylserine (PS),
phosphatidic acid, sphingomyelin (SM), cholesterol, arachidonic
acids, prostaglandins, and leukotrienes (Raghav et al., 2021).
Besides these proteins and lipid components, exosomes are also
rich in micro-RNAs, small nuclear RNAs, non-coding RNAs,
long non-coding RNAs, piwi-interacting RNAs, rRNAs, and
tRNAs (Raghav et al., 2021). Exosomes are considered to be the
cocktail of these biomolecules that have therapeutic, diagnostic,
and transmittance characteristics.

SOURCES OF EXOSOMES

Exosomes can be derived from various cell types and all have
diverse clinical characteristics, depending on the source of cells
from which they are derived. The various sources of exosomes
include the following:

ADMSC-Derived Exosomes
Adipose tissue mesenchymal stem cells (ADMSCs) are
abundantly distributed in the human body, compared to other
exosome cell sources including umbilical cord mesenchymal
stem cells (UCMSCs) and bone marrow mesenchymal stem cells
(BMSCs). ADMSCs showed the highest degree of purification
with high yield due to their abundance in nature (Tang et al.,
2021). The extraction of ADMSCs is an easier and painless
procedure, causing only a small episode of trauma (Tang et al.,
2021). These cell-derived exosomes can be easily procured
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FIGURE 2 | Exosome biogenesis. Beginning from internalization of membrane proteins and lipid complexes by endocytosis, endocytotic vesicles are delivered to
early endosomes, which fuse with each other resulting in formation of late endosomes/multivesicular bodies (MVB). [Adopted from Than et al. (2017) distributed
under the Creative Commons Attribution License].

in clinics in the presence of plastic surgeons or medical
aestheticians. ADMSC-derived exosomes require strict storage
conditions, thereby possessing some restrictions in their clinical
applications. Moreover, the lipid membrane structure is quite
stable and has the properties to retain its contents for a long
period and is therefore always a good choice for researchers
(Tang et al., 2021).

The strict morphology of the adipose tissue is not fixed, and
the primary source cells can be of any shape, either fusiform or
circular. It was reported from in vitro cell culture observation that
the primary cells get to adhere with other cells within 1–2 days
of the cell culture (Tang et al., 2021). It was shown that after the
fifth passage, these cells form a single layer, thereby showing a
vortex or radial growth pattern (Tang et al., 2021). Later, their
morphology changes to a single long spindle. The exosomes
derived from ADMSCs have uniform cup shape morphology
with average diameter ranges between 30 and 120 nm as evident
from the scanning electron microscopy (Tang et al., 2021). The
exosomes can be detected using flow cytometry, differential
centrifugation, magnetic bead assay, and transmission electron
microscopy. The presence of surface proteins CD9, CD10,
CD13, CD29, CD44, CD63, CD73, CD90, CD105, enkephalin
enzyme, and major histocompatibility complex MHC I molecules

distinguishes these from other cell-derived exosomes. It is still a
research lacuna that no single surface marker has been identified
for these exosomes.

UCMSC-Derived Exosomes
The umbilical cord has a placental origin and is involved in giving
nourishment and nutrition to the fetus from the mother during
pregnancy. Human-derived MSCs can be broadly classified into
(i) human umbilical cord mesenchymal stem cells (hUC-MSCs),
(ii) human umbilical cord perivascular MSCs (HUCPV-MSCs),
(iii) human umbilical cord Wharton’s Jelly MSCs (HWJ-MSCs),
and (iv) human amniotic membrane-derived MSCs (HA-MSCs)
(Subra et al., 2010).

The morphology of the primary UCMSCs demonstrates a
spindle shape with the absence of vortex growth. Later, the cells
show vortex growth after day 1 of the direct adherent cell culture
using the primary cell tissue mass culture method. Moreover,
few cells during the fifth passage show vortex patterns from
the second generation until the fifth generation (Tang et al.,
2021). With the fifth passage, the cells become long, elongated,
and fusiform with typical vortex growth. The exosomes derived
from these primary cells show variation in size in the range
between 30 and 100 nm, as revealed from electron microscopy
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(Tang et al., 2021). The exosome morphology exhibits a round
or elliptical membranous structure with clear and distinct
boundaries (Vohra et al., 2020). The UCMSCs exhibit cell-
specific surface markers including CD29, CD44, C/73 (SH3),
CD90 (Thy-1), and CD105 (SH2) and negative for CD11b, CD34,
and CD45, while their extracted exosomes demonstrate CD9,
CD63, and CD81 and the multivesicular biosynthesis-related
protein ALIX (Tang et al., 2021).

BMSC-Derived Exosomes
The BMSCs can be isolated from bone marrow with the inbuilt
advantage of low infection rate of pathogenic microorganisms,
efficient and stable biological role, low immune rejection post-
transplantation, and good survival rate in higher passages (Tan
et al., 2020). These cells exhibit diverse size and shape and
become adherent after 1–2 days of the cell culture seeding in
the appropriate culture medium. The adherent cell shows round
morphology as demonstrated by electron microscopy. These cells
begin to colonize after 4–5 days of the culture exhibiting a single
fusiform shape forming a vortex growth pattern usually at the
fourth passage (Tang et al., 2021). The exosomes derived from
BMSCs are uniform with a size range between 30 and 100 nm
in diameter and having a cup-shaped morphology with clear and
distinct boundaries (Tang et al., 2021).

Western blotting and flow cytometry analysis of the BMSC-
derived exosomes show expression of CD9, CD63, CD81, HSP70,
syntenin-1, and multi-vesicular biosynthesis-related protein
TSG101 (Tang et al., 2021).

MSC-DERIVED EXOSOME ISOLATION
METHODS

The following exosome isolation methods are currently
available worldwide: microfluidics, differential centrifugation,
precipitation, antibody affinity capture, ultrafiltration, flushing
separation, magnetic bead-based capture, and size-exclusion
chromatography (SEC).

Microfluidics
Microfluidics provides highly efficient, precise control, and rapid
methods for isolating the exosomes on a single chip with
manipulated fluids at microscale levels. The basic principle
of microfluidics is that it manipulates a small quantity of
the fluid using specialized micro-dimension channels using
capillary forces. Its manipulation characteristic with fluids in
a micro/nanoscale environment makes it a highly preferred
method of choice among researchers. The basic design of this
method involves a single chip of a few square centimeters
dimension with a scope of scaling up isolation and separation.
This unique approach relies on interdisciplinary sciences
that include physics, fluid chemistry, micro-processing, and
bioengineering. In one published study, a microfluidics chip
is coupled with acoustic, electrophoretic, and electromagnetic
separations, which showed a fast and efficient way of exosome
isolation and separation (Popovic et al., 2018). In another related
study, the implication of silicon nanowires is engraved on the

microchip pillar walls for trapping liposomes, and acoustic
nanofiltration is used for isolation of exosomes within a size range
of 100–1000 nm (Kurian et al., 2021).

One more study exhibited the use of viscoelastic microfluidics
for the isolation and separation of the exosomes with an isolation
efficiency of >80% and a purity degree of >90% (Kurian et al.,
2021). Membrane of different pore sizes was also implicated for
the separation of exosomes based on filtration using ExoTIC
microfluidics chip (Lin et al., 2020). In another study, electric
forces are applied along with a dialysis membrane of 30 nm pore
size for the isolation of exosomes (Yang et al., 2017). Wu et al.
(2017) used whole blood to isolate exosomes using the acoustic
fluidics approach in combination with microfluidics. This system
showed the unique feature of the cell removal module, which
separates exosomes from microvesicles (Wu et al., 2017). The
main advantages of this method are as follows: (i) it requires
a lower amount of the sample volume, (ii) it is a time-saving
approach, and (iii) it is a cost-saving and real-time process.
The only disadvantage of this method is less sensitivity for the
isolation of exosomes. So, a scale-up is required in this technology
for the production of clinical-grade exosomes.

Differential Centrifugation
This is the most widely used method for the isolation of
the exosomes (Momen-Heravi et al., 2013). Cell debris and
apoptotic bodies shed exosomes during successive rounds of
the centrifugation mechanism. This method is based on the
density, size, and shape of the exosomes. This gold standard
method for exosome isolation, however, exhibits low yield and
insufficient purity due to similarity in sedimentation properties
of the different types of EVs (Tauro et al., 2012; Witwer et al.,
2013; Cvjetkovic et al., 2014; Lane et al., 2015).

The main advantages of this method include reduction of
cost and contamination. Additionally, a large sample capacity
can be easily handled with this technique followed by high
yields of exosomes. In another study, researchers have added
30% sucrose in the first step and reported a high yield of
the exosomes (Bajimaya et al., 2017). Moreover, the limitations
of the present approach are that high-speed centrifugation
can damage the exosomes and it needs a long runtime with
labor-intensive work. In one of the studies, it was found that
performing ultracentrifugation three times reduces the purity of
the exosomes (Tang et al., 2021).

Precipitation
The precipitation of the exosomes depends on the principle
of altering the solubility or dispersibility of the exosomes
within a water-devoid medium. In this approach, the external
solvent is implicated in the solution, which changes the
polarity and solubility of the components present within the
components, as a resultant, initiate the precipitation of desired
molecules. It is a very simple approach for the isolation of the
exosome. In one of the previously published studies, it was
found that the precipitation approach is very effective in the
separation of biological fluids (Maroto et al., 2017). Several
commercial isolations and purification kits for exosomes are
available, showing good yield and purity, including SerumTM,
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the Exo-Q and Exo-SpinTM blood cell purification kits, the mi-
RCURY Exosome Separation Kit, the Exo Quick-TC ExosomeTM

Precipitation Solution Kit, and the Total Exosome Isolation kit
(Maroto et al., 2017; Zhao et al., 2017; Buschmann et al., 2018;
Soares Martins et al., 2018). The advantages of the current
methods are that they are easy to use, do not require sophisticated
and specialized machines, do not put any harsh effect on
exosomes, and can be used on large sample volumes. Some
limitations of these methods include the co-precipitation of
other contaminants like polymeric materials, proteins, and lipids
and the fact that they additionally require a long runtime to
complete the process.

Magnetic Bead-Based Capture
This process is also called an immunomagnetic bead-based assay.
It is a recently developed technology that uses ExoCAS-2 charge-
based ion exchange and magnetic beads for the isolation of
exosomes from biofluids (Kim and Shin, 2021). This ExoCAS-
2 implicates polycationic polymer-functionalized and -coated
magnetic beads. The sample before the magnetic separation
is filtered to exclude the large size impurities present. The
mechanism of separation of the exosomes involves the binding
of negatively charged exosomes with the positively charged
poly-L-lysine-coated cationic beads via electrostatic interactions
(Kim and Shin, 2021). Following the process of incubation
and continuous stirring, the nano-sized exosomes bind to
the surface of the coated beads and later eluted using an
elution buffer with different ionic strengths that disrupts the
electrostatic interactions. This efficient exosome separation and
isolation approach yields exosomes of high purity grade, but the
limitations associated with this technology are that it cannot be
used in clinics, it has a high cost, and the rate of unspecific
binding during the binding process is higher.

Ultrafiltration
This technique is based on the application of specific pore
size diameter membranes for separation and isolation of the
exosomes (Cheruvanky et al., 2007; Lobb et al., 2015; Konoshenko
et al., 2018). This approach can be complementary with
ultracentrifugation, although it can also be performed alone.
Another improved version of ultrafiltration includes cross-flow
filtration or tangential flow filtration (McNamara et al., 2018).
This improvement helps in removing the protein contaminants
from the exosomes containing samples if repeatedly passed from
the exclusion filter of a defined diameter, thereby concentrating
the exosomes. In one of the studies, it was claimed that a
cellulose membrane with a pore size of 10 kDa is very efficient
in the recovery of the exosomes using an ultrafiltration approach
(Vergauwen et al., 2017). The advantages of ultrafiltration are that
it does not require expensive equipment and consumes less time.
The only associated limitation with the ultrafiltration method is
exosome loss due to attaching with membranes as a result of shear
stress and membrane clogging.

Size-Exclusion Chromatography
Size-exclusion chromatography depends on the separation of the
exosomes’ molecules based on their size. The sample containing

the exosomes is passed through the column consisting of the
beads with variant pore size. Each molecule is passed through
the individual beads based on their size. The small-size molecules
show delayed elution from the column, as they have to traverse
the complete length of the column. In one of the studies, it
was found that exosomes have large hydrodynamic radii, passing
through the column faster, as they do not show penetration
inside the beads (Feng et al., 2014). In another, a single-step
SEC using a Sepharose CL-2B column was used for isolation
of exosomes with 75 nm diameter effectively from body fluids
(Böing et al., 2014). This method allows minimal harm to
the isolated exosomes compared to other precipitation-based
methods. The SEC approach for isolating exosomes can efficiently
remove the plasma proteins from the biological samples, as
claimed by one of the studies (Gámez-Valero et al., 2016). In one
of the studies, the authors have isolated clean and non-aggregated
exosomes with a size range of 50–200 nm (Hong et al., 2016). It is
also evident that SEC in conjugation with an ultracentrifugation
approach can be efficiently used for the isolation of the exosomes
from the biological fluids, compared to alone itself. The main
advantages associated with SEC are that it can be used for the
separation of the small and large molecules in biological fluids
without altering the exosomal structure. The only limitation is
the requirement of a long runtime.

TAILORING APPROACHES FOR
MSC-DERIVED EXOSOME
MODIFICATIONS

Exosome-based delivery approaches showed promising benefits
related to specificity, safety, and stability due to their inbuilt
homing characteristics that exhibit effective delivery of desired
cargo to specific target sites. Recent studies showed that
exosomes can be used to deliver small interfering RNA
(siRNA) or active pharmaceutical agents like drugs and
vaccines to treat diseases (Aryani and Denecke, 2016).
These nano-size envelopes tend to avoid phagocytosis and
engulfment by lysosomes with a low immune response (Ha
et al., 2016). Several tailoring approaches for modification
of exosomes and loading of the desired cargo into the
exosomes were studied, which can be broadly classified
into two strategies: (i) exogenous tailoring of exosomes post
isolation and (ii) endogenous tailoring during biogenesis of
exosomes. Exogenous tailoring approaches can be further
divided into an active and passive form; the active approach
involves the sonication, extrusion, freeze–thaw cycles,
electroporation, and chemical-based approach, while the
passive form involves the incubation process. Moreover, the
endogenous tailoring of exosomes involves the introduction
of the cargo of interest into the cells producing exosomes,
which commonly implies the application of transfecting
cells with expression vectors as in genetic engineering for
targeted therapy (Van der Meel et al., 2014). The following
paragraphs provide a brief overview of the tailoring approach for
modifications of exosomes.
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Exogenous Tailoring of Exosomes
Incubation
This tailoring approach simply involves the incubation of
exosomes with the desired interest of cargo, which can be
referred to as passive loading. The potential difference created
due to the interplay between the concentration of desired cargo
inside and outside the exosomes drives the infusion of desired
cargos through the lipid bilayer membrane of exosomes. In few
cancer-related research studies, this method was used to load
chemotherapeutic drugs like paclitaxel and doxorubicin into the
exosomes and also to observe enhanced chemotherapeutic effects
(Tian et al., 2014; Yang et al., 2015; Salarpour et al., 2019). This
enhanced effect of drug-loaded exosomes is observed due to
the ease of crossing the blood–brain barrier. In another study,
exosomes loaded with enzymes were used in the treatment of
Parkinson’s disease (Haney et al., 2015). In one of the studies, the
authors have co-incubated curcumin with exosomes and found
that it gets self-assembled with the lipid bilayer of exosomes
due to the interplay of hydroscopic interactions. The curcumin
encapsulated exosome not only increased the target specificity
but also enhanced the anti-inflammatory property of curcumin
(Sun et al., 2010). Though proven to be useful for modifying
exosomes for their enhanced functionality with the desired cargo,
this method sometimes affects the size of exosomes resulting
in low yield, low entrapment, and uncontrollable drug loading.
The present method is simple, cost-effective, and effective in
transporting hydrophilic cargos efficiently into the exosomes.

Sonication
Sonication provides an additional advantage of enhancing the
loading of desired cargo inside the bilayer membrane of the
exosomes. This approach utilizes sound waves generated from
a sonicator machine to induce a shearing force effect upon
the exosome membrane, which, in turn, increases the uptake
of desired cargo inside the exosomes (Kim et al., 2016). Kim
et al. (2016) successfully loaded paclitaxel and doxorubicin into
the exosomes implicating this approach. It is believed that the
sonication process decreases the micro-viscosity of the exosomal
membrane that allows the passage of cargo inside (Kim et al.,
2016). This cargo loading approach is healthy for biological
molecules like small RNAs due to its high loading efficiency. Some
limitations like the development of shearing forces, exosomal
membrane deformation, heat generation during the sonication
cycle, loss of exosomal surface proteins, and non-suitability for
hydrophobic drug delivery are associated with this approach.

Extrusion
This tailoring method involves lipid bilayer membrane
disruption of exosomes during extrusion through a small-
size polycarbonate porous membrane. This reversible disruption
in the membrane allows the entry of desired cargo of interest
inside the exosomes (Haney et al., 2015). Le Saux et al. (2020)
have reported that extrusion is an efficient and promising
method for tailoring the exosomes and loading the desired
cargo inside it for targeted delivery. In one previous study,
exosomes were extruded with porphyrins (Fuhrmann et al.,
2015). The extrusion mechanism reshapes and reforms the

exosomal membrane extensively and thereby showed higher
loading efficiency (Jamur and Oliver, 2010).

Freeze–Thawing
This tailoring approach involves freezing and subsequent
thawing of the exosome sample in a vessel of desired cargo
to be loaded. The mix is incubated at 37◦C followed by
rapid freezing at –80◦C; the same steps were repeated several
times depending on the efficiency of the system. It is always
advisable to strictly monitor the freeze–thawing steps, because
it may form the aggregates of these vesicles into large size
particles (Haney et al., 2015; Le Saux et al., 2020). In one
previously published study, catalase was loaded to exosomes
using the freeze–thaw method (frozen at –80◦C and thawed
at RT) (Haney et al., 2015). It was also demonstrated that
several freeze–thaw cycles resulted in a lipid dilution ratio that
may be easily interpreted from fluorescence resonance energy
transfer (FRET) assay (Sato et al., 2016). Though this method
produces aggregates of exosomes with lower drug loading
capacity compared to sonication or extrusion procedures, it is
followed widely for cargo loading.

Electroporation
Tailoring of exosomes for loading cargo using electroporation
is a commonly applied method that employs an electric field
for cargo uptake. In the electric field, the phospholipid bilayer
membrane is disrupted, thereby allowing the entry of hydrophilic
compounds like small DNAs, miRNA, and siRNAs (Faruqu
et al., 2018; Kobayashi et al., 2020; Lv et al., 2020; Orefice,
2020). A recent study has reported that exosomes tend to form
aggregates during electroporation, although it did not affect
the function of exosomes. However, certain refinements in the
technique such as carrying out electroporation in an optimal
buffer containing trehalose maintain the structural integrity
of exosomes (Johnsen et al., 2016). In another study, fused
exosomes were derived from αv-integrin-specific iRGD peptide
with doxorubicin efficiently with electroporation and proved
targeted tumor therapy (Gong et al., 2019). In one of the
previously published studies, it was found that miRNA delivery
to exosomes under mild electroporation protects miRNA from
RNase degradation and showed efficient loading (Pomatto et al.,
2019). In light of all the studies, it can be said that electroporation
is a reliable method for cargo loading in exosomes that
preserves the naïve cargo without compromising the structural
integrity of exosomes.

Chemical Transfection
Chemical transfection is preferably used to incorporate
siRNA into exosomes under the influence of the transfection
agent Lipofectamine 2000. Wahlgren et al. used a liposome-
based transfection reagent to incorporate MAPK-1-siRNA
into the exosomes by incubating at 37◦C for 10 min
(Wahlgren et al., 2012). This method of loading desired
cargo into exosomes achieves relatively high transfection
efficiency using lipids. Cationic transfection agents are
the preferred choice of researchers considering their high
degree of success. These chemical transfection reagents
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showed a high success rate in in vitro experiments;
however, they have worse efficiency than electroporation.
Immunogenicity and toxicity are some of the associated
limitations of this approach.

Endogenous Engineering-Based
Tailoring of Exosomes Producing Cells
Genetic engineering is another remarkable approach for the
production of loaded exosomes with desired characteristics
and functions. This approach involves transfection of the
donor cells, thereby initiating the upregulation of specific
genes, allowing the synthesis of specific gene-linked cargo-
loaded exosomes during their biogenesis. The insertion
of the desired “gene of interest” in the parent cell type is
achieved by either viral/non-viral invasion/infection. The
infection efficiency is optimized by the quantity and quality
of the exosomal cargo. It is well reported that exosomes
originate through the endosomal machinery of the cell
membrane. Exosomal content reflects lineage and the
original cell type; therefore, depending on the experimental
requirement and/or therapeutic applications, the host cell
selection should be performed. Genetic engineering for
modification of the exosomal content from different cell types
predominantly involves two types of viral vectors: (i) retroviral
and (ii) adenoviral.

Jiang et al. (2020) observed the therapeutic effect of tumor
necrosis factor (TNF)-stimulated gene-6 (TSG-6) modified MSC-
derived exosomes in a wound model and found that tailoring
of such exosomes prevents scar formation. In addition, several

research studies demonstrated the therapeutic role of MSC-
derived exosomes tailored with such methods carrying miRNA
in improving treatment modalities (Xin et al., 2012). Wei
et al. (2019) successfully engineered immature mouse dendritic
cells, for exosome production, expressing Lamp2b fused to
αγ integrin-specific iRGD peptide for breast cancer treatment
in vitro. In one of the studies, engineered HEK293T was used for
expression of Lamp2B along with a fragment of IL-3 and showed
a reduction in tumor growth and was found to be effective in
treating chronic myeloid leukemia (CML) (Bellavia et al., 2017).
Rivoltini et al. (2016) transduced K562 cells with lentiviral human
membrane TRAIL (TNF-Related Apoptosis-Inducing Ligand)
for the production of TRAIL (+) exosomes. The authors reported
apoptosis in cancer cells on treatment with TRAIL exosomes.
Furthermore, the in vivo analysis revealed that engineered
exosomes induced necrosis and vessel damage in melanoma
tumor subjects (Rivoltini et al., 2016). In another study, exosomes
enriched with miR-503 showed promising therapeutic potential
for cancer treatment (Bovy et al., 2015).

“Omni Spirant” (patent pending) is a recently developed
regenerative gene therapy for cystic fibrosis (CF) and involves
the use of surface-engineered exosomes/bioengineered stem
cell exosomes. The method involves mucus penetration of the
exosomes and delivery of the gene therapy cargo for the effective
treatment of CF (Health Europa, 2021). Bioengineering of cells
for the production of engineered exosomes has gained significant
attention in the past few years. However, further studies are
mandatory for designing protocols with improved stability, drug
solubility, and bioavailability, for the therapeutic application of
engineered exosomes.

TABLE 1 | Clinical trials of BM-MSCs in DFUs.

Cellular type Object Delivery method Duration of
observation

Clinical parameters

Autologous
BM-MSCs

24 patients with
non-healing ulcers of the
lower limb (diabetic foot
ulcers and Buerger disease)

Autologous cultured
BM-derived MSCs along with
standard wound dressing

12 weeks Decrease in wound size, increase in pain-free walking distance,
maintain normal liver and renal function, improve leg perfusion
sufficiently

Autologous
BM-MSCs

51 patients with impending
major amputation due to
severe critical limb ischemia

Intramuscular transplantation 6 months Improve leg perfusion sufficiently to reduce major amputations and
permit durable limb salvage, reduce analgesics consumption,
increase in pain-free walking distance

Autologous biograft
composed of
autologous skin
fibroblasts on
biodegradable
collagen membrane
(Coladerm) in
combination with
autologous
BM-MSCs

Patients with diabetic foot Directly to the wound and
injected into the edges of the
wound, finally covered with
prepared autologous biograft,
received two additional
treatments with cultured MSC
on days 7 and 17

29 days Decrease in wound size and an increase in the vascularity of the
dermis and in the dermal thickness of the wound bed

Autologous
BM-MSCs

41 type 2 diabetic patients
with bilateral critical limb
ischemia and foot ulcer

Intramuscular injection 24 weeks Increase in pain-free walking distance, improve leg perfusion,
ankle-brachial index (ABI), transcutaneous oxygen pressure (TcO2),
magnetic resonance angiography (MRA) analysis

Autologous
BM-MSCs

96 patients with critical limb
ischemia and foot ulcer

Inject into the ischemic limb
along the posterior and anterior
tibial artery

120 days 79% limb salvage in patients

Adopted from Cao et al. (2017) distributed under the Creative Commons Attribution License.
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THERAPEUTIC ROLE OF TAILORED
MSC-DERIVED EXOSOMES IN
BACTERIA-ASSOCIATED DFU

Mesenchymal stromal cell have a diverse role including
multi-differentiation and immunomodulation that significantly
contribute in reducing inflammation-related complications
(Philipp et al., 2018). These MSCs show a contributory role in
a paracrine manner mediating through secreted growth factors,
cytokines, and exosomes (Phinney and Pittenger, 2017). One
of the previously published studies quoted that MSC-mediated
paracrine secretion promotes wound healing (Kourembanas,
2015). The advantage of using exosomes over cell-based therapies
is that these vesicles may overcome the side effects associated
with cell transplantation such as immune rejection. Pathogenesis
of bacteria-associated DFUs is contributed by poor innervation
and vascularization and chronic inflammation. In a recent study,
it was observed that exosomes derived from MSCs inhibit M1
polarization and simultaneously promote M2 polarization that
helps in the reduction of the inflammation (Cao et al., 2017). It
is also found that these exosomes promote skin wound healing
mediated by the regulation of M2 polarization (Cao et al., 2017).
This dual nature of exosomes, i.e., anti-inflammatory and skin
wound healing, can be explored in bacteria-associated DFUs.

Tailored MSC-derived exosomes possess promising result
in the treatment of DFUs and diabetic wounds. In a recent
study, exosomes derived after pre-treatment of MSCs with
salidroside (glucoside of tyrosol) showed healing of diabetic
wounds (Ariyanti et al., 2019). Similarly, fluoxetine and
pretreated MSC exosomes managed diabetic neuropathy well
(Abdelrahman et al., 2018).

It has been proved that these exosomes occupy the class
of paracrine factor that mediates the therapeutic, tissue repair,
and wound healing effects of MSCs (Joo et al., 2020). Several
clinical trials showed the efficacy of BMSCs in the treatment of
diabetic wound and ulcers (Table 1). In another research, tailored
exosomes derived from pretreated BMSCs with atorvastatin
(ATV) showed an acceleration in the healing of diabetic wound
both in vivo and in vitro (Yu et al., 2020). It has been found
that pretreated BMSCs with ATV secrete exosomes that activate
the AKT/eNOS signaling mechanism that further initiates the
angiogenesis of endothelial cells mediated through upregulation
of miR-211-3p, thereby showing significant wound healing in
the diabetic environment (Joo et al., 2020). In another study
of exosome modification, it was found that exosomes derived
from blue light-exposed human umbilical cord MSCs showed
improved wound healing mediated through upregulation of
MEF2C signaling (Yang et al., 2019).

Epidermal growth factor (EGF) and human adipose cell-
derived stem cell exosome-loaded microcapsules integrated with
collagen hydrogel can effectively show tissue regeneration and
also restoration of blood perfusion in diabetic wounds (Cao
et al., 2017). In the previously published literature, it has
been found that adipose-derived MSC exosomes incorporated
in freeze–thaw-based polypeptide-based hydrogel possess self-
healing, antibacterial, and exosome release characteristics (Shen

et al., 2016). These properties are useful in promoting wound
healing by enhancing cell proliferation, neovascularization, re-
epithelialization, and collagen remodeling at the wound site
(Wang et al., 2019). In another recent tailoring approach,
the cells are genetically engineered with transfection and co-
culture to synthesize exosomes containing long non-coding
RNA H19 that helps promote wound healing in DFU mediated
by upregulation of PTEN through miRNA-152-3p (Li et al.,
2020). Figure 3 demonstrates the paracrine effect of BMSCs
in treatment of DFUs mediated via EVs. These tailoring
approaches of exosomes may help provide promising results
in the healing of DFUs associated with bacteria. The current
work encourages the implication of differential centrifugation
and ultracentrifugation method for isolation of EVs from spent
media or any other sources. The reason for recommending
these two methods is due to their low cost and easy installation
in any lab/clinic. Moreover, the genetic engineering approach
endogenous modification is suitable for modification of EVs if
they are used for delivering genes of interest. The modified EVs
can be easily used in the treatment of ulcers/wounds associated
with the DM. For instance, DFUs associated with bacteria
need antibacterial and regenerative therapy. EVs, if modified
for gene delivery (for initiating regeneration of damaged skin)
and drug (antibiotics/antibacterial), can fulfill the purpose of
therapeutic intervention.

PATHOGENESIS OF
BACTERIA-ASSOCIATED DFU

Diabetes mellitus is characterized by high blood glucose level
and neuropathy that slow down the wound healing process.
These slow-healing wounds are vulnerable to bacterial infections
(Buch et al., 2019). These diabetic wounds and foot ulcers
become chronic due to microbe habitat on the wound site
(Bjarnsholt et al., 2008). This continuous growth of bacteria (both
aerobes and anaerobes) on the wound site produces biofilm,
which exhibits resistance toward antibiotics that in turn causes a
problem in the treatment of these wounds (Shiau and Wu, 1998;
Bridier et al., 2011). It has been observed that Staphylococcus
aureus is among the most common bacteria that are prevalent
in DFUs (Kalan et al., 2019). Moreover, other bacteria
causing DFUs includes β-hemolytic streptococci, S. aureus,
S. saprophyticus, S. epidermis, Streptococcus pyogenes, S. mutans,
P. aeruginosa, Bacillus subtilis, Proteus species, Escherichia coli,
and Klebsiella pneumoniae. The anaerobic bacteria include
Peptostreptococcus species, anaerobic streptococci, Bacteroides
fragilis, and Clostridium species (Lipsky et al., 2012; Richard
et al., 2012; Kalan et al., 2019). Bacterial biofilms of diabetic
wounds and DFUs are protected from various stresses, including
antibiotics and immune responses. Biofilm production involves
the uncontrolled growth of sessile and planktonic bacteria
that grow continuously on themselves to form a layer that is
termed biofilm. Treatment of biofilms is also a major health
concern as emphasized by the World Health Organization
(WHO), as it contributes to the development of antimicrobial
resistance toward antibiotics. Clinicians and researchers are
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TABLE 2 | Different aspects of exosomes.

Feature Exosome Apoptotic body MV

Size Homologous 30–100 nm Heterogeneous 1–5 µm Heterogeneous 100–1000 nm

Markers Membrane impermeable (PI negative) CD63,
TSG101, Alix, flottilin

Membrane permeable (PI positive) Annexin
V, DNA, histones

Membrane impermeable (PI negative) integrin,
selectin, flotillin-2

Density 1.13–1.19 g/mL 1.16–1.28 g/mL 1.25–1.30 g/mL

Contents Protein, lipid, different RNA species, and DNA Cytosolic content (protein, RNAs,
fragmented DNA) and cellular organelles

Protein, lipid, different RNA species, and DNA

Determinant of
controlled
contents

The cellular origin and physiological state of the cell The cellular origin and stimuli No direct correlation

Lipids A major sorting of lipidic molecules from the
parental cells (include BMP)

Characterized by phosphatidylserine
externalization

The lipid contents are primarily derived from plasma
membrane, and resemble the parental cells (without
BMP)

Origin Multivesicular bodies fusion with plasmatic
membrane

Cellular debris, plasma membrane blebbing
during cell apoptosis

Direct outward budding or blebbing from the
plasma membrane

Mechanism of
release

Constitutive or inducible, depending on the cell type
of origin

Rho-associated kinase I and myosin
ATPase activity

Relocation of phospholipids to the outer
membrane, cytoskeleton rearrangements,
generation of membrane curvature, and vesicle
release

Detection
methods

Electron microscopy, Western blot for exosome
enriched markers

Flow cytometry, electron microscopy, Flow cytometry, electron microscopy

Isolation
methods

Ultracentrifugation (100,000–200,000 × g) filtration,
density gradient Immunoprecipitation, Immune
affinity capture and ExoQuick precipitation methods

Ultracentrifugation (10,000–20,000 × g) No standardized methods

Modification
methods

Incubation, Sonication, Extrusion, Freeze thaw,
Electroporation, Chemical transfection, Genetic
engineering

Size
determination
and
quantification

Dynamic light scattering Nanoparticle tracking
analysis Surface plasmon resonance

MV, microvesicle; BMP, bone morphogenetic protein; PI, propidium iodide.
Adopted from Zhang et al. (2019) distributed under the Creative Commons Attribution 4.0 International License.

focusing on the promising alternative treatment approaches
to the use of antibiotics in reducing bacterial infections.
Natural sources such as plant-derived extracts, polyphenols,
anti-sense RNA, and stem cell-derived exosomes might be
the prospective alternative therapies to manage DFUs and
diabetic wounds. Several emerging technologies identify the
risk assessment associated with DFUs, including laser Doppler
flowmetry, infrared thermography, ultrasound indentation tests
(elastography), and plantar pressure and pressure gradient
system (Lung et al., 2020). These technologies may be helpful in
the screening of risk in DFUs, so that treatment approaches may
be customized accordingly.

PATHOPHYSIOLOGY OF CONTROLLING
BACTERIA-ASSOCIATED DFU USING
MSC-DERIVED EXOSOMES

Extracellular vesicles are the key component of cell-to-cell
communication that facilitates transfer of internalized cargo,
including proteins, nucleic acids, and other biological factors.
EVs are known to play an active role in pathological conditions
like kidney injury, inflammatory disorders, wound healing, and

regeneration, along with several therapeutic and diagnostic
characteristics. A previously published study demonstrated that
EVs possess antimicrobial peptides (AMPs) (Hiemstra et al.,
2014). EVs were also reported to contain lysozyme C, dermcidin,
mucin-1, calprotectin, and myeloperoxidase and to have a
bactericidal effect. In one of the recent studies conducted in vitro
on urinary exosomes, it was found that these exosomes showed
a bactericidal effect against E. coli (Francisca et al., 2017).
The same research concluded that nasal lavage fluid-derived
exosomes showed defense against pathogens and allergens
(Francisca et al., 2017).

In another study, it was found that EVs released from biliary
and intestinal epithelium luminal contain AMPs along with
LL-37 and hBD-2 that activate the toll-like receptor (TLR)-4
signaling cascade and contribute toward antimicrobial defense
(Hu et al., 2013). In the past few years, MSC-derived EVs have
been explored for therapeutic, diagnostic, and anti-inflammatory
roles in several pre-clinical trials. In one of the published reports,
it was found that MVs secreted by BMSCs are efficient in the
treatment of acute lung injury (ALI) caused by E. coli endotoxins
via transfer of keratinocyte growth factor (KGF) mRNA from
the MVs to damaged lung endothelium and alveolar epithelium
(Zhu et al., 2014). In another animal study conducted on a
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FIGURE 3 | Mechanism of BM-MSCs for treatment of DFU. BM-MSCs can migrate and adhere via CCR7, ICAM1-, VCAM1-, and Akt- dependent mechanism and
enhance angiogenesis through increasing VEGF, NGF, BDNF, VEGF-A, eNOS, and HIF. Cell proliferation of HUVECs and keratinocytes plays significant role in
angiogenesis and reepithelialization, respectively. Keratinocyte function is improved by regulating IGF-1, EGF, MMP-2, MMP-9, TIMP-1, TIMP-2, and Erk signaling
pathway. CCR7, C-C chemokine receptor type 7; ICAM1, intercellular adhesion molecule 1; VCAM1, vascular adhesion molecule 1; VEGF, vascular endothelial
growth factor; NGF, nerve growth factor; BDNF, brain-derived neurotrophic factor; VEGF-A, vascular endothelial growth factor A; eNOS, endothelial nitric oxide
synthase; HIF, hypoxia inducible factor; IGF-1, insulin-like growth factor 1; EGF, epidermal growth factor; MMP-2, matrix metalloproteinase-2; MMP-9, matrix
metalloproteinase-9; TIMP-1, tissue inhibitor of metalloproteinase-1; and TIMP-2, tissue inhibitor of metalloproteinase-2. [Adopted from Cao et al. (2017) distributed
under the Creative Commons Attribution Licens].

bacterial pneumonia mouse model, it was demonstrated that
BMSC-extracted MVs showed significant survival and lessen
the influx of inflammatory cells (Monsel et al., 2015). In
another study, the antimicrobial effect of MSC-derived EVs was
demonstrated, which is mediated by the transfer of mitochondria
into the target cells that in turn increases the phagocytosis
of macrophages (Islam et al., 2001). Several in vivo clinical
trials demonstrated the antibacterial effect of MSC-derived EVs
(Krasnodembskaya et al., 2010; Harman et al., 2017; Cortés-
Araya et al., 2018). However, more studies and clinical trials
are needed to establish the significant role of MSC-derived EVs
as antimicrobial agent. This antimicrobial effect of EVs can be
explored and serve as a prospective therapy for the treatment of
diabetic wounds and DFUs.

SAFETY AND TOXICOLOGY
CONSIDERATIONS OF EXOSOMES

Extracellular vesicles are known to be the safest therapeutic
approach for both pre-clinical and clinical use. There were no
signs of toxicity observed in previously published literature
except that some human cell-derived EVs possess the
potential to elicit an immune response, which is a positive
sign for using EVs as cell-free therapeutic approach in
DFUs (Zhu et al., 2017). In one study, C57BL/6 mice were
given EVs for 3 weeks via intravenous and intraperitoneal
administration, and no toxicity was observed with slight
changes in expression of immune markers (Zhu et al.,
2017). In another murine study, BMSC-derived engineered
exosome (iExosomes) administration did not produce
any toxicity and adverse immune reactions (Mendt et al.,
2018). The engineered approaches for EVs mentioned
in the present work suggest that EVs are a safe and

non-toxic method for delivering cargo compared to
cationic lipids, viral vectors, and polymer-based methods
(Mendt et al., 2018). Moreover, long-term pre-clinical
and clinical studies are needed to further evaluate the
toxicological and immunological profile of engineered EVs
(Table 2).

CONCLUSION

Extracellular vesicles are emerging as new therapeutics in
the management of diseases, regeneration of tissue, and
diagnostic markers. The heterogeneity and complexity with the
ability of modification under a physiological and pathological
environment make them interesting candidates for implication
in the biological field. Exosomes have the potential to treat
various diseases due to flexibility of loading diverse drugs
and modifications. Exosomes can be used for detection,
diagnosis, and treatment only because of their tendency
of modification in the membrane. Moreover, MSC-derived
exosomes are primarily exploited for regenerative medicine.
Despite the fact that many advances in the modification
approach of exosomes are currently being practiced; one
of the most significant challenge with these vesicles is
their inefficient production at a large scale for clinical use
following GMP/GCP guidelines. MSC-derived exosomes are
a rich source of AMPs along with other anti-bactericidal
factors, which opens up the window of treating DFUs caused
by microorganisms including S. aureus, S. saprophyticus,
S. epidermis, S. pyogenes, S. mutans, P. aeruginosa, B. subtilis,
Proteus species, E. coli, and K. pneumoniae. The potential
bactericidal efficacy of the MSC-derived exosomes can be
amplified through modification of cell conditioning medium
and drug loading approach. AMP-encapsulated exosomes can be

Frontiers in Microbiology | www.frontiersin.org 11 July 2021 | Volume 12 | Article 71258816

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-12-712588 July 26, 2021 Time: 19:0 # 12

Raghav et al. Tailored Exosomes in Diabetic Foot Ulcers

exploited further for clinical trials to treat DFUs associated with
microbes. Notable EV-based management therapies promote
wound/ulcer healing along with minimal scarring without
ethical issues and conflicts. Future studies including pre-clinical
and clinical trials are required to explore the therapeutic
and anti-microbial effect of the MSC-derived exosomes. These
EVs can be exploited in designing wound dressings that
might be prospectively used in the treatment of DFUs
associated with bacteria.
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Fungal diseases such as candidiasis are some of the deadliest diseases among

immunocompromised patients. These fungi naturally exist on human skin and throughout

the digestive system. When the microbiota balance becomes upset, these fungi become

pathogenic and potentially lethal. At the pathogenesis of fungal diseases, host immune

system response is diverse. At the early stages of fungal pathogenesis such as Candida

albicans, it was shown that these fungi use the immune cells of the host body and

cause malfunction the early induction of proinflammatory cytokines of the host body

leading to a reduction in their numbers. However, at some stages of fungal diseases,

the immune response is severe. Despite many treatments already being available, it

seems that one of the best treatments could be an immune-stimulatory agent. Some of

the subsets of MSCs and exosome-derived cells, as a cell-to-cell communicator agent,

have many roles in the human body, including anti-inflammatory and immune-modulatory

effects. However, the TLR4-primed and IL-17+ subsets of MSCs have been shown to

have immune-stimulatory effects. These subsets of the MSCs produce pro-inflammatory

cytokines and reduce immunosuppressive cytokines and chemokines. Thus, they could

trigger inflammation and stop fungal pathogenesis. As some biological activities and

molecules inherit elements of their exosomes from their maternal cells, the exosome-

derived TLR4-primed and IL-17+ subsets of MSCs could be a good candidate for

fighting against fungal diseases. The applications of exosomes in human diseases are

well-known and expanding. It is time to investigate the exosomes application in fungal

diseases. In this review, the probable role of exosomes in treating fungal diseases

is explored.

Keywords: fungi, exosome, mesenchymal stem cell, interleukin-17, toll-like receptor 4

INTRODUCTION

Host-Fungi Interactions: Normal Flora or Pathogen?
There are fungi in the human body that are known as normal flora (Prasad, 2007). This population
of fungi is called fungal microbiota or mycobiota (Limon et al., 2017). Knowing these microbiotas,
including mycobiota, is an important factor in host diseases and health (Limon et al., 2017). For
many reasons, when the balance of these mycobiota is upset they can become a pathogen. Fungal
diseases effect a quarter of the human population worldwide (Brown et al., 2012). However, while
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most of the fungal diseases are related to superficial skin
conditions and can be treated locally, the systemic fungal
infection could be so lethal (Brown et al., 2012; Vallabhaneni
et al., 2016). These systemic fungal diseases usually occur because
of diverse immune responses; especially in patients with immune
system suppression (Pappas et al., 2018). There are lots of
treatment option for systemic fungal diseases, but using them
has limitations and usually brings poor outcomes (Scriven et al.,
2017). It seems that one of the best choices to treat fungal diseases
is reversing immune deficiency, which occurs in patients with
immunosuppression (Scriven et al., 2017).

Pathogenesis of Fungi and Host Immunity
A previous study on C. albicans revealed that the host immune
response to C. albicans is downregulated at early stages by
pathogenic fungi (Halder et al., 2020). It was shown that the
C. albicans attached to the C3 receptor of the monocytes
by its β-glucan. Using this attachment to the monocytes, the
fungi stimulate the monocytes to release extracellular vesicles
contained transforming growth factor (TGF)-β. Using TGF-β-
transporting vesicles, the fungi reduce immune response and
cause anti-inflammatory effects at the early stages of fungi
pathogenesis (Halder et al., 2020). Moreover, using TGF-
β production, the fungi could reduce early production and
induction of pro-inflammatory cytokines (Netea et al., 2002;
Halder et al., 2020). This is how the fungi downregulate the host
immune system in order to favor its existence and survival.

FIGURE 1 | The exosome-derived mesenchymal stem cells (MSCs) cytokines and chemokines content. (A) Normal MSCs. (B) TLR3-primed and TLR4-primed

subtypes of MSCs. This figure shows chemokines and cytokines of exosomes-derived MSCs of different subtypes of MSCs and their biological activity.

Mesenchymal Stem/Stromal Cells (MSCs),
Immunosuppressive or
Immune-Stimulator?
The MSCs are the progenitor/stem cells that have the capacity
to differentiate into multilineage cells (Billing et al., 2016; de
Castro et al., 2019). Due to their potential for differentiation,
their immunomodulatory effect, and their regeneration capacity
(Zhang et al., 2020a; Oh et al., 2021), they are widely used
in treating injuries and some inflammatory disorders (Zhang
et al., 2020a; Liao et al., 2021). Clinical studies have shown that
because of the immunomodulatory function of some subsets of
MSCs, MSC therapy could suppress the immune system and treat
inflammatory and autoimmune diseases (Nauta and Fibbe, 2007;
Yang et al., 2013). In detail, the MSCs, directly or indirectly, affect
T cells and regulate them. The MSCs produce some chemokines
and cytokines such as interleukin 10 (IL-10), prostaglandin E2
(PGE2), nitric oxide (NO), TGF-β, indoleamine 2,3-dioxygenase
(IDO), tumor necrosis factor-inducible gene 6 (TSG-6), and
chemokine ligand 2 (Batten et al., 2006; Nauta and Fibbe, 2007;
Yang et al., 2013). Thesemolecules affect CD4+CD25+ regulatory
T (T reg) with positive transcription factor Foxp3 and T helper 17
(Th17) cells’ population and regulate them (Batten et al., 2006;
Park et al., 2011; Yang et al., 2013; Bi et al., 2020). That’s how
MSCs downregulate the immune system in inflammatory and
autoimmune diseases.

However, some previous studies have shown that another
type of MSCs has an immune-stimulatory effect, and this
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FIGURE 2 | The exosome-derived TLR4-primed and IL-17+ MSCs. This figure shows the mechanism of anti-fungal effects of exosomes-derived new subtypes of

MSCs.
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TABLE 1 | A list of companies producing various kinds of exosome-related products for therapeutic approaches.

Product application(s) Company Web site

Cancer detection Exosomics exosomics.eu

Cancer detection Lonza lonza.com

Carriers Anjarium Biosciences anjarium.com

Carriers Codiak Biosciences codiakbio.com

Carriers Ilias Biologics Inc. iliasbio.com

Carriers MDimune mdimune.com

Carriers Tavec tavecpharma.com

Exosome detection NanoView Biosciences nanoviewbio.com

Exosome isolation Clara Biotech clarabio.tech

Exosome isolation EverZom

Immunotherapy enhancer EV Therapeutics evtherapeutics.com

Inflammation therapy The Cell Factory esperite.com

Regenerative medicine Aegle Therapeutics aegletherapeutics.com

Regenerative medicine Aruna Bio arunabio.com

Regenerative medicine Capricor Therapeutics capricor.com

Regenerative medicine Vaccine Ciloa ciloa.fr

Regenerative medicine Creative Medical Technologies Holdings creativemedicaltechnology.com

Regenerative medicine Direct Biologics

Regenerative medicine Evox Therapeutics evoxtherapeutics.com

Regenerative medicine Exocel Bio exocelbio.com

Regenerative medicine ExoCoBio exocobio.com

Regenerative medicine Exopharm exopharm.com

Regenerative medicine Exosome exosomesciences.com

Regenerative medicine Exogenus Therapeutics exogenus-t.com

Regenerative medicine Invitrx’s www.invitrx.com

Regenerative medicine Kimera Labs kimeralabs.com

Regenerative medicine Oasis Diagnostics 4saliva.com

Regenerative medicine OmniSpirant omnispirant.com

Regenerative medicine Organicell organicell.com

Regenerative medicine Percia Vista perciavista.co

Regenerative medicine Regen Suppliers regensuppliers.com

Regenerative medicine ReNeuron reneuron.com

Regenerative medicine RoosterBio roosterbio.com

Regenerative medicine Stem Cell Medicine Ltd. stemcell-medicine.com

Regenerative medicine Unicyte unicyte.ch

Regenerative medicine VivaZome Therapeutics vivazome.com

Regenerative medicine XOStem xostem.com

Tumor exosome capture Aethlon Medical aethlonmedical.com

variety of the biological functions of MSCs depends on Toll-
like receptors (TLRs) (Figure 1) (Waterman et al., 2010; Yang
et al., 2013). It was shown that engagement of TLR-4 could
enhance the production of pro-inflammatory mediators such as
IL-17 and these MSCs are called TLR4-primed MSCs (Figure 1)
(Waterman et al., 2010; Yang et al., 2013). In contrast, it was
shown that TLR3-primed MSCs act as an immunomodulatory
subset of MSCs (Waterman et al., 2010; Yang et al., 2013).
The TLR4-primed MSCs, in contrast with TLR3-primed MSCs,

was shown to increase expression of IL-6 and IL-13 as a
pro-inflammatory cytokine and decrease IL-4, IDO, and PGE2
as an immunomodulatory cytokine and chemokine (Figure 1)
(Waterman et al., 2010; Yang et al., 2013). IL-17 is a pro-
inflammatory cytokine that plays a crucial role in intracellular
and extracellular pathogenic defense (Yang et al., 2013; Schinocca
et al., 2021). It was shown that a subpopulation of IL-17+ MSCs
could inhibit C. albicans (Yang et al., 2013). Taken together, it
might result that TLR4-primed and IL-17+ subsets of MSCs
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TABLE 2 | Animal studies of exosomes-derived MSCs.

Cell source Therapeutics Transplantation Donor species Recipient

species

Biological effects References

Embryonic MSCs Exosome Xenotransplant Human Rat Osteochondral regeneration promotion Zhang et al., 2016

Adipose tissue-derived MSCs Exosome Xenotransplant Human Mouse Atopic dermatitis alleviation Cho et al., 2018

Adipose tissue-derived MSCs Exosome Xenotransplant Human Rat Evaluation of exosomes cell toxicity Ha et al., 2020

Bone marrow- derived MSCs Exosome Xenotransplant Rat Mouse Neuroprotective effect via inhibiting early

neuroinflammation

Ni et al., 2019

Wharton’s jelly-derived MSCs Exosome Xenotransplant Human Rat Anti-inflammatory effects on microglia in

perinatal brain injury

Thomi et al., 2019

Umbilical cord-derived MSCs Exosome Xenotransplant Human Mouse Acute liver failure alleviation Jiang et al., 2019

Bone marrow- derived MSCs Exosome Xenotransplant Rat Mouse Inadequate promotion of bone

regeneration in type 1 diabetes

Zhu et al., 2019

Bone marrow- derived MSCs Exosome Allotransplant Rabbit Rabbit Regulation of injured endometrium repair Yao et al., 2019

Umbilical cord-derived MSCs Exosome Xenotransplant Human Mouse Inflammatory bowel disease treatment Mao et al., 2017

Adipose tissue-derived MSCs Exosome Allotransplant Rat Rat Promotion of endometrium regeneration

in rats with intrauterine adhesion

Zhao et al., 2020

Placental- derived MSCs Exosome Xenotransplant Human Mouse Enhancement of angiogenesis and

improvement of neurologic function

Zhang et al., 2020b

Umbilical cord-derived MSCs Exosome Xenotransplant Human Mouse Inhibition of silica-induced PF and

improve lung function

Xu et al., 2020a

Bone marrow- derived MSCs

Adipose tissue-derived MSCs

Exosome – – Rat Improvement of erectile dysfunction in

bilateral cavernous nerve injury

Li et al., 2018

Bone marrow- derived MSCs Exosome Allotransplant Rat Rat Rescuing myocardial

ischaemia/reperfusion injury

Liu et al., 2017

Umbilical cord-derived MSCs Exosome Xenotransplant Human Rat Inhibition of vein graft neointimal

hyperplasia and acceleration of

reendothelialization

Qu et al., 2020

Adipose tissue-derived MSCs Exosome Allotransplant Mouse Mouse Exo-circAkap7, a potential treatment for

cerebral ischemic injury.

Xu et al., 2020b

Bone marrow- derived MSCs Exosome Xenotransplant Rat Guinea pig Reduction of demyelination and

neuroinflammation in an immune-induced

demyelination model

Li et al., 2019

Bone marrow- derived MSCs Exosome Allotransplant Rat Rat Promotion of immunotolerance and

prolong the survival of cardiac allografts

He et al., 2018

MSCs, mesenchymal stem cells.

could be good candidates for fighting against fungal diseases
(Figures 1, 2) (Waterman et al., 2010; Yang et al., 2013).

The Extracellular Vesicles (EVs) and Its
Classification
EVs have the main role in cell-to-cell communications
(Andaloussi et al., 2013),and have been observed in both
eukaryotes and prokaryotes (Ellis and Kuehn, 2010; Andaloussi
et al., 2013). Studies have shown that the EVs could transfer
the proteins and nucleic acids by its bilayer membrane (Lee
et al., 2012; Ratajczak et al., 2012). Due to their potential for
transferring proteins and nucleic acids, EVs are used widely
as drug delivery agents (Elsharkasy et al., 2020). In order to
best discuss the biological roles of EVs, here we describe the
classification of EVs. The EVs based on their cellular origin,
biological function, biogenesis, and size classified into three
main groups: exosomes, microvesicles, and apoptotic bodies
(Andaloussi et al., 2013; Yáñez et al., 2015). The two first particles,
the exosomes and microvesicles, have been shown to have

therapeutic effects (Wang et al., 2015; Phinney and Pittenger,
2017). The exosomes, with 40–120 nm in size, are generated
by the endolysosomal pathway. In contrast with exosomes, the
microvesicles are generated by budding from the cell surface
(Andaloussi et al., 2013; Raposo and Stoorvogel, 2013). The
exosomes with their non-sized particles, composed of a bilayer
membrane and cytoplasm, contained mRNA, miRNA, and other
RNAs’ generated from the parent cell (Andaloussi et al., 2013;
Raposo and Stoorvogel, 2013).

The Exosomes-Derived MSCs and Their
Biological Activity
Stem cells, especially mesenchymal stem cells, were used widely
in past decades as a candidate for therapies of various diseases.
In recent years, exosome-derived stem cells were substitutionally
used for regenerative and immune-therapy as a cell-free therapy
(Ji et al., 2019; Qiu et al., 2020). Previous studies have shown
that the exosome-derived stem cells contained various bioactive
molecules, especially proteins and microRNAs which originated
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from maternal cells (Baharlooi et al., 2020; Ma et al., 2020).
These exosomes were shown to have some biological effects
inherited from their maternal cells (Baharlooi et al., 2020). For
instance, the exosome-derived MSCs displayed angiogenesis,
regeneration, and especially anti-inflammatory effects (Baharlooi
et al., 2020). Moreover, it was shown that these exosomes could
carry various cytokines and chemokines originated and produced
by the maternal cell (Di Trapani et al., 2016; Baharlooi et al.,
2020). So, here we can hypothesize that the TLR4-primed MSCs
could pass their pro-inflammatory cytokines and chemokines
into exosomes derived from them. Exosomes-derived TLR4-
primed MSCs could trigger the host immune system to start
inflammation against fungal pathogens and fight against the
immunosuppressive path of fungi.

DISCUSSION

The MSCs have been used in the treatment of microbial diseases
for the past decades (Zhou and Xu, 2020). In most microbial
diseases, the host-microbe interactions cause inflammation,
which damaged host tissues (Qiu et al., 2020). Some of the
subsets of MSCs, using the production of anti-inflammatory
and immunomodulatory cytokines and chemokines, serve
to downregulate the host immune system and reduce host
tissue damages (Waterman et al., 2010; Baharlooi et al.,
2020). That is why the MSCs were widely used in past
decades for inflammatory and autoimmune diseases treatment.
Among all microbial diseases, the pathogenesis of fungal
diseases is more complicated. The fungi pathogen at the
first stages of pathogenesis downregulates the immune
system of the host body using TGF-β-transporting vesicles
produced by induced monocytes (Netea et al., 2002; Halder
et al., 2020). Using immunosuppression, the pathogen could
survive better.

In recent years, it was noticed that the different subtypes
of MSCs could show different biological activities (Waterman
et al., 2010; Yang et al., 2013; Baharlooi et al., 2020). It
was shown that induction of TLR-4 of MSCs could enhance
its immune-stimulatory activity using the production of pro-
inflammatory cytokines and chemokines (Waterman et al.,
2010; Yang et al., 2013). As is obvious, in contrast with
other microbial pathogenesis (Nauta and Fibbe, 2007) the
fungal pathogen stops inflammation and downregulates the
host immune system; so to fight that, the immune system
needs to be upregulated and made able to inflame (Waterman
et al., 2010; Yang et al., 2013). It was shown that the TLR4-
primed and IL-17+ subsets of MSCs could express pro-
inflammatory cytokines and chemokines, which could lead
to inflammation (Waterman et al., 2010; Yang et al., 2013).
These subtypes of MSCs could be an agent for fungal
diseases treatment.

As is known, cell therapy has some challenges for human
diseases therapy (Choi and Lee, 2016). The exosomes, as a
cell-free therapy, solve most of the problems of cell therapy

(Choi and Lee, 2016). Unlike a cell therapy, the exosomes are
capable of crossing the blood-brain barrier and traveling through
capillaries, and owing to their small sizes they are safe from
reticuloendothelial system clearing (Li and Huang, 2009; Choi
and Lee, 2016; Baharlooi et al., 2020). Moreover, as the exosomes
inherited some of the molecules and biological activity of their
maternal cells, they could be a good substitute for cell therapy (Di
Trapani et al., 2016; Baharlooi et al., 2020; Ma et al., 2020). The
exosome-derived MSCs showed to have anti-inflammatory and
regenerative effects, the same as their maternal cells (Baharlooi
et al., 2020). Several companies are developing exosome-derived
products to take advantage of these applications, which suggests
that in the future exosomes and their derived applications will be
a viable choice for various disease therapies (Table 1).

As the maternal cell produces anti-inflammatory cytokines
and chemokines, these molecules could pass into the exosomes
(Wang et al., 2015; Baharlooi et al., 2020). Based on previous
results, it could be hypothesized that the TLR4-primed and IL-
17+ subsets of MSCs could pass its produced pro-inflammatory
cytokines and its immune-stimulatory activity into its exosomes.
These exosomes could be a treatment for fungal pathogenesis.

During the past decade, many preclinical studies of exosomes
have been conducted. Some of these studies have been shown
in Table 2. These studies demonstrated that exosomes-derived
MSCs could have anti-inflammatory, anti-atopic dermatitis,
anti-neurodegenerative, anti-liver fibrosis biological activities,
and so on (Li et al., 2013; Cho et al., 2018; Lee et al.,
2018; Gowen et al., 2020). Despite many preclinical studies
of exosomes, clinical studies of the MSCs-derived exosomes
are few (Gowen et al., 2020). The MSCs-derived exosomes
were used in previous clinical studies to treat diseases such
as graft-versus-host disease (Kordelas et al., 2014), chronic
kidney disease with grade III and IV (Nassar et al., 2016),
type II diabetes (Sun et al., 2018), and prevention of the
onset of type-1 diabetes via suppression of immune system
and induction of beta cells regeneration (Ezquer et al.,
2012). There are also several studies which have not yet
been published.

However, stem cell-derived exosomes have some limitations
for clinical studies. For instance, large-scale exosome production
is lacking; large-scale exosome quantifications methods with
rapid and accurate results, and determination of exosomes’
contents with high accuracy also present dificulties (Gowen et al.,
2020). Moreover, the pharmacokinetics, pathways, targets and
mechanisms of action of the exosomes in the human body
still remain unknown. Additionally, more studies are needed
to evaluate the correct dosage of the exosomes for clinical
studies in order to prevent possible toxicities (Gowen et al.,
2020).
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Extracellular vesicles (EVs) are nano-sized membrane vesicles secreted by cells. EVs
serve as a mediator for cell-to-cell communication by regulating the exchange of
genetic materials and proteins between the donor and surrounding cells. Current studies
have explored the therapeutic value of mesenchymal stem cells-derived EVs (MSC-
EVs) for the treatment of infectious diseases extensively. MSC-EVs can eliminate the
pathogen, regulate immunity, and repair tissue injury in contagious diseases through the
secretion of antimicrobial factors, inhibiting the replication of pathogens and activating
the phagocytic function of macrophages. MSC-EVs can also repair tissue damage
associated with the infection by upregulating the levels of anti-inflammatory factors,
downregulating the pro-inflammatory factors, and participating in the regulation of
cellular biological behaviors. The purpose of this mini-review is to discuss in detail the
various mechanisms of MSC-EV treatment for infectious diseases including respiratory
infections, sepsis, and intestinal infections, as well as challenges for implementing
MSC-EVs from bench to bedside.

Keywords: mesenchymal stem cells, exosome, extracellular vesicles, acute lung injury, COVID-19, sepsis,
infectious diseases

INTRODUCTION

Infectious diseases have been a significant cause of morbidity and mortality worldwide; respiratory
infections and pneumonia are among the major causes of global death (Sharma et al., 2021b). With
the increasing number of outbreaks of new infectious diseases and the lack of effective treatments,
it is crucial to identify new therapeutic strategies to combat infections and restore infection-related
organ and tissue damage.

Mesenchymal stem cells (MSCs) are among the most commonly employed cell types in tissue
repair and homeostasis, which have become an attractive therapeutic option for treating infectious
diseases and disease-related tissue injury (Kashte et al., 2018; Kotas and Matthay, 2018). The effects
of MSCs include anti-inflammatory properties, immunomodulatory capabilities, and regeneration
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(Fu et al., 2019). The efficacy of MSCs is mainly coming
from the paracrine effect mediated by secreted growth factors,
cytokines, and extracellular vesicles (EVs) (Liang et al., 2014;
Paliwal et al., 2018).

MSC-derived extracellular vesicles (MSC-EVs) are identified
to be the main components responsible for the paracrine effect.
They transfer functional molecules, such as messenger RNA
(mRNA), microRNA (miRNA), lipid, and protein, into tissue-
specific cells that request repair (Taverna et al., 2017). Compared
with MSCs, MSC-EVs possess hypoimmunogenic properties,
have low tumorigenesis, and are more stable (Trounson and
McDonald, 2015). In this mini-review, we briefly summarize
the function of exosomes and discuss their potential role in
therapeutic regimens in infectious diseases, including respiratory
infections, sepsis, and intestinal infections in recent years.

EXTRACELLULAR VESICLES FROM
MESENCHYMAL STEM CELLS

Almost all cells, including MSCs, can secrete EVs due to
intracellular vesicle sorting (Kourembanas, 2015). EVs are nano-
sized spherical bio-membrane structures, which were previously
divided into three main categories based on their size and
biosynthesis: smaller-sized exosomes (30–100 nm) from the
endocytic pathway, medium-sized microvesicles (MVs) (100–
1,000 nm) from the cell plasma membrane shedding, and larger-
sized apoptotic bodies (1,000–5,000 nm) from the apoptosis
(Raposo and Stoorvogel, 2013). The endocytosis of the cell
membrane may form early endosomes, which then develop into
late endosomes, namely, multivesicular bodies (MVBs). MVBs
either combine with lysosomes or be released as exosomes
through exocytosis (Joo et al., 2020). In terms of MVs, they
can be secreted directly by budding from the plasma membrane
(Abbaszadeh et al., 2020) (Figure 1).

Assigning an EV to a particular biogenesis pathway remains
extraordinarily difficult because of the absence of specific surface
markers for three EV categories and the overlap in their physical
size (Carnino et al., 2021). Therefore, guidelines set by the
International Society for Extracellular Vesicles (ISEV) suggest
considering the use of operational terms for EV subtypes that
are based on: (a) physical characteristics of EVs, such as size
[“small EVs” (< 200 nm) and “medium/large EVs” (> 200 nm)]
or density (low, middle, high, with each range defined); (b)
biochemical composition (CD63+/CD81+-EVs, Annexin A5-
stained EVs, etc.); or (c) descriptions of conditions or cell of
origin (podocyte EVs, hypoxic EVs, large oncosomes, apoptotic
bodies) (Théry et al., 2018).

Over 80% of researchers chose differential ultracentrifugation
for EVs isolation (Tkach and Théry, 2016). Traditional
identification ways for EVs usually involve nanoparticle tracking
analysis (NTA) for size information, transmission electron
microscope (TEM) for morphological details, and Western
blotting for membrane protein makers (Théry et al., 2018). Kim
et al. (2019) recently developed an atomic force microscope-
infrared spectroscopy (AFM-IR) approach to probe the structural
composition of a single EV. Their protocol involves incubating

the EV sample on a suitable substrate and setting up the AFM-IR
instrument, as well as collecting nano-IR spectra and nano-
IR images. Recorded IR spectra for EVs showed characteristic
peaks at specific wavenumbers; it is possible to determine
the presence of DNA (1,050–1,290 cm−1), RNA (1,250–
1,380 cm−1), proteins (1,500–1,700 cm−1), and phospholipids
(1,000–1,250 cm−1, 1,730–1,750 cm−1, 2,800–3,000 cm−1) (Kim
et al., 2019) that may contribute to the understanding of EV
biology and the development of EV therapies. This method could
improve the understanding of EV biology and the development
of EV therapies.

EVs secreted from MSCs can deliver many functional
molecules such as mRNA, miRNA, lipids, and protein into
recipient cells (Yin et al., 2019). These biological components are
considered stable and can modulate cell behaviors in recipient
cells. EVs use specific receptors or membrane fusion to enter
recipient cells. Once EVs are absorbed, the biomolecules of
EVs can regulate gene expression, essential enzyme reactions,
signal cascade pathways, or other mechanisms in recipient
cells (Ranghino et al., 2017). Thus, MSC-EVs can promote
tissue regeneration by reprogramming several pathophysiological
pathways such as immunomodulation, proliferation, apoptosis,
angiogenesis, and oxidative (Grange et al., 2019a,b).

THE THERAPEUTIC APPLICATION OF
MESENCHYMAL STEM
CELL-EXTRACELLULAR VESICLES IN
INFECTIOUS DISEASES

The function of EVs is mainly dependent on their source cells
(Keshtkar et al., 2018). The therapeutic use of MSCs was reported
in lung injury, sepsis, and necrotizing enterocolitis (NEC) caused
by bacteria or viruses (Krasnodembskaya et al., 2010; Sung
et al., 2016; Rodrigues et al., 2019). MSC-EVs have similar
functions to their parental cells, such as antimicrobial effects,
immunomodulation property, and damage tissue repairability.
Compared with MSCs, MSC-EVs keep the biological function of
MSCs and are more stable and less easy to tumorigenesis, making
them a promising candidate for the treatment of infectious
diseases (Thirabanjasak et al., 2010).

For Respiratory Infection
Acute lung injury (ALI)/acute respiratory distress syndrome
(ARDS) is a heterogeneous syndrome characterized by diffuse
epithelial and endothelial damage and a robust inflammatory
response (Thompson et al., 2017). The most common risk factors
of ARDS are infectious pneumonia caused by bacteria and viruses
(Muraca et al., 2020; Meyer et al., 2021). Respiratory infections
take more than 1.5 million lives a year. The number of deaths
and disabled people is devastating in epidemic and pandemic
outbreaks, such as the severe acute respiratory syndrome (SARS)
outbreak in 2002, H1N1 flu in 2009, Middle East respiratory
syndrome (MERS) outbreak in 2012, and coronavirus disease
2019 (COVID-19) outbreak in 2020 (Sharma et al., 2021b).
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FIGURE 1 | The biogenesis and action of exosomes. Early endosomes are formed by the endocytosis of the cell membrane and then develop into multivesicular
bodies (MVBs) in a budding manner. MVBs either combine with lysosomes and digest their contents or be released as exosomes through exocytosis. Exosomes can
deliver lipids, proteins, and nucleic acid to recipient cells when circulating in the extracellular space.

Cell-based therapy with MSCs has been promising in
ALI/ARDS in pre-clinical models for their immunomodulation
and tissue repair properties (Laffey and Matthay, 2017). However,
there were higher mean scores of Acute Physiology and
Chronic Health Evaluation III (APACHE III) in models treated
with MSCs than in those treated with placebo, but without
difference of their 28-day mortality (Matthay et al., 2019). Since
MSCs have limited engraftment and differentiation efficacy,
high risk of tumorigenicity, and unstable ability (Eggenhofer
et al., 2014), researchers paid more attention to MSC-EVs
as a new candidate cell-free treatment for ALI/ARDS. Both
other researchers and we demonstrated that intratracheal
administration of MSC-EVs showed therapeutic effects in
hyperoxia-induced lung injury, revealing that MSC-EVs could
ameliorate impaired alveolarization in both short-term and long-
term bronchopulmonary dysplasia (BPD) models and activate
M2 macrophages (Porzionato et al., 2019, 2021; You et al., 2020).
The anti-inflammatory and pro-regenerative properties of MSC-
EVs are well established and have been exploited in a large
number of studies (Phinney and Pittenger, 2017).

The application of MSC-EVs on ALI/ARDS and severe
pneumonia has been investigated in some pre-clinical
studies. MSC-EVs’ main effects on ALI/ARDS are reducing
inflammation, promoting alveolar epithelial regeneration, and
enhancing pulmonary endothelial repair (Shah et al., 2019). As
a result, pro-inflammatory cytokine production was decreased,
and alveolar fluid clearance was improved in ALI/ARDS models.

Two clinical trials are undergoing to determine the effects
of MSC-EVs on COVID-19, a pandemic that lacks specific
antiviral medicine. MSC-EVs will be administrated intravenously
(NCT04798716) or by inhalation (NCT04276987). A prospective
non-randomized open-label cohort study showed that allogeneic
bone marrow MSC-derived exosomes (ExoFloTM) could be safe
and effective in severe COVID-19 patients, which could restore
oxygenation, downregulate cytokine storm, and reconstitute
immunity (Sengupta et al., 2020). However, it is premature to

draw any conclusion based on a single study, and it should
be emphasized that there are no approved MSC-EV therapies
for COVID-19 to date. The specific and scientific rationale for
administering MSC-EV treatment in COVID-19 patients needs
to be better understood and justified (Börger et al., 2020). In
the meantime, the prevention and control of urgent COVID-19
should make efforts to test existing approved vaccines, antiviral
therapeutics, and monoclonal antibodies (Sharma et al., 2021a).

miRNA, protein, mRNA, and mitochondria in MSC-EVs
play vital roles in modulating immune responses and repairing
lung damage of ALI/ARDS. miR-21-5p plays an essential
role in alleviating ALI by reducing pro-inflammatory cytokine
secretion and enhancing M2 polarization (Li et al., 2019).
MSC-EVs are reported to ameliorate ALI via transferring miR-
27a-3p to alveolar macrophages inhibiting NF-κB expression
and inducing M2 polarization (Wang et al., 2020). MiR-145
mediated the antimicrobial effect of MSC-EV by suppressing the
expression of multidrug resistance-associated protein 1 (MRP1)
and increasing the levels of leukotriene B4 (LTB4) (Hao et al.,
2019), a chemoattractant for immune cells including T cells,
macrophages, and neutrophils, with the role of facilitating
pathogen elimination (Saeki and Yokomizo, 2017).

EVs from interferon (IFN)-γ-primed MSCs more effectively
attenuated Escherichia coli-induced lung injury via enhancing
phagocytosis and killing of bacteria in macrophage (Varkouhi
et al., 2019). MSC-EVs decreased the lipopolysaccharide (LPS)-
induced permeability of microvascular endothelial cells partly
through the presence of hepatocyte growth factor (HGF) (Wang
et al., 2017). The expression of keratinocyte growth factor (KGF)
(Zhu et al., 2014) and angiopoietin-1 (Ang1) (Tang et al., 2017)
mRNA enclosed in EVs partly mediated the anti-inflammatory
effects on E. coli endotoxin-induced ALI in mice models.
The effectiveness of MSC-EVs has also been demonstrated in
large animals and found that EVs from swine bone marrow-
derived MSCs had anti-influenza and anti-inflammatory effects
in influenza virus-induced pig ALI (Khatri et al., 2018).
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TABLE 1 | The related exosomal cargo and mechanisms of mesenchymal stem cell-derived extracellular vesicles treatment in infectious diseases.

Related exosomal
cargo

Disease model Exosome source MSC-EV
isolation

Experimental outcome and related mechanism

miR-27a-3p (Wang
et al., 2020)

LPS-induced ALI in mouse hADMSCs UC Elevated miR-27-3a levels in alveolar macrophages, induced
M2 polarization, and decreased alveolar macrophage
expression of NF-κB

miR-145 (Hao et al.,
2019)

E. coli-induced ALI in
mouse

hBMSCs UC Suppressed MRP1 activity through transfer of miR-145, thereby
resulting in enhanced LTB4 production and antimicrobial activity
through LTB4/BLT1 signaling

Unknown (Varkouhi
et al., 2019)

E. coli-induced ALI in rat IFN-γ-primed
hUCMSCs

UC Enhanced macrophage phagocytosis and killing of E. coli

HGF (Wang et al.,
2017)

In vitro LPS treatment of
endothelial cells

mBMSCs UC Increased the expression of VE-cadherin and occluding,
decreased endothelial apoptosis, induced endothelial cell
proliferation

KGF (Zhu et al., 2014),
Ang-1 (Tang et al.,
2017)

E. coli/LPS-induced ALI in
mouse

hBMSCs UC Demonstrated a reduction in pulmonary edema, lung protein
permeability, and inflammation

RNAs (Khatri et al.,
2018)

Influenza virus-induced ALI
in pig

sBMSCs UC Reduced virus shedding in the nasal swabs, influenza virus
replication, and pro-inflammatory cytokines in the lungs

miR-146a (Song et al.,
2017), miR-21 (Yao
et al., 2021)

CLP-induced sepsis in
mouse

IL-1β primed
hUCMSCs

UC Exosomal miR-146a/miR-21 was transferred to macrophages,
resulted in M2 polarization by modulating IRAK1, TRAF6, and
IRF 5 signaling, or inhibited the effects of PDCD4.

miR-223 (Wang et al.,
2015)

CLP-induced sepsis in
mouse

mBMSCs UC Exosomal miR-223 was transferred to cardiomyocytes,
inhibited the expression of Sema3A and Stat3, and reduced
inflammation and cell death.

Unknown (Rager et al.,
2016; McCulloh et al.,
2018)

Premature and hypercaloric
feeds-induced NEC in rat

rAFMSCs,
rBMSCs, and
mBMSCs

UC Reduced the incidence and severity of experimental NEC and
protected the intestines from NEC

miR-200b (Sun et al.,
2020b)

In vitro TNF-α treatment of
endothelial cells

HO-1-modified
rBMSCs

Exosome
separation kits

Targeted HMGB3 in intestinal epithelial cells to alleviate
inflammatory injury

Let-7f, miR-145,
miR-199a, and
miR-221 (Qian et al.,
2016)

In vitro HCV treatment of
human hepatoma-7 cells

hBMSCs UC Suppression of HCV RNA replication, combined with INF-α or
telaprevir, enhanced their anti-HCV ability

Unknown (Gu et al.,
2020)

In vitro D-GaIN/LPS
treatment of hepatocytes

BMSCs UC Decreased the expression levels of the pro-apoptotic proteins
Bax and cleaved caspase-3, upregulated the anti-apoptotic
protein Bcl-2, reduced hepatocyte apoptosis

Unknown (Sun et al.,
2020a)

CVB3-induced myocarditis
in mouse

hBMSCs UC Activated AMPK/mTOR-mediated autophagy flux pathway to
attenuate cardiomyocyte apoptosis

MSC-EV, mesenchymal stem cell-derived extracellular vesicle; hADMSCs, human adipose-derived MSCs; hBMSCs, human bone marrow-derived MSCs; hUCMSCs,
human umbilical cord-derived MSCs; mBMSCs, mouse bone marrow-derived MSCs; sBMSCs, swine bone marrow-derived MSCs; rAFMSCs, rat amniotic fluid-derived
MSCs; rBMSCs, rat bone marrow-derived MSCs; HCV, hepatitis C virus; HGF, hepatocyte growth factor; KGF, keratinocyte growth factor; Ang-1, angiopoietin-1; LPS,
lipopolysaccharide; ALI, acute lung injury; E. coli, Escherichia coli; CLP, cecal ligation and puncture; NEC, necrotizing enterocolitis; D-GaIN, D-galactosamine hydrochloride;
CVB3, coxsackievirus B3; HO-1, heme oxygenase-1; IL-1β, interleukin-1β; TNF-α, tumor necrosis factor-α; UC, ultracentrifugation; NF-κB, nuclear factor kappa B subunit
1; MRP1, multidrug resistance-associated protein 1; LTB4, leukotriene (LT) B4; HMGB3, high mobility group box 3.

For Sepsis
Sepsis is a systemic inflammatory response to infection that
leads to multiple organ dysfunction, and one out of four
sepsis patients died during their hospital stay (Iskander et al.,
2013; Fleischmann-Struzek et al., 2020). Sepsis is caused by the
accumulation of various pro-inflammatory factors in the process
of inflammatory response and immune dysfunction (Prescott and
Angus, 2018). Even with the continuous development of intensive
care and advances in the antibiotic application, the mortality of
sepsis in intensive care units remains high (Angus and van der
Poll, 2013). Therefore, a new therapy is urgent to improve the
clinical outcomes.

Patients with sepsis had severe immunosuppression,
leading to macrophage dysfunction and poor wound healing

(Davis et al., 2019). Therefore, the new therapy strategy could be
related to the immunoregulation of macrophages. Several studies
have proven that MSC-EVs can improve the outcomes of sepsis
in animal models. MiRNAs in MSC-EVs have been considered
as a critical substance to exert efficacy in sepsis. For example,
miRNA-146a was found to be strongly upregulated in MSC-EVs
primed with interleukin-1β (IL-1β), which could more effectively
induce M2 polarization by modulating IRAK1, TRAF6, and
IRF5 signaling (Song et al., 2017). MiR-21 in MSC-EVs was
abundantly upregulated in IL-1β-stimulated MSCs, which
induced M2 polarization of macrophages in vitro and in vivo
sepsis by inhibiting the effects of PDCD4, which can participate
in multiple cellular biological behaviors, including apoptosis
and transcription (Yao et al., 2021). Both studies supported
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that pretreated MSCs with pro-inflammatory cytokines could
enhance their immunomodulatory function of MSCs. The
exosomal miR-223 was reported to contribute to MSC-mediated
cardioprotection in sepsis by downregulation of Sema3A and
STAT3 (Wang et al., 2015).

For Intestinal Infection
The balance between beneficial and harmful bacteria plays an
important role in neonatal intestinal health (Rhoads et al., 2018).
Bacterial infection is one of the most significant risk factors
in NEC pathogenesis, a life-threatening disease in premature
infants, with mortality as high as 30% (Neu and Walker, 2011;
Markel et al., 2020). Full-thickness destruction of the intestine is
the character of NEC, and inflammatory response is increased in
infants affected by this disease, leading to intestinal perforation,
peritonitis, bacterial invasion of the bloodstream, and systemic
infection (Neu, 2014; Neu and Pammi, 2018). Survivors are
faced with severe sequelae, including short gut syndrome and
neurodevelopmental retardation (Neu, 2014). Despite decades of
research on the pathophysiology of NEC, the treatment remains
inadequate and supportive and desired a novel preventive and
therapeutic intervention.

MSCs have great potential in NEC treatment, decreasing NEC
incidence in rat models (Augustine et al., 2017; Thébaud, 2019).
EVs from MSCs carry important biological components and can
be utilized in disease prevention and treatment (Baglio et al.,
2015). EVs from bone marrow-derived MSCs, heparin-binding
EGF-like growth factor (HB-EGF) primed MSCs, and human
umbilical cord MSCs have been reported to protect the integrity
of the intestinal barrier and reduce the severity and incidence
of NEC in an experimental model (Rager et al., 2016; McCulloh
et al., 2018). Both miR-34 and miR-29 improved the intestinal
epithelial barrier through the Snail/Claudins signaling pathway
(Li et al., 2020). MiR-200b in heme oxygenase-1 (HO-1)-modified
bone marrow MSCs-derived EVs was reported to target high
mobility group box 3 (HMGB3) gene in intestinal epithelial cells
to alleviate its inflammatory response (Sun et al., 2020b).

For Other Infectious Diseases
Qian et al. (2016) revealed that miRNAs, especially let-7f, miR-
145, miR-199, and miR-221 from MSC-EVs, inhibited viral
replication in hepatitis C virus (HCV)-treated cells. Hepatocyte
injury model caused by D-galactosamine (D-GaIN) and LPS
could be ameliorated by MSC-EVs through inducing autophagy
and inhibiting apoptosis (Zhao et al., 2019). In addition, MSC-
EVs had therapeutic effects on coxsackievirus (CVB3)-induced
myocarditis in the mice model, which can shrink the production
of pro-inflammatory cytokines and improve cardiac function via
activating the AMPK/mTOR-mediated autophagy flux pathway
to attenuate apoptosis (Gu et al., 2020).

CONCLUSION

MSC-EVs had outstanding prospects in treating infectious
diseases, such as respiratory infections, sepsis, and intestinal
infections. The therapeutic mechanisms included direct

antimicrobial effects, immunomodulation, and tissue repair.
MSC-EVs exert their effect through the transfer of mRNAs,
miRNAs, and proteins (Table 1). MiRNA containing EV may
be a new target for the development of new therapeutic drugs.
The use of MSC-EVs has several benefits, namely, (a) small
vesicles, readily circulating and penetrating biological barriers,
like blood–brain; (b) low tumorigenesis; and (c) stable properties,
MSC-EVs may achieve a higher “dose” than MSCs due to the
poor viability and considerable death of engrafted MSCs in target
tissues (Barbash et al., 2003). Importantly, EVs can maintain high
activities at low temperatures. All the profits make MSC-EVs a
promising agent in infectious diseases.

Despite the promising progress that has been made in the
treatment of MSC-EVs on infectious diseases, several challenges
are faced by the field in clinical translation: (a) there is wide
variability of MSC-EVs preparations in the whole process (Börger
et al., 2020), such as the different productions of cell sources,
purification, and identification of the final product. Careful
consideration of the optimal purity and rational clinical trial
design of MSC-EVs is necessary to advance large-scale clinical
trials (Muraca et al., 2018). Furthermore, lacking standardized
quality parameters caused discrepancies and controversies about
the biology and function of MSC-EVs. Members of four societies
(SOCRATES, ISCT, ISEV, and ISBT) identified potential metrics
of MSC-EVs to facilitate data sharing and comparison of MSC-
EVs among different studies, including biological activity, vesicle
integrity, the concentration of membrane lipid vesicles, the
ratio of specific lipids, the ratio of membrane lipids to protein,
and the ratio of MSC to non-MSC surface antigens (Witwer
et al., 2019). Each metric needs to be quantified and validated
in further studies. (b) How to determine reproducible and
robust parameters to predict the therapeutic potency of MSC-
EVs is unsolved. The therapeutic efficacy of MSC-EVs depends
not only on the cell, such as the cell source and status of
MSCs, delivery dose and route (Sun et al., 2020a), and half-
life and in vivo biodistribution of MSC-EVs, but also on the
disease condition, such as the disease microenvironment and
the time window for intervention. (c) MSC-EVs from different
sources have been reported to be efficacious in various kinds of
infectious diseases; the therapeutic mechanism may be different
and specific for each source and disease condition. To better
understand the therapeutic activity, the mode of action needs to
be studied further, trying to find out the key components in MSC-
EVs, target cells in injured tissues, and the involved molecular
signaling cascade.
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Extracellular vesicles (EVs), as nano-/micro-scale vehicles, are membranous particles
containing various cargoes including peptides, proteins, different types of RNAs and
other nucleic acids, and lipids. These vesicles are produced by all cell types, in
which stem cells are a potent source for them. Stem cell-derived EVs could be
promising platforms for treatment of infectious diseases and early diagnosis. Infectious
diseases are responsible for more than 11 million deaths annually. Highly transmissible
nature of some microbes, such as newly emerged severe acute respiratory syndrome
coronavirus 2 (SARS-CoV-2), drives researcher’s interest to set up different strategies to
develop novel therapeutic strategies. Recently, EVs-based diagnostic and therapeutic
approaches have been launched and gaining momentum very fast. The efficiency
of stem cell-derived EVs on treatment of clinical complications of different viruses
and bacteria, such as SARS-CoV-2, hepatitis B virus (HBV), hepatitis C virus (HCV),
human immunodeficiency virus (HIV), Staphylococcus aureus, Escherichia coli has
been demonstrated. On the other hand, microbial pathogens are able to incorporate
their components into their EVs. The microbe-derived EVs have different physiological
and pathological impacts on the other organisms. In this review, we briefly discussed
biogenesis and the fate of EVs. Then, EV-based therapy was described and recent
developments in understanding the potential application of stem cell-derived EVs
on pathogenic microorganisms were recapitulated. Furthermore, the mechanisms by
which EVs were exploited to fight against infectious diseases were highlighted. Finally,
the deriver challenges in translation of stem cell-derived EVs into the clinical arena
were explored.

Keywords: stem cells, infectious disease, antimicrobial agents, bacterial EVs, Viral EVs, MSC-derived EVs,
extracellular vesicles

Frontiers in Microbiology | www.frontiersin.org 1 November 2021 | Volume 12 | Article 78585636

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/journals/microbiology#editorial-board
https://www.frontiersin.org/journals/microbiology#editorial-board
https://doi.org/10.3389/fmicb.2021.785856
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/fmicb.2021.785856
http://crossmark.crossref.org/dialog/?doi=10.3389/fmicb.2021.785856&domain=pdf&date_stamp=2021-11-30
https://www.frontiersin.org/articles/10.3389/fmicb.2021.785856/full
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-12-785856 November 24, 2021 Time: 14:6 # 2

Keshavarz Alikhani et al. Exosome Therapy Against Microbial Diseases

INTRODUCTION

What Are the Extracellular Vesicles?
Extracellular vesicles as “pro-coagulant dust” were identified by
Wolf from blood platelets in Wolf (1967), and then in Pan and
Johnstone (1983) were among the first scientists who described
EVs (Pan and Johnstone, 1983). EVs are a heterogeneous group
of vesicles containing different cargos (Abels and Breakefield,
2016). They can transfer different biomolecules such as lipids,
proteins, and nucleic acids between different cells, distinguishing
their significant role in cell-cell communications (Raposo and
Stoorvogel, 2013). EVs are generated and released by almost all
types of cells and are classified as exosomes, macrovesicles, and
apoptotic bodies (Gurunathan et al., 2021; Pournaghi et al., 2021).
Also, ectosomes, shedding vesicles, and microparticles are other
types of EVs involved in inter/intra cellular communications
(Gurunathan et al., 2019). EVs have attracted tremendous
attention from both basic and clinical fields of study during the
last decade due to their putative and significant role in several
physiological and pathological processes (Jadli et al., 2020). EVs
have been isolated from different body fluids such as blood,
urine, tears, saliva, etc. (Akers et al., 2013). Some disorders such
as inflammatory diseases can modify the EVs and change their
numbers, content, composition, and function (Knijff-Dutmer
et al., 2002). It has been shown that microbial infections can
change the production and release process of EVs in infected
cells (Rodrigues et al., 2018). Moreover, some EVs derived from
immune cells can play a key role in induction of inflammation
(Spencer and Yeruva, 2021).

Types of Extracellular Vesicles
Macrovesicles (MVs), also known as microparticles, are small
membranous vesicles released from almost all cell types including
mesenchymal stem cells, endothelial cells, some immune cells,
etc. (Cocucci et al., 2009). Their size is ranging from 100 to
1000 nm, and they are formed by direct outward blebbing
and pinching of the cell membrane. The production of EVs
is regulated by physiological and/or pathological processes
(Lynch and Ludlam, 2007; Sedgwick and D’Souza-Schorey,
2018). Initially, MVs are considered as cell debris, however,
they recently were recognized as mediators of inter/intra
cellular communication tools (Camussi et al., 2010). MVs
can carry various bioactive molecules such as cytokines and
chemokines, which highlight their antimicrobial potential and
also their role in host defense against pathogenic microorganisms
(Timár et al., 2013).

Apoptotic cell-derived EVs (ApoEVs) are another class of EVs
released from apoptotic cells and contain cell organelles and
nuclear materials (Gurunathan et al., 2019). ApoEVs are divided
into two subtypes, including large apoptotic bodies (ApoBDs)
with a diameter range of 1000–5000 nm and small apoptotic
microvesicles (ApoMVs) with <1000 nm (Caruso and Poon,
2018). ApoEVs are important because they accelerate apoptotic
cell clearance and also have a role in intercellular communication
and immune modulation (Zitvogel et al., 2010; Poon et al., 2014).

ApoEVs act as a key regulator of antigen presentation process,
antimicrobial immunity against pathogens, and modulator of the
dendritic cells’ response against viral infections (Winau et al.,
2006; Schiller et al., 2008; Caruso and Poon, 2018).

Exosomes (30-150 nm in diameter) are the third group of
EVs isolated from a variety of body fluids and released by
the fusion of multivesicular bodies (MVBs) with the plasma
membrane (Simons and Raposo, 2009; Babaei and Rezaie, 2021;
Mobarak et al., 2021). Some exosomes are generated and released
from various cells in response to different stimuli, but others
are continuously produced and released (Mathivanan et al.,
2010). They contain various types of cargo molecules which
are engaged in the biogenesis and transportation ability of
exosomes (Zhang et al., 2019). Exosomes have been implicated
in a variety of biological functions, including elimination of old
and disused biomolecules (Harding et al., 2013), involvement
in tumor progression especially in angiogenesis and metastases
(Rak, 2010; Hood et al., 2011), antigen presentation (Bobrie
et al., 2011), differentiation of some immune cells to modulate
immune responses (Zhang and Grizzle, 2011), and facilitating the
spread of some pathogenic microbes or elimination of microbes
through interaction with recipient cells (Furuyama and Sircili,
2021; White et al., 2021).

Isolation Methods of Extracellular
Vesicles
Several isolation methods are currently developed for the
isolation and purification of EVs in bulk (Witwer et al.,
2013). Sequential centrifugation and ultracentrifugation are the
conventional methods to isolate EVs in cell culture media or
body fluids (Théry et al., 2006). Gradient ultracentrifugation
based on sucrose density is also used to minimize protein
contamination (Tauro et al., 2012). Chromatography is another
tool that can be employed to purify exosomes based on their size
and dimensions or surface markers such as CD9, CD63, CD81,
and EpCAM (Böing et al., 2014; Oksvold et al., 2015). Once
isolated, the purified EVs are characterized. Currently, several
methods are developed to analyze the EVs and their content
for both research and clinical purposes. These methods include
transmission and scanning electron microscopy (TEM and SEM),
atomic force microscopy (AFM), dynamic light scattering (DLS),
nanoparticle tracking analysis (NTA), resistive pulse sensing
(RPS), flow cytometry, fluorescence-activated cell sorting (FACS),
enzyme-linked immunosorbent assay (ELISA), microfluidics,
and electrochemical biosensor-based devices (Théry et al., 2006;
Woo et al., 2016).

Contents of Extracellular Vesicles
The content, or cargo, of EVs varies and extremely depends
on the parental cells and recently new databases including
ExoCarta, Vesiclepedia, exoRBase, EVmiRNA, and EVpedia were
developed to classify them (Liu et al., 2019). These databases
provide information about the content of EVs such as lipids,
proteins, miRNAs, and other components. Also they provide
useful information about the isolation and characterization of
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EVs (Jadli et al., 2020). The proteome of the EVs is affected by
their biogenesis. For example, ESCRT proteins (Alix, TSG101,
HSC70, and HSP90β) regulate the biogenesis and transportation
of some EVs and thus these proteins are expected to be found in
EVs regardless of the type of the originating cells (Théry et al.,
2001; Van Niel et al., 2006). Therefore these proteins can be used
as marker for the detection and characterization of EVs (Doyle
and Wang, 2019). Some tetraspanin families of proteins such as
CD63, CD9, and CD81 are commonly found in EVs and also
used as marker proteins both for the detection and purification of
EVs (Witwer et al., 2013). Along with the exosome and some EVs
surface markers, EVs carry certain biomolecules such as mRNA,
miRNA (Zhou J. et al., 2013), cytokines, and antigen presentation
molecules (MHC-I, MHC-II) (Gutiérrez-Vázquez et al., 2013)
which contribute to the physiological and pathological function
of exosomes (Dini et al., 2020). Microbial EVs contain different
cargoes based on their origin. The EVs of Gram-negative bacteria
contain cytoplasmic proteins, nucleic acids, virulence factors
(e.g., toxins), peptidoglycan, and inner membrane. The EVs of
Gram-positive bacteria contain membrane-associated virulence
proteins, fatty acids, lipoteichoic acid, phospholipids, and some
components similar to the Gram-negative EVs (Yu et al., 2018;
Bose et al., 2020).

Common Uses of Extracellular Vesicles
As mentioned above, EVs are mainly responsible for
inter/intracellular communications. It was shown that EVs
could interact with target cells and therefore they make an
impact on cell physiology, phenotype, and function (Simons and
Raposo, 2009; Mardpour et al., 2018). Also they can mediate
the horizontal transfer of genetic materials (Natasha et al.,
2014). Due to the widespread and cell-specific availability of
some types of EVs, particularly exosomes, in almost all body
fluids, they can be considered as biomarkers (Zhang et al.,
2019). Moreover, EVs can be used as delivery vehicles for the
efficient transfer of biological therapeutic agents across different
biological barriers to desired cells (Haney et al., 2015). In
addition, EVs can be applied in regenerative medicine, tissue
engineering and cell homeostasis (Gurunathan et al., 2021).
They play critical roles in immunoregulation, including antigen
presentation, immune activation, immune suppression, and
also immune tolerance via exosome-mediated inter/intracellular
communications. They also play pivotal role in the host
defense against viral and microbial infections (Gurunathan
et al., 2021). Documented evidence has shown that host cells-
derived EVs and even EVs derived from bacteria can mediate
the crosstalk between pathogen and innate immune cells,
and thus modulate the innate immune responses of the host
(Munich et al., 2012).

In this review article, we first discussed the biogenesis and the
fate of EVs. Then, EV-based therapy was described and recent
developments in understanding the potential application of stem
cell-derived EVs in infectious diseases were recapitulated. In
addition, the mechanisms by which EVs were exploited to fight
against infectious diseases were highlighted. Finally, the deriver
challenges that exists in the translation of stem cell-derived EVs
into the clinical arena were explored.

BIOGENESIS AND THE FATE OF
EXTRACELLULAR VESICLES

Biogenesis
The biogenesis of the exosomes is well-defined as compared
to the other types of EVs. The biogenesis of exosomes is a
multistep biological process regulated through different signaling
pathways (Abels and Breakefield, 2016). Biogenesis of exosomes
initiates with the formation of early endosomes followed by
second inward budding of the endosomal membrane which
leads to the formation of the late endosomes. Late endosomes
or intraluminal vesicles (ILVs) follow the endocytic pathway
for the generation of exosomes (Sluijter et al., 2014). In the
final stage, the generated ILVs are released as exosomes into
the extracellular space via exocytosis (Jadli et al., 2020). Some
endogenous molecules such as small GTPase Ral (Hyenne et al.,
2018) and adiponectin/T-cadherin (Obata et al., 2018) and also
some microbes including viral infections and Gram-positive
and Gram-negative bacterial infections as extrinsic factors can
influence the biogenesis of exosomes (Crenshaw et al., 2018). For
the biogenesis of exosomes, different protein sorting mechanisms
have been identified, among them endosomal sorting complex
transport (ESCRT)-dependent pathway (Frankel and Audhya,
2018) and ESCRT-independent pathway (Babst, 2011) are two
widely explained mechanisms (Figure 1).

Endosomal Sorting Complex Transport-Dependent
Mechanism
The ESCRT-dependent mechanism is well-characterized and
comprised of many proteins arranged into four proteins
complexes including ESCRT-0, –I, –II, and –III. Some proteins
such as VPS4, VTA1, and ALIX are associated with these
protein complexes. The ESCRT-dependant exosome biogenesis
is initiated by recognition and sequestration of ubiquitinated
proteins via ubiquitin-binding subunits of ESCRT-0. Then, the
ESCRT-0 interacts with the ESCRT-I and –II complexes and
all of them will combine with ESCRT-III, a protein complex
that is contributed to enhance budding processes. Finally,
following cleaving the buds to form ILVs, the ESCRT-III complex
disassociates from the MVB membrane with energy supplied by
the sorting protein Vps4 (Ren et al., 2008).

Endosomal Sorting Complex Transport-Independent
Mechanism
While ESCRT pathway is the most important mechanism for
exosome formation, some EVs such as MBV and ILV are
also formed in an ubiquitin-independent way called CRT-
independent pathways (Babst, 2011). Heparan sulfate promotes
exosome biogenesis through syntenin. Syntenin serves as
an intermediate between ESCRT-I and ESCRT-III and is
involved in the budding processes (Addi, 2019). Another
ESCRT-independent exosome formation was described in the
oligodendroglial cells. These cells secret exosomes containing
proteolipid protein (PLP) which depends on the depletion of
neutral sphingomyelinases (nSMase). Furthermore, tetraspanin-
enriched microdomains (TEMs) full of CD81 particles are
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FIGURE 1 | Biogenesis of Extracellular vesicles (EVs) in eukaryotic cells and Gram-negative and –positive bacteria. (A) In eukaryotic cells, biogenesis of EVs consists
of three consecutive steps, including (i) formation of early endosome by invagination of the plasma membrane; (ii) formation of late endosome and then MVBs; and
finally (iii) fusion of MVBs with the plasma membrane and release of the vesicular contents by ESCRT-dependent and –independent mechanisms. (B) In the
Gram-negative bacterial extracellular vesicles, known as outer membrane vesicles mainly originate from the outer membrane of bacterial envelope. Three potential
biogenesis mechanisms have been suggested including the blebbing of the outer membrane of the bacterial envelope (OMVs), the formation of outer-inner
membrane vesicles (OIMVs) and the formation of explosive outer membrane vesicles (EOMVs). Gram-positive bacteria (B) lack an outer membrane and also have a
thick peptidoglycan cell wall outside of the cell membrane which convey the assumption that membrane-derived vesicles could not escape such large barriers but
EVs may be forced through the wall by turgor pressure after release from the plasma membrane. In addition, cell wall-modifying enzymes facilitate the released
of EVs.

regarded to be another ESCRT-independent pathway of protein
sorting into ILVs (Garín et al., 2007).

Extracellular Vesicles Secretion
To release exosomes, multiple cellular steps are required to
be completed including formation of MVBs, transportation of
MVBs to the plasma membrane, and fusion of MVBs with
the plasma membrane. Several molecules have been engaged in
these processes (Rabinovich et al., 2000). MVB can either fuse
with a lysosome to degrade their cargo or fuse with the plasma
membrane, leading to exosome release. ISGylation, a post-
translational ubiquitin-like modification, is one of the signals that
regulates the MVBs’ fate. ISGylation of MVB proteins promotes
fusion of MVBs with lysosomes, which promoting the exosome
release (Chen et al., 2003).

Mechanisms of Exosome Uptake
Following the release and secretion of EVs to the extracellular
environment, the EVs’ ability to interact with recipient cells

and capacity to deliver their contents such as proteins, lipids,
and nucleic acids into the recipient cells can determine the role
of EVs in physiological and pathological processes (Jadli et al.,
2020). Several mechanisms have been introduced for the uptake
of exosomes, including phagocytosis, macropinocytosis, clathrin-
mediated endocytosis (CME), caveolin-dependent endocytosis
(CDE), and plasma membrane fusion (Tamura et al., 2016; Sun
et al., 2018). Phagocytosis is in charge of the internalization of
bacteria, EVs, and others components. Toll-like receptors (TLRs),
scavenger, and complement receptors, as specific targets on the
cell surface, participate in invaginations around the material
intended for internalization (Wei et al., 2021). Macropinocytosis
is another mechanism characterized by plasma membrane
ruffling and is induced by growth factors or other signal
stimulations. Membrane ruffles form a cup-like structure that
seals at its distal tips to construct a relatively large endosome
(Canton, 2018). The resulting vesicles contain extracellular fluid
and small particles (Wei et al., 2021). CME is a receptor-
mediated endocytic process used to transport a wide range of
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cargo molecules from the cell surface to the interior. Clathrin
and adaptor protein 2 (AP2) complexes are necessary for the
formation of clathrin-coated vesicles and then the internalization
of cargo molecules (Palmirotta et al., 2018). CDE requires the
caveolin, a dimeric protein, in the plasma membrane to facilitate
the raft-mediated endocytosis (Melo et al., 2015). CDE is another
mechanism for the uptake of EVs, but the precise mechanism
of internalization may differ depending on the type of EVs
and recipient cells (Nanbo et al., 2013). Fusion is the last
mechanism of EVs internalization, which enables EVs membrane
to directly merge with the cell plasma membrane and transfer
cargo molecules to recipient cells (Jadli et al., 2020).

EXTRACELLULAR VESICLES-BASED
THERAPY OF MICROBIAL DISEASES

Role of Extracellular Vesicles in Bacterial
and Viral Infections
Eukaryotic cells generate a heterogeneous group of EV subtypes,
recognized by biogenesis mechanism and their size (Sedgwick
and D’Souza-Schorey, 2018; Théry et al., 2018). EVs have been
observed in all body fluids of humans (Raposo et al., 1996; Lässer
et al., 2011; Street et al., 2012; Roberts and Kurre, 2013; Hiemstra
et al., 2014) and are generated by various cell types (Raposo et al.,
1996; Barry et al., 1998; Van Niel et al., 2001; Lai and Breakefield,
2012; Peinado et al., 2012). EVs are responsible for developing
the functional range of the bioactive molecules secreted by cells,
improving their stability, and boosting their ability to achieve
better localized concentrations (Liu et al., 2019; Guo et al., 2021).
EVs have an important role in delivery and orchestration of
antimicrobial responses from host immune system. In infectious
diseases, the cells such as epithelial cells and macrophages have
the first contact with the EVs of pathogens that containing
bioactive molecules and induce host pro-inflammatory responses
(Hui Winnie et al., 2018; Li et al., 2018; White et al., 2021). The
stimulated immune cells during infections may produce EVs that
convey antimicrobial agents (Kesimer et al., 2009; Hu et al., 2013;
Timár et al., 2013) or play decoy roles to protect host cells by
binding and coating toxins secreted from bacterial pathogens (da
Cruz et al., 2020) (Table 1). Production of EVs by a variety of
host cells may be enhanced during infectious diseases (da Cruz
et al., 2020).Different types of microorganisms and viruses have
all been reported to directly stimulate host EVs secretion (Kim
et al., 2012; Antwi-Baffour et al., 2020; Mehanny et al., 2020). The
enhancement of host EVs secretion has been shown following
an extracellular challenge of alveolar epithelial cells with heat-
sacrificed bacteria, providing that the activator of this response
was bacterial CpG DNA that bond to endosomal receptors of
TLR9 (Keller et al., 2020). Host endothelial cells and macrophages
infected by bacterial agents are similarly promoted to release EVs
(Bhatnagar et al., 2007; Hui Winnie et al., 2018; Li et al., 2018).
Besides increasing the production of EVs, infections can alter the
contents of EVs produced by host cells (Bhatnagar et al., 2007).
MSCs-derived EVs promote healing process in diabetic foot
by loading some bioactive molecules including growth factors,

nucleic acids, and proteins. Also, as a vehicle for non-bioactive
substances like antibiotics can inhibit the bacterial growth and
accelerate improvement in the diabetic wound repair in bacteria-
associated diabetic foot ulcers (Raghav et al., 2021).

Bacterial Extracellular Vesicles
It is now well recognized that most bacteria produce soluble
products such as metabolites, quorum sensing peptides, nucleic
acids, proteins, and bacterial EVs (BEVs) that allow their
communication with each other and host cells (Hughes and
Sperandio, 2008; Tulkens et al., 2020). Interestingly, both
beneficial and pathogenic bacteria release BEVs. BEVs carry
various molecules such as proteins, peptidoglycan, enzymes,
toxins, polysaccharides and DNA/RNA molecules (Riley et al.,
2013; Kaparakis-Liaskos and Ferrero, 2015). Different BEVs have
various structures and even various molecular cargo compounds.
These differences may be due to various growth conditions,
several biogenesis pathways, the unique membrane envelope
structure of the parental bacterium which they emanate from,
and also the genetic content of the paternal bacterial strain
(Toyofuku et al., 2019). BEVs display high stability to different
temperatures and treatments, and regarded safe because they
are not able to replicate in vitro and in vivo conditions.
They carry several immunogenic surface and membrane related
components of their parental strains (Kaparakis-Liaskos and
Ferrero, 2015). Based on the originating strains, BEVs can
promote both humoral and cellular immunity and together with
their nanoparticulate character, provide them with their own
adjuvanticity, BEVs are capable to increase T-cell reactions to
antigens (Chronopoulos and Kalluri, 2020).

Application of outer membrane vesicles and vaccine
development
Gram-negative bacteria pursue two important routes for BEVs
production. The primary pathway is blebbing of the outer
membrane of the bacterial envelope, producing OMVs; and the
other pathway requires explosive cell lysis forming outer-inner
membrane vesicles (OIMVs) and explosive outer membrane
vesicles (EOMVs) (Figure 1; Toyofuku et al., 2019; Tulkens et al.,
2020). The blebbing process of the membrane giving rise to
OMVs happens through a disruption of crosslinks between the
outer membrane and the underlying peptidoglycan cell wall layer
(Chronopoulos and Kalluri, 2020). Actually, the Gram-negative
bacterial cell wall comprises a thin layer of peptidoglycan in
the periplasmic environment between two membrane bilayers;
the cytoplasmic and outer membranes (Toyofuku et al., 2019;
Chronopoulos and Kalluri, 2020). The outer membrane includes
lipopolysaccharides (LPS) or endotoxin on its outer leaflet
and various membrane-bound channels and protein-like porins
that simplify non-vesicle mediated transport. Reflecting this
envelope structure, Gram-negative BEVs consist of an outer
membrane with an interior leaflet of phospholipids and an
exterior leaflet of LPS that is known to engage TLR4 (Toyofuku
et al., 2019; Tulkens et al., 2020). BEVs of Gram-negative
bacteria contain high concentration of different outer membrane
proteins, such as ompA and encapsulated periplasmic luminal
compounds. Nevertheless, the existence of cytoplasmic cargo
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including virulence molecules and nucleic acids is debated
and dependent on the certain biogenesis pathways of the
OMV, OIMVs, and EOMVs (Toyofuku et al., 2019; Tulkens
et al., 2020). The endotoxicity of BEVs can be simply
modified through genetic engineering methods. Furthermore,
BEVs from specific commensal, or beneficial and potentially
probiotic bacterial species may excrete therapeutic effects. In
future, BEVs may be applied in cancer immunotherapy to
elicit durable antitumor immune response or act as anti-
cancer vaccines. In a recent study, the applicability of BEVs
in cancer immunotherapy or cancer vaccines was reported
showing that systemic intravenous administration of Gram-
negative BEVs from the genetically modified Escherichia coli
msbB−/− has a directed tropism for tumor site and a notably
capability of inducing long-term antitumor immune responses
through the secretion of CXCL10 and INFγ that can completely
eradicate tumors without considerable adverse consequences
(Kim et al., 2017).

Application of membrane vesicles
Gram-positive bacteria also release nano-sized cytoplasmic
membrane vesicles (CMVs), or so-called as MVs, through
endolysin-triggered bubbling cell death into the extracellular
environment either in a constitutive manner or in a regulated
manner (Brown et al., 2015; Toyofuku et al., 2019). Gram-
positive bacteria lack the entire outer membrane and possess
a much thicker peptidoglycan layer or cell wall. The Gram-
positive cell wall is connected to glycan polymers that can
be covalently linked to peptidoglycan [as wall teichoic acids
(WTAs)], or anchored in the cell membrane in the case
of glycolipids such as lipoteichoic acids (LTAs) which can
interact with TLR2 (Brown et al., 2015; Toyofuku et al., 2019;
Tulkens et al., 2020). Similar antitumor effects were also seen
for the Gram-positive BEVs originated from Staphylococcus
aureus and Lactobacillus acidophilus (Chronopoulos and Kalluri,
2020). There is also an enormous interest in applying genetic
engineering methods to manipulate bacteria and subsequently
purify recombinant BEVs for utility as vaccines against some
cancers (Chronopoulos and Kalluri, 2020).

Role of extracellular vesicles in antibiotic resistance and
biofilm formation
The localization of chromosomal DNA in BEVs from different
Gram-negative pathogenic bacteria such as Salmonella
typhimurium is often extraluminal with smaller amounts
settled in the intraluminal locations (Bitto et al., 2017).
Sequencing of the intraluminal BEV DNA has been reported
to be enriched in certain regions of the bacterial chromosome
involved in pathogenicity and virulence capacity, stress response
and antibiotic resistance as well as metabolic pathways. There is
still a matter of controversy whether extraluminal or surfaces-
associated BEV DNAs versus intraluminal ones render different
types of actions. One can assume a probable role for external
DNA in biofilm formation versus a role for internal BEV DNA
in intercellular crosstalk and horizontal gene transfer (HGT) of
virulence-associated markers and antibiotic resistance encoding
genes (Bitto et al., 2017).

Bacterial extracellular vesicles contribute to immune
response
Bacterial extracellular vesicles contain several microbe-associated
molecular patterns (MAMPs) or pathogen-associated molecular
patterns (PAMPs) such as peptidoglycan, lipoproteins, LPS and
bacterial DNA/RNA. The MAMP content of BEVs enables them
to interact with host pattern recognition receptors (PRR) in
different types of host cells to induce immune tolerance, or confer
protective immunity, and even host cell damage (Riley et al.,
2013). The immunomodulatory effects of BEVs mainly depend
on the particular parental bacterium and its association with
the host. For example, BEVs from some pathogenic bacteria are
capable of worsening the infection by suppressing host immune
responses (Peek and Blaser, 2002; Lee Hannah et al., 2007), or
induce overwhelming immune responses leading to sepsis (Shah
et al., 2012). In opposite, BEVs from beneficial or commensal
bacteria in the gut can promote immunological maturation and
tolerance to confer protection from sepsis (Shen et al., 2012;
Kang et al., 2013). In addition, a number of cell surface TLRs,
prominently TLR2 and TLR4, can recognize extraluminal ligands
of BEV such as LPS, lipoarabinomannan, peptidoglycan and LTA
macromolecules (Prados-Rosales et al., 2011; Zhao et al., 2013;
Athman et al., 2015; Gu et al., 2019). Also, both nucleotide-
binding oligomerization domain-containing protein 1 (NOD1)
and NOD2 are engaged in sensing peptidoglycans that are
available in BEV contents produced by pathogenic and symbiotic
bacterial strains (Kaparakis et al., 2010; Thay et al., 2014; Bitto
et al., 2018; Cañas et al., 2018). In addition, intraluminal BEV
DNA/RNA may be recognized via DNA/RNA sensing receptors.
After endocytosis, BEV RNA cargo may be recognized via
endosomal TLRs such as TLR3 and TLR7. In a similar fashion,
RNAs rendered into the cytoplasm after fusion of BEVs with
the cell plasma membrane may activate cytosolic RNA detectors
like RIG-I-like receptors (Tsatsaronis et al., 2018). Similarly, BEV
DNA cargo may be sensed by endosomal TLR9 or cytosolic DNA
sensing cyclic GMP-AMP synthase stimulator of the interferon
genes cascade. Overall, PRR stimulation promotes the activation
of transcription factors and kinases that result in the secretion
of chemokines and other cytokines leading to the immune cells
recruitment and regulation of costimulatory factors normally
associated with acquired immune response (Riley et al., 2013).

Extracellular vesicles as infection biomarkers
As mentioned above, EVs are found in various body fluids
like blood, urine and saliva. EVs contain different biomolecules,
which can be used as novel biomarkers for a variety of human
diseases and cancers. Since they can be obtained by minimally
invasive biopsy procedures, thus they would be very useful
biomarkers for diagnosis (Lee et al., 2018; Min et al., 2019).
As researchers begin to figure out the distribution pattern and
composition of EVs during infectious diseases, new biomarkers
can be introduced that can provide the possibility for the
development of EV-based diagnostics (Tulkens et al., 2020).
For instance, serum EVs can used to show biofilm-associated
infections to support a rapid detection (Deng et al., 2020). Further
understanding of the biology of EVs can provide possible clues to
protect infectious diseases and early detection.
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Viral Extracellular Vesicles
Viral EVs are generated by virus-infected cells and are considered
to be engaged in inter/intracellular connection between infected
and uninfected cells. Viral agents, especially oncogenic viruses
and viruses that can develop chronic infections can regulate
the EVs generation and the content. Viruses are defined by the
virologists of last century as “submicroscopic infectious agents
that can replicate only inside the living cells of an organism”.
EVs do not fall under this description, because contrary to their
similarity to viruses in many aspects, they are basically distinct, as
they are non-replicative particles. Nevertheless, current virology
has distanced itself from such an out-dated description of virus
by new terms of defective and non-infectious particles. Thus,
EVs produced by virus-infected cells that contain different viral
proteins and some parts of viral genomes can fall under the
description of non-infectious viral agents (Nolte-‘t Hoen et al.,
2016). Moreover, there is a resemblance between biogenesis of
virions and EVs. EVs and virus particles are altogether released
by infected cells and share the routes for biogenesis at the
plasma membrane (Colombo et al., 2014). Regardless of what
described, it is essentially difficult to discriminate between EVs
that deliver viral proteins, viral genomic fragments and host
proteins and enveloped viral particles that carry the similar
contents (Nolte-‘t Hoen et al., 2016).

Effects of extracellular vesicles on viral pathogenesis
It was shown that cells infected with enveloped or non-
enveloped viruses produce EVs that carry viral constituents. The
preparation of viral particles may not be completely pure and
are almost mixed with various types of EVs, and even some of
these EVs may be either indiscernible from defective viruses.
Due to their close biogenesis routes, EVs and viral particles may
be near relatives, however only viruses can replicate inside the
cells. Notably, EVs produced via infected cells are not neutral, as
they may facilitate virus spread and viral infection or increase
antiviral responses (Nolte-‘t Hoen et al., 2016). For instance;
numerous HIV RNAs and proteins have been identified in EVs
produced from HIV-infected cells (Narayanan et al., 2013). The
involvement of EVs in viral infection has already been described
for many viruses, including rabies, coronaviruses, HCV, HIV,
HPV, HSV, dengue, HTLV-1, Zika, West Nile Epstein Baar virus,
influenza virus, and SFTS (Martins and Alves, 2020). Deciphering
the EVs structure produced by infected cells, characterizing
their cargo, and understanding the accurate strategy by which
they affect viral infection are necessary for basic virology and
therapeutic applications as well (Nolte-‘t Hoen et al., 2016).

Effects of viral extracellular vesicles on host immunity
The process of infection may alter the contents of cells-derived
EVs and change the ratios of host RNAs and proteins inside
them (Nolte-‘t Hoen et al., 2016). Upon infection process, EVs
can intensify inflammatory responses and deflagrate antiviral
activities (Urbanelli et al., 2019), also can mediate the crosstalk
between immune cells and other cells (Isola and Chen, 2017;
Rezaie et al., 2021). Those EVs which can be transferred between
the immune cells may transmit signals affecting the chemokines
or cytokine secretion level, and some EVs can directly activate

antigen presentation (Lindenbergh and Stoorvogel, 2018). Also,
EVs carry different cytokines and cytokine-associated RNAs
that may trigger the generation of target molecules in recipient
cells, contributing to antiviral responses (Urbanelli et al., 2019).
Moreover, EVs produced by infected cells were able to trigger
other cell types, as observed when EVs produced by U937
macrophages, contaminated with DENV-2, activated endothelial
cells (Velandia-Romero et al., 2020). Also, EVs secreted from
airway epithelial cells infected by respiratory syncytial virus
(RSV) can enhance the expression of regulatory small RNAs and
may activate chemokine and cytokine secretion in monocytes
without being exposed to infective particles (Chahar et al., 2018).

Further, EVs are capable to mediate the severity of disease
though increasing the secretion of pro-inflammatory cytokines
associated with several infectious diseases. EVs derived from
bronchoalveolar fluid of mice infected with H5N1 influenza
virus displayed enrichment with miR-483-3p, which stimulates
innate immunity in pneumocytes proposing the involvement of
EVs in the inflammatory pathogenesis of H5N1 virus (Maemura
et al., 2020). In addition, in dengue hemorrhagic fever, EVs were
observed to play an important role in the disease development
(Mishra et al., 2019).

Immune cell-derived extracellular vesicles and antiviral
effects
Extracellular vesicles can interact with each other and with
viruses in vivo either directly or indirectly though modulating
the host responses, therefore they are engaged in a “War and
Peace” scenario between host and viruses (Lisco et al., 2009;
Bhattarai et al., 2015). In opposite, EVs containing viral proteins
can be profitable to the host cells. For instance, they can
present viral antigens to DCs to facilitate triggering activation
of adaptive immunity. Therefore, EVs produced within viral
infection may demonstrate either proviral or antiviral features.
It has been shown that T cells could release EVs comprising
HIV receptor CD4. Such EVs can directly bind to viral particles,
thereby reducing the load of virions that would otherwise infect
other CD4+ T cells (de Carvalho et al., 2014). Thus, further
investigations are required to uncover the exact roles of EVs in
antiviral immune responses in order to direct EVs engineering
that may exhibit robust antiviral potentials.

Host Extracellular Vesicles as
Antimicrobial Responses
Host EVs produced by immune cells have been demonstrated
to elicit strong antimicrobial effects in in vitro and in vivo
conditions (Timár et al., 2013; Wang C. et al., 2019). These
antimicrobial potencies are contributed to various bacteriostatic
and bactericidal compounds present in the EVs cargo (Table 1)
(Timár et al., 2013; Hiemstra et al., 2014). For instance, EVs
obtained from human urinary tract are usually enriched in
proteins with immune functions, such as bacteriostatic proteins
like mucin-1, fibronectin, CD14, and also bactericidal proteins
such as calprotectin, dermcidin and lysozyme C (Hiemstra et al.,
2014). Moreover, such EVs hindered the growth of probiotic
and uropathogenic strains of E. coli as well as its laboratory-
adopted strains, and mediated the bactericidal functions through
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a lytic process (Hiemstra et al., 2014). Also, EVs are assumed
to stabilize bioactive components like RNAs, and affect the
non-lethal pathways of controlling microbial behaviors (Liu
et al., 2016). EVs released from the host cells upon exposure to
pathogenic microbes may also be able to safeguard cells from
microbial assaults via efficient imitating the targets of their toxins
and functioning as decoys (Keller et al., 2020).

Immunomodulatory Functions of Extracellular
Vesicles Derived From Mesenchymal Stem Cells
Mesenchymal stem cells (MSCs) are multipotent stem cells
derived from mesoderm and have the ability to differentiate
into a variety of cells. They can be easily obtained from many
sources including mature tissues such as bone marrow (BM),
peripheral blood (PB), adipose tissues (AT) and neonatal birth-
related tissues including amniotic fluid (AF), Warton jelly
(WJ), umbilical cord (UC), placenta (PL), and cord blood
(CB) (Seo et al., 2019). These heterogeneous cells possess
significant immunomodulatory and protective characteristics
(Dabrowska et al., 2021). They are also modulate immune
cell responses and produce various inflammatory mediators by
which they can regulate both innate and adaptive immune
responses. When the responses of some immune cells such
as macrophages, natural killer (NK) cells, DCs, B and T
cells are exaggerated, MSCs can repress their proliferation,
differentiation, and activation to modulate the immune response
(Ren et al., 2008). These immunomodulatory effects are exerted
through the production of several soluble mediators such as
nitric oxide (NO), indoleamine 2, 3-dioxygenase-1 (IDO-1),
transforming growth factor-β1 (TGF-β1), interleukin-10 (IL-
10), prostaglandin-E2 (PGE2), and hepatocyte growth factor
(HGF) to the microenvironment (Puissant et al., 2005). Such
immunomodulatory effects of MSCs might be associated with
EVs which they release to the environment. It has been shown
that EVs released from MSCs can inhibit the proliferation and
differentiation of B lymphocytes in a dose-dependent manner
(Budoni et al., 2013). Also, EVs produced by murine BM-MSCs
inhibit the proliferation of T lymphocytes and modulate the
adaptive immune system in mice via inducing of apoptosis in the
activated T lymphocytes. This increases the number of regulatory
T cells, and enhancing the secretion of anti-inflammatory
cytokines such as IL-10 and TGF-β1 (Mokarizadeh et al., 2012).
Notably, it has been reported that galectin-1 and programmed
death receptor ligand (PD-L1) were present on the surface of EVs
derived from MSCs (Garín et al., 2007). Endogenous galectin-1
induces apoptosis in the activated T lymphocytes and provoke
the maturation of regulatory T lymphocytes (Rabinovich et al.,
2000). PD-L1, on the other hand, is a ligand of the PD-1 receptor
and induces the proliferation of regulatory T cells proliferation.
TGF-β is another component of MSC-EVs, which also activates
the formation of regulatory T cells (Chen et al., 2003).

The MSC-EVs have been shown to exhibit
immunomodulatory properties in vivo. For example, it was
shown that EV-treated mice demonstrated lower white blood
cells (WBCs) counts and decreased neutrophil and monocyte
influx into the hearts after myocardial ischemia reperfusion
(MI/R) injury as compared to controls (Arslan et al., 2013). Also,

MSC-EVs were able to switch the macrophages from a pro-
inflammatory (M1 macrophages) to an anti-inflammatory (M2
macrophages) in the cardiomyopathy mice model and reduced
the secretion of pro-inflammatory cytokines such as IL-1, IL-6,
and TNF-α (Sun et al., 2018). The immunosuppressive effects of
MSC-EVs on the liver injury animal models were also reported.
It has been shown that the expression of pro-inflammatory
cytokines such as IL-1, IL-2, TNF-α, IFN-γ was reduced while
anti-inflammatory cytokines including TGF-β and HGF, and
the number of T regulatory cells increased in the liver tissue
following treatment with MSC-EVs (Tamura et al., 2016).

Mesenchymal Stem Cell Therapy for COVID-19 and
the Other Viral Infections
Coronavirus disease 2019 (COVID-19) is a life-threatening
infectious disease caused by a newly emerged coronavirus named
severe acute respiratory syndrome coronavirus 2 (SARS-CoV-
2). Patients infected with this virus will experience mild to
severe respiratory disease (Rezasoltani et al., 2020a). There
are currently no specific antiviral treatments licensed for
COVID-19, however many treatments are under investigation
(Rezasoltani et al., 2020b; Shpichka et al., 2021). Hopefully,
the management of severe acute respiratory infection form of
COVID-19 significantly can decline the death rate, particularly
within the high-risk people. Several preclinical and clinical
studies have exhibited the effects of exosomes and MSC-EVs
in decreasing cytokine storm-associated complications, such as
alveolar inflammation, edema, and epithelial tissue regeneration
in inflammatory diseases, such as chronic obstructive pulmonary
disease (COPD), asthma, acute respiratory distress syndrome
(ARDS), and acute lung injury (ALI) (Akbari and Rezaie, 2020;
Keller et al., 2020). Recently, MSCs-based immunomodulation
therapy has been suggested as an effective treatment option for
COVID-19 and multiple clinical trials have been launched so far
(Akbari and Rezaie, 2020; Golchin et al., 2020). Since it has been
suggested that the therapeutic effects of MSCs are essentially due
to their secreted EVs, clinical trials may begin to apply MSC-
derived exosomes and their EVs to alleviate the cytokine storm in
severe COVID-19 patients (Akbari and Rezaie, 2020). However,
there are some concerns over the safety, efficacy, and scalability
of clinical-grade MSC-EVs (Golchin et al., 2020).

Secretion of Antimicrobial Peptides and Proteins
Associated molecular patterns are a miscellaneous class of
naturally occurring small effector molecules that play a key
role as the first line of defense by all multicellular organisms.
AMPs can have wide killing activity against different types
of microorganisms and even cancer cells. These biomolecules
can also be referred to as ‘host defense peptides’, highlighting
their additional immunomodulatory functions. Such functions
are diverse, unique to AMP type, and involve a number of
growth factor-like and cytokine effects that are contributed to
normal immune homeostasis status (Seyfi et al., 2020). Some
studies showed that MSCs elicit potent antimicrobial activities
via indirect and direct mechanisms, partially mediated by the
production of antimicrobial peptides and proteins (AMPs) of
members of the cathelicidins, defensins, hepcidin, or lipocalin
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families as discussed below (Krasnodembskaya et al., 2010; Sung
et al., 2016; Alcayaga-Miranda et al., 2017).

Cathelicidin LL-37
Cathelicidin LL-37 is the C-terminal part of the host cathelicidin,
called human cationic antimicrobial protein (hCAP18), which
is mostly produced by epithelial cells and neutrophils. The
cathelicidin hCAP18/LL-37 is a multifunctional molecule that
may regulate different human cellular and molecular processes
such as epithelial cell activation, chemotaxis, bactericidal
function, angiogenesis, and activation of cytokine and chemokine
production. This antimicrobial peptide is produced from host
cells upon infection of mycobacteria and exerts a bactericidal
activity (Sandra Tjabringa et al., 2005). Besides a broad range of
antimicrobial activity, LL-37 shows multiple immunomodulatory
effects, anticancer functions, and also pro-angiogenic and
chemotactic features. LL-37 has been found in many types of
body fluids, tissues, and cells, and along with AMPs plays a
critical role in host mucosal defense against microbial infections
(Alcayaga-Miranda et al., 2017).

Human β-defensin-2
The hBD-2 is a cysteine-rich, cationic, low molecular weight
antimicrobial peptide that is predominantly microbicidal against
Gram-negative bacteria. It is expressed by many epithelial cells,
granulocytes, and MSCs (Alcayaga-Miranda et al., 2017). The
hBD-2 is a remarkable, inducible, antimicrobial peptide in a
variety of epithelial cell types including skin cells, airways, kidney,
oral mucosa, and gastrointestinal tract (Harder et al., 2000;
Kumar et al., 2006). Its production is also induced by pro-
inflammatory stimuli such as TNFα or microorganisms. The
hBD-2 serves as a dynamic part of the local epithelial defense
system of respiratory tract and skin which protect surfaces
from infection. This is the reason why lung and skin infections
caused by Gram-negative pathogens are rather rare (Li et al.,
2016). Thus, based on significant antimicrobial and antiviral
functions, modulating endogenous production of defensin by
certain regulatory factors makes them promising therapeutic
options against microbial infections.

Hepcidin
Hepcidin is a peptide encoded by the HAMP gene in human
and is a natural host defense peptide found in urine (Nikfarjam
et al., 2020) and plasma (Babaei and Rezaie, 2021). This peptide
produces mainly by hepatocytes but other cells such as MSCs
and myeloid leukocytes are also produce and release these
peptides (Balhuizen et al., 2021). Two forms of hepcidin peptide,
hep-20 and hep-25, exhibit antimicrobial properties (Nikfarjam
et al., 2020) but hep-25 (LEAP-1) is also involved in the iron
regulation (Chronopoulos and Kalluri, 2020). Beyond the iron
regulatory effects, hepcidin has a broad spectrum of antibacterial
and antifungal activity. For example, the antibacterial activity
of this peptide against Escherichia coli, S. epidermidis, S. aureus,
and group B streptococci has been shown previously which
demonstrates its role as an antimicrobial peptide (Bitto et al.,
2017). Incorporation of hepcidin into the EVs derived from the
hepatocytes, MSCs, and myeloid leukocytes can be a mechanism
for the prevention of microbial diseases.

Lipocalin-2
Lipocalin-2, also known as neutrophil gelatinase-associated
lipocalin (NGAL), siderocalin, or 24p3, is a protein mainly
secreted by neutrophils in response to infection and
inflammation (Deng et al., 2020). Lnc2 blocks the siderophore
iron-acquiring strategy of bacteria which leads to bacterial
growth inhibition. It was shown that Lcn2-deficient (Lcn2−/−)
mice were more sensitive than wild-type mice to bacterial
infection (Nolte-‘t Hoen et al., 2016; Urbanelli et al., 2019).
Moreover, Lcn2 is one of the components of the innate immune
response against bacterial infection (Deng et al., 2020). MSCs are
able to produce the Lnc2 protein and upregulation of this protein
is directly corrected with bacterial clearance. Administration of
antibodies against the Lnc2 protein have been found to block
antimicrobial effects of MSCs (Riley et al., 2013).

Indoleamine 2, 3-dioxygenase
Mesenchymal stem cells secrete several soluble factors, including
indoleamine 2, 3-dioxygenase (IDO). IDO is a tryptophan-
degrading enzyme with antibacterial properties. IDO is involved
in the antibacterial defense of some human cells and this was
shown by using IDO specific inhibitors or by antagonizing
the antibacterial effect with supplemental tryptophan. This
enzyme acts against both intracellular (especially Chlamydia
species) (Golchin et al., 2020; Dabrowska et al., 2021) and
extracellular bacteria such as Staphylococcus aureus, Streptococcus
suis, enterococci, and group B streptococci (Sandra Tjabringa et al.,
2005; Alcayaga-Miranda et al., 2017). EVs derived from MSCs
and containing IDO might be able to fight microbial diseases and
reduce their growth rate in vitro.

Interleukin-17
Interleukin-17 (IL-17), a pro-inflammatory cytokine, contributes
to host defense against both extracellular and intracellular
pathogens. The antibacterial properties of this cytokine against
Aspergillus fumigatus, Cryptococcus neoformans, and Candida
albicans were demonstrated (Lombardi et al., 2015; Wang Q.
et al., 2019). A variety of cells including CD4+ Th17 cells, CD8+
T cells (Tc17), natural killer T (NKT) cells, macrophages, and IL-
17+ MSCs have the capacity to produce IL-7 (Yang et al., 2013;
Mardpour et al., 2018; Duong et al., 2019; Shpichka et al., 2021).
The IL-17+ MSCs are able to inhibit the growth of C. albicans
in vitro and have a therapeutic effects on C. albicans-infected mice
(Schroten et al., 2001). EVs derived from these MSCs, can inhibit
bacterial growth.

Potential Application of Stem
Cell-Derived Extracellular Vesicles on
Pathogenic Microbes
Extracellular Vesicles as a Unique Drug Delivery
System
Targeted drug delivery is among the most significant challenge
in pharmacology and pharmaceutical sciences (Nolte-‘t
Hoen et al., 2016). Distinctive properties of EVs favor their
utilization as novel DDSs over synthetic ones (Figure 2). These
characteristics include their capability to cross physical barriers,
their biocompatibility, their inherent targeting features, and also
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their ability to exploit natural intracellular trafficking pathways
(Elsharkasy et al., 2020). Interestingly, viruses incorporate
specific binding proteins, and thus are highly targeted mostly
due to their evolved and acquired high specificity toward their
cellular targets. The EVs membrane can be engineered to
incorporate with such specific viral proteins to facilitate EV-
mediated transfer of drugs (György et al., 2015). Also, genetically
manipulated cells from which EVs are originated, have been
developed to provide distinct platforms for loading cargo and
conjugation of targeting moieties to their EVs. However, further
in-depth investigations into EV biogenesis, EV subpopulations,
cargo sorting, internalization and trafficking routes in recipient
cells are required to achieve translational applications of such
engineered EVs. Furthermore, there are a number of obstacles
that should be addressed toward clinical use and include scale-up
of the EV production and isolation process, as well as standard
protocols for proper banking (Elsharkasy et al., 2020).

Decoy Exosomes
Decoy exosomes represent a new class of therapeutic biologics
that are generated by molecular engineering approaches to
treat human diseases including inflammation, cancer, and
cardiovascular disorders (Zhang et al., 2021). This type of
exosomes functions as a biological sponge to absorb and
antagonize detrimental factors such as bacterial toxins and
inflammatory mediators particularly, TNFα, in host blood

or tissues (Figure 2; Duong et al., 2019). Nonetheless,
the scale-up production of decoy exosomes from more
suitable producing cells is essential to obtain high-quality
exosomes for therapeutic utilization against infections and
inflammatory diseases.

Extracellular Vesicles as Vaccine Platform
Extracellular vesicles from pathogenic bacteria usually carry
PAMPs and MAMPs which authorize them to activate the
immune response, macking them the ability to be applied as
vaccine candidates (Figure 2; Sharpe Samantha et al., 2011;
Gorringe and Pajón, 2012; Bartolini et al., 2013; Mehanny et al.,
2020). For instance, the BEVs from Neisseria meningitides, have
been applied as the basis for a vaccine against meningococcal
disease, as they induce antibacterial immune responses (Gorringe
and Pajón, 2012). The outstanding outcomes of BEVs-based
vaccines demonstrated a new avenue and proposed novel
strategies to immunize individuals against pathogenic bacteria
(Gorringe and Pajón, 2012; Fantappiè et al., 2014; Shkair et al.,
2021). Moreover, EVs derived after viral inoculation may further
be applied to develop more effective vaccines against viral
infections by adding or expelling certain subpopulations of them.
In contrast to utilizing pathogenic BEVs for vaccine targets, it has
been proposed that BEVs originated from symbiotic bacteria may
exhibit modulatory effects on host immune system. For instance,
Bacteroides fragilis can selectively deliver capsular polysaccharide

FIGURE 2 | Potential application of stem cell-derived EVs on pathogenic microbes. (A) Stem cell-derived EVs can be used as a targeted drug delivery tool against
infectious microbes. (B) Decoy exosomes are a biological trap which can absorb and antagonize detrimental factors such as bacterial toxins and inflammatory
mediators. (C) EVs derived from MSCs are also can be used as vaccine platform to activate the immune response and react against the infectious diseases. (D)
MSCs-derived EVs are good candidate for the development of diagnostic tools as they are involved in several biological processes and isolated from different
biofluids.
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A (PSA) cargo in its BEVs that have been shown to induce
immunomodulatory responses and prevent colitis in mice. These
data support the rationale for designation of novel probiotic
formulations based on specific beneficial BEVs which can be
used for therapeutic purposes (Muraca et al., 2015; Choi et al.,
2017).

Cell-Derived Extracellular Vesicles as Diagnostic
Tools
Extracellular vesicles are involved in several biological processes
and isolated from different biofluids which make them valuable
biomarkers for the early diagnosis or prognosis of various
diseases such as cancer, inflammatory diseases, and infections
(Figure 2; Wei et al., 2021). Thus, these vesicles can be regarded
as interesting and non-invasive biomarkers for the diagnosis
of different diseases (Wei et al., 2021). EVs isolated from the
blood have gained significant interest mainly in the context of
tumor diagnosis, and their fluctuations are associated with tumor
progression, metastasis, and immune evasion (Palmirotta et al.,
2018; Nikfarjam et al., 2020; Salimi et al., 2020). Glypican-1
(GPC1), for instance, as a cell surface proteoglycan, is specifically
expressed by exosomes isolated from the serum of pancreatic
cancer patients, and it is used as an early biomarker. Further, it
has been reported that levels of GPC1+ exosomes are correlated
with pancreas tumor burden and survival rate (Melo et al.,
2015). EVs also can be used for the detection of early stages
of metastasis. For example, in the exosomes of patients with
metastatic melanoma, MDA-9 and GRP78 proteins have higher
expression than those of patients without metastases (Guan
et al., 2015). Moreover, EVs as urinary biomarkers have been
introduced for the early diagnosis of a variety of kidney and
genitourinary tract disorders (Street et al., 2017). Neutrophil
gelatinase-associated lipocalin (NGAL) (Alvarez et al., 2013),
polycystin-1 (PC1) (Hogan et al., 2015), transmembrane protein
2 (TMEM2) (Hogan et al., 2015), and WT-1 (Wilms’ tumor-1)
(Zhou H. et al., 2013) are some exosomal biomarkers that can
be applied for the diagnosis of renal diseases. Some exosome/EV
products are commercially available for the diagnostic purposes.
For example, ExoDX Lung (ALK), the world’s first exosome-
based diagnostic kit, was developed and passed FDA certification
in Wei et al. (2021).

As aforementioned, EVs have been considered as reliable
biomarkers in the context of infectious diseases. From a
diagnostic point of view, EVs carry antigens from parental
cells and act as reporters of foreign agents (Yáñez-Mó et al.,
2015). In the M. tuberculosis-infected patients, mycobacterial
proteins responsible for M. tuberculosis intracellular survival
were identified from their secreted exosomes (Kruh-Garcia et al.,
2014). It was shown that the mRNA (Lv et al., 2017) and miRNA
(Lyu et al., 2019) profiles of exosomes derived from the sera
of healthy cases and patients with active and latent tuberculosis
were different, which could be used as a diagnostic biomarker.
Moreover, human macrophages infected with Yersinia pestis and
Bacillus anthracis secrete particular miRNA-containing exosomes
(Fleming et al., 2014). LPS induces the murine bone marrow-
derived dendritic cells (BMDC) to secrete exosomes containing
miR-146a and miR-155 (Jiang et al., 2019). Helicobacter pylori

infection also exhibits an increase in miR-155 level in the
exosomes derived from macrophages (Wang et al., 2016). These
miRNAs are proper biomarkers for the rapid detection of such
infectious diseases.

THE DRIVER CHALLENGES FOR THE
APPLICATION OF STEM CELL-DERIVED
EXTRACELLULAR VESICLES IN CLINIC

The process of manufacturing MSC-EVs in the clinic needs donor
identification and screening. Donor identification and screening
need a complete review of risk factors, relevant communicable
disease agents, and diseases as outlined in FDA 21 CFR Donor
Screening 1271.75. Common sources of MSCs and then EVs
for the clinical application are those derived from bone marrow
and adipose tissue. The EVs harvested from these tissues are
then further characterized for their identity, purity, potency,
and sterility. Currently, several challenges for manufacturing the
clinical-grade EVs are ongoing, and many modifications and
optimizations are needed to ensure the safety and reproducibility
of the EVs as therapeutic agents (Wiest and Zubair, 2020). Some
of the challenges are briefly described below (Figure 3).

Identity
Due to their nanometer to micrometer scale, detection of EVs
by means of currently available lab equipment is challenging.
Also, the tissue sources of the MSCs have an impact on the EVs
characteristics. It was shown that the origin of the MSCs has
an impact on the amounts and sizes of EVs. Exosome samples
isolated by ultracentrifugation (UC) and tangential flow filtration
(TFF) showed abundant expression of CD81 and CD9 markers
and depletion of calnexin as compared to parental cells, but
CD63 marker was only expressed on UC-isolated EVs (Haraszti
et al., 2018). Therefore, different isolation methods produce
different populations of EVs, and thus emphasize the need for
standardized good manufacturing practices (GMPs). Because of
different components of EVs, some databases such as ExoCarta,
Vesiclepedia, and EVpedia have been established in recent years
(Keerthikumar et al., 2016; Pathan et al., 2019). These databases
have valuable resources for the identification of different EVs,
but some specific and universal markers for each EV have not
yet been provided. Therefore, further studies are required for the
precise characterization of EVs and determining their identity.

Purity
Since EVs are derived from different cells, including MSCs, they
may contain some impurities. For example, fetal bovine serum
(FBS) is often added to the MSCs culture media. It was shown
that FBS fractions contain RNA molecules and deep sequencing
of these fractions showed that 13.6% and 21.7% of the RNA
in cell pellet and supernatant mapped to the human genome,
respectively (Wei et al., 2016). Some laboratories employed the
UC for the removal of the majority of EVs and miRNAs found
in the FBS (Shelke et al., 2014; Wei et al., 2016). Because of
xenobiotic contents of FBS, some manufacturers used human
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FIGURE 3 | Main challenges for the application of stem cell-derived EVs in clinic.

platelet lysate instead of FBS. Human platelet lysate is xenobiotic-
free and fibrinogen-depleted and can be used for MSCs culture in
GMP studies. It was shown that UC could be able to eliminate
the serum-derived RNAs in the lysates (Pachler et al., 2017b). It
should be noted that EVs isolated by UC and anion exchange
chromatography have similar markers and size distribution, but
EVs enriched by TFF are not similar (Heath et al., 2018). Other
methods were developed to improve the EVs’ purity include
quantification of protein to particle ratio (Webber and Clayton,
2013) and protein to lipid ratio (Osteikoetxea et al., 2015);
however, these methods still have some limitations.

Reproducibility
Many factors influence the content and amount of EVs released
by cells and there are currently no standard protocols for the
isolation and storage of EVs (Lener et al., 2015). Also, there is
MSC donor-to-donor and batch-to-batch variation (Russell et al.,
2018). It was shown that EVs are highly sensitive to cell stress, and
their content may be changed in response to stress. For example,
treatment of human placental cells with tunicamycin induces ER
stress in these cells and leads to the release of EVs containing
HSP70 and HMGB1 (Collett et al., 2018). The content of the cell
culture media, the composition of the serum added to the media,
and the drug interactions affect the EVs’ integrity (Wiest and
Zubair, 2020). Isolation methods also change the composition
of EVs. Haraszti et al. showed that when MSCs were grown in
3D culture conditions and isolated by TFF, displayed a different
protein content compared to other methods of culturing and
isolation (Haraszti et al., 2018). Most studies focus on UC as
a gold standard for the isolation of EVs. Busatto et al. (2018)
reported that when they used the US for isolation, the size
distribution and albumin purity of samples changed significantly
from batch-to-batch, but using TFF, in contrast, showed less
batch-to-batch differences. These studies highlighted the factors

affecting the reproducibility of EVs and emphasized the need for
the development and validation of isolation methods.

Sterility and Safety
Sterility tests are assays performed by manufacturers to
determine the microbial contaminations. Strict donor eligibility
criteria and screening methods for diseases are the first steps
for the determination of sterility and safety of the products.
The companies generating EVs must comply with FDA Title
21, Part 610 (Wiest and Zubair, 2020). Microbial contamination
is important not only for the safety of the recipients, but also
some microbes produce and secret EVs which might interfere
with the EVs in the therapeutic product (Quah and O’neill,
2007; Giri et al., 2010). The size of some viral particles is similar
to EVs which raises some challenges for EV isolation by size-
dependent techniques such as TFF and other chromatography-
based methods (Matthews, 1975). TFF is better than UC for
reducing the risk of contamination because TFF method can be
conducted in a closed system, but UC technique requires multiple
steps and requires multiple transfer of the fractions to the new
containers (Wiest and Zubair, 2020).

Due to cell-free nature, EVs are hypothesized to be safer than
other products, but there are limited data about the safety profile
of EV-containing compounds (Wiest and Zubair, 2020). A short-
term safety study was conducted by Montaner-Tarbes et al.
(2018), where they treated healthy pigs with EVs derived from
pigs with the porcine syndrome. They found that healthy pigs
treated with EVs have no signs of the disease (Montaner-Tarbes
et al., 2018). Until recently, adverse events (AEs) or toxicity
related to EVs-based treatments are rarely reported (Nassar et al.,
2016; Saleh et al., 2019).

Storage
Extracellular vesicles are very sensitive to temperature and
pH of the storage buffer (Wiest and Zubair, 2020). The ideal
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temperature for the long-time storage of EVs is –80◦C (Otrokocsi
et al., 2014). It has been shown that the quantity of EVs decreases
in a time-dependent manner when they are stored at room
temperature or 4◦C following isolation. Also, the results of the
light-scattering analysis demonstrated a notable time-dependent
increase in the structural changes of EVs when they stored
for a long time at –20◦C (Otrokocsi et al., 2014). Changes
in the pH of the storage buffer can induce EVs’ aggregation
and loss of their functionality (Lener et al., 2015). The storage
buffer is also an important factor for maintaining the EVs’
functionality. The phosphate-buffered saline was exploited in
the majority of published studies as the EVs storage buffer (Li
et al., 2019; Marcoux et al., 2019), but others also have used
sucrose buffer (Busatto et al., 2018), lactated Ringer’s solution
(Pachler et al., 2017b), and PBS supplemented with trehalose
(Bosch et al., 2016) for the storage of EVs. The type of EVs
and their application may require different storage buffers and
maintaining conditions.

Potency
Despite the difficulties in identifying active components in the
EVs, potency determination becomes more popular in the last
few years in preclinical studies (Wiest and Zubair, 2020). Due
to the pleiotropic effects of proteins and RNAs contained within
EVs, identifying the active ingredients in exosome therapy is
challenging. EVs’ potency assays are promising methods to
overcome the challenges of identifying an active ingredient. The
basics of many potency assays is the release of pro-inflammatory
cytokines by M1-phenotype macrophages. To do this, EVs must
be added to the culture of M1-phenotype macrophages and the
desired inflammatory marker is measured based on the dose of
EVs (Pachler et al., 2017a; Willis et al., 2018). These methods are
used frequently for the potency evaluation but further research is
needed to validate their applications.

Large-Scale Production
Large-scale production of EVs for clinical applications needs
scale-up culture of MSCs, but long-term passaging may result in
losing clonal and differentiation capacity of cells (Raghav et al.,
2021). Therefore, it is necessary to develop new methods for
reliable expansion of MSCs to mass-produce EVs for clinical
use. Also, large-scale culture of MSCs in bioreactor requires
the addition of some ingredients such as fibronectin for cell
adherence purposes. Fibronectin as an ingredient has some
complications because this protein makes clogging in filter pores
and interferes with the size-based selection of EVs using the
TFF method. Therefore the conditioned media need an extra
centrifugation step, which make the risk of contamination more
(Wiest and Zubair, 2020).

Developing a Good Manufacturing
Practice Protocol
For the production of EVs in large quantities, the companies
demand a standardized manufacturing process which must
comply with GMP regulations (Mobarak et al., 2021). The GMP-
grade production of EVs is a process that depends on the cell
type, culture media, cultivation, and purification methods. In
the case of cell type, five cell types including bone marrow and
adipose tissue-derived MSCs, monocyte-derived dendritic cells
(DCs), human cardiac progenitor cells, and HEK293 cells have
been used in GMP-grade for production of EVs. Cultivation
methods employ both static and dynamic systems. Flask based
systems are static but bioreactor systems are dynamic (Rezaie
et al., 2021). In the GMP-grade production of EVs, bioreactor
systems are preferred due to the dynamic monitoring system
(Akbari and Rezaie, 2020). In the case of purification of GMP-
grade products, a number of steps including filtration for
the removal of cell debris, centrifugation for enrichment of
the conditioned media, and isolation of EVs from the media

TABLE 1 | Current biomedical applications of Extracellular vesicles.

EVs in Biomedicine References

Bacterial EVs EVs as vaccine candidate (outer membrane vesicles (OMVs)) Balhuizen et al., 2021

EVs as anticancer drugs (membrane vesicles (MVs)) Chronopoulos and Kalluri, 2020

Role of EVs in antibiotic resistance and biofilm formation Bitto et al., 2017

EVs as immune modulator factors Riley et al., 2013

EVs as infection biomarkers Deng et al., 2020

Viral EVs EVs can facilitate viral infection Nolte-‘t Hoen et al., 2016

EVs can intensify inflammatory responses and deflagrate antiviral activities Urbanelli et al., 2019

MSCs-derived EVs Immunomodulatory functions of EVs derived from MSCs Dabrowska et al., 2021

MSCs-derived EVs for treatment of COVID-19 and other viral infections Golchin et al., 2020

Secretion of antimicrobial
peptides and proteins
(AMPs) loaded in EVs

Cathelicidin LL-37 Sandra Tjabringa et al., 2005

Human β-defensin-2 (hBD-2) Alcayaga-Miranda et al., 2017

Hepcidin Lombardi et al., 2015

Lipocalin-2 (Lcn2) Wang Q. et al., 2019

Indoleamine 2, 3-dioxygenase
(IDO)

Schroten et al., 2001

Interleukin-17 (IL-17) Yang et al., 2013

Decoy EVs provide protection against bacterial toxins Keller et al., 2020
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should be performed. Differential centrifugation, despite its
complications, is the preferred method for concentrating the
conditioned media (Salimi et al., 2020).

CONCLUSION

In recent years we have witnessed remarkable progress in the
biology of EVs and their impact on microbial diseases. Now, a
clear picture has emerged and showed that MSCs-derived EVs
may play a crucial role in infectious diseases. MSCs-derived
EVs retain the biological activity of parental MSCs and have a
similar therapeutic potential. Evs derived from MSCs have potent
antimicrobial activity by production of antimicrobial peptides
and proteins (AMPs) such as hepcidin, lipocalin, defencins,
etc. Also, MSCs-derived EVs are applicable in drug delivery
systems, vaccine platform, and diagnostic tools to fight infectious
diseases. In clinic, several challenges exist for the manufacturing
clinical- and GMP-grade EVs which needs to be addressed.
Further understanding of the manufacturing of EVs for clinical
application, their biogenesis method as well as their optimization

method can reduce many of the challenges in using MSCs-
derived EVs in the clinic. Taken together, these data suggest that
MSC-derived EVs could be promising therapeutic tool for the
treatment of infectious diseases.
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Extracellular vesicles (EVs) originated from different cells of approximately all kinds of 
organisms, recently got more attention because of their potential in the treatment of 
diseases and reconstructive medicine. To date, lots of studies have been performed on 
mammalian-derived vesicles, but little attention has been paid to algae and marine cells 
as valuable sources of EVs. Proving the promising role of EVs in medicine requires sufficient 
resources to produce qualified microvesicles. Algae, same as its other sister groups, such 
as plants, have stem cells and stem cell niches. Previous studies showed the EVs in plants 
and marine cells. So, this study was set out to talk about algal extracellular vesicles. EVs 
play a major role in cell-to-cell communication to convey molecules, such as RNA/DNA, 
metabolites, proteins, and lipids within. The components of EVs depends on the origin 
of the primitive cells or tissues and the isolation method. Sufficient resources are needed 
to produce high-quality, stable, and compatible EVs as a drug or drug delivery system. 
Plant stem cells have great potential as a new controllable resource for the production of 
EVs. The EVs secreted from stem cells can easily be extracted from the cell culture medium 
and evaluated for medicinal uses. In this review, the aim is to introduce algae stem cells 
as well as EVs derived from algal cells. In the following, the production of the EVs¸ the 
properties of EVs extracted from these sources and their antimicrobial effects will 
be discussed.

Keywords: exosome, algae, stem cell, antimicrobial, marine

INTRODUCTION

Algae have been recently interested by scientists from different aspects including their stem 
cells and extracellular vesicles (EVs). Unlike animals, which typically develop through division 
of small undifferentiated stem cells, algal development (apart from undifferentiated apical stem 
cells) often involves fully differentiated cells that have low capacity for division and then revert 
to a state where nuclear mitoses and cell division resume.

Most complex multicellular algae usually have well-defined meristems that generate a diversity 
of differentiated cell types and tissues. These tissues typically include outer layers with protective 
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epidermal cells and cells adapted for photosynthesis and interior 
cell layers that have more structural, reproductive, or transport 
functions. These meristems are niches for stem cells (Lenhard 
and Laux, 2003; Dodueva et  al., 2017; Warghat et  al., 2018). 
Stem cells are small morphologically undifferentiated cells with 
large nuclear/cytoplasmic ratios and a scant and poorly 
differentiated cytoplasm. Their main properties are a potential 
to go through numerous cycles of cell division while maintaining 
their undifferentiated state (self-renewal) and the potential to 
differentiate into one or more differentiated cell types (potency 
or potential). During tissue damage, stem cells take a main 
part in the maintenance of cell homeostasis and cell recovery. 
These stem cells need to be  reached nearby or far away target 
cells during embryonic development and regeneration of adult 
tissues (Dodueva et  al., 2017; Warghat et  al., 2018). This 
communication is possible through soluble agents, direct cell-
to-cell contact through long, thin tubular appendages, such as 
the cytonemes and cilia, or secretion of EVs (Jill Harrison, 
2017). Recently, researchers have focused on plant’s-derived 
EVs as a flexible and suitable alternative to mammalian’s EVs 
regarding the role of EVs in cell-to-cell communications and 
its impact on medicine. This study was set out to evaluate 
the EVs of the algal cells and their possible antimicrobial effects.

STEM CELL IN PLANTS AND ALGAE

It has been accepted that within both animalia and plantae, 
there is a special space called stem cell niches where stem 
cells are located. Animal stem cells are classified based on 
their ability to generate either a wide or a restricted pool of 
descendant cell types (Terskikh et  al., 2006). The zygotic cell 
is the only mammalian totipotent cell that generates all embryonic 
and extraembryonic cell types. During embryonic development, 
pluripotent stem cells give rise to embryonic germ layers but 
can no longer produce an entire embryo. Finally, multipotent 
stem cells can only yield a range of different cells belonging 
to a single tissue.

Laux (2003) defined plantae stem cells as those in which 
generated daughter cells can either maintain stem cells nature 
and generate new stem cells, or undergo differentiation, which 
can include apical cells in tip-growing plants as well as intercalary 
meristems located within or at the base of plant organs. The 
studies on the genetic labeling of stem cells revealed that the 
whole body of a mature plant descends from small groups of 
stem cells in their growing apices, which these stem cells are 
maintained by signals from other neighbor cells.

Activation of cell fate in plants is space-dependent. Every 
plant cell follows a developmental program, which is driven 
by the position of the cell concerning its surrounding, rather 
than by the lineage-based differentiation program seen in 
animals. For this reason, differentiated tissues in plants can 
regenerate a totipotent embryo or a callus. A set of events 
that follow cell division and differentiation performed by a 
stem cell and its daughter cells summarizes the three defining 
characteristics for a stem cell; self-renewal, possession of 
undifferentiated characteristics, and ability to differentiate into 

an array of specialized cells (Scheres, 2007). In terrestrial plant 
biology, stem cells are largely considered in the context 
of meristems.

Eukaryotic algae are a diverse polyphyletic assemblage assigned 
to the kingdoms Chromista, Plantae, and Protozoa (Guiry and 
Guiry, 2018). The algae have differences with land plants from 
the appearance to the reproduction process. However, due to 
the fact that algae and land plants are a sisters’ group, they 
have some similarities, for instance, the existence of meristem, 
cell wall, totipotent cells, and etc. (McCourt et  al., 2004). Due 
to these similarities, being a sister group with algae, and the 
reports of few studies on algal stem cells and EVs, the land 
plants were considered as an example for comparison with 
the plantae kingdom in order to more explain algae function 
and physiology. Moreover, because the algae have evolved 
multiple times independently of animals and land plants, they 
are natural experiments by which to explore the most diverse 
modes of cellular totipotency and stem cell ontogenies; algal 
multicellular body plans originated multiple times within diverse 
classes of Chromista and Plantae. Three algal lineages stand 
out for their complex morphologies and high diversity: brown 
algae (class: Phaeophyceae, with over 2,000 species); red algae 
(phylum: Rhodophyta, with over 7,500 species); and green algae 
(subkingdom: Viridiplantae in part the remainder being 
land plants).

Most complex multicellular algae usually have well-defined 
meristems generating a diversity of differentiated cell types 
and tissues. These tissues typically include outer layers with 
protective epidermal cells and cells adapted for photosynthesis 
and interior cell layers that have more structural, reproductive, 
or transport functions. Rigid cell walls constrain algal and 
land plant cells, including their stem cells, obscuring their 
functional homology with animal stem cells. Nevertheless, many 
of the properties of animal stem cells are also found in terrestrial 
plants, e.g., those associated with root and shoot apical meristems 
(Laux, 2003; Ivanov, 2007; Dodueva et al., 2017; Warghat et al., 
2018), as it could be  in the multicellular algae.

In multicellular algae, ontogeny generally can follow one 
of two developmental patterns: diffuse growth in which cell 
divisions can occur more or less throughout tissues of the 
organism, or division of dedicated stem cells, either solitary 
or in meristems, mostly apical, but sometimes intercalary. 
Diffuse growth, whether it occurs in multicellular filaments 
(e.g., the water silk Spirogyra) or multicellular sheets (e.g., the 
sea lettuce Ulva), results in little cell diversity and no identifiable 
set-aside cells, although the cells demonstrate virtual totipotency 
that is revealed through regeneration of a new thallus from 
thallus fragments or artificially created protoplasts.

It is not surprising that with the diversity of body plans, 
brown algae have a corresponding diversity of apical systems. 
Apical growth is considered ancestral in the class, as it is in 
land plants (bryophyte and vascular plants) and related green 
algae (Jill Harrison, 2017) and is typically generated by a single 
prominent apical cell at the apex of a filament or blade (e.g., 
Dictyota) or a band of apical cells at a blade apex (e.g., 
Syringoderma and Padina). In fucoids, brown algae, this apical 
cell is maintained in an apical pit and cuts-off derivatives from 
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a mostly three-sided apical cell analogous to that in primitive 
mosses and liverworts (Renzaglia et al., 2018), which gives these 
algae the ability to generate three-dimensional forms like those 
of land plants. The convergent evolution of fucoid and land 
plant apical systems results in similar regular patterns (phyllotaxy) 
of lateral-branch or lateral-organ placement around the main 
axis of the plant body below the central apical cell or meristem 
that conforms to the Fibonacci series (Peaucelle and Couder, 2016).

Brown algae have two kinds of intercalary meristems: (1) 
trichothallic meristems in which cell division occurs at the 
base of a multicellular hair to produce filamentous or syntagmatic 
thalli and (2) more elaborate meristems that give rise to 
parenchymatous systems in kelp, another type of brown algae 
(Kawai and Henry, 2017). The intercalary meristems in kelp 
(i.e., in the order Laminariales) are analogous to certain types 
of terrestrial plant meristems. With elaborate differentiation 
yielding multiple cell types including outer epidermal cells, 
photosynthetic cells, and interior structural and transport cells, 
kelps resemble vascular plants in their complexity of cells and 
tissues. In most kelp species, individual plants consist of a 
stipe or stem-like organ that supports a blade, a flattened 
leaf-like organ. An intercalary multicellular meristem region 
of stem cells at the junction of these organs produces the 
cells required for elongation of both the stipe and the blade. 
These meristems can remain active for years. Perennial temperate 
to arctic species can exhibit seasonal growth cycles in which 
the blades detach above the meristem and a new one is 
regenerated de novo (e.g., Laminaria hyperborea). The kelp 
intercalary meristem is analogous to the vascular cambium 
(an interior ring of stem cells found in the stems of vascular 
plants), where cell division on one side of the ring produces 
cells that differentiate into water-transporting xylem and on 
the other side into photosynthate-transporting phloem, although 
functionally, they most resemble the intercalary meristem at 
the base of hornwort sporophytes or at the base of grass leaves.

Plant biologists recognize that protoplasts could take a 
prominent role in plant and algal cell totipotency, so it has 
a noticeable impact on algae and plant biotechnology (Reddy 
et  al., 2008; Baweja et  al., 2009; Baweja and Sahoo, 2009). 
These wall-less cells generate artificial stem cells that can be used 
on other cells, or used to induce somatic cell embryo formation 
(plant cloning), hybridize somatic cells, and genetically transform 
cells. The totipotency of protoplasts obtained from red, green, 
and brown multicellular algae and has been evaluated in culture 
(Kevekordes et al., 1993; Reddy et al., 2006; Fukui et al., 2014). 
Therefore, it can be  concluded that even differentiated cells 
can return to stem cells with full totipotency if their cell walls 
and adjacent cells are removed.

PLANTS AND ALGAL STEM CELL’S 
ABILITY TO EXCRETE EXTRACELLULAR 
VESICLES

Today, the presence of vesicles has been proven in most 
prokaryotic and eukaryotic organisms. The nano-sized membrane 

vesicles are secreted from different cells of these organisms 
and released into the extracellular environment (Brown 
et  al., 2015).

During tissue damage, stem cells take a main part in the 
maintenance of cell homeostasis and cell recovery. These cells 
could be  detected using immune-labeling via EdU staining. 
The EdU staining could detect proliferative cells which are 
one of the characteristics of stem cells. Using this method, 
the proliferative/stem cells could be isolated and used for further 
analysis (Hong et  al., 2015). Moreover, these stem cells need 
to be reached nearby or far away target cells during embryonic 
development and regeneration of adult tissues. This 
communication is possible through soluble agents, direct cell-
to-cell contact through long, thin tubular appendages, such as 
the cytonemes and cilia, or secretion of extracellular vesicles 
EVs (EVs). These vesicles with 30–3000 nm in diameters have 
free diffusion factor properties and a wide cell membrane and 
cytoplasmic organization. They have distinct biological 
compositions depending on size and origin and hence, their 
functions maybe vary (Aliotta et al., 2012; Camussi et al., 2013).

The composition of EVs consists of different molecules, 
which important components are metabolites, proteins, nucleic 
acids, and lipids (Table 1). The cargo of EVs is mainly dependent 
on the nature and origin of the primitive cells or tissues and 
the isolation technique (Kolonics et  al., 2020; He et  al., 2021). 
Some of these techniques are ultracentrifugation and chemical 
precipitation method via commercial EVs kit that both are 
very common in use (Afshar et  al., 2021; Zhankina et  al., 
2021). The maintenance of tissue homeostasis is regarded as 
one of the most important functions of EVs. There is a mutual 
interaction between EVs secreted from damaged cells and stem 
cells, as EVs secreted from injured tissue affect stem cells, 
reciprocally splashed EVs of stem cells support injured tissue. 
Hence, the EVs extraction and purification methods highly 
affect EVs characteristics, the International Society for 
Extracellular Vesicles (ISEV) has determined standards of EVs 
purification (Théry et  al., 2018; Russell et  al., 2019).

As revealed so far, approximately all cells of different organisms 
can secrete EVs, although they might be  different types, pose 
different functions depending on origin. Therefore, choosing 
the ideal cells to get EVs with the desired function needs to 
be  concerned. Here, one of the most important sources of 
EV extraction and its therapeutic effects explain as an example 
of the therapeutic effects of EVs. The recent studies on 
mesenchymal stem cells (MSCs) revealed that they can be  an 
effective branch of stem cells in therapeutic applications (Cui 
et  al., 2018; Zhao et  al., 2018; Riazifar et  al., 2019). Exosomes 
derived from MSCs have either the advantages of exosomes, 
or the characteristics of MSCs, and their therapeutic effects 
have been proved in different diseases in recent studies (Bolivar-
Telleria et  al., 2018; Moon et  al., 2019).

To use the advantages of exosomes in therapeutics, the 
optimized purification method to get a large amount of non-toxic 
homogenized exosomes, as well as efficient transfection strategies, 
is needed (Kooijmans et  al., 2012; Yamashita et  al., 2018).

Plant-derived exosomes, as one of the sister groups of algae, 
recently get great attention as a suitable alternative to mammal’s 

57

https://www.frontiersin.org/journals/microbiology
www.frontiersin.org
https://www.frontiersin.org/journals/microbiology#articles


Bayat et al. Algal Cells Derived Extracellular Vesicles

Frontiers in Microbiology | www.frontiersin.org 4 December 2021 | Volume 12 | Article 785716

exosomes, because of their physiological, chemical, and biological 
characteristics, which make them a proper candidate to cope 
with the technical limitations of mammalian vesicles. Regente 
et  al. in 2009 reported the presence of exosome-like vesicles 
with 50–200 nm in diameter in sunflower seeds (Regente et al., 
2009). Far along, the isolation of vesicles by ultracentrifugation 
from different plant species like grape, grapefruit, ginger, and 
broccoli (Ju et  al., 2013; Wang et  al., 2014; Zhuang et  al., 
2015; Deng et  al., 2017) has been reported that allows their 
effective and abundant production.

Facile large-scale production (Li et  al., 2018), low toxicity, 
reduced immunogenicity (Deng et  al., 2017), efficient cellular 
uptake (Wang et  al., 2013), and high biocompatibility and 
stability (Zhang et al., 2016) make plant-derived EVs as promising 
therapeutic factors or drug deliver nanoparticles in medical 
applications in compared with MDEs or artificial nanoparticles.

Despite lots of studies on the bioactive content of the plant 
EVs, still, further studies are necessary to understand the 
bioactivities and applications of plant EVs. Besides plant-derived 
EVs, our knowledge on marine cell-derived EVs remains 
extremely limited, while they can be  a more accessible source 
to produce a large amount of EVs very fast and easily. Algae 
as an important marine source for EVs are very economical 
compared to edible plants and can be  grown in any place to 
get EVs within about 1 week, therefore can establish facile 
scaled-up production of pure EVs with high quality 
(Kuruvinashetti et  al., 2020).

Therapeutic applications of EVs, in addition to their content, 
depend on their capability to cross barriers like the cytoplasmic 
membrane and blood/brain barrier. In mammalian and plant 
EVs, the mechanism of absorption is different, or they are 
absorbed either through endocytosis or through the fusion of 
vesicles and plasma membranes (Rome, 2019). Therefore, 
membrane properties of exosomes play an important role in 
crossing cellular barriers. In algae derived EVs, where the 

membrane is rich in beta proteins, the membranes are easier 
to attach. Thus, along with biocompatibility, no toxic effect 
on cells/tissues and organs, nano-nature, increasing circulatory 
stability, and low immunogenicity make algae a sustainable 
marine source for the production of exosomes for their potential 
use in medical and therapeutic applications (Kuruvinashetti 
et  al., 2020).

THE ANTIMICROBIAL EFFECTS OF 
PLANT’S EVs

Plant-derived EVs because of their biological characteristics 
got more attention in recent years, many studies emphasize 
their role in the immune response against invading pathogens 
(Rybak and Robatzek, 2019; Kolonics et  al., 2020). Actually, 
involving EVs in pathogenesis is two-sided, and some pathogens 
like bacteria, fungi, and parasites also depend on EVs cargo 
to exploit their host (Kuipers et  al., 2018; Liu et  al., 2018; 
Bielska et al., 2019; Ofir-Birin and Regev-Rudzki, 2019). Therefore, 
it is accepted that Evs have a key role in plant-pathogen 
interactions and many studies have been proved it (Figure  1; 
Boevink, 2017; Hansen and Nielsen, 2017; Rutter and Innes, 
2018). The first evidence of antimicrobial nature of plant-derived 
EVs was showed in barley against powdery mildew fungus 
Blumeria graminis (An et  al., 2006), later in sunflower against 
phytopathogenic fungus, Sclerotinia sclerotiorum (Regente et al., 
2017), and in Arabidopsis against bacterial plant pathogen, 
Pseudomonas syringae (Rutter and Innes, 2016).

EVs involving in plant-pathogen interactions as well as 
the proteome of EV derived from uninfected Arabidopsis 
rosettes and apoplastic fluids pathogen-infected have been 
recently analyzed (Rutter and Innes, 2016). EVs derived 
from extracellular fluids of tomato (De Palma et  al., 2020) 
and sunflower seedlings (Regente et  al., 2017) as well as 

TABLE 1 | The components of EVs(EV) and their biological function (Alfieri et al., 2021).

Component Biological function

Lipids Sphingolipids The high enrichment of GIPCs in plant EVs is suggestive of a 
signaling function of the EV membrane, especially in the 
extracellular ROS burst, as proven in Arabidopsis plants

Glycosylinositolphosphoceramides (GIPCs)

phosphatidylethanolamine(PE) PA is as an important class of lipid messengers involved in many 
cellular processes such as cytoskeletal organization, cell 
proliferation, and survival

phosphatidylcholine (PC)
phosphatidylinositol (PI)
and phosphatidic acid (PA)

Proteins cytosolic proteins (e.g., actin and proteolysis enzymes) vesicle stability in the case of plasma membrane vesicles purified 
from broccoli plantsmembrane channel/transporters (e.g., aquaporin and chloride channels)

Aquaporin
different hydrolases (ATPases, pectinesterase, phospholipases, amylases, _ 
galactosidases, and adenosylhomocystein hydrolyse),
enzymes (SODs, CATs, PODs, and GPXs)

Nucleic Acids mRNA, miRNA, DNA play a role in inter-kingdom communication
Plant Metabolites carbohydrates (glucose, fructose, sucrose) Cell homeostasis

amino acids (alanine, asparagine isoleucine, threonine, leucine)
organic acids (mainly glycolic and citric acids),
sugars and sugar derivatives

bioactive compounds, such as quinic acid, myo-inositol, and aucubin
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those derived from leaf apoplastic fluid of N. tabacum and 
C. plantagineum (Woith et  al., 2021) have been known to 
be  involved in plant-microbe interactions. In most cases, 
EV secretion increases by pathogen invading and raises the 
severe role of EV in plant defense mechanisms. The proteome 
analysis of EVs derived from these mentioned plants showed 
that these EVs are enriched in proteins involved in signal 
transmission in response to biotic and abiotic stresses, 
immunity responsible proteins, cell wall remodeling enzymes 
as well as a protein involved in plant-microbe interactions. 
Table  2 lists some of these proteins raised from proteome 
analysis of plant-derived exosomes.

The proteome analysis is still in the early days and to 
get a clear clue large amount of replication, precise, and 
continuous processing of high-quality data and reference 
genomes are needed; however, the results to date provide 
candidate logical components in the interactions between 
plants and pathogens.

Cross-kingdom RNA interference can be  explained as 
one of the possible mechanisms involved in plant-derived 
EVs-pathogen interaction in plants immunity responses 
(Figure  2). The study of the gray mold caused by Botrytis 
cinerea in A. thaliana and Solanum lycopersicum, revealed 
small RNAs (sRNAs) of B. cinerea where they were revealed 
to be  transferred from the fungus to the host to silence 
plant immunity genes (Cai et  al., 2019). In response to 
pathogens, plants deliver sRNAs into the fungus using 
exosomes to limit the virulence potential of the organism 
upon knockdown (Lu et  al., 2018). These mechanisms are 
widespread in other pathogens infected plants, such as 
cotton plants infected by Verticillium dahliae (He et  al., 
2016), and wheat plants for suppressing the invasion of 
Fusarium graminearum (Jiao and Peng, 2018). At some 
point, additional studies will be  needed to better explain 
the subsets of EVs involving in the transfer of sRNAs into 
invading pathogens. It appears probable that both 

FIGURE 1 | EVs  production in algal cell. The extracellular vesicle includes 
nucleic acids, such as mRNA, microRNA and small RNA (sRNA), proteins, 
and lipids, which were explained in Table 1.

TABLE 2 | Proteins list from proteome analysis of some plant-derived 
exosomes.

Plant Description References

N. tabacum and 
C. plantagineum

annexin D5-like   Woith et al., 2021
clathrin heavy chain 1-like
coatomer subunit alpha-1-like
coatomer subunit beta-1
coatomer subunit beta’-2-like
coatomer subunit gamma
patellin-3-like isoform X2
tetraspanin-3-like
tetraspanin-8-like
endochitinase EP3-like
G-type lectin S-receptor-like 
serine/threonine-protein kinase 
At1g34300

Arabidopsis RABD2a/ARA5 (Golgi/TGN/EE/
secretory vesicles)

  Rutter and Innes, 2016

Plasmodesmata
RABG3f (LE/MVB/tonoplast)
RABF1/ARA6 (LE/MVB)
PM
CLC2 (clathrin-coated vesicle 
pits)
GOT1 (Golgi)
VAMP711 (tonoplast)

Tomato endochitinase   De Palma et al., 2020
patatin-like protein 2
glucan endo-1,3-beta-
glucosidase B precursor
hypersensitive-induced response 
protein 1
calmodulin 5,460,408,499 trypsin 
inhibitor 1-like
probable linoleate 
9S-lipoxygenase 5
annexin p34
lysM domain-containing GPI-
anchored protein 2
ethylene-responsive proteinase 
inhibitor 1
putative late blight resistance 
protein homolog R1A-10
putative late blight resistance 
protein homolog R1A-3
NDR1/HIN1-like protein 3-like 
isoform X2
putative LRR receptor-like serine/
threonine-protein kinase 
At4g00960
putative late blight resistance 
protein homolog R1A-3
basic 30 kDa endochitinase
germin-like protein subfamily 1 
member 19
CASP-like protein PIMP1
probable LRR receptor-like 
serine/threonine-protein kinase 
At1g06840
hypersensitive-induced response 
protein 1
monocopper oxidase-like protein 
SKU5
wound/stress protein precursor

MRLK1 serine/threonine-protein 
kinase, partial
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EV-dependent and -independent mechanisms will be   
discovered for facilitating this transfer.

THE ANTIMICROBIAL EFFECTS OF 
ALGAL EVs

Microorganism’s communication in the marine environment 
has a great impact on trophic level interactions and population 
substitution, awareness of EVs importance in cell-to-cell 
communication raises the question of how EVs participate in 
these processes. Early evidence from marine EVs came from 
model alga Emiliania huxleyi, studies demonstrated that vesicles 
generated over viral infection by this organism act as a pro-viral 
signal, through accelerating infection and increasing the half-
life of the virus in the extracellular milieu (Schatz et al., 2021). 
Later authors profiled the sRNA cargo of vesicles generated 
by E. huxleyi over bloom succession and concluded that 
E.  huxleyi-derived vesicles modulate host-virus dynamics and 
other components of the microbial food webs, so highlighting 
the importance of EVs to microbial interactions in the 
marine environment.

Generally, plant-derived vesicles reveal a broad therapeutic 
potential, which can help patients, and may establish the future 
generation of therapeutics.

FUTURE ASPECT OF ANTIMICROBIAL 
PRODUCTS OF PLANT EVs

To get clear insights on the exact role of EVs originated from 
different cells, more studies on their biological characteristics 
and interactions are needed. Studies on plants’ EVs revealed 
similar intrinsic therapeutic materials as mammal’s EVs, while 
there are some advantages on plants’ EVs compared to mammal’s 
EVs. First, they can be  obtained from a variety of renewable 
sources; moreover, allowing researchers to select their desired 
EVs with precise effects on disease, also facilitates its large-scale 
production. Second, EVs’ component seems to be evolved naturally 
in plant cells which makes them biocompatible and non-toxic. 
The EVs’ lipid membrane stability helps them to be  simply 
adapted to target specific ligands, gives them the potential use 
as drug delivery nanocarriers. Moreover, plant-derived vesicles 
can be examined in a comparably short time through eco-friendly 
protocols (Zhang et  al., 2016; Pocsfalvi et  al., 2018; Wiklander 
et  al., 2019). Besides these advantages, there are still some 
concerns on plant EVs to be  solved. The standard isolation 
techniques with low cost and complexity and increase purity 
should be  established for mass-production of high-quality 
exosomes for the use in therapeutic applications (Ludwig et  al., 
2019). Primary, the exact content and functionality of the miRNA, 
mRNA, proteins, and lipids in the exosomes have been unknown 
so far (Lee et  al., 2012). Second, in spite of the developments 
in exosome isolation methods, a gold standard has not been 
yet presented (Ludwig et  al., 2019). The isolation process cost 
and difficulty should be  decreased, while the exosome purity 
should be  enhanced. Third, mass-production of high-quality 
exosomes should be  probable for the therapeutic applications.

A multi-functional system with a highly efficient isolation 
technique and real-time quantification and analysis technology is 
needed for efficient applications. Also, to keep EVs components, 
such as proteins and RNAs, storing below −70°C (Huang et  al., 
2020), or freeze-drying is recommended (Charoenviriyakul et  al., 
2018). Though, long-term preservation using these approaches is 
still not clarified to be  applied in the diagnosis and therapeutic 
applications (Li et al., 2018). In addition, optimization of isolation 
approaches for should be performed to obtain uniform nanovesicles. 
Additionally, a detailed evaluation of their morphological features, 
the quantitative aspects, and chemical components should 
be  performed to attain evidence on their functional roles. Lastly, 
exosomes might be the important element in the medicine in future.
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Microbial diseases are a global health threat, leading to tremendous casualties and 
economic losses. The strategy to treat microbial diseases falls into two broad categories: 
pathogen-directed therapy (PDT) and host-directed therapy (HDT). As the typical PDT, 
antibiotics or antiviral drugs directly attack bacteria or viruses through discerning specific 
molecules. However, drug abuse could result in antimicrobial resistance and increase 
infectious disease morbidity. Recently, the exosome therapy, as a HDT, has attracted 
extensive attentions for its potential in limiting infectious complications and targeted drug 
delivery. Mesenchymal stem cell-derived exosomes (MSC-Exos) are the most broadly 
investigated. In this review, we mainly focus on the development and recent advances of 
the application of MSC-Exos on microbial diseases. The review starts with the difficulties 
and current strategies in antimicrobial treatments, followed by a comprehensive overview 
of exosomes in aspect of isolation, identification, contents, and applications. Then, the 
underlying mechanisms of the MSC-Exo therapy in microbial diseases are discussed in 
depth, mainly including immunomodulation, repression of excessive inflammation, and 
promotion of tissue regeneration. In addition, we highlight the latest progress in the clinical 
translation of the MSC-Exo therapy, by summarizing related clinical trials, routes of 
administration, and exosome modifications. This review will provide fundamental insights 
and future perspectives on MSC-Exo therapy in microbial diseases from bench to bedside.

Keywords: microbial diseases, exosomes, mesenchymal stem cells, cell-free therapy, antibiotic resistance

INTRODUCTION

Microbial diseases, known as infectious diseases, refer to the clinical manifestation of damage 
that results from a host-microbe interaction (Casadevall and Pirofski, 2000). Infections can 
be  classified into four broad categories based on phylogenetic groupings of microbes, bacteria, 
viruses, parasites, and fungi. In Global Risks Reports 2021 from World Economic Forum, 
infectious diseases rank first by impact among top global risks, and are a leading cause of 
morbidity and mortality worldwide. The predicament in microbial disease treatments is a 
consequence of three simultaneous factors. Firstly, antibiotic resistance presents an acute threat 
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to the effectiveness of available antimicrobial therapies. Original 
pathogenic microorganisms occasionally reappear in drug-
resistant forms, as exemplified by multidrug-resistant 
Mycobacterium tuberculosis (Laxminarayan et al., 2020). Secondly, 
the eradication of microbes is not equivalent to the termination 
of clinical symptoms, since immunological damages to the host 
may persist following a successful antipathogen response 
(Kaufmann et al., 2018). Finally, new pathogenic microbes keep 
emerging, for which no therapy exists. Since the outbreak of 
coronavirus disease 2019 (COVID-19) in late December 2019, 
it has brought tremendous casualties and economic losses to 
over 200 countries and regions. Although the pathogenesis of 
COVID-19 has been fully elucidated, there is no specific therapy 
for the disease at present (Tsang et  al., 2021).

The invention of antimicrobial agents is a remarkable victory 
in the pathogen-directed therapy (PDT) to treat infectious 
diseases. However, the efficacy of existing antimicrobials is 
losing sustainability, as antimicrobials constantly pose selective 
pressure on mutations in the genes of drug targets (Holmes 
et  al., 2016). It is important to come up with a novel therapy 
that does not exacerbate antimicrobial resistance. The host-
directed therapy (HDT) is a choice, which functions by regulating 
host cell factors to negatively influence survival or proliferation 
of microorganisms (Zumla et  al., 2016). The application of 
mesenchymal stem cell-derived exosomes (MSC-Exos) in 
treatments of microbial diseases is an explorative and promising 
HDT. Exosomes are double lipid layer vesicles ranging from 
30 to 150 nm, basically composed of lipids, proteins, and nucleic 
acids (Doyle and Wang, 2019). MSC-Exos are commonly used 
as a source of acellular therapy due to their immunomodulatory, 
pro-reparative, and drug delivery properties. They have been 
studied deeply for the application in treatments of several kinds 
of diseases, such as neurodegenerative diseases (Guy and Offen, 
2020), cancers (Vakhshiteh et  al., 2019), and injuries in heart 
(Suzuki et  al., 2017; Babaei and Rezaie, 2021), kidney (Nargesi 
et  al., 2017), and nerve (Zhang et  al., 2021b). Exosome-based 
cell-free vaccines are also in development against HIV-1 associated 
diseases (Rezaie et  al., 2021) and cancers (Nikfarjam et  al., 
2020). Modification of exosomes via pre-loading or post-loading 
approaches can further boost the therapeutic efficacy (Madrigal 
et  al., 2014).

In this review, we  mainly focus on the application of 
MSC-Exos in microbial diseases. Specifically, we update current 
understandings of MSC-Exo therapy in periodontitis, pneumonia, 
sepsis, and diabetic foot ulcer (DFU) infection. Then, progresses 
in clinical translation of exosome therapy are summarized, 
with the discussion in routes of administration and exosome 
modification to enhance therapeutic effects of MSC-Exos. Finally, 
we give perspectives in the future direction of MSC-Exo therapy.

MICROBIAL DISEASE THERAPEUTICS

Based on the target difference, microbial disease therapeutics 
can be  categorized into two strategies: PDT and HDT (Nisini 
et  al., 2020). In this section, we  make a detailed introduction 
to methods involved in these two strategies, and discuss how 

they complement each other to improve outcomes of microbial 
diseases. Thereinto, MSC-Exo therapy, originating from MSC 
therapy, is brought up as a promising HDT candidate.

Pathogen-Directed Therapy
Pathogen-directed therapy, as the name suggests, interacts 
directly with pathogens (bacteria, viruses, fungi, and parasites) 
to interrupt their intrusion, survival, and proliferation (Shang 
et al., 2020). Anti-infective drugs, as the representative, combine 
directly with the components of pathogens, causing death of 
pathogens or inhibiting their replication. Among antibacterial, 
antiviral, antifungal and antiparasitic drugs, antibacterial drugs 
are by far the most used. They function by interrupting essential 
bacterial activities, such as destructing cell wall integrity, 
depolarizing cell membrane potential, suspending DNA 
replication, and inhibiting protein synthesis (Kohanski et  al., 
2010; Leekha et  al., 2011).

Although the use of antibiotics saved billions of lives in 
the past over half a century, shortcomings have gradually 
surfaced (Clardy et  al., 2009). Firstly, nonstandard medication 
accelerates the progress of antimicrobial resistance. Broad-
spectrum antibiotics abuse in common infections, which are 
indications for narrow-spectrum antibacterial agents, raises 
concerns about their effectiveness in the long term (Holmes 
et al., 2016). Genes encoding antibiotic resistance are continuously 
evolving, and are distributed to numerous bacterial species in 
a plasmid-mediated way (Laxminarayan et al., 2020). Protective 
mechanisms against antimicrobial agents include expressing 
drug efflux systems, modifying drug target sites, producing 
enzymes to destroy drugs, or producing an alternative metabolic 
pathway to bypass the action of the antimicrobials (Tenover, 
2006). The emergence of multidrug-resistant bacteria become 
increasingly prevalent, such as Methicillin-resistant Staphylococcus 
aureus and vancomycin-resistant Enterococcus, which are the 
most common antibiotic-resistant bacteria (Vivas et  al., 2019). 
Secondly, physicochemical properties of current antimicrobials 
hold back their efficacy. Hydrophilic antibiotics are inactive 
against intracellular pathogens, with narrow bio-distribution 
limited at the extracellular space. They show low permeability 
toward biological barriers, thus hard to achieve minimum 
inhibitory concentration at specific sites (e.g., ocular fluid, 
cerebrospinal fluid, and abscess cavity; Pea et  al., 2005).

Other pathogen-directed strategies mainly include 
antimicrobial peptides (AMPs), antibodies, antimicrobial 
nanoparticles (NPs), and the CRISPR-Cas system. AMPs are 
small effector molecules produced naturally or synthetically 
(Tan et al., 2021), such as cathelicidins, defensins, and hepcidin 
(Alcayaga-Miranda et al., 2017). They exhibit direct bactericidal 
properties by physically destroying microbial lipid bilayers to 
release cell contents (Zhang et  al., 2021a). Antimicrobial NPs 
(metal NPs, semi-conductive NPs, and organic NPs) are promising 
antimicrobial agents, the underlying basic mechanism of which 
is related to reactive oxygen species-induced interruption of 
bacteria membranes (Reshma et  al., 2017; Calabrese et  al., 
2022). Antimicrobial NPs can be  applied in the coating for 
implantable devices (Wang et  al., 2017; Fernando et  al., 2018) 
and treatments of superficial infections 
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(Paladini and Pollini, 2019), whereas the potential toxicity of 
NPs should not be  neglected (Xu et  al., 2020). Targeting 
antimicrobial-resistant plasmid or bacteria genome, the 
CRISPR-Cas system can induce DNA damage to program 
bacterial death (Bikard and Barrangou, 2017; Vila, 2018). 
Nevertheless, the major obstacle lies in the development of 
specific and efficient delivery approach (Fagen et  al., 2017; 
Fage et  al., 2021). It is obvious that new remedies should 
be  exploited to compensate drawbacks of PDT.

Host-Directed Therapy
There is no doubt that antimicrobial therapy is the mainstream 
treatment for most infectious diseases. However, when confronted 
with complicated situations such as drug-resistant microbes, 
biofilm-associated infections, existing antimicrobials lose their 
efficacy. To counteract the emergence of antimicrobial resistance, 
a novel anti-infectious therapy focused on the modulation of 
host response (i.e., HDT) has been proposed. HDT is aimed 
at improving innate or adaptive protective immune response 
to control pathogens and/or limit immunopathology. 
Conventional HDT includes the application of 
immunomodulators, therapeutic vaccines, repurposed drugs, 
micronutrients, and stem cell therapy (Zumla and Maeurer, 2016).

Immunomodulatory drugs play important roles in HDT, as 
they not only promote protective immune responses in acute 
phase, but also attenuate constant, excessive inflammation in 
chronic stage (Kilinc et  al., 2021). For example, NSAIDs are 
administrated in the treatment of late-stage multidrug-resistant 
tuberculosis, to promote phagocytosis and bacterial killing by 
inhibiting the production of prostaglandin E2 (PGE2) in 
macrophages (Kroesen et  al., 2017). Therapeutic vaccines refer 
to the injection of pathogen antigens (proteins, nucleic acids) 
into patients with persistent, recurrent, or chronic infectious 
diseases. They aim at reducing the severity of the disease or 
preventing complications, by stimulating the immune defense 
response (Moingeon et  al., 2003; Autran et  al., 2004). Drug 
repurposing is a strategy for identifying new uses of existing 
drugs for non-communicable diseases (Pushpakom et  al., 2019). 
Cholesterol-lowering drugs, asthma drugs, diabetes drugs, and 
anticonvulsants are common candidates (Zumla and Maeurer, 
2016). Repurposed drugs outrun new drug development in terms 
of efficiency, lower costs, and safety. Supplementing micronutrients, 
such as vitamin D, zinc, and probiotics, helps build up immunity 
(Zumla et  al., 2016). Thereinto, probiotics are a novel HDT, in 
which adequate amounts of probiotic bacteria or bacterial products 
are administrated to confer health benefits to the host. Underlying 
mechanisms include competitive colonization with pathogens, 
promotion of beneficial immune modulation, and suppression 
of excessive inflammation (Chibbar and Dieleman, 2015).

Stem cell therapy stands out among other host-directed 
therapies for its unique capability in multi-lineage differentiation 
and immunomodulation. Its applications in the treatment of 
various kinds of bacteria and virus infections are supported 
by solid experimental researches, meanwhile clinical trials 
are going through to further validate its safety and efficacy 
(Al-Anazi and Al-Jasser, 2015; Marrazzo et  al., 2019; Sleem 
and Saleh, 2020). Recently, the attention on mesenchymal 

stem cell (MSC) therapy rockets, with more than 50 clinical 
trials in progress to evaluate its application on COVID-19-
associated acute respiratory distress syndrome (ARDS)/
pneumonia (Meng et  al., 2020; Shetty et  al., 2020). Other 
hot research fields include septic shock (McIntyre et al., 2018; 
Schlosser et  al., 2019; Laroye et  al., 2020), human 
immunodeficiency virus infection (Allam et  al., 2013; Zhang 
et  al., 2013), influenza-associated pneumonia (Darwish et  al., 
2013), hepatitis B virus-induced liver failure/cirrhosis (Peng 
et  al., 2011; Kantarcioglu et  al., 2015; Lin et  al., 2017), 
mycobacterium tuberculosis-induced bone defects (Zhang 
et al., 2021c), and refractory cytomegalovirus infection (Meisel 
et  al., 2011). MSC therapy has huge potential in adjuvant 
anti-infectious treatments via immunomodulation and 
tissue repair.

Early studies mainly attribute the therapeutic effects to the 
homing and differentiation ability of MSCs (Li et  al., 2020c). 
However, recent researches have revealed that MSCs had short 
survival time after transplantation and only a small proportion 
of MSCs succeeded in arriving at injured sites (Burst et  al., 
2010; Xu et  al., 2016). It is demonstrated that the essential 
of therapeutic effects might lie in the secretome of MSCs, 
which exerts immunomodulatory and reparative properties (Xie 
et  al., 2021). MSCs have active paracrine actions, releasing 
large amounts of growth factors, cytokines, immunomodulators, 
and extracellular vesicles (EVs). EVs that are classified into 
apoptotic vesicles, microvesicles (MVs), and exosomes, play 
an important role in intercellular and even interorganismal 
communications. Compared to apoptotic vesicles, MVs and 
exosomes are the more widely investigated. Assembled in 
composition and functions, major differences between MVs 
and exosomes lie in the biogenesis pathway and size. MVs 
are plasma membrane-derived relatively large EVs, ranging 
from 100 to 1,000 nm; while exosomes are endosome-origin 
small EVs with a diameter of 30–150 nm (Cocucci and Meldolesi, 
2015; Thery et al., 2018). Due to high similarities in constituent 
and limitations in available purification methods, some reports 
have interchangeably used the terms “exosomes” and “MVs” 
(Lee et al., 2012). In this review, we mainly focus on MSC-Exos, 
but studies on MSC-EVs or MSC-MVs are also included in 
consideration of comprehensiveness. Proteomic (Pierce and 
Kurata, 2021), metabolic, lipidomic (Showalter et  al., 2019), 
and miRNA-sequence analysis (Shao et  al., 2017; Zhao et  al., 
2019a) and experimental studies have indicated that MSC-Exos 
inherit similar biological properties from their parent cells, in 
aspect of immunomodulation (Willis et al., 2018), tissue repair 
promotion (Shao et al., 2017) and homing capacity (Shao et al., 
2017; Guo et  al., 2019), which are important properties for 
treatments of microbial diseases. What is more, exosome therapy 
is superior to stem cell therapy in biosafety. Reports about 
adverse events of MSC therapy are not uncommon and concerns 
about MSC therapy have never ceased. There are worries about 
tumorigenesis, disease transmission, undesired immune 
responses, replantation on unwanted sites, and administration 
site reactions (Prockop et  al., 2010; Barkholt et  al., 2013; 
Casiraghi et  al., 2013; Arango-Rodriguez et  al., 2015). In 
contrast, few serious adverse events are reported in MSC-Exo 
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therapy. Taken comparable biological properties and superior 
biosafety, MSC-Exo therapy might be  a better choice for HDT.

MESENCHYMAL STEM CELL-DERIVED 
EXOSOMES

As described in the previous section, MSC-Exos have received 
increasing attentions for therapeutic administration. Furthermore, 
a variety of clinical trials are underway for the application of 
MSC-Exos as a novel, safe and efficacious cell-free therapy in 
microbial diseases. Below, we give a global perspective regarding 
biogenesis, isolation, and characterization, as well as their 
molecular composition of exosomes.

Biogenesis of Exosomes
Exosomes originate in the endosome system, and this process 
is mediated by several molecules, as illustrated in Figure  1. 
Early endosomes are formed by invagination of the plasma 
membrane during endocytosis (Huotari and Helenius, 2011). 
Then they mature into late endosomes, which turn into 
multivesicular bodies (MVBs), when exosomes are generated 
as intraluminal vesicles (ILVs) by invagination of late endosome 

membrane. The MVBs can either be  degraded by lysosomes 
or released into extracellular matrix as exosomes via exocytosis 
(Kowal et  al., 2014; Hessvik and Llorente, 2018; Zhang et  al., 
2019). It has been established that exosomes are actively secreted 
by almost all cell types especially MSCs, as we  describe in 
detail later. MSCs can be  derived from different tissues, such 
as bone marrow, adipose tissue, dental pulp, and menstrual 
blood (Shi et al., 2021b). The secreted exosomes could be taken 
up by recipient cells via endocytosis, phagocytosis, or direct 
membrane fusion, then the contained bioactive cargos are 
transferred to modify gene expression, signaling, and overall 
functions and behaviors of recipient cells (Fujita et  al., 2015; 
Rani and Ritter, 2016).

Isolation and Characterization of 
Exosomes
Exosomes can be  directly isolated from cell culture medium 
or biological fluids, such as urine, breast milk, and amniotic 
fluid (Thery et  al., 2018). The isolation strategies include 
ultracentrifugation, polymer precipitation, size-exclusion 
chromatography, and immunoaffinity capture. Ultracentrifugation 
is the most commonly-used isolation method in basic researches 
(Gardiner et  al., 2016). The typical ultracentrifugation protocol 

FIGURE 1 | Biogenesis and molecular composition of exosomes. Schematic diagram shows exosome formation and biological cargoes. Exosomes originate in 
endosome system, and are released from cells as particles (30–150 nm) with a lipid bilayer. They are endowed with therapeutic potential by carrying various kinds of 
bioactive molecules, such as peptides, microRNAs, and mRNAs.
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includes: (i) low-speed (300 × g and 2,000 × g) centrifugation 
to remove cells and dead cells respectively; (ii) higher-speed 
centrifugation (10,000 × g) to remove cell debris; and (iii) high-
speed centrifugation (100,000 × g) to pellet exosomes (Thery 
et  al., 2006). Time consumption and complex operation 
procedures remain the main disadvantages of ultracentrifugation. 
Isolation with proprietary polymer precipitation and 
centrifugation is convenient for small volume samples, but the 
biggest problem lies in the low purity of exosomes with the 
contamination of miscellaneous proteins and polymers (Coughlan 
et al., 2020). Size-exclusion chromatography can screen exosomes 
of high purity and integrity, in which molecules filtrate through 
gels at different speeds depending on size difference (Sidhom 
et  al., 2020). In addition, immunoaffinity capture can recover 
exosomes from complex and viscous fluids, making it a good 
choice for clinical diagnosis with small-volume plasm (Yang 
et  al., 2017).

Followed by isolation, characterization of exosomes is 
necessary before therapeutic administration and mechanistic 
explanation. Various techniques have been developed to confirm 
the biochemical, biophysical, and biomechanical properties of 
exosomes. Western blotting is the main tool for general 
biochemical characterization. MISEV2018 guidelines require 
the identification of at least three positive protein markers of 
EVs: (i) transmembrane proteins or GPI-anchored proteins 
(e.g., CD63, CD81, and CD9); (ii) cytosolic proteins recovered 
in EVs (e.g., TSG101, ANXA, and HSPA8); and (iii) major 
components of non-EV co-isolated structures for purity control 
(e.g., albumin and ribosomal proteins; Thery et  al., 2018). For 
biophysical characterization of single vesicles, electron or atomic 
force microscopy is necessary to provide both close-up and 
wide-field images. Apart from that, other techniques are available 
as a supplement to estimate size, light scattering, and fluorescence 
properties of exosomes. Tunable resistive pulse sensing provides 
reliable and fast particle-by-particle measurement of EV size 
and concentration distribution (Vogel et al., 2016). Nanoparticle 
tracking analysis can visualize and track the Brownian motion 
of individual vesicles by light scattering, and make calculation 
of size distribution and total concentration (Sokolova et  al., 
2011). High resolution flow cytometry is applicable for exosome 
immunophenotyping (Nolan and Duggan, 2018).

Molecular Composition of Exosomes
Exosomes are vesicles with a diameter of 30–150 nm, mainly 
composed of lipids, proteins, and nucleic acids (Figure 1; Doyle 
and Wang, 2019). Exosomes inherit similar but different 
substances and biological properties from their parent cells. 
Compared to parent cells, the double membrane structure of 
exosomes contains a higher content of unsaturated phospholipids 
and a higher ratio of lipid/protein, which increases the rigidity 
of exosomes, ensuring relative stability of exosomes in biologic 
fluids. Furthermore, integrin-associated proteins on the surface 
protect vesicles from phagocytosis of mononuclear phagocytic 
system (MPS) to certain extent (Record, 2018). Currently, 
nucleic acids and proteins are considered as main participants 
of exosome treatments (Tan et al., 2015). MSC-Exos are enriched 
in miRNAs with different functions, such as anti-inflammatory 

miRNAs, anti-apoptotic miRNAs, and immunoregulatory 
miRNAs (Schultz et  al., 2021). Some studies report therapeutic 
roles of exosomal mRNA and other non-coding RNA (lncRNA, 
cirRNA, and piRNA) in microbial diseases (Zhu et  al., 2014;  
Li et  al., 2020a; Shi et  al., 2020;  Yu et  al., 2020a). In addition, 
protein profiling of MSC-EVs reveals that exosomal proteins 
are related to biological process such as innate immunity, 
antimicrobial, host-virus interaction, cellular oxidant 
detoxification, and complement and coagulation cascades. Several 
AMPs were identified, including dermcidin, lactoferrin, lipocalin 
1, lysozyme C, neutrophil defensin 1, S100A7 (psoriasin), 
S100A8/A9 (calprotectin), and histone H4 (Pierce and Kurata, 
2021). AMPs partially account for the antimicrobial effects of 
MSCs’ secretome, which may also work in terms of MSC-Exos 
(Alcayaga-Miranda et  al., 2017).

MSC-EXOS FOR THERAPEUTIC 
APPLICATIONS IN MICROBIAL 
DISEASES

The idea of bringing MSC-Exos into HDT for infectious diseases 
is explorative. In this section, we mainly focus on summarizing 
experimental proves for the efficacy of MSC-Exos in the 
treatment of some persistent or refractory infectious diseases. 
We  first start with a topical disease, periodontitis, and then 
discuss multiple systematic diseases, including bacteria/viruses-
associated pneumonia, sepsis, and bacteria-associated DFUs 
(Figure  2).

MSC-Exo Therapy for Periodontitis
Periodontitis refers to the inflammatory destruction of the 
periodontal supportive tissue (gingiva, periodontal ligament, and 
alveolar bone) as a result of polymicrobial colonization on tooth 
surfaces in the form of biofilms. Periodontitis has been recognized 
and treated for at least 5,000 years, and the classification of which 
has been changed and evolved with the development of new 
knowledge. Several microbes are associated with specific types of 
periodontal diseases, such as Aggregatibacter actinomycetemcomitans 
with aggressive periodontitis, and Porphyromonas gingivalis with 
severe or progressive periodontitis. The presence of the microbial 
biofilm might not be sufficient to directly cause periodontal disease. 
Periodontitis occurs when the balance between microbial biofilms 
and immune responses of the host is lost (Kinane et  al., 2007; 
Kinane and Hajishengallis, 2009; Hajishengallis and Lamont, 2012). 
As pathogens invade periodontium, immune cells release anti-
inflammatory cytokines and antibacterial molecules to fight against 
pathogens, upsetting the homeostasis of alveolar bone at the same 
time. Mechanistically, a cascade of events activates osteoclastogenesis 
leading to subsequent alveolar bone loss via the receptor activator 
of nuclear factor-kappa B (RANK)- ligand (RANKL)-osteoprotegerin 
(OPG) axis (Cochran, 2008; Barbato et  al., 2015). Moreover, 
periodontitis is a disease of high morbidity and recurrence (Frencken 
et  al., 2017). Progressive alveolar bone loss ultimately leads to 
loss of teeth, posing negative influences to oral function and 
aesthetics. The harm of periodontitis exceeds teeth loss, but also 

67

https://www.frontiersin.org/journals/microbiology
www.frontiersin.org
https://www.frontiersin.org/journals/microbiology#articles


Wu et al. MSC-Exo Therapy in Microbial Diseases

Frontiers in Microbiology | www.frontiersin.org 6 January 2022 | Volume 12 | Article 804813

involves a higher risk of systematic diseases, such as cardiovascular 
disease (Donders et  al., 2021), oral squamous cell carcinoma (Hu 
et  al., 2021), and rheumatoid arthritis (Choi and Lee, 2021).

Routine treatments for periodontal diseases include mechanical 
approaches, scaling and root planning, to remove microbial 
biofilms. In situ or systematic antibiotics are applied as adjunctive 
therapies when periodontal infection is hard to control. Yet, 
the recurrence of periodontal disease is high, and no mechanical 
techniques rescue the loss of alveolar bone (Kinane et  al., 
2017). MSC-Exo therapy stands out in the treatment of 
periodontitis for its ability in suppressing excess inflammation 
and promoting tissue regeneration simultaneously. In treatment 
of periodontitis, MSC-Exos, often co-assembled with tissue 
engineering scaffolds, are implanted into periodontal bone 
defects to promote the regeneration of periodontal supportive 
tissues. Abundant studies have demonstrated that the regulation 
of MSC-Exos involves several kinds of cells, such as macrophages, 
osteoclasts, and periodontal ligament cells in periodontium 
(Yu et  al., 2020b; Gegout et  al., 2021).

Macrophages are crucial immunomodulators of the 
periodontal disease and account for both initiation and resolution 
of inflammation and osteoclastogenesis (Darveau, 2010; Hienz 
et al., 2015). Macrophages can be polarized into pro-inflammatory 
phenotype (M1 macrophage) and anti-inflammatory phenotype 
(M2 macrophage), to mediate inflammation and maintain tissue 
homeostasis, respectively (Shapouri-Moghaddam et  al., 2018; 
Jin et al., 2019). MSC-Exo therapy inhibits excessive inflammation 
in periodontium by converting M1 macrophages into M2 

macrophages. Shen et  al. (2020) injected dental pulp stem 
cell-derived exosomes (DPSC-Exos) and DPSC-Exo-incorporated 
chitosan hydrogel (DPSC-Exos/CS) respectively into periodontal 
pockets of ligature-induced periodontitis mice. Both DPSC-
Exos and DPSC-Exo/CS rescued alveolar bone loss and 
periodontal epithelial lesion to some degree, with the chitosan 
hydrogel one performing better (Figure  3). Mechanistically, it 
was demonstrated that DPSC-Exos delivered miR-1246 to induce 
anti-inflammatory polarization of macrophage, and 
downregulated NF-κB p65 and p38 mitogen-activated protein 
kinase (MAPK) signaling pathways to alleviate periodontal 
inflammation (Shen et  al., 2020). In another research, Nakao 
et al. (2021) locally injected human gingiva-derived MSC-derived 
exosomes (GMSC-Exos) into periodontal pockets of mice, and 
observed reduced bone resorption and the number of tartrate-
resistant acid phosphatase (TRAP)-positive osteoclasts in 
periodontal tissue, and these effects were further enhanced by 
pretreating GMSCs with TNF-α. Delivery of exosomal miR-1260b 
accounts for the anti-osteoclastogenic ability of GMSC-Exos, 
which targets Wnt5a-mediated RANKL pathway (Nakao et  al., 
2021). Analogously, decreased RANKL/OPG ratio and number 
of TRAP-positive cells indicate inhibition of osteoclastogenesis 
by bone marrow mesenchymal stem cell-derived exosomes 
(BMSC-Exos) in periodontitis rats (Liu et  al., 2021).

In addition to the immunomodulation of MSC-Exos in the 
treatment of periodontitis, other studies indicate MSC-Exos 
rescue the osteogenic ability of stem cells in periodontal 
ligaments. Wei et al. (2020) indicated human exfoliated deciduous 

FIGURE 2 | Mesenchymal stem cell-derived exosomes (MSC-Exos) for therapeutic application in microbial diseases.
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teeth (SHED-Exos) promoted BMSCs osteogenesis, 
differentiation, and bone formation via Smad5 signaling in a 
ligature-induced periodontitis mouse model. Consistently, Wang 
et al. (2020c) demonstrated the role of SHED-Exos in enhancing 
the osteogenic differentiation of periodontal ligament stem cells 
(PDLSCs) via Wnt and BMP signaling in vitro. Enhancing 

angiogenesis is another important strategy in promoting delayed 
bone healing, as vascular system supplies nutrients, oxygen, 
and serves as a niche for osteoprogenitor cells during bone 
repair (Liu and Castillo, 2018). In the study of Wu et al. (2019), 
SHED-Exos/β-tricalcium phosphate targeted AMPK signaling 
pathway to promote the coupling of human umbilical vein 
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FIGURE 3 | Dental pulp stem cell-derived exosomes (DPSC-Exos)-incorporated chitosan hydrogel (DPSC-Exo/CS) rescues epithelial lesion and alveolar bone loss 
in mice with experimental periodontitis. (A) Schematic illustration. (B) 3D micro-CT reconstructions of maxillae of PBS-, CS-, DPSC-Exo- and DPSC-Exo/CS-treated 
groups (n = 6 per group). (C) Histological H&E-stained sections of the periodontium from each group. (D) Histological tartrate-resistant acid phosphatase (TRAP)-
stained sections of the periodontium from each group. The number of osteoclasts was quantified in each microscope field of view. (E,F) Statistical analysis of the 
CEJ-ABC distance in each group (n = 6 per group) as determined by micro-CT and H&E staining, respectively. (G) Statistical analysis of the number of osteoclasts in 
each group (n = 6 per group) as determined by TRAP staining. Error bar represents SEM. *p < 0.05 (Adopted from Shen et al., 2020 distributed under the CC BY-NC-
ND license).
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endothelial cells angiogenesis and BMSC osteogenesis in a rat 
periodontal defect model. Chew et al. (2019) reported MSC-Exo-
loaded collagen sponge promoted regeneration of periodontal 
defects by enhancing viability, proliferation, and migration of 
periodontal ligament cells through CD73-mediated adenosine 
receptor activation of pro-survival AKT and ERK signaling 
pathways. The above researches indicate that the latent ability 
of MSC-Exos to regulate inflammation and bone remodeling 
paves the way for the establishment of a therapy for periodontitis.

MSC-Exo Therapy for Pneumonia
Pneumonia, an inflammation of lung parenchyma, usually 
caused by infections, remains a heavy global burden on 
health (Watkins and Sridhar, 2018). According to Global 
Burden of Disease Study 2019, lower respiratory infections 
ranked fourth in leading causes of all ages, which pose 
severe health threat on people with a weak immunity system, 
especially children younger than 10 years and the elderly 
aged more than 75 years (Vos et  al., 2020). Pneumonia 
starts with the pathogen invasion into the lower respiratory 
tract, which induces alveoli and interstitium inflammation, 
and pulmonary vascular congestion. As pulmonary 
permeability increases, transudate fluid and debris in the 
alveolar sacs compromise gas exchange (Brooks, 2020). 
Pneumonia can develop into ARDS and acute lung injury 
(ALI), the mortality rate of which is as high as 43% (Zambon 
and Vincent, 2008). Novel pharmacologic therapies for the 
treatment of ARDS/ALI including surfactant, vasodilators, 
prostacyclin, anti-inflammatory, and anti-oxidant reagents, 
have not yet proven to be  effective (Cepkova and Matthay, 
2006). In terms of promising new therapies, MSC-Exos 
have been explored in both preclinical and clinical studies. 
Accumulating evidence has demonstrated that MSC-Exo 
therapy is effective in attenuating excessive inflammation, 
restoring pulmonary function, and reducing mortality, 
verified in several typical ARDS/ALI animal models (Kannan 
et  al., 2009; Knapp, 2009; Islam et  al., 2012; Zhu et  al., 
2014; Hraiech et  al., 2015; Monsel et  al., 2015; Ogata-
Suetsugu et  al., 2017; Hao et  al., 2019; Domscheit et  al., 
2020; Metcalfe, 2020; Wang et  al., 2020a; Kaspi et  al., 2021; 
Shi et  al., 2021a; Tieu et  al., 2021). Herein, the following 
portion aims at providing a comprehensive understanding 
of therapeutical mechanisms of MSC-Exos on bacteria/
viruses-induced pneumonia.

Inhibiting Excessive Inflammation
Mesenchymal stem cell-derived exosomes exhibit 
immunomodulatory properties by directly targeting innate 
immune system. Innate immunity cells (monocytes, 
macrophages, and neutrophils) protect the host against 
infections by secretion of antimicrobial molecules and 
phagocytosis. However, excessive activated macrophages and 
neutrophils can damage alveolar epithelium and lung 
endothelium via secretion of proinflammatory cytokines, 
oxidants, and proteases. Recovery of intact epithelium and 
endothelium depends on the cessation of inflammatory injury 

(Matthay and Zemans, 2011). The anti-inflammation effect 
of MSC-Exos is repetitively proved in a lipopolysaccharide 
(LPS)-induced ALI mouse model, which is the most widely 
used and simplified model for ARDS/ALI, simulating the 
pulmonary response to bacterial endotoxin [7].

Mesenchymal stem cell-derived exosomes attenuate 
inflammation development and progression by regulating 
macrophage polarization by targeting intracellular signaling 
pathways or cellular metabolic pathways. In one aspect, 
MSC-Exos target the downstream pathway of pattern-
recognition receptors (PRRs), such as NF-κB signaling pathway 
(Liu et  al., 2017). MiR-27a-3p from MSC-EVs downregulated 
the expression of nuclear factor kappa B subunit 1 to promote 
M2 macrophage polarization, evidenced by elevated expressions 
of M2 markers arginase-1, interleukin (IL)-10, and decreased 
levels of M1 marker inducible nitric oxide synthase. Significantly 
reduced proinflammatory cytokines including IL-1β, IL-6, and 
TNF-α in the bronchoalveolar lavage (BAL) were observed 
(Figure  4; Wang et  al., 2020a). MVs from Toll-like receptor 
3 preactivated-MSCs further decreased TNF-α and increased 
IL-10 secretion of monocytes, which might be  involved with 
the transfer of cyclooxygenase 2 (COX2) mRNA from MSC-MVs 
to monocytes. The increase in COX2, the key enzyme in 
PGE2 synthesis, shifted monocytes toward an anti-inflammatory 
phenotype by promoting PGE2 secretion (Monsel et al., 2015). 
In another aspect, MSC-Exos control the activation state and 
function of macrophages by reprogramming intracellular 
metabolisms. M1 and M2 macrophages exhibit different 
metabolic patterns. The former relies more on aerobic glycolysis, 
whereas the latter mainly employ mitochondrial oxidative 
phosphorylation (Zhu et  al., 2015). BMSC-exos attenuated 
M1 macrophage polarization through inhibiting glycolysis, 
proved by decreased levels of end-products of aerobic glycolysis 
(adenosine triphosphate and lactic acid). Specifically, BMSC-
Exos functioned by downregulating hypoxia-inducible factor 
1 to inhibit the expression of rate-limiting proteins of glycolysis 
(Zhong et al., 2019; Deng et al., 2020). Morrison et al. (2017) 
reported the role of functional mitochondrial transfer through 
MSC-EVs in the conversion of macrophages into an anti-
inflammatory phenotype via augmented oxidative 
phosphorylation (Morrison et al., 2017).

Moreover, MSC-Exos facilitates the resolution of 
inflammation by intermitting neutrophil migration towards 
lung epithelia. Hao et  al. (2019) reported BMMSC-EVs 
reduced infiltration of white blood cells, neutrophils, and 
levels of TNF-α by elevating the level of extracellular 
leukotriene A4 hydrolase (LTA4H), proved in both Escherichia 
coli endotoxin-induced acute lung injury and E. coli pneumonia 
mouse models. LTA4H reduced inflammation by degrading 
the matrikine proline–glycine–proline, a neutrophil 
chemoattractant (Patel and Snelgrove, 2018). Similarly, in 
a Pseudomonas aeruginosa-induced pneumonia mouse model, 
nebulized human adipose-derived MSC-EVs (ADSC-EVs) 
reduced the inflammatory cell counts, and levels of IL-6, 
and TNF-α in BAL fluid. The researchers reported a dose-
response effect of ADSC-EVs. Within 2 × 105 to 2 × 106 
particles per administration, mice survival rates and EV 
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dosage were positively correlated. However, once exceeding 
the dose of 2 × 106 particles, ADSC-EVs posed an adverse 
effect on the survival rate (Shi et  al., 2021a). A numerically 

lower influx of neutrophils was also seen in an ex vivo 
perfused human lung injured with severe E. coli pneumonia, 
after MSC-MV treatment (Park et  al., 2019).

A
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FIGURE 4 | Both IV and intratracheal (IT) administration of mesenchymal stem cell-extracellular vesicles (MSC-EVs) alleviate lipopolysaccharide (LPS)-induced lung 
injury, elevate miR-27a-3p levels, and decrease NFKB1 levels. (A) Similar to the effects of MSCs, administration of EVs via both IV and IT dramatically improved lung 
injury as shown in histology. Both EVs IV and IT decreased protein concentrations (B), total cell counts (C), and neutrophil counts (D) in the bronchoalveolar lavage 
(BAL) harvested at 48 h after LPS insult. (E) Alveolar macrophages were separated 48 h after LPS insult and assayed for miR-27a-3p expression via quantitative 
real-time PCR. Results are presented relative to control group. (F) Alveolar macrophages were separated from BAL 48 h after IT LPS insult and assayed for NFKB1 
expression via Western blot analysis. Data are expressed as mean ± sd; n = 6. One-way analysis of variance with Bonferroni post hoc test (B-D) or Kruskal-Wallis 
test with Dunn post hoc test (E,F) was used for the analysis. *p < 0.05; **p < 0.01; and ***p < 0.001. (Adopted from Wang et al., 2020a distributed under the 
creative commons CC BY license).
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Promoting Microbe Clearance
Phagocytes (e.g., monocytes, macrophages, and neutrophils) 
safeguard lung tissue against infectious insult through the 
ingestion and phagocytosis of microbes (Kaufmann and Dorhoi, 
2016). It has been reported that MSC-MV treatment dramatically 
increased bacterial phagocytosis via freshly isolated human 
alveolar macrophages (Park et  al., 2019). Pro-bacterial killing 
effects of MSC-Exos were demonstrated in intratracheal 
instillation of bacteria-induced ALI mouse models, which better 
mimicked immune response of pneumonia patients (Knapp, 
2009). In an E. coli pneumonia mouse model, miR-145 from 
BMSC-EVs decreased the activity of multidrug resistance-
associated protein 1 (MRP1) in monocytes, an ATP-binding 
cassette transporter, to increase Leukotriene B4 production, 
which exerts antimicrobial effects by augmenting phagocytosis 
and the release of antimicrobial agents (Hao et  al., 2019). 
Besides, Monsel et al. (2015) demonstrated increased monocyte 
bacterial phagocytosis after administration of MSC-MVs on 
E. coli pneumonia in mice. It is attributed to the upregulated 
protein level of keratinocyte growth factor (KGF) in the alveolus, 
which promoted bacterial clearance by decreasing apoptosis 
of monocytes through AKT phosphorylation (Lee et al., 2013).

Alveolar Epithelial Cell Protection
Mesenchymal stem cell-derived exosomes can also restore function 
of injured alveolar epithelial type II cells, which play an important 
role in the maintenance of alveolar integrity and activation of 
immune defense (Kannan et  al., 2009). Lee et  al. (2009) made 
deep explorations into the detailed mechanisms of epithelial cell 
protection effect of MSC-MVs (Zhu et al., 2014; Park et al., 2019). 
In an LPS-induced ALI mouse model (Zhu et  al., 2014) and 
severe E. coli pneumonia ex vivo human lung model (Park et  al., 
2019), MSC-MVs dramatically improved alveolar fluid clearance 
and decreased lung protein permeability by the delivery of KGF 
mRNA to alveolar epithelial type II cells. KGF was proved effective 
in upregulating the key epithelial sodium channel in alveolar 
epithelial cells to increase fluid absorption (Lee et al., 2009). Injured 
alveolar epithelial type II cells benefited from the restoration of 
ATP levels, which might be  attributed to the transfer of key 
metabolic enzymes (such as glyceraldehyde 3-phosphate 
dehydrogenase and pyruvate kinase) or mRNA for key mitochondrial 
genes carried by MVs in an E. coli pneumonia mouse model 
(Monsel et  al., 2015). Bioenergetics reprogramming of epithelial 
cells can also be  mediated by BMSC-EVs mitochondria transfer, 
reported by Islam et  al. (2012).

Inhibiting Viral Activity
In case of viral pneumonia, apart from inhibition of cytokine storm, 
suppression on viral replication and attack on viruses are underlying 
mechanisms of MSC-Exo therapy. Exosomal microRNAs derived 
from MSCs might target viral genome to interfere with viral RNA 
transcription or protein translation essential for viral replication 
(Qian et  al., 2016; Demirci and Adan, 2020; Sardar et  al., 2020). 
Khatri et  al. (2018) reported that MSC-EVs attenuated influenza 
virus-induced ALI in pigs by inhibiting viral replication, evidenced 
by significantly decreased virus loads in both lung lysates and 

nasal swabs. Meanwhile, in vitro experiment proved reduced virus 
activity in hemagglutination, replication, and pro-apoptosis. The 
anti-influenza property is attributed to the transfer of exosomal 
RNAs to epithelial cells, as therapeutic effects were reversed by 
pre-incubation of MSC-EVs with RNase enzyme (Khatri et  al., 
2018). It is presumable that miRNAs might prevent viral replication 
by targeting viral genes (e.g., reducing the spike protein) or inhibiting 
the expression of host cells receptors to avoid virus-cell interaction 
(Chauhan et  al., 2021). Similar inhibition in viral replication was 
observed in the application of exosomes/microvesicles derived from 
murine hypothalamic neural stem/progenitor cells (htNSC) on 
pseudotyped SRAS-CoV-2-infected human respiratory cells in vitro. 
Furthermore, NSC-Exos exerted inherent antiviral ability by attacking 
and degrading viruses independent of cells. TEM imaging confirmed 
direct exosome-virus interaction in a cell-free environment, suggesting 
exosomes functioned by surrounding, engulfing, and breaking down 
viruses. Pretreated viruses with NSC-Exos led to degradation of 
spike glycoprotein and lessened infection ability toward cells (Yu 
et  al., 2020a). However, the underlying molecular mechanisms 
remain to be  explored.

Taken together, MSC-Exo therapy has great potential in 
treatment of infectious pneumonia with the ability to modulate 
protective immune response, provide epithelial cell protection, 
and inhibit viral-cell inhibition. Multiple relevant clinical trials 
are in progress, which will be discussed in the Section “Clinical 
Translation of Exosome Therapy.”

MSC-Exo Therapy for Sepsis
Sepsis is defined as life-threatening organ dysfunction caused by 
a dysregulated host response to infections, according to the third 
international consensus definition (Singer et  al., 2016). Sepsis-
related death accounts for 19.7% of all global death in 2017, 
remaining a major public health problem (Rudd et  al., 2020). 
Common causative microorganisms include Gram-positive bacterial 
pathogens (e.g., Staphylococcus aureus, Streptococcus pneumoniae), 
and Gram-negative pathogens (e.g., E. coli, Klebsiella spp., and P. 
aeruginosa; Opal et  al., 2003; Umemura et  al., 2021). The 
pathophysiologic mechanisms of sepsis can be generally concluded 
into three aspects: inflammation, microcirculatory dysfunction, 
and metabolic reprogramming (Peerapornratana et al., 2019). The 
possibility of polymicrobial infections adds difficulties to the early-
stage diagnosis of sepsis. Empiric combined broad-spectrum 
antimicrobial therapy is recommended at the initial stage (Rhodes 
et  al., 2017). However, it acts as a double-edged sword, with side 
effects such as increased risks of multidrug-resistant infections, 
organ damages, and anaphylaxis (Klompas et  al., 2018; De Waele 
and Dhaese, 2019). In absence of such side effects, MSC-Exos 
may complement as an adjuvant therapy in sepsis, with their 
indistinctive host protection against a broad range of microorganisms 
and reparative effects on injured organs. MSC-Exo therapy in 
remedy of sepsis-induced acute injuries in liver, kidney, and 
cardiovascular system will be  discussed in detail as follows.

Liver
The incidence of liver failure is relatively low in sepsis because 
of its ability in clearance of endotoxins and self-regeneration 
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(Weiss et al., 2001). However, once intestinal barrier compromised 
under sustained systematic inflammation, bacterial translocation 
from the gut lumen through circulation can result in severe 
liver dysfunction (Sun et  al., 2020). MSC-Exos show hepatic 
protection in condition of acute liver injury, demonstrated by 
improved hepatic function indicators (lower serum alanine 
aminotransferase and aspartate aminotransferase levels), 
histological characteristics changes (lower degree of hepatocellular 
necrosis and inflammation), and survival rates in D-GalN/
LPS-induced acute liver injury mouse models (Lou et al., 2017; 
Hu et al., 2020; Zhang et al., 2020b). In one aspect, therapeutic 
effects of MSC-Exos lie in the modulation of innate immune 
system. Chen et  al. (2017) reported exosomes from human 
menstrual blood-derived stem cells (MenSC-Exos) inhibited 
recruitment of NK cells, macrophages and release of inflammatory 
cytokines including TNF-α, IL-6, and IL-1β in liver. Liu et  al. 
(2018) reported miR-17-containing ADSC-Exos suppressed the 
activation of thioredoxin-interacting protein-mediated NLRP3 
inflammasome in hepatic macrophages, indicated by reduced 
cleaved-Caspase-1, IL-1β, and IL-18 expressions. Similar 
inhibition effects on the activity of the NLRP3 inflammasome 
by human umbilical cord mesenchymal stem cell (hucMSC)-
Exos were observed (Jiang et  al., 2019). Furthermore, Shao 
et al. (2020) confirmed that exosomes from IL-6 preconditioned-
hucMSCs targeted phosphatidylinositol-3-kinase (PI3K) signaling 
pathways to suppress monocyte/macrophage activation and 
inflammatory cytokine secretion by transfer of miR-455-3p. 
In another aspect, MSC-Exos participate in the maintenance 
of hepatocyte hemostasis by inhibiting cell apoptosis. MenSC-
Exos suppressed apoptosis by downregulation of Caspase-3, 
an important apoptosis-associated protein (Chen et  al., 2017). 
Zhao et  al. (2019b) reported BMSC-Exos reduced apoptosis 
of hepatocytes by inducing autophagy, evidenced by increased 
levels of autophagy marker proteins, microtubule-associated 
protein 1A/1B-light chain 3, Beclin-1, and the number of 
autophagosomes. Autophagy is a self-protection mechanism 
that attenuates liver cell death, functioning by removing damaged 
organelles and alleviating intracellular stress (Ni et  al., 2012).

Kidney
Sepsis-associated acute kidney injury (S-AKI) is of high morbidity 
in severely ill patients, with high risk of developing into chronic 
kidney diseases and death (Peerapornratana et al., 2019). Multiple 
studies have provided histological and laboratory tests evidence 
to validate the capability of MSC-Exos in rescuing renal function 
in sepsis (Gang et  al., 2021). In cecal ligation and puncture 
(CLP)-induced sepsis mice, the kidney morphology was more 
intact after intervention of MSC-Exos. Decreased kidney 
interstitial edema, higher integrity of brush borders and reduced 
inflammatory cell infiltration were observed in HE  staining 
kidney tissues (Blanco et  al., 2020; Gao et  al., 2020). Blood 
tests further confirmed renal function restoration. In serum, 
the levels of blood nitrogen urea, serum creatinine and various 
inflammation indicators were downregulated after the treatment 
of MSC-Exos, indicating increased glomerular filtration rates 
(Nassar et  al., 2016; Li et  al., 2020b). The protective function 

is associated with the upregulation of SIRT1, which regulates 
NF-κB and apoptotic pathway (Gao et  al., 2020). In another 
research, Shen et al. (2021) reported ADSC-Exos inhibited 
ROS accumulation and M1 polarization by downregulating 
Kelch Like ECH Associated Protein 1 and activating Transcription 
factor nuclear factor-E2-related factor 2 (Nrf2)/Heme 
Oxygenase-1 (HO-1) pathway (Shen et al., 2021). Other molecular 
mechanisms involve upregulation of miR-146b level in kidney 
tissue by hucMSC-Exos, which targets IL-1 receptor-associated 
kinase (IRAK1) and inhibits NF-κB activity (Zhang et al., 2020a).

Cardiovascular System
The pathogenesis of septic cardiomyopathy has not been fully 
revealed, and the current understanding of pathogenic 
mechanisms includes increased capillary permeability, oxidative 
stress, and calcium dyshomeostasis (Kakihana et  al., 2016; 
Ehrman et al., 2018). MSC-Exos provide cardioprotection under 
septic conditions by suppressing inflammation and maintaining 
calcium homeostasis. Intravenous injection of MSC-Exos 
improved septic mice survival and inhibiting cardiomyocytes 
death by attenuating excess inflammation via miR-233, which 
downregulated Sema3A and Stat3 (Figure 5; Wang et al., 2015). 
Pink1 mRNA-containing hucMSC-Exos rescued injured 
cardiomyocytes by activating PINK1-PKA-NCLX axis, which 
alleviated cardiomyocyte mitochondrial Ca2+ efflux disorder 
(Zhou et  al., 2021b). Anti-apoptotic effects on cardiomyocytes 
may associate with miR-21a-5p (Luther et  al., 2018), miR-19a 
(Yu et  al., 2015), miR-451 (Zhang et  al., 2010), and miR-211 
(Yu et  al., 2013).

Taken together, MSC-Exos may represent a promising novel 
and efficacious cell-free therapeutic modalities in treatment of 
sepsis, depending on its orchestrated ability in anti-inflammation 
and anti-apoptosis.

MSC-Exo Therapy for Bacteria-Associated 
Diabetic Foot Ulcers
Diabetic foot ulcers, characterized as micro-vascular dysfunction 
and peripheral neuropathy, is highly susceptible to secondary 
infections, as impaired immune function slows down wound 
healing and suppressed proprioception potentially leads to 
injuries. The biofilm on the wound site, produced by aerobic 
and anaerobic bacteria, exhibits resistance toward antibiotics 
that causes difficulties to the treatment of DFU (Raghav et  al., 
2021). Prevalence of polymicrobial or multidrug-resistant bacteria 
infections increased the difficulties to control infections, and 
the risk of amputation (Pitocco et  al., 2019). In this part, 
we  place particular emphasis on the mechanisms of action by 
which MSC-Exos confer the ability to accelerate wound healing 
and strengthen biological barriers against microbes in treating 
bacteria-associated DFU.

Mesenchymal stem cell-derived exosomes rescue function 
of epithelial progenitor cells (EPC) and promote angiogenesis 
by delivering RNAs (microRNAs, lncRNAs, and circRNAs) and 
proteins (Dalirfardouei et al., 2021). Several studies demonstrated 
hydrogels combined with MSC-Exos promoted wound healing 
and skin regeneration under diabetes conditions via the transfer 
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of RNAs and proteins (Wang et  al., 2019a,b). MiR-126  in 
exosomes from deferoxamine-pretreated BMSCs activated PI3K/
AKT signaling pathway to promote angiogenesis in diabetic 
rat wounds (Ding et  al., 2019). Synovial MSCs overexpressing 
miR-126 accelerated angiogenesis, re-epithelization, and 
maturation of collagen (Tao et  al., 2017). ADSC-Exos 
overexpressing linc00511 enhanced proliferation, migration, and 
angiogenesis of EPC, by inhibiting Progestin and adipoQ receptor 
family member III (PAQR3) expression, and increasing Twist 

homolog 1 protein level by reducing its degradation (Qiu et al., 
2021). ADSC-Exos were found to suppress apoptosis of EPC 
induced by high glucose through stimulating autophagy. The 
transmit of mmu_circ_0000250 inhibited miR-128-3p and 
upregulated expression of SIRT1, which promoted autophagy 
in EPCs (Shi et  al., 2020). Protein cargoes also contribute to 
the improvement of EPC function. ADSC-Exos overexpressing 
Nrf2 alleviated senescence and oxidative stress of EPC under 
high glucose conditions, evidenced by improved levels of 

A
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FIGURE 5 | The effects of WT-exosomes and miR-223-KO exosomes on cecal ligation and puncture (CLP)-induced inflammatory response, cardiac dysfunction 
and animal mortality. (A–C) CLP-mice treated with WT-exosomes (n = 11) showed lower levels of serum TNF-α (A), IL-1β (B), and IL-6 (C), whereas CLP-mice 
injected with KO-exosomes (n = 11) exhibited higher levels of circulating TNF-α (A), IL-1β (B), and IL-6 (C), compared with those treated with incomplete DMEM 
medium (n = 10; ^p < 0.05 vs. shams; *p < 0.05 vs. CLP + medium; #p < 0.05 vs. CLP + medium). (D) Results of echocardiography measurement showed that values of 
the left ventricular ejection fraction (EF%, E) and the fractional shortening (FS%, F) were significantly decreased in CLP mice injected with incomplete DMEM 
medium (n = 10), compared with shams (n = 8). Remarkably, the reduction of EF% and FS% was attenuated in WT-exosome-treated CLP mice (n = 11); whereas it 
was aggravated in CLP mice administrated with miR-223-KO exosomes (n = 11; ^p < 0.05 vs. shams; *p < 0.05 vs. CLP + medium; #p < 0.05 vs. CLP + medium). 
(G) The survival of CLP-mice was significantly improved by WT-exosome treatment, whereas it was worse by miR-223-KO exosome injection (n = 8, *p < 0.05 vs. 
CLP + medium; Adopted from (Wang et al., 2015) distributed under the creative commons CC BY license).
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Senescence Marker Protein 30, and decreased levels of oxidative 
stress-related proteins (NADPH oxidase 1, NADPH oxidase 4; 
Li et al., 2018). Deleted in malignant brain tumors 1 (DMBT1), 
a pro-angiogenic protein, from human urine-derived stem cells 
(USCs) accounts for the pro-angiogenic effects of USC-Exos 
(Chen et al., 2018). Other activated signaling pathways include 
MAPK (Li et  al., 2016) and NF-kB (Dalirfardouei et  al., 2019) 
pathways.

The wound healing of DFU requires the collaboration of 
multiple types of cells. MSC-Exos also target fibroblasts and 
keratinocytes for the acceleration of re-epithelialization, collagen 
deposition, and remodeling via regulating MAPK/ERK (Li 
et  al., 2016), PI3K/AKT (Li et  al., 2015; Zhang et  al., 2018; 
Sears et al., 2021), and Wnt/β-catenin (Lv et al., 2020) pathways. 
Engineered hADSC-Exos overexpressing miR-21 significantly 
strengthened the migration and proliferation of keratinocytes 
by upregulating Matrix Metallopeptidase 7 (Lv et  al., 2020). 
Modified MSC-Exos transferred lncRNA H19 to fibroblast, 
which impaired miR-152-3p-mediated phosphatase and tensin 
homolog (PTEN) inhibition and thus suppressed PI3K/AKT 
pathway, leading to increased migration, proliferation, and 
decreased apoptosis of fibroblast (Li et  al., 2020a).

Mesenchymal stem cell-derived exosomes also benefit the 
treatment of DFU by promoting neural repair to regain peripheral 
sensation. Shi et al. (2017) reported the combination of exosomes 
from GMSCs and chitosan/silk hydrogel increased nerve density, 
compared with the hydrogel group, indicating that GMSC-Exos 
might facilitate neuronal ingrowth into the wound bed (Shi 
et  al., 2017). MiR-146a-overexpressing MSC-Exos constructed 
by Fan et al. (2021) promoted axon remyelination, and improved 
intraepidermal nerve fiber density in hind paw plantar skin 
of diabetic mice. In a word, MSC-Exos prevent infections of 
DFU by restoring blood supply, epidermis structure, and 
peripheral neuropathy.

CLINICAL TRANSLATION OF EXOSOME 
THERAPY

Clinical Trials
Clinical trials using stem cell-derived exosomes as intervention 
were searched by using the terms “exosomes” or “extracellular 
vesicles” in the ClinicalTrials.gov database,1 the European Union 
Clinical Trials Register2 and the World Health Organization 
International Clinical Trials Registry Platform (Chinese Clinical 
Trial Registry).3 Then selected studies went through manual 
screening to sort out microbial disease-related clinical trials. 
Eventually, 13 interventional studies and 2 expanded access 
are included, with observational studies excluded (Table  1). 
These clinical studies mainly aim at investigating the safety 
and efficacy of MSC-Exos in the treatment of infections. Some 
try to explore optimal dosage of exosomes by setting up different 
dosage intervention groups.

1 https://clinicaltrials.gov
2 https://www.clinicaltrialsregister.eu
3 http://www.chictr.org.cn

Most studies investigate systematic diseases, and only two 
of 15 studies (NCT04270006, ChiCTR1900027140) focus on 
a topical disease, periodontitis. Noteworthily, those two studies 
applied different routes of administration: One (NCT04270006) 
locally injects autogenous adipose stem cell exosomes into the 
periodontal pockets; while in another study 
(ChiCTR1900027140), the mixtures of DPSC-Exos, DPSCs, and 
Bio-Oss bone meal are applied during guided tissue regeneration. 
Changes in bone defect depth, pocket depth, clinical attachment 
loss, and gingival inflammation are measured to evaluate the 
degree of periodontal tissue regeneration in both studies. 
However, the lack of control group or blinding method may 
increase bias and compromise the reliability of outcomes.

The majority of trials (11 out of 15) are registered to 
investigate MSC-Exo treatment in COVID-19-associated 
pneumonia (one trial for Phase I, four for Phase I/II, two for 
Phase II, two for expanded access, and two for unclear phase). 
And one study (Phase I/II) focuses on drug-resistant pneumonia. 
Most studies are controlled, randomized, parallel, double-blinded 
trials, in which only NCT04493242 is conducted in multi-
center. The parent cells sources are diverse, including bone 
marrow, adipose tissue, umbilical cord, amniotic fluid. 
Administration routes are roughly evenly split between 
intravenous injection and aerosol inhalation. Among 12 registered 
studies, only three (NCT04491240, NCT04493242, and 
NCT04276987) are completed. Results information of 
NCT04276987 is currently not publicly available. In 
NCT04491240, no adverse event was reported during both 
exosome solution inhalation procedure and the whole trial, 
indicating the safety of intranasal administration of MSC-Exos. 
Regarding therapeutic efficacy, it seems that no data (time to 
clinical recovery, SpO2 concentration, C-reactive Protein, and 
Lactic Acid Dehydrogenase level in serum) indicated a significant 
difference between exosome treatment groups and placebo 
group. NCT04493242 has been published to report the safety 
and efficacy of allogeneic BMSC-Exos (ExoFlo™) for severe 
COVID-19 infections. No adverse events were observed 72 h 
after exosome therapy. After one course of treatment, PaO2/
FiO2 (an oxygenation indicator), neutrophils and lymphocytes 
(CD3+, CD4+, and CD8+) counts had significant increases. 
Meanwhile, acute phase reactants (C-reactive protein, ferritin, 
and D-dimer) declined. The results indicated ExoFlo™ therapy’s 
capacity in restoring lung function and promoting protective 
immune response (Sengupta et  al., 2020). Although the study 
demonstrated a promising future of MSC-Exo therapy in 
COVID-19 infections, doubts and uncertainties remained. The 
study was lack of crucial details in terms of exosome production, 
characterization, biological properties, and dosage. Furthermore, 
standards in evaluating the correlation between adverse events 
and exosome therapy were also questioned. More data are 
needed to allow proper assessment of the medical value and 
deeper exploration of the molecular mechanisms of ExoFlo™ 
(Lim et  al., 2020). Only one not-yet-recruiting study 
(NCT04850469/ChiCTR2100044280) is to explore the 
administration of MSC-Exos in sepsis. And it is also the only 
study that chooses children as test subjects, with the rest of 
studies only involving adult participants.
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Routes of Administration
Biodistributions and biological properties of exosomes vary 
depending on the application form. Therefore, it is of great 
importance to figure out optimal ways to deliver exosomes 
based on disease characteristics. Generally, there are two strategies 

for exosome administration, systematic administration, and 
topical administration. Systematic administration involves 
intravenous injection and aerosol inhalation, appropriate for 
multi-system diseases or internal organs-affected diseases, sepsis 
and novel corona pneumonia as typical examples. Conversely, 

TABLE 1 | Published clinical trials of mesenchymal stem cell-derived exosome (MSC-Exo) therapy in microbial diseases.

Trial ID number Target disease Stage Study design Sample 
volume

Exosome source Route Frequency

NCT04270006 Periodontitis Early phase 1 Single group, 
open label

10 Adipose-derived 
stem cells

Location injection -

ChiCTR1900027140 Chronic 
Periodontitis

N/A Randomized 
parallel 
controlled 
study

48 Autologous dental 
pulp stem cells

Loaded on scaffold -

NCT04602442 Covid19 
pneumonia

Phase 2 Randomized, 
parallel, and 
double-blinded

90 Mesenchymal 
stem cells

Aerosol inhalation Five times (every 
2 days)

NCT04491240 Covid19 
pneumonia

Phase 1, Phase 2 Randomized, 
parallel, and 
double-blinded

30 Mesenchymal 
stem cells

Aerosol inhalation Five times (every 
2 days)

NCT04657406 Mild to moderate 
COVID-19

Treatment IND Expanded 
access

- Amniotic stem 
cells and epithelial 
cells

Intravenous 
administration

Three times at day 
0, 4, and 8

NCT04384445 Moderate to 
severe COVID-19

Phase 1, Phase 2 Controlled, 
randomized, 
parallel, and 
double-blinded

20 Amniotic stem 
cells and epithelial 
cells

Intravenous 
administration

Three times at day 
0, 4, and 8

NCT04493242 Moderate-to-
severe ARDS in 
patients with 
severe COVID-19

Phase 2 Multi-center, 
double-blinded, 
placebo-
controlled, and 
randomized 
controlled

120 Bone marrow 
mesenchymal 
stem cells

Intravenous 
administration

-

NCT04276987 Covid19 
pneumonia

Phase 1 Single group, 
open label

24 Allogenic adipose 
mesenchymal 
stem cells

Aerosol inhalation Five times (each 
day)

NCT04657458 COVID-19 
associated 
moderate to 
severe ARDS

Intermediate-size 
population

Expanded 
access

- Bone marrow 
mesenchymal 
stem cells

Intravenous 
administration

-

NCT04798716 COVID-19 with 
moderate to 
severe NCP or 
ARDS

Phase 1, Phase 2 Open-label for 
the first 15 
patients; RCT 
for the final 40 
patients

55 Mesenchymal 
stem cells

Intravenous 
administration

Three times (every 
other day)

ChiCTR2000030484 Lung Injury 
following novel 
coronavirus 
pneumonia

N/A Randomized 
parallel 
controlled 
study

90 Human umbilical 
cord mesenchymal 
stem cells

Intravenous 
administration

14 times (every day)

ChiCTR2000030261 Novel coronavirus 
pneumonia 
(COVID-19)

N/A Randomized 
parallel 
controlled 
study

26 Mesenchymal 
stem cells

Aerosol inhalation -

2021-002184-22 COVID-19 
disease

Phase 2 Controlled, 
randomized, 
and single 
blinded

90 - Aerosol inhalation -

NCT04544215 Drug-resistant 
pulmonary 
infection

Phase 1, Phase 2 controlled, 
randomized, 
parallel, and 
double-blinded

60 Allogeneic human 
adipose-derived 
mesenchymal 
progenitor cells

Aerosol inhalation Seven times (every 
day)

NCT04850469/
ChiCTR2100044280

Sepsis (in 
children)

- - 200 Mesenchymal 
stem cells

- -
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topical administration is suitable for limited infections, with 
the hope that exosomes are constraint in the focus of infections 
and exert maximum curative effects to local cells.

Systematic Administration
Intravenous Administration
Intravenous administration might be  the most common exosome 
delivery method in basic research or clinical trials. Generally, 
biodistributions and pharmacokinetics of exosomes vary depending 
on parent cell sources and patients’ pathologic conditions. Grange 
et al. (2014) performed intravenous injection of DiI-labeled MSC-EVs 
in healthy mice, and detected the fluorescent signal from freshly 
dissected tissues after 5 and 24 h. It showed that fluorescence 
intensity peaked in liver, spleen, and lung successively. While in 
an acute kidney injury mouse model, the accumulation of exosomes 
in the kidney increased and extended (Grange et  al., 2014). Choi 
et al. (2021) observed over 80% of HEK293T cell-derived exosomes 
were cleared out from the circulation in 1 h after intravenous 
injection, with most of the rest tentatively accumulating in liver 
and then translocated to the intestine from 8 h post-injection. 
While in sepsis mice model, clearance speed significantly slowed 
down, indicating that liver dysfunction in later stage of sepsis 
may delay biliary excretion of exosomes (Choi et  al., 2021). After 
intravenous injection, exosomes showed a short half-life (several 
minutes) in the circulation of healthy animals, most of which 
were captured by peripheral macrophages and neutrophils. Later, 
the remaining exosomes mostly accumulated in liver and spleen 
for more than 24 h. Rapid clearance from blood imposes restriction 
on the proportion of exosomes arriving target tissue, thus lessening 
therapeutic effects (Morishita et  al., 2017; Yang et  al., 2021).

Intranasal Administration
Intranasal exosome delivery refers to the transformation of 
exosome solution into aerosol which is inhaled directly into 
the lung (Pires et  al., 2009). In this way, exosomes target lung 
tissue first, and go through lung air-blood barrier to target 
remote organs. It attracts increasing attentions in the treatment 
of COVID-19 associated pneumonia (Tsuchiya et  al., 2020). 
Exosome nebulization results in a more homogeneous spread 
with deeper penetration to the distal lung lobules. Furthermore, 
it is non-invasive, almost painless, and convenient to conduct 
without the need for sterilization. More importantly, intranasal 
delivery may improve on-target effect in central neural system, 
as it overcomes difficulties in crossing blood-brain barrier by 
passing through neuroepithelium in nasal olfactory region to 
get direct access to the brain (Haney et  al., 2015; Guo et  al., 
2019). Guo et  al. (2019) labeled exosomes with glucose-coated 
gold nanoparticles (GNP), and tracked them by in vivo 
neuroimaging, giving a hint about the difference of intravenous 
and intranasal administration in brain accumulation and whole-
body biodistribution. It turns out that the latter one made it 
easier to pass blood-brain barrier, leading to superior brain 
targeting, while the former one resulted in higher accumulation 
within the liver (Guo et  al., 2019). However, consideration 
should be  taken that pathological conditions in airway may 
affect nasal mucociliary clearance and influence drug absorption.

Topical Administration
Topical administration directs exosomes to sites of injection, 
suitable for superficial injuries or localized infections. For 
example, in open fractures, local administration of antibiotics 
leads to higher concentrations within the wound cavity, 
meanwhile minimizing systemic toxicity. In contrast, systemically 
administered antibiotics are hard to access avascular wound 
cavities (Lawing et al., 2015). The application forms are diverse, 
including local injection, smearing, exosome-loaded scaffolds, etc.

Gong et  al. (2021) performed intramyocardial injection of 
gold nanoparticle-labeled exosomes in a myocardial infarction 
mouse model. In vivo CT imaging showed that majority of 
MSC-Exos remained in the MI area for up to 24 h after injection, 
and only few spread to other organs, indicating local injection 
as an effective way to deliver exosomes to limited treatment 
areas (Gong et  al., 2021). Mohammed et  al. (2018) studied 
the use of ADSC-Exos as adjunctive therapy to nonsurgical 
periodontal treatment. By local injection into periodontal pockets, 
the ADSC-Exo group revealed the best results with significantly 
higher area % of newly formed tissues in ligature-induced 
periodontitis rat model demonstrated by histologic study 
(Mohammed et  al., 2018). Zhou et  al. (2021c) compared two 
administration routes, smearing and subcutaneous injection, 
in the efficiency of delivering human ADSC-Exos to promote 
cutaneous wound healing. The results showed that the ADSC-
Exo-smearing group significantly shortened healing time and 
narrowed scars on full-thickness wounds in mice. Specifically, 
HE  staining and Masson staining illustrated better 
re-epithelialization and well-reorganized collagen fibers in the 
ADSC-Exo-smearing group than the subcutaneous injection 
group. The authors attributed this to the loss of exosomes 
during the local injection and direct injection may disturb the 
hierarchy of wound. Smearing might be  an optional treatment 
options for clinical patients with exposed surface wounds 
accompanied with chronic infections (Zhou et  al., 2021c).

The application of exosome-scaffold complexes is expected to 
repair tissue defects and release therapeutic exosomes at a controlled 
and sustained speed. Qian et al. (2020) created a multi-functioned 
chitosan-silk fibroin dressing with silver nanoparticles-loaded 
exosomes for infected wounds healing. The CTS-SF/SA/Ag-Exo 
dressing showed a sudden burst of exosome release at the beginning, 
and maintained release in low speed for up to 48 h, exerting 
constant antimicrobial and healing promotion effect. Shiekh et  al. 
(2020) developed ADSC-Exo-embedded oxygen releasing cryogels 
as wound dressing, in which exosomes were released gradually 
for up to 6 days. The exosome-laden wound dressing improved 
the wound healing in Staphylococcus aureus, and P. aeruginosa 
infected diabetic wound ulcers, with enhanced collagen I deposition 
and mature epithelial structures observed (Shiekh et  al., 2020). 
In other novel wound dressing, ADSC-Exos were encapsulated 
in the FHE hydrogel (F127/OHA-EPL) through electrostatic 
interaction and exhibited a representative long-term pH-responsive 
sustained release behavior. The exosome laden FHE hydrogel 
showed great potential in promoting chronic diabetic wound 
healing and complete skin regeneration (Wang et  al., 2019a). 
Similarly, GMSC-derived exosome-chitosan/silk hydrogel sponge 
complex accelerates wound healing in a diabetic rat skin defect 
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model (Shi et  al., 2017). Hydrogel promoted better healing of rat 
bone defects with the addition of hucMSC-derived exosomes 
(Wang et  al., 2020b).

Exosome Modifications
Exosome modifications are an essential process to endow 
exosomes with more powerful therapeutic effects. Efforts are 
made with the purpose of increasing therapeutical components 
loadings and enhancing delivery efficiency.

Increasing Loading of Therapeutical Components
To improve the therapeutic capacity of exosomes, exosome 
modifications can be divided into pre-loading and post-loading 
two strategies, depending on the timing of intervention (de 
Jong et  al., 2020).

Promoting Expressions of Bioactive Molecules
In the pre-loading approach, parent cells are pretreated with 
biochemical or biophysical stimulations. Endogenous bioactive 
molecules are then packaged into exosomes in the process of vesicle 
biogenesis. Alterations in extracellular environments change the 
synthesis patterns of proteins and nucleic acids in stem cells (Katsuda 
et  al., 2013). Preconditioning with pro-inflammatory cytokines or 
virulence factors simulates the environment of early infections and 
tissue damages, in which MSCs adapt and prepare themselves to 
survive in harsh conditions, by releasing soluble factors or extracellular 
vesicles to regulate microenvironment and accelerate tissue repair 
(Munir et  al., 2020). The activation of toll-like receptors (TLRs)/
pathogen-associated molecular patterns (PAMPs) signaling pathway 
plays an important role in stimulating immune responses and tissue 
repair in MSCs (Shirjang et  al., 2017). PAMPs, such as LPS (Ti 
et  al., 2015), or synthetic ligands, such as Poly (I:C; Pierce and 
Kurata, 2021), can interact with TLRs in MSCs to initiate downstream 
pathways to enhance the antimicrobial and immunomodulatory 
proteomic profile of secreted EVs, which can promote M2 polarization 
and enhance pathogen phagocytosis of macrophages/monocytes. 
Similar enhancements in EVs’ biological properties can be acquired 
by preconditioning with pro-inflammatory cytokines, TNF-α (Nakao 
et al., 2021) and IFN-γ (Varkouhi et al., 2019). Apart from enhancing 
expressions of therapeutic substances, stimulations of 
pro-inflammatory cytokines or virulence factors also induce a larger 
amount of exosome secretion (Ti et  al., 2015; Varkouhi et  al., 
2019; Nakao et  al., 2021). Upregulation of specific microRNA 
expressions in MSCs endows exosomes with properties such as 
pro-angiogenesis (Li et  al., 2016; Tao et  al., 2017; Ding et  al., 
2019), immunomodulation (Fan et  al., 2021), and anti-apoptosis 
(Yu et  al., 2015; Shi et  al., 2020). What is more, researchers have 
found that biophysical stimuli, such as hypoxia and ionizing radiation 
(Jabbari et  al., 2019), can alter biomolecules composition of EVs 
to increase the pro-angiogenic property. Gorgun et  al. (2021) 
reported inflammatory cytokines (TNF-α, IL-1α) and hypoxia exerted 
synergistic effects on improving the pro-angiogenic property of 
secreted MSC-EVs. Similarly, in another research, hypoxia-treated 
human ADSCs released exosomes with a greater pro-angiogenesis 
property in grafted tissue via regulating VEGF/VEGF-R signaling 
(Han et  al., 2019).

Incorporation of Therapeutic Drugs
The post-loading approach refers to primitive exosome 
processing, in which therapeutic agents are internalized or 
attached to the isolated exosomes. Conventional post-loading 
methods include passive incubation, electroporation, sonication, 
and transfection (de Jong et  al., 2020). Antimicrobial or 
immunomodulatory substances, such as antibiotics (Yang et al., 
2021), antimicrobial nanoparticles (Qian et al., 2020), microRNA 
mimics (Lv et  al., 2020), or other therapeutic drugs (Sun 
et  al., 2010) can be  loaded into exosomes. For instance, Yang 
et  al. (2021) improved cell permeability of vancomycin, a 
hydrophilic antibiotic, by loading it into exosomes via sonication. 
With such modification, vancomycin was able to target and 
eradicate intracellular Methicillin-resistant S. aureus. 
Furthermore, exosomes as vectors helped the accumulation 
of antibiotics in liver and spleen, where infected macrophages 
were predominantly distributed. Encapsulating antibiotics with 
exosomes contributes to alleviating toxicity and possibility of 
antibiotic resistance by lowering the dosage of antibiotics 
(Yang et  al., 2021). In another research, Qian et  al. (2020) 
observed synergistic effects between exosomes and silver 
nanoparticles (AgNPs) in repairing infected wounds. The 
combination of exosomes and AgNPs formed a protein corona 
around the nanoparticles, which stabilized the nanoparticles 
and prevented agglomeration. When AgNP-Exos were 
administered in the infection site, AgNPs and bioactive 
molecules of exosomes were released by the lysis of exosome 
membranes via the phospholipase secreted by P. aeruginosa. 
AgNPs exhibited antimicrobial activity by interrupting the 
integrity of bacterial cell walls, meanwhile exosomes promoted 
epithelial, vascular, and nerve fiber regeneration (Qian et  al., 
2020). Analogously, the incorporation of curcumin into 
exosomes greatly improved the solubility, stability, and 
bioavailability of curcumin, which is an insoluble, hydrophobic 
polyphenol compound. Moreover, exosomes increased delivery 
of curcumin to activated monocytes because of target specificity. 
In an LPS-induced septic shock mouse model, exosomal 
curcumin group dramatically surpassed curcumin group in 
terms of downregulating the CD11b+Gr-1+ cell population, 
which was characteristics in acute lung inflammation (Sun 
et  al., 2010). Generally, exosomes as drug delivery system 
help improve the solubility, stability, and bioavailability of 
therapeutic drugs. Moreover, the drug-exosome combination 
also benefits from the target specificity of exosomes.

Increasing Delivery Efficiency
There are two strategies in enhancing the on-target effect, 
minimizing sequestration by MPS and increasing tissue target 
specificity, which can be  summarized as “eat me/do not eat 
me” strategy.

Exosomes are mainly cleared by MPS, which attributes to 
the short half-life of exosomes in blood circulation (Morishita 
et  al., 2015). Camouflaging exosomes with anti-phagocytotic 
molecules is a feasible strategy to avoid MPS uptake, and thus 
extend exosomes’ half-life in circulation. Anti-phagocytotic 
candidate molecules that can be  inserted or expressed on the 
surface of exosomes include CD47, CD24, CD44, CD31, β2M, 
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PD-L1, App1, and DHMEQ (Parada et  al., 2021). The time 
EVs stayed in the plasma doubled after CD47 modification, 
and improved biodistribution in targeted tissue was observed 
(Wei et al., 2021). When EVs were recognized by macrophages, 
the activation of CD47-SIRPα pathway initiated immune evasion 
and reduced the phagocytosis of EVs (Chao et al., 2012). Some 
evidence indicated clathrin heavy chain (Cltc) plays an important 
role in mediating endocytosis of exosomes in the liver and 
spleen. Wan et  al. (2020) encapsulated siCltc into exosomes 
via electroporation to block endocytosis by mononuclear 
phagocyte system. Via such modification, exosomes’ 
biodistribution pattern was altered with less exosome detained 
in liver and spleen and more arriving target organs (Wan 
et  al., 2020). In the treatment of lung cancer, Belhadj et  al. 
(2020) developed a dosing scheme: First they saturated 
macrophage receptors with cationized mannan-decorated 
extracellular vesicles, and then injected chemotherapy drugs-
loaded exosomes, which were functionalized with CD47, to 
further avoid sequestration in liver and target lung tissue. The 
combined strategy induced a 123.53% increase in tumor 
distribution compared to conventional nanocarriers (Belhadj 
et  al., 2020).

Surface decorations that promote exosome-target cell 
interaction enhance precise delivery. Zhou et  al. (2021a) 
strengthened the therapeutic effect of MSC-EVs in bacteria-
associated ALI, by co-incubation of MSC-EVs with high molecular 
weight hyaluronic acid (HMW HA; 1.0 MDa). It seems that 
HMW HA played a role as the connecter between target cells 
and MSC-EVs, thus promoting trafficking, adhesion, and 
internalization of EVs. This process was mediated by the interaction 
between HA and CD44, a surface receptor enriched in both 
MSC-EVs and immune cells. Such modification boosted the 
therapeutic potency of EVs in P. aeruginosa pneumonia (Zhou 
et  al., 2021a).

FUTURE PERSPECTIVES

Considering the breadth of research into exosome therapies, 
as well as the vast need for new therapeutic modalities for 
infectious diseases, this area of medicine is a growing field. 
Based upon these studies, we  suggest that a combination of 
both host-directed and pathogen-directed therapeutic approaches 
may represent a valuable and exploitable strategy, over single 
therapies, to (i) control multidrug-resistant infections, (ii) 
minimize the risk of emergence of drug resistance, and (iii) 
reduce the time of therapy. There are many new approaches 
to improving the efficacy of exosome therapies, such as enhancing 
the on-target effect of exosome therapies or combining exosomes 
with existing drugs for synergistic effects. There are also many 

new research developments that will expand the possibilities 
for exosome therapies.

Although several clinical trials have preliminarily 
demonstrated the safety and efficacy of MSC-Exos in patients, 
because of cell source difference, the heterogeneity of MSCs 
is in the way of exosome quality control and comprehensive 
evaluation of different studies. For example, the consistency 
and uniformity of MSC-Exo quality cannot be  quantified or 
guaranteed, when MSCs are extracted from different fat donors. 
A rigorous quality control system of MSC-Exo production is 
critical to reduce batch-to-batch variation. Therefore, overcoming 
the heterogeneity of stem cells is one of the most pressing 
issues in the process of clinical translation of exosome therapy. 
To tackle these challenges, MSCs can also be  generated from 
pluripotent stem cells (PSCs) to overcome many limitations 
of above MSC sources (Lian et  al., 2010). These MSCs can 
be  derived from the same parental PSC to avoid disadvantages 
of adult MSCs i.e., batch-to-batch variations in MSC quality, 
stem cell senescence, and limited proliferative potency (Lian 
et  al., 2016). Most recently, GMP-grade MSCs derived from 
human induced PSCs have been used in refractory graft-vs.-
host-disease (GVHD) in clinical trials (Bloor et  al., 2020). 
Exosomes produced from PSC-MSCs may provide another 
putative therapeutic tool to overcome many limitations of adult 
MSC-Exos or EVs (Thakur et  al., 2021). Future work should 
focus on establishing international standards in quantifying 
the quality and consistency of MSC-Exo therapies. Proper 
completion and data sharing of existing clinical trials are needed 
in convenience of comprehensive evaluation and further study. 
Furthermore, technological breakthrough in industrial mass 
production of clinical-grade MSC-Exos is a prerequisite for 
extensive clinical applications.
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The oral cavity as the second most various microbial community in the body contains
a broad spectrum of microorganisms which are known as the oral microbiome. The
oral microbiome includes different types of microbes such as bacteria, fungi, viruses,
and protozoa. Numerous factors can affect the equilibrium of the oral microbiome
community which can eventually lead to orodental infectious diseases. Periodontitis,
dental caries, oral leukoplakia, oral squamous cell carcinoma are some multifactorial
infectious diseases in the oral cavity. In defending against infection, the immune system
has an essential role. Depending on the speed and specificity of the reaction, immunity
is divided into two different types which are named the innate and the adaptive
responses but also there is much interaction between them. In these responses,
different types of immune cells are present and recent evidence demonstrates that
these cell types both within the innate and adaptive immune systems are capable
of secreting some extracellular vesicles named exosomes which are involved in the
response to infection. Exosomes are 30–150 nm lipid bilayer vesicles that consist of
variant molecules, including proteins, lipids, and genetic materials and they have been
associated with cell-to-cell communications. However, some kinds of exosomes can be
effective on the pathogenicity of various microorganisms and promoting infections, and
some other ones have antimicrobial and anti-infective functions in microbial diseases.
These discrepancies in performance are due to the origin of the exosome. Exosomes
can modulate the innate and specific immune responses of host cells by participating
in antigen presentation for activation of immune cells and stimulating the release of
inflammatory factors and the expression of immune molecules. Also, mesenchymal
stromal/stem cells (MSCs)-derived exosomes participate in immunomodulation by
different mechanisms. Ease of expansion and immunotherapeutic capabilities of MSCs,
develop their applications in hundreds of clinical trials. Recently, it has been shown
that cell-free therapies, like exosome therapies, by having more advantages than
previous treatment methods are emerging as a promising strategy for the treatment
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of several diseases, in particular inflammatory conditions. In orodental infectious
disease, exosomes can also play an important role by modulating immunoinflammatory
responses. Therefore, MSCs-derived exosomes may have potential therapeutic effects
to be a choice for controlling and treatment of orodental infectious diseases.

Keywords: exosomes, mesenchymal stromal/stem cells, dental infection controls, dentistry, orodental

INTRODUCTION

The oral cavity is the second most diverse microbial community
in the human body after the gut (Caselli et al., 2020). Numerous
microorganisms including fungi, viruses, protozoa, and over 700
species of bacteria in this community are called “microbiome”
(Deo and Deshmukh, 2019). The microbiome is a term that
was coined by Joshua Lederberg, a Nobel Prize laureate, to
explain the ecological community of symbiotic, commensal, and
pathogenic microorganisms that share human body space (Kilian
et al., 2016). Orodental infections are caused by changes in the
balance of microbial populations or the dynamic relationship
between them and the oral cavity (Cho and Blaser, 2012; Marsh
et al., 2015). In addition, the oral cavity is exposed to external
environmental microorganisms that can cause oral diseases
(Gerba, 2015).

The host immune system plays an important role in defending
against pathogens (Dunkelberger and Song, 2010). At first, It
fights against pathogens through innate immunity and then
through adaptive immunity (Cerny and Striz, 2019). Although
the innate immune system response is general, non-specific, and
does not directly target a single pathogen, it provides a defense
barrier against all infectious agents (Aderem and Ulevitch, 2000).
The skin and mucosal membranes act as a mechanical barrier
against pathogens, also epithelial cells contain peptides that have
antimicrobial properties (Ganz, 2003; Oppenheim et al., 2003). If
the pathogens can get past the primary defense, the second line
of defense becomes active (Frank, 2000). In the infected area, an
inflammatory response begins due to stimulation of high blood
pressure, the blood vessels dilate, and white blood cells leave
the veins during diapause to fight the pathogen (Chen et al.,
2018). The vessels diameter increase, because of the secretion
of “histamine” from mast cells. Mast cells are a type of white
blood cell and phagocytes that draw in pathogens and kill them.
During the inflammatory response, the infected area becomes
red, swollen, and painful (Janeway et al., 2001b; Csaba et al., 2003)
and, the immune system may release substances that raise the
body temperature and cause fever. An increase in temperature
can decelerate the growth of pathogens and the immune system
fights against infectious agents more quickly (Evans et al., 2015).
Some phagocytic cells detect pathogenic cells and other kill cells
in the body and digest them (Bain, 2017). In the human body,
some proteins are normally inactive and activated in infection
conditions. They create pores in the membrane of pathogenic
cells and destroy them. These proteins are unable to distinguish
different pathogens from each other and attack all pathogens
non-specifically (Janeway et al., 2001a).

Acquired or specific immunity is activated when a pathogen
can cross the innate or non-specific immune mechanism

(McDade et al., 2016). The cells of the body have signs that
the immune system distinguishes them from other foreign cells
(Rich and Chaplin, 2019). When the immune system encounters
cells that do not have these signs, it recognizes them as aliens
and attacks them through specific or acquired mechanisms,
using lymphocytes and producing antibodies (Elgert, 2009).
This mechanism develops during the growth of the human
body. In this way, with the development of the human body
and exposure to pathogens and various vaccinations, a library
of antibodies from the cells of the immune system related
to various pathogens is created in the body. This process is
sometimes called “Immunological Memory” because immune
cells remember their former enemies (Crotty and Ahmed,
2004). The acquired mechanism produces antibodies to protect
the body against foreign agents, for example, if previous
pathogens attack the body, it will produce antibodies more
quickly and eliminate the infection (Jerne, 1973). Acquired
immunity is caused by the presence of antigens. Antigens
are usually located on the surface of pathogen cells, and
each pathogen has its antigen (Lamm, 1997). The immune
system responds to antigens by certain cells or by producing
antibodies (Figure 1). Antibodies attack antigens and produce
a signal that attracts phagocytes or other killer cells (Davies
and Cohen, 1996). In the immune system, cells like mast cells
(Raposo et al., 1997), epithelial cells (van Niel et al., 2001; Lin
et al., 2005), antigen-presenting cells (Zitvogel et al., 1998), T
lymphocytes (Anel et al., 2019), B lymphocytes (Kato et al.,
2020), neutrophils (Vargas et al., 2016), and macrophage (Singhto
et al., 2018) release small extracellular vesicles (EVs) which
called “exosomes.”

THE ROLE OF EXOSOMES IN
MICROBIAL INFECTIONS

EVs are made and secreted in normal and diseased states by
most types of cells and have an essential role in intercellular
communication and facilitate the immunity process They contain
a wide range of lipid-bound nanoparticles that vary in size
(Yanez-Mo et al., 2015; Maas et al., 2017; Herrmann et al., 2021).
There is no certain agreement on markers or specific naming
for EV subtypes, and EVs are usually classified according to
their biogenesis pathway or their physical properties used for
isolation (Théry et al., 2018). In fact, differences in size help
to separate different types of EVs. Microvesicles, exosomes, and
apoptotic bodies are the three main subtypes of EVs which are
distinguished by their biogenesis, size, content, release pathways,
and function (Figure 2; Karpman et al., 2017; Doyle and Wang,
2019; Ståhl et al., 2019).
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FIGURE 1 | Immune system cells in innate and adaptive immunity responses.

FIGURE 2 | Three main subtypes of EVs and their properties.

In the late 1960s, for the first time, Bonucci (1967) and
Anderson (1969) described small, secreted vesicles as small,
100-nm-diameter vesicles secreted by chondrocytes. A special
subset of small EVs, between 30 and 150 nm in diameter, are
known as exosomes that appear through endosomal biogenesis
pathways (Willms et al., 2018; Tschuschke et al., 2020).

A wide range of cell types can secrete exosomes, and the
size of exosomes can vary even for exosomes secreted from
a single cell line (Zhang et al., 2019). Exosomes consist of
approximately 4,400 proteins, 194 lipids, 1,639 mRNAs, and
764 miRNAs and as secretory vesicles, the possibility of their
physiological function has been defined (Mathivanan et al., 2012;
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Kim et al., 2013; Zhang et al., 2019; O’Brien et al., 2020).
They can regulate the immune system and also interfere with
biological processes. Pathogenic infections alter the number of
exosomes, their contents, and membrane structure (Li et al., 2006;
Zhang et al., 2018).

Infectious diseases like lower respiratory infections, malaria,
diarrhea, tuberculosis (TB), human immunodeficiency virus
(HIV) infection, and malaria are major reasons for morbidity and
mortality worldwide and their treatment is challenging (Murray
et al., 2014; Kirtane et al., 2021). Exosomes can interfere with
the processes of infectious diseases. On the one hand, they can
contribute to the pathogenesis of microorganisms, be effective
in the progression of infection, and can fight against pathogens
and infections. This functional variation of exosomes depends
on the source of cells and their contents. To confirm this,

Tables 1, 2 provide examples of the role of exosomes in infectious
diseases. Briefly, Table 1 provides examples of the effects of
exosomes on the pathogenicity of various microorganisms so
that they cause and promote infections, and Table 2 lists
several antimicrobial and anti-infective functions of exosomes in
microbial diseases.

ORODENTAL INFECTIOUS DISEASE

Orodental infectious diseases are caused by both pathogenic
microorganisms and the loss of balance in the ecological
community of symbiotic microorganisms in the oral cavity. Oral
microbial diseases include a wide range of different diseases such
as periodontitis and caries. If proper measures are not taken

TABLE 1 | The role of exosomes in the development of infections caused by various pathogens.

Microorganisms Pathogens Exosomes’ effects in promotion of infection References

Bacteria Staphylococcus aureus S. aureus-derived exosomes spread the infection in the body by transmission of bacterial
pore forming molecule α-toxin to distant cells.

Husmann et al., 2009

Bacillus anthracis Exosomes from B. anthracis-infected cells transport the lethal toxin virulence factor to sites
distal to the infection.

Abrami et al., 2013

Helicobacter pilori Exosomes in H. pylori infection are secreted from cytotoxin-associated gene A
(CagA)-expressing gastric epithelial cells enter the circulation and deliver CagA, a virulence
factor, to distant organs and tissues.

Shimoda et al., 2016

Viruses Human T-cell leukemia
virus-1 (HTLV-1)

Exosomes produced by HTLV-1-infected T-cell lines deliver the viral transactivator (Tax)
protein which can activate transcription in target cells.

Jaworski et al., 2014

HIV-1 Exosomes derived from HIV-1-infected cells contain proteins of viral and cellular origin that
inhibit target cell migration as well as dsRNA/ssRNA which can increase nuclear gene
expression and promote infection.

Barclay et al., 2017

Human herpesvirus 6
(HHV-6)

Exosomes derived from HHV-6-infected cells contain mature virions; therefore, they help
spread infection more efficiently

Mori et al., 2008

Hepatitis A virus (HAV) Vacuolar protein sorting 4 homolog B (VPS4B) and ALG-2-interacting protein X (ALIX) play
an important role in cloaking the HAV released from cells in host-derived membranes so
protecting the virion from antibody-mediated neutralization. These enveloped viruses
resemble exosomes and can escape the host immune system.

Feng et al., 2013

Hepatitis B virus (HBV) Exosomes derived from HBV-infected hepatocytes transport miR-21, miR-29a, and other
miRs to Tamm-Horsfall Protein 1 (THP-1) macrophages, which results in suppressing
Interleukin 12p35 (IL-12p35) mRNA expression and limitation of host innate immune
response.

Kouwaki et al., 2016

Hepatitis C virus (HCV) In vitro study has shown that hepatic exosomes by protecting HCV against antibody
neutralization can help transmit HCV infection.

Cosset and Dreux,
2014

Hepatitis E virus (HEV) HEV RNA-containing particles in an exosome fraction are infectious and cannot be
neutralized by anti-HEV antibodies so they protect from the immune response.

Chapuy-Regaud et al.,
2017

Epstein-Barr virus (EBV) EBV escapes immune responses by sequestering immune effectors like caspase-1,
interleukin 1b (IL-1b), interleukin 18 (IL-18), and interleukin 33 (IL-33), in exosomes which
are continuously secreted.

Ansari et al., 2013

HIV type 1 (HIV-1) Exosomes derived from HIV-1-infected cells allow HIV-1 to replicate inside resting human
primary CD4 + T lymphocytes.

Arenaccio et al., 2014

Yeast Saccharomyces
cerevisiae

Cytosolic Sup35 NM prions are packaged into exosomes which are able to transmit the
prion phenotype to neighboring cells.

Liu et al., 2016

Parasites Trypanosoma brucei T. brucei rhodesiense EVs mediating non-hereditary virulence factor transfer by containing
the serum resistance-associated protein (SRA) and causing host erythrocyte remodeling,
inducing anemia. Also, these EVs by transferring the SRA to T. brucei gain the ability to
evade innate immunity.

Szempruch et al., 2016

Toxoplasma gondii Exosomes secreted by T. gondii-infected host cells. L6 cells could change the host cell
proliferation and alter the host cell cycle and slight enhancement of S phase in L6 cells.

Kim et al., 2016

Trypanosoma cruzi T. cruzi-derived have been shown to increase the secretion of interleukin 4 (IL-4) and
interleukin 10 (IL-10) and a diminished inducible nitric oxide synthase expression in CD4 + T
cells and macrophages.

Trocoli Torrecilhas et al.,
2009
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TABLE 2 | The function of different sources of exosomes in infectious disease.

Source of exosomes Role of exosomes References

Adipose tissue-derived MSCs Combined with melatonin, an anti-inflammatory hormone, could limit inflammation caused by colitis in vivo. Chang et al., 2019

Colonic lumen of IBD patients Contribute to IBD diagnosis by containing significantly higher mRNA and protein levels of IL-6, IL-8, IL-10,
and TNF-α compared with those from healthy individuals.

Larabi et al., 2020

Dendritic cells Stimulate the responses of IL-4 and TNF-α and increase the IL-4 production in CD14 in Malassezia
sympodialis infection.

Gehrmann et al.,
2011

Dendritic cells Stimulate the production of IgM, IgG3, and IgG1 types of anti-Cps14 responses in Streptococcus
pneumoniae type 14 infection.

Colino and Snapper,
2007

Dendritic cells Promote intestinal barrier function by activating NF-κB via the exosomal miR-146b in a murine model of colitis. Nata et al., 2013;
Alexander et al., 2015

HBV-infected hepatocytes Stimulate MyD88, Toll-IL-1 receptor-containing adaptor molecule-1 (TICAM-1), and mitochondrial antiviral
signaling (MAVS)-dependent pathways to induce NKG2D ligand expression and evoke NK cells.

Kouwaki et al., 2016

Healthy human semen Prevent the spread of HIV-1 and reduce the intravaginal proliferation of AIDS in mice as well as the systematic
spread of virus and viremia.

Madison et al., 2015

Human vaginal secretions Have inhibitory properties against HIV-1 infection and protect women against HIV-1 infection as a female
innate defense.

Smith and Daniel,
2016

Macrophages Suppression of IFN-γ stimulated MHC class II and CD64 expression on BMMØ dependent on lipoproteins,
TLR2 and MyD88 and also increase secretion of chemokines and stimulate migration of macrophages and
splenocyte in Mycobacterium tuberculosis infection.

Singh et al., 2011,
2012

Macrophages Induce Pro-inflammatory responses dependent on TLR 2, TLR4, and MyD88 in Mycobacterium avium
infection.

Bhatnagar et al.,
2007

MDSC Reduce the severity of colitis by inhibiting Th1 proliferation and promoting Treg cell expansion. Wang et al., 2016

MSCs Inhibit inflammatory cytokine production by colonic macrophages stimulated with LPS and promote the
polarization of these macrophages into M2 phenotype in vitro and also, alleviate colitis by inhibiting expression
of IL-7 and iNOS in mouse colonic macrophages in vivo.

Mao et al., 2017; Cao
et al., 2019

Mycoplasma-infected tumor
cells

Activate the splenic B cells and increase the production of splenocytes cytokines. Yang et al., 2012

Plasmodium yoelii-infected
reticulocytes

Decrease period of parasitemia and increase clearance of parasites, reticulocytosis, immune modulation,
elicits IgG2a and IgG2b, and promoted survival time and protect mice from lethal infections.

Martin-Jaular et al.,
2011

uMSCs Contain some small RNAs (let-7f, miR-145, miR-199a, and miR-221) can prevent HCV replication by
detecting specific cellular factors or binding directly to the virus genome and intercede the antiviral process.

Qian et al., 2016

IBD, Inflammatory bowel disease; IgM, Immunoglobulin M; IgG3, Immunoglobulin G3; IgG1, Immunoglobulin G1; Cps14, capsular polysaccharide of S. pneumonia type
14; NF-κB, Nuclear factor- κB; MyD88, Myeloid differentiation primary response 88; NKG2D, Natural killer group 2 member D; NK cells, natural killer cells; AIDS, acquired
immune deficiency syndrome; IFN-γ, Interferon gamma; BMMØ, bone marrow derived macrophage; TLR 2, toll like receptor 2; TLR 4, toll like receptor 4; MDSC, myeloid-
derived suppressor cells; LPS, Lipopolysaccharides; IL-7, interleukin 7; iNOS, inducible nitric oxide synthase; IgG2a, Immunoglobulin G2a; IgG2b, Immunoglobulin G2b;
uMSC, umbilical mesenchymal stem cells.

to control and treat mouth-infectious diseases, it can lead to
whole-body systemic diseases (Table 3).

Periodontitis
The periodontium contains the supporting tissues around the
structure of the teeth, such as the gingiva, cementum, junctional
epithelium, periodontal ligament, and alveolar bone (Taba et al.,
2005). Periodontal diseases are a result of periodontal structure
destruction (Nanci and Bosshardt, 2006). The prevalence of
periodontal disease is very high and more than 90% of adults
worldwide suffer from it (Pihlstrom et al., 2005). There are
two main categories of periodontal disease: gingivitis and
periodontitis (Dorfer et al., 2004). Gingivitis is a milder form
of periodontitis and is limited to gum tissue, but periodontitis
occurs when the inflammation spreads to deeper tissues and
causes loss of supporting connective tissue and alveolar bone
(Kononen et al., 2019). The structure and texture of the
periodontium can provide a suitable environment for the
growth of various microorganisms (Cobb and Killoy, 1990).
Microorganisms such as Porphyromonas gingivalis, Tannerella
forsythensis, and Treponema denticola play an important role in

the development of periodontal disease (Mineoka et al., 2008).
T. forsythensis, T. denticola, and Treponema lecithinolyticum can
be present in all phases of periodontal disease (Scapoli et al.,
2015). Porphyromonas endodontalis and p. gingivalis are more
specifically associated with periodontitis and Capnocytophaga
ochracea and Campylobacter rectus associated with gingivitis
(Scapoli et al., 2015).

Dental Caries
Tooth decay is the most common chronic infectious disease
which deals with the chronic and progressive destruction of hard
tooth tissue (Ozdemir, 2013; Rathee and Sapra, 2020). In this
disease, the hard tooth tissue (enamel and dentin) loses calcium
and phosphorus minerals due to acid secretion from cariogenic
bacteria (mainly Streptococcus mutans) (Moynihan and Petersen,
2004; Selwitz et al., 2007; Krzysciak et al., 2014). There are various
causes for caries, but in general, the four main factors of tooth-
adherent specific bacteria, time, susceptible tooth surface, and
fermentable carbohydrates play a role in tooth decay (Tahir and
Nazir, 2018). These four factors always cause caries, and if each
one is not present, the tooth will not decay (Fejerskov, 1997;
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TABLE 3 | Systemic diseases associated with oral microbiome and
orodental infection.

The human body
systems

Disease References

Gastrointestinal
system diseases

IBD Read et al., 2021

Gastrointestinal cancer
risk increases

Meurman, 2010

Pancreatic cancer Fan et al., 2018

Nervous system
diseases

Alzheimer’s disease Miklossy, 1993; Riviere et al., 2002;
Poole et al., 2013

Endocrine system
diseases

Diabetes mellitus Cianciola et al., 1982; Rylander
et al., 1987; Emrich et al., 1991;
Thorstensson and Hugoson, 1993;
Casarin et al., 2013

Adverse pregnancy
outcomes (APOs)

Han et al., 2004, 2010; Madianos
et al., 2013

Obesity Goodson et al., 2009

Polycystic ovary
syndrome (PCOS)

Lindheim et al., 2016

Human immune
system diseases

Rheumatoid arthritis
(RA)

Zhang et al., 2015

HIV infection Dang et al., 2012; Li et al., 2014a;
Heron and Elahi, 2017

Cardiovascular
system diseases

Atherosclerosis Koren et al., 2011

Sheiham, 2001; Wade, 2013; Kidd and Fejerskov, 2016; Tahir and
Nazir, 2018). Tooth decay, in addition to its high prevalence,
affects a wide range of age groups, and from children to the
elderly, they are at risk for tooth decay (Smith and Szuster, 2000).
The most harmful type of caries occurs in childhood and is named
“early childhood caries” which has become a common public
health problem among preschool children worldwide (Colak
et al., 2013; Alazmah, 2017). Numerous factors, including the
oral microbiome, affect the incidence of tooth decay in children
(Dzidic et al., 2018). Bacteria are considered the main pathogen
in tooth decay (Dzidic et al., 2018). Different lactobacilli promote
the development of dental caries, but the most important
microorganism in the development of dental caries is S. mutans
(Loesche, 1996).

Oral Leukoplakia
In 1877, oral leukoplakia was described for the first time by
Schwimmer (1877) Oral leukoplakia is one of the most common
diseases of the oral mucosa which has malignant potential
(van der Waal et al., 1997). According to the Pindborg study,
leukoplakia is a white patch on the oral mucosa that cannot
be removed and there is no other clinical diagnosis (Mehta
et al., 1969; Bánóaczy, 1983). Different microorganisms like
Fusobacterium, Leptotrichia, Campylobacter, and Rothia species
were detected in oral leukoplakia (Amer et al., 2017).

Oral Squamous Cell Carcinoma
Oral squamous cell carcinoma is the eighth most common
cancer worldwide and is the most common oral malignancy
(Scully and Bagan, 2009). Numerous hypotheses have been
proposed for the association of microorganisms and their

products with oral cancer (Perera et al., 2016). Acetaldehyde
converted from ethanol, reactive oxygen species, reactive
nitrogen species, and volatile sulfur compounds by bacteria
are some examples of carcinogenic substances which can
cause oral cancer (Meurman and Uittamo, 2008). The
metabolization of alcohol to acetaldehyde can be happened
by Streptococcus gordonii, Streptococcus mitis, Streptococcus
oralis, Streptococcus salivarius, Streptococcus sanguinis, and
Candida by the using of alcohol dehydrogenase enzyme
(Mantzourani et al., 2009; Marttila et al., 2013). Also, hydrogen
sulfide (H2S), methyl mercaptan (CH3SH), and dimethyl sulfide
[(CH3)2S] are produced by P. gingivalis, Prevotella intermedia,
Aggregatibacter actinomycetemcomitans, and Fusobacterium
nucleatum (Nakamura et al., 2018; Suzuki et al., 2019).

APPLICATION OF STEM
CELLS-DERIVED EXOSOMES IN
ORODENTAL INFECTIONS

Mesenchymal stromal/stem cells (MSCs) are adult pluripotent
stem cells with self−renewing potential that have been
administered in different types of diseases (Undale et al.,
2009; Fitzsimmons et al., 2018). The unique biomedical
characteristic of MSCs is their stemness by stimulating their
proliferation and differentiating into multi-lineage cells (da Silva
Meirelles et al., 2006). MSCs are immunologically safe. Low
expression of major histocompatibility complex (MHC) class I
molecules and expression of only a few MHC class II molecules
make MSCs low immunogenicity cells (Hass et al., 2011; Lee
et al., 2014). Immunomodulatory and regenerative functions
of MSCs have been shown in various types of diseases (Zappia
et al., 2005; Corcione et al., 2006; Wang et al., 2013; Forbes et al.,
2014; Le Blanc and Davies, 2015). MSCs-derived exosomes also
have angiogenic potential that can improve ischemic diseases
(Babaei and Rezaie, 2021). Senescence of MSCs during in vitro
expansion makes the cells less productive and can increase
disease severity by causing inflammaging (Lee and Yu, 2020).
Also, weak engraftment of infused MSCs, and donor-dependent
variations are some limitations of application MSCs in clinical
trials (Karp and Leng Teo, 2009; Siegel et al., 2013; Li et al.,
2016). An alternative method to improve MSC-based therapy is
to use exosomes (Zavatti et al., 2020). Being free of immunogenic
problems and not being trapped in the lung or liver like infused
MSCs, and keeping the therapeutic functions of their cells of
origin make MSC exosomes more suitable for clinical application
than MSCs (Table 4; U.S. National Library of Medicine
clinicaltrials.gov, 2021). The immunomodulatory function of
MSCs and MSC-derived exosomes is the most important clinical
feature of their application (Kang et al., 2020). Recent studies
show that MSCs can inhibit T cells, B cells, natural killer cells,
and dendritic cells and result in immune suppression (Bocelli-
Tyndall et al., 2007; Li et al., 2012). Regarding MSCs properties,
they have been used in clinical trials over several decades (Kabat
et al., 2020). The MSCs mainly modulate the activity of the
immune system by paracrine agents and exosomes, and the
exosomes play an important role in cellular communication
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TABLE 4 | Some applications of MSCs-derived exosomes in recent clinical trials (U.S. National Library of Medicine clinicaltrials.gov, 2021).

Disease type Official study title Condition or disease Intervention/ treatment Last update ClinicalTrials.gov
Identifier

Cancer Phase I study of mesenchymal stromal
cells-derived exosomes with KrasG12D
siRNA for metastatic pancreas cancer
patients harboring KrasG12D mutation

KRAS NP_004976.2:p.G12D
Metastatic pancreatic
adenocarcinoma
Pancreatic ductal
adenocarcinoma
Stage IV pancreatic cancer
AJCC v8

Mesenchymal stromal
cells-derived exosomes with
KRAS G12D siRNA

April 29, 2021 NCT03608631

Cardiovascular
diseases

Safety and efficacy of allogenic
mesenchymal stem cells derived
exosome on disability of patients with
acute ischemic stroke: a randomized,
Single-blind, Placebo-controlled, Phase
1, 2 trial

Cerebrovascular disorders Exosome January 25,
2021

NCT03384433

COVID-19
treatment

A Pilot clinical study on aerosol
inhalation of the exosomes derived from
allogenic adipose mesenchymal stem
cells in the treatment of severe patients
with novel coronavirus pneumonia

Coronavirus MSCs-derived exosomes September 7,
2020

NCT04276987

A tolerance clinical study On aerosol
inhalation of mesenchymal stem cells
exosomes in healthy volunteers

Healthy Biological: 1X level of
MSCs-Exo
Biological: 2X level of
MSCs-Exo
Biological: 4X level of
MSCs-Exo
Biological: 6X level of
MSCs-Exo
Biological: 8X level of
MSCs-Exo

August 4, 2021 NCT04313647

A phase I/II randomized, double
blinded, placebo trial to evaluate the
safety and potential efficacy of
intravenous infusion of zofin for the
treatment of moderate to SARS related
to COVID-19 infection vs. placebo

Corona virus infection
COVID-19
SARS
Acute respiratory distress
syndrome

Biological: Zofin
Other: Placebo

February 23,
2021

NCT04384445

Bone marrow mesenchymal stem
cell derived extracellular vesicles
infusion treatment for COVID-19
associated acute respiratory distress
syndrome (ARDS): A phase II clinical
trial

COVID-19
ARDS
Pneumonia, Viral

Biological: DB-001
Other: Intravenous normal
saline

July 14, 2021 NCT04493242

Mesenchymal stem cell exosomes for
the treatment of COVID-19 positive
patients with acute respiratory distress
syndrome and/or novel coronavirus
pneumonia

COVID-19
Novel coronavirus pneumonia
Acute respiratory distress
syndrome

MSC-exosomes delivered
intravenously every other day
on an escalating dose: (2:4:8)
MSC-exosomes delivered
intravenously every other day
on an escalating dose (8:4:8)
MSC-exosomes delivered
intravenously every other day
(8:8:8)

July 21, 2021 NCT04798716

The protocol of evaluation of safety and
efficiency of method of exosome
inhalation in SARS-CoV-2 associated
two-sided pneumonia

COVID-19
SARS-CoV-2 pneumonia
COVID-19

EXO 1 inhalation
EXO 2 inhalation Placebo
inhalation

November 4,
2020

NCT04491240

The extended protocol of evaluation of
safety and efficiency of method of
exosome inhalation in COVID-19
associated two-sided pneumonia

COVID-19
SARS-CoV-2 pneumonia
COVID-19

EXO 1 inhalation
EXO 2 inhalation
Placebo inhalation

October 26,
2020

NCT04602442

Immune
diseases

Phase 1 study of the effect of cell-free
cord blood derived microvesicles On
β-cell mass in type 1 diabetes mellitus
(T1DM) patients

Diabetes mellitus type 1 MSC exosomes May 14, 2014 NCT02138331

(Continued)
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TABLE 4 | (Continued)

Disease type Official study title Condition or disease Intervention/ treatment Last update ClinicalTrials.gov
Identifier

Effect of umbilical mesenchymal stem
cells derived exosomes on dry eye in
patients with chronic graft vs. host
diseases

Dry eye Umbilical mesenchymal stem
cells derived exosomes

February 21,
2020

NCT04213248

Effect of adipose derived stem cells
exosomes as an adjunctive therapy to
scaling and root planning in the
treatment of periodontitis: A human
clinical trial

Periodontitis Adipose derived stem cells
exosomes

February 17,
2020

NCT04270006

Exosome of mesenchymal stem cells
for multiple organ dysfuntion syndrome
after surgical repaire of acute type A
aortic dissection: a Pilot Study

Multiple organ failure MSC exosomes May 6, 2020 NCT04356300

Neurological
diseases

Focused ultrasound delivery of
exosomes for treatment of refractory
depression, Anxiety, and
Neurodegenerative dementias

Refractory depression anxiety,
Disorders neurodegenerative
diseases

Exosomes March 5, 2021 NCT04202770

The use of exosomes In craniofacial
neuralgia

Neuralgia Exosomes March 5, 2021 NCT04202783

Open-label, Single-center, Phase I/II
clinical trial to evaluate the safety and
the efficacy of exosomes derived from
allogenic adipose mesenchymal stem
cells in patients with mild to moderate
dementia Due to Alzheimer’s disease

Alzheimer’s disease Biological: Low dosage
MSCs-Exos administrated for
nasal drip
Biological: Mild dosage
MSCs-Exos administrated for
nasal drip
Biological: high dosage
MSCs-Exos administrated for
nasal drip

June 25, 2021 NCT04388982

Wound healing Mesenchymal stem cells derived
exosomes promote healing of large and
refractory macular holes

Macular holes Exosomes derived from
mesenchymal stem cells
(MSC-Exo)

April 6, 2021 NCT03437759

A safety study of the administration of
mesenchymal stem cell extracellular
vesicles in the treatment of dystrophic
epidermolysis bullosa wounds

Dystrophic epidermolysis
bullosa

AGLE 102 June 24, 2021 NCT04173650

(Xu et al., 2016). MSCs-derived exosomes have a role in tissue
regeneration, infection treatment, and inflammation control
(Afshar et al., 2021; Zhankina et al., 2021).

Periodontitis is an inflammatory and destructive disease
that has a relationship with several factors such as the
pathogens, host inflammation, and immune responses, and
the imbalance of multiple T helper cells 17 (Th17)/regulatory
T cell (Treg) related cytokines (Wang et al., 2014; Silva
et al., 2015; Pan et al., 2019). Bacterial infection is a primary
factor in the development of periodontitis, but what ultimately
causes periodontitis is improper regulation of the host immune
system and inflammatory response (Hajishengallis, 2014, 2015).
Th17 cells play a destructive role in the immune balance
of periodontitis (Zhao et al., 2011). Over-regulation of Th17
and improper regulation of Treg may lead to periodontal
disease through immune-mediated tissue destruction (Zhao et al.,
2011; Yang et al., 2014; Karthikeyan et al., 2015). Periodontal
ligament stem cells (PDLSCs)-derived exosomes have a similar
role with exosomes from MSCs and PDLSCs-derived exosomes
contain microRNA−155−5p and regulate Th17/Treg balance by
targeting sirtuin−1 in chronic periodontitis (Zheng et al., 2019).

Interleukin-1 (IL-1) and tumor necrosis factor alpha
(TNF-α) are pro-inflammatory cytokines that are needed for
periodontal inflammation and alveolar bone resorption (Delima
et al., 2001; Grauballe et al., 2015). Macrophages that are
activated by bacteria can release many inflammatory cytokines,
causing gingiva destruction and alveolar bone resorption
(Spiller and Koh, 2017; Dutzan et al., 2018; Garaicoa-Pazmino
et al., 2019). Macrophages can be divided into two groups
which are known as pro-inflammatory macrophages and
anti-inflammatory macrophages and periodontal destruction
occur following the imbalance of pro-inflammatory/anti-
inflammatory macrophages (Gonzalez et al., 2015; Wynn
and Vannella, 2016; Zhuang et al., 2019). Pro-inflammatory
macrophages play an important role in the production of
many inflammatory cytokines such as interleukin 1 beta
(IL-1β) and TNF-α. Also, they can stimulate T cells and
neutrophils, which cause the destruction of alveolar bone, and
they can increase the local expression of receptor activator
of nuclear factor ligand (RANKL), which causes osteoclast
differentiation in the periodontium (Darveau, 2010; Hienz
et al., 2015). In contrast, anti-inflammatory macrophages by
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secreting the anti-inflammatory mediators play a significant
role in the elimination of inflammation and tissue regeneration
and contribute to efferocytosis of the apoptotic osteoblastic
cells so that mediating bone formation (Zhang et al., 2012;
Shapouri-Moghaddam et al., 2018).

Dental pulp stem cells (DPSCs) as a population of
dental−derived mesenchymal stem cells have easy accessibility
and minimal ethical concerns for use (Mahdiyar et al., 2014;
Potdar and Jethmalani, 2015; Mehrabani et al., 2017). The DPSCs
have beneficial immunomodulatory and anti-inflammatory
properties and have a regulating effect on macrophages of the
immune system (Lee et al., 2016; Omi et al., 2016; Galipeau
and Sensebe, 2018). Since the therapeutic effects of stem cells
are mainly related to the release of paracrine agents, stem
cell-derived exosomes, as one of the most important paracrine
mediators, show therapeutic effects through immunomodulation
(Sun et al., 2018; Riazifar et al., 2019). DPSC-derived exosomes
containing miR-1246 can facilitate the conversion of pro-
inflammatory macrophages to anti-inflammatory macrophages
in the periodontium of mice with periodontitis and accelerate
the healing of alveolar bone and the periodontal epithelium
(Shen et al., 2020).

In connection with the issue of infectious diseases, exosomes,
in addition to treatment, can also help in the diagnosis
of infectious diseases. For instance, hand, foot, and mouth

TABLE 5 | Advantages and limitations of exosomes therapy in clinical applications
(Tian et al., 2010; Takahashi et al., 2013; Lötvall et al., 2014; Yu et al., 2014; Théry
et al., 2018; Xing et al., 2020; Babaei and Rezaie, 2021).

Advantages Limitations

Efficient cellular entry Controversies in defining exosome
dosage

Excellent immune-compatibility Difficulty in identification of isolation and
purification strategy in order to produce
optimal results

Exerting different therapeutic
mechanisms simultaneously

Lack of reliable methods for
distinguishing them from other EVs

Free of ethical issues Lack of standardized methods for
large-scale production

Good stability and protection by having
bilayer lipid membrane

Needing appropriate, safe, and
confident cell sources of exosomes
based on their intended therapeutic use

High diagnostic sensitivity and
specificity by having multiple diagnostic
parameters

Needing considerable attention of
stability and storage strategies for
clinical and commercial success as
off-the-shelf diagnostic and therapeutic
tools

Intrinsic ability to traverse biological
barriers

Short half-life and quick clearance

Lower toxicity Uptake capacity of target cells

Minimal trauma than other diagnostic
methods in diagnosis of disease

Modification ability

Not immunogenic

Potential targeting ability by the
surface-specific domain

Safe and non-tumorigenic

Wide availability in various bodily fluids

disease (HFMD) is a common acute viral infection that has
spread worldwide (Guerra et al., 2017). Human enterovirus
71 (EV71) and coxsackie virus A16 (CVA16) are the two
main causes of HFMD (Yan et al., 2001; Osterback et al.,
2009). HFMD has mild and severe forms which are known
as mild HFMD and extremely severe HFMD (Jia et al., 2014),
EV71 can cause extremely severe HFMD in which severe
neurological symptoms occur and significant mortality (Huang
et al., 1999). Many children with extremely severe HFMD
die before a definitive diagnosis. There are no effective and
reliable methods and tools for diagnosing (Li et al., 2014b;
Hossain Khan et al., 2018). A study has shown that patients
with different HFMD conditions express a specific type of
exosomal miRNA profile (Jia et al., 2014). In fact, these exosomes
provide a supplemental biomarker for differential infection
stage at an early stage. Therefore, by examining the exosomal
content, the disease can be diagnosed, and its different forms
can be distinguished from each other (Jia et al., 2014). The
immunomodulatory properties of exosomes have enhanced their
use in the field of cancer biology. For example, dendritic cells-
derived exosomes called “Dexosomes” can be used as a cell-
free vaccine for cancer immunotherapy (Nikfarjam et al., 2020).
Also, homeostasis and metastasis of tumor cells can change
by exosomal and autophagy pathways (Salimi et al., 2020).
Radiotherapy may affect the mechanism of paracrine intercellular
communication within irradiated tumor tissue and surrounding
cells (Jabbari et al., 2019).

FUTURE PERSPECTIVE OF EXOSOME
THERAPY

Over the last decades, the knowledge about biogenesis,
molecular content, and biological function of exosomes have
significant progress and a considerable amount of manuscripts
have been published in this field. Exosome therapy as a
cell-free therapy is emerging as a promising strategy for
the treatment of several diseases, in particular inflammatory
conditions. The characteristic properties of exosomes, including
the transmission of exosomal competent, protecting it from
extracellular degradation, and delivering it in a highly selective
manner to target cells, have led to their numerous uses in various
fields of treatment. The use of exosomes in clinical applications
as well as in the treatment of diseases has both advantages and
challenges, some of which are listed in Table 5. Despite the
existing limitations, the use of exosomes as a new method in
various fields of medical science is phenomenal and inspiring that
need more data collection.

CONCLUSION

The oral cavity as a part of the digestive system which is in
close contact with the external environment of the body and
also by having its special microbiome is prone to a wide range
of infectious diseases. In infectious diseases, the pathogenic
mechanism of the microorganism is significantly affected by a
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special type of EVs called exosomes. In this way, these exosomes
can be effective in the process of disease development and
progression, as well as in the face of preventing and limiting
the disease. Exosomes also play an important role in microbial
infections by regulating the host immune system. In addition,
exosomes can be used in the diagnosis of infectious diseases. Due
to the importance of treating oral infectious diseases as well as the
ease of using non-cellular therapies, mesenchymal stromal/stem
cells-derived exosomes can be considered as a suitable and

available option for the treatment of orodental infectious diseases
that require more and more extensive studies in the future.
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Some microbial sexually transmitted infections (STIs) have adverse effects on the
reproductive tract, sperm function, and male fertility. Given that STIs are often
asymptomatic and cause major complications such as urogenital inflammation, fibrosis,
and scarring, optimal treatments should be performed to prevent the noxious
effect of STIs on male fertility. Among STIs, Chlamydia trachomatis is the most
common asymptomatic preventable bacterial STI. C. trachomatis can affect both
sperm and the male reproductive tract. Recently, mesenchymal stem cells (MSCs)
derived exosomes have been considered as a new therapeutic medicine due to their
immunomodulatory, anti-inflammatory, anti-oxidant, and regenerative effects without
consequences through the stem cell transplantation based therapies. Inflammation
of the genital tract and sperm dysfunction are the consequences of the microbial
infections, especially Chlamydia trachomatis. Exosome therapy as a noninvasive
approach has shown promising results on the ability to regenerate the damaged sperm
and treating asthenozoospermia. Recent experimental methods may be helpful in the
novel treatments of male infertility. Thus, it is demonstrated that exosomes play an
important role in preventing the consequences of infection, and thereby preventing
inflammation, reducing cell damage, inhibiting fibrogenesis, and reducing scar formation.
This review aimed to overview the studies about the potential therapeutic roles of
MSCs-derived exosomes on sperm abnormalities and male infertility caused by STIs.
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INTRODUCTION

A prominent etiological factor in male infertility is genital tract
infection. The infertility may be induced by various mechanisms,
such as damage to gametogenic cells, decrease in the quality
of sperm, and obstruction of the male reproductive tract (Keck
et al., 1998; Sanocka-Maciejewska et al., 2005). The most
common sexually transmitted microorganisms are Chlamydia
trachomatis (C. trachomatis) (Nieschlag et al., 1997; Keck et al.,
1998; Ombelet et al., 2008). There are controversial opinions
on the role of C. trachomatis in male infertility (Dehghan
Marvast et al., 2017). Several studies have shown that male
infertility induced by chlamydial infection occurs in different
forms of sperm abnormalities such as loss of mitochondrial
membrane potential, increase in apoptosis through the activation
of caspase 3 (Sellami et al., 2014) and DNA damage (Dehghan
Marvast et al., 2018), and changes in sperm quality (Bezold
et al., 2007; Sellami et al., 2011, 2014). Also, other studies
have claimed that this microorganism infection causes an
inflammatory reaction which leads to seminal tubes occlusion
(Dohle, 2003; Dehghan Marvast et al., 2016; Zhou et al.,
2021). Many sexually transmitted infections (STIs) pathogens
such as C. trachomatis are asymptomatic in subfertile men
(Sharma and Agarwal, 1996; Bezold et al., 2007; Geisler, 2010;
Hakimi et al., 2014; Bai et al., 2021). Screening and treatment
should be performed to prevent the detrimental effect of
C. trachomatis on male fertility (Geisler, 2010; Bryan et al.,
2019). Widespread antibiotics are currently the most common
treatment for chlamydial infection (Murray and McKay, 2021),
and this treatment can effectively alleviate the infection and
ameliorate sperm quality (Gallegos et al., 2008; Hamazah and Al-
Dahmoshi, 2021). However, antibiotic resistance is one of the
remaining challenges for this treatment, especially in patients
with multidrug resistance (Hamazah and Al-Dahmoshi, 2021;
Vanić et al., 2021).

The new experimental methods of the infertility treatment are
stem cell and exosome applications. Because of the limitations
using live cells injections and also the therapeutic effect of
their paracrine substances (Janockova et al., 2021), MSC–derived
exosomes containing bioactive molecules have been recently
used in studies of infertility treatment. Exosome therapy as a
noninvasive approach has shown promising results on the ability
to regenerate damaged sperms and treating asthenozoospermia
by their repairing molecules and counteracting with the
reactive oxygen species (ROS) (Kharazi and Badalzadeh, 2020).
These experimental methods may be helpful in the novel
treatments of male infertility. This review aimed to overview
the studies about the therapeutic potentials of the MSCs-
derived exosomes on sperm abnormalities and male infertility
caused by STIs.

C. TRACHOMATIS: CELL BIOLOGY

Chlamydia is a gram negative bacterium, an obligate intracellular
parasite, divided into 18 serovars (A-C, D-K, and L1-L3)
distinguished by the antigen named the Major Outer Membrane

Protein. This antigen gives the pathologic properties to the
serovars D-K and may play an essential role in genital
tract infection (Murray and McKay, 2021). Unlike other
microorganisms, C. trachomatis has two distinct developmental
cycles, the infectious type or elementary body (EB) and
intracellular replicative type or reticulate body (RB). Both
types of this bacterium are metabolically active, although
their energy sources are different (Omsland et al., 2012).
Expressions of different antigens during the cell cycle lead
to difficulties in eradicating the bacterium (Paavonen and
Eggert-Kruse, 1999; Murray and McKay, 2021). EB form
attaches to the host cell and enters it and protects itself from
host cellular defense by formation of vacuoles and inclusions
(Hosseinzadeh et al., 2000).

PATHOPHYSIOLOGICAL MECHANISMS

Approximately 50% of C. trachomatis infections in men are
asymptomatic, but it can cause epididymitis, epidiymo-orchitis,
urethritis, and prostato-vesiculitis (Eley et al., 2005; Rana et al.,
2016). Because of wide range of pathological changes and
tissue injuries in the urogenital tract, it is necessary to briefly
review the pathophysiology of C. trachomatis. This bacterium
first attaches to the epithelial cells in the urogenital tract,
and this is where immunological reactions are initiated. The
infected non-immune cells recognize different invaded pathogens
such as C. trachomatis by their PRRs (pathogen recognition
receptors) (Mackern-Oberti et al., 2013). The interaction between
non-immune host cell and bacterium leads to secretion of
many cytokines (IL-1, IL-8, IL-6) (Al-mously and Eley, 2007;
Redgrove and McLaughlin, 2014) and tumor necrosis factor
alpha (TNFα); these, in turn, recruit natural killer (NK) cells,
DCs, neutrophils, macrophage, T cells, and B cells (Redgrove
and McLaughlin, 2014). One of the most substantial cellular
immune reactions against chlamydia infection is mediated by
antigen-specific IFN-γ secreting CD4+, CD8+ T cells, and NK
cells. Also, elimination of chlamydial infection depends on IFN-
γ secreting CD4+ Th1 cells (Cain and Rank, 1995; Perry et al.,
1997). Immune cells also generate chronic inflammation by
increasing the production of ROS and releasing molecules with
degradative properties including defensins, elastase, collagenase,
cathespins, and lysozyme. Finally, the immune reactions lead
to tissue remodeling and scarring in the reproductive system
(Redgrove and McLaughlin, 2014).

EFFECTS OF C. TRACHOMATIS ON
SPERM AND MALE INFERTILITY

Infertility in men is caused by various reasons such as genetic
abnormalities, testicular damage, varicocele, immunological
subjects, systemic diseases, environmental factors, endocrine
disorders, and exposure to gonadotoxic agents (Dohle et al.,
2004; Jungwirth et al., 2012). In addition to the above-mentioned
factors, male genital tract infection and inflammation play
a devastating role in 8–35% of male infertility. Infectious
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factors such as fungi, parasites, viruses, and several other
microorganisms including C. trachomatis, Neisseria gonorrhoeae,
Ureaplasma urealyticum, and Trichomonas vaginalis are involved
in these disorders, which can affect the testis, epididymis,
accessory sex glands, sperm cell function, and finally fertility
(Isaiah et al., 2011). The most common cause is C. trachomatis,
which leads to infertility by affecting both the sperm and the
male reproductive tract (Nieschlag et al., 1997; Keck et al., 1998;
Ombelet et al., 2008).

Some studies have regarded the relationship between
C. trachomatis infection and semen quality. Semen of
C. trachomatis infected patient indicates reduced volume,
decrease in sperm motility, change in sperm concentration, and
pH alteration (Veznik et al., 2004; Rana et al., 2016). It seems that
aforementioned effects on the sperm can be due to Chlamydia
lipopolysaccharide (LPS) which interacts with CD14 on the
sperm membrane and leads to elevating production of ROS and
eventually induced apoptosis (Harris et al., 2001). Another study
demonstrated that C. trachomatis infection can cause rising in
the mitochondria membrane potential, caspase 3 activation,
and finally apoptosis induction in spermatozoa (Sellami et al.,
2014). Moreover, externalization of phosphatidylserine (PS) in
sperm membrane and DNA fragmentation has been reported
as a negative impact of C. trachomatis on sperm function
and fertility (Satta et al., 2006). In addition, several studies
have reported infections of the reproductive system can cause
leukocytospermia, and the leukocytes are able to produce
oxidative damage of the sperm plasma membrane and DNA
through the release of cytokines, free oxygen radicals, and
reactive nitrogen (Anderson and Hill, 1988; Aitken and West,
1990; Hamada et al., 2011).

CURRENT TREATMENT

Current treatment includes azithromycin 1 g single dose or
doxycycline 100 mg orally twice daily for 7 days (Stamm
et al., 1995; Dieterle, 2008; Mishori et al., 2012). Timely
management of sexual intercourse and sex partner treatment
are also necessary to reduce the re-infection risk (Centers
for Disease Control and Prevention, 1998a,b; Workowski and
Berman, 2011). Approximately 50% of C. trachomatis infections
in men are asymptomatic and can cause many complications
(Pacey and Eley, 2004; Eley et al., 2005; Rana et al., 2016).
Thus, screening programs are necessary to prevent long-term
complications of C. trachomatis infection such as epididymitis,
accessory sex glands inflammation, testicular atrophy, tubular
tract occlusion, and male infertility (Paavonen and Eggert-
Kruse, 1999). While treatment with antibiotics significantly
clears sexually transmitted patients, this treatment has its
limitations (Kong et al., 2014). First, screening programs
to identify chlamydia infected individuals are costly and
impractical, so they are limited to symptomatic patients
who are following their diseases (World Health Organization,
2016). Antibiotic therapy may also impair the production
of a sustained protective immune response to chlamydia
(Patton et al., 2014).

Vaccines have long been designed to treat chlamydia infection.
Despite numerous successes in this field, there are still issues
that have limited human access to deliver effective vaccines
without complication. Biological characteristics, two-phase life
cycle, and especially the ability of this bacterium to hide from
the view of the immune system are the main reasons for
this limitation in vaccine production. Providing a reliable and
effective vaccine for Chlamydia prophylaxis is still awaiting
further research and possibly shifting from whole-cell based
vaccines to subunit-based vaccines, especially considering the
role of MOMP (Murray and McKay, 2021).

Importantly, in some cases in which the complications
still remained following antibiotic therapy, a new therapeutic
approach is necessary for treatment. In this regard, MSCs-
derived exosomes have been shown to have critical roles such
as anti-inflammatory, antioxidant, regenerative and fibrogenesis
inhibiting, and wound and fracture healing (Janockova et al.,
2021), which can be considered a novel approach in the male
infertility complications of C. trachomatis infection.

EXOSOME: GENERAL ASPECTS

In different multicellular organisms, the intercellular
communication occurs through cell-to-cell contact or through
the secretion of molecules (Lai, 2004). Two decades ago, another
mechanism was considered in the intercellular communication,
which involves the transfer of extracellular vesicles that release
from the plasma membrane into the intercellular space under
physiological and pathological events and influence the other
cells in paracrine and endocrine manners (György et al., 2011).
Based on biosynthesis pathways and their size, the extracellular
vesicles are divided into three categories: micro vesicles (50–
3,000 nm), exosomes (40–100 nm), and apoptotic bodies
(800–5,000 nm) (Yamamoto et al., 2016). Other studies have
also mentioned other sizes for exosome: (30–100) (Wang et al.,
2017), (50–150 nm) (Théry et al., 2018), (40–160 nm) (Kalluri,
2016), and (50–100 nm) (Gould and Raposo, 2013). Recently
exosomes have attracted huge attention from researchers due
to their genetic material and protein shuttling ability to other
cells with various contents according to their origin (Han et al.,
2016). Exosomes secrete from T cells (Nolte-‘t Hoen et al., 2009),
B cells (Clayton et al., 2005), macrophages (Bhatnagar et al.,
2007), epithelial cells (Skogberg et al., 2015), endothelial cells
(Song et al., 2014, 2015), as well as MSCs (Yeo et al., 2013). The
vesicles with exosomal characteristics have been also founded
in the various body fluids such as semen (Fabiani et al., 1994;
Arienti et al., 1999; Park et al., 2011; Aalberts et al., 2012), blood
(Blanc et al., 2005; Caby et al., 2005; Yunusova et al., 2016), breast
milk (Admyre et al., 2007; Qin et al., 2016; Miyake et al., 2020),
ascites fluid (Andre et al., 2002; Navabi et al., 2005; Runz et al.,
2007), saliva (Ogawa et al., 2008; Michael et al., 2010), amniotic
fluid (Asea et al., 2008; Zhang et al., 2021), urine (Gonzales
et al., 2010; Street et al., 2017), and bile (Masyuk et al., 2010;
Sagredo et al., 2017). Because exosomes are in nano sized range,
they spread through body fluids and easily penetrate through
tissues and affect targeted cells (Phinney and Pittenger, 2017),
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even if those cells are far away (François et al., 2006). The
synthesis, secretion, and effects of the extracellular vesicles were
intensively considered in the past few decades so that it led to
the creation a scientific association named the International
Society for Extracellular Vesicles (ISEV) (Kowal et al., 2014).
Various techniques for isolation and detection of exosomes
have been reported in recent studies. Isolation techniques
include differential ultracentrifugation (Parolini et al., 2009),
density gradient (Beyer and Pisetsky, 2010), size exclusion
chromatography (Livshits et al., 2015), ultrafiltration (Greening
et al., 2015), immunological separation (Beyer and Pisetsky,
2010), isolation by sieving (Taylor and Shah, 2015), cell sorting
(Peterson et al., 2015), polymer-based precipitation (Grant et al.,
2011), and microfluidic technologies (Oves et al., 2018). Exosome
identification techniques include electron microscopy, western
blot, flow cytometry, and nanosight tracking analysis (Crenshaw
et al., 2018). The latest methods and techniques are RNA-seq
techniques (Jeppesen et al., 2019).

EXOSOME BIOGENESIS

Exosome generation, which was conserved during evolution,
is a continuation of the extracellular ligands internalization
and endocytosis process, which is carried out by the curvature
of the plasma membrane and budding inside the intracellular
endosome that leads to the formation of multivesicular
bodies (MVB). Later, the MVB, which contains intraluminal
vesicles (ILVs) that can be the precursors of the exosome,
either leads to fusion with lysosomes and degradation, or
undergoes exocytic merging with plasma membranes and
exosome secretion (Stoorvogel et al., 2002; Février and Raposo,
2004; Colombo et al., 2014; Kowal et al., 2014; Meldolesi,
2018; Xunian and Kalluri, 2020). Molecular mechanisms of
ILV generation depend firstly on the endosomal sorting
complex required for transport (ESCRT), a molecular apparatus
comprised of four sets including ESCRT-0 which consists of
two subunits HRS (hepatocyte growth factor-regulated tyrosine
kinase substrate) and STAM1/2 (signal transducing adaptor
molecule1/2) (for cargo clustering and sorting), ESCRT-I and
ESCRT-II (induce membrane curvature and vesicle budding),
and ESCRT-III (membrane deformation and vesicle detachment)
(Henne et al., 2011; Meldolesi, 2018; Xunian and Kalluri,
2020). The subordinate proteins (Vps4-Vta1 complex, Tsg101,
Vps24, Vps37, Vps2, and Alix) are also critical for exosome
biogenesis pathway (Henne et al., 2011). ESRT apparatus is
also involved in the deubiquitination of some proteins that
are ubiquitinated in ILVs (Henne et al., 2011; Meldolesi,
2018). The deubiquitination is mediated by the protein tyrosine
phosphatase HD-PTP, which is an essential process for exosome
function (Meldolesi, 2018). The subordinate proteins (class I
AAA ATPase Vps4) can cause the ESCRT apparatus recycling
(Xunian and Kalluri, 2020). In addition to the ESRT pathway,
there are other independent pathways, for example, ceramide
derived from sphingomyelin can cause membrane deformation
and vesicles budding within the MVB (Trajkovic et al., 2008;
Henne et al., 2011).

EXOSOME COMPOSITION

Exosomes are extra cellular vesicles that are secreted from
different cells under both normal and disease conditions and
represent cells function or even as diagnostic markers of diseases.
Existence of mRNA and miRNA within the exosomes has
led to more studies in recent years, making this field more
attractive (Valadi et al., 2007). The exosomes carry bimolecular
content such as protein (membrane proteins, cytosolic and
nuclear proteins, and extracellular matrix proteins), lipid, and
nucleic acid which are different between cells (McAndrews and
Kalluri, 2019). This content can be verified and accessed in
the Exocarta,1 a manually curated web-based database. The
current Exocarta is based on about 286 studies on exosomes
and contains about 41,860 proteins, 1,116 lipid, and more
than 7,540 RNAs from 10 various species (Keerthikumar
et al., 2016). Several most common proteins on the exosomal
surface such as tetraspanins (CD63, CD81, CD82, and CD9)
are known as membrane scaffolds (Ma et al., 2020); in
addition to the above-mentioned tetraspanins, in the MSC-
derived exosomes, there are expressions of CD73, CD44,
and CD90 (Ramos et al., 2016). Exosomes present antigen
proteins such as major histocompatibility complex (MHC) I
and II, flotillin-1, and integrins. Other proteins include MVB
biogenic proteins such as ESCRT complex 0,-1,-II,-III, Alix,
syntenin, TSG101, membrane transporters, and fusion proteins
such as RAB protein, RAP1B, RhoGDIs and annexins (Ma
et al., 2020), several enzymes such as glyceraldehydes- 3-
phosphate dehydrogenase (GAPDH), phosphoglycerate kinase
1 (PGK1) (Van Niel et al., 2011; Charrin et al., 2014),
and alanylaminopeptidase N (Ma et al., 2020), a number
of chaperones such as heat shock protein 70 (HSP70), heat
shock cognate 70 (HSC70) (Van Niel et al., 2011; Charrin
et al., 2014), HSP90, HSP60, and HSP8 (Ma et al., 2020),
adhesion proteins such as L1 cell adhesion molecule (L1CAM),
and lysosomal associated membrane protein 2 (LAMP2)
(Urbanelli et al., 2013).

Exosomes are also rich in genetic materials. Different types
of RNAs including mRNAs and miRNAs, vault RNAs (vtRNAs),
Y-RNAs, ribosomal RNAs (rRNAs), and transfer RNA (tRNAs)
(Squadrito et al., 2014; Vojtech et al., 2014; Shurtleff et al.,
2017). Also, various types of DNAs in exosomes are double-
stranded DNAs (dsDNA) (Thakur et al., 2014), mitochondrial
DNAs (mtDNAs) (Guescini et al., 2010), and single-stranded
DNAs (ssDNAs) (Balaj et al., 2011).

Other exosome contents are lipid compositions including
cholesterol, phosphatidylserine (PS), sphingomyelin, ceramide,
lysobisphosphatidicacid, and phosphatidylethanolamine (PE),
which play an important role in membrane structure and
exosome formation and are secreted in the extracellular
environment (Skotland et al., 2019).

Exosomes with lipid bilayer membrane can protect genetic
material and other contents through transportation to the
targeted cell (Fu et al., 2019). MSC-derived exosomes transmit
their composition to the targeted cells either via plasma

1http://www.exocarta.org
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membrane fusion or membrane receptor function which lead to
the exosome internalization (Harrell et al., 2019a).

MESENCHYMAL STEM CELLS-DERIVED
EXOSOMES

MSCs which are mainly tissue specific stem cells can be
isolated from adult (Akyash et al., 2020) and fetal (Hoseini
et al., 2020) sources. MSCs can be also be produced from
pluripotent human embryonic stem cells (hESCs) (Javidpou
et al., 2021). Different cells secrete exosomes that have
similar protein molecules and biological activities. Immune
modulation, regeneration, tissue repair, and promotion of
angiogenesis are the similar in vivo and in vitro therapeutic
effects of MSC-derived exosomes. These similar activities may
be related to the presence of common protein signature
in all MSCs-derived exosomes (van Balkom et al., 2019).
However, MSCs are a massive source for production of
exosomes, more accessible, and highly proliferative (Cheng
et al., 2017) and that makes them more suitable for different
fields of research. Moreover, exosomes derived from specific
types of MSCs have unique properties (Tang et al., 2021).
Additionally, different specific cells secrete exosome containing
unique protein molecules and exert biological activity (Simpson
et al., 2008). For example, in a recent study, amelioration of
the spermatogonia injuries by Sertoli cell-derive exosome was
revealed (Salek et al., 2021).

ROLE OF MESENCHYMAL STEM
CELLS-DERIVED EXOSOMES IN
INFLAMMATION AND CELLULAR
DAMAGE

Numerous studies have shown the potential of MSC-derived
exosomes for treatment of diseases, which can be used as vaccines
(prophylaxis), treatment, disease biomarkers, and drug delivery
(Wang et al., 2017; Janockova et al., 2021).

It has been demonstrated that MSC-derived exosomes exhibit
a crucial role in repair of the epithelium damage and re-
epithelialization (Zhang et al., 2015a), angiogenesis (Shabbir
et al., 2015; Zhang et al., 2015b), and prevention of the scar
formation by suppressed myofibroblast differentiation (Fang
et al., 2016). Studies have also reported that MSC-derived
exosomes containing miRNAs can reduce inflammation by
transforming the pro-inflammatory macrophage M1 to anti-
inflammatory phenotype M2. The phenotype M2 reduces local
interleukin-1β, interleukin-6, and tumor necrosis factor alpha
(TNF-α) and increases the secretion of anti-inflammatory factors
such as IL-10 as well as immune regulation (Wei et al., 2019;
Zhao et al., 2019). Recent study demonstrated that MSC-derived
exosomes can cause suppression of CD4+ Th1 and Th17 and
induction of T regulatory cells (Treg) expansion which it in
turn regulates and suppresses the immune system (Harrell et al.,
2019b). Also, the protective effects of MSC-derived exosomes
have been mediated via oxidative stress suppression and maintain
balance of cellular redox state (Yang et al., 2015).

FIGURE 1 | Potential effects of MSCs-derived exosomes on consequences of chlamydia infection in the genital tract. Genitalia tract infection with chlamydia evokes
an inflammatory immune response by epithelial and local immune cells. This, in turn, produces the high level cytokins that initiate a more severe immune reaction.
The responses may result in male genital inflammation and fibrosis. On the other hand, the inflamed tissue can lead to creation of ROS production and then sperm
damages. MSC derived exosomes potentially improve these consequences of chlamydia induced inflammation. DC, Dendritic cells; MC, Macrophage; NK, Natural
killer; MSC, Mesenchymal stem cell; ROS, Reactive oxygen species.
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Studies have also shown the important role of MSC-derived
exosomes in tissue repair after injury, the effect that is mediated
by inducing cell differentiation, proliferation, and prevention of
apoptosis. The miRNAs such as miR-21-5p, miR-144, and miR-
19a are the factors that inhibit apoptosis in the MSC-derived
exosomes and reduce apoptotic proteins such as caspase 3,
caspase 8, and caspase 9 after tissue injury (Yu et al., 2015; Li et al.,
2019; Wen et al., 2020).

In the inflammatory response of colitis it has been reported
that MSC-derived exosomes attenuate inflammation through
decrease in TNF-α, nuclear factor kappaBp65 (NF-κBp65),
cyclooxygenase-2 (COX-2), inducible nitric oxide synthase
(iNOS), interleukin-1β (IL-1β), and increase in expression of
IL-10. Alleviation of LPS-induced inflammation and acute
respiratory distress syndrome (ARDS) by MSC-derived exosomes
has been demonstrated (Deng et al., 2020). Another study on
premature ovarian failure reported that MSC-derived exosomes
with miR-644-5p can cause apoptosis inhibition via impressing
p53 and recover normal function in ovarian granulosa cell
(Sun et al., 2019). Considering the male infertility caused by
C. trachomatis has inflammation-based pathology (Lotti and
Maggi, 2013; Redgrove and McLaughlin, 2014), exosome therapy
may be a beneficial technique to attenuate the cell injuries and
the tissue remodeling such as occurrence of fibrosis and scar
formation (Figure 1).

ROLE OF MESENCHYMAL STEM
CELLS-DERIVED EXOSOMES IN
INFECTION

The antimicrobial properties of MSC-derived exosomes have
been reported by several clinical trials (Krasnodembskaya et al.,
2010; Harman et al., 2017; Cortés-Araya et al., 2018). Studies
also showed that exosomes contain antimicrobial peptides
(AMPs) and the proteins that have bactericidal effect (Gläser
et al., 2005; Krasnodembskaya et al., 2010; Allen and Stephens,
2011; Alcayaga-Miranda et al., 2017). MSC-derived exosomes
indicated the therapeutic effect on lung injury that induced
by E. coli (Zhu et al., 2014). Also, enhancing anti-microbial
function of immune cells infiltration in lung by MSC-derived
exosome has been reported in an animal study (Hao et al.,
2019). A previous study revealed that exosomes can protect
the brain against sepsis induced in an experimental model
(Chang et al., 2018). MSC-derived exosomes enhanced the
bacterial phagocytosis capability of the monocytes in severe
bacterial pneumonia (Monsel et al., 2015) and enteric infections
(Islam et al., 2001). Moreover, immunoregulatory properties
of monocytes and decrease in inflammatory cytokine secretion
were observed after use of the exosomes (Monsel et al.,
2015). There is evidence that MSC-derived exosomes with their
immunomodulatory, pro-angiogenesis, and anti-inflammatory
activities can prevent inflammatory responses and alleviate
COVID-19-induced pneumonia and lung injury (Raghav et al.,
2021). In sum, these evidences about the role of exosomes in
infections, especially their effects in increase of phagocytosis by
monocytes, generate promising reasons to give them a potential
property for eradication of the micro-organisms.

FIGURE 2 | MSC-derived exosomes may decrease ROS production after
chlamydia infection and their effects on sperm membrane and DNA.
Therefore, MSCs-derived exosomes can potentially improve quality and
adhesive properties of sperm.

MSC-derived exosomes, as a natural carrier, possess a
capability of embedding and delivering antibiotics and drugs.
The use of exosomes as carriers leads to reduction of drugs
that metabolize, targeted drug delivery, and thus overcome drug
resistance (Bartolini et al., 2013; Yeo et al., 2013; Batrakova and
Kim, 2015; Gao et al., 2018; Oves et al., 2018; Herrmann et al.,
2021). However, exosome modifications change the functions
and therapeutic effects of these vehicles (Ma et al., 2017;
Tamura et al., 2017).

POTENTIAL THERAPEUTIC ROLE OF
MESENCHYMAL STEM CELLS-DERIVED
EXOSOME IN SPERM ABNORMALITY

To achieve proper male fertility, safe sperm manipulation
is important. Recently, new methods such as the use of
nanoparticles have been used to develop non-invasive techniques
for treating and manipulating sperm (Feugang, 2017). The
effectiveness and non-invasiveness of the nanoparticles such as
exosome for mammalian sperm have been proven (Vilanova-
Perez et al., 2020). According to animal studies, exosomes
appear to be a promising avenue to restore spermatogenesis
and sperm regeneration; a study has shown that amniotic
fluid-derived exosome can restore sperm parameters such as
motility, concentration, as well as the number of spermatogonia,
spermatocytes, and ultimately male fertility (Mobarak et al.,
2021). The protective effect of exosomes against sperm
cryoinjuries (such as cell membrane injury, DNA damage)
and oxidative stress produced by cryopreservation process
and improvement of the post-thaw sperm parameters has
been reported (Qamar et al., 2019; Mahiddine et al., 2020).
Interestingly, treatment of spermatozoa with MSC-derived
exosomes, in addition to improving sperm parameters after
frozen-thawed, can increase sperm adhesive and fusogenic
properties by adhesion molecules shuttling such as CD44, CD29,
CD54, and CD106 (Mokarizadeh et al., 2013; Figure 2).
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Exosomes contain different molecules such as RNAs that can
be incorporated into immune or host cells. RNA sequencing
analysis showed that microRNAs were the most frequent in
exosomes (Huang et al., 2013). MSC-exosomes can play a
role in injury repair and preventing apoptosis after injury
through the miRNAs (e.g., miR-19a, miR-144, and miR-21-
5p). The potential role of the miRNAs in improvement of
chlamydial-induced sperm damages may confer a therapeutic
application to the exosome. In addition, there are several
clinical trials that demonstrated loading of exosomes with
drugs or bioactive molecules (NCT01294072, NCT03608631,
NCT01159288) for therapeutic proposes (NCT04602442,
NCT04213248, NCT03437759, NCT04276987) (Herrmann et al.,
2021). Therefore, it seems that exosomes can be used for
treatment of sperm damage.

CONCLUSION

There are reported evidences demonstrated regenerative, anti-
microbial, and anti-inflammatory and anti-oxidant activities of
exosomes. It is worthwhile to investigate and challenge the

identity and effectiveness of the exosomes in the treatment and
control of the consequences of male genitalia tract infections,
especially chlamydia. MSC-derived exosomes therapy can lend
itself as the potential treatment of male infertility caused by
microbial infections in the near future.
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Neisseria gonorrhoeae and Chlamydia trachomatis are the most common causes of
bacterial sexually transmitted diseases (STDs) with complications in women, including
pelvic inflammatory disease (PID), ectopic pregnancy, and infertility. The main concern
with these infections is that 70% of infected women are asymptomatic and these
infections ascend to the upper female reproductive tract (FRT). Primary infection in
epithelial cells creates a cascade of events that leads to secretion of pro-inflammatory
cytokines that stimulate innate immunity. Production of various cytokines is damaging
to mucosal barriers, and tissue destruction leads to ciliated epithelial destruction
that is associated with tubal scarring and ultimately provides the conditions for
infertility. Mesenchymal stem cells (MSCs) are known as tissue specific stem cells
with limited self-renewal capacity and the ability to repair damaged tissues in a
variety of pathological conditions due to their multipotential differentiation capacity.
Moreover, MSCs secrete exosomes that contain bioactive factors such as proteins,
lipids, chemokines, enzymes, cytokines, and immunomodulatory factors which have
therapeutic properties to enhance recovery activity and modulate immune responses.
Experimental studies have shown that local and systemic treatment of MSC-derived
exosomes (MSC-Exos) suppresses the destructive immune response due to the delivery
of immunomodulatory proteins. Interestingly, some recent data have indicated that
MSC-Exos display strong antimicrobial effects, by the secretion of antimicrobial peptides
and proteins (AMPs), and increase bacterial clearance by enhancing the phagocytic
activity of host immune cells. Considering MSC-Exos can secrete different bioactive
factors that can modulate the immune system and prevent infection, exosome therapy is
considered as a new therapeutic method in the treatment of inflammatory and microbial
diseases. Here we intend to review the possible application of MSC-Exos in female
reproductive system bacterial diseases.

Keywords: antimicrobial effects, mesenchymal stem cells, MSC-derived exosomes, antibacterial properties,
Neisseria gonorrhoeae, Chlamydia trachomatis, female infertility
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INTRODUCTION

Today, with the huge concern regarding antibiotic resistance and
due to absence of an effective vaccine, researchers are looking for
suitable alternatives to solve this problem (Hosseiniyan Khatibi
et al., 2020; Russell et al., 2020). Mesenchymal stem cells (MSCs)
are defined as undifferentiated renewable cells. These cells can
be isolated from different tissues including bone marrow, cord
blood, skin, fallopian tube, liver, lungs, endometrium, testis,
amnion, ovary, and adipose tissue (Akyash et al., 2016a,b;
Sadeghian-Nodoushan et al., 2016; Zhang et al., 2016; Akyash
et al., 2020; Hoseini et al., 2020). Moreover, there are reports
indicating the generation of MSCs from pluripotent human
embryonic stem cells (hESCs) (Akyash et al., 2016a; Javidpou
et al., 2021). The therapeutic potentials of MSCs are accomplished
through three mechanisms. The first is differentiation into
multiple cell types, which provides the condition for repairing
and replacing damaged tissues. The second is that MSCs migrate
to injured tissues due to chemical gradients. The third mechanism
is the most important mechanism due to secretion of bioactive
factors (Vizoso et al., 2017). Moreover, MSCs are able to secrete
nanoparticles called exosomes that from by fusion of the cell
membrane of multivesicular and are considered as extracellular
vesicles (EVs). EVs according to International Society for
Extracellular Vesicles (ISEV) are divided into three classes based
on their size and origin, which include exosomes, microvesicles
(MVs), and apoptotic bodies; (a) exosomes with various in size
of 30–150 nm originate from multivesicular bodies (MVBs), (b)
microvesicles in size of 150–1000 nm, (c) apoptotic bodies with
a wide size distribution of 50–2000 nm (Gurunathan et al., 2019;
Akbari and Rezaie, 2020; Rezaie et al., 2021). Studies show that
MSCs exert their paracrine effects by secreting exosomes which
are known by other names including nanoparticles, exosome-
like vesicles, dexosomes, prostasomes, and tolerosomes (Zhang
et al., 2020; Rezaie et al., 2021). Exosomes are transitional vesicles
that release into the extracellular space through fusion with the
cell membrane, which can reach distance target cells and affect
their function and activity (Kowal et al., 2014). MSC-derived
exosomes (MSC-Exos) are able to secrete cytokines, chemokines,
and growth factors, proteins, mRNA, non-coding RNA, and
bioactive lipids that could elicit a wide range of physiological
activities (Harrell et al., 2019; Adib et al., 2020b,a; Yuan et al.,
2020). Moreover MSC-Exos are considered as an innovative
therapeutic tool to treat bacterial infections, consistent with
their unique properties (Park et al., 2019). Neisseria gonorrhoeae
(N. gonorrhoeae) and Chlamydia trachomatis (C. trachomatis)
are gram-negative bacteria that are both considered as obligate
human pathogens (Chen et al., 2018). Due to the pathogenesis
of N. gonorrhoeae and C. trachomatis and the ability of these
bacteria to cause chronic infections and, on the other hand,
considering the side effects of antibiotic resistance and the
absence of effective vaccines, new treatment strategies are needed
to repair damaged epithelial cells of fallopian tube (FT) in these
infections. As regards conditioned medium (CM) or MSC-Exos
contain growth factors, antimicrobial peptides/proteins (AMPs)
and cytokines have immunosuppression properties on innate and
adaptive immune responses via direct and indirect mechanisms.

In addition, CM and MSC-Exos have other therapeutic potentials
including anti-apoptotic activity, wound healing, tissue repair,
antiscarring, and angiogenesis regulation (Burlacu et al., 2013;
Williams et al., 2013; Vizoso et al., 2017; Adib et al., 2020b,a),
Here, we intend to review the application of MSC-Exos in female
reproductive system bacterial diseases.

ANTIMICROBIAL EFFECTS OF
MESENCHYMAL STEM CELLS

Many studies have shown that MSCs display antimicrobial
features by secretion of AMPs and regulation of immune
responses (Krasnodembskaya et al., 2010; Koniusz et al.,
2016). These antimicrobial effects of MSCs are mediated via
direct and indirect mechanisms (Russell et al., 2020). MSCs
directly interact with pathogens by secreting AMPs, including
lipocalin 2, cathelicidin, β-defensin 2, and hepcidin, thereby
playing an important role in increasing bacterial clearance
(Marrazzo et al., 2019; Chow et al., 2020). While MSCs are
exposed to pathogenic factors, including pathogen-associated
molecular patterns (PAMPs), lipopolysaccharide (LPS), and
damage-associated molecular patterns (DAMPs) via toll-like
receptors (TLRs), caused a change in their proliferation,
differentiation, migration, and secretory factors (Marrazzo et al.,
2019; Hosseiniyan Khatibi et al., 2020). The immunomodulatory
effects of MSC-Exos are mainly due to inhibition of T cells
proliferation and conversion of these cells to regulatory T cells
(Tregs) and also through reprogramming of M1 macrophage
cells to M2 phenotype that these immunomodulatory and anti-
inflammatory effects of MSC-Exos lead to tissue repair and
healing (Xie et al., 2020; Arabpour et al., 2021).

Direct Mechanisms
Antimicrobial peptides and proteins secreted from the MSC
directly play important roles in the bacteria clearance from
different pathways, including inhibition in the synthesis of DNA
and RNA, disruption of membrane integrity, and inhibition of
bacterial growth through disruption in iron uptake (Brogden,
2005; Hosseiniyan Khatibi et al., 2020). AMPs are produced
as the first line of defense of innate immunity against a
wide range of microorganisms, including bacteria, viruses, and
fungi (Diamond et al., 2009). Families of MSCs-derived AMPs
listed in Figure 1 are mainly studied including cathelicidin,
β-defensin-2, lipocalin 2, and Hepcidin (Alcayaga-Miranda et al.,
2017; Russell et al., 2020).

Cathelicidin
One of the important antibacterial peptides is the cathelicidin
family, which recruits monocytes, neutrophils, and macrophages
(Krasnodembskaya et al., 2010). LL-37 is a factor of this family
that is an essential part of the innate immune system that exerts
its antibacterial effect by disrupting the integrity of the bacterial
membrane and neutralizing LPS (Krasnodembskaya et al., 2010;
Thennarasu et al., 2010). This factor has also been shown to
play an important role in regulating inflammatory responses,
inducing tissue repair and healing as well as anti-apoptotic and
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angiogenic effects (Oliveira-Bravo et al., 2016; Yang et al., 2020),
and in a mouse model of septicemia provided protection against
endotoxin shock (Yagi et al., 2020). Johnson et al. (2017), in
a study of the antibacterial effects of MSC administration in
chronic infections associated with biofilms in mouse and dog
models, stated that i.v. administration of activated MSCs induce
the killing of bacteria by secretion of cathelicidin, and this effect
was increased by antibiotics.

β-Defensin 2
β-defensin 2 play important roles in innate and adaptive
immunity against microbial and exert its antibacterial effect by
creating pores in the bacterial membrane and destroying the
integrity of the membrane and leaking intracellular contents, as
well as inhibiting protein, DNA, and RNA syntheses (Laverty
et al., 2011; Méndez-Samperio, 2013). A study showed that
MSCs secrete the antimicrobial peptide of β-defensin 2 through
the TLR-4 signaling pathway after exposure to Escherichia
coli (Sung et al., 2016). The bacteriostatic potential of this
peptide is mainly against gram-negative bacteria and with
a lower antibacterial potential against gram-positive bacteria
(Harder and Schröder, 2005).

Lipocalin 2
Lipocalin 2 is secreted by various cells including neutrophils,
macrophages, epithelial cells, and MSCs in response to
inflammatory conditions, which plays an important role in
the antibacterial defense of the innate immunity (Dahl et al.,
2018). After exposure of MSCs to pathogenic factors lead to
the secretion of a large amount of lipocalin 2, this peptide
binds to siderophore, as an iron chelator of bacteria, which in
turn prevents iron uptake and subsequently reduces bacterial
growth (Goetz et al., 2002; Flo et al., 2004). Harman et al. (2017)
reported that MSCs derived from the peripheral blood of healthy
horses by the secretion of AMPs, including Cystatin C, elafin,
lipocalin, and cthelicidin, through disturbance in membrane
integrity, the growth of bacteria (E. coli and Staphylococcus
aureus) was inhibited .

Hepcidin
Hepcidin is secreted by hepatocytes, renal epithelial cells, as
well as by macrophages and MSCs in inflammatory conditions,
which plays an important role in the systemic regulation of iron
homeostasis (Kulaksiz et al., 2004, 2005; Esfandiyari et al., 2019).
Hepcidin is an antibacterial peptide of the innate immune system
that is primarily induced by the IL-6, LPS, and TLR-4 which
sequesters bacterial siderophores, and therefore restricts iron
availability and as a result inhibits bacterial growth (Ganz and
Nemeth, 2012; Michels et al., 2017). Two isoforms of hepcidin
are known, including hepcidin 20 and 25, both of which have
antibacterial properties (Maisetta et al., 2010).

Inducible Nitric Oxide Synthase Pathway
Mesenchymal stem cells and macrophages activated by LPS,
pro-inflammatory cytokines, and interferons (IFN) cause the
expression of inducible nitric oxide synthase (iNOS), which in
turn iNOS produces nitric oxide (NO) from the amino acid
L-arginine inside these cells. Production of NO in this way halts

the growth of microorganisms inside macrophages and MSCs
(Bogdan, 2015; Yang et al., 2016).

Cysteine Proteases
Studies show that MSC-Exos contain a variety of proteases,
including cysteine proteases, which impact the stability of
bacterial biofilms by degrading extracellular proteins, and thereby
provide conditions for antimicrobials penetration into biofilms
and also increase the effectiveness of antibiotics tolerated by
biofilms previously (Matsumoto et al., 1999; Marx et al., 2020).

Indoleamine 2,3 Dioxygenase
Indoleamine 2,3 dioxygenase (IDO) is the most important
enzyme in the kynurenine pathway (KP), which is primarily
responsible for the degradation of the tryptophan amino
acid, which MSCs mainly express this enzyme in response
to the stimulatory effect of INFγ (Däubener et al., 2009;
Croitoru-Lamoury et al., 2011). Depletion of tryptophan in
microorganisms due to IDO impairs protein synthesis and
disrupts cell division (Frumento et al., 2002; Meisel et al.,
2011). IDO has also been shown to induce immunomodulatory
effects by inhibiting T cells proliferation and modulating
the function of B, T cells, and natural killer (NK) cell
(Poormasjedi-Meibod et al., 2013).

Indirect Mechanisms
The antibacterial effects of MSCs can be indirectly mediated by
increasing phagocytic activity of macrophages and neutrophils
(Hosseiniyan Khatibi et al., 2020). These cells can also
induce immunomodulatory effects mentioned in Figure 2
by modulating immune responses and regulating cytokine
homeostasis and reducing immune cells transfer into the
damaged organ, and thereby provide the conditions for
tissue remodeling and healing. Moreover MSC-Exos perform
their major immunomodulatory effects by inhibiting T cell
proliferation and converting these cells to Tregs as well as
reprogramming M1 macrophages to the M2 phenotype (Riazifar
et al., 2019; Hoseini et al., 2020; Hosseiniyan Khatibi et al.,
2020; Liu W. et al., 2020). These cells and their exosomes
can also inhibit the proliferation and function of B cells,
natural killer cells (NKC), and dendritic cells (DC). MSCs
can induce both bacterial clearance and immunomodulatory
effects, which are dependent on inflammatory signals in the
environment (Fan et al., 2019; Xie et al., 2020). MSCs increase
immune responses during the early phases of inflammation such
that in addition to the migration of neutrophils to sites of
inflammation, MSCs induce lymphocyte and M1 macrophages,
through the production of chemokines. In fact, the stimulatory
effects of mesenchymal cells on immune cells occur when these
cells encounter insufficient levels of proinflammatory cytokines
such as TNF and IFN-γ, while MSCs and MSC-Exos provide
conditions for immunosuppressing during exposure to high
levels of inflammatory cytokines through polarization to anti-
inflammatory cells, M2 macrophages, and Tregs (Raicevic et al.,
2010; Bernardo and Fibbe, 2013; Song et al., 2017; Xie et al., 2020).
Thus, MSCs can activate both phenotypes of macrophages and
provide a balance between inflammatory and anti-inflammatory
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TABLE 1 | Antibacterial and Immunomodulatory Effects of MSCs and MSC-Exos in in vitro and in vivo studies.

Study type Source of MSC Outcomes References

In vivo:
Mouse and dog models of
chronic infections

AT-MSC ↑ Cathelicidin secretion
↑ Clearance of bacteria
↑ Monocyte recruitment
↑ M2 phenotype
↑ Neutrophil bacterial
Phagocytosis

Johnson et al.,
2017

In vivo:
Murine Cystic fibrosis

BM-MSC, AT-MSC ↑ Enhance antibiotic sensitivity
↑ Capacity to kill bacteria (Pseudomonas aeruginosa,
Staphylococcus
aureus)
↑ LL-37

Sutton et al.,
2017

In vitro:
Bacterial growth in Equine
model

BM-MSC, AT-MSC, EM-MSC ↓ Growth of E. coli
↑ Lipocalin-2 expression
↑ MCP-1, IL-6, IL-8, and CCL5

Cortés-Araya
et al., 2018

In vitro and In vivo:
Murine sepsis model

BM-MSC ↓ Genes expression of apoptosis
↓ Genes expression of Pro-inflammatory cytokine
↑ Antibacterial peptides
↑ Anti-inflammatory cytokines
↑ Animal survival rates
↑ Bacterial clearance (Staphylococcal
enterotoxin B)

Saeedi et al.,
2019

In vitro:
Chronic skin wounds in Equine
model

PB-MSC ↓ Growth of E. coli and S. aureus biofilms
↑ Cystatin C, elafin, lipocalin, cthelicidin

Harman et al.,
2017

Ex vivo:
Acute Lung Injury in Mice

HU-MSC ↑ Keratinocyte growth factor (KGF)
↓ Influx of neutrophils
↓ Lung protein permeability
↓ Pulmonary edema

Zhu et al., 2014

In vivo:
Chronic inflammation
(Staphylococcus aureus) of the
ovaries in mice

BM-MSC ↓ Leukocyte infiltration in ovaries
↓ Number of atretic follicles
↑ Ovary morphological
parameters
↓ Apoptotic oocytes
↑ Pregnancy rate

Volkova et al.,
2017

In vivo:
Chronic salpingitis (E. coli)
model in rabbits

WJ-MSC ↓ TNF-α
↑ Oviductal glycoprotein
↑ Repaired the structure of the tubal epithelium
↑ Pregnancy rates

Li et al., 2017

In vivo:
Chronic salpingitis (Chlamydia
trachomatis) murine model

hUC-MSC ↓ Macrophage infiltration
↑ IL-10
↓ FT cell apoptosis (Caspase-3)
↑ Pregnancy rate

Liao et al.,
2019

In vitro:
Human Fetal Liver

FL-MSC-Exos ↓ Proliferation, activation, and cytotoxicity of NK cells
via TGFb

Fan et al., 2019

In vivo:
Intrauterine adhesions in a
female rat model

UC-MSCs-EVs ↓TNF-α,
↓TGF-β
↓IL-1,
↓IL-6
↓RUNX2,
↓Fibrosis
↓collagen-I
↓VEGF
↓IUA

Ebrahim et al.,
2018

In vivo:
Premature ovarian insufficiency
model mice

hU-MSC-Exos ↑Restored ovarian phenotype and function
↑ovarian cells proliferation
↑exosomal miR-17-5P
↓SIRT7 expression

Ding et al.,
2020

In vitro:
inflammation in endometrial
cells of equine models

A-MSC- MVs ↓Apoptosis rate
↓Pro-inflammatory gene expression
↓Pro-inflammatory cytokines secretion

Perrini et al.,
2016

(Continued)
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TABLE 1 | (Continued)

Study type Source of MSC Outcomes References

Ex vivo:
Lung injury models in mice

BM-MSC-EV ↑M2 macrophage marker expression
↑Phagocytic macrophage Phenotype
↑Mitochondrial transfer to macrophage
↓Inflammation and lung injury

Morrison et al.,
2017

In vitro:
Asthma in human

BM-MSC-Exos ↑IL-10
↑TGF-β1
↑Immunosuppression capacity of Tregs

Du et al., 2017

MSC, mesenchymal stem cell; AT-MSC, adipose tissue-MSC; HU-MSC, human-MSC; BM-MSC, bone marrow-MSC; EM-MSC, endometrium-MSC; PB-MSC, peripheral
blood-MSC; FL-MSC, fetal liver-MSC; WJ-MSC, wharton’s jelly; hUC-MSC, human umbilical cord-MSC; A-MSC, amniotic-MSC; MCP-1, monocyte chemoattractant
protein-1; CCL5, chemokine ligand-5; FT, Fallopian tube; IUAs, intrauterine adhesions.

FIGURE 1 | Direct mechanisms of MSC-mediated bacterial killing, MSC exert direct antibacterial effects due to host defense peptides or AMPs. MScs can mediate
bacterial killing by disrupting the integrity of the bacterial membrane, creating pores in the bacterial membrane, preventing of iron uptake, inhibiting biofilm formation,
depleting tryptophan in microorganisms, and halting the growth of bacteria. IDO pathways, Indoleamine 2,3 dioxygenase; iNOS pathways, inducible nitric oxide
synthase; NO, nitric oxide.

responses through interaction with the immune system and
thereby provide the condition for maintaining integrity and
homeostasis of tissue (Liu W. et al., 2020; Xie et al., 2020). MSCs
inhibit proliferation and function of T cells by secreting factors
such as nitric oxide (NO), IDO, prostanglandin-E2 (PGE2),
transforming growth factor (TGF)-β, and interleukin (IL)-10
(DelaRosa and Lombardo, 2010).

Kol et al. (2014) in the study of effects of adipose-derived
MSCs on intestinal microbes (Salmonella typhimurium and
Lactobacillus acidophilus) concluded that these cells could
increase the expression of key immunomodulatory genes
including COX2, IL-6, and IL-8, as well as increase the secretion
of PGE2, IL-6, and IL-8, and they also found that exposure
of MSCs to S. typhimurium increased the capacity of these
cells to inhibit T cell proliferation via PGE2. MSC-Exos also
exert their immunomodulatory effects through their RNA and

proteins (Lo Sicco et al., 2017). Song et al. stated that exosomal
miR-146a is an anti-inflammatory micro-RNA that is transferred
into macrophages and leads to polarization to M2 phenotype
and ultimately increases survival in sepsis models of mice
(Song et al., 2017).

It has also been shown that MSCs inhibit T cell activity
by inhibiting the function, differentiation, and maturation of
dendritic cells (DCs) (Aggarwal and Pittenger, 2005). DCs are
the main cells of the immune system which present antigens
to T cells and are able to express high levels of co-stimulatory
molecules and thereby effectively induce immune responses;
thus MSCs and MSC-Exos can lead to inhibition of T cells
function and development of Tregs by inducing an inhibitory
effect on DCs (Aggarwal and Pittenger, 2005; Jiang et al.,
2005). Moreover, MSCs lead to recruitment and stimulation of
polymorphonuclear (PMN) cells such as neutrophils, by secreting
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FIGURE 2 | The antibacterial effects of MSC can be indirectly mediated by increasing phagocytic activity of macrophages and neutrophils. These cells can also
induce immunomodulatory effects by modulating immune responses and regulating cytokine homeostasis. MVs, microvesicles; DC, dendritic cell; NKC, natural killer
cell; NET, neutrophil extracellular trap; IFN, interferon; TNF, tumor necrosis factor; NO, nitric oxide; PGE2, prostaglandin E2; TGF, transforming growth factor; IDO,
indoleamine 2,3 dioxygenase; Treg, T regulatory cell; Ig, immunoglobulin.

IL-6 and IL-8 (Brandau et al., 2014). Neutrophils induce the
killing of microorganisms by phagocytosis and internalization
of them into the phagolysosome, and it has also been shown
that these cells, through mechanism of neutrophil extracellular
traps (NETs), immobilize microorganisms to prevent their spread
in the environment (Hirschfeld, 2014; Jackson et al., 2016).
Studies show that MSCs and MSC-Exos not only increase
phagocytosis activity of neutrophils but also protect neutrophils
from apoptosis (Harrell et al., 2019; Qian et al., 2021). In
addition, research showed that direct co-culture of MSCs
and their exosomes with macrophages induce mitochondrial
transfer from MSCs to macrophages via formation of structures
called tunneling nanotubes (TNT) that leads to increase in the
phagocytic activity of macrophages and improvement in their
bioenergetics (Hirschfeld, 2014; Qian et al., 2021).

PATHOGENESIS OF N. GONORRHOEAE
AND C. TRACHOMATIS IN THE FEMALE
REPRODUCTIVE TRACT

Neisseria gonorrhoeae and Chlamydia trachomatis are gram-
negative bacteria that are both considered obligate human
pathogens, and they are known as the most common cause
of sexually transmitted diseases (STDs) (Dehghan Marvast
et al., 2016, 2018; Chen et al., 2018; Lenz and Dillard, 2018).

N. gonorrhoeae mainly affects the mucous membranes of
female reproductive tracts. This infection starts from the lower
reproductive tract including the vagina and ectocervix and can
spread to the upper female genital tract (endometrium and
fallopian tubes) (Lenz and Dillard, 2018). Chlamydia is also
an intracellular pathogen that infects the epithelial cells of the
endocervix in women and the urethra in men (O’Connell and
Ferone, 2016). During its evolutionary cycles, Chlamydia forms
structures called elementary bodies (EBs) and reticulate bodies
(RBs). EBs are infective forms that are metabolically inactive,
but after chlamydia enters the host cell, EBs convert to RBs that
are metabolically active but non-infectious and are considered
as the replicating form of the bacteria (Brunham and Rey-
Ladino, 2005). N. gonorrhoeae and C. trachomatis infections
can be symptomatic or asymptomatic and without treatment
lead to complications such as pelvic inflammatory disease (PID),
obstruction of FT, tubal scarring, and loss of ciliated cells function
in these areas (Dehghan Marvast et al., 2017; Tsevat et al.,
2017). Studies have reported that N. gonorrhoeae attach to non-
ciliated cells through pili and Opa proteins in FT but lead to
loss of ciliated cells function and eventually the death of these
cells (Edwards and Apicella, 2004; Quillin and Seifert, 2018).
Various studies have linked the death of these cells to the
presence of toxic factors in bacteria, including lipopolysaccharide
(LPS) and lipooligosaccharide (LOS), which induce the host
immune system (Gregg et al., 1981; Christodoulides, 2019;
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Gulati et al., 2019). In the gonococcal infections following
exposure to pathogen associated molecular patterns (PAMPs),
the secretion of cytokine TNF is one of the first responses
of the host immune system (Patrone and Stein, 2007). One
study reported that increase in the concentration of TNF was
associated with decrease in function of ciliated cells (McGee
et al., 1999). On the other hand, studies have reported that
the reduction in ciliated cell activity and death of these
cells during gonococcal infections has been attributed to the
induction of apoptosis in FT epithelial cell by the TNF
cytokine (Edwards and Apicella, 2004; Morales et al., 2006).
Evidences also are showed that other factors, including IL-
1, IL-6, IL-8, monocyte chemoattractant protein-1 (MCP-1),
and granulocyte macrophage colony-stimulating factor (GM-
CSF) secreted during gonococal infections (Maisey et al., 2003;
Velasquez et al., 2012). Moreover, one study reported that the
levels of cytokines IL-2 and IL-12 were rapidly upregulated
during exposure to N. gonorrhoeae infection, such that IL-2 was
associated with lymphocyte proliferation, while IL-12 increased
IFNγ production by lymphocytes and NKC (Rarick et al., 2006).
Although magnitude Th17 responses in gonococcal infections
lead to the release of IL-17 and the recruitment of neutrophils,
the relative resistance of N. gonorrhoeae to neutrophil function
and the lack of an effective response to pathogen clearance have
been reported (Witt et al., 1976; Liu et al., 2012). Moreover,
immune responses in C. trachomatis infection include activation
of Th1 and proinflammatory cytokines IL-2, IL-6, TNF, and INF-
γ (Arno et al., 1990). One study reported that INF-γ levels in
endocervical secretions of women with C. trachomatis infection
were five times higher than uninfected women (Sellami et al.,
2014). Also, studies show that TLR-2 and TLR-4, which are
increased in C. trachomatis infection, play an important role in
inducing innate and acquired immune responses (Agrawal et al.,
2011; Lovett and Duncan, 2019).

But although lymphocyte proliferative responses in
gonococcal infections are increased compared to healthy
individuals, these immune responses cannot provide strong
protection against recurrence of the infection (Zhu et al., 2012).
Moreover, N. gonorrhoeae are able to manipulate and effect the
function of host immune cells, so that gonococcal infections have
been shown to exert immunosuppressive signaling by inhibiting
the proliferation of DCs, T cells, and B cell (Manicassamy et al.,
2009; Escobar et al., 2018). On the other hand, N. gonorrhoeae
induces the expression of immunosuppressive cytokines such as
TGF-β and IL-10 so that it has been stated that N. gonorrhoea
suppresses the activity of Th1 and Th2 by inducing the expression
of TGF-β (Mascellino et al., 2011).

Evidence suggests that the immune responses generated
during the pathogenesis of Neisseria and Chlamydia are polarized
toward cytotoxic responses and provide the conditions for
obstruction and scaring in FT (Menon et al., 2015; Jefferson
et al., 2021). According to research, different mechanisms are
involved in inducing infertility following N. gonorrhoeae and
C. trachomatis infection. The first mechanism involves the
ascension of the infection to the upper reproductive tract
(Hafner, 2015). The second mechanism involves the persistence
of the infection, which leads to long-term pathological immune

responses and thus provides the conditions for damage to
the epithelial cells of FT (Batteiger et al., 2010). It has also
been suggested that treatment failures by antibiotics lead to
recurrence of the infection and the development of infertility
via persistence of infection (Menon et al., 2015). The third
mechanism involves the secretion of cytokines from pathogen-
infected epithelial cells, which induce proinflammatory immune
responses that lead to severe epithelial cell damage and
fibrosis or scarring following repair mechanisms by infiltrating
fibroblasts (Darville, 2021). Since that salpingitis induced
by N. gonorrhoeae and C. trachomatis infections leads to
pathological immune responses and induces infertility, it is
necessary to create a good balance between immune activation
and immune suppression.

THERAPEUTIC POTENTIAL OF
MESENCHYMAL STEM CELL-DERIVED
EXOSOMES ON SALPINGITIS INDUCED
BY N. GONORRHOEAE AND
C. TRACHOMATIS INFECTIONS

Due to the unique life cycles of N. gonorrhoeae and
C. trachomatis, the major PID caused by these infections
are chronic, so antibiotic therapy is less effective, which often
leads to persistence of the infection and reinfection (Chen et al.,
2020). Various studies listed in Table 1 have reported the positive
effects of MSC-Exos in the treatment of gynecological diseases
(Sun et al., 2019; Zhang et al., 2019; Liu C. et al., 2020; Xin et al.,
2020; Zhao et al., 2020; Lee et al., 2021; Liao et al., 2021). Today,
MSC-Exos are used in cell therapy, regenerative medicine, auto-
immune, and microbial disease due to their unique properties
such as high proliferative capacity, easy isolation, and secretion of
bioactive factors, as well as having anti-apoptotic, antimicrobial,
antiscarring, tissue repair, and wound healing effects (Ha et al.,
2020; Raghav et al., 2021).

Exosomes Isolation of Mesenchymal
Stem Cell
Various techniques are used to separate exosomes from MSCs,
including ultracentrifugation, ultrafiltration, precipitation,
immunological separation, chromatography, and nanoFACS
(Théry et al., 2018; Rezaie et al., 2021). However, each of
these methods has advantages and disadvantages, and studies
have reported that the ultracentrifugation method is the most
common standard method for isolating exosomes (Momen-
Heravi et al., 2013). But Klymiuk et al. (2019) in their study stated
that the ultrafiltration method had higher results and efficiencies
in size-based isolation compared to the ultracentrifugation
method, and a 50-fold increase in concentration and less
time for isolation compared to the ultracentrifugation method
was reported. On the other hand, due to several overlapping
features between exosomes and viruses such as size, shape,
density, and biogenesis, Rezaie et al. (2021) reported that
nanoFACS and immunological methods are more suitable
for isolating exosomes from viruses in infected samples.
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Moreover, in most studies it has been stated that in order to
achieve better specificity and recovery in the separation of EV
or EV subtypes, the use of a combination of techniques or
additional techniques is recommended (Nikfarjam et al., 2020;
Liangsupree et al., 2021).

Advantages and Limitations of
Mesenchymal Stem Cells-Derived
Exosomes Application
Various studies have shown the superiority of using exosomes
rather than MSCs. The risk of tumor formation has not been
reported in exosome-based therapies, while the tumorigenic
risk in MSC-based therapies has been observed in several
studies (Mendt et al., 2019; Wei et al., 2021). In addition
to the fact that lower side effects of exosomal therapy than
mesenchymal transplantation have been reported in various
studies, Sun et al. (2015) have reported increased expression
of HLA and immunological rejection in MSCs transplantation.
In addition, studies have shown that exosomes are not affected
by apoptotic processes and cell death due to their non-
cellular nature, and therefore their stability is greater in the
damaged area (Lou et al., 2017; Wang et al., 2021). Exosomes
are also less expensive to produce than MSCs and are more
stable to store and easier for storage and, recently, it has
received more attention than cell-based therapy due to the
ability of exosomes to transport therapeutic biomolecules and
facilitate repair of the damaged site (Babaei and Rezaie,
2021). Despite the advantages of exosome therapy and its
therapeutic potential compared to their parent cells, several
disadvantages have been reported, including the lack of renewal
potential, the loss of some paracrine factors during the use
of isolation methods, and the possibility of viral infections
transmission and short half-life of exosomes (Takahashi et al.,
2013; Babaei and Rezaie, 2021).

Application Studies of Mesenchymal
Stem Cell-Derived Exosomes
Different evidences mentioned in Table 1 have reported the
antimicrobial effects of MSCs and MSC-Exos. However, these
studies are more limited to animal studies and clinical dates
are low. In the evaluation of antimicrobial activity of MSCs
in chronic infections associated with biofilm formation, it has
been reported that co-administration of MSCs with antibiotics
affected both direct and indirect pathways of these cells, such
that secretion factors of MSCs inhibited biofilm formation
and disrupted the growth of stabilized biofilms (Johnson
et al., 2017). It has also been suggested that administration
of these cells with antibiotics can have a synergistic effect in
reducing a variety of multi-drug resistance (MDR) in bacterial
infections (Chow et al., 2020; Russell et al., 2020). Liao et al.
reported that hUC-MSC reduced hydrosalpinx, macrophage
infiltration, and the expression of IL-10 in the oviduct. Also,
they observed that hUC-MSC induced anti-apoptotic effects
by reducing the expression level of caspase-3. In addition,
it was reported that pregnancy rate increased significantly,
and these effects were attributed to the anti-inflammatory and

anti-apoptotic properties of hUC-MSC (Liao et al., 2019). In
addition, Li et al. (2017) observed that WJ-MSCs restored the
epithelial structure of the FT and concentration of TNF was
decreased significantly in the treatment group with WJ-MSCs,
and they also reported that WJ-MSCs improved the secretion
of oviduct glycoprotein and fertility partially in rabbits with
chronic salpingitis. Furthermore, Ebrahim et al. (2018) revealed
that hUC-MSC-EV alone or in combination with estrogen
significantly reduced intrauterine adhesions in female rats due
to decrease in inflammatory cytokines (TNF-α, IL-1, IL-6) and
fibrotic markers (RUNX2, TGF-β, collagen-I). Also, Ding et al.
reported that hUMSC-Exos due to microRNA-17-5P repaired
the phenotype and function of the ovary, elevated ovarian cells
proliferation, and decreased ROS accumulation in POI mouse
model (Ding et al., 2020).

CONCLUSION

Experimental studies show that MSCs and MSC-Exos have a
high potential for the treatment of inflammatory and microbial
diseases. Furthermore, MSC-Exos have similar abilities to their
parent cells, which have a high potential for modulating immune
responses due to their therapeutic biomolecules. However, the
priority of using MSC-Exos compared to cell-based therapy
in terms of safety and stability has been reported in several
studies. In addition, MSC-Exos induce the phagocytic activity
of neutrophils and macrophages and improve the bioenergetics
of them to provide the conditions for increasing the survival
of these cells and the continuity of their function in bacterial
phagocytes. On the other hand, MSC-Exos play an important role
in preventing the pathological immune response by interacting
with immune cells and reprogramming M1 macrophages to
the M2 phenotype and converting Th to Tregs. Therefore,
it can be said that MSC-Exos due to these properties can
inhibit pathological immune responses during N. gonorrhoeae
and C. trachomatis infections, and in this way MSC-Exos provide
the conditions for tissue repair and prevent severe tissue damage
during infection.
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Exosomes, as the smallest extracellular vesicles that carry a cargo of nucleic acids,
lipids, and proteins and mediate intercellular communication, have attracted much
attention in diagnosis and treatment in the field of medicine. The contents of exosomes
vary depending on the cell type and physiological conditions. Among exosomes derived
from several cell types, stem cell-derived exosomes (stem cell-Exo) are increasingly
being explored due to their immunomodulatory properties, regenerative capacity, anti-
inflammatory and anti-microbial functions. Administration of stem cell-Exo, as a cell-free
therapy for various diseases, has gained great promise. Indeed, the advantages of
exosomes secreted from stem cells outweigh those of their parent cells owing to
their small size, high stability, less immunogenicity, no risk of tumorigenesis, and easier
condition for storage. Recently, the use of stem cell-Exo has been proposed in the field
of microbial diseases. Pathogens including bacteria, viruses, fungi, and parasites can
cause various diseases in humans with acute and chronic complications, sometimes
resulting in mortality. On the other hand, treatments based on antibiotics and other
chemical compounds have many side effects and the strains become resistant to drugs
in some cases. Hence, this review aimed to highlight the effect of stem cell-derived
extracellular vesicles including stem cell-Exo on microbial diseases. Although most
published studies are preclinical, the avenue of clinical application of stem cell-Exo is
under way to reach clinical applications. The challenges ahead of this cell-free treatment
that might be applied as a therapeutic alternative to stem cells for translation from bench
to bed were emphasized, as well.

Keywords: exosome, stem cell, anti-microbial, pathogen, therapy

INTRODUCTION

Almost all physiological and metabolic processes depend on cell-to-cell communication.
Extracellular Vesicles (EVs) are one of the most important mediators of intercellular
communication (Wang et al., 2018; Larabi et al., 2020), which include a collection of vesicles
enclosed in a phospholipid bilayer membrane and released by various cells into the extracellular
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GRAPHICAL ABSTRACT | Summary of the antimicrobial effect of stem cell-derived exosomes on bacteria, viral, fungal, and parasitic diseases.

space. The process of EVs release is evolutionary conserved and
occurs in both prokaryotes and eukaryotic cells. EVs were first
identified by Dr. Ross Johnstone in 1983 during reticulocyte
maturation. Before that, EVs were considered “garbage bags,”
but they turned out to play an important role in intercellular
communication by transferring different kinds of protein, nucleic
acid, and lipid within an organism or between species (Keshtkar
et al., 2018; Larabi et al., 2020). The International Society of Extra
Cellular Vesicles (ISEV) has classified EVs into three groups of
exosomes, microvesicles, and apoptotic bodies based on their
size, biogenesis, release routs, cargos, and function (Figure 1). It
has been shown that all types of cell are able to release EVs, which
are observed in almost all body fluids such as blood, normal
urine, breast milk, bronchial lavage fluid, saliva, cerebrospinal
fluid, amniotic fluid, and synovial fluid (Keshtkar et al., 2018;
Zhao et al., 2020).

Extracellular Vesicles, particularly exosomes, are released by
cells during normal physiological and pathological conditions
(Yuana et al., 2013). Production of EVs can be induced by
various processes such as oxidative stress, hypoxia, senescence,
inflammation, and infection (Keshtkar et al., 2018; Zhao
et al., 2020). The number of released EVs depends on the
physiological state of cell production and its microenvironment.
The unique properties of EVs in delivering their active cargos
to neighbor or distant cells have attracted much attention for
the therapeutic application of these particles (Abreu et al., 2016;

Zhang et al., 2019). In the following sections, three groups of
EVs are reviewed, focusing on exosomes and exosomes derived
from stem cells.

APOPTOTIC BODIES

Apoptotic bodies are the biggest vesicles whose diameters range
from 50 to 5,000 nm and are released from dying cells (Doyle and
Wang, 2019). The process of apoptotic body formation includes
cell contracts and enhancement of hydrostatic pressure, leading
to outward budding or fragmentation of plasma membrane from
cytoskeleton in dying cells (Figure 1). It has been reported
that apoptotic bodies carry chromatin, intact organelles, and
glycosylated proteins such as histones and Heat Shock Protein
(HSP)-60. The markers of apoptotic bodies include Annexin V,
DNA fragments, and histones. However, their contents can be
different depending on the cell type from which they are released
(Doyle and Wang, 2019; Mohan et al., 2020; Rezaie et al., 2021).

MICROVESICLES

Microvesicles (MVs) are 100–1,000 nm EVs released from a
verity of living cells into the extracellular space (Figure 1).
MVs biogenesis is driven via direct outward budding of plasma
membrane in the presence of cytoskeleton agents such as
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FIGURE 1 | Extracellular Vesicles (EVs) biogenesis. EVs consist of exosomes, microvesicles, and apoptotic bodies. Exosomes arise through the inward budding of
plasma membrane and are the smallest in diameter (30–150 nm). Microvesicles are larger in diameter (100–1,000 nm) and are driven through an outward budding of
the plasma membrane. Apoptotic bodies range from 50 to 5,000 nm in diameter and are generated by outward budding of the plasma membrane from dying cells.
Due to different biogenesis mechanisms, the compositions of exosomes, microvesicles, and apoptotic bodies are varied.

microtubules, actin, kinesins, myosins, and tethering factors
(Doyle and Wang, 2019; Rezaie et al., 2021). These vesicles
isolate by ultracentrifugation at 10,000–20,000 × g. Since
MVs are separated by the budding of plasma membrane,
their composition mainly includes plasma membrane-associated
proteins such as tetraspanins along with cytosolic proteins,
cytoskeletal proteins, and HSPs. However, its compounds are
not limited to proteins and contain lipids, mRNAs, and
microRNAs. Moreover, MVs are one of the mediators of
cell-to-cell communication between neighbor and distant cells,
which interact through a specific ligand-receptor. MVs are
able to transfer their contents to recipient cells and change
the functionality of target cells based on physiological and
pathological environmental conditions (Keshtkar et al., 2018;
Doyle and Wang, 2019).

EXOSOMES

Exosomes are nano-vesicles with sizes ranging from 30 to 150 nm
in diameter that sediment between 70,000 and 200,000 × g.
Exosomes arise through a specific biogenesis pathway including

the inward budding of plasma membrane that forms the early
endosome (Figure 1). Then, the early endosome matures into
late endosome with the accumulation of Intraluminal Vesicles
(ILVs) in their lumen. The process of ILVs formation is
mediated by the Endosomal Sorting Complex Required for
Transport (ESCRT) or by ESCRT-independent mechanisms
including tetraspanins or lipids such as ceramides. Since the
late endosome contains ILVs, it is called Multivesicular Bodies
(MVBs) (Yuana et al., 2013; Salimi et al., 2020). Finally,
MVBs fuse with plasma membrane and generate exosomes
(Larabi et al., 2020). After releasing into the extracellular space,
exosomes are recognized by recipient cells through adhesion
factors such as integrin followed by endocytic uptake. However,
some exosomes directly fuse with the plasma membrane or
interact with the lipid-ligand receptor and transmit their cargos
(Keshtkar et al., 2018; Shi et al., 2021). Depending on the
distance of the target cell, exosomes for distant cells may
be absorbed through the paracrine or the endocrine pathway
(Keshtkar et al., 2018).

The importance of exosomes goes back to their contents
since they contain a valuable shipment of proteins, lipids, and
metabolites as well as a set of nucleic acids consisting of
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microRNA, tRNA fragments, mRNAs, small RNA transcripts,
and RNA-protein complexes (Wang et al., 2018; Larabi et al.,
2020). Exosomes also carry chromosomal and mitochondrial
DNA. It has turned out that these nucleic acids are essential in
cell signaling transduction and regulation of biological function.
Nucleic acids are functionally active when entering recipient
cells. Although the composition of exosomes depends on the
origin of the donor cell, there are multiple conserved proteins
that are considered the specific markers of exosomes. The
tetraspanin family of proteins (including CD9, CD63, and
CD81) are the most important conserved proteins, which assist
the connection of inside the cell to the outside environment.
Apart from tetraspanin, other important cell adhesion molecules
include integrins and antigen presentation molecules (MHC)
(Nikfarjam et al., 2020). HSP70 and HSP90 are also known as
the top exosomal markers involved in membrane remodeling
via protein folding regulation and transformation (Shi et al.,
2021). Alix, TSG101, and GTPases are other specific markers
of exosomes. Exosomes are surrounded by a lipid bilayer
membrane that preserves them from degradation by the immune
system and separation from body fluids. Exosomes enclosed in
the phospholipid membrane include high levels of cholesterol,
sphingomyelin, ceramide, and lipid-rafts (Doyle and Wang, 2019;
Larabi et al., 2020). These lipids are in fact the characteristic of the
cellular source releasing exosomes. After isolation, exosomes are
stable and can be stored at −80◦C for a long time without losing
their functionality, because of their biolayer lipid membrane.

Studies have shown that exosomes possess
immunomodulatory potentials, one of which being
communication between antigen-presenting and recipient
cells. Exosomes also contain cytokines with antimicrobial
properties and innate response signaling molecules that are
important in response to viral and bacterial infections. The
exosomal composition depends mainly on the source of donor
cells, epigenetic changes, and physiological and pathological
microenvironment conditions. Hence, exosomes have vital roles
in intracellular communication and immune modulation in
different physiological and pathological conditions (Doyle and
Wang, 2019). Due to the broad biological functions of exosomes
including maintaining homeostasis and transferring molecules
between cells, these vesicles have attracted much attention in
medical research, with a focus on the therapeutic application of
exosomes in the last two decades.

STEM CELL-DERIVED EXOSOMES

It has been reported that exosomes are released by all
kinds of cell including stem cells and immune cells that
can enter body fluids including blood, saliva, amniotic fluid,
urine, milk, cerebrospinal fluid, ascites, and semen (Wang
et al., 2018) and move toward target cells. Among exosomes
derived from several stem cell types, Mesenchymal Stem Cell-
derived Exosomes (MSC-Exo) have received much attention
due to their immunomodulatory, regenerative, and anti-
inflammatory functions. MSCs exert immunoregulatory and
tissue repair functions due to secreting paracrine factors

including exosomes and MVs (Keshtkar et al., 2018; Zhao et al.,
2020). MSC-Exo are involved in cellular processes including
proliferation, transcription, migration, and differentiation. MSC-
Exo also help the stimulation of angiogenesis, suppression
of fibrosis, increase of neuronal survival and differentiation,
induction of extracellular matrix remodeling, inhibition of
local inflammation response, and adjustment of immune cells’
activities (Zhao et al., 2020).

Extensive body of evidence has demonstrated that MSC-Exo
mimic the beneficial effects of parent MSCs in animal models
of various human diseases including cardiovascular, kidney,
liver, lung, and neurodegenerative diseases, and other diseases
(Keshtkar et al., 2018, 2020; Zhao et al., 2020). MSC-Exo were
first separated in 2010 and decreased the infarct size in a mouse
model of myocardial ischemia/reperfusion injury. The results
of microarray analysis indicated that about 98% of miRNAs in
stem cells were in exosomes and MVs (Hassanzadeh et al., 2021;
Rezaie et al., 2021).

In addition to the aforementioned beneficial effects, stem cell-
Exo present anti-microbial properties like parent cells. pathogens
including bacteria, viruses, fungi, and parasites can cause various
diseases in humans with acute and chronic complications,
sometimes resulting in mortality. Moreover, the rising incidence
of emerging infectious agents is alarming. On the other hand,
treatments based on antibiotics and other chemical compounds
have many side effects and the strains become resistant to drugs
in some cases. Hence, exploring novel treatment approaches is
always a necessity. Recently, various studies have presented the
anti-microbial effects of stem cell-Exo in preclinical and few
clinical trials. This review highlights the recent studies exploring
the therapeutic potential of all kinds of stem cell-Exo along with
immune-derived exosomes to combat with microbial infections
and complications.

THE APPLICATION OF STEM CELLS
THERAPY IN MICROBIAL DISEASES

To date, stem cell therapy has been promising in tissue
and immune disorders. Successful attempts have been made
mainly MSCs in the treatment of infectious diseases and
controlling their complications. This part aims to summarize the
advances in this field.

The anti-bacterial effect of MSCs has been investigated in
various studies (Krasnodembskaya et al., 2010; Sung et al.,
2016; Liu et al., 2017; Chow et al., 2020). Accordingly,
these cells exert their effect through direct bacterial killing
or indirectly by modulating the acute phase of the immune
response (Pierce and Kurata, 2021). MSCs express various
kinds of anti-microbial peptide and protein (AMPs), four of
which are well known due to anti-bacterial properties including
cathelicidin LL-37 (Krasnodembskaya et al., 2010), β-defensin-
2 (BD-2) (Sutton et al., 2016), hepcidin (Alcayaga-Miranda
et al., 2015), and Lipocalin-2 (Lcn2) (Gupta et al., 2012).
Recent studies have suggested that MSCs improve bacterial
clearance in preclinical models through the AMPs. Therefore,
MSCs can augment the innate immune response against bacteria
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(Alcayaga-Miranda et al., 2017). Yagi et al. (2020) assessed the
anti-microbial activity of human Adipose-Derived MSCs (AD-
MSCs) on Staphylococcus aureus. The findings indicated that
human AD-MSCs conditioned medium significantly prevented
the growth of S. aureus. The results also demonstrated that
cathelicidin LL-37 played an important role in the anti-microbial
activity of AD-MSCs (Yagi et al., 2020). A previous study also
showed that the anti-microbial activity of BM-MSCs against
the growth of Gram-negative (Escherichia coli and Pseudomonas
aeruginosa) and Gram-positive (S. aureus) bacteria was mediated
by LL-37 (Krasnodembskaya et al., 2010). On the other hand,
human umbilical cord blood-derived MSCs attenuated acute
lung injury due to E. coli infection in mice. The results
demonstrated that MSCs secreted BD-2 through the TLR-
4 signaling pathway and mediated the anti-microbial effects
(Rezaie et al., 2021). Moreover, menstrual-derived MSCs were
responsible for bacterial clearance by the secretion of hepcidin in
synergy with antibiotics in sepsis (Alcayaga-Miranda et al., 2015).
MSCs also exerted anti-bacterial activity through the secretion
of growth factors, especially Keratinocyte Growth Factor (KGF)
(Lee et al., 2013). In the research performed by Lee et al.
(2013) BM-MSCs improved alveolar fluid bacterial clearance and
mitigated inflammation in an E. coli infection model in an ex vivo
perfused human lung (Lee et al., 2013).

The application of stem cells for the treatment of viral
infections has started recently. Studies on the use of stem
cells in the treatment of viral diseases are mainly related to
MSCs. There are several clinical trials on the use of MSCs
in the treatment of viral infections (Sleem and Saleh, 2020).
These trials have been mainly focused on COVID-19 (Leng
et al., 2020; Zhang et al., 2020), Human Immunodeficiency
Virus (HIV) (Zhang et al., 2013), and hepatitis B virus (Lin
et al., 2017; Chen B et al., 2018a). During the COVID-19 crisis,
stem cells were introduced as the most promising treatment
option (Chrzanowski et al., 2020). A recent clinical trial also
indicated that MSCs improved COVID-19 patients’ outcomes.
This improvement was dependent on the inhibition of the over-
activation of the immune system. In fact, MSCs therapy decreased
C-reactive protein and increased peripheral lymphocytes and
IL-10 (Leng et al., 2020). Furthermore, Zhang et al. designed
a pilot study to evaluate the responses of difficult-to-treat
HIV-1-infected patients to human umbilical cord MSCs therapy.
This treatment resulted in an increase in circulating naive and
central memory CD4 T-cell counts and a decrease in systemic
immune activation and inflammation. Furthermore, HIV-1-
specific IFN-γ and IL-2 production was restored in immune non-
responders (Zhang et al., 2013). Moreover, peripheral infusion of
Bone Marrow–derived MSCs (BM-MSCs) significantly improved
the survival rate in patients with hepatitis B virus–related acute-
on-chronic liver failure because of recovering the liver function
and reducing the incidence of severe infections (Lin et al., 2017).

The efficiency of stem cells in the treatment of parasitic
infections has been reported in animal models (Zhang et al.,
2014). However, there are limited therapeutic methods in
parasitic infections, and drug resistance is a challenging issue
in long-term drug administration (Ouellette, 2001; Montazeri
et al., 2018; Ertabaklar et al., 2020). Previous studies indicated

that stem cells played an important role in the treatment or
control of schistosomiasis (Miranda et al., 2020), malaria (Souza
et al., 2015), Chagas disease (Silva et al., 2014), and hydatid cyst
(Abo-Aziza et al., 2019). Recently, Miranda et al. (2020) reported
that AD-MSCs could decrease liver damage in schistosomiasis
through controlling the granulomatous reaction. On the other
hand, stem cells have been introduced as a new therapeutic
option for malaria (Wang et al., 2015a). In this regard, BM-MSCs
reduced mortality in infected mice. The results also revealed
the reduction of parasitemia and morphological and functional
improvement in vital organs (Souza et al., 2015). Furthermore,
the effect of MSCs on protective immune responses was proposed
in malaria-infected mice. Based on the results, these cells
increased the production of IL-12, suppressed IL-10 production,
and reduced regulatory T cells (Thakur et al., 2013). Moreover,
the potentiality of stem cells was confirmed against myocarditis
in Chagas disease. The findings showed that receiving cardiac
MSCs attenuated myocarditis in a model of chronic Chagasic
cardiomyopathy, but did not decrease fibrosis (Silva et al., 2014).
Additionally, the combination of BM-MSCs transplantation with
albendazole was effective in the modulation of humeral and cell-
mediated immune responses against hydatid cyst antigens in
experimentally infected rats (Abo-Aziza et al., 2019).

There are limited reports on the anti-fungal activity of
stem cells. In a mouse model of severe refractory neutrophilic
asthma, administration of BM-MSCs mitigated inflammation
and improved the diseases induced by Aspergillus via Th17
inhibition. Moreover, a recent study indicated the anti-fungal
activity of human uterine cervical stem cells conditioned medium
against different species of Candida (Schneider et al., 2018).

THE APPLICATION OF STEM
CELL-DERIVED EXOSOMES IN
MICROBIAL DISEASES

An extensive body of evidence has indicated that a variety of
cells including stem cells release exosomes and exert therapeutic
properties in viral, bacterial, parasitic, and fungal infections,
which will be discussed below.

THE APPLICATION OF STEM
CELL-DERIVED EXOSOMES IN
BACTERIAL DISEASES

Bacterial infections are a major public health problem, and the
enhanced antibiotic resistance of bacteria requires finding new
therapeutic options (Monsarrat et al., 2019). The anti-bacterial
effects of stem cell-Exo and MVs have been investigated in
different bacterial diseases, especially respiratory failure (Zhu
et al., 2014). One of the main causes of respiratory failure is
Acute Lung Injury (ALI) that is mainly induced by bacterial
pneumonia. Studies have demonstrated that stem cell-Exo have
the potential to reduce the severity of bacterial pneumonia.
However, little is known regarding the underlying mechanisms
of their anti-microbial activity. Zhu et al. (2014) disclosed that

Frontiers in Microbiology | www.frontiersin.org 5 February 2022 | Volume 12 | Article 786111129

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-12-786111 February 8, 2022 Time: 15:24 # 6

Keshtkar et al. Stem Cell-Derived Exosome and Microbial Diseases

BM-MSC-derived MVs were as effective as their parent cells
in improving survival, restoring lung protein permeability, and
reducing inflammation in an E. coli endotoxin-induced ALI
mouse model. In fact, the administration of MVs decreased
extravascular lung water, total protein level, and influx of
neutrophils in Bronchoalveolar Lavage Fluid (BALF), indicating
mitigation in pulmonary edema, lung protein permeability, and
inflammation. Moreover, the anti-bacterial effect of MVs was
in part through the transfer of KGF mRNA into the injured
alveolus, which was eliminated after the administration of MVs
derived from KGF siRNA-pre-treatment of BM-MSCs. KGF was
known as a paracrine factor secreted by human MSCs and was
previously revealed to restore alveolar fluid clearance (Abreu
et al., 2016). This suggested the direct anti-bacterial activity of
vesicles inherited from parent cells. In the same line, Monsel
et al. (2015) reported that the administration of human MSC-
derived MVs in an E. coli pneumonia mouse model resulted in a
higher bacterial clearance, which was in part due to the increased
monocyte phagocytosis. Moreover, survival improved partly
through KGF secretion. The results also showed that the pre-
stimulation of MSCs with a Toll like Receptor-3 (TLR-3) agonist
could lead to the release of more effective MVs and further
enhancement of bacteria’s monocyte phagocytosis. It has been
revealed that the binding and uptake of MSC-MVs into human
monocytes and injured alveolar epithelial cells were mediated
via the CD44 receptor on the mentioned target cells, which was
necessary for their therapeutic effects. In addition, MVs enhanced
intracellular ATP levels in injured alveolar epithelial cells and
reduced the secretion of inflammatory cytokines including
Tumor Necrosis Factor-alpha (TNF-α) in human monocytes,
suggesting the metabolomics and immunomodulatory effects of
MVs derived from MSCs. Interestingly, MSC-MVs expressed
Cyclooxygenase2 (COX2) mRNA. COX2 is the key enzyme in
Prostaglandin E2 (PGE2) synthesis that is an essential factor
for transforming the polarization of monocyte-macrophage M1
into M2 phenotype. It was suggested that the increment in
PGE2 secretion by monocytes following the transfer of COX2
mRNA from MSC-MVs to these cells caused the phenotype
switch toward an anti-inflammatory state. Thus, it could be
suggested that MSC-MVs mitigated lung inflammation, cytokine
permeability, and bacterial growth and improved survival directly
through KGF transfer or indirectly via activating monocytes. This
therapeutic effect of MVs was abrogated by KFG neutralizing
antibody, proposing a possible mechanism for the anti-bacterial
effect of MSC-MVs (Monsel et al., 2015; Abreu et al., 2016). Since
the anti-bacterial effect of KGF was previously reported in MSCs
(Lee et al., 2013), these studies supported the hypothesis that MVs
conserve the anti-microbial effects of parent cells partly through
their growth factors content including KGF.

In addition to the beneficial effects of stem cell-Exo in a
mouse model of ALI, Park et al. (2019) recently evaluated
the therapeutic effects of BM-MSC-MVs on ex vivo perfused
human lungs with severe pneumonia induced by Escherichia coli
that resulted in the significant enhancement of alveolar fluid
clearance, reduction of lung protein permeability leading to lower
bacterial load, and decrement of the median pulmonary artery
pressure. The anti-microbial activity of human BM-MSC-MVs

could be further increased by the pre-treatment of MSCs with a
TLR-3 agonist, Poly (I:C), before the isolation of MVs, which led
to lower neutrophils infiltration in the injured lung. Additionally,
isolated human alveolar macrophages increased anti-microbial
activity with MSC-MVs treatment in vitro, which resulted in the
enhancement of bacterial clearance in the injured lung (Park
et al., 2019; Al-Khawaga and Abdelalim, 2020). A noteworthy
point in the studies carried out by Monsel et al. (2015) and
Park et al. (2019) was the preconditioning of MSCs with a
TLR-3 agonist, Poly (I:C). Further studies showed that the pre-
stimulation of parent MSCs with poly (I:C) could increase
the anti-microbial and immunomodulatory proteomic profile
of EVs (Mayo et al., 2019; Pierce and Kurata, 2021). They
also indicated various AMPs in MSC-EVs including dermcidin,
lactoferrin, lipocalin 1, lysozyme C, neutrophil defensin 1,
S100A7 (psoriasin), S100A8/A9 (calprotectin), and histone H4.
Several AMPs helped fight against various bacteria, fungi,
and viruses (Pierce and Kurata, 2021). However, these AMPs
remained unaltered by poly (I:C) pre-stimulation. Up to now, no
study has been performed on the exact effect of AMPs through
transfer with stem cell-Exo, which requires special attention in
future. Furthermore, it should be noted that although many
studies have dealt with MVs based on the separation method
(Zhu et al., 2014; Monsel et al., 2015; Park et al., 2019), they have
actually isolated a combination of MVs and exosomes.

Immunomodulatory and immunostimulatory properties of
stem cell-Exo partly depend on functional miRNAs by exosomes.
Hao et al. (2019) investigated the effects of human MSC-
Exo on Escherichia coli pneumonia-induced acute lung injury
in C57BL/6 mice. They found that exosomes administration
was associated with high levels of Leukotriene (LT) B4 and
improvement of bacteria clearance in the injured alveolus. It has
been found that LTB4 augmented phagocytosis and the release
of anti-microbial agents and increased host defense against
pneumonia and sepsis. Production of LTB4 was suppressed by an
ATP-binding cassette transporter called Multidrug Resistance–
Associated Protein 1 (MRP1). The underlying mechanism
of the anti-microbial activity of MSC-Exo was through the
inhibition of MRP1 expression partly via the transfer of miR-
145, which resulted in increased LTB4 production that led to
the enhancement of bacterial phagocytosis through LTB4/BLT1
signaling. Previous studies indicated that miR-145 was one of
the top 10 most abundant miRNAs detected in MSCs and MSC-
Exo, which could directly inhibit MRP1 expression in breast and
gallbladder cancers (Hao et al., 2019).

The use of stem cell-Exo for reducing the complications
caused by bacteria seems to be attractive. Sepsis is known as
a serious and life-threatening condition with high morbidity
and mortality, which increases when the host body’s response
to infections including bacterial infections causes injury to its
own organs (Cheng et al., 2020). Interleukin-1b (IL-1b), as a
serious pro-inflammatory cytokine, increases in the early stage
of sepsis and is involved in the severity and evolution of organ
dysfunction. In the study conducted by Song et al. (2017) BM-
MSCs were pre-stimulated by IL-1b prior to the isolation of
exosomes. Then, the effect of these exosomes was investigated
in a cecal ligation and puncture-induced mouse model of
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sepsis. The results showed that IL-1b enhanced the therapeutic
effect of MSCs-Exo against sepsis by inducing macrophage
polarization to an anti-inflammatory M2 phenotype (Song et al.,
2017). The results also revealed that exosomes derived from
MSCs contained high levels of miR-146a, which is a well-
known anti-inflammatory microRNA. Transfer of miR-146a by
exosomes to recipient macrophages regulated M1-M2 transition,
reduced inflammation, and enhanced survival in septic mice. In
addition, transfection of miR-146a inhibitors partially abrogated
the immunomodulatory properties of exosomes. Overall, IL-1b
pre-stimulation effectively increased the immuno-modulatory
properties of MSCs partially through the exosome-mediated
transfer of miR-146a (Song et al., 2017; Cheng et al., 2020).
All in all, exosomes derived from stem cells had the anti-
bacterial capacity against intracellular bacterial infections. It
could be a proof-of-principle that therapeutic approaches based
on exosomes derived from MSCs offer a promising path forward.

Research on the administration of exosomes for drug delivery,
particularly antibiotics, is still in its initial steps. In the study
carried out by Yang et al. (2018) exosomes were isolated
form RAW 264.7 mice macrophages and were incubated with
an antibiotic agent called linezolid. They evaluated the effect
of linezolid-exosomes on Methicillin-Resistant Staphylococcus
aureus (MRSA)-infected macrophages in a mouse model of
MRSA. Briefly, Staphylococcus aureus lives inside phagocytes
and is a strain with antibiotic resistance, which can lead
to sepsis, infective endocarditis, osteomyelitis, and necrotizing
pneumonia. The results showed that the delivery of exosome-
encapsulated antibiotics was more effective against intracellular
MRSA infections compared to free linezolid antibiotics (Yang
et al., 2018). In this regard, exosomes derived from stem cells
and immune cells had the capacity for delivery of anti-microbial
agents against intracellular pathogen infections. Yet, further
studies are required for clinical applications.

THE APPLICATION OF STEM
CELL-DERIVED EXOSOMES IN VIRAL
DISEASES

Some contents in exosomes derived from stem cells can play
substantial anti-viral roles by inhibiting viral replication and
inducing immune responses (Longatti, 2015). Clinical trials have
shown that the exosomes released from different cells can be
novel therapeutic strategies against viruses including hepatitis,
HIV, and COVID-19. To the best of our knowledge, there are
limited studies regarding the application of stem cell-Exo in viral
diseases. Qian et al. (2016) investigated the effects of the secreted
exosomes from umbilical-MSCs on hepatitis C virus infection
in vitro. The results indicated that a profile of miRNAs in the
exosomes including let-7f, miR-145, miR-199a, and miR-221 was
involved in the direct suppression of the RNA replication of
hepatitis C virus (Qian et al., 2016).

Exosomes also play important roles in the interplay between
the virus and various immune cells in hepatitis viruses. In
particular, virus-infected cells release exosomes that affect the
host immune system. An in vitro study on hepatitis C virus
infection showed that macrophages’ exosomes contained miR-29

family members that exerted anti-viral effects on Huh7 cells
(Zhou et al., 2016). Kouwaki et al. (2016) also reported
that hepatitis B virus-infected hepatocytes released exosomes
containing viral nucleic acid, which activated the innate immune
response. They found that the microRNA levels of miR-
21 and miR-29a increased in the exosomes of the infected
hepatocytes that stimulated macrophages (Kouwaki et al., 2016).
Furthermore, the previous studies emphasized that miR-21 was
enriched in exosomes derived from BM-MSCs (Shi et al., 2018)
and human umbilical cord MSCs (Chen et al., 2020). The
presence of miR-29a was detected in BM-MSCs, as well (Lu et al.,
2020; Tan et al., 2020). Therefore, the exosomes derived from such
sources may be effective against hepatitis viruses.

Sims et al. (2014) described the role of neural stem cell-
Exo in cellular viral entry. The findings showed that the
exosomes contained T-cell immunoglobulin mucin protein 4,
which acted as a phosphatidylserine receptor and mediated
adenovirus type 5 entries. Clarifying the virus/exosome pathways
and exosome trafficking may provide a potentially therapeutic
option (Sims et al., 2014).

Recent studies have proposed the anti-HIV activity of
exosomes (Yong et al., 2018). It has been conducted on the
application of exosome-containing miRNAs in the treatment
of HIV (Yong et al., 2018). In this context, a variety of
miRNAs including miR-28, miR-150, miR-223, miR-382 (Wang
et al., 2009), miR-29a, miR-29b, miR-149, miR-324, miR-378
(Hariharan et al., 2005), miR-125b (Mantri et al., 2012), and
miR-198 (Sung and Rice, 2009) have been explored in the host
exosomes involved in HIV therapy (Madison and Okeoma, 2015).
Several studies proposed the presence of the mentioned miRANs
in the exosomes derived from different sources of stem cells.
Accordingly, the exosomes derived from BM-MSCs contained
miR-29a (Lu et al., 2020; Tan et al., 2020), miR-150 (Qiu et al.,
2021; Wu et al., 2021), miR-223 (Chen L et al., 2018b), miR-
29a (Su et al., 2019), and miR-125b (Wang et al., 2019). miR-
223 was also identified in the exosomes derived from umbilical
cord MSCs (Wei et al., 2020; Liu et al., 2021). These findings
indicated that MSCs could be considered in anti-HIV strategies.
Recent studies on the treatment of viruses also indicated the
potentiality of exosomes for encapsulating bioactive molecules
in drug delivery systems. Therefore, transferring anti-HIV RNAs
through artificial exosomes or exosomes derived from stem cells
may be promising in the HIV treatment.

Several studies have demonstrated the beneficial effects of
exosomes from stem cells on the treatment of respiratory
viruses (Popowski et al., 2021). During the COVID-19 pandemic,
researchers focused on the application of stem cell-Exo, as
a treatment option. Considering the beneficial effects of
stem cell-Exo on the management of cytokine storm, tissue
repair, and viral suppression, exosomes may be considered a
promising therapeutic option. A prospective non-randomized
open-label cohort study proposed the safety and efficacy of
exosomes derived from allogeneic BM-MSCs in severe COVID-
19. This study revealed that these exosomes attenuated cytokine
storm, recovered oxygenation, and improved immunity cell
counts (Sengupta et al., 2020). Generally, the Receptor-Binding
Domain (RBD) of the SARS-CoV-2 spike protein recognizes
the Angiotensin-Converting Enzyme 2 (ACE2) receptor to enter
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host cells. The application of exosomes that effectively bind
to SARS-CoV-2 may prevent the virus from entering the cells.
Interestingly, a previous study revealed that the exosomes
expressing ACE2 dose-dependently prevented the binding of the
RBD of the SARS-CoV-2 spike protein to ACE2 + cells (El-
Shennawy et al., 2020). Hence, engineering of stem cell-Exo
to overexpress ACE2 may competitively block the binding of
SARS-CoV-2 to ACE2-expressing cells (Inal, 2020). In addition,
stem cell-Exo contributed to organ regeneration and repair
(Basu and Ludlow, 2016; Maqsood et al., 2020). Therefore,
the tissue and organ destruction occurring in COVID-19 may
be improved by using exosomes. Suppression of cytokine
storm is yet another issue in COVID-19 management. The
immunomodulatory function of MSC-Exo has made them a
potential therapeutic option for cytokine storm. These exosomes
decrease proinflammatory cytokines (Liang et al., 2020), inhibit
CD4+ and CD8+ T cells (Taechangam et al., 2019), reduce
the proliferation and activation of NK cells (Moloudizargari
et al., 2021), and improve the release of IL-4, IL-10, and TGF-β
(Jayaramayya et al., 2020). Based on these pieces of evidence, the
anti-viral properties of the exosomes released from stem cells are
related to their key molecules. These molecules may disturb the
virus survival or inhibit the side effects caused by them.

THE APPLICATION OF STEM
CELL-DERIVED EXOSOMES IN FUNGAL
AND PARASITIC DISEASES

Similar to the studies performed on viruses, limited data
are available for identifying the effects of stem cell-Exo on
human fungal infections. Only one study conducted by Cruz
et al. (2015) demonstrated that the systemic administration of
exosomes derived from human BM-MSCs improved allergic
airway inflammation induced by Aspergillus hyphal extract
in an immunocompetent mouse model of severe refractory
neutrophilic asthma (Cruz et al., 2015). Hence, research on the
impact of stem cell-Exo on fungal diseases is still in its infancy,
and further investigations are necessary.

Despite of distinct properties of stem cell-Exo, no evidence is
available regarding the therapeutic application of stem cell-Exo in
the context of parasite infections. There are more than 1 billion
cases of parasitic diseases in the world including malaria (Murray
et al., 2014) and neglected tropical diseases such as helminthiases,
Chagas disease, and leishmaniosis (Coakley et al., 2015), with an
increasing prevalence in developing regions such as Eastern Asia,
Sub-Saharan Africa, and the Americas (Lustigman et al., 2012).
Hence, attention has to be paid to the potential of exosomes as a
biomarker and therapeutic agent in parasite diseases.

ADVANTAGES AND CHALLENGES IN
THE USE OF STEM CELL-DERIVED
EXOSOMES

Application of stem cells in the treatment of different human
diseases, especially microbial infections, has shown effective
outcomes. Nevertheless, there are still safety concerns like

lower survival after transplantation as well as the possibility
of pulmonary embolism, tumorginicity, and uncontrolled
differentiation. Yet, stem cell-Exo are highly stable due to
biolayer lipid membrane, small size, low immunogenicity, easy
storage at −80◦C for a long time without toxic agents, and
easier procedure for delivery and management (Keshtkar et al.,
2018). Like parent cells, exosomes have immunomodulatory and
immunosuppressive properties that enable them to participate
in various disease models. Thus, stem cell-Exo represent an
alternative to stem cell therapies, with no safety issues regarding
regenerative medicine.

Mesenchymal Stem Cell-derived Exosomes have been
reported to decrease the side effects of cell therapy (Malekpour
et al., 2021). Therefore, they can be a good platform for
various applications in the treatment of various diseases. For
instance, manipulation of exosomes by loading therapeutic
compounds as well as transferring interfering RNA, miRNA,
and oligonucleotides enhances their efficiency (Zhang et al.,
2021). In the study by Melzer et al. (2019) evaluated the loading
of compound paclitaxel into MSC-Exo. They showed that
manipulated MSC-Exo notably decreased the breast tumor
volume and suppressed the metastasis compared to MSC-Exo
alone (Melzer et al., 2019). The biocompatibility potential
of exosomes also makes them an ideal candidate for drug
delivery like antibiotics (Huang and Lai, 2019). In the study
carried out by Yang et al. (2018) exosomes were isolated form
RAW 264.7 mice macrophages and were incubated with an
antibiotic agent called linezolid. They evaluated the effect of
linezolid-exosomes on Methicillin-Resistant Staphylococcus
aureus (MRSA)-infected macrophages in a mouse model of
MRSA. Briefly, S. aureus lives inside phagocytes and is a strain
with antibiotic resistance, which can lead to sepsis, infective
endocarditis, osteomyelitis, and necrotizing pneumonia. The
results showed that the delivery of exosome-encapsulated
antibiotics was more effective against intracellular MRSA
infections compared to free linezolid antibiotics (Yang et al.,
2018). Hence, they have been nominated as ideal vehicles for
therapeutic applications. Despite the aforementioned advantages,
research on development and treatment based on stem cell-Exo
is still in its infancy. There are also some hurdles that must be
overcome prior to translation from bench to bed. These include
the lack of standard isolation and purification methods for
exosomes, lack of complete information about the exact cargos of
these vesicles, and existence of heterogeneity in released vesicles
as a result of physiological changes in the cells’ extracellular space
(Huang and Lai, 2019; Brakhage et al., 2021).

CONCLUSION

Extracellular Vesicles, especially exosomes, secreted by stem cells
have the same anti-microbial potential and immunomodulatory
ability as their parent cells. Hence, clinical applications of stem
cell-Exo can possibly overcome the shortage of stem cells for
the treatment of microbial and other infectious diseases and, at
the same time, affect the field of novel medicine from cellular to
acellular therapy. Both intact and engineered exosomes have been
applied and their therapeutic effects on various infectious diseases
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have been demonstrated in preclinical studies and limited clinical
trials. Exosomes perform a part of their antimicrobial activity
through the direct transfer of mRNA, miRNA, and protein
cargos, while their beneficial effects are mostly applied indirectly
through the reprogramming of immune cells and the activation
of innate and adaptive immune responses.

Although the underlying mechanism of stem cell-Exo has not
been specified exactly and completely, the anti-microbial activity
of exosomes appears to be more indirect than direct.

Moreover, many barriers are still needed to be eliminated prior
to the application of stem cell-Exo as anti-microbial agents in
clinical settings.
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